
TIBCO EBX®
Product Documentation
Version 6.2.0
June 2024

TIBCO EBX® Product Documentation 6.2.0 3

Table of contents
User Guide

Introduction
1. How TIBCO EBX® works..17
2. Using the user interface... 21
3. Glossary..27

Data models
4. Introduction to data models... 38

Implementing data models
5. Creating a data model...43
6. Configuring the data model.. 45
7. Implementing the data model structure.. 49
8. Properties of data model elements... 55
9. Data validation controls on elements... 69
10. Data model extensions..77
11. Working with an existing data model...89

Publishing and versioning data models
12. Publishing a data model... 93
13. Versioning an embedded data model..95

Dataspaces
14. Introduction to dataspaces..98
15. Creating a dataspace.. 101
16. Working with existing dataspaces..103
17. Snapshots..111

Datasets
18. Introduction to datasets..116
19. Creating a dataset...119
20. Viewing data...121
21. Editing data.. 141

File import and export services
22. XML import and export... 143
23. CSV import and export...149

24. Working with existing datasets.. 155
25. Dataset inheritance... 159

Collaborative features (Team Up)
26. Introduction to collaborative features (Team Up)... 164
27. Comments...167
28. Ratings..173
29. Tags...177

TIBCO EBX® Product Documentation 6.2.0 4

Workflow models
30. Introduction to workflow models.. 184
31. Creating and implementing a workflow model... 189
32. Configuring the workflow model.. 203
33. Publishing workflow models... 211

Data workflows
34. Introduction to data workflows..214
35. Using the Data Workflows area user interface..215
36. Work items... 221

Managing data workflows
37. Launching and monitoring data workflows..227
38. Administration of data workflows..229

Data services
39. Introduction to data services..234
40. Generating data service WSDLs..237

EBX® Metadata Management
41. Introduction to metadata management...242
42. Key terms... 246
43. Accessing the metadata perspective.. 249

User Interface
44. Overview of the User Interface.. 251

Navigation pane
45. Navigation pane overview... 255

Metadata catalog
46. Catalog overview.. 259
47. Creating applications.. 261
48. Creating data elements... 265
49. Provisioning.. 267
50. Regular expressions.. 277

Governance
51. Governance overview... 283
52. Defining a business term..285

Metadata
53. Metadata section overview... 287
54. Managing assets..289

Technology
55. Technology overview..295
56. Create an instance...297
57. Create a system...299
58. Create a system type.. 303
59. Create an infrastructure.. 307
60. Create a provider.. 309

Privacy
61. Privacy overview.. 311

TIBCO EBX® Product Documentation 6.2.0 5

62. Processing activities..313
63. Consents.. 315
64. Data breaches..317
65. Requests.. 319

66. Workspace... 321
67. Home page.. 325
68. Custom views..347

Advanced data services
69. Advanced data services overview...353
70. Metadata harvesting.. 355
71. Asset sampling.. 369
72. Asset classification..373
73. Lineage.. 379

Collaboration
74. Collaboration overview...391
75. Metadata comments.. 393
76. Metadata ratings..397
77. Tag metadata... 399
78. Managing metadata with collaborative workflows...403

TIBCO EBX® Product Documentation 6.2.0 6

Reference Manual
Integration

79. Overview of integration and extension..407
80. Using TIBCO EBX® as a Web Component... 409
81. Built-in user services... 417
82. Supported XPath syntax...431

Localization
83. Labeling and localization...440
84. Extending TIBCO EBX® internationalization.. 443

Persistence
85. Overview of persistence...448
86. History.. 451
87. Replication..459
88. Data model evolutions... 465

Other
89. Inheritance and value resolution..470
90. Permissions...475
91. Criteria editor... 497
92. Search... 499

TIBCO EBX® Product Documentation 6.2.0 7

Administration Guide
93. Administration overview...506

Installation & configuration
94. Supported environments...512
95. Disk requirements.. 519
96. Jakarta EE deployment.. 521

Installation notes
97. Installation note for JBoss EAP 8.0.X... 531
98. Installation note for WebSphere Application Server Liberty 23.X.. 537
99. Installation note for Tomcat 10.1.X..543

100. TIBCO EBX® main configuration file... 549
101. Initialization and first-launch assistant.. 575
102. Managing TIBCO EBX® add-ons.. 577
103. User authentication...581
104. Performance and tuning... 585
105. Configuration notes..595

EBX® Container Edition
106. Building the image...598
107. Running the image..603
108. Customizing the image.. 613

Technical administration
109. Repository administration.. 618
110. UI administration... 629
111. UI – Workflow launcher.. 647
112. Users and roles directory... 661
113. Data model administration...667
114. Database mapping administration..669
115. Workflow management.. 673
116. Task scheduler..677
117. Audit trail... 683
118. Collaborative features (Team Up)..687
119. Other... 691

Distributed Data Delivery (D3)
120. Introduction to D3..694
121. D3 broadcasts and delivery dataspaces... 699
122. D3 JMS Configuration...703
123. D3 administration...711

124. Staging... 721

EBX® Metadata Management application
125. Metadata Administration Perspective.. 736
126. User roles... 739
127. Permissions...741
128. User interface configuration.. 743

TIBCO EBX® Product Documentation 6.2.0 8

129. Workflows.. 745
130. Web Services and API... 751

Metadata Agent
131. Installing the TIBCO® Metadata Agent.. 755
132. TIBCO TDV Metadata Adapter installation.. 765
133. TIBCO® EBX® Metadata Adapter installation...771
134. TIBCO® Metadata Agent Framework... 775
135. Administration of TIBCO® Metadata Agent... 781
136. Technical Users... 783
137. TIBCO® Metadata Agents... 785
138. Items managed by Metadata Agent.. 791
139. Harvesting configurations... 799

TIBCO EBX® Product Documentation 6.2.0 9

Security Guide
140. Security Best Practices..810

TIBCO EBX® Product Documentation 6.2.0 10

Developer Guide
Introduction

141. Packaging TIBCO EBX® modules... 819
142. Mapping to Java...825
143. Tools for Java developers.. 831
144. Terminology changes... 833

Data model
145. Introduction.. 836
146. Data types...839
147. Tables and relationships...853
148. Constraints..875
149. Triggers and functions... 891
150. Labels and messages..895
151. Additional properties..901
152. Data services.. 909
153. Toolbars.. 911
154. Custom forms... 913

155. Workflow model..951

User interface
156. Interface customization.. 962

User services
157. Overview... 965
158. Quick start...969
159. Implementing a user service...973
160. Declaring a user service..987

161. Development recommendations... 993

SOAP data services
162. Introduction.. 998
163. WSDL generation...1009
164. SOAP operations..1017

REST data services
165. Introduction.. 1052
166. Built-in RESTful services.. 1063

JSON Formats
167. Introduction... 1129
168. Extended..1131
169. Compact...1161
170. Common.. 1171
171. Others.. 1181

SQL in EBX®
172. Introduction.. 1192
173. Comparison operators.. 1202
174. Arithmetic operators and functions..1206

TIBCO EBX® Product Documentation 6.2.0 11

175. Logical operators..1210
176. String operators and functions... 1214
177. Date and time functions...1218
178. EBX® SQL functions.. 1221

179. REST Toolkit...1223
180. Record permission...1239

EBX® Script
181. Reference..1256

Usage
182. Function field.. 1279
183. Script task..1281
184. Table trigger.. 1287

API
185. Unit summary..1291
186. Unit default... 1293
187. Unit core.complex...1295
188. Unit core.data.. 1298
189. Unit core.date.. 1315
190. Unit core.datetime...1320
191. Unit core.list..1328
192. Unit core.locale... 1335
193. Unit core.log... 1337
194. Unit core.math...1340
195. Unit core.resource... 1351
196. Unit core.string..1356
197. Unit core.time..1361
198. Unit core.uri.. 1365

EBX® Script IDE
199. Overview of the EBX® Script IDE...1368
200. How to guide..1369

Tutorials
201. Creating functions... 1373
202. Creating triggers..1379
203. Creating a workflow script... 1383

204. User interface reference... 1389

TIBCO EBX® Product Documentation 6.2.0 12

Migration Guide
205. Migration introduction.. 1396
206. Environment and hardware requirements... 1399
207. Changes to supported add-ons.. 1403
208. Step 1: Adapting custom code..1409
209. Step 2: Preparing the repository... 1413
210. Step 3: Deploying... 1421
211. Java API changes.. 1423

TIBCO EBX® Product Documentation 6.2.0 13

Notices
212. Documentation and Support..1426
213. Legal and Third-Party... 1429

TIBCO EBX® Product Documentation 6.2.0 14

TIBCO EBX® Product Documentation 6.2.0 15

User Guide

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 16

Introduction

Documentation > User Guide > Introduction > How TIBCO EBX® works

TIBCO EBX® Product Documentation 6.2.0 17

CHAPTER 1
How TIBCO EBX® works

This chapter contains the following topics:

1. Product overview

2. EBX® architecture

1.1 Product overview
Master Data Management (MDM) is a way to model, manage and ultimately govern shared data.
When data needs to be shared by various IT systems, as well as different business teams, having a
single governed version of master data is crucial.
With EBX®, business and IT users can collaborate on a single, unified solution in order to design
data models and manage master data content.
EBX® is an MDM software that allows modeling any type of master data and implementing
governance using the rich features included, such as collaborative workflows, data authoring,
hierarchy management, version control, and role-based security.
An MDM project using EBX® starts with the creation of a data model. This is where tables, fields,
links and business rules related to the master data are defined. Examples of modeled data include
product catalogs, financial hierarchies, lists of suppliers or simple reference tables.
The data model can then be published to make it available to datasets, which store the actual master
data based on the structure defined in the data model. Datasets are organized and contained within
dataspaces, containers that isolate updates from one another. Dataspaces allow working on parallel
versions of data without the modifications impacting other versions.
Workflows are an invaluable feature for performing controlled change management or data approval.
They provide the ability to model a step-by-step process involving multiple users, both human and
automated.
Workflow models detail the tasks to be performed, as well as the parties associated with the tasks. Once
a workflow model is published, it can be executed as data workflows. Data workflows can notify users
of relevant events and outstanding work in a collaborative context.

Documentation > User Guide > Introduction > How TIBCO EBX® works

TIBCO EBX® Product Documentation 6.2.0 18

Data services help integrate EBX® with third-party systems (middleware), by allowing external
systems to access data in the repository, or to manage dataspaces and workflows through web services.

See also

Data modeling [p 28]

Datasets [p 30]

Dataspaces [p 32]

Workflow modeling [p 33]

Data workflows [p 34]

Data services [p 35]

Documentation > User Guide > Introduction > How TIBCO EBX® works

TIBCO EBX® Product Documentation 6.2.0 19

1.2 EBX® architecture
The following diagram illustrates the EBX® architecture.

Documentation > User Guide > Introduction > How TIBCO EBX® works

TIBCO EBX® Product Documentation 6.2.0 20

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 21

CHAPTER 2
Using the user interface

This chapter contains the following topics:

1. Overview

2. Advanced perspective

3. Perspectives

4. User pane

5. User interface features

6. Where to find EBX® help

2.1 Overview
The general layout of TIBCO EBX® workspaces is entirely customizable by a perspective
administrator.
If several customized perspectives have been created, the tiles icon 'Select perspective' allows the user
to switch between available perspectives.
The advanced perspective is accessible by default.

See also UI administration [p 629]

2.2 Advanced perspective
By default, the EBX® advanced perspective is available to all users, but its access can be restricted
to selected profiles. The view is separated into several general areas, referred to as the following in
the documentation:

Note

The advanced perspective is still accessible to users through explicit selection (for
example through a Web component). Unlike other perspectives, it can only be "hidden"
in the user interface so that users cannot apply it themselves.

• Header: Displays the avatar of the user currently logged in and the perspective selector. Clicking
on the user's avatar gives access to the user pane.

• Menu bar: The functional categories accessible to the current user.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 22

• Navigation pane: Displays context-dependent navigation options. For example: selecting a table
in a dataset, or a work item in a workflow.

• Workspace: Main context-dependent work area of the interface. For example, the table selected
in the navigation pane is displayed in the workspace, or the current work item is executed in the
workspace.

The following functional areas are displayed according to the permissions of the current user: Data,
Dataspaces, Modeling, Data Workflow, Data Services, and Administration.

2.3 Perspectives
The EBX® perspectives are highly configurable views with a target audience. Perspectives offer a
simplified user interface to business users and can be assigned to one or more profiles. This view is
split into several general areas, referred to as the following in the documentation:

• Header: Displays the avatar of the user currently logged in and the perspective selector (when
more than one perspective is available). Clicking on the user's avatar gives access to the user pane.

• Navigation pane: Displays the hierarchical menu as configured by the perspective administrator.
It can be expanded or collapsed to access relevant entities and services related to the user's activity.

• Workspace: Main context-dependent work area of the interface.

Perspectives are configured by authorized users. For more information on how to configure a
perspective, see perspective administration [p 630].

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 23

Example of a hierarchical menu:

Perspective modes
It’s possible now to choose between two modes of perspective.
According to the mode chosen by the user, the last visited perspective or the favorite one will be
applied at connection.

Last used perspective:
This option allows the user to get the last selected perspective and it will be applied in the next log in.
If the user chooses this mode, the stars next to the perspective name will disappear.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 24

Favorite perspectives:
When more than one perspective is available to a user, it is possible to define one as their favorite
perspective so that, when logging in, this perspective will be applied by default. To do so, an icon is
available in the perspective selector next to each perspective:

• A full star indicates the favorite perspective. A click on it will remove the favorite perspective.

• An empty star indicates that the associated perspective is not the favorite one. A click on it will
set this perspective as the favorite one.

See also Recommended perspectives [p 642]

2.4 User pane
General EBX® features are grouped in the user pane. It can be accessed by clicking on the avatar (or
user's initials) in the upper right corner of any page.
The user pane is then displayed with the user avatar and gives access to the profile configuration
(according to the user's rights), language selection, density selection and online documentation.

Attention
The logout button is located on the user pane.

Avatar
An avatar can be defined for each user. The avatar consists in a picture, defined using a URL path;
or in two letters (the user's initials by default). The background color is set automatically and cannot
be modified. Regarding the image that will be used, it has to be a square format but there is no size
limitation.

Note

Avatars appear in the user pane, history and workflow interfaces.

The feature is also available through the Java method UIComponentWriter.addUserAvatarAPI.
The avatar layout can be customized in the 'Ergonomics and layout' section of the 'Administration'
area. It is possible to choose between the display of the avatar only, user name only, or to display both.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 25

Density
Users can choose their display density mode between 'Compact' and 'Comfortable'. The display mode
can be modified from the user pane.

2.5 User interface features

Resetting the navigation pane width
After having resized the width of the navigation pane, you can restore it to the default width by
hovering over the border and double-clicking.

2.6 Where to find EBX® help
In addition to the full standalone product documentation accessible via the user pane [p 24], help is
accessible in various forms within the interface.

Context-sensitive help
When browsing any workspace in EBX®, context-specific help is available by clicking on the question
mark located to the right side of the second header. The corresponding chapter from the product
documentation will be displayed.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 6.2.0 26

Contextual help on elements
When you hover over an element for which contextual help has been defined, a question mark appears.
Clicking on the question mark opens a panel with information on the element.

When a permalink to the element is available, a link button appears in the upper right corner of the
panel.

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 27

CHAPTER 3
Glossary

This chapter contains the following topics:

1. Governance

2. Data modeling

3. Datasets

4. Data management life cycle

5. History

6. Workflow modeling

7. Data workflows

8. Data services

9. Cross-domain

3.1 Governance

repository
A back-end storage entity containing all the data managed by TIBCO EBX®. The repository is
organized into dataspaces.
See also dataspace [p 32].

profile
The generic term for a user or a role. Profiles are used in data workflows and for defining permission
rules.
See also user [p 27], role [p 28].
Related Java API ProfileAPI.

user
An entity created in the repository in order for physical users or external systems to authenticate and
access EBX®. Users may be assigned roles and have other account information associated with them.
See also user and roles directory [p 28], profile [p 27].
Related concept User and roles directory [p 661].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 28

Related Java API UserReferenceAPI.

role
A user classification, used for permission rules and data workflows, which can be assigned to users.
Each user may belong to multiple roles.
Whenever a role profile is specified in EBX®, the behavior resulting from that designation is applied
to all users that are members of that role. For example, in a workflow model, a role may be specified
when defining to whom work items are offered. As a result, all users belonging to that role can receive
the same work item offer.
See also user and roles directory [p 28], profile [p 27].
Related concept User and roles directory [p 661].
Related Java API RoleAPI.

administrator
A predefined role that has access to the technical administration and configuration of EBX®.

user and roles directory
A directory defining the methods available for authentication when accessing the repository, all
available roles, and the users authorized to access the repository with their role assignments.
See also user [p 27], role [p 28].
Related concept User and roles directory [p 661].
Related Java API DirectoryAPI, DirectoryHandlerAPI.

user session
A repository access context that is associated with a user after being authenticated against the user
and roles directory.
Related concept User and roles directory [p 661].
Related Java API SessionAPI.

3.2 Data modeling
Main documentation section Data models [p 38]

data model
A structural definition of the data to be managed in the EBX® repository. A data model includes
detailed descriptions of all included data, in terms of organization, data types, and semantic
relationships. The purpose of data models is to define the structure and characteristics of datasets,
which are instances of data models that contain the data being managed by the repository.
See also dataset [p 30].
Related concept Data models [p 38].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 29

field
A data model element that is defined with a name and a simple datatype. A field can be included in the
data model directly or as a column of a table. In EBX®, fields can be assigned basic constraints, such
as length and size, as well as more complex validation rules involving computations. Automated value
assignment using field inheritance or computations based on other data can also be defined for fields.
Aggregated lists can be created by setting the cardinality of a field to allow multiple values in the
same record. Fields can be arranged into groups to facilitate structural organization in the data model.

By default, fields are denoted by the icon .
See also record [p 30], group [p 29], table (in data model) [p 29], validation rule [p 30],
inheritance [p 31].
Related concepts Structure elements properties [p 55], Controls on data fields [p 69].
Related Java API SchemaNodeAPI.
The former name (prior to version 5) of "field" was "attribute".

primary key
A field or a composition of multiple fields used to uniquely identify the records in a table.

Primary keys are denoted by the icon .
Related concept Tables definition [p 853].

foreign key
A field or a composition of multiple fields in one table whose field values correspond to the primary
keys of another table. Foreign keys are used to reference records in one table from another table.

Foreign keys are denoted by the icon .
See also primary key [p 29].
Related concept Foreign key [p 859].

table (in data model)
A data model element that is composed of fields and/or groups of fields. Every table must define at
least one field to act as the unique identifier, or primary key, of records. A table in a data model can
be used to create a reusable type based on the table's structure, which can then be used to create other
elements of the same structure in the data model.

Tables are represented by the icon .
See also record [p 30], primary key [p 29], reusable type [p 30].

group
A classification entity used to facilitate the organization of a data model. A group can be used to
collect fields, other groups, and tables. If a group contains tables, the group cannot be included within
another table, as the constraint that tables cannot be nested must be respected. A group can be used to
create a reusable type based on the group's structure, which can then be used to create other elements
of the same structure in the data model.

Groups are represented by the icon .

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 30

See also reusable type [p 30].
Related Java API SchemaNodeAPI.

reusable type
A shared simple or complex type definition that can be used to define other elements in the data model.

validation rule
An acceptance criterion defined on a field or a table. Data is considered invalid if it does not comply
with all imposed validation rules.
The former name (prior to version 5) of "validation rule" was "constraint".

data model assistant (DMA)
The EBX® user interface includes a tool that aids the implementation of data models. It allows
defining the structure of data models, creating and editing elements, as well as configuring and
publishing data models.
See also Data models [p 38].

3.3 Datasets
Main documentation section Datasets [p 116]

record
A set of field values in a table, uniquely identified by a primary key. A record is a row in the table.
Each record follows the data structure defined in the data model. The data model drives the data types
and cardinality of the fields found in records.
See also table (in dataset) [p 30], primary key [p 29].
The former name (prior to version 5) of "record" was "occurrence".

table (in dataset)
A set of records (rows) of the same structure containing data. Each record is uniquely identified by
its primary key.

Tables are represented by the icon .
See also record [p 30], primary key [p 29].

dataset
A data-containing instance of a data model. The structure and behavior of a dataset are based upon
the definitions provided by the data model that it is implementing. Depending on its data model, a
dataset contains data in the form of tables, groups, and fields.

Datasets are represented by the icon .
See also table (in dataset) [p 30], field [p 29], group [p 29], views [p 31].
Related concept Datasets [p 116].
The former name (prior to version 5) of "dataset" was "adaptation instance".

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 31

inheritance
A mechanism by which data can be acquired by default by one entity from another entity. In EBX®,
there are two types of inheritance: dataset inheritance and field inheritance.
When enabled, dataset inheritance allows a child dataset to acquire default data values from its parent
dataset. This feature can be useful when designing a data model where data declared in a parent scope
will be used with the same value by default in nested child scopes. Values that are inherited from the
parent can be overridden by the child. By default, dataset inheritance is disabled. It can be enabled
during the data model definition.

Inheritance from the parent dataset is represented by the icon .
Field inheritance is defined in the data model to automatically fetch a field value from a record in
another table.

Inherited fields are represented by the icon .
Related concept Inheritance and value resolution [p 470].

views
A customizable display configuration that may be applied to viewing tables. A view can be defined
for a given user or role, in order to specify whether records are displayed in a tabular, hierarchical or
tile format, as well as to set record filtering criteria.
The hierarchical view type offers a tree-based representation of the data in a table. Nodes in the tree can
represent either field values or records. A hierarchical view can be useful for showing the relationships
between the model data. When creating a view that uses the hierarchical format, dimensions can
be selected to determine the structural representation of data. In a hierarchical view, it is possible
to navigate through recursive relationships, as well as between multiple tables using foreign key
relationships.

See also

Views [p 127]

Hierarchies [p 128]

recommended view
A recommended view can be defined by the dataset owner for each target profile. When a user logs
in with no view specified, their recommended view (if any) is applied. Otherwise, the default view
is applied.
The 'Manage recommended views' action allows defining assignment rules for recommended views
depending on users and roles.
Related concept Recommended views [p 137].

favorite view
When displaying a table, the user can choose to define the current as their favorite view through the
'View' menu toolbar.
Once it has been set as the favorite, the view will be automatically applied each time this user accesses
the table.
Related concept 'View' menu toolbar [p 138].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 32

3.4 Data management life cycle
Main documentation section Dataspaces [p 98]

dataspace
A container entity composed of datasets. It is used to isolate different versions of datasets or to organize
them.
Child dataspaces may be created based on a given parent dataspace, initialized with the state of the
parent. Datasets can then be modified in the child dataspaces in isolation from their parent dataspace
as well as each other. The child dataspaces can later be merged back into their parent dataspace or
compared against other dataspaces.
See also inheritance [p 31], repository [p 27], dataspace merge [p 32].
Related concept Dataspaces [p 98].
The former name (prior to version 5) of "dataspace" was "branch" or "snapshot".

reference dataspace
The root ancestor dataspace of all dataspaces in the EBX® repository. As every dataspace merge must
consist of a child merging into its parent, the reference dataspace is never eligible to be merged into
another dataspace.
See also dataspace [p 32], dataspace merge [p 32], repository [p 27].

dataspace merge
The integration of the changes made in a child dataspace since its creation into its parent dataspace.
The child dataspace is closed after the merge has completed successfully. To perform a merge, all the
differences identified between the source dataspace and the target dataspace must be reviewed, and
conflicts must be resolved. For example, if an element has been modified in both the parent and child
dataspace since the creation of the child dataspace, the conflict must be resolved manually by deciding
which version of the element should be kept as the result of the merge.
Related concept Merge [p 106].

snapshot
A static copy of a dataspace that captures its state and all of its content at a given point in time for
reference purposes. A snapshot may be viewed, exported, and compared to other dataspaces, but it
can never be modified directly.

Snapshots are represented by the icon .
Related concept Snapshot [p 111]

The former name (prior to version 5) of "snapshot" was "version" or "home".

3.5 History
Main documentation section History [p 451]

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 33

historization
A mechanism that can be enabled at the table level to track modifications in the repository. Two history
views are available when historization is activated: table history view and transaction history view.
In all history views, most standard features for tables, such as export, comparison, and filtering, are
available.
Activation of historization requires the configuration of a history profile. The historization of tables
is not enabled by default.
See also table history view [p 33], transaction history view [p 33], history profile [p 33].

history profile
A set of preferences that specify which dataspaces should have their modifications recorded in the
table history, and whether transactions should fail if historization is unavailable.
See also history profile [p 33].

table history view
A view containing a trace of all modifications that are made in a given table, including record creations,
updates, and deletions. Each entry includes transactional information, such as a timestamp and the
user performing the action, as well as the data at the conclusion of the transaction. This information
can also be consulted at a record or dataset level.
Related technical reference History [p 451].

transaction history view
A view displaying the technical and authentication data of transactions, either globally at the repository
level, or at the dataspace level. As a single transaction can perform multiple actions and affect multiple
tables in one or more datasets, this view shows all the modifications that have occurred across the
given scope for each transaction.
Related technical reference History [p 451].

3.6 Workflow modeling
Main documentation section Workflow models [p 184]

workflow model
A procedural definition of operations to be performed on data. A workflow model describes the
complete path that the data must follow in order to be processed, including its states and associated
actions to be taken by human users and automated scripts.
Related concept Workflow models [p 184].
The former name (prior to version 5) of "workflow model" was "workflow definition".

Workflow models are represented by the icon .

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 34

script task
A data workflow task performed by an automated process, with no human intervention. Common
script tasks include dataspace creation, dataspace merges, and snapshot creation.

Script tasks are represented by the icon .
See also workflow model [p 33].

user task
A data workflow task that is made up of one or more work items performed concurrently by human
users. User task work items are offered or assigned to users, depending on the workflow model. The
progression of a data workflow beyond a user task depends on the satisfaction of the task termination
criteria defined in the workflow model.

User tasks are represented by the icon .
See also workflow model [p 33].

workflow condition
A decision step in a data workflow. A data workflow condition describes the criteria used to decide
which step will be executed next.

Workflow conditions are represented by the icon .

sub-workflow invocation
A step in a data workflow that pauses the current data workflow and launches one or more other data
workflows. If multiple sub-workflows are invoked by the same sub-workflow invocation step, they
will be executed concurrently, in parallel.

wait task
A step in a data workflow that pauses the current workflow and waits for a specific event. When the
event is received, the workflow is resumed and automatically goes to the next step.

data context
A set of data that may be shared between steps throughout a data workflow to ensure continuity
between steps.

3.7 Data workflows
Main documentation section Data workflows [p 214]

workflow publication
An instance of a workflow model that has been made available for execution to users with the
appropriate permissions.
The former name (prior to version 5) of "workflow publication" was "workflow".

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 35

data workflow
An executed instance of a workflow model, which runs the data processing steps that are defined in
the model, including user tasks, script tasks, and conditions.
See also workflow model [p 33].
Related concept Data workflows [p 214].
The former name (prior to version 5) of "data workflow" was "workflow instance".

work list
A list of all published data workflows that the current user has the permissions to view. Users with
the permissions to launch data workflows do so from their 'Work List'. All outstanding work items
requiring action from the user appear under their published workflows in the work list. Additionally,
if the user is the administrator of data workflows, they are able to view the state of execution of those
data workflows in their 'Work List', and may intervene if necessary.

work item
An action that must be performed by a human user as a part of a user task.

Allocated work items are represented by the icon .
See also user task [p 34].

token
Tokens are used during data workflow management, and are visible to repository administrators.

3.8 Data services
Main documentation section Data services [p 234]

data service
EBX® shares master data according to the Service-oriented architecture (SOA) by using XML web
services. Since all data services are generated directly from models or built-in services they can be
used to access part of the features available from the user interface.
Data services offer:

• a WSDL model-driven and built-in generator to build a communication interface. It can be
produced through the user interface or the HTTP(S) connector for a client application. XML
messages are communicated to the EBX® entry point.

• a SOAP connector or entry point component for SOAP messages which allows external systems
interacting with the EBX® repository. This connector responds to requests coming from the
WSDL produced by EBX®. This component accepts all SOAP XML messages corresponding
to the EBX® WSDL generator.

• A RESTful connector, or entry point for the select operations, allows external systems
interrogating the EBX® repository. After authenticating, it accepts the request defined in the URL
and executes it according to the permissions of the authenticated user.

https://en.wikipedia.org/wiki/Service-oriented_architecture

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 6.2.0 36

lineage
A mechanism by which access rights profiles are implemented for data services. Access rights profiles
are then used to access data via WSDL interfaces.
Related concept: Generating a WSDL for lineage [p 239].

3.9 Cross-domain

node
A node is an element of a tree view or a graph. In EBX®, 'Node' can carry several meanings depending
on the context of use:

• In the workflow model [p 33] context, a node is a workflow step or condition.

• In the data model [p 28] context, a node is a group, a table or a field.

• In the hierarchy [p 31] context, a node represents a value of a dimension.

• In an adaptation tree [p 31], a node is a dataset.

• In a dataset [p 30], a node is the node of the data model evaluated in the context of the dataset
or the record.

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 37

Data models

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 6.2.0 38

CHAPTER 4
Introduction to data models

This chapter contains the following topics:

1. Overview

2. Using the Data Models area user interface

4.1 Overview

What is a data model?
The first step towards managing data in TIBCO EBX® is to develop a data model. The purpose of
a data model is to provide the detailed structural definition of the data that will be managed in the
repository, in terms of organization, data types, and semantic relationships.
In order to implement a data model in the repository, you will first create a new data model, then
define the details of the structure of its component table, field, and group elements, as well as their
behavior and properties. When you have completed the entry or import of your data model structure in
the repository, you will publish it to make it available for use by datasets. Once you have a publication
of your data model, you and other users can create datasets based upon it to contain the data that is
managed by the EBX® repository.

Basic concepts used in data modeling
A basic understanding of the following terms is necessary to proceed with the creation of data models:

• field [p 29]

• primary key [p 29]

• foreign key [p 29]

• table (in data model) [p 29]

• group [p 29]

• reusable type [p 30]

• validation rule [p 30]

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 6.2.0 39

4.2 Using the Data Models area user interface

Navigating within the Data Model Assistant
Data models can be created, edited or imported, and published in the Data Models area of the user
interface. The EBX® data model assistant (DMA) facilitates the development of data models.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 6.2.0 40

The navigation pane is organized into the following sections:

Configuration The technical configuration of the data model.

 Global properties Defines the global properties of the data model.

 Included data models Defines the data models included in the current model. All
types defined in included data models can be reused in the
current model.

 Component library Defines the Java components available in the model. These
provide programmatic features that will be available for the
model, such as programmatic constraints, functions, and UI
beans.

 Add-ons Specifies which add-ons are used by the data model.
These add-ons will have the capacity to enrich the current
data model after the publication by adding properties and
constraints to the elements of the data model.

Data structure The structure of the data model. Defines the relationship
between the elements of the data model and provides access
to the definition of each element.

Simple data types Simple reusable types defined in the current data model.

Complex data types Complex reusable types defined in the current data model.

Included simple data types Simple reusable types defined in an included external data
model.

Included complex data types Complex reusable types defined in an included external data
model.

Extensions Extensions available in the current data model.

 Toolbars The toolbars available to use in the data model.

 User services Declares the user services using the API available before
release 5.8.0. From release 5.8.0, it is advised to use the
new UserService API (these services are directly registered
through the Java API, hence no declaration is required for
them in the data model assistant)..

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 6.2.0 41

 Entity mappings Specifies entity names for the tables in the data model.
These names are used as aliases in SQL requests or as
suffixes in WSDL operations. This allows to refer to a table
in SQL requests and data service operations using a unique
name instead of its path.

 Replications This table defines the replication units of the data model. A
replication unit allows the replication of a source table in
the relational database, so that external systems can access
this data by means of plain SQL requests and views.

 Ajax components Defines the available Ajax components in the model.

 Java bindings The bindings specify what Java types have to be generated
from the model.

See also

Implementing the data model structure [p 49]

Configuring the data model [p 45]

Reusable types [p 51]

Data model extensions [p 77]

Data model element icons
 field [p 29]

 primary key [p 29]

 foreign key [p 29]

 table [p 29]

 group [p 29]

Related concepts

Dataspaces [p 98]

Datasets [p 116]

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 6.2.0 42

Documentation > User Guide > Data models > Implementing data models > Creating a data model

TIBCO EBX® Product Documentation 6.2.0 43

CHAPTER 5
Creating a data model

This chapter contains the following topics:

1. Creating a new data model

5.1 Creating a new data model
To create a new data model, click the Create button in the pop-up, and follow through the wizard.

Documentation > User Guide > Data models > Implementing data models > Creating a data model

TIBCO EBX® Product Documentation 6.2.0 44

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 6.2.0 45

CHAPTER 6
Configuring the data model

This chapter contains the following topics:

1. Information associated with a data model

2. Permissions

3. Data model properties

4. Included data models

5. Add-ons used by the data model

6.1 Information associated with a data model
To view and edit the owner and documentation of your data model, select 'Information' from the data
model 'Actions' [p 39] menu for your data model in the navigation pane.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Unique name The unique name of the data model. This name cannot be
modified once the data model has been created.

Owner Specifies the data model owner, who will have permission to
edit the data model's information and define its permissions.

Localized documentation Localized labels and descriptions for the data model.

6.2 Permissions
To define the user permissions on your data model, select 'Permissions' from the data model 'Actions'
[p 39] menu for your data model in the navigation pane.
The configuration of the permissions of a data model are identical to the options for the permissions
of a dataset, as explained in Permissions [p 155].

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 6.2.0 46

6.3 Data model properties
In the navigation pane, under Configuration > Data model properties, you can access the following
technical properties:

Module name Defines the module that contains the resources that will be
used by this data model. This is also the target module used
by the data model publication if publishing to a module.

Module path Physical location of the module on the server's file system.

Sources location The source path used when configuring Java components
in the 'Component library'. If this path is relative, it will be
resolved using the 'Module path' as the base path.

Publication mode Whether to publish the data model as an XML Schema
Document within a module or as a publication completely
embedded in the TIBCO EBX® repository. Embedded data
models offer additional functionality such as versioning and
rollback of publications.
See Publication modes [p 93] for more information.
Model path in module: Defines the target file for the data
model generation. It must start with '/'.

Dataset inheritance Specifies whether dataset inheritance is enabled for this data
model. Dataset inheritance is disabled by default.
See Dataset inheritance [p 159] for more information.

Documentation Documentation of the data model defined by a Java class.
This Java class can programmatically specify labels and
descriptions for the elements of the data model. The labels
and descriptions defined in this Java class are displayed in
associated datasets in preference to the ones defined locally
on an element.
See Dynamic labels and descriptions [p 896] for more
information.

Special extensions Access permissions defined by programmatic rules in a Java
class.

Disable auto-increment checks Specifies whether to disable if the check of an auto-
incremented field value in associated datasets regarding to
the "max value" found in the table being updated.
See Auto-incremented values [p 893] for more information.

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 6.2.0 47

Enable user services (old API) Specifies if user services using the API available before
release 5.8.0 can be declared. If 'No', the section
'Configuration > User services' is not displayed (except if
at least service has been already declared in this section).
From release 5.8.0, it is advised to use the new UserService
Java API (these services are directly registered through the
Java API, hence no declaration is required in the data model
assistant).
See UserServiceDeclarationAPI for more information.

6.4 Included data models
You can use data types in the current model that are defined in another data model by adding an entry
for the other data model in the table under Configuration > Included data models.
When you access the record of an included model in this table, you will find technical information
about the model under the Information tab. As an included data model could eventually have
validation errors, for example, due to deleted Java resources, this view will provide information
regarding those issues.
It is only possible to include data models that have no validation errors and have been defined and
published as an embedded data model or packaged in a module.
The names of data types must be unique across both locally defined and included type definitions.
That is, included data types must not have names that coincide with those of data types defined in the
current data model or other included data models.

See also Including external data models [p 851]

6.5 Add-ons used by the data model
On any data model, it is possible to specify the add-ons used by the current data model. These add-
ons will have the capacity to enrich the current data model after the publication by adding properties
and constraints to the data model elements.
To define an add-on to be used by the data model through the user interface, create a new record in
the 'Add-ons' table under the data model configuration in the navigation pane. A record of this table
defines the following properties:

Name Add-on public name.

Version Add-on version.

Activated Indicates if the add-on is activated. The add-on must be
activated in order to be used.

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 6.2.0 48

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 49

CHAPTER 7
Implementing the data model

structure
To work with the structural definition of your data model, select the data model you are working with
in the navigation pane.
You can then access the structure of your data model in the navigation pane under 'Data structure', to
define the structure of fields, groups, and tables.
This chapter contains the following topics:

1. Common actions and properties

2. Reusable types

3. Data model element creation details

4. Modifying existing elements

7.1 Common actions and properties

Adding elements to the data model
The following elements are available to describe the structure of your data model:

• fields

• groups

• tables

• primary keys

• foreign keys

• associations

Add a new element relative to any existing element in the data structure by clicking the down arrow
to the right of the existing entry, and selecting an element creation option from the menu. Depending
on whether the existing element is a field, group, or table, you have the choice of creating the new

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 50

element as a child of the existing element, or before or after the existing element at the same level.
You can then follow the element creation wizard to create the new element.

Note

The element root is always added upon data model creation. If this element must be
renamed, it can be deleted and recreated with a new name.

Names, labels, descriptions, and information
Whenever you create a new element in your data model, you must provide a name for the field 'Name'
that is unique in its level of the data structure. This name is assigned once the element is created and
cannot be changed subsequently.
You have the option to provide localized user-friendly labels to be displayed in the user interface
instead of the unique name of the element, as well as brief localized descriptions of the element.
Unlike the unique name, the labels and descriptions are modifiable after creation. According to the
language preference of each user, TIBCO EBX® will display the corresponding localized label and
description of the element.

Deleting elements of the data model

Any element can be deleted from the data structure using the down arrow corresponding to its
entry.
When deleting a group or table that is not using a reusable type, the deletion is performed recursively,
removing all its nested elements.

Duplicating existing elements

To duplicate an element, click the down arrow corresponding to its entry. You must provide a
name for the duplicated element that is unique at its level of the data structure. All other properties
are copied from the source element.
The duplicated element is added to the data model at the same level as the element from which it was
copied, appended after the existing elements. If you are duplicating a table or group containing other
elements, all nested elements are copied with their original names.

Note

If you duplicate a primary key field, the properties of the field are maintained, but the
new field is not automatically added to the primary key.

Moving elements

To reorder an element within its current level of the data structure, click the down arrow
corresponding to its entry and select 'Move'. Then, select the left-arrow button corresponding to the
field before which you want to move the current element.

Note

It is not possible to move an element to a position outside of its level in the data structure.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 51

7.2 Reusable types
Reusable types are shared element definitions that are created once and can be reused in different
places in the data model.

Note

If you modify the definition of a reusable type in the 'Simple data types' or 'Complex
data types' section, you will modify the structure of all elements based on that reusable
type. The structure of a groups or table using a reusable type is shown as read-only. To
edit the structure of the associated reusable type, you have to access the type from the
'Simple data types' or 'Complex data types' section.

Defining a reusable type

From the down arrow menu of 'Simple data types' and 'Complex data types' in the navigation pane,
you can define simple and complex reusable types that will be available for creating more elements
which share the same structural definition and properties. Alternatively, you can convert existing tables

and groups into reusable types using their corresponding down arrow menus.
It is possible to see the elements that are using a reusable type by selecting 'References to this type' on
the specific page of each data type, under 'Simple data types' and 'Complex data types' in the navigation
pane. A table then displays all elements that are based on this type. If a data type is not used by any

elements, you can select the 'Delete type' from its down arrow menu to delete the reusable type.

Using a reusable type
The structure of new elements can be defined using reusable types. To do so, select an existing reusable
type in the element creation form. The created element will then share the type definition of the
reusable type.

Including data types defined in other data models
You can also share reusable types between multiple data models. By configuring the inclusion of an
external data model, you can use the data types defined in that data model to create new elements in
the data structure the same way as using locally defined reusable types.

Note

As the names of data types must be unique across all locally defined as well as all included
types, you cannot create new reusable types with the same name as a data type in an
included data model. Similarly, you cannot include an external data model that defines a
data type with the same name as a locally defined reusable type or a data type in another
included data model.

Included data types appear in the sections 'Included simple data types' and 'Included complex data
types' in the navigation panel. You can view the details of these included reusable types; however,
they can only be edited locally in their original data models.
See Included data models [p 47] for more information.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 52

7.3 Data model element creation details

Creating fields
When creating a new field, you must select its data type, which will define the data type of the values
based upon this field. The data type of the field cannot be changed once the field has been created.
While creating a field, it is also possible to designate it as a foreign key, a mandatory field, and, if
created under a table, a primary key.

Creating tables
While creating a table, you have the option to create the new table based on an existing reusable type.
See Reusable types [p 51] for more information.
Every table requires specifying at least one primary key field, which you can create as a child element
of the table from the navigation pane.

Creating groups
While creating a group, you have the option to create the new group based on an existing reusable
type. See Reusable types [p 51] for more information.

Creating primary key fields
At least one primary key is required for every table. You can create a primary key field for a table by
creating it as a child element under the table's entry in the 'Data structure' tree.
Besides creating a new field directly as a primary key, you can add any existing child field of a table
to the definition of its primary key on the 'Primary key' tab of the table's 'Advanced properties'.

Creating or defining foreign key fields
Foreign key fields have the data type 'String'. You can create a foreign key field for a table by creating
it as a child element under the table's entry in the 'Data structure' tree. You can also convert an existing
field of type 'String' into a foreign key. To convert an existing field of type 'String' into a foreign key,
enable 'Foreign key constraint' in the field's 'Advanced controls' and define the associated parameters.
Whether creating a foreign key directly or from an existing field, you must define the table that
contains the records to be referenced.

Creating associations
An association allows defining semantic links between tables. You can create an association by
creating it as a child element under the table's entry in the 'Data structure' tree and by selecting
'association' in the form for creating a new element. An association can only be defined inside a table.
It is not possible to convert an existing field to an association.
When creating an association, you must specify the type of association. Several options are available:

• Inverse relationship of a foreign key. In this case, the association element is defined in a source
table and refers to a target table. It is the counterpart of the foreign key field, which is defined in
the target table and refers back the source table. You must define the foreign key that references
the parent table of the association.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 53

• Over a link table. In this case, the association element is defined in a source table and refers
to a target table that is inferred from a link table. This link table defines two foreign keys: one
referring to the source table and another one referring to the target table. The primary key of the
link table must also refer to auto-incremented fields and/or the foreign key to the source or target
table of the association. You must define the link table and these two foreign keys.

• Using an XPath predicate. In this case, the association element is defined in a source table and
refers to a target table that is specified using a path. An XPath expression is also defined to specify
the criteria used to associate a record of the current table to records of the target table. You must
define the target table and an XPath expression.

In all types of association, we call associated records the records in the target table that are
semantically linked to records in the source table.
Once you have created an association, you can specify additional properties. For an association, it is
then possible to:

• Filter associated records by specifying an additional XPath filter. It is only possible to use fields
from the source and the target table when defining an XPath filter. That is, if it is an association
other a link table it is not possible to use fields of the link table in the XPath filter. You can use
the available wizard to select the fields that you want to use in your XPath filter.

• Configure a tabular view to define the fields that must be displayed in the associated table. It is
not possible to configure or modify an existing tabular view if the target table of the association
does not exist. If a tabular view is not defined, all columns that a user is allowed to view according
to the granted access rights are displayed.

• Define how associated records are to be rendered in forms. You can specify that associated records
are to be rendered either directly in the form or in a specific tab. By default, associated records
are rendered in the form at the same position of the association in the parent table.

• Hide/show associated records in data service 'select' operation. By default associated records are
hidden in data service 'select' operation.

• Specify the minimum and maximum numbers of associated records that are required. In associated
datasets, a validation message of the specified severity is added if an association does not comply
with the required minimum or the maximum numbers of associated records. By default, the
required minimum and the maximum numbers of associated records are not restricted.

• Add validation constraints using XPath predicates to restrict associated records. It is only possible
to use fields from the source and the target table when defining an XPath predicate. That is, if
it is an association over a link table it is not possible to use fields of the link table in the XPath
predicate. You can use the available wizard to select the fields that you want to use in your XPath
predicate. In associated datasets, a validation message of the specified severity is added when an
associated record does not comply with the specified constraint.

7.4 Modifying existing elements

Removing a field from the primary key
Any field that belongs to the primary key can be removed from the primary key on the 'Primary key'
tab of the table's 'Advanced properties'.
See primary key [p 29] in the glossary.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 6.2.0 54

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 55

CHAPTER 8
Properties of data model elements

After the initial creation of an element, you can set additional properties in order to complete its
definition.

See also Data validation controls on elements [p 69]

This chapter contains the following topics:

1. Basic element properties

2. Advanced element properties

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 56

8.1 Basic element properties

Common basic properties
The following basic properties are shared by several types of elements:

Information Additional non-internationalized information associated
with the element.

Minimum number of values Minimum number of values for an element.
As primary keys cannot be multi-valued, they must have this
property set to '1' or 'undefined'. The minimum number of
values is automatically set to '0' when defining the field as
a selection node.

Maximum number of values Maximum number of values for an element. When set to a
value greater than '1', the element becomes multi-valued.
As primary keys cannot be multi-valued, they must have this
property set to '1' or 'undefined'.
For tables, the maximum number of values is automatically
set to 'unbounded' upon creation. The maximum number of
values is automatically set to '0' when defining the field as
a selection node.

Validation rules This property is available for tables and fields in tables
except Password fields, reusable types, fields in complex
reusable types, and selection nodes. Used to define powerful
and complex validation rules with the help of the provided
XPath 1.0 criteria editor.
See Criteria editor [p 497] for more information.
This can be useful if the validation of the value depends on
complex criteria or on the value of other fields.
It is also possible to indicate that a rule defines a verification
for a value that is mandatory under certain circumstances. In
this case a value is mandatory if the rule is not satisfied. See
Constraint on 'null' values [p 883] for more information.
Using the associated wizard, you can define localized labels
for the validation rule, as well as define a localized message
with severity to be displayed if the criteria is not met.
When defining the severity of the validation message it is
possible to indicate whether an input that would violate a
validation rule will be rejected or not when submitting a
form. The error management policy is only available on
validation rules defined on a field and when the severity is
set to 'error'. If the validation rule must remain valid, then

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 57

any input that would violate the rule will be rejected and the
values will remain unchanged. If errors are allowed, then
any input that would violate the rule will be accepted and
the values will change. If not specified, the validation rule
always blocks errors upon the form submission by default.
If a validation rule is defined on a table, it will be considered
as a 'constraint on table' and each record of the table will be
evaluated against it at runtime. See Constraints on table [p

884] for more information.

Basic properties for fields
The following basic properties are specific to fields:

Default value Default value assigned to this field. In new data creation
forms, the default value appears automatically in the user
input field. The default value must comply with the defined
type of the field.
See Default value [p 901] for more information.

Conversion error message Internationalized messages to display to users when they
enter a value that is invalid for the data type of this field.

Computation rule This property is available for fields in tables, except in
reusable types. Defines a rule for computing the value of the
field using the provided XPath 1.0 editor.
See criteria editor [p 497]

This can be useful if the value depends on other values
in the same record, but does not require a programmatic
computation.
The following limitations exist for computation rules:

• Computation rules can only be defined on simple fields
inside a table.

• Computation rules cannot be defined on fields of type
OResource or Password.

• Computation rules cannot be defined on selection nodes
and primary key fields.

• Computation rules cannot be defined when accessing
an element from the validation report.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 58

8.2 Advanced element properties

Common advanced properties
The following advanced properties are shared by several types of elements:

Default view and tools >
Visibility

Specifies whether or not this element is shown in the default
view of a dataset, in the text search of a dataset or in the data
service "select" operation.

• Model-driven view
Specifies whether or not the current element is shown
in the default tabular view of a table, the default record
form of a table, and in the default view of a dataset
if the current element is a table. Default dataset view,
tabular view and default record form generated from
the structure of the data model. If the current element
is inside a table, then setting the property to 'Hidden'
will hide the element from the default tabular view and
default record form of the table without having to define
specific access permissions. Current element will still
be displayed in the view configuration wizard to be able
to create a custom view that displays this element. If
the current element is a table, then setting the property
to 'Hidden' will hide the table from the default view
of a dataset without having to define specific access
permissions. This property is ignored if it is set on an
element that is neither a table nor in a table.

• All views
Specifies whether or not the current element is shown
in all views of a table in a dataset. Setting the property
to 'Hidden in all views' will hide the element in all
views of the table, whether tabular (default tabular
view included) or hierarchical, without having to define
specific access permissions. The current element will
also be hidden in the view configuration wizard. That
is, it won't be possible to create a custom view that will
display this element. This property is ignored if it is
set on an element that is not in a table. This property
is not applied on forms. That is, setting the property
to 'Hidden in all views' will not hide the element in a
record form but only in views.

• Structured search tool
Specifies whether or not the current element is shown
in a dataset structured search tool. Setting the property
to 'Hidden in structured search' will hide the element
in the structured search tool of a dataset. The element

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 59

will remain searchable in the quick search tool. This
property is ignored if it is set on an element that is not
in a table.

• Quick search
Specifies whether or not the current element is included
in the quick search tool. Setting the property to
'Excluded from Quick search' will exclude the element
in the quick search tool of a dataset. The element will
remain searchable in the structured search tool. This
property is ignored if it is set on an element that is not
in a table.

• Data services
Specifies whether or not the current element is shown
in the data service select operation. Setting the property
to 'Excluded from Data Services' will hide the element
in the data service "select" operation. This property is
ignored if it is set on an element that is not in a table.

See Default view [p 903] in the Developer Guide.

Default view and tools > Widget Defines the widget to be used. A widget is an input
component that is displayed in forms in associated datasets.
If undefined, a default widget is displayed in associated
datasets according to the type and properties of the current
element. It is possible to use a built-in widget or a custom
widget. A custom widget is defined using a Java API to
allow the development of rich user interface components
for fields or groups. Built-in and custom widgets cannot be
defined on a table or an association. It is forbidden to define
both a custom widget and a UI bean. It is forbidden to define
on a foreign key field both a custom widget and a combo-
box selector.
See UIWidgetFactoryAPI for more information.

Default view and tools > Combo-
box selector

Specifies the name of the published view that will be used
in the combo-box selection of the foreign key. A selection
button will be displayed at the bottom right corner of the
drop-down list. When defining a foreign key, this feature
allows accessing an advanced selection view through the
'Selector' button that opens the advanced selection view,
from where sorting and searching options can be used. If no
published view is defined, the advanced selection view will
be disabled. If the path of the referenced table is absolute
then only the published views corresponding to this table
will be displayed. If the path of the referenced table is
relative then all the published views associated with the data
model containing the target table will be displayed. This
property can only be set if no custom widget is defined.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 60

See Defining a view for the combo box selector of a foreign
key [p 905] in the Developer Guide.

UI bean
Attention
From version TIBCO EBX® 5.8.0, it is recommended
to use widgets instead of UI Beans. Widgets provide
more features than UI Beans, and no further evolution
will be made on UI beans. See widget [p 59] for more
information.

This property is available for all elements except tables and
associations. Specifies a Java class to customize the user
interface associated with this element in a dataset. A UI bean
can display the element differently and/or modify its value
by extending the UIBeanEditorAPI class in the Java API.

Transformation on export This property is available for fields and for groups that
are terminal nodes. Specifies a Java class that defines
transformation operations to be performed when exporting
an associated dataset as an archive. The input of the
transformation is the value of this element.
See NodeDataTransformerAPI for more information.

Access properties Defines the access mode for the current element, that is, if
its data can be read and/or written.

• 'Read & Write' corresponds to the mode RW in the data
model XSD.

• 'Read only' corresponds to the mode R- in the data
model XSD.

• 'Not a dataset node' corresponds to the mode CC in the
data model XSD.

• 'Non-terminal node' corresponds to the mode -- in the
data model XSD.

See Access properties [p 901] in the Developer Guide.

Comparison mode Defines the comparison mode associated with the element,
which controls how its differences are detected in a dataset.

• 'Default' means the element is visible when comparing
associated data.

• 'Ignored' implies that no changes will be detected when
comparing two versions of modified content (records
or datasets).
During a merge, the data values of ignored elements
are not merged even if the content has been modified.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 61

However, values of ignored data sets or records being
created during the operation are merged.
During an archive import, values of ignored elements
are not imported when the content has been modified.
However, values of ignored datasets or records being
created during the operation are imported.

See Comparison mode [p 906] in the Developer Guide.

Apply last modifications policy Defines if this element must be excluded from the service
allowing to apply the last modifications that have been
performed on a record to the other records of the same table.

• 'Default' means that the last modification on this
element can be applied to other records.

• 'Ignored' implies that the last modification on this
element cannot be applied to other records. This
element will not be visible in the apply last
modifications service.

See Apply last modifications policy [p 906] in the
Developer Guide.

Node category Defines a category for this element. Categories allow
controlling the visibility of data in a dataset to users. A node
with the category 'Hidden' is hidden by default. Restriction:
category specifications other than 'Hidden' do not apply to
table record nodes.
See Categories [p 907] in the Developer Guide.

Advanced properties for fields
The following advanced properties are specific to fields.

Check null input
Implements the property osd:checkNullInput. This property is used to activate and check a constraint
on null at user input time.
By default, in order to allow for temporarily incomplete input, the check for mandatory elements is not
performed upon user input, but only upon dataset validation. If a mandatory element must be checked
immediately upon user input, set this property to 'true'.

Note

A value is considered mandatory if the 'Minimum number of values' property is set to
'1' or greater. For terminal elements, mandatory values are only checked in activated
datasets. For non-terminal elements, the values are checked regardless of whether the
dataset is activated.

See Constraints, triggers and functions [p 888] in the Developer Guide.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 62

Trim whitespaces
Trim white spaces
Implements the property osd:trim. This property is used to indicate whether leading and trailing white
spaces must be trimmed upon user input. If this property is not set, leading and trailing white spaces
are removed upon user input.
See Whitespace handling upon user input [p 889] in the Developer Guide.

UI bean
See Common advanced properties [p 60].

Function (computed value)
This property is available for non-primary key fields. Specifies a Java class that computes the value
of this field programmatically. This can be useful if the value of the field depends on other values in
the repository, or if the computation of the value needs to retrieve data from a third-party system.
A function can be created by implementing the ValueFunctionAPI interface.

Disable validation
Specifies if the constraints defined on the field must be disabled. This property can only be defined
on function fields. If true, cardinalities, simple and advanced constraints defined on the field won't be
checked when validating associated datasets.

Transformation on export
See Common advanced properties [p 60].

Access properties
See Common advanced properties [p 60].

Auto-increment
This property is only available for fields of type 'Integer' that are contained in a table. When set, the
value of the field is automatically calculated when a new record is created. This can be useful for
primary keys, as it generates a unique identifier for each record. Two attributes can be specified:

Start value Value with which to begin the auto-increment. If this
attribute is not specified, the default value is '1'.

Increment step Amount the value is incremented based on the previous
value of the auto-increment. If this attribute is not specified,
the default is value is '1'.

Disable auto-increment checks Specifies whether to disable the check of the auto-
incremented field value in associated datasets against the
maximum value in the table being updated.

Auto-incremented values have the following behavior:

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 63

• The computation and allocation of the field value are performed whenever a new record is inserted
and the field value is yet undefined.

• No allocation is performed if a programmatic insertion already specifies a non-null value.
Consequently, the allocation is not performed for a record insertion in occulting or overwriting
modes.

• If an archive import specifies the value, the imported value takes precedence.

• Whenever possible, the newly allocated value is unique in the scope of the repository.
That is, the uniqueness of the allocation spans over all datasets based upon this data model, in any
dataspace in the repository. The uniqueness across different dataspaces facilitates the merging of
child dataspaces parent dataspaces while reasonably avoiding conflicts when a record's primary
key includes the auto-incremented value.
Despite this policy, a specific limitation exists when a mass update transaction assigning specific
values is performed concurrently with a transaction that allocates an auto-incremented value on
the same field. It is possible that the latter transaction will allocate a value that has already been
set in the former transaction, as there is no locking between different dataspaces.

See Auto-incremented values [p 893] in the Developer Guide.

Default view
See Common advanced properties [p 58].

Node category
See Common advanced properties [p 61].

Inherited field
Defines a relationship from the current field to a field in another table in order to automatically fetch
its field value.

Source record A foreign key or white space-separated sequence of foreign
keys that leads from the current element to the record from
which to inherit this field's value. If this property is not
specified, the current record is used as the source record for
the inheritance.

Source element XPath of the element in the source record from which
to inherit this field's value. The source element must be
terminal, belong to the record described by 'Source record',
and its type must match the type of this field. This property
is mandatory when using field inheritance.

See inheritance [p 31] in the glossary.
For more information, see also Inherited fields [p 472].

Advanced properties for tables
The following advanced properties are specific to tables.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 64

Table

Primary key A list of fields in the table that compose the table's primary
key. You can add or remove primary key fields here, as in
the 'Data structure' view.
Each primary key field is denoted by its absolute XPath
notation that starts under the table's root element.
If there are several elements in the primary key, the list is
white-space delimited. For example, "/name /startDate".

Presentation Specifies how records are displayed in the user interface of
this table in a dataset.

Presentation > Record labeling Defines the fields to provide the default and localized labels
for records in the table.
Can also specify a Java class to set the label
programmatically, or set the label in a hierarchy. This
Java class must implement either the UILabelRendererAPI

interface or the UILabelRendererForHierarchyAPI interface.
Attention: Access rights defined on associated datasets
are not applied when displaying record labels. Fields that
are usually hidden due to access rights restrictions will be
displayed in labels.

Presentation > Default rendering
for groups in forms

Specifies the default display rendering mode of the groups
contained in this table. If nothing is defined here, the default
policy set in the Administration area will be used to display
groups.
See Record form: rendering mode for nodes [p 636] in the
Administration Guide.
Enabled rendering for groups
Specifies a display rendering mode to be enabled for
groups in the table in addition to the modes 'expanded'
and 'collapsed', which are always available. Tabs must be
enabled on the table to have the option to display groups as
tabs. Similarly, links must be enabled to have the option to
display groups as links.
Default rendering for groups
Specifies the default display rendering mode to use for the
groups contained in this table. If a group does not specify
a default mode then the default mode defined for this table
will be used. Links must be enabled to define the default
rendering mode as 'Link'. Select a rendering mode according
to network and browser performance. Link mode is lighter

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 65

as its content is not displayed on the same page, whereas the
expanded and collapsed modes are heavier.
Note: When the tabs view is enabled on a table, any groups
that would otherwise have used links are automatically
converted to collapsed mode. This is done to avoid the
inherent display layout complexities that would arise from
links and tabs coexisting in the same user interface.

Presentation > Specific
rendering of forms

Defines a specific rendering for customizing the record form
in a dataset.
See UIFormAPI and UserServiceRecordFormFactoryAPI for
more information.

Toolbars Defines the toolbars to use in this table.
Toolbars can be edited in the Configuration > Toolbars
section.
Tabular view top: Defines the toolbar to use on top of the
default table view.
Tabular view row: Defines the toolbar to use on each row
of the default table view.
Tile view item: Defines the toolbar to use on each item of
the tile view.
Record top: Defines the toolbar to use in the record form.
Hierarchy top: Defines the toolbar to use in the default
hierarchy view of the table.
See Toolbars [p 80] for more information.

History Specifies when historization is to be performed, and the
level of guarantee requested. The available history profiles
can be edited in Administration > History and logs.
See History configuration in the repository [p 451] for more
information.

Specific filters Defines record display filters on the table.

Actions Specifies the actions that are allowed on the table in
associated datasets. By default, all actions are allowed
unless specific access rights are defined in a dataset.

Uniqueness constraints
Indicates which fields or set of fields must be unique across the table.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 66

Triggers
Specifies Java classes that defines methods to be automatically executed when modifications are
performed on the table, such as record creation, updates, deletion, etc.
A built-in trigger for starting data workflows is included by default.
A built-in trigger to define a script for a trigger is also included by default.
See Triggers [p 892] in the Developer Guide.

Access properties
See Common advanced properties [p 60].

Default view
See Common advanced properties [p 58].

Node category
See Common advanced properties [p 61].

Advanced properties for groups
The following advanced properties are specific to groups.

Value container class (JavaBean)
Specifies a Java class to hold the values of the children of this group. The Java class must conform
to the JavaBean standard protocol. That is, each child of the group must correspond to a JavaBean
property in the class, and all properties must have getter and setter accessors defined.

UI bean
See Common advanced properties [p 60].

Transformation on export
See Common advanced properties [p 60].

Access properties
See Common advanced properties [p 60].

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 67

Default view

Visibility See Common advanced properties [p 58].

Rendering in forms Defines the rendering mode of this group. If this property
is not set, then the default view for groups specified by the
container table will be used. 'Tab' and 'Link' are each only
available when the container table enables it.
Tab position
This attribute specifies the position of the tab with respect
to all the tabs defined in the model. This position is used for
determining tab order. If a position is not specified, the tab
will be displayed according to the position of the group in
the data model.

Node category
See Common advanced properties [p 61].

Related concepts Data validation controls on elements [p 69]

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 6.2.0 68

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 69

CHAPTER 9
Data validation controls on elements

After the initial creation of an element, you can set additional controls in order to complete its
definition.

See also Properties of data model elements [p 55]

This chapter contains the following topics:

1. Simple content validation

2. Advanced content validation

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 70

9.1 Simple content validation
Using the following static controls on a field, you can establish simple validation rules on its content.
The controls available for a given field are dependent on its data type.

Fixed length The exact number of characters required for this field.

Minimum length The minimum number of characters allowed for this field.

Maximum length The maximum number of characters allowed for this field.

Pattern A regular expression pattern that the value of the field must
match. It is not possible to simultaneously define a pattern
for both a field and its data type.

Decimal places The maximum number of decimal places allowed for this
field.

Maximum number of digits The maximum total number of digits allowed for this integer
or decimal field.

Enumeration Defines a list of predefined possible values for this field. If
enumerations are defined in both a field and its type, then the
enumeration of this field in associated datasets is replaced
by the intersection of these two enumerations.

Greater than [constant] Defines the minimum value allowed for this field.

Less than [constant] Defines the maximum value allowed for this field.

See XML schema supported facets [p 875].

9.2 Advanced content validation
Using the following dynamic and contextual controls on an element, you can establish advanced
validation rules of its content. The controls available for a given element are dependent on the type
of element and its data type, if it has one.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 71

See also Dynamic constraints [p 879]

Foreign key constraint

 Table Defines the table referenced by the foreign key. A foreign
key references a table in the same dataset by default. It
can also reference a table in another dataset in the same
dataspace, or a dataset in a different dataspace.

 Mode Location of the table referenced by the foreign key.
'Default': current data model.
'Other dataset': different dataset, in the same dataspace.
'Other dataspace': dataset in a different dataspace.

 Referenced table XPath expression describing the location of the table. For
example, /root/MyTable.

 Referenced dataset Required if the table is located in another dataset. The
unique name of the dataset containing the referenced table.

 Referenced dataspace Required if the table is located in another dataspace. The
unique name of the dataspace containing the referenced
table.

 Label Defines fields to provide the default and localized labels for
records in the table. Allows as well to customize the display
of the specified label in breadcrumb.
Can also specify a Java class to set the label
programmatically if 'XPath expression' is set to 'No'. This
Java class must implement the TableRefDisplayAPI interface
of the Java API.
Attention: Access rights defined on associated datasets
are not applied when displaying record labels. Fields that
are usually hidden due to access rights restrictions will be
displayed in labels.

 Filter Defines a foreign key filter using an XPath expression.
Can also specify a Java class that implements the
TableRefFilterAPI interface of the Java API.

Greater than [dynamic] Defines a field to provide the minimum value allowed for
this field.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 72

Less than [dynamic] Defines a field to provide the maximum value allowed for
this field.

Fixed length [dynamic] Defines a field to provide the exact number of characters
required for this field.

Minimum length [dynamic] Defines a field to provide the minimum number of
characters allowed for this field.

Maximum length [dynamic] Defines a field to provide the maximum number of
characters allowed for this field.

Excluded values Defines a list of values that are not allowed for this field.

Excluded segment Defines an inclusive range of values that are not allowed for
this field.
Minimum excluded value: Lowest value not allowed for
this field.
Maximum excluded value: Highest value not allowed for
this field.

Specific constraint (component) Specifies one or more Java classes that implement the
ConstraintAPI interface of the Java API. See Programmatic
constraints [p 883] for more information.

Specific enumeration
(component)

Specifies a Java class to define an enumeration. The class
must define an ordered list of values by implementing the
ConstraintEnumerationAPI interface of the Java API.

Enumeration filled by another
node

Defines the possible values of this enumeration using a
reference to another list or enumeration element.

Dataspace set configuration Define the dataspaces that can be referenced by a field
of the type Dataspace identifier (osd:dataspaceKey). If a
configuration is not set, then only opened branches can be
referenced by this field by default.

• Includes
Specifies the dataspaces that can be referenced by this
field.
Pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
Type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 73

Include descendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If not defined, this
restriction is not applied to child dataspaces. If "None"
then neither children nor descendants of the dataspaces
that match the specified pattern are included. If "All
descendants" then all descendants of the dataspaces
that match the specified pattern are included. If "All
descendant branches" then all descendant branches
of the dataspaces that match the specified pattern
are included. If "All descendant snapshots" then all
descendant snapshots of the dataspaces that match the
specified pattern are included. If "Child branches" then
only direct branches of the dataspaces that match the
specified pattern are included. If the current dataspace
is a version, includes the branches that are the direct
children of this version; if the current dataspace is
a branch, includes the branches that are the direct
children of the versions which are children of this
branch. If "Child snapshots" then only direct snapshots
of the dataspaces that match the specified pattern are
included. If the current dataspace is a branch, includes
the snapshots that are the direct children of this branch;
if the current dataspace is a version, includes the
versions that are the direct children of the branches
which are children of this version.

• Excludes
Specifies the dataspaces that cannot be referenced by
this field. Excludes are ignored if no includes are
defined.
Pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
Type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches.
Include descendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If not defined, this
restriction is not applied to child dataspaces. If "None"
then neither children nor descendants of the dataspaces
that match the specified pattern are included. If "All
descendants" then all descendants of the dataspaces
that match the specified pattern are included. If "All
descendant branches" then all descendant branches
of the dataspaces that match the specified pattern
are included. If "All descendant snapshots" then all
descendant snapshots of the dataspaces that match the
specified pattern are included. If "Child branches" then

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 74

only direct branches of the dataspaces that match the
specified pattern are included. If the current dataspace
is a version, includes the branches that are the direct
children of this version; if the current dataspace is
a branch, includes the branches that are the direct
children of the versions which are children of this
branch. If "Child snapshots" then only direct snapshots
of the dataspaces that match the specified pattern are
included. If the current dataspace is a branch, includes
the snapshots that are the direct children of this branch;
if the current dataspace is a version, includes the
versions that are the direct children of the branches
which are children of this version.

• Dataspace filter
Specifies a filter to accept or reject dataspaces in the
context of a dataset or a record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field. A filter is defined by a
Java class that implements the DataspaceSetFilterAPI

interface of the Java API.

Dataset set configuration Define the datasets that can be referenced by a field of the
type Dataset identifier (osd:datasetName).

• Includes
Specifies the datasets that can be referenced by this
field.
Pattern:Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets.
Include descendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set.

• Excludes
Specifies the datasets that cannot be referenced by this
field. Excludes are ignored if no includes are defined.
Pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets.
Include descendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set.

• Filter
Specifies a filter to accept or reject datasets in the
context of a dataset or record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 75

this field. A specific constraint can be used to perform
specific controls on this field. A filter is defined by
a Java class that implements the DatasetSetFilterAPI

interface of the Java API.

Validation properties
Each constraint not using a specific Java class can define localized validation messages with a severity
using the following properties:

Validation Defines a localized validation message with a user-defined
severity level.

 Severity Defines the severity level of the validation message.
Possible values are 'Error', 'Warning', and 'Information'.

 Error management
policy

Specifies the behavior of the constraint when validation
errors occur. It is possible to specify that the constraint
must always remain valid after an operation (dataset update,
record creation, update or deletion), or when a user submits
a form. In this case, any input or operation that would
violate the constraint will be rejected and the values will
remain unchanged. If not specified, the constraint only
blocks errors upon form submission by default, except for
foreign key constraints in relational data models where
errors are prevented for all operations by default. This
option is only available upon static controls, exclude values,
exclude segment and foreign key constraints. On foreign
key constraints the error management policy does not
concern filters. That is, a foreign key constraint is not
blocking if a referenced record exists but does not satisfy
a foreign key filter. In this case updates are not rejected
and a validation error occurs. It is not possible to specify
an error management policy on structural constraints that
are defined in relational data models, when table history or
replication is activated. That is, setting this property on fixed
length, maximum length, maximum number of digits and
decimal place constraints will raise an error at data model
compilation because of the underlying RDBMS blocking
constraints validation policy. This property is ineffective
when importing archives. That is, all blocking constraints,
excepted structural constraints, are always disabled when
importing archives.

 Message Defines the message to display if the value of this field in
a dataset does not comply with this constraint. If specifying
a custom message, you may optionally provide localized
variants.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 6.2.0 76

Related concepts Properties of data model elements [p 55]

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 77

CHAPTER 10
Data model extensions

This chapter contains the following topics:

1. Extensions used by the data model

2. Indexing and search strategies

3. Business objects

4. Toolbars

5. Entity mappings

6. Replication of data to relational tables

7. Node confidentiality

10.1 Extensions used by the data model
On any data model, it is possible to specify some extensions to be used. These extensions will have
the capacity to define additional features around the data model and to enrich the current data model
after the publication by adding properties and constraints to the data model elements. Data model
extensions are displayed in the navigation pane under the section 'Extensions'.
The following extensions are automatically enabled on new data models:

• Toolbars [p 80]

• Entity mappings [p 86]

• Replications [p 86]

• Indexing and search strategies [p 78]

• Business objects [p 78]

• Custom forms [p 913]

• Scripts [p 1256]

• Record permissions [p 1239]

• Node confidentiality [p 87]

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 78

Some extensions are optional and defined in dedicated datasets. These extensions can be disabled or
enabled through the user interface.
Optional data model extension can be disabled by selecting the action 'Disable extension' from the

menu to the left of extension to disable.

Note

When disabling an extension its dedicated dataset is also deleted and it is not possible
to recover it after its deletion

From the menu to the left of 'Extensions' entry in the navigation pane, you can enable an extension
by selecting the action 'Enable an extension'. This option is only displayed if some extensions are
available. When selecting this action a form displays the available data model extensions.
Once a data model extension is activated then it is displayed under the entry 'Extensions' in the
navigation pane and can be edited as a regular dataset. That is, the configuration of an extension is
embedded in a dedicated dataset that benefits of all EBX® features available on datasets.

10.2 Indexing and search strategies
This feature is documented in the chapter Search [p 499].

10.3 Business objects
A business object is an abstract layer that allows manipulating records from several tables within the
same data model. The definition of business objects, named business object model, can be performed
in the data model via the 'Extensions' section. A business object model is defined on a main table and
contains child entities that are defined using the relationships from this main table.
Create a business object model from the Business objects > Definitions section of the navigation pane,

by clicking on the menu located to the left of Business Objects, then selecting the Create Business

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 79

Object option. Follow the creation wizard to create a business object model. A business object model
defines the following information:

Business object name Business object model's name. The name must be unique in
the context of the data model since it is used to uniquely
identify the business object model. That is, it is not allowed
to create several business objects with the same name.

Label and description Internationalized labels and descriptions to be displayed to
end users.

Main table Defines the main table of this business object model.
Specified path must be absolute (must start with "/"). The
main table of this business object model cannot be used if
it is already a part of another business object model. That
is, the main table cannot be used if it is already defined as
the main table or as a child entity of another business object
model.

Defining the structure of a business object model
A business object model is composed of a main table and child entities. Child entities are defined
using the relationships contained in the main table.

Add a child entity under a business object model by clicking on the menu located to the left of
the existing business object, and by selecting the Add child entity option. Then, follow the creation
wizard to create a child entity. The following information must be set:

Relationship to table This field defines the relationship to the table to add
as a child entity. The path to the relationship must be
absolute (must start with "/"). Only foreign key constraints
and associations by inverse foreign key are supported.
Also these relationships must comply with the following
constraints: Foreign key constraints cannot be a list or under
a list. The field that defines the foreign key constraint
must be declared as unique. That is, it must either define
a uniqueness constraint with a blocking validation mode
or be the only primary key field of its container table.
Associations by inverse foreign key must refer to a foreign
key field that cannot be a list or under a list. Also, the target
table of the relationship cannot refer to a table that is already
used by this business object model or another one. That is,
the target table cannot be used if it is already defined as the
main table or as a child entity of a business object model.

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 80

10.4Toolbars
A toolbar allows to customize the buttons and menus that are displayed when viewing tables or records
in a dataset. The customization of toolbars can be performed in the data model via the 'Extensions'
section.

Add a toolbar from the Toolbars section of the navigation pane, by clicking on the menu located
to the left of [All elements], then selecting the Create toolbar option. Follow the creation wizard to
create a toolbar. A toolbar defines the following information:

Name Toolbar's name. The name of the toolbar must be unique in
the context of the data model. That is, it is not allowed to
create several toolbars with the same name.

Label and description Internationalized labels and descriptions to be displayed to
end users.

Default template Allows to create a toolbar with the structure of a default
toolbar.

Locations Specifies the locations where the toolbar can be used in
associated datasets.
Tabular view top: Defines the toolbar to use on top of the
default table view.
Tabular view row: Defines the toolbar to use on each row
of the default table view.
Tile view item: Defines the toolbar to use on each item of
the tile view.
Record top: Defines the toolbar to use in the record form.
Hierarchy top: Defines the toolbar to use in the default
hierarchy view of the table.
Known limitations
A toolbar defined to be used as "Tile view item" cannot have
more than six items and it can only define action items. The
display of those action buttons are always in mode "Icon
only".

Defining the structure of a toolbar
A toolbar can define the following elements:

• Action button [p 81]

• Menu button [p 82]

• Separator [p 82]

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 81

• Menu group [p 83]

• Action menu item [p 84]

• Sub menu item [p 84]

Add one of these elements under a toolbar or to an existing element by clicking on the menu
located to the left of the existing element, and by selecting a creation option in the menu. Then, follow
the creation wizard to create an element.

Action button
This type of element allows to associate an action to a button in a toolbar. The action will be triggered
when the user clicks on the associated button in one of the toolbars. A Action button type element
defines the following information:

Service Defines the service that will be executed when the user
clicks on the button. It is possible to select a built-in service,
or a user service defined in a module or in the current data
model. If the 'Web component' target is selected, the service
will have to be declared as available as a web component
for toolbars.

Label and description Internationalized labels and descriptions to be displayed to
end users.

Layout Defines how this element will be displayed in datasets using
the toolbar. It is possible to display: the icon only, the text
only, text with the icon to the left or text with the icon to
the right.

Icon Icon to display. It is possible to use an icon to choose from
a set of suggested icons, or to refer to an icon using a URL.

Relief Defines how this button will display. The button can be
displayed as embossed or flat.

Is highlighted Indicates if the button should be highlighted by default.

Note

A Action button type element can only be created under a toolbar type element.

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 82

Menu button
This type of element allows to define a menu that will be displayed when the user clicks on the
associated button in a toolbar. An element of the Menu button type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Layout Defines how this element will be displayed in datasets using
the toolbar. It is possible to display: the icon only, the text
only, text with the icon to the left or text with the icon to
the right.

Icon Icon to display. It is possible to use an icon to choose from
a set of suggested icons, or to refer to an icon using a URL.

Relief Defines how this button will display. The button can be
displayed as embossed or flat.

Is highlighted Indicates if the button should be highlighted by default.

Note

An element of the Menu button type can only be created under an element of the toolbar
type.

Separator
This type of element allows to insert a separator in the form of spacing between two elements of a
toolbar.

Note

An element of the Separator type can only be created under an element of the toolbar
type.

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 83

Menu group
This type of element allows to define a group of elements in a menu. An element of the Menu group
type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Group type Specifies the type of menu group to create: - 'Local' allows
to create an empty fully customizable menu group. - 'Service
group' allows to assign an existing service group to this
menu group. - 'Menu builder' allows to assign a predefined
menu content to this menu group. Once created, it is not
possible to change the type of this menu group.

Service group name Specifies an existing group of services to reuse. A group
is declared in a module and can include other groups
of services. All services contained in this group will be
displayed to end users in associated datasets.

Menu builder name Specifies the predefined menu content to assign to this menu
group: - 'Default menu "Actions"' has the same content as
the default toolbar 'Actions' menu. Standard and custom
services are displayed without distinction. - 'Default menu
"Actions" (with separator)' has the same menu content as
above, but displays differently since standard and custom
services are separated (standard services first, then custom
services).

Excluded services Indicates the services to exclude from the group of reused
services. These services will not be displayed to end users
in associated datasets.

Excluded service groups Indicates the groups to exclude from the group of services
to reuse. Services in excluded groups will not be displayed
to end users in associated datasets.

Filtering policy In case of "Smart filtering", services that are configured in
direct access, i.e. via an action button or an action menu
item, will be removed from the automatic generation of this
group.

Note

An element of the Menu group type can only be created under the following elements:

• Menu button

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 84

• Sub menu item

Action menu item
This type of element allows to associate an action to a menu item in a toolbar. The action will be
triggered when the user clicks on the corresponding item in a menu. An element of the Action menu
item type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Service Defines the service that will be executed when the user
clicks on the button. It is possible to select a built-in service,
or a user service defined in a module or in the current data
model. If the 'Web component' target is selected, the service
will have to be declared as available as a web component
for toolbars.

Note

An element of the Action menu item type can only be created under a Menu group type
element.

Sub menu item
This type of element allows to add a sub menu to a toolbar menu. Un Sub menu item defines the
following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Note

An element of the Sub menu item type can only be created under an element of the Menu
group type.

Deleting elements

All the elements of a toolbar can be deleted from it by using the menu located to the left of the
element to be deleted.
If an element containing other elements is deleted, then the deletion is recursively performed on all
elements located below the deleted element.

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 85

Duplicating existing elements

To duplicate an element, click on the menu located to the left of the element to duplicate. Specify
the name and properties of the duplicated element. All the source element properties are duplicated.
The duplicated element is added on the same level than the original element, in the final position.
When an element containing other elements is duplicated, all the sub-elements are duplicated with
their properties.

Moving elements

In order to move an element, click on the menu and select the moving option to be used.

Associate with existing tables

To associate a toolbar with existing tables, click on the menu located to the left of the toolbar and
select the option Associate to tables. This service allows to set the toolbar has the default toolbar of
several tables in one shot. To do so, specify the target locations of the toolbar and select the tables or
complex data types, that define table properties, to be associated with the toolbar.

Exporting the toolbars
It is possible to export the toolbars defined in the model into an XML document. To do so, select
the XML export option available in the Actions menu of the 'Toolbars' section. Follow the wizard to
export the toolbars.

Note

A selection of toolbars can be exported by selecting in the 'Toolbars' section the toolbars
to be exported and then by selecting the XML export option available in the Actions menu.
The toolbars can also be exported by using the data model export service. It can be found
in the Data model 'Actions' [p 39] menu in the navigation pane.

See also Data model import and export [p 89]

Importing toolbars
It is possible to import existing toolbars from an XML document. To do so, select the XML import
option available in the Actions menu of the 'Toolbars' section. Then follow the wizard to import the
toolbars.

Note

The toolbars can also be imported by using the data model import service accessible via
the Data model 'Actions' [p 39] menu in the navigation pane.

See also Data model import and export [p 89]

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 86

See also Use of toolbars [p 65]

10.5Entity mappings
You can refer to tables in SQL requests and data service operations using unique names instead of
their paths. To accomplish this, you must define entity mappings to create an association between a
table path and a name. When referencing a table you then use this name as a WSDL suffix in data
service operations and an alias in SQL requests.

Note

EBX® automatically creates an entity name for the tables defined in a data model. The
last step of the table's path is used as the default entity name. Since entity names must be
unique in a data model, an error is now raised during compilation if the model contains
tables with the same name. To prevent an error in this case, you must explicitly set the
entity names.

To define an entity mapping through the user interface, in the navigation pane when viewing a
data model, navigate to Extensions > Entity mappings and create a new record. You can define the
following properties:

Table path Specifies the path of the table in the current data model that
is to be referred by this name in SQL requests or WSDL
operations.

Entity name This name is used to suffix all WSDL operation names
of the concerned table and as an alias in SQL requests. If
undefined for a given table, the last element of the table path
is used instead. This name must be unique in the context of
this data model.

See also Data services [p 909]

10.6 Replication of data to relational tables
In any data model, it is possible to define replication units for data in the repository to be mirrored
to dedicated tables in the relational database. These tables then enable direct access to the data by
SQL requests and views.
To define a replication unit through the user interface, create a new record in the 'Replications' table
under the extensions' section in the navigation pane. Each replication unit record is associated with a

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 87

particular dataset in a given dataspace. A single replication unit can cover multiple tables, as long as
they are in the same dataset. A replication unit defines the following information:

Name Name of the replication unit. This name identifies a
replication unit in the current data model. It must be unique.

Dataspace Specifies the dataspace relevant to this replication unit. It
cannot be a snapshot.

Dataset Specifies the dataset relevant to this replication unit.

Refresh policy Specifies the data synchronization policy. The possible
policies are:

• On commit: The replicated table content in the
database is always up to date with respect to its source
table. Every transaction that updates the EBX® source
table triggers the corresponding insert, update, and
delete statements on the replicated table.

• On demand: The replicated table in the database is
only updated when an explicit refresh operation is
performed.

Tables Specifies the tables in the data model to be replicated in the
database.
Table path: Specifies the path of the table in the current
data model that is to be replicated to the database.
Table name in database: Specifies the name of the table in
the database to which the data will be replicated. This name
must be unique amongst all replications units.

Aggregated lists Specifies the properties of the aggregated lists in the table
that are replicated in the database.
Path: Specifies the path of the aggregated list in the table
that is to be replicated to the database.
Table name in database: Specifies the name of the table
in the database to which the data of the aggregated list
will be replicated. This name must be unique amongst all
replications units.

See also Replication [p 459]

10.7 Node confidentiality
The confidentiality of a node defines whether or not it can be used in a Query or in a Request when
hidden for a specific user. By default, all nodes are confidential.

Documentation > User Guide > Data models > Implementing data models > Data model extensions

TIBCO EBX® Product Documentation 6.2.0 88

This can be configured in the DMA, by using the "Extensions" tab in the node form editor. It is possible
to define the confidentiality at several levels:

• at a data model level (root node): defines the default confidentiality for the data model terminal
nodes, unless a more specific definition is set (that is on the table or the node itself).

• at a table level (table node): defines the default confidentiality for the table terminal nodes, unless
a more specific definition is set (that is on the node itself).

• at a terminal node level: defines the confidentiality of the node.

For more information, see Defining confidentiality [p 480]

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 6.2.0 89

CHAPTER 11
Working with an existing data model

Once your data model has been created, you can perform a number of actions that are available from
the data model 'Actions' [p 39] menu in the workspace.
This chapter contains the following topics:

1. Validating a data model

2. Data model import and export

3. Duplicating a data model

4. Deleting a data model

11.1 Validating a data model
To validate a data model at any time, select Actions > Validate from the navigation pane. The
generated report provides the results of the validation. From the validation report, you have the option
to update the reported validation status by clicking the Revalidate button, or to click the Reinitialize
validation report button to clear the current validation report associated with the data model in order
to be able to rerun a full validation from scratch.

Note

The validation process checks basic data model integrity, but more complex checks are
only performed at publication time. More messages may be reported when you try to
publish your data model.

See Validation [p 587] for detailed information on incremental data validation.

11.2 Data model import and export
TIBCO EBX® includes built-in data model services to import from and export to XML Schema
Document (XSD) files or to archive files (zip). Imports and exports can be performed from the data
model 'Actions' [p 39] menu of the target data model in the navigation pane. An import or export is
always performed in the context of a single data model. That is, during imports, the structure of the
target data model is completely replaced with the content of the imported data model (XSD or archive).
Similarly, during exports, the entire data model is included in the XSD or archive file.
When importing a data model, the corresponding XSD file must be well-formed and must comply
with EBX® validation rules.

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 6.2.0 90

If this document declares resources that are located in a module, the module must also be declared
in the configuration of the data model. If the module has not been declared, you will not be able to
import the data model. See Data model properties [p 46] for more information on declaring modules.
To perform an import select 'Import data model' from the data model 'Actions' [p 39] menu of the data
model into which you are importing.
You can import an XML Schema Document (XSD) or an archive (zip file) from the local file system.
To do so, click the 'From a local document' button in the import wizard and follow the next step:

• Document name: path on the local file system of the XSD or archive file to import.

Note

When importing an archive it must contain only one XML Schema Document (XSD)
at its root. XML documents related to data model extensions must also be located
at the root of the archive. These XML documents are automatically imported if they
comply with the naming of the extensions supported and registered in EBX®.

You can also import a data model in an XSD that is packaged in a module. The import of a data model
in XSD format from a module uses the following properties:

Module Module in which the data model is packaged.

Module path Path to the module containing the data model.

Source path Path to Java source used to configure business objects and
rules.
This property is required if the data model being imported
defines programmatic elements.

Model The data model in the module to import.

Note

Imported XSD files must be encoded in 'UTF-8'. Exported XSD files are always encoded
in 'UTF-8'.

To perform an export select 'Export data model' from the data model 'Actions' [p 39] menu of the data
model you want to export.

11.3 Duplicating a data model
To duplicate a data model, select 'Duplicate' from the data model 'Actions' [p 39] menu for that data
model. You must give the new data model a name that is unique in the repository.

11.4 Deleting a data model
To delete a data model, select 'Delete' from the data model 'Actions' [p 39] menu for that data model.
When you delete a data model, all of its existing publications will remain and continue to be accessible

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 6.2.0 91

to their associated datasets. If you recreate a new data model with the same name as one that was
previously deleted, the new data model will be reassociated with all the existing publications in the
repository. At publication time of the new data model, you will have the opportunity to confirm the
replacement of an existing publication.

Note

Only an administrator can clean up the publications of deleted data models in the
'Administration' area.

See Publishing data models [p 93] for more information on the publication process.

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 6.2.0 92

Documentation > User Guide > Data models > Publishing and versioning data models > Publishing a data model

TIBCO EBX® Product Documentation 6.2.0 93

CHAPTER 12
Publishing a data model

This chapter contains the following topics:

1. About publications

2. Publication modes

3. Embedded publication mode

12.1 About publications
Each dataset based on an embedded data model in the TIBCO EBX® repository is associated with
a publication of a data model, rather than directly to the data model itself. The first time you publish
a data model using the Publish button in the navigation pane, a publication is created. Once the
publication exists, datasets can be created based upon it.

Note

The Publish button is only displayed to users who have permission to publish the data
model. See Data model permissions [p 45] for more information.

As datasets are based on publications, any modifications you make to a data model will only take effect
on existing datasets when you republish to the publication associated with those datasets. When you
republish a data model to an existing publication, all existing datasets associated with that particular
publication are updated.

12.2 Publication modes
You can publish a data model using either 'Embedded' mode or 'In module' mode. The 'Embedded'
publication mode generates a publication that is managed and persisted within the EBX® repository
and thus has associated versioning and rollback functionality. The 'In module' publication mode creates
an XML Schema Document contained in a module that is not managed or versioned within the
repository.
Depending on the configuration of the data model, EBX® automatically determines the publication
process to use when you click the Publish button in the navigation pane. When a data model specifies
the publication mode 'In module' and provides a target XSD to be generated, the publication process
generates an XSD file contained in the module defined in the configuration.

Documentation > User Guide > Data models > Publishing and versioning data models > Publishing a data model

TIBCO EBX® Product Documentation 6.2.0 94

12.3 Embedded publication mode
The first time you publish a given embedded data model, a new publication with the same name as
your data model is automatically created in the repository. If more than one publication has already
been created for this model, you will need to select a target publication for this process.
See Viewing and creating publications [p 94] for more information on the use of different
publications.
During the publication process, you have the opportunity to review the structural differences being
introduced by the current publication in a side-by-side comparison view, if the data model has
previously been published.
The publication process also offers the option to create a read-only snapshot of the current state of
the data model for reference purposes. This snapshot can be useful if the data model ever needs to be
rolled back to the current state after other modifications have been made.

Note

Snapshots, which are static archives of the state of the data model, must not be confused
with data model versions, which act instead as parallel evolving branches of the data
model. See Versioning embedded data models [p 95] for more information on data
model versions.

Viewing and creating publications
To access the publications that exist for the current data model, select 'Manage publications' from its
data model 'Actions' [p 39] menu in the navigation pane. From there, you can view the details of the
publications and create new publications.
In certain cases, it may be necessary to employ several publications of the same data model, in order
to allow datasets to be based on different states of that data model. Multiple publications must be
handled carefully, as users will be asked to select an available publications to target when publishing
if more than one exists. The action to create a new publication is only available to users who belong
to the 'Administrator' role.
To create a new publication, select 'Manage publications' from the data model 'Actions' [p 39] menu
of the data model in the navigation pane, then click the Create publication button. The name you
give to the publication must unique in the repository.

Documentation > User Guide > Data models > Publishing and versioning data models > Versioning an embedded data model

TIBCO EBX® Product Documentation 6.2.0 95

CHAPTER 13
Versioning an embedded data model

This chapter contains the following topics:

1. About versions

2. Accessing versions

3. Working with versions

4. Known limitations on data model versioning

13.1 About versions
You can create versions for data models that evolve in parallel. Versions are not to be confused with
data model snapshots, which are taken at publication time and kept strictly for historical read-only
reference.

13.2 Accessing versions
To see the existing versions of your data model, select 'Manage versions' from the data model
'Actions' [p 39] menu of the data model.
The existing versions are represented in a tree format according to their parent-child relationships.
Every data model has a root version by default, with the same name as the data model.

Documentation > User Guide > Data models > Publishing and versioning data models > Versioning an embedded data model

TIBCO EBX® Product Documentation 6.2.0 96

13.3 Working with versions
In the workspace, using the down arrow menu next to each version, you can perform the following
actions:

Access data model version Go to the corresponding version of the data model.

Create version Creates a new version based on the contents of the selected
version. The new version is added as a child of the selected
version, though its contents bear no relation to those of its
parent version after creation.

Set as default version Sets the selected version as the default version opened when
users access the data model.

Export archive Exports the selected data model version to an archive
containing the version's content, including its permissions
and information. The exported archive is located in
the archives directory, which is accessible to repository
administrators. Exporting to an existing archive name will
overwrite the existing file.
See Archives directory [p 622] for more information.

Import archive Imports the content of an archive into the selected version.
The archive to import must contain a data model with the
same name as the data model associated with the version.

A version can be deleted by clicking the X button to the right of its entry. A version cannot be deleted
if it is linked to a publication or if it has child versions. The root version of a data model also cannot
be deleted.
Two versions of the same data model can be compared in the workspace by selecting their checkboxes,
then selecting Actions > Compare selected versions. The side-by-side comparison shows structural
differences between the version of the data model, with the older version on the left and the newer
version on the right.

13.4 Known limitations on data model versioning
• It is not possible to merge two versions of a data model.

• The comparison interface does not display updates on fields, only additions and deletions.

• Versioning of data models packaged in modules is not supported.

• Resources packaged in a module that are used by an embedded data model are not versioned when
a version is created. That is, only the reference of the resources are saved during the creation of
a version, and it is the responsibility of developers to ensure that the content of the referenced
resources are compatible with any versions that may be using them.

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 97

Dataspaces

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 6.2.0 98

CHAPTER 14
Introduction to dataspaces

This chapter contains the following topics:

1. Overview

2. Using the Dataspaces area user interface

14.1 Overview

What is a dataspace?
The life cycle of data can be complex. It may be necessary to manage a current version of data while
working on several concurrent updates that will be integrated in the future, including keeping a trace
of various states along the way. In TIBCO EBX®, this is made possible through the use of dataspaces
and snapshots.
A dataspace is a container that isolates different versions of datasets and organizes them. A dataspace
can be branched by creating a child dataspace, which is automatically initialized with the state of
its parent. Thus, modifications can be made in isolation in the child dataspace without impacting its
parent or any other dataspaces. Once modifications in a child dataspace are complete, that dataspace
can be compared with and merged back into the parent dataspace.

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 6.2.0 99

Snapshots, which are static, read-only captures of the state of a dataspace at a given point in time,
can be taken for reference purposes. Snapshots can be used to revert the content of a dataspace later,
if needed.

Basic concepts related to dataspaces
A basic understanding of the following terms is beneficial when working with dataspaces:

• dataspace [p 32]

• snapshot [p 32]

• dataset [p 30]

• dataspace merge [p 32]

• reference dataspace [p 32]

14.2 Using the Dataspaces area user interface
Dataspaces can be created, accessed and modified in the Dataspaces area.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 6.2.0 100

The navigation pane displays all existing dataspaces, while the workspace displays information about
the selected dataspace and lists its snapshots.

See also

Creating a dataspace [p 101]

Snapshots [p 111]

Related concepts Datasets [p 116]

Documentation > User Guide > Dataspaces > Creating a dataspace

TIBCO EBX® Product Documentation 6.2.0 101

CHAPTER 15
Creating a dataspace

This chapter contains the following topics:

1. Overview

2. Properties

15.1 Overview
To create a new dataspace, select an existing dataspace on which to base it, then click the Create a
dataspace button in the workspace.

Note

This area is available only to authorized users in the 'Advanced perspective'.

The new dataspace will be a child dataspace of the one from which it was created. It will be initialized
with all the content of the parent at the time of creation, and an initial snapshot will be taken of this
state.
Aside from the reference dataspace, which is the root of all dataspaces in the repository, dataspaces
are always a child of another dataspace.

15.2 Properties
The following information is required at the creation of a new dataspace:

Identifier Unique identifier for the dataspace.

Owner Owner of the dataspace, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the dataspace.

Label Localized label and description associated with the
dataspace.

Documentation > User Guide > Dataspaces > Creating a dataspace

TIBCO EBX® Product Documentation 6.2.0 102

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 103

CHAPTER 16
Working with existing dataspaces

This chapter contains the following topics:

1. Dataspace information

2. Dataspace permissions

3. Merging a dataspace

4. Comparing a dataspace

5. Validating a dataspace

6. Dataspace archives

7. Closing a dataspace

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 104

16.1 Dataspace information
Certain properties associated with a dataspace can be modified by selecting Actions > Information
from the navigation panel in the Dataspaces area.

Documentation Localized labels and descriptions associated with the
dataspace.

Child merge policy This merge policy only applies to user-initiated merge
processes; it does not apply to programmatic merges, for
example, those performed by workflow script tasks.
The available merge policies are:

• Allows validation errors in result: Child dataspaces
can be merged regardless of the validation result. This
is the default policy.

• Pre-validating merge: A child dataspace can only be
merged if the result would be valid.

Current Owner Owner of the dataspace, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the dataspace.

Child dataspace sort policy Defines the display order of child dataspaces in dataspace
trees. If not defined, the policy of the parent dataspace is
applied. Default is 'by label'.

Change owner Whether the current owner of the dataspace is allowed
to give ownership to another profile by modifying its
'Current owner' property. If the value is 'Forbidden', only an
administrator can modify the owner.

Change permissions Whether the current owner of the dataspace is allowed to
modify its permissions. If the value is 'Forbidden', only an
administrator can modify the permissions of the dataspace.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 105

16.2 Dataspace permissions

General permissions

Dataspace id The dataspace to which the permissions will apply.

Profile selection The profile to which the rule applies.

Restriction policy Whether these permissions restrict the permissions assigned
to a given user through policies defined for other profiles.
See Restriction policy [p 489].

Dataspace access The global access permission on the dataspace.
Read-only

• Can see the dataspace and its snapshots, as well as child
dataspaces, according to their permissions.

• Can see the contents of the dataspace depending on
their permissions; cannot make modifications.

Write

• Can see the dataspace and its snapshots, as well as child
dataspaces, according to their permissions.

• Can modify the contents of the dataspace depending on
their permissions.

Hidden

• Cannot see the dataspace nor its snapshots directly.

• From a child dataspace, the current dataspace can be
seen but not selected.

• Cannot access the contents of the dataspace.

• Cannot perform any actions on the dataspace.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 106

Allowable actions
Users can be allowed to perform the following actions:

Create a child dataspace Whether the profile can create child dataspaces.

Create a snapshot Whether the profile can create snapshots from the
dataspace.

Initiate merge Whether the profile can merge the dataspace with its parent.

Export archive Whether the profile can perform exports.

Import archive Whether the profile can perform imports.

Close dataspace Whether the profile can close the dataspace.

Close snapshot Whether the profile can close snapshots of the dataspace.

Rights on services Specifies the access permissions for services.

Permissions of child dataspaces
when created

Specifies the default access permissions for child dataspaces
that are created from the current dataspace.

16.3 Merging a dataspace
When the work in a given dataspace is complete, you can perform a one-way merge of the dataspace
back into the dataspace from which it was created. The merge process is as follows:

1. Both the parent and child dataspaces are locked to all users, except the user who initiated the
merge and administrator users. These locks remain for the duration of the merge operation. When
locked, the contents of a dataspace can be read, but they cannot be modified in any way.
Note: This restriction on the parent dataspace means that, in addition to blocking direct
modifications, other child dataspaces cannot be merged until the merge in progress is finished.

2. Changes that were made in the child dataspace since its creation are integrated into its parent
dataspace.

3. The child dataspace is closed.

4. The parent dataspace is unlocked.

Initiating a merge
To merge a dataspace into its parent dataspace:

1. Select that dataspace in the navigation pane of the Dataspaces area.

2. In the workspace, select Merge dataspace from the Actions menu.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 107

Reviewing and accepting changes
After initiating a dataspace merge, you must review the changes that have been made in the child
(source) dataspace since its creation, to decide which of those changes to apply to the parent (target)
dataspace.

Note

This change set review and acceptance stage is bypassed when performing merges
using data services or programmatically. For automated merges, all changes in the child
dataspace override the data in the parent dataspace.

The change acceptance process uses a side-by-side comparison interface that recapitulates the changes
that require review. Two change set columns are obtained by taking the relevant changes from the
following dataspace state comparisons:

• The current child dataspace compared to its initial snapshot.

• The parent dataspace compared to the initial snapshot of the child dataspace.

By default, all detected changes are selected to be merged. You may deselect any changes that you
want to omit from the merge. You can view the changes relevant to different scopes in your data model
by selecting elements in the navigation pane.
In order to detect conflicts, the merge involves the current dataspace, its initial snapshot and the parent
dataspace, because data is likely to be modified both in the current dataspace and its parent.
The merge process also handles modifications to permissions on tables in the dataspace. As with other
changes, access control changes must be reviewed for inclusion in the merge.
When you have decided which changes to merge for a given scope, you must click the button Mark
difference(s) as reviewed to indicate that you have reviewed all the changes in that scope. All changes
must be reviewed in order to proceed with the merge.

Types of modifications
The merge process considers the following changes as modifications to be reviewed:

• Record and dataset creations

• Any changes to existing data

• Record, dataset, or value deletions

• Any changes to table permissions

Types of conflicts
This review interface also shows conflicts that have been detected. Conflicts may arise when the same
scope contains modifications in both the source and target dataspaces.
Conflicts are categorized as follows:

• A record or a dataset creation conflict

• An entity modification conflict

• A record or dataset deletion conflict

• All other conflicts

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 108

Finalizing a merge
Once you have reviewed all changes and decided which to include in the merge result, click on the
Merge >> button in the navigation pane.
Depending on the child merge policy that is configured on the parent dataspace in your merge, the
subsequent process may differ. By default, merges are finalized even if the result would contain
validation errors. The administrator of the parent dataspace in your merge can set its child merge policy
so that merges of its children are only finalized if the result would not contain any validation errors.
If, however, the administrator of the parent dataspace has set its child merge policy to 'Pre-validating
merge', a dedicated dataspace is first created to hold the result of the merge. When the result is valid,
this dedicated dataspace containing the merge result is automatically merged into the parent dataspace,
and no further action is required.
In the case where validation errors are detected in the dedicated merge dataspace, you only have access
to the original parent dataspace and the dataspace containing the merge result, named "[merge] <
name of child dataspace >". The following options are available to you from the Actions > Merge
in progress menu in the workspace:

• Cancel, which abandons the merge and recuperates the child dataspace in its pre-merge state.

• Continue, which you can use to reattempt the merge after you have made the necessary
corrections to the dedicated merge dataspace.

Setting the child merge policy of a dataspace
As the administrator of a dataspace, you can block the finalization of merges of its child dataspaces
through the user interface when the merges would result in a dataspace with validation errors. To do
so, select Actions > Information from the workspace of the parent dataspace. On the dataspace's
information page, set the Child merge policy to Pre-validating merge. This policy will then be
applied to the merges of all child dataspaces into this parent dataspace.

Note

When the merge is performed through a Web Component, the behavior of the child
merge policy is the same as described; the policy defined in the parent dataspace is
automatically applied when merging a child dataspace. However, this setting is ignored
during programmatic merge, which includes script tasks in data workflows.

See also Child merge policy [p 108]

Abandoning a merge
Merges are performed in the context of a user session, and must be completed in a single operation.
If you decide not to proceed with a merge that you have initiated, you can click the Cancel button
to abandon the operation.
If you navigate to another page after initiating a merge, the merge will be abandoned, but the locks
on the parent and child dataspaces will remain until you unlock them in the Dataspaces area.
You may unlock a dataspace by selecting it in the navigation pane, and clicking the Unlock button
in the workspace. Performing the unlock from the child dataspace unlocks both the child and parent
dataspaces. Performing the unlock from the parent dataspace only unlocks the parent dataspace, thus
you need to unlock the child dataspace separately.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 109

16.4 Comparing a dataspace
You can compare the contents of a dataspace to those of another dataspace or snapshot in the repository.
To perform a comparison, select the dataspace in the navigation pane, then select Actions > Compare
from the workspace.
The comparison wizard prompts you to select the dataspace or snapshot with which to compare the
current dataspace.
For a faster comparison that ignores fields with inherited and computed values, select the filter
'Persisted values only'.

See also Compare contents [p 427]

16.5 Validating a dataspace
To perform a global validation of the contents of a dataspace, select that dataspace in the navigation
panel, then select Actions > Validate in the workspace.

Note

This service is only available in the user interface if you have permission to validate
every dataset contained in the current dataspace.

16.6 Dataspace archives
The content of a dataspace can be exported to an archive or imported from an archive.

Exporting
To export a dataspace to an archive, select that dataspace in the navigation panel, then select Actions
> Export in the workspace. Once exported, the archive file is saved to the file system of the server,
where only an administrator can retrieve the file.

Note

See Archives directory [p 622] in the Administration Guide for more information.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 6.2.0 110

In order to export an archive, the following information must be specified:

Name of the archive to create The name of the exported archive.

Export policy Required.
The default export policy is 'The whole content of the
dataspace', which exports all selected data to the archive.
It may be useful to export only the differences between the
dataspace and its initial snapshot using a change set. There
are two different export options that include a change set:
'The updates with their whole content' and 'The updates
only'. The first option exports all current data and a change
set containing differences between the current state and the
initial snapshot. The second option only exports the change
set. Both options lead to a comparison page, where you
can select the differences to include in this change set.
Differences are detected at the table level.

Datasets to export The datasets to export from this dataspace. For each
dataset, you can export its data values, permissions, and/or
information.

Importing
To import content into a dataspace from an archive, select that dataspace in the navigation panel, then
select Actions > Import in the workspace.
If the selected archive does not include a change set, the current state of the dataspace will be replaced
with the content of the archive.
If the selected archive includes the whole content as well as a change set, you can choose to apply the
change set in order to merge the change set differences with the current state. Applying the change
set leads to a comparison screen, where you can then select the change set differences to merge.
If the selected archive only includes a change set, you can select the change set differences to merge
on a comparison screen.

16.7 Closing a dataspace
If a dataspace is no longer needed, it can be closed. Once it is closed, a dataspace no longer appears
in the Dataspaces area of the user interface, nor can it be accessed.
An administrator can reopen a closed dataspace as long as it has not been cleaned from the repository.
To close a dataspace, select Actions > Close this dataspace .

See also Closing unused dataspaces and snapshots [p 625]

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 6.2.0 111

CHAPTER 17
Snapshots

This chapter contains the following topics:

1. Overview of snapshots

2. Creating a snapshot

3. Viewing snapshot contents

4. Snapshot information

5. Comparing a snapshot

6. Validating a snapshot

7. Export

8. Closing a snapshot

17.1 Overview of snapshots
A snapshot is a read-only copy of a dataspace. Snapshots exist as a record of the state and contents
of a dataspace at a given point in time.

See also Snapshot [p 32]

17.2 Creating a snapshot
A snapshot can be created from a dataspace by selecting that dataspace in the navigation pane of the
Dataspaces area, then selecting Actions > Create a Snapshot in the workspace.
The following information is required:

Identifier Unique identifier for the snapshot.

Label Localized labels and descriptions associated with the
snapshot.

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 6.2.0 112

17.3 Viewing snapshot contents
To view the contents of a snapshot, select the snapshot, then select Actions > View datasets from
the workspace.

17.4 Snapshot information
You can modify the information associated with a snapshot by selecting Actions > Information.

Documentation Localized labels and descriptions associated with the
snapshot.

Current Owner Owner of the snapshot, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the snapshot.

Change owner Whether the current owner of the snapshot is allowed
to give ownership to another profile by modifying its
'Current owner' property. If the value is 'Forbidden', only an
administrator can modify the owner.

17.5 Comparing a snapshot
You can compare the contents of a snapshot to those of another snapshot or dataspace in the repository.
To perform a comparison, select the snapshot, then select Actions > Compare from the workspace.
The comparison wizard prompts you to select the dataspace or snapshot with which to compare the
current snapshot.
For a faster comparison that ignores fields with inherited and computed values, select the filter
'Persisted values only'.

See also Compare contents [p 427]

17.6 Validating a snapshot
To perform a global validation of the contents of a snapshot, select Actions > Validate in the
workspace.

Note

In order to use this service, you must have permission to validate every dataset contained
in the snapshot.

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 6.2.0 113

17.7 Export
To export a snapshot to an archive, open that snapshot, then select Actions > Export in the workspace.
Once exported, only an administrator can retrieve the archive.

Note

See Archives directory [p 622] in the Administration Guide for more information.

In order to export an archive, the following information must be specified:

Name of the archive to create The name of the exported archive.

Datasets to export The datasets to export from this snapshot. For each
dataset, you can choose whether to export its data values,
permissions, and information.

17.8 Closing a snapshot
If a snapshot is no longer needed, it can be closed. Once it is closed, a snapshot no longer appears
under its associated dataspace in the Dataspaces area, nor can it be accessed.
An administrator can reopen a closed dataspace as long as it has not been cleaned from the repository.
To close a snapshot, select Actions > Close this snapshot.

See also Closing unused dataspaces and snapshots [p 625]

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 6.2.0 114

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 115

Datasets

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 6.2.0 116

CHAPTER 18
Introduction to datasets

This chapter contains the following topics:

1. Overview

2. Using the Data user interface

18.1 Overview

What is a dataset?
A dataset is a container for data that is based on the structural definition provided by its underlying data
model. When a data model has been published, it is possible to create datasets based on its definition. If
that data model is later modified and republished, all its associated datasets are automatically updated
to match.
In a dataset, you can consult actual data values and work with them. The views applied to tables allow
representing data in a way that is most suitable to the nature of the data and how it needs to be accessed.
Searches and filters can also be used to narrow down and find data.
Different permissions can also be accorded to different roles to control access at the dataset level.
Thus, using customized permissions, it would be possible to allow certain users to view and modify
a piece of data, while hiding it from others.

Basic concepts related to datasets
A basic understanding of the following terms is beneficial when working with datasets:

• dataspace [p 32]

• dataset [p 30]

• record [p 30]

• field [p 29]

• primary key [p 29]

• foreign key [p 29]

• table (in dataset) [p 30]

• group [p 29]

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 6.2.0 117

18.2 Using the Data user interface
Datasets can be created, accessed and modified in the Data area using the Advanced perspective [p 21]

or from a specifically configured perspective. Only authorized users can access these interfaces.

Select or create a dataset using the 'Select dataset' menu in the navigation pane. The data structure of
the dataset is then displayed in the navigation pane, while record forms and table views are displayed
in the workspace.

When viewing a table of the dataset in the workspace, the button displays searches and filters that
can be applied to narrow down the records that are displayed.
Operations at the dataset level are located in the Actions menu in the navigation pane (services are
available at the bottom of the list).

See also

Creating a dataset [p 119]

Quick Search [p 122]

Working with records in the user interface [p 141]

Inheritance [p 31]

Related concepts

Data model [p 38]

Dataspace [p 98]

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 6.2.0 118

Documentation > User Guide > Datasets > Creating a dataset

TIBCO EBX® Product Documentation 6.2.0 119

CHAPTER 19
Creating a dataset

This chapter contains the following topics:

1. Creating a root dataset

2. Creating an inheriting child dataset

19.1 Creating a root dataset
To create a new root dataset, that is, one that does not inherit from a parent dataset, select the 'Select

dataset [p 117]' menu in the navigation pane, click the 'Create a dataset' button in the pop-up, and
follow through the wizard.

Note

This area is available only to authorized users in the 'Advanced perspective' or from a
specifically configured perspective.

The wizard allows you to select one of three data model packaging modes on which to base the new
dataset: packaged, embedded, or external.

• A packaged data model is a data model that is located within a module, which is a web application.

• An embedded data model is a data model that is managed entirely within the TIBCO EBX®
repository.

After locating the data model on which to base your dataset, you must provide a unique name, without
spaces or special characters. Optionally, you may provide localized labels for the dataset, which will
be displayed to users in the user interface depending on their language preferences.

Attention
Table contents are not copied when duplicating a dataset.

Documentation > User Guide > Datasets > Creating a dataset

TIBCO EBX® Product Documentation 6.2.0 120

19.2 Creating an inheriting child dataset
The inheritance mechanism allows datasets to have parent-child relationships, through which default
values are inherited from ancestors by descendants. In order to be able to create child datasets, dataset
inheritance must be enabled in the underlying data model.

To create a child dataset, select the 'Select dataset [p 117]' menu in the navigation pane, then click
the button next to the desired parent dataset.
As the dataset will automatically be based on the same data model as the parent dataset, the only
information that you need to provide is a unique name, and optionally, localized labels.

See also Dataset inheritance [p 159]

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 121

CHAPTER 20
Viewing data

TIBCO EBX® offers different ways to list records. This chapter presents how to sort, search, and
display records in varying ways, and according to different user profiles, through to the concept of
'Views'.
This chapter contains the following topics:

1. 'View' menu

2. Sorting data

3. Quick Search

4. Searching and filtering data

5. Views

6. Views management

7. Grid edit

8. History

20.1 'View' menu
The 'View' drop-down menu allows accessing all available views and management features.
Views are managed directly in the 'View' menu toolbar, available on each listed view: 'View' menu
toolbar [p 138].
Views can also be grouped. An administrator has to beforehand define groups in 'Views configuration'
under the 'Groups of views' table. The end-user can then set a view as belonging to a group, through
the field 'View group' upon creation or modification of the view. See 'View description' [p 127] for
more information.

20.2 Sorting data
Sort criteria control the order in which records are presented.
Use the 'Select and Sort' button at the top left of the table to define specific sorting criteria.
There are two types of sorting:

• sorting by relevance, used in the quick search [p 122],

• sorting by column.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 122

Sorting by column
The 'Sorting criteria' dialog box offers:

• on the left, the list of sorted columns,

• on the right, the list of unsorted columns.

Use the ← → arrow buttons to toggle columns from one list to another.
Use the ↑ ↓ arrow buttons to change the priority order of the column.
To change the sort order of a column, use the 'ASC' (ascending) or 'DESC' (descending) button that
appears on the mouse-over.

20.3 Quick Search

The quick search is used to easily find a result in a tabular, a hierarchical, or a tile view.
It does not differentiate between upper and lower case. It allows you to search for several terms at
once (separated by spaces). By default, the records found are sorted by relevance. This search includes
all searchable columns, even those that are not visible. When the quick search is not possible for a
column, it is indicated by an icon when hovering over the column header.

See also Search [p 499]

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 123

Special characters
The quick search offers special characters to refine your search on strings. Please note that columns
that are not string-based do not support this syntax, and certain search strategies such as 'Code' does
not support it either.

+... required Makes it required that the word be present in the result.
Prevents the search engine from excluding this word from
the search.

Note

Works with +"phrase" or +(group).

Example:
+flute +bach

↳ Finds results with required flute and required bach.
Results with only flute or only bach will be ignored.

-... not Excludes the word from the result.

Note

Works with -"phrase" or -(group).

Example:
bach -flute

↳ Find results with bach, but without flute.

...~fuzzy Specifies that the search can change 2 characters of the word
to find it.
To allow for a single character to change, use ~1.

Note

Works with "phrase"~, to change 2 words in
the phrase.

Example:
handel~

↳ Find results with a word that is handel, with 1 or 2 letters
differing.

?single joker Replaces an unknown character.
Example:
?uttle

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 124

↳ Finds results with a word starting with any character, and
ending with uttle.

*extended joker Replaces several unknown characters.
Example:
rachmanino*

↳ Find results with a word beginning with rachmanino.

"..."phrase Find the exact match of the phrase.

Note

Can be surrounded by +-~.

Example:
"Johann Sebastian Bach"

↳ Find results containing exactly Johann Sebastian Bach.

(...)group Allows grouping words to apply a special character + or -
to them.

Note

You can make groups of groups.

Example:
bach +(flute piano)

↳ Find the results with possibly bach, and necessarily flute
or piano.

Note

These special characters can also be used in the documentation search engine.

20.4 Searching and filtering data
The search pane is hidden by default and accessible via the icon located to the right of the quick
search in the toolbar of the tabular, the hierarchical or the tile view.
The quick search and the criteria lines combine to narrow the search (restricting the result to fewer
and fewer records).
It is possible to deactivate a criteria line by unchecking it. The deactivated criteria are not kept during
a save.

The trashcan button at the end of the line of each criterion permanently deletes the criterion.
To save the filter applied to a search, use the 'Save' button. Saving takes into account the quick search
and all active criteria.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 125

To recall a saved filter, use the 'Load' button. Loading replaces the quick search and the whole criteria
panel. Click on the 'Apply' button to start the new search.
When a view is applied, it ensures that it is displayed according to its configuration. All existing
criteria in the search panel are therefore removed. The view can contain a set of search criteria, which
are applied together with the at the same time as the view.
Some operators (such as 'text-search') allow to use Lucene regular expressions. See technical
specifications of Lucene's regex pattern for more information.

Search on a field
All searchable fields are available, except those of type osd:locale which are not defined as
enumerations, and those of type osd:resource.

Validation filter
In field selection, the validation criteria display the records as of the last validation performed.

Note

This filtering only applies to records of the table that have been validated at least once
by selecting Actions > Validate at the table level from the workspace, or at the dataset
level from the navigation pane.

To filter on the validation severity level (independent from validation Message), use the 'Severity'
validation criterion. Available levels are: 'Errors', 'Warnings' and 'Information'.
To filter on the validation message (independent from validation Severity level), use the 'Message'
validation criterion.

Create complex filters
Use multiple criteria grouped by logical operator to create complex filters. The groups display in a tree
view that utilizes a variety of features to streamline the construction of even the most complex filters.
For example, take a record where Bob and Smith are values passed to the filter in the Name and
Surname fields, respectively. If the contains condition is used for both fields, the logical operators
impact record filtering as follows:

• AND: restricts the search, as a record must meet all of the criteria in this group to display. Only
a record that has Bob Smith displays in the results.

• OR: broadens the search, as a record only needs to meet one of the criteria in this group to display.
Any record displays where the Name field includes Bob, or the Surname field includes Smith.
For example, results might include Jon Smith and Bob Jones.

• NOT: inverts a group or criterion so that the opposite conditions from those specified must be
met to display the record.

• NOT AND: All records that are not Bob Smith are returned.

• NOT OR: Only records that do not have Bob or Smith are returned. For example, Peter Jones
and Mary Stewart.

• NOT applied to a single criterion: Reverses the condition for that criterion only. For example,
if the group's condition is AND, and NOT was applied to the Surname field, the Bob Smith

https://lucene.apache.org/core/8_6_3/core/org/apache/lucene/util/automaton/RegExp.html
https://lucene.apache.org/core/8_6_3/core/org/apache/lucene/util/automaton/RegExp.html

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 126

record would be excluded from results as only records that do not contain Smith in the
Surname field are returned.

The following table describes actions available when working with groups:

Select an operator Toggle between the AND and OR operators.

Mouse hover: On operators allows you to select the following:

• NOT to invert the group.

• to duplicate the group.

• to ungroup the criteria.

On individual criterion hover to select NOT and invert the
condition applied to that criterion.

Drag and drop Drag lines connected to criteria:

• Up/down to reorder within the containing group.

• To another criterion in the same group to create a new
subgroup.

• To a different operator to move the criterion to that
group.

Group criteria button Use this button to enable group edit. Select the checkboxes
next to criteria you want to group. Note that action moves
the selected criteria to the new group.

Custom table searches
For backward compatibility, the feature for custom searching and filtering records is still operational
and accessible via the icon in the workspace. The icon and feature are only available when at least
one custom filter exists.
Additional custom filters can be specified for each table in the data model.

See also Customizing table filter [p 964]

Technical limitation
Optimized text search filters cannot be combined using the OR operator with non-optimized filters,
or filters that involve a different table.
Typical examples of this situation could be a text search with an OR filter on:

• An inherited field.

• A computed value without a local dependency.

• A field from a different table (e.g. a linked field).

This technical limitation displays as "The request cannot be resolved since a "text search" operator is
inside an "OR" group" (technical limitation).

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 127

20.5 Views
It is possible to customize the display of tables in EBX® according to the target user. There are three
types of views: tabular [p 128], hierarchical [p 128] and tiles [p 135].
A view can be created by selecting View > Create a new view in the workspace. To apply a view,
select it in View > name of the view.
Three types of views can be created:

• 'Simple tabular view': A table view to sort and filter the displayed records.

• 'Hierarchical view': A tree view that links data in different tables based on their relationships.

• 'Tile view': A view which displays the records in the form of cards that are positioned in rows
and columns. This view allows to show information in an eye catching form, sort, and filter the
records displayed.

View description
When creating or updating a view, the first page allows specifying general information related to the
view.

Documentation Localized label and description associated with the view.

Owner Name of the owner of the view. This user can manage and
modify it. (Only available for administrators and dataset
owners)

Share with Other profiles allowed to use this view from the 'View'
menu.

Note

Requires a permission, see Views permissions
[p 644].

View mode Simple tabular view, hierarchical view or tile view.

View group Group to which this view belongs (if any).

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 128

Simple tabular views
Simple tabular views offer the possibility to define criteria to filter records and also to select the
columns that will be displayed in the table.

Displayed columns Specifies the columns that will be displayed in the table.

Sorted columns Specifies the sort order of records in the table. See Sorting
data [p 121].

Filter Defines filters for the records to be displayed in this table
view.
See Criteria editor [p 497].

Initial request When set to manual, users of this view will have to apply a
filter or a sort criteria before they can view data.

Pagination limit Forces a limit to the number of visible records.

Grid edit If enabled, users of this view can switch to grid edit, so that
they can edit records directly from the tabular view.

Disable create and duplicate If yes, users of this view cannot create nor duplicate records
from the grid edit.

Toolbar on top of table Defines the toolbar to use on top of this table view.

Toolbar on table row Defines the toolbar to use on each row of this table view.

Hierarchical views
A hierarchy view displays your data in a tree-like representation. Use hierarchy views to visualize
different relationships between data, or to group common values. To create a hierarchy view, you
define a dimension that determines what data will be included and how it displays. Consider the
following example and image where the dimension is Category --> Brand --> Product and displays
Products by Brand by Category.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 129

Hierarchy dimensions and members
Each hierarchy is defined by its dimension. The dimension is subdivided into dimension levels.
Members are hierarchy nodes and represent a record, or a field value. A member can be a parent of
other members, or a leaf node with no children. The table from which you create the hierarchy view
is called the target table. Members of the target table are lowest-level leaves, except in the case of
a recursive hierarchy.
In the following image:

• Grocery and Household are members of the Category dimension level. This is the top dimension
level.

• ACME is a member of the Brand dimension level and is at an intermediate level. A dimension
can have many intermediate levels.

• The individual products listed at the Product dimension level are leaf members from the target
table. This is the bottom dimension level.

Creating a hierarchy view
This topic provides high-level instructions for creating a hierarchy view. See the following topics for
additional details about creating views of specific hierarchy types:

• Ragged hierarchies [p 130]

• Group by hierarchies [p 131]

• Time-based hierarchy dimensions [p 132]

To create a hierarchy view:

1. From the target table's Actions menu, select Create a new view.

2. After specifying the following information, click Next:

• Add any view-related documentation such as a label and description.

• Set access permissions.

• For the View mode property, select Hierarchical view.

3. Use the Dimension box to define the hierarchy by working backwards through the dimension
levels:

1. Bottom level: The members of this level are pre-determined based on the target table.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 130

2. Intermediate levels: Start with the attribute that corresponds to the next highest dimension
level and continue to expand until you navigate to the highest level.

3. Top level: Select the attribute corresponding to the top dimension level.

4. Review the required options and after making desired changes, click Next.

5. Specify labels, filters, and sort options for the members of each dimension level:

• Navigate between dimension levels by selecting them in the breadcrumb at the top of the
screen.

• Make adjustments to labels, filters, and sort strategies as desired.

6. Click Save and quit to display the hierarchy view.

Ragged hierarchies
A ragged hierarchy includes members where their parent skips one level. An example of this type
of hierarchy is shown by using the Country, State, and City dimension. Some countries do not have
states, but they all have cities. In the case of the latter, the city members directly roll up to the Country
dimension level.

Attention
A ragged hierarchy only supports skipping one level.

To display ragged hierarchies in EBX®:

• In the data model, you must define all foreign key relationships from the target table. Using the
example above, the City table must hold a foreign key to the State and Country tables. Of course,
for cities with no state, this field is left undefined.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 131

• When configuring your hierarchy view, enable the Allow skipping level option under Advanced
properties. This property is highlighted in the image below:

Group by hierarchies
The dimension in a Group By hierarchy is defined using columns located in the same table. Allowed
column data types are foreign keys or the following enumerable types: String, Integer, Enumeration,
and Boolean. This provides a powerful tool for defining hierarchy views that group common values
together. A group by hierarchy also provides flexibility when setting the order for dimension levels.
For example, a Product table might include the following columns: Brand, Segment, Type, and

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 132

Packaging. Use these columns in any order to show products by: Segment --> Type --> Packaging,
or Brand --> Segment --> Type --> Packaging.

Time-based hierarchy dimensions
Use fields with a Date data type to define a time-based hierarchy dimension. When configuring the
view, choose from several predefined display options. Some options subdivide the time into smaller
units. For example, you can specify that a project's Due Date field is used to display all project
deadlines by month in Q1 of 2022.
To use a time-based dimension in a hierarchy view:

1. Create a new hierarchy view configuration:

1. When viewing a table, open the View menu and select Create a new view.

2. Provide a name and optionally specify share options.

3. For the View mode, select Hierarchical view and click Next.

2. Ensure the field used for the hierarchy's root dimension is of the Date data type and click Next.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 133

3. Click on the Date field at the top of the screen in the hierarchy structure breadcrumb and use the
Time dimension menu to specify how you want the dimension to display.

4. Save and view the hierarchy.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 134

Hierarchical view configuration options
This form allows configuring the hierarchical view options.

Display records in a new window If 'Yes', a new window will be opened with the record.
Otherwise, it will be displayed in a new page of the same
window.

Prune hierarchy If 'Yes', hierarchy nodes that have no children and do not
belong to the target table will not be displayed.

Display orphans If 'Yes', hierarchy nodes without a parent will be displayed.

Display root node If 'No', the root node of the hierarchy will not be displayed
in the view.

Root node label Localized label of the hierarchy root node.

Toolbar on top of hierarchy Allows setting the toolbar on top of the hierarchy.

Detect cycle Allow cycle detection and display in a recursive case,
the oldest node record will be chosen as the cycle root.
Limitation: does not work in search or pruned mode.

Detect leaf Allows detecting whether the member is a leaf or not. The
leaf detection is very costly for large volumes of data. Thus,
it is recommended to disable this option when the query
response is delayed to display the hierarchy view. This
property is always disabled for orphans' parent members.

Labels
For each dimension level that references another table, it is possible to define localized labels for the
corresponding nodes in the hierarchy. The fields from which to derive labels can be selected using
the built-in wizard.
Filter
The criteria editor allows creating a record filter for the view.

See also Criteria editor [p 497]

Sort strategy

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 135

For each dimension level, it is possible to choose one of the following sort strategies:

Default Nodes are sorted by label in alphabetical order

Sort by columns Nodes are sorted by selected column(s). The direction
(ascending/descending) can be chosen for each column.

Sort by ordering field Nodes are sorted by a hidden numeric field, which allows
users to dynamically change the order of sibling nodes in
the hierarchy view. This strategy is available only if there is
at least one 'Hidden' numeric field in the table.
In order to enable this option, you must designate an eligible
ordering field defined in the table on which the hierarchical
view is applied. An ordering field must have the 'Integer'
data type and have a 'Hidden' default view mode in its
advanced properties in the data model definition.
Except when the ordering field is in 'read-only' mode or
when the hierarchy is filtered, any field can be repositioned.

Attention
Do not designate a field that is meant to contain data as
an ordering node, as the data will be overwritten by the
hierarchical view.

Actions on hierarchy nodes

Each node in a hierarchical view has a menu containing contextual actions.
Leaf nodes can be dissociated from their parent record, using 'Detach from parent'. The record then
becomes an orphan node in the tree, organized under a container "unset" node.
Leaf nodes can also change parent nodes, using 'Attach to another parent'. If, according to the data
model, a node can have relationships to multiple parents, the node will be both under the current
parent and added under the other parent node. Otherwise, the leaf node will be moved under the other
parent node.

Tile views
This view displays records as tiles arranged in a grid. Each tile and can include the following
information: Title (required), Subtitle, Image, and description. For the titles and description you can:
select fields to automatically populate the values, manually specify the text that displays, or use a
combination of both methods. Additionally, you can define sort and filter criteria that applies to the

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 136

view. Toolbars can also be added. The following table lists and defines the properties available when
creating a tile view:

Title Defines the tile title displayed on first line.

Subtitle Defines the subtitle displayed on second line.

Image Defines the tile image.

Image > Default image URL Defines the fallback image URL.

Image > URL Defines the image URL.

Image > Height (px) Sets the height of the image slot in pixels (between 10
and 250). The slot width will always be 180 pixels. If the
dimensions of the image exceed the size of the intended slot,
it will be adjusted according to the cropping rules defined
by the view.

Image > Cropping Defines the cropping of the image. If "Cover", the image
will be scaled up or down so that occupy all the available
space. In this case, the image might be truncated. If "Scale
down", the image will be scaled down only if it overflows
the available space. Whatever the value, the image will
always be centered.

Tile description Defines the tile text.

Tile description > Number of
displayed lines

Defines the number of lines (between 3 and 6).

Tile description > Line wrap If "Yes", each row is displayed entirely (with line wrap) up
to the defined limit of the number of lines. The excess is
then truncated. If "No", each line is truncated.

Tile description > Content Defines the tile text content.

Sort criteria Specifies the sort order of records in the view. See Sorting
data [p 121].

Filter Defines filters for the records to be displayed in this tile
view.
See Criteria editor [p 497].

Toolbar on top of table Defines the toolbar to use on top of this table view.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 137

Tile toolbar Defines the toolbar to use on each item of this tile view.

View sharing
Users having the 'Share views' permission on a view are able to define which users can display this
view from their 'View' menu.
To do so, simply add profiles to the 'Share with' field of the view's configuration screen.

View publication
Users having the 'Publish views' permission can publish views present in their 'View' menu.
A published view is then available to all users via Web components, workflow user tasks, data services
and perspectives. To publish a view, go to the 'View menu', click on the Edit button displayed on the
mouseover of a listed view and add a 'Publication name' to the view.

20.6 Views management

Manage recommended views
When a user logs in with no view specified, their recommended view (if any) is applied. Otherwise,
the default view is applied. The 'Manage recommended views' action allows defining assignment rules
of recommended views depending on users and roles.
Available actions on recommended views are: change order of assignment rules, add a rule, edit
existing rule, delete existing rule.
Thus, for a given user, the recommended views are evaluated according to the user's profile: the applied
rule will be the first that matches the user's profile.

Note

The 'Manage recommended view' feature is only available to dataset owners.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 138

'View' menu toolbar
The 'View' menu toolbar offers the following actions:

Edit Click on the 'Edit' button of the targeted view's toolbar to
access the editable form.

Duplicate Click on the 'Duplicate' button of the targeted view's toolbar
to duplicate the view. The new view creation form pre-
populates the field values from the view being duplicated.

Delete Click on the 'Delete' button of the targeted view's toolbar to
delete the view.

Define this view as my favorite Click on the 'Define this view as my favorite' button of the
targeted view's toolbar. The favorite view will automatically
be applied when accessing the table. Click a second time on
the button to remove the view as the user's favorite view.

20.7 Grid edit
The grid edit feature allows modifying data in a table view. This feature can be accessed by clicking
on the button.
Accessing the grid edit from a table view requires that the feature be previously activated in the view
configuration.

See also Grid edit [p 128]

Copy/paste
The copy/paste of one or more cells into another one in the same table can be done through the Edit
menu. It is also possible to use the associated keyboard shortcuts Ctrl+C and Ctrl+V.
This system does not use the operating system clipboard, but an internal mechanism. As a
consequence, copying and pasting a cell in an external file will not work. Conversely, pasting a value
into a table cell won't work either.
All simple type fields using built-in widgets are supported.

20.8 History
The history feature allows tracking changes on master data.
The history feature must have been previously enabled at the data model level. See Advanced
properties for tables [p 63] for more information.
To view the history of a dataset, select Actions > History in the navigation pane.
To view the history of a table or of a selection of records, select Actions > View history in the
workspace.

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 139

Several history modes exist, which allow viewing the history according to different perspectives:

History in current dataspace The table history view displays operations on the current
branch. This is the default mode.

History in current dataspace
and ancestors

The table history view displays operations on the current
branch and on all its ancestors.

History in current dataspace
and merged children

The table history view displays operations on the current
branch and on all its merged children.

History in all dataspaces The table history view displays operations on the whole
branch hierarchy.

In the history view, use the VIEW menu in order to switch to another history mode.

See also History [p 451]

Documentation > User Guide > Datasets > Viewing data

TIBCO EBX® Product Documentation 6.2.0 140

Documentation > User Guide > Datasets > Editing data

TIBCO EBX® Product Documentation 6.2.0 141

CHAPTER 21
Editing data

This chapter contains the following topics:

1. Working with records in the user interface

2. Importing and exporting data

3. Restore from history

21.1 Working with records in the user interface
Record editing takes place in the workspace portion of the user interface.

Note

This action is available only to authorized users in the 'Advanced perspective' or from
a specifically configured perspective.

Creating a record
In a tabular or a tile view, click the button located above the table.
In a hierarchical view, select 'Create a record' from the menu of the parent node under which to create
the new record.
Next, enter the field values in the new record creation form. Mandatory fields are indicated by
asterisks.

Updating an existing record
Double-click the record to update, then edit the field values in the record form.
To discard any changes in progress and restore the fields to their values before editing, click the Revert
button.

Duplicating a record
To duplicate a selected record, select Actions > Duplicate.
A new record creation form pre-populates the field values from the record being duplicated. The
primary key must be given a unique value, unless it is automatically generated (as is the case for auto-
incremented fields).

Documentation > User Guide > Datasets > Editing data

TIBCO EBX® Product Documentation 6.2.0 142

Deleting records
To delete one or more selected records, select Actions > Delete.

Comparing two records
To compare two selected records, select Actions > Compare.

Note

The content of complex terminal nodes, such as aggregated lists and user defined
attributes, are excluded from the comparison process. That is, the compare service
ignores any differences between the values of the complex terminal nodes in the records.

21.2 Importing and exporting data
In a table, records can be exported to or imported from CSV or XML format.
You can either manually select certain records of the table to export, or you can export the whole table.

See also

CSV Services [p 149]

XML Services [p 143]

21.3 Restore from history
When history is enabled on a table, it is possible to restore a record to a previous state, based on its
registered history. If the record (identified by its primary key) still exists in the table, it will be updated
with the historized values to be restored. Otherwise, it will be created.
In order to restore a record to a previous state, select a record in the history table view, and the select
Actions > Restore from history in the workspace. A summary screen is displayed with the details
of the update or creation to be performed.
The restore feature is available only on one record at a time.
If a table trigger must have a specific behavior on restore, different from the one on regular create and
update, the developer can use the method TableTriggerExecutionContext.isHistoryRestoreAPI.

Note

This feature has limitations linked to the limitations of the history feature:

• the 'restore from history' feature is not available on tables containing lists that are not
supported by history. See Data model limitations [p 456].

• computed values, encrypted values and fields on which history has been disabled are
ignored when restoring a record from history, since these fields are not historized.

See also History [p 451]

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 143

CHAPTER 22
XML import and export

This chapter contains the following topics:

1. Introduction

2. Imports

3. Exports

4. Handling of field values

5. Known limitations

22.1 Introduction
XML imports and exports can be performed on tables through the user interface using the Actions
menu in the workspace.
Both imports and exports are performed in the context of a dataset.
Imports and exports can also be done programmatically.
Default import and export option values can be set in the Administration area, under User interface
> Graphical interface configuration > Default option values > Import/Export.

22.2 Imports

Attention
Imported XML documents must be encoded in UTF-8 and its structure must conform to the
underlying data model of the target dataset.

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 144

Import mode
When importing an XML file, you must specify one of the following import modes, which will dictate
how the import procedure handles the source records.

Insert mode Only record creations are allowed. If a record exists in
the target table with the same primary key as the source
record, an error is returned and the whole import operation
is cancelled.

Update mode Only modifications of existing records are allowed. If no
record exists in the target table with the same primary key as
the source record, an error is returned and the whole import
operation is cancelled.

Update or insert mode If a record with the same primary key as the source record
already exists in the target table, that record is updated.
Otherwise, a new record is created.

Replace (synchronization) mode If a record with the same primary key as the source record
already exists in the target table, that record is updated.
Otherwise, a new record is created. If a record exists in the
target table but is not present in the source XML file, that
record is deleted from the table.

Insert and update operations
The mode 'by delta' allows ignoring data model elements that are missing from the source XML
document. This mode can be enabled through data services or the Java API. The following table
summarizes the behavior of insert and update operations when elements are not present in the source
document.

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 145

See the data services operations update [p 1025] and insert [p 1027], as well as ImportSpec.setByDeltaAPI

in the Java API for more information.

State in source XML document Behavior

Element does not exist in the source document If 'by delta' mode is disabled (default):

Target field value is set to one of the following:

• If the element defines a default value, the target field value
is set to that default value.

• If the element is of a type other than a string or list, the
target field value is set to null.

• If the element is an aggregated list, the target field value is
set to an empty list.

• If the element is a string that distinguishes null from an
empty string, the target field value is set to null. If it is a
string that does not distinguish between the two, an empty
string.

• If the element (simple or complex) is hidden in data
services, the target value is not changed.

See also Hiding a field in Data Services [p 904]

Note: The user performing the import must have the
permissions necessary to create or change the target field value.
Otherwise, the value will remain unchanged.

If 'by delta' mode has been enabled through data services or
the Java API:

• For the update operation, the field value remains
unchanged.

• For the insert operation, the behavior is the same as when
byDelta mode is disabled.

Element exists but is empty (for example, <fieldA/>) • For nodes of type xs:string (or one of its sub-types), the
target field's value is set to null if it distinguishes null
from an empty string. Otherwise, the value is set to empty
string.

• For non-xs:string type nodes, an exception is thrown in
conformance with XML Schema.

See also TIBCO EBX® whitespace management for data
types [p 888]

Element is present and null (for example, <fieldA
xsi:nil="true"/>)

The target field is always set to null except for lists, for which
it is not supported.

In order to use the xsi:nil="true" attribute, you must
import the namespace declaration xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance".

Set missing values as null
When updating existing records, if a node is missing or empty in the XML file: if this option is "yes",
it will be considered as null. If this option is "no", it will not be modified.

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 146

Ignore extra columns
It may happen that the XML document contains elements that do not exist in the target data model.
By default, in this case, the import procedure will fail. It is possible, however, to allow users to launch
import procedures that will ignore the extra columns defined in the XML files. This can be done in
the configuration parameters of the import wizard for XML. The default value of this parameter can
be configured in the 'User interface' configuration under the 'Administration' area.

Optimistic locking
If the technical attribute ebxd:lastTime exists in the source XML file, the import mechanism
performs a verification to prevent an update operation on a record that may have changed since the
last read. In order to use the ebxd:lastTime attribute, you must import the namespace declaration
xmlns:ebxd="urn:ebx-schemas:deployment_1.0. The timestamp associated with the current record
will be compared to this timestamp. If they are different, the update is rejected.

22.3 Exports
Note

Exported XML documents are always encoded in UTF-8.

When exporting to XML, if the table has filters applied, only the records that correspond to the filter
are included in the exported file.

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 147

The XML export options are as follows:

Download file name Specifies the name of the XML file to be exported. This field
is pre-populated with the name of the table from which the
records are being exported.

User-friendly mode Specifies whether exported values will be represented in
a user-friendly way, or in the standard XML raw format.
For example, in user-friendly mode, dates and numbers are
formatted according to the user's locale, and foreign keys
and enumerated values display their associated labels.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Include technical data Specifies whether internal technical data will be included in
the export.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Is indented Specifies whether the file should be indented to improve its
readability by a human.

Omit XML comment Specifies whether the generated XML comment that
describes the location of data and the date of the export
should be omitted from the file.

22.4 Handling of field values

Date, time & dateTime format
The following date and time formats are supported:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-
ddTHH:mm:ss.SSS

2007-12-31T11:55:00

Documentation > User Guide > Datasets > File import and export services > XML import and export

TIBCO EBX® Product Documentation 6.2.0 148

22.5 Known limitations

Association fields
The XML import and export services do not support association values.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error, and the import procedure will be aborted.

Selection nodes
The XML import and export services do not support selection values.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error, and the import procedure will be aborted.

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 149

CHAPTER 23
CSV import and export

This chapter contains the following topics:

1. Introduction

2. Exports

3. Imports

4. Handling of field values

5. Known limitations

23.1 Introduction
CSV imports and exports can be performed on tables through the user interface using the Actions
menu in the workspace.
Both imports and exports are performed in the context of a dataset.
Imports and exports can also be done programmatically.
Default import and export option values can be set in the Administration area, under User interface
> Graphical interface configuration > Default option values > Import/Export.

See also Default option values [p 637]

23.2 Exports
When exporting to CSV, if the table has filters applied, only the records that correspond to the filter
are included in the exported file.

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 150

The CSV export options are as follows:

Download file name Specifies the name of the CSV file to be exported. This field
is pre-populated with the name of the table from which the
records are being exported.

File encoding Specifies the character encoding to use for the exported file.
The default is UTF-8.

Enable inheritance In order to consider the inheritance [p 31] during a CSV
export, the option has to be defined in the model.
For more information on inheritance, see Inheritance and
value resolution [p 470].
Specifies if inheritance will be taken into account during a
CSV export.
If inheritance is enabled, resolved values of fields are
exported with the technical data that define the possible
inheritance mode of the record or the field.
If inheritance is disabled, resolved values of fields are
exported and occulted records are ignored.
By default, this option is disabled.
Note: Inheritance is always ignored, if the table dataset has
no parent or if the table has no inherited field.

User-friendly mode Specifies whether exported values will be represented in a
user-friendly way, or in a raw format. For example, in user-
friendly mode, dates and numbers are formatted according
to the user's locale, and foreign keys and enumerated values
display their associated labels.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Include technical data Specifies whether internal technical data will be included in
the export.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Column header Specifies whether or not to include column headers in the
CSV file.

• No header

• Label: For each column in the spreadsheet, the CSV
displays its label. Each label is localized according to
the locale preference of the current session. If no user-

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 151

friendly label is defined for a node, the technical name
of the node is used.

• XPath: For each column in the spreadsheet, the CSV
displays the path to the node in the table.

Field separator Specifies the field separator to use for exports. The
default separator is comma, it can be modified under
Administration > User interface.

List separator Specifies the separator to use for values lists. The
default separator is line return, it can be modified under
Administration > User interface.

Programmatic CSV exports are performed using the classes ExportSpecAPI and ExportImportCSVSpecAPI

in the Java API.

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 152

23.3 Imports

Download file name Specifies the name of the CSV file to be imported.

Import mode When importing a CSV file, you must specify one of the
following import modes, which will control the integrity of
operations between the source and the target table.

• Insert mode: Only record creation is allowed. If a
record exists in the target table with the same primary
key as the source record, an error is returned and the
whole import operation is cancelled.

• Update mode: Only modifications of existing records
are allowed. If no record exists in the target table with
the same primary key as the source record, an error is
returned and the whole import operation is cancelled.

• Update or insert mode: If a record with the same
primary key as the source record already exists in the
target table, that record is updated. Otherwise, a new
record is created.

• Replace (synchronization) mode: If a record with the
same primary key as the source record already exists in
the target table, that record is updated. Otherwise, a new
record is created. If a record exists in the target table
but is not present in the source XML file, that record is
deleted from the table.

File encoding Specifies the character encoding to use for the exported file.
The default is UTF-8.

Enable inheritance In order to consider the inheritance [p 31] during a CSV
import, the option has to be defined in the model.
For more information on inheritance, see Inheritance
and value resolution [p 470] and ExportImportCSVSpec.
setInheritanceEnabledAPI.
Specifies whether the inheritance will be taken into account
during a CSV import. If technical data in the CSV file define
an inherit mode, corresponding fields or records are forced
to be inherited. If technical data define an occult mode,
corresponding records are forced to be occulted. Otherwise,
fields are overwritten with values read from the CSV file.
By default, this option is disabled.
Note: Inheritance is always ignored if the dataset of the table
has no parent or if the table has no inherited field.

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 153

Column header Specifies whether or not to include column headers in the
CSV file.

• No header

• Label: For each column in the spreadsheet, the CSV
displays its label. Each label is localized according to
the locale preference of the current session. If no user-
friendly label is defined for a node, the technical name
of the node is used.

• XPath: For each column in the spreadsheet, the CSV
displays the path to the node in the table.

Field separator Specifies the field separator to use for exports. The
default separator is comma, it can be modified under
Administration > User interface.

List separator Specifies the separator to use for values lists. The
default separator is line return, it can be modified under
Administration > User interface.

Programmatic CSV imports are performed using the classes ImportSpecAPI and ExportImportCSVSpecAPI

in the Java API.

23.4 Handling of field values

Aggregated lists
The CSV import and export services support multi-valued fields, namely aggregated lists. This is only
supported for simple typed lists, such as lists of string, date, or int, and for foreign keys. If a table
reference is linked to a composite primary key, each item in the list is a formatted string, for example,
"true|99". Aggregated lists of groups are not exported.
At export, the items in the list are separated using line separators. In cases where the exported field
already contains a line separator, for example in an osd:html or an osd:text, the code _crnl_ is
inserted in place of the field value's line separators. The same formatting is expected at import, with
the whole field value surrounded by quotes.

Hidden fields
Hidden fields are exported as ebx-csv:hidden strings. An imported hidden string will not modify a
field's content.

'Null' value for strings
Using CSV import and export services, a string with a value set to null is exported as an empty string.
Therefore, a round trip export-import procedure will end up replacing null string values with empty
strings.
Using programmatic services, the specific value ebx-csv:nil can be assigned to strings with values
set to null. If this is done, the null string values will not be replaced by empty strings during round

Documentation > User Guide > Datasets > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 6.2.0 154

trip export-import procedures. See ExportImportCSVSpec.setNullStringEncodedAPI in the Java API
for more information.

Date, time & dateTime format
The following date and time formats are supported:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-
ddTHH:mm:ss.SSS

2007-12-31T11:55:00

23.5 Known limitations

Aggregated lists of groups
The CSV import and export services do not support multi-valued groups, that is, aggregated lists of
complex type elements. Exporting such nodes will not cause any error, however, no value will be
exported.

Terminal groups
In a CSV file, it is impossible to differentiate a created terminal group that contains only empty fields
from a non-created one.
As a consequence, some differences may appear during comparison after performing an export
followed by an import. To ensure the symmetry of import and export, use XML import and export
instead. See XML import and export [p 143].

Column label headers
If two columns share the same label header, an export of the table can be performed successfully, but
exported data cannot later be re-imported.

Association fields
The CSV import and export services do not support association values, i.e. the associated records.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error and the import procedure will be aborted.

Selection nodes
The CSV import and export services do not support selection values, i.e. the selected records.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error and the import procedure will be aborted.

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 6.2.0 155

CHAPTER 24
Working with existing datasets

This chapter contains the following topics:

1. Validating a dataset

2. Duplicating a dataset

3. Deactivating a dataset

4. Managing dataset permissions

24.1 Validating a dataset
To validate a dataset at any time, select Actions > Validate from the navigation pane. A generated
report provides the results of the validation. From the validation report, you have the option to update
the reported validation status by clicking the Revalidate button, or to click the Reinitialize validation
report button to clear the current validation report associated with the dataset in order to be able to
rerun a full validation from scratch.
Validations of data can also be run at the table level by navigating to the desired table from the
navigation pane, then selecting Actions > Validate from the workspace.
See Validation [p 587] for detailed information about incremental data validation.

24.2 Duplicating a dataset
To duplicate an existing dataset, select it from the 'Select dataset [p 117]' menu in the navigation
pane, then select Actions > Duplicate.

24.3 Deactivating a dataset
When a dataset is activated, it will be subject to validation. That is, all mandatory elements must be
defined in order for the dataset to be valid. If a dataset is active and validated, it can be safely exported
to external systems or to be used by other Java applications.
If a dataset is missing mandatory elements, it can be deactivated by setting the property 'Activated'
to 'No' from Actions > Information.

24.4 Managing dataset permissions
Dataset permissions can be accessed by selecting Actions > Permissions in the navigation pane.

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 6.2.0 156

Permissions are defined using profile records. To define a new permissions profile, create a new record
in the 'Access rights by profile' table.

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 6.2.0 157

See also Profile [p 27]

Profile Defines the profile to which these permissions apply.

Restriction policy If 'Yes', indicates that when the permissions defined here
are more strict than otherwise defined, these permissions
are respected. This is contrary to the default where the most
permissive rights defined take precedence.
See Resolving user-defined rules [p 489].

Dataset actions Specifies the permissions for actions on the dataset.

 Create a child dataset Indicates whether the profile can create a child dataset.
Inheritance also must be activated in the data model.

 Duplicate the dataset Indicates whether the profile can duplicate the dataset.

 Delete the dataset Indicates whether the profile can delete the dataset.

 Activate/deactivate the
dataset

Indicates whether the profile can modify the Activated
property in the dataset information. See Deactivating a
dataset [p 155].

 Create a view Indicates whether the profile can create views and
hierarchies in the dataset.

Tables policy Specifies the default permissions for all tables. Specific
permissions can also be defined for a table by clicking the
'+' button.

 Create a new record Indicates whether the profile can create records in the table.

 Overwrite inherited record Indicates whether the profile can override inherited records
in the table. This permission is useful when using dataset
inheritance.

 Occult inherited record Indicates whether the profile can occult inherited records
in the table. This permission is useful when using dataset
inheritance.

 Delete a record Indicates whether the profile can delete records in the table.

 Values access policy Specifies the default access permissions for all the nodes
of the dataset and allows the definition of permissions for

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 6.2.0 158

specific nodes. The default access permissions are used if
no custom permissions have been defined for a node.
The specific policy selector allows granting specific
access permissions for a node. The links "ReadOnly",
"ReadWrite", and "Hidden" set the corresponding access
levels for the selected nodes.
It is possible to remove custom access permissions using the
"(default)" link.

Rights on services This section specifies the access permissions for services. A
service is not accessible to a profile if it is crossed-out.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 6.2.0 159

CHAPTER 25
Dataset inheritance

Using the concept of dataset inheritance, it is possible to create child datasets that branch from a parent
dataset. Child datasets inherit values and properties by default from the parent dataset, which they can
then override if necessary. Multiple levels of inheritance can exist.
An example of using dataset inheritance is to define global default values in a parent dataset, and
create child datasets for specific geographical areas, where those default values can be overridden.

Note

By default, dataset inheritance is disabled. It must be explicitly activated in the
underlying data model.

See also Data model configuration [p 46]

This chapter contains the following topics:

1. Dataset inheritance structure

2. Value inheritance

25.1 Dataset inheritance structure
Once the root dataset has been created, create a child dataset from it using the button in the dataset
selector in the navigation pane.

Note

• A dataset cannot be deleted if it has child datasets. The child datasets must be deleted first.

• If a child dataset is duplicated, the newly created dataset will be inserted into the existing
dataset tree as a sibling of the duplicated dataset.

25.2 Value inheritance
When a child dataset is created, it inherits all its field values from the parent dataset. A record can
either keep the default inherited value or override it.
In tabular views, inherited values are marked in the top left corner of the cell.

The button can be used to override a value.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 6.2.0 160

Record inheritance
A table in a child dataset inherits the records from the tables of its ancestor datasets. The table in the
child dataset can add, modify, or delete records. Several states are defined to differentiate between
types of records.

Root A root record is a record that was created in the current
dataset and does not exist in the parent dataset. A root record
is inherited by the child datasets of the current dataset.

Inherited An inherited record is one that is defined in an ancestor
dataset of the current dataset.

Overwritten An overwritten record is an inherited record whose values
have been modified in the current dataset. The overwritten
values are inherited by the child datasets of the current
dataset.

Occulted An occulted record is an inherited record which has been
deleted in the current dataset. It will still appear in the
current dataset as a record that is crossed out, but it will not
be inherited in the child datasets of the current dataset.

When the inheritance button is toggled on, it indicates that the record or value is inherited from the
parent dataset. This button can be toggled off to override the record or value. For an occulted record,
toggle the button on to revert it to inheriting.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 6.2.0 161

The following table summarizes the behavior of records when creating, modifying or deleting a record,
depending on its initial state.

State Create Modify value Delete

Root Standard new record creation.
The newly created record will
be inherited in child datasets
of the current dataset.

Standard modification of an
existing record. The modified
values will be inherited in the
child datasets of the current
dataset.

Standard record deletion. The
record will no longer appear
in the current dataset and the
child datasets of the current
dataset.

Inherited If a record is created using
the same primary key as an
existing inherited record, that
record will be overwritten
and its value will be the one
submitted at creation.

An inherited record must first
be marked as overwritten in
order to modify its values.

Deleting an inherited record
changes it state to occulted.

Overwritten Not applicable. Cannot create
a new record if the primary
key is already used in the
current dataset.

An overridden record can be
returned to the inherited state,
but its modified value will be
lost.

Individual values in an
overridden record can be
set to inheriting or can be
modified.

Deleting an overwritten
record changes its state to
occulted.

Occulted If a record is created using
the primary key of an existing
occulted record, the record
state will be changed to
overwritten and its value
modified according to the one
submitted at creation.

Not applicable. An occulted
record cannot be modified.

Not applicable. An occulted
record is already considered
to be deleted.

See also Record lookup mechanism [p 472]

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 6.2.0 162

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 163

Collaborative
features (Team Up)

Documentation > User Guide > Collaborative features (Team Up) > Introduction to collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 164

CHAPTER 26
Introduction to collaborative features

(Team Up)
This chapter contains the following topics:

1. Overview

2. Accessing the Team Up features

26.1 Overview
Use Team Up to collaborate and engage with others. Leave comments on records, rate records, and
assign tags to records. These interactions can promote a better overall understanding of data.
The following provides an overview of Team Up features:

• Comments: Leave comments on records, reply, and react to other's comments. Assign moderators
to tables that can manage comments from other users.

• Tags: Apply tags to records. Tags are classified in tag catalogs. Assign an administrator to manage
tag catalogs.

• Ratings: Leave a rating from 1 to 5 stars on each record. When leaving a rating, optionally add
a note to explain it.

26.2 Accessing the Team Up features
To access the Team Up features available for a record:

1. Open a record details page.

Documentation > User Guide > Collaborative features (Team Up) > Introduction to collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 165

2. In the right sidebar, click the icon corresponding to the Team Up feature you want to use.

See also

Comments [p 167]

Ratings [p 173]

Tags [p 177]

Documentation > User Guide > Collaborative features (Team Up) > Introduction to collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 166

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 167

CHAPTER 27
Comments

This chapter contains the following topics:

1. Overview

2. Adding a comment

3. Editing a comment

4. Deleting a comment

5. Replying to a comment

6. Reacting to a comment

7. Moderating a comment

27.1 Overview
Use the Team Up comments feature to discuss the details of a record. Add your own comments, or
reply and react to comments from other users.

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 168

27.2 Adding a comment
Add a comment using the text input at the bottom of the Comments sidebar.

27.3 Editing a comment
Edit your comments by clicking the editing button in the toolbar (highlighted below). Note that
comments edited by a moderator cannot be edited.
For details about comment moderation, see Moderating a comment [p 170].

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 169

27.4 Deleting a comment
Delete one of your comments by clicking the delete button in the toolbar located under the comment.

27.5 Replying to a comment
Reply to a comment using the reply button in the toolbar located under the comment.

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 170

27.6 Reacting to a comment
React to comments using the available reaction buttons in the toolbar located under the comment.
Change your reaction by clicking a different reaction; remove your reaction by clicking the same
reaction again.

27.7 Moderating a comment
Moderate and edit other's comments by clicking the moderate icon highlighted below. When editing
other's comments you can leave a note that indicates why the original content was moderated.

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 171

For details about how to manage moderators, see Managing user access and Team Up features [p 688].

See also

Ratings [p 173]

Tags [p 177]

Documentation > User Guide > Collaborative features (Team Up) > Comments

TIBCO EBX® Product Documentation 6.2.0 172

Documentation > User Guide > Collaborative features (Team Up) > Ratings

TIBCO EBX® Product Documentation 6.2.0 173

CHAPTER 28
Ratings

This chapter contains the following topics:

1. Overview

2. Rating a record and editing a rating

3. Deleting a rating

28.1 Overview
Give records ratings by leaving up to 5 stars and optionally leave an explanation for the rating. The
Ratings sidebar displays:

• A record's overall rating.

• The individual ratings supplied by other users.

• The comments related to those ratings.

Documentation > User Guide > Collaborative features (Team Up) > Ratings

TIBCO EBX® Product Documentation 6.2.0 174

28.2 Rating a record and editing a rating
Use the inputs at the bottom of the Rating sidebar to add your rating and optionally leave a comment.
Perform the same actions to edit your rating.

28.3 Deleting a rating
Delete your rating using the delete icon located to the right of your rating. Note that your rating always
displays at the top of the individual ratings list.

Documentation > User Guide > Collaborative features (Team Up) > Ratings

TIBCO EBX® Product Documentation 6.2.0 175

See also

Comments [p 167]

Tags [p 177]

Documentation > User Guide > Collaborative features (Team Up) > Ratings

TIBCO EBX® Product Documentation 6.2.0 176

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 177

CHAPTER 29
Tags

This chapter contains the following topics:

1. Overview

2. Applying tags

3. Removing a tag

29.1 Overview
Use the Tags sidebar to assign one or more tags to a record.

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 178

29.2 Applying tags

Applying existing tags
Apply a tag from the sections Last used, Most used and My tags by clicking on it.

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 179

If the required tag is not displayed under the sections Last used, Most used and My tags then search
for it in the table's tags catalog using the input field Search or create.

For details about managing tag catalogs, see Managing tags and tag catalogs [p 688].

Applying a new tag
If the required tag doesn't exist in the table's tags catalog, then create it by typing its name into the
input field Search or create and pressing Enter or by clicking the Send button.

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 180

If you are an administrator for the table's tag catalog, you can choose between making the tag public or
private when creating a new tag. All profiles can see public tags, and only creators can see private tags.

For details about managing tag catalog administrators, see Managing tags and tag catalogs [p 688].

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 181

29.3 Removing a tag
Remove a tag assigned to the record using the 'x' button that appears on the tag under the section
Applied tags.

See also

Comments [p 167]

Ratings [p 173]

Documentation > User Guide > Collaborative features (Team Up) > Tags

TIBCO EBX® Product Documentation 6.2.0 182

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 183

Workflow models

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 6.2.0 184

CHAPTER 30
Introduction to workflow models

This chapter contains the following topics:

1. Overview

2. Using the Workflow Models area user interface

3. Generic message templates

4. Limitations of workflows

30.1 Overview

What is a workflow model?
Workflows in TIBCO EBX® facilitate the collaborative management of data in the repository. A
workflow can include human actions on data and automated tasks alike, while supporting notifications
on certain events.
The first step of realizing a workflow is to create a workflow model that defines the progression of
steps, responsibilities of users, as well as other behavior related to the workflow.
Once a workflow model has been defined, it can be validated and published as a workflow publication.
Data workflows can then be launched from the workflow publication to execute the steps defined in
the workflow model.

See also

Workflow model (glossary) [p 33]

Data workflow (glossary) [p 35]

Basic concepts related to workflow models
A basic understanding of the following terms is necessary to proceed with the creation of workflow
models:

• script task [p 34]

• user task [p 34]

• work item [p 35]

• workflow condition [p 34]

• sub-workflow invocation [p 34]

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 6.2.0 185

• wait task [p 34]

• data context [p 34]

30.2 Using the Workflow Models area user interface

Note

This area is available only to authorized users in the 'Advanced perspective'. Only
authorized users can access these interfaces.

30.3 Generic message templates
Notification emails can be sent to inform users of specific events during the execution of data
workflows.
Generic templates can be defined and reused by any workflow model in the repository. To work with
generic templates, select 'Message templates' from the Workflow Models area Actions menu.
These templates, which are shared by all workflow models, are included statically at workflow model
publication. Thus, in order to take template changes into account, you must update your existing
publication by re-publishing the affected models.
Please note that, if you want to export those templates in an archive, you will have to select the dataset
"configuration" as it is the one containing the message templates.
When creating a new template, two fields are required:

• Label & Description: Specifies the localized labels and descriptions associated with the template.

• Message: Specifies the localized subjects and bodies of the message.

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 6.2.0 186

The message template can include data context variables, such as ${variable.name}, which are
replaced when notifications are sent. System variables that can be used include:

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 6.2.0 187

system.time System time of the repository.

system.date System date of the repository.

workflow.lastComment Last comment on the previous user task. (Note:
this variable refers to the last user task, not the
current one. Also the current task is the one on
which the workflow is positioned, and it also
includes the completion notification of a user
task).

workflow.lastDecision Last decisions made on the previous user task.
(Note: this variable refers to the last user task,
not the current one. Also the current task is the
one on which the workflow is positioned, and
it also includes the completion notification of a
user task).

user.fullName Full name of the notified user.

user.login Login of the notified user.

workflow.process.label Label of the current workflow.

workflow.process.description Description of the current workflow.

workflow.workItem.label Label of the current work item.

workflow.workItem.description Description of the current work item.

workflow.workItem.offeredTo Role to which the current work item has been
offered.

workflow.workItem.allocatedTo User to whom the current work item has been
allocated.

workflow.workItem.link Link to access the current work item in the work
item inbox, using the Web Component API.
This link can only be computed if a current
work item is defined and if the URL is
configured in Workflow-executions, in the
email configuration.

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 6.2.0 188

workflow.workItem.link.allocateAndStart Link to access the current work item in the work
item inbox, using the Web Component API. If
the target work item has not yet been started, it
will be automatically allocated to and started by
the user clicking the link.
This link can only be computed if a current
work item is defined and if the URL is
configured in Workflow-executions, in the
email configuration.

workflow.currentStep.label Label of the current step.

workflow.currentStep.description Description of the current step.

Example
Generic template message:
Today at ${system.time}, a new work item was offered to you

Resulting email:
Today at 15:19, a new work item was offered to you

30.4 Limitations of workflows
The following functionality is currently unsupported in EBX®:

• Scheduled tasks, task executed as soon as its turn comes, and whose execution cannot be delayed.

• Event tasks, allowing the workflow to move forward upon receiving an event, such as a web
service call.

• Time limitation on a task duration.

• User profile names can be up to 64 characters, otherwise compatibility is not guaranteed.

Related concepts Data workflows [p 214]

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 189

CHAPTER 31
Creating and implementing a

workflow model
This chapter contains the following topics:

1. Creating a workflow model

2. Implementing the steps

3. User tasks

4. Script tasks

5. Conditions

6. Sub-workflow invocations

7. Wait tasks

8. Editing the workflow diagram

31.1 Creating a workflow model
A new workflow model can be created in the Workflow Models area. The only required information
at creation is a name that is unique in the repository.
The steps of the workflow model are initialized with a single transition. In order to fully implement
the workflow model, you must define the sequence of steps beyond this initial transition.

31.2 Implementing the steps
A workflow model defines steps that correspond to different operations that must be performed on
data, and associated conditions. The following types of steps exist:

• User task

• Script task

• Condition

• Sub-workflow invocation

• Wait task

A data context is linked to each data workflow. This data context can be used to define variables that
can be used as input and output variables in the steps of the workflow.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 190

Progress strategy of the next step
For each step type (excluding user task with multiple work items), a property is available to define
which progress strategy has to be applied for the next step. Upon step completion, this strategy is
evaluated in order to define the navigation when the workflow is executed. By default, the progress
strategy is set to 'Display the work items table'. In that case, after the step has been executed, the work
items table (work items inbox or monitoring > work items) is automatically displayed, in order to
select the following work item.
Another strategy can be selected: 'Automatically open the next step'. This strategy allows the user to
keep working on this workflow and to directly execute the next step. If, following to this execution, a
work item is reached and the connected user can start it, then the work item is automatically opened (if
several work items are reached, the first created is opened). Otherwise, the next step progress strategy
is evaluated. If no work item has been reached, the work items table will be displayed.
This strategy is used to execute several steps in a row without going back to the work items inbox.
There are some limitations that will lead to disregard this strategy. In that case, the work items table is
automatically displayed. This property will be disregarded when: the current step is a user task with
more than one work item.
In the case of conditions, two other strategies are available: 'If true, automatically open the next step'
and 'If false, automatically open the next step'. These strategies allow choosing which strategy will
be applied according to the condition result.
In the case of sub-workflows invocation, a dedicated property « Foreground sub-workflow » is
available to precise the progress strategy. For the previous progress strategy « Open directly the next
step », a foreground sub-workflow must be selected. Only the steps and associated progress strategy
included in this foreground sub-workflow will be evaluated. Please note the following specific rules
about the foreground sub-workflow property :

• If only one sub-workflow is launched, it is automatically considered in the foreground,

• The foreground sub-workflow property will be ignored if the previous step has not selected the
progress strategy « Automatically open the next step »,

• When all the sub-workflow are completed, and if the last completed sub-workflow is the
foreground one, then the progress strategy defined on the sub-workflow invocation step is
evaluated: if the progress strategy is « automatically open the next step », the next step can be
opened without displaying the inbox. In all cases, the progress strategy of the last step of the sub-
workflow is always ignored.

Hidden in progress view
For each step type, a property is available to define which steps must be hidden in the workflow
progress view by default.
If this property is enabled, the step will be automatically hidden in the workflow progress view for
non-administrator users (neither built-in administrator nor workflow administrator). Hidden steps can
be displayed on demand.

31.3 User tasks
User tasks are steps that involve actions to be performed by human users. Their labels and descriptions
can be localized.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 191

Mode
For backward compatibility reasons, two user task modes are available: the default mode and the
legacy mode.
By default, a user task generates a single work item. This mode offers more features, such as offering
a work item to a list of profiles or directly displaying the avatars in the workflow progress view.
In the legacy mode, a user task can generate several work items.
By default, the user task creation service is hidden in legacy mode. To display it, a property should
be enabled in the ebx.properties file. For more information, see Disabling user task legacy mode
[p 567].

List of profiles
The definition of the profiles of a user task may vary depending on the user task mode.

[Default] Offered to the following profiles
The defined profiles are the roles or the users to whom the user task is being offered. When executing
the user task, a single work item is generated. If a single user is defined, the work item is automatically
assigned to this user. If a role is defined, the work item is offered to the members of the role. If several
users and roles are defined, the work item is offered simultaneously to these users and to the members
of these roles.

[Legacy mode] Participants
The participants are the roles or the users to whom the user task is intended. By default, when executing
the user task, a work item is generated by profile. If a profile refers to a user instead of a role, the work
item is directly allocated to that user. If a profile is a role, the work item is offered to the members
of the role.

For more information

See also Extension [p 193]

Service
TIBCO EBX® includes the following built-in services:

• Access a dataspace

• Access data (default service)

• Access the dataspace merge view

• Compare contents

• Create a new record

• Duplicate a record.

• Export data to a CSV file

• Export data to an XML file

• Import data from a CSV file

• Import data from an XML file

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 192

• Merge a dataspace

• Validate a dataspace, a snapshot or a dataset

See also EBX® built-in services [p 417]

Configuration

Main options > Enable reject
By default, only the accept action is offered to the user when saving a decision.
It is possible to also allow users to reject the work item by setting this field to 'Yes'.

Main options > Enable confirmation request
By default, a confirmation request is displayed after user task execution when the user saves the
decision by clicking the 'Accept' or 'Reject' button.
To disable this confirmation prompt, set this field to 'Yes'.

Main options > Enable comments
By default, comments are enabled. When a work item is open, a 'Comments' button is displayed and
allows the user to enter a comment.
It is possible to hide this 'Comments' button by setting this property to No.

Main options > Comments required
By default, it is optional to submit a comment associated with a work item.
It is possible to require the user to enter a comment before saving the decision by setting this field to
the desired validation criteria. Comments can be set to be always required, required only if the work
item has been accepted, or required only if the work item has been rejected.

Main options > Customized labels
When the user task is run, the user can accept or reject the work item by clicking the corresponding
button. In the workflow model, it is possible for a user task to define a customized label and
confirmation message for these two buttons. This can be used to adapt the buttons to a more specific
context.

[Legacy mode] Termination > Task termination criteria
A single user task could be assigned to multiple participants and thus generate multiple work items
during workflow execution. When defining a user task in the workflow model, you can select one of
the predefined methods for determining whether the user task is finished, based on the statuses of its
component work items. When the user task's exit requirement has been satisfied, the data workflow
will move on to the next step defined in its model.
For example, for the case of a user task where a product record needs to be approved, you could
designate three potential participants. The task termination criteria can specify whether the product
record needs to be approved by all three users, or only the first user to respond.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 193

The default user task termination criteria is 'When all work items have been accepted.'

Note

If you specify a service extension overriding the method
UserTask.handleWorkItemCompletion to handle the determination of the user task's
completion, it is up to the developer of the extension to verify from within their code
that the task termination criteria defined through the user interface has been met. See
UserTask.handleWorkItemCompletionAPI in the JavaDoc for more information

[Legacy mode] Termination > Reject tolerance
By default, if a user rejects a work item during workflow execution, the user task is placed into an
error state and the workflow progress is halted. When the user task is in an error state, a workflow
administrator must intervene by replaying the step where the error occurred in order to continue the
workflow execution.
In order to change this default behavior, it is possible to define a certain number of work item
rejections to tolerate. While within the limit of tolerated rejections, no error will occur and it is the
task termination criteria that determines when to end the user task.
The following task termination criteria automatically tolerate all rejections:

• 'When all work items have been either accepted or rejected'

• 'Either when all work items have been accepted, or as soon as one work item has been rejected'

Extension
A custom class can be specified in order for the task to behave dynamically in the context of a given
data workflow. For example, this can be used to create work items or complete user tasks differently
than the default behavior.
The specified rule is a JavaBean that must extend the UserTaskAPI class.

Attention
If a rule is specified and the handleWorkItemCompletion method is overridden, the completion
strategy is no longer automatically checked. The developer must check for completion within this
method.

Notification
A notification email can be sent to users when specific events occur. For each event, you can specify
a content template.
It is possible to define a monitor profile that will receive all emails that are sent in relation to the
user task.

See also Generic message templates [p 185]

Reminder
Reminder emails for outstanding offered or allocated work items can be periodically sent to the
concerned users. The recipients of the reminder are the users to whom the work item is offered or
allocated, as well as the recipients on copy.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 194

The content of the reminder emails is determined by the current state of the work item. That is, if the
work item is offered, the notification will use the "Offered work items" template; if the work item is
allocated, the notification will use the "Allocated work items" template.

Deadline
Each user task can have a completion deadline. If this date passes and associated works items are not
completed, a notification email is sent to the concerned users. This same notification email will then
be sent daily until the task is completed.
There are two deadline types:

• Absolute deadline: A calendar date.

• Relative deadline: A duration in hours, days or months. The duration is evaluated based on the
reference date, which is the beginning of the user task or the beginning of the workflow.

31.4 Script tasks
Script tasks are automatic tasks that are performed without human user involvement.
Three types of script tasks exist, which, once defined, can be used in workflow model steps:

Library EBX® includes a number of built-in library script tasks,
which can be used as-is.
Any additional library script tasks must be declared in a
module.xml file. A library script task must define its label,
description and parameters. When a user selects a library
script task for a step in a workflow model, its associated
parameters are displayed dynamically.

Specific Specifies a Java class that performs custom actions. The
associated class must belong to the same module as
the workflow model. Its labels and descriptions are not
displayed dynamically to users in workflow models.

Script Specifies a script based on DSL (Domain Specific
Language) to define custom operations . The EBX® IDE is
used to facilitate scripts writing.
A script is defined by its name, label, description and
parameters. When a user selects the name of the script for
a step in a workflow model, its associated parameters are
displayed dynamically.

Packaging TIBCO EBX® modules [p 819]

Library
EBX® includes the following built-in library script tasks:

• Create a dataspace

• Create a snapshot

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 195

• Merge a dataspace

• Import an archive

• Close a dataspace

• Set a data context variable

• Send an email

• Delete records (Note: this script can remove several records)

Library script tasks are classes that extend the class ScriptTaskBeanAPI. Besides the built-in library
script tasks, additional library script tasks can be defined for use in workflow models. Their labels
and descriptions can be localized.
The method ScriptTaskBean.executeScriptAPI is called when the data workflow reaches the
corresponding step.

Attention
The method ScriptTaskBean.executeScriptAPI must not create any threads because the data
workflow moves on as soon as the method is executed. Each operation in this method must therefore
be synchronous.

See the example [p 952].
It is possible to dynamically set variables of the library script task if its implementation follows the
Java Bean specification. Variables must be declared as parameters of the bean of the library script task
in module.xml. The workflow data context is not accessible from a Java bean.

Note

Some built-in library script tasks are marked as "deprecated" because they are not
compatible with internationalization. It is recommended to use the new script tasks that
are compatible with internationalization.

Specific
Specific script tasks are classes that extend the class Sample of ScriptTask [p 952].
The method ScriptTask.executeScriptAPI is called when the data workflow reaches the corresponding
step.

Attention
The method ScriptTask.executeScriptAPI must not create any threads because the data workflow
moves on as soon as the method is executed. Each operation in this method must therefore be
synchronous.

See the example [p 952].
It is not possible to dynamically set the variables of the bean for specific script tasks. However, the
workflow data context is accessible from the Java bean.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 196

Script
EBX® Script is procedural language based on DSL (Domain Specific Language). It proposes a large
library which can be used to define custom tasks.
The method executeScriptTask [p 1282] of the script is called when the data workflow reaches the
corresponding step. See the examples [p 1282].

31.5 Conditions
Conditions are decision steps in workflows.
Two types of conditions exist, which, once defined, can be used in workflow model steps:

Library condition EBX® includes a number of built-in library conditions,
which can be used as-is.
Any additional library script tasks must be declared in a
module.xml file. A library condition must define its label,
description and parameters. When a user selects a library
condition for a step in a workflow model, its associated
parameters are displayed dynamically.

Specific condition Specifies a Java class that implements a custom condition.
The associated class must belong to the same module as
the workflow model. Its labels and descriptions are not
displayed dynamically to users in workflow models.

Packaging TIBCO EBX® modules [p 819]

Library conditions
EBX® includes the following built-in library conditions:

• Dataspace modified?

• Data valid?

• Last user task accepted?

• Value null or empty?

• Values equals?

Library conditions are classes that extend the class ConditionBeanAPI. Besides the built-in library
conditions, additional library conditions can be defined for use in workflow models. Their labels and
descriptions can be localized.
See the example [p 955].
It is possible to dynamically set variables of the library condition if its implementation follows the
Java Bean specification. Variables must be declared as parameters of the bean of the library condition
in module.xml. The workflow data context is not accessible from a Java bean.

Specific conditions
Specific conditions are classes that extend the class ConditionAPI.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 197

See the example [p 954].
It is not possible to dynamically set the variables of the bean for specific conditions. However, the
workflow data context is accessible from the Java bean.

31.6 Sub-workflow invocations
Sub-workflow invocation steps in workflow models put the current workflow into a waiting state and
invoke one or more workflows.
It is possible to include another workflow model definition in the current workflow by invoking it
alone in a sub-workflow invocation step.
If multiple sub-workflows are invoked by a single step, they are run concurrently, in parallel. All sub-
workflows must be terminated before the original workflow continues onto the next step. The label
and description of each sub-workflow can be localized.
The property « Foreground sub-workflow » is useful to precise the progress strategy when several
sub-workflows are launched. If the previous step progress strategy is « directly open the next step
», this property defines which sub-workflow should be considered in the foreground (only one sub-
workflow can hold this behavior). Only the work items which have been generated in this foreground
sub-workflow will be able to be opened automatically without passing by the inbox. If only one sub-
workflow is defined, this property is ignored (the single sub-workflow is automatically considered in
the foreground). For further information, refer to the progress strategy: Progress strategy of the next
step [p 190]

Two types of sub-workflow invocations exist:

Static Defines one or more sub-workflows to be invoked each
time the step is reached in a data workflow. For each
sub-workflow, it is possible to set its localized labels
and descriptions, as well as the input and output variable
mappings in its data context.
This mode is useful when the sub-workflows to be launched
and the output mappings are predetermined.

Dynamic Specifies a Java class that implements a custom sub-
workflow invocation. All workflows that could be
potentially invoked as sub-workflows by the code must be
declared as dependencies.
The workflow data context is directly accessible from the
Java bean.
Dynamic sub-workflow invocations must be declared in a
module.xml file.
This mode is useful when the launch of sub-workflows is
conditional (for example, if it depends on a data context
variable), or when the output mapping depends on the
execution of the sub-workflows.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 198

31.7 Wait tasks
Wait task steps in workflow models put the current workflow into a waiting state until a specific event
is received.
When a wait task is reached, the workflow engine generates a unique resume identifier associated
with the wait task. This identifier will be required to resume the wait task, and as a consequence the
associated workflow.
A wait task specifies which profile is authorized to resume the wait task; and a Java class that
implements a wait task bean: WaitTaskBeanAPI.
The workflow data context is directly accessible from the Java bean.
Wait task beans must be declared in a module.xml file.
First, the wait task bean is called when the workflow starts waiting. At this time, the generated resume
identifier is available to call a web service for example. Then, the wait task bean is called when the wait
task is resumed. In this way, the data context may be updated according to the received parameters.

Note

The built-in administrator always has the right to resume a workflow.

31.8 Editing the workflow diagram

About
A workflow model is displayed in a BPMN-like editable diagram.
This view provides full editing capabilities and can help modelers have a clear view of the workflow
model they are designing.
Please also note that, although the diagram is derived from BPMN standards, it is not a strict
representation of BPMN since EBX® workflow concepts are slightly different.

Saving the layout
It is possible to save the modified layout. Please note that this is not a user-based save: it will be
shared by all the users.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 199

Actions

Export as PNG Creates a PNG image.

Export as SVG Creates an SVG image.

Export as PDF Creates a PDF document from the workflow model. Several
properties are available to custom your export. You can
configure the orientation of the pdf pages (Landscape or
Portrait), the size (A3, Letter, etc ...). There is also two
properties that might provide more details to your model:

• Display identifiers (default value is true): Same
behavior with "Show steps identifiers" in the workflow
diagram toolbar but restricted to the pdf export. It will
show the step identifiers for each step.

• Add index (default value is true): At the end of the pdf,
an index recording all the steps of the diagram will be
added. It might be useful in the case where several steps
title are too long to be fully displayed.
For this property, we recommend showing the steps
identifiers as it will help in recognizing which index line
corespond to which step.

View

Layout > Default layout Applies the default layout to the diagram.

Display > Show/Hide grid Shows the grid if the grid is not visible, hides it otherwise.

Display > Zoom In A zoom in is executed on the diagram. To go faster you can
use "Ctrl, Up mouse wheel" with the mouse pointing the
diagram boundary.

Display > Zoom Out A zoom out is executed on the diagram. To go faster you
can use "Ctrl, Down mouse wheel" with the mouse pointing
the diagram boundary.

Display > Show/Hide steps
identifiers

Show/hide a badge displaying the identifier of a workflow
step.

Plan view > Hierarchy Shows the hierarchical view of a given workflow model if
enabled.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 200

Buttons

Save layout Saves the current layout.

Save layout and close Saves the current layout and closes the service.

Revert Reverts changes and reloads a previously saved layout.

Close Closes the service.

Edit

Create Hovering over a link or selecting it, makes '+' appear. It is
used to create a new step.

Delete DEL
Pressing 'DEL' key will remove the selected node.
Please note that this action cannot be undone.

Node toolbar Hovering on a node or directly selecting it makes a toolbar
appear. It is used to either:

• Edit a step.

• Remove a step.

• Duplicate a step.

• Relink to an existing step.

• Show or hide in progress view.

Edit a node Double click on a node in order to quick edit a step.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 201

Features
The diagram view offers useful additional features

Undo last action CTRL + Z
Please note that it cannot be done after the following actions:

• Create/Remove/Edit/Duplicate a step

• Relink

• Show/Hide in progress view

• Revert

Zoom in/Zoom out. Mouse middle button then mouse wheel / CTRL then mouse
wheel. Also see View [p 199]

Multiple selection Click on the nodes or links selected holding down the CTRL
button / Draw a selection rectangle (you will need to hold
down the left click for 1 second before drawing the area).

Customizing links drawing When clicking on a link, you can either move the segments
by dragging the squares which appear on the corners, or
separate a specific segment by moving the circle in the
middle.

Edit a step Double clicking on a step will display an edition form.

Overview A panel is now available with a miniature workflow diagram
view which can be used to navigate within it. This panel
can be collapsed, expanded and dragged inside the area
allocated for the workflow diagram view.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 6.2.0 202

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 203

CHAPTER 32
Configuring the workflow model

This chapter contains the following topics:

1. Information associated with a workflow model

2. Workflow model properties

3. Data context

4. Custom workflow execution views

5. Permissions on associated data workflows

6. Workflow model snapshots

7. Deleting a workflow model

32.1 Information associated with a workflow model
To view and edit the owner and documentation of your workflow model, select 'Information' from the
workflow model 'Actions' [p 185] menu for your workflow model in the navigation pane.

Owner Specifies the workflow model owner, who will have the
rights to edit the workflow model's information and define
its permissions.

Localized documentation Localized labels and descriptions for the workflow model.

Activated This property is deprecated. Whether the workflow model
is activated. A workflow model must be activated in order
to be able to be published.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 204

32.2 Workflow model properties
Configuration for a workflow model is accessible in the navigation pane under 'Workflow model
configuration'.

Module name Module containing specific Java resources (user task
extensions, specific scripts and conditions).

Notification of start The list of profiles to which to send notifications, based on
a template, when a data workflow is launched.
See Generic message templates [p 185].

Notification of completion The list of profiles to which to send notifications, based
on a template, when a data workflow is completed.
The notification is only sent if the workflow has been
completed under normal circumstances, that is, not due to
an administration action.
See Generic message templates [p 185].

Notification of error The list of profiles that will receive notifications, based on
a template, when a data workflow is in error state.
See Generic message templates [p 185].

Priority By default, each workflow associated with this model will
be launched with this priority. Setting a priority is optional.
If no priority is defined here, and a default priority is set for
the repository, the repository default priority will be used
for any associated workflow with no priority assigned. See
Work item priorities [p 225] for more information.
Note: Only users who are defined as workflow
administrators will be able to manually modify the priority
level of any associated data workflows.

Activate quick launch By default, when a workflow is launched, the user is
prompted to enter a documentation for the new workflow
in an intermediate form. This documentation is optional.
Setting the 'Activate quick launch' property to 'Yes' allows
skipping this documentation step and proceeding directly to
the workflow launch.

Automatically open the first step Allows determining the navigation after a workflow is
launched. By default, once a workflow is launched,
the current table (workflow launchers or monitoring >
publications) is automatically displayed.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 205

Enabling this property will allow the workflow user to
keep working on the launched workflow. If, after the first
workflow step is executed, a work item is reached, and this
work item can be started by the workflow creator, then the
work item is automatically opened (if several work items
are reached, the first created is opened). This will save the
user from selecting the corresponding work item from the
work items inbox.
If no work item has been reached, the next step progress
strategy is evaluated.
If no work item has been opened, the table from which the
workflow has been launched is displayed.
Limitation: This property will be ignored if the first step is
a sub-workflow invocation.

Workflow trigger Component that intercepts the main events of a workflow.
This bean must be declared in a module.xml file. See the
example [p 958].

Permissions Permissions on actions related to the data workflows
associated with the workflow model.
This bean must be declared in a module.xml file. See the
example [p 957].

Programmatic action
permissions

Defines a custom component that handles the permissions
of the workflow. If set, this overrides all permissions defined
in the property 'Permissions'.

32.3 Data context
The data context configuration can be accessed from the navigation pane.
Each workflow has its own data context, thus allowing to have its own local dataspace during its
execution. This gives the possibility to store and to vary values that will direct the workflow execution.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 206

The data context is defined by a list of variables. Each variable has the following properties:

Name Identifier of the variable.

Default value If defined, the variable will be initialized with this default
value.

Input parameter 'Yes' must be checked in order to define this variable as an
input parameter.

Output parameter 'Yes' must be checked in order to define this variable as an
output parameter. Else, this variable will not be displayed in
the list of output parameters, in the task definition interface.

32.4 Custom workflow execution views
The workflow execution views customization can be accessed from the navigation pane.
The customization allows configuring the specific columns of the work items and workflow views
(inbox, work items monitoring, active workflows monitoring and completed workflows). For each
specific column, it is possible to associate an expression that can contain data context variables that
will be evaluated upon display of the workflow.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 207

32.5 Permissions on associated data workflows

Workflow administration Defines the profile that is allowed to perform administration
actions on the workflows. The administration actions
include the following: replay a step, resume a
workflow, terminate a workflow, disable a publication
and unpublish. In order to perform these actions, this
profile is automatically granted the "Visualize workflows"
permission. The built-in administrator always has the
workflow administration rights.

Workflow administration >
Replay a step

Defines the profile that is allowed to replay a workflow step.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button in
the "Monitoring > Active workflows" section is available to
replay a step. A profile with the "Workflow administration"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the rights to
replay a step.

Workflow administration >
Terminate workflow

Defines the profile that is allowed to terminate and
clean a workflow. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Active
workflows" section is available to terminate and clean an
active workflow. A button in the "Completed workflows"
section is available to delete a completed workflow. A
profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the rights to terminate a
workflow.

Workflow administration >
Force a workflow to resume

Defines the profile that is allowed to force resuming a
waiting workflow. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Active
workflows" section is available to resume a workflow. A
profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the right to resume a
workflow.

Workflow administration >
Disable a publication

Defines the profile that is allowed to disable a workflow
publication. In order to perform this action, this profile
is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Publications"
section is available to disable a publication. It is only

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 208

displayed on active publications. A profile with the
"Workflow administration" permission is automatically
allowed to perform this specific action. The built-in
administrator always has the rights to disable a publication.

Workflow administration >
Unpublish

Defines the profile that is allowed to unpublish a
workflow publication. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Publications"
section is available to unpublish disabled publications only.
A profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the unpublish rights.

Allocation management Defines the profile that is allowed to manage work items
allocation. The allocation actions include the following:
allocate work items, reallocate work items and deallocate
work items. In order to perform these actions, this
profile is automatically granted the "Visualize workflows"
permission. The built-in administrator always has the
allocation management rights.

Allocation management >
Allocate work items

Defines the profile that is allowed to allocate work items. In
order to perform these actions, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available
to allocate a work item. It is only displayed on offered
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the work items
allocation rights.

Allocation management >
Reallocate work items

Defines the profile that is allowed to reallocate work items.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available to
reallocate a work item. It is only displayed on allocated
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the work items
reallocation rights.

Allocation management >
Deallocate work items

Defines the profile that is allowed to deallocate work items.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available to
deallocate a work item. It is only displayed on allocated
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 209

action. The built-in administrator always has the work items
deallocation rights.

Launch workflows Defines the profile that is allowed to manually launch new
workflows. This permission allows launching workflows
from the active publications of the "Workflow launchers"
section. The built-in administrator always has the launch
workflows rights.
Permissions to launch a workflow are always automatically
verified, even by API. It is possible to bypass
these automatic permission checks and manage specific
authorization rules manually.
For this, set the ebx.properties permissionCheckDelegated
[p 567] to true and use the dedicated API WorkflowEngine.
isUserAuthorizedToLaunchAPI to delegate permission
evaluation to the developer.

Visualize workflows Defines the profile that is allowed to visualize workflows.
By default, the end-user can only see work items that
have been offered or allocated to him in the "Inbox"
section. This permission also allows visualizing the
publications, workflows and work items associated with
this workflow model in the "Monitoring" and "Completed
workflows" sections. This profile is automatically granted
the "Visualize completed workflows" permission. The built-
in administrator always has the visualize workflows rights.

Visualize workflows > The
workflow creator can visualize it

If enabled, the workflow creator has the permission to
view the workflows he has launched. This restricted
permission grants access to the workflows he launched and
to the associated work items in the "Monitoring > Active
workflows", "Monitoring > Work items" and "Completed
workflows" sections. The default value is 'No'.

Visualize workflows > Visualize
completed workflows

Defines the profile that is allowed to visualize completed
workflows. This permission allows visualizing completed
workflows in the "Completed workflows" section and
accessing their history. A profile with the "Visualize
workflows" permission is automatically allowed to perform
this action. The built-in administrator always has the
visualize completed workflows rights.

Note

A user who has no specific privileges assigned can only see work items associated with
this workflow that are offered or allocated to that user.

See also Workflow administration [p 229]

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 6.2.0 210

32.6 Workflow model snapshots
The history of workflow model snapshots can be managed from Actions > View publications history.
The history table displays all snapshots which contain the selected workflow model and indicates if
a workflow model is published. For each snapshot, the Actions button allows you to export or view
the corresponding workflow model.

32.7 Deleting a workflow model
Workflow model can be deleted, however any associated publications remain accessible in the Data
Workflows area. If a new workflow model is created with the same name as a deleted workflow model,
publishing will prompt to replace the old publication.

See also Publishing workflow models [p 211]

Documentation > User Guide > Workflow models > Publishing workflow models

TIBCO EBX® Product Documentation 6.2.0 211

CHAPTER 33
Publishing workflow models

This chapter contains the following topics:

1. About workflow publications

2. Publishing and workflow model snapshots

3. Sub-workflows in publications

33.1 About workflow publications
Once a workflow model is defined, it must be published in order to enable authorized users to launch
associated data workflows.
Two services are available in order to publish :

• With the button Publish in the navigation pane: this service allows to publish only the model
currently edited.

• Through the button Mass publish that can be found in the toolbar on the same level of the
section title Workflow models : this service allows many models to be published at once. The
first step allows to select many models to publish: only models not containing sub-workflows
invocation will appear in this step. Indeed, a workflow having sub-workflows doesn't qualify for
mass publish.

Workflow models can be published several times. A publication is identified by its publication name

33.2 Publishing and workflow model snapshots
When publishing a workflow model, a snapshot is taken of its current state. A label and a description
can be specified for the snapshot to be created. The default snapshot label is the date and time of the
publication. The default description indicates the user who published the workflow model.
For each workflow model being published, the specified publication name must be unique. If a
workflow model has already been published, it is possible to update an existing publication by reusing
the same publication name. The names of existing workflow publications associated with a given
workflow model are available in a drop-down menu. In the case of a publication update, the old version
is no longer available for launching data workflows, however it will be used to terminate existing
workflows. The content of different versions can be viewed in the workflow model snapshot history.

See also Workflow model snapshots [p 210]

Documentation > User Guide > Workflow models > Publishing workflow models

TIBCO EBX® Product Documentation 6.2.0 212

33.3 Sub-workflows in publications
When publishing a workflow model containing sub-workflow invocation steps, it is not necessary to
separately publish the models of the sub-workflows. From an administration standpoint, the model
of the main workflow (the one currently published by a user) and the models of the sub-workflows
are published as a single entity.
The system computes the dependencies to workflow models used as sub-workflows, and automatically
creates one publication for each dependent model. These technical publications are dedicated to the
workflow engine to launch sub-workflows, and are not available in the Workflow Data area.
The multiple publication is not available for a workflow model containing sub-workflow invocation
steps. This is why the first step of the publication (selection of workflow models to publish) is not
offered in this case.
Republishing the main workflow model automatically updates the invoked sub-workflow models.
Although a sub-workflow model can be published separately as a main workflow model, this will not
update the version used by an already published main workflow model using this sub-workflow.

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 213

Data workflows

Documentation > User Guide > Data workflows > Introduction to data workflows

TIBCO EBX® Product Documentation 6.2.0 214

CHAPTER 34
Introduction to data workflows

This chapter contains the following topics:

1. Overview

34.1 Overview
A data workflow is an executed step-by-step data management process, defined using a workflow
model publication. It allows users, as well as automated procedures, to perform actions collaboratively
on a set of data. Once a workflow model has been developed and published, the resulting publication
can be used to launch a data workflow to execute the defined steps.
Depending on the workflow user permissions defined by the workflow model, a user may perform
one or more of the following actions on associated data workflows:

• As a user with default permissions, work on and complete an assigned work item.

• As a user with workflow launching permissions, create a new data workflow from a workflow
model publication.

• As a workflow monitor, follow the progress of ongoing data workflows and consult the history
of completed data workflows.

• As a manager of work item allocation, modify work item allocations manually for other users
and roles.

• As a workflow administrator, perform various administration actions, such as replaying steps,
terminating workflows in progress, or rendering publications unavailable for launching data
workflows.

See also

Work items [p 221]

Launching and monitoring data workflows [p 227]

Administration of data workflows [p 229]

Permissions on associated data workflows [p 207]

Related concepts Workflow models [p 184]

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 215

CHAPTER 35
Using the Data Workflows area user

interface
This chapter contains the following topics:

1. Navigating within the interface

2. Navigation rules

3. Custom views

4. Specific columns

5. Filtering items in views

6. Workflow progress view

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 216

35.1 Navigating within the interface
Data workflow functionality is located in the Data Workflows area of the TIBCO EBX® user
interface.

Note

This area is available only to authorized users in the 'Advanced perspective' or from a
specifically configured perspective. Only authorized users can access these interfaces.

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 217

The navigation pane is organized into several entries. These entries are displayed according to their
associated global permission. The different entries are:

Work items inbox All work items either allocated or offered to you, for which
you must perform the defined task.

Workflow launchers List of workflow model publications from which you are
allowed to launch data workflows, according to your user
permissions.

Monitoring Monitoring views on the data workflows for which you have
the necessary viewing permissions.

 Publications Publications for which you have the necessary viewing
permissions. If you have additional administrative
permissions, you can also disable the ability to launch data
workflows from specific publications from this view.

 Active workflows Data workflows in the process of execution for which
you have the necessary viewing permissions. If you have
additional administrative permissions, you can also perform
actions such as replaying steps of data workflows, and
terminating the execution of data workflows from this view.

 Work items Work items for which you have the necessary viewing
permissions. If you have additional administrative
permissions, you can also perform actions relevant to
work item administration, such as allocating work items to
specific users or roles from this view.

Completed workflows Data workflows that have completed their execution, for
which you have the necessary viewing permissions. You can
view the history of the executions of the data workflows.
If you have additional administrative permissions, you can
also clean completed workflows from the repository from
this view.

Note

Each section can be accessed through Web Components, for example, for portal integration,
or programatically using the ServiceKey class in the Java API.

See also

Using TIBCO EBX® as a Web Component [p 409]

ServiceKeyAPI

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 218

35.2 Navigation rules

Work items inbox
By default, once a work item has been executed, the work items inbox is displayed.
This behavior can be modified according to the next step progress strategy, which can allow to execute
several steps in a row without going back to the work items inbox.
See the progress strategy of a workflow step [p 190] in workflow modeling.

Workflow launchers
By default, once a workflow has been launched, the workflow launchers table is displayed.
This behavior can be modified according to the model configuration, which can allow to directly open
the first step without displaying the workflow launchers table.
See the automatic opening of the first workflow step [p 204] in workflow modeling.

35.3 Custom views
It is possible to define views on workflow tables and to benefit from all associated mechanisms
(publication included).
Permissions to create and manage workflow table views are the same as the permissions for data table
views. It may thus be necessary to change the permissions in the 'Administration' section in order to
benefit from this feature, by selecting Workflow management > Workflows.
See the Views [p 127] for more information.

35.4 Specific columns
By default, specific columns are hidden in the views that can benefit from it (inbox, work items
monitoring, active workflows monitoring and completed workflows).
A custom view should be created and applied in order to display the specific columns. For each
work item or workflow, the matching defined in the associated workflow model is then applied. If an
expression is defined for a column and contains data context variables, these variables are evaluated
upon display. If the expression contains built-in expressions which depend on the locale, the expression
is evaluated in the default locale.

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 219

35.5 Filtering items in views
In certain tables, such as the 'Work item inbox', you can narrow down the entries displayed in the
tables by viewing only the entries of a certain state. In such views, there is a menu from which you
can select a state to see its corresponding items.

35.6 Workflow progress view
Whether as a user with a work item to perform, or as a data workflow monitor or administrator, you

can view the progress or the history of a data workflow execution by clicking the 'Preview' button
that appears in the 'Data workflow' column of tables throughout the data workflows user interface.
This opens a pop-up displaying an interactive progress view of the data workflow's execution. In this
view, you can see the overall progress of the execution, as well as click on an individual step to view
the details of its information.
If steps have been defined as hidden in the workflow modeling, they are automatically hidden in the
workflow progress view for non-administrator users (non built-in administrators and non workflow
administrators). A button is available to display hidden steps. The choice of users (show or hide steps)
is saved by user, by publication during the user session.
For user tasks performed using the new mode (single work item), the main information about the
single work item is directly displayed in the workflow progress view, when applicable: the avatar
of the user associated with the work item, and the decision that has been taken for the work item
(accepted or rejected).

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 6.2.0 220

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 221

CHAPTER 36
Work items

This chapter contains the following topics:

1. About work items

2. Working on work items as a participant

3. Work item priorities

36.1 About work items
A work item is a unit of work that must be performed by a human user as a part of a user task.
By default, when a workflow model defines a user task, data workflows that are launched from that
model's publications will generate an individual work item for each of the participants listed in the
user task.

See also Overview [p 965]

Work item states
When the data workflow spawns a work item for a modelled user task during execution, the work item
passes through several possible states: offered, allocated, started, and completed.

Creation of work items

Default mode
By default, a single work item is generated regardless of the list of defined profiles.
By default, if a single user is defined in the list of profiles, the created work item is in the allocated
state.
By default, in other cases, the created work item is in the offered state.

Note

The default behavior described above can be overridden by a programmatic extension
defined in the user task. In this case, work items may be generated programmatically and
not necessarily based on the user task's list of participants.

Legacy mode
By default, for each user defined as a participant of the user task, the data workflow creates a work
item in the allocated state.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 222

By default, for each role defined as a participant of the user task, the data workflow creates a work
item in the offered state.

Note

The default behavior described above can be overridden by a programmatic extension
defined in the user task. In this case, work items may be generated programmatically and
not necessarily based on the user task's list of participants.

Variations of the work item states
When the work item is in the allocated state, the defined user can directly start working on the allocated
work item with the 'Take and start' action. The work item's state becomes started.
When the work item is in the offered state, any user or member of the roles to whom the work item is
offered can take the work item with the 'Take and start' action'. The work item's state becomes started.
Before a user has claimed the offered work item, a workflow allocation manager can intervene to
manually assign the work item to a single user, thus moving the work item to the allocated state. Then,
when that user begins work on the work item by performing the action 'Start work item', the work
item progresses to the started state.
Finally, after the user who started the work item has finished the assigned action, the concluding accept
or reject action moves the work item to the completed state. Once a user completes a work item, the
data workflow automatically progresses onto the next step defined in the workflow model.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 223

Diagram of the work item states

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 224

36.2 Working on work items as a participant
All work items relevant to you as a user (either offered or allocated to you), appear in your work
items inbox. When you begin working on a work item, you can add an associated comment that will
be visible to other participants of the data workflow, as well as administrators and monitors of the
workflow. As long as you are still working on the work item, you can go back and edit this comment.
After you have performed all the necessary actions assigned for the work item, you must signal its
completion by clicking either the Accept or Reject button. The labels of these two buttons may differ
depending on the context of the work item.
To review the current progress of a data workflow for which you have a waiting work item in your

work item inbox, click its 'Preview' button in the 'Data workflow' column of the table. A pop-
up will show an interactive progress view of the data workflow up until this point and the upcoming
steps. You can view the details of a step by clicking on that step.

Note

If you interrupt the current session in the middle of a started work item, for example by
closing the browser or by logging out, the current work item state is preserved. When
you return to the work item, it continues from the point where you left off.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 225

36.3 Work item priorities
Work items may carry a priority value, which can be useful for sorting and filtering outstanding work
items. The priority of a work item is set at the level of its data workflow, rather than being specific to
the individual work item itself. Thus, if a data workflow is considered urgent, all its associated open
work items are also considered to be urgent. By default, there are six priority levels ranging from 'Very
low' to 'Urgent', however the visual representation and naming of the available priority levels depend
on the configuration of your TIBCO EBX® repository.

See also user task (glossary) [p 34]

Related concepts User tasks [p 190]

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 6.2.0 226

Documentation > User Guide > Data workflows > Managing data workflows > Launching and monitoring data workflows

TIBCO EBX® Product Documentation 6.2.0 227

CHAPTER 37
Launching and monitoring data

workflows
This chapter contains the following topics:

1. Launching data workflows

2. Monitoring activities

3. Managing work item allocation

37.1 Launching data workflows
If a workflow model has given you the permissions to launch data workflows from its publications,
you can create new data workflows from the 'Workflow launchers' entry in the navigation pane. To
create a new data workflow from a workflow model publication, click the Launch button in the entry
of the publication.
You can optionally define localized labels and descriptions for the new data workflow you are
launching.

37.2 Monitoring activities
If a workflow model's permissions have configured your user or role for workflow monitoring, you
have the ability to follow the progress of data workflows that are currently executing. You can access
your monitoring views from the 'Monitoring' section of the navigation panel. If you have additional
workflow management permissions, you can also perform the associated actions from these views.
Once the data workflows that you monitor have completed execution, they appear under 'Completed
data workflows', where you can consult their execution history.

37.3 Managing work item allocation
If a workflow model defines special allocation management permissions for you or a role that you
belong to, you have the ability to manually intervene for work item allocations during the execution
of associated data workflows. In this case, you are able to perform one or more of the actions listed
below on work items.

Documentation > User Guide > Data workflows > Managing data workflows > Launching and monitoring data workflows

TIBCO EBX® Product Documentation 6.2.0 228

Select 'Work items' in the 'Monitoring' section of the navigation pane. The actions that you are able
to perform appear in the Actions menu of the work item's entry in the table, depending on the current
state of the work item.

Allocate Allocate a work item to a specific user. This action is
available for work items in the offered state.

Deallocate Reset a work item in the allocated state to the offered state.

Reallocate Modify the user to whom a work item is allocated. This
action is available for work items in the allocated state.

See also

Work items [p 221]

Permissions on associated data workflows [p 207]

Related concepts Workflow models [p 184]

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 6.2.0 229

CHAPTER 38
Administration of data workflows
If you have been given permissions for administration activities associated with data workflows, any
relevant publications, active data workflows, and work items, will appear under the entries of the
'Monitoring' section in the navigation panel. From these monitoring views, you can directly perform
administrative tasks from the Actions menus of the table entries.

Note

When a workflow model gives you administrative rights, you automatically have
monitoring permissions on all of the relevant aspects of data workflow execution, such
as publications, active data workflows, and work items.

This chapter contains the following topics:

1. Overview of data workflow execution

2. Data workflow administration actions

38.1 Overview of data workflow execution
When a data workflow is launched, a token that marks the step currently being executed is created
and positioned at the start of the workflow. As each step is completed, this token moves on to the next
step as defined in the workflow model on whose publication the data workflow is based.
At any given point during the execution of a data workflow, the token is positioned on one of the
following:

• a script task, which is run automatically and requires no user interaction. The script task is
completed when the defined actions finish running.

• a user task, which spawns one or more work items to be performed manually by users. Each work
item is completed by an explicit 'Accept' or 'Reject' action from a user, and the completion of the
umbrella user task is determined according to the task termination criteria defined for the user
task in the workflow model.

• a condition, which is evaluated automatically in order to determine the next step in the execution
of the data workflow.

• a sub-workflows invocation, which launches associated sub-workflows and waits for the
termination of the launched sub-workflows.

• a wait task, which pauses the workflow until a specific event is received.

The token can be in the following states:

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 6.2.0 230

• To execute: The token is the process of progressing to the next step, based on the workflow model.

• Executing: The token is positioned on a script task or a condition that is being processed.

• User: The token is positioned on a user task and is awaiting a user action.

• Waiting for sub-workflows: The token is positioned on a sub-workflow invocation and is
awaiting the termination of all launched sub-workflows.

• Waiting for event: The token is positioned on a wait task and is waiting for a specific event to
be received.

• Finished: The token has reached the end of the data workflow.

• Error: An error has occurred.

See also Workflow management [p 673]

38.2 Data workflow administration actions

Actions on publications

Disabling a workflow publication
To prevent new data workflows from being launched from a given workflow publication, you can
disable it. Select the 'Publications' entry from the navigation pane, then select Actions > Disable in
the entry for the publication you want to disable.
Once disabled, the publication will no longer appear in the 'Workflow launchers' view of users, but
any data workflows already launched that are in progress will continue executing.

Note

Once a publication has been disabled, it cannot be re-enabled from the Data Workflows
area. Only a user with the built-in repository 'Administrator' role can re-enable a disabled
publication from the Administration area, although manually editing technical tables
is not generally recommended, as it is important to ensure the integrity of workflow
operations.

Unpublishing a workflow publication
If a workflow publication is no longer required, you can remove it completely from the views in the
Data Workflows area by unpublishing it. To do so,

1. Disable the workflow publication to prevent users from continuing to launch new data workflows
from it, as described in Disabling a workflow publication [p 230].

2. Unpublish the workflow publication by selecting Actions > Unpublish from the workflow
publication's entry in the same table of publications.

Note

When you choose to unpublish a workflow publication, you will be prompted to confirm
the termination and cleaning of any data workflows in progress that were launched from
this workflow publication, and any associated work items. Any data that is lost as a result
of forcefully terminating a data workflow cannot be recovered.

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 6.2.0 231

Actions on data workflows
From the tables of data workflows, it is possible to perform actions from the Actions menu in the
record of a given data workflow.

Replaying a step
In the event of an unexpected failure during a step, for example, an access rights issue or unavailable
resources, you can "replay" the step as a data workflow administrator. Replaying a step cleans the
associated execution environment, including any related work items and sub-workflows, and resets
the token to the beginning of the current step.
To replay the current step in a data workflow, select Actions > Replay the step from the entry of the
workflow in the 'Active workflows' table.

Terminating and cleaning an active data workflow
In order to stop and clean a data workflow that is currently in progress, select Actions > Terminate
and clean from the entry of the workflow in the 'Active workflows' table. This will stop the execution
of the data workflow and clean the data workflow and all associated work items and sub-workflows.

Note

This action is not available on workflows in the 'Executing' state, and on sub-workflows
launched from another workflow.

Note

Workflow history data is not deleted.

Forcing termination of an active data workflow
In order to stop a data workflow that is currently in progress, select Actions > Force termination
from the entry of the workflow in the 'Active workflows' table. This will stop the execution of the
data workflow and clean any associated work items and sub-workflows.

Note

This action is available for sub-workflows, and for workflows in error blocked on the
last step.

Note

Workflow history data is not deleted.

Forcing resumption of a waiting data workflow
In order to resume a data workflow that is currently waiting for an event, select Actions > Force
resumption from the entry of the workflow in the 'Active workflows' table. This will resume the data
workflow. Before doing this action, it is the responsibility of the administrator to update the data
context in order to make sure that the data workflow can execute the next steps.

Note

This action is only available for workflows in the 'waiting for event' state.

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 6.2.0 232

Cleaning a completed data workflow
When a data workflow has completed its execution, its history is viewable by monitors and
administrators of that workflow in the view 'Completed workflows'. To remove the completed
workflow, you can perform a clean operation on it. To do so, select Actions > Clean from the entry
of the workflow in the 'Completed workflows' table.
When cleaned a workflow is no longer visible in the view 'Completed workflows' but its history is
still available from the technical administration area.

Note

This action is not available on sub-workflows launched from another workflow.

See also Workflow management [p 673]

Modifying the priority of a data workflow
After a data workflow has been launched, an administrator of the workflow can alter its priority level.
Doing so changes the priority of all existing and future work items created by the data workflow. To
change the priority level of a data workflow, select Actions > Modify priority from the entry of the
workflow in the 'Active workflows' table.

See also Permissions on associated data workflows [p 207]

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 233

Data services

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 6.2.0 234

CHAPTER 39
Introduction to data services

This chapter contains the following topics:

1. Overview

2. Using the Data Services area user interface

39.1 Overview

What is a data service?
A data service [p 35] is:

• a standard Web service that interacts with TIBCO EBX®.
SOAP data services can be dynamically generated based on data models from the 'Data Services'
area.

• a RESTful service that allows interaction with EBX®.
The built-in REST data services have an OpenAPI interface, they are also self-descriptive through
the returned metadata.

They can be used to access some of the features available through the user interface.

See also

WSDL/SOAP [p 998]

REST [p 1052]

Lineage
Lineage [p 36] is used to establish user permission profiles for non-human users, namely data services.
When accessing data using WSDL interfaces, data services use the permission profiles established
through lineage.

Glossary
See also Data services [p 35]

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 6.2.0 235

39.2 Using the Data Services area user interface

Note

This area is available only to authorized users in the 'Advanced perspective'.

Related concepts

Dataspace [p 98]

Dataset [p 116]

Data workflows [p 214]

Introduction [p 998]

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 6.2.0 236

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 6.2.0 237

CHAPTER 40
Generating data service WSDLs

This chapter contains the following topics:

1. Generating a WSDL for operations on data

2. Generating a WSDL for dataspace operations

3. Generating a WSDL for data workflow operations

4. Generating a WSDL for lineage

5. Generating a WSDL for administration

6. Generating a WSDL to modify the default directory

40.1 Generating a WSDL for operations on data
To generate a WSDL for accessing data, select 'Data' in the navigation panel in the Data Services
area, then follow through the steps of the wizard:

1. Choose whether the WSDL will be for operations at the dataset level or at the table level.

2. Identify the dataspace and dataset on which the operations will be run

3. Select the tables on which the operations are authorized, as well as the operations permitted.

4. Download the generated WSDL file by clicking the button Download WSDL.

Operations on datasets
The following operations can be performed using the WSDL generated for operations at the dataset
level:

• Select dataset content for a dataspace or snapshot.

• Get dataset changes between dataspaces or snapshots

• Replication unit refresh

Operations on tables
The following operations, if selected, can be performed using the WSDL generated for operations at
the table level:

• Insert record(s)

• Select record(s)

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 6.2.0 238

• Update record(s)

• Delete record(s)

• Count record(s)

• Get changes between dataspace or snapshot

• Get credentials

• Run multiple operations on tables in the dataset

See also

WSDL download from HTTP protocol [p 1011]

Operations generated from a data model [p 1017]

40.2 Generating a WSDL for dataspace operations
To generate a WSDL for dataspace-level operations, selecting 'Dataspace' in the navigation panel
of the Data Services area. The generated WSDL is generic to all dataspaces, thus no additional
information is required.
Download the generated WSDL file by clicking the button Download WSDL.

Operations on dataspaces
The following operations can be performed using the WSDL generated for operations at the dataspace
level:

• Create a dataspace

• Close a dataspace

• Create a snapshot

• Close a snapshot

• Merge a dataspace

• Lock a dataspace

• Unlock a dataspace

• Validate a dataspace or a snapshot

• Validate a dataset

See also

WSDL download from HTTP protocol [p 1011]

Operations on datasets and dataspaces [p 1038]

40.3 Generating a WSDL for data workflow operations
To generate a WSDL to control data workflows, select 'Data workflow' from the Data Services
area. The generated WSDL is not specific to any particular workflow publication, thus no additional
information is required.
Download the generated WSDL file by clicking the button Download WSDL.

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 6.2.0 239

Operations on data workflows
• Start a data workflow

• Resume a data workflow

• End a data workflow

See also

WSDL download from HTTP protocol [p 1011]

Operations on data workflows [p 1044]

40.4 Generating a WSDL for lineage
To generate a WSDL for lineage, select 'Lineage' from the Data Services area. It will be based
on authorized profiles that have been defined by an administrator in the 'Lineage' section of the
Administration area.
The operations available for accessing tables are the same as for WSDL for operations on data [p 237].
Steps for generating the WSDL for lineage are as follows:

1. Select the profile whose permissions will be used. The selected user or role must be authorized
for use with lineage by an administrator.

2. Identify the dataspace and dataset on which the operations will be run

3. Select the tables on which the operations are authorized, as well as the operations permitted.

4. Download the generated WSDL file by clicking the button Download WSDL.

See also Lineage [p 234]

40.5 Generating a WSDL for administration
This action is only available to administrators.
To generate a WSDL for:

• managing the user interface

• getting system information

select 'Administration' from the Data Services area.

Operations for administration
• Close user interface

• Open user interface

• Get system information

See also

WSDL download from HTTP protocol [p 1011]

User interface operations [p 1048]

System information operation [p 1048]

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 6.2.0 240

40.6 Generating a WSDL to modify the default directory
This action is only available to administrators, and only if using the default directory.
To generate a WSDL to update the default directory, select 'Directory' from the Data Services area.

Operations on the default directory
The operations available for accessing tables are the same as for WSDL for operations on data [p 237].

See also

WSDL download from HTTP protocol [p 1011]

Directory services [p 1047]

Documentation > User Guide

TIBCO EBX® Product Documentation 6.2.0 241

EBX® Metadata
Management

Documentation > User Guide > EBX® Metadata Management > Introduction to metadata management

TIBCO EBX® Product Documentation 6.2.0 242

CHAPTER 41
Introduction to metadata

management
This chapter contains the following topics:

1. Understanding metadata and its importance

2. Challenges and solutions

3. Audience

4. Approaches to metadata management

5. Where to go from here

41.1 Understanding metadata and its importance
Metadata provides information about data itself, like what it is, what it's for, and how it's organized.
It also includes information about the business and technical processes related to the data, and the
connections between different pieces of data.
Managing metadata well helps an organization understand and control its operations, systems, and
how work gets done. This is important for making the most of the data you have and sometimes it's
even required by law.
If you don't manage metadata properly, you might end up with messy and confusing data. It would
be like trying to find a specific book in a library without a catalog; you wouldn't know where to start
looking, or even if the book is there.
In summary, metadata tells you what data you have and helps you find and use it effectively. Otherwise,
it can be hard to make sense of all the information you have.

41.2 Challenges and solutions
One of the biggest challenges is in implementing a metadata management strategy that unifies the
way you describe, manage, map, and discover your data assets. Critical to the success of strategy
implementation is a mutual understanding of the strategy between business parties, a controlled data
flow, and a solid definition of high-quality data.
EBX®'s metadata management capabilities ensure end-to-end management so you can govern, master,
map, and exchange data. Using the features included in the EBX® Metadata Management application,
you can implement:

Documentation > User Guide > EBX® Metadata Management > Introduction to metadata management

TIBCO EBX® Product Documentation 6.2.0 243

• A Data catalog: helps you document your information system by classifying your data sources.
The goal is to achieve a well-defined view of your information system through different lenses:
technical, business, and data specialists profiles. When you document and map your data, you can
identify and bridge potential gaps. This allow users to find the data they need, when they need it.

• A Business glossary: allows you to document business terms, their definitions, and the
relationships between terms. A unified vocabulary facilitates communication in your organization
by supplying a common understanding of business concepts. Issues solved by creating a business
glossary include: an inconsistent business vocabulary, data redundancy and duplication, data
freshness, and data quality.

• Metadata management: ensures that you obtain value from data by using metadata to inventory,
assess and analyze data assets. For example, you can analyze metadata and data for potential
added value such as identification and capture of additional metadata or datasets. In other words,
it can help you capture data you might not realize you have. Metadata management enhances
the experience that users have while interacting with business solutions or products. This creates
a collaborative experience and ensures that different types of users find the appropriate virtual
environment in which to work.

41.3 Audience
The EBX® Metadata Management application can address the needs of the most diverse organizations
and facilitate collaboration across teams. Business users, data architects, data engineers, data stewards,
analysts, application architects, application owners, etc. are provided with collaborative workflows.
EBX® uses profiles to support role-based access which ensures appropriate exposure of key data
elements and provides needed compliance.

41.4 Approaches to metadata management
There are two main types of approaches to metadata management with EBX®:

• Bottom up examples: starting with mapping out the information system, a metadata catalog
initialization or an application owner who wants to retro-document their application.

• Top down examples: the Architecture Board launches an information system cartography project,
from the business/applicative architecture to the technical architecture.

41.5 Where to go from here
It is important to understand the Key terms [p 246] used in the documentation. If you are a business
user, you might want to familiarize yourself with an overview of the User interface [p 251] components
and how to use some of the generic features. If you are an administrator, you might benefit from
understanding the configuration options [p 736] available to administrators.

Documentation > User Guide > EBX® Metadata Management > Introduction to metadata management

TIBCO EBX® Product Documentation 6.2.0 244

Documentation > User Guide > EBX® Metadata Management > Key terms

TIBCO EBX® Product Documentation 6.2.0 245

Documentation > User Guide > EBX® Metadata Management > Key terms

TIBCO EBX® Product Documentation 6.2.0 246

CHAPTER 42
Key terms

The following table defines key terms commonly used when discussing the EBX® Metadata
Management application's features:

Term Description

Application Software, services, reports, or other documents that exploit, manipulate, or expose data. Applications can serve
business processes and be subject to rules.

Asset Any container or provider of structured data that can be referenced and documented. System instances can
contain or expose assets and assets can be comprised of other assets. For instance, an Excel file is an asset. It
contains sheets which contain tables, columns, lines and cells—all of which are assets. Assets can supply and
be supplied by other assets via a technical flow.

Business
process

A collection of related activities or tasks completed in a specific sequence. They produce business value in the
form of a product or a service for a customer or user.

Business term Word or phrase that describes a concept used in a branch or domain. A business glossary governs and
communicates business terms.

Data element An atomic unit of data that has precise meaning or semantics. It can represent a complex object such as
a Customer or a Product, or it can define a simple value such as a Birth date or a First name. Simple data
elements are combined to create more complex elements. For example, a Customer is composed of a Person,
which is composed of a First name and other data elements. A data element can also have a relationship with
other data elements.

Dataset A collection of data of the same structure that defines a population of the same data element, or set of data
elements. A dataset can be an exhaustive list of countries or a list of French customers aged 18-24. In these 2
examples, we have a natural link between the dataset and one high level data element which are respectively
Country or Customer. However, it can be more complex or less natural, such as a list of product entries from an
ERP which can represent different data elements with the same structure for technical convenience.

Environment Any application can exist in or on many environments for different reasons. It can be due to a geographical
organization where an application must be redundant for non-functional requirements. It can also be due to
the business or structural organization where the segregation of duties implies the creation of many separated
environments. But most likely, it is required for the build and configuration of the application that needs to be
tested and qualified before to go to production. An environment is then composed of all the system instances its
architecture relies on.

Flow The movement of data between two applications. Exchange of data can include many individual flows between
sources and targets. At a logical level, technical flows define and allow data exchange to occur. Additionally,
they specify a flow's non-functional requirements and any information that could help understand or build
them.

Documentation > User Guide > EBX® Metadata Management > Key terms

TIBCO EBX® Product Documentation 6.2.0 247

Term Description

Group Group of persons, includes users of the application as well as non-users, but all persons of the group are
meant to have a role in the management of data: dataset owner, system manager, etc. Examples of groups are:
Marketing group, IT group, etc.

Identifying this group of persons will be used to assign them the ownership of a documented object, e.g.:
system, instance, etc. The responsibilities linked to the management of the various objects are also linked to
groups.

Infrastructure Foundation or frameworks that supports systems. It is composed of physical or logical resources that support
storage, processing, analysis and exchanges of data. An infrastructure is in most case a physical or virtual
server running an operating system.

Instance Concrete installation of a given system, it can be the installation of a software, a file system, a service provided
by a service provider, an internal service, or any other container of provider of data assets or components of any
application. It runs on an infrastructure.

Link It materializes the relation between two data elements in data assets. It then defines how the links between two
assets are ensured in the containing system. It can be a database foreign key, an hyperlink, or just a code or any
other technical representation.

Relation Linking two data elements, it makes one the representation of the other. It defines why the data elements are
related and in which conditions. It can also carry rules. There can be many relationships between two same data
elements. A "Company" can be both the "Supplier" and the "Customer" of another "Company". As different
rules can apply to these two cases, it is interesting to be able to create two different relations instead of one with
a multiple condition.

Role This is not the definition of users roles within EBX® but roles upon data in the information system. A role is
not necessarily active on data governance or data management but can define, for instance, a passive notified
role. Each element of a RACI matrix can then be defined as a role given to a list of groups of persons.

Rule Defines or limits some aspects of a given data category to control or influence the behavior of business data. It
is used for making decisions and for governing programs or policies.

Provider Any company providing one or many systems. It can be a software vendor, a system integrator or any other
outsourcing company, but it can also be an internal organization.

System Any technical component that participates to the elaboration of an application, but also any technical
component that provides or uses data. A system is then materialized by an instance.

Technical flow A data aims to be used but is also sourced. It then comes from an origin going though intermediaries to reach
a final destination before reaching another in the future. Each step in this journey that is a flow between two or
many applications is a technical flow. It defines the bridge between two assets, telling at any level what is the
source of any target.

Documentation > User Guide > EBX® Metadata Management > Key terms

TIBCO EBX® Product Documentation 6.2.0 248

Documentation > User Guide > EBX® Metadata Management > Accessing the metadata perspective

TIBCO EBX® Product Documentation 6.2.0 249

CHAPTER 43
Accessing the metadata perspective

You can access the EBX® Metadata Management application and its related features from the
Metadata perspective. This perspective is only available to you if the metadata module was deployed
and access was granted to you by an administrator.
To access the metadata perspective, click the Select perspective icon in the top-right of the main
toolbar, and select Metadata. Note that the Metadata administration perspective is only available
for administrator roles.

Documentation > User Guide > EBX® Metadata Management > Accessing the metadata perspective

TIBCO EBX® Product Documentation 6.2.0 250

Documentation > User Guide > EBX® Metadata Management > User Interface > Overview of the User Interface

TIBCO EBX® Product Documentation 6.2.0 251

CHAPTER 44
Overview of the User Interface

This chapter contains the following topics:

1. Main UI

Documentation > User Guide > EBX® Metadata Management > User Interface > Overview of the User Interface

TIBCO EBX® Product Documentation 6.2.0 252

44.1 Main UI
The left of the screen is the main navigation pane:

Documentation > User Guide > EBX® Metadata Management > User Interface > Overview of the User Interface

TIBCO EBX® Product Documentation 6.2.0 253

The main part of the screen is the workspace:

Documentation > User Guide > EBX® Metadata Management > User Interface > Overview of the User Interface

TIBCO EBX® Product Documentation 6.2.0 254

To the right of the workspace is the sidebar that contains contextual services according to the content
of the workspace, such as comments, or information about a selected asset.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Navigation pane overview

TIBCO EBX® Product Documentation 6.2.0 255

CHAPTER 45
Navigation pane overview

This chapter contains the following topics:

1. Overview

45.1 Overview
The Navigation pane, is located at the left of the screen. It allow you to access to all features available
to your profile. Administrators use permission settings to determine accessible features. Each section
contains a color-coded group of related features.
To change the size of the Navigation pane, drag its right border. Additionally, you can collapse display
to show icons only by clicking the arrow in the upper right corner.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Navigation pane overview

TIBCO EBX® Product Documentation 6.2.0 256

Home section
The options in the Home section are not associated to a specific type of metadata. The section includes
an home page, a global search, accesses to workflows, dashboards and your profile where you can
modify your details.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Navigation pane overview

TIBCO EBX® Product Documentation 6.2.0 257

Catalog section
The Catalog section groups all logical descriptions including applications, datasets and data elements.
A logical description is a way to represent entities that is easier to understand. Logical descriptions
can apply to entities that do not exist yet. For example, you can describe an application before it is
created, or document a dataset before populating it with data values that are stored in, or provided
by, a physical asset.

Governance section
The Governance section includes documentation about how data is managed by different business
domains. Each domain can have its own data related terminology and roles. This section also defines
user groups, their related roles, and data rights. Comprehensive metadata management programs aim
to register any program, initiative or project around data.

Metadata section
The materialization of the dataset described in the catalog is documented in the Metadata section.
This section includes assets, which are physical resources that contain or provide data. Assets are the
materialization of the logical descriptions in the Catalog Asset technical structures and properties are
stored according to their types.

Technology section
The Technology section allows you to access the more technical aspects of metadata management.
One of the main components is instances. Instances are comprised of one or more systems that
expose data. A system can also be any system that is included in the process of data management and
governance. Systems are supplied by a provider which is a vendor, external, or internal organization.

Privacy section
The management of data privacy, as is required by many regulatory authorities, stipulates an inventory
of processing activities and personal consents. It also requires that any request coming from a personal
data owner is registered and that data breaches are communicated to owners. Connected to physical
assets containing them, systems processing them and concepts defining their nature, all request
conditions are unified to ensure they comply with any rules that their usage implies.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Navigation pane overview

TIBCO EBX® Product Documentation 6.2.0 258

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Catalog overview

TIBCO EBX® Product Documentation 6.2.0 259

CHAPTER 46
Catalog overview

This section covers logical descriptions for applications, datasets and data elements. A logical
description is a universal and common description of entities. These descriptions can exist before
entities are created. for example:

• An application can be described before it exists.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Catalog overview

TIBCO EBX® Product Documentation 6.2.0 260

• A dataset can be documented before the corresponding data values are stored in, or provided by,
a physical asset.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating
applications

TIBCO EBX® Product Documentation 6.2.0 261

CHAPTER 47
Creating applications

This chapter contains the following topics:

1. Overview

2. Creating a new application

3. Creating a new Data protection level (CIA) entry

4. Creating a new application type

47.1 Overview
In the Catalog menu of the main control panel, select Applications to access the application screen.
The main page listing all existing applications displays.

47.2 Creating a new application
After selecting the + icon in the top-left corner, you can create an application by providing the required
information. Use the tooltip to view descriptions of any properties that you have questions about.
When you have completed the creation of your application, select Save and close.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating
applications

TIBCO EBX® Product Documentation 6.2.0 262

47.3 Creating a new Data protection level (CIA) entry
You can create predefined data protection level configurations to apply to your applications. When
creating or updating an application, select + Create from the Data protection level (CIA) menu.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating
applications

TIBCO EBX® Product Documentation 6.2.0 263

47.4 Creating a new application type
As shown below, you can create a new application type from the Type menu by selecting + Create.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating
applications

TIBCO EBX® Product Documentation 6.2.0 264

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating data
elements

TIBCO EBX® Product Documentation 6.2.0 265

CHAPTER 48
Creating data elements

This chapter contains the following topics:

1. Overview

2. Creating a new data element

3. Creating a new data element type

4. Creating a new data element status

48.1 Overview
In the Metadata perspective's Catalog menu, select Data elements. The workspace changes focus
and displays all existing data elements.

48.2 Creating a new data element
Select the + to create a new data element record. In the screen that displays you can use the fields to
provide information about the data element. Use the tooltip to view descriptions of any properties that
you have questions about. When you have completed the creation of your application, select Save
and close.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Creating data
elements

TIBCO EBX® Product Documentation 6.2.0 266

48.3 Creating a new data element type
When creating a data element, you can use the Data element type menu to create a new data element
type.

48.4 Creating a new data element status
When creating a data element, you can create a new data element status using the Status menu.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 267

CHAPTER 49
Provisioning

This chapter contains the following topics:

1. Launch Provisioning Workflow

2. First step: content analysis

3. Second step: fill view elements

4. Third step: review

5. Forth step: approvals

6. Fifth step: view finalization

7. Validation

8. Published View Updates

49.1 Launch Provisioning Workflow
Provisioning is a process that allows you to define a view that aggregates selected assets or datasets.
In the case of datasets, the preferred asset will be used.
Select the datasets you want to include, and then click the Request provisioning icon (cart) in the
toolbar to launch provisioning.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 268

49.2 First step: content analysis
EBX® displays what can be done with the contents of the shopping cart.

After reviewing the elements select Start.

49.3 Second step: fill view elements

On this page, you’ll have to fill in key information for the view to be created. This view will be created
as an EBX® Metadata Management application asset. This asset must have a owner and must be

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 269

located in an instance of TDV where the view will be created. A justification is required by reviewers
and approvers to qualify you request.
The instances of TDV available are the ones that are automatically created on agent registration.

49.4 Third step: review
This step occurs only when a reviewer has been configured by an administrator.

49.5 Forth step: approvals
This step occurs only when at least one approver has been configured by an administrator.

49.6 Fifth step: view finalization
When all elements are set, select Finalize.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 270

49.7 Validation
You can check the created view in the EBX® Metadata Management application's assets table.

You can also check the creation of this Published TDV View in your TDV Studio.

49.8 Published View Updates
For TDV published views that were created using provisioning, the owner can perform update
operations from EBX®.

Add incoming flows to a published view
If you add an incoming flow to an asset of type TDV Published View, this triggers a publication of
the corresponding resource in TDV.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 271

In the Metadata menu of the main control panel, select Asset to display the main page listing all
existing assets. Then, open the TDV Published View asset that you wish to edit.

Select the Incoming flows tab.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 272

Select the + icon in the upper-left corner to create a new technical flow.

Select a source asset. Only assets that are the results of harvesting and can be published are presented
in this list.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 273

Select Save to validate creation of a new flow. Saving may take a little time because it will also create
a corresponding publication in TDV.

Remove incoming flows from a published view

Delete incoming flow
If you remove an incoming flow from an asset of type TDV Published View, this will trigger a removal
of the corresponding published resource in TDV.
In the Metadata menu of the main control panel, select Asset to display the main page listing all
existing assets.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 274

Open the TDV Published View asset that you wish to edit.

Select Edit and then the Incoming flows tab.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 275

Select the flow you want to remove and select Delete in the Actions menu.

This will delete the technical flow and also the corresponding published element in TDV, if one exists.

Disable asset used as incoming flow
If you manually disable an asset that is used as incoming flow for a published view, this triggers a
removal of the corresponding published resource in TDV.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Provisioning

TIBCO EBX® Product Documentation 6.2.0 276

In the Metadata menu of the main control panel, select Asset to display the main page listing all
existing assets will be displayed.
Select the asset you wish to disable and edit it.

Set the Disabled field to Yes.
A warning displays to indicate that this asset is used as an incoming flow for a TDV Published View.

This will delete the corresponding published element in TDV if one exists.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 277

CHAPTER 50
Regular expressions

This chapter contains the following topics:

1. Overview

2. Characters

3. Character classes

4. Predefined character classes

5. POSIX character classes (US-ASCII only)

6. Classes for Unicode scripts, blocks, categories and binary properties

7. Boundary matchers

8. Greedy quantifiers

9. Reluctant quantifiers

10.Possessive quantifiers

11.Logical operators

12.Back references

13.Quotation

14.Special constructs (named-capturing and non-capturing)

50.1 Overview
Regular expressions are used to classify assets and tie them to data elements depending on whether
the sample data of an asset matches with the regular expressions defined on data elements.

50.2 Characters
• x The character x

• \\ The backslash character

• \0n The character with octal value 0n (0 <= n <= 7)

• \0nn The character with octal value 0nn (0 <= n <= 7)

• \0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

• \xhh The character with hexadecimal value 0xhh

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 278

• \uhhhh The character with hexadecimal value 0xhhhh

• \x{h...h} The character with hexadecimal value 0xh…h (Character.MIN_CODE_POINT <=
0xh…h <= Character.MAX_CODE_POINT)

• \t The tab character (\u0009)

• \n The newline (line feed) character (\u000A)

• \r The carriage-return character (\u000D)

• \f The form-feed character (\u000C)

• \a The alert (bell) character (’007`)

• \e The escape character ('\u001B)

• \cx The control character corresponding to x

50.3 Character classes
• [abc] a, b, or c (simple class)

• [^abc] Any character except a, b, or c (negation)

• [a-zA-Z] a through z or A through Z, inclusive (range)

• [a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

• [a-z&&[def]] d, e, or f (intersection)

• [a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

• [a-z&&[^m-p]] a through z, and not m through p: [a-lq-z] (subtraction)

50.4 Predefined character classes
• . Any character (may or may not match line terminators)

• \d A digit: [0-9]

• \\D A non-digit: [^0-9]

• \s A whitespace character: [\t\n\x0B\f\r]

• \\S A non-whitespace character: [^\s]

• \w A word character: [a-zA-Z_0-9]

• \W A non-word character: [^\w]

50.5 POSIX character classes (US-ASCII only)
• \p{Lower} A lower-case alphabetic character: [a-z]

• \p{Upper} An upper-case alphabetic character: [A-Z]

• \p{ASCII} All ASCII:[\x00-\x7F]

• \\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

• \p{Digit} A decimal digit: [0-9]

• \p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 279

• \p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_``{|}~

• \p{Graph} A visible character: [\p{Alnum}\p{Punct}]

• \p{Print} A printable character: [\p{Graph}\x20]

• \p{Blank} A space or a tab: [\t]

• \p{Cntrl} A control character: [\x00-\x1F\x7F]

• \p{XDigit} A hexadecimal digit: [0-9a-fA-F]

• \p{Space} A whitespace character: [\t\n\x0B\f\r]

50.6 Classes for Unicode scripts, blocks, categories and
binary properties

• \p{IsLatin} A Latin script character (script)

• \p{InGreek} A character in the Greek block (block)

• \p{Lu} An uppercase letter (category)

• \p{IsAlphabetic} An alphabetic character (binary property)

• \p{Sc} A currency symbol

• \P{InGreek} Any character except one in the Greek block (negation)

• [\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)

50.7 Boundary matchers
• ^ The beginning of a line

• $ The end of a line

• \b A word boundary

• \B A non-word boundary

• \A The beginning of the input

• \G The end of the previous match

• \Z The end of the input but for the final terminator, if any

• \z The end of the input

50.8 Greedy quantifiers
• X? X, once or not at all

• X* X, zero or more times

• X+ X, one or more times

• X{n} X, exactly n times

• X{n,} X, at least n times

• X{n,m} X, at least n but not more than m times

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 280

50.9 Reluctant quantifiers
• X?? X, once or not at all

• X*? X, zero or more times

• X+? X, one or more times

• X{n}? X, exactly n times

• X{n,}? X, at least n times

• X{n,m}? X, at least n but not more than m times

50.10 Possessive quantifiers
• X?+ X, once or not at all

• X*+ X, zero or more times

• X++ X, one or more times

• X{n}+ X, exactly n times

• X{n,}+ X, at least n times

• X{n,m}+ X, at least n but not more than m times

50.11 Logical operators
• XY X followed by Y

• X|Y Either X or Y

• (X) X, as a capturing group

50.12 Back references
• \n Whatever the nth capturing group matched

• \k<name> Whatever the named-capturing group name matched

50.13 Quotation
• \ Nothing, but quotes the following character

• \Q Nothing, but quotes all characters until \E

• \E Nothing, but ends quoting started by \Q

50.14 Special constructs (named-capturing and non-
capturing)

• (?<name>X) X, as a named-capturing group

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 281

• (?:X) X, as a non-capturing group

• (?idmsuxU-idmsuxU) Nothing, but turns match flags i d m s u x U on - off

• (?idmsux-idmsux:X) X, as a non-capturing group with the given flags i d m s u x on - off

• (?=X) X, via zero-width positive lookahead

• (?!X) X, via zero-width negative lookahead

• (?<=X) X, via zero-width positive lookbehind

• (?<!X) X, via zero-width negative lookbehind

• (?>X) X, as an independent, non-capturing group

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata catalog > Regular expressions

TIBCO EBX® Product Documentation 6.2.0 282

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Governance > Governance overview

TIBCO EBX® Product Documentation 6.2.0 283

CHAPTER 51
Governance overview

This section describes how data is managed by the different business domains.
Each domain can have its own terminology and roles. Additionally, groups of users along with their
roles and entitlements over data are defined here.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Governance > Governance overview

TIBCO EBX® Product Documentation 6.2.0 284

Data programs aim to register any program, initiative or project around data.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Governance > Defining a business term

TIBCO EBX® Product Documentation 6.2.0 285

CHAPTER 52
Defining a business term

To define a business term, use the Governance menu in the Metadata and select Business Term to
open the corresponding screen. This screen displays all existing terms and gives access to the creation
menu to add new terms to the list.
Click on the + icon in the top left corner to access the creation screen.
When you have completed the creation of your business term, click on the Save and close button.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Governance > Defining a business term

TIBCO EBX® Product Documentation 6.2.0 286

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Metadata section overview

TIBCO EBX® Product Documentation 6.2.0 287

CHAPTER 53
Metadata section overview

The materialization of the dataset described in the catalog is documented in the Metadata section.
Asset are physical resources containing or providing data.
Their technical structures and properties according to their types are located in this section.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Metadata section overview

TIBCO EBX® Product Documentation 6.2.0 288

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 289

CHAPTER 54
Managing assets

This chapter contains the following topics:

1. Create an asset

2. Modify an asset

3. Complex data types

4. Asset types

5. Create a new asset type

6. Duplicate asset type

54.1 Create an asset
Under Metadata in the Metadata perspective, select Assets to view your assets.
Click on the + Asset button in the top left corner to access the asset creation screen.

54.2 Modify an asset
If you want to modify the current asset, click on the Edit button on the top left corner.
You will see the asset form pre-filled with existing data. You can modify what you want.
In the form view, you may see embedded tables. Each embedded table represent an association (way
to link your current asset to other elements). In this case, you can open the Actions menu and:

• Select one or multiple record(s) an detach it (them).

• Select one or multiple record(s) an delete it (them).

• Create a new target record.

• Associate to existing record.

54.3 Complex data types
Some asset types are defined as containing data. These assets can also contain a data type attribute.
The values that this attribute can carry are enumerated as data types and can be selected in a list. A
new occurrence can also be created. A data type is made of a label and a description and is mainly
informative. However, a flag can be set to define a type as complex. As soon as a data is complex, all

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 290

assets linked to this data type will share the same structure. It means that the sub tree starting from
this asset will be synchronized will all assets of the same type.

Here, Test_1 and Test_1_prime have the same complex type. Their structure are synchronized from the
creation of Test_1_prime which happened after the creation of Test_1. Any change on any attributes
of a child of Test_1 will affect its counterpart under Test_1_prime. Any deletion or creation will also
be mirrored by any assets of the same data type.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 291

54.4 Asset types

Name Description Asset type's parent Specific included fields

DB table Collection of related data
held in a table format within
a database. It consists of
columns and rows. DB
Schema

- Encoding- Partitioned
DB table- TableSpace-
Encryption- Sample file

N/A

DB Column Set of data values of
particular simple type. May
contain text values, numbers
or even pointers to files in the
operating system.

DB Table - Field type- Precision-
Encryption- Column index-
Sample file

DB Schema Database structure described
in a formal language
supported by the database
management system.

- Tablespace N/A

DB View Searchable object in a
database that is defined by a
query.

DB Schema - Tablespace

DB Function Perform basic operations,
such as Sum, Average,
Count, etc., and additionally
use criteria arguments,
that allow you to perform
the calculation only for
a specified subset of the
records in your database.

DB Schema - Tablespace

DB Synonym Represent an alias or alternate
name for a table, view,
sequence or other schema
object.

DB Schema - Tablespace

DB Sequence Database object which allows
users to generate unique
integer values.

DB Schema - Tablespace

REST Service REST web services allow
querying systems to
manipulate web resources via
their textual representations
through a set of uniform,
stateless, predefined
operations.

- Version- URL (endpoint or
URI)

N/A

REST Resource Object with a type, associated
data, relationships to other
resources, and a set of
methods that operate on it.

REST Service - Field type- URL (endpoint
or URI)

SOAP Service Simple object access protocol
service for exchanging
structured information.

- Version- URL (endpoint or
URI)

N/A

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 292

Name Description Asset type's parent Specific included fields

SOAP Operation Operation in a SOAP service
like getRecord, count, Create,
etc.

SOAP Service - URL (endpoint or URI)

SOAP Request Request to access soap
operation.

SOAP Operation N/A

SOAP Response Response returned from a
soap request link to a specific
soap operation.

SOAP Operation N/A

Excel Workbook Collection of one or more
spreadsheets also called
worksheets.

- Version- Encoding- Locale-
Attribute value- Encryption-
File name- File size- File
extension- Header present-
Protected- Sample file

N/A

Excel Worksheet Single page in a file created
with Excel.

Excel Workbook - Protected- Order- Sample
file

Excel Worksheet Array Array of worksheet. Excel worksheet - Number of lines- Start line-
Protected- Sample file

CSV file Comma separated value file
which allows data to be saved
in a tabular format.

- Version- Encoding-
Encryption- File name- File
size- File extension- Line
separator- String delimiter-
Header present- Start line-
Protected- Sample file

N/A

Column Represent a column in a CSV
file or excel worksheet.

- CSV file - Excel Worksheet - Format- Field type- Default
value- String delimiter-
Column index- Row index-
Formula- Orientation-
Sample file

XML File Extensible markup language
data file. Formatted much
like an HTML document but
uses customs tags to define
object and the data within
each object.

- Version- Encoding- XML
Encoding- Encryption-
File name- File size- File
extension- Protected- Sample
file

N/A

XML Stream Stream of xml content. - Encoding- XML Encoding N/A

XML Element Is everything from the
element's start tag to the
element's end tag.

- XML file - XML Stream - Field type- Node type-
Default value- TagName
(attribute name)- Pattern-
Range- Enumeration-
Maximum length- Minimum
length- Sample file

XML Attribute Contains data related to a
specific element.

XML Element - Field type- Default value-
Sample file

JSON File File that stores simple
data structures and objects
in JavaScript Object
Notation(JSON) format,
which is a standard data
exchange format.

- Version- Encoding-
Encryption- File name-
File size- File extension-
Protected- Sample file

N/A

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 293

Name Description Asset type's parent Specific included fields

JSON Element Data structure in a JSON.
Data can be a json object,
text, number, boolean, etc.

- JSON file- JSON stream - Format- Field type- Default
value- Array length- Media
encoding- Content media
type- Pattern- Range-
Enumeration- Maximum
length- Minimum length-
Sample file

JSON Property Each JSON Element is
identified by its JSON
property.

JSON Element - Field type- Default value-
Sample file

JSON Stream Stream of JSON content. - Encoding N/A

TDV Published view Specific TIBCO® Data
Virtualization published view.

- Encoding- Sample file N/A

Undefined Default asset type for
unknown format.

N/A N/A

54.5 Create a new asset type
You can create a new asset type by clicking the + button on the top left corner of the asset type main
view.
You will see a form with fields to complete.

54.6 Duplicate asset type
If you want to create your own asset type from an existing one, you can click on the duplicate action
button.
First of all, you will need to display the asset type you want to duplicate by clicking on it if you are
in the hierarchical view or clicking on the More button in the card view mode.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Metadata > Managing assets

TIBCO EBX® Product Documentation 6.2.0 294

In the asset type view form, click on the duplicate button on the top left corner.

You will see a pre-filled form in which you can make your updates.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Technology overview

TIBCO EBX® Product Documentation 6.2.0 295

CHAPTER 55
Technology overview

Data management relies on instances that are represented as many systems.
This is an instance of a system running on a given infrastructure which exposes data.
Systems can also be any system entering in the process of data management and governance.
They are provided by a provider which can be a vendor or any other external or internal organization.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Technology overview

TIBCO EBX® Product Documentation 6.2.0 296

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create an instance

TIBCO EBX® Product Documentation 6.2.0 297

CHAPTER 56
Create an instance

In the Technology group of the Main perspective, select Instances to access the instance screen. The
main page listing all existing instances displays.
From there you have multiple choices for instance creation:

• Click on the + icon in the top left corner to access the creation screen and create an instance from
scratch.

• Click on the squared + icon in the top left corner to access the creation screen from the Agent.

For the instances created from scratch you have a possibility to create a corresponding data source
in TDV and harvest metadata automatically. See Create data source from instance [p 365] for more
information.
This chapter contains the following topics:

1. Create an instance from the Agent

56.1 Create an instance from the Agent
To create an instance from the agent you will need to have an available agent connected to your
TIBCO® Data Virtualization application.
On the instance’s main page, click on the + icon at the top.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create an instance

TIBCO EBX® Product Documentation 6.2.0 298

The main page listing all available data sources to add displays. In this page, you can select one or
more data sources you want to add by clicking on the checkbox and selecting + Create instance(s)
in the top left corner.

At the end of the creation, you will see a success message and the instance will be automatically added
to the instance list.
Attributes description displayed on the data source selection list:

• Datasource identifier in TDV: TDV identifier of the data source in your application.

• Datasource type: Type of the data source like Oracle, PostgreSQL …

• Instance identifier in the EBX® Metadata Management application: Identifier of the selected
instance in the instance table of theEBX® Metadata Management application.
The identifier is empty if the corresponding instance does not exist in the EBX® Metadata
Management application.

• Status: Status of the TDV data source in the EBX® Metadata Management application. If equals
to NEW, the data source does not exist in the application. If equals to STORED, the data source
already exits.

• Created at: Datasource creation date.

• Updated at: Datasource last updated date.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system

TIBCO EBX® Product Documentation 6.2.0 299

CHAPTER 57
Create a system

This chapter contains the following topics:

1. Overview

2. Create a new system

3. Create a new stack

57.1 Overview
In the Technology group of the Main perspective, select Systems to access the system screen. A
main page listing all existing systems displays.
If you click on Hierarchy view, you will see a few built-in systems needed for harvesting and
provisioning features.

• TIBCO Data Virtualization

• IBM DB2 (several versions)

• HBase (several versions)

• HSQLDB

• Microsoft Excel

• Microsoft SQL Server (several versions)

• Oracle MySQL (several versions)

• Oracle Database (several versions)

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system

TIBCO EBX® Product Documentation 6.2.0 300

• PostgreSQL (several versions)

These built-in systems cannot be deleted as are needed by harvesting & provisioning features. You
are able to create other systems and system types, according to your needs.

57.2 Create a new system
After clicking on the + icon in the top left corner, you have access to the creation screen. In this screen
you have to fill system information.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system

TIBCO EBX® Product Documentation 6.2.0 301

57.3 Create a new stack
A stack is a way to rationalize information system and technical architecture governance by associating
different systems together in a structured manner and trying to limit the combinations between them.
In the EBX® Metadata Management application, a stack is defined as a system referencing another
system.
To define a new Stack, create a new System using System type = Stack and fill the other System
attributes.
Then you have two possibilities to define the stack components

• From the Stack itself, in the Stack components tab, associate the components (Systems) of this
stack (for instance, a database + an application server and a web server, to define a web application
stack)

• From each component, in the Stacks tab, associate this component to the wanted stack.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system

TIBCO EBX® Product Documentation 6.2.0 302

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system type

TIBCO EBX® Product Documentation 6.2.0 303

CHAPTER 58
Create a system type

The system types have multiple uses. For example:

• Sorting systems into families

• Defining stacks

• Defining operating systems for infrastructures

• Typing TDV infrastructure to allow provisioning

In the Technology menu of the main control panel, select Systems to access the system screen. When
creating a System, you have to define its type.
A few built-in system types are defined:

• Operating System: this one is used to filter available operating systems in infrastructure definition
page

• Database System

• Middleware

• Application Server

• Web Server

• Enterprise Service Bus

• Infrastructure Service

• Security Service

• Storage System

• Messaging System

• Event Management System

• Caching System

• File System

• Agent

• Datawarehouse

• Datamart

• Datalake

• ETL

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system type

TIBCO EBX® Product Documentation 6.2.0 304

• Hadoop-based Platform

• Registry/Directory

• Gateway

• Stack: this one is used to define [stacks]./manage_systems.html)

• Data Virtualization (TIBCO® Data Virtualization for instance)

• Cloud Platform

• Spreadsheet

• Master Data Management

• ERP

• Business Intelligence

• Undefined

This chapter contains the following topics:

1. Create a new system type

58.1 Create a new system type
You can create other system types if built-in types are not sufficient for your usage.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system type

TIBCO EBX® Product Documentation 6.2.0 305

On system creation/update page, on system type selection you can create a new system type

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a system type

TIBCO EBX® Product Documentation 6.2.0 306

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create an infrastructure

TIBCO EBX® Product Documentation 6.2.0 307

CHAPTER 59
Create an infrastructure

This chapter contains the following topics:

1. Create an infrastructure type

2. Create a new infrastructure type

59.1 Create an infrastructure type
The infrastructure types are used to classify infrastructures between families. In the Technology group
in the Main perspective, select Infrastructuresto access the infrastructure screen. When creating
an infrastructure, you have to define its type.
A few built-in infrastructure types are defined

• SaaS Application

• Paas Instance

• IaaS Instance

• Physical Server

• Virtual Server

• Containerized: use of Docker technology, for instance

• Serverless

• Appliance: Oracle Exadata, for instance

• Mainframe

• IOT Device

• Mobile Device

• Virtual Desktop

• Personal Computer

• Undefined

59.2 Create a new infrastructure type
You can create other infrastructure types if built-in types are not sufficient for your usage.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create an infrastructure

TIBCO EBX® Product Documentation 6.2.0 308

On infrastructure creation/update page, on infrastructure type selection you can create a new
infrastructure type:

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a provider

TIBCO EBX® Product Documentation 6.2.0 309

CHAPTER 60
Create a provider

In the Technology menu in the Metadata perspective, select Providers to access the provider screen.
The main page listing all existing providers displays.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Technology > Create a provider

TIBCO EBX® Product Documentation 6.2.0 310

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Privacy overview

TIBCO EBX® Product Documentation 6.2.0 311

CHAPTER 61
Privacy overview

The management of data privacy, as it is required by many regulation authorities, means keeping an
inventory of processing activities and personal consents. It also requires you to register any request
coming from personal data owners and communicate data breaches to them.
Connected to physical assets containing them, systems processing them and concepts defining their
nature, all conditions are unified to ensure compliance with rules that their usage implies.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Privacy overview

TIBCO EBX® Product Documentation 6.2.0 312

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Processing activities

TIBCO EBX® Product Documentation 6.2.0 313

CHAPTER 62
Processing activities

Located in the Metadata perspective under Privacy, the Processing activities table registers all
processing activities for your company. For regulation compliance purposes, it is important that
companies can provide this registry of activities. This is especially true for activities related to personal
information.
Each processing activity gathers information such as the purpose, the responsibilities, the impact
assessment, the related data categories and personal data categories.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Processing activities

TIBCO EBX® Product Documentation 6.2.0 314

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Consents

TIBCO EBX® Product Documentation 6.2.0 315

CHAPTER 63
Consents

Located in the Metadata under Privacy, the Consents table allows you to track individual consent
for given processing activities and personal data.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Consents

TIBCO EBX® Product Documentation 6.2.0 316

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Data breaches

TIBCO EBX® Product Documentation 6.2.0 317

CHAPTER 64
Data breaches

Located in the Metadata under Privacy, the Data breaches table handles reporting of detected data
breaches. A breach concerns a given instance. Most regulation requires that a notification is submitted
to supervisory authorities that includes: breach status, discovery date, submission date, impacted
customers, etc.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Data breaches

TIBCO EBX® Product Documentation 6.2.0 318

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Requests

TIBCO EBX® Product Documentation 6.2.0 319

CHAPTER 65
Requests

Most data privacy regulations give individuals the right to request that a company disclose what data
from the individual the company manages and processes. For instance, chapter III of the GDPR text
lists the access, rectification, portability, erasure, processing restriction and object rights of a person.
Located in the Metadata perspective under Privacy, the Requests table allows you to keep track of
such requests and their progress.

Documentation > User Guide > EBX® Metadata Management > User Interface > Navigation pane > Privacy > Requests

TIBCO EBX® Product Documentation 6.2.0 320

Documentation > User Guide > EBX® Metadata Management > User Interface > Workspace

TIBCO EBX® Product Documentation 6.2.0 321

CHAPTER 66
Workspace

This chapter contains the following topics:

1. Overview

2. Data views

66.1 Overview
The workspace displays metadata and allows you to perform related actions. Except for the home
section, all menu items display a default view to access a list of entities. A grid contains cards that
represent an entity of the same kind, such as an application or a business term. A hierarchical view
is used to provide a default view of assets.
A toolbar displays in the upper left corner of the workspace. It allows an authorized user to create
records by clicking on the plus icon. When the created item is subject to a workflow, this button

Documentation > User Guide > EBX® Metadata Management > User Interface > Workspace

TIBCO EBX® Product Documentation 6.2.0 322

launches a creation workflow. This toolbar also allows you to switch to the default tabular view or to
the default hierarchical view. Select the clock icon to access modification history for the current entity.

66.2 Data views
From an initial view, you can access other views and services to display metadata or perform actions.
When browsing in views, a built-in breadcrumb allows you to navigate to previous pages. This is the
recommended method of navigation as browser navigation buttons are not fully supported.

Documentation > User Guide > EBX® Metadata Management > User Interface > Workspace

TIBCO EBX® Product Documentation 6.2.0 323

When in the Metadata perspective, you have access to all of the standard EBX® data views:

• Tabular view

• Hierarchical view

• Tile view

• Graphical view

• Details view

• Custom views you create [p 347]

Documentation > User Guide > EBX® Metadata Management > User Interface > Workspace

TIBCO EBX® Product Documentation 6.2.0 324

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 325

CHAPTER 67
Home page

This chapter contains the following topics:

1. Overview

2. Home page widgets

3. Customize your home page

67.1 Overview
The Home page displays a global metadata view using widgets that allow quick access to services
and data.
As shown below, the first time you access the Home page you can choose to:

• Use the default home page: Selecting this option displays the default home page, which you can
customize later. See customize your home page [p 340] for more information.

• Create your home page: Selecting Configure my home page displays an unpopulated home page
and an Add widget button in the top left corner. Use this button to choose from and add available
widgets to your home page. Use the Save button to save changes.

67.2 Home page widgets
The Home page displays information on widgets. You can create your own widget from a widget type
or use a pre-configured widget. The following section describes the types of widgets available.

Widget types
There are multiple widget types available. For example, there is a widget for quick access to search
globally, another one for quick access to a specific table. The following sections describe the available
widgets.

Global search widget
This widget displays a search bar where you can enter search terms to search using the Global search
service. Configuration options are not available for this widget.

Metadata agent status widget
This widget displays metadata agent status. You can see if an agent is connected and, if not, the reason
why. This widget includes the following configuration options:

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 326

• Title: widget title

• Description: widget description

• Agent: Optional parameter to limit the displayed agents to one or many selected agents

Workflow tasks widget
This widget displays the workflow tasks that are waiting for you or offered to you. From this widget
you can click on a task to access the workflow view or the workflow graph view. If a task is offered

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 327

to you but not already allocated, a pop-up message displays to inform you that it will be allocated to
you. Configuration options are not available for this widget.

Number of elements widget
This widget displays an entity’s top rated elements. You can click on an element to access it. If no
element is rated, this widget displays an empty sign. This widget includes the following configuration
options:

• Title: widget title

• Description: widget description

• Entity: select the entity you want to display

• Number of elements: number of top rated elements to be displayed

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 328

• Predicate: Xpath predicate format to filter the selected entity

Last created elements
This widget displays last created elements from selected entities. You can access the element by
clicking on it. Hover your mouse over an element to display a tooltip that includes the creation time
and creator’s user name. This widget includes the following configuration options:

• Title: widget title

• Description: widget description

• Entity: select one or more entities that you want to display

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 329

• Number of elements: maximum number of elements to display

Last modified elements
This widget displays the most recently modified elements from selected entities. You can access
the element by clicking on it. Hover your mouse over an element to display a tooltip that includes
the modification time and and the user name that made the modification. This widget includes the
following configuration options:

• Title: widget title

• Description: widget description

• Entity: select one or more entities that you want to display

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 330

• Number of elements: maximum number of elements to display by entity

Widget “Library” and “My widget”
On the Add widget dialog you can choose:

• The Library tab to display pre-configured widgets or shared widgets.

• The My widget tab to display your widgets.

Create/Duplicate/Update/Delete a widget
You can create any widget type you want. You can duplicate an existing widget from your widget
library or from the shared ones. You can only update or delete your own widgets.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 331

Create a widget
To create a new widget, click on the gear icon in the top left corner of the home page.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 332

You are now in home page edit mode. Click on Add widget in the top left corner.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 333

A dialog displays that allows you to create a widget. Select Create widget to open the widget
configuration wizard and begin the creation process.

The widget configuration wizard includes the following steps:

• Select the widget type.

• Configure widget: configure widget values and specific widget type attributes.

• Share widget: configure the widget sharing parameter. A shared widget is available for other users.

• Verify widget: verify widget information and process creation.

Note

You must enter all required information at each step to move to the next. The Next button
is disabled until you do.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 334

The following sequence of images shows a sample widget creation:

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 335

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 336

Modify a widget
When you modify a widget, a simplified version of the widget configuration wizard allows you to
modify: type attributes, the sharing configuration, and verify and apply the changes.
To modify widget:
If the widget you want to edit is on your Home page:

1. Select the gear icon to edit the Home page.

2. Select the edit icon on the widget you want to modify.

3. Complete the steps in the wizard.

If the widget you want to edit is not on your Home page:

1. Select the gear icon to edit the Home page.

2. Select Add widget and in the dialog that displays, select the My widget tab.

3. Select the edit icon on the widget you want to modify.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 337

4. Complete the steps in the wizard.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 338

The following sequence of images demonstrates the widget modification process.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 339

Duplicate a widget
To duplicate an existing wizard:

1. Select the gear icon to edit the Home page.

2. Select Add widget.

3. Choose the desired widget from the library or your collection and select its duplicate icon. The
configuration wizard displays.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 340

4. Complete the steps in the wizard to duplicate the widget and add it to your current home page.

Delete a widget
You can only delete widgets that you have created. To delete a widget:

1. Select the gear icon to edit the Home page.

2. Select Add widget.

3. Select the My widget tab.

4. Select the delete icon on the desired widget. The widget is deleted after you confirm the action.

Note: if your widget was shared or was in use in your home page, this action will remove it for you
and all other users.

67.3 Customize your home page
If you prefer to display a specific widget instead of another you can do it thanks to home page
customization.
If you start from the default home page or from a blank one, you can:

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 341

• Modify widget position [p 341]

• Add/Remove pre-configured widget [p 342]

• Add/Update/Remove a widget created by you [p 345]

Modify widget position
To move a widget:

1. Select the settings icon.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 342

2. Select and drag a widget to the desired location.

3. Save your modifications.

Add/Remove pre-configured widget
To add and remove widgets, enter Home page edit mode by selecting the settings icon.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 343

To remove a widget, select its close icon.

To add a widget:

1. Select Add widget.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 344

2. From the Library tab, select the widget you want to add.

Note

Widgets are added to the end of your home page. Once it is added, you can move to the
desired location. You can only add a widget that is not already on your home page.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 345

Add/Update/Remove a widget created by you
Use the steps in the previous section, but select the My widgets tab in the Add widget dialog box.

Documentation > User Guide > EBX® Metadata Management > User Interface > Home page

TIBCO EBX® Product Documentation 6.2.0 346

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 347

CHAPTER 68
Custom views

This chapter contains the following topics:

1. Overview

2. Tabular views

3. Hierarchical views

68.1 Overview
You can customize views in the EBX® Metadata Management application based on the requirements
of target users. You can create the following types of views:

• Tabular: A table view to sort and filter the displayed records.

• Hierarchical view: A tree view that links data in different tables based on their relationships.

68.2 Tabular views
In the table view mode, select the View button on the top right corner. The menu that displays allows
you to:

• Apply an existing view by clicking on the view’s name.

• Manage existing views, if you have sufficient permission.

• Create a new view.

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 348

Creating a new view
To create a new view, select View, then Create a new view.

In the dialog box that displays, you can:

• Set the name

• Set the owner

• Set profile/user to share the view with

• Set the view mode

To create a new tabular view, set the view mode to Simple tabular view. If you want to share your
view with other users you can:

• Set the profile (identified by [profile-name]): the view is shared with all users included in the
profile.

• Set the user: the view is shared with only the specified user.

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 349

Click on the Next button to continue the creation process. You are presented with the options shown
in the following image and described below.

In the next view you can:

• Select columns you want to display.

• Set columns order.

• Add a filter.

• Set the pagination (number of records per page).

• Enable grid edit and set a toolbar. A toolbar corresponds to a list of available actions on the top
of the table. You can set:

• Light generic toolbar for the table view.

• Generic toolbar for the table view.

Finally, save your new view or select Save and apply to save it and return to the table view with
your new view applied.

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 350

Applying an existing view
To apply an existing view, open the View menu and select the view you want to see.

68.3 Hierarchical views

Creating new hierarchical view
To create a new hierarchical view, follow the steps above to create a tabular view. However, in the
step to select the view mode, select Hierarchical view.

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 351

Select Next to define the hierarchy’s dimensions and other options. The following image and list
highlight some options:

• Display records in a new window: If Yes, a new window will be opened with the record. Otherwise,
it will be displayed in a new page of the same window.

• Prune hierarchy: If Yes, hierarchy nodes that have no children and do not belong to the target
table will not be displayed.

• Display orphans: If Yes, hierarchy nodes without a parent will be displayed.

• Display root node: If No, the root node of the hierarchy will not be displayed in the view.

• Root node label: Localized label of the hierarchy root node.

• Toolbar on top of hierarchy: Allows you to set the toolbar on top of the hierarchy.

• Display non-matching children: In a recursive case, when a search filter is applied, allows the
display of non-matching children of a matching node during a search.

• Remove recursive root leaves: In a recursive case, when a search filter is applied or if the mode
is pruned, removes from the display the root leaves.

• Detect cycle: Allow cycle detection and display in a recursive case; the oldest node record will
be chosen as the cycle root. Note that this does not work in search or pruned mode.

Documentation > User Guide > EBX® Metadata Management > User Interface > Custom views

TIBCO EBX® Product Documentation 6.2.0 352

Select Next to define how you want to display each node of your hierarchy.

In this view you can:

• Switch to node by clicking on the node name.

• Define label.

• Add a filter.

Finally, select Create to create your view or Create and apply to apply it after creation.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Advanced data services overview

TIBCO EBX® Product Documentation 6.2.0 353

CHAPTER 69
Advanced data services overview
Advanced data services allow you to connect to the TIBCO® Data Virtualization (TDV) tool to harvest
metadata from the data sources that already exist in your system or to create aggregated views in TDV
using EBX® metadata assets. To use this functionality you must have a TIBCO® Metadata agent
installed and configured on your system and registered.
If you have administrative access, see Installing the TIBCO® Metadata Agent [p 755] for more details.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Advanced data services overview

TIBCO EBX® Product Documentation 6.2.0 354

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 355

CHAPTER 70
Metadata harvesting

This chapter contains the following topics:

1. Overview

2. Start harvesting service

3. Harvesting main view

4. Create a new configuration

5. Run configuration

6. Use an existing configuration

7. Schedule a harvesting

8. Create data source from instance

9. Specific Cases

70.1 Overview
Metadata harvesting is the process of gathering metadata from a data source that exists in your system
and is supported by TDV and store it as an EBX® Metadata Management application asset.
You can run harvesting for data sources that are already configured in the TDV or for the new sources
defined in the EBX® Metadata Management application.
If you start the Harvesting service from an asset or a selection of assets, please, make sure that all
assets were previously harvested by the Metadata agent.
If you start the Harvesting service from an instance or a selection of instances, you can create a data
source in TDV for any that do not yet exist. See Create data source from instance [p 365] for more
information.
The Harvesting service cannot be run on disabled assets or instances.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 356

70.2 Start harvesting service
On the asset hierarchical view or instance view, select one or more assets or instances for which you
want to harvest metadata. Select the cloud icon to begin harvesting. The harvesting main view displays.

70.3 Harvesting main view
The harvesting main view displays your current selection and existing configurations.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 357

An existing configuration is a harvesting that was already executed for one or several elements related
to your current selection. If no existing configuration is available you will see a main view similar
to the one in the screenshot below:

If you have an existing configuration, you will see something like the screenshot below:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 358

From an existing configuration, you can perform the following actions:

• Run

• Schedule

• Configure

• Duplicate

• Extend with current selection

See Use an existing configuration [p 362] for more information.

70.4 Create a new configuration
From the main view, click on the bottom right New Configuration button. The new configuration
screen displays.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 359

In this screen, start by adding a configuration name. This is necessary for displaying more actions.

On the top of this screen, you can see options:

• Include data sampling: for the assets eligible for sampling harvesting will retrieve data samples
from the source system, if available. See Asset sampling [p 369] for more details regarding
supported types.

• Force sampling (activates Include data sampling automatically): force data sampling on your
assets (overwrite existing samples).

• Automatic classification suggestion: the harvesting will also start the classification of your assets.

• Force refresh of classification suggestion (activates Automatic classification suggestion): if your
asset already has a classification suggestion, this option will force the harvesting to update it.

• Classify assets automatically (activate Automatic classification suggestion): Apply the
classification suggestion to your asset instead of giving you a list of potential matches.

• Include lineage: if your harvesting contains assets of type TDV Published View, the lineage will
be extracted and stored for them. As lineage can be quite complicated and concern a large number
of resources, it is recommended to activate this option only for scheduled runs, not for immediate
harvesting executions.

• Include profiling: for eligible assets (DB tables, CSV files, Excel worksheets) cardinality statistics
and other profiling information will be included in the harvesting results. As queries for statistics
can be time consuming on large data sources, it is recommended to activate this option only for
scheduled runs, not for immediate harvesting executions.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 360

In the hierarchical view, you can perform multiple actions:

1) This action allows you to unselect all children and keep the
parent node selected. This is only available if the node has
children.

2) Select or unselect the node for harvesting. If the node has
children, this action will also select/unselect all children.

3) Expand more or expand fewer children. Clicking on this
icon will display children if they exist, if not you will see
No data message. If you have connection issues with TDV,
you may see an error here.

This is not an action but the name of the instance/asset with the logo. The subtitle contains the
following storage information: - New: this is a new instance/asset - Stored: instance/asset is already
in the EBX® Metadata Management application.
Once you give your configuration a name and if at least one element is selected for harvesting, you
will see Save and Save and Run buttons on the bottom:

• Save: Only saves your configuration. After saving it, you can schedule it if needed. See Schedule
a harvesting [p 363] for more information.

• Save and Run: Save your configuration and run the harvesting. This action will display the Run
screen of the harvesting

Data profiling
Data profiling is available for following asset types:

• DB table and its columns

• CSV file and its columns

• Excel Worksheet and its columns

If one of such assets is present in the scope of your harvesting (as a root asset or as a descendant),
you can activate data profiling for it.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 361

Please, note that data profiling can take time to be gathered from the physical data source, so we
recommend to only activate this option for scheduled configurations and do not use it with direct
running.
Following information can be retrieved from the data source:

• Completeness rate: shows the part of non-null values in total values.

• Uniqueness rate: shows the part of unique values in total values.

• Most frequent values: lists top 5 values that are most common in this column.

• Minimal value: shows the minimum value in this column.

• Maximal value: shows the maximum value in this column.

70.5 Run configuration
If you select Save and Run from the configuration view, you will start the harvesting. First the
application needs to communicate with TDV, that’s why you will see the progress view.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 362

After that, the progress table displays.

This table is auto-updated to display the status of the harvesting. You have multiple available actions:

• In the Instances or Assets column, you can select the … to display the full list of instances/assets.
The list displays in a pop-up. Click outside the popup to close it.

• In the Results column, once the status is Success, you can select Preview to display harvesting
results. If the status is Failed or In progress, this button is not available.

• If results are correct for you, you can check the Accept results checkbox to approve them. This
checkbox is checked by default.

• Select Validate and return to main view to:

• Accepts results and add them in the asset table if Accept results is checked. You will be
redirect to the main view.

• Reject results if Accept results is not checked. You will be redirected to the main view.

• Click on the Back button to go back to the main view. From the main view, you will be able to
return to this progress view if your harvesting is not validate yet.

Once you validate results, you will see on the main view that your configuration status is updated.

70.6 Use an existing configuration
From the main harvesting view, if you have existing configurations, the following actions are
available:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 363

1) Run the configuration. You will see the progress view, then
the progress table.

2) Schedule the configuration.

3) Configure the current configuration. You will see the
configuration screen.

4) Extend the configuration with current selection. The
configuration screen displays and the harvesting scope is
merged with your current selection.

5) Duplicate the current configuration. A copy of this
configuration displays on the configurations list.

See the progress table view. This option is only available if the configuration status is Pending for
approval.
Selecting Configure displays the configuration screen. This screen is similar to the one evoked in
the Create a new configuration [p 358] section but the instance/asset hierarchy, configuration name,
configuration options are pre-populated. You will be able to change them and save it.

70.7 Schedule a harvesting
You can schedule one or several executions of an existing harvesting configuration. There are two
ways to do so:

• From the configuration view, after saving the configuration, by selecting Schedule on the bottom.

• From the main view by selecting Calendar.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 364

Clicking on the button displays a dialog box where you can configure the scheduling.

To save the scheduling you have to insert the date. Date This field is mandatory Insert the date and time
here. You can use the arrow on the right to display the calendar. Interval between multiple scheduling
if repeat is set. Unit of the interval. By default, it is in minutes but you can change it to hours or days.
Repeat Number of repeats for the scheduling. To repeat this harvesting to infinite, check the Infinite
checkbox.
Example: You want to schedule the harvesting every month. The date is 01/01/current year, interval
28 days and repeat is 12.
If you want to cancel harvesting, you have to be sure that the configuration is already scheduled.
You can see it from the main view, the configuration will have the status Scheduled and the next
execution date.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 365

By selecting the calendar icon near the configuration, the schedule dialog box will display a Remove
schedule button. Click on it to cancel scheduling.

70.8 Create data source from instance
If you wish to harvest metadata for a data source that is not yet configured in TDV, you can configure
it directly from the EBX® Metadata Management application.

Prerequisites
To do so, first you need to check that all necessary information is provided in the instance’s attributes
and that the instance type is supported for creation by the EBX® Metadata Management application.
Currently, you can create:

• relational data sources;

• file-based data sources, such as Excel, XML, WSDL or CSV;

• SOAP data sources;

• REST data sources (for these data sources, manual creation of the operations is required in TDV
after creating the data source).

A complete list of supported adapters is available in the Administration - Datasource Types table
with attribute Creatable? = Yes.
An instance that you want to use to create a data source in TDV must provide necessary properties
to connect to the physical data source from TDV. Below is the list of mandatory attributes depending
on the type of the data source.

Create and harvest
Start creation of the new harvesting configuration for your instance as described in Create a new
configuration [p 358] section.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 366

Click to expand children of the instance and the Create datasource button displays.

Click on it to show the list of available Metadata Agents. Click on the agent that you wish to use for
data source creation to launch the process.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 367

Wait for the process to complete. In case the creation was successful you will see a message Done in
green. Finalize the process by selecting Finish.

This should reload the harvesting screen and allow you to see the direct children of the instance.

You can now continue with harvesting configuration as described in previous sections.

70.9 Specific Cases

Harvesting REST Resources
The EBX® Metadata Management application supports harvesting of REST resources documented
manually in TDV. This comes with a specific behavior due to the way resources are documented in

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Metadata harvesting

TIBCO EBX® Product Documentation 6.2.0 368

TDV. Indeed, the EBX® Metadata Management application represents REST resources according to
the RESTful architecture which is not the case in TDV.
Here is the way REST Resources are displayed:

Harvesting configurations on Assets under Operation in the hierarchy are not possible since these
resources are created by the agent and do not exist in TDV.
During the configuration of a harvesting from a REST Datasource, you will see all the operations
registered in TDV, but no REST Resource asset as they are created by the EBX® Metadata
Management application.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset sampling

TIBCO EBX® Product Documentation 6.2.0 369

CHAPTER 71
Asset sampling

This chapter contains the following topics:

1. Overview

2. Asset type available for sampling

3. How to request a sample

4. Wrong asset selection for sampling

5. XML Element sampling

71.1 Overview
Asset sampling allows you to request a sample data in a file to see the content of the asset. By default,
the sample contains the 100 top rows from the target source.
From the asset view, you can request a sample file if the asset is available for sampling.

71.2 Asset type available for sampling
You can request a sample on the following asset types:

• DB Table (database table)

• EXCEL worksheet

• CSV file

• TDV published view

• XML Element (which is marked as object root)

Sampling cannot be run on disabled assets.
Sampling can only be run for the assets that were created using the Metadata harvesting [p 355] service.

71.3 How to request a sample
Start by displaying the asset’s view by selecting Assets in the perspective menu.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset sampling

TIBCO EBX® Product Documentation 6.2.0 370

On the hierarchical view, select one or more assets for which you want a sample file. Once it’s done,
select the eye icon on the top to request sample.

You will see a progress message and a success message when finished.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset sampling

TIBCO EBX® Product Documentation 6.2.0 371

You can close the service and go back to your asset to download the sample file. On the asset view,
locate the Sample file field, hover your mouse cursor on the file. A tooltip displays a download button.

You can finally open the file.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset sampling

TIBCO EBX® Product Documentation 6.2.0 372

71.4 Wrong asset selection for sampling
If you have selected an asset which is not available for sampling, you will get an error message.

71.5 XML Element sampling
For XML structures it is possible to obtain a sample in XML format based on an asset of type XML
ELEMENT.
As XML document structure is open and can be analyzed under different angles, you can define for
which object in your XML you wish to sample.
To accomplish this, open the corresponding asset for editing, scroll down to the Object root property
and set it to Yes:

Save the asset to apply changes.
Now you can request sampling for this asset in the harvesting process [p 355].

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 373

CHAPTER 72
Asset classification

This chapter contains the following topics:

1. Overview

2. Manual classification

3. Using classification console

72.1 Overview
You can match assets with data elements. It’s the main feature that explains how a business object is
linked to a technical object.
It’s possible to define this link on your own but it could take time on many assets. The classification
feature helps you to find the match between an asset (technical) and a data element (business).

72.2 Manual classification
On the asset view, click on the edit icon on the top left corner.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 374

Then select the data element in data element list.

You can search by entering the data element name. Do not forget to save your update.

72.3 Using classification console
Instead of searching and selecting the data element by yourself, you can use the Classification
Console to give you some suggestions on the right data element to link to the current asset.
This option is using a predefined algorithm and needs data to get more efficiency.

• From the hierarchical view, select one or more assets that you want to classify then select the
Classify icon:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 375

• From a single asset view, select the classify icon:

A new screen displays and shows the current selected asset and its children if they exist.

On this screen you can:

1. Expand or collapse the hierarchy (only available for asset with children).

2. Click on the asset name to see details.

3. See asset classification ratio (if asset and its children are classified).

4. Search and select the data element to link with the asset.

5. Lock or unlock the data element for automatic classification.

6. Access extra options like running automatic classification.

On the bottom bar you can:

• Save your current modification.

• Save and close the classification console.

• Revert the current modification.

• Close the classification console (which will display a confirmation pop-up if you have current
unsaved modifications).

Search and select a data Element
Select the data element box to view:

• Data element suggestion list if one exists.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 376

• Data element list.

You can search a data element by entering text. You can see data element details by clicking on the
preview icon.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 377

If a data element select box contains suggestions you will see a notification near it. By clicking on the
box, you will see the suggestions and all data element.

A suggestion displays the matched result in percentage and information about the classification
configuration used.
If you have done modifications, you will see a blue exclamation point on the left side of the data
element select box.
By hovering your mouse over it, you can see current modification details (data element change, asset
locked or unlocked).

Run automatic classification
To access extra options, click on the vertical menu button on the right side of lock option. Select Run
classification. A pop-up displays and allows you to:

• Select the classification configuration.

• Force a refresh of classification suggestions.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Asset classification

TIBCO EBX® Product Documentation 6.2.0 378

• Classify assets automatically (this will select the best matching data element for you. If you have
unsaved changes, a warning message will inform you that you may lose modifications if you
don’t save them before processing).

Click on process icon to start classification. While the classification is running, you cannot run a new
one on the current asset and its children.
Do not forget to save modifications after leaving the classification console.

Lock an asset
If there is an existing data element linked to an asset, you can lock it by clicking on the lock button
on the right side of the data element select box. A locked asset is ignored if you run the classification
process with the Classify assets automatically option. An unlocked asset without data element can’t
be locked.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 379

CHAPTER 73
Lineage

This chapter contains the following topics:

1. Overview

2. Display the lineage

3. Browse the lineage

73.1 Overview
You can display the asset or instance lineage. It’s a main feature that explains how an asset or instance
is composed and linked to other assets and instances.

73.2 Display the lineage

From the asset view
You can start the lineage by selecting an asset in the hierarchical view or the table view. You just have
to click on the lineage icon on the top of the view.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 380

From the hierarchical view:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 381

From the table view:

You can also start the lineage while you are reading the asset view form. Click on the lineage icon
on the top of the asset view form:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 382

From the instance view
You can start the lineage by selecting an instance in the hierarchical view or the table view. You just
have to click on the lineage icon on the top of the view.
From the hierarchical view:

From the table view:

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 383

You can also start the lineage while you are reading the instance view form. Click on the lineage icon
on the top of the instance view form:

73.3 Browse the lineage
Once you have started the lineage service you will see:

• The asset or instance you previously selected: if your selection is an asset, you will see it with
its instance.

• Direct children of the instance or asset.

• Action buttons.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 384

• The overview toolbox for helping you browsing the lineage graph.

Overview toolbox
The overview toolbox helps you to scroll the lineage graph when this one is big because of multiple
nodes and links. You can drag the overview box to any location in the lineage view.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 385

Expand/Collapse a node
By clicking on the + button near the node name, you will expand it to display its children. The +
button is only available if children exist.

When a node is expanded, you can collapse it by clicking on the - button near the node name.

Display node links
If a node contains links to display, you will see the link icon near the node name (icon with two arrows).
By clicking on this button, you will display:

• node incoming links

• node outgoing links

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 386

If all links of the node are displayed, the link icon is highlighted.

If the lineage is too complex with lot of links, you can click on a node to highlight its links.

Click anywhere else on the lineage graph to remove link highlighting.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 387

Display full lineage for a node
The first lineage view helps you to browse the lineage step by step (by clicking manually on each link
button). This graph is called: Browsable lineage If you want to display the full lineage of the selected
node, click on the focus icon near the node. This button is only available if the node contains links.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 388

By clicking on this icon, a new lineage graph view will be displayed. This graph is called: Asset
lineage This view contains the currently selected node and its children. It also displays all links for
the node, children nodes, and other nodes recursively.

The node from where you have clicked on the focus icon is displayed with a purple background.
In this graph, every node head title contains the instance name. The template is Instance Name >
Node name.
Click on a node to highlight links if they exist.

This graph view is different from the previous one because it will not display the default asset hierarchy
view but an exploded version (to be more readable).

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 389

Below is an example of a complex lineage view with Browsable lineage graph and Asset lineage
graph. In this example, all links from EBX_REP_PERSON node and its children links are displayed
recursively.

Documentation > User Guide > EBX® Metadata Management > Advanced data services > Lineage

TIBCO EBX® Product Documentation 6.2.0 390

As you can see, the full lineage is difficult to read because each asset node is grouped into the instance
node. On the other hand, in the screenshot below, each asset node is separated and the instance name
is displayed in the node group title.

Move a node
You can move a node by grabbing it with your mouse. You can only move an Instance node.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Collaboration overview

TIBCO EBX® Product Documentation 6.2.0 391

CHAPTER 74
Collaboration overview

This section presents metadata collaboration features, including tags, comments, ratings and the
workflows associated with these features.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Collaboration overview

TIBCO EBX® Product Documentation 6.2.0 392

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata comments

TIBCO EBX® Product Documentation 6.2.0 393

CHAPTER 75
Metadata comments

Users can comment on records and these comments can turn into discussions that help users better
understand the metadata. They can also use comments to request specific information.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata comments

TIBCO EBX® Product Documentation 6.2.0 394

The comment feature is accessed via the sidebar located to the right of the screen when viewing a
record.

Comments are displayed in chronological order, oldest comment first. The following actions are
available on comments:

• Read comments posted on a given record.

• Write comments on a given record. The maximum length of the comment is currently 255
characters. You can also edit or delete your own comments.

• Reply to any comments, even your own. There is only one level of reply available. It is not
possible to have a sub-reply thread.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata comments

TIBCO EBX® Product Documentation 6.2.0 395

• React to a comment. A reaction is represented by an emoticon and a label: Agree, Congrats,
Interesting. Reactions are displayed below the comment with a counter of the number of users
applying a particular reaction. Currently, only one reaction per user is allowed, if a user applies
a different reaction, the previous one will be removed. The user can remove their reaction at any
time.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata comments

TIBCO EBX® Product Documentation 6.2.0 396

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata ratings

TIBCO EBX® Product Documentation 6.2.0 397

CHAPTER 76
Metadata ratings

Users can leave ratings on records to express their evaluation of the data. The overall rating is the
average of all ratings for a given record. It helps users searching for metadata to better understand
whether it is trustworthy.
For instance, a user can say a dataset is of good quality, or a particular attribute is not useful because
it is usually empty.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Metadata ratings

TIBCO EBX® Product Documentation 6.2.0 398

The ratings feature can be accessed via the sidebar located to the right of the screen on any record.

The list of ratings from all users is displayed in chronological order, latest updated rating first. The
following actions are available on ratings:

• View the overall rating of a given record.

• See a list of ratings from all users for a given record.

• Apply, modify or delete their own record ratings. The user can rate with a value between 1 and 5.
Alongside the rating value, he can leave a justification comment. The overall rating of the record
is updated accordingly and the list of all ratings is refreshed.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Tag metadata

TIBCO EBX® Product Documentation 6.2.0 399

CHAPTER 77
Tag metadata

Users can tag records and one record can have multiple tags. Tags are useful for users to provide
additional contextual information that defines the metadata. Additionally, you can filter metadata lists
using tags.
Note: tags can be words or phrases (groups of words), they can also include special characters.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Tag metadata

TIBCO EBX® Product Documentation 6.2.0 400

The Tags feature can be accessed via the sidebar located to the right of the screen on any record.

There are two types of tag Public and Private. Each type corresponds to the visibility of the tag to
the users. While Public tags are visible and usable by any users, the Private tags are only visible to
the user that created it. The icon on the left side indicates the type of visibility: the world for Public
and the lock for Private.
The top section Applied tags displays the tags applied to the current record. You can remove an
applied tag by clicking on the cross button on the right of the tag.
The Apply tag section allows users to create a new tag or search for an existing one and apply it to the
record. Note that creating Public tags is controlled by permissions configured by the administrator.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Tag metadata

TIBCO EBX® Product Documentation 6.2.0 401

All users might not have the ability to create them. For those allowed to create Public tags, they can
choose the visibility after clicking the submit button.
The Last used section displays the last ten tags that have been used by the current user. The Most
used section displays the ten tags the most used in the whole repository. Clicking on a tag applies it
to the current record. This action is performed real-time.
Finally, the My tags section displays the list of all the tags the connected user has created.

The card view integrates the tags allowing users to filter records based on the tags that have been
applied to them.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Tag metadata

TIBCO EBX® Product Documentation 6.2.0 402

Documentation > User Guide > EBX® Metadata Management > Collaboration > Managing metadata with collaborative workflows

TIBCO EBX® Product Documentation 6.2.0 403

CHAPTER 78
Managing metadata with
collaborative workflows

Your organization’s administrators can define the permissions for users to create and update records.
They can require the use of collaborative workflows to perform such operations.
Creation and Update workflows have several steps until completion, namely:

• Creation/Update

• Review

• Approval (possibly multiple in parallel)

• Finalize

Those steps might or might not be activated for your organization and for a particular entity. Contact
your administrator for more information.

Documentation > User Guide > EBX® Metadata Management > Collaboration > Managing metadata with collaborative workflows

TIBCO EBX® Product Documentation 6.2.0 404

When you are involved in a workflow, a task will be offered to you and other users with the same
role, you will see it in your Inbox. You can select Take and Start to get access to it. Once you take
a task, it is assigned to you privately.

Within the task, the actions displayed at the top depend on the type of task. For instance, Reject/
Approve.

You can access the active workflows from the left navigation menu. Only the workflows you have
access to are listed. From this list of active workflows, you can display the graph of the workflow to
check which step is being performed.

TIBCO EBX® Product Documentation 6.2.0 405

Reference
Manual

Documentation > Reference Manual

TIBCO EBX® Product Documentation 6.2.0 406

Integration

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 6.2.0 407

CHAPTER 79
Overview of integration and

extension
Several service and component APIs allow you to develop custom extensions for TIBCO EBX® and
integrate it with other systems.
This chapter contains the following topics:

1. User interface customization and integration

2. Data services

3. XML and CSV import/export services

4. Programmatic services

79.1 User interface customization and integration
The EBX® graphical interface can be customized through various EBX® APIs.
It can also be integrated into any application that is accessible through a Supported web browsers [p

512].
See Interface customization [p 962] for more information.

79.2 Data services
The data services provides a means for external systems to interact with EBX® using one of following:

• Web Services Description Language (WSDL/SOAP) standard

• Representational state transfer (REST)

See also

WSDL/SOAP data services [p 998]

REST data services [p 1052]

79.3 XML and CSV import/export services
EBX® includes built-in services for importing data from and export data to XML and CSV formats.
Imports and exports for XML and CSV can be performed using:

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 6.2.0 408

• the user interface

• the data services

• the Java API

See also

XML import and export [p 143]

CSV import and export [p 149]

79.4 Programmatic services
Programmatic services allow executing procedures in a well-defined context, for example in a
scheduled task or in a batch.
Some examples of programmatic services include:

• Importing data from an external source,

• Exporting data to multiple systems,

• Data historization, launched by a supervisory system,

• Optimizing and refactoring data.
If EBX® built-in optimization services AdaptationTreeOptimizerSpecAPI are not sufficient.

See also ProgrammaticServiceAPI

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 409

CHAPTER 80
Using TIBCO EBX® as a Web

Component
This chapter contains the following topics:

1. Overview

2. Integrating EBX® Web Components into applications

3. Repository element and scope selection

4. Combined selection

5. Request specifications

6. Example calls to an EBX® Web Component

80.1 Overview
EBX® can be used as a user interface Web Component, called through the HTTP protocol. An EBX®
Web Component can be integrated into any application that is accessible through a supported web
browser. This method of access offers the major benefits of EBX®, such as user authentication, data
validation, and automatic user interface generation, while additionally providing the ability to focus
user navigation on specific elements of the repository.
Typical uses of EBX® Web Components include integrating them into the intranet frameworks of
organizations or into applications that manage the assignment of specific tasks to users.

See also Supported web browsers [p 512]

80.2 Integrating EBX® Web Components into applications
A web application that calls an EBX® Web Component can be:

1. A non-Java application, the most basic being a static HTML page.
In this case, the application must send an HTTP request that follows the EBX® Web Component
request specifications [p 411].

2. A Java application, for example:

• A Java web application running on the same application server instance as the EBX®
repository it targets or on a different application server instance.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 410

• An EBX® User service [p 962] or a Custom widget [p 963], in which case, the new session
will automatically inherit from the parent EBX® session.

Note

In Java, the recommended method for building HTTP requests that call EBX® web
components is to use the class UIHttpManagerComponentAPI in the API.

80.3 Repository element and scope selection
When an EBX® Web Component is called, the user must first be authenticated in the newly
instantiated HTTP session. The Web Component then selects a repository element and displays it
according to the scope layout parameter defined in the request.
The parameter firstCallDisplay may change this automatic display according to its value.
The repository elements that can be selected are as follows:

• Dataspace or snapshot

• Dataset

• Node

• Table or a published view

• Table record

The scope determines how much of the user interface is displayed to the user, thus defining where the
user is able to navigate in the session. The default scope that the Web component uses is the smallest
possible depending on the entity or service being selected or invoked by the request.

See also Scope [p 414]

See also firstCallDisplay [p 414]

It is also possible to select a specific perspective as well as a perspective action.
By default, the selection of the element is done in the context of the perspective of the user if the
scope is "full".

See also Perspective [p 21]

80.4 Combined selection
A URL of a Web component can specify a perspective and an action or an entity (dataspace, dataset,
etc). Thus, for a Web component that has specified in its URL a perspective and an entity (but no
action), if an action of the perspective matches this entity, then this action will be automatically
selected.
Otherwise, if no action matches this entity, no action will be selected but the entity is opened
regardless.
If an action is specified at the same time than an entity, this last is ignored and the action will be
selected.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 411

Specific case
If the target entity is a record and if an action is on the table that contains this record, then this action
will be selected and the record will be opened inside the action.
In the same way, if a workflow work item is targeted by the web component, and if an action on « inbox
» exists in the perspective, then this action will be selected and the work item will be opened inside it.

Known limitations
If the Web component specifies a predicate to filter a table, the perspective action must specify the
exact same predicate to be selected.
In the same way, if the perspective action specifies a predicate to filter a table, the Web component
must specify the exact same predicate to establish the match.

80.5 Request specifications

Base URL
In a default deployment, the base URL must be of the following form:
http://<host>[:<port>]/ebx/

Note

The base URL must refer to the servlet FrontServlet, defined in the deployment
descriptor /WEB-INF/web.xml of the web application ebx.war.

User authentication and session information parameters

Parameter Description Required

login and password,
or a user directory-
specific token

Specifies user authentication properties. If neither a login and password pair nor
a user directory-specific token is provided, user will be required to authenticate
through the repository login page.

See DirectoryAPI for more information.

No

trackingInfo Specifies the tracking information of the new session. Tracking information is
logged in history tables. Additionally, it can be used to programmatically restrict
access permissions.

See AccessRuleAPI for more information.

No

redirect The URL to which the user will be redirected at the end of the component session,
when they click on the button 'Close'. The close button is always displayed for
record selections, but whether or not it is displayed for all other cases must be
specified using the parameter closeButton.

For more information, see Exit policy (deprecated) [p 633].

No

locale Specifies the locale to use. Value is either en-US or fr-FR. No, default
is the locale
registered for
the user.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 412

Entity and service selection parameters

Parameter Description Required

branch Selects the specified dataspace. No

version Selects the specified snapshot. No

instance Selects the specified dataset. The value must be the reference of
a dataset that exists in the selected dataspace or snapshot.

Only if xpath or
viewPublication is
specified.

viewPublication Specifies the publication name of the tabular, hierarchical, or
tile view to apply to the selected content.

This publication name is the one declared during the
publication of the view. It can be found in the 'Administration'
area under Views configuration > Views.

All settings of the view, that is, its filters, sort order, and
displayed columns, are applied to the result. A dataspace
and a dataset must be selected in order for this view to be
applied. The target table selection is not necessary, as it can be
automatically determined based on the definition of the view.
This parameter can be combined with the predicate specified in
the xpath parameter as a logical 'AND' operation.

No

xpath Specifies a node selection in the dataset.

Value may be a valid absolute path located in the selected
dataset. The notation must conform to a simplified XPath, with
abbreviated syntax.

It can also be a predicate surrounded by "[" and "]" (to be
encoded using %5B and %5F respectively) if a table can be
automatically selected using other Web Component parameters
(for example, viewPublication or workflowView).

For XPath syntax, see XPath supported syntax [p 431]

See UIHttpManagerComponent.setPredicateAPI for more
information.

No

service Specifies the service to access.

For more information on built-in User services, see Built-in
services [p 417].

In the Java API, see ServiceKeyAPI for more information.

No

workflowView Specifies the workflow section to be selected.

See WorkflowViewAPI for more information.

No.

perspectiveName Specifies the name of the perspective to be selected.

If this parameter is specified, the scope parameter can have
only two values: full and data.

Only if
perspectiveActionId or
perspectiveActionName is
specified.

perspectiveActionId Deprecated. Please consider using perspectiveActionName
instead.

Specifies the identifier of the perspective action to be selected.

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 413

Parameter Description Required

perspectiveActionName Specifies the unique name of the perspective action to be
selected.

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 414

Layout parameters

Parameter Description Required

scope Specifies the scope to be used by the web component. Value can be full, data,
dataspace, dataset or node.

See UIHttpManagerComponent.ScopeAPI for more information.

No, default will
be computed to
be the smallest
possible
according to the
target selection.

firstCallDisplay Specifies which display must be used instead of the one determined by the
combination of selection and scope parameter.

Possible values are:

• auto: The display is automatically set according to the selection.

• view: Forces the display of the tabular, the hierarchical or the tile view.

• record: If the predicate has at least one record, forces the display of the first
record in the list.

For example,
firstCallDisplay=view

firstCallDisplay=view:hierarchyExpanded

firstCallDisplay=record

firstCallDisplay=record:{predicate}

See UIHttpManagerComponent.setFirstCallDisplayAPI for more information.

See UIHttpManagerComponent.setFirstCallDisplayHierarchyExpandedAPI for
more information.

See UIHttpManagerComponent.setFirstCallDisplayRecordAPI for more
information.

No, default will
be computed
according to the
target selection.

closeButton Specifies how to display the session close button. Value can be logout or cross.

See UIHttpManagerComponent.CloseButtonSpecAPI for more information.

No. If scope
is not full,
no close
button will be
displayed by
default.

dataSetFeatures Specifies which features to display in a UI service at the dataset level or a form
outside of a table.

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is services, title, save, or revert.

For example,
hide:title

show:save,revert

See UIHttpManagerComponent.DataSetFeaturesAPI for more information.

No.

viewFeatures Specifies which features to display in a tabular, a hierarchy or a tile view (at the
table level).

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 415

Parameter Description Required

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is create, views, selection, filters, services, refresh, title,
or breadcrumb.

For example,
hide:title,selection

show:service,title,breadcrumb

See UIHttpManagerComponent.ViewFeaturesAPI for more information.

recordFeatures Specifies which features must be displayed in a form at the record level.

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is services, title, breadcrumb, save, saveAndClose, close, or
revert.

For example,
hide:title

show:save,saveAndClose,revert

See UIHttpManagerComponent.RecordFeaturesAPI for more information.

No.

pageSize Specifies the number of records that will be displayed per page in a table view
(either tabular, hierarchical or tile).

No.

startWorkItem Specifies a work item must be automatically taken and started. Value can be true or
false.

See ServiceKey.WORKFLOWAPI for more information.

No. Default
value is false,
where the target
work item
state remains
unchanged.

80.6 Example calls to an EBX® Web Component
Minimal URI:
http://localhost:8080/ebx/

Logs in as the user 'admin' and selects the 'Reference' dataspace:
http://localhost:8080/ebx/?login=admin&password=admin&branch=Reference

Selects the 'Reference' dataspace and accesses the built-in validation service:
http://localhost:8080/ebx/?
login=admin&password=admin&branch=Reference&service=@validation

Selects the roles table in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/roles

Documentation > Reference Manual > Integration > Using TIBCO EBX® as a Web Component

TIBCO EBX® Product Documentation 6.2.0 416

Selects the record 'admin' in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/users[./login="admin"]

Note

For clarity purposes, the above URLs are not encoded and this can make them incompatible with some
 application servers.

Accesses the interface for creating a new user in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/users&service=@creation

Compares the record 'admin' in the default directory with the record 'jSmith':
Compares the record 'R1' in the dataset 'instanceId' in the dataspace 'Reference' with the record 'R0':
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/users[./
login="admin"]&service=@compare&compare.branch=ebx-directory&compare.instance=ebx-
directory&compare.xpath=/directory/users[./login="jSmith"]

Note

For clarity purposes, the above URLs are not encoded and this can make them incompatible with some
 application servers.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 417

CHAPTER 81
Built-in user services

EBX® includes a number of built-in user services. Built-in user services can be used:

• when defining workflow model tasks [p 190]

• when defining perspective action menu items [p 22]

• as extended user services when used with service extensions [p 989]

• when using EBX® as a Web Component [p 409]

This reference page describes the built-in user services and their parameters.

This chapter contains the following topics:

1. Access data (default service)

2. Create a new record

3. Duplicate a record

4. Export data to an XML file

5. Export data to a CSV file

6. Import data from an XML file

7. Import data from a CSV file

8. Access a dataspace

9. Validate a dataspace, a snapshot or a dataset

10.Merge a dataspace

11.Access the dataspace merge view

12.Compare contents

13.Data workflows

81.1 Access data (default service)
By default, workflows automatically consider this service as complete. That is, the 'Accept' button
is always available.
This is the default service used if no service is specified.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 418

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

disableAutoComplete Disable Accept at start By default, the interaction associated
with this service is directly considered as
complete. Therefore, the Accept button
is automatically displayed at the opening
of the work item. This parameter is
useful to disable this behavior. If the
value is 'true', the developer will be in
charge of completing the interaction by
using SessionInteraction in a user service
or a trigger, for example. The default
value is 'false'. Perspectives do not use
this parameter.

firstCallDisplay First call display mode Defines the display mode that must be
used when displaying a filtered table or
a record upon first call. Default (value
= 'auto'): the display is automatically set
according to the selection. View (value =
'view'): forces the display of the tabular
view or of the hierarchical view. Record
(value = 'record'): if the predicate has at
least one record, forces the display of the
record form.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

viewPublication View The publication name of the view to
display. The view must be configured for
the selected table.

xpath Dataset node (XPath) The value must be a valid absolute
location path in the selected dataset. The
notation must conform to a simplified
XPath, in its abbreviated syntax.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 419

81.2 Create a new record
For a workflow, the creation service is considered complete when the first successful submit is
performed (record has been created). If this service is called whereas it is already complete, the created
record is displayed in update or read-only mode (depending on the user rights).
Service name parameter: service=@creation

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
This field is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

Output parameters

Parameter Label Description

created Created record Contains the XPath of the created record.

81.3 Duplicate a record
For a workflow, the duplicate service is considered complete when the first successful submit is
performed (record has been created). If this service is called whereas it is already complete, the created
record is displayed in update or read-only mode (depending on the user rights).
Service name parameter: service=@duplicate

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 420

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
This field is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Record to duplicate (XPath) The value must be a valid absolute
location path of an existing record. The
notation must conform to a simplified
XPath, in its abbreviated syntax - This
field is required for this service.

Output parameters

Parameter Label Description

created Created record Contains the XPath of the created record.

81.4 Export data to an XML file
The exportToXML service is considered complete when export is done and file downloaded.
Service name parameter: service=@exportToXML

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 421

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

xpath Dataset table to export (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

81.5 Export data to a CSV file
Workflows consider the exportToCSV service as complete when export is done and file downloaded.
Service name parameter: service=@exportToCSV

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 422

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

xpath Dataset table to export (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

81.6 Import data from an XML file
Workflows consider the importFromXML service as complete when import is performed.
Service name parameter: service=@importFromXML

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 423

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table to import (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

81.7 Import data from a CSV file
Workflows consider the importFromCSV service as complete when import is performed.
Service name parameter: service=@importFromCSV

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 424

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table to import (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

81.8 Access a dataspace
A workflow automatically considers that the dataspace selection service is complete.
Service name parameter: service=@selectDataSpace

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 425

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

81.9 Validate a dataspace, a snapshot or a dataset
Workflows automatically consider the validation service as complete.
Service name parameter: service=@validation

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace
- A dataspace or snapshot is required for
this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot
- A dataspace or snapshot is required for
this service.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 426

Output parameters

Parameter Label Description

hasError Found errors Contains 'true' if validation has produced
errors.

hasFatal Found fatal errors Contains 'true' if validation has produced
fatal errors.

hasInfo Found informations Contains 'true' if validation has produced
informations.

hasWarning Found warnings Contains 'true' if validation has produced
warnings.

81.10 Merge a dataspace
Workflows consider the merge service as complete when merger is performed and dataspace is closed.
Service name parameter: service=@merge

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

Output parameters

Parameter Label Description

mergeResult Merge success Contains 'true' if merge succeeded,
otherwise 'false'.

mergeState Merge state Contains the return code of the merge.
It is strongly recommended to parse this
value by using the InteractionMergeState
UIHttpManagerComponentReturnCode.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 427

81.11 Access the dataspace merge view
The merge.view service is automatically considered complete.
Service name parameter: service=@merge.view

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

81.12 Compare contents
Workflows automatically consider the compare service as complete.
Service name parameter: service=@compare

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 428

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace or snapshot and a dataspace
or snapshot to compare to are required
for this service.

compare.branch Dataspace to compare The identifier of the dataspace to
compare - A dataspace or snapshot and a
dataspace or snapshot to compare to are
required for this service.

compare.filter Comparison filter To ignore inheritance and function fields
in the comparison (disable resolved
mode), the filter "persistedValuesOnly"
must be specified. By default, when no
filter is defined, the comparison uses
resolved mode.

compare.instance Dataset to compare The value must be the reference of
a dataset that exists in the selected
dataspace to compare.

compare.version Snapshot to compare The identifier of the snapshot to
compare - A dataspace or snapshot and a
dataspace or snapshot to compare to are
required for this service.

compare.xpath Table or record to compare (XPath) The value must be a valid absolute
location path of a table or a record in the
selected dataset to compare. The notation
must conform to a simplified XPath, in
its abbreviated syntax.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace or snapshot and a dataspace
or snapshot to compare to are required
for this service.

xpath Table or record (XPath) The value must be a valid absolute
location path of a table or a record in
the selected dataset. The notation must

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 429

Parameter Label Description

conform to a simplified XPath, in its
abbreviated syntax.

81.13 Data workflows
This service provides access to the data workflows user interfaces.
Service name parameter: service=@workflow

Note

This service is for perspectives only.

Input parameters

Parameter Label Description

scope Scope Defines the scope of the user navigation
for this service.

viewPublication View publication Defines the publication name of the view
to apply for this service.

workflowView Workflow view Specifies the workflow view type. Value
can be one of the following: "inbox",
"launcher", "monitoringPublications",
"monitoringWorkflows",
"monitoringWorkItems" or
"completedWorkflows".

xpath Filter (XPath) An optional filter. The syntax should
conform to an XPath predicate
surrounded by "[" and "]".

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 6.2.0 430

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 431

CHAPTER 82
Supported XPath syntax

This chapter contains the following topics:

1. Overview

2. Example expressions

3. Syntax specifications for XPath expressions

4. Java API

82.1 Overview
The XPath notation used in TIBCO EBX® must conform to the abbreviated syntax of the XML
Path Language (XPath) Version 1.0 standard, with certain restrictions. This document details the
abbreviated syntax that is supported.

82.2 Example expressions
The general XPath expression is:
path[predicate]

Absolute path
/library/books/

Relative paths
./Author
../Title

Root and descendant paths
//books

Table paths with predicates
../../books/[author_id = 0101 and (publisher = 'harmattan')]
/library/books/[not(publisher = 'dumesnil')]

Complex predicates
starts-with(col3,'xxx') and ends-with(col3,'yyy') and osd:is-not-null(./col3))

https://www.w3.org/TR/xpath-10
https://www.w3.org/TR/xpath-10

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 432

contains(col3,'xxx') and (not(col1=100) and date-greater-than(col2,'2007-12-30'))

Predicates with parameters
author_id = $param1 and publisher = $param2 where the parameters $param1 and $param2 refer
 respectively to 0101 and 'harmattan'
col1 < $param1 and col4 = $param2 where the parameters $param1 and $param2 refer respectively
 to 100 and 'true'
contains(col3,$param1) and date-greater-than(col2,$param2) where the parameters $param1
 and $param2 refer respectively to 'xxx' and '2007-12-30'

Note

The use of this notation is restricted to the Java API since the parameter values can only
be set by the method Request.setXPathParameterAPI of the Java API.

Search predicate
• Syntax: osd:search(fields, queryString[, templateKey])

• Examples:

• osd:search('col1', 'xxx')

• osd:search('col1,col2','xxx')

• osd:search('','xxx')

• osd:search(col1,'xxx', myTemplate@myModule)

The osd:search function tries to match a term, or a list of terms, against the set of fields of the current
table. This function is generic, handling every field datatype supported by EBX®. When no fields are
specified, it searches against: all fields (in case of history table), or all optimized fields (in all other
cases). See Limitations [p 500] for more information about optimized / unoptimized fields.
Optimized text search filters cannot be OR-combined with non-optimized filters or filters that involve
a different table. See Technical limitation [p 126] for more information.
For any concerned field, if a label exists, the search targets the label, rather than the value; however,
this is not yet supported in some cases. See Value-labeling [p 499] for more information.
For a more advanced usage, the query string supports specialized operators, see Special characters [p

123] for more information.

See also Quick Search [p 122]

The predicate osd:search is localized.

Note

The locale can be set by the methods of the Java API Request.setLocaleAPI or Request.
setSessionAPI.

Note

The identifier of a search template SearchTemplateAPI can be specified, to customize the
behavior of the search.

Predicates for validation search
osd:has-validation-item()
osd:has-validation-item('error,info')

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 433

osd:contains-validation-message('xxx')
osd:contains-validation-message('xxx','info,warning')

• XPath functions for validation search cannot be used on XPath predicates defined on associations
and foreign key filters.

• The predicates osd:label, osd:contains-record-label and osd:contains-validation-message
are localized.

Note

The locale can be set by the methods of the Java API Request.setLocaleAPI or
Request.setSessionAPI.

Attention
To ensure that the search is performed on an up-to-date validation report, it is necessary to perform
an explicit validation of the table just before using these predicates.

82.3 Syntax specifications for XPath expressions

Overview

Expression Format Example

XPath expression <container path>[predicate] /books[title='xxx']

<container path> <absolute path> or <relative path>

<absolute path> /a/b or //b //books

<relative path> ../../b, ./b or b ../../books

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 434

Predicate specification

Expression Format Notes/Example

<predicate> Example: A and (B or not(C)) A,B,C:
<atomic expression>

Composition of: logical operators
parentheses, not() and atomic
expressions.

<atomic expression> <path><comparator><criterion> or
method(<path>,<criterion>)

royalty = 24.5

starts-with(title, 'Johnat')

booleanValue = true

<path> <relative path> or osd:label(<relative
path>)

Relative to the table that contains it:

../authorstitle

<comparator> • <boolean comparator>

• <numeric comparator> or

• <string comparator>

<boolean comparator> = or !=

<numeric comparator> = , != , <, >, <=, or >=

<string comparator> = or !=

<method> • <date method>

• <string method>

• osd:is-null method or

• osd:is-not-null method

<date, time & dateTime method> • date-less-than

• date-equal or

• date-greater-than

<string method> • contains

• osd:contains-case-insensitive

• osd:contains-record-label

• osd:is-equal-case-insensitive

• osd:is-empty

• osd:is-empty-or-nil

• osd:is-neither-empty-nor-nil

• osd:is-not-empty

• ends-with

• osd:ends-with-case-insensitive

• matches

• osd:search

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 435

Expression Format Notes/Example

• starts-with or

• osd:starts-with-case-
insensitive

<criterion> • <boolean criterion>

• <date criterion>

• <dateTime criterion>

• <numeric criterion>

• <string criterion> or

• <time criterion>

<boolean criterion> true , false

<numeric criterion> An integer or a decimal -4.6

<string criterion> Quoted character string 'azerty'

<date criterion> Quoted and formatted as 'yyyy-MM-dd' '2007-12-31'

<time criterion> Quoted and formatted as 'HH:mm:ss' or
'HH:mm:ss.SSS'

'11:55:00'

<dateTime criterion> Quoted and formatted as 'yyyy-
MM-ddTHH:mm:ss' or 'yyyy-MM-
ddTHH:mm:ss.SSS'

'2007-12-31T11:55:00'

XPath 1.0 formula
It is possible to use an XPath 1.0 formula in the criterion value part of an atomic predicate expression
(right-hand side).
For example, instead of [./a=3], you may use the expression [./a=(floor(./d)+ 2.0)].
Due to the strong dependence of predicates on the data model node and the node type of the criterion,
the path portion of the atomic predicate expression (left-hand side) must be a node path and cannot
be an XPath formula. For example, the expression /table[floor(./a) > ceiling(./d)] is not valid.

Predicate on label
The osd:label() function can be applied to the path portion of the atomic predicate, in order to resolve
the predicate on the label instead of the value. In this case, only string operators and string criteria can
be used, i.e. ends-with(osd:label(./price),'99').

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 436

A predicate on label is localized, so the criterion must be expressed in the same
locale as the predicate-filtered request. For example: request.setLocale(Locale.FRENCH);
request.setXPathFilter("osd:label(./delivery_date)='30/12/2014'");

Note

It is forbidden to use the osd:label function if the right part of the predicate is a
contextual value.

Note

If the osd:label function is used in a data model, for example on a selection or in the filter
predicate of a table reference node, the default locale of the data model (as defined in its
module declaration) must be used for the criterion format (even though this is generally
not recommended).

See also SchemaNode.displayOccurrenceAPI

Contextual values
For predicates that are relative to a selected node, the criterion value (that is, the right-hand side of
the predicate) can be replaced with a contextual path using the syntax ${<relative-path>} where
<relative-path> is the location of the element relative to the selected node. The criterion value must
be a single value. That means that aggregated lists are not allowed as the target of the contextual path.

Note

When calling a method, the criterion is the second parameter, and the first parameter
cannot be a relative value.

Aggregated lists
For predicates on aggregated lists, the predicate returns true regardless of the comparator if one of
the list elements verifies the predicate.
In addition, the predicates osd:is-empty and osd:is-not-empty can be applied on any node which
type is a list to very if the list is empty or not.

Note

Special attention must be paid to the comparator !=. For example, for an aggregated
list, ./list != 'a' is not the same as not(./list = 'a'). Where the list contains the
elements (e1,e2,..), the first predicate is equivalent to e1 != 'a' or e2 != 'a' ...,
while the second is equivalent to e1 != 'a' and e2 != 'a'

'Null' values
Null values must be explicitly treated in a predicate using the operators osd:is-null and osd:is-
not-null.
For example, /root/products[./price<100] or /root/products[./price!=100] will not return any
products whose prices are not set (null). For the latter case to return unset values as well, the predicate
must instead be: /root/products[./price!=100 or osd:is-null(./price)].

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 437

How to manage single and double quotes in literal expressions
By default, a literal expression is delimited by single quotes ('). If the literal expression contains single
quotes and no double quotes, the expression must be delimited by double quotes ("). If the literal
expression contains both single and double quotes, the single quotes must be doubled.
The method XPathExpressionHelper.encodeLiteralStringWithDelimitersAPI in the Java API
handles this.
Examples of using encodeLiteralStringWithDelimiters

Value of Literal Expression Result of this method

Coeur 'Coeur'

Coeur d'Alene "Coeur d'Alene"

He said: "They live in Coeur d'Alene". 'He said: "They live in Coeur d''Alene".'

Extraction of foreign keys
In EBX®, the foreign keys are grouped into a single field with the osd:tableRef [p 859] declaration.
The standard XPath syntax has been extended so as to extract the value of any targeted primary key
field.

Example
If the table /root/tableA has an osd:tableRef field named 'fkB' whose target is /root/tableB and the
primary key of tableB has two fields, id of type xs:int and date of type xs:date, then the following
expressions would be valid:

• /root/tableA[fkB = '123|2008-01-21'], where the string "123|2008-01-21" is a representation
of the entire primary key value.
See Syntax of the internal String representation of primary keys PrimaryKey.syntaxAPI for
more information.

• /root/tableA[fkB/id = 123 and date-equal(fkB/date, '2008-01-21')], where this predicate
is a more efficient equivalent to the one in the previous example.

• /root/tableA[fkB/id >= 123], where any number operator could be used, as the targeted
primary key field is of type xs:int.

• /root/tableA[date-greater-than(./fkB/date, '2007-01-01')], where any date operator
could be used, as the targeted primary key field is of type xs:date;

• /root/tableA[fkB = ""] is not valid as the targeted primary key has two columns.

• /root/tableA[osd:is-null(fkB)] checks if a foreign key is null (not defined).

82.4 Java API
Using the XPath in the Java API:
In the Java API, the XPathFilter class allows to define XPath predicates and to execute requests on
them.

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 6.2.0 438

The XPathExpressionHelper class provides utilitarian methods to handle XPath predicates and paths.

Documentation > Reference Manual

TIBCO EBX® Product Documentation 6.2.0 439

Localization

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 6.2.0 440

CHAPTER 83
Labeling and localization

This chapter contains the following topics:

1. Overview

2. Value formatting policies

3. Syntax for locales

83.1 Overview
TIBCO EBX® offers the ability to handle the labeling and the internationalization of data models.

Localizing user interactions
In EBX®, language preferences can be set for two scopes:

1. Session: Each user can select a default locale from the user pane.

2. Data model: If a data model has been localized into other languages than those natively supported
by EBX®, the user can select one of those languages for that particular data model. See Extending
TIBCO EBX® internationalization [p 443] for more information.

Textual information
In EBX®, most master data entities can have a label and a description, or can correspond to a user
message. For example:

• Dataspaces, snapshots and datasets can have their own label and description. The label is
independent of the unique name, so that it remains localizable and modifiable;

• Any node in the data model can have a static label and description;

• Values can have a static label when they are enumerated;

• Validation messages can be customized, and permission restrictions can provide text explaining
the reason;

• Each record is dynamically displayed according to its content, as well as the context in which it
is being displayed (in a hierarchy, as a foreign key, etc.);

All this textual information can be localized into the locales that are declared by the module.

See also

Labels and messages [p 895]

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 6.2.0 441

Tables declaration [p 853]

Foreign keys declaration [p 859]

83.2 Value formatting policies
When a value is displayed to the user, it is formatted according to its type and the formatting policy
of the current locale. For example, a date will be displayed in some locales as "dd/MM/yyyy" and
"MM/dd/yyyy" in others.
A formatting policy is used to define how to display the values of simple types [p 840].
For each locale declared by the module, its formatting policy is configured in a file located at /WEB-
INF/ebx/{locale}/frontEndFormattingPolicy.xml. For instance, to define the formatting policy for
Greek (el), the engine looks for the following path in the module:
/WEB-INF/ebx/el/frontEndFormattingPolicy.xml

If the corresponding file does not exist in the module, the formatting policy is looked up in the class-
path of EBX®. If the locale-specific formatting policy is not found, the formatting policy of en_US
is applied.
The content of the file frontEndFormattingPolicy.xml is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<formattingPolicy xmlns="urn:ebx-schemas:formattingPolicy_1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ebx-schemas:formattingPolicy_1.0 ../schema/ebx-reserved/formattingPolicy_1.0.xsd">
 <date pattern="dd/MM" />
 <time pattern="HH:mm:ss" />
 <dateTime pattern="dd/MM/yyyy HH:mm" />
 <decimal pattern="00,00,00.000" groupingSeparator="|" decimalSeparator="^"/>
 <int pattern="000,000" groupingSeparator=" "/>
</formattingPolicy>

The elements date, dateTime and time are mandatory.
The group and decimal separators that appear in the formatted numbers can be modified by defining
the attributes groupingSeparator and decimalSeparator for the elements decimal and int.

83.3 Syntax for locales
There are two ways to express a locale:

1. The XML recommendation follows the IETF BCP 47 recommendation, which uses a hyphen '-'
as the separator.

2. The Java specification uses an underscore '_' instead of a hyphen.

In any XML file (XSD, formatting policy file, etc.) read by EBX®, either syntax is allowed.
For a web path, that is, a path within the web application, only the Java syntax is allowed. Thus,
formatting policy files must be located in directories whose locale names respect the Java syntax.

See also Extending TIBCO EBX® internationalization [p 443]

https://tools.ietf.org/html/bcp47#page-1-4

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 6.2.0 442

Documentation > Reference Manual > Localization > Extending TIBCO EBX® internationalization

TIBCO EBX® Product Documentation 6.2.0 443

CHAPTER 84
Extending TIBCO EBX®

internationalization
This chapter contains the following topics:

1. Overview of the native EBX® localization

2. Language packs software

3. Extending EBX® user interface localization

4. Localized resources resolution

5. Known limitations

84.1 Overview of the native EBX® localization
By default, the EBX® built-in user interface is provided in English (en-US) and French (fr-FR).
Localization consists of a formatting policy and a set of message files (resource bundle):

• For English, localization is provided by a formatting policy and a set of message files with no
locale defined,

• For French, localization is provided by a formatting policy and a set of message files with locale
set to "fr".

EBX® provides an option to add locales in order to extend the localization of the user interface and
to internationalize the documentation of data models and associated services.

84.2 Language packs software
Language packs for TIBCO EBX® and its addons are available from TIBCO eDelivery according
to the EBX® release. A language pack can also contain the online help, please see the TIB_ebx-
lp_<version>_readme.txt file for more information.

Note

On each release, there is a certain delay between the GA and the availability of the
corresponding pack; in this case, the previous pack can be deployed (but may not cover
all messages).

https://edelivery.tibco.com

Documentation > Reference Manual > Localization > Extending TIBCO EBX® internationalization

TIBCO EBX® Product Documentation 6.2.0 444

84.3 Extending EBX® user interface localization
EBX® supports the localization of its user interface into any compatible language and region.

Note

Currently, Latin & Cyrillic characters are supported. Locales that use other character sets
may be usable, but are not supported.

Adding a new locale
In order to add a new locale, the following steps must be followed:

• Declare the new locale in the EBX® main configuration file. For example:
ebx.locales.available=en-US, fr-FR, xx

• The first locale is always considered the default.

• The built-in locales, en-US and fr-FR, can be removed if required.

See Configuring EBX® localization [p 554].

• Package the following files in a jar file (sample name: ebx-lp_<version>_languagepack-xx.jar):

• A formatting policy file, named
com.orchestranetworks.i18n.frontEndFormattingPolicy_xx.xml,

• A set of localized message files (*_xx.mxml) in a resource bundle.

Note

The files must be ending with ".mxml".

• Deploy the jar file in the EBX® class-path it must be accessible from the ebx.jar class-loader.

84.4 Localized resources resolution
Since version 5.7.0, localized resources are resolved on a locale-proximity base, with the following
lookup mechanism:

• resourceName + "_" + language + "_" + country + "_" + variant + ".mxml"

• resourceName + "_" + language + "_" + country + ".mxml"

• resourceName + "_" + language + ".mxml"

• resourceName + ".mxml"

Note

The resolution is done at the localized message level. It is therefore possible to define
one or more files for a locale that only includes messages for which specific localization
is required.

Documentation > Reference Manual > Localization > Extending TIBCO EBX® internationalization

TIBCO EBX® Product Documentation 6.2.0 445

84.5 Known limitations

Non extendable materials
Localization of the following cannot be extended:

• EBX® HTML editor and viewer.

Documentation > Reference Manual > Localization > Extending TIBCO EBX® internationalization

TIBCO EBX® Product Documentation 6.2.0 446

Documentation > Reference Manual

TIBCO EBX® Product Documentation 6.2.0 447

Persistence

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 6.2.0 448

CHAPTER 85
Overview of persistence

This chapter is an introduction to history tables and replicated tables.

Note

The term mapped mode [p 449] refers to any tables that are stored as-is, and thus whose
contents can be accessed directly in the database.

This chapter contains the following topics:

1. Primary persistence of managed master data

2. Historization

3. Replication

4. Mapped mode

85.1 Primary persistence of managed master data
Data that is modeled in and governed by the EBX® repository are primarily persisted in the relational
database, using generic tables (common to all datasets and data models).

85.2 Historization
Master data tables can activate historization in order to track modifications to their data, regardless
of whether they are replicated.
The history itself is in mapped mode, meaning that it can be consulted directly in the underlying
database.

See also History [p 451]

85.3 Replication
Replication enables direct SQL access to tables of master data, by making a copy of data in the
repository to replica tables in the relational database. Replication can be enabled on any table
regardless of whether it has history activated.
The replica tables are persisted in mapped mode, as their primary purpose is to make master data
accessible to direct queries outside of EBX®.

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 6.2.0 449

See also Replication [p 459]

85.4 Mapped mode

Overview of mapped mode
Mapped mode refers to cases where tables are persisted in the underlying relational database in a
format that allows their data to be accessed directly, outside of EBX®. History tables and replica
tables are all examples of tables in mapped mode.
All cases of mapped mode involve automatic alterations of the database schema (the database tables,
indexes, etc.) when necessary, by automatically executing required DDL statements in the background.
Such procedures are always triggered at data model compilation time and the data model compilation
report notifies of any resulting errors.
Another general consideration regarding mapped modes is that, in most cases, when a data model
entity is removed, its corresponding database object is not deleted immediately. Instead, it is marked
as disabled, which leaves the possibility of later re-enabling the object. In order to definitively drop
the object and its associated data and resources from the database, it must be marked for purge. The
removal then takes place during the next global purge.

See also

Database mapping administration [p 669]

Data model evolutions [p 465]

Structural constraints
When a mapped mode is set, some EBX® data model constraints will generate a "structural constraint"
on the underlying RDBMS schema. This concerns the following constraining facets:

• facets xs:maxLength and xs:length on string elements;

• facets xs:totalDigits and xs:fractionDigits on xs:decimal elements.

Databases do not support as tolerant a validation mode as EBX®. Hence, the above constraints
become blocking constraints. A blocking constraint means that updates are rejected if they do
not comply: when a transaction does not comply with a blocking constraint, it is cancelled and a
ConstraintViolationExceptionAPI is thrown.

See also Blocking and non-blocking constraints [p 885]

Data model restrictions due to mapped mode
Due to the nature of persisting directly in the underlying database, some restrictions apply to all tables
stored in mapped mode:

• Limitations of supported databases [p 515]

• Unlimited-length strings: All string fields, except foreign keys, of type xs:string, its derived
types, and xs:anyURI must define a 'maxLength' or 'length' facet. Since a foreign key field is
composed of the final primary key field(s) of its target table(s), this facet requirement applies
to each of those final primary key fields instead of the foreign key field itself. Additionally,
limitations of the underlying database concerning the maximum length of its character types apply,
such as VARCHAR and NVARCHAR2.

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 6.2.0 450

• Fields of type type="osd:password" are ignored.

• Terminal complex types are supported; however, they cannot be globally set to null at record-
level.

More generally, tables in mapped mode are subject to any limitations of the underlying RDBMS. For
example, the maximum number of columns in a table applies (1000 for Oracle, 1600 for PostgreSQL).
Note that a history table contains twice as many fields as declared in the schema (one functional field,
plus one generated field for the operation code).
Data model evolutions may also be constrained by the underlying RDBMS, depending on the existing
data model.

See also Data model evolutions [p 465]

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 451

CHAPTER 86
History

This chapter contains the following topics:

1. Overview

2. Configuring history

3. History views and permissions

4. SQL access to history

5. Impacts and limitations of historized mode

86.1 Overview
History is a feature allowing to track all data modifications on a table (records creation, update and
deletion).
It is an improvement over the deprecated XML audit trail [p 686].

See also

History [p 32]

Replication [p 459]

Data model evolutions [p 465]

86.2 Configuring history
In order to activate historization for a table, a history profile has to be set for the table in the data
model. This section describes history profiles and the way they are associated with tables.

Configuring history in the repository
A history profile specifies when the historization is to be created. In order to edit history profiles,
select Administration > History and logs.
A history profile is identified by a name and defines the following information:

• An internationalized label.

• A list of dataspaces (branches) for which history is activated. It is possible to specify whether
direct children and/or all descendants should also be concerned.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 452

Some profiles are already created when installing the repository. These profiles can neither be deleted
nor modified.

Profile Id Description

ebx-referenceBranch This profile is activated only on the reference dataspace.

ebx-allBranches This profile is activated on all dataspaces.

ebx-instanceHeaders This profile historizes dataset headers. However, this profile
will only be setup in a future version, given that the internal
data model only defines dataset nodes.

Configuring history in the data model

Activating table history
History can be activated on a table either through the data model assistant, or by editing the underlying
data model.
To activate history by editing the data model, a history profile should be declared on the table using
the historyProfile element.
<osd:table>
 <primaryKeys>/key</primaryKeys>
 <historyProfile>historyProfileForProducts</historyProfile>
</osd:table>

The data model assistant allows you to view the historization profiles defined in the repository.
Historization must be activated for each table separately. See model design [p 836] documentation
for more details.

Disabling history on a specific field or group
For a historized table, the default behavior is to historize all its supported elements (see Impacts and
limitations of historized mode [p 456]).
It is possible to disable history for a given field or group, either through the data model assistant, or
by editing the underlying data model.
To disable the history of a field or group by editing the data model, use the element osd:history with
the attribute disable="true".
<xs:element name="longDescription" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:history disable="true" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

To disable the history of a field or group through the data model assistant, use the History property
in the Advanced properties of the element.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 453

When this property is defined on a group, history is disabled recursively for all its descendants. Once
a group disables history, it is not possible to specifically re-enable history on a descendant.

Note

If the table containing the field or group is not historized, this property will not have any effect.
It is not possible to disable history for primary key fields.

Integrity
If problems are detected at data model compilation, warning messages or error messages will be added
to the validation report associated with this data model. Furthermore, if any error is detected, each
associated instance (dataset) will be inaccessible. The most common error cases are the following:

• A table references a profile that is not defined in the repository.

• A history profile that is referenced in the data model mentions a non-defined or closed dataspace
in the current repository.

Note

Deploying a data model on a repository that does not have the expected profiles requires
the administrator to add them.

86.3 History views and permissions

Table history view
When the history has been activated on a table in the data model, it is possible to access the history
view from various locations in the user interface: record, selection of records, table and dataset.
The next section explains how permissions are resolved.
For more information, see table history view [p 33] section. To access the table history view from Java,
the method AdaptationTable.getHistoryAPI must be invoked.

Permissions for table history
Data permissions are also applied to data history. History permissions are resolved automatically as
the most restricted permission between data permissions and read-only access right.
This is true for user-defined permission rules and also for programmatic permission rules.
When defining a programmatic rule, it may be required to distinguish between the functional dataset
context and the history view context, either because the expected permissions are not the same, or
because some fields are not present in the history structure. This is the case for dataset fields, computed
values and fields for which history has been disabled [p 452]. The methods Adaptation.isHistoryAPI

and AdaptationTable.getHistoryAPI can then be used in the programmatic rule in order to implement
specific behavior for history.

Note

There is currently a limitation when a table has a scripted permission rule on record
specified: for security reason access to the table history is totally disabled for everyone.
Access to history will be allowed in a future version.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 454

Transaction history views
The transaction history view gives access to the executed transactions, independently of a table, a
dataset or a data model, directly from the user interface.
To see the 'Transaction history' table, navigate to the Administration area and select 'History and logs'
using the down arrow menu in the navigation pane. Transaction history can also be accessed from the
Dataspaces area by selecting a historized dataspace and using the Actions menu in the workspace.
Moreover, the history view of a record can also be accessed directly from the sidebar.
For more information, see transaction history view [p 33].

86.4 SQL access to history
This section describes how to directly access the history data by means of SQL.

Access restrictions
The database tables must be accessed only in read-only mode. It is up to the database administrator
to forbid write access except for the database user used by TIBCO EBX®, as specified in the section
Rules for the database access and user privileges [p 619].

Relational schema overview
Here is a description of the history tables in the database.
The database schema contains (see also the diagram in the next section):

Common and generic tables The main table is HV_TX; each record of this table represents
a transaction. Only transactions that involve at least one
historized table are recorded.
These common tables are all prefixed by "HV".

Specific generated tables For each historized table, a specific history table is
generated. This table contains the history of the data
modifications on the table.
In the EBX® user interface, the name of this table
in database can be obtained by clicking on the table
documentation pane (advanced mode). All the specific
history tables are prefixed with "HG".

Example of a generated history table
In the following example, we are historizing a table called product. Let us assume this table declares
three fields in EBX® data model:
Product

• productId: int

• price: int

• beginDate: Date

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 455

The diagram below shows the resulting relational schema:

Activating history on this table generates the HG_product table shown in the history schema structure
above. Here is the description of its different fields:

• tx_id: transaction ID.

• instance: instance ID.

• op: operation type - C (create), U (update) or D (delete).

• productId: productId field value.

• OproductId: operation field for productId, see next section.

• price: price field value.

• Oprice: operation field for price, see next section.

• beginDate: date field value.

• ObeginDate: operation field for beginDate, see next section.

Combination of operations
If several operations are combined in the same transaction, the operation field is resolved as follows:

• C + U -> C

D + U -> D

D + C -> U

C + D -> {} (no entry in history)

Values for operation fields
For each functional field, an additional operation field is defined, composed of the field name prefixed
by the character O. This field specifies whether the functional field has been modified. It is set to one
of the following values:

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 456

• null: if the functional field value has not been modified (and its value is not INHERIT).

• M: if the functional field value has been modified (not to INHERIT).

• D: if record has been deleted.

If inheritance [p 470] is enabled, the operation field can have three additional values:

• T: if the functional field value has not been modified and its value is INHERIT.

• I: if the functional field value has been set to INHERIT.

• O: if the record has been set to OCCULTING mode.

86.5 Impacts and limitations of historized mode
The history feature has some impacts and known limitations, which are listed in this section. If
using historized mode, it is strongly recommended to read these limitations carefully and to contact
Cloud Software Group, Inc. support in case of questions.

Validation
Some EBX® data model constraints become blocking constraints when table history is activated. For
more information, see the section Structural constraints [p 449].

Data model restrictions for historized tables
Some restrictions apply to data models containing historized tables:

• Data model restrictions due to mapped mode [p 449]

• Limitations exist for two types of aggregated lists: aggregated lists under another aggregated list,
and aggregated lists under a terminal group. Data models that contain such aggregated lists can
be used, however these lists will be ignored (not historized).

• Computed values are ignored.

• Linked fields are ignored.

• User-defined attributes on historized tables result in data model compilation errors.

Data model evolutions may also be constrained by the underlying RDBMS, depending on the data
already contained in the concerned tables.

See also Data model evolutions [p 465]

Other limitations of historized mode
• No data copy is performed when a table with existing data is activated for history.

• Global operations on datasets are not historized (create an instance and remove an instance), even
if they declare a historized table.

• Default labels referencing a non-historized field are not supported for historized tables.
As a consequence, default labels referencing a computed field are not supported for historized
tables.
The workaround is to implement the UILabelRenderer interface and adapt the label computation
for history.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 457

• D3: the history can be enabled in the delivery dataspace of a primary node, but in the delivery
dataspace of the replica nodes, the historization features are always disabled.

• Recorded user in history: for some specific operations, the user who performs the last operation
and the one recorded in the corresponding history record may be different.
This is due to the fact that these operations are actually a report of the data status at a previous state:

• Archive import: when importing an archive on a dataspace, the time and user of the last
operation performed in the child dataspace are preserved, while the user recorded in history
is the user who performs the import.

• Programmatic merge: when performing a programmatic merge on a dataspace, the time and
user of the last operation performed in the child dataspace are preserved, while the user
recorded in history is the user who performs the merge.

• D3: for distributed data delivery feature, when a broadcast is performed, the data from the
primary node is reported on the replica node and the time and user of the last operation
performed in the child dataspace are preserved, while the user recorded in history is 'ebx-
systemUser' who performs the report on the replica node upon the broadcast.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 6.2.0 458

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 459

CHAPTER 87
Replication

This chapter contains the following topics:

1. Overview

2. Configuring replication

3. Accessing a replica table using SQL

4. Requesting an 'onDemand' replication refresh

5. Impact and limitations of replication

87.1 Overview
Data stored in the TIBCO EBX® repository can be mirrored to dedicated relational tables to enable
direct access to the data by SQL requests and views.
Like history, this data replication is transparent to end-users and client applications. Certain actions
trigger automatic changes to the replica in the database:

• Activating replication at the model-level updates the database schema by automatically executing
the necessary DDL statements.

• Data model evolutions that impact replicated tables, such as creating a new column, also
automatically update the database schema using DDL statements.

• When using the 'onCommit' refresh mode: updating data in the EBX® repository triggers the
associated inserts, updates, and deletions on the replica database tables.

See also

History [p 451]

Data model evolutions [p 465]

Repository administration [p 618]

Note

replicated table: refers to a primary data table that has been replicated
replica table (or replica): refers to a database table that is the target of the replication

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 460

87.2 Configuring replication

Enabling replication
To define a replication unit on a data model, use the element osd:replication under the elements
annotation/appinfo. Each replication unit specifies tables in a single dataset in a specific dataspace.
The nested elements are as follows:

Element Description Required

name Name of the replication unit. This name identifies a replication
unit in the current data model. It must be unique.

Yes

dataSpace Specifies the dataspace relevant to this replication unit. It
cannot be a snapshot.

Yes

dataSet Specifies the dataset relevant to this replication unit. Yes

refresh Specifies the data synchronization policy. The possible policies
are:

• onCommit: The replica table content in the database is
always up to date with respect to its source table. Every
transaction that updates the EBX® source table triggers the
corresponding insert, update, and delete statements on the
replica table.

• onDemand: The replication of specified tables is only
done when an explicit refresh operation is performed. See
Requesting an 'onDemand' replication refresh [p 462].

Yes

table/path Specifies the path of the table in the current data model that is
to be replicated to the database.

Yes

table/nameInDatabase Specifies the name of the table in the database to which the
data will be replicated. This name must be unique amongst all
replications units.

Yes

table/element/path Specifies the path of the aggregated list in the table that is to be
replicated to the database.

Yes

table/element/
nameInDatabase

Specifies the name of the table in the database to which the data
of the aggregated list will be replicated. This name must be
unique amongst all replications units.

Yes

For example:
<xs:schema>
 <xs:annotation>
 <xs:appinfo>
 <osd:replication>
 <name>ProductRef</name>
 <dataSpace>ProductReference</dataSpace>
 <dataSet>productCatalog</dataSet>
 <refresh>onCommit</refresh>
 <table>
 <path>/root/domain1/tableA</path>
 <nameInDatabase>PRODUCT_REF_A</nameInDatabase>
 </table>

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 461

 <table>
 <path>/root/domain1/tableB</path>
 <nameInDatabase>PRODUCT_REF_B</nameInDatabase>
 <element>
 <path>/retailers</path>
 <nameInDatabase>PRODUCT_REF_B_RETAILERS</nameInDatabase>
 </element>
 </table>
 </osd:replication>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

Notes:

• See Data model restrictions for replicated tables [p 462]

• If, at data model compilation, the specified dataset and/or dataspace does not exist in the current
repository, a warning is reported, but the replica table is created in the database. Once the specified
dataspace and dataset are created, the replication becomes active.

• At data model compilation, if a table replication is removed, or if some of the above properties
has changed, the replica table is dropped from the database, and then recreated with the new
definition if needed.

Disabling replication on a specific field or group
For a replicated table, the default behavior is to replicate all its supported elements (see Data model
restrictions for replicated tables [p 462]).
It is possible to disable replication for a specific field or group, either through the data model assistant,
or by editing the underlying data model.
To disable the replication of a field or group by editing the data model, use the element
osd:replication with the attribute disable="true".
<xs:element name="longDescription" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:replication disable="true" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

To disable the replication of a field or group through the data model assistant, use the Replication
property in the Advanced properties of the element.
When this property is defined on a group, replication is disabled recursively for all its descendents.
Once a group disables replication, it is not possible to specifically re-enable replication on a
descendant.

Note

If the table containing the field or group is not replicated, this property will not have any effect.
It is not possible to disable replication for primary key fields.

87.3 Accessing a replica table using SQL
This section describes how to directly access a replica table using SQL.

See also SQL access to history [p 454]

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 462

Finding the replica table in the database
For every replicated EBX® table, a corresponding table is generated in the RDBMS. Using the EBX®
user interface, you can find the name of this database table by clicking on the documentation pane
of the table.

Access restrictions
The replica database tables must only be directly accessed in read-only mode. It is the responsibility of
the database administrator to block write-access to all database users except the one that EBX® uses.

See also Rules for the database access and user privileges [p 619]

SQL reads
Direct SQL reads are possible in well-managed, preferably short-lived transactions. However, for such
accesses, EBX® permissions are not taken into account. As a result, applications given the privilege
to perform reads must be trusted through other authentication processes and permissions.

87.4 Requesting an 'onDemand' replication refresh
The 'onDemand' refresh policy requires an explicit request to refresh the replicated table data.
There are several ways to request a replication refresh:

• User interface: In the dataset actions menu, use the action 'Refresh replicas' under the group
'Replication' to launch the replication refresh wizard.

• Data services: Use the replication refresh data services operation. See Replication refresh [p 1044]

for data services for more information.

• Java API: Call the ReplicationUnit.performRefreshAPI methods in the ReplicationUnit API to
launch a refresh of the replication unit.

87.5 Impact and limitations of replication
The replication feature has some known limitations and side-effects, which are listed below.
If using replication, it is strongly recommended to read this section carefully and to contact
Cloud Software Group, Inc. support in case of questions.
See Supported databases [p 515] for the databases for which replication is supported.

Validation
Some EBX® data model constraints become blocking constraints when replication is enabled. For
more information, see Structural constraints [p 449].

Data model restrictions for replicated tables
Some restrictions apply to data models containing tables that are replicated:

• Data model restrictions due to mapped mode [p 449]

• Dataset inheritance is not supported for the 'onCommit' refresh policy if the specified dataset is
not a root dataset or has not yet been created. See dataset inheritance [p 471] for more information.

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 463

• Field inheritance is also only supported for the 'onDemand' refresh policy. This means that, at
data model compilation, an error is reported if the refresh mode is 'onCommit' and the table to be
replicated has an inherited field. See inherited fields [p 472] for more information.

• Computed values are ignored.

• Linked fields are ignored.

• Limitations exist for two types of aggregated lists: aggregated lists under another aggregated list,
and aggregated lists under a terminal group. Data models that contain such aggregated lists can
be used, however these lists will be ignored (not replicated).

• User-defined attributes are not supported. A compilation error is raised if they are included in a
replication unit.

Data model evolutions may also be constrained by the underlying RDBMS, depending on the data
already contained in the concerned tables.

See also Data model evolutions [p 465]

Database configuration
The refresh operation is optimized to transmit only the rows of the source table that have been modified
(with respect to creation and deletion) since the last refresh. However, depending on the volume of
data exchanged, this can be an intensive operation, requiring large transactions. In particular, the first
refresh operation can concern a large number of rows. It is necessary for the database to be configured
properly to allow such transactions to run under optimal conditions.
For instance, with Oracle:

• It is mandatory for the bulk of all replica tables in a replication unit to fit into the 'UNDO'
tablespace.

• It is recommended to provide enough space in the buffer cache to allow those transactions to run
with minimal disk access.

• It is recommended to provision 'REDO' log groups big enough to avoid those transactions to wait
for the 'db_writer' process.

Distributed data delivery (D3)
Replication is available on both D3 primary and replica delivery dataspaces. On the primary dataspace,
the replication behavior is the same as in a standard semantic dataspace, but on replica dataspaces,
the replicated content is that of the last broadcast snapshot.
In a replica delivery dataspace, some restrictions occur:

• The refresh policy defined in the data model has no influence on the behavior described above:
replication always happens on snapshot.

• The action item Refresh replicas is not available.

• It is not allowed to invoke the ReplicationUnit.performRefreshAPI method.

See also D3 overview [p 694]

Other limitations of replication
• Limitations of supported databases [p 515]

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 6.2.0 464

• For inheritance, a replica record field cannot hold the "inherit value" flag
(AdaptationValue.INHERIT_VALUE). It only holds the inherited value in such cases. More
generally, it is not possible to distinguish inheriting state from overwriting state.

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 6.2.0 465

CHAPTER 88
Data model evolutions

This chapter describes the modifications that are possible on data models, as well as potential
limitations.

Attention
Whenever the data modeler performs an evolution on the primary key of a table, the resulting
definition is considered as a new table. In such cases, if existing data must be preserved in some
ways, a data migration plan must be set up and operated before the new data model is published or
deployed. It can also be noted that data is not destroyed immediately after the data model evolution;
if the data model is rolled back to its previous state, then the previous data is retrieved.

Note

Certain types of data model evolutions cannot be performed directly in the user interface,
and thus the data model must be exported, modified in XSD format, then re-imported.
For changes to a data model that impact its configuration, not just its structure, the
XSD must be imported into TIBCO EBX® from a module. Otherwise, the configuration
modifications are not taken into account.

See also Mapped mode [p 449]

This chapter contains the following topics:

1. Types of permitted evolutions

2. Limitations/restrictions

88.1 Types of permitted evolutions
This section describes the possible modifications to data models after their creation.

Model-level evolutions
The following modifications can be made to existing data models:

• Replication units can be added to the data model. If their refresh policy is 'onCommit', the
corresponding replica tables will be created and refreshed on next schema compilation.

• Replication units can be removed from the data model. The corresponding replica tables will be
dropped immediately.

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 6.2.0 466

• The data model can be deleted. If it declares replication units, the corresponding replica tables
will be dropped immediately. If it contains historized tables, this change marks the associated
mapped tables as disabled. See Database mapping [p 669] for the actual removal of associated
database objects.

Table-level evolutions
The following modifications can be made to a data model at the table-level:

• A new table can be added. Upon creation, the table can also declare one or more mapped modes.

• An existing table can be deleted. If it declares replication units, the corresponding replica tables
will be dropped immediately. If it historized, this change marks the mapped table as disabled. See
Database mapping [p 669] for the actual removal of associated database objects.

• History can be enabled or disabled on a table. History will not take into account the operations
performed while it is disabled.

• A table can be renamed. Data should be manually migrated, by exporting then re-importing an
XML or archive file, because this change is considered to be a combination of deletion and
creation.

Field-level evolutions
The following modifications can be made to a data model at the field-level:

• A new field can be added.

• An existing field can be deleted. The data of the deleted field will be removed from each record
upon its next update. For a replica table, the corresponding column is automatically removed. In
history mode, the field is marked as disabled.

• A field can be specifically disabled from the history or replication which applies to its containing
table, by using the attribute disable="true". For a replica table, the corresponding column is
automatically removed. For a history table, the column remains but is marked as disabled. See
Disabling history on a specific field or group [p 452] and Disabling replication on a specific field
or group [p 461].

• The facets of a field can be modified, except for the facets listed under Limitations/restrictions
[p 466].

The following changes are accepted, but they can lead to a loss of data. Data should be migrated
manually, by exporting then re-importing an XML or archive file, since these changes are considered
to be a combination of deletion and creation:

• A field can be renamed.

• The type of a field can be changed.

88.2 Limitations/restrictions

Limitations related to primary key evolutions
When a primary key definition is modified:

• The content of the table will be reset to an empty content, in all datasets and dataspaces.

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 6.2.0 467

• If the new primary key has been used in the past, the content of the table will be reset to the
previous data existing at the time this primary key was used, in all datasets and dataspaces.

• Type conversion is not supported for a primary key field. Thus, the content of the table will always
be reset to empty when changing the type of a primary key even when reusing a type already used
in previous primary key definition.

• The modification will be rejected if the table has - or has had - history activated in the existing
dataspaces. A possible workaround: first drop the history table associated with the dedicated table,
then proceed to modifying the primary key. For the procedure to purge mapped table database
resources, see Database mapping [p 669].

Note

If the modified primary key is referenced in the primary key of another table, all the
limitations mentioned above apply to the target table.

Limitations related to foreign key evolutions
• When the declaration of a osd:tableRef facet is added or modified, or when the primary key of

its target table is modified, the existing values will restart from empty (except if this modification
is reverting to a previous definition; in this case, the previous content will be retrieved).

• In replication mode, the structure of a foreign key field is set to match that of the target primary
key. A single field declaring an osd:tableRef constraint may then be split into a number of
columns, whose number and types correspond to that of the target primary key. Hence, the
following cases of evolutions will have an impact on the structure of the mapped table:

• declaring a new osd:tableRef constraint on a table field;

• removing an existing osd:tableRef constraint on a table field;

• adding (resp. removing) a column to (resp. from) a primary key referenced by an existing
osd:tableRef constraint;

• modifying the type or path for any column of a primary key referenced by an existing
osd:tableRef constraint.

These cases of evolution will translate to a combination of field deletions and/or creations.
Consequently, the existing data should be migrated manually.

Limitations related to field-level evolutions
When changing the type of a field to an incompatible type or cardinality, the field will be considered
as a new one, and start with an empty content. The previous content will be retrieved if the model is
rolled back to a previous definition.

• The following types are fully inter-convertible (meaning these types have the same exact
persistent representation, and can be substituted to each other in the following charts):

• xs:string

• osd:color

• osd:datasetName

• osd:dataspaceKey

• osd:email

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 6.2.0 468

• osd:html

• osd:local

• osd:resource

• xs:nmtoken

• xs:nmtokens

• osd:text

• xs:anyUri

• xs:name

• The following conversions are fully supported (that is, regardless of their cardinalities):

• xs:decimal to xs:string

• xs:datetime to xs:string

• xs:date to xs:string

• xs:integer to xs:string

• xs:int to xs:decimal

• xs:integer to xs:decimal

• xs:decimal to xs:integer (losing the decimal part)

• xs:int to xs:integer

• xs:datetime to xs:date (losing the time part)

• xs:date to xs:datetime (defaulting the time part to 0)

• The following conversions are possible only if the original type is single-valued:

• xs:boolean to xs:string

• xs:time to xs:string

• xs:int to xs:string

• xs:long to xs:string

The cardinality of a type can be changed; when the conversion is supported, it has the following
behavior:

• When changing a single element to an aggregated list, the previous single value is preserved and
added to the new aggregated list.

• When changing an aggregated list to a single element, only the last value of the aggregated list
is preserved in the single element. Other values are lost.

Attention
Groups and complex types do not support conversion to (and from) any other types. Moreover, when
a group or complex type changes between single-occurrenced and multi-occurrenced, the conversion
is supported only if the group or complex type is terminal.

Documentation > Reference Manual

TIBCO EBX® Product Documentation 6.2.0 469

Other

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 6.2.0 470

CHAPTER 89
Inheritance and value resolution

This chapter contains the following topics:

1. Overview

2. Dataset inheritance

3. Inherited fields

4. Optimize & Refactor service

89.1 Overview
The principle of inheritance is to mutualize resources that are shared by multiple contexts or
entities. TIBCO EBX® offers mechanisms for defining, factorizing and resolving data values: dataset
inheritance and inherited fields.
Furthermore, functions can be defined to compute values.

Note

Inheritance mechanisms described in this chapter should not be confused with "structural
inheritance", which usually applies to models and is proposed in UML class diagrams
for example.

See also Inheritance (glossary) [p 31]

Dataset inheritance
Dataset inheritance is particularly useful when data applies to global enterprise contexts, such as
subsidiaries or business partners.
Given a hierarchy of datasets, it is possible to factorize common data into the root or intermediate
datasets and define specialized data in specific contexts.
The dataset inheritance mechanisms are detailed below in Dataset inheritance [p 471].

Inherited fields
Contrary to dataset inheritance, which exploits global built-in relationships between datasets, inherited
fields exploit finer-grained dependencies that are specific to the data structure. It allows factorizing
and specializing data at the business entities-level.

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 6.2.0 471

For example, if the model specifies that a 'Product' is associated with a 'FamilyOfProducts', it
is possible that some attributes of 'Product' inherit their values from the attributes defined in the
associated 'FamilyOfProducts'.

Note

When using both inheritance mechanisms in the same dataset, field inheritance has
priority over dataset inheritance.

See also Inherited fields performance considerations [p 587]

Computed values (functions)
In the data model, it is also possible to specify that a node holds a computed value. In this case, the
specified JavaBean function will be executed every time the value is requested.
The function is able to take into account the current context, such as the values of the current record
or computations based on another table, and to send requests to third-party systems.

See also Computed values [p 891]

89.2 Dataset inheritance

Dataset inheritance declaration
The dataset inheritance mechanism is declared from DMA in the data model (Configuration > Data
model properties) or directly in the XML Schema Definition, when using (Actions > Import data
model):
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ebxbnd="urn:ebx-schemas:binding_1.0">
 <xs:annotation>
 <xs:appinfo>
 <osd:inheritance>
 <dataSetInheritance>all</dataSetInheritance>
 </osd:inheritance>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

The element osd:inheritance defines the property dataSetInheritance to specify the use of
inheritance on datasets based on this data model. The following values can be specified:

• all, indicates that inheritance is enabled for all datasets based on the data model.

• none, indicates that inheritance is disabled for all datasets based on the data model.

If not specified, the inheritance mechanism is disabled.

Value lookup mechanism
The dataset inheritance lookup mechanism for values proceeds as follows:

1. If the value is locally defined, it is returned.
It can be explicitly null.

2. Otherwise, looks up the first locally defined value according to the built-in child-to-parent
relationship of the dataset in the hierarchy of datasets.

3. If no locally defined value is found, the default value is returned.

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 6.2.0 472

If no default value is defined, null is returned.
Note: Default values cannot be defined on:

• A single primary key node

• Auto-incremented nodes

• Nodes defining a computed value

Record lookup mechanism
Like values, table records can also be inherited as a unit by multiple contexts, but they can also be
partially redefined (overwritten), defined for a specific context (root mode), or be occulted.
Formally, a table record has one of four distinct definition modes:

root record Locally defined in the table and has no parent. This means
that no record with the same primary key exists in the parent
table, or that this parent is an occulting record.

overwriting record Locally defined in the table and has a parent record. This
means that a record with the same primary key exists in the
parent table, and that this parent is not an occulting record.
The overwriting record inherits its values from its parent,
except for the values that it explicitly redefines.

inherited record Not locally defined in the current table and has a parent
record. All values are inherited.
Functions are always resolved in the current record context
and are not inherited.

occulting record Specifies that, if a parent with the same primary key is
defined, this parent will not be visible in table descendants.

See also Dataset inheritance [p 159]

Defining inheritance behavior at the table level
It is also possible to specify management rules in the declaration of a table in the data model.

See also Properties related to dataset inheritance [p 857]

89.3 Inherited fields
The specific inheritance mechanism allows fetching a value of a field according to its relationship
to other tables.

Field inheritance declaration
Specific inheritance must be specified:

• on the node's advanced properties in the underlying data model.

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 6.2.0 473

• on terminal nodes in the underlying data model and is declared as follows:
<xs:element name="sampleInheritance" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:inheritance>
 <sourceRecord>
 /root/table1/fkTable2, /root/table2/fkTable3
 </sourceRecord>
 <sourceNode>color</sourceNode>
 </osd:inheritance>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The element sourceRecord is an expression that describes how to look up the record from which
the value is inherited. It is a foreign key, or a sequence of foreign keys, from the current element
to the source table.
If sourceRecord is not defined in the data model, the inherited fields are fetched from the current
record.
The element sourceNode is the path of the node from which to inherit in the source record.
The following conditions must be satisfied for specific inheritance:

• The element sourceNode is mandatory.

• The expression for the path to the source record must be a consistent path of foreign keys,
from the current element to the source record. This expression must involve only one-to-one
and zero-to-one relationships.

• The sourceRecord cannot contain any aggregated list elements.

• Each element of the sourceRecord must be a foreign key.

• If the inherited field is also a foreign key, the sourceRecord cannot refer to itself to get the
path to the source record of the inherited value.

• Every element of the sourceRecord must exist.

• The source node must belong to the table containing the source record.

• The source node must be terminal.

• The source node must be writeable.

• The source node type must be compatible with the current node type.

• The source node cardinalities must be compatible with those of the current node.

• The source node cannot be the same as the inherited field if the fields to inherit from are
fetched into the same record.

Value lookup mechanism
The lookup mechanism for inherited fields values proceeds as follows:

1. If the value is locally defined, it is returned.
It can be explicitly null

2. Otherwise, looks up the source record and value to inherit from, according to the properties that
are defined in the data model.

3. The process is recursive; if the source node does not locally define a value, it is then looked up
according to the inheritance behavior of the source node.

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 6.2.0 474

89.4 Optimize & Refactor service
EBX® provides a built-in user service for optimizing the dataset inheritance in the hierarchy of
datasets. This service performs the following functions:

• Handles duplicated values: Detects and removes all parameter values that are duplicates of the
inherited value.

• Mutualizes common values: Detects and mutualizes the common values among the descendants
of a common ancestor.

Procedure details
Datasets are processed from the bottom up, which means that if the service is run on the dataset at
level N, with N+1 being the level of its children and N+2 being the level of its children's children, the
service will first process the datasets at level N+2 to determine if they can be optimized with respect
to the datasets at level N+1. Next, it would proceed with an optimization of level N+1 against level N.

Note

• These optimization and refactoring functions do not handle default values that are
declared in the data model.

• The highest level considered during the optimization procedure is always the dataset on
which the service is run. This means that optimization and refactoring are not performed
between the target dataset and its own ancestors.

• Table optimization is performed on records with the same primary key.

• Inherited fields are not optimized.

• The optimization and refactoring functions do not modify the resolved view of a dataset,
if it is activated.

Service availability
The 'Optimize & Refactor' service is available on datasets that have child datasets and have the
'Activated' property set to 'No' in their dataset information.
The service is available to any profile with write access on current dataset values. It can be disabled
by setting restrictive access rights on a profile.

Note

For performance reasons, access rights are not verified on every node and table record.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 475

CHAPTER 90
Permissions

Permissions dictate the access each user has to data and actions.
This chapter contains the following topics:

1. Overview

2. Important considerations about permissions

3. Defining confidentiality

4. Defining user-defined rules

5. Defining dynamic rules

6. Resolving permissions on data

7. Resolving permissions on services

8. Resolving permissions on actions

90.1 Overview
Permissions are related to whether actions are authorized or not. They are also related to access rights,
that is, whether an entity is hidden, read, or read-write. The main entities controlled by permissions are:

• Dataspace

• Dataset

• Table

• Group

• Field

Users, roles and profiles
The definition and resolution of permissions make extensive use of the notion of profiles, which is
the generic term applied to users or roles.
Each user can participate in several roles, and a role can be shared by several users.
These relationships are defined in the user and roles directory. See Users and roles directory [p 661].
Special definitions:

• A built-in administrator is a member of the built-in role 'ADMINISTRATOR'.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 476

• An owner of a dataset is a member of the owner attribute specified in the information of a root
dataset. In this case, the built-in role 'OWNER' is activated when permissions are resolved in the
context of the dataset.

• An owner of a dataspace is a member of the owner attribute specified for a dataspace. In this
case, the built-in role 'OWNER' is activated when permissions are resolved in the context of the
dataspace.

Permission rules
A permission rule defines the authorization granted to a profile for a particular entity.
User-defined permission rules are created through the user interface. See the section Defining user-
defined rules [p 480].
Dynamic permission rules can be either programmatic rules created by developers, or scripted rules
created by administrators. See the section Defining dynamic rules [p 487].

Resolution of permissions
Permissions are always resolved in the context of an authenticated user session, thus permissions are
mainly based on the user profiles.
In general, resolution of permissions is performed restrictively between a given level and its parent
level. Thus, at any given level, a user cannot have a higher permission than the one resolved at a
parent level.
Dynamic permissions are always considered to be restrictive.

Note

In the Java API, the class SessionPermissionsAPI provides access to the resolved
permissions.

See also

Resolving permissions on data [p 489]

Resolving permissions on services [p 492]

Resolving permissions on actions [p 494]

Owner and administrator special permissions

On a dataset
A built-in administrator or owner of a dataset can perform the following actions:

• Manage its permissions

• Change its owner, if the dataset is a root dataset

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 477

• Change its general information (localized labels and descriptions)

Attention
While the definition of permissions can restrict a built-in administrator or dataset owner's right to
view data or perform certain actions, it remains possible for them to modify their own access, as
they will always have access to permissions management.

On a dataspace
To be a super owner of a dataspace, a user must either:

• Own the dataspace and be allowed to manage its permissions, or

• Own a dataspace that is an ancestor of the current dataspace and be allowed to manage the
permissions of that ancestor dataspace.

A built-in administrator or super owner of a dataspace can perform the following actions:

• Manage its permissions of dataspace.

• Change its owner

• Lock it or unlock it

• Change its general information (localized labels and descriptions)

Furthermore, in a workflow, when using a "Create a dataspace" or "Create a snapshot" built-in script
task, resolved permissions are computed using the owner defined in the script task's configuration,
rather than the current session. This is because, in these cases, the current session is associated with
a system user.

Attention
While the definition of permissions can restrict a built-in administrator or dataspace owner's right
to view data or perform certain actions, it remains possible for them to modify their own access, as
they will always have access to permissions management.

Impact of merge on permissions
When a dataspace is merged, the permissions of the child dataset are merged with those of the parent
dataspace if and only if the user specifies to do so during the merge process. The permissions of its
parent dataspace are never impacted.
If some elements are hidden for the profile attempting to perform a merge, it will not be possible to
proceed as the impacts of the merge on data will not be fully visible.

90.2 Important considerations about permissions
In this section are listed some very important information that must be kept in mind while working
with permissions.

Actions and user services granting high privileges
The following actions and their related user services must only be allowed to trusted administrators:

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 478

• 'Create dataspace' (gives the 'owner' role, which grants the right to define the dataspace
permissions)

• 'Create dataset' (gives the 'owner' role, which grants the right to define the dataset permissions)

• 'Import archive' (allows writing the archive content regardless of any permission)

Note

See the Owner and administrator special permissions [p 476] section for more
information about the privileges granted to these profiles.

API access without permission checks
Developers and administrators must be aware that some parts of the API can run without any
permission check. In general if the code run in a context with a SessionAPI provided, it means that
permissions will be checked. Here are some specific cases where permissions are not checked:

• When a Java procedure disables all permission checks by using ProcedureContext.
setAllPrivilegesAPI.

• When accessing EBX® data by directly querying your database, in the case a table enables the
replication mode [p 448], or the historization [p 448]. This is because EBX® permissions are not
"translated" in the underlying database. As a consequence, either the database access must be
globally restricted or proper permissions must be defined in it.

Using permission for hiding information in the UI
Using the permissions only to hide in the UI some non sensitive information is unadvised, especially
if this information is likely to be used for filtering / joining / sorting in some queries. In such cases,
UI-only hiding methods should be used instead. For instance by setting the field as hidden for default
views [p 903] in the data model property and/or by creating views [p 643] for the concerned users.
When the above suggestions can not be applied and permissions have to be used to hide non sensitive
information, the nodes must be set as non confidential in the model. For more information, see
Defining confidentiality [p 480].

Limitations of the permission checks in Query API
The permission check performed when specifying a session in a QueryAPI or RequestAPI will throw a
QueryPermissionExceptionAPI if any confidential field used in the query is hidden for the current user.
All fields are considered confidential except:

• Fields belonging to primary keys;

• Fields explicitly defined as non-confidential. For more information , see Defining confidentiality
[p 480];

Attention
Confidential nodes with a record-dependent AccessRuleAPI are only partially confidential. Indeed,
the method AccessRule.getPermissionAPI is only called with a dataset as the aDataSetOrRecord
parameter while performing the permission check, never with a record. As a consequence, the record-
dependent logic of the rule will not apply during this check.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 479

Scripted permission rules on records and table history
You can use scripted permission rules to filter table records and table history. By default, table history
access is disabled for all users. This behavior helps enforce security. However, you can create a list
of profiles authorized to access table history by editing the permission rule and adding the desired
profiles to the Profiles authorized to access history list.

Using hidden fields in custom display labels
Resolution of custom display labels for tables ('defaultLabel' property) and relationships ('display'
property) takes into account permission. As soon as an hidden field is detected in the label, the primary
key will be displayed instead.

Note

This is not the case when using API like TableRefDisplayAPI or Adaptation.
getLabelOrNameAPI. Since the provided contexts do not contain the current session, no
permission check can be performed. As a consequence, developer should make sure that
no confidential data is exposed when using these APIs.

Note

Also note that quick search will ignore nodes with hidden fields in custom display label
in the context of history view and/or in a child dataset.

Because of this behavior it is highly discouraged to use labels for filtering in a query. When labels
with hidden fields are used, it will be replaced by the pk value and the filter will become inconsistent.

Linked field permission check
When a linked field [p 873] access permission is computed, the result is the minimum between the
permission applying to the node in the main table and the node in the target table. Practically it means
that if a field is hidden in a table, all linked fields pointing on it in other tables will also be hidden.

Table action permission related limitations
When performing actions on a table (create, delete, overwrite or occult) in a procedure, the current user
session access right on the table node is ignored during the permission resolution. Should this check
be performed, the client code must explicitly call SessionPermissions.getNodeAccessPermissionAPI

beforehand in the procedure.

Permission cache life cycle
To optimize the resolution of permissions for both data and user services, a dedicated cache is
implemented at the session level. All permissions are cached including dynamic rules, it means that
a rule result should not change for the duration of the cache which is explained below.
The session cache life cycle depends on the context, as described hereafter:

• In the UI, the cache is cleared for every non-ajax event (i.e on page display, pop-up opening, etc.).

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 480

• In programmatic procedures, the cache lasts until the end of the procedure, unless explicitly
cleared (see below).

Attention
When modifying permissions in a procedure context (by importing an EBX® archive or merging
a dataspace programmatically), the session cache must be cleared via a call to Session.
clearCacheAPI. Otherwise, these modifications will not be reflected until the end of the procedure.

Permissions on a dataset with fatal errors
When a dataset has fatal errors, only owners and administrators have access and only the following
actions are available:

• View the validation report

• View the information page

• Delete the dataset

90.3 Defining confidentiality
The confidentiality of a node defines whether or not it can be used in a QueryAPI or a RequestAPI when
hidden for a specific user. By default, all nodes are confidential.
Defining confidentiality on a node has the following impacts on the relationships and views that use it:

• A relationship (association or table reference) is hidden if at least one of its defining nodes is
confidential and hidden.

• A relationship is hidden if at least one of the nodes used in its additional XPath filter is confidential
and hidden.

• A view is hidden if at least one of the nodes that is used in its filter criteria or in its sort criteria
is confidential and hidden.

For details about relationship defining nodes and relationship additional XPath filters see Foreign
keys [p 859] and Associations [p 863].

Attention
It is recommended to be very vigilant before setting a field as non confidential because although
hidden, a malicious user could then "guess" the value by filtering or sorting using this node. It can
not always be done, but it is generally a better option to use views to handle these kinds of use cases,
as recommended in Using permission for hiding information in the UI [p 478].

The confidentiality of nodes can be configured in the DMA. For more details, see Node confidentiality
[p 87].

90.4 Defining user-defined rules
Each level has a similar schema, which allows defining permission rules for profiles.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 481

Defining dataspace user-defined rules
For a given dataspace, the allowable permissions for each profile are as follows:

Dataspace access Authorization

Write • Can view the dataspace.

• Can access datasets according to dataset permissions.

Read-only • Can view the dataspace and its snapshots.

• Can view child dataspaces, if allowed by permissions.

• Can view contents of the dataspace, though cannot modify them.

Hidden • Can neither see the dataspace nor its snapshots.

• If allowed to view child dataspace, can see the current dataspace but cannot select it.

• Cannot access the dataspace contents, including datasets.

• Cannot perform any actions on the dataspace.

Restriction policy Indicates whether this dataspace profile-permission
association should have priority over other permissions
rules.

Create a child dataspace Indicates whether the profile can create child dataspaces
from the current dataspace.

Create a child snapshot Indicates whether the profile can create snapshots of the
current dataspace.

Initiate merge Indicates whether the profile can merge the current
dataspace with its parent dataspace.

Export archive Indicates whether the profile can export the current
dataspace as an archive.

Import archive Indicates whether the profile can import an archive into the
current dataspace.

Close a dataspace Indicates whether the profile can close the current
dataspace.

Close a snapshot Indicates whether the profile can close a snapshot of the
current dataspace.

Rights on services Indicates if a profile has the right to execute services
on the dataspace. By default, all dataspace services are

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 482

allowed. A built-in administrator or super owner of the
current dataspace or a given user who is allowed to
modify permissions on the current dataspace can modify
these permissions to restrict dataspace services for certain
profiles.

Permissions of child dataspace
when created

When a user creates a child dataspace, the permissions
of this new dataspace are automatically assigned to the
profile's owner, based on the permissions defined under
'Permissions of child dataspace when created' in the parent
dataspace. If multiple permissions are defined for the owner
through different roles, the owner's profile behaves like any
other profile and permissions are resolved [p 476] as usual.

Defining dataset user-defined rules
For a given dataset, the allowable permissions for each profile are as follows:

Actions on datasets

Restriction policy Indicates whether this dataset profile-permission
association should have priority over other permissions
rules.

Create a child dataset Indicates whether the profile has the right to create a child
dataset of the current dataset.

Duplicate dataset Indicates whether the profile has the right to duplicate the
current dataset.

Change the dataset parent Indicates whether the profile has the right to change the
parent dataset of a given child dataset.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 483

Actions on tables
The action rights on default tables are defined at the dataset level. It is then possible to override these
default rights for one or more tables. The allowable permissions for each profile are as follows:

Create a new record Indicates whether the profile has the right to create records
in the table.

Overwrite inherited record Indicates whether the profile has the right to overwrite
inherited records in the table.

Occult inherited record Indicates whether the profile has the right to occult inherited
records in the table.

Delete a record Indicates whether the profile has the right to delete records
in the table.

Access rights on node values
Permissions defined on specific terminal nodes override their default access rights.

Read-write Can view and modify node values.

Read Can view nodes, but cannot modify their values.

Hidden Cannot view nodes.

Permissions on services
A built-in administrator or an owner of the current dataspace can modify the service default permission
to either restrict or grant access to certain profiles.

Enabled Grants service access to the current profile.

Disabled Forbids service access to the current profile. It will not
be displayed in menus, nor will it be launchable via web
components.

Default Sets the service permission to enabled or disabled,
according to the default permission defined upon service
declaration.
See ActivationContext.setDefaultPermissionAPI for more
information.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 484

Using the Dataset Permissions configuration service
User-defined access rules at the dataset level are defined using the Permissions service available from
the dataset's Actions menu. From this service, administrators can review and configure user access
to data, actions, and services inside this dataset.

Permissions service UI overview
The service is presented as a grid in which:

• Each column represents a rule for one profile in the dataset. As shown in the example screenshot
below, the profiles are: SALES, John Doe (user), [all profiles], and [owner] admin admin. See
Managing profiles [p 484] for more information.

• Each line represents a node, an action, or a service on which a rule applies. See Managing
permissions [p 486] for more information.

• Each modifiable cell represents a permission level to access a node, an action, or a service for
a given profile.

Managing profiles
Profile management tasks include:

• Adding a user-defined access rule [p 485]

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 485

• Duplicating a profile configuration into another profile [p 485]

• Deleting a profile configuration [p 485]

Adding a user-defined access rule
To add a rule for a profile:

• Click the Manage profiles button at the top of the grid.

• In the popup menu, select or hover over a profile from the Available profiles tab.

• Click the Add button.

Duplicating a profile configuration into another profile
To duplicate an existing profile's configuration into another profile:

• Click the Manage profiles at the top of the grid.

• In the popup menu, select or hover over the source profile in the Manage profiles window.

• Click the Duplicate button that displays to the right of the source profile's name.

• Select the destination profile under the Available profiles.

Deleting a profile configuration
To delete a profile configuration:

• Click the Manage profiles at the top of the grid.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 486

• In the popup menu, select or hover over a profile in the list.

• Click the Delete button that display to the right of the source profile's name.

Managing permissions
There are 2 ways to assign permissions on nodes, actions, and services. You can:

• Select one or more cells, then apply a permission using the toolbar or a shortcut.

• Select a permission using the toolbar or a shortcut when no cell is selected, then apply this
permission to one or more cells. When using this method an icon displays next to the mouse
pointer and changes depending on the context.

Note

In the permissions toolbar, the Read-Write / Enabled and Hidden / Disabled value
changes depending on whether the selection is a node, or an action/service. The actual
value is Read-Write and Hidden for a node and Enabled and Disabled for an action/
service.

In the screenshot below, the permission cell corresponding to the Create a new record service and
to the user John Doe is set to Enabled:

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 487

90.5 Defining dynamic rules
Dynamic rules give the possibility to define more precisely the conditions for accessing data or user
services depending on the context.
There are different types of programmatic rules:

• the AccessRuleAPI, described in the section below Defining access rules on data [p 487].

• the scripted record permission rule, described in the section below Defining scripted permission
rules on data [p 487].

• the ServiceActivationRule [p 488], described in the section below Defining activation rules on
service [p 488].

• the ServicePermissionRuleAPI, described in the section below Defining permission rules on
service [p 488].

Defining scripted permission rules on data
scripted permission rules are rules that dynamically define, depending on the context, the read/write
rights on the records of a table.
To define such a rule, a record permission script [p 1239] must be created in the DMA. A script editor
is available on the table node definition, in the "Extensions" tab.

Defining access rules on data
AccessRules are rules that programmatically define, depending on the context, the read/write rights
on a data model node or on the records of a table.
The definition of an AccessRule is performed as follows:

1. Creation of a rule in the form of a Java class implementing the AccessRuleAPI or
AccessRuleForCreateAPI interface.

2. Assignment of this rule to concerned nodes in the schema extension: SchemaExtensionsAPI.
According to the rule target (model node(s) or records) and type (AccessRule
or AccessRuleForCreate), several methods such as SchemaExtensionsContext.
setAccessRuleOnOccurrenceAPI or SchemaExtensionsContext.setAccessRuleForCreateOnNodeAPI

can be used.
The rule thus assigned is said to be "local" and is only executed when the target entity is requested.
See Resolving permissions on data [p 489] for more information.

Attention
Only one AccessRule can be defined for each node, dataspace or record. Only one
AccessRuleForCreate can be defined for each table child node. The definition of a new
programmatic rule of one type will lead to the replacement of the existing one.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 488

Defining activation rules on service
The ServiceActivationRules allow to specify if a service is activated or not for a given dataspace or
dataset. A service that has been deactivated through this rule is never available in the entity for which
it is deactivated, regardless of the current profile, for execution or display, even in permission screens.
The definition of a ServiceActivationRule is carried out as follows:

1. Creation of a rule in the form of a Java class implementing the
ServiceActivationRuleForDataspaceAPI interface or ServiceActivationRuleForDatasetAPI,
depending on the service type.

2. Assignment of this rule to the impacted services at their declaration level, depending
on the service type, via the ActivationContextOnDataspace.setActivationRuleAPI or
ActivationContextWithDatasetSet.setActivationRuleAPI methods.
The resulting assigned rule will be evaluated during the service activation evaluation. See
Resolving permissions on services [p 492] for more information.

Defining permission rules on service
The ServicePermissionRules are advanced rules allowing to dynamically define the display and
execution conditions of a service depending on the context (current session, selected entity, etc.). The
service should be activated for the current context beforehand for this type of rule to be triggered.
The definition of a ServicePermissionRule is carried out as follows:

1. Creation of a rule in the form of a Java class implementing the ServicePermissionRuleAPI

interface.

2. Assignment of this rule to the impacted services:

• Either, for new services, at their declaration level via the ActivationContext.
setPermissionRuleAPI method.
The rule thus assigned is said to be "global" and is only executed when the service is activated
for the current context. See Resolving permissions on services [p 492] for more information.

• Or, for existing services, in the schema extension SchemaExtensionsAPI

via the SchemaExtensionsContext.setServicePermissionRuleOnNodeAPI and
SchemaExtensionsContext.setServicePermissionRuleOnNodeAndAllDescendantsAPI

methods. It is thus possible to assign a rule to any service, including standard services
provided by EBX®, on one or more data model nodes: a table node, an association node, etc.
The rule thus assigned is said to be "local" and is only executed in the extended schema
context and when the node corresponds to the one specified. See Resolving permissions on
services [p 492] for more information.

Attention
Only one ServicePermissionRule can be defined for each model node. Thus, the definition
of a new programmatic rule will replace the existing one.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 489

90.6 Resolving permissions on data

Resolving user-defined rules
Access rights defined using the user interface are resolved on four levels: dataspace, dataset, record
(if applicable) and node.
If a profile is associated with restrictive access rights at a given level, the minimum of all restrictive
rights defined at that level is resolved. If no restrictions are defined at that level, the maximum of all
access rights defined at that level is resolved.
When a restrictive permission is defined for a profile, it takes precedence over the other permissions
potentially granted by the user's other roles. Generally, for all user-defined permission rules that match
the current user session:

• If some rules with restrictions are defined, the minimum permissions of these restricted rules are
applied.

• If no rules having restrictions are defined, the maximum permissions of all matching rules are
applied.

Examples:
Given two profiles P1 and P2 concerning the same user, the following table lists the possibilities when
resolving that user's permission to a service.

P1 authorization P2 authorization Permission resolution

Enabled Enabled Enabled. Restrictions do not make any difference.

Disabled Disabled Disabled. Restrictions do not make any difference.

Enabled Disabled Enabled, unless P2's authorization is a restriction.

Disabled Enabled Enabled, unless P1's authorization is a restriction.

The same restriction policy is applied for data access rights resolution.
In another example, a dataspace can be hidden from all users by defining a restrictive association
between the built-in profile "Profile.EVERYONE" and the access right "hidden".
At any given level, the most restrictive access rights between those resolved at this level and higher
levels are applied. For instance, if a user's dataset access permissions resolve to read-write access,
but the container dataspace only allows read access, the user will only have read-only access to this
dataset.

Note

The dataset inheritance mechanism applies to both values and access rights. That is,
access rights defined on a dataset will be applied to its child datasets. It is possible to
override these rights in the child dataset.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 490

Access rights resolution example
In this example, there are three users who belong to the following defined roles and profiles:

User Profile

User 1 • user1

• role A

• role B

User 2 • user2

• role A

• role B

• role C

User 3 • user3

• role A

• role C

The access rights of the profiles on a given element are as follows:

Profile Access rights Restriction policy

user1 Hidden Yes

user3 Read No

Role A Read/Write No

Role B Read Yes

Role C Hidden No

After resolution based on the role and profile access rights above, the rights that are applied to each
user are as follows:

User Resolved access rights

User 1 Hidden

User 2 Read

User 3 Read/Write

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 491

Resolving dataspace and snapshot access rights
At dataspace level, access rights are resolved as follows:

• If a user has several rights defined through multiple profiles:

• If the rights include restrictions, the minimum of the restrictive profile-rights associations
is applied.

• Otherwise, the maximum of the profile-rights associations is applied.

• If the user has no rights defined:

• If the user is a built-in administrator or owner of the dataspace, read-write access is given
for this dataspace.

• Otherwise, the dataspace will be hidden.

Resolving dataset access rights
At the dataset level, the same principle applies as at the dataspace level. After resolving the access
rights at the dataset level alone, the final access rights are determined by taking the minimum rights
between the resolved dataspace rights and the resolved dataset rights. For example, if a dataspace is
resolved to be read-only for a user and one of its datasets is resolved to be read-write, the user will
only have read-only access to that dataset.

Resolving node access rights
At the node level, the same principle applies as at the dataspace and dataset levels. After resolving
the access rights at the node level alone, the final access rights are determined by taking the minimum
rights between the resolved dataset rights and the resolved node rights.
Specific access rights can be defined at the node level. If no specific access right is defined, the default
access right is used for the resolution process.

Note

The resolution procedure is slightly different for table and table child nodes.

Special case for table and table child nodes
This describes the resolution process used for a given table node or table record N.
For each user-defined permission rule that matches one of the user's profiles, the access rights for N
are either:

1. The locally defined access rights for N;

2. Inherited from the access rights defined on the table node;

3. Inherited from the default access rights for dataset values.

All matching user-defined permission rules are used to resolve the access rights for N. Resolution is
done according to the restriction policy [p 489].
The final resolved access rights will be the minimum between the dataspace, dataset and the resolved
access right for N.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 492

Resolving dynamic rules
There are three levels of resolution for dynamic access right rules: dataset, record and node. Since
only one programmatic access rule can be set for a given level, the last rule set is the one used by
the resolution procedure. However, a scripted rule can be specified on top of a programmatic rule at
the table level.

Rule resolution on dataset
For a dataset, the last rule set is considered as the resolved rule

Rule resolution on record
For a record, the resolved rule is the minimum between the resolved rule set on the dataset and the
rule set on this record.
See SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI for more details.

Rule resolution on node
For a node that is a child node of a record, the resolved rule is the minimum between the resolved
rule on the record and the rule set on this node.
For a child node of a dataset, the resolved rule is the minimum between the resolved rule set on the
dataset and the rule set on this node.
See SchemaExtensionsContext.setAccessRuleOnNodeAPI for more details.

Display policy for foreign key drop-down menus
If a record is hidden due to access rules, it will not appear in foreign key drop-down menus.

Attention
The resolved access rights on a dataset or dataset node is the minimum between the resolved access
rights defined in the user interface and the resolved dynamic rules, if any.

90.7 Resolving permissions on services
User services give the possibility to execute specific and advanced features from the user interface.
Depending on their definition, these services can be called from a menu, as an action in a workflow,
as a perspective item, or can be executed directly from a URL as a Web component [p 412].

See also Overview [p 965]

The permissions of a service are resolved as the service is called from the user interface, namely:

• During the execution, just before the service is displayed.
If the permission resolved in the user context is not enabled, a restriction message is displayed
in place of the service.

• During the display of menus if the service is defined as displayable in menus.
If the permission resolved in the context for the user is not enabled, the service will not be
displayed in the menu.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 493

Thus, upon every request the resolution of permissions for a service is carried out as follows, in the
following order and as long as conditions are respected:

1. The service activation has to correspond to the current context. This activation considers:

• the selected entity type (dataset, table, record, etc.);

• static activation rules defined within the UserServiceDeclaration.defineActivationAPI

method;

• the potential dynamic activation rule (ServiceActivationRule [p 488]) also defined within the
UserServiceDeclaration.defineActivationAPI method.

2. When the service is activated for the current context, permissions for the user session will be
evaluated:

• If permissions have been defined via the user interface for the current user (or for their roles),
their resolution must return enabled.
For more information, please refer to the Resolving user-defined rules [p 493] section.

• If a global permission rule [p 488] is defined for the service, it must return enabled for the
context provided (see ServicePermissionRuleContextAPI).

• If a local permission rule [p 488] is defined for the selected node, it must return enabled for
the context provided (see ServicePermissionRuleContextAPI).

Resolving user-defined rules

Example
In this example, there are two users belonging to different roles and profiles:

User Profiles

User 1 • user1

• role A

• role B

User 2 • role C

• role D

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 494

The permissions associated with the roles and profiles defined on the dataset level are as follows:

Profile Built-in
service create
(@creation)

Built-in
service
duplicate
(@duplicate)

Built-in
service
compare
(@compare)

Custom
service 1
(custom1)

Custom
service 2
(custom2)

Restriction
policy

user1 Enabled Disabled Enabled Disabled Enabled No

Role A Enabled Enabled Disabled Enabled Disabled Yes

Role B Enabled Disabled Enabled Enabled Disabled Yes

Role C Enabled Enabled Disabled Disabled Disabled No

Role D Enabled Disabled Disabled Enabled Disabled No

The services available to each user after permission resolution are as follows:

Users Available services

Built-in service create (@creation)User 1

Custom service 1 (custom1)

Built-in service create (@creation)

Built-in service duplicate (@duplicate)

User 2

Custom service 1 (custom1)

See also Resolving user-defined rules [p 489]

90.8 Resolving permissions on actions
Actions are low-level operations for EBX® object manipulation on which it is possible to define
execution rights for a profile. Unlike permissions on user services, which only impact the user
interface, these rights are also applicable when an operation is carried out programmatically (i.e. via
a ProcedureAPI) or indirectly (for example during data import, actions on the table (create, override,
occult and delete) are evaluated).

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 495

Here is the list of actions on which rights can be defined:

Action object Available actions

Create a child dataspace

Create a snapshot

Launch a merge

Export an archive

Import an archive

Close the dataspace

Close the snapshot

Dataspace

Create a dataset

Duplicate the dataset

Delete the dataset

Activate/deactivate the dataset

Dataset

Create a view

Create a new record

Override records

Occult records

Table

Delete records

For the resolution of permissions on actions, only the permissions defined via the user interface for
the current user (or their roles) will be taken into account, the restriction policy being applied as for
any other permission defined via the user interface.
For more information, please refer to the Resolving user-defined rules [p 496] section.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 6.2.0 496

Resolving user-defined rules

Example
In this example, we have two users belonging to different roles and profiles:

User Profiles

User 1 • user1

• role A

• role B

User 2 • role C

• role D

Rights associated with roles and profiles on the actions of a given table are as follows:

Profile Create a record Override a
record

Occult a record Delete a record Restriction
policy

user1 No Yes No Yes No

Role A Yes No Yes No Yes

Role B No Yes Yes No Yes

Role C Yes No No No No

Role D No No Yes No No

The actions available to each user after resolving the rights are as follows:

Users Available actions

User 1 Occult a record

Create a recordUser 2

Occult a record

See also Resolving user-defined rules [p 489]

Documentation > Reference Manual > Other > Criteria editor

TIBCO EBX® Product Documentation 6.2.0 497

CHAPTER 91
Criteria editor

This chapter contains the following topics:

1. Overview

2. Conditional blocks

3. Atomic criteria

91.1 Overview
The criteria editor is included in several different areas of the user interface. It allows defining table
filters, as well as validation and computation rules on data. This editor is based on the XPath 1.0 W3C
Recommendation.
Two types of criteria exist: atomic criteria and conditional blocks.

See also Supported XPath syntax [p 431]

91.2 Conditional blocks
Conditional blocks are made up of atomic criteria and other conditional blocks. They express a
condition based on the criteria. The following types of blocks exist:

• No criteria match: None of the criteria in the block match.

• Not all criteria match: At least one criterion in the block does not match.

• All criteria match: All criteria in the block match.

• At least one criterion matches: One or more of the criteria match.

Documentation > Reference Manual > Other > Criteria editor

TIBCO EBX® Product Documentation 6.2.0 498

91.3 Atomic criteria
An atomic predicate is defined by a field, an operator, and an expression (either a value or an XPath
formula).

Field Specifies the field of the table to which the criterion applies.

Operator Specifies the operator used. Available operators depend on
the data type of the field.

Value Specifies the value or expression. See Expression [p 498]

below.

Code only If checked, specifies searching the underlying values for the
field instead of labels, which are searched by default.

Expression
The expression can either be a fixed value or a formula. When creating a filter, only fixed values are
authorized. During creation of a validation or computation rule, a formula can be created using the
wizard.
Known limitation: The formula field does not validate input values, only the syntax and path are
checked.

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 499

CHAPTER 92
Search

This chapter contains the following topics:

1. Overview

2. Search strategies for string fields

3. Search strategy for primary key fields

4. Search strategy for foreign key fields

5. Search strategy for associations

6. Excluding a field from search ('Void' indexing)

7. Excluding a field from search (via property)

8. Assigning a search strategy to a field

92.1 Overview
A search strategy defines how a field is indexed and queried. Any field is associated with a default
search strategy, primarily based on its data type.
Search strategies are specified in the Data Model Assistant:

• when editing a field, its search strategies can be set in the 'Extensions' tab;

• at the data model level, custom search strategies can be specified, under 'Extensions > Search'
element in the left pane;

See also Quick Search [p 122]

Value-labeling
Value-labeling is a global feature in EBX® to display user-friendly labels instead of raw values. For
example, in the user interface, a foreign key field displays the label of the linked record, or a field
based on a static enumeration displays the localized label associated with the raw value, as specified
by the data model.
If a field supports value-labeling, the Quick search and the sort in the user interface usually apply on
the displayed label, to preserve an intuitive user interface.
There are some exceptions, where raw value is still used by the quick search and the sort operation:

• Programmatic labels and programmatic enumeration constraints (a foreign key specifying a
TableRefDisplay or whose display depends on a UILabelRenderer specified on the target table, or

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 500

a field constrained by a ConstraintEnumeration). It is recommended to use alternative solutions
(display patterns and foreign keys).

• Enumeration constraint defined using another node (<osd:enumeration osd:path=...). It is
recommended to use an alternative solution (a foreign key).

Obviously, if a field is displayed through a UIWidget (or a UIBean), to preserve an intuitive user
interface, it is expected for the custom component to display the label (or the value, if this field does
not enable value-labeling).

Limitations
The following fields are not optimized for search and other operators:

• computed fields that implement the ValueFunction API or computation rules and scripts that do
not depend only on the fields from the container table;

• inherited fields.

As a consequence, these are generally excluded from the quick search [p 122] and xpath search on table
[p 432] via osd:search('', 'pattern').
In the specific cases of inherited dataset, history view or mapped tables, legacy search is used. This
implies that the size of the table cannot be quickly estimated, and might not be presented in the UI.
It also implies that quick search:

• considers all searchable fields (including computed fields with non-local dependency);

• behaves like a 'contains' (Lucene syntax cannot be used);

• does not support sort by relevancy;

• may perform poorly on tables with large volumes.

In the case of a node defining a display pattern, non sortable search strategies are prohibited for the
default search template. Those are yet allowed in the other search templates.

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 501

92.2 Search strategies for string fields

Basic built-in strategies for strings

'Text' The 'Text' search strategy is intended to contain multiple
words, such as descriptions, texts or comments. This
strategy supports full-text search and fuzzy search. Sorting,
and some functions such as the ‘equals’ and 'starts-with'
operators, are irrelevant and are not supported. This strategy
is lightweight, consuming little disk space.
See also Quick Search [p 122]

'Code' The 'Code' search strategy is intended for codes and
identifiers. Values are considered as one single token,
allowing any kind of case-sensitive and case-insensitive
filter. Full-text search is irrelevant and is replaced by a
'contains' by default. This can be modified to a ‘starts-with’
by defining a custom ‘Code’ strategy. For large volumes, a
starts-with is preferable to achieve better performance.

'Name' The 'Name' search strategy is intended for names and labels
that contain only a few words. Besides having the same
search capabilities as 'Text', 'Name' strategy also allows sort,
and supports the same filters as 'Code'. This strategy has
the most capabilities, but consumes more disk space. If the
purpose of the field allows it, it is advised to choose the
'Text', 'Code' or 'Excluded from search' strategy, rather than
this one.

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 502

Advanced strategies for strings
Advanced search strategies are meant to support searching using alternative fuzzy algorithms, and
does not support sorting or filtering operations. It is advised to use them in a custom search template,
and use a basic strategy with the default search template.

'Levenshtein' The 'Levenshtein' strategy is intended for names and labels
that contain a few words. This strategy only supports fuzzy
search, based on an edit distance algorithm. The search
syntax (+,-,...) is not supported. This strategy does not
perform well on large volumes. The parameters of the
strategy allow favorizing the performance, by setting the
maximum edit distance to 1, and using an invariant prefix.

'Soundex' The 'Soundex' strategy is intended for names and labels
that contain a few words. This strategy only supports
fuzzy search, based on the Soundex approximate phonetic
algorithm. This algorithm is meant for english, and ignores
digits.

'Double Metaphone' The 'Double metaphone' strategy is intended for names and
labels that contain a few words. This strategy only supports
fuzzy search, based on the Double metaphone approximate
phonetic algorithm. This algorithm is more modern than
Soundex, and gives better results, especially for non-english
languages. Digits are ignored.

'NGram strategy' The 'NGram' strategy is intended for names and labels that
contain a few words. This strategy only supports fuzzy
search, based on a distance algorithm. This algorithm splits
the values into smaller sequences called 'grams'. It performs
better than the 'Levenshtein' search strategy, but consumes
more disk space.

Default strategy for string fields
The 'Name' strategy is applied to string fields by default, except:

• If the field is part of the primary key, it is set by default to 'Code'.

• If the field is a foreign key, it is forced to 'Code' and cannot be changed.

• If the field has a built-in datatype extending xs:string, then it has a strategy relevant to its
datatype; for instance osd:text, xs:Name, osd:email, osd:html, etc.

As the default strategy 'Name' can be irrelevant and consumes more disk space, the data model
compilation reports warnings for fields with the 'Name' strategy set as default, so as to ensure that
strategies are defined on purpose. We advise to choose the 'Text' strategy, when the length of the
expected values is greater than 80, as a rough estimate. Long values (> 32766 bytes once encoded into
UTF-8) will not be fully indexed with the 'Name' or 'Code' strategy. Quick search is not affected, but

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 503

sorting will consider only the first 1000 characters, and some operators ('equals' and 'ends-with', SQL
DISTINCT and COUNT DISTINCT, ...) will not return the correct results.

Advanced custom strategies
Some strategies accept parameters, for example to define stop words, or a specific language. This is
done by creating a record in the 'Search strategies' table of the 'Search' data model extension. The new
parameterized strategy will be available for selection in the 'Extension' tab, for compatible fields.

Synonyms and stop words
It is possible to define stop words and synonyms lists in the 'Search' data model extension. Create a
new record in the 'Stop words lists' or 'Synonyms lists' table and select the created list in the parameters
tab of the 'Custom search strategies' table.

92.3 Search strategy for primary key fields
Primary key fields must have a sortable search strategy defined on the default search template. This
excludes the 'Void' strategy for all data types, and the 'Text' strategy for strings. Do note that it is still
possible to use non sortable search strategy for a primary key field, if it is defined within a search
template other than the default search template.

92.4 Search strategy for foreign key fields
Foreign key fields have two levels of search:

• First, if applicable, the search is performed on each field of the displayed label of the foreign
key. Each field strategy is inherited from the field in its target table. This first level is not always
applicable, for instance when the search string cannot be converted to any of the target field data
types.

• Secondly, when the first level of search cannot be applied, the search is performed on the string
representation of the target primary key. Modifying the search strategy of a foreign key field in
the 'Extension' tab in the Data Model Assistant only affects this second level of search. It can only
be a 'Code' search strategy (built-in or customized).

See also PrimaryKey.syntaxAPI

See also Value-labeling [p 499]

92.5 Search strategy for associations
In the case of associations, the search is performed on each field used in the label of the association
records (each field strategy is inherited from the field in its target table). To be applicable, the target
field must be optimized for search, and the search criterion must be convertible to its type.
Since the search on associations can be applied only on the optimized fields of its label, it will not work
on inherited datasets (which do not support optimized search, as described in Limitations [p 500]).

92.6 Excluding a field from search ('Void' indexing)
The 'Excluded from search' (or Void) strategy deactivates indexing, making filter, search, or sort
impossible. It is available for all data types, and is intended for fields that are never queried. Values

Documentation > Reference Manual > Other > Search

TIBCO EBX® Product Documentation 6.2.0 504

can still be accessed through their record. Disabling the indexing reduces the disk space consumed
and speeds up some operations like data import.

92.7 Excluding a field from search (via property)
It is also possible to exclude fields from the quick search tool using the property osd:defaultView/
hiddenInQuickSearch="true|false".
See Default view [p 67] for more information.

92.8 Assigning a search strategy to a field
A search strategy can be associated with a field, by means of a search template SearchTemplateAPI.
This is done in the 'Extension' tab of the field, in the Data Model Assistant. Assigning multiple search
strategies to a field requires registering additional search templates into a module. Only the addons
EBX® Information Search and EBX® Match and merge are concerned by additional search templates.

TIBCO EBX® Product Documentation 6.2.0 505

Administration
Guide

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 6.2.0 506

CHAPTER 93
Administration overview

The Administration section in TIBCO EBX® is the main point of entry for all administration tasks.
In this overview are listed all the topics that an administrator needs to master. Click on your topic of
interest in order to access the corresponding chapter or paragraph in the documentation.
This chapter contains the following topics:

1. Repository management

2. Disk space management

3. Data model

4. Data validation

5. Perspectives

6. Home page

7. Log configuration

93.1 Repository management
For storage optimization, it is recommended to maintain a repository (persistence RDBMS) to the
necessary minimum. To this end, it is recommended to regularly perform a purge of snapshots and
obsolete dataspaces and to consider using a backup file system.
See also Cleaning up dataspaces, snapshots, and history [p 624] and Deleting dataspaces, snapshots,
and history [p 625].
It is also possible to archive files of the file system type in order to reduce the storage costs, see EBX®
monitoring [p 622].
Administration tasks can be scheduled by means of the task scheduler, using built-in tasks, see Task
scheduler [p 677].

Object cache
EBX® maintains an object cache in memory. The object cache size should be managed on a case
by case basis according to specific needs and requirements (pre-load option and pre-validate on
the reference dataspaces, points of reference, and monitoring), while continuously monitoring the
repository health report.

See also Memory management [p 585]

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 6.2.0 507

Obsolete contents
Keeping obsolete contents in the repository can lead to a slow server startup and slow responsiveness
of the interface. It is strongly recommended to delete obsolete content.
For example: datasets referring to deleted data models or undeployed add-on modules. See Managing
TIBCO EBX® add-ons [p 577].

Workflow

Cleanup
The workflow history and associated execution data have to be cleaned up on a regular basis.
The workflow history stores information on completed workflows, their respective steps and contexts.
This leads to an ever-growing database containing obsolete history and can thus lead to poor
performance of the database if not purged periodically. See Workflow history [p 676] for more
information.

Email configuration
It is required to configure workflow emails beforehand in order to be able to implement workflow
email notifications. See Configuration [p 674] for more information.

93.2 Disk space management

Purge of logs
The log file size will vary according to the log level (and to the selected severity level) thus disk space
needs to be accordingly managed.

EBX® main configuration file mechanism
An automatic purge is provided with EBX®, allowing to define how many days should log files be
stored. After the defined period, log files are deleted.
Any customized management of the purge of logs (backup, archiving, etc.) is the administrator's
responsibility.
See Custom 'ebxFile' appender [p 557] for more information.

XML audit trail (deprecated)
EBX® is provided with an XML audit trail manager, now disabled by default. Any customized
management (including purge, backups, etc.) is the administrator's responsibility.
See Activating the legacy XML audit trail (deprecated) [p 555] and Legacy XML Audit trail
(deprecated) [p 686] for more information.

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 6.2.0 508

93.3 Data model

Publication management
The management of publications of embedded data models [p 93]. See Data model administration [p

667] for more information on the management of these publications and the administration tasks that
can be performed (delete, import and export).

Refresh data models
It is possible to update the data models that are using XML Schema documents not managed by EBX®.
See Data model refresh tool [p 831] for more information.

93.4 Data validation

Resetting validation reports
Validation reports can be reset from the administration menu. It is possible to reset the validation
reports of all the datasets contained in the repository or only those of the datasets selected in the tabular
view. Therefore, the related datasets will be fully validated at the next explicit validation request.
See Adaptation.resetValidationReportAPI for more information.

93.5 Perspectives
EBX® offers extensive UI customization options. Simplified interfaces (Recommended perspectives)
[p 642] dedicated to each profile accessing the system can be parameterized by the administrator.
According to the profile of the user logging in, the interface will offer more or less options and menus.
This allows for a streamlined work environment.
See Advanced perspective [p 630] for more information.

93.6 Home page
EBX® offers a customizable home page, which can be accessed through the 'Perspective' menu, or
directly using the /ebx-hub URL.
In its current state, the links that are displayed in this page open their target in a new tab. This behavior
may change in a future version of EBX®.

Note

The home page requires the ebx-hub war to be deployed. It won't be available if the latter
is not deployed.

93.7 Log configuration
You can configure EBX® logs using Apache Log4j™ 2, the ebx.properties main configuration file,
or a combination thereof.
EBX® log management relies heavily on Apache Log4j™ 2, which means logs can take advantage of
the Log4j automatic configuration on initialization and automatic reconfiguration mechanisms. See

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 6.2.0 509

Apache Log4j™ 2 configuration documentation and Configuring the EBX® logs [p 555] for more
detailed information on these mechanisms.
The ebx.properties main configuration file centralizes EBX® configuration properties. However,
Apache Log4j™ 2 automatic configuration on initialization has precedence over this mechanism.
Additionally, the web application server start up process makes the application initialization
order unpredictable. Due to these factors, log messages might not be generated according to the
configuration specified in the ebx.properties file. See Configuring the EBX® logs [p 555] for more
information.

Order and combination of log mechanisms
On web application server start up, the Apache Log4j™ 2 automatic configuration executes first.
Then during the web application initialization phase, the ebx.properties main configuration file is
processed and logs are reconfigured. Reconfiguration entails replacing the entire configuration.
If the Apache Log4j™ 2 automatic reconfiguration mechanism is used, then logs may be reconfigured
based on the Log4j configuration context at any time after the first initialization (that is before, or
after the EBX® main configuration file is processed). If the ebx.properties file is updated, then logs
may be reconfigured based on the file content at any time after the first processing.
Since the mechanisms are not exclusive, you can set the initial configuration using the Apache Log4j™
2 automatic configuration on initialization and then replace it with the one from the ebx.properties
file.

Note

To bypass log reconfiguration, remove ebx.log4j.rootCategory and all
ebx.log4j.category.* properties from the ebx.properties file.

https://logging.apache.org/log4j/2.x/manual/configuration.html

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 6.2.0 510

Documentation > Administration Guide

TIBCO EBX® Product Documentation 6.2.0 511

Installation &
configuration

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 512

CHAPTER 94
Supported environments

This chapter contains the following topics:

1. Browsing environment

2. Supported application servers

3. Supported databases

94.1 Browsing environment

Supported web browsers
The TIBCO EBX® web interface supports the following browsers on computers only; it is not
supported on mobile devices:

Microsoft Edge Chromium As Microsoft Edge Chromium is updated frequently
and it is not possible to deactivate automatic updates,
Cloud Software Group, Inc. only tests and makes the best
effort to support the latest version available.

Mozilla Firefox ESR As Mozilla Firefox ESR is updated frequently and
it is not possible to deactivate automatic updates,
Cloud Software Group, Inc. only tests and makes the best
effort to support the latest version available.

Google Chrome As Google Chrome is updated frequently and it
is not possible to deactivate automatic updates,
Cloud Software Group, Inc. only tests and makes the best
effort to support the latest version available.

Screen resolution
The minimum screen resolution for EBX® is 1024x768.

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 513

Refreshing pages
Browser page refresh is not supported by EBX®. When a page refresh is performed, the last user
action is re-executed, and therefore could cause issues. It is thus imperative to use the action buttons
and links offered by EBX® instead of refreshing the page.

'Previous' and 'Next' buttons
The 'previous' and 'next buttons of the browser are not supported by EBX®. When navigating through
page history, an obsolete user action is re-executed, and therefore could cause issues. It is thus
imperative to use the action buttons and links offered by EBX® rather than the browser buttons.

Zoom troubleshooting
Zooming in or out may cause some minor display issues (for example extra scrollbar or misalignment).
Those issues can be fixed by refreshing the screen using the provided navigation links.

Browser configuration
The following features must be activated in the browser configuration, for the user interface to work
properly:

• JavaScript

• Ajax

• Pop-ups

• Cookies

Attention
Avoid using any browser extensions or plug-ins, as they could interfere with the proper functioning
of EBX®.

Limitations
Some browsers may have a limitation on the number of iframes that can be embedded. If this is the
case, it limits to the number of items that can be pushed in the breadcrumb. Please check the browser
documentation for more details.

94.2 Supported application servers
EBX® supports the following configurations:

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 514

• Java Runtime Environment: JRE 17 or 21 LTS.

Note

JRE 11 is no longer compatible. We recommend upgrading your JRE to a recent LTS
version to take advantage of its performance improvements.

Note

The Unicode CLDR has changed with JRE versions and impacts locale-sensitive
formats such as integer or decimal representations. Configure the search order
of locale sensitive services using the java.locale.providers system property.
You can use the value COMPAT to ensure compatibility with JRE 8. See
java.util.spi.LocaleServiceProvider for more details.

• Any Servlet/JSP container that complies with Servlet 5.0 and above. For example, Tomcat 10.1
or greater. Any Java Application Server that supports Java SE 17 or 21 LTS and using Jakarta EE
9 or greater. For example, WebSphere Liberty 23 or higher for Jakarta EE 10, JBoss EAP 8.0.0
or higher. See Jakarta EE deployment [p 529].

• The application server must support the JSON Processing 1.1 (JSR 374), or allow the uses of
the implementation embedded in the ebx.jar library. For example, Tomcat does not provide any
library to support this specification (only the embedded one can be used), WebSphere Application
Server Liberty and JBoss EAP allow including or excluding the available libraries.

• The application server must use UTF-8 encoding for HTTP query strings from EBX®. This can
be set at the application server level.
For example, on Tomcat, you can set the server to always use the UTF-8 encoding, by setting
URIEncoding to 'UTF-8' on the <Connector> in the server.xml configuration file. Alternatively,
you can instruct the server to use the encoding of the request body by setting the parameter
useBodyEncodingForURI to 'true' in server.xml.

Attention

• Limitations apply regarding clustering and hot deployment/undeployment:
Clustering: EBX® does not include a cache synchronization mechanism, thus it cannot be
deployed into a cluster of active instances. See Technical architecture [p 618] for more
information.
Hot deployment/undeployment: EBX® does not support hot deployment/undeployment of web
applications registered as EBX® modules, or of EBX® built-in web applications.

https://cldr.unicode.org/index/downloads
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/spi/LocaleServiceProvider.html
https://www.jcp.org/en/jsr/detail?id=374

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 515

94.3 Supported databases
The EBX® repository supports the relational database management systems listed below, with the
suitable JDBC drivers. It is important to follow the database vendor recommendations and update
policies regarding the database itself, as well as the JDBC driver.

Oracle Database 19c or higher. The distinction of null values bears certain limitations.
On simple xs:string elements, Oracle does not support
the distinction between empty strings and null values. See
Empty string management [p 890] for more information.
The user with which EBX® connects to the database
requires the following privileges:

• CREATE SESSION,

• CREATE TABLE,

• ALTER SESSION,

• CREATE SEQUENCE,

• A non-null quota on its default tablespace.

PostgreSQL 12 or higher. The user with which EBX® connects to the database needs
the CONNECT privilege on the database hosting the EBX®
repository. Other than this, the default privileges on the
public schema of this database are suitable.
Also, see this limitation [p 467] regarding the evolution of
datamodels in mapped modes.

Amazon Aurora PostgreSQL
(compatible with PostgreSQL
12.13 or higher).

The comments in the above section for PostgreSQL apply.

Google Cloud SQL for
PostgreSQL (compatible with
PostgreSQL 12.16 or higher).

The comments in the above section for PostgreSQL apply.

Microsoft SQL Server 2014 or
higher.

When used with Microsoft SQL Server, EBX® uses the
default database collation to compare and sort strings stored
in the database. This applies to strings used in the data
model definition, as well as data stored in history tables.
The default database collation can be specified when the
database is created. Otherwise, the collation of the database
server is used. To avoid naming conflicts or unexpected
behaviors, a case- and accent-sensitive collation must be
used as the default database collation (the collation name is
suffixed by "CS_AS" or the collation is binary).

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 516

The default setting to enforce transaction isolation on SQL
Server follows a pessimistic model. Rows are locked to
prevent any read/write concurrent accesses. This may cause
liveliness issues for mapped tables (history or relational). To
avoid such issues, it is recommended to activate snapshot
isolation on your SQL Server database.
The user with which EBX® connects to the database
requires the following privileges:

• CONNECT, SELECT and CREATE TABLE on the
database hosting the EBX® repository,

• ALTER, CONTROL, UPDATE, INSERT, DELETE on
its default schema.

Microsoft Azure SQL Database EBX® has been qualified on Microsoft Azure SQL
Database v12 (12.00.700), and is regularly tested to verify
compatibility with the current version of the Azure database
service.
When used with Microsoft Azure SQL, EBX® uses the
default database collation to compare and sort strings stored
in the database. This applies to strings used in the data
model definition, as well as data stored in history tables.
The default database collation can be specified when the
database is created. Otherwise, the database engine server
collation is used. To avoid naming conflicts or unexpected
behaviors, a case- and accent-sensitive collation must be
used as the default database collation (the collation name is
suffixed by "CS_AS" or the collation is binary).
The user with which EBX® connects to the database
requires the following privileges:

• CONNECT, SELECT and CREATE TABLE on the
database hosting the EBX® repository,

• ALTER, CONTROL, UPDATE, INSERT, DELETE on
its default schema.

H2 2.2.224 or higher. H2 is not supported for production environments.
The default H2 database settings do not allow consistent
reads when records are modified.

For other relational databases, please contact the Support team at https://support.tibco.com.

Attention
In order to guarantee the integrity of the EBX® repository, it is strictly forbidden to perform direct
modifications to the database (for example, using direct SQL writes).

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://support.tibco.com

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 517

See also

Repository administration [p 618]

Data source of the EBX® repository [p 527]

Configuring the EBX® repository [p 551]

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 6.2.0 518

Documentation > Administration Guide > Installation & configuration > Disk requirements

TIBCO EBX® Product Documentation 6.2.0 519

CHAPTER 95
Disk requirements

This chapter contains the following topics:

1. Location and disk type

2. Anti-virus

3. Disk sizing

95.1 Location and disk type
Use the ebx.repository.directory property in the ebx.properties file to set the EBX® root
directory location. This directory will contain the Lucene indexes and should be hosted on local, low
latency hard disks. SSD disks are recommended. Using the local hard disk for indexes presents no risk
of data loss, as EBX® is able to rebuild indexes from data stored in the relational database. However,
the recovery operation can be time-consuming.

Attention
The EBX® root directory should never be shared by multiple EBX® instances.

You must avoid storing EBX® indexes over network attached volumes based on protocols, such as
NFS, SMB, or SAMBA. The same restrictions apply to object-based storage (Amazon S3, Google
Cloud Storage, Azure Blob) or file systems mounted over object storage (Amazon S3 file gateway).
This may cause stability and performance issues; the more common symptoms are slow search speeds
and running out of open files.
A high-performance Storage Area Network (SAN) can be an acceptable solution, especially if high
performance technologies such as Fiber Channel (FC) are used.
On the cloud, EBX® has been tested with the following disks:

• Amazon Web Services (AWS): Amazon Elastic Block Store (EBS) general purpose SSD volumes
(gp3)

• Microsoft Azure: Azure Standard SSD locally redundant storage (LRS)

• Google cloud: Google Balanced persistent disks (pd-balanced)

Documentation > Administration Guide > Installation & configuration > Disk requirements

TIBCO EBX® Product Documentation 6.2.0 520

95.2 Anti-virus
Anti-virus software should not be used on the root directory as it can severely impact performance
and can corrupt the index repository if a file is quarantined or removed. Exclusion by extension is not
possible because the extensions used by Lucene can change at any time.

95.3 Disk sizing
As a rule of thumb for the disk size, plan for 10 times the space occupied by the table G_BLK in
the relational database.

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 521

CHAPTER 96
Jakarta EE deployment

This chapter contains the following topics:

1. Introduction

2. Software components

3. Embedded third-party libraries

4. Required third-party libraries

5. Web applications

6. Deployment details

7. Installation notes

96.1 Introduction
This chapter details deployment specifications for TIBCO EBX® on a Java application server. For
specific information regarding supported application servers and inherent limitations, see Supported
environments. [p 512]

Refer to the Security Best Practices [p 810] for information on navigating secure deployments.

96.2 Software components
EBX® uses the following components:

• Library ebx.jar

• Embedded [p 522] and required [p 522] third-party Java libraries

• EBX® built-in web applications [p 525] and optional custom web applications [p 525]

• EBX® main configuration file [p 549]

• EBX® repository [p 618]

• Default user and roles directory [p 661], integrated within the EBX® repository, or a third-party
system (LDAP, RDBMS) for the user authentication

See also Supported environments [p 512]

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 522

96.3 Embedded third-party libraries
To increase EBX® independence and interoperability, it embeds its own third-party libraries. Even
if some of them have been modified, preventing conflicts, others must remain unchanged since they
are official Java APIs.
The ones that can produce conflicts are:

• Apache Geronimo JSON

• Apache Geronimo JSON Bind

• Jakarta Activation API

• Jakarta Annotations API

• Jakarta JSON API

• Jakarta JSON Binding

• Jakarta Transaction API

• Jakarta WS RS

• Jakarta XML Bind

• Jakarta XML SOAP messaging API

• Jakarta XML WS API

• LZ4 compression for Java

• MicroProfile OpenAPI

For more information regarding the versions or the details of the Third-Party Library, please refer to
the: TIB_ebx_6.2.0_license.pdf.
Since those libraries are already integrated, custom web applications should not include them anew,
otherwise linkage errors can occur. Furthermore, they should not be deployed aside from the ebx.jar
library for the same reasons.

96.4 Required third-party libraries
EBX® requires several third-party Java libraries. These libraries must be deployed and be accessible
from the class-loader of ebx.jar. Depending on the application server and the Java runtime
environment being used, these libraries may already be present or may need to be added manually.

Data compression library
The library named ebx-lz4.jar must be deployed separately from ebx.jar. It contains several
compression implementations: JNI dedicated architecture libraries and Java fallbacks. It is possible
to ensure optimal compression and decompression performance for EBX® repository by following
prerequisites. If prerequisites can not be validated, EBX® will function in Java fallbacks safe or
unsafe, but its performance will be degraded. The default location for ebx-lz4.jar library is beside
ebx.jar.
To verify the compression implementation actually used by the EBX® repository, please check the
value of 'Compression' in 'Administration > System Information', section 'Repository information'. It
should be 'JNI - validated' for optimal performance. Otherwise, it will be 'Java[Safe|Unsafe] -
validated' for Java fallbacks.

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 523

Performance prerequisites
The JNI access is allowed to the following operating system architectures: i386, x86, amd64, x86_64,
aarch64 or ppc64le. To verify this value, please check the value of 'Operating system architecture' in
'Administration > System Information', section 'System information'.
To enable JNI access for ebx-lz4.jar, the library should be loaded by the system class loader
(also known as the application class loader). The deployment may be done by following the specific
instructions for your application server [p 529].

Database drivers
The EBX® repository requires a database. Generally, the required driver is configured along with a
data source, if one is used. Depending on the database defined in the main configuration file, one of
the following drivers is required. Keep in mind that, whichever database you use, the version of the
JDBC client driver must be equal to or higher than the version of the database server.

H2 Version 2.2.224 validated. Note that H2 is not supported in
production environments.
https://www.h2database.com/
If the H2 repository has been built with version 1.0 driver,
this migration to v2 process must be applied.

Oracle JDBC Oracle database 21c is validated on their latest patch set
update.
Determine the driver that should be used according to the
database server version and the Java runtime environment
version. Download the ojdbc11.jar certified library with
JDK 17 or 21.
Oracle database JDBC drivers download.

SQL Server JDBC SQL Server 2012 SP4 and greater, with all corrective and
maintenance patches applied, are validated.
Remember to use an up-to-date JDBC driver, as some
difficulties have been encountered with older versions.
For example, include the mssql-jdbc-12.6.1.jre11.jar
library, depending on the Java runtime environment version
you use.
Download Microsoft JDBC Driver 12.6.1 for SQL Server
(zip).

PostgreSQL PostgreSQL Java 8 validated
Include the latest JDBC driver version 4.2 released for your
database server and Java runtime environment.
PostgreSQL JDBC drivers download.

https://www.h2database.com/
http://www.h2database.com/html/migration-to-v2.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server#available-languages
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server#available-languages
https://jdbc.postgresql.org/download/

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 524

See also

Data source of the EBX® repository [p 527]

Configuring the EBX® repository [p 551]

SMTP and emails
According to the web application server being used, the library Jakarta Mail API for email
management may already be provided, or must be added manually.
EBX® requires a library that is compatible with version 2.0.1 of this API. See Activating and
configuring SMTP and emails [p 559] for more information on the configuration.
To facilitate manual installation, the jakarta.mail-2.0.1.jar has been provided and placed under
the ebx.software/lib/lib-mail directory.

See also Jakarta Mail 2.0

Secure Socket Layer (SSL)
SSL features activation, configuration, and management are tightly linked to the web application
server used. Consequently, you should refer to the appropriate web application server documentation.
For example, Tomcat SSL/TLS Configuration How-To.

See also TIBCO EBX® main configuration file [p 549]

Java Message Service (JMS)
When using JMS, version 3.0.0 or higher is required.
Depending on whether a Jakarta EE application server or a Servlet/Java Server Pages (JSP)
implementation is being used, the library required is as follows:

• For an application server based on Jakarta EE (Enterprise Edition), the required JMS
provider library is available by default. See https://jakarta.ee/specifications/platform/ for more
information.

• For a Servlet/Java Server Pages (JSP) implementation using Java SE (Java Platform Standard
Edition), for example Apache Tomcat, a JMS provider library such as Apache ActiveMQ may
need to be added. See https://www.oracle.com/java/technologies/java-se-glance.html for more
information.

Note

In EBX®, the supported JMS model is exclusively Point-to-Point (PTP). PTP systems
allow working with queues of messages.

See also TIBCO EBX® main configuration file [p 549]

96.5 Web applications
EBX® provides pre-packaged EARs that can be deployed directly if your company has no custom
EBX® module web applications to add. If deploying custom web applications as EBX® modules,

https://jakarta.ee/specifications/mail/2.0/
https://tomcat.apache.org/tomcat-10.1-doc/ssl-howto.html
https://jakarta.ee/specifications/platform/
https://activemq.apache.org
https://www.oracle.com/java/technologies/java-se-glance.html

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 525

it is recommended to rebuild an EAR containing the custom modules packaged at the same level as
the built-in web applications.

Attention
Web application deployment on / path context is no more supported. The path context must not
be empty nor equals to /. Moreover, web applications deployment on paths of different depth is
deprecated. Every web application path context must be set on the same path depth.

For more information, see the note on repackaging the EBX® EAR [p 530] at the end of this chapter.

EBX® built-in web applications
EBX® includes the following built-in web applications.

Web application name Description Required

ebx EBX® entry point, which handles the initialization on start up. See Deployment details [p

526] for more information.
Yes

ebx-root-1.0 EBX® root web application. Any application that uses EBX® requires the root web
application to be deployed.

Yes

ebx-ui EBX® user interface web application. Yes

ebx-authentication EBX® authentication application. Yes

ebx-manager EBX® user interface web application. Yes

ebx-dma EBX® data model assistant, which helps with the creation of data models through the
user interface.

Note: The data model assistant requires the ebx-manager user interface web application
to be deployed.

Yes

ebx-dataservices EBX® data services web application. Data services allow external interactions with
the EBX® repository using the SOAP operations [p 1017] and Web Services Description
Language WSDL generation [p 1009] standards or using the Built-in RESTful services [p

1063].

Note: The EBX® web service generator requires the deployment of the ebx-manager
user interface web application.

Yes

ebx-ide EBX® Integrated Development Environment web application. Yes

ebx-hub EBX® Hub web application. No

Custom web applications
It is possible to extend and customize the behavior of EBX® by deploying custom web applications
which conform to the EBX® module requirements.

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 526

See also

Packaging TIBCO EBX® modules [p 819]

Declaring modules as undeployed [p 569]

96.6 Deployment details

Introduction
This section describes the various options available to deploy the 'ebx' web application. These options
are available in its deployment descriptor (WEB-INF/web.xml) and are complemented by the properties
defined in the main configuration file.

Attention
For JBoss application servers, any unused resources must be removed from the WEB-INF/web.xml
deployment descriptor.

See also

TIBCO EBX® main configuration file [p 549]

Supported application servers [p 513]

User interface and web access
The web application 'ebx' (packaged as ebx.war) contains the servlet FrontServlet, which handles
the initialization and serves as the sole user interface entry point for the EBX® web tools.

Configuring the deployment descriptor for 'FrontServlet'
In the file WEB-INF/web.xml of the web application 'ebx', the following elements must be configured
for FrontServlet:

/web-app/servlet/load-on-
startup

To ensure that FrontServlet initializes upon EBX® start
up, the web.xml deployment descriptor must specify the
element <load-on-startup>1</load-on-startup>.

/web-app/servlet-mapping/url-
pattern

FrontServlet must be mapped to the path '/'.

Configuring the application server for 'FrontServlet'
FrontServlet must be authorized to access other contexts, such as ServletContext.
For example, on Tomcat, this configuration is performed using the attribute crossContext in the
configuration file server.xml, as follows:
<Context path="/ebx" docBase="(...)" crossContext="true"/>

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 527

Data source of the EBX® repository

Note

If the EBX® main configuration specifies the property ebx.persistence.url, then the
environment entry below will be ignored by EBX® runtime. This option is only provided
for convenience; it is always recommended to use a fully-configurable datasource. In
particular, the size of the connection pool must be set according to the number of
concurrent users. See Configuring the EBX® repository [p 551] for more information
on this property.

The JDBC datasource for EBX® is specified in the deployment descriptor WEB-INF/web.xml of the
'ebx' web application as follows:

Reserved resource name Default JNDI name Description

jdbc/EBX_REPOSITORY JBoss: java:/
EBX_REPOSITORY

JDBC data source for EBX® Repository.

Java type: javax.sql.DataSource

See also

Configuring the EBX® repository [p 551]

Rules for the database access and user privileges [p 619]

Mail sessions

Note

If the EBX® main configuration does not set ebx.mail.activate to 'true', or if it specifies
the property ebx.mail.smtp.host, then the environment entry below will be ignored by
EBX® runtime. See SMTP [p 559] in the EBX® main configuration properties for more
information on these properties.

SMTP and email is declared in the deployment descriptor WEB-INF/web.xml of the 'ebx' web
application as follows:

Reserved resource name Default JNDI name Description

mail/EBX_MAIL_SESSION JBoss: java:/
EBX_MAIL_SESSION

Java Mail session used to send emails from EBX®.

Java type: jakarta.mail.Session

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 528

JMS connection factory

Note

If the EBX® main configuration does not activate JMS through the property
ebx.jms.activate, the environment entry below will be ignored by the EBX® runtime.
See JMS [p 561] in the EBX® main configuration properties for more information on
this property.

The JMS connection factory is declared in the deployment descriptor WEB-INF/web.xml of the 'ebx'
web application as follows:

Reserved resource name Default JNDI name Description Required

jms/EBX_JMSConnectionFactory JBoss: java:/
EBX_JMSConnectionFactory

JMS connection factory used by
EBX® to create connections with
the JMS provider configured in
the operational environment of the
application server.

Java type:
jakarta.jms.ConnectionFactory

Yes

Note

For deployment on WildFly, JBoss application servers with JNDI capabilities, you must
update EBX.ear for additional mappings of all required resource names to JNDI names.

JMS for data services
To configure data services to use JMS instead of the default HTTP, you must configure the JMS
connection factory [p 528] and the following queues, declared in the WEB-INF/web.xml deployment
descriptor of the 'ebx' web application. This is the only method for configuring JMS for data services.
When a SOAP request is received, the SOAP response is optionally returned if the header field
JMSReplyTo is defined. If so, the fields JMSCorrelationID and JMSType are retained.

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 529

See JMS [p 561] for more information on the associated EBX® main configuration properties.

Note

If the EBX® main configuration does not activate JMS through the property
ebx.jms.activate, then the environment entries below will be ignored by EBX®
runtime. See JMS [p 561] in the EBX® main configuration properties for more
information on this property.

Reserved resource name Default JNDI name Description Required

jms/EBX_QueueIn JBoss: java:/jms/
EBX_QueueIn

JMS queue for incoming SOAP requests
sent to EBX® by other applications.

Java type: jakarta.jms.Queue

No

jms/EBX_QueueFailure JBoss: java:/jms/
EBX_QueueFailure

JMS queue for failures. It contains
incoming SOAP requests for which an
error has occurred. This allows replaying
these messages if necessary.

Java type: jakarta.jms.Queue

Note: For this property to be read, the
main configuration must also activate the
queue for failures through the property
ebx.jms.activate.queueFailure.
See JMS [p 561] in the EBX® main
configuration properties for more
information on these properties.

No

JAR files scanner
To speed up the web applications server startup, the JAR files scanner configuration should be
modified to exclude, at least, the ebx.jar and ebx-addons.jar libraries.
For example, on Tomcat, this should be performed in the
tomcat.util.scan.StandardJarScanFilter.jarsToSkip property from the catalina.properties
file.

96.7 Installation notes
EBX® can be deployed on any Jakarta EE 9 or greater application server that supports Servlet 5.0
and above. The following documentation on deployment and installation notes are available:

• Installation note for Tomcat 10.1.X [p 543]

• Installation note for JBoss EAP 8.0.X [p 531]

Documentation > Administration Guide > Installation & configuration > Jakarta EE deployment

TIBCO EBX® Product Documentation 6.2.0 530

• Installation note for WebSphere Application Server Liberty 23.X [p 537]

Attention

• The EBX® installation notes on Jakarta EE 9 application servers do not replace the native
documentation for each application server.

• These are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• In these examples, no additional EBX® modules are deployed. To deploy custom or add-on
modules, the best practice is to rebuild an EAR with the module as a web application at the same
level as the other EBX® modules. The web application must declare its class path dependency
as specified by the Java™ 2 Platform Enterprise Edition Specification, v1.4:
J2EE.8.2 Optional Package Support

(...)

A JAR format file (such as a JAR file, WAR file, or RAR file) can reference a JAR file by naming the
 referenced JAR file in a Class-Path header in the Manifest file of the referencing JAR file. The
 referenced JAR file is named using a URL relative to the URL of the referencing JAR file. The Manifest
 file is named META-INF/MANIFEST.MF in the JAR file. The Class-Path entry in the Manifest file is of the
 form:

Class-Path: list-of-jar-files-separated-by-spaces

In an "industrialized" process, it is strongly recommended to develop a script that automatically
builds the EAR, with the custom EBX® modules, the EBX® web applications, as well as all
the required shared libraries.

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 531

CHAPTER 97
Installation note for JBoss EAP 8.0.X

This chapter contains the following topics:

1. Overview

2. Requirements

3. JBoss Application Server installation

4. EBX® home directory configuration

5. JBoss Application Server and Java Virtual Machine configuration

6. JNDI entries configuration

7. Data source and JDBC provider configuration

8. EBX.ear application update

9. EBX.ear application deployment

10.EBX® application start

97.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX® on JBoss Application
Server.

• It does not replace the documentation of this application server.

• They are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components needed by EBX® is given in chapter Jakarta EE
deployment [p 521].

• To avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of ebx.jar,
ebx-lz4.jar or other libraries in the class-loading system.

• Refer to the Security Best Practices [p 810] for information on navigating secure deployments.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 532

97.2 Requirements
• Java SE 17 LTS

• JBoss Application Server EAP 8.0

• Database and JDBC driver

• EBX® CD

• No CDI features in EBX®'s additional modules (since CDI will be automatically disable)

See also Supported environments [p 512]

97.3 JBoss Application Server installation
This quick installation example is performed for an unix operating system.

1. Download JBoss EAP 8.0.X Installer jar version from:
https://developers.redhat.com/products/eap/download/

2. Run the Installer using java -jar command line.
For further installation details, refer to the documentation .

3. Perform a standard installation:

1. Select the language and click 'OK',

2. Accept the License and click 'Next',

3. Choose the installation path and click 'Next',

4. Keep the 'Component Selection' as it is and click 'Next',

5. Enter 'Admin username', 'Admin password' and click 'Next',

6. On 'Installation Overview' click 'Next',

7. On 'Component Installation' click 'Next',

8. On 'Configure Runtime Environment' leave the selection as it is and click 'Next',

9. When 'Processing finished' appear, click 'Next',

10.Generate 'installation script and properties file' in the JBoss EAP 8.0 installation root
directory,

11.Click 'done'.

97.4 EBX® home directory configuration
1. Create the EBX_HOME directory, for example /opt/ebx/home.

2. Copy from the EBX® CD, the ebx.software/files/ebx.properties file to EBX_HOME. In our
example, we will have the following file:
/opt/ebx/home/ebx.properties.

3. If needed, edit the ebx.properties file to override the default database. By default the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported databases and the h2.standalone one must be commented.

https://developers.redhat.com/products/eap/download/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html/red_hat_jboss_enterprise_application_platform_installation_methods/index

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 533

97.5 JBoss Application Server and Java Virtual Machine
configuration

1. Open the standalone.conf configuration file, placed in <JBOSS_HOME>/bin (or jboss-eap.conf
file placed in <JBOSS_HOME>/bin/init.d for running the server as a service).

2. Add 'ebx.properties' and 'ebx.home' properties to the 'JAVA_OPTS' environment variable
respectively set with ebx.properties file's path and EBX_HOME directory's path.

3. Set the 'JBOSS_MODULES_SYSTEM_PKGS' environment variable like the following:
JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,net.jpountz"

4. Copy from the EBX® CD, the ebx.software/lib/ebx-lz4.jar [p 522] Data compression library
to a dedicated directory (for example <JBOSS_HOME>/compress).

5. Open the standalone.sh script file, placed in <JBOSS_HOME>/bin.

6. Create a 'CLASSPATH' environment variable like the following:
CLASSPATH="<path_to_the_data_compression_library>:${JBOSS_HOME}/jboss-modules.jar:${CLASSPATH}"

For our example
CLASSPATH="${JBOSS_HOME}/compress/ebx-lz4.jar:${JBOSS_HOME}/jboss-modules.jar:${CLASSPATH}"

7. Replace the launch command options for foreground and background executions like the
following:
if ["x$LAUNCH_JBOSS_IN_BACKGROUND" = "x"]; then
 # Execute the JVM in the foreground
 eval \"$JAVA\" -D\"[Standalone]\" $JAVA_OPTS \
 -cp "$CLASSPATH" \
 \"-Dorg.jboss.boot.log.file="$JBOSS_LOG_DIR"/server.log\" \
 \"-Dlogging.configuration=file:"$JBOSS_CONFIG_DIR"/logging.properties\" \
 org.jboss.modules.Main \
 $MODULE_OPTS \
 -mp \""${JBOSS_MODULEPATH}"\" \
 org.jboss.as.standalone \
 -Djboss.home.dir=\""$JBOSS_HOME"\" \
 -Djboss.server.base.dir=\""$JBOSS_BASE_DIR"\" \
 "$SERVER_OPTS"
 JBOSS_STATUS=$?

else
 # Execute the JVM in the background
 eval \"$JAVA\" -D\"[Standalone]\" $JAVA_OPTS \
 -cp "$CLASSPATH" \
 \"-Dorg.jboss.boot.log.file="$JBOSS_LOG_DIR"/server.log\" \
 \"-Dlogging.configuration=file:"$JBOSS_CONFIG_DIR"/logging.properties\" \
 org.jboss.modules.Main \
 $MODULE_OPTS \
 -mp \""${JBOSS_MODULEPATH}"\" \
 org.jboss.as.standalone \
 -Djboss.home.dir=\""$JBOSS_HOME"\" \
 -Djboss.server.base.dir=\""$JBOSS_BASE_DIR"\" \
 "$SERVER_OPTS" "&"
...
fi

97.6 JNDI entries configuration
1. Open the standalone-full.xml file placed in <JBOSS_HOME>/standalone/configuration.

2. Add, at least, the following lines to the server tag in messaging-activemq subsystem:
<connection-factory
 name="jms/EBX_JMSConnectionFactory"
 entries="java:/EBX_JMSConnectionFactory"
 connectors="To Be Defined"/>

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 534

<jms-queue
 name="jms/EBX_D3ReplyQueue"
 entries="java:/jms/EBX_D3ReplyQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_QueueIn"
 entries="java:/jms/EBX_QueueIn"
 durable="true"/>
<jms-queue
 name="jms/EBX_QueueFailure"
 entries="java:/jms/EBX_QueueFailure"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3MasterQueue"
 entries="java:/jms/EBX_D3MasterQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3ArchiveQueue"
 entries="java:/jms/EBX_D3ArchiveQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3CommunicationQueue"
 entries="java:/jms/EBX_D3CommunicationQueue"
 durable="true"/>

Caution: the connectors attribute value, from the connection-factory element, has to be defined.
Since the kind of connectors is strongly reliant on the environment infrastructure, a default
configuration can not be provided.
See configuring messaging old documentation, for more information.

3. Add, at least, the following line to mail subsystem:
<mail-session name="mail" debug="false" jndi-name="java:/EBX_MAIL_SESSION"/>

97.7 Data source and JDBC provider configuration
1. After the launch of the JBoss Server, run the management CLI without the use of '--connect' or

'-c' argument.

2. Use the 'module add' management CLI command to add the new core module. Sample for
PostgreSQL configuration:
module add \
 --name=org.postgresql \
 --resources=<PATH_TO_JDBC_JAR> \
 --dependencies=wildflyee.api

3. Use the 'connect' management CLI command to connect to the running instance.

4. Register the JDBC driver. When running in a managed domain, ensure to precede the command
with '/profile=<PROFILE_NAME>'. Sample for PostgreSQL configuration:
/subsystem=\
 datasources/jdbc-driver=\
 postgresql:add(\
 driver-name=postgresql,\
 driver-module-name=org.postgresql,\
 driver-xa-datasource-class-name=org.postgresql.xa.PGXADataSource\
)

5. Define the data source using the 'data-source add' command, specifying the appropriate argument
values. Sample for PostgreSQL configuration:
data-source add \
 --name=jdbc/EBX_REPOSITORY \
 --jndi-name=java:/EBX_REPOSITORY \
 --driver-name=postgresql \
 --connection-url=jdbc:postgresql://<SERVER_NAME>:<PORT>/<DATABASE_NAME> \
 --user-name=<PERSISTENCE_USER> \

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/index

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 535

 --password=<PERSISTENCE_PASSWORD>

Note

The data source can also be specified through the EBX® main configuration file.
See Data source of the EBX® repository [p 527] for more information.

97.8 EBX.ear application update
1. Copy from the EBX® CD, the ebx.software/webapps/ear-packaging/EBX.ear file to your

working directory.

2. Uncompress the ear archive to add the application's specific required third-party libraries and
additional web modules.
Mail: see SMTP and emails [p 524] for more information.
SSL: see Secure Socket Layer (SSL) [p 524] for more information.
JMS: see Java Message Service (JMS) [p 524] for more information.

3. Update the /META-INF/application.xml and /META-INF/jboss-deployment-structure.xml files
according to the added additional web modules.

4. Compress anew the ear archive.

97.9 EBX.ear application deployment
1. Copy EBX.ear into the JBOSS_HOME/standalone/deployments directory.

97.10 EBX® application start
1. After the launch of the JBoss Application Server, with the <JBOSS_HOME>/bin/standalone.sh -

c standalone-full.xml command line or through the service command, run the EBX® web
application by entering the following URL in the browser: http://localhost:8080/ebx/.

2. At first launch, EBX® Wizard [p 575] helps to configure the default properties of the initial
repository.

http://localhost:8080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 8.0.X

TIBCO EBX® Product Documentation 6.2.0 536

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 537

CHAPTER 98
Installation note for WebSphere
Application Server Liberty 23.X

This chapter contains the following topics:

1. Overview

2. Requirements

3. WebSphere Application Server Liberty installation

4. EBX® home directory configuration

5. EBX® and third-party libraries deployment

6. JNDI entries configuration

7. Data source and JDBC provider configuration

8. Java Virtual Machine configuration

9. EBX® application deployment

10.EBX® application start

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 538

98.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX® on WebSphere Application
Server Liberty.

• It does not replace the documentation of this application server.

• They are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components needed by EBX® is given in the chapter Jakarta
EE deployment [p 521].

• To avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of ebx.jar,
ebx-lz4.jar, or other libraries in the class-loading system.

• The description below uses the variable name <WLP_HOME> to refer to the WebSphere
Application Server Liberty installation directory, and from which relative paths are resolved.

• Refer to the Security Best Practices [p 810] for information on navigating secure deployments.

98.2 Requirements
• Java SE 17 or 21 LTS. It is recommended using IBM Semeru, or Eclipse Temurin Java

distributions.

• WebSphere Application Server Liberty 23.0.0.12 or higher for Jakarta EE 10

• Database and JDBC driver

• EBX® CD

• No CDI features in EBX®'s additional modules (since CDI will be automatically disabled)

See also Supported environments [p 512]

98.3 WebSphere Application Server Liberty installation
This quick installation example is performed for a Linux operating system.

1. Download WebSphere Application Server Liberty 23.X latest version (zip distribution) from:
https://www.ibm.com/support/pages/230012-websphere-application-server-liberty-230012 .
The following example uses Liberty with Jakarta EE 10 Web Profile zip distribution.

2. Extract the content of this package to a directory on your local machine.

3. Create a new application server (example: 'ebxServer') by running the command:
<WLP_HOME>/wlp/bin/server create ebxServer

4. Edit <WLP_HOME>/usr/servers/<SERVER_NAME>/server.xmlfile. In our example,
<SERVER_NAME> is 'ebxServer'.

https://www.ibm.com/docs/en/was-liberty/
https://developer.ibm.com/languages/java/semeru-runtimes/
https://adoptium.net/temurin/
https://www.ibm.com/support/pages/230012-websphere-application-server-liberty-230012

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 539

• Replace the <feature>webProfile-10.0</feature> tag with, at least, the following lines:
<feature>mail-2.0</feature>
<feature>jdbc-4.2</feature>
<feature>jndi-1.0</feature>
<feature>servlet-5.0</feature>

• Add the following line into the <server> tag:
<webContainer deferServletLoad="false" allowQueryParamWithNoEqual="true"/>

Note

The deferServletLoad attribute must be set to false since EBX® requires
servlets to be initialized on application server startup. By default, WebSphere
Application Server Liberty defers servlets loading until a request is received for
the associated web application. See Specifying when servlets are loaded and
initialized for more information.

Note

The allowQueryParamWithNoEqual attribute must be set to true since, according
to the Servlet API specification, a value of a request parameter must be returned
as a String, or null if the parameter does not exist. Thus, EBX® expects a non
null value for an existing request parameter.

98.4 EBX® home directory configuration
1. Create the EBX_HOME directory, for example /opt/ebx/home.

2. Copy from the EBX® CD, the ebx.software/files/ebx.properties file to EBX_HOME. In our
example, we will have the following file:
/opt/ebx/home/ebx.properties.

3. If needed, edit the ebx.properties file to override the default database. By default the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported databases and the h2.standalone one must be commented.

98.5 EBX® and third-party libraries deployment
1. Create the EBX_LIB directory. For example, /opt/ebx/home/lib.

2. Copy third-party libraries from the EBX® CD, or from other sources, to the EBX_LIB directory.
In our example and for a PostgreSQL database, we will get:
postgresql-X.X.X-driver.jar, coming from another source than the EBX® CD.
ebx-lz4.jar, coming from the ebx.software/lib/ directory of the EBX® CD.
The complete description of these components is given in the chapter Jakarta EE deployment [p
521]. If those components are already deployed on the class-loading system, they do not have to
be duplicated (ex: jakarta.mail 2.0.X is already present since mail-2.0 feature has been activated
for this server).

https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-specifying-when-servlets-are-loaded-initialized
https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-specifying-when-servlets-are-loaded-initialized

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 540

98.6 JNDI entries configuration
1. For JMS configuration on WebSphere Application Server Liberty, see Configuring JMS

connection factories.

2. For Java Mail configuration on WebSphere Application Server Liberty, see Administering
JavaMail on Liberty.

98.7 Data source and JDBC provider configuration
1. To create the JDBC driver library, edit the <WLP_HOME>/usr/servers/<SERVER_NAME>/server.xml

file by adding the following lines into the <server> tag:
<library id="jdbcDriver">
 <file name="${EBX_LIB}/To be completed"/>
</library>

Caution: the name attribute value, from the file tag, has to be completed. In our example, it should
be ${EBX_LIB}/postgresql-X.X.X-driver.jar.

2. To create the JDBC data source, edit the same file and same XML tag by adding the following
lines:
<dataSource id="ebxRepository" jndiName="jdbc/EBX_REPOSITORY">
 <jdbcDriver libraryRef="jdbcDriver"/>
 <properties.toBeCompleted/>
</dataSource>

Caution: the properties tag, has to be completed. Since the kind of tag is strongly reliant on
the JDBC driver used, a default configuration can not be provided. For a PostgreSQL driver, it
may looks like:
<properties.postgresql databaseName="EBXDB" serverName="localhost" portNumber="5432" user="ebx"
 password="ebx"/>

Note

To hide the password for a JDBC connection in the server.xml file of
WebSphere Application Server Liberty, refer to Authentication Data (authData),
containerAuthData from Data Source (dataSource) and Securing Liberty and its
applications.

Note

The data source can also be specified through the EBX® main configuration file.
See Data source of the EBX® repository [p 527] for more information.

98.8 Java Virtual Machine configuration
1. Set server's environment variables by adding the following lines into <WLP_HOME>/usr/servers/

<SERVER_NAME>/server.env file:
EBX_HOME="<path_to_the_directory_ebx_home>"
EBX_LIB="<path_to_the_directory_ebx_lib>"
JAVA_HOME="<path_to_the_java_home>"

https://www.ibm.com/docs/en/was-liberty/core?topic=elements-configuring-jms-connection-factories
https://www.ibm.com/docs/en/was-liberty/core?topic=elements-configuring-jms-connection-factories
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-administering-javamail-liberty
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-administering-javamail-liberty
https://www.ibm.com/docs/en/was-liberty/core?topic=configuration-authdata
https://www.ibm.com/docs/en/was-liberty/core?topic=configuration-datasource#containerAuthData
https://www.ibm.com/docs/en/was-liberty/core?topic=securing-liberty-its-applications
https://www.ibm.com/docs/en/was-liberty/core?topic=securing-liberty-its-applications

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 541

2. Set Java options by creating a new jvm.options file under the <WLP_HOME>/usr/servers/
<SERVER_NAME>/ directory. This file will hold, at least, the following lines:
-Debx.home="${EBX_HOME}"
-Debx.properties="${EBX_HOME}/ebx.properties"

98.9 EBX® application deployment
1. Create the <EBX_HOME>/ear/ directory.

2. Copy from the EBX® CD, the ebx.software/webapps/ear-packaging/EBX.ear to the
<EBX_HOME>/ear/ directory. In our example, we will get:
/opt/ebx/home/ear/EBX.ear

3. To create the EBX® compression library reference, edit the <WLP_HOME>/usr/servers/
<SERVER_NAME>/server.xml file by adding the following lines into the <server> tag:
<library id="ebxLibLz4">
 <file name="${EBX_LIB}/ebx-lz4.jar"/>
</library>

Note

WebSphere Application Server Liberty doesn't support LZ4 JNI implementation.

4. To deploy EBX.ear, edit the <WLP_HOME>/usr/servers/<SERVER_NAME>/server.xml file by adding
the following lines into the <server> tag:
<application id="ebxApp" location="${EBX_HOME}/ear/{ebx.ear.name}.ear" name="ebxApp" type="ear">
 <classloader commonLibraryRef="ebxLibLz4" />
</application>

98.10 EBX® application start
1. After the launch of the WebSphere Application Server Liberty, with the <WLP_HOME>/wlp/bin/

server start ebxServer command line, run the EBX® web application by entering the following
URL in the browser:
http://localhost:9080/ebx/

2. At first launch, EBX® Wizard [p 575] helps to configure the default properties of the initial
repository.

http://localhost:9080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere Application Server
Liberty 23.X

TIBCO EBX® Product Documentation 6.2.0 542

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 543

CHAPTER 99
Installation note for Tomcat 10.1.X

This chapter contains the following topics:

1. Overview

2. Requirements

3. Tomcat Application Server installation

4. EBX® home directory configuration

5. Tomcat Application Server and Java Virtual Machine configuration

6. EBX® and third-party libraries deployment

7. EBX® web applications deployment

8. EBX® application start

99.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX® on Tomcat Application
Server.

• It does not replace the documentation of this application server.

• They are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components needed by EBX® is given in chapter Jakarta EE
deployment [p 521].

• To avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of ebx.jar,
ebx-lz4.jar or other libraries in the class-loading system.

• The description below uses the variable name $CATALINA_HOME to refer to the Tomcat installation
directory, and from which most relative paths are resolved. However, if the $CATALINA_BASE
directory has been set for a multiple instances configuration, it should be used for each of these
references.

• Refer to the Security Best Practices [p 810] for information on navigating secure deployments.

https://tomcat.apache.org/tomcat-10.1-doc/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 544

99.2 Requirements
• Java SE 17 LTS

• Apache Tomcat 10.1.X

• Database and JDBC driver

• EBX® CD

See also Supported environments [p 512]

99.3 Tomcat Application Server installation
1. Download Tomcat 10.1.X core binary distribution from:

https://tomcat.apache.org/download-10.cgi ,

2. Run the installer or extract the archive and perform a standard installation with default options.

99.4 EBX® home directory configuration
1. Create EBX_HOME directory, for example C:\EBX\home, or /home/ebx,

2. Copy from EBX® CD the ebx.software/files/ebx.properties file to EBX_HOME. In our
example, we will have the following file:
C:\EBX\home\ebx.properties, or /home/ebx/ebx.properties,

3. If needed, edit the ebx.properties file to override the default database. By default the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported databases and the h2.standalone one must be commented.

99.5 Tomcat Application Server and Java Virtual Machine
configuration

1. Modify $CATALINA_HOME/conf/server.xml (or $CATALINA_BASE/conf/server.xml) file.
Add these attributes encodedSolidusHandling="passthrough" and allowBackslash="true" to
the Connector element.
Add the following line to the <Host> element:
<Context path="/ebx" crossContext="true" docBase="ebx.war"/>

In our example, we will have:
<Host name=...>

... ...

<Context path="/ebx" crossContext="true" docBase="ebx.war"/>

... ...

</Host>

https://tomcat.apache.org/download-10.cgi

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 545

2. Modify the $CATALINA_HOME/conf/catalina.properties (or $CATALINA_BASE/conf/
catalina.properties) file by adding the following lines to the
tomcat.util.scan.DefaultJarScanner.jarsToSkip property:
ebx.jar,\

ebx-addons.jar,\

ebx-lz4.jar,\

3. Configure the Java Virtual Machine properties,

• For Windows' Command Prompt launch;
Set the environment variables by creating a setenv.bat file either into $CATALINA_HOME\bin
or $CATALINA_BASE\bin. This file will hold, at least, the following lines:
set EBX_HOME=<path_to_the_directory_ebx_home>
set EBX_OPTS=-Debx.home="%EBX_HOME%" -Debx.properties="%EBX_HOME%\ebx.properties"
set JAVA_OPTS=%EBX_OPTS% %JAVA_OPTS%
set CLASSPATH=<$CATALINA_HOME_or_$CATALINA_BASE>\compress\ebx-lz4.jar;%CLASSPATH%

Where <$CATALINA_HOME_or_$CATALINA_BASE> must be replaced by
%CATALINA_HOME% or %CATALINA_BASE% if they have been configured. Otherwise this piece of
text must be replaced by the Tomcat installation directory's path.

• For Windows users that have installed Tomcat as a service;
Set Java options through the Tomcat service manager GUI (Java tab).
Be sure to set options on separate lines in the Java Options field of the GUI:
-Debx.home="<path_to_the_directory_ebx_home>"
-Debx.properties="<path_to_the_directory_ebx_home>\ebx.properties"

Update the service using the //US// parameter to set the proper classpath value.
C:\> tomcat10 //US//Tomcat10 --Classpath="<$CATALINA_HOME_or_$CATALINA_BASE>\compress\ebx-lz4.jar;
%CLASSPATH%"

Where <$CATALINA_HOME_or_$CATALINA_BASE> must be replaced by
%CATALINA_HOME% or %CATALINA_BASE% if they have been configured. Otherwise this piece of
text must be replaced by the Tomcat installation directory's path.

• For Unix shell launch;
Set the environment variables by creating a setenv.sh file either into $CATALINA_HOME/bin
or $CATALINA_BASE/bin. This file will hold, at least, the following lines:
EBX_HOME="<path_to_the_directory_ebx_home>"
EBX_OPTS="-Debx.home=${EBX_HOME} -Debx.properties=${EBX_HOME}/ebx.properties"
export JAVA_OPTS="${EBX_OPTS} ${JAVA_OPTS}"
export CLASSPATH="<$CATALINA_HOME_or_$CATALINA_BASE>/compress/ebx-lz4.jar:${CLASSPATH}"

Where <$CATALINA_HOME_or_$CATALINA_BASE> must be replaced by
${CATALINA_HOME} or ${CATALINA_BASE} if they have been configured. Otherwise this piece
of text must be replaced by the Tomcat installation directory's path.

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 546

Caution: Accounts used to launch EBX® must have create/update/delete rights on EBX_HOME
directory.

Note

<path_to_the_directory_ebx_home> is the directory where we copied
ebx.properties. In our example, it is C:\EBX\home, or /home/ebx.

Note

For a Data compression library [p 522] native installation, ensure to only reference it
in the CLASSPATH environment variable.

99.6 EBX® and third-party libraries deployment
1. Copy third-party libraries from the EBX® CD to $CATALINA_HOME/lib/ (or $CATALINA_BASE/

lib/) directory, except for the Data compression library [p 522]. In our example, we will have:
$CATALINA_HOME/lib/jakarta.mail-2.0.1.jar coming from ebx.software/lib/lib-mail
directory.
$CATALINA_HOME/lib/h2-2.2.224.jar (default persistence factory) coming from ebx.software/
lib/lib-h2 directory.
The exact description of these components is given in chapter Software components [p 521].
Obviously, if those components are already deployed on the class-loading system, they do not
have to be duplicated.

2. Create a directory dedicated to the Data compression library [p 522] (for example $CATALINA_HOME/
compress or $CATALINA_BASE/compress) and copy it there.

Note

Ensure that the library is copied in the directory pointed out by the previously
updated CLASSPATH environment variable.

3. Copy from EBX® CD the ebx.software/lib/ebx.jar file to $CATALINA_HOME/lib/ (or
$CATALINA_BASE/lib/) directory. In our example, we will have:
$CATALINA_HOME/lib/ebx.jar

99.7 EBX® web applications deployment
1. Copy from the EBX® CD the war files in ebx.software/webapps/wars-packaging to the

$CATALINA_HOME/webapps/ (or $CATALINA_BASE/webapps/) directory. In our example, we will
have:
$CATALINA_HOME/webapps/ebx.war: Initialization servlet for EBX® applications,
$CATALINA_HOME/webapps/ebx-authentication.war: Central authentication application,
$CATALINA_HOME/webapps/ebx-dataservices.war: Data Services web application,
$CATALINA_HOME/webapps/ebx-dma.war: Data Model Assistant web application,
$CATALINA_HOME/webapps/ebx-hub.war: Hub web application,

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 547

$CATALINA_HOME/webapps/ebx-manager.war: Master Data Management web application,
$CATALINA_HOME/webapps/ebx-root-1.0.war: Provides a common default module for data
models,
$CATALINA_HOME/webapps/ebx-ui.war: User Interface web application,
$CATALINA_HOME/webapps/ebx-ide.war: Integrated Development Environment web application,

99.8 EBX® application start
1. After Tomcat launch, run EBX® web application by entering the following URL in the browser:

http://localhost:8080/ebx/

2. At first launch, EBX® Wizard [p 575] helps to configure the default properties of the initial
repository.

http://localhost:8080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 10.1.X

TIBCO EBX® Product Documentation 6.2.0 548

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 549

CHAPTER 100
TIBCO EBX® main configuration file

This chapter contains the following topics:

1. Overview

2. Setting automatic installation on first launch

3. Setting the EBX® root directory

4. Configuring the EBX® repository

5. Configuring the user and roles directory

6. Configuring EBX® localization

7. Setting temporary files directories

8. Activating the audit trail

9. Activating the legacy XML audit trail (deprecated)

10.Configuring the EBX® logs

11.Activating and configuring SMTP and emails

12.Configuring data services

13.Activating and configuring JMS

14.Configuring distributed data delivery (D3)

15.Configuring REST toolkit services

16.Activating and configuring staging

17.Configuring Web access from end-user browsers

18.Security configuration

19.Configuring failover

20.Tuning the EBX® repository

21.Miscellaneous

100.1 Overview
The EBX® main configuration file, by default named ebx.properties, contains most of the basic
parameters for running EBX®. It is a Java properties file that uses the standard simple line-oriented
format.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 550

The main configuration file complements the Jakarta EE deployment descriptor [p 526]. Administrators
can also perform further configuration through the user interface, which is then stored in the EBX®
repository.

See also

Deployment details [p 526]

UI administration [p 629]

Location of the file
The access path to the main configuration file can be specified in several ways. In order of descending
priority:

1. By defining the Java system property 'ebx.properties'. For example, this property can be set by
adding the option -Debx.properties=<filePath> to the java command-line command. See Java
documentation.

2. By defining the servlet initialization parameter 'ebx.properties'.
This standard Jakarta EE setting must be specified in the web.xml file of
the web application 'ebx'. EBX® accesses this parameter by calling the method
ServletConfig.getInitParameter("ebx.properties") in the servlet FrontServlet.
See getInitParameter in the ServletConfig documentation.

3. By default, if nothing is specified, the main configuration file is located at WEB-INF/
ebx.properties of the web application 'ebx'.

Note

In addition to specifying properties in the main configuration file, it is also possible to
set the values of properties directly in the system properties. For example, using the -D
argument of the java command-line command.

Custom properties and variable substitution
The value of any property can include one or more variables that use the syntax ${propertyKey},
where propertyKey is either a system property, or a property defined in the main configuration file.
For example, the default configuration file provided with EBX® uses the custom property ebx.home
to set a default common directory, which is then included in other properties.

100.2 Setting automatic installation on first launch
Repository can be automatically installed on first startup.
###
Installation on first launch.
All values are ignored if the repository is already installed.
###
Enables repository installation on first startup (default is false).
ebx.install.enabled=true

Following properties configure the repository. Values are optional and defaults are
automatically generated.
ebx.install.repository.id=00275930BB88
ebx.install.repository.label=A Test

Following properties specify the administrator. These are ignored if a custom
directory is defined.
ebx.install.admin.login=admin
ebx.install.admin.firstName=admin

https://docs.oracle.com/en/java/javase/11/tools/java.html
https://docs.oracle.com/en/java/javase/11/tools/java.html
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/ServletConfig.html#getInitParameter-java.lang.String-

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 551

ebx.install.admin.lastName=admin
ebx.install.admin.email=adamin@example.com

Following property specifies the non-encrypted password used for the administrator.
It is ignored if a custom directory is defined. It cannot be set if
property ebx.install.admin.password.encrypted is set.
#ebx.install.admin.password=admin

Following property specifies the encrypted password used for the administrator.
It is ignored if a custom directory is defined. It cannot be set if
property ebx.install.admin.password is set.
Password can be encrypted by using command:
java -cp ebx.jar com.orchestranetworks.service.directory.EncryptPassword <login> <password_to_encrypt>
ebx.install.admin.password.encrypted=ff297ae08f7eeb63230b55f7c45a720a017bc71d22eaaec...

100.3 Setting the EBX® root directory
The EBX® root directory contains the Lucene indexes directory, the archives and, when the repository
is persisted on H2 standalone mode, the H2 database files. It also contains the legacy XML audit trail
(deprecated).
###
Path for EBX® XML repository
###
ebx.repository.directory=${ebx.home}/ebxRepository

See also Monitoring and clean up of the file system [p 627]

100.4 Configuring the EBX® repository
Before configuring the persistence properties of the EBX® repository, carefully read the section
Technical architecture [p 618] in the chapter 'Repository administration'.
The required library (driver) for each supported database is described in the chapter Database drivers
[p 523].

See also

Repository administration [p 618]

Rules for the database access and user privileges [p 619]

Supported databases [p 515]

Data source of the EBX® repository [p 527]

Database drivers [p 523]

###
The maximum time to set up the database connection,
in milliseconds.
###
ebx.persistence.timeout=10000
###
The prefix to add to all table names of persistence system.
This may be useful for supporting multiple repositories in the relational database.
Default value is 'EBX_'.
###
ebx.persistence.table.prefix=

###
Case EBX® persistence system is H2 'standalone'.
###
ebx.persistence.factory=h2.standalone
ebx.persistence.user=sa
ebx.persistence.password=

###
Case EBX® persistence system is H2 'server mode',
###
#ebx.persistence.factory=h2.server

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 552

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:h2:tcp://127.0.0.1/ebxdb
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

###
Case EBX® persistence system is Oracle database.
###
#ebx.persistence.factory=oracle

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:oracle:thin:@127.0.0.1:1521:ebxDatabase
#ebx.persistence.driver=oracle.jdbc.OracleDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

Activate to use VARCHAR2 instead of NVARCHAR2 on Oracle; never modify on an existing
repository.
#ebx.persistence.oracle.useVARCHAR2=false

###
Case EBX® persistence system is Microsoft SQL Server.
###
#ebx.persistence.factory=sqlserver

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url= \
#jdbc:sqlserver://127.0.0.1:1036;databasename=ebxDatabase
#ebx.persistence.driver=com.microsoft.sqlserver.jdbc.SQLServerDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

###
Case EBX® persistence system is Microsoft Azure SQL database.
###
#ebx.persistence.factory=azure.sql

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url= \
#jdbc:sqlserver://myhost.database.windows.net:1433;database=ebxDatabase;encrypt=true;\
#trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;
#ebx.persistence.driver=com.microsoft.sqlserver.jdbc.SQLServerDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

###
Case EBX® persistence system is PostgreSQL.
###
#ebx.persistence.factory=postgresql

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:postgresql://127.0.0.1:5432/ebxDatabase
#ebx.persistence.driver=org.postgresql.Driver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

100.5 Configuring the user and roles directory
This parameter specifies the Java directory factory class name. It must only be defined if not using
the default EBX® directory.

See also

Users and roles directory [p 661]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 553

DirectoryFactoryAPI

###
Specifies the Java directory factory class name.
Value must be the fully qualified name of the Java class.
The class must extend com.orchestranetworks.service.directory.DirectoryFactory.
###
#ebx.directory.factory=xxx.yyy.DirectoryFactoryImpl

It is also possible to disable the built-in role "ADMINISTRATOR".
###
Specifies whether the built-in role ADMINISTRATOR is disabled.
Default value is false.
###
#ebx.directory.disableBuiltInAdministrator=true

Built-in LDAP directory
Activate and configure the built-in LDAP (Lightweight Directory Access Protocol) custom directory
implementation through the main EBX® configuration file.
To activate LDAP, update the ebx.directory.factory property as follows:
ebx.directory.factory=com.orchestranetworks.service.directory.ldap.LdapDirectoryFactory

To configure LDAP, set and update the following dedicated properties:
##
Built-in LDAP directory properties
--
1- Connection: [ebx.directory.ldap.default]
required: - .hostName
- .port
optional: - .connectionTimeOutInSeconds | default value: '30' | possible values :
 positive integer
- .bindDnOrUser | default value is empty
- .bindPassword | default value is empty
- .authenticationMethod | default value: 'none' | possible values :
 'simple', 'none'
- .encryptionMethod | default value: 'none' | possible values : 'ssl',
 'tls', 'none'
Note: .bindDnOrUser and .bindPassword are required with simple authentication method.
2- Mapping: [ebx.directory.ldap.default.mapping]
required: - .role.referenceAttribute : the ldap attribute that contains the role name
- .role.memberAttribute : the ldap attribute that contains the users in a group entry
- .role.builtin.administrator : the ldap group associated to the builtin administrator role
- .role.builtin.readOnly : the ldap group associated to the builtin read-only role
- .user.referenceAttribute : the ldap attribute that contains the user name which will be
 used as a login
optional:
- .role.mailAttribute : the ldap attribute that contains the role mail
- .user.mailAttribute : the ldap attribute that contains the user mail
Note: If not defined, the mails will not be handled.
3- Display: [ebx.directory.ldap.default.display]
optional: - .role : an expression using ldap attributes | example: {{cn}}-{{mail}} which gives:
 sales-salesTeam@mail.com
- .user : an expression using ldap attributes | example: {{salutation}} {{firstName}}
 {{lastName}} Mr John Doe
Note: display is not locale dependent yet.
4- Search request templates: [ebx.directory.ldap.default.request.{requestTemplateName}.{field}]
4.1- properties of each request template ({field}):
required: - .baseDN : The request base search DN entry
- .filter : The request filter
optional: - .scope | default value: 'subtree' | possible values :
 'base','one','subtree'
- .cache.expirationInSeconds | default value: '60' | possible values : positive 32 bit
 integer
- .cache.maxSize | default value: '1000' | possible values : positive 64 bit
 integer
- .pageSize | default value: '100' | possible values : positive 32 bit
 integer
- .timeLimitInSeconds | default value: '30' | possible values : positive 32 bit
 integer
Note: Caches are used on every request template to enhance performance.
Putting 0 on .cache.maxSize and .cache.expirationInSeconds of a request template will
disable its related cache.
Changing the .pageSize of a request template at server runtime will
evict its related cache.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 554

4.2- Request templates {requestTemplateName}:
required: - .userSearch : search a user | allowed placeholders : {{login}}
- .userGroupsSearch : search groups of a user | allowed placeholders : {{login}},
{{dn}}
- .groupUsersSearch : search the users under a group | allowed placeholders : {{role}}
- .allGroupsSearch : search all groups | allowed placeholders :
optional:
- .allUsersSearch : search all users | allowed placeholders :
Note: If .allUsersSearch is not defined, only roles are shown on profile selection.
##
1- Connection
ebx.directory.ldap.default.hostName=localhost
ebx.directory.ldap.default.port=389
ebx.directory.ldap.default.connectionTimeOutInSeconds=30
ebx.directory.ldap.default.bindDnOrUser=cn=admin,dc=example,dc=org
ebx.directory.ldap.default.bindPassword=admin
ebx.directory.ldap.default.authenticationMethod=simple
#ebx.directory.ldap.default.encryptionMethod=

2- Mapping
ebx.directory.ldap.default.mapping.role.referenceAttribute=cn
ebx.directory.ldap.default.mapping.role.memberAttribute=member
ebx.directory.ldap.default.mapping.role.builtin.administrator=administrator
ebx.directory.ldap.default.mapping.role.builtin.readOnly=read_only
ebx.directory.ldap.default.mapping.user.referenceAttribute=uid
ebx.directory.ldap.default.mapping.role.mailAttribute=mail
ebx.directory.ldap.default.mapping.user.mailAttribute=mail

3- Display
ebx.directory.ldap.default.display.role={{cn}}
ebx.directory.ldap.default.display.user={{cn}} ({{mail}})

4- Request templates
ebx.directory.ldap.default.request.userSearch.baseDN=dc=example,dc=org
ebx.directory.ldap.default.request.userSearch.filter=(uid={{login}})
ebx.directory.ldap.default.request.userSearch.scope=subtree
ebx.directory.ldap.default.request.userSearch.cache.expirationInSeconds=120
ebx.directory.ldap.default.request.userSearch.cache.maxSize=1000
ebx.directory.ldap.default.request.userSearch.pageSize=100
ebx.directory.ldap.default.request.userSearch.timeLimitInSeconds=30

ebx.directory.ldap.default.request.userGroupsSearch.baseDN=
${ebx.directory.ldap.default.request.userSearch.baseDN}
ebx.directory.ldap.default.request.userGroupsSearch.filter=(&(objectClass=groupOfNames)(member={{dn}}))
ebx.directory.ldap.default.request.userGroupsSearch.scope=subtree

ebx.directory.ldap.default.request.groupUsersSearch.baseDN=
${ebx.directory.ldap.default.request.userSearch.baseDN}
ebx.directory.ldap.default.request.groupUsersSearch.filter=(&(objectClass=groupOfNames)(cn={{role}}))
ebx.directory.ldap.default.request.groupUsersSearch.scope=subtree

ebx.directory.ldap.default.request.allGroupsSearch.baseDN=${ebx.directory.ldap.default.request.userSearch.baseDN}
ebx.directory.ldap.default.request.allGroupsSearch.filter=(objectClass=groupOfNames)
ebx.directory.ldap.default.request.allGroupsSearch.scope=subtree
ebx.directory.ldap.default.request.allGroupsSearch.cache.expirationInSeconds=60
ebx.directory.ldap.default.request.allGroupsSearch.pageSize=100

ebx.directory.ldap.default.request.allUsersSearch.baseDN=${ebx.directory.ldap.default.request.userSearch.baseDN}
ebx.directory.ldap.default.request.allUsersSearch.filter=(objectClass=inetOrgPerson)
ebx.directory.ldap.default.request.allUsersSearch.scope=subtree

See also Built-in LDAP directory [p 664]

100.6 Configuring EBX® localization
This parameter is used to configure the locales used at runtime. This list must contain all the locales
that are exposed to the end-user. EBX® will not be able to display labels and messages in a language
that is not declared in this list.
The default locale must be the first one in the list.
###
Available locales, separated by a comma.
The first element in the list is considered as the default locale.
If not set, available locales are 'en-US, fr-FR'.
##
###
#ebx.locales.available=en-US, fr-FR

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 555

See also Extending TIBCO EBX® internationalization [p 443]

100.7 Setting temporary files directories
Temporary files are stored as follows:
###
Directories for temporary resources.
###
The property ebx.temp.directory allows to specify a directory for temporary files.
Default value is java.io.tmpdir
#ebx.temp.directory = /tmp/java
ebx.temp.directory = \\${java.io.tmpdir}

The property ebx.temp.cache.directory allows to specify the directory containing
temporary files for cache.
Default value is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.cache.directory = ${ebx.temp.directory}/ebx.platform

The property ebx.temp.import.directory allows to specify the directory containing
temporary files for import.
Default value is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.import.directory = ${ebx.temp.directory}/ebx.platform

100.8 Activating the audit trail
By default, the audit trail logging is deactivated. It can be activated by configuring the "audit" log
category to log INFO level messages. For instance the following will log audit trail messages using
a specific 'ebxFile' appender [p 557]:
ebx.log4j.category.log.audit = INFO, ebxFile:audit

See also

Configuring the EBX® logs [p 555]

Audit trail [p 683]

100.9 Activating the legacy XML audit trail (deprecated)
By default, the XML audit trail is deactivated. It can be activated using the following variable:
###
The XML history has been replaced by an SQL history.
This old XML history can be activated using the following variable.
Default is false.
###
ebx.history.xmlaudittrail.activated = false

See also Legacy XML Audit trail

100.10 Configuring the EBX® logs
See also Log configuration [p 508]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 556

EBX® main file mechanism
The most important logging categories are:

ebx.log4j.category.log.kernel Logs for EBX® main features, processes,
exceptions and compilation results of modules
and data models.

ebx.log4j.category.log.workflow Logs for main features, warnings and
exceptions about workflow.

ebx.log4j.category.log.persistence Logs related to communication with the
underlying database.

ebx.log4j.category.log.setup Logs for the compilation results of all EBX®
objects, except for modules and data models.

ebx.log4j.category.log.validation Logs for datasets validation results.

ebx.log4j.category.log.mail Logs for the activity related to the emails sent
by the server (see Activating and configuring
SMTP and emails [p 559]).
Note: This category must not use the Custom
SMTP appender [p 558] in order to prevent
infinite loops.

ebx.log4j.category.log.d3 Logs for D3 events on EBX®.

ebx.log4j.category.log.dataservices Logs for data service events in EBX®.

ebx.log4j.category.log.monitoring Raw logs for memory monitoring [p 585].

ebx.log4j.category.log.request Logs for RequestAPI and QueryAPI

events in EBX®: executions
having a duration exceeding
ebx.logs.request.durationThreshold
milliseconds, requests / queries
where the optimization phase exceeds
ebx.logs.request.optimizationThreshold
milliseconds and executions that internally
throw an exception while iterating the results.
All requests / queries are logged regardless of
their duration, if log level is set to DEBUG.

#ebx.logs.request.durationThreshold
#ebx.logs.request.optimizationThreshold

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 557

ebx.log4j.category.log.restServices Logs for REST services events in EBX®,
including those from the REST Toolkit [p 1223].

ebx.log4j.category.log.audit Logs for the audit trail [p 683] feature.

Some of these categories can also be written to through custom code using the LoggingCategoryAPI

interface.
 ###
Log4J properties:
##
We have some specific syntax extensions:
- Appender ebxFile:<aFileName>
Defines a file appender with default settings (threshold=DEBUG)
##
- property log.defaultConversionPattern is set by Java
##
Note: Apache Log4j 2 native configuration mechanisms may be used instead, or in combination,
of these ones. For more information, see 'Logs configuration' section in
'Administration overview' chapter from EBX® documentation.
###
#ebx.log4j.debug=true
#ebx.log4j.disable=
ebx.log4j.rootCategory= INFO
ebx.log4j.category.log.kernel= INFO, Console, ebxFile:kernel, kernelMail
ebx.log4j.category.log.workflow= INFO, ebxFile:workflow
ebx.log4j.category.log.persistence= INFO, ebxFile:persistence
ebx.log4j.category.log.setup= INFO, Console, ebxFile:kernel
ebx.log4j.category.log.mail= INFO, Console, ebxFile:mail
ebx.log4j.category.log.frontEnd= INFO, Console, ebxFile:kernel
ebx.log4j.category.log.frontEnd.incomingRequest= INFO
ebx.log4j.category.log.frontEnd.requestHistory= INFO
ebx.log4j.category.log.frontEnd.UIComponentInput= INFO
ebx.log4j.category.log.fsm= INFO, Console, ebxFile:fsm
ebx.log4j.category.log.fsm.dispatch= INFO
ebx.log4j.category.log.fsm.pageHistory= INFO
ebx.log4j.category.log.wbp= FATAL, Console
#--
ebx.log4j.appender.Console.Threshold = INFO
ebx.log4j.appender.Console=com.onwbp.org.apache.log4j.ConsoleAppender
ebx.log4j.appender.Console.layout=com.onwbp.org.apache.log4j.PatternLayout
ebx.log4j.appender.Console.layout.ConversionPattern=${log.defaultConversionPattern}
#--
ebx.log4j.appender.kernelMail.Threshold = ERROR
ebx.log4j.appender.kernelMail = com.onwbp.org.apache.log4j.net.SMTPAppender
ebx.log4j.appender.kernelMail.To = admin@domain.com
ebx.log4j.appender.kernelMail.From=admin${ebx.site.name}
ebx.log4j.appender.kernelMail.Subject=EBX® Error on Site ${ebx.site.name} (VM ${ebx.vm.id})
ebx.log4j.appender.kernelMail.layout.ConversionPattern=**Site ${ebx.site.name} (VM${ebx.vm.id})**%n
${log.defaultConversionPattern}
ebx.log4j.appender.kernelMail.layout=com.onwbp.org.apache.log4j.PatternLayout
#--
ebx.log4j.category.log.monitoring=INFO, ebxFile:monitoring
ebx.log4j.category.log.dataServices=INFO, ebxFile:dataServices
ebx.log4j.category.log.d3=INFO, ebxFile:d3
ebx.log4j.category.log.request=INFO, ebxFile:request
ebx.log4j.category.log.restServices=INFO, ebxFile:dataServices
ebx.log4j.category.log.audit=INFO, ebxFile:audit

Custom 'ebxFile' appender
The token ebxFile: can be used as a shortcut to define a daily rolling file appender with default
settings. It must be followed by a file name. It then activates an appender that writes to a file located
in the directory ebx.logs.directory, with a threshold set to DEBUG.
The property ebx.log4j.appender.ebxFile.backup.Threshold allows defining the maximum size (in
megabytes) of backup files for daily rollover.
###
Directory of log files 'ebxFile:'
This property is used by special appender prefixed
by 'ebxFile:' (see log section below)
###
ebx.logs.directory=${ebx.home}/ebxLog

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 558

###
Daily rollover threshold of log files 'ebxFile:'
Specifies the maximum size (in megabytes) of backup files for daily rollover
of 'ebxFile:' appenders.
When set to a negative value, backup log files are never purged.
Default value is -1.
###
ebx.log4j.appender.ebxFile.backup.Threshold=-1

Custom SMTP appender
The appender com.onwbp.org.apache.log4j.net.SMTPAppender provides an asynchronous email
sender.

See also Activating and configuring SMTP and emails [p 559]

Custom module log threshold
By default, the log level threshold of the logging category associated with a custom module is set
to INFO.
This threshold can be customized by setting the property ebx.log4j.category.log.wbp.xxxxxx for
the custom module xxxxxx.
Example: ebx.log4j.category.log.wbp.mycompany-module=DEBUG.

See also ModuleContextOnRepositoryStartup.getLoggingCategoryAPI

Add-on module log threshold
By default, the log level threshold of any add-on module is set to INFO.
The log level threshold can be customized by setting the property
ebx.log4j.category.log.addon.xxxxxx for the add-on module ebx-addon-xxxxxx.
Example: ebx.log4j.category.log.addon.daqa=DEBUG

Migrate from EBX® main file mechanism to Apache Log4j™ 2 and
reverse
Supposing that Apache Log4j™ 2 is not configured programmatically, then moving from one
approach to another is as simple as cleaning the previously used file, converting every logger
configuration into the new format and installing the target file at the proper place.
To define EBX® loggers configuration, refer to Configuring the EBX® logs [p 555].
To define Apache Log4j™ 2 loggers configuration, remove the ebx.log4j.category prefix from EBX®
loggers' name, replace the ebx.log4j.rootCategory configuration by the root logger one and refer to
Apache Log4j™ 2 configuration documentation for the remaining.
Considering the underlying EBX® logs configuration:
ebx.log4j.appender.Console= com.onwbp.org.apache.log4j.ConsoleAppender
ebx.log4j.appender.Console.layout=com.onwbp.org.apache.log4j.PatternLayout
ebx.log4j.appender.Console.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss.SSS} %-5p %-6pid{[0]} --- [%15.15t]
 %-40.40c{39} : %m%n

ebx.log4j.category.log.kernel= INFO, Console
ebx.log4j.rootCategory= INFO, Console

The Apache Log4j™ 2 equivalent configuration will be as the following:
{
 "configuration": {
 "appenders": {

https://logging.apache.org/log4j/2.x/manual/configuration.html

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 559

 "Console": {
 "name": "Console",
 "PatternLayout": {
 "pattern": "%d{yyyy-MM-dd HH:mm:ss.SSS} %-5p %-6pid{[0]} --- [%15.15t] %-40.40c{39} : %m%n"
 }
 }
 },
 "loggers": {
 "logger": [
 {
 "name": "log.kernel",
 "level": "INFO",
 "AppenderRef": {
 "ref": "Console"
 }
 }
],
 "root": {
 "level": "INFO",
 "AppenderRef": {
 "ref": "Console"
 }
 }
 }
 }
}

Note

The Custom 'ebxFile' appender [p 557] does not exist natively in Apache Log4j™ 2, but
its behavior can be mimic.

Note

Ensure to migrate every logger from one mechanism to another to get as close functional
coverage as possible.

100.11 Activating and configuring SMTP and emails
The internal mail manager sends emails asynchronously. It is used by the workflow engine and the
custom SMTP appender com.onwbp.org.apache.log4j.net.SMTPAppender.

See also Mail sessions [p 527]

###
SMTP and emails
###

Activate emails (true or false, default is false).
If activated, the deployer must ensure that the entry 'mail/EBX_MAIL_SESSION' is bound
in the operational environment of the application server (except if a specific email
configuration is used by setting the property ebx.mail.smtp.host below).
#ebx.mail.activate=false

Polling interval is in seconds (default is 10).
#ebx.mail.polling.interval=10

Specific properties to be set only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.mail.smtp.host = smtp.domain.com
SMTP port default is 25.
#ebx.mail.smtp.port= 25
#ebx.mail.smtp.login=
#ebx.mail.smtp.password=
SMTP socket connection timeout value in milliseconds (default is 600000).
#ebx.mail.smtp.connectionTimeout=600000
SMTP socket read timeout value in milliseconds (default is 600000).
#ebx.mail.smtp.timeout=600000
SMTP socket write timeout value in milliseconds (default is 600000).
#ebx.mail.smtp.writeTimeout=600000

Activate SSL (true or false, default is false).

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 560

#ebx.mail.smtp.ssl.activate=true

100.12 Configuring data services
###
Data services
###

Specifies the default value of the data services parameter
'disableRedirectionToLastBroadcast'.
Default is false.
#ebx.dataservices.disableRedirectionToLastBroadcast.default=false

Specifies the default value for deletion at the end of close and
merge operations.
If the parameter is set in the request operation, it overrides
this default setting.
If unspecified, default is false.
#ebx.dataservices.dataDeletionOnCloseOrMerge.default=false
#ebx.dataservices.historyDeletionOnCloseOrMerge.default=false

Specifies the default maximum pagination size value for the select
operations. This configuration is used by SOAP and REST connectors.
Default value is 10000, maximum recommended value is 100000
#ebx.dataservices.pagination.maxSize.default= 10000

Specifies the default pagination size value for the select
operations. This configuration is used by the SOAP connector.
Default value is 10.
#ebx.dataservices.pagination.pageSize.default=10

Upon WSDL generation, specifies if the target namespace value
corresponds to the content before 5.5.0 'ebx-services'
or 'urn:ebx:ebx-services' in conformity with the URI syntax.
If the parameter is set to true, there is no check of the target
namespace as URI at the WSDL generation.
If unspecified, default is false.
#ebx.dataservices.wsdlTargetNamespace.disabledCheck=false

###
REST configuration
###

If activated, the HTTP request header 'Accept' is used to specify
the accepted content type. If none is supported, an error is
returned to the client with the HTTP code 406 'Not acceptable'.
If deactivated, the header is ignored therefore the best content
type is used.
Default is false.
#ebx.dataservices.rest.request.checkAccept=false

If activated, when a REST data service authentication negotiate fails,
EBX response includes fallback to 'Basic' authentication method by setting
the HTTP header 'WWW-Authenticate' to 'Basic'.
Note: This property only activate/deactivate
the authentication fallback.
Default is false.
#ebx.dataservices.rest.auth.tryBasicAuthentication=false

Authorization token timeout is seconds.
Default value is 1800 seconds (30 minutes)
This value is ignored if 'Token Authentication Scheme' is not activated.
#ebx.dataservices.rest.auth.token.timeout=1800

Specifies the maximum size in KB of a response in BO select
operations. This configuration is used by the REST connector.
If exceeded, a partial response is returned with a limited number
of business objects and the HTTP status code 206 Partial Content.
Default value is 1024 (1MB)
The minimum value is 56 which is the default buffer size of the
JSON serializer
The maximum value is 10MB.
#ebx.dataservices.rest.bo.maxResponseSizeInKB=1024

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 561

100.13 Activating and configuring JMS
See also JMS for data services [p 528]

###
JMS configuration for Data Services
###

Activates JMS (true or false, default is false).
If activated, the deployer must ensure that the entry 'jms/EBX_JMSConnectionFactory'
are bound in the operational environment of the application server.
The entry 'jms/EBX_QueueIn' should also be bound to enable handling Data Services
request using JMS.
#ebx.jms.activate=false

Activates JMS queue for failures (true or false, default is false).
If activated, the deployer must ensure that the entry 'jms/EBX_QueueFailure' is bound
in the operational environment of the application server.
#ebx.jms.activate.queueFailure=false

Number of concurrent listener(s)
Default is 3.
Property is used if ebx.jms.activate is set to true.
#ebx.jms.listeners.count=3

100.14 Configuring distributed data delivery (D3)
See Configuring D3 nodes [p 713] for the main configuration file properties pertaining to D3.

See also

JMS for distributed data delivery (D3) [p 703]

Introduction to D3 [p 694]

100.15 Configuring REST toolkit services
###
REST configuration
###

Defines the maximum number of bytes that will be extracted
from the REST request body to build some DEBUG log messages.
Default value is 8192 bytes.
This value is ignored if DEBUG level is not activated on the restServices logger.
#ebx.restservices.log.body.content.extract.size=8192

100.16 Activating and configuring staging
Staging is enabled/disabled via configuration. Some options can be set so as to optimize memory and
disk usage. The properties are configured as follows:
###
Staging configuration
###

Activates staging (true or false, default is true).
#ebx.staging.activated=true

Defines the max size on disc
dedicated to staging temporary folders.
0 defines an infinite size.
If unset, the default value is 0.
#ebx.staging.maxTemporaryFolderSizeInBytes=0

Max size for canonicalization of attachments in bytes.
Canonicalization consumes memory and CPU on large xml and json for attachments.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 562

If not set, default value is 10 Mo (10485760).
#ebx.staging.maxCanonicalizationSizeInBytes=10485760

Defines the maximum number of staging element per list when browsing a repository
If not defined, the default value is 1000.
#ebx.staging.maxElementPerList=1000

Defines the maximum number of staging element per selection operation when browsing a repository
If not defined, the default value is 1000.
#ebx.staging.maxElementSelection=1000

Defines a set of folder relative paths to ${ebx.repository.directory}/startup, separated by commas,
used to configure the import of staging archives on startup.
The folders must be strictly located in the startup folder with no deviations or shortcuts
Each folder is a configuration of an import which must contain a file
named "instructions.json" and the staging archives to import.
Note that the instructions file can only mention archives strictly under the same folder
and can not be on the root of (${ebx.repository.directory}/startup).
In case of errors, an error.json report is added to the folder.
In case of success, an output.json report is added to the folder
and the folder would be ignored in the next startup.
The content of the file is a json in the following format:
{
"imports": [
{
"archiveFilePath": "myArchive1.zip"
},
{
"archiveFilePath": "myArchive2.zip",
"advanced_options": {
"forceUpdateOnIdenticalComponent": false,
"importDefinition": true
}
}
]
#}
[forceUpdateOnIdenticalComponent] boolean, when true, forces the update of a component even
if it is the same in the repository.
[importDefinition] boolean, when true, imports the domain definition in the staging domain
configurations to be able to re-export the same domain.
#ebx.staging.importOnStartup=hr,catalog

See also Staging [p 721]

100.17 Configuring Web access from end-user browsers

HTTP Authorization header policy
EBX® natively offers three policies to send and receive credentials using HTTP headers:

standard It corresponds to the authentication scheme, using the HTTP
Authorization header, described in the RFC 2617.

ebx To prevent HTTP Authorization header override issues, this
policy acts the same as the standard but the credentials are
stored in an EBX® specific HTTP header.

both It is the combination of the two previously described
policies.

###
EBX® authorization header policy for HTTP requests
##
Possible values are: standard, ebx, both.
standard:
the standard HTTP Authorization header holds the credentials
ebx:
an EBX® specific HTTP header holds the credentials
both:

https://tools.ietf.org/html/rfc2617

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 563

both (standard and specific) HTTP headers hold the credentials
##
Default value is: both.
###
#ebx.http.authorization.header.policy=both

URLs computing
By default, EBX® runs in "standalone" mode, where external resources (images, JavaScript, etc.) are
provided by the application server.
Also by default, URL-related parameters in the main configuration file do not have to be set.
In this case, the server name and the port are obtained from the initial request sent to EBX®.

See also URL policy (deprecated) [p 633]

###
EBX® FrontServlet: default properties for computing servlet address
##
{useLocalUrl}:
If set to true, servlet address is a "local absolute" URL.
(that is, a relative URL consisting of an absolute path: "/path")
See RFC 2396, http://www.ietf.org/rfc/rfc2396.txt).
This property is defined once for HTTP and HTTPS.
Default value is false.
##
{host}:
If neither defined nor adapted, retrieves initial request host
{port}:
If neither defined nor adapted, retrieves initial request host
{path}:
Mandatory, may be empty
{ui.path}:
If not defined, defaults to ebx-ui/
{http.useHttpsSettings}:
If true, force the use of SSL security even if the incoming requests do not
{authentication.redirectToHttps}
If set to true, an HTTP request to the login form is automatically redirected to force it
to HTTPS.
Default is false.
Usually, this property should be set to false if EBX® is behind a reverse proxy or a firewall
that takes care of HTTPS encryption.
##
Resulting address will be:
EBX®: protocol://{host}:{port}/{path}
UI: protocol://{host}:{port}/{ui.path}
##
Each property for HTTP (except {port}) may be inherited from HTTPS property,
and reciprocally.
###

ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=ebx/
#ebx.servlet.http.ui.path=ebx-ui/
#ebx.servlet.http.authentication.path=ebx-authentication/
#ebx.servlet.http.authentication.redirectToHttps=false
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=ebx/
#ebx.servlet.https.ui.path=ebx-ui/
#ebx.servlet.https.authentication.path=ebx-authentication/

###
External resources: default properties for computing external resources address
##
The same rules apply as EBX® FrontServlet properties (see comments).
##
Each property may be inherited from EBX® FrontServlet.
###

ebx.externalResources.useLocalUrl=true

#ebx.externalResources.http.host=

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 564

#ebx.externalResources.http.port=
#ebx.externalResources.http.path=
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=
#ebx.externalResources.https.path=

Proxy mode
Proxy mode allows using a front-end HTTP server to provide static resources (images, CSS,
JavaScript, etc.). This architecture reduces the load on the application server for static HTTP requests.
This configuration also allows using SSL security on the front-end server.
The web server sends requests to the application server according to a path in the URL. The
servletAlias and uiServletAlias paths are specified in the main configuration file.
The web server provides all external resources. These resources are stored in a dedicated directory,
accessible using the resourcesAlias path.
EBX® must also be able to access external resources from the file system. To do so, the property
ebx.webapps.directory.externalResources must be specified.
The incoming requests are always assumed to be HTTPS if ebx.servlet.http.useHttpsSettings
and / or ebx.externalResources.http.useHttpsSettings properties are set to true. Their default
values are false. These properties are useful if EBX® is behind a reverse proxy or a firewall that
takes care of HTTPS encryption.
The main configuration file may be configured as follows:
###
Path for external resources if they are not
delivered within web applications
This field is mandatory if in proxy mode.
###
ebx.webapps.directory.externalResources=D:/http/resourcesFolder

###

ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=servletAlias
ebx.servlet.http.ui.path=uiServletAlias
ebx.servlet.http.authentication.path=authenticationServletAlias
#ebx.servlet.http.authentication.redirectToHttps=false
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=servletAlias
ebx.servlet.https.ui.path=uiServletAlias
ebx.servlet.https.authentication.path=authenticationServletAlias

###

ebx.externalResources.useLocalUrl=true

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
ebx.externalResources.http.path=resourcesAlias
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 565

ebx.externalResources.https.path=resourcesAlias

Attention
When proxy mode is used, the URL to the ebx-dataservices module must be configured through the
lineage administration panel. Note that the provided URL must end its path with /ebx-dataservices.

Reverse-proxy mode
If URLs generated by EBX®, for requests and external resources, must contain a different protocol
than the one from the incoming request, a specific server name, a specific port number or a specific
path prefix, properties may be configured as follows:
###
#ebx.servlet.useLocalUrl=false

ebx.servlet.http.host=reverseDomain
#ebx.servlet.http.port=
ebx.servlet.http.path=ebx/
#ebx.servlet.http.ui.path=ebx-ui/
#ebx.servlet.http.authentication.path=ebx-authentication/
#ebx.servlet.http.authentication.redirectToHttps=false
#ebx.servlet.http.useHttpsSettings=false

ebx.servlet.https.host=reverseDomain
#ebx.servlet.https.port=
ebx.servlet.https.path=ebx/
#ebx.servlet.https.ui.path=ebx-ui/
#ebx.servlet.https.authentication.path=ebx-authentication/

###
Web parameters (for external resources)
if nothing is set, values are taken from servlet.
###
#ebx.externalResources.useLocalUrl=false

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
#ebx.externalResources.http.path=
ebx.externalResources.http.useHttpsSettings=true

ebx.externalResources.https.host=reverseDomain
#ebx.externalResources.https.port=
ebx.externalResources.https.path=

Attention
When reverse-proxy mode is used, the URL to the ebx-dataservices module must be configured
through the lineage administration panel. Note that the provided URL must end its path with /ebx-
dataservices.

100.18 Security configuration
These parameters are used to configure the external pages that EBX® can redirect the user to, as well
as some options regarding the authorization cookie.
Custom login page URL.
The login page is displayed when an unidentified user accesses EBX.
If no url is specified, a built-in page will be displayed.
#ebx.security.loginPage.url=
Custom exit page URL.
The exit page is displayed when a user exits EBX normally (when logging out for instance)
and, if the 'exit error' page is not defined, when the user exits EBX because of an error.
If no url is specified, a built-in page will be displayed.
#ebx.security.exitPage.url=
Custom 'exit error' page URL.
The 'exit error' page is displayed when a user exits EBX because of an error.
If no url is specified, the exit page will be displayed.
#ebx.security.exitErrorPage.url=

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 566

Custom 'access denied' page URL.
The 'access denied' page is displayed when an exception is thrown when authenticating a user.
If no url is specified, a built-in page will be displayed.
#ebx.security.accessDeniedPage.url=
List of authorized domains to redirect to.
This is a list of comma-separated URLs which has as many items as 'ebx.security.exitRestrictions.httpsOnly'.
For each item in this list, there should be a related item in 'ebx.security.exitRestrictions.httpsOnly'.
Example: ebx.security.exitRestrictions.domains=my-domain.com,safe-domain.com,trusted-domain.com
#ebx.security.exitRestrictions.domains=
For each domain declared in 'ebx.security.exitRestrictions.domains', indicates if only the https protocol is
 allowed.
This is a list of comma-separated booleans which has as many items as 'ebx.security.exitRestrictions.domains'.
For each item in this list, there should be a related item in 'ebx.security.exitRestrictions.domains'.
Example: ebx.security.exitRestrictions.httpsOnly=true,false,false
#ebx.security.exitRestrictions.httpsOnly=
Indicates if the authorization cookie should have the 'Secure' attribute.
Accepted values are:
- true
- false
- auto: depends on the of value of 'ebx.https.support' and the protocol of the incoming request
Default value is: auto
#ebx.security.authorizationCookie.attribute.secure=auto
Indicates the value of the 'SameSite' attribute of the authorization cookie.
Accepted values are:
- Strict
- Lax
- None
Default value is: Strict
#ebx.security.authorizationCookie.attribute.sameSite=Strict

100.19 Configuring failover
These parameters are used to configure the failover mode and activation key, as well as heartbeat
logging in DEBUG mode.

See also Failover with hot-standby [p 619]

###
Mode used to qualify the way in which a server accesses the repository.
Possible values are: unique, failovermain, failoverstandby.
Default value is: unique.
###
#ebx.repository.ownership.mode=unique

Activation key used in case of failover. The backup server must include this
key in the HTTP request used to transfer exclusive ownership of the repository.
The activation key must be an alphanumeric ASCII string longer than 8 characters.
#ebx.repository.ownership.activationkey=

Specifies whether to hide heartbeat logging in DEBUG mode.
Default value is true.
#ebx.repository.ownership.hideHeartBeatLogForDebug=true

100.20 Tuning the EBX® repository
Some options can be set so as to optimize memory usage.
The properties are configured as follows:
###
Technical parameters for memory and performance tuning
###
Import commit threshold allows to specify the commit threshold
exclusively for the archive import launched directly from Manager.

For more details about the commit threshold,
see the JavaDoc ProcedureContext.setCommitThreshold().
Default value is 0.
ebx.manager.import.commit.threshold=100

See also Validation report page [p 573]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 567

100.21 Miscellaneous

Activating data workflows
This parameter specifies whether data workflows are activated. This parameter is not taken into
account on the fly. The server must be restarted whenever the value changes.
###
Workflow activation.
Default is true.
###
ebx.workflow.activation = true

Disabling user task legacy mode
This parameter specifies whether the creation service of a user task in legacy mode should be offered
in the workflow modeling. The default value is false.
See UserTask.UserTaskMode.LEGACY_MODEAPI for more information.
###
Disables legacy work item mode (default is false)
Specify if the creation service of user task in legacy mode must be offered
in workflow modeling.
###
#ebx.manager.workflow.legacy.userTaskMode=true

Disabling hierarchy plan view
This parameter specifies whether the hierarchy plan view is hidden. The default value is true.
###
Activate or deactivate Workflow hierarchy plan view
###
ebx.manager.workflow.hierarchyPlanView.hidden=false

Activating delegation to launch a workflow by API
This parameter activates delegation to launch a workflow by API. The default value is false which
means that permissions will be always checked unless this parameter is activated.
###
Activate delegation to launch workflows by API
###
ebx.workflow.api.processLauncher.permissionCheckDelegated=true

Log procedure starts
This parameter specifies whether starts of the procedure execution are logged.
###
Specifies whether transaction starts are logged. Default is false.
###
ebx.logs.logTransactionStart = true

Log validation starts
This parameter specifies whether starts of datasets validation are logged.
###
Specifies whether validation starts are logged. Default is false.
###
ebx.logs.logValidationStart = true

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 568

Request cache activation
This parameter specifies whether or not to activate the cache for the internal request-to-query
conversions that are required by the query engine when a RequestAPI is executed. The activation of
this cache will improve the performance on certain types of requests, especially if they are executed
multiple times.
Activates the request cache, which can improve the performance of certain requests. Possible values are
 DISABLED,
WITH_CHECK (ensures that a cached request executes the same query plan as its non-cached version, recommended),
EXCEPTION (throws an exception if the query plan for a request differs from its non-cached version), and
 ENABLED.
The default value is WITH_CHECK.
#ebx.cache.request.mode=WITH_CHECK

Request duration threshold for logs
This parameter specifies in milliseconds the threshold of duration of RequestAPI and QueryAPI to be
logged. Logs are generated if logging category ebx.log4j.category.log.request level is not higher
than INFO. If the level is DEBUG, all RequestAPI and QueryAPI are logged.
###
Specifies in milliseconds the threshold of duration of Requests and Queries
to be logged
Default value is 1000 ms.
If unset, the default value is used.
###
#ebx.logs.request.durationThreshold=1000

Request repetition threshold for logs
This parameter specifies in milliseconds the delay between 2 logs for RequestAPI and QueryAPI that goes
beyond the threshold of duration. If this value is greater than 0, and the query duration goes beyond
the threshold of duration, it will be logged again repeatedly with at least this delay between each log.
As log messages include duration, this is useful to track long queries duration.
###
Specifies in milliseconds the delay between two log entries for Requests and
Queries that goes beyond the threshold of duration. If this value is greater
than 0, and the query duration goes beyond the threshold of duration, it will
be logged again repeatedly with at least this delay between each log.
Default value is 30000 ms.
###
#ebx.logs.request.logAgainEvery=30000

Request optimization threshold for logs
This parameter specifies in milliseconds the threshold of the optimization phase of RequestAPI and
QueryAPI to be logged. Logs are generated if logging category ebx.log4j.category.log.request level
is not higher than INFO.
###
Specifies in milliseconds the threshold of optimization of Requests and Queries
to be logged. Default value is 1000 ms.
###
#ebx.logs.request.optimizationThreshold=1000

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 569

Request SQL representation for logs
This parameter specifies if the logs for a certain RequestAPI shall include the corresponding SQL
representation of the request. Notice that this conversion takes a toll in terms of performance, and not
all requests can be converted into SQL. The default value is false.
###
Specifies if the logs of requests shall include the SQL representation.
Default is false.
###
#ebx.log4j.category.log.request.enableSQLConversion=false

Request optimization for sorting a table by foreign key labels
This parameter specifies whether the query optimizer rewrites certain combinations of sort and join
operations to a specialized operator that carries out the join(s) in a sorted manner.
###
Properties to activate/deactivate EnumerableSortedNestedLoopLeft/Right operators,
which can improve the performance of requests sorted by foreign key labels.
Default value is true.
###
#ebx.query.sortedNestedLoopLeft.enabled=true
#ebx.query.sortedNestedLoopRight.enabled=true

Deployment site identification
This parameter allows specifying the email address to which technical log emails are sent.
###
Unique Site Name
--> used by monitoring emails and by the repository
###
ebx.site.name= name@domain.com

Dynamically reloading the main configuration
Some parameters can be dynamically reloaded, without restarting EBX®. The parameter
thisfile.checks.intervalInSeconds indicates how frequently the main configuration file is
checked.
###
Checks if this file has been updated
If value <= 0, no more checks will be done
###
thisfile.checks.intervalInSeconds=1

In development mode, this parameter can be set to as low as one second. On production systems,
where changes are expected to be less frequent, the value can be greater, or set to '0' to disable hot
reloading entirely.
This property is not always supported when the module is deployed as a WAR, as it would then depend
on the application server.

Declaring modules as undeployed
On application server startup, the initialization of deployed web applications / EBX® modules and
the initialization of the EBX® repository are performed asynchronously. In order to properly initialize
the EBX® repository, it is necessary to compile all the data models used by at least a dataset, hence
EBX® will wait endlessly for referenced modules to be registered.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 570

If a module is referenced by a data model but is not deployed (or no longer deployed), it is necessary
to declare this module as undeployed to unlock the wait and continue the startup process.

Note

The kernel logging category indicates which modules are awaited.

Note

A module declared as undeployed cannot be registered into EBX® until it is removed
from the property ebx.module.undeployedModules.

Note

Any data model based on an unregistered module will have an "undeployed module"
compilation error.

See also

Module registration [p 820]

Dynamically reloading the main configuration [p 569]

###
Comma-separated list of EBX® modules declared
as undeployed.
If a module is expected by the EBX® repository but is
not deployed, it must be declared in this property.
Caution:
if the "thisfile.checks.intervalInSeconds" property is deactivated,
a restart is mandatory, otherwise it will be hot-reloaded.
###
ebx.module.undeployedModules=

Module public path prefix
EBX® modules' public paths are declared in the 'module.xml' file of each module. A context prefix
can be declared for all modules, without having to modify the 'module.xml' content, by specifying
the property that follows.
This prefix will apply to any EBX® module, including core, add-on and specific modules.
When proxy and / or reverse-proxy mode are used, the ebx.servlet.http[s].path and
ebx.servlet.http[s].ui.path properties must take into account this module public path prefix
setting. Conversely, the ebx.externalResources.http[s].path property must end its path just before
a potential prefix.
###
ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=reverse-proxy/prefix/ebx/
ebx.servlet.http.ui.path=reverse-proxy/prefix/ebx-ui/
ebx.servlet.http.authentication.path=reverse-proxy/prefix/ebx-authentication/
#ebx.servlet.http.authentication.redirectToHttps=false
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=reverse-proxy/prefix/ebx/
ebx.servlet.https.ui.path=reverse-proxy/prefix/ebx-ui/
ebx.servlet.https.authentication.path=reverse-proxy/prefix/ebx-authentication/

###
Web parameters (for external resources)
if nothing is set, values are taken from servlet.
###
ebx.externalResources.useLocalUrl=true

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 571

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
ebx.externalResources.http.path=reverse-proxy/
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=
ebx.externalResources.https.path=reverse-proxy/

###
EBX® Module context path prefix
##
If defined, applies to all EBX® modules public paths declared in
any module.xml file (core, add-on and specific).
###
ebx.module.publicPath.prefix=prefix/

See URLs computing [p 563] for more information.

EBX® run mode
This property defines how EBX® runs. Three run modes are available: development,integration and
production.
When running in development mode, the development tools [p 831] are activated in EBX®, some
features thus become fully accessible and more technical information is displayed.

Note

The administrator can always access this information regardless of the mode used.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 572

The additional features accessible when running in development mode include the following (non-
exhaustive list):

Documentation pane In the case of a computed value, the Java class name is
displayed. A button is displayed giving access to the path
to a node.

Compilation information Module and schema compilation information is displayed
in the dataset validation report.

Java bindings The generation of Java bindings is available if the schema
of the dataset mentions at least one binding.

Web component link generator The Web component link generator is available on datasets
and dataspaces.

Data model assistant Data model configuration and additional options, such
as Services, Business Objects and Rules, Java Bindings,
Toolbars and some advanced properties.

Workflow modeling Declare specific script tasks.

Log The logs include additional technical information intended
for the developer. For example, a warning is written to logs
if a drop-down list is defined on a node which is not an
enumeration in a UI Bean.

Product documentation The product documentation is always the most complete one
(i.e "advanced"), including administration and development
chapters.

###
Server Mode
Value must be one of: development, integration, production
Default is production.
###
backend.mode=integration

Note

There is no difference between the integration and production modes.

Resource filtering
This property allows the filtering of certain files and directories in the resource directory contents
(resource type node, with an associated facet that indicates the directory that contains usable
resources).
###
list (separated by comma) of regexps excluding resource
the regexp can be of type [pattern] or "m:[pattern]:".
the list can be void
###

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 573

ebx.resource.exclude=CVS/*

Validation report page
The validation report page can display a finite number of items for each severity. This number can
be tuned with this property.
###
Defines the maximum item displayed for each severity in the validation report page.
Default value is 100.
###
ebx.validation.report.maxItemDisplayed=200

See also Tuning the EBX® repository [p 566]

Validation report logs
This property allows to specify the number of validation messages to display in the logs when
validating a dataset or a table.
###
Defines the maximum number of messages displayed in the logs.
Default value is 100.
When set to 0 or a negative value, the limit is not considered.
###
ebx.validation.report.maxItemDisplayedInLogs=500

By default, the content of the validation of a dataset or a table is logged. Logging the content of the
validation reports can be deactivated using the following property:
###
Specifies whether the content of validation reports is logged when validating
a dataset or a table.
Default is true.
###
ebx.validation.report.logContent=true

See also Tuning the EBX® repository [p 566]

Validation mode of child datasets
This property influences how the algorithm for validating a child dataset behaves. It only affects the
performance. The contents of the resulting validation reports are independent of the property.
Changes the way how a child dataset is validated. This affects only the performance of the validation,
but not the content of the resulting validation report. In the FULL mode, the report of the tables
will be cleared, then the tables will be validated as if performing an initial validation.
In the DIFF mode, the algorithm calculates the differences since the last validation
and processes them to perform the necessary updates on the validation report.
Possible values are: FULL, DIFF.
The default is DIFF.
#ebx.validation.childDataset.mode=DIFF

Documentation > Administration Guide > Installation & configuration > TIBCO EBX® main configuration file

TIBCO EBX® Product Documentation 6.2.0 574

Documentation > Administration Guide > Installation & configuration > Initialization and first-launch assistant

TIBCO EBX® Product Documentation 6.2.0 575

CHAPTER 101
Initialization and first-launch

assistant
Deliverables can be found on TIBCO eDelivery (an account is mandatory in order to access eDelivery,
please contact the support team to request one).
The TIBCO EBX® Configuration Assistant helps with the initial configuration of the EBX®
repository. If EBX® does not have a repository installed upon startup and if the automatic installation
[p 550] is not enabled, the configuration assistant is launched automatically.
Before starting the configuration of the repository, make sure that EBX® is correctly deployed on the
application server. See Jakarta EE deployment [p 521].

Note

The EBX® main configuration file must also be properly configured. See TIBCO EBX®
main configuration file [p 549].

This chapter contains the following topics:

1. Configuration steps

101.1 Configuration steps
The EBX® configuration assistant guides you through the following steps:

1. Validating the license agreement.

2. Configuring the repository.

3. Defining users in the default user and roles directory (if a custom directory is not defined).

4. Validating the information entered.

5. Installing the EBX® repository.

Validating the license agreement
In order to proceed with the configuration, you must read and accept the product license agreement.

https://edelivery.tibco.com
https://support.tibco.com

Documentation > Administration Guide > Installation & configuration > Initialization and first-launch assistant

TIBCO EBX® Product Documentation 6.2.0 576

Configuring the repository
This page displays some of the properties defined in the EBX® main configuration file. You also
define several basic properties of the repository in this step.

Id of the repository
(repositoryId)

Must uniquely identify the repository (in the scope of
the enterprise). The identifier is 48 bits (6 bytes) long
and is usually represented as 12 hexadecimal digits. This
information is used for generating the Universally Unique
Identifiers (UUIDs) of entities created in the repository, and
also of transactions logged in the history. This identifier acts
as the "UUID node", as specified by RFC 4122.

Repository label Defines a user-friendly label that indicates the purpose and
context of the repository.

See also TIBCO EBX® main configuration file [p 549]

Defining users in the default directory
If a custom user and roles directory is not defined in the EBX® main configuration file, the
configuration assistant allows to define default users for the default user and roles directory.
An administrator user must be defined. You may optionally create a second user.

See also Users and roles directory [p 661]

Validating the information entered
Before proceeding with the installation of the repository, you can review the configuration of the
repository and the information entered on the 'Configuration Summary' page. If you need to modify
information, you can return to the previous pages using the configuration assistant < Back button.
Once you have verified the configuration, click the button Install the repository > to proceed with
the installation.

Installing the EBX® repository
The repository installation is performed using the provided information. When the installation is
complete, you are redirected to the repository login page.

Documentation > Administration Guide > Installation & configuration > Managing TIBCO EBX® add-ons

TIBCO EBX® Product Documentation 6.2.0 577

CHAPTER 102
Managing TIBCO EBX® add-ons

This chapter contains the following topics:

1. Overview

2. Add-on compatibility

3. Deploying an add-on module

4. Registering an add-on module

5. Activating an add-on module

6. Deleting an add-on module

102.1 Overview
The following sections cover:

• Add-on compatibility [p 577]

• Deploying an add-on module [p 578]

• Registering an add-on module [p 578]

• Activating an add-on module [p 578]

• Deleting an add-on module [p 579]

Refer to each add-on's documentation for instructions on configuring and using the add-on.

102.2 Add-on compatibility
Each Add-on Bundle is compatible with specific versions and fix releases of EBX®. However,
beginning with version 6.1.0, the major and minor versions of add-ons and EBX® must be the same.
For example, EBX® version 6.1.0 is only compatible with add-ons that are also version 6.1.0. If this is
not the case, add-on registration is aborted. For other releases, the TIBCO EBX® Add-ons Versioning
and Packaging Guide includes a version compatibility matrix. Go to the official documentation site
and use the Bundle version menu to view the version of this guide that corresponds with your Add-
on Bundle.

https://docs.tibco.com/products/tibco-ebx-add-ons/

Documentation > Administration Guide > Installation & configuration > Managing TIBCO EBX® add-ons

TIBCO EBX® Product Documentation 6.2.0 578

102.3 Deploying an add-on module
Copy the add-on common JAR file (named lib/ebx-addons.jar) in the EBX® class-path; it must be
accessible from the ebx.jar class-loader.
Copy the add-on common WAR file (named wars/ebx-addon-common.war) in the application server
webapps folder or EAR as EBX® built-in web applications.
If an add-on is used, copy the EBX® add-on WAR file (named wars/ebx-addon-<name>.war) in the
same folder or EAR as EBX® built-in web applications.
See Web applications [p 524], Deployment details [p 526] and Installation notes [p 529] for more
information.

Note

The add-on log level can be managed in the main configuration file [p 558].

102.4 Registering an add-on module
Registering an add-on makes its configuration available in the admin section. Add-on features are
only available to end-users when the add-on is also activated [p 578].
To register a new EBX® add-on in the repository:

1. Navigate to the 'Administration' area.

2. Click the down-arrow in the navigation pane and select Technical configuration > Add-ons
registration.

3. On the Registered add-ons page, click the + button to create a new entry.

4. Select the add-on you are registering.

5. Click on Save.

Note

Unregistering an add-on will not delete any existing configuration, but will make it
available in the UI until the add-on is registered again.

102.5 Activating an add-on module
Activating an add-on makes its features available to the end-users. Only registered add-ons can be
activated.
To activate an EBX® add-on in the repository:

1. Navigate to the 'Administration' area.

2. Click the down-arrow in the navigation pane and select Technical configuration > Add-ons
registration.

3. Select the registered add-on you are activating and enable the 'Activation' field.

4. Click on Save.

Documentation > Administration Guide > Installation & configuration > Managing TIBCO EBX® add-ons

TIBCO EBX® Product Documentation 6.2.0 579

102.6 Deleting an add-on module
To delete an add-on module from the EBX® repository:

1. Navigate to the Administration panel.

2. Click the down-arrow in the navigation pane and select Technical configuration > Add-ons
registration.

3. On the Registered add-ons page, tick the box corresponding to the add-on you want to delete.

4. In the Actions menu, select Delete.

5. Stop the application server.

6. Add the deleted add-on's module name (ebx-addon-<name>) to the
ebx.module.undeployedModules property in your ebx.properties file. See declaring modules as
undeployed [p 569] for more information.

7. Remove the add-on's WAR file (ebx-addon-<name>.war) from the application server's webapps
folder, or its EAR file if used as an EBX® built-in web application.

8. Restart the application server.

9. Close and purge the Administration datasets and dataspaces related to the deleted add-on.
When an add-on is no longer deployed, a dataspace corresponding to the Administration dataset
displays in the list of Reference children under the dataspaces. This makes it necessary to close/
delete and manually purge all data/dataspaces related to the add-on.

Documentation > Administration Guide > Installation & configuration > Managing TIBCO EBX® add-ons

TIBCO EBX® Product Documentation 6.2.0 580

Documentation > Administration Guide > Installation & configuration > User authentication

TIBCO EBX® Product Documentation 6.2.0 581

CHAPTER 103
User authentication

This chapter contains the following topics:

1. The /ebx-authentication servlet

2. The authorization token

3. Customizing the authentication process

103.1 The /ebx-authentication servlet
The /ebx-authentication servlet is the central point handling the user authentication in EBX®. Its role
is to:

• Create an authorization token [p 581] when the user logs in for the first time.

• Revoke the authorization token [p 581] when the user logs out.

• Redirect the authorized user to the appropriate page.

Furthermore, depending on the configuration, it can also:

• Handle the login process by displaying a login screen.

• Redirect the unauthorized user to a custom login screen [p 582].

• Redirect the user logging out to a custom exit page.

103.2 The authorization token
When the /ebx-authentication servlet successfully authenticates a user, it creates a token containing
the authentication information and stores it in a session cookie.
This means that the authorization is shared between all the browser tabs:

• If the user is already authenticated on a browser tab and opens EBX® on another tab, it will not
be asked to authenticate again.

• It is not possible to be logged with different users in different tabs of the same browser.

Documentation > Administration Guide > Installation & configuration > User authentication

TIBCO EBX® Product Documentation 6.2.0 582

Cookie properties
The cookie containing the token has the following properties:

HttpOnly Not customizable. The cookie can't be read by javascript
code in the browser.

Secure Customizable via the property
ebx.security.authorizationCookie.attribute.secure
in ebx.properties. Defines if the cookie can be sent over
HTTPS only, or if it can also be sent over HTTP.

SameSite Customizable via the property
ebx.security.authorizationCookie.attribute.sameSite
in ebx.properties. Defines if the cookie can be sent when
browsing from an external site.

See also Security configuration [p 565]

103.3 Customizing the authentication process
By default, EBX® uses a built-in directory and built-in login page. It is strongly recommended to
replace the built-in directory by a custom one.

Customizing the directory
While EBX® provides a built-in directory, it is strongly recommended to replace it:

1. Create a class overriding DirectoryAPI

2. Create a class overriding DirectoryFactoryAPI

3. Use the property ebx.directory.factory in ebx.properties to declare the factory.

See also Security configuration [p 565]

Customizing the login page
While EBX® provides a built-in login page, it is possible to replace it. To do so, use the property
ebx.security.loginPage.url in ebx.properties to declare the custom login page.
It is up to the custom login page to authenticate the user. Once the user is authenticated, he
should be redirected to the /ebx-authentication/login page. Then, EBX® will call the Directory.
authenticateUserFromHttpRequestAPI method before creating an authorization token. The following
points are required for this to work:

• The request pointing to /ebx-authentication/login should contain enough information to
authenticate the user, for instance in a cookie, a HTTP header or a query parameter.

Documentation > Administration Guide > Installation & configuration > User authentication

TIBCO EBX® Product Documentation 6.2.0 583

• The directory must be overridden (see Customizing the directory [p 582]) and the implementation
of the Directory.authenticateUserFromHttpRequestAPI method should read the information from
the incoming request in order to return the appropriate UserReferenceAPI.

Note

When EBX® redirects the user to the custom login page, it also adds a resume query
parameter to the URL. This resume query parameter contains an URL pointing to /ebx-
authentication/login with some additional parameters and should be used in priority
to redirect the user to /ebx-authentication/login after the authentication succeeds.

See also Security configuration [p 565]

Documentation > Administration Guide > Installation & configuration > User authentication

TIBCO EBX® Product Documentation 6.2.0 584

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 585

CHAPTER 104
Performance and tuning

This chapter contains the following topics:

1. Environment

2. Database

3. Data modeling

4. Data validation

5. Accessing tables

6. Performance checklist for other Java customizations

104.1 Environment

Memory management

Memory monitoring Indications of EBX® load activity are provided by
monitoring the underlying database, and also by the
'monitoring' logging category [p 555].
If the numbers for cleared and built objects remain high for
a long time, this is an indication that EBX® is swapping on
the application server. In that case, the memory allocated to
the application server should be increased.

Garbage collector Tuning the garbage collector can also benefit overall
performance. This tuning should be adapted to the use case
and specific Java Runtime Environment used.

CPU
The number of CPUs available for the application server must be defined considering the number
of concurrent HTTP requests to be served, the complexity (CPU cost) of the implied tasks, and the
background activities, including the Java garbage collection.
Large imports and more generally large transactions involving many creates, updates and deletes will
be completed faster if the difference between the server load and the number of available processors

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 586

allows the indexing to be efficiently run in parallel within the transaction. The persistence log
category contains the following entries:

• 'Setting forced synchronous indexing to false (...)' to indicate that the indexing will be performed
concurrently;

• 'Setting forced synchronous indexing to true (...)' to indicate that the indexing will not be
performed concurrently.

The difference mentioned above is assessed every ten seconds and is computed using
the methods getSystemLoadAverage() and getAvailableProcessors() in the Java class
java.lang.management.OperatingSystemMXBean. Both numbers are written at the end of the log entry
above.

Using the native LZ4 library
The LZ4 library is used to store data to and retrieve data from the database. To speed up data access,
it is required to perform a ebx-lz4.jar native installation.
See Data compression library [p 522] for more information.

Scanning on server startup
To speed up the web applications server startup, the JAR files scanner [p 529] should be configured.

104.2 Database

Reorganizing database tables
As with any database, inserting and deleting large volumes of data may lead to fragmented data, which
can deteriorate performance over time. To resolve the issue, reorganizing the impacted database tables
is necessary. See Monitoring and cleanup of the relational database [p 624].
A specificity of EBX® is that creating dataspaces and snapshots adds new entries to tables GRS_DTR
and GRS_SHR. When poor performance is experienced, it may be necessary to schedule a reorganization
of these tables, for large repositories in which many dataspaces are created and deleted.

See also Monitoring and cleanup of the relational database [p 624]

104.3 Data modeling

Aggregated lists
In a data model, when an element's cardinality constraint maxOccurs is greater than 1 and no osd:table
is declared on this element, it is implemented as a Java List. This type of element is called an
aggregated list [p 850], as opposed to a table.
It is important to consider that there is no specific optimization when accessing aggregated lists, in
terms of iterations, user interface display, etc. Besides performance concerns, aggregated lists are

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 587

limited with regard to many functionalities that are supported by tables. See tables introduction [p

853] for a list of these features.

Attention
For the reasons stated above, aggregated lists should be used only for small volumes of simple
data (one or two dozen records), with no advanced requirements for their identification, lookups,
permissions, etc. For larger volumes of data (or more advanced functionalities), it is recommended
to use osd:table declarations.

Inherited fields
It is possible in a data model to use inherited fields [p 470] for an advanced inheritance based on
relationships opposed to dataset inheritance.
As inherited fields cannot benefit from index optimizations they should be used with caution or
avoided since they behave as computed fields to resolve their values. As a consequence all operations
(querying, validation, data comparison in resolved mode, etc.) that will be performed on inherited
fields won't be optimized and their performances can be strongly impacted.

104.4 Data validation
The internal validation framework will optimize the work required during successive requests to
update the validation report of a dataset or a table. The incremental validation process behaves as
follows:

• The first call to a dataset or table validation report performs a full validation of the dataset or
the table.

• The next call to the validation report will compute the changes performed since the last validation.
The validation report will be updated according to these changes.

• Validation reports are stored persistently in the TIBCO EBX® repository. This reduces the amount
of memory dedicated to validation reports when datasets have a large amount of validation
messages. Also, validation reports are not lost when the application server restarts.

• Validation reports can be reset manually in the user interface by an administrator user (this option
is available from the validation report section in EBX®). As a consequence, resetting validation
reports must be used with caution since associated datasets or tables will be fully revalidated
during the next call to their validation reports.
See Adaptation.resetValidationReportAPI for more information.

Certain constraints are systematically re-validated, even if no updates have occurred since the
last validation. These are the constraints with unknown dependencies. An element has unknown
dependencies if:

• It specifies a programmatic constraint ConstraintAPI in the default unknown dependencies mode.

• It declares a computed value ValueFunctionAPI, or it declares a dynamic facet that depends on an
element that is itself a computed value ValueFunctionAPI.

• It is an inherited field [p 472] or it declares a dynamic facet that depends on a node that is itself
an inherited field [p 472].

Consequently, on large tables, it is recommended to:

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 588

• Avoid constraints with unknown dependencies (or at least to minimize the number of
such constraints). For programmatic constraints, the developer is able to specify two
alternative modes that drastically reduce incremental validation cost: local dependency
mode and explicit dependencies. For more information, see Dependencies and validation
DependenciesDefinitionContext.dependenciesAPI.

• To use constraints on tables ConstraintOnTableAPI instead of programmatic constraints
ConstraintAPI defined at field level. Indeed, if a table defines constraints at field level, then
the validation process will iterate over all the records to check if the value of the associated
field complies with the constraint. Using constraints on tables ConstraintOnTableAPI gives
the opportunity to execute optimized queries on the whole table. See below [p 585] for
recommendations on how to optimize such queries. However, there is a trade-off: A constraint on
tables ConstraintOnTableAPI does not benefit from the incremental validation and will always be
validated completely. If in general only a few records are created or deleted between validations,
a programmatic constraint ConstraintAPI might be more performant. Benchmarks or a sampling
profiler can help to make the decision.

• Avoid the use of the facet pattern since its check is not optimized on large tables. That is, if a field
defines this facet then the validation process will iterate over all the records to check if the value
of the associated field complies with the specified pattern.

The following properties can be used to minimize the impact on performance when logging a
validation report:

• Set the ebx.validation.report.logContent property to false to avoid logging the individual
validation messages. The validation report summary is still logged, including the message
count. You can also avoid logging the validations started by the Java API completely. See
ValidationSpec.setResultLoggedAPI for more information.

• Though less effective than the previous recommendation, setting the
ebx.validation.report.maxItemDisplayed property to a lower value than the default 100
reduces the amount of validation messages to log, thereby reducing the related computational
work.

104.5 Accessing tables

Functionalities
Tables are commonly accessed through EBX® UI, data services and also through the RequestAPI and
QueryAPI APIs. This access involves a unique set of functions, including a dynamic resolution process.
This process behaves as follows:

• Inheritance: Inheritance in the dataset tree takes into account records and values that are defined
in the parent dataset, using a recursive process. Also, in a root dataset, a record can inherit some
of its values from the data model default values, defined by the xs:default attribute.

• Value computation: A node declared as an osd:function is always computed on the fly when
the value is accessed. See ValueFunction.getValueAPI.

• Filtering: An XPath predicate [p 431], a programmatic filter AdaptationFilterAPI, or a record-
level permission rule SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI requires a
selection of records.

• Sort: A sort of the resulting records can be performed.

https://www.w3.org/TR/xmlschema-2/#dt-pattern

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 589

Query on tables

Architecture and design
In order to improve the speed of operations on tables, persistent Lucene indexes are managed by the
EBX® engine.

Attention
Faster access to tables is ensured if indexes are ready and maintained in the OS memory cache. As
mentioned above [p 585], it is important for the OS to have enough space allocated.

Performance considerations
The query optimizer favors the use of indexes when computing a request result. If a query cannot take
advantage of the indexes, it will be resolved in Java memory, and experience poor performance on
large volumes. The following guidelines apply:

Attention

• Only XPath predicates and SQL queries can benefit from index optimization.

• Some fields and some datasets cannot be indexed, as described in section Limitations [p 500].

• XPath predicates using the osd:label function cannot benefit from index optimization

If indexes have not yet been built, additional time is required to build and persist the indexes, on the
first access to the table.
Accessing the table data blocks is required when the query cannot be computed against any index
(whether for resolving a rule, filter or sort), as well as for building the index. If the table blocks are
not present in memory, additional time is needed to fetch them from the database.
Apart from that, there are other considerations that can impact requests / queries performance:

• If the same request / query is going to be executed multiple times with just a variation on the filter
value, it is recommendable to use parameters in said filter:

• request.setXPathFilter("./field=$param");

• SELECT * FROM myTable WHERE field=?

• If possible, use RequestResult.isSizeGreaterOrEqualAPI rather than RequestResult.getSizeAPI

• If possible, avoid RequestResult size-related calls. Especially avoid the unnecessary code pattern
"check isEmpty before traversing" on a RequestResult:
try (RequestResult result = ...) {
 if (result.isEmpty())
 return; // unnecessary and inefficient!
 for (Adaptation record : result) {
 ...
 }
}

// simply do:

try (RequestResult result = ...) {
 for (Adaptation record : result) {
 ...
 }
}

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 590

It is possible to get information through the memory monitoring [p 585] and request logging
categories.

Accessing and modifying a table
The following access lead to poor performance, and must be avoided:

• Access a table after a few modifications, repeatedly. It implies the index state to be refreshed after
each modification. The cost of refreshing makes this pattern ineffective. Instead, perform a single
query and apply the modification when browsing the results.

• If there is an ongoing access to the same table, concurrently to the previous case, it prevents
outdated index files to be deleted. As a consequence, the size of the index on disk increases, and
the server may run out of disk space in extreme cases. When the concurrent access is closed, the
index size is back to normal. This is usually a sign that a Request or a Query is not properly closed.

See also

RequestResult.closeAPI

QueryResult.closeAPI

Other operations on tables
The new records creations or record insertions depend on the primary key index. Thus, a creation
becomes almost immediate if this index is already loaded.

REST built-in and business objects
When using select operations with business objects, EBX® utilizes a temporary folder
to handle large response contents. Administrators can set a size limit through the
ebx.dataservices.rest.bo.maxResponseSizeInKB configuration parameter. Adjust this setting based
on the server's available filesystem space dedicated to temporary content and considering the
maximum number of request processing threads.
See ebx.dataservices.rest.bo.maxResponseSizeInKB [p 560] and Setting temporary files directories [p

555] for more information.

REST access to history table
The merge information in history table (the merge_info field) has a potentially high access cost. To
improve performance and if the client code does not need this field, the includeMergeInfo [p 1080]

parameter must be set to false.
See History [p 451] for more information.

Setting a fetch size
In order to improve performance, a fetch size should be set according to the expected size of the result
of the request on a table. If no fetch size is set, the default value will be used.

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 591

• On a history table, the default value is assigned by the JDBC driver: 10 for Oracle and 0 for
PostgreSQL.

Attention
On PostgreSQL, the default value of 0 instructs the JDBC driver to fetch the whole result set
at once, which could lead to an OutOfMemoryError when retrieving large amounts of data. On
the other hand, using fetchSize on PostgreSQL will invalidate server-side cursors at the end of
the transaction. If, in the same thread, you first fetch a result set with a fetchsize, then execute a
procedure that commits the transaction, then, accessing the next result will raise an exception.

See also

Request.setFetchSizeAPI

RequestResultAPI

104.6 Performance checklist for other Java
customizations

While TIBCO EBX® is designed to support large volumes of data, several common factors can lead to
poor performance. Addressing the key points discussed in this section will solve the usual performance
bottlenecks.

Expensive programmatic extensions
For reference, the table below details the programmatic extensions that can be implemented.

Use case Programmatic extensions that can be involved

Validation • programmatic constraints ConstraintAPI

• computed values ValueFunctionAPI

Table access • record-level permission rules SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI

• programmatic filters AdaptationFilterAPI

EBX® content display • computed values ValueFunctionAPI

• UI Components UIBeanEditorAPI

• node-level permission rules SchemaExtensionsContext.setAccessRuleOnNodeAPI

Data update • triggers Package com.orchestranetworks.schema.triggerAPI

For large volumes of data, using algorithms of high computational complexity has a serious impact on
performance. For example, the complexity of a constraint's algorithm is O(n 2). If the data size is 100,
the resulting cost is proportional to 10 000 (this generally produces an immediate result). However, if
the data size is 10 000, the resulting cost will be proportional to 10 000 000.
Another reason for slow performance is calling external resources. Local caching usually solves this
type of problem.

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 592

If one of the use cases above displays poor performance, it is recommended to track the problem,
either by code analysis or by using a Java profiling tool.

Unnecessary index refresh
Refreshing a Lucene index takes time. It should be avoided whenever possible.

When does a refresh happen? In the context of a transaction, an index refresh occurs when
the table has been modified and one of the conditions below
occurs:

1. For a lookup by primary key, the refresh is
always triggered if the searched key has been
"touched" (created, modified or deleted) in the current
Procedure (or TableTrigger).

2. For a standard Query (or Request), an index refresh is
always performed if the table has been modified in the
current Procedure (or TableTrigger).

Coding recommendations 1. To avoid triggering a refresh through a lookup
by primary key, the developer must register the
Adaptation object returned from the last call to
doCreateOccurrence or doModifyContent, and reuse
this object instead of performing the lookup.

2. Avoid any lookup by primary key on a record that has
been deleted in the current procedure.

3. In the case of a query triggering the refresh, the
developer must ask the following question: can this
query be avoided in my procedure?

Transaction threshold for mass updates
It is generally not advised to use a single transaction when the number of atomic updates in the
transaction is beyond the order of 10 5. Large transactions require a lot of resources, in particular,
memory, from EBX® and from the underlying database.
To reduce the transaction size, it is possible to:

• Specify the property ebx.manager.import.commit.threshold [p 566]. However, this property is only
used for interactive archive imports performed from the EBX® user interface.

• Explicitly specify a commit threshold ProcedureContext.setCommitThresholdAPI inside the
batch procedure.

• Structurally limit the transaction scope by implementing ProcedureAPI for a part of the task and
executing it as many times as necessary.

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 593

On the other hand, specifying a very small transaction size can also hinder performance, due to the
persistent tasks that need to be done for each commit.

Note

If intermediate commits are a problem because transactional atomicity is no longer
guaranteed, it is recommended to execute the mass update inside a dedicated dataspace.
This dataspace will be created just before the mass update. If the update does not
complete successfully, the dataspace must be closed, and the update reattempted after
correcting the reason for the initial failure. If it succeeds, the dataspace can be safely
merged into the original dataspace.

Triggers
If required, triggers can be deactivated using the method ProcedureContext.setTriggerActivationAPI.

Directory integration
Authentication and permissions management involve the user and roles directory [p 661].
If a specific directory implementation is deployed and accesses an external directory, it can be useful
to ensure that local caching is performed. In particular, one of the most frequently called methods is
Directory.isUserInRoleAPI.

Documentation > Administration Guide > Installation & configuration > Performance and tuning

TIBCO EBX® Product Documentation 6.2.0 594

Documentation > Administration Guide > Installation & configuration > Configuration notes

TIBCO EBX® Product Documentation 6.2.0 595

CHAPTER 105
Configuration notes

This chapter contains the following topics:

1. Memory allocated to the app server

2. Memory allocated to the OS

105.1 Memory allocated to the app server
Since the query engine retrieves the necessary information from persistent storage, the memory
allocated to the Java Virtual Machine (usually specified by the -Xmx parameter) can be kept low. We
recommend setting this figure to less than 1/3rd of the total memory available on the OS. We also
advise to stay below 32 GB, which should fit all reasonable use cases, and allow benefiting from the
Compressed Ordinary Object Pointer feature.

105.2 Memory allocated to the OS
On the OS running the application server, it is important to leave sufficient room to the OS cache,
letting it optimize access to the persistent Lucene indexes. Indeed, once these have been loaded from
the file system, the OS uses its memory cache to speed up subsequent accesses to this same data, and
avoid reloading it every time from the disk. This is only possible if sufficient RAM has been left for
this purpose.
It is also necessary to configure the OS so that the JVM process can reserve the resources required
by numerous memory-mapped files (see this article for details). On a Linux OS, this can be done by
issuing the following commands:
ulimit -n 512000
sysctl vm.max_map_count=262144

https://docs.oracle.com/en/java/javase/11/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://blog.thetaphi.de/2012/07/use-lucenes-mmapdirectory-on-64bit.html

Documentation > Administration Guide > Installation & configuration > Configuration notes

TIBCO EBX® Product Documentation 6.2.0 596

Documentation > Administration Guide

TIBCO EBX® Product Documentation 6.2.0 597

EBX® Container
Edition

Documentation > Administration Guide > EBX® Container Edition > Building the image

TIBCO EBX® Product Documentation 6.2.0 598

CHAPTER 106
Building the image

This chapter contains the following topics:

1. Overview

2. Requirement

3. Building the image

106.1 Overview
TIBCO EBX® Container Edition image is Linux OS based for several architectures and includes the
following:

• Application Server Apache Tomcat® 10.1

• Java JDK 21

106.2 Requirement
The image can be built on a POSIX native system or using a compatible layer:

• Operating system : Linux, macOS, Windows (10 version 2004, Server 2022 or greater) using
WSL2,

• Processor type : AMD64 (Intel 64 bits), ARM64,

• Docker Engine installed and running,

• Access to Internet .

106.3 Building the image

Download installers
To build an EBX® image, one needs to download file
TIB_ebx_6.2.0_addon_6.2.X_container_edition.zip from TIBCO eDelivery.

Running the interactive installer
To start installer on Linux or macOS :

• Unzip the TIB_ebx_6.2.0_addon_6.2.X_container_edition.zip ,

Documentation > Administration Guide > EBX® Container Edition > Building the image

TIBCO EBX® Product Documentation 6.2.0 599

• Open a terminal in folder where file ebx-ce-installer.sh file is located,

• Execute command ./ebx-ce-installer.sh .

To start installer on Windows :

• Unzip the TIB_ebx_6.2.0_addon_6.2.X_container_edition.zip ,

• Open a Windows PowerShell in folder where file ebx-ce-installer.bat file is located,

• Execute command ebx-ce-installer.bat .

Follow the instructions and select the optional components to be added to the image. If Metadata is
selected, the interactive installer automatically adds the following addons: DAMA, DINT, DMDV,
DPRA and TESE.
The installer will then build the image and print a summary similar to:
**
The TIBCO EBX Container Edition image was successfully created with following names:
 ebx:latest
 ebx:6.2.0-metadata-dama-dint-dmdv-dpra-mame-tese-6.2.X
This image includes the following optional component(s):
 Metadata
 Digital Asset Manager (DAMA)
 Data Exchange (New) (DINT)
 Data Model and Data Visualization (DMDV)
 Insight (New) (DPRA)
 Match and Merge (MAME)
 Information Search (TESE)
 Data Exchange (ADIX, legacy)
 Insight (DQID, legacy)
 EBX GO (MODA, legacy)
To run this image with the default configuration and an embedded database, use command:
 docker run -p 8080:8080 -d ebx:latest
You can test EBX by visiting http://localhost:8080 in a browser.
To run this image with other configurations, for example with an external database, see
documentation.
**

If you select the Generate image only for Linux on current architecture? option, the install prompts
for additional architectures that you want to build EBX® Container Edition for. In that case, Docker
image tags will contain the architecture it was built for. For instance, ebx:6.2.0-metadata-dama-dint-
dmdv-dpra-mame-tese-6.2.X-amd64 .

Running the batch installer
To start batch installer on Linux or macOS :

• Unzip the TIB_ebx_6.2.0_addon_6.2.X_container_edition.zip .

• Open a terminal in the folder where the ebx-ce-installer-batch.sh file is located.

• Execute the following command: ./ebx-ce-installer-batch.sh [options] [metadata]
[<addon(s)>]

Batch script to build image with optionally Metadata and/or addons.

Options:
 -a add Metadata and all addons excluding legacy addons
 -al add Metadata and all addons including legacy addons
 -p <arch,...> architecture(s) to build on (i.e. \"amd64,arm64/v8,ppc64le\")
 possible values: amd64, arm64/v8, ppc64le, s390x
 using this parameter the default image tag is suffixed
 -t <tag_file> create a file named tag_file including the image tag built
 --help display this help and exit

 [metadata] install Metadata
 [<addon(s)>] install one or more addons (separated by a white space)
 for example: mame tese

To start the batch installer on Windows :

Documentation > Administration Guide > EBX® Container Edition > Building the image

TIBCO EBX® Product Documentation 6.2.0 600

• Unzip the TIB_ebx_6.2.0_addon_6.2.X_container_edition.zip .

• Open a Windows PowerShell in the folder where the ebx-ce-installer-batch.bat file is located.

• Execute the following command: ebx-ce-installer-batch.bat [options] [metadata]
[<addon(s)>]

The batch installer will then build the image and print a summary identical to the interactive installer.

Testing the image
The image can be run locally using command:
docker run -p 8080:8080 -d ebx:latest

In production , it is recommended to not use the latest tag. The installer always generates another
tag, depending on the selected optional components.
Using the previous example, the tag is 6.2.0-metadata-dama-dint-dmdv-dpra-mame-tese-6.2.X
because optional components where selected:

• Metadata,

• Digital Asset Manager (DAMA),

• Data Exchange (New) (DINT),

• Data Model and Data Visualization (DMDV),

• Insight (New) (DPRA),

• Match and Merge (MAME),

• Information Search (TESE).

The image can then be run using the following command:
docker run -p 8080:8080 -d ebx:6.2.0-metadata-dama-dint-dmdv-dpra-mame-tese-6.2.X

If no optional components are selected, the tag is 6.2.0 .
The image can be run using the following command:
docker run -p 8080:8080 -d ebx:6.2.0

Sharing the image
The steps to share an image depend on your company’s infrastructure.
In the following example, the image is pushed to a Docker private registry named myregistry :
docker tag ebx:6.2.0 myregistry:5000/ebx:6.2.0
docker push myregistry:5000/ebx:6.2.0

In the event that the image is built for several architectures, detailed instructions are provided in the
README-MULTIARCH.md file located in the files/ subdirectory.

Other architectures than AMD64
The installers are tested on AMD64 (Intel 64 bits). On these architectures the generated image’s
architecture will be linux/amd64 .
The installers may succeed when running on a system using another architecture. In that case the
generated image platform will be linux for that architecture type.

Documentation > Administration Guide > EBX® Container Edition > Building the image

TIBCO EBX® Product Documentation 6.2.0 601

For example, if the installer runs on a macOS M1 workstation, the generated image’s platform will
be linux/arm64 .
Attention
Generating an Linux image for AMD64 (Intel 64 bits) or ARM64 architecture is fully supported. The
other platforms are experimental and are not supported in production .

Documentation > Administration Guide > EBX® Container Edition > Building the image

TIBCO EBX® Product Documentation 6.2.0 602

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 603

CHAPTER 107
Running the image

This chapter contains the following topics:

1. Support Policy

2. Starting EBX®

3. Container access

4. Environment variables

5. Configuration files

6. Volumes

7. Linux user and group

8. Host configuration

9. Logs access

107.1 Support Policy

Docker
TIBCO EBX® Container Edition is tested with the Docker Engine version 20.10.

Kubernetes
Current EBX® Container Edition release was tested with a certified Kubernetes implementation
version 1.26 and Red Hat® OpenShift® 4.13.1.
We provides Helm chart samples for EBX® Container Edition that are available on GitHub. See
https://github.com/TIBCOSoftware/ebx-container-edition for more information.

107.2 Starting EBX®

First-launch assistant
To start EBX® with default configuration that includes an embedded H2 database, execute command:
docker run -p 8080:8080 -d ebx:6.2.0

Using a browser, you can connect to EBX® with URL http://localhost:8080 . This will display the
first-launch assistant that will help you configure EBX®.

https://github.com/TIBCOSoftware/ebx-container-edition
http://localhost:8080

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 604

For more information on the first launch assistant, see chapter Initialization and first-launch assistant
[p 575] .

Automatic initialization
To start EBX® with automatic initialisation on first startup and an embedded H2 database, execute
command:
docker run -d -p 8080:8080 \
 -e "EBX_FLA_DISABLED=true" \
 -e "EBX_INSTALL_ADMIN_PASSWORD=<password>" \
 ebx:6.2.0

The EBX® repository will be automatically created on first startup.
Using a browser, you can connect to EBX® with URL http://localhost:8080 . This will display the
EBX® login screen. The username for administrator is admin and the password is the one specified
in previous command.
Note
It’s possible to specify another username for the administrator. For more information see Automatic
repository installation on first launch [p 605] .

Supported browsers
For details a supported browsers see: Supported Web Browsers [p 512] .

107.3 Container access
The following command will start a bash shell inside the EBX® container using default user:
docker exec -it <container-id> bash

To connect as root, use command:
docker exec -it --user root <container-id> bash

107.4 Environment variables
This chapter describes the environment variables supported by EBX® Container Edition .
All are optional.

Disabling First-launch assistant
For security reasons, one might want to disable the first-launch assistant in all circumstances.
This is achieved by setting environment variable to EBX_FLA_DISABLED to true .

http://localhost:8080

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 605

Automatic repository installation on first launch
If the repository is not yet initialized and first-launch assistant is disabled, EBX® will automatically
trigger its installation if following mandatory variables are provided:

Name Default Description

EBX_INSTALL_ADMIN_LOGIN admin Sets the EBX® administrator login name.

This parameter is ignored if repository variable
EBX_FLA_DISABLED value is not true or if
repository is already initialized.

EBX_INSTALL_ADMIN_PASSWORD Sets the EBX® administrator login name.

This parameter is mandatory if
EBX_FLA_DISABLED value is true
and is ignored if repository variable
EBX_FLA_DISABLED value is not true or if
repository is already initialized.

Note
If mandatory variables are not provided, EBX® will display an error message.
Example
To automatically install repository launch EBX® using following command:
docker run -d -p 8080:8080 \
 -e "EBX_FLA_DISABLED=true" \
 -e "EBX_INSTALL_ADMIN_LOGIN=<login-name>" \
 -e "EBX_INSTALL_ADMIN_PASSWORD=<password>" \
 ebx:6.2.0

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 606

URL configuration
Some EBX® features require generating URLs. Specific configuration may be required to achieve
this, for example if EBX® is running behind a reverse proxy or on a Kubernetes cluster.

Name Default Description

EBX_IS_SECURED If incoming request is HTTPS,
"true" is assumed or else "false" is
assumed.

If "true", the protocol "HTTPS" is
always assumed. This value can
be useful if the container is behind
a reverse proxy, a firewall or an
ingress that takes care of HTTPS
encryption.

This will also set the EBX
authentication cookie to be secure
.

This means that a user using a
modern browser will not be able to
log in using HTTP.

If "false", the protocol "HTTP" is
assumed.

EBX_AUTHENTICATION_REDIRECT_TO_HTTPS Default is "false". If "true" and the incoming request
to the login form is HTTP, a
redirect occurs to to force HTTPS.

This property it should be set to
false if the container is behind
a reverse proxy, a firewall or an
ingress that takes care of HTTPS
encryption.

EBX_HOSTNAME The host name specified by the
incoming HTTP(S) request.

The EBX® server host name.

EBX_PORT The port number specified by the
incoming HTTP request.

The EBX® server HTTP port
number.

EBX_PORT_SECURED The port number specified by the
incoming HTTPS request.

The EBX® server HTTPS port
number.

Note

HTTPS support must be provided
by a reverse proxy or an ingress
that takes care of encryption.

EBX_ROOT_PATH By default, the context path is
empty.

If set, all EBX® urls will be
prefixed by this value. The value
must have a leading / and must not
have a trailing / except if value is
/ .

For example a valid value is /
mdm/sales .

Setting this variable is useful
when running more than one
instance of EBX with the same
host name.

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 607

Name Default Description

EBX_URL_DEFAULT This environment variable is used
when a background task needs to
calculate a URL to EBX.

It should be set to a full URL
without the path component
(EBX_ROOT_PATH applies for
the path component).

For example a valid value is:
https://host_name .

If EBX_URL_DEFAULT is not
specified and EBX_HOSTNAME
is specified, a default is calculated
with following assumptions:

- If EBX_IS_SECURED is
true , then HTTPS is assumed
with port number equal to
EBX_PORT_SECURED (443 is
the default).

- If EBX_IS_SECURED is
false or not set, then HTTP is
assumed with port number equal
to EBX_PORT (80 is the default).

EBX® Database connectivity
For information on supported databases see chapter Supported databases [p 515] .
By default, an embedded H2 database is used. Data for this H2 database is persisted at location /ebx/
data/h2 .
An external database may be configured using following variables:

Name TIBCO EBX® main
configuration file equivalent

Description

EBX_DB_FACTORY ebx.persistence.factory Specifies the type of database server.

EBX_DB_URL ebx.persistence.url The JDBC URL. Its format is: jdbc:<dialect>://
<database_host>:<database_port_number>/
<database_name> .

EBX_DB_USER ebx.persistence.user The database user id.

EBX_DB_PASSWORD ebx.persistence.password The database user password.

For more information on these variables see their TIBCO EBX® main configuration file equivalent
in chapter Configuring the EBX® repository [p 551] .
Note
The container includes JDBC drivers only for H2, PostgreSQL and Microsoft SQL Server. Using other
databases that are supported by EBX® requires adding the driver.
For instructions on how to add a driver, see Adding a new JDBC driver [p 615] .
Example

https://host_name

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 608

To start an instance of EBX® that connects to a PostgreSQL database, execute the following
command:
docker run -d -p 8080:8080 \
 -e "EBX_DB_FACTORY=postgresql" \
 -e "EBX_DB_URL=jdbc:postgresql://<database_host>:5432/<database_name>" \
 -e "EBX_DB_USER=<user_name>" \
 -e "EBX_DB_PASSWORD=<user_password>" \
 ebx:6.2.0

Metadata database connectivity
This setting is available only if the metadata management feature is activated on the image.
Metadata uses the SQLAlchemy toolkit to connect to its database. The SQLAlchemy toolkit supports
most common databases.
By default, an embedded SQLite database is used. Data for this SQLite database is persisted at this
location: /ebx/data/sqlite/ebx-metadata-classifier.db .
An external database may be configured using the following variables:

Name Description

EBX_METADATA_DB_URL The SQLAlchemy URL. Its format is: <dialect>://
<database_host>:<database_port_number>/<database_name> .

EBX_METADATA_DB_USER The database user id.

EBX_METADATA_DB_PASSWORD The database user password.

Example
To start an instance of Metadata that connects to a PostgreSQL database, execute the following
command:
docker run -d -p 8080:8080 \
 -e "METADATA_DB_URL=postgresql://<database_host>:5432/<database_name>" \
 -e "METADATA_DB_USER=<user_name>" \
 -e "METADATA_DB_PASSWORD=<user_password>" \
 ebx:6.2.0

Notes

• The Metadata database name (database_name) can be the same as Database connectivity [p

607] .

• For information about how to use a specific database API driver and how to escape special
characters in the connection URL, please refer to the SQLAlchemy’s documentation.

• The H2 database is not supported by SQLAlchemy.

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 609

Email connectivity
The EBX Mail service can be configured through the following environment variables :

Name TIBCO EBX® main configuration file
equivalent

Default Description

EBX_SMTP_HOST ebx.mail.smtp.host SMTP server host
name.

EBX_SMTP_PORT ebx.mail.smtp.port SMTP server port
number.

EBX_SMTP_CONNECTION_TIMEOUT ebx.mail.smtp.connectionTimeout 600000 SMTP socket
connection
timeout value in
milliseconds.

EBX_SMTP_TIMEOUT ebx.mail.smtp.timeout 600000 SMTP socket read
timeout value in
milliseconds.

EBX_SMTP_WRITE_TIMEOUT ebx.mail.smtp.writeTimeout 600000 SMTP socket
write timeout
value in
milliseconds.

EBX_SMTP_LOGIN ebx.mail.smtp.login SMTP server
login id.

EBX_SMTP_PASSWORD ebx.mail.smtp.password SMTP server
login password.

EBX_SMTP_SSL_ENABLED ebx.mail.smtp.ssl.activate true Enables SSL.
Value can be 'true'
or 'false'.

EBX_WORKFLOW_MAIL_SENDER ebx.manager.workflow.mail.sender The workflow
sender email.
If not set,
Workflows cannot
send notifications.

More information on the used properties can be found in chapter Activating and configuring SMTP
and emails [p 559] .

Memory configuration
Environment variables JAVA_MEMORY_PERCENT may be used to configure the percentage of
the container memory that is assigned to the JVM the runs EBX®. It must be an integer value between
0 and 100.
If not set, a default value is used at startup.
Note
This variable is for advanced usage. Setting it too low or too high may cause runtime issues.

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 610

Authentication for REST services
Basic authentication for REST services is not enabled by default.
To enable this feature, set environment variable EBX_REST_AUTHENTICATION_BASIC to true
.

Staging
The environment variable EBX_STAGING_ACTIVATED activates, if value is true , or deactivates,
if value is false , the staging feature.
By default, staging is activated.

107.5 Configuration files
Two Java property files are currently used to configure EBX®.
On startup EBX® reads property files in the following order:

• /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties

• /my_custom/conf/ebx-container.properties

File ebx-default.properties
The file /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties sets default EBX® configuration
properties for the container.
It should never be modified at runtime as this may prevent easily updating EBX® to a next version,
instead use /opt/ebx/conf/ebx-container.properties .

File ebx-container.properties
The file /opt/ebx/conf/ebx-container.properties is by default empty. Any property value specified
here will override the value set by ebx-default.properties .
This file is useful to change a property at runtime. To change a property at run time, create a new file,
for example /my_custom/conf/ebx-container.properties , containing the new property values and
mount de parent folder from the host to the container:
docker run -v /my-custom/conf:/opt/ebx/conf -p 8080:8080 -d ebx:6.2.0

For the list of properties supported by EBX® see chapter TIBCO EBX® main configuration file [p 549] .

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 611

107.6 Volumes
This image defines the following volumes:

Location Description

/ebx/data The EBX® root directory is located in this volume. It contains
EBX® indexes and, when H2 embedded database is used,
persisted data.

It is recommended to use a high performance volume, for
example an SSD.

Using a shared network volume, for example a NFS mount,
is not recommended and may cause performance and stability
issues.

/ebx/logs This volume is used for log files.

/ebx/temp This volume is used for temporary files.

Note
The volume /ebx/data should be mapped to a persistent volume even when an external database is
used. If not, EBX will have to rebuild its indexes on startup which may considerably increase boot
time.

107.7 Linux user and group
The container is started using user ebx (uid 1500). User ebx’s primary group is root (guid 0).
Note
Red Hat® OpenShift® may use another UID than 1500 when starting the container. For details see
Red Hat® OpenShift® documentation.

107.8 Host configuration
It may be necessary to configure the Host so that the EBX Container can reserve the resources required
by numerous memory-mapped files.
On a Linux OS:

• Command ulimit -n should return a value equal or greater than 512000 .

• Command sysctl vm.max_map_count should return a value equal or greater than 262144 .

107.9 Logs access
Logs are sent to the stdout and stderr output streams and can be viewed using the following command:
 docker logs <container-id>

Logs for both EBX® and Tomcat will be displayed.
Log files are also available under folder /ebx/logs :

• EBX® logs files are in folder /ebx/logs/ebx

Documentation > Administration Guide > EBX® Container Edition > Running the image

TIBCO EBX® Product Documentation 6.2.0 612

• Tomcat logs files are in folder /ebx/logs/tomcat .

Documentation > Administration Guide > EBX® Container Edition > Customizing the image

TIBCO EBX® Product Documentation 6.2.0 613

CHAPTER 108
Customizing the image

The EBX® Container Edition image can be used as a parent image to create a customized image.
This chapter contains the following topics:

1. User specified in Docker file

2. Setting default configuration

3. Adding a custom module

4. Adding a new locale

5. Adding a new JDBC driver

108.1 User specified in Docker file
The EBX® Container Edition image’s docker file specifies user ebx .
A Docker file extending the image may need to set current user to root and later switch back to ebx
as in following sample:
FROM ebx:6.2.0
USER root
Do something requiring being root...
USER ebx

108.2 Setting default configuration
Setting default EBX® configuration should not be based on /opt/ebx/conf/ebx-container.properties
as this file may be overridden at runtime.
Instead, proceed as following in the Docker file:

• Rename file /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties , for example to ebx-
default-original.properties .

• Create a new file /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties container new
property values. This file must define property ebx.file.previous set to the original property file
new name, for example ebx-default-original.properties .

For the list of properties supported by EBX® see chapter TIBCO EBX® main configuration file [p 549] .
Here is a sample Docker file that set the locale to "en-US"
FROM ebx:6.2.0
USER root

RUN mv /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties \

Documentation > Administration Guide > EBX® Container Edition > Customizing the image

TIBCO EBX® Product Documentation 6.2.0 614

 /opt/ebx/webapps/ebx/WEB-INF/ebx-default-original.properties

RUN echo "ebx.file.previous=ebx-default-original.properties" >> \
 /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties
RUN echo "ebx.locales.available=en-US" >> /opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties

USER ebx

108.3 Adding a custom module
One can extend EBX® by developing custom modules. An EBX® module is a standard Jakarta EE
web application, packaging various resources such as XML Schema documents, Java classes and
static resources.
For more information on EBX® module see chapter Packaging TIBCO EBX® modules [p 819] .
With EBX® Container Edition, it is recommended to deploy modules as "unpacked" (exploded)
WARs. This allows a faster startup and avoids unnecessarily increasing container size because Tomcat
will not need to unpack WAR files.
The recommended way to add a module to an image is to:

• Copy the WAR to folder /opt/ebx/webapps . As stated previously, exploded format is
recommended.

• Create an associated Tomcat context XML file named module_war_name.xml and copy it to
folder /opt/ebx/contexts.

• Optionally, copy shared JARs to folder /opt/ebx/lib .

The Tomcat context XML file should have the following content:
<?xml version="1.0" encoding="UTF-8"?>
<Context docBase="${ebx.container.base}/webapps/module_war_name"/>

Using variable ${ebx.container.base} is required for correct support of environment variable
EBX_ROOT_PATH .
For more information on Tomcat contexts see https://tomcat.apache.org/tomcat-10.1-doc/config/
context.html#Defining_a_context .
Here is a sample Docker file:
FROM ebx:6.2.0
USER root
COPY "./module_name.xml" "/opt/ebx/contexts"
COPY "./module_name" "/opt/ebx/webapps"
USER ebx

108.4 Adding a new locale
To add a new local you must have the jar file containing the language pack and add the locale to the
ebx configuration.
Here is a sample Docker file
FROM ebx:6.2.0
USER root

COPY "<path_to_lib>" "/opt/ebx/lib"

RUN mv "/opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties" \
 "/opt/ebx/webapps/ebx/WEB-INF/ebx-default-original.properties"

RUN echo "ebx.file.previous=ebx-default-original.properties" >> \
 "/opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties"
RUN echo "ebx.locales.available=es" >> "/opt/ebx/webapps/ebx/WEB-INF/ebx-default.properties"

https://tomcat.apache.org/tomcat-10.1-doc/config/context.html#Defining_a_context
https://tomcat.apache.org/tomcat-10.1-doc/config/context.html#Defining_a_context

Documentation > Administration Guide > EBX® Container Edition > Customizing the image

TIBCO EBX® Product Documentation 6.2.0 615

USER ebx

In this example, the lib is copied and the locale is set to "es" using the method described in the "setting
default configuration" [p 613] section

108.5 Adding a new JDBC driver
Adding a new JDBC driver is similar to adding a new library. You simply have to copy the jar file in
the "/opt/ebx/lib" folder with the correct permission. Here is an example with the Oracle JDBC driver :
FROM ebx:6.2.0
USER root

ADD \
 https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc11/21.8.0.0/ojdbc11-21.8.0.0.jar \
 "/opt/ebx/lib/"

RUN chmod +r "/opt/ebx/lib/ojdbc11-21.8.0.0.jar"

USER ebx

See Database drivers [p 523] for more information.

Documentation > Administration Guide > EBX® Container Edition > Customizing the image

TIBCO EBX® Product Documentation 6.2.0 616

Documentation > Administration Guide

TIBCO EBX® Product Documentation 6.2.0 617

Technical
administration

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 618

CHAPTER 109
Repository administration

This chapter contains the following topics:

1. Technical architecture

2. Auto-increments

3. Repository management

4. Monitoring management

5. Dataspaces

109.1 Technical architecture

Overview
The main principles of the TIBCO EBX® technical architecture are the following:

• A Java process (JVM) that runs EBX® is limited to a single EBX® repository. This repository
is physically persisted in a supported relational database instance [p 515], accessed through a
configured data source [p 551].

• A repository cannot be shared by multiple JVMs at any given time. However, a failover
architecture may be used. These aspects are detailed in the sections Single JVM per repository
[p 619] and Failover with hot-standby [p 619]. Furthermore, to achieve horizontal scalability, an
alternative is to deploy a distributed data delivery (D3) [p 694] environment.

• A single relational database instance can support multiple EBX® repositories (used by
distinct JVMs). It is then required that they specify distinct table prefixes using the property
ebx.persistence.table.prefix.

See also

Configuring the EBX® repository [p 551]

Supported databases [p 515]

Data source of the EBX® repository [p 527]

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 619

Rules for the database access and user privileges

Attention
In order to guarantee the integrity of persisted master data, it is strictly forbidden to perform direct
SQL writes to the database.

It is required for the database user specified by the configured data source [p 551] to have the 'create/
alter' privileges on tables, indexes and sequences. This allows for automatic repository installation
and upgrades [p 621].

See also

SQL access to history [p 454]

Accessing a replica table using SQL [p 461]

Data source of the EBX® repository [p 527]

Single JVM per repository
A repository cannot be shared by multiple JVMs. If such a situation was to occur, it would lead to
unpredictable behavior and potentially even corruption of data in the repository.
EBX® performs checks to enforce this restriction. Before the repository becomes available, the
repository must first acquire exclusive ownership of the relational database. After starting the
repository, the JVM periodically checks that it still holds ownership of the repository.
These checks are performed by repeatedly tagging a technical table in the relational database. The
shutdown command for the application server ensures that the tag on this technical table is removed.
If the server shuts down unexpectedly, the tag may be left in the table. If this occurs, the server must
wait several additional seconds upon restart to ensure that the table is not being updated by another
live process.

Attention
To avoid an additional wait period at the next start up, it is recommended to always properly shut
down the application server.

Failover with hot-standby
The exclusion mechanism described above is compatible with failover architectures, where only one
server is active at any given time in an active/passive cluster. To ensure that this is the case, the main
server must declare the property ebx.repository.ownership.mode=failovermain. The main server
claims ownership of the repository database, as in the case of a single server.
A backup server can still start up, but it will not have access to the repository. It must declare the
property ebx.repository.ownership.mode=failoverstandby to act as the backup server. It is not
recommended to share the EBX® root directory, defined by the ebx.repository.directory property,
with the active EBX® and standby EBX®. This means that, when the standby EBX® takes control,
it starts on an empty directory and indexes have to be rebuilt, slowing down the first access to table
data. To avoid this, you can replicate the EBX® repository folders. On Linux, running a timer on
the failover node that executes rsync every few minutes to copy EBX® repository folder from the

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 620

active to the failover node has been successfully tested. It's important to stop synchronization before
the failover node is started to prevent any concurrent modification of indexes.

Note

On Kubernetes, it is recommended to not use EBX® failover with hot standby and to rely
instead on Kubernetes itself, which can automatically replace a failing POD with a new
one that takes over the disks of the previous POD. Sample HELM charts are available
on GitHub.

Once started, the backup server is registered in the connection log. Its status can be retrieved using
the Java API or through an HTTP request, as described in the section Repository status information
and logs [p 620] below.
In order to activate the backup server and transfer exclusive ownership of the repository to it, a specific
request must be issued by an HTTP request, or using the Java API:

• Using HTTP, the request must include the parameter activationKeyFromStandbyMode,
and the value of this parameter must be equal to the value declared for the entry
ebx.repository.ownership.activationkey in the EBX® main configuration file. See
Configuring failover [p 566].
The format of the request URL must be:
http[s]://<host>[:<port>]/ebx?activationKeyFromStandbyMode={value}

• Using the Java API, call the method RepositoryStatus.wakeFromStandbyAPI.

If the main server is still up and accessing the database, the following applies: the backup server marks
the ownership table in the database, requesting a clean shutdown for the main server (yet allowing
any running transactions to finish). Only after the main server has returned ownership can the backup
server start using the repository.

Repository status information and logs
A log of all attempted Java process connections to the repository is available in the Administration
area under 'History and logs [p 451]' > 'Repository connection log'.
The status of the repository may be retrieved using the methods in the RepositoryStatusAPI API.

https://github.com/TIBCOSoftware/ebx-container-edition

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 621

It is also possible to get the repository status information using an HTTP request that includes the
parameter repositoryInformationRequest with one of following values:

state The state of the repository in terms of ownership
registration.

• D: Java process is stopped.

• O: Java process has exclusive ownership of the
database.

• S: Java process is started in failover standby mode, but
is not yet allowed to interact with the repository.

• N: Java process has tried to take ownership of the
database but failed because another process is holding
it.

heart_beat_count The number of times that the repository has made contact
since associating with the database.

info Detailed information for the end-user regarding the
repository's registration status. The format of this
information may be subject to modifications in the future
without explicit warning.

109.2 Auto-increments
Several technical tables can be accessed in the 'Administration' area of the EBX® user interface.
These tables are for internal use only and their content should not be edited manually, unless removing
obsolete or erroneous data. Among these technical tables are:

Auto-increments Lists all auto-increment fields in the repository.

109.3 Repository management

Installation and upgrades

Automatic installation and upgrades
By complying with the Rules for the database access and user privileges [p 619], the repository
installation or upgrade is done automatically.

Inter-database migration
EBX® provides a way to export the full content of a repository to another database. The export
includes all dataspaces, configuration datasets, and mapped tables. To operate this migration, the
following guidelines must be respected:

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 622

• The source repository must be shut down: no EBX® server process must be accessing it; not
strictly complying with this requirement can lead to a corrupted target repository;

• A new EBX® server process must be launched on the target repository, which must be empty.
In addition to the classic Java system property -Debx.properties, this process must also specify
ebx.migration.source.properties: the location of an EBX® properties file specifying the
source repository. (It is allowed to provide distinct table prefixes between target and source.)

• The migration process will then take place automatically. Please note, however, that this process
is not transactional: should it fail halfway, it will be necessary to delete the created objects in the
target database, before starting over.

• After the migration is complete, an exception will be thrown, to force restarting the EBX® server
process accessing the target repository.

Limitations:

• The names of the database objects representing the mapped tables (history, replication) may
have to be altered when migrated to the target database, to comply with the limitations of its
database engine (maximum length, reserved words, ...). Such alterations will be logged during
the migration process.

• As a consequence, the names specified for replicated tables in the data model will not be consistent
with the adapted name in the database. The first recompilation of this data model will force to
correct this inconsistency.

• Due to different representations of numeric types, values for xs:decimal types might get rounded
if the target database engine offers a lesser precision than the source. For example, a value of
10000000.1234567890123456789 in Oracle will get rounded to 10000000.123456789012345679 in
SQL Server.

Repository backup
A global backup of the EBX® repository must be delegated to the underlying RDBMS. The database
administrator must use the standard backup procedures of the underlying database.

Archives directory
Archives are stored in a sub-directory called archives within the ebx.repository.directory (see
configuration [p 549]). This directory is automatically created during the first export from EBX®.

Attention
As specified in the security best practices [p 814], access to this directory must be carefully protected.
Also, if manually creating this directory, make sure that the EBX® process has read-write access
to it. Furthermore, the administrator is responsible for cleaning this directory, as EBX® does not
maintain it.

Note

The transfer of files between two EBX® environments must be performed using tools
such as FTP or simple file copies by network sharing.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 623

Repository attributes
A repository has the following attributes:

repositoryId Uniquely identifies a repository within the scope of the
company. It is 48 bits (6 bytes) and is usually represented
as 12 hexadecimal digits. This information is used for
generating UUIDs (Universally Unique Identifiers) for
entities created in the repository, as well as transactions
logged in history tables or in the XML audit trail. This
identifier acts as the 'UUID node' part, as specified by RFC
4122.

repository label Provides a user-friendly label that identifies the purpose
and context of the repository. For example: "Production
environment".

store format Identifies the underlying persistence system, including the
current version of its structure.

Record deduplication
An issue with indices can occur where records in the same table are duplicated. EBX® provides a
built-in service to resolve this issue. See the steps to run the service below.

Attention
While the service executes, you cannot access the EBX® repository through the UI, REST, or SOAP
requests. Once completed, the service automatically shuts down the repository.

To remove duplicate records:

1. In the ebx.properties configuration file, set the
ebx.persistence.boot.checkRecordDuplicates property to true.

2. Start the repository and wait for the service to automatically shut down the repository.

3. Set the ebx.persistence.boot.checkRecordDuplicates property to false.

4. Start your repository.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 624

109.4 Monitoring management

Monitoring and cleanup of the relational database
Some entities accumulate during the execution of EBX®.

Attention
It is the administrator's responsibility to monitor and clean up these entities.

Database monitoring and organization
The persistence data source of the repository must be monitored through RDBMS monitoring.
The EBX® following tables allow data persistence in database:

• The table {ebx.persistence.table.prefix}G_DSP, in which each record represents a dataspace
or a snapshot (its name is EBXG_DSP if the property ebx.persistence.table.prefix is unset).

• The table ${ebx.persistence.table.prefix}G_DST holds dataset references.

• The table {ebx.persistence.table.prefix}G_BLK, where the data of EBX® tables are segmented
into blocks sized up to 256 EBX® records.

• The tables {ebx.persistence.table.prefix}G_DTR, {ebx.persistence.table.prefix}G_TRV and
{ebx.persistence.table.prefix}G_SHR, defining which blocks belong to a given EBX® table in
a given dataspace or snapshot.

• The tables {ebx.persistence.table.prefix}G_TLR and {ebx.persistence.table.prefix}G_SCH,
holds information about schemas and the tables they define.

Database statistics
The performance of requests executed by EBX® requires that the database has computed up-to-date
statistics on its tables. Since database engines regularly schedule statistics updates, this is usually not
an issue. Yet, it could be necessary to explicitly update the statistics in cases where tables are heavily
modified over a short period of time (e.g. by an import creating many records).

History tables: impact on UI
For history tables, some UI components use statistics to adapt their behavior in order to prevent users
from executing costly requests unwillingly.
For example, the combo box will not automatically search on user input if the table contains a large
volume of records. This behavior may also occur if the database's statistics are not up to date, because
a table may be considered as containing a large volume of records even if it is not actually the case.

Cleaning up dataspaces, snapshots, and history
A full cleanup of dataspaces, snapshots, and history from the repository involves several stages:

1. Closing unused dataspaces and snapshots to keep the cache to a minimal size.

2. Deleting dataspaces, snapshots, and history.

3. Purging the remaining entities associated with the deleted dataspaces, snapshots, and history from
the repository.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 625

Closing unused dataspaces and snapshots
In order to keep the cache and the repository to a reasonable size, it is recommended to close any
dataspaces and snapshots that are no longer required. This can be done in the following ways:

• Through the user interface, in the 'Dataspaces' area.

• From the 'Dataspaces / Snapshots' table under 'Dataspaces' in the 'Administration' area, using the
Actions menu in the workspace. The action can be used on a filtered view of the table.

• Through the Java API, using the method Repository.closeHomeAPI.

• Using the data service "close dataspace" and "close snapshot" operations. See Closing a dataspace
or snapshot [p 1043] for more information.

Once the dataspaces and snapshots have been closed, the data can be safely removed from the
repository.

Note

Closed dataspaces and snapshots can be reopened in the 'Administration' area, under
'Dataspaces'.

Deleting dataspaces, snapshots, and history
Dataspaces, associated history and snapshots can be permanently deleted from the repository.
However, the deletion of a dataspace does not necessarily imply the deletion of its history. The two
operations are independent and can be performed at different times.

Note

The deletion of a dataspace, a snapshot, or of the history associated with them is
recursive. The deletion operation will be performed on every descendant of the selected
dataspace.

After the deletion of a dataspace or snapshot, some entities will remain until a repository-wide purge
of obsolete data is performed.
In particular, the complete history of a dataspace remains visible until a repository-wide purge is
performed. Both steps, the deletion and the repository-wide purge, must be completed in order to
totally remove the data and history. The process has been divided into two steps for performance
issues. As the total clean-up of the repository can be time-intensive, this allows the purge execution
to be initiated during off-peak periods on the server.
The process of deleting the history of a dataspace takes into account all history transactions recorded
up until the deletion is submitted or until a date specified by the user. Any subsequent historized
operations will not be included when the purge operation is executed. To delete new transactions, the
history of the dataspace must be deleted again.

Note

It is not possible to set a deletion date in the future. The specified date will thus be ignored
and the current date will be used instead.

The deletion of dataspaces, snapshots, and history can be performed in a number of different ways:

• From the 'Dataspaces/Snapshots' table under 'Dataspaces' in the 'Administration' area, using the
Actions menu button in the workspace. The action can be used on a filtered view of the table.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 626

• Using the Java API, and more specifically the methods Repository.deleteHomeAPI and
RepositoryPurge.markHomeForHistoryPurgeAPI.

• At the end of the data service "close dataspace" operation, using the parameters
deleteDataOnClose and deleteHistoryOnClose, or at the end of a "merge dataspace" operation,
using the parameters deleteDataOnMerge and deleteHistoryOnMerge.

Purging remaining entities after a dataspace, snapshot, or history deletion
Once items have been deleted, a purge can be executed to clean up remaining data from all deletions
performed until that point. A purge can be initiated in the following ways:

• Through the user interface, by selecting in the 'Administration' area Actions > Execute purge
in the navigation pane.

• Using the Java API, specifically the method RepositoryPurge.purgeAllAPI.

• Using the task scheduler. See Task scheduler [p 677] for more information.

The purge process is logged in the directory ${ebx.repository.directory}/db.purge/.

Cleaning up other repository entities
It is the administrator's responsibility to monitor and regularly cleanup the following entities.

Purge
A purge can be executed to clean up the remaining data from all deletions, that is, deleted dataspaces,
snapshots and history performed up until that point. This includes the dataspaces and snapshots created
for the persistent validation reports that have become obsolete. A purge can be initiated by selecting
in the 'Administration' area Actions > Execute purge in the navigation pane.

Task scheduler execution reports
Task scheduler execution reports are persisted in the 'executions report' table, in the 'Task scheduler'
section of the 'Administration' area. Scheduled tasks constantly add to this table as they are executed.
Even when an execution terminates normally, the records are not automatically deleted. It is thus
recommended to delete old records regularly.

User interactions
User interactions are used by the EBX® component as a reliable means for an application to initiate
and get the result of a service execution. They are persisted in the ebx-interactions administration
section. It is recommended to regularly monitor the user interactions table, as well as to clean it, if
needed.

Workflow history
The workflow events are persisted in the workflow history table, in the 'Workflow' section of the
'Administration' area. Data workflows constantly add to this table as they are executed. Even when
an execution terminates normally, the records are not automatically deleted. It is thus recommended
to delete old records regularly.
The steps to clean history are the following

• Make sure the process executions are removed (it can be done by selecting in the 'Administration'
area of Workflows Actions > Terminate and clean this workflow or Actions > Clean from a
date in the navigation pane).

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 627

• Clean main processes in history (it can be done by selecting in the 'Administration' area of
Workflows history Actions > Clear from a date or Actions > Clean from selected workflows
in the navigation pane).

• Purge remaining entities in workflow history using 'standard EBX® purge'

See also the standard EBX® purge [p 625]

Monitoring and clean up of the file system

Attention
In order to guarantee the correct operation of EBX®, the disk usage and disk availability of the
following directories must be supervised by the administrator, as EBX® does not perform any clean
up, except for Lucene indexes:

• Lucene indexes: ${ebx.repository.directory}/indexes-(...)/
Lucene indexes: Indexes can require a lot of disk space; they are critical to the correct functioning
of EBX®. In nominal usage, they must not be deleted or modified directly. However, there are
cases where deleting these indexes might be needed:

• If the repository is recreated from scratch, whereas the directory
${ebx.repository.directory}/ is preserved; to ensure consistency of data, it is then
required to delete the root directory of the indexes.

• More generally, if the indexes have become inconsistent with the repository data (this could
happen in rare cases of bugs).

After deletion, the content of the indexes will be lazily recomputed per table, derived from the
content of the repository. The deletion must happen at the root folder of the indexes: if a single
directory is deleted at a lower level, the global structure of the index will become inconsistent.
This operation, however, has a cost, and should generally be avoided.

• XML audit trail: ${ebx.repository.directory}/History/

• Archives: ${ebx.repository.directory}/archives/

• Logs: ebx.logs.directory [p 555]

• Temporary directory: ebx.temp.directory [p 555]

Attention
For XML audit trail, if large transactions are executed with full update details activated (contrary
to the default setting), the required disk space can increase.

Attention
For pagination in the data services getChanges operation, a persistent store is used in the Temporary
directory. Large changes may require a large amount of disk space.

See also

XML audit Trail

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 6.2.0 628

Tuning the EBX® repository [p 566]

109.5 Dataspaces
Some dataspace administrative tasks can be performed from the 'Administration' area of EBX® by
selecting 'Dataspaces'.

Dataspaces/snapshots
This table lists all the existing dataspaces and snapshots in the repository, whether open or closed.
You can view and modify the information of dataspaces included in this table.

See also Dataspace information [p 104]

From this section, it is also possible to close open dataspaces, reopen previously closed dataspaces,
as well as delete and purge open or closed dataspaces, associated history, and snapshots.

See also Cleaning up dataspaces, snapshots, and history [p 624]

Dataspace permissions
This table lists all the existing permission rules defined on all the dataspaces in the repository. You
can view the permission rules and modify their information.

See also Dataspace permissions [p 105]

Repository history
The table 'Deleted dataspaces/snapshots' lists all the dataspaces that have already been purged from
the repository.
From this section, it is also possible to delete the history of purged dataspaces.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 629

CHAPTER 110
UI administration

TIBCO EBX® comes with a full user interface called Advanced perspective [p 630] that includes all
available features. The interface is fully customizable [p 634] (custom logo, colors, field size, default
values, etc.) and available to built-in administrators.
Access to the advanced perspective can be restricted in order to simplify the end-user experience,
through global permissions [p 629], giving the possibility to grant or restrict access to functional
categories. Administrators can create simplified perspectives called recommended perspectives [p

642] for end-users, containing only the features and menus they need for their daily tasks.
This chapter contains the following topics:

1. Global permissions

2. Advanced perspective

3. Recommended perspectives

4. Custom views

5. User session management

6. Accessibility mode

110.1 Global permissions
Global permission rules can be created in EBX®.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 630

The 'Display area' property allows restricting access to areas of the user interface. To define the access
rules, select 'Global permissions' in the 'Administration' area.

Profile Indicates on which profile the rule will be applied.

Restriction policy Indicates if the permissions defined here restrict the ones
defined for other profiles. See the Restriction policy concept
[p 489] for more information.

Dataspaces Defines permissions for the Dataspaces area.

Data Models Defines permissions for the Data Models area.

Workflow Models Defines permissions for the Workflow Models area.

Data Workflows Defines permissions for the Data Workflows area.

Data Services Defines permissions for the Data Services area.
Independently, it is also possible to:

• Defines the access permissions for the REST built-in
connector HTTP(S). This setting does not impact the
REST Toolkit applications.

• Defines the access permissions for the REST OpenAPI
services.

• Defines the access permissions for the SOAP connector
HTTP(S) and JMS.

• Defines the access permissions for the WSDL
connector HTTP(S).

Administration Defines permissions for the Administration area.

Note

Permissions can be defined by administrators and by the dataspace or dataset owner.

110.2 Advanced perspective
The advanced perspective and its parameterization are unique. It is the parent perspective from which
any new perspective [p 642] will inherit.
Children perspectives can be created from that main perspective in order to offer a customized,
simplified menu to the end-users. Thanks to dataset inheritance, these simplified perspectives will
receive their parameters from the advanced perspective (the root dataset). These parameters can then
be overridden on the newly created simplified perspectives. Simplified perspectives can be created
underneath an existing simplified perspective, thus inheriting from the parent's parameters.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 631

See also Inheritance [p 31]

The advanced perspective is available by default to all end-users but access can be restricted.
Note: Administrators can always access the advanced perspective even when it is deactivated.
It is possible to configure which perspective is applied by default when users log in. This 'default
perspective' is based on two criteria: 'recommended perspectives', defined by administrators and
'favorite perspectives', defined by users.

See also

Recommended perspectives [p 642]

Favorite perspectives [p 23]

Perspective creation
To create a perspective, open the 'Select an administration feature' drop-down menu and click on the
+ sign to create a child dataset.

See also Creating an inheriting child dataset [p 120]

User interface
Options are available in the Administration area for configuring the web interface, in the 'User
interface' section.

Attention
Be careful when configuring the URL policy (deprecated) [p 633]. If the web interface configuration
is invalid, it can lead to the unusability of EBX®. If this occurs, use the "rescue mode" by setting
frontEnd.rescueMode.enable=true in EBX® main configuration file [p 549], and accessing the
following URL in your browser as a built-in administrator user: http://.../ebx/?onwbpID=iebx-
manager-rescue.

Session configuration
These parameters configure the user session options:

User session default locale Default session locale

Session time-out (in seconds) Maximum duration of user inactivity before the session
is considered inactive and is terminated. A negative value
indicates that the session should never timeout.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 632

Interface configuration

Entry policy (deprecated)

Attention
This screen is deprecated. It is now recommended to configure those options in the ebx.properties
file.

See also Security configuration [p 565]

Describes the URL to access the application.

Login URL If the user is not authenticated, the session is forwarded to
this URL.

The entry policy defines an EBX® login page, replacing the default one.
If defined,

• it replaces an authentication URL that may have been defined using a specific user DirectoryAPI,

• it is used to build the permalinks in the user interface,

• if the URL is full, that is, starting with http:// or https://, it replaces the URL of the workflow
email configuration.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 633

URL policy (deprecated)
Describes the URL and proxy policy. Both dynamic (servlet) and static (resources) URLs can be
configured.

Attention
This configuration method is deprecated. Navigate to Administration > User interface > User
interface configuration > Advanced perspective > Interface configuration > URL Policy and revert
any existing settings. To update the URL computing configuration, you can edit the ebx.properties
file. See URLs computing [p 563] for more information.

HTTP servlet policy Header content of the servlet HTTP request:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

HTTPS servlet policy Header content of the servlet HTTPS request:

• if a field is not set, the default value is chosen (in an
environment configuration),

• if a default value is not set, the value in the initial
request is used.

HTTP external resources policy Header content of the external resources URL in HTTP:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

HTTPS external resources
policy

Header content of the external resources URL in HTTPS:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

Exit policy (deprecated)

Attention
This screen is deprecated. It is now recommended to configure those options in the ebx.properties
file.

See also Security configuration [p 565]

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 634

Describes how the application is exited.

Normal redirection Specifies the redirection URL used when exiting the session
normally.

Error redirection Specifies the redirection URL used when exiting the session
due to an error.
This feature is now deprecated and may be ignored by
EBX®.

Redirection restrictions Specifies the list of authorized domains and whether HTTPS
is mandatory for each domain.

Graphical interface configuration

Activation & Allowed profiles
The 'Activated' radio button allows to activate or deactivate the perspective. When deactivated, the
perspective will only be made available to the administrator.
The 'Allowed profiles' feature is used to give access to the perspective to a given profile. Several
profiles can be added to the list of authorized profiles by clicking on the + icon below the numbered list.
The available perspective properties are:

Activated Indicates if the perspective is visible to authorized users.

Allowed profiles The list of authorized user profiles for the perspective.

Allowed devices The list of authorized devices for the perspective.
If not specified, only "EBX® Web Application" can display
this perspective.

Default selection The menu item that is selected by default.
This property is not available for the advanced perspective.

Application locking
EBX® availability status:

Availability status This application can be closed to users during maintenance
(but still remain open to administrators). Takes effect
immediately.

Unavailability message Message displayed to users when access is restricted to
administrator profiles.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 635

Security policy
EBX® access security policy. These parameters only apply to new HTTP sessions.

IP access restriction Restricts access to designated IP addresses (see IP pattern
below).

IP restriction pattern Regular expression representation of IP addresses
authorized to access EBX®. For example, ((127\.0\.0\.1)
| (192\.168\.*\.*)) grants access to the local machine and
the network IP range 192.168.*.*.

Unique session control Specifies whether EBX® should control the uniqueness of
user sessions. When set to 'Yes', if a user does not log out
before closing the browser, it will not be possible for that
user to log in again until the previous session has timed out.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 636

Ergonomics and layout
EBX® ergonomics parameters:

Max table columns to display According to network and browser performance, adjusts the
maximum number of columns to display in a table. This
property is not used when a view is applied on a table.

Maximum auto-width for table
columns

Defines the maximum width to which a table column
can auto-size during table initialization. This is to prevent
columns from being too wide, which could occur for very
long values, such as URLs. Users will still be able to
manually resize columns beyond this value.

Max expanded elements for a
hierarchy

Defines the maximum number of elements that can be
expanded in a hierarchy when using the action "Expand all".
A value less than or equal to '0' disables this parameter.

Default table filter Defines the default table filter to display in the filters list in
tabular views. If modified, users must log out and log in for
the new value to take effect.

Display the message box
automatically

Defines the message severity threshold for displaying the
messages pop-up.

Forms: width of labels The width of labels in forms.

Forms: width of inputs The width of form input fields in forms.

Forms: height of text areas The height of text entry fields in forms.

Forms: aggregated lists The number of hidden candidate lines to be generated,
available to create new instances in the list.

Forms: width of HTML editor The width of HTML editors in forms.

Forms: height of HTML editor The height of HTML editors in forms.

Searchable list selection page
size

Maximum number of rows downloaded at each request of
the searchable list selection (used for selecting foreign keys,
enumerations, etc.).

Record form: rendering mode
for nodes

Specifies how to display non-terminal nodes in record
forms. If this property is modified, users are required to log
out and log in for the new value to take effect.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 637

Record form: display of
selection and association nodes
in creation mode

If enabled, the selection and association nodes will be
displayed in record creation forms.

Display density Defines the default display density mode for all users. If no
density has been selected by the user yet, this value will be
applied. Conversely, if the user already chose a density, their
choice will prevail.

Avatar displayed in the header This property defines the display mode of avatars in the
header. For example, it is possible to enable or disable the
use of avatars in the header by updating this property. If no
value is defined, the default value is 'Avatar only'. If it is a
relative path, prefix it with "../" to get back to the application
root URL.

Avatar displayed in the history This property defines the display mode of avatars in the
history. For example, it is possible to enable or disable the
use of avatars in the history by updating this property. If no
value is defined, the default value is 'Avatar only'. If it is a
relative path, prefix it with "../" to get back to the application
root URL.

Avatar displayed in the
workflow

This property defines the display mode of avatars in the
workflow. For example, it is possible to enable or disable
the use of avatars in the workflow by updating this property.
If no value is defined, the default value is 'Avatar only'. If
it is a relative path, prefix it with "../" to get back to the
application root URL.

Default option values
Defines default values for options in the user interface.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 638

Import/Export

CSV file encoding Specifies the default character encoding to use for CSV file
import and export.

CSV : field separator Specifies the default separator character to use for CSV file
import and export.

CSV : list separator Specifies the default list separator character to use for CSV
file import and export.

Import mode Specifies the default import mode.

Missing XML values as 'null' If 'Yes', when updating existing records, if a node is missing
or empty in the imported file, the value is considered as
'null'. If 'No', the value is not modified.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 639

Colors and themes
Customizes EBX® colors and themes.

Web site icon URL (favicon) Sets a custom favicon.

Logo URL (SVG) Specifies the SVG image used for compatible browsers.
Leave this field blank to use the PNG image, if specified.
The user interface will attempt to use the specified PNG
image if the browser is not SVG-compatible. If no PNG
image is specified, the GIF/JPG image will be used. The
logo must have a maximum height of 40px. If the height
exceeds 40px, it will be cropped, not scaled, to a height of
40px. The width of the logo will determine the position of
the buttons in the header. If it is a relative path, prefix it with
"../" to get back to the application root URL.

Logo URL (PNG) Specifies the PNG image used for compatible browsers.
Leave both this field and the SVG image URL field blank to
use the GIF/JPG image. The user interface will use the GIF/
JPG image if the browser is not PNG-compatible. The logo
must have a maximum height of 40px. If the height exceeds
40px, it will be cropped, not scaled, to a height of 40px. The
width of the logo will determine the position of the buttons
in the header. If it is a relative path, prefix it with "../" to get
back to the application root URL.

Logo URL (GIF/JPG) Specifies the GIF/JPG image to use when neither the PNG
nor SVG are defined. The recommended formats are GIF
and JPG. The logo must have a maximum height of 40px.
If the height exceeds 40px, it will be cropped, not scaled, to
a height of 40px. The width of the logo will determine the
position of the buttons in the header. If it is a relative path,
prefix it with "../" to get back to the application root URL.

Main Main user interface theme color, used for selections and
highlights.

Header Background color of the user interface header. By default,
set to the same value as the Main color.

Workflow badge Background and text/outline colors of new workflow task
counters.

Primary buttons Color of buttons selected by default. By default, set to the
same value as the Main color.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 640

Text of link style buttons Text color of some buttons having a link style (the text is
not dark or light, but colored). By default, set to the same
value as the main color.

Selected tab border Border color of the selected tab. By default, set to the same
value as the Main color.

Table history view: technical
data

Background color of technical data cells in the table history
view.

Table history view: creation Background color of cells with the state 'creation' in the
table history view.

Table history view: deletion Background color of cells with the state 'deletion' in the
table history view.

Table history view: update Background color of cells with the state 'update' in the table
history view.

Child perspective menu
An unlimited number of child perspectives can be created. Child perspectives inherit from the
parameters of the 'Advanced perspective'. Some of these parameters can be overridden as detailed
hereafter.

Activation & Allowed profiles
See Activation and Allowed profiles for the Advanced perspective [p 634] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

Perspective Menu
This view displays the perspective menu. It is a hierarchical table view.
From this view, a user can create, delete or reorder menu item records.

See also Hierarchical table view [p 31]

Section Menu Item This is a top level menu item. It contains other menu items.

Menu group This is a container for other menu items.

Action Menu Item This menu item displays a user service in the workspace
area.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 641

Menu item properties
When creating a record in the 'Perspective' Menu, the available perspective properties are:

Type The menu item type.

See also Menu item types [p 640]

Parent The parent of the menu item.
This property is not available for section menu items.

Label The menu item label.
The label is optional for action menu items. If not specified,
the label will be dynamically generated by EBX® when the
menu item is displayed.

Allowed devices The list of authorized devices for this item.
If not specified, all devices can display this menu item.
Currently only two devices are supported: "EBX® Web
Application" and "EBX® GO".

Icon The icon for the menu item.
Icon can be either "standard" (provided by EBX®) or an
image, specified by a URL, that can be hosted on any web
server.
Icons size should be 16x16 pixels.
This property is not available for section menu items.

Top separator Indicates that the menu item section has a top separator.
This property is only available for section menu items.

Action The user service to execute when the user clicks on the menu
item.

See also User interface services [p 965]

If an end-user is allowed to view the perspective but not to
execute the user service, an "access denied" message will
be displayed when the user clicks on the menu item.
This property is only available for action menu items.

Selection on close The menu item that will be selected when the service
terminates.
Built-in services use this property when the user clicks on
the 'Close' button.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 642

This property is only available for action menu items.

Ergonomics and layout
See Ergonomics and layout for the Advanced perspective [p 636] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

Colors and themes
See Colors and themes for the Advanced perspective [p 639] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

110.3 Recommended perspectives
It is possible for a perspective administrator to configure recommended perspectives dedicated to a
specific audience. These recommended perspectives are a way to choose which perspective is applied
by default when a user logs in, based on their role.
However, users always have the possibility to switch between the various perspectives that are
available to them and to set one as their favorite. See Perspective modes [p 23] for more information.
To configure recommended perspectives, go to User interface > Recommended perspectives >
Manage recommended perspectives.

Managing recommended perspectives
The main screen shows an ordered list of records associating a profile with a perspective. Note that
the order here is important since a user can match more than one record (see Resolution [p 642] for
more information).

• To add an entry, use the 'Create' action.

• To edit an entry, first select it in the list by clicking on it, then click on the 'Edit' action, or simply
double-click on it.

• To remove an entry, first select it in the list, then click on the 'Delete' action.

• To move an entry, first select it in the list, then use the actions in the toolbar to the right of the list.

Resolution
When a user logs in, the following algorithm determines which perspective is selected by default:
// 1) favorite perspective
IF the user has a favorite perspective
AND this perspective is active
AND the user is authorized for this perspective
 SELECT this perspective
 DONE

// 2) recommended perspective
FOR EACH association in the recommended perspectives list, in the declared order
 IF the user is in the declared profile

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 643

 AND the associated perspective is active
 AND the user is authorized for the associated perspective
 SELECT this perspective
 DONE

// 3) advanced perspective
IF the advanced perspective is active
AND the user is authorized for this perspective
 SELECT this perspective
 DONE

// 4) any perspective
SELECT any active perspective for which the user is authorized
DONE

110.4 Custom views
Users can create and manage custom views directly from the 'View' menu on tables. This
administration section is the central point to manage these custom views.

Views
This table contains all custom views defined on any table. Only a subset of fields is editable:

Documentation Localized labels and descriptions.

Owner Defines the user(s) owning and authoring this view
definition.

View group Indicates the menu group in which this view is displayed in
the 'View' menu.

Share with Defines the users allowed to select this view from their
'View' menu.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 644

Views permissions
This table allows to manage permissions relative to custom views, by data model and profile. The
following permissions can be configured (the default value is applied when no permission is set for
a given user):

Permission Description Default value

Recommend views Allows the user to manage recommended
views.

If the user is the dataset owner, the
default value is 'Yes', otherwise it is 'No'.

Manage views Defines the views the user can modify
and delete.

If the user is a built-in administrator,
the default value is 'Owned + shared',
otherwise it is 'Owned'.

Share views Defines the views for which the user can
edit the 'Share with' field.

If the user is a built-in administrator,
the default value is 'Owned + shared',
else if the user is the dataset owner, it is
'Owned', otherwise it is 'None'.

Publish views Allows the user to publish views to make
them available to all users using Web
components, workflow user tasks, or
data services.

If the user is a built-in administrator, the
default value is 'Yes', otherwise it is 'No'.

110.5 User session management
This tool lists all user sessions and allows terminating active sessions when necessary.
For example: it is possible to invalidate and terminate all currently open and active sessions
for maintenance purposes. The access to the user interface can be temporarily closed, with an
unavailability message being displayed, through Application locking [p 634]. After active sessions
are terminated, users will not be able to reconnect and will see the unavailability message. The
maintenance operation can then be performed.

110.6 Accessibility mode
An accessibility mode is available to help users with disabilities, when active it will tweak display to
ensure that, wherever possible, the user interface is accessible.
The option can be found on the login screen, and also in the user pane once they are connected.
The selected value is persisted per user and shared among all its work sessions.
Allows to make all the controls of the form operable through a keyboard interface and thus conform
to the WCAG Success Criterion 2.1.1.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 645

Overview of changes applied when accessibility mode is on:

Tabular view Add an "Access data" button to all row toolbars.

HTML editor Make the toolbar being always expanded.

Forms Expand/collapse buttons can now be focused.

Supported screen reader
The Jaws (version 2022) is the only screen reader supported by TIBCO EBX®. Any other technology
may have some unexpected behavior.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 6.2.0 646

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 647

CHAPTER 111
UI – Workflow launcher

This chapter contains the following topics:

1. Introduction

2. Workflow launcher in data section

3. Creating and setting a launcher

4. Activating workflow launcher

5. Launching a workflow

6. Adding a workflow launcher to the custom toolbar at table top

7. Access a launcher after workflow model modification

111.1 Introduction
A Workflow Launcher is a user service for launching workflows in TIBCO EBX® directly from
the data section without passing by the data workflow's inbox. This feature does not create workflow
publications but launches existing ones. It offers several advantages, including the ability to launch
workflow publication directly from the data section (table view, hierarchy view or record form view).
In this way, the user experience is improved by avoiding to the user shifting his attention back and
forth between the data section and the data workflow section. Hence, the user can launch a workflow
while still focusing on his main task.
The second advantage is that it allows to launch the same workflow publication from any data
selection. Thanks to the dynamic mapping of the workflow data context [p 34] with the current data
selection. The dynamic mapping offers the possibility to initialize the data context inputs at launch
time. Hence, in order to launch the same workflow from n different data selections, it is not longer
necessary to duplicate n times the same workflow model with different data selections or to provide
an initial user service to configure the data to select.
The last solution is a programmatic solution which would solve the previously cited problems,
however it is not the ideal solution because it does not fulfill the commitment zero line of code.

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 648

Understanding this feature requires familiarization with the following concepts:

Concept Description/Link

Workflow model See documentation [p 33]

Data context See documentation [p 34]

Workflow publication See documentation [p 34]

Publication name A unique identifier of a workflow publication

Data Workflow See documentation [p 34]

Data section Is the data user interface [p 117] which displays the datasets and tables in EBX®. it is
accessible from the main header.

Workflow launchers dataset It contains two tables Launchers and Activations. With this dataset the user can
configure the launchers of workflow publications and activate them for a particular
user(s) and table(s). It is available in the Administration area in a section called
workflow management.

Launcher An entity which is used by the service workflow launcher to identify the workflow
publication to launch and how to initialize its data context.

Launchers A table in the workflow launchers dataset, each record is a Launcher type. In order
to be able to launch a workflow publication from a data section, a launcher which
points to a workflow publication should be added in this table.

Activation An entity which hides or shows the launcher of a workflow publication for a given
user profile(s) and for a particular table(s) from the data section.

Activations A table in the workflow launchers dataset, each record is an Activation type. In
order to make a workflow available on the toolbar of a particular table and for a
particular user, a record with the corresponding launcher should be created in this
table.

Dynamic mapping of data context Is the process of initialization of data context input variables when launching a
workflow publication. Before, the values of the data context were static defined at
modeling phase or set dynamically with Java coding, but now it is possible to set
dynamically the values of the data contexts, i.e. at launch time, with zero line of
code.

Reserved variables for data context A set of reserved variables. These variables define which data selection should
be mapped with a data context variable. The possible values are: ${dataspace},
${dataset}, ${xpath(table)} and ${xpath(record)}. For example, if the value
${xpath(table)} is used for a data context variable, this means that this variable will
be mapped with the current adaptation table reference, at launch time.

111.2 Workflow launcher in data section
As previously stated, workflow launchers are now available directly on the toolbar of tables, table
rows, records and hierarchies. There are a number of ways to display a workflow launcher on the

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 649

toolbar of a table in data section. The display depends on the type of the toolbar (default toolbar or
custom toolbar in the DMA) and whether or not smart filtering [p 83] is applied. In the case of default
toolbar, the action menu displays all the workflow launchers in a separate submenu called Workflows
(see the screenshot below).

In the case of a custom toolbar,it is possible to define an action button (see the screenshot below)
or action menu item for a particular workflow launcher. And finally, if the smart filtering policy is

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 650

activated, then all the workflow launchers that are displayed using an action button or action menu
item will not appear in the Action menu.

In order to display a workflow launcher on a toolbar, first, a launcher must be created and configured
(see creating and setting workflow launcher [p 651] section), then, an activation should be created
for this launcher (see activating workflow launcher [p 653] section). Note that, if the current user has
no rights to launch a workflow publication [p 209] then the workflow launcher will not be available
on the toolbar. Also, if the workflow publication is deleted or if there are any errors or warnings in
the configuration or activation of the launcher, then the corresponding workflow launcher will not be
available on the toolbar.
The title and tooltip of the button that will be displayed on the toolbar, are computed in the
following order of priority: the custom documentation of the launcher activation is used, otherwise
the documentation of the launcher is used. If description is left empty, then the following description
is used "This user service will launch a data workflow.".

Note

Particular attention should be paid for the workflow launchers which are available on
the record form and table rows. Only the launchers which requires record selection
are displayed on the toolbar of a record form and table rows. A workflow launcher which
requires record selection is the one for which one of the data context variable is mapped
with the reserved variable ${xpath(record)} in the configuration of its launcher.

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 651

111.3 Creating and setting a launcher
A launcher [p 651] is the entity which is used by the service Workflow Launcher to identify the
workflow publication to launch and how to initialize its Data context. In order to create a launcher
for a particular workflow publication, first navigate to the administration area, then the workflow
management section, select the workflow launchers dataset, select the launchers table, and then add
a new record (see below form).

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 652

The second step, is to setup the following fields of the record:

Field name Description

Launcher name A unique identifier. It is used to select a launcher in the activation phase [p 653].

Workflow publication name Defines the workflow publication that will be launched when the user service
"workflow launcher" is executed. The workflow model should be first defined and
published to be available in the list.

Data context variables This field contains the list of input variables which were defined in the data context
configuration [p 205] phase of a workflow model. Each line is composed of a label, a
value, and a toggle button to switch between default and overwritten value (see the
screenshot about the data context [p 652] in the launcher form). The label is the name
of the variable set by the user in the data context of the workflow model.

By default, the value of each variable is the default one set in the data context. If
the default value field is left empty in the data context, then the value of the variable
is set to undefined. If the toggle button is set on overwritten value mode, then a
wizard is made available on the right of the input field which allows to select a
reserved variable.

When overwriting the value of a data context variable, two options are possibles:
the override value may be a constant or a reserved variable. If a constant is used,
then the value of the data context variable will not depend on the entity selection
at launch time. However, if a reserved variable is used, such as ${dataspace}, the
value of the corresponding variable will be mapped to the current entity selection,
for example the data context variable which is assigned to ${dataspace} will be
initialized with the current dataspace at launch time.

Note

If there are no input variables in the data context of the workflow
model, then this field should be hidden. If the workflow
publication name field changes then this input is updated
automatically and displays a new list of data context.

Documentation A documentation is composed of a label and a description. The default
value of the label is the publication name which is inherited from the field
"workflow publication name" and the default value of the description is empty.
If the "Publication name" field changes then the documentation will update
automatically." The label and description can be overridden if needed thanks
to the edit button on the right of the documentation widget." The value of the
documentation will be inherited by the activation. Note that the documentation
defined in the activation has a higher priority over the one defined in the launcher.

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 653

At the bottom of a launcher record, a table of all activations of the current launcher is displayed (see
the section Launcher activations in the screenshot below).

111.4 Activating workflow launcher
An activation is the entity which controls the availability of a workflow launcher on a table or record
form. In order to display a workflow launcher in a toolbar of a particular table, first create a launcher
[p 651], then navigate to the administration area, select the workflow management section, select the

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 654

workflow launchers dataset, select the activations table, and then add a new record. The second step,
is to setup the following fields of the record:

Field name Description

Launcher A unique identifier of a launcher which is associated to a publication name of the
target workflow publication [p 652]. This field allows to select the launcher which
will be displayed in the data section.

Data model The schema reference of a published Data Model. Only schemas that are published
and used in Datasets are available.

Tables The identifier of a table which will display the workflow launcher. It is possible to
select one or many tables. This selector displays all tables which are contained in the
field Data Model [p 654] .

Profiles List of profiles which are allowed to see and launch the workflow launcher in the
previously selected tables.

Confirmation This field allows displaying or not a dialog box to confirm launching of a data
workflow (see screenshot about launch confirmation message [p 656]. By default this
feature is deactivated, in order to display the dialog box, the value "Enabled" should
be checked (see screenshot below).

Documentation A documentation is composed of a label and a description. The default value
of the label and description are inherited from the documentation field of the
launcher. This field is used to display the title of the button of the user service in
the toolbar. The description is displayed when the user hovers over that button. The
documentation of the activation has a higher priority over the one of the launcher.
Note that, if the description of the documentation is left empty then the following
one is displayed "This user service will launch a data workflow". In the case of the
custom toolbar, the value of this field is also used for action button and action
menu item if the documentation field of the action button or action menu item is
left empty.

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 655

111.5 Launching a workflow
Once a launcher is created [p 651] and activated [p 653] the corresponding workflow launcher
becomes available on the toolbar's action menu. To launch the workflow click on the button of the
workflow launchers(see screenshot about default display of a workflow launcher [p 649]).

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 656

If the option Confirmation [p 654] is enabled, then a dialog box displays to ask the user the
confirmation before launching the selected data workflow (see below screenshot about launch
confirmation message [p 656]).

Otherwise, the dialog box does not display and different outcomes are possible:

• If the option automatically open the first step [p 204] is activated and the user has the rights to
execute the first work item [p 191] of the workflow, then the workflow launches and the first work
item displays directly in the workspace of the Data section. While displaying the work item in
the workspace, the origin data selection (source table) still displayed on the breadcrumb which
allows to the user to maintain an overall contextual awareness (see screenshot about displaying
a work item on the data section [p 657]).

• If the option automatically open the first step [p 204] is deactivated and the user has the rights to
launch the workflow [p 209], then the workflow is launched and added to the data workflow inbox [p

217]. An information message informs the user that the workflow has been launched successfully
and that it is necessary to go to the inbox of the data workflow section [p 217] to display and
execute the first work item.

• If the workflow requires record selection (see note in the section workflow launcher in data area
[p 650]), the workflow is launched and displayed if and only if a record is selected otherwise an
error message is displayed informing the user that a record should be selected. A record can be
selected manually from a table view or automatically when displaying a record form.

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 657

• If more than one record are selected, then a warning message notifies that only one record should
be selected.

111.6 Adding a workflow launcher to the custom toolbar
at table top

The workflow launchers can be made available not only on default toolbar but also on custom toolbar
[p 80]. A workflow launcher can be added on a custom toolbar as an action button [p 81] or as an action
menu item [p 84] in a custom menu group [p 83]. Adding an action button or an action menu item to launch
a workflow on a custom toolbar follows a similar procedure as for common user services: first, set the
target field to current context otherwise the user service workflow launcher will not be available,
then select the user service workflow launcher. When the service workflow launcher is selected, a

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 658

new field Launcher, exclusive for workflow launcher user service, appears below the service input
field (see below screenshot about adding a workflow launcher on custom toolbar [p 658]).

The field Launcher displays the list of launchers that have already been created in the table
"Activation/workflow management/workflow launcher/Launchers" (see section about creating and
configuring launchers [p 651]) . Therefore, before adding a workflow launcher in a custom toolbar
the launcher should be created and configured for this workflow launcher.
As for default toolbar, in order to show the workflow launcher on a custom toolbar its launcher should
be activated in "Activation/workflow management/workflow launcher/activations". A quick link to
access the activations table of the launchers is displayed on the right of the field Launcher (see the
below screenshot about the service "workflow launcher" on custom toolbar [p 658])

The field Label and description displays the label and description inherited from the launcher (see
screenshot about the label of the "workflow launcher" service in custom toolbar configuration form
[p 659]) , then if the launcher field changes, the label and description should update automatically.
This field can be overridden to customize the label and description of the action button on the toolbar.
The label and description that will be displayed on the toolbar, are computed in the following order of
priority: the custom value of the field Label and description of the action button is used, if this field is
left empty or contains the default label of the launcher, then the label and description of the launcher

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 659

activation are displayed. If this last one is left empty, then the following description is used "This user
service will launch a data workflow.".

Note

The label and description which are displayed on the toolbar in the data section and the
label of the action button in the toolbar tree in the DMA could be different. This is the
case when the field "Label and description" of the "action button" is left empty (neither
default nor custom label is defined). The label of the "action button" in the toolbar tree in
the DMA is inherited from the label of the launcher, however, the label and description
on the toolbar in the data section are set to the label and description of the activation
of the launcher.

Adding a workflow launcher to a toolbar in other locations
The workflow launcher service is only available on the toolbar that displays in the following locations:
table view top, table rows, record form view top, or hierarchy view top. Until now, this service is not
available on the toolbar that displays on top of the association table or in the association table rows.

111.7 Access a launcher after workflow model
modification

After creating a launcher [p 651] which points to a workflow publication [p 652], the workflow model
of this publication may be changed and republished. For instance, the data context of the workflow
model may be changed: one or more variable data context can be added; one or more variable data
context can be removed; the name of a variable can be changed. In this particular case, the launchers
which points to this workflow publication should be reviewed and validated (saved) by the user
because the data context used by these launchers is no more valid and it should be updated to match
the one of the up-to-date workflow publication.
After republishing a workflow model, the user is notified if any of the workflow launcher points to
the current workflow publication and if it should be reviewed. For that purpose, after publishing a
workflow model, a preview button is displays allowing a quick access to the launchers in question

Documentation > Administration Guide > Technical administration > UI – Workflow launcher

TIBCO EBX® Product Documentation 6.2.0 660

(see below screenshot). Note that if the user has no rights to access the workflow launchers list, then
the names of those launchers are displayed.

When the user access to one of these launchers, via the preview button in the workflow model section
or via the Administration section, the persisted data context is replaced with the up-to-date data context
of the workflow publication, however the new data context is not yet persisted for the current launcher.
In order to update the data context of the launcher, the user should first review the values and then
save to accept the new changes (see screenshot about accessing a launcher after modification of the
data context of the corresponding workflow publication [p 660]).

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 661

CHAPTER 112
Users and roles directory

This chapter contains the following topics:

1. Overview

2. Concepts

3. Default directory

4. Custom directory

112.1 Overview
TIBCO EBX® uses a directory for user authentication and user role definition.
A default directory is provided and integrated into the EBX® repository; the 'Directory' administration
section allows defining which users can connect and what their roles are.
It is also possible to integrate another type of enterprise directory.

See also

Configuring the user and roles directory [p 552]

Custom directory [p 664]

112.2 Concepts
In EBX®, a user can be a member of several roles, and a role can be shared by several users. Moreover,
a role can be included into another role. The generic term profile is used to describe either a user or
a role.

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 662

In addition to the directory-defined roles, EBX® provides the following built-in roles:

Role Definition

Profile.ADMINISTRATOR Built-in Administrator role. Allows performing general
administrative tasks.

Profile.READ_ONLY Built-in read-only role. A user associated with the read-only
role can only view the EBX® repository, and has no right to
perform modifications in the repository.

Profile.OWNER Dynamic built-in owner role. This role is checked dynamically
depending on the current element. It is only activated if the user
belongs to the profile defined as owner of the current element.

Profile.EVERYONE All users belong to this role.

Information related to profiles is primarily defined in the directory.

Attention
Associations between users and the built-in roles OWNER and EVERYONE are managed
automatically by EBX®, and thus must not be modified through the directory.

User permissions are managed separately from the directory. See Permissions [p 475].

See also

profile [p 27]

role [p 28]

user [p 27]

administrator [p 28]

user and roles directory [p 28]

Policy
These properties configure the policies of the user and roles directory, for example, whether or not
users can edit their own profiles.

Users
This table lists all the users defined in the internal directory. New users can be added from there.

Roles
This table lists all the roles defined in the internal directory. New roles can be created in this table.

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 663

112.3 Default directory

Directory content
The default directory is represented by the dataset 'Directory', in the 'Administration' area.
This dataset contains tables for users and roles, as well as users' roles table, roles' inclusions table
and salutations table.

Note

If a role inclusion cycle is detected, the role inclusion is ignored at the permission
resolution. Refresh and check the directory validation report for cycle detection.

Note

Users' roles, roles' inclusions and salutations tables are hidden by default [p 908].

Depending on the policies defined, users can modify information related to their own accounts,
regardless of the permissions defined on the directory dataset.

Note

It is not possible to delete or duplicate the default directory.

Password recovery procedure
In the default directory, passwords are encrypted (by default with a SHA256-like algorithm), and
stored in this state. Consequently, it is impossible to retrieve lost passwords. A new password must
be generated and sent to the user.
There are two options for this procedure:

1. A notification email is sent to the administrator, the administrator manually changes the password
and sends the new password to the user.

2. A procedure automatically generates a new password and sends it to the user.

By default, the first option is used. To activate the second option, specify the property
ebx.password.remind.auto=true in the TIBCO EBX® main configuration file [p 549].

Note

For security reasons, the password recovery procedure is not available for administrator
profiles. If required, use the administrator recovery procedure instead.

Administrator recovery procedure
If all the 'login/password' credentials of the administrators are lost, a special procedure must be
followed. A specific directory class redefines an administrator user with login 'admin' and password
'admin'.
To activate this procedure:

• Specify the following property in the TIBCO EBX® main configuration file [p 549]:
ebx.directory.factory=
com.orchestranetworks.service.directory.DirectoryDefaultRecoverFactory

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 664

• Start EBX® and wait until the procedure completes.

• Reset the 'ebx.directory.factory' property.

• Restart EBX® and connect using the 'admin' account.

Note

While the 'ebx.directory.factory' property is set for the recovery procedure,
authentication of users will be denied.

112.4 Custom directory
As an alternative to the default directory, it is possible to integrate a specific company directory.
For example, an LDAP instance, a relational database or a specific directory model instantiated into
EBX®. The default login page can also be replaced by a specific company page.

See also

DirectoryFactoryAPI

Directory.getUserAuthenticationURIAPI

Built-in LDAP directory
EBX® built-in support for LDAP (Lightweight Directory Access Protocol) was designed as a custom
directory implementation, which allows you to integrate an existing LDAP directory with EBX®. This
ensures a streamlined and efficient directory management experience through secure and consistent
access control that is tailored to your organization's LDAP infrastructure needs.

Activation
Activate LDAP using the built-in LDAP directory factory as the directory factory in the EBX®main
configuration file (see Configuring the user and roles directory [p 552]).

Configuration
Configure LDAP in the EBX® main configuration file (see Built-in LDAP directory [p 553]).
The following four types of configuration parameters are available:

• Connection parameters are needed to establish and handle a connection to the LDAP server. They
are also used to tune the connection for optimal performance and security.
For LDAPS uses, a root certificate must be imported if it is not available in the JDK TrustStore
(see Installing a Root Certificate in the TrustStore).

• Mapping parameters are used to map certain built-in roles and users to LDAP directory attributes.

• Display of users and roles using expressions derived from LDAP attributes.

• Search request templates generate LDAP requests, allowing precise and efficient information
retrieval from the LDAP directory.

Search request templates
An LDAP search query consists of the following three key elements:

• Base DN (Distinguished Name): sets the initial point in the directory tree.

• Search filter: defines attributes and values to locate.

https://docs.oracle.com/cd/E19906-01/820-4916/geygn/index.html

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 665

• Search scope: dictates the search depth within the directory tree (from the base to several levels
deep).

It is important to note that queries are executed in a paginated manner to enhance efficiency and
manageability. Additionaly, each request template can be backed by a cache to optimize performance.
Use the available parameters to fine-tune page retrieval and cache implementation. Even if for a short
duration or with a small size, caching is recommended, as is can significantly improve overall system
performance by reducing redundant data fetching.
Search templates support placeholders that adapt to each specific type of query. There are four
mandatory templates that:

• Find an individual user.

• Identify the groups a user belongs to.

• Find users within a specific group.

• Retrieve all groups.

Additionally, there is an optional template to find all users. While not required, it is crucial for broader
user accessibility. If this all-users query is not configured, selections in the permission fields are
exclusively limited to groups, excluding the possibility of selecting individual users.

See also Built-in LDAP directory [p 553]

Limitations
It is important to note that only one LDAP server can be configured at a time. This means simultaneous
connections to multiple LDAP servers are not supported within the same instance.
There is no support for role inclusion or the addition of specific roles on the EBX® side. Consequently,
the structure and nested relationships of groups within LDAP are not considered in the calculation
of permissions. This limitation highlights a straightforward, group-based access control approach
without the complexities of LDAP's hierarchical group dynamics.
Notice that only simple and anonymous authentication methods are allowed. This means that more
complex or secure authentication protocols used within LDAP is not supported.
Roles and usernames display is not locale dependent and is limited to one format introduced by display
expressions in the configuration file. Locale is only considered when the display expressions can not
be applied.

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 6.2.0 666

Documentation > Administration Guide > Technical administration > Data model administration

TIBCO EBX® Product Documentation 6.2.0 667

CHAPTER 113
Data model administration

This chapter contains the following topics:

1. Administrating publications and versions

2. Migration of previous data models in the repository

3. Schema evolutions

113.1 Administrating publications and versions
Technical data related to data model publications and versions can be accessed in the Administration
section by an administrator.
Data Modeling contains the following two tables:

• Publications. Stores the publications available in the repository.

• Versions. Stores the versions of the data models available in the repository.

These tables are read-only but it is however possible to delete manually a publication or a version.
Important: If a publication or a version is deleted, then the content of associated datasets will become
unavailable. So this technical data must be deleted with caution.
It is possible to spread this technical data to other TIBCO EBX® repositories exporting an archive
from an EBX® repository and importing it to another one. It may be useful for propagating the
evolutions of data models to other repositories.

113.2 Migration of previous data models in the repository
In versions before 5.2.0, published data models not depending on a module were generated in the
file system directory ${ebx.repository.directory}/schemas/, with the name of the data model
(product.xsd for example if the data model is named Product). Since the 5.2.0 version, this kind
of data model is now fully managed within EBX® through Publications. That is, republishing an
existing data model migrates it as a Publication and redirects linked datasets to the new embedded data
model. The previous XML Schema Document located in ${ebx.repository.directory}/schemas/ is
renamed and suffixed with toDelete, meaning that the document is no longer used and can be safely
deleted.

Documentation > Administration Guide > Technical administration > Data model administration

TIBCO EBX® Product Documentation 6.2.0 668

113.3 Schema evolutions
It is crucial to evaluate the impact of data model changes on the administration side. The following
points are to be considered:

Impacts on data persistence
Administration tasks can be related to the database cleanup after a modification of the models. The
following link describes how the evolutions of data models are managed at the persistence level:
Purging master tables in the database [p 671].

Impacts on side features
Some components rely heavily on the data models and can be impacted by their evolutions. Some
examples are: the user interface, the WSDL documents, existing archives, etc.
The 'Administration' section offers the possibility to manage some of these components (such as the
views), whereas other components fall out of the administrator's scope, such as archives, WSDL files,
etc.

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 6.2.0 669

CHAPTER 114
Database mapping administration

This chapter contains the following topics:

1. Overview

2. Renaming columns in the database

3. Purging columns in the database

4. Renaming master tables in the database

5. Renaming auxiliary tables in the database

6. Purging master tables in the database

114.1 Overview
Information and services relative to database mapping can be found in the Administration area.

See also

Mapped modes [p 449]

DatabaseMappingAPI

114.2 Renaming columns in the database
This feature is available on the 'Columns' table records, under the 'Actions' menu. It allows renaming
a column in the database.
The administrator can specify the name of each column of the data model in the database for mapped
modes.
Once the service is selected on a record, a summary screen displays information regarding the selected
column and the administrator is prompted to enter a new name for the column in the database.

Note

It is required that the new identifier begins with a letter.
Besides, the new name must be a valid column identifier, which depends on the naming rules
of the underlying RDBMS.

See also DatabaseMappingAPI

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 6.2.0 670

114.3 Purging columns in the database
This feature is available on the 'Columns' table records, under the 'Actions' menu. It allows purging
columns in mapped structures.
A column can be purged if it has been disabled for mapped modes.
A column is disabled for mapped modes when:

• the corresponding field has been removed from the data model, or

• the corresponding field has been changed in the data model, in a way that is not compatible (for
example: its data type has been modified), or

• the defined mapped modes have been disabled locally on the corresponding fields, using the
elements osd:history and osd:replication.

See also

Disabling history on a specific field or group [p 452]

Disabling replication on a specific field or group [p 461]

Note that this behavior will change for aggregated lists:

• when deactivating a complex aggregated list, its inner fields will still be in the LIVING state,
whereas the list node is disabled. As lists are considered as auxiliary tables in the mapping system,
this information can be checked in the 'Tables' table,

• on the other hand, when the deactivation is just for inner nodes of the list, then the list will remain
LIVING, while its children will be DISABLED IN MODEL.

A column can be purged only if its own state is DISABLED IN MODEL, or if it is an inner field of a
DISABLED IN MODEL list.

114.4 Renaming master tables in the database
This feature allows renaming master tables for history tables in the database. It is not available for
replicated tables since their names are specified in the data model.
Both features are available on the 'Tables' table records, under the 'Actions' menu.
Master tables are database tables used for persisting the tables of the data model.
The administrator can specify in the database the name of each master table corresponding to a table
of the data model.
Once the service is selected on a record, a summary screen displays information regarding the selected
master table and the administrator is prompted to enter a new name for the master table in the database.

Note

It is required that the new identifier begins with a letter and with the repository prefix.
For history tables, it is also required for the repository prefix to be followed by the history
tables prefix.
Besides, the new name must be a valid table identifier, which depends on the naming rules
of the underlying RDBMS.

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 6.2.0 671

114.5 Renaming auxiliary tables in the database
This feature allows renaming history auxiliary tables in the database. This feature is not available for
replicated tables since their names are specified in the data model.
This feature is available on the 'Tables' table records, under the 'Actions' menu.
Auxiliary tables are database tables used for persisting aggregated lists.
The administrator can specify in the database the name of each auxiliary table corresponding to an
aggregated list of the data model.
Once the service is selected on a record, a summary screen displays information regarding the selected
auxiliary table and the administrator is prompted to enter a new name for the auxiliary table in the
database.

Note

It is required for the new identifier to begin with a letter.
It is required for the new identifier to begin with the repository prefix.
It is also required for the repository prefix to be followed by the history tables prefix.
Besides, the new name must be a valid table identifier, which depends on the naming rules
of the underlying RDBMS.

114.6 Purging master tables in the database
This feature allows purging history in the database if it is no longer used.
It is available on the 'Tables' table records, under the 'Actions' menu, and is only available for master
tables. This feature only applies to master tables. When a master table is purged, all its auxiliary tables
are purged as well.
A mapped table can be purged in the database only if it has been disabled for the corresponding
mapped mode.
To disable the mapped mode for a table, follow the procedure hereafter.

• Deactivate historization of the table in the data model, or

• Remove the table from the data model

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 6.2.0 672

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 6.2.0 673

CHAPTER 115
Workflow management

This chapter contains the following topics:

1. Workflows

2. Interactions

3. Workflow history

115.1 Workflows
To define general parameters for the execution of data workflows, the management of workflow
publications, or to oversee data workflows in progress, navigate to the 'Administration' area. Click on
the down arrow in the navigation pane and select Workflow management > Workflows.

Note

In cases where unexpected inconsistencies arise in the workflow execution technical tables,
data workflows may encounter errors. It may then be necessary to run the operation 'Clean up
inconsistencies in workflow execution tables' from the 'Actions' menu in the navigation pane
under Administration > Workflow Management > Workflows.

Execution of workflows
Various tables can be used to manage the data workflows that are currently in progress. These tables
are accessible in Workflow management > Workflows in the navigation pane.

See also Administration of data workflows [p 229]

Workflows table
The 'Workflows' table contains instances of all data workflows in the repository, including those
invoked as sub-workflows. A data workflow is a particular execution instance of a workflow model
publication. This table provides access to the data context variables for all data workflows. It can be
used to access the status of advancement of the data workflow in terms of current variable values, and
in case of a data workflow suspension, to modify the variable values.
From the 'Actions' menu of the 'Workflows' table, it is possible to clear the completed data workflows
that are older than a given date, by selecting the 'Clean from a date' service. This service automatically
ignores the active data workflows.

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 6.2.0 674

Tokens table
The 'Tokens' table allows managing the progress of data workflows. Each token marks the current
step being executed in a running data workflow, as well as the current state of the data workflow.

See also token [p 35]

Work items table
The 'Work items' table contains all the work items associated with user tasks that currently exist. If
necessary, you can manually allocate a work item to a user from this table in the case of a blockage in
a data workflow. It is preferable, however, to use the buttons in the workspace of the 'Data workflows'
area whenever possible to allocate, reallocate, and deallocate work items.

See also work item [p 35]

Waiting workflows table
The 'Waiting workflows' table contains all the workflows waiting for an event. If needed, a service is
available to clean this table: this service deletes all lines associated with a deleted workflow.

See also wait task [p 34]

Comment table
The 'Comments' table contains the user's comments for main workflows and their sub-workflows.

Workflow publications
The 'Workflow publications' table is a technical table that contains all the workflow model publications
of the repository. This table associates published workflow models with their snapshots. It is not
recommended to directly modify this table, but rather to use the actions available in the workflow
modeling area to make changes to publications.

Configuration

Email configuration
In order for email notifications to be sent during the data workflow execution, the following settings
must be configured under 'Email configuration':

• The URL definition field is used to build links and value mail variables in the workflow.

• The 'From email' field must be completed with the email address that will be used to send email
notifications.

Interface customization

Modeling default values
The default value for some properties can be customized in this section.
The administrator has the possibility to define the default values to be used when a new workflow
model or workflow step is created in the 'Workflow Modeling' section.

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 6.2.0 675

Work items views
Specific columns are available in the inbox and in the monitoring work items tables, in the 'Data
workflows' section.
10 specific columns are available. For each specific column, a customized label can be defined.

Priorities configuration
The property 'Default priority' defines how data workflows and their work items across the repository
display if they have no priority level. For example, if this property is set to the value 'Normal', any
workflow and work item with no priority will appear to have the 'Normal' priority.
The 'priorities' table defines all priority levels available to data workflows in the repository. As many
integer priority levels as needed can be added, along with their labels, which will appear when users
hover over the priority icon in the work item tables. The icons that correspond to each priority level
can also be selected, either from the set provided by TIBCO EBX®, or by specifying a URL to an
icon image file.

Temporal tasks
Under 'Temporal tasks', the polling interval for time-dependent tasks in the workflow can be set, such
as deadlines and reminders. If no interval value is set, the 'in progress' steps are checked every hour.

Workflow inbox counter configuration
The workflow inbox counter is refreshed asynchronously, even if the end-user does not launch any
action. To adjust it, two parameters need to be set:

Cache expiry (seconds) Expiration time (in seconds) before a new update of the
inbox cache. Please note that this parameter can impact the
CPU load and performance since the computation time can
be costly for a repository with many work items. If no value
is defined, the default value is 600.

User interface refresh
periodicity (seconds)

Refresh time (in seconds) between two updates of the
inbox counter in the user interface. Please note that this
refresh concerns all inbox counters in the user interface:
inbox counters of the custom perspective, header inbox
counter and Data Workflows inbox counter for the advanced
perspective. If no value is defined, default value is 5. If the
value is zero (or negative), the refresh is disabled. Also, the
modification will only be effective after a logout/login from
the user.

Also, please note that some actions can force the inbox counter to refresh:

• access on Data workflows

• access on any subdivision of the Data workflows section

• accept or reject a work item

• launch a workflow

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 6.2.0 676

These parameters are accessible in Workflow management > Workflows > Configuration > Temporal
tasks in the navigation pane.

115.2 Interactions
To manage workflow interactions, navigate to the Administration area. Click the down arrow in the
navigation pane and select the entry Workflow management > Interactions.
An interaction is generated automatically for every work item that is created. It is a local data context
of a work item and is accessible from an EBX® session. When a work item is executed, the user
performs the assigned actions based upon its interaction, independently of the workflow engine. User
tasks define mappings for their input and output parameters to link interactions with the overall data
contexts of data workflows.
Interactions can be useful for monitoring the current parameters of work items.
For example, an interaction can be updated manually by a trigger or a user service.

115.3 Workflow history
To view the history data workflow execution, browse the 'Administration' area. Click on the down
arrow in the navigation pane and select Workflow management > Workflow history.
The 'Workflows' table contains all actions that have been performed during the execution of
workflows.
This data can be viewed graphically or textually. It is especially useful to view the states of various
objects related to workflows at a given moment. This includes actions on work items, variables in the
data context, as well as tokens. In case of an error, a technical log is available.

Clean history
From the 'Actions' menu of the 'Workflows' table, the history of completed data workflows older than
a given date can be cleared by selecting the 'Clear from a date' service.
Only the history of workflows that have been previously cleaned (e.g. their execution data deleted)
is cleared. This service automatically ignores the history associated with existing workflows. It is
necessary to clear data workflows before clearing the associated history, by using the dedicated service
'Clear from a date' from the 'Workflows' table. Also, a scheduled 'Clear from a date' can be used with
the built-in scheduled task SchedulerPurgeWorkflowMainHistory.
Please note that only main processes are cleaned. In order to remove sub-processes and all related
data, it will be necessary to run a 'standard EBX® purge'.

See also How to clean workflow history [p 626]

Note

An API is available to fetch the history of a workflow. Direct
access to the underlying workflow history SQL tables is not
supported. See WorkflowEngine.getProcessInstanceHistory WorkflowEngine.
getProcessInstanceHistoryAPI.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 677

CHAPTER 116
Task scheduler

This chapter contains the following topics:

1. Overview

2. Configuration from EBX®

3. Cron expression

4. Task definition

5. Task configuration

116.1 Overview
TIBCO EBX® offers the ability to schedule programmatic tasks.

Note

In order to avoid conflicts and deadlocks, tasks are scheduled in a single queue.

116.2 Configuration from EBX®
The declaration of schedules and tasks is done by selecting 'Task scheduler' in the 'Administration'
area.

• Schedules: defines scheduling using "cron expressions".

• Tasks: configures tasks, including parametrizing task instances and user profiles for their
execution.

• Scheduled tasks: current schedule, including task scheduling activation/deactivation.

• Execution reports: reports of each scheduled task run that appear immediately after the task is
triggered. The reports include actions to interrupt, pause, or resume running tasks, when made
available by the task definition.

116.3 Cron expression
(An extract of the Quartz Scheduler documentation)
The task scheduler uses "cron expressions", which can create firing schedules such as: "At 8:00am
every Monday through Friday" or "At 1:30am every last Friday of the month".

https://www.quartz-scheduler.org/

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 678

Format
A cron expression is a string composed of 6 or 7 fields separated by a white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are as follows:

Field Name Mandatory Allowed Values Allowed Special Characters

Seconds Yes 0-59 , - * /

Minutes Yes 0-59 , - * /

Hours Yes 0-23 , - * /

Day of month Yes 0-31 , - * ? / L W

Month Yes 1-12 or JAN-DEC , - * /

Day of week Yes 1-7 or SUN-SAT , - * ? / L #

Year No empty, 1970-2099 , - * /

A cron expression can be as simple as this: "0 * * * * ?",
or more complex, like this: "0/5 14,18,3-39,52 * ? JAN,MAR,SEP MON-FRI 2002-2010".

Note

The legal characters and the names of months and days of the week are not case sensitive.
MON is the same as mon.

Special characters
A cron expression is a string composed of 6 or 7 fields separated by a white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are as follows:

• * ("all values") - used to select all values within a field. For example, "*" in the Minutes field
means "every minute".

• ? ("no specific value") - useful when you need to specify something in one of the two fields in
which the character is allowed, but not the other. For example, if I want my trigger to fire on a
particular day of the month (say, the 10th), but don't care what day of the week that happens to be,
I would put "10" in the day-of-month field, and "?" in the day-of-week field. See the examples
below for clarification.

• - - used to specify ranges. For example, "10-12" in the hour field means "the hours 10, 11 and 12".

• , - used to specify additional values. For example, "MON,WED,FRI" in the day-of-week field
means "the days Monday, Wednesday, and Friday".

• / - used to specify increments. For example, "0/15" in the seconds field means "the seconds 0, 15,
30, and 45". And "5/15" in the seconds field means "the seconds 5, 20, 35, and 50". You can also

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 679

specify '/' after the '' character - in this case '' is equivalent to having '0' before the '/'. '1/3' in the
day-of-month field means "fire every 3 days starting on the first day of the month".

• L ("last") - has different meaning in each of the two fields in which it is allowed. For example,
the value "L" in the day-of-month field means "the last day of the month" - day 31 for January,
day 28 for February on non-leap years. If used in the day-of-week field by itself, it simply means
"7" or "SAT". But if used in the day-of-week field after another value, it means "the last xxx day
of the month" - for example "6L" means "the last friday of the month". When using the 'L' option,
it is important not to specify lists, or ranges of values, as you'll get confusing results.

• W ("weekday") - used to specify the weekday (Monday-Friday) nearest the given day. As an
example, if you were to specify "15W" as the value for the day-of-month field, the meaning is:
"the nearest weekday to the 15th of the month". So if the 15th is a Saturday, the trigger will fire on
Friday the 14th. If the 15th is a Sunday, the trigger will fire on Monday the 16th. If the 15th is a
Tuesday, then it will fire on Tuesday the 15th. However if you specify "1W" as the value for day-
of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd, as it will not 'jump'
over the boundary of a month's days. The 'W' character can only be specified when the day-of-
month is a single day, not a range or list of days.

Note

The 'L' and 'W' characters can also be combined in the day-of-month field to yield
'LW', which translates to "last weekday of the month".

• # - used to specify "the nth" day-of-week day of the month. For example, the value of "6#3" in
the day-of-week field means "the third Friday of the month" (day 6 = Friday and "#3" = the 3rd
one in the month). Other examples: "2#1" = the first Monday of the month and "4#5" = the fifth
Wednesday of the month. Note that if you specify "#5" and there is not 5 of the given day-of-
week in the month, then no firing will occur that month.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 680

Examples

Expression Meaning

0 0 12 * * ? Fire at 12pm (noon) every day.

0 15 10 ? * * Fire at 10:15am every day.

0 15 10 * * ? Fire at 10:15am every day.

0 15 10 * * ? * Fire at 10:15am every day.

0 15 10 * * ? 2005 Fire at 10:15am every day during the year 2005.

0 * 14 * * ? Fire every minute starting at 2pm and ending at 2:59pm, every
day.

0 0/5 14 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm,
every day.

0 0/5 14,18 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm,
AND fire every 5 minutes starting at 6pm and ending at
6:55pm, every day.

0 0-5 14 * * ? Fire every minute starting at 2pm and ending at 2:05pm, every
day.

0 10,44 14 ? 3 WED Fire at 2:10pm and at 2:44pm every Wednesday in the month of
March.

0 15 10 ? * MON-FRI Fire at 10:15am every Monday, Tuesday, Wednesday, Thursday
and Friday.

0 15 10 15 * ? Fire at 10:15am on the 15th day of every month.

0 15 10 L * ? Fire at 10:15am on the last day of every month.

0 15 10 ? * 6L Fire at 10:15am on the last Friday of every month.

0 15 10 ? * 6L 2002-2005 Fire at 10:15am on every last friday of every month during the
years 2002, 2003, 2004 and 2005.

0 15 10 ? * 6#3 Fire at 10:15am on the third Friday of every month.

0 0 12 1/5 * ? Fire at 12pm (noon) every 5 days every month, starting on the
first day of the month.

0 11 11 11 11 ? Fire every November 11th at 11:11am.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 681

Note

Pay attention to the effects of '?' and '*' in the day-of-week and day-of-month fields.
Support for specifying both a day-of-week and a day-of-month value is not complete (you
must currently use the '?' character in one of these fields).
Be careful when setting fire times between the hours of the morning when "daylight savings"
changes occur in your locale (for US locales, this would typically be the hour before and after
2:00 AM - because the time shift can cause a skip or a repeat depending on whether the time
moves back or jumps forward.

116.4 Task definition
EBX® scheduler comes with some predefined tasks.
Custom scheduled tasks can be added by the means of scheduler Package
com.orchestranetworks.schedulerAPI Java API.
The declaration of schedules and tasks is done by selecting 'Task scheduler' in the 'Administration'
area.

116.5 Task configuration
A user must be associated with a task definition; this user will be used to generate the session SessionAPI

that will run the task.

Note

The user will not be authenticated, and no password is required. As a consequence, a
user with no password set in the directory can only be used to run scheduled tasks.

A custom task can be parameterized by means of a JavaBean specification (getter and setter).
Supported parameter types are:

• java.lang.boolean

• java.lang.int

• java.lang.Boolean

• java.lang.Integer

• java.math.BigDecimal

• java.lang.String

• java.util.Date

• java.net.URI

• java.net.URL

Parameter values are set in XML format.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 6.2.0 682

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 6.2.0 683

CHAPTER 117
Audit trail

This chapter contains the following topics:

1. Overview

2. Log content

3. Legacy XML Audit trail (deprecated)

117.1 Overview
The audit trail feature allows to log all views access and user services launch in TIBCO EBX®.
The feature is disabled by default; to enable audit trail logging, configure the audit logging category
with a level that enables INFO messages.

See also Activating the audit trail [p 555]

117.2 Log content
The information logged by audit trail comes in 2 parts: the common header and the event-specific
content described in the following sections.

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 6.2.0 684

Common header
Here are the header attributes that are always logged:

user-login Login of the user

user-ip IP address of the user, when available

event Type of event performed by the user, among the following
value:

• TABULAR_ACCESS: when a tabular view is accessed
in the UI;

• HIERARCHY_EXPAND_NODE: when a node is
expanded in a hierarchical view, or when the view is
displayed;

• HIERARCHY_EXPAND_ALL: when several nodes
are expanded in a hierarchical view;

• DATASPACE_PERMISSION_TABULAR_ACCESS:
when the permission table for a dataspace is accessed;

• DATASET_PERMISSION_TABULAR_ACCESS:
when the permission table for a dataset is accessed;

• USER_SERVICE: when the export, compare, or
validate built-in service, an addon or a custom user
service is launched.

Table view events
This section describes the events specific to table views, which are:

• TABULAR_ACCESS

• HIERARCHY_EXPAND_NODE

• HIERARCHY_EXPAND_ALL

• DATASPACE_PERMISSION_TABULAR_ACCESS

• DATASET_PERMISSION_TABULAR_ACCESS

These events are triggered when the table view is opened or refreshed, when a search is performed
and when the user navigates using pagination.

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 6.2.0 685

Here are the content attributes specific to these events:

dataspace Key of the dataspace containing the table

dataset Key of the dataset containing the table

table Path of the table being accessed (does not apply to
permission events)

view-id Identifier of the custom view currently applied if any (does
not apply to permission events)

view-name Published name of the custom view currently applied if any
(does not apply to permission events)

pagination-info Information about the pagination of the tabular view or the
expanded node

hierarchy-expanded-node Identifier of the node being expanded (only applies to
hierarchy events).
When several levels are expanded (search or expand all), it
is the node on the higher level. The identifier is the node
label prefixed by ":". The root node is identified as ":".
When a hierarchy is initially displayed, only the root node is
expanded so the event is HIERARCHY_EXPAND_NODE.

filters All filters applied to the view, aggregated in a JSON format.
There are 3 kinds of filter:

• quick-search: user input in the quick search field, if
any;

• structured-search: user advanced filters configured
using the advanced search panel in a JSON format, if
any;

• view-filter: filter defined by the view in a XPath
format, if any.

For instance:
filters={"structured-search":["starts-with","/field/
city","city"],"view-filter":"matches(./country,'France')"}

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 6.2.0 686

User service
Here are the content attributes specific to this event:

service-key Service key of the service being executed

service-mode A service can be executed on any intermediate level of
the selection entity. For example, if the current selection
entity is a record, then the service may be executed on the
following levels: dataspace, dataset, table or a record. This
attribute allows to define on which level of the selection
entity the service is executed.

selection Entity selection on which the service is executed (branch or
version, dataset, etc.) in a JSON format. When more than
100 records are selected, only the 100th first records are
logged.

service-parameters Additional input parameters specified for the service
execution :

• for built-in services, see the list of parameters [p 417];

• for custom services, the parameters are specified in the
declaration [p 989];

• for addon services, see the addon documentation.

117.3 Legacy XML Audit trail (deprecated)
XML audit trail logs data updates to XML files. This legacy feature, now deprecated, will be removed
in a future version. Although this type of audit trail should no longer be used, the legacy documentation
is still available.

Documentation > Administration Guide > Technical administration > Collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 687

CHAPTER 118
Collaborative features (Team Up)

This chapter contains the following topics:

1. Introduction

2. Getting started with Team Up

3. Managing tags and tag catalogs

118.1 Introduction
Enable Team Up to facilitate collaboration and engagement between business users. They can use
Team Up to leave comments on records, rate records, and assign tags to records. Access to, and
visibility of Team Up features is highly customizable. Global settings are available at the data model
level, but can be overridden at the dataset level.
The following provides an overview of an administrator's role with Team Up features:

• Comments: Enable commenting on records. Assign moderators to tables that can manage
comments from other user profiles.

• Tags: Enable tagging of records. Tags are classified in tag catalogs. Assign an administrator to
manage tag catalogs.

• Ratings: Enable ratings for records.

118.2 Getting started with Team Up
If you have administrative access to an EBX® data model, register individual tables to enable Team
Up. By default, when a table is registered, all Team Up features are set to active and visible; after the
data model is published, users with Read-write or Read-only access can use Team Up. Use Team Up
configuration settings to restrict user access and individual features. Additionally, you can configure
visibility of each feature. For example, a feature can be active but hidden; users will not see them but
previous comments, ratings, or tags are still associated with records.

Registering tables with Team Up
Use the Team Up data model extension to register each table:

Documentation > Administration Guide > Technical administration > Collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 688

1. Navigate to Extensions > Team Up > Table configuration and create a new record.

Note

If the Team up extension is not visible, see Data model extensions [p 77] for
instructions on enabling it.

2. Use the Table path menu to select the table where you want to activate Team Up features.

3. Define user permissions, feature availability, moderators, and tag catalogs using the Ratings,
Comments, and Tags groups.
See Managing user access and Team Up features [p 688] for additional details.

4. After saving changes, publish the data model.

Managing user access and Team Up features
Manage user access to Team Up features at the data model and dataset levels. The table below shows
the settings available in each location:

118.3 Managing tags and tag catalogs
Use tags and tag catalogs to help find and organize related data. Each table that has Team Up enabled
is automatically associated with the default tag catalog. You can change the associated catalog. Only

Documentation > Administration Guide > Technical administration > Collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 689

tags in the associated catalog are assignable to the table's records. The following table describes how
to perform actions related to tags and tag catalogs:

Creating tag catalogs and
administrators

• With administrative access, create tag catalogs in:
Administration > Metadata management > Team Up
Administration > Tags > Tag catalogs.

• Assign an administrator to a catalog: Administration >
Metadata management > Team Up Administration >
Tags > Tags catalog administrators.

Creating tags • A new tag is automatically created when a business
users assigns a tag to a record that does not exist in the
tag catalog.

• With administrative access, create tags in:
Administration > Metadata management > Team Up
Administration > Tags > Tags.

Assigning tags to catalogs Change the catalog a tag belongs to: Administration >
Metadata management > Team Up Administration > Tags
> Tags. Note that this tag will no longer be available for
records it was assigned to.

Documentation > Administration Guide > Technical administration > Collaborative features (Team Up)

TIBCO EBX® Product Documentation 6.2.0 690

Documentation > Administration Guide > Technical administration > Other

TIBCO EBX® Product Documentation 6.2.0 691

CHAPTER 119
Other

This chapter contains the following topics:

1. Lineage

2. Event broker

119.1 Lineage
To administer lineage, three tables are accessible:

• Authorized profiles: Profiles must be added to this table to be used for data lineage WSDL
generation.

• History: Lists the general data lineage WSDLs and their configuration.

• JMS location: Lists the JMS URL locations.

119.2 Event broker

Overview
TIBCO EBX® offers the ability to receive notifications and information related to specific events
using the event broker feature. This feature consists in sending notifications related to EBX® core
events to the subscriber according to their chosen topics.

Documentation > Administration Guide > Technical administration > Other

TIBCO EBX® Product Documentation 6.2.0 692

Terminology

Event broker Notification component for loosely-coupled event handling.
Consists of dispatching fired events from EBX® core to
concerned subscribers. The event broker is mainly used for
monitoring and statistical purposes.

Topic Corresponds to the EBX® event type that contains
messages. The number of subscribers registered to a topic
is unlimited.

Subscriber Client implementation in the modules that receive the events
related to the subscribed topic(s).

Topics

Dataspace and snapshot Corresponds to operations in the dataspace and in the
snapshot, such as: create, close, reopen, delete, archive
export and archive import (only for dataspace merge).

Repository Corresponds to operations in the repository, such as: start-
up and purge.

User session Corresponds to the operations related to user authentication,
such as: login and logout.

Administration
The management console is located under 'Event broker' in the 'Administration' area. It contains three
tables: 'Topics', 'Subscribers' and 'Subscriptions'.
All content is read-only, except for the following operations:

• Topics and subscribers can be manually activated or deactivated using dedicated services.

• Subscribers that are no longer registered to the broker can be deleted.

The event broker is based on a thread pool mechanism. The maximum number of threads can be
defined in the properties file as follows:
Defines the number of thread pool executors to
guarantee the publication of asynchronous events.
The default value is 2
ebx.eventBroker.threadPool.size=2

Documentation > Administration Guide

TIBCO EBX® Product Documentation 6.2.0 693

Distributed Data
Delivery (D3)

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 6.2.0 694

CHAPTER 120
Introduction to D3

This chapter contains the following topics:

1. Overview

2. D3 terminology

3. Known limitations

120.1 Overview
TIBCO EBX® offers the ability to send data from an EBX® instance to other instances. Using a
broadcast action, it also provides an additional layer of security and control to the other features of
EBX®. It is particularly suitable for situations where data governance requires the highest levels of
data consistency, approvals and the ability to rollback.

D3 architecture
A typical D3 installation consists of one primary node and multiple replica nodes. In the primary node,
a Data Steward declares which dataspaces must be broadcast, as well as which user profile is allowed
to broadcast them to the replica nodes. The Data Steward also defines delivery profiles, which are
groups of one or more dataspaces.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 6.2.0 695

Each replica node must define from which delivery profile it receives broadcasts.

Involving third-party systems
The features of D3 also allow third-party systems to access the data managed in EBX® through
data services. Essentially, when a system consumes the data of a delivery dataspace, the data is
transparently redirected to the last broadcast snapshot. This ensures a more controlled and reliable
view of the managed data.
Third-party systems can either access data directly through the primary node or through a replica node.
Thus, a physical architecture consisting of a primary node and no replica nodes is possible.

Protocols
If JMS is activated, the conversation between a primary node and a replica node is based on SOAP
over JMS, while archive transfer is based on JMS binary messages.
If JMS is not activated, conversation between a primary node and a replica node is based on SOAP
over HTTP(S), while binary archive transfer is based on TCP sockets. If HTTPS is used, make sure
that the target node connector is correctly configured by enabling SSL with a trusted certificate.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 6.2.0 696

See also JMS for distributed data delivery (D3) [p 703]

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 6.2.0 697

120.2 D3 terminology

broadcast Send a publication of an official snapshot of data from a
primary node to replica nodes. The broadcast transparently
and transactionally ensures that the data is transferred to the
replica nodes.

delivery dataspace A delivery dataspace is a dataspace that can be broadcast to
authenticated and authorized users using a dedicated action.
By default, when a data service accesses a delivery
dataspace on any node, it is redirected to the last snapshot
that was broadcast. See Data services [p 701].

delivery profile A delivery profile is a logical name that groups one or more
delivery dataspaces. Replica nodes subscribe to one or more
delivery profiles.

cluster delivery mode Synchronization with subscribed replica nodes is performed
in a two-phase commit transactional process. This delivery
mode is designed to respond to a high volume of queries
using load balancing and/or fault tolerance. It ensures the
consistency of data in the cluster between replica nodes and
their primary node delivery dataspaces. Primary and replica
nodes use the same last broadcast snapshots.

federation delivery mode Synchronization is performed in a single phase, and with
each registered replica node independently. This delivery
mode is designed to be used with geographically distributed
and/or heterogeneous architectures where response time and
network availability cannot be guaranteed. At any one time,
replica nodes can be at different last broadcast snapshots.
The synchronization processes are thus independent of one
another and replay of individual replica nodes are performed
for certain broadcast failures.

Primary node An instance of EBX® that can define one or more delivery
dataspaces, and to which replica nodes can subscribe. A
primary node can also act as a regular EBX® server.

Replica node An instance of EBX® attached to a primary node, in order
to receive delivery dataspace broadcasts. Besides update
restrictions on delivery dataspaces, the replica node acts as
a regular EBX® server.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 6.2.0 698

Hub node An instance of EBX® acting as both a primary node and a
replica node. Primary delivery dataspaces and replica node
delivery dataspaces must be disjoint.

120.3 Known limitations

General limitations
• Each replica node must have only one primary node.

• Embedded data models cannot be used in D3 dataspaces. Therefore, it is not possible to create a
dataset based on a publication in a D3 dataspace.

• The compatibility is not assured if at least one replica node product version is different from the
primary node.

Broadcast and delivery dataspace limitations
• Access rights on dataspaces are not broadcast, whereas access rights on datasets are.

• Dataspace information is not broadcast.

• If a dataspace and its parent are broadcast, their parent-child relationship will be lost in the replica
nodes.

• Once a snapshot has been broadcast to a replica, subsequent broadcasts of any snapshot with
the same name will result in restoring the originally broadcast version of that same name on the
replica node. That is, if the original snapshot on the primary node is purged and a new one is
created with the same name and subsequently broadcast, then the content of the replica will be
restored to that of the previously broadcast snapshot, and not to the latest one of the same name.

• To guarantee dataspace consistency between D3 nodes, the data model (embedded or packaged
in a module) on which the broadcast contents are based, must be the same between the primary
node and its replica nodes.

• On a replica delivery dataspace, if several replica nodes are registered, and if replication is enabled
in data models, it will be effective for all nodes. No setting is available to activate/deactivate
replication according to D3 nodes.

• Replication on replica nodes does not take part in the distributed transaction: it is automatically
triggered after commit.

Administration limitations
Technical dataspaces cannot be broadcast, thus the EBX® default user directory cannot be
synchronized using D3.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 6.2.0 699

CHAPTER 121
D3 broadcasts and delivery

dataspaces
This chapter contains the following topics:

1. Broadcast

2. Replica node registration

3. Accessing delivery dataspaces

121.1 Broadcast

Scope and contents of a broadcast
A D3 broadcast occurs at the dataspace or snapshot level. For dataspace broadcasts, D3 first creates
a snapshot to capture the current state, then broadcasts this newly created snapshot.
A broadcast performs one of the following procedures depending on the situation:

• An update of the differences computed between the new broadcast snapshot and the current
'commit' one on the replica node.

• A full synchronization containing all datasets, tables, records, and permissions. This is done on
the first broadcast to a given replica node, if the previous replica node commit is not known to
the primary node, or on demand using the user service in '[D3] Primary node configuration'.

See also Services on primary nodes [p 716]

Performing a broadcast
The broadcast can be performed:

• By the end-user, using the Broadcast action available in the dataspace or snapshot (this action is
available only if the dataspace is registered as a delivery dataspace)

• Using custom Java code that uses D3NodeAsMasterAPI.

Conditions
In order to be able to broadcast, the following conditions must be fulfilled:

• The authenticated user profile has permission to broadcast.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 6.2.0 700

• The dataspace or snapshot to be broadcast has no validation errors.
Note: Although it is not recommended, it is possible to force a broadcast of a delivery
dataspace that contains validation errors. In order to do this, set the maximum severity threshold
allowed in a delivery dataspace validation report under '[D3] Primary node configuration' in the
'Administration' area.

• The D3 primary node configuration has no validation errors on the following scope: the
technical record of the concerned delivery dataspace and all its dependencies (dependent delivery
mappings, delivery profiles and registered replica nodes).

• There is an associated delivery profile.

• If broadcasting a dataspace, the dataspace is not locked.

• If broadcasting a snapshot, the snapshot belongs to a dataspace declared as delivery dataspace
and is not already the current broadcast snapshot (though a rollback to a previously broadcast
snapshot is possible).

• The dataspace or snapshot contains differences compared to the last broadcast snapshot.

Persistence
When a primary node shuts down, all waiting or in progress broadcast requests abort, then they will
be persisted on a temporary file. On startup, all aborted broadcasts are restarted.

See also Temporary files [p 718]

Destination
On the target replica or hub node side:

• The ebx-d3-reference dataspace identifier is the common parent of all the delivery dataspaces.

• The delivery dataspace has the same identifier in primary, replica or hub nodes.

• If the delivery dataspace is missing, it will be created on the first or on the full synchronization
broadcast.

• If the delivery dataspace already exists on the first broadcast or full synchronization, it will be
overridden.

• If an existing dataspace with the same identifier as the delivery one is detected outside of the ebx-
d3-reference, an error will be raised.

See also Known limitations [p 698]

Note

Broadcasts are performed asynchronously. Therefore, no information is displayed in the user
interface about the success or failure of a broadcast. Nevertheless, it is possible to monitor the
broadcast operations inside '[D3] Primary node configuration'. See Supervision [p 717].

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 6.2.0 701

121.2 Replica node registration

Scope and contents
An initialization occurs at the replica node level according to the delivery profiles registered in the
TIBCO EBX® main configuration file of the replica node. When the primary node receives that
initialization request, it creates or updates the replica node entry, then sends the last broadcast snapshot
of all registered delivery dataspaces.

Note

If the registered replica node repository ID or communication layer already exists, the replica
node entry in the 'Registered replica nodes' technical table is updated, otherwise a new entry
is created.

Performing an initialization
The initialization can be done:

• Automatically at replica node server startup.

• Manually when calling the replica node service 'Register replica node'.

Conditions
To be able to register, the following conditions must be fulfilled:

• The D3 mode must be 'hub' or 'slave'.

• The primary and replica node authentication parameters must correspond to the primary node
administrator and replica node administrator defined in their respective directories.

• The delivery profiles defined on the replica node must exist in the primary node configuration.

• All data models contained in the registered dataspaces must exist in the replica node. If embedded,
the data model names must be the same. If packaged, they must be located at the same module
name and the schema path in the module must be the same in both the primary and replica nodes.

• The D3 primary node configuration has no validation error on the following scope: the technical
record of the registered replica node and all its dependencies (dependent delivery profiles, delivery
mappings and delivery dataspaces).

Note

To set the parameters, see the replica or hub EBX® properties in Configuring primary, hub
and replica nodes [p 713].

121.3 Accessing delivery dataspaces

Data services
By default, when a data service accesses a delivery dataspace, it is redirected to the current snapshot,
which is the last broadcast one. However, this default behavior can be modified either at the request
level or in the global configuration.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 6.2.0 702

See also Common parameter 'disableRedirectionToLastBroadcast' [p 1020]

Access restrictions
On the primary node, a delivery dataspace can neither be merged nor closed. Other operations are
available depending on permissions. For example, modifying a delivery dataspace directly, creating
a snapshot independent from a broadcast, or creating and merging a child dataspace.
On the replica node, aside from the broadcast process, no modifications of any kind can be made to
a delivery dataspace, whether by the end-user, data services, or a Java program. Furthermore, any
dataspace-related operations, such as merge, close, etc., are forbidden on the replica node.

D3 broadcast Java API
The last broadcast snapshot may change between two calls if a broadcast has taken place in the
meantime. If a fully stable view is required for several successive calls, these calls need to specifically
refer to the same snapshot.
To get the last broadcast snapshot, see D3Node.getBroadcastVersionAPI.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 703

CHAPTER 122
D3 JMS Configuration

This chapter contains the following topics:

1. JMS for distributed data delivery (D3)

122.1 JMS for distributed data delivery (D3)
To configure D3 to use JMS instead of the default HTTP and TCP protocols, you must configure the
JMS connection factory [p 528] and the following queues declared in the WEB-INF/web.xml deployment
descriptor of the 'ebx' web application.

Note

If the TIBCO EBX® main configuration does not activate JMS and D3 ('slave',
'hub' or 'master' node) through the properties ebx.d3.mode, ebx.jms.activate and
ebx.jms.d3.activate, then the environment entries below will be ignored by EBX®
runtime. See JMS [p 561] and Distributed data delivery (D3) [p 561] in the EBX® main
configuration properties for more information on these properties.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 704

Common declarations on primary and replica nodes (for shared
queues)

Reserved resource name Default JNDI name Description

jms/EBX_D3MasterQueue JBoss: java:/jms/EBX_D3MasterQueue D3 primary JMS queue (only for D3
mode 'slave' or 'hub'). It specifies the
queue name used to send SOAP requests
to the D3 primary node. The message
producer sets the primary node repository
ID as a value of the header field JMSType.

Java type: jakarta.jms.Queue

jms/EBX_D3ReplyQueue JBoss: java:/jms/EBX_D3ReplyQueue D3 Reply JMS queue (for all D3
modes except the 'single' mode). It
specifies the name of the reply queue
for receiving SOAP responses. The
consumption is filtered using the header
field JMSCorrelationID.

Java type: jakarta.jms.Queue

jms/EBX_D3ArchiveQueue JBoss: java:/jms/
EBX_D3ArchiveQueue

D3 JMS Archive queue (for all D3
modes except the 'single' mode). It
specifies the name of the transfer
archive queue used by the D3 node.
The consumption is filtered using the
header field JMSCorrelationID. If
the archive weight is higher than the
threshold specified in the property
ebx.jms.d3.archiveMaxSizeInKB,
the archive will be divided into several
sequences. Therefore, the consumption
is filtered using the header fields
JMSXGroupID and JMSXGroupSeq instead.

Java type: jakarta.jms.Queue

jms/EBX_D3CommunicationQueue JBoss: java:/jms/
EBX_D3CommunicationQueue

D3 JMS Communication queue (for
all D3 modes except 'single' mode). It
specifies the name of the communication
queue where the requests are received.
The consumption is filtered using the
header field JMSType which corresponds
to the current repository ID.

Java type: jakarta.jms.Queue

Note

These JNDI names are set by default, but can be modified inside the web application
archive ebx.war, included in EBX.ear (if using JBoss, Websphere or other application
servers).

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 705

Optional declarations on primary nodes (for replica-specific
queues)

Note

Used for ascending compatibility prior to 5.5.0 or for mono-directional queues topology.

The deployment descriptor of the primary node must be manually modified by declaring specific
communication and archive queues for each replica node. It consists in adding resource names in
'web.xml' inside 'ebx.war'. The replica-specific node queues can be used by one or more replica nodes.
Resources can be freely named, but the physical names of their associated queue must
correspond to the definition of replica nodes for resources jms/EBX_D3ArchiveQueue and jms/
EBX_D3CommunicationQueue.

Note

Physical queue names matching: on registration, the replica node sends the
communication and archive physical queue names. These queues are matched by
physical queue name among all resources declared on the primary node. If unmatched,
the registration fails.

Examples of JMS configuration

Shared queues Specific queues

Primary-Replica nodes architecture Between a primary node and two replica
nodes with shared queues [p 706]

Between a primary node and a replica
node with replica-specific queues [p 707]

Hub-Hub architecture Between two hub nodes with shared
queues [p 708]

Between two hub nodes with replica-
specific queues [p 709]

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 706

Between a primary node and two replica nodes with shared queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 707

Between a primary node and a replica node with replica-specific queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 708

Between two hub nodes with shared queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 709

Between two hub nodes with replica-specific queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 6.2.0 710

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 711

CHAPTER 123
D3 administration

This chapter contains the following topics:

1. Quick start

2. Configuring D3 nodes

3. Supervision

123.1 Quick start
This section introduces the configuration of a basic D3 architecture with two TIBCO EBX® instances.
Before starting, please check that each instance can work properly with its own repository.

Note

Deploy EBX® on two different web application containers. If both instances are running on
the same host, ensure that all communication TCP ports are distinct.

Declare an existing dataspace on the primary node
The objective is to configure and broadcast an existing dataspace from a primary node.
This configuration is performed on the entire D3 infrastructure (primary [p 697] and replica [p 697] nodes
included).
Update the ebx.propertiesprimary node configuration file with:

1. Define D3 mode as primary in key ebx.d3.mode.

Note

The primary node can be started after the configuration.

After authenticating as a built-in administrator, navigate within the administration tab:

1. Prerequisite: Check that the node is configured as a primary node (in the 'Actions' menu use
'System information' and check 'D3 mode').

2. Open the '[D3] Primary configuration' administration feature.

3. Add the dataspace to be broadcast to the 'Delivery dataspaces' table, and declare the allowed
profile.

4. Add the delivery profile [p 697] to the 'Delivery profiles' table (it must correspond to a logical name)
and declare the delivery mode. Possible values are: cluster mode [p 697] or federation mode [p 697].

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 712

5. Map the delivery dataspace with the delivery profile into the 'Delivery mapping' table.

Note

The primary node is now ready for the replica node(s) registration on the delivery profile.
Check that the D3 broadcast menu appears in the 'Actions' menu of the dataspace or one of
its snapshots.

Configure replica node for registration
The objective is to configure and register the replica node based on a delivery profile and
communications settings.
Update the ebx.properties replica node configuration file with:

1. Define D3 mode as replica in key ebx.d3.mode.

2. Define the delivery profile [p 697] set on the primary node in key ebx.d3.delivery.profiles
(delivery profiles must be separated by a comma and a space).

3. Define the primary node user authentication (must have the built-in administrator profile) for
node communications in ebx.d3.master.username and ebx.d3.master.password.

4. Define HTTP/TCP protocols [p 715] for primary node communication, by setting a value for the
property key ebx.d3.master.url
(for example http://localhost:8080/ebx-dataservices/connector).

5. Define the replica node user authentication (must have the built-in administrator profile) for node
communications in ebx.d3.slave.username and ebx.d3.slave.password.

6. Define HTTP/TCP protocols [p 715] for replica node communication, by setting a value for the
property key ebx.d3.slave.url
(for example http://localhost:8090/ebx-dataservices/connector).

Note

The replica node can be started after the configuration.

After authenticating as a built-in administrator, navigate inside the administration tab:

1. Prerequisite: Check that the node is configured as the replica node (in the 'Actions' menu use
'System information' and check 'D3 mode').

2. Open the '[D3] Replica configuration' administration feature.

3. Check the information on the 'Primary information' screen: No field should have the 'N/A' value.

Note

Please check that the model is available before broadcast (from data model assistant, it must
be published).
The replica node is then ready for broadcast.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 713

123.2 Configuring D3 nodes

Runtime configuration of primary and hub nodes through the user
interface
The declaration of delivery dataspaces and delivery profiles is done by selecting the '[D3] Primary
configuration' feature from the 'Administration' area, where you will find the following tables:

Delivery dataspaces Declarations of the dataspaces that can be broadcast.

Delivery profiles Profiles to which replica nodes can subscribe. The delivery
mode must be defined for each delivery profile.

Delivery mapping The association between delivery dataspaces and delivery
profiles.

Note

The tables above are read-only while some broadcasts are pending or in progress.

Configuring primary, hub and replica nodes
This section details how to configure a node in its EBX® main configuration file.

See also Overview [p 549]

Primary node
In order to act as a primary node, an instance of EBX® must declare the following property in its
main configuration file.
Sample configuration for ebx.d3.mode=master node:
##
D3 configuration
##
##
Configuration for master, hub and slave
##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=master

See also primary node [p 697]

Hub node
In order to act as a hub node (combination of primary and replica node configurations), an instance
of EBX® must declare the following property in its main configuration file.
Sample configuration for ebx.d3.mode=hub node:
##
D3 configuration
##
##
Configuration for master, hub and slave

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 714

##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=hub

##
Configuration dedicated to hub or slave
##
Profiles to subscribe to
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.delivery.profiles=

User and password to be used to communicate with the master.
Mandatory properties if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.master.username=
ebx.d3.master.password=

User and password to be used by the master to communicate with the hub or slave.
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.slave.username=
ebx.d3.slave.password=

See also hub node [p 698]

Replica node
In order to act as a replica node, an instance of EBX® must declare the following property in its main
configuration file.
Sample configuration for ebx.d3.mode=slave node:
##
D3 configuration
##
##
Configuration for master, hub and slave
##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=slave

##
Configuration dedicated to hub or slave
##
Profiles to subscribe to
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.delivery.profiles=

User and password to be used to communicate with the master.
Mandatory properties if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.master.username=
ebx.d3.master.password=

User and password to be used by the master to communicate with the hub or slave.
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.slave.username=
ebx.d3.slave.password=

See also replica node [p 697]

Configuring the network protocol of a node
This section details how to configure the network protocol of a node in its EBX® main configuration
file.

See also Overview [p 549]

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 715

HTTP(S) and socket TCP protocols
Sample configuration for ebx.d3.mode=hub or ebx.d3.mode=slave node with HTTP(S) network
protocol:
##
HTTP(S) and TCP socket configuration for D3 hub and slave
##
URL to access the data services connector of the master
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave and JMS for D3 is not activated.
This property will be ignored if JMS for D3 is activated.
The URL must follow this pattern: [protocol]://[master_host]:[master_port]/ebx-dataservices/connector
Where the possible values of 'protocol' are 'http' or 'https'.
ebx.d3.master.url=

URL to access the data services connector of the slave
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave and JMS for D3 is not activated.
This property will be ignored if JMS for D3 is activated.
The URL must follow this pattern: [protocol]://[slave_host]:[slave_port]/ebx-dataservices/connector
Where the possible values of 'protocol' are 'http' or 'https'.
ebx.d3.slave.url=

Minimum port to use to transfer archives on TCP mode.
Must be a positive integer above zero and below 65535.
If not set, a random port will be used.
#ebx.d3.slave.socket.range.min=

Max port to use on TCP mode to transfer archives.
Must be a positive integer above ebx.d3.slave.socket.range.min and below 65535.
Mandatory if ebx.d3.slave.socket.range.min is set.
#ebx.d3.slave.socket.range.max=

JMS protocol
If JMS is activated, the following properties can be defined in order to enable JMS functionalities
for a D3 node.
Sample configuration for all D3 nodes with JMS network protocol:
##
JMS configuration for D3
##
Taken into account only if Data Services JMS is configured properly
##
Configuration for master, hub and slave
##
Default is false, activate JMS for D3
If activated, the deployer must ensure that the entries
'jms/EBX_D3ReplyQueue', 'jms/EBX_D3ArchiveQueue' and 'jms/EBX_D3CommunicationQueue'
are bound in the operational environment of the application server.
On slave or hub mode, the entry 'jms/EBX_D3MasterQueue' must also be bound.
ebx.jms.d3.activate=false

Change the default timeout when using reply queue.
Must be a positive integer that does not exceed 3600000.
Default is 10000 milliseconds.
#ebx.jms.d3.reply.timeout=10000

Time-to-live message value expressed in milliseconds.
This value will be set on each message header 'JMSExpiration' that defines the
countdown before the message deletion managed by the JMS broker.
Must be a positive integer equal to 0 or above the value of 'ebx.jms.d3.reply.timeout'.
The value 0 means that the message does not expire.
Default is 3600000 (one hour).
#ebx.jms.d3.expiration=3600000

Archive maximum size in KB for the JMS body message. If exceeds, the message
is transferred into several sequences messages in a same group, where each one does
not exceed the maximum size defined.
Must be a positive integer equals to 0 or above 100.
Default is 0 that corresponds to unbounded.
#ebx.jms.d3.archiveMaxSizeInKB=

##
Configuration dedicated to hub or slave
##
Master repository ID, used to set a message filter for the concerned master when sending JMS message
Mandatory property if ebx.jms.d3.activate=true and if ebx.d3.mode=hub or ebx.d3.mode=slave

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 716

#ebx.jms.d3.master.repositoryId=

See also JMS for distributed data delivery (D3) [p 703]

Services on primary nodes
Services to manage a primary node are available in the 'Administration' area of the replica node under
'[D3] Primary node configuration' and also in the 'Delivery dataspaces' and 'Registered replica nodes'
tables. The services are:

Relaunch replays Immediately relaunch all replays for waiting federation
deliveries.

Delete replica node delivery
dataspace

Delete the delivery dataspace on chosen replica nodes and/
or unregister it from the configuration of the D3 primary
node.
To access the service, select a delivery dataspace from the
'Delivery dataspaces' table on the primary node, then launch
the wizard.

Fully resynchronize Broadcast the full content of the last broadcast snapshot to
the registered replica nodes.

Subscribe a replica node Subscribe a set of selected replica nodes.

Deactivate replica nodes Remove the selected replica nodes from the broadcast scope
and switch their states to 'Unavailable'.

Note

The "in progress" broadcast contexts are rolled
back.

Unregister replica nodes Disconnects the selected replica nodes from the primary
node.

Note

The "in progress" broadcast contexts are rolled
back.

Note

The primary node services above are hidden while some broadcasts are pending or in progress.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 717

Services on replica nodes
Services are available in the 'Administration' area under [D3] Configuration of replica node to manage
its subscription to the primary node and perform other actions:

Register replica node Re-subscribes the replica node to the primary node if it has
been unregistered.

Unregister replica node Disconnects the replica node from the primary node.

Note

The "in progress" broadcast contexts are rolled
back.

Close and delete snapshots Clean up a replica node delivery dataspace.
To access the service, select a delivery dataspace from the
'Delivery dataspaces' table on the replica node, then follow
the wizard to close and delete snapshots based on their
creation dates.
Note: The last broadcast snapshot is automatically excluded
from the selection.

123.3 Supervision
The last broadcast snapshot is highlighted in the snapshot table of the dataspace, it is represented by
an icon displayed in the first column.

Primary node management console
Several tables make up the management console of the primary node, located in the 'Administration'
area of the primary node, under '[D3] Primary node configuration'. They are as follows:

Registered replica nodes Replica nodes registered with the primary node. From this
table, several services are available on each record.

Broadcast history History of broadcast operations that have taken place.

Replica node registration log History of initialization operations that have taken place.

Detailed history History of archive deliveries that have taken place. The list
of associated delivery archives can be accessed from the
tables 'Broadcast history' and 'Initialization history' using
selection nodes.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 718

Primary node supervision services
Available in the 'Administration' area of the primary node under '[D3] Primary node configuration'.
The services are as follows:

Check replica node information Lists the replica nodes and related information, such as
the replica node's state, associated delivery profiles, and
delivered snapshots.

Clear history content Deletes all records in all history tables, such as 'Broadcast
history', 'Replica node registration log' and 'Detailed
history'.

Replica node monitoring through the Java API
A replica node monitoring class can be created to implement actions that are triggered when the
replica node's status switches to either 'Available' or 'Unavailable'. To do so, it must implement the
NodeMonitoring interface. This class must be outside of any EBX® module and accessible from
the class-loader of 'ebx.jar' and its full class name must be specified under '[D3] Replica node
configuration'.

See also NodeMonitoringAPI

Primary node notification
A D3 administrator can set up mail notifications to receive broadcast events:

• On broadcast failure,

• On federation broadcast, if replays exceed a given threshold.

The mail contains a table of events with optional links to further details.
To enable notifications, open the '[D3] Primary node configuration' dataspace from the
'Administration' area and configure the 'Notifications' group under 'Global configuration'.
The 'From email' and 'URL definition' options should also be configured by using the 'Email
configuration' link.

Log supervision
The technical supervision can be done through the log category 'ebx.d3', declared in the EBX® main
configuration file. For example:
ebx.log4j.category.log.d3= INFO, Console, ebxFile:d3

See also Configuring the EBX® logs [p 555]

Temporary files
Some temporary files, such as exchanged archives, SOAP messages, broadcast queue, (...), are
created and written to the EBX® temporary directory. This location is defined in the EBX® main
configuration file:
###

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 719

Directories for temporary resources.
###
When set, allows specifying a directory for temporary files different from java.io.tmpdir.
Default value is java.io.tmpdir
ebx.temp.directory = \\${java.io.tmpdir}

Allows specifying the directory containing temporary files for cache.
If unset, the used directory is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.cache.directory = ${ebx.temp.directory}/ebx.platform

When set, allows specifying the directory containing temporary files for import.
If unset, the used directory is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.import.directory = ${ebx.temp.directory}/ebx.platform

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 6.2.0 720

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 721

CHAPTER 124
Staging

This chapter contains the following topics:

1. Overview

2. Glossary

3. Performing staging

4. Staging domains and best practices

5. Staging permissions and administrative delegation

6. Error handling

7. Supported types of staging elements

8. REST API

9. Temporary folders handling

10.Automatic import on startup

124.1 Overview
The staging feature allows you to move TIBCO EBX® repository elements from one environment to
another. For example, it can stage configuration settings from a development environment to a testing
environment. Many elements are supported as part of the staging feature. However, its main purpose is
to handle configurable elements contained in the repository and not data that are updated by end users.
See Supported types of staging elements [p 728] for a list of all supported types of staging elements.

Note

If a group has no elements to stage, it does not display. For example, Historization
profile does not display if no custom historization profile has been created.

By default, the staging features are active. Use the ebx.staging.activated [p 561] parameter contained
in the ebx.properties file to activate or to deactivate staging in different environments.

Note

Administrative access, or delegated staging access is required to use the staging feature.
See Staging permissions and administrative delegation [p 725] for more information.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 722

124.2 Glossary

Staging server
An environment composed of deployed software (including EBX®) that is dedicated to development,
testing, or production. Staging is used to build, test, and review an updated, or new solution before
it is moved (staged) from one server to another.

Staging element
A configuration element in an EBX® repository that is stageable. Different types of staging elements
include: data model publications, workflow model publications, dataspaces, etc.

Staging domain
A set of staging elements that can be transferred between EBX® servers.

Staging archive
File used to stage elements of a domain from a server to another.

Staging operations
The actions of importing and exporting a staging archive to and from a server.

124.3 Performing staging
The process of staging begins with the creation of domains to organize and stage elements. Once
a domain is ready, it is exported as an archive file. Finally, the archive is imported into the target
environment.
This operation can be performed in the EBX® graphical user interface, or by using the REST APIs [p

1122]. See Staging domains and best practices [p 725] for staging domain best practices.

Attention
Only product versions with the same minor number are compatible for staging.

The following steps show how to use the user interface to perform a staging operation:

1. Create a domain:

See also Staging domains and best practices [p 725]

1. In the source repository, navigate to Administration > Repository management and select
Staging.

2. Select Domains and click Add a domain.

3. Provide a name and save, but do not close.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 723

4. Define the elements to stage by selecting the desired elements and if required, the specific
content in the category. The list of selections is automatically saved on changes.

Note

Any elements that are in a state of error are hidden and cannot be selected.

Note

Additionally, each node in the repository is limited to displaying
1000 elements. It is possible to change this default value using the
ebx.staging.maxElementPerList property contained in the ebx.properties
file.

See also Activating and configuring staging [p 561]

2. Export and download the staging archive by selecting Download at the top of the screen or at
each line of the domains table.

3. Import the staging archive:

1. In the target repository, navigate to Administration > Repository managementand select
Staging.

2. Click Import a staging archive at the top of the screen.

3. Browse to select the staging archive.

4. Choose one of the import options. See Specifying import behavior [p 724] for more
information.

5. Click Import archive.
See Error handling [p 726] for more information.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 724

Specifying import behavior
The following image and table highlight available options when importing a staging archive:

Force archive import If the same staging archive was already successfully
imported, the staging import is ignored by default. Use this
option to force import execution of the archive. Use this
mode if an initial import did not go as expected, then retry
after making changes in the source repository.

Force import of components If the same staging component was already successfully
imported, it is ignored by default. Use this option to force
import execution of the component. Use this mode after
modifying an archive and force replay the entire persistence
process before going into production.

Note

If the same archive has already been
successfully imported, the option Force
archive import must also be checked to force

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 725

a component import. Otherwise, the entire
import process will be skipped.

Save the staging domain
definition

By default, staging domain records are not created in the
Domains table when executing an import operation. Use
this option to import manually the domain definition.

Dry run (testing) This option is used for testing purposes to run an import
without modifying the repository. Use this option to ensure
the existence of declared dependencies.

124.4 Staging domains and best practices
Staging domains are an effective means to organize the repository configuration settings. Use a domain
to break large repository configurations into smaller parts. This allows each part to have different
life-cycles. For example, HR and Procurement applications require updates at different times. In this
case, create a separate domain for each application. Then define and stage these domains in multiple
environments (dev, test, prod, etc.). This method also avoids having to test the entire configuration
repository each time.
Domains require a unique name that conforms to dot notation. Supported characters include alpha
and numeric from ASCII, underscores, dashes, and dots (the name cannot begin with an underscore).
This behavior can be used like a namespace to create a hierarchy. For example: com.acme.hr,
com.acme.procurement, com.acme.procurement.catalog, com.acme.procurement.catalog.2022.
Some best practices include:

• Begin to clearly define domains as soon as possible in the staging life-cycle.

• Use a separate domain for permissions because development environment permissions are usually
different from production permissions.

• Staging should only handle configuration data in the repository. The types "Data tables" and
"Filtered data" are supported, but it should apply to data that are not updated by users (regions,
countries, etc.) as the staging data will update them and might override changes by users.

• Dataspaces that include long-duration transactional data hold operational data, and not
configuration data. They can be numerous and clutter up view of staging components. Prevent
them from displaying using the settings available in: Administration > Repository management
> Staging > Configuration > Hidden dataspaces.

• Create a backup of the database before importing one or more staging archives.

124.5 Staging permissions and administrative delegation
By default, administrators in EBX® have permission to access staging and can grant access rights to
non-administrative users. Access rights can specify availability of individual actions, or all actions.
However, since staging has the ability to create and update configuration elements, it is important to
use caution when granting access to staging.
Grant a user staging administration permissions using administrative delegation. This process is
completed using User permissions apply when selecting the content of a staging domain; they cannot
select elements to stage that they don't have access to.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 726

You can configure administrative delegation in the Administration panel under User interface >
Global permissions [p 629].

See also Configuring the user and roles directory [p 552]

The following table highlights the permission differences between an administrator and a user with
staging administration delegation:

Administrator • Can export a staging archive.

• Can import a staging archive.

A user with delegated staging
administration

• Can export a staging archive.

• Cannot import a staging archive.

Note

This type of user has access to, and
can export domains created by other
users or administrators even if the user
does not have access to the staging
elements. Choose this option when you
want to ensure the consistency of the
domain definition. Only users with write
permissions can create domains.

124.6 Error handling

Error handling during import operation
An import operation may return errors and warnings. The import can be successful, partially
successful, on failure, have elements that were ignored or totally ignored. The import operation does
not stop on first error, but tries all components. When an error occurs, the component will not import
correctly. It might require a change in either the source or target repository to complete successfully.
The error message should provide enough information to help discern the issue.

Note

Importing is not fully transactional and errors might lead to an unstable repository.

A dependency check is done, and if a required element is missing, an error is returned. This can happen
when importing a domain that contains a dataset and the dataspace associated with the dataset is not
in the domain, or in the destination repository.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 727

When a warning occurs, the component has probably been imported correctly but might work in a
degraded way, or is not accessible. During the dependency check, if a referenced optional element is
missing, a warning is returned. This is the case of the owner profile of a dataspace.

Note

Staging tries to avoid writing as much as possible by default. This behavior can be
overridden to force create or update staging elements. See Specifying import behavior
[p 724] for more information.

Import report
An import report is generated on each import operation performed through the UI or REST. It includes
the import status of the domain and its components. The report also contains messages with severity
levels (info, warning, error) that can help troubleshoot issues.
Import domain status values:

• Success: All components are imported successfully. The import might ignore some components
if they are already present and as expected in the destination repository.

• Partially failed: Some component imports raised errors. Other components were imported
successfully. The Status of each component [p 727] import should be checked.

• Failed: An exception occurred while reading the archive, or the component imports are all in
error. Unlike the "Partially failed" status, no changes are performed to the repository.

• Ignored: The archive is ignored as it was already imported or all the component imports were
ignored. No changes are performed to the repository.

• Waiting: Used in asynchronous mode. The import operation is queued and waiting to be
processed.

• Started: The import process is started and not finished.

Note

On system start, all imports that were started or waiting will pass automatically to
failed because the job was interrupted.

Import component status values:

• Success: The staging element was successfully created or updated.

• Failed: An error occurred while importing the staging element.

• Ignored: The import is ignored since the element is as expected in the repository.

• Started: The import is started and not finished.

Error handling during export operation
Unlike import operations, the export operation only succeeds on full archive export; it fails if any
error occurs. There is no partial states for staging exports.
If components in the domain are missing, an error is returned and the archive is not generated.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 728

Export report
An export report is a report generated on each export operation performed through the UI or REST.
It includes the export status of the archive.
Export domain status values:

• Exported: The archive was successfully exported.

• Requested: Used in asynchronous mode. The export is requested and currently processing.

• Aborted: The archive export was aborted due to export errors or a processing interruption.

• Expired: Using the REST service's asynchronous mode, an archive was generated but expired.
It is no longer available.

124.7 Supported types of staging elements
The following types of repository elements are supported for the staging feature:

• Dataspace

• Dataspace permissions

• Dataset (see Datasets [p 729] for more information)

• Dataset permissions

• Data table

• Filtered data

• Data model (see Data models [p 729] for more information)

• Data model permissions

• Data model publication (see Data models [p 729] for more information)

• Workflow publication

• Perspective

• Perspective permissions

• Profile (Roles) (see Profiles [p 729] for more information)

• View publication

• View publication permissions

• Administration

• Recommended perspective

• Recommended perspective permissions

• Historization profile

• History and logs permissions

• Task scheduler permissions

• Workflow execution permissions

• Workflow history permissions

• Workflow interaction permissions

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 729

• Workflow launcher permissions

• Workflow technical configuration

• Dataspace administration permissions

• Data modeling permissions

• Auto increment permissions

• Global permissions

• Scheduled tasks

• Workflow models

• Script publications

• Script sources

Data tables
Data tables and filtered data are imported with a default configuration:

• The default import mode [p 143] is update or insert

• The blocking constraints [p 885] are disabled

• The by delta [p 144] mode is enabled

• The table triggers [p 892] are activated on import

Profiles
Only roles can be staged. Profiles are ignored when importing a staging archive, except for roles and
if the directory is the default directory. When exporting a staging domain, a staging element linked
to one or more profiles (user or role) will be staged with the link(s) whenever the users or roles are
in the directory or not.

Note

In the case of a cycle in role relationships, all roles constituting the cycle are ignored

Data models
Data model publications and data models that are located in modules are not available for staging.
However, a data model can be staged even if its corresponding publication is located in a module (the
publication will not be staged).

Datasets
It's not possible to stage child datasets. They don't display when adding staging element to a domain.

EBX® Add-ons
EBX® Add-ons have specific components that can be staged. The sections below give information
on the add-on components available to stage and where to find the components in the user interface.
For reference purposes, the Staging location column in each table below refers to the following
location: Administration > Repository management > Staging > Domains > <<SelectedDomain>>
> Components.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 730

The add-ons that include stageable components are:

• TIBCO EBX® Data Model and Data Visualization Add-on [p 730]

• TIBCO EBX® Data Exchange Add-on (New) [p 731]

• TIBCO EBX® Insight Add-on (New) [p 731]

• TIBCO EBX® Digital Asset Manager (New) Add-on [p 731]

• TIBCO EBX® Match and Merge Add-on [p 732]

TIBCO EBX® Data Model and Data Visualization Add-on
The table below shows the add-on's components available to stage and their location:

Add-on
component

Staging location (beginning with category)

Saved graph via
DMA

Data models > Saved graph via DMA: [Name]

Value and
relationship
graph
configurations

Dataspace > Datasets > Value and relationship graph configuration: [Name]

Data model
graph
configurations
via DMA

Data models > Data model graph configurations via DMA: [Name]

Data model
graph
configurations

Dataspace > Datasets > Data model graph configuration: [Name]

Saved graphs Dataspace > Datasets > Saved graph: [Name]

Custom graph Custom graph: [Name]

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 731

TIBCO EBX® Data Exchange Add-on (New)
The table below shows the add-on's components available to stage and their location:

Add-on
component

Staging location (beginning with category)

SQL
configuration

Dataspace > Datasets > Database and data model connections

Note

The database configuration is automatically migrated for the selected Database and data
model connection configuration.

User template Dataspace > Datasets > Template information

Note

If a template is used for an SQL service, the corresponding SQL service is automatically
included.

TIBCO EBX® Insight Add-on (New)
The table below shows the add-on's components available to stage and their location:

Add-on
component

Staging location (beginning with category)

Dashboards Dashboards

Note

Each dashboard has dependencies to the specific assets it contains, such as datasets, tables,
and fields. Empty dashboards and invalid indicators are automatically excluded.

TIBCO EBX® Digital Asset Manager (New) Add-on
The table below shows the add-on's components available to stage and their location:

Add-on
component

Staging location (beginning with category)

Digital asset
component

Dataspace > Datasets > Digital assets components

Digital assets Dataspace > Datasets > Digital assets in Drives

Note

Staging can only migrate the Digital asset. Physical files must be migrated separately

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 732

TIBCO EBX® Match and Merge Add-on
The table below shows the add-on's components available to stage and their location:

Add-on
component

Staging location (beginning with category)

Matching
configuration

Data model publications > Matching configuration > Table > Matching configuration

Note

All elements that belong to a given matching configuration (main information, matching
policies, merging policies and replications) are also migrated.

Matching policy Data model publications > Matching configuration > Table > Matching policy

Note

All components related a given matching policy are migrated, including a merge policy if it is
linked with the selected matching policy. The exception is that the matching configuration's
main information is not included.

Merge policy Data model publications > Matching configuration > Table > Merge policy

Note

All components related to a given merge policy are also migrated.

124.8 REST API
See Staging operations [p 1122] for more information.

124.9 Temporary folders handling
Temporary folders are created to support staging operations and asynchronous process. Each folder
created expires after a configured delay. The scheduled task DeleteExpiredStagingTemporaryFolders
ensures periodic deletion of expired folders.

Note

The dedicated size on disk of temporary folders created for staging can be configured
through the property ebx.staging.maxTemporaryFolderSizeInBytes [p 561].

124.10 Automatic import on startup
You can configure staging to automatically import specific archives on startup. This prevents you
from having to manually initiate the import process and can ensure that all necessary data is available
in your environment in a timely manner.
To set up automatic staging archive import:

1. In the ebx.properties file configure the ebx.staging.importOnStartup [p 561] property.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 733

2. Declare the folders containing the archives you want to import:

1. The folders should be physically located in a /startup directory under the configured
repository directory [p 551] (example: ${ebx.home}/ebxRepository/startup/folder1).

2. Each folder should contain a JSON file called instructions.json, which specifies the order
and options of import for the archives in that folder.

The instructions.json file has the following format:
{
 "imports": [
 {
 "archiveFilePath": "myArchive1.zip"
 },
 {
 "archiveFilePath": "myArchive2.zip",
 "advanced_options": {
 "forceUpdateOnIdenticalComponent": false,
 "importDefinition": true
 }
 }
]
}

If an import fails, an errors.json file is created in the folder and contains a detailed report of the errors
encountered during the import process. If the import is successful, an output.json file is generated
in the folder and provides a report of the successfully processed imports.

Note

The advanced options are optional and lead to the same behaviour as the import options
in the UI: Force import of components and Save the staging domain definition [p 724].

Note

Any folder containing the file output.json will be ignored during startup since it will
be considered as already successfully imported.

Note

The declared folders and the archives specified in the instruction files must be strictly
located under the startup folder of the configured repository. Navigation to parent folders,
as well as the use of symbolic links, is not allowed.

Documentation > Administration Guide > Staging

TIBCO EBX® Product Documentation 6.2.0 734

Documentation > Administration Guide

TIBCO EBX® Product Documentation 6.2.0 735

EBX® Metadata
Management
application

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Administration Perspective

TIBCO EBX® Product Documentation 6.2.0 736

CHAPTER 125
Metadata Administration Perspective

The main navigation pane, located at the left of the screen, contains perspectives. Perspectives allow
you to access to all features that are enabled by permissions associated with your profile. Features
are groups by section; each section is identified by its own color. You can resize the perspective by
dragging is right border and reduce display to only icons by clicking on the arrow at the upper right
corner.

Attention
As of this release, metadata management functionality and it's related features and perspectives is
only available for TIBCO EBX® Container Edition. See Building the image [p 598] for information
on installing the metadata related module.

The Metadata Administration perspective gives you access to the following sections.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Administration Perspective

TIBCO EBX® Product Documentation 6.2.0 737

Metadata harvesting This section allows you to configure the TIBCO® Metadata Agent. You can view
a list of available agents, supported data source types and a list of different objects managed by these
agents. You can follow status and troubleshooting of metadata harvesting jobs and configurations.
From here you can also create technical users for the Agent and other applications that call the
Metadata API. Sampling This section allows you configuring sampling default size. Permissions This
section covers administration of the application permissions for different groups of users and different
types of actions and services in the EBX® Metadata Management application. You can assign roles
to the users, define access rules for your metadata according to user profiles and apply dynamic roles
to workflow tasks. You can also define collaboration permissions.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Administration Perspective

TIBCO EBX® Product Documentation 6.2.0 738

Workflows This section allows you to follow active and completed workflows executed in the system.
It also allows you to activate and deactivate workflow execution for create and update actions, and
define provisioning parameters. Repository From this section you can access documents attached to
your metadata as well as sample files retrieved using Asset sampling. You can see three drives here:
User data drive, Built-in drive and Machine Learning/Samples drive. UI configuration This section
allows you to define a default home page configuration and grid forms. Trial This section is only
available for users subscribed to trial data. It allows you to load a trial metadata sample in your system.
Downloads You can download a TIBCO® Metadata Agent ready for installation package from here.
Advanced services This section allows you to reset the system’s configuration to the default state. A
reset applies to all permissions and views and resets them to their original state. About From here you
can access information about the EBX® Metadata Management application.

Documentation > Administration Guide > EBX® Metadata Management application > User roles

TIBCO EBX® Product Documentation 6.2.0 739

CHAPTER 126
User roles

This chapter contains the following topics:

1. Dynamic roles

126.1 Dynamic roles
A role is dynamic when it is relative to data. When a static role can be given to a group of persons
for all occurrences of a particular entity, a dynamic role can be given to a different group of users for
each record. For instance, the owner of a given occurrence of an entity can be set as a field of this
occurrence which refers to a group of persons. This group itself refers to a static role. Going through
these relations we can then link an occurrence to a static role. The Dynamic role thus describes how
to resolve static roles for a given occurrence based on its values.
The configuration of dynamic roles is made from the Metadata Administration perspective.

For each dynamic role, a resolution path can be defined from entities. In the example below, the
application owner can be resolved for a given Asset by getting its containing Instance and the main
Application of this Instance. Now that the source record has been retrieved following the specified

Documentation > Administration Guide > EBX® Metadata Management application > User roles

TIBCO EBX® Product Documentation 6.2.0 740

path, we can get the source value (Owner here) which must be a reference to a Group. This group
being linked to a static role, the dynamic role can be resolved by this static role.
The value that must fill the field Source record can be an empty string if the source value is directly
in the current occurrence of the chosen entity. Otherwise, it should be a succession of paths to foreign
keys or associations within the records we consult.

Main tab
Field Description Identifier This field is mandatory. The identifier is automatically generated. This
cannot be modified. Dynamic role This field is mandatory. Define which dynamic role this plan will
resolve. Entity The entity from which we want to resolve the dynamic role. An occurrence of this
entity will be the starting point of the resolution. Source record List of successive paths to references
separated by a space. If empty, the source record is the current occurrence of the entity defined in the
previous field Entity. Source entity This field is mandatory.

Documentation > Administration Guide > EBX® Metadata Management application > Permissions

TIBCO EBX® Product Documentation 6.2.0 741

CHAPTER 127
Permissions

You can access permission configuration from the Administration perspective. The Permissions
group allow you to define access rights on the different Data categories and Access rules.
Access rights
Default access rights are set on every data entity of every category according to what each role is
expected to do. This is a default configuration that you can change by accessing the categories under
the Access rights menu. By defining access rights, we specify for every element that can be an entity,
one of its fields or a set of those, if it is displayed and if so, if it is editable for a given user’s role.
Access rights are also applicable to operations such as the creation of new records and services such
as the import and export of files.
Access rules
While access rights involve user roles and data structure, access rules restrict access according to data
values. You can apply them to the occurrences of an entity or to a field. If the field is left undefined, the
access rule will determine the access to every occurrence. The example below determines the access
to occurrences of the Application: All applications containing the word Secret in their label are hidden
from business users. The condition is expressed as an XPath predicate starting at the root of the entity
where every field must be seen as a step in the path. See Supported XPath syntax for more information.

Documentation > Administration Guide > EBX® Metadata Management application > Permissions

TIBCO EBX® Product Documentation 6.2.0 742

Documentation > Administration Guide > EBX® Metadata Management application > User interface configuration

TIBCO EBX® Product Documentation 6.2.0 743

CHAPTER 128
User interface configuration

This chapter contains the following topics:

1. Change default home page template

128.1 Change default home page template
On the administration perspective, select Default home page configuration.
You will see the default home page template that you can customize. Click the gear icon to
modification of the page. You can add, remove, edit, and rearrange the homepage widgets. To learn
more about home page customization, please refer to Home page [p 325].

Documentation > Administration Guide > EBX® Metadata Management application > User interface configuration

TIBCO EBX® Product Documentation 6.2.0 744

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 745

CHAPTER 129
Workflows

All users permitted to create a new record for an entity have access to an icon with a plus sign followed
by the name of the entity. This icon is located in the upper left side of global views such as the card,
table and hierarchical views.

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 746

Following the same logic, users can update a record for an entity when they see the Edit icon. When
they select this icon, they are redirected to an edit screen.

By default, these actions are free from control and users permitted to see affected records can
see these changes. In order to enforce controls, you can activate workflows to involve actors that
review, approve and finalize any creation or update operated by some profiles. Use the Metadata
Administration perspective to activate workflows.

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 747

You can activate workflows for create and update operations. Duplicating a record is considered the
same as creation, so if you activate the workflow for create, it will also apply for duplicating.
Activating the workflow on Create causes the creation icon to redirect the user to the first step of the
workflow consisting of creating a record in a workspace. This workspace isolates all modifications
operated in the workflow until its completion. The completion of the workflow can lead the creations
or updates being validated and visible to all, or cause their cancellation. You can define different actors
for each operation and entity.

You can define each actor as a collection of user roles. These roles are either static or dynamic. A
static role is defined in the directory and directly impacts users. A dynamic role is resolved from the
data and is conditional to the subject of the workflow being an occurrence of an entity. A dynamic role
can be, for example, the owner of this occurrence which is set on the occurrence itself as a reference
to a Group itself referencing a static role. A dynamic role is then a dynamic allocation of a static role
contextual to data. See Dynamic roles for more information.
If no role is defined for an actor, or if only dynamic roles are defined but the latter are not mapped to
static roles, the act of reviewing, approving or finalizing is then skipped.

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 748

The reviewer reviews the creation or update of an occurrence to make sure all required information is
present and qualitative enough to be submitted to approvers. If not, he can reject the changes leaving
a mandatory comment. The initiator of a workflow will receive a task to either cancel the operation
or make the necessary changes according to the reviewer’s comment and ask for a new review. This
review, even if offered to many roles, will be operated by only one user; the one who takes the task.
Approvers must approve or reject the operation. Offered to many roles, one user from each role must
perform this action. If one of them rejects the operation, the initiator of the workflow will receive a
task to either cancel the operation or make the necessary changes according to the approver’s comment
and ask for a new review. Once approved by all approvers, the operation can be finalized.
A user can be involved to finalize the operation if extra actions must be performed but are not
authorized for previous actors.
Provisioning workflow configuration
The provisioning workflow follows the same pattern except that a third kind of approvers can be
configured, the assets owners.

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 749

The finality of this workflow being the composition of a view from collected assets, each of these
assets having or not a owner defined, these last can be involved to approve the creation of the view
and finally the usage of their assets.

Documentation > Administration Guide > EBX® Metadata Management application > Workflows

TIBCO EBX® Product Documentation 6.2.0 750

Documentation > Administration Guide > EBX® Metadata Management application > Web Services and API

TIBCO EBX® Product Documentation 6.2.0 751

CHAPTER 130
Web Services and API

Beware: these operations are advanced ones and should be used with precautions.
A swagger Website allows using TIBCO Cloud Embedded Web Services:
From your application context root, go to [CONTEXT-ROOT]/ebx-ca-tabula/api-documentation in
your browser.

These services are not available without authentication.
To enable authentication, click on Authorize button and enter credentials.
Currently, only basic authentication is available, so you’ll have to use the credentials of a Technical
User.

Documentation > Administration Guide > EBX® Metadata Management application > Web Services and API

TIBCO EBX® Product Documentation 6.2.0 752

The rights applied to this technical user, including its profile(s) will be applied to API operations as
well.

See Technical Users [p 783] to define a technical user.
Once connected, the keylock will be displayed as follows

Documentation > Administration Guide > EBX® Metadata Management application > Web Services and API

TIBCO EBX® Product Documentation 6.2.0 753

Then you can choose the operation that you want to execute. Examples of syntax are given in the
swagger interface.

Documentation > Administration Guide > EBX® Metadata Management application > Web Services and API

TIBCO EBX® Product Documentation 6.2.0 754

When you click on select, you’ll be able to get the result (HTTP Status + JSON response structure)

These APIs are usable with the same authentication and rights management from any Enterprise
Service Bus or with an Integration Platform.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 755

CHAPTER 131
Installing the TIBCO® Metadata

Agent
This chapter contains the following topics:

1. Installation and configuration

2. EBX® Metadata Management application Connection Encryption

3. Agent execution (as a Standalone Java Application)

4. Troubleshooting

131.1 Installation and configuration
TIBCO® Metadata agent is a Java application provided as a jar file and configured using a properties
file. Its main purpose is to establish interactions between the source system instance (through specific
adapter) installed on a server and the EBX® Metadata Management application. One agent can be
connected to one instance of a source system. The EBX® Metadata Management application supports
connections to multiple agents that manage different data sources.
An agent can have one or multiple adapters to support metadata extraction from different data sources.
An adapter is a separate Java application that ensures one or several of the metadata capabilities for
a given data source type(s):

• Data source management

• Metadata harvesting

• Data sampling

• Metadata provisioning

• Lineage extraction.

Prior to agent configuration, you must create a technical user from the Administration perspective.
For more details, see Technical Users [p 783].
Note: the technical user created is automatically prefixed with ebx-.

Prerequisites
The TIBCO® Metadata Agent requires:

• JRE 11 minimum

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 756

If the TIBCO® TDV Metadata Adapter is used (see TIBCO TDV Metadata Adapter installation [p

765]):

• TIBCO® Data Virtualization version 8.3 minimum

Security and Cloud Access
In order to access to EBX® (CIC Cloud), and to allow the EBX® Metadata Management application
to access to the TIBCO® Metadata Agent, you must take into account the following infrastructure
considerations:

• TIBCO® Metadata Agent hosting server must be opened to the Internet.

• It is recommended to define a DNS Name for the TIBCO® Metadata Agent hosting server, in
order to ease certificate management.

• TIBCO® Metadata Agent hosting server must be reachable via HTTPs (HTTP over SSL), using
a CA-signed certificate (no self-signed certificate).

• TIBCO® Metadata Agent external port must be port 443 (default HTTPs port), using a reverse-
proxy (IIS, Apache, Ngninx, …). (ma.http.ws-url has to be set to the reverse-proxied URL to the
agent, reachable from Internet).

• TIBCO® Metadata Agent internal port can be configured on any available port on the machine
(see ma.http.port in Agent configuration properties), and use in the reverse-proxy configuration
to expose the TIBCO® Metadata Agent to Internet.

Installation process
The following steps describe how to get the TIBCO® Metadata Agent running on your system:

1. Download TIBCO® Metadata Agent package from the Metadata Administration perspective.

2. Unpack it on your system.

3. Fill in properties template as described below in the Properties configuration section. Please note
that for some properties it is required to log into EBX® and/or obtain some information from a
EBX® administrator.

4. Download and install the EBX® Metadata Management application Adapters required for your
source systems.

5. Fill in properties template for each adapter.

6. Activate required adapters in the main Agent properties template.

7. Launch TIBCO® Metadata Agent as described below in the Execution section.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 757

Packaging
The agent is available as a standalone Java application (jar file). You can download it from the
Metadata Administration perspective.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 758

Properties files
The main packaging of the TIBCO® Metadata Agent includes following properties files:

• application-metadata-agent.properties for configuration of Agent

• application-datasources.properties for configuration of the supported data source types per
adapter

• application-tdv.properties (optional) for configuration of the TIBCO® TDV Metadata Adapter.

TIBCO® Metadata Agent properties template
##

Metadata connection ##### #####
##
##
ma.metadata.context=[[METADATA BASE URL]]
ma.metadata.username=[[METADATA TECHNICAL USER NAME]]
ma.metadata.password=[[METADATA TECHNICAL USER PASSWORD MAY BE ENCRYPTED]]
ma.metadata.public-key=[[METADATA TECHNICAL USER JWT]]
ma.metadata.label=[[LABEL FOR THIS AGENT]]

Uncomment this line if you want to use encryption for agent passwords.
In this case, you will have to encrypt password using TIBCO Metadata Agent Tools
Read the documentation for more information

#ma.metadata.useEncryption=true

##

Agent properties ##### #####
##

ma.http.port=[[AGENT PORT]]
ma.http.ws-url=[[AGENT CONTEXT URL]]

##

Agent log properties ##### #####
##

#Folder where the logs will be stored
ma.logging.path=./logs
#Log level for technical logs (Spring framework, external libraries).
ma.logging.level.root=INFO
#Log level for the Agent's functional logs.
ma.logging.level.agent=INFO
#Log level for the SOAP messages. Set to TRACE to see full request body.
ma.logging.level.soap.sent=INFO
#Log level for the SOAP messages. Set to TRACE to see full response body.
ma.logging.level.soap.received=INFO

##

Agent proxy properties ##### #####
##

Uncomment this line if you want to use a proxy configuration for the agent
####
#ma.proxy.useProxy=true ma.proxy.proxyHost=[[PROXY HOST]]
ma.proxy.proxyPort=[[PROXY PORT]]
ma.proxy.proxyAuthentication=[[PROXY
AUTHENTICATION ?]]
ma.proxy.proxyUsername=[[PROXY USERNAME]]
ma.proxy.proxyPassword=[[PROXY PASSWORD]]

##

Agent Adapter properties ##### #####
##

#Comma-separated list of packages to scan for adapters classes
agent-adapter.base.package=com.tibco.ca.tabula.agent.tdv
#Comma separated list of profiles (corresponding to adapter technical names)
agent-adapter.active-profiles=tdv

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 759

Properties configuration
Prior to launching the TIBCO® Metadata Agent, you need to complete the information in the
properties file to check the connection to the EBX® Metadata Management application.
Users are strongly discouraged to modify properties that are not described in the table below but are
present in the properties file, especially specific URLs configured for EBX® Metadata Management
application operation or the H2 database JDBC URL. A good practice is to remove old specific

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 760

properties from your prior-to-version 4 agent, in order to keep only specific properties in your
configuration file.

Property name Description

TIBCO EBX®'s metadata connection

ma.metadata.context REST Endpoint for EBX® Metadata Management application
Advanced Data Services. Expected format is: https://
<host>:<port>/<contextRoot>

ma.metadata.username Metadata technical user name. Please, contact an administrator
to receive this information.

ma.metadata.password Metadata technical user password. Please, contact an
administrator to receive this information.

ma.metadata.public-key Public key (JWT) associated with the EBX® Metadata
Management application technical user. Please, contact an
administrator to receive this information.

ma.metadata.label A user-friendly label to show in the Metadata for this agent.

ma.metadata.useEncryption Define if encryption is used for ma.tdv.datasource.password,
ma.tdv.soap.password, ma.metadata.password and
ma.proxy.proxyPassword. If activated, all passwords must be
encrypted using TIBCO Metadata Agent Tools, see below.

Agent properties

ma.http.port The port on which the agent listens for incoming REST
connections.

ma.http.ws-ur

l

The URL of the agent's REST endpoint. You have to set
HTTPs on the agent (using reverse proxy for instance, or the
EBX® Metadata Management application won't be able to
connect).You also have to allow incoming connections from
cloud (Internet) to agent's host & port.

Agent logging properties

ma.logging.path The folder where the agent's logs will be stored. Agent must
have write permission on this folder.

ma.logging.level.root Log level for the technical logs generated by the technical
framework that the Agent runs on.

ma.logging.level.agent Log level for the functional logs generated by the Agent.

ma.logging.level.soap.sent Log level for the SOAP messages that are sent to the TDV
from the Agent. By default, they are not logged. If you want to
log them for debug or any other purposes, set this property to
TRACE.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 761

Property name Description

ma.logging.level.soap.received Log level for the SOAP messages that are received from the
TDV to the Agent. By default, they are not logged. If you want
to log them for debug or any other purposes, set this property to
TRACE.

Agent proxy properties

ma.proxy.useProxy Uncomment this line if you want to use an HTTP(s) proxy for
the agent.

ma.proxy.proxyHost Proxy host.

ma.proxy.proxyPort Proxy port

ma.proxy.proxyAuthentication If authentication is needed for proxy usage, set this property to
true.

ma.proxy.proxyUsername Username to be used for the proxy.

ma.proxy.proxyPassword Password to be used for the proxy.

Agent adapter properties

agent-adapter.base.package Comma-separated list of packages to scan for adapters classes.

agent-adapter.active-profiles Comma separated list of profiles (corresponding to adapter
technical names).

Once these properties are configured, you can launch the agent as a Java application, using command
line or any other suitable tool (see below on this page).
The configuration file should be named application.properties.
Upon the first launch, the agent will query the EBX® Metadata Management application REST
API for registration and will obtain a GUID to be used in all information exchanges between
the two applications. Check that in the agent’s log file after startup you see the message "Started
MetadataAgentApplication in xx seconds." This indicates that the start up was correct and the agent
is running. If you don’t see this message, your need to check the log file for error messages explaining
the issue preventing agent to start.
Once registered, the agent will be displayed in the EBX® Metadata Administration perspective as
described TIBCO® Metadata Agents [p 785].

Data source types properties file
The properties file application-datasources.properties allows the agent to make connection between
supported data source types, metadata management functions and the adapters to use.
Properties in this file must follow the pattern:
datasource.operation_name.data_source_type=adapter_profile Supported operation names are as
follows:

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 762

• dsmanagement

• harvesting

• sampling

• provisioning

• lineage.

Data source type name must be formatted as alphanumeric name all in lower case without any special
characters. You can also define a label for data source type that will be displayed in the EBX®
Metadata Management application. Only one adapter can be defined for operation - data source type.
Below is the configuration pattern:
datasource.label.<data source type>=
datasource.dsmanagement.<data source type>=
datasource.harvesting.<data source type>=
datasource.sampling.<data source type>=
datasource.provisioning.<data source type>=
datasource.lineage.<data source type>=

By default this file includes configuration for the data source types supported by TIBCO TDV
Metadata Adapter installation [p 765].

131.2 EBX® Metadata Management application
Connection Encryption

If ma.metadata.useEncryption is activated, then ma.tdv.datasource.password,
ma.tdv.soap.password, ma.metadata.password and ma.proxy.proxyPassword must be encrypted into
application.properties before starting the agent:

• As a prerequisite, ma.metadata.public-key must be defined in application.properties
according to the corresponding EBX® Metadata Management application Technical User.

• Use TIBCO® Metadata Agent Tools to encrypt the original password. Launch in a terminal:
java -jar metadata-agent-tools.jar MY_PLAIN_PASSWORD

See the output sample below.

• Copy-paste the encrypted values into application.properties for each corresponding password
property.

The output provided is as follows:
`**************************`
`Value to encrypt is MY_PLAIN_PASSWORD`
`**************************`
`Encrypted value is : I7UOEPOHtF+J4EYPTPRxR0++QG4hoXFe87uSPluI1lbi`
`**************************`

Caution: with this feature enabled, an encrypted password must be re-encrypted on each renewal of
JWT key.

131.3 Agent execution (as a Standalone Java Application)
You have to configure a launcher to execute the agent, adding the configuration files into a config
directory under the directory where is placed the agent.
logs and storage directories are created by the agent itself directly under the structure.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 763

Under storage, two files are created, one for agent local database (configDB.mv.db), one for
scheduling (quartzDB.mv.db). If you have previously used different names for these files in your
previous configuration, please rename these files accordingly in your file system, after stopping the
current agent.
To launch the agent, you can create a shell file as follows (in this example the jars are placed in a /
metadata-agent directory):
You have to define the default encoding as UTF-8 for the JVM using -Dfile.encoding=UTF-8, if not
already set.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Installing the TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 764

Example on Linux (with TDV adapter activated): java -Dloader.path=metadata-agent-
tdv-adapter.jar,metadata-agent-tdv-driver-jdbc.jar -Dspring.profiles.active=tdv -jar
metadata-agent.jar >> logs/metadata-agent.log 2>&1 &

Example on Windows (with TDV adapter activated): java -Dfile.encoding=UTF-8
-Dloader.path=metadata-agent-tdv-adapter.jar,metadata-agent-tdv-driver-jdbc.jar -
Dspring.profiles.active=tdv -jar metadata-agent.jar > /logs/metadata-agent.log 2>&1

Once started, an application.pid file is created containing the process id of the agent. You can stop
the agent by killing this process. kill $(cat application.pid)
The agent can be also shut down using a HTTP POST request on a dedicated endpoint: curl -X POST
http://<agent_host>:<agent-port>/manage/shutdown

131.4 Troubleshooting
The following table provides causes and resolutions to two possible errors:

Error message Cause and resolution

Error in exchanges with the EBX® Metadata Management
application: { "localizedMessage":"HTTP error 401.",
"messages":["HTTP 401 Unauthorized"] }

This error appears when the agent cannot connect to the
EBX® Metadata Management application using credentials
provided in properties ma.metadata.username and
ma.metadata.password.

Failed to connect to the EBX® Metadata Management
application I/O error on GET request for "http://localhost:8081/
ebx-ca-tabula-tdv/tdv-rest/health"

This error message indicates that the EBX® Metadata
Management application is not responding on the
ma.metadata.context. Check that EBX® URL is correct and
it can be reached from the machine where the Agent is installed
(including firewall and proxy settings)

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 765

CHAPTER 132
TIBCO TDV Metadata Adapter

installation
This chapter contains the following topics:

1. Overview

2. TDV Connection rights

3. Properties template

4. Troubleshooting

132.1 Overview
Use this adapter to connect the Metadata Agent to a TIBCO® Data Virtualization (TDV) server to send
its managed datasources to the EBX® Metadata Management application using the harvesting feature.
You need to install two TDV application parts:

• TDV Server - the server part of TDV. It is mandatory to install the TDV server to gather metadata
from your system.

• TDV Studio - the client part of TDV. You only need to install it if you want to create your data
sources and access public views from TDV locally.

Please, refer to the Installation Guide provided with your copy of TDV for the installation
requirements and process.
The required TDV version for Metadata Agent is TDV 8.3.
Please find below an overview of the features that you may use in conjunction with the EBX®
Metadata Management application.
We recommend using the corresponding TDV documentation for guidance on these features.

Create a data source
If you want the EBX® Metadata Management application to gather information about your existing
data sources, you need to first configure the code in TDV. You can do it using the TDV Studio New
Data Source function.
On the first step of creation, you will be prompted to choose a connector for your new data source.
Currently, Metadata Agent supports the following TDV connectors:

• REST

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 766

• SOAP

• WSDL

• File-Delimited

• File-XML

• Microsoft Excel (non-ODBC)

• DB2 v10 (Type 4)

• DB2 v11 (Type 4)

• DB2 v9 (Type 2)

• DB2 v9 (Type 4)

• DB2 z/OS (Type 4)

• DB2 z/OS v11 (Type 4)

• HBase

• HBase 0.98 (Apache Phoenix Driver)

• HSQLDB 2.2

• Microsoft SQL Server 2008

• Microsoft SQL Server 2012

• Microsoft SQL Server 2014

• Microsoft SQL Server 2016

• MySQL 5.1

• MySQL 5.5

• Oracle 11g (OCI Driver)

• Oracle 11g (Thin Driver)

• Oracle 12c (OCI Driver)

• Oracle 12c (Thin Driver)

• PostgreSQL 9.0

• PostgreSQL 9.1

• Azure Data Lake Gen2

• Azure Synapse

• Azure SQL Database

Once you select the connector, you will be prompted to provide a label for this data source and
connection details for TDV to access the physical data source on your system.
You don’t need to run the introspection on the new data source as the EBX® Metadata Management
application can do it automatically. However, it is recommended to finalize the data source creation
using the Create & Introspect button rather than Create & Close as this allows you to test the
connection and to make sure that TDV has access to the physical data source on your system.
Once the data source is correctly configured in TDV, it becomes visible to Metadata Agent and you
can run metadata harvesting for this source.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 767

View public data sources
The Metadata Agent can create a published view of your assets and data sources by running the
metadata provisioning function. This creates a public data source in TDV that you can access using
TDV Studio.
Public data sources are available in TDV under the folder Composite Data Services that is shared
by all TDV users and can be exposed to the external software via JDBC queries. The Metadata Agent
creates your public data source under Composite Data Services - Databases with the label defined
during the metadata provisioning launch.
Data sources and resources corresponding to the assets that you have selected for provisioning are
assembled in this public data source and their metadata is visible in TDV Studio and in the system
database that third-party software can query.

Common error messages
In some cases, the interaction between Agent and TDV can fail because of the incorrect settings or
incompatibility. Below is the list of common errors that may be solved by fine tuning on either TDV
or Agent/EBX® Metadata Management application side.
Error message Reasons and resolution Selectable EBX_HG_ACCOUNT.OP cannot be pushed
because the data source does not support upper functions and case sensitivity setting doesn’t match
This error message may appear during sampling or profiling of the data on certain data sources. To
avoid this go to TDV Studio - Administration - Configuration menu and type match in the search bar.
Look for the Push even if Case Sensitivity Mismatch setting and switch it to true. It is recommended
to do the same for the Push even if Trailing Spaces Mismatch. Save and apply these changes to solve
the issue.

132.2 TDV Connection rights
The agent must be authorized to connect to TDV instance using two connections flows:

• JDBC connection to the TDV systcode datasource using JDBC URL defined in property
ma.tdv.datasource.url.

• SOAP connection using URL defined in property ma.tdv.soap.resources-url.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 768

Check that these types of connections is authorized on your TDV instance prior launching the Agent.
See Connection Encryption details on Installing the TIBCO® Metadata Agent [p 755] if required

132.3 Properties template
The following shows a sample template:
##
##
#####
TDV Database
#####
##
##
ma.tdv.datasource.url=jdbc:compositesw:dbapi@[[TDV SERVER HOST]]:9401?domain=composite&dataSource=system
ma.tdv.datasource.username=[[TDV USER]]
ma.tdv.datasource.password=[[TDV PASSWORD / MAY BE ENCRYPTED]]

###
##
#####
TDV SOAP
#####
##
##
#Base URL for TDV SOAP interfaces
ma.tdv.soap.base-url=http://[[TDV SERVER HOST]]:9400
ma.tdv.soap.username=[[TDV USER]]
ma.tdv.soap.password=[[TDV PASSWORD / MAY BE ENCRYPTED]]
#A root folder to get private data sources. This folder will be scanned as well as its subfolders
#You can indicate several root comma separated paths
ma.tdv.soap.datasources-root-folder=/shared/examples
#Folder in which Agent will create new private datasources from TCMD. It must exist in your TDV server.
ma.tdv.soap.new-datasources-folder=/shared/examples
#Additional SQL data types not supported for profiling feature
ma.tdv.profiling.not-supported-types=
#Additional SQL data types supported by profiling feature except for the cardinality analyses
ma.tdv.profiling.not-supported-types-for-cardinality=

Properties configuration
Prior to launching the TIBCO® Metadata Agent with TIBCO® TDV Metadata Adapter, you need to
complete the information in the properties file to check the connection to TDV.
Users are strongly discouraged to modify properties that are not described in the table below but are
present in the properties file. A good practice is to remove old specific properties from your prior-to-
version 4 agent, in order to keep only specific properties in your configuration file.
Property name Description
TDV Database connection
TDV SOAP connection

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 769

Private properties (should only be overwritten in particular cases)

Property Name Description

TDV Database connection

ma.tdv.datasource.url The composite data source URL to connect the Agent to the systcode database
of TDV. The expected format is jdbc:compositesw:dbapi@<host>:<port>?
domain=composite&dataSource=systcode

ma.tdv.datasource.username TDV user name with read permission on the system data sources.

ma.tdv.datasource.password Corresponding password

TDV SOAP Connection

ma.tdv.soap.base-url URL of the TDV SOAP operations. The expected format is https://<host>:<port>

ma.tdv.soap.username TDV user name with read-write permissions for the SOAP operations

ma.tdv.soap.password Corresponding password

ma.tdv.soap.datasources-root-
folder

A root folder to get private data sources. This folder will be scanned as well as its
subfolders. You can indicate several comma separated paths.

ma.tdv.soap.new-datasources-
folder

Folder in which Agent will create new private data sources from the EBX® Metadata
Management application.

ma.tdv.profiling.not-
supported-types

List of SQL data types that are not supported for profiling function. Types should be listed
in lower case comma-separated.

ma.tdv.profiling.not-
supported-types-for-
cardinality

List of SQL data types that are supported for profiling, but not for the cardinality functions.
Types should be listed in lower case comma-separated.

Private properties (should only be
overwritten in particular cases)

ma.tdv.soap.public-databases-
folder

Folder for the public data sources creation. Metadata Provisioning function will create
public containers under this folder. This folder must point to the TDV /services/databases
folder. This property is not defined in the public properties and must not be overwritten
except for the cases where TDV upgrade includes change in the internal structure.

ma.tdv.soap.introspect-result-
timeout

Timeout for the introspection task execution (real time in seconds is calculated as timeout
* interval). Default value if property is not provided equals to 600 seconds. If this timeout
is reached, Agent will stop checking state of the introspection task in TDV and will return
error for ongoing harvesting request.

ma.tdv.soap.introspect-result-
interval

Interval in seconds with which Agent checks the state of an introspection task in TDV.
Default value if this property is not provided equals to 5s.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO TDV Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 770

Property Name Description

ma.tdv.datasource.max-query-
timeout

Interval in seconds for the query timeout on the TDV datasource. By default it is equal to
600s.

Once these properties are configured, you can launch the agent as a Java application, using command
line or any other suitable tool (see below on this page).
Upon each launch the adapter will test TIBCO® Data Virtualization JDBC and SOAP connection.
If the adapter start up is successful, it will be visible in the Metdata Administration perspective for
the corresponding agent as described TIBCO® Metadata Agents [p 785].

132.4 Troubleshooting

Error message Cause and resolution

Failed to
initialize TDV
datasource:
Invalid login
attempt.

This error appears when the Agent cannot connect to the TDV instance because login or password
are not correct. Check the information you set up in properties ma.tdv.datasource.username and
ma.tdv.datasource.password.

Failed to
initialize TDV
datasource:
Failed to
finish connect:
Connection
timed out:
no further
information

This kind of issue can be caused by different reasons. Here are some most common ones: - incorrect host and
port for TDV datasource connection. Check the value in ma.tdv.datasource.url property - port not opened on
the TDV server. Check that the port you indicated in ma.tdv.datasource.url property is opened on the server and
connections are allowed from the machine where the agent is installed - firewall blocking access between TDV
server and the machine where the agent is installed.

Failed to
initialize TDV
datasource:
Cannot load
driver class

Check that the driver is present into the classpath.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® EBX® Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 771

CHAPTER 133
TIBCO® EBX® Metadata Adapter

installation
This chapter contains the following topics:

1. Overview

2. EBX® Connection rights

3. Properties template

4. Troubleshooting

133.1 Overview
Use this adapter to connect the TIBCO Metadata Agent to one or more EBX® instances to source
data for the EBX® Metadata Management application using the harvesting feature.

Note

The Metadata Agent feature requires EBX® version 6.2.0.

133.2 EBX® Connection rights
You must authorize the agent to connect to an EBX® instance. Configure its connection as a user on
the target EBX® instance and give the agent appropriate permissions.
See EBX® Metadata Management application Connection Encryption [p 762] for more details.

133.3 Properties template
The following shows a sample template:
###
###
#####
EBX adapter
#####
###
###
General properties for Tibco EBX adapter
Do not modify
ebx.label=EBX Adapter
ebx.description=Metadata agent adapter for EBX
ebx.version=1.0.0
ebx.name=EBX Adapter
ebx.provider=Tibco

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® EBX® Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 772

ebx.minVersion=6.2.0
ebx.defaultLocale=en-US
#This file holds properties for all the Tibco EBX instances to connect to.
#Properties below must follow the pattern ebx.<property>.<instance name>=<property value>
#Below is the configuration pattern
#ebx.base-url.<instance name>=
#ebx.path.<instance name>=
#ebx.username.<instance name>=
#ebx.password.<instance name>=admin
#ebx.public-key.<instance name>=key
#ebx.useEncryption.<instance name>=true
#Format ebx instance name as alphanumeric name all in lower case bellow.
ebx.instances=localhost
ebx.base-url.localhost=http://localhost:8080
ebx.username.localhost=admin
ebx.password.localhost=admin
ebx.locale.localhost=fr-FR
#ebx.public-key.localhost=key
#ebx.useEncryption.localhost=true

Properties configuration
Prior to launching the TIBCO® Metadata Agent with the TIBCO EBX® Metadata Adapter, check
the connection with EBX® by updating the information in the properties file.

Attention
It is strongly discouraged to modify properties that are not described in the table below, but are
present in the properties file.

Property Description

ebx.instances List of comma-seperated instances the agent will connect to.
ebx.instances=instanceId1,instanceId2

ebx.base-url.instanceId Base URL of the EBX® instance.

ebx.username.instanceId User name the agent will connect as on the target EBX® instance.

ebx.password.instanceId User password the agent will connect as on the target EBX® instance.

ebx.locale.instanceId Optional. Locale used to harvest localised information in EBX® instance. Example:
ebx.locale.instanceId1=fr-FR

ebx.public-key.instanceId Optional. If the encryption is used for connection, fill the public key

ebx.useEncryption.instanceId Optional. Activate the encrypted password connection
ebx.useEncryption.instanceId1=true

After configuring the above properties, you can launch the agent as a Java application using the
command line or any other suitable tool (see below on this page).
Upon each launch the adapter tests the TIBCO EBX® REST connection. If the adapter start
up succeeds, you can view it in the EBX® Metadata Management application's Metadata
Administration perspective for the corresponding agent as described TIBCO® Metadata Agents [p

785].

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® EBX® Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 773

133.4 Troubleshooting

Error message Cause and resolution

Failed to
initialize EBX®
datasource:
Invalid login
attempt.

This error appears when the Agent cannot connect to the EBX® instance because the login or password are not
correct. Check the information you set up in properties ebx.instance.username and ebx.instance.password.

Failed to
initialize EBX®
datasource:
Version Not
Supported

This kind of issue is caused by attempting to connect to an incompatible version of EBX®. This adapter is only
compatible with EBX® 6.2.0 and up.

Failed to
connect
to EBX®
datasource

This can be caused for multiple reasons, but it's most likely an error in the ebx.instance.url property, or a
routing issue.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® EBX® Metadata Adapter
installation

TIBCO EBX® Product Documentation 6.2.0 774

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 775

CHAPTER 134
TIBCO® Metadata Agent Framework

This chapter contains the following topics:

1. Overview and purpose

2. Extending metadata extraction capabilities

134.1 Overview and purpose
TIBCO® Metadata Agent Framework allows customers to implement support for the specific data
source types within TIBCO® Metadata Agent through specific adapters.
An adapter is a separate Java application that ensures one or several of EBX® Metadata Management
capabilities for a given data source type(s):

• Data source management

• Metadata harvesting

• Data sampling

• Metadata provisioning

• Lineage extraction.

TIBCO® Metadata Agent Framework includes following elements:

• Java based interfaces that must be implemented in order to customize a given metadata
management capability for a given data source type

• Java annotations that must be used to indicate that a capability is implemented

• Properties allowing to activate an adapter and define relationship between this adapter and
supported data source types/EBX® Metadata Management capabilities

• Extensible exception and error codes to properly raise an internationalized error from the adapter
to the agent.

134.2 Extending metadata extraction capabilities
To extend existing metadata extraction capabilities you need to implement an adapter using Java
programming language in respect with defined interfaces contract.
The adapter must respect following rules:

• be compiled as a Java application (jar) file

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 776

• provide mandatory registration data to the agent by implementing addAdapterInfos() method of
the registration service

• implement at least one metadata extraction service respecting the interface contract and
mandatory annotations

• be registered in the agent properties file.

Metadata Agent leverages Spring Boot 2.5.4 framework. The adapter implementation must include
Spring annotations for services (org.springframework.stereotype.Service).

Recommended adapter project structure
The adapter can be developed in any way that is comfortable for the responsible development team.
Below is a recommended structure based on Maven dependencies management and architecture best
practices for Java projects.

The main project contains three module projects and one configuration project:

Module name Description

tcmd-agent-
example-bundle

Bundle project that defines how to assemble your adapter into one jar file and allows to manage dependencies
in a simple way.

tcmd-agent-
example-
common

Common library code for your adapter. Typically this would host error management framework and some
common properties and utilities as well as i18n resources.

tcmd-agent-
example-conf

Project folder that hosts properties and configuration files for your adapter.

tcmd-agent-
example-service

Code implementing agent services inside your adapter.

Register adapter in TIBCO® Metadata Agent Framework
In order to register an adapter in TIBCO® Metadata Agent Framework you must follow these steps:

1. Implement the registration service
The registration service for your adapter must implement the dedicated Agent interface
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterRegistrationService service and its
main method addAdapterInfos().

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 777

This method allows you to create an adapter information object
com.tibco.ebx.ca.tabula.shared.agent.dto.AdapterDTO where you must provide the following
information about your adapter:

Property Description

name Technical name of the adapter. It must match the value you’ll use for the implementation annotations and for
the Agent’s property agent-adapter.active-profiles

version Implementation version for your adapter.

provider Your company name.

productVersion Corresponding version of the supported metadata provider.

description Adapter description that will be shown in EBX®.

2. Provide suitable annotations
In order to be recognized by TIBCO® Metadata Agent Framework each
service class that you consider implemented must be annotated with
com.tibco.ebx.ca.tabula.agent.common.annotation.MetadataAdapterProfile having as value
your adapter technical name (provided in the Agent’s property agent-adapter.active-profiles and
in the attribute name of the Adapter information object).
Each operation in the service that you consider implemented must be annotated with
com.tibco.ebx.ca.tabula.agent.common.annotation.MetadataOperationImplemented.

3. Add adapter name and properties to main agent’s properties
Following properties must be modified to indicate that the Agent should load your adapter:
#Comma-separated list of packages to scan for adapters classes
agent-adapter.base.package=com.tibco.ca.tabula.agent.tdv, com.mycompany.agent #Comma
separated list of profiles (corresponding to adapter technical names) agent-
adapter.active-profiles=tdv,myadapter

4. Add adapter name to the active profiles
Edit your Java launch configuration for the Agent to add your adapter name as profile:
-Dspring.profiles.active=tdv,myadapter

5. Add adapter jar and optionally properties to the Agent’s CLASSPATH.
Deploy your adapter jar and optionally any properties/configuration files that are required by your
code on Agent’s CLASSPATH.
Activate your adapter for the suitable data source types in application-datasources.properties file
as described in Installing the TIBCO® Metadata Agent [p 755].

Implementing main capabilities
The following metadata capabilities can be implemented by an adapter:

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 778

• Data source management

• Metadata harvesting

• Data profiling

• Data sampling

• Metadata provisioning

• Lineage extraction.

General implementation rules
Each custom service that implements main metadata capabilities must comply with following rules:

1. Each service class that you consider implemented must be annotated with
com.tibco.ebx.ca.tabula.agent.common.annotation.MetadataAdapterProfile having as
value your adapter technical name (provided in the Agent’s property agent-adapter.active-
profiles and in the attribute name of the Adapter information object).

2. Each service class must be annotated with Spring org.springframework.stereotype.Service
annotation.

3. Each operation in the service that you consider implemented must be annotated with
com.tibco.ebx.ca.tabula.agent.common.annotation.MetadataOperationImplemented.

4. For each object of type
com.tibco.ebx.ca.tabula.shared.agent.landing.dto.MetadataExchangeDTO created by the
adapter, you must populate at least sourceId, sourceType, datasourceType and name attributes.

Data source management
Data source management capability covers following operations with data sources in the metadata
provider system:

• read all available data sources

• create a new data source

• delete an existing data source

• check availability of an existing data source.

This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterDatasourceManagementService
service.

Metadata harvesting
Metadata harvesting capability covers following operations for data sources and underlying resources
in the metadata provider system:

• create a new data source and get all metadata for it

• get metadata for a resource/data source or a list of resources/data sources

• get list of children resources for a root resource/data source.

This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterHarvestingService service.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 779

Data profiling
Data profiling information can be added to a metadata exchange object.
This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterHarvestingService service, method
addProfilingToAsset.

Data sampling
Sample data can be requested from a source system for a given data source/resource.
This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterSamplingService service.

Metadata provisioning
Metadata provisioning capability covers operations that are for goal to provide some existing data
sources/resources to a public space on the metadata provider system.
This capability also allows to create a new data source/resource based on several existing ones.
Following operations are supported:

• provision metadata (create a new public source and publish resources in there)

• modify already provisioned metadata resources

• delete already provisioned metadata resources

• check that a resource has already be provisioned

• check whether a given resource is supported to be source of provisioned resource.

This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterProvisioningService service.

Lineage extraction
Lineage information can be extracted from the source system if the source system supports this.
This information can also be added to the Metadata exchange objects and pushed through TIBCO®
Metadata Agent to {{ site.PRODUCT_NAME_R }} and stored as technical flows.
This capability can be extended by implementing the
com.tibco.ebx.ca.tabula.agent.adapter.service.AdapterLineageService service.

Exceptions management
A specific exceptions management framework is provided as part of TIBCO® Metadata Agent
Framework.
This framework includes the following elements:

• com.tibco.ebx.ca.tabula.agent.common.adapter.exception.MetadataAdapterException:
internationalized exception class that you should implement to throw specific exceptions from
your code to TIBCO® Metadata Agent and {{ site.PRODUCT_NAME_R }} to handle.

• com.tibco.ebx.ca.tabula.agent.common.exception.MetadataExceptionReason : an interface
to be implemented by enumeration classes to define custom exception reasons.

To implement your specific exception, you need to extend the generic exception class with suitable
constructors and override getErrorBundle() method to return the name of your error messages

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agent
Framework

TIBCO EBX® Product Documentation 6.2.0 780

file. This file is expected to be available inside src/main/resources folder with following naming
convention:
<error bundle name>_<language 2 letters code>.properties

Language code is optional, if not indicated the bundle will be considered applicable for English
language.

To add specific error reasons for your exception(s), you need to create an enum in your project that
implements MetadataExceptionReason interface and define your error messages keys into it.
public enum MyMetadataExceptionReason implements MetadataExceptionReason {

 AGENT_ADAPTER_ERROR("agent.adapter.error");

 private MyMetadataExceptionReason(final String ckey) {
 this.key = ckey;
 }

 private String key;

 @Override
 public String getKey() {
 return key;
 }
}

If you don’t wish to define specific exceptions, you can use generic technical
exception provided by TIBCO® Metadata Agent Framework represented by the class
'com.tibco.ebx.ca.tabula.agent.common.adapter.exception.MetadataAdapterTechnicalException'
This exception can be instantiated using a string message or a Throwable object.

Logging
No specific logging framework is provided as of today.
TIBCO Metadata Agent leverages slf4j logging framework to write functional messages in suitable
log files.
For consistency, we recommend you using the same framework for your adapter and avoid using
System.out.print/println to write messages.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Administration of TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 781

CHAPTER 135
Administration of TIBCO® Metadata

Agent
This chapter contains the following topics:

1. EBX® Metadata Management application subscription

2. Agent Migration and Backup

135.1 EBX® Metadata Management application
subscription

New connection for a previously deleted agent
On the first start, the agent subscribes to the corresponding EBX® system. As a result of this
interaction, a GUID will be stored in the agent storage and used for all exchanges between the agent
and EBX®. If you delete a managed agent in the EBX® Administration perspective, the GUID stored
on the agent’s side will no longer be valid. To recreate a deleted agent, you have to delete the agent’s
H2 database (configDB.mv.db) and restart the agent. It will automatically subscribe to the EBX®
Metadata Management application and obtain a new GUID.

Public key update
The Public key (JWT) is a unique token used for additional security in exchanges between the agent
and the EBX® Metadata Management application.
It is valid 60 days and expires automatically after. Connections with an expired JWT are not accepted
by the EBX® Metadata Management application and a specific exception is generated to notify the
agent that its public key is no longer valid: JWT for the Agent with id xxx has expired or is not valid.
Please, get update the JWT in the Agent’s properties.
After seeing this message you need to obtain a new JWT from a EBX® administrator, copy-paste it
in the public-key property in the agent’s properties file and restart the agent.

135.2 Agent Migration and Backup
If you need to migrate your existing Agent and preserve its connection to the EBX® Metadata
Management application, please, follow the process below:

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Administration of TIBCO® Metadata
Agent

TIBCO EBX® Product Documentation 6.2.0 782

1. Stop agent.

2. Backup agent’s database and Quarz Scheduler database by copying files configDB.mv.db and
quartzDB.mv.db

3. Backup your application.properties file.

4. Install the agent on the new instance.

5. Copy databases backup into [[Installation folder]]/storage.

6. Copy properties file into [[Installation folder]]/conf.

7. Update ma.http.ws-url and ma.http.port.

8. Update other properties if necessary.

9. Restart agent. It will automatically update registration information in EBX®.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Technical Users

TIBCO EBX® Product Documentation 6.2.0 783

CHAPTER 136
Technical Users

Technical users are a specific type of user that do not have UI access and are solely meant to use
the Metadata agent or another technical system. You can access the list of your technical users by
selecting the Metadata Administration perspective and going to the Technical Users section.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Technical Users

TIBCO EBX® Product Documentation 6.2.0 784

Under Technical Users in Metadata administration perspective, you can select an existing user to
specify that they are authorized to make a connection between the agent and the EBX® Metadata
Management application.

The system automatically generates a JSON Web Token for this user. If this technical user will be
associated with a Metadata Agent, you must copy-paste the JWT into the Metadata Agent’s properties
files, otherwise the communication between the EBX® Metadata Management application and your
Metadata Agent won’t be allowed.
Please, note that JWT is valid for 60 days and will be automatically regenerated by the EBX®
Metadata Management application once expired.
When expired, you’ll get an expiration message on agent operations (harvesting, creating data sources
from TDV, …) and the agent will ask to EBX® to generate a new JWT Key.
If you get this expiration message, you’ll have to

• stop your agent.

• get the new JWT key from EBX®.

• copy/paste into agent application.properties.

• restart the agent.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 785

CHAPTER 137
TIBCO® Metadata Agents

This chapter contains the following topics:

1. Overview

2. Metadata Agent registration

3. Set Metadata Agent as favorite

4. Disable Metadata Agent

5. Delete Metadata Agent

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 786

137.1 Overview
In the Metadata Administration perspective select Agents to access the list of your registered
Metadata Agents.

By default, only active Metadata Agents are visible. If you want to see the inactive Metadata Agents,
go to the View menu and switch to Deactivated TIBCO Metadata Agents.
The records in this table are created and updated automatically when a Metadata Agent starts and
contacts Metadata to subscribe or check that the subscription is up-to-date.
If an agent is not available, it will appear in red. On mouse over, the reason of the unavailability is
displayed.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 787

137.2 Metadata Agent registration
When a Metadata Agent subscribes to the EBX® Metadata Management application the following
elements are created in the Agents table:

Module name Description

GUID The GUID generated by the EBX® Metadata Management application for the Agent during the subscription.

Label A label that will be used to present Metadata Agents in user interactions.

Base URL Agent’s base URL.

Agent API
Version

REST API version of this agent. This defines a list of the operations available.

Timezone Agent’s timezone that will be used to convert dates for scheduled jobs.

JWT JSON Web Token corresponding to the technical user with which Metadata Agent connects to the EBX®
Metadata Management application. See Technical Users [p 783] for more details.

Technical User
Name

Technical user login. See Technical Users [p 783] for more details.

Landing
dataspace

Identifier of the dataspace that Metadata Agent uses to store raw metadata retrieved from TDV.

Destination
Dataspace

Identifier of the target dataspace where the metadata will be integrated.

TDV JDBC
URL

JDBC URL of the TDV system data source.

TDV Host Host name where the TDV instance is situated.

TDV Port Port number on which the TDV instance is listening for the JDBC connection.

TDV Version TDV Version.

Published views
folder

Path to the TDV published views folder. See Administration of TIBCO® Metadata Agent [p 781]

Operations List of the API operations available in Metadata Agent.

These elements are verified and updated if necessary each time the Metadata Agent instance is
restarted.
On subscription, an instance corresponding to the TDV system data source is created in the EBX®
Metadata Management application to allow harvesting of the published view available in TDV.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 788

137.3 Set Metadata Agent as favorite
Several Metadata Agents can be subscribed to the same EBX® Metadata Management application
instance. In order to define one of them to be used in priority for the instances that are not yet linked
to another agent, select the Select as favorite icon near Metadata Agent:

To change your favorite Metadata Agent select the Set as favorite icon for another Metadata Agent.
You can only have one favorite agent.

137.4 Disable Metadata Agent
To disable Metadata Agent and all related objects (Managed data sources, assets, links and
introspection jobs), select the Disable icon near the Metadata Agent label.
This Metadata Agent will no longer be visible in your list of registered agents and it won’t be possible
to run any operation with this agent. To see a disabled agent, go to the View menu and switch to
Deactivated TIBCO Metadata Agents.

From this view, you can re-enable a Metadata Agent by clicking on the Enable button near it. However,
the related managed objects won’t be re-enabled with the agent.

137.5 Delete Metadata Agent
To delete permanently a Metadata Agent from the EBX® Metadata Management application, select
this agent and select the Delete icon above the table:
Note: This operation cannot be undone. |

This operation will also delete related objects from the system:

• Managed data sources

• Managed assets

• Managed links

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 789

• Introspection Jobs and corresponding job executions history

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > TIBCO® Metadata Agents

TIBCO EBX® Product Documentation 6.2.0 790

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 791

CHAPTER 138
Items managed by Metadata Agent

This chapter contains the following topics:

1. Overview

2. Managed data sources

3. Managed assets

4. Managed links

5. Relation of the managed items with Metadata objects

138.1 Overview
Metadata Agent allows you to gather raw metadata from the data sources for three managed objects
categories:

1. Managed data source - corresponds to the TDV data source defined in the private part or to the
folder containing TDV published view.

2. Managed assets - children resources of the data source for which metadata can be retrieved.

3. Managed links - relations between resources, such as foreign keys for relational databases.

You can access a list of the objects managed by Metadata Agents in the Administration perspective.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 792

138.2 Managed data sources
In the Administration perspective select Datasources to access the list of the data sources managed
by subscribed Metadata Agents.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 793

The following information is available for each managed data source:

Field Description

Agent identifier The identifier of Metadata Agent that is connected to this data source.

Data source
Identifier in
TDV

Resource path of this data source in TDV instance. Instance

Identifier in
the EBX®
Metadata
Management
application

If the managed data source is already connected to an instance in the EBX® Metadata Management application,
the corresponding identifier will appear in this field.

Status Data source status:

• NEW - represents a new resource that was not transferred to the EBX® Metadata Management application
yet.

• STORED - represents a data source that is already stored in the EBX® Metadata Management application as
an instance.

• DELETED - represents a data source that was deleted in TDV instance.

Created at Creation date for this record.

Last updated Last update date for this record.

Is disabled? A data source is disabled if the corresponding agent is disabled.

Datasource
Type

Technical data source type in TDV. See Administration of TIBCO® Metadata Agent [p 781] for the full list of the
supported data source types.

Clean deleted data sources
To delete all data sources with the DELETED status from the system, select the Clean deleted icon
above the table. This will permanently delete these data sources from this table. Related links and
assets will also be deleted.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 794

138.3 Managed assets
In the Administration perspective select Assets to access the list of the assets managed by subscribed
Metadata Agents.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 795

The following information is available for each managed data source:

Field Description

Datasource The data source to which the asset belongs.

Agent identifier The identifier of Metadata Agent that is connected to this asset.

Resource ID in
TDV

Resource path of this asset in TDV instance.

Asset ID in
the EBX®
Metadata
Management
application

If the managed asset is already connected to an asset in the EBX® Metadata Management application the
corresponding identifier will appear in this field.

Status Asset status:

• NEW - represents a new resource that was not transferred to the EBX® Metadata Management application
yet.

• STORED - represents a resource that is already stored in the EBX® Metadata Management application as an
asset.

• DELETED - represents a resource that was deleted in TDV instance.

Created at Creation date for this record.

Last updated Last update date for this record.

Is disabled? An asset is disabled if the corresponding agent is disabled.

TDV Parent
asset Id

Technical path to the parent element in TDV.

Clean deleted assets
To remove all assets with the DELETED status from the system, select the Clean deleted icon above
the table. This will permanently delete these assets from this table. Related links will also be deleted.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 796

138.4 Managed links
In the Administration perspective select Links to access the list of the links managed by subscribed
Metadata Agents.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 797

Following information is available for each managed data source:

Field Description

Agent identifier The identifier of Metadata Agent that is connected to this link.

ID in TDV Name of the foreign key.

PK Asset A managed asset that represents a primary key in this link relation.

FK Asset A managed asset that represents a foreign key in this link relation.

Link ID in
the EBX®
Metadata
Management
application

If this managed link is already stored in the EBX® Metadata Management application as a link, the
corresponding identifier will appear in this field.

Status Link status:

• NEW - represents a new resource that was not transferred to the EBX® Metadata Management application
yet.

• STORED - represents a resource that is already stored in the EBX® Metadata Management application as
a link.

• DELETED - represents a resource that was deleted in TDV instance.

Is disabled? A link is disabled if the corresponding agent is disabled.

TDV Parent Id Identifier of the parent link object.

Clean deleted links
To remove all links with the DELETED status from the system, select the Clean deleted icon above
the table. This will permanently delete these links from this table.

138.5 Relation of the managed items with Metadata
objects

Each stored managed item has a relationship with an item in the main Metadata data model.
The link is created during harvesting of the metadata through execution of the Harvest metadata
service or Create instance from datasource service. Once the metadata is stored, the status of
the managed item becomes STORED and the identifier of the corresponding EBX® Metadata
Management application object is attached to it.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Items managed by Metadata Agent

TIBCO EBX® Product Documentation 6.2.0 798

If an EBX® Metadata Management application object linked to a managed item is deleted, the link
is broken and managed item’s status becomes NEW again.
If a physical data source or resource is deleted in TDV, during the next harvesting executed for the
corresponding object in the EBX® Metadata Management application the managed item will receive
the DELETED status and the linked EBX® Metadata Management application object will be marked
as disabled.
For the instances and assets that have a linked managed item, attribute name is read-only as it is used
for technical exchanges between the EBX® Metadata Management application and TDV through
Metadata Agent.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 799

CHAPTER 139
Harvesting configurations

In the Metadata Administration perspective select Harvesting configurations to access the list of
the harvesting configurations.

Harvesting configurations are created using the Harvest metadata service available from the
Instance and Asset tables.
The Metadata Administration perspective provides a technical representation of the harvesting
configuration and you can delete one or several configurations using the Delete icon above the table.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 800

This chapter contains the following topics:

1. Troubleshooting harvesting run

2. Introspection Jobs

3. Introspection Jobs History

139.1 Troubleshooting harvesting run
The Harvesting configurations table may be useful in case you need to troubleshoot one of the
harvesting runs. Double click on the configuration for which a failed run was reported to access more
details.
Click on the Preview icon near the introspection job to view its details.
Switch to the Job Runs tab to access the list of the executions for this job.

Double click on the latest job run that has a Failed status to access its details.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 801

Switch to the Job Messages tab to access the log of important messages raised during the job
execution.

The messages having a severity of ERROR are there to help you find the root cause of the run fail
(impossible to connect to the agent, impossible to store objects, failed to complete run because of the
server failure etc).

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 802

139.2 Introspection Jobs
In the Administration perspective select Introspection jobs to access the list of the harvesting jobs.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 803

The following information is available for each job to help you to track the state of each job and, if
necessary, troubleshoot the execution:

Field Description

Identifier A unique technical identifier used in exchanges between the EBX® Metadata Management application and
Metadata Agent to identify this job.

Agent Metadata Agent related to this job.

Start date and
time

Date and time when the first job run started.

Interval
(minutes)

Interval (in minutes) between the executions of this job if it is a scheduled job.

Repeat count Number of executions for a scheduled job.

Next run Date and time when the next execution of the job will happen.

Status Execution status:

• Created - the job is created but not run yet.

• Scheduled - the job is scheduled in the corresponding Metadata Agent.

• In progress - this status is given to a job once the first run starts and until the last run ends.

• Failed - the last run failed.

• Success - all runs of this job completed without errors.

Auto merge in
workflow

Indicates whether the metadata harvested by this job will be automatically merged in the Master data or user’s
confirmation is required.

Activate
sampling?

If true - sampling is expected to be launched during this job’s execution for all assets that are eligible but don’t
have a sample attached yet.

Force
sampling?

If true - sampling is expected to be launched during this job’s execution for all assets that are eligible and
overwrite any existing samples.

Automatic
classification
suggestion

If true - classification is expected to be launched during this job’s execution for all assets that do not have a
classification yet.

Force refresh
of classification
suggestion

If true - classification is expected to be launched during this job’s execution for all assets.

Classify assets
automatically

if true - classification suggestion will be automatically applied on assets.

Is disabled? A job is considered disabled if the corresponding agent is disabled.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 804

Field Description

Harvesting
Configuration
ID

Harvesting configuration identifier for history purposes.

Managed Assets List of the root assets that this job will harvest. For each root asset in the job there can be a list of children
assets to exclude from harvesting scope.

Managed
Datasources

List of the data sources that this job will harvest. For each of them, there can be a list of children assets to
exclude from harvesting scope.

Job Runs List of the executions of the current job.

Clean failed jobs
To remove Introspection jobs that are in a Failed status select the Clean failed jobs icon above the
table. This will delete all jobs and the corresponding job runs with related job messages.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 805

139.3 Introspection Jobs History
In the Administration perspective select Introspection jobs history to access the list of the
harvesting jobs’ executions.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 806

For each job execution, the following information is available to help you to track the state of each
job and, if necessary, troubleshoot the execution:

Field Description

Identifier Autoincremented identifier for the run.

Introspection
Job

Introspection job.

Iteration
number

For manual job executions (launched directly by a user from Harvest metadata service), the iteration number
is always 0. For scheduled runs, the iteration number corresponds to the order in which runs are executed.

Start date and
time

Start date and time for this run.

End Date End date and time for this run.

Status Execution status: - execution started.

• In progress

• Failed - execution failed.

• Success - scheduled run has been executed successfully and metadata has been automatically merged into
Master Data.

• Pending for approval - manual run has been executed successfully and results are pending to be accepted
by the user.

• Accepted - results of the manual run have been accepted by the user and merged into Master Data.

• Rejected - results of the manual run have been rejected by the user and deleted.

Current Step Current execution step:

• STORAGE IN MASTER - integration of the harvested metadata into child dataspace of the Master Data.

• SAMPLING - requesting samples (if sampling activated).

• CLASSIFICATION - classification of assets (if activated).

• PURGE_LANDING - a purge of the Metadata Agent’s landing dataspace.

• END - execution end.

EBX®
Metadata
Management
application
Child dataspace

EBX® Metadata Management application Child dataspace created for this run.

Automatically
merge results

Indicates whether the metadata harvested by this job run will be automatically merged in the Master data or
user’s confirmation is required.

Harvesting
Configuration
ID

Harvesting configuration identifier for history purposes.

Harvested
Datasources

List of the data sources harvested by this run.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 807

Field Description

Harvested
Assets

List of the assets harvested by this run.

Harvested
Relations

List of the links harvested by this run.

Job Messages List of the important messages logged by this job run. Typically are logged execution steps and errors occurred.

Documentation > Administration Guide > EBX® Metadata Management application > Metadata Agent > Harvesting configurations

TIBCO EBX® Product Documentation 6.2.0 808

TIBCO EBX® Product Documentation 6.2.0 809

Security Guide

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 810

CHAPTER 140
Security Best Practices

Here is a list of best practices that are considered useful to enforce a good security level for the EBX®
setup. These best practices apply to EBX® and to other environments, their configuration, protocols
and policies. While these practices are commonly regarded as beneficial, they may not be relevant to
your particular infrastructure and security policy.
This chapter contains the following topics:

1. Encryption algorithms

2. HTTPS

3. Installation

4. Web Server

5. Application Server

6. Java

7. Database

8. Archive directory

9. User directory and Administration rights

10.Permissions

140.1 Encryption algorithms
The Web Server or Application Server may specify encryption algorithms when setting HTTPS
parameters. Some recommendations on these algorithms are provided in section HTTPS [p 810].
Password and fields having osd:password as a type store a hash of their value, using the SHA_512
algorithm. This is, notably, the case for the password of users of the default directory.

140.2 HTTPS
It is recommended to use HTTPS for communication with clients (GUI and REST or SOAP). All
HTTP traffic should be redirected to HTTPS.
A secure cipher suite and protocols should be used whenever possible. This applies, for example, to
Web Servers, Application Servers, and JDBC connections.
TLS v1.2 should be the main protocol, because it is the only version that offers modern authenticated
encryption (also known as AEAD).

https://en.wikipedia.org/wiki/Cipher_suite

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 811

Several obsolete cryptographic primitives must be avoided:

• Anonymous Diffie-Hellman (ADH) suites do not provide authentication,

• NULL cipher suites provide no encryption,

• Export cipher suites are insecure when negotiated in a connection, but they can also be used
against a server that prefers stronger suites (the FREAK attack),

• Suites with weak ciphers (typically of 40 and 56 bits) use encryption that can easily be broken,

• RC4 is insecure,

• 3DES is slow and weak,

On the other hand, being too restrictive on allowed cyphers may prevent some clients from connecting,
as they may not be able to negotiate a HTTPS connection.
The following configuration is compatible with browsers supported by EBX®.

• Cipher suites: ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-
SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

• Versions: TLSv1.2

140.3 Installation
Deployed components, such as as Web Server and Application Server, should be installed using a
non-root or unprivileged user, and following the principle of least privilege whenever possible. For
example, only necessary ports and protocols should be opened.

140.4 Web Server
If you have to expose web applications on the internet, it is a good practice to protect them with a
Web Server in a demilitarized zone, while EBX® and the database server can be in a production zone.
Consider the following practices for your configuration.
The secure cipher suite and protocols should be set according to the above section HTTPS [p 810].
Do not use the default configuration, and remove any banner that might also expose the version and
type of web server.
For example, on Apache2, to remove the banner (default page returned at the root), just remove the
folder /var/www/html.
Also, on Apache2, to remove headers identifying the Web Server, the value of ServerTokens and
ServerSignature from the file security.conf should have the following values:
ServerTokens
This directive configures what you return as the Server HTTP response
Header. The default is 'Full' which sends information about the OS-Type
and compiled in modules.
Set to one of: Full | OS | Minimal | Minor | Major | Prod
where Full conveys the most information, and Prod the least.
ServerTokens Prod

Optionally add a line containing the server version and virtual host
name to server-generated pages (internal error documents, FTP directory
listings, mod_status and mod_info output etc., but not CGI generated
documents or custom error documents).
Set to "EMail" to also include a mailto: link to the ServerAdmin.
Set to one of: On | Off | EMail

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/DMZ_(computing)
https://httpd.apache.org/docs/2.4/mod/core.html#servertokens
https://httpd.apache.org/docs/2.4/mod/core.html#serversignature

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 812

ServerSignature Off

Use the Web Server to set restrictions with HTTP security headers. Note that headers related to the
origin impact authorized URLs for all resources returned by EBX®. That includes the content of fields
of the URL type (example: image of avatar).
Here is a list of security headers and how to set them for EBX®. First, configure EBX® to not set
any HTTP security headers. To do so, set the property ebx.security.headers.activated to false
or unset.
X-XSS-Protection
The x-xss-protection header is designed to enable the cross-site scripting (XSS) filter built into
modern web browsers. Here is what the header should look like.
x-xss-protection: 1; mode=block

Enable in Nginx
proxy_hide_header x-xss-protection;
add_header x-xss-protection "1; mode=block" always;

Enable in Apache2
header always unset x-xss-protection
header always set x-xss-protection "1; mode=block"

x-Frame-Options
The x-frame-options header provides clickjacking protection by not allowing iframes to load on the
site. Be aware, this may not be compatible with your configuration if EBX® is integrated through
frames for example. Here is what the header should look like:
x-frame-options: SAMEORIGIN

Enable in Nginx
 add_header x-frame-options "SAMEORIGIN" always;

Enable in Apache2
 header always set x-frame-options "SAMEORIGIN"

X-Content-Type-Options
The x-content-type-options header prevents Internet Explorer and Google Chrome from sniffing a
response away from the declared content-type. This helps reduce the danger of drive-by downloads
and helps treat the content properly. Here is what the header looks like.
x-content-type-options: nosniff

Enable in Nginx
 add_header X-Content-Type-Options "nosniff" always;

Enable in Apache2
 header always set X-Content-Type-Options "nosniff"

Strict-Transport-Security
The strict-transport-security header is a security enhancement that restricts web browsers to
access web servers solely over HTTPS. This ensures the connection cannot be established through
an insecure HTTP connection which could be vulnerable to attacks. Here is what the header should
look like:
strict-transport-security: max-age=31536000; includeSubDomains

Enable in Nginx
 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains" always;

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 813

Enable in Apache2
 header always set Strict-Transport-Security "max-age=31536000; includeSubDomains"

Content-Security-Policy
The content-security-policy HTTP header provides an additional layer of security. This policy
helps prevent attacks such as Cross Site Scripting (XSS) and other code injection attacks by defining
content sources which are approved and thus allowing the browser to load them. Here is what the
header shuould look like. Make sure to adapt it with your domain name (server.company.com in the
example).
content-security-policy: default-src 'self'; font-src * data: server.company.com; img-
src * data: server.company.com; script-src * 'unsafe-inline' 'unsafe-eval'; style-src
 * 'unsafe-inline';

Enable in Nginx
 add_header Content-Security-Policy "default-src 'self'; font-src * data:
 server.company.com; img-src * data: server.company.com; script-src * 'unsafe-inline'
 'unsafe-eval'; style-src * 'unsafe-inline';" always;

Enable in Apache2
 header always set Content-Security-Policy "default-src 'self'; font-src * data:
 server.company.com; img-src * data: server.company.com; script-src * 'unsafe-inline'
 'unsafe-eval'; style-src * 'unsafe-inline';"

Referrer-Policy
The Referrer-Policy HTTP header governs which referrer information should be included with
requests made. The Referrer-Policy tells the web browser how to handle referrer information that is
sent when a user clicks on a link that leads to another page. Here is what it should look like:
Referrer-Policy: strict-origin

Enable in Nginx
 add_header Referrer-Policy: "strict-origin" always;

Enable in Apache2
 header always set Referrer-Policy "strict-origin"

Permissions-Policy
The Permissions-Policy HTTP header provides mechanisms for web developers to explicitly declare
what functionality can and cannot be used in iframes. A set of "policies" that restrict what APIs the
site's code can access or modify is defined and overwrites the browser's default behavior for certain
features. Here is what it should look like:
Permission-Policy: "*=()"

Enable in Nginx
 add_header Permissions-Policy: "*=()" always;

Enable in Apache2
 Header always set Permissions-Policy "*=()"

Please note that this value may change depending on your needs. If your EBX® installation has
customized frontend code that uses any relevant Api you may need to adapt it.

140.5 Application Server
As for Web Servers, the same best practice applies: do not expose technical information on the
Application Server. For example, for Tomcat, it is recommended to fill the attribute server of
connector in server.xml with a generic value as AppServer.
<Connector port="8080" enableLookups="false" protocol="HTTP/1.1" useBodyEncodingForURI="true"

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Permissions-Policy#directives

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 814

 allowBackslash="true" encodedSolidusHandling="passthrough" server="AppServer"/>

If the Application Server is exposed through HTTPS, the secure cipher suite and Protocols should be
set according to the above section HTTPS [p 810].
If there is a Web Server, it is also recommended to use ports higher than 1024 and let the Web Server
do proxy.
If there is no Web Server, security headers should be set by the Application Server as described above.

140.6 Java
It is recommended to follow the security best practices from Oracle. Last supported patches should
also be applied as soon as they are available, especially when they include security patches. Consider
using the Server JRE for server systems, such as application servers or other long-running back-end
processes. The Server JRE is the same as the regular JRE except that it does not contain the web-
browser plugins.
EBX® allows a very high level of customization through custom code. All integrated Java modules
are considered by EBX® as trusted. Hence, all development on top of EBX® should be reviewed
and validated. As an example, developers should not generate HTML from values coming from the
database without proper escaping. For more details on this, see the Cross Site Scripting prevention
on the OWASP site. Here is a proper escaping example: the name of a store is encoded before being
displayed in an HTML form. The StringEscapeUtils class included in Apache Commons Lang is
used for string encoding.
public class StoreMainPane implements UIFormPane
{
 public static final String STORE_NAME_STYLE = "font-weight: bold; padding-top:20px; padding-bottom:20px";

 @Override
 public void writePane(final UIFormPaneWriter writer, final UIFormContext context)
 {

 String storeName = (String) context.getValueContext().getValue(Paths._Store._Name);

 writer.add("<div ").addSafeAttribute("style", STORE_NAME_STYLE).add(">");
 writer.addSafeInnerHTML("Data stored for " + storeName);
 writer.add("</div>");

 // ...
 }
}

140.7 Database
Databases should be encrypted at rest and in transit. If there is a private key for encryption, it should not
be stored in the same location as the data files. Regarding the JDBC connection, consider configuring
the JDBC driver to use SSL/TLS. Contact your database administrator for detailed instructions. You
should always use the last supported version or RDBMS, including drivers.

140.8 Archive directory
On the server, the archive directory [p 622] must be properly secured and/or encrypted. Indeed, any
archive exported from the EBX® instance will be created there, and these archives are neither
encrypted nor protected by password. As a consequence, any user with an access to these files will be
able to see the content regardless of any permission defined in EBX®.

https://www.oracle.com/java/technologies/security.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 815

140.9 User directory and Administration rights
For production and test platforms, EBX® must be integrated with a custom directory [p 664] to enforce
the password policy of your company. The default directory can be used only for development
platforms.
According to the Separation of Duties best practice, administrators can manage users and grant access
but should not have any functional rights.

140.10 Permissions
Special care is required when defining permissions in EBX®. Persons in charge of this are expected
to be aware of the content of the permission documentation [p 475], and especially the information
provided in the Important considerations about permissions [p 477] section.

https://en.wikipedia.org/wiki/Separation_of_duties

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 6.2.0 816

TIBCO EBX® Product Documentation 6.2.0 817

Developer
Guide

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 818

Introduction

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 819

CHAPTER 141
Packaging TIBCO EBX® modules
An EBX® module is a standard Jakarta EE web application, packaging various resources such as
XML Schema documents, Java classes and static resources.
Since EBX® modules are web applications they benefit from features such as class-loading isolation,
WAR or EAR packaging, and Web resources exposure.
This chapter contains the following topics:

1. Module structure

2. Module declaration

3. Module registration

4. Packaged resources

141.1 Module structure
An EBX® module contains the following files:

/WEB-INF/ebx/module.xml This mandatory document defines the main properties and
services of the module. See Module declaration [p 820].

/WEB-INF/web.xml This is the standard Jakarta EE deployment descriptor. It
can perform the registration of the EBX® module when the
application server is launched. See Module registration [p

820].

/META-INF/MANIFEST.MF Optional. If present, EBX® reports the 'Implementation-
Title' and 'Implementation-Version' values to
Administration > Technical configuration > Modules and
data models.

/www/ This optional directory contains all packaged resources,
which are accessible via public URL. See Packaged
resources [p 822].

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 820

141.2 Module declaration
A module is declared using the document /WEB-INF/ebx/module.xml. For example:
<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:ebx-schemas:module_2.4"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ebx-schemas:module_2.4 https://schema.orchestranetworks.com/module_2.4.xsd">
 <name>moduleTest</name>
</module>

See the associated schema for documentation about each property. The main properties are as follows:

Element Description Required

name Defines the unique identifier of the module in the server
instance. The module name usually corresponds to the name of
the web application (the name of its directory).

Yes.

publicPath Defines a path other than the module's name identifying the
web application in public URLs. This path is added to the URL
of external resources of the module when computing absolute
URLs. If this field is not defined, the public path is the module's
name, defined above.

No.

services Declares user services using the legacy API. See Declaration
and configuration of legacy user services. From the version
5.8.0, it is strongly advised to use the new user services [p 965].

No.

beans Declares reusable Java bean components. See the workflow
package [p 951].

No.

ajaxComponents Declares Ajax components. See Declaring an Ajax component
in a module UIAjaxComponent.declareInModuleAPI in the Java
API.

No.

141.3 Module registration
In order to be identifiable by EBX®, a module must be registered at runtime when the application
server is launched. For a web application, every EBX® module must:

• contain a Java class with the annotation @WebListener extending the class
ModuleRegistrationListenerAPI.

Attention
When using the @WebListener annotation, ensure that the application server is configured to
activate the servlet 3.0 annotation scanning for the web application. See JSR 315: JavaTM Servlet
3.0 Specification for more information.

or:

• contain a Servlet extending the class ModuleRegistrationServletAPI;

• make a standard declaration of this servlet in the deployment descriptor /WEB-INF/web.xml;

https://schema.orchestranetworks.com/module_2.4.xsd
https://www.jcp.org/en/jsr/detail?id=315
https://www.jcp.org/en/jsr/detail?id=315

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 821

• ensure that this servlet will be registered at server startup by adding the following standard element
to the deployment descriptor: <load-on-startup>1</load-on-startup>.

Additional recommendations and information:

• The method handleRepositoryStartup in ModuleRegistrationServletAPI allows setting the
logger associated with the module and defining additional behavior such as common JavaScript
and CSS resources.

• The specific class extending ModuleRegistrationServlet must be located in the web application
(under /WEB-INF/classes or /WEB-INF/lib; due to the fact that this class is internally used as a
hook to the application's class-loader, to load Java classes used by the data models associated
with the module).

• The application server startup process is asynchronous and web applications / EBX® modules are
discovered dynamically. The EBX® repository initialization depends on this process and will wait
for the registration of all used modules up to an unlimited amount of time. As a consequence, if a
used module is not deployed for any reason, it must be declared in the EBX® main configuration
file. For more information, see the property Declaring modules as undeployed [p 569].

• All module registrations and unregistrations are logged in the log.kernel category.

• If an exception occurs while loading a module, the cause is written in the application server log.

• Once the servlet is out of service, the module is unregistered and the data models and associated
datasets become unavailable. Note that hot deployment/undeployment is not supported [p 513].

Deployment descriptor example
Here is an example of a Jakarta EE deployment descriptor (/WEB-INF/web.xml):
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee https://jakarta.ee/xml/ns/jakartaee/web-
app_5_0.xsd"
 version="5.0">
 <servlet>
 <servlet-name>InitEbxServlet</servlet-name>
 <servlet-class>com.foo.RegisterServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

Registration example
Here is an implementation example of the ModuleRegistrationServlet:
package com.foo;
import jakarta.servlet.*;
import jakarta.servlet.http.*;
import com.onwbp.base.repository.*;

public class RegisterServlet extends ModuleRegistrationServlet
{

 public void handleRepositoryStartup(ModuleContextOnRepositoryStartup aContext)
 throws OperationException
 {
 // Perform module-specific initializations here
 ...

 // Declare custom resources here
 aContext.addExternalStyleSheetResource(MyCompanyResources.COMMON_STYLESHEET_URL);
 aContext.addExternalJavaScriptResource(MyCompanyResources.COMMON_JAVASCRIPT_URL);

 aContext.addPackagedStyleSheetResource("myModule.css");
 aContext.addPackagedJavaScriptResource("myModule.js");

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 822

 }

 public void handleRepositoryShutdown()
 {
 // Release resources of the current module when the repository is shut down here
 ...
 }

 public void destroyBeforeUnregisterModule()
 {
 // Perform operations when this servlet is being taken out of service here
 ...
 }

}

141.4 Packaged resources
The packaged resources are files and documents that can be directly accessed from client browsers and
can be managed and specified either as osd:resource fields or via the Java API. They have various
types and can also be localized.

See also

ResourceTypeAPI

Type osd:resource [p 844]

Directory structure
The packaged resources must be located under the following directory structure:

1. On the first level, the directory /www/ must be located at the root of the module (web application).

2. On the second level, the directory must specify the localization. It can be:

• common/ should contain all the resources to be used by default, either because they are locale-
independent or as the default localization (in EBX®, the default localization is en, namely
English);

• {lang}/ when localization is required for the resources located underneath, with {lang} to be
replaced by the actual locale code; it should correspond to the locales supported by EBX®;
for more information, see Configuring EBX® localization [p 554].

3. On the third level, the directory must specify the resource type. It can be:

• jscripts/ for JavaScript resources;

• stylesheets/ for Cascading Style Sheet (CSS) resources;

• html/ for HTML resources;

• icons/ for icon typed resources;

• images/ for image typed resources.

Example
In this example, the image logoWithText.jpg is the only resource that is localized:
/www
 ├── common
 │ ├── images
 │ │ ├── myCompanyLogo.jpg
 │ │ └── logoWithText.jpg
 │ ├── jscripts
 │ │ └── myCompanyCommon.js
 │ └── stylesheets

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 823

 │ └── myCompanyCommon.css
 ├── de
 │ └── images
 │ └── logoWithText.jpg
 └── fr
 └── images
 └── logoWithText.jpg

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX® modules

TIBCO EBX® Product Documentation 6.2.0 824

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 825

CHAPTER 142
Mapping to Java

This chapter contains the following topics:

1. How to access data from Java?

2. Transactions and concurrency

3. Mapping of data types

4. Java bindings

142.1 How to access data from Java?

Read access
Data can be read from various generic Java classes, mainly AdaptationAPI and ValueContextAPI. The
getter methods for these classes return objects that are typed according to the mapping rules described
in the section Mapping of data types [p 827].

Write access
Data updates must be performed in a well-managed context:

• In the context of a procedure execution, by calling the methods setValue... of the interface
ValueContextForUpdateAPI, or

• During the user input validation, by calling the method setNewValue of the class
ValueContextForInputValidationAPI.

Modification of mutable objects
According to the mapping that is described in the Mapping of data types [p 827] section, some accessed
Java objects are mutable objects. These are instances of List , Date or any JavaBean. Consequently,
these objects can be locally modified by their own methods. However, such modifications will remain
local to the returned object unless one of the above setters is invoked and the current transaction is
successfully committed.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 826

142.2 Transactions and concurrency

Concurrency

At the dataspace level In a single dataspace, the system supports running only
one single read-write Procedure and multiple concurrent
ReadOnlyProcedures. Concurrent accesses outside any
Procedure are also supported.

At the repository level At the repository level, concurrency is limited for only some
specific operations. For example (non-exhaustive list):

• A data model publication excludes many operations.

• A dataspace merge excludes write operations on the
two dataspaces involved in the merge.

Query snapshot isolation
The following table defines the properties related to query isolation. Note that a query result is
represented in the Java API by either a QueryResultAPI or a RequestResultAPI:

Queries outside of a Procedure Data is frozen at the time of fetching the query result. More
precisely, a query result accesses only committed data as of
the last committed transaction at the time of fetching this
result. The content of this result never changes afterwards.
A query outside of a Procedure can be considered as a self-
containing ReadOnlyProcedure.

Queries inside of a Procedure,
in the same dataspace as the
Procedure underlying dataspace

The query result reflects the last committed state before
the Procedure starts and the changes that occurred in the
Procedure previously to the query result fetch. The content
of this result never changes afterwards, whatever happens
in the Procedure.

Queries inside of a Procedure, in
another dataspace

The consistency is guaranteed at the repository level, so
the query result reflects the last committed state before the
Procedure starts. The content of this result never changes
after the query is fetched, whatever happens in the whole
repository.

Adaptation objects
In Java, a persistent dataset or a persistent record are both represented by an instance of the Adaptation
class.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 827

The following table defines the properties related to Adaptation objects.

Immutability An Adaptation object instance is immutable.
Therefore, the client code should not "hold" an Adaptation
object for a long time (in particular beyond a transaction
boundaries). However, it is possible to invoke the method
Adaptation.getUpToDateInstanceAPI.

Fetch If an Adaptation is fetched from a QueryResult, then the
snapshot isolation rules described in the previous section
apply. Otherwise, if an Adaptation is fetched from a running
Procedure, it reflects the last committed state before the
Procedure starts. Otherwise, outside of a QueryResult or a
running Procedure, the Adaptation reflects the state of the
record on its fetch-time.

See also

AdaptationHome.findAdaptationOrNullAPI

AdaptationTable.
lookupAdaptationByPrimaryKeyAPI

142.3 Mapping of data types
This section describes how XML Schema type definitions and element declarations are mapped to
Java types.

Simple data types

Basic rules for simple data types
Each XML Schema simple type corresponds to a Java class; the mapping is documented in the table
XML Schema built-in simple types [p 840].

See also SchemaNode.createNewOccurrenceAPI

Multiple cardinality on a simple element
If the attribute maxOccurs is greater than 1, then the element is an aggregated list and the corresponding
instance in Java is an instance of java.util.List.
Elements of the list are instances of the Java class that is determined from the mapping of the simple
type (see previous section).

Complex data types

Complex type definitions without a class declaration
By default (no attribute osd:class), a terminal node of a complex type is instantiated using an internal
class. This class provides a generic JavaBean implementation. However, if a custom client Java code

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 828

must access these values, use a custom JavaBean. To do so, use the osd:class declaration described
in the next section.
You can transparently instantiate, read and modify the mapped Java object, with or without the
attribute osd:class, by invoking the methods SchemaNode.createNewOccurrenceAPI, SchemaNode.
executeReadAPI and SchemaNode.executeWriteAPI.

Mapping of complex types to custom JavaBeans
You can map an XML Schema complex type to a custom Java class. This is done by adding the attribute
osd:class to the complex node definition. Unless the element has xs:maxOccurs > 1, you must also
specify the attribute osd:access for the node to be considered a terminal node. If the element has
xs:maxOccurs > 1, it is automatically considered to be terminal.
The custom Java class must conform to the JavaBean protocol. This means that each child of the
complex type must correspond to a JavaBean property of the class. Additionally, each JavaBean
property must be a read-write property, and its implementation must ensure that the value set by the
setter method is returned, as-is, by the getter method. Contextual computations are not allowed in
these methods.

Example
In this example, the Java class com.carRental.Customer must define the methods getFirstName()
and setFirstName(String).
A JavaBean can have a custom user interface within TIBCO EBX®, by using a UIBeanEditorAPI.
<xs:element name="customer" osd:access="RW">
 <xs:complexType name="subscriber" osd:class="com.carRental.Customer">
 <xs:sequence>
 <xs:element name="firstName" type="xs:string"/>
 ...
 </xs:sequence>
 </xs:complexType>
</xs:element>

Multiple cardinality on a complex element
If the attribute maxOccurs is greater than 1, then the corresponding instance in Java is:

• An instance of java.util.List for an aggregated list, where every element in the list is an instance
of the Java class determined by the mapping of simple types [p 840], or

• An instance of AdaptationTableAPI, if the property osd:table is specified.

142.4 Java bindings
Java bindings support generating Java types that reflect the structure of the data model. The Java code
generation can be done in the user interface. See Generating Java bindings [p 831].

Benefits
Ensuring the link between XML Schema structure and Java code provides a number of benefits:

• Development assistance: Auto-completion when you type an access path to parameters, if it is
supported by your IDE.

• Access code verification: All accesses to parameters are verified at code compilation.

• Impact verification: Each modification of the data model impacts the code compilation state.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 829

• Cross-referencing: By using the reference tools of your IDE, you can easily verify where a
parameter is used.

Consequently, it is strongly encouraged that you use Java bindings.

XML declaration
The specification of the Java types to be generated from the data model is included in the main schema.
Each binding element defines a generation target. It must be located at, in XPath notation, xs:schema/
xs:annotation/xs:appinfo/ebxbnd:binding, where the prefix ebxbnd is a reference to the namespace
identified by the URI urn:ebx-schemas:binding_1.0. Several binding elements can be defined if you
have different generation targets.
The attribute targetDirectory of the element ebxbnd:binding defines the root directory used for Java
type generation. Generally, it is the directory containing the project source code, src. A relative path
is interpreted based on the current runtime directory of the VM, as opposed to the XML schema.
See bindings XML Schema.

XML bindings example
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ebxbnd="urn:ebx-schemas:binding_1.0">
 <xs:annotation>
 <xs:appinfo>
 <!-- The bindings define how this schema will be represented in Java.
 Several <binding> elements may be defined, one for each target. -->
 <ebxbnd:binding
 targetDirectory="../_ebx-demos/src-creditOnLineStruts-1.0/">
 <javaPathConstants typeName="com.creditonline.RulesPaths">
 <nodes root="/rules" prefix="" />
 </javaPathConstants>
 <javaPathConstants typeName="com.creditonline.StylesheetConstants">
 <nodes root="/stylesheet" prefix="" />
 </javaPathConstants>
 </ebxbnd:binding>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

Java constants can be defined for XML schema paths. To do so, generate one or more interfaces from
a schema node, including the root node /. The example generates two Java path constant interfaces,
one from the node /rules and the other from the node /stylesheet in the schema. Interface names
are described by the element javaPathConstants with the attribute typeName. The associated node is
described by the element nodes with the attribute root.

https://schema.orchestranetworks.com/binding_1.0.xsd

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 6.2.0 830

Documentation > Developer Guide > Introduction > Tools for Java developers

TIBCO EBX® Product Documentation 6.2.0 831

CHAPTER 143
Tools for Java developers

TIBCO EBX® provides Java developers with tools to facilitate use of the EBX® API, as well as
integration with development environments.
This chapter contains the following topics:

1. Activating the development tools

2. Data model refresh tool

3. Generating Java bindings

4. Path to a node

5. Web component link generator

143.1 Activating the development tools
To activate the development tools, run EBX® in development mode. This is specified in the EBX®
main configuration file EBX® run mode [p 571] using the property backend.mode=development.

143.2 Data model refresh tool
When editing the data model directly as an XML Schema document without using the data-modeling
tool provided by EBX®, you can refresh it without restarting the application server.
In the 'Administration' area, select Select > Technical configuration > Development tools > Refresh
updated data models (or Refresh all data models).

Attention
Since the operation is critical regarding data consistency, refreshing the data models acquires a global
exclusive lock on the repository. This means that most other operations (data access and update,
validation, etc.) will wait until the completion of the data model refresh.

143.3 Generating Java bindings
The Java types specified by Java bindings can be generated from a dataset or a data model, by selecting
Actions > Generate Java in the navigation pane.

See also Java bindings [p 828]

Documentation > Developer Guide > Introduction > Tools for Java developers

TIBCO EBX® Product Documentation 6.2.0 832

143.4 Path to a node
The field 'Data path' is displayed in the documentation pane of a node. This field indicates the path to
the node, which can be useful when writing XPath formulas.

Note

This field is always available to administrators.

143.5 Web component link generator
The 'Web component link generator' service is a user interface designed to create HTTP requests that
call EBX® web components. To launch this service, select Actions > Web component link generator
in the navigation pane.

Documentation > Developer Guide > Introduction > Terminology changes

TIBCO EBX® Product Documentation 6.2.0 833

CHAPTER 144
Terminology changes

A new TIBCO EBX® release can introduce new vocabulary for users. To preserve the backward
compatibility, these terminology changes do not usually impact the API. Consequently, Java class
names, method names, data services operation names, etc. still use the older version terminology. This
chapter purpose is to facilitate the correspondence of the old term in the API to the new terms.

See also Glossary [p 27]

This chapter contains the following topics:

1. Terminology changes in version 5.9

2. Terminology changes in version 5.0

144.1 Terminology changes in version 5.9

New term Term prior to version 5.9.0

D3 primary node D3 master node

D3 replica node D3 slave node

Documentation > Developer Guide > Introduction > Terminology changes

TIBCO EBX® Product Documentation 6.2.0 834

144.2 Terminology changes in version 5.0
The following table summarizes the mappings between the version 5.0.0 terminology and previous
terminology:

New term Term prior to version 5.0.0

Dataset Adaptation instance

Child dataset Child adaptation instance

Data model Data model

Dataspace Branch

Snapshot Version

Dataspace or snapshot Home

Data Workflow Workflow instance

Workflow model Workflow definition

Workflow publication Workflow

Field Attribute

Inherited field Inherited attribute

Record Record/occurrence

Validation rule Constraint

Simple/advanced control Simple/advanced constraint

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 835

Data model

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 6.2.0 836

CHAPTER 145
Introduction

A data model is a structural definition of the data to be managed in the TIBCO EBX® repository.
Data models contribute to EBX®'s ability to guarantee the highest level of data consistency and to
facilitate data management.
Specifically, the data model is a document that conforms to the XML Schema standard (W3C
recommendation). Its main features are as follows:

• A rich library of well-defined simple data types [p 839], such as integer, boolean, decimal, date,
time;

• The ability to define additional simple types [p 841] and complex types [p 841];

• The ability to define simple lists of items, called aggregated lists [p 850];

• Validation constraints [p 875] (facets), for example: enumerations, uniqueness constraints,
minimum/maximum boundaries.

EBX® also uses the extensibility features of XML Schema for other useful information, such as:

• Predefined types [p 842], for example: locale, resource, html;

• Definition of tables [p 853] and foreign key constraints [p 859];

• Mapping data in EBX® to Java beans;

• Advanced validation constraints [p 875] (extended facets), such as dynamic enumerations;

• Extensive presentation information [p 895], such as labels, descriptions, and error messages.

Note

EBX® supports a subset of the W3C recommendations, as some features are not relevant
to Master Data Management.

This chapter contains the following topics:

1. Editing the data model

2. References

3. Relationship between datasets and data models

4. Pre-requisite for XML Schemas

5. Conventions

6. Schemas with reserved names

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 6.2.0 837

145.1 Editing the data model
There are two different ways to define a data model:

• The data model can be defined using an XML Schema editor or through the data model assistant.
The data model assistant has the advantage of being integrated into the EBX® user interface,
abstracting the verbose underlying XML. For more information, see Introduction to data models
[p 38].
The data model assistant allows using features that are not documented to be used outside of the
DMA; e.g. Toolbars and Widgets.

• By using an external XML Schema document editor.

145.2 References
For an introduction to XML Schema, see the W3Schools XML Schema Tutorial.

See also

XML Schema Part 0: Primer

XML Schema Part 1: Structures

XML Schema Part 2: Datatypes

145.3 Relationship between datasets and data models
Each root dataset is associated with a single data model. At the dataspace creation, an associated data
model is selected, on which to base the dataset.

See also Creating a dataset [p 119]

145.4 Pre-requisite for XML Schemas
In order for an XML Schema to be accepted by EBX®, it must include a global element declaration
that includes the attribute osd:access="--".
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:import namespace="urn:ebx-schemas:common_1.0"
 schemaLocation="https://schema.orchestranetworks.com/common_1.0.xsd"/>
 <xs:element name="root" osd:access="--">
 ...
 </xs:element>
</xs:schema>

https://www.w3schools.com/xml/schema_intro.asp
https://www.w3.org/TR/xmlschema-0/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 6.2.0 838

145.5 Conventions
By convention, namespaces are always defined as follows:

Prefix Namespace

xs: http://www.w3.org/2001/XMLSchema

osd: urn:ebx-schemas:common_1.0

fmt: urn:ebx-schemas:format_1.0

usd: urn:ebx-schemas:userServices_1.0

emd: urn:ebx-schemas:entityMappings_1.0

145.6 Schemas with reserved names
Several data models in EBX® have reserved names.
All references to other data models (using the attribute schemaLocation for an import, include or
redefine) that end with one of the following strings are reserved:

• common_1.0.xsd

• org_1.0.xsd

• coreModel_1.0.xsd

• session_1.0.xsd

• userServices_1.0.xsd

• entityMappings_1.0.xsd

These XSD files correspond to the schemas provided for the module ebx-root-1.0, at the path /WEB-
INF/ebx/schemas. The attribute schemaLocation can reference the files at this location or a copy, if the
file names are identical. This is useful if you want to avoid a module dependency on ebx-root-1.0.
For security reasons, EBX® uses an internal definition for these schemas to prevent any modification.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 839

CHAPTER 146
Data types

This chapter details the data types supported by TIBCO EBX®.

See also Tables and relationships [p 853]

This chapter contains the following topics:

1. XML Schema built-in simple types

2. XML Schema named simple types

3. XML Schema complex types

4. Extended simple types defined by EBX®

5. Complex types defined by EBX®

6. Aggregated lists

7. Including external data models

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 840

146.1 XML Schema built-in simple types
The table below lists all the simple types defined in XML Schema that are supported by EBX®, along
with their corresponding Java types.

XML Schema type Java class Notes

xs:string java.lang.String The default strategies defined for string
fields are detailed in the section Default
strategy for string fields [p 502].

xs:boolean java.lang.Boolean

xs:decimal java.math.BigDecimal A totalDigits facet with a value equal
to 15 is added by default to decimal
fields that are contained in a mapped
table (historized or replicated table).
However, this facet can be overwritten
with a greater value in the data model.

xs:dateTime java.util.Date

xs:time java.util.Date The date portion of the returned Date is
always set to '1970/01/01'.

xs:date java.util.Date The time portion of the returned Date is
always the beginning of the day, that is,
'00:00:00'.

xs:anyURI java.net.URI

xs:Name (xs:string restriction) java.lang.String

xs:int (xs:decimal restriction) java.lang.Integer

xs:integer (xs:decimal restriction) java.lang.Integer This mapping does not comply with
the XML Schema recommendation.
Although the XML Schema specification
states that xs:integer has no value
space limitation, this value space is, in
fact, restricted by the Java specifications
of the java.lang.Integer object.

The mapping between XML Schema types and Java types are detailed in the section Mapping of data
types [p 827].

146.2 XML Schema named simple types
Named simple types can be defined when designing a data model for redefining an existing built-in
simple type. A named simple type can be reused in the data model.
Restrictions:

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#int
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#int
https://www.w3.org/TR/xmlschema-2/#decimal

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 841

• In the data model, only the element restriction is allowed in a named simple type, and even
then, only derivation by restriction is supported. Notably, the elements list and union are not
supported.

• Facet definition is not cumulative. That is, if an element and its named type both define the same
kind of facet, then the facet defined in the type is overridden by the local facet definition.
However, this restriction does not apply to programmatic facets defined by the element
osd:constraint. For osd:constraint, if an element and its named type both define a
programmatic facet with different Java classes, the definition of these facets will be cumulative.
Contrary to the XML Schema Specification, EBX® is not strict regarding the definition of a facet
of the same kind in an element and its named type. That is, the value of a same kind of facet
defined in an element is not checked according to the one defined in the named type. However,
in the case of static enumerations defined both in an element and its type, the local enumeration
will be replaced by the intersection between these enumerations.

• It is not possible to define different types of enumerations on both an element and its named type.
For instance, you cannot specify a static enumeration in an element and a dynamic enumeration
in its named type.

• It is not possible to simultaneously define a pattern facet in both an element and its named type.

146.3 XML Schema complex types
Complex types can be defined when designing a data model. A named complex type can be reused
in the data model.
Restrictions:

• In the data model, only the element sequence is allowed. Notably, attribute definition is not
supported.

• Type extensions are not supported in the current version of EBX®.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 842

146.4 Extended simple types defined by EBX®
EBX® provides pre-defined simple data types:

XML Schema type Java class

osd:text (xs:string restriction) java.lang.String

osd:html (xs:string restriction) java.lang.String

osd:email (xs:string restriction) java.lang.String

osd:password (xs:string restriction) java.lang.String

osd:color (xs:string restriction) java.lang.String

osd:resource (xs:anyURI restriction) internal class

osd:locale (xs:string restriction) java.util.Locale

osd:dataspaceKey (xs:string restriction) java.lang.String

osd:datasetName (xs:string restriction) java.lang.String

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 843

The above types are defined by the internal schema common-1.0.xsd. They are defined as follows:

osd:text This type represents textual information. Its default user
interface in EBX® consists of a dedicated editor with
several lines for input and display.
The use of this data type is intended for very long texts;
this is why the 'Text' search strategy is associated with this
type, and cannot be modified. As a consequence, fields of
type osd:text cannot benefit from sorting; moreover, their
indexing strategy and search results differ from those of the
xs:string type. See Default strategy for string fields [p 502]

for more information.
<xs:simpleType name="text">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:html This represents a character string with HTML formatting. A
WYSIWYG editor is provided in EBX®.
<xs:simpleType name="html">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:email This represents an email address as specified by the RFC822
standard.
<xs:simpleType name="email">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:password This represents a hashed or encrypted password. A specific
editor is provided in EBX®.
<xs:element name="password" type="osd:password" />

The default editor performs a hash computation using
the SHA-512 algorithm. This encryption function is
also available from a Java client using the method
DirectoryDefault.encryptStringAPI.
It is also possible for the default editor to use a
different encryption mechanism by specifying a class that
implements the interface EncryptionAPI.
<xs:element name="password" type="osd:password">
 <xs:annotation>
 <xs:appinfo>
 <osd:uiBean class="com.orchestranetworks.ui.UIPassword">
 <encryptionClass>package.EncryptionClassName</encryptionClass>
 </osd:uiBean>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

It is possible to specify some salt by referencing a path
to another field, and by using a class the implements the
interface HashComputationAPI.

https://tools.ietf.org/html/rfc822#section-6

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 844

<xs:element name="password" type="osd:password">
 <xs:annotation>
 <xs:appinfo>
 <osd:uiBean class="com.orchestranetworks.ui.UIPassword">
 <encryptionClass>package.HashClassName</encryptionClass>
 <saltPath>../login</saltPath>
 </osd:uiBean>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

osd:locale This represents a geographical, political or cultural location.
The locale type is translated into Java by the class
java.util.Locale.
<xs:simpleType name="locale">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ar" osd:label="Arabic" />
 <xs:enumeration value="ar_AE" osd:label="Arabic (United Arab
 Emirates)" />
 <xs:enumeration value="ar_BH" osd:label="Arabic (Bahrain)" />
 <xs:enumeration value="ar_DZ" osd:label="Arabic (Algeria)" />
 <xs:enumeration value="ar_EG" osd:label="Arabic (Egypt)" />
 <xs:enumeration value="ar_IQ" osd:label="Arabic (Iraq)" />
 ...
 <xs:enumeration value="vi_VN" osd:label="Vietnamese (Vietnam)" /
>
 <xs:enumeration value="zh" osd:label="Chinese" />
 <xs:enumeration value="zh_CN" osd:label="Chinese (China)" />
 <xs:enumeration value="zh_HK" osd:label="Chinese (Hong Kong)" />
 <xs:enumeration value="zh_TW" osd:label="Chinese (Taiwan)" />
 </xs:restriction>
</xs:simpleType>

osd:color This represents a character string with hexadecimal RGB
color formatting. A color picker UIComponent is provided in
EBX®.
<xs:simpleType name="color">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:resource This represents a resource packaged in a module. For
more information, see Packaged resources [p 822]. This type
requires the definition of the facet FacetOResource [p 880].
<xs:simpleType name="resource">
 <xs:restriction base="xs:anyURI" />
</xs:simpleType>

osd:dataspaceKey This type represents a reference to a dataspace.
<xs:element name="dataspaceField" type="osd:dataspaceKey" />

A specific editor is provided in EBX® that displays the
dataspaces that can be referenced.
It is possible to specify the dataspaces that can be referenced
using the element osd:dataspaceSet under xs:annotation/
xs:appInfo. If the element osd:dataspaceSet is not
defined, then by default, only open branches can be
referenced.
<xs:element name="dataspaceField" type="osd:dataspaceKey">
 <xs:annotation>
 <xs:appinfo>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 845

 <osd:dataspaceSet>
 <include>
 <pattern>a pattern</pattern>
 <type>all | branch | version</type>
 <includeDescendants>none | allDescendants |
 allBranchDescendants | allSnapshotDescendants | branchChildren |
 snapshotChildren</includeDescendants>
 </include>
 <exclude>
 <pattern>a pattern</pattern>
 <type>all | branch | version</type>
 <includeDescendants>none | allDescendants |
 allBranchDescendants | allSnapshotDescendants | branchChildren |
 snapshotChildren</includeDescendants>
 </include>
 <filter osd:class="com.foo.MyDataspaceFilter">
 <param1>...</param1>
 <param2>...</param2>
 </filter>
 </osd:dataspaceSet>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

• includes
Specifies the dataspaces that can be referenced by this
field. An include must at least be defined.
pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
This property is mandatory.
type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction is
applied to branches. If all then branches and snapshots
are included. If branch then only branches are included.
If snapshot then only snapshots are included. If not set,
this property is branch by default.
includeDescendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If none then
neither children nor descendants of the dataspaces
that match the specified pattern are included.
If allDescendants then all descendants of the
dataspaces that match the specified pattern are
included. If allBranchDescendants then all descendant
branches of the dataspaces that match the specified
pattern are included. If allSnapshotDescendants
then all descendant snapshots of the dataspaces
that match the specified pattern are included. If
directBranchChildren then only direct branches of
the dataspaces that match the specified pattern are
included. If directSnapshotChildren then only direct
snapshots of the dataspaces that match the specified
pattern are included. If not set, this property is none by
default.

• excludes
Specifies the dataspaces that cannot be referenced by
this field. Excludes are ignored if no includes are
defined.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 846

pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
This property is mandatory.
type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches. If all then branches and
snapshots are excluded. If branch then only branches
are excluded. If snapshot then only snapshots are
excluded. If not set, this property is branch by default.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are excluded from the set. If none then
neither children nor descendants of the dataspaces
that match the specified pattern are excluded.
If allDescendants then all descendants of the
dataspaces that match the specified pattern are
excluded. If allBranchDescendants then all descendant
branches of the dataspaces that match the specified
pattern are excluded. If allSnapshotDescendants
then all descendant snapshots of the dataspaces
that match the specified pattern are excluded. If
directBranchChildren then only direct branches of
the dataspaces that match the specified pattern are
excluded. If directSnapshotChildren then only direct
snapshots of the dataspaces that match the specified
pattern are excluded. If not set, this property is none by
default.

• filter

Specifies a filter to accept or reject dataspaces in the
context of a dataset or a record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field.
The attribute osd:class specifies a Java bean that
implements the interface DataspaceSetFilterAPI.

It is also possible to customize validation messages and
the control policy associated with this type using the
element validation under xs:annotation/xs:appInfo/
osd:dataspaceSet. See Facet validation message with
severity [p 898] and Control policy [p 885] for more
information.

osd:datasetName This type represents a reference to a dataset.
<xs:element name="dataset" type="osd:datasetName" />

A specific editor provided in EBX® displays the datasets
that can be referenced.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 847

It is also possible to specify the datasets that can
be referenced using the element osd:datasetSet under
xs:annotation/xs:appInfo:
<xs:element name="datasetField" type="osd:datasetName">
 <xs:annotation>
 <xs:appinfo>
 <osd:datasetSet>
 <branch>productsBranch</branch>
 <version>productsVersion</version>
 <dataspaceSelector>../dataspaceField</dataspaceSelector>
 <pattern>a pattern</pattern>
 <filter osd:class="com.foo.MyDatasetFilter">
 <param1>...</param1>
 <param2>...</param2>
 </filter>
 </osd:datasetSet>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

• branch

Specifies the source branch. Only datasets contained in
this branch will be able to be selected by a field of the
type Dataset identifier (osd:datasetName).

• version

Specifies the source snapshot. Only datasets contained
in this snapshot will be able to be selected by a field of
the type Dataset identifier (osd:datasetName).

• dataspaceSelector

Specifies a field in the same data model that defines
the dataspace containing the datasets that can be
referenced. The specified field must be of type
xs:string or osd:dataspaceKey. The value of this field
must comply with the representation of a persistent
identifier of a dataspace or snapshot.
The referred node must respect the restrictions existing
for dynamic facets.

See also

HomeKey.formatAPI

Dynamic constraints [p 879]

• includes

Specifies the datasets that can be referenced by this
field.
pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets. This
property is mandatory.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set. If none then neither
children nor descendants of the datasets that match
the specified pattern are excluded. If directChildren

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 848

then only direct children of the datasets that match the
specified pattern are excluded. If allDescendants then
all descendants of the datasets that match the specified
pattern are excluded. If not set, this property is none by
default.

• excludes

Specifies the datasets that cannot be referenced by this
field. Excludes are ignored if no includes are defined.
pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets. This
property is mandatory.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set. If none then neither
children nor descendants of the datasets that match
the specified pattern are excluded. If directChildren
then only direct children of the datasets that match the
specified pattern are excluded. If allDescendants then
all descendants of the datasets that match the specified
pattern are excluded. If not set, this property is none by
default.

• filter

Specifies a filter to accept or reject datasets in the
context of a dataset or record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field.
The attribute osd:class specifies a Java bean that
implements the interface DatasetSetFilterAPI. A
validation message is added to the associated field if an
input dataspace reference does not match this filter.

One of the elements branch, version or dataspaceSelector
must be defined.
It is also possible to customize validation messages and
the control policy associated with this type using the
element validation under xs:annotation/xs:appInfo/
osd:datasetSet. See Facet validation message with
severity [p 898] and Control policy [p 885] for more
information.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 849

146.5 Complex types defined by EBX®
EBX® provides pre-defined complex data types:

XML Schema type Description

osd:UDA User Defined Attribute: This type allows any user, according
to their access rights, to define a value associated with an
attribute defined in a dictionary called a UDA Catalog.

osd:UDACatalog Catalog of User Defined Attributes: This type consists of a
table in which attributes can be specified. This catalog is used
by all osd:UDA elements declared in the same data model.

osd:UDA A User Defined Attribute (UDA) supports both the
minOccurs and maxOccurs attributes, as well as the attribute
osd:UDACatalogPath, which specifies the path of the
corresponding catalog.
<xs:element name="firstUDA" type="osd:UDA" minOccurs="0"
 maxOccurs="unbounded" osd:UDACatalogPath="//insuranceCatalog" />
<xs:element name="secondUDA" type="osd:UDA" minOccurs="1"
 maxOccurs="1"
 osd:UDACatalogPath="/root/userCatalog" />
<xs:element name="thirdUDA" type="osd:UDA" minOccurs="0"
 maxOccurs="1"
 osd:UDACatalogPath="//userCatalog" />

In the manager, when working with a UDA, the editor will
adapt itself to the type of the selected attribute.

osd:UDACatalog Internally, a catalog is represented as a table. The parameters
minOccurs and maxOccurs must be specified.
Several catalogs can be defined in the same data model.
<xs:element name="insuranceCatalog" type="osd:UDACatalog"
 minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">Insurance Catalog.</
xs:documentation>
 <xs:documentation xml:lang="fr-FR">Catalog assurance.</
xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="userCatalog" type="osd:UDACatalog" minOccurs="0"
 maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">User catalog.</
xs:documentation>
 <xs:documentation xml:lang="fr-FR">Catalogue utilisateur.</
xs:documentation>
 </xs:annotation>
</xs:element>

Only the following types are available for creating new
attributes:

• xs:string

• xs:boolean

• xs:decimal

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 850

• xs:dateTime

• xs:time

• xs:date

• xs:anyURI

• xs:Name

• xs:int

• osd:html

• osd:email

• osd:password

• osd:locale

• osd:text

Restrictions on User Defined Attributes and Catalogs
The following features are unsupported on UDA elements:

• Facets

• Functions using the osd:function property

• UI bean editors using the osd:uiBean property

• The osd:checkNullInput property

• History features

• Replication

• Inheritance features, using the osd:inheritance property

As UDA catalogs are internally considered to be tables, the restrictions that apply to tables also exist
for UDACatalog elements.

146.6 Aggregated lists
In XML Schema, the maximum number of times an element can occur is determined by the value of
the maxOccurs attribute in its declaration. If this value is strictly greater than 1 or is unbounded, the
data can have multiple occurrences. If no osd:table declaration is included, this element is called
an aggregated list.
In Java, it is then represented as an instance of the class java.util.List.
The following is an example of an aggregated list that defines the pricing of a loan product, depending
on the amount borrowed.
<xs:element name="pricing" minOccurs="0" maxOccurs="unbounded"
 osd:access="RW">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Pricing</osd:label>
 <osd:description>Pricing grid </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="amount" type="xs:int">
 <xs:annotation>
 <xs:documentation>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 851

 <osd:label>Amount borrowed</osd:label>
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="monthly" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Monthly payment </osd:label>
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="cost" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Cost</osd:label>
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Aggregated lists have a dedicated editor in EBX®. This editor allows you to add or to delete
occurrences.

Attention
The addition of an osd:table declaration to an element with maxOccurs > 1 is a very important
consideration that must be taken into account during the design process. An aggregated list is severely
limited with respect to the many features that are supported by tables. Some features unsupported
on aggregated lists that are supported on tables are:

• Performance and memory optimization;

• Lookups, filters and searches;

• Sorting, view and display in hierarchies;

• Identity constraints (primary keys and uniqueness constraints);

• Detailed permissions for creation, modification, deletion and particular permissions at the record
level;

• Detailed comparison and merge.

Thus, aggregated lists should be used only for small volumes of simple data (one or two dozen
occurrences), with no advanced requirements. For larger volumes of data or more advanced
functionalities, it is strongly advised to use an osd:table declaration.
For more information on table declarations, see Tables and relationships [p 853].

146.7 Including external data models
Including another data model in your current model allows you to use the reusable types that are
defined in that data model. You can thus use the inclusion of external data models to share data types
between multiple XML Schema Documents.
To include another XML Schema Document in your model, thereby including the data types that it
defines, specify the xs:include element as follows:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="./schemaToInclude.xsd"/>
 ...
</xs:schema>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 6.2.0 852

The attribute schemaLocation is mandatory and must specify either an absolute or a relative path to
the XML Schema Document to include.
The inclusion of XML Schema Documents is not namespace aware, thus all included data types must
belong to the same namespace. As a consequence, including XML Schema Documents that define
data types of the same name is not supported.
EBX® includes extensions with specific URNs for including embedded data models and data models
packaged in modules.
To include an embedded data model in a model, specify the URN defined by EBX®. For example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="urn:ebx:publication:myPublication"/>
 ...
</xs:schema>

To include a data model packaged in a module, specify the specific URN defined by EBX®. For
example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="urn:ebx:module:aModuleName:/WEB-INF/ebx/schema/myDataModel.xsd"/>
 ...
</xs:schema>

See SchemaLocationAPI for more information about specific URNs supported by EBX®.

Note

If the packaged data model uses Java resources, the class loader of the module containing
the data model will be used at runtime for resolving these resources.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 853

CHAPTER 147
Tables and relationships

This chapter contains the following topics:

1. Tables

2. Foreign keys

3. Associations

4. Linked fields

147.1 Tables

Overview
TIBCO EBX® supports the features of relational database tables, including the handling of large
volumes of records, and identification by primary key.
Tables provide many benefits that are not offered by aggregated lists [p 850]. Beyond relational
capabilities, some features that tables provide are:

• filters and searches;

• sorting, views and hierarchies;

• identity constraints: primary keys, foreign keys [p 859] and uniqueness constraints [p 877];

• specific permissions for creation, modification, and deletion;

• dynamic and contextual permissions at the individual record level;

• detailed comparison and merge;

• ability to have inheritance at the record level (see dataset inheritance [p 472]);

• performance and memory optimization.

See also

Entity mappings [p 86]

Foreign keys [p 859]

Associations [p 863]

Linked fields [p 873]

Working with existing datasets [p 155]

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 854

Simple tabular views [p 128]

Hierarchical views [p 128]

History [p 451]

Declaration
A table element, which is an element with maxOccurs > 1, is declared by adding the following
annotation:
<xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/pathToField1 /pathToField...n</primaryKeys>
 </osd:table>
 </xs:appinfo>
</xs:annotation>

Note

A default entity name is associated to the table if it does not have one explicitly set in
the data model. The table's name is used as its default entity name. Entity names allow to
refer to tables in SQL requests and Data Service operations using unique names instead
of their paths by defining suffixes for WSDL operations and aliases for SQL requests.
See Entity mappings [p 86] for more informations.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 855

Common properties

Element Description Required

primaryKeys Specifies the primary key fields of the table.

Each field of the primary key must be denoted by its absolute
XPath notation that starts just under the root element of the table. If
there are multiple fields in the primary key, the list is delimited by
whitespace.

Note: Whitespaces in primary keys of type xs:string are handled
differently. See Whitespace handling for primary keys of type string
[p 889].

Yes.

defaultLabel Defines the end-user display of records. Multiple variants can be
specified:

• A static non-localized expression is defined using the
defaultLabel element, for example:

<defaultLabel>Product: ${./productCode}</
defaultLabel>

• Static localized expressions are specified using the
defaultLabel element with the attribute xml:lang, for example:

<defaultLabel xml:lang="fr-FR">Produit : ${./
productCode}</defaultLabel>

<defaultLabel xml:lang="en-US">Product: ${./
productCode}</defaultLabel>

• A JavaBean that implements the interface UILabelRendererAPI

and/or the interface UILabelRendererForHierarchyAPI. The
JavaBean is specified by means of the attribute osd:class, for
example:

<defaultLabel osd:class="com.wombat.MyLabel"></
defaultLabel>

Attention
Since the end-user display should be sortable, only fields that use
sortable search strategies are allowed in static expressions.

Note: The priority of the tags when displaying the user interface is
the following:

1. defaultLabel tags with a JavaBean (but it is not allowed to
define several renderers of the same type);

2. defaultLabel tags with a static localized expression using the
xml:lang attribute;

3. defaultLabel tags with a static non-localized expression.

Attention: Access rights defined on associated datasets are not
applied when displaying record labels. Fields that are usually hidden
due to access rights restrictions will be displayed in labels.

No.

recordForm Defines a specific component for customizing the record form in a
dataset. This component is defined using a JavaBean that extends
UIFormAPI or implements UserServiceRecordFormFactoryAPI.

The JavaBean is specified by means of the attribute osd:class, for
example:

<recordForm osd:class="com.wombat.MyRecordForm"/>

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 856

Example
Below is an example of a product catalog:
<xs:element name="Products" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Product Table </osd:label>
 <osd:description>List of products in Catalog </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>./productRange /productCode</primaryKeys>
 <index name="indexProductCode">/productCode</index>
 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="productRange" type="xs:string"/><!-- key -->
 <xs:element name="productCode" type="xs:string"/><!-- key -->
 <xs:element name="productLabel" type="xs:string"/>
 <xs:element name="productDescription" type="xs:string"/>
 <xs:element name="productWeight" type="xs:int"/>
 <xs:element name="productType" type="xs:string"/>
 <xs:element name="productCreationDate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Catalogs" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Catalog Table</osd:label>
 <osd:description>List of catalogs</osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/catalogId</primaryKeys>
 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="catalogId" type="xs:string"/><!-- key -->
 <xs:element name="catalogLabel" type="xs:string"/>
 <xs:element name="catalogDescription" type="xs:string"/>
 <xs:element name="catalogType" type="xs:string"/>
 <xs:element name="catalogPublicationDate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 857

Properties related to dataset inheritance
The following properties are only valid in the context of dataset inheritance:

Element Description Required

onDelete-
deleteOccultingChildren

Specifies whether, upon record deletion, child records in occulting
mode are also to be deleted.

Valid values are: never or always.

No, default is
never.

mayCreateRoot Specifies whether root record creation is allowed. The expression
must follow the syntax below. See definition modes [p 472].

No, default is
always.

mayCreateOverwriting Specifies whether records are allowed to be overwritten in child
datasets. The expression must follow the syntax below. See definition
modes [p 472].

No, default is
always.

mayCreateOcculting Specifies whether records are allowed to be occulted in child
datasets. The expression must follow the syntax below. See definition
modes [p 472].

No, default is
always.

mayDuplicate Specifies whether record duplication is allowed. The expression must
follow the syntax below.

No, default is
always.

mayDelete Specifies whether record deletion is allowed. The expression must
follow the syntax below.

No, default is
always.

The may... expressions specify when the action is possible, though the ultimate availability of the
action also depends on the user access rights. The expressions have the following syntax:
expression ::= always | never | <condition>*

condition ::= [root:yes | root:no]

"always": the operation is "always" possible (but user rights may restrict this).

"never": the operation is never possible.

"root:yes": the operation is possible if the record is in a root instance.

"root:no": the operation is not possible if the record is in a root instance.

If the record does not define any specific conditions, the default is used.

See also Dataset inheritance [p 471]

Using toolbars
It is possible to define the toolbars to display in the user interface using the element defaultView/
toolbars under xs:annotation/appinfo/osd:table. A toolbar allows to customize the buttons and
menus to display when displaying a table view, a hierarchical view, or a record form.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 858

The table below presents the elements that can be defined under defaultView/toolbars.

Element Description Required

tabularViewTop Defines the toolbar to use on top of the default table view. No.

tabularViewRow Defines the toolbar to use on each row of the default table view. No.

recordTop Defines the toolbar to use in the record form. No.

hierarchyViewTop Defines the toolbar to use in the default hierarchy view of the table. No.

See also Toolbars [p 911]

Example
Below is an example of custom toolbars used by a product catalog:
<xs:element name="Products" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Product Table </osd:label>
 <osd:description>List of products in Catalog </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>./productRange /productCode</primaryKeys>
 <defaultView>
 <toolbars>
 <tabularViewTop>toolbar_name_for_tabularViewTop</tabularViewTop>
 <tabularViewRow>toolbar_name_for_tabularViewRow</tabularViewRow>
 <recordTop>toolbar_name_for_recordTop</recordTop>
 <hierarchyViewTop>toolbar_name_for_hierarchyViewTop</hierarchyViewTop>
 </toolbars>
 </defaultView>
 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 ...
 </xs:complexType>
</xs:element>

Note

If a toolbar does not exist or is not available for a specific location then no toolbar will
be displayed in the user interface in the corresponding location.

Record metadata
EBX® automatically adds record metadata to a table's structure. The metadata nodes enable retrieval
of the following information about a record:

• Creator.

• Creation time.

• Last modifier.

• Time of last modification.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 859

• Unique identifier of a record (UUID). This metadata being technical it cannot be used in a custom
table view, in the structured search tools and quick search.

• The definition mode of a record. This metadata being technical it cannot be used in a custom table
view, in the structured search tools and quick search.

An example use for record metadata might be to display or fetch all the records created by a specific
user since a specific date. This is possible:

• For business users in the user interface by:

• Using the quick search feature to locate records by using the metadata fields as part of the
search criteria.

• Defining table views that include the desired metadata fields.

• Via the API by querying with XPath or SQL.

Attention
Please take note of the following points regarding metadata:

• Metadata are defined under a group with the reserved name ebx-metadata. As a consequence,
the metadata won't be available in a table if it contains a group, directly under its root, with the
same name. A warning displays when compiling the data model if a table defines a group with
this reserved name.

• Metadata are read-only.

• Metadata are not included when exporting the content of a table to an XML or CSV file.

• By default, metadata fields are not including when instrospecting a data model using the API.
You can explicitly included them using the dedicated API SchemaNode.getNodeChildrenAPI.

See also

Metadata fields in SQL [p 1197]

Technical data [p 1178]

SchemaMetadataConstantsAPI

Constants.DataAPI

147.2 Foreign keys

Declaration
A reference to a table [p 853] is defined using the extended facet osd:tableRef.
The node holding the osd:tableRef declaration must be of type xs:string.
At the instantiation, any value of the node identifies a record in the target table using its primary key
syntax PrimaryKey.syntaxAPI.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 860

This extended facet is also interpreted as an enumeration whose values refer to the records in the
target table.

Element Description Required

tablePath XPath expression that specifies the target table. Yes.

container Reference of the dataset that contains the target table. Only if the dataspace element
is defined. Otherwise, default
is the current dataset.

branch Reference of the dataspace that contains the container dataset. No, default is the current
dataspace or snapshot.

display Custom display for presenting the selected foreign key in
the current record and the sorted list of possible keys. Two
variants can be specified, either pattern-based expressions, or a
JavaBean if the needs are very specific:

• Static expressions are specified using the display and
pattern elements. These static expressions can be
localized using the additional attribute xml:lang on the
pattern element, for example:

<display>

<pattern>Product : ${./productCode}</pattern>

<pattern xml:lang="fr-FR">Produit : ${./
productCode}</pattern>

<pattern xml:lang="en-US">Product: ${./
productCode}</pattern>

</display>

Attention
Since the display pattern should be sortable, only fields
that use sortable search strategies are allowed.

• A JavaBean that implements the interface
TableRefDisplayAPI. It is specified using the attribute
osd:class. For example:

<display osd:class="com.wombat.MyLabel"></
display>

Attention
Quick search and sort operations in the user interface
will use the raw value instead of the label of the records
if a JavaBean is defined or if the target table defines a
programmatic label UILabelRendererAPI for its records.
A static expression must be defined to use in these
operations the label of the records.

It is not possible to define both variants on the same foreign key
element.

Attention: Access rights defined on associated datasets are not
applied when displaying record labels. Fields that are usually
hidden due to access rights restrictions will be displayed in
labels.

No, if the display property
is not specified, the table's
record rendering [p 855] is
used.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 861

Element Description Required

filter Specifies an additional constraint that filters the records of the
target table. Two types of filters are available:

• An XPath filter is an XPath predicate in the target table
context. It is specified using the predicate element. For
example:

<filter><predicate>type = ${../refType}</
predicate></filter>

A localized validation message can be specified using the
element validationMessage, which will be displayed
to the end-user at the validation time if a record is not
accepted by the filter.

A specific severity level can be defined in a nested
severity element. The default severity is 'error'.

Each localized message variant is defined in a nested
message element with its locale in an xml:lang attribute.
To specify a default message for unsupported locales,
define a message element with no xml:lang attribute.

In the user interface, the XPath filter is applied to filter a
table according to the value of a foreign key field. That
is, if a foreign key field specifies an XPath filter in a data
model, then it will be reused in the filter pane to restrict the
set of values in the associated combo-box displayed in the
filter pane. However, the predicate used by the filter pane
will only take into account the non-contextual parts of the
predicate.

• A programmatic filter is a JavaBean that implements
the interface TableRefFilterAPI. It is specified using the
attribute osd:class. For example:

<filter osd:class="com.wombat.MyFilter"></filter>

Additional validation messages can be specified during the
setup of the programmatic filter.

In the user interface, programmatic filters are not applied
to filter the set of values in the associated combo-box
displayed in the filter pane. However, it is possible
to specify an additional XPath predicate that will be
used in the filter pane of the user interface. This XPath
predicate is specified during the setup of the programmatic
filter using the method TableRefFilterContext.
setFilterForSearchAPI.

Note

The attributes osd:class and the property
predicate cannot be set simultaneously.
The validation search XPath functions are
forbidden on a tableRef filter.

See also

JavaBean specifications Package
com.orchestranetworks.schema.JavaBeansAPI

JavaBeanVersionAPI

No.

validation Specifies localized validation messages for the osd:tableRef
and error management policy.

A specific severity level can be defined in a nested severity
element. The default severity is 'error'.

An error management policy can be defined in a nested
blocksCommit element. The error management policy that

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 862

Element Description Required

blocks all operations does not apply to filters. That is, a foreign
key constraint is not blocking if a referenced record exists but
does not satisfy a foreign key filter. In this case, updates are not
rejected, and a validation error will be reported.

Each localized message variant is defined in a nested message
element with its locale in an xml:lang attribute. To specify
a default message for unsupported locales, define a message
element with no xml:lang attribute.

Attention
You can create a dataset which has a foreign key to a container that does not exist in the repository.
However, the content of this dataset will not be available until the container is created. After the
creation of the container, a data model refresh is required to make the dataset available. When
creating a dataset that refers to a container that does not yet exist, the following limitations apply:

• Triggers defined at the dataset level are not executed.

• Default values for fields that are not contained in tables are not initialized.

• During an archive import, it is not possible to create a dataset that refers to a container that does
not exist.

Example
The example below specifies a foreign key in the 'Products' table to a record of the 'Catalogs' table.
<xs:element name="catalog_ref" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:tableRef>
 <tablePath>/root/Catalogs</tablePath>
 <display>
 <pattern xml:lang="en-US">Catalog: ${./catalogId}</pattern>
 <pattern xml:lang="fr-FR">Catalogue : ${./catalogId}</pattern>
 </display>
 <validation>
 <severity>error</severity>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 <message>A default error message</message>
 <message xml:lang="en-US">A localized error message</message>
 <message xml:lang="fr-FR">Un message d'erreur localisé</message>
 </validation>
 </osd:tableRef>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

See also

Table definition [p 853]

Primary key syntax PrimaryKey.syntaxAPI

Extraction of foreign keys (XPath predicate syntax) [p 437]

Associations [p 863]

View for advanced selection [p 905]

SchemaNode.getFacetOnTableReferenceAPI

SchemaFacetTableRefAPI

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 863

147.3 Associations

Overview
An association provides an abstraction over an existing relationship in the data model, and allows an
easy model-driven integration of associated objects in the user interface and in data services.
Several types of associations are supported:

• 'By foreign key' specifies the inverse relationship of an existing foreign key field [p 859].

• 'Over a link table' specifies a relationship based on an intermediate link table (such tables are often
called "join tables"). This link table has to define two foreign keys, one referring to the 'source'
table (the table holding the association element) and another one referring to the 'target' table.

• 'By an XPath predicate' specifies a relationship based on an XPath predicate.

For an association, it is also possible to:

• Filter associated objects by specifying an additional XPath filter.

• Configure a tabular view to define the fields that must be displayed in the associated table.

• Define how associated objects are to be rendered in forms.

• Hide/show associated objects in the data service 'select' operation. See Hiding a field in Data
Services [p 904].

• Specify the minimum and maximum number of associated objects that are required.

• Add validation constraints using XPath predicates for restricting associated objects.

See also

SchemaNode.getAssociationLinkAPI

SchemaNode.isAssociationNodeAPI

AssociationLinkAPI

Declaration
Associations are defined in the data model using the XML Schema element osd:association under
xs:annotation/appInfo.
Restrictions:

• An association must be a simple element of type xs:string.

• An association can only be defined inside a table.

Note

The "official" cardinality constraints (minOccurs="0" maxOccurs="0") are required
because, from an instance of XML Schema, the corresponding node is absent. In other
words, an association has no value and is considered as a "virtual" element as far as XML
and XML Schema is concerned.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 864

The table below presents the elements that can be defined under xs:annotation/appInfo/
osd:association.

Element Description Required

tableRefInverse Defines the properties of an association that is the
inverse relationship of a foreign key.

The element fieldToSource defines the foreign
key that refers to the source table of the association.
The element fieldToSource is mandatory and
must specify a foreign key field that refers to the
table containing the association.

The element fieldToSource can be defined on a
foreign key list (maxOccurs > 1), in that case, the
list should be declared as unique with a blocking
uniqueness constraint (onInsertUpdateOrDelete).

See also

Blocking and non-blocking constraints [p

885]

Uniqueness constraints [p 877]

Yes if the
association
is the inverse
relationship of
a foreign key,
otherwise no.

linkTable Defines the properties of an association over a link
table.

The element table specifies the link table used by
the association. The element table is mandatory
and must refer to an existing table.

Important: In order to be used by an association,
a link table must define a primary key that is
composed of auto-incremented fields and/or the
foreign key to the source or target table of the
association.

The element fieldToSource defines the foreign
key that refers to the source table of the association.
The element fieldToSource is mandatory and
must specify a foreign key field that refers to the
table containing the association.

The element fieldToTarget defines the foreign
key that refers to the target table of the association.
The element fieldToTarget is mandatory and
must specify a foreign key field.

Yes if the
association
is over a
link table,
otherwise no.

xpathLink Defines the properties of an association that is
based on an XPath predicate.

The predicate element specifies the criteria of the
association, relative to the current node.

Examples: /root/Products[catalog_ref =${../
catalogId}] or //Products[catalog_ref =
${../catalogId}] or ../Products[catalog_ref
=${../catalogId}].

The path to the predicate, for example ../
Products, specifies the target table of the
association. This part of the path is resolved with
respect to the current table. It is not possible
to refer to a table using a relative path if the
association targets a table in another dataset.

If the association depends on fields of the source
table, the XPath expression predicate must include
references to the elements on which it depends

Yes if the
association
is based on
an XPath
predicate,
otherwise no.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 865

Element Description Required

using the notation ${<relative-path>} where
relative-path is a path that identifies the element
relative to the association node.

See EBX® XPath supported syntax [p 431].

Note

The validation search XPath
functions are forbidden on an
XPath link.

filter Defines an XPath predicate to filter associated
objects using the predicate element. For example:

<filter><predicate>type = ${../refType}</
predicate></filter>

It is only possible to use fields from the source and
the target tables when defining an XPath filter. That
is, if it is an association over a link table, it is not
possible to use fields of the link table in the XPath
filter.

Error message on creation: in the user
interface, the record creation is blocked when
a user submits a new associated record that
does not comply with the filter. The error
message can be customized using the element
checkOnAssociatedRecordCreation/message.
Each localized message variant is defined in
a nested message element with its locale in an
xml:lang attribute. To specify a default message
for unsupported locales, define a message element
with no xml:lang attribute. See Examples [p 871]

for more information on this property.

Note

The validation search XPath
functions are forbidden for
association filter.

No.

xpathFilter Note: Deprecated. This property has been replaced
by the property filter.

Defines an XPath predicate to filter associated
objects.

No.

recordForm Defines a specific component for customizing
the form of an associated record. This component
is defined using a JavaBean that implements
UserServiceAssociationRecordFormFactoryAPI.

The JavaBean is specified by means of the attribute
osd:class, for example:

<recordForm
osd:class="com.wombat.MyRecordFormFactory"/
>

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 866

It is possible to refer to another dataset. For that, the following properties must be defined either under
the element tableRefInverse, linkTable or xpathLink depending on the type of the association:

Element Description Required

schemaLocation Defines the data model containing the fields used
by the association.

The data model is defined using a specific URN
that allows referring to embedded data models and
data models packaged in modules.

See SchemaLocationAPI for more information about
specific URNs supported by EBX®.

Yes.

dataSet Defines the dataset used by the association. This
dataset must use the data model specified by the
element schemaLocation.

Yes.

dataSpace Defines the dataspace containing the dataset used
by the association.

No.

Important:

• When creating a dataset, you can create a dataset that defines an association to a container that
does not yet exist in the repository. However, the content of this dataset will not be available
immediately upon creation. After the absent container is created, a data model refresh is required
in order to make the dataset available. When creating a dataset that refers to a container that does
not yet exist, the following limitations apply:

• Triggers defined at the dataset level are not executed.

• Default values on fields outside tables are not initialized.

• During an archive import, it is not possible to create a dataset that refers to a container that
does not exist.

• The consistency of an association to another dataset is checked in the operational phase. If an
association is not consistent in the context of a specific dataset then:

• It is considered as read-only from a permission perspective. That is, the association is read-
only in the user interface and the data services are hidden. Also, in the user interface it is
not possible to create, delete, attach, detach, or move an associated record. However, it is
possible to modify an existing associated record.

• It is excluded from the validation of the container dataset, table or record.

User interface integration
It is possible to define how associated objects are to be rendered in forms, using the element
osd:defaultView/displayMode under xs:annotation/appinfo.
Possible values are:

• inline, specifies that associated records are to be rendered in the form at the same position of
the association in the data model.

• tab, specifies that associated records are to be rendered in a specific tab.

• link, specifies that associated records are to be rendered in a modal window.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 867

By default, associated records are rendered inline if this property is not defined.
The following example specifies that associated objects are to be rendered inline in the form:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <displayMode>inline</displayMode>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example specifies that associated objects are to be rendered in a specific tab:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <displayMode>tab</displayMode>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Using toolbars
It is possible to define the toolbars to display in the user interface using the element osd:defaultView/
toolbars under xs:annotation/appinfo. A toolbar allows to customize the buttons and menus to
display when displaying the tabular view of an association.
The table below presents the elements that can be defined under osd:defaultView/toolbars.

Element Description Required

tabularViewTop Defines the toolbar to use in the default table view of this association. No.

tabularViewRow Defines the toolbar to use for each row of the default view of this
association.

No.

The following example shows how to use toolbars from the previous association between a catalog
and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <toolbars>
 <tabularViewTop>toolbar_name_for_tabularViewTop</tabularViewTop>
 <tabularViewRow>toolbar_name_for_tabularViewRow</tabularViewRow>
 </toolbars>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 868

</xs:element>

Note

It is only possible to use the toolbars defined in the data model containing the target table
of the association. That is, if the target table of the association is defined in another data
model, then it is only possible to reference a toolbar defined in this data model and not
in the one holding the association.

See also Toolbars [p 911]

Customized view of associated objects
A specific tabular view can be specified to define the fields that must be displayed in the target
table. If a tabular view is not defined, all columns that a user is allowed to view, according to the
granted access rights, are displayed. A tabular view is defined using the element osd:defaultView/
tabularView under xs:annotation/appinfo.
The table below shows the elements that can be defined under osd:defaultView/tabularView.

Element Description Required

column Define a field of the target table to display. The
specified path must be absolute from the target
table and must refer to an existing field. Several
column elements can be defined to specify the
fields that are to be displayed.

No.

sort Define a field that can be used to sort associated
objects. Severalsort elements can be defined to
specify the fields that can be used to sort associated
objects.

The element nodePath defines the path of the field
that can be used to sort associated objects.

The element isAscending specifies whether the
sort order is ascending (true) or descending (false).

No.

The following example shows how to define a tabular view from the previous association between
a catalog and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <tabularView>
 <column>/productRange</column>
 <column>/productCode</column>
 <column>/productLabel</column>
 <column>/productDescription</column>
 <sort>
 <nodePath>/productLabel</nodePath>
 <isAscending>true</isAscending>
 </sort>
 </tabularView>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 869

Actions in the user interface
In the user interface, it is possible to perform the following actions:

• Create: it allows directly creating an object in the target table of the association. When a new
object is created, it is automatically associated with the current record.

• Duplicate: allows to duplicate an object in the target table of the association. When a new object
is created, it is automatically associated with the current record.

• Associate: associates an existing object with the current record. In the case of an association over
a link table, a record in the link table is automatically created to materialize the link between the
current record and the existing object.

• Move: associates the selected objects to a different record than the current one. In the case of an
association over a link table, the previous link record is automatically deleted and a new record
in the link table is automatically created to materialize the link between the selected objects and
their new parent record.

• Delete: deletes selected associated objects in the target table of the association.

• Detach: breaks the semantic link between the current record and the selected associated objects.
In the case of an association over a link table, the records in the link table are automatically
deleted, to break the links between the current record and associated objects.

Note

The actions associate and detach are not available when the association is defined using
an XPath predicate (element xpathLink).

Customized view for actions
A published view, tabular or hierarchical, can be specified to define how objects should be displayed
when performing an action through the user interface. A published view is defined using the element
osd:defaultView/associationViews under xs:annotation/appinfo.
The table below shows the elements that can be defined under osd:defaultView/associationViews.

Element Description Required

viewForAssociateAction Define a published view to be used when
displaying the objects in the target table to be
associated with the current record. The specified
view must be published and created upon the target
table of the association.

No.

viewForMoveAction Define a published view to be used when moving
an associated object to another record of the current
table. The specified view must be published and
created upon the current table.

No.

The following example shows how to define views from the previous association between a catalog
and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 870

 </osd:association>
 <osd:defaultView>
 <associationViews>
 <viewForAssociateAction>view_name_for_catalogs</viewForAssociateAction>
 <viewForMoveAction>view_name_for_products</viewForMoveAction>
 </associationViews>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Validation
Some controls can be defined on associations, in order to restrict associated objects. These controls
are defined under the element osd:association.
The table below presents the controls that can be defined under xs:annotation/appInfo/osd:association.

Element Description Required

minOccurs Specifies the minimum number of associated
objects that are required for this association. This
minimum number is defined using the element
value and must be a positive integer.

No, by
default the
minimum is
not restricted.

maxOccurs Specifies the maximum number of associated
objects that are allowed for this association. This
maximum number is defined by the element
value and must be either a positive integer or the
raw string unbounded which indicates that this
maximum is not restricted. The maximum number
of associated objects must be greater than the
minimum number of associated objects.

No, by
default the
maximum is
not restricted.

constraint Defines an XPath predicate for restricting
associated records. It is only possible to use fields
from the source and the target table when defining
an XPath predicate. That is, if it is an association
over a link table, it is not possible to use fields of
the link table in the XPath predicate.

In associated datasets, a validation message of
the specified severity is added and displayed
to the end-user at the validation time when an
associated record does not comply with the
specified constraint.

No.

validation A validation message can be defined under the
elements minOccurs, maxOccurs and constraint,
using the element validation. The severity of the
validation message is specified using the element
severity. Possible severities are: error, warning
and info.

If the severity is not specified then, by default, the
severity error is used.

A localized validation message can be specified
using the element message, which will be displayed
to the end-user at the validation time if an
association does not comply with this constraint.
Each localized message variant is defined in
a nested message element with its locale in an
xml:lang attribute. To specify a default message
for unsupported locales, define a message element
with no xml:lang attribute.

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 871

Data services integration
It is possible to define whether associated objects must be hidden in the Data service select operation.
For this, the property osd:defaultView/hiddenInDataServices under xs:annotation/xs:appinfo
can be set on the association. Setting the property to 'true' will hide associated objects in the Data
service select operation. If this property is not defined then, by default, associated objects will be
shown in the Data service select operation.

See also

Hiding a field in Data Services [p 904]

Association field [p 1018]

Examples
For example, the product catalog data model defined previously [p 856] specifies that a product
belongs to a catalog (explicitly defined by a foreign key in the 'Products' table). The reverse
relationship (that a catalog has certain products) is not easily represented in XML Schema, unless the
'Catalogs' table includes the following association that is the inverse of a foreign key:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

For an association over a link table, we can consider the previous example and bring some updates.
For instance, the foreign key in the 'Products' table is deleted and the relation between a product and
a catalog is redefined by a link table (named 'Catalogs_Products') that has a primary key composed
of two foreign keys: one that refers to the 'Products' table (named 'productRef') and another to the
'Catalogs' table (named 'catalogRef'). The following example shows how to define an association over
a link table from this new relationship:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <linkTable>
 <table>/root/Catalogs_Products</table>
 <fieldToSource>./catalogRef</fieldToSource>
 <fieldToTarget>./productRef</fieldToTarget>
 </linkTable>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example shows an association that refers to a foreign key in another dataset. In this
example, the 'Products' and 'Catalogs' tables are not in the same dataset:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <schemaLocation>urn:ebx:module:aModuleName:/WEB-INF/ebx/schema/products.xsd</schemaLocation>
 <dataSet>Products</dataSet>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 872

 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example defines an XPath filter to associate only products of the 'Technology' type:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <filter>
 <predicate>./productType = 'Technology'</predicate>
 <checkOnAssociatedRecordCreation>
 <message>A default message</message>
 <message xml:lang="en-US">A localized message</message>
 <message xml:lang="fr-FR">Un message localisé</message>
 </checkOnAssociatedRecordCreation>
 </filter>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example specifies the minimum number of products that are required for a catalog:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <minOccurs>
 <value>1</value>
 <validation>
 <severity>warning</severity>
 <message xml:lang="en-US">One product should at least be associated to this catalog.</message>
 <message xml:lang="fr-FR">Un produit doit au moins être associé à ce catalogue.</message>
 </validation>
 </minOccurs>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example specifies that a catalog must contain at most ten products:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <maxOccurs>
 <value>10</value>
 <validation>
 <severity>warning</severity>
 <message xml:lang="en-US">Too much products for this catalog.</message>
 <message xml:lang="fr-FR">Ce catalogue a trop de produits.</message>
 </validation>
 </maxOccurs>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 873

147.4 Linked fields

Overview
Linked fields provide the ability to simulate a multi-table view by aggregating the fields of a main
table with some fields of another table over an existing relationship. It allows an easy model-driven
integration of some fields from records that are referred by other ones using relationships.

See also SchemaLinkedFieldAPI

Following relationships can be traversed:

• Foreign key constraints [p 859].

• Associations 'By foreign key' [p 863].

Important: these relationships must be "single valued relationships". That is, a record of the table
that defines the relationship must refer to only one record in the target table of the relationship.
In details:

• A foreign key is considered as a single valued relationship if the foreign key field defines a
maxOccurs equal to 1.

• An association by foreign key is considered as a single valued relationship if the referred foreign
key field is the unique primary key field of the target table or if an uniqueness constraint is defined
on this foreign key field.

Note

A linked field inherits some properties from its target field (foreign key constraint,
enumeration, value labelling, search strategies, search mode, formatting).

Declaration
A linked field, which is an element with minOccurs = 0 and maxOccurs = 0, is declared by adding
the following annotation:
 <xs:element name="catalog_ref_label" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:function linkedField="../catalog_ref/catalogLabel"/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>

Attribute linkedField defined in element osd:function defines a path composed of steps which refer
to a single-valued relationship in the container table and of steps to a field in the target table of the
relationship.
Important:

• If the path is absolute (starts with a "/") then it will be resolved from the container table node.

• If the path is relative then it will be resolved from the current field.

In the context of the product catalog data model defined previously [p 856], the field catalog_ref_label
is added in the Products table. The first step catalog_ref refers to the foreign key that indicates that
a product belongs to a catalog. The last step catalogLabel refers to the label of the referred catalog.
This field belongs to the Catalog table that is the target table of the foreign key constraint.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 6.2.0 874

Restrictions:

• Currently, linked fields only allow to target one level of single valued relationships. As a
consequence:

• The single-valued relationship cannot be defined by another linked field.

• A linked field cannot target another linked field.

• A linked field must define properties minOccurs and maxOccurs. equal to 0.

• A linked field must define a data type that is compatible with the one of the target field.

• A linked field cannot be a part of the primary key of the container table.

• A linked field must target a terminal field.

• A linked field cannot target an aggregated list or a field under an aggregated list.

• A linked field cannot refer to a single-valued relationship that is also a linked field.

• Constraints should not be defined on a linked field. If constraints are declared on a linked field,
a warning message will be thrown and the declared constraints will be ignored.

• For a linked field, the property osd:disableValidation is always considered as true and cannot
be overwritten.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 875

CHAPTER 148
Constraints

Facets allow you to define data constraints in your data models. TIBCO EBX® supports XML Schema
constraining facets and provides extended and programmatic facets for advanced data controls.
This chapter contains the following topics:

1. XML Schema supported facets

2. Extended facets

3. Programmatic facets

4. Control policy

148.1 XML Schema supported facets
The tables below show the facets that are supported by different data types.
Key:

• X - Supported

• 1 - The whiteSpace facet can be defined, but is not interpreted by EBX®

• 2 - In XML Schema, boundary facets are not allowed on the type string. Nevertheless, EBX®
allows such facets as extensions.

• 3 - The osd:resource type only supports the facet FacetOResource, which is required. See
Extended Facets [p 879].

• 4 - osd:dataspaceKey, osd:datasetName and osd:color types do not support facets.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 876

Only Programmatic constraints [p 883] are supported on these types.

length minLength max

Length

pattern enumeration white

Space

xs:string X X X X X 1

xs:boolean X 1

xs:decimal X X 1

xs:dateTime X X 1

xs:time X X 1

xs:date X X 1

xs:anyURI X X X X X 1

xs:Name X X X X X 1

xs:integer X X 1

osd:resource [p 842]3
1

osd:dataspaceKey [p

844]
4

1

osd:datasetName [p

846]
4

1

osd:color [p 844]4
1

fraction

Digits

total

Digits

max

Inclusive

max

Exclusive

min

Inclusive

min

Exclusive

xs:string 2 2 2 2

xs:boolean

xs:decimal X X X X X X

xs:dateTime X X X X

xs:time X X X X

xs:date X X X X

https://www.w3.org/TR/xmlschema-2/#dt-length
https://www.w3.org/TR/xmlschema-2/#dt-minLength
https://www.w3.org/TR/xmlschema-2/#dt-minLength
https://www.w3.org/TR/xmlschema-2/#dt-maxLength
https://www.w3.org/TR/xmlschema-2/#dt-maxLength
https://www.w3.org/TR/xmlschema-2/#dt-pattern
https://www.w3.org/TR/xmlschema-2/#dt-enumeration
https://www.w3.org/TR/xmlschema-2/#dt-whiteSpace
https://www.w3.org/TR/xmlschema-2/#dt-whiteSpace
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 877

fraction

Digits

total

Digits

max

Inclusive

max

Exclusive

min

Inclusive

min

Exclusive

xs:anyURI

xs:Name 2 2 2 2

xs:integer X X X X X X

osd:resource [p 842]3

osd:dataspaceKey [p

844]
4

osd:datasetName [p

846]
4

osd:color [p 844]4

Example:
<xs:element name="loanRate">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="4.5" />
 <xs:maxExclusive value="17.5" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Uniqueness constraint
It is possible to define a uniqueness constraint, using the standard XML Schema element xs:unique.
This constraint indicates that a value or a set of values has to be unique inside a table.
Case-sensitivity to be used to check string fields defined in the uniqueness constraint can be specified.
Possible value are for case sensitivity are: "sensitive" or "insensitive". By default, uniqueness
constraints are case-sensitive.

Note

Applying the case-insensitive option can lead to performance problems if it is used to
check tables with large data.

Example:
In the example below, a uniqueness constraint is defined on the 'publisher' table, for the target field
'name'. This means that no two records in the 'publisher' table can have the same name. The option
case-sensitive is used to check the unicity of the field "name".
<xs:element name="publisher">
 ...
 <xs:complexType>
 <xs:sequence>
 ...
 <xs:element name="name" type="xs:string" />
 ...
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="uniqueName">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>

https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 878

 <caseSensitivity>sensitive</caseSensitivity>
 <severity>error</severity>
 <message>Name must be unique in table.</message>
 <message xml:lang="en-US">Name must be unique in table.</message>
 <message xml:lang="fr-FR">Le nom doit être unique dans la table.</message>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 <xs:selector xpath="." />
 <xs:field xpath="name" />
 </xs:unique>
</xs:element>

A uniqueness constraint has to be defined within a table and has the following properties:

Property Description Mandatory

name attribute Identifies the constraint in the data model. Yes

xs:selector element Indicates the table to which the uniqueness constraint applies
using a restricted XPath expression ('..' is forbidden). It can
also indicate an element within the table (without changing the
meaning of the constraint).

Yes

xs:field element Indicates the field in the context whose values must be unique,
using a restricted XPath expression.

It is possible to indicate that a set of values must be unique by
defining multiple xs:field elements.

Yes

Note

Undefined values (null values) are ignored on uniqueness constraints applied to single
fields. On multiple fields, undefined values are taken into account. That is, sets of values
are considered as being duplicated if they have the same defined and undefined values.

Additional localized validation messages can be defined using the element osd:validation under the
elements annotation/appinfo. If no custom validation messages are defined, a built-in validation
message will be used.
The uniqueness constraint can also be applied on an simple aggregated list: in this case, each value of
the list has to be unique in the scope of the list and not in the scope of the table.
Example:
In the example below, a uniqueness constraint is defined on the 'title' table, for the target field
'printedEditions'. This means that an edition can appear only once in the list. The option case-
insensitive will be used to search the field "title".
<xs:element name="title">
 ...
 <xs:complexType>
 <xs:sequence>
 ...
 <xs:element name="printedEditions" type="xs:string" minOccur="0" maxOccur="5"/>
 ...
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="uniquePrintedEditions">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <caseSensitivity>insensitive</caseSensitivity>
 <severity>error</severity>
 <message xml:lang="en-US">An edition must be referenced only once by this title</message>
 <message xml:lang="fr-FR">Une édition ne peut être référencée qu'une seule fois par ce livre</message>
 </osd:validation>
 </xs:appinfo>

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 879

 </xs:annotation>
 <xs:selector xpath="." />
 <xs:field xpath="printedEditions"/>
 </xs:unique>
</xs:element>

Limitations:

1. The target of the xs:field element must be in a table.

2. The uniqueness constraint does not apply to computed fields.

3. The uniqueness constraint cannot be applied on multiple fields that contains an aggregated list.

4. The uniqueness constraint cannot be applied on embedded lists.

See also Uniqueness constraint in the Java API UniquenessConstraintAPI

148.2 Extended facets
EBX® provides additional constraints that are not specified in XML Schema, but that are useful for
managing master data.
In order to guarantee XML Schema conformance, these extended facets are defined under the element
annotation/appinfo/otherFacets.

Foreign keys
EBX® allows to create a reference to an existing table by means of a specific facet. See Foreign keys
[p 859] for more information.

Dynamic constraints
Dynamic constraint facets retain the semantics of XML Schema, but the value attribute is replaced
with a path attribute that allows fetching the value from another element. The available dynamic
constraints are:

• length

• minLength

• maxLength

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

Using these facets, the data model can be modified dynamically.
Example:
<xs:element name="amount">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="/domain/Loan/Pricing/AmountMini/amount" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 880

In this example, the boundary of the facet minInclusive is not statically defined. The value of the
boundary comes from the node /domain/Loan/Pricing/AmountMini/amount.
Restrictions:

• Target field cannot be an aggregated list. That is, it cannot define maxOccurs = 1.

• Data type of the target field must be compatible with the facet. That is, it must be:

• of type integer for facets length, minLength and maxLength.

• compatible with the data type of the field holding the facet for facets maxInclusive,
maxExclusive, minInclusive and minExclusive.

• Target field cannot be in a table if the field holding the facet is not in a table.

• Target field must be in the same table or outside a table if the field holding the facet is in a table.

• If the target field is under one or more aggregated lists, the field holding the facet must also be
under these aggregated lists. That is: the field holding the facet must be in the same list occurrence
as the target field, or in a parent occurrence, so that the target field refers to a single value, from
an XPath perspective.

FacetOResource constraint
This facet must be defined for every definition using the type osd:resource, to specify the subset
of available packaged resource files as an enumeration. For more information on this type, see
osd:resource type [p 844]. It has the following attributes:

moduleName Indicates, using an alias, the EBX® module that contains
the resource. If the resource is contained in the current
module, the alias must be preceded by "wbp". Otherwise,
the alias must be one of the values defined in the element
<dependencies> in the file module.xml.

resourceType Represents the resource type that is one of the following
values: 'Image', 'JavaScript', 'Style sheet', 'HTML'.

relativePath Indicates in which directory the resources will be located.
This directory must be located under the directory that
corresponds to the resource type. For example, for
an "Image" type resource, the directory www/common/
images/, located at the same level as the directory WEB-
INF/ of the target module, will be used and the relative path
will have to be defined from this. Furthermore, if a resource
is defined in a localized directory (www/fr/ for example), it
will only be taken into account if another resource with the
same name is defined in the directory www/common/.

This facet has the same behavior as an enumeration facet: the values are collected by recursively
listing all the files in the local path in the specified resource type directory in the specified module.
Example:
<xs:element name="promotion" type="osd:resource">
 <xs:annotation>

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 881

 <xs:appinfo>
 <osd:otherFacets>
 <osd:FacetOResource osd:moduleName="wbp"
 osd:resourceType="ext-images" osd:relativePath="promotion/" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</ xs:element>

For an overview of the standard directory structure of an EBX® module (Jakarta EE web application),
see Module structure [p 819].

Excluding values

excludeValue constraint
This facet verifies that a value is not the same as the specified excluded value.
In this example, the empty string is excluded from the allowed values.
Example:
<xs:element name="roleName">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:excludeValue value="">
 <osd:validation>
 <severity>error</severity>
 <message>Please select address role(s).</message>
 </osd:validation>
 </osd:excludeValue>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType type="xs:string" />
</xs:element>

excludeSegment constraint
This facet verifies that a value is not included in a range of values. Boundaries are excluded.
Example:
In this example, values between 20000 and 20999 are not allowed.
<xs:element name="zipCode">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:excludeSegment minValue="20000" maxValue="20999">
 <osd:validation>
 <severity>error</severity>
 <message>Postal code not valid.</message>
 </osd:validation>
 </osd:excludeSegment>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType type="xs:string" />
</xs:element>

Enumeration constraint defined using another node

Attention
This kind of constraint is obsolete. You should use foreign key constraint [p 859]. It has limitations, in
particular Quick search and sort operations in the user interface will use the raw value of the field
instead of the labels defined through the constraint.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 882

By default, an enumeration facet is described statically in XML Schema.
The content of an enumeration facet can also be provided dynamically by a list of simple elements
in the data model.
Example:
In this example, the content of an enumeration facet is sourced from the node CountryList.
<xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:enumeration osd:path="../CountryList" />
 </osd:otherFacets>
 </xs:appinfo>
</xs:annotation>

The referred node CountryList:

• Must be an aggregated list, that is, maxOccurs > 1.

• Must be a list of elements of the same type as the node with the enumeration facet.

• Must be a node outside a table if the node with the enumeration facet is not inside a table.

• Must be a node outside a table or in the same table as the node with the enumeration facet if the
node with this enumeration is inside a table.

• If the target field is under one or more aggregated lists, the field holding the facet must also be
under these aggregated lists. That is: the field holding the facet must be in the same list occurrence
as the target field, or in a parent occurrence, so that the target field refers to a single value, from
an XPath perspective.

Example:
<xs:element name="FacetEnumBasedOnList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CountryList" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="DE" osd:label="Germany" />
 <xs:enumeration value="AT" osd:label="Austria" />
 <xs:enumeration value="BE" osd:label="Belgium" />
 <xs:enumeration value="JP" osd:label="Japan" />
 <xs:enumeration value="KR" osd:label="Korea" />
 <xs:enumeration value="CN" osd:label="China" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CountryChoice" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:enumeration osd:path="../CountryList" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

148.3 Programmatic facets
A programmatic constraint can be added to any XML element declaration for a simple type.
In order to guarantee XML Schema conformance, programmatic constraints are specified under the
element annotation/appinfo/otherFacets.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 883

Programmatic constraints
A programmatic constraint is defined by a Java class that implements the interface ConstraintAPI.
As additional parameters can be defined, the implemented Java class must conform to the JavaBean
protocol.
Example:
In the example below, the Java class must define the methods: getParam1(), setParam1(String),
getParamX(), setParamX(String), etc.
<xs:element name="amount">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraint class="com.foo.CheckAmount">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

See also

JavaBean specifications Package com.orchestranetworks.schema.JavaBeansAPI

JavaBeanVersionAPI

Programmatic enumeration constraints
An enumeration constraint adds an ordered list of values to a basic programmatic constraint. This
facet allows selecting a value from a list. It is defined by a Java class that implements the interface
ConstraintEnumerationAPI.
Example:
<xs:element name="amount">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraintEnumeration class="com.foo.CheckAmountInEnumeration">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraintEnumeration>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Attention
Quick search and sort operations in the user interface will use the raw value of the field instead of
its label. Consider whether this enumeration can be replaced by a foreign key constraint [p 859] to a
table that defines the same set of values.

Constraint on 'null' values
In some cases, a value is only mandatory if some conditions are satisfied, for example, if another field
has a given value. In this case, the standard XML Schema attribute minOccurs is insufficient because
it is static.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 884

In order to check if a value is mandatory according to its context, the following requirements must
be satisfied:

1. A programmatic constraint must be defined by a Java class (see above).

2. This class must implement the interface ConstraintOnNullAPI.

3. The XML Schema cardinality attributes must specify that the element is optional (minOccurs="0"
and maxOccurs="1").

Note

By default, constraints on 'null' values are not checked upon user input. In order to enable
a check at the input, the 'checkNullInput' property [p 888] must be set. Also, if the element
is terminal, the dataset must also be activated.

Example:
<xs:element name="amount" minOccurs="0" maxOccurs="1">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraint class="com.foo.CheckIfNull">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

See also

JavaBean specifications Package com.orchestranetworks.schema.JavaBeansAPI

JavaBeanVersionAPI

Constraints on table
A constraint on table is defined by a Java class that implements the interface ConstraintOnTableAPI.
It can only be defined on table nodes.
As additional parameters can be defined. the implemented Java class must conform to the JavaBean
protocol.
Example:
In the example below, the Java class must define the methods: getParam1(), setParam1(String),
getParamX(), setParamX(String), etc.
<xs:element name="myTable" type="MyTableType" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/key</primaryKeys>
 </osd:table>
 <osd:otherFacets>
 <osd:constraint class="com.foo.checkTable">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 885

</xs:element>

Attention
For performance reasons, constraints on tables are only checked when getting the validation report
of a dataset or table. This means that these constraints are not checked when updates, such as record
insertions, deletions or modifications, occur on tables. However, the internal incremental validation
framework will optimize the validation cost of these constraints if dependencies are defined. For
more information, see Data validation [p 587].

See also

JavaBean specifications Package com.orchestranetworks.schema.JavaBeansAPI

JavaBeanVersionAPI

148.4 Control policy

Blocking and non-blocking constraints
When an update in the repository is performed, and this update adds a validation error according to
a given constraint, it is possible to specify whether the new error blocks the update (and cancels the
transaction) or if it is considered as non-blocking (so that the update can be committed and the error

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 886

can be corrected later). The element blocksCommit within the element osd:validation allows this
specification, with the following supported values:

onInsertUpdateOrDelete Specifies that the constraint must always remain valid
after an operation (dataset update, dataset deletion, record
creation, update or deletion). In this case, any operation
that would violate the constraint is rejected and the values
remain unchanged.
This is the default and mandatory policy for primary key
constraints, data type conversion constraints (an integer or
a date must be well-written) and also structural constraints
in mapped tables.

onUserSubmit-
checkModifiedValues

Specifies that the constraint must remain valid whenever a
user modifies the associated value and submits a form. In
this case, any form input that would violate the constraint is
rejected and the values remain unchanged.
This is the default policy for all blocking constraints
mentioned in the previous case. For example, a foreign key
constraint is by default not blocking (a record referred to by
other records can be deleted, etc.), except in the context of
a form submit.

never Specifies that the constraint must never block operations. In
this case, any operation that would violate the constraint is
allowed. In the context of the user interface, this constraint
does not block the form submission if the user sets a value
that violates this constraint.

On foreign key constraints, the control policy that blocks all operations does not apply to filtered
records. That is, a foreign key constraint is not blocking if a referenced record exists but does not
satisfy a foreign key filter. In this case, updates are not rejected and a validation error occurs.
It is not possible to specify a control policy on structural constraints that are defined in mapped
tables. That is, this property is not available for fixed length, maximum length, maximum number of
digits, and decimal place constraints due to the validation policy of the underlying RDBMS blocking
constraints.
This property does not apply to archive imports and when merging dataspaces. That is, all blocking
constraints, except structural constraints, are always disabled when importing archives and merging
dataspaces.

See also

Facet validation message with severity [p 898]

Foreign keys [p 859]

XML Schema facet
The control policy is described by the element osd:validation in annotation/appinfo under the
definition of the facet.

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 887

Example:
<xs:element name="zipCode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minInclusive value="1000">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 </xs:minInclusive>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

XML Schema enumeration facet
The control policy is described by the element osd:enumerationValidation in annotation/appinfo
under the definition of the field.
Example:
<xs:element name="Gender">
 <xs:annotation>
 <xs:appinfo>
 <osd:enumerationValidation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:enumerationValidation>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="0" osd:label="male" />
 <xs:enumeration value="1" osd:label="female" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

EBX® facet
The control policy is described by the element osd:validation under the definition of the facet (which
is defined in annotation/appinfo/otherFacets).
The control policy with values onInsertUpdateOrDelete and onUserSubmit-checkModifiedValues is
only available on osd:excludeSegment, osd:excludeValue and osd:tableRef EBX® facets.
The control policy with the value never can be defined on all EBX® facets.
On programmatic constraints, the control policy with the value never can only be set directly during
the setup of the corresponding constraint. See ConstraintContext.setBlocksCommitToNeverAPI and
ConstraintContextOnTable.setBlocksCommitToNeverAPI in the Java API for more information.
Example:
<xs:element name="price" type="xs:decimal">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="../priceMin">
 <osd:validation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:validation>
 </osd:minInclusive>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 888

Check 'null' input
According to the EBX® default validation policy, in order to allow temporarily incomplete input,
a mandatory element is not checked for completion upon user input. Rather, it is verified at the
dataset validation only. If completion must be checked immediately upon user input, the element must
additionally specify the attribute osd:checkNullInput="true". This property is ignored if defined on
an aggregated list (maxOccurs > 1).

Note

A value is mandatory if the data model specifies a mandatory element, either statically,
using minOccurs="1", or dynamically, using a constraint on 'null'. For terminal elements,
mandatory values are only checked for an activated dataset. For non-terminal elements,
the dataset does not need to be activated.

Example:
<xs:element name="amount" osd:checkNullInput="true" minOccurs="1">
 ...
</xs:element>

See also

Constraint on 'null' [p 883]

Whitespace management [p 888]

Empty string management [p 890]

EBX® whitespace management for data types
According to XML Schema (see https://www.w3.org/TR/xmlschema-2/#rf-whiteSpace), whitespace
handling must follow one of the procedures preserve, replace or collapse:

preserve No normalization is performed, the value is unchanged.

replace All occurrences of #x9 (tab), #xA (line feed) and #xD
(carriage return) are replaced with #x20 (space).

collapse After the processing according to the replace procedure,
contiguous sequences of #x20 are then collapsed to a single
#x20, and any leading or trailing #x20s are removed.

General whitespace handling
EBX® complies with the XML Schema recommendation:

• For fields of type xs:string, whether a primary key element or not, whitespaces are always
preserved and an empty string is never converted to null.

https://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 889

• For other fields (non-xs:string type), whitespaces are always collapsed and empty strings are
converted to null.

Attention
Exceptions:

• For fields of type osd:html or osd:password, whitespaces are always preserved and empty
strings are converted to null.

• For fields of type xs:string that define the property osd:checkNullInput="true", an empty
string is interpreted as null at user input by EBX®.

Whitespace handling upon user input
The rules described in the previous section are applied in the user interface, but leading and trailing
whitespaces are removed upon user input. That is, in the user interface, whitespaces are by default
always trimmed upon user input. Other input methods (Import XML/CSV, Data services, API updates)
are not trimmed from the user interface.

Attention
Exceptions:

• For fields of type osd:password, whitespaces are not trimmed upon user input.

• For foreign key fields, whitespaces are not trimmed upon user input.

It is possible to indicate in a data model that whitespaces should not be trimmed upon user input.
The attribute osd:trim="disable" can be set on the fields that allow leading and trailing whitespaces
upon user input.
Example:
<xs:element name="field" osd:trim="disable" type="xs:string">
 ...
</xs:element>

Whitespace handling for primary keys of type string
For primary key columns of type xs:string, a default EBX® constraint is defined. This constraint
forbids empty strings and non-collapsed whitespace values when creating a record. That is, any record
creation that would violate this constraint is rejected.
However, if the primary key node specifies its own xs:pattern facet, this facet overrides the default
EBX® constraint. For example, the specific pattern ".*" would accept any string, although this is not
recommended.
The default constraint allows handling certain ambiguities. For example, it would be difficult for a
user to distinguish between the following strings: "12 34" and "12 34". For generic values, this would
not create conflicts, however, errors would occur for primary keys.

See also Tables and relationships [p 853]

Documentation > Developer Guide > Data model > Constraints

TIBCO EBX® Product Documentation 6.2.0 890

Empty string management

Default conversion
For nodes of type xs:string, no distinction is made at user input between an empty string and a null
value. That is, an empty string value is automatically converted to null at user input.

Distinction between empty strings and 'null' value
There are certain cases where the distinction is made between an empty string and the null value,
such as when:

• A primary key defines a pattern that allows empty strings.

• An element defines a foreign key constraint and the target table has a single primary key defining
a pattern that allows empty strings.

• An element defines a static enumeration that contains an empty string.

• An element defines a dynamic enumeration to another element with one of the aforementioned
cases.

If the distinction is made between an empty string and a null value, this implies the following
behaviors:

• An empty string will not be converted to null at user input,

• Input fields for nodes of type xs:string will display an additional button for setting the value
of the node to null,

• At validation time, an empty string will be considered to be a compliant value with regard to the
minOccurs="1" property.

Validation message threshold
It is possible to specify at the data model level the maximum number of validation messages allowed
per constraint when performing a validation.
Example:
<xs:schema ...>
 ...
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <validationMessageThreshold>250</validationMessageThreshold>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

The threshold is considered for each constraint defined in a data model and in each dataset validation
report. When the threshold is reached by a constraint, the validation of the constraint is stopped and
an error message indicating that the threshold has been reached is added to the validation report.
The validation message threshold is set by default to 1000 if it is not defined in the data model. It is
not allowed to set an unlimited number of validation messages. Also, the specified validation message
threshold must be greater or equal than 100.

See also ValidationReport.hasConstraintsWithTooManyMessagesAPI

Documentation > Developer Guide > Data model > Triggers and functions

TIBCO EBX® Product Documentation 6.2.0 891

CHAPTER 149
Triggers and functions

EBX® data model allows to define triggers and computed fields. It also provides auto-incremented
fields
This chapter contains the following topics:

1. Computed values

2. Triggers

3. Auto-incremented values

149.1 Computed values
By default, data is read and persisted in the XML repository. Nevertheless, data may be the result of
a computation and/or external database access, for example, an RDBMS or a central system.
EBX® allows taking into account other data in the current dataset context.
This is made possible by defining computation rules.
A computation rule is specified in the data model using the osd:function element (see example
below).

• The value of the class attribute must be the qualified name of a Java class that implements the
Java interface ValueFunctionAPI

• Additional parameters may be specified at the data model level, in which case the JavaBean
convention is applied.

Example:
<xs:element name="computedValue">
 <xs:annotation>
 <xs:appinfo>
 <osd:function class="com.foo.ComputeValue">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:function>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Disabling validation
In some cases, it can be useful to disable the validation of computed values if the execution of a
function is time-consuming. Indeed, if the function is attached to a table with N records, then it will

Documentation > Developer Guide > Data model > Triggers and functions

TIBCO EBX® Product Documentation 6.2.0 892

be called N times when validating this table. The property osd:disableValidation= "true" specified
in the data model allows to disable the validation of a computed value (see example below).
Example:
<xs:element name="computedValue" osd:disableValidation="true">
 <xs:annotation>
 <xs:appinfo>
 <osd:function class="com.foo.ComputeValue">
 ...
 </osd:function>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

149.2 Triggers
Datasets or table records can be associated with methods that are automatically executed when some
operations are performed, such as creations, updates, or deletions.
In the data model, these triggers must be declared under the annotation/appinfo element using the
osd:trigger element.

Trigger on dataset
For dataset triggers, a Java class that extends the abstract class InstanceTriggerAPI must be declared
inside the element osd:trigger.
In the case of dataset triggers, it is advised to define annotation/appinfo/osd:trigger tags just under
the root element of the data model.
Example:
<xs:element name="root" osd:access="--">
 ...
 <xs:annotation>
 <xs:appinfo>
 <osd:trigger class="com.foo.MyInstanceTrigger">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:trigger>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Trigger on table
For the definition of table record triggers, a Java class that extends the abstract class TableTriggerAPI

must be defined inside the osd:trigger element. It is advised to define the annotation/appinfo/
osd:trigger elements just under the element describing the associated table or table type.
Examples:
On a table element:
<xs:element name="myTable" type="MyTableType" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/key</primaryKeys>
 </osd:table>
 <osd:trigger class="com.foo.MyTableTrigger" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Triggers and functions

TIBCO EBX® Product Documentation 6.2.0 893

On a table type element:
<xs:complexType name="MyTableType">
 ...
 <xs:annotation>
 <xs:appinfo>
 <osd:trigger class="com.foo.MyTableTrigger">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:trigger>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:complexType>

As additional parameters can be defined, the implemented Java class must conform to the
JavaBean protocol. In the example above, the Java class must define the methods: getParam1(),
setParam1(String), getParamX(), setParamX(String), etc.

149.3 Auto-incremented values
It is possible to define auto-incremented values. Auto-incremented values are only allowed inside
tables, and they must be of the type xs:int or xs:integer.
An auto-increment is specified in the data model using the element osd:autoIncrement under the
element annotation/appinfo.
Example:
<xs:element name="autoIncrementedValue" type="xs:int">
 <xs:annotation>
 <xs:appinfo>
 <osd:autoIncrement />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Also, there are two optional elements, start and step:

• The start attribute specifies the first value for this auto-increment. If this attribute is not specified,
then the value 1 is set by default.

• The step attribute specifies the step for the next value to be generated by the auto-increment. If
this attribute is not specified, then the value 1 is set by default.

Example:
<xs:element name="autoIncrementedValue" type="xs:int">
 <xs:annotation>
 <xs:appinfo>
 <osd:autoIncrement>
 <start>100</start>
 <step>5</step>
 </osd:autoIncrement>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

A field specifying an osd:autoIncrement has the following behavior:

• The computation and allocation of the field value are performed whenever a new record is inserted
and the field value is undefined.

• No allocation is performed if a programmatic insertion already specifies a non-null value. For
example, if an archive import or an XML import specifies the value, that value is preserved.
Consequently, the allocation is not performed for a record insertion in occulting or overwriting
modes.

Documentation > Developer Guide > Data model > Triggers and functions

TIBCO EBX® Product Documentation 6.2.0 894

• A newly allocated value is, whenever possible, unique in the scope of the repository. More
precisely, the uniqueness of the allocation spans over all the datasets of the data model, and it
also spans over all the dataspaces. The latter case allows the merge of a dataspace into its parent
with a reasonable guarantee that there will be no conflict if the osd:autoIncrement is part of the
records' primary key.
This principle has a very specific limitation: when a mass update transaction that specifies values
is performed at the same time as a transaction that allocates a value on the same field, it is possible
that the latter transaction will allocate a value that will be set by the first transaction (there is no
locking between different dataspaces).

Internally, the auto-increment value is stored in the 'Auto-increments' table of the repository. In the user
interface, it can be accessed by administrators in the 'Administration' area. This field is automatically
updated so that it defines the greatest value ever set on the associated osd:autoIncrement field, in
any instance or dataspace in the repository. This value is computed, taking into account the max value
found in the table being updated.
In certain cases, for example when multiple environments have to be managed (development, test,
production), each with different auto-increment ranges, it may be required to avoid this "max value"
check. This particular behavior can be achieved using the disableMaxTableCheck property. It is
generally not recommended to enable this property unless it is absolutely necessary, as this could
generate conflicts in the auto-increment values. However, this property can be set in the following
ways:

• Locally, by setting a parameter element in the auto-increment declaration:
<disableMaxTableCheck>true</disableMaxTableCheck>,

• For the whole data model, by setting <osd:autoIncrement disableMaxTableCheck="true"/> in
the element xs:appinfo of the data model declaration, or

• Globally, by setting the property ebx.autoIncrement.disableMaxTableCheck=true in the EBX®
main configuration file.
See TIBCO EBX® main configuration file [p 549].

Note

When this option is enabled globally, it becomes possible to create records in the table
of auto-increments, for example by importing from XML or CSV. If this option is not
selected, creating records in the table of auto-increments is prohibited to ensure the
integrity of the repository.

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 895

CHAPTER 150
Labels and messages

TIBCO EBX® allows to have custom labels and error messages for data models to be displayed in
the interface.
This chapter contains the following topics:

1. Label and description

2. Enumeration labels

3. Mandatory error message (osd:mandatoryErrorMessage)

4. Conversion error message

5. Facet validation message with severity

150.1 Label and description
A label and a description can be added to each node in a data model. In EBX®, each node is displayed
with its label. If no label is defined, the name of the element is used.
Two different notations can be used:

Full The label and description are defined by the elements
<osd:label> and <osd:description> respectively.

Simple The label is extracted from the text content, ending at the
first period ('.'), with a maximum of 60 characters. The
description uses the remainder of the text.

The description may also have a hyperlink, either a standard HTML href to an external document, or
a link to another node of the adaptation within EBX®.

• When using the href notation or any other HTML, it must be properly escaped.

• EBX® link notation is not escaped and must specify the path of the target, for example:
<osd:link path="../misc1">Link to another node in the adaptation</osd:link>

Example:
<xs:element name="misc1" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 Miscellaneous 1. This is the description of miscellaneous element #1.
 Click here
 to learn more.

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 896

 </xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="misc2" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 <osd:label>
 Miscellaneous 2
 </osd:label>
 <osd:description>
 This is the miscellaneous element #2 and here is a
 <osd:link path="../misc1"> link to another node in the
 adaptation</osd:link>.
 </osd:description>
 </xs:documentation>
 </xs:annotation>
</xs:element>

If a node points to a named type, then the label of the node replaces the label of the named type. The
same mechanism applies to the description of the node (element osd:description).

Note

Regarding whitespace management, the label of a node is always collapsed when
displayed. That is, contiguous sequences of blanks are collapsed to a single blank,
and leading and trailing blanks are removed. In descriptions, however, whitespaces are
always preserved.

Dynamic labels and descriptions
As an alternative to statically defining the localized labels and descriptions for each node, it is possible
to specify a Java class that programmatically determines the labels and descriptions for the nodes of
the data model. To define the class, include the element osd:documentation, with the attribute class
in the data model. It is possible to pass JavaBean properties using nested parameter elements.
Example:
<xs:schema ...>
 <xs:annotation>
 <xs:appinfo>
 <osd:documentation class="com.foo.MySchemaDocumentation">
 <param1>...</param1>
 <param2>...</param2>
 </osd:documentation>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema ...>

The labels and descriptions that are provided programmatically take precedence over the ones defined
locally on individual nodes.

See also SchemaDocumentationAPI

150.2 Enumeration labels
In an enumeration, a simple, non-localized label can be added to each enumeration element, using
the attribute osd:label.

Attention
Labels defined for an enumeration element are always collapsed when displayed.

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 897

Example:
<xs:element name="Service" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="1" osd:label="Blue" />
 <xs:enumeration value="2" osd:label="Red" />
 <xs:enumeration value="3" osd:label="White" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

It is also possible to fully localize the labels using the standard xs:documentation element. If both
non-localized and localized labels are added to an enumeration element, the non-localized label will
be displayed in any locale that does not have a label defined.
Example:
<xs:element name="access" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="readOnly">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 read only
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 lecture seule
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="readWrite">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 read/write
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 lecture écriture
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="hidden">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 hidden
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 masqué
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

150.3 Mandatory error message
(osd:mandatoryErrorMessage)

If the node specifies the attribute minOccurs="1" (default behavior), then an error message, which
must be provided, is displayed if the user does not complete the field. This error message can be
defined specifically for each node using the element osd:mandatoryErrorMessage.
Example:
<xs:element name="birthDate" type="xs:date">
 <xs:annotation>
 <xs:documentation>
 <osd:mandatoryErrorMessage>
 Please give your birth date.
 </osd:mandatoryErrorMessage>
 </xs:documentation>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 898

The mandatory error message can be localized:
<xs:documentation>
 <osd:mandatoryErrorMessage xml:lang="en-US">
 Name is mandatory
 </osd:mandatoryErrorMessage>
 <osd:mandatoryErrorMessage xml:lang="fr-FR">
 Nom est obligatoire
 </osd:mandatoryErrorMessage>
</xs:documentation>

Note

Regarding whitespace management, the enumeration labels are always collapsed when
displayed.

150.4 Conversion error message
For each predefined XML Schema element, it is possible to define a specific error message if the user
entry has an incorrect format.
Example:
<xs:element name="email" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 <osd:ConversionErrorMessage xml:lang="en-US">
 Please enter a valid email address.
 </osd:ConversionErrorMessage>
 <osd:ConversionErrorMessage xml:lang="fr-FR">
 Saisissez un e-mail valide.
 </osd:ConversionErrorMessage>
 </xs:documentation>
 </xs:annotation>
</xs:element>

150.5 Facet validation message with severity
The validation message that is displayed when the value of a field does not comply with a constraint
can define a custom severity, a default non-localized message, and localized message variants. If no
severity is specified, the default level is error. Blocking constraints must have the severity error.

XML Schema facet (osd:validation)
The validation message is described by the element osd:validation in annotation/appinfo under
the definition of the facet.
Example:
<xs:element name="zipCode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <!--facet is not localized, but validation message is localized-->
 <xs:minInclusive value="01000">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 </xs:minInclusive>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 899

XML Schema enumeration facet (osd:enumerationValidation)
The validation message is described by the element osd:enumerationValidation in annotation/
appinfo under the definition of the field.
Example:
<xs:element name="Gender">
 <xs:annotation>
 <xs:appinfo>
 <osd:enumerationValidation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:enumerationValidation>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="0" osd:label="male" />
 <xs:enumeration value="1" osd:label="female" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

EBX® facet (osd:validation)
The validation message is described by the element osd:validation under the definition of the facet
(which is defined in annotation/appinfo/otherFacets).
Example:
<xs:element name="price" type="xs:decimal">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="../priceMin">
 <osd:validation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:validation>
 </osd:minInclusive>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 6.2.0 900

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 901

CHAPTER 151
Additional properties

This chapter contains the following topics:

1. Default values

2. Access properties

3. Information

4. Default view

5. Comparison mode

6. Apply last modifications policy

7. Categories

151.1 Default values
In a data model, it is possible to specify a default value for a field using the attribute default. This
property is used to assign a default value if no value is defined for a field.
The default value is displayed in the user input field at the creation time. That is, the default value will
be displayed when creating a new record or adding a new occurrence to an aggregated list.
Example:
In this example, the element specifies a default string value.
<xs:element name="fieldWithDefaultValue" type="xs:string" default="aDefaultValue" />

151.2 Access properties
The attribute osd:access defines the access mode, that is, whether the data of a particular data model
node can be read and/or written. This attribute must have one of the following values: RW, R-, CC or --.
For each XML Schema node, three types of adaptation are possible:

1. Adaptation terminal node
This node is displayed with an associated value in TIBCO EBX®.
When accessed using the method Adaptation.get(), it uses the adaptation search algorithm.

2. Adaptation non-terminal node

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 902

This node is a complex type that is only displayed in EBX® if it has one child node that is also
an adaptation terminal node. It has no value of its own.
When accessed using the method Adaptation.get(), it returns null.

3. Non-adaptable node
This node is not an adaptation terminal node and has no child adaptation terminal nodes. This
node is never displayed in EBX®.
When accessing using the method Adaptation.get(), it returns the node default value if one is
defined, otherwise it returns null.

See also AdaptationAPI

Access mode Behavior

RW Adaptation terminal node: value can be read and written in
EBX®.

R- Adaptation terminal node: value can only be read in EBX®.

CC Cut: This is not an adaptation terminal node and none of its
children are adaptation terminal nodes. This "instruction" has
priority over any child node regardless of the value of their
access attribute.

-- If the node is a simple type, it is not adaptable. If the node is a
complex type, it is not an adaptation terminal node and does not
define any child nodes.

The root node of a data model must specify this access mode.

Default If the access attribute is not defined:

• If the node is a computed value, it is considered to be R-

• If the node is a simple type and its value is not computed, it
is considered to be RW

• If the node is an aggregated list, it is then a terminal value
and is considered to be RW

• Otherwise, it is not an adaptation terminal node and it does
not define anything about its child nodes.

Example:
In this example, the element is adaptable because it is an adaptation terminal node.
<xs:element name="proxyIpAddress" type="xs:string" osd:access="RW"/>

151.3 Information
The element osd:information allows specifying additional information.

See also SchemaNode.getInformationAPI

Example:
<xs:element name="misc" type="xs:string">
 <xs:annotation>

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 903

 <xs:appinfo>
 <osd:information>
 This is the text information of miscellaneous element.
 </osd:information>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

151.4 Default view

Hiding a field or a table in the default view
It is possible for a table or field inside a table to be hidden by default in EBX® by using the element
osd:defaultView/hidden. This property is used to hide elements from the default view of a dataset
without defining specific access permissions. That is, elements hidden by default will not be visible
in any default forms and views, whether tabular or hierarchical, generated from the structure of the
associated data model.

Attention

• If an element is configured to be hidden in the default view of a dataset, then the access
permissions associated with this field will not be evaluated.

• It is possible to display a field that is hidden in the default view of a dataset by defining a view.
Only in this case will the access permissions associated with this field be evaluated to determine
whether the field will be displayed or not.

• It is not possible to display a table that is hidden in the default view of a dataset (in the navigation
pane).

Example:
In this example, the element is hidden in the default view of a dataset.
<xs:element name="hiddenField" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hidden>true</hidden>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Hiding groups and fields in views
It is possible for a field or a group to be hidden in all views of a table by using the element
osd:defaultView/hiddenInViews. This property is used to hide elements from the tabular (including
the default tabular view) and hierarchical views of a dataset without defining specific access
permissions. That is, hidden elements will not be visible in any views, whether tabular or hierarchical,
created from the structure of the associated data model. However, hidden elements in views will be
displayed in forms.
To specify whether or not to hide an element in all views, use the osd:defaultView/
hiddenInViews="true|false" element.
If this property is set to true, then the element will not be selectable when creating a custom view. As
a consequence, the element will not be displayed in all views of a table in a dataset.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 904

If a group is configured as hidden in views, then all the fields nested under this group will not be
displayed respectively in the views of the table.

Hiding a field in structured search tools
To specify whether or not to hide an element in structured search tools, use the element
osd:defaultView/hiddenInSearch="true|false|textSearchOnly".
If this property is set to true, then the field will not be selectable in the text and typed search tools
of a dataset.
If this property is set to textSearchOnly, then the field will not be selectable only in the text search
of a dataset but will be selectable in the typed search.

Note

If a group is configured as hidden in search tools or only in the text search, then all the fields
nested under this group will not be displayed respectively in the search tools or only in the
text search.
In all cases, the field will remain searchable in the quick search tool. A field can be excluded
from all search tools, including the quick search, by defining a specific search strategy.

See also Excluding a field from search ('Void' indexing) [p 503]

Example:
<xs:element name="hiddenFieldInSearch" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInSearch>true</hiddenInSearch>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden in the text and typed search tools of a dataset.
<xs:element name="hiddenFieldOnlyInTextSearch" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInSearch>textSearchOnly</hiddenInSearch>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden only in the text search tool of a dataset.

Hiding a field in Data Services
To specify whether or not to hide an element in data services, use the element osd:defaultView/
hiddenInDataServices. For more information, see Disabling fields from data model [p 1017].

Note

• If a group is configured as being hidden, then all the fields nested under this group will
be considered as hidden by data services.

Example:
<xs:element name="hiddenFieldInDataService" type="xs:string" minOccurs="0"/>

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 905

 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInDataServices>true</hiddenInDataServices>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden in the Data Service select operation.

Defining a view for the combo box selector of a foreign key
It is possible to specify a published view that will be used to display the target table or the hierarchical
view of a foreign key for a smoother selection. If a view has been defined, the selector will be displayed
in the user interface in the combo box of this foreign key. The definition of a view can be done by
using the XML Schema element osd:defaultView/widget/viewForAdvancedSelection.

Note

• This property can only be defined on foreign key fields.

• The published view must be associated with the target table of the foreign key.

• If the published view does not exist, then the advanced selection is not available in the
foreign key field.

Example:
In this example, the name of a published view is defined to display the target table of a foreign key
in the advanced selection.
<xs:element name="catalog_ref" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:tableRef>
 <tablePath>/root/Catalogs</tablePath>
 </osd:tableRef>
 </osd:otherFacets>
 <osd:defaultView>
 <widget>
 <viewForAdvancedSelection>catalogView</viewForAdvancedSelection>
 </widget>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

See Combo-box selector [p 59] for more information.

Customizing a default widget
A widget can be defined using the data model assistant. See Default view > Widget [p 59] for more
information.

Customizing REST data services
Default view configuration is managed in REST data services through the session channel [p 1054].

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 906

151.5 Comparison mode
The attribute osd:comparison can be included on a terminal node element in order to set its comparison
mode. This mode controls how differences are detected for the element during comparisons. The
possible values for the attribute are:

default Element is visible during comparisons of its data.

ignored No changes will be detected when comparing two versions
of the content in records or datasets.
During a merge, the data values of an ignored element are
not merged when contents are updated, even if the values are
different. For new content, the values of ignored elements
are merged.
During an archive import, values of ignored elements are
not imported when contents are updated. For new content,
the values of ignored elements are imported.

Note

• If a group is configured as being ignored during comparisons, then all the fields nested
under this group will also be ignored.

• If a terminal field does not include the attribute osd:comparison, then it will be included
by default during comparisons.

Restrictions:

• This property cannot be defined on non-terminal fields.

• Primary key fields cannot be ignored during comparison.

Example:
In this example, the first element is explicitly ignored during comparison, the second element is
explicitly included.
<xs:element name="fieldExplicitlyIgnoredInComparison"
 type="xs:string" minOccurs="0" osd:comparison="ignored"/>
<xs:element name="fieldExplicitlyNotIgnoredInComparison"
 type="xs:string" minOccurs="0" osd:comparison="default"/>

151.6 Apply last modifications policy
The attribute osd:applyLastModification can be defined on a terminal node element in order to
specify if this element must be included or not in the 'apply last modifications' service that can be
executed in a table of a dataset.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 907

The possible values for the attribute are:

default Last modifications can be applied to this element.

ignored This element is ignored from the apply last modifications
service. That is, the last modification that has been
performed on this element cannot be applied to other
records.

Note

• If a group is configured as being ignored by the 'apply last modifications' service, then all
fields nested under this group will also be ignored.

• If a terminal field does not include the attribute osd:applyLastModification, then it will
be included by default in the apply last modifications service.

Restriction:

• This property cannot be defined on non-terminal fields.

Example:
In this example, the first element is explicitly ignored in the 'apply last modifications' service, the
second element is explicitly included.
<xs:element name="fieldExplicitlyIgnoredInApplyLastModification"
 type="xs:string" minOccurs="0" osd:applyLastModification="ignored"/>
<xs:element name="fieldExplicitlyNotIgnoredApplyLastModification"
 type="xs:string" minOccurs="0" osd:applyLastModification="default"/>

151.7 Categories
Categories can be used for "filtering", by restricting the display of data model elements.
To create a category, add the attribute osd:category to a table node in the data model XSD.

Filters on data
In the example below, the attribute osd:category is added to the node in order to create a category
named mycategory.
<xs:element name="rebate" osd:category="mycategory">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="beginDate" type="xs:date"/>
 <xs:element name="endDate" type="xs:date"/>
 <xs:element name="rate" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

To activate a defined category filter on a dataset in the user interface, select Actions > Categories >
<category name> from the navigation pane.

Predefined categories
Two categories with localized labels are predefined:

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 6.2.0 908

• Hidden
An instance node, including a table node itself, is hidden in the default view, but can be revealed
by selecting Actions > Categories > [hidden nodes] from the navigation pane.
A table record node is always hidden.

• Constraint (deprecated)

Restriction
Categories do not apply to table record nodes, except the category 'Hidden'.

Documentation > Developer Guide > Data model > Data services

TIBCO EBX® Product Documentation 6.2.0 909

CHAPTER 152
Data services

This chapter details how WSDL operations' names related to a table are defined and managed by
TIBCO EBX®.
This chapter contains the following topics:

1. Definition

2. Configuration

3. Publication

4. WSDL and table operations

5. Limitations

152.1 Definition
EBX® generates a WSDL that complies with the W3C Web Services Description Language 1.1
standard. By default, WSDL operations refer to a table using the last element of the table path. A
WSDL operation name is composed of the action name (prefix) and the table name (suffix). It is
possible to refer to tables in WSDL operations using entity names. Entity names allow to use unique
names instead of the last element of tables' paths. Entity names override the suffix operations' names.

See also Entity mappings using the Data Model Assistant [p 86]

152.2 Configuration

Embedded data model
Entity names used as WSDL suffix operations' names are embedded in EBX®'s repository and linked
to a publication. That is, when publishing an embedded data model, the list of entity names can be
defined in the data model definition, under the 'Configuration > 'Entity mappings' table and managed
by EBX®.

Packaged data model
Entity names used as WSDL suffix operations' names are defined in a dedicated XML document file
and must be named as the data model and end with the keyword _entities. For instance, if a data
model is named catalog.xsd, then the XML document containing the configuration of the WSDL
operations' names overrided will be named catalog_entities.xml. This XML document must also be

https://www.w3.org/TR/2001/NOTE-wsdl-20010315

Documentation > Developer Guide > Data model > Data services

TIBCO EBX® Product Documentation 6.2.0 910

located in the same location as the data model. The XML document is automatically loaded by EBX®
if a file that matches this pattern is found when compiling a data model.

152.3 Publication
Entity names are validated at compilation time and contain a list of couples containing Path with a
unique table name. Checked validation rules are:

• The path is not unique,

• The table name contains a syntax error,

• The table name is not unique in the XML document.

152.4 WSDL and table operations

WSDL Generator
An additional validation rule has been added: a unicity check is systematically applied to table names.
The SOAP operation name is composed of the operation type as a prefix and, by default, of the table
name (last step of the table path) as a suffix. A dataset can contain several identical table names but
with different paths. It is possible to override table names that are not unique in order to guarantee
the unicity.

SOAP operations
When an operation request on table has been invoked from the SOAP connector, the target table is
retrieved by priority, the name corresponds to:

1. an overridden table name,

2. the last step of the table path.

See also Data services [p 998]

152.5 Limitations
WSDL operations' names are not available with external data models.

Documentation > Developer Guide > Data model > Toolbars

TIBCO EBX® Product Documentation 6.2.0 911

CHAPTER 153
Toolbars

This chapter details how toolbars are defined and managed by TIBCO EBX®.
This chapter contains the following topics:

1. Definition

2. Using toolbars

153.1 Definition
Toolbars allow to customize the buttons and menus to display when accessing a table view, a
hierarchical view, or a record form.
Toolbars can only be created and published using the Data Model Assistant and are available only on
embedded and packaged data models.
For embedded data models, toolbars are embedded in EBX®'s repository and linked to a publication.
That is, when publishing an embedded data model, the toolbars defined in the data model are embedded
with the publication of the data model and managed by EBX®.
For packaged data models, toolbars are defined in a dedicated XML document and must be named
as the data model and end with the keyword _toolbars. For instance, if a data model is named
catalog.xsd then the XML document containing the definition of the toolbars must be named
catalog_toolbars.xml. This XML document must also be placed in the same location as the data model.
The toolbar document is automatically loaded by EBX® if a file complying with this pattern is found
when compiling a data model.

See also

Configuring toolbars using the Data Model Assistant [p 80]

Using toolbars in data models [p 857]

Toolbar API ToolbarFactoryAPI

153.2 Using toolbars
Toolbars can be used on tables and associations.
On tables, it is possible to specify the toolbar to display:

• On the top of a tabular view

• On each row of a tabular view

Documentation > Developer Guide > Data model > Toolbars

TIBCO EBX® Product Documentation 6.2.0 912

• On the top of a record form

• On the top of a hierarchical view.

• On the top of a tile view.

• On each card of a tile view.

On associations, it is possible to specify the toolbar to display:

• On top of the tabular view of the association

• On each row of the tabular view of the association

See also

Using toolbars [p 857]

Associations [p 863]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 913

CHAPTER 154
Custom forms

This chapter details how custom forms are defined and managed by TIBCO EBX®.

Related concepts Interface customization [p 962]

This chapter contains the following topics:

1. Access

2. Forms and components

3. The editor

4. Blocks

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 914

154.1 Access
To access it, go to: Data Models > Extensions > Custom forms > Forms

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 915

Click on the [+] button to create a form.

Name your new form and indicate the table on which it will be available.

Pressing the "Save" button will redirect you to the layout designer.

154.2 Forms and components
Both forms and components can be created in the 'Custom forms' data model extension.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 916

• A form describes the layout of a record. It can access contextual information such as the record
or the input parameters. When creating a form, the user is asked to provide its target table. Once
created, it can be declared as the default form of the table either in the 'Default form' table
of the extension, or in the 'Extensions' tab of the target table. Forms that are not the default for
their table will not be used.

• A component is a reusable fragment that can be shared between forms and other components.
Unlike forms, components don't have access to contextual information. If such information is
needed, it must be provided explicitly by its caller.

154.3 The editor
A form or component is just an imbrication of blocks. Blocks can represent a concrete graphical
element or some piece of logic, allowing to have different layouts based on conditions like
permissions, language, etc.
The workspace contains the description of the form, inside a predefined root block. Any block that is
not connected to this root is grayed out, to mark it as inactive. To move a block, it must be dragged
and dropped. Dragging a block also drags the blocks connected below it. If only one block has to be
moved, hold the control key before clicking on it. Right-clicking on a block in the workspace also
shows a list of options such as expand/collapse, comment, help, etc.
The toolbox on the left displays a list of categories. By clicking on a category, the blocks it contains are
displayed. Some categories have a related 'Template' section. This section provides some combinations
of the blocks of the section and can be considered as useful shortcuts or samples.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 917

On the bottom right of the screen are the 'Preview' and 'Configure preview' buttons. These can be used
to see what the form will look like.

154.4 Blocks
Here is the list of all the blocks that appear in the toolbox.

Arithmetic operator
Operations on two integers.

Array
A list of items.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 918

See also Array item [p 918]

Array item
Adapter to make expression blocks into arrays.

See also Array [p 917]

Boolean operator
Operations on two booleans.

Check box
Displays the checkbox widget.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

label enabled? If set, indicates if the item label is to be added next to the
widget.

index The index for this enumeration item.

specific nomenclature If set, overrides the model-driven nomenclature.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 919

Check box group
Displays the checkbox group widget.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

columns number If set, defines the number of columns to use for the layout of the
checkboxes.

specific nomenclature If set, overrides the model-driven nomenclature.

Children
Returns the list of the children of the given node.

Parameters

Input Description

node The complex node from which to extract children.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 920

Choose
A block returning the content of one of its inner 'when'/'otherwise' blocks.

Parameters

Input Description

content A list of 'when' blocks and optionally a final 'otherwise' block.

See also

When [p 949]

Otherwise [p 940]

Close button
Standard 'Close' button.

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 921

Color picker
Displays the color picker widget.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 922

Combo box
Displays the combo box widget.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 923

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

create button displayable? If set, defines if the create button should be displayed when the
underlying node is a foreign key.

preview button displayable? If set, defines if the preview button should be displayed when
the underlying node is a foreign key.

number of entries displayed on a page If set, defines the number of entries on each page of the drop-
down list.

width of the combo box If set, defines the width of the combo box.

advanced selector available? If set, defines if the advanced selector should be displayed
when the underlying node is a foreign key.

view name to use with the advanced selector If set, defines the name of the published view that will be used
in the combo-box selection of the associated foreign key field.

specific nomenclature If set, overrides the model-driven nomenclature.

Comparator
Compares two integers.

Comparison
Compares strings, numbers or booleans.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 924

Concatenate arrays
Returns the concatenation of the given arrays.

Parameters

Input Description

arrays A list of arrays.

Constant
A constant value. Depending on the context, this value may be interpreted as text, boolean or number.

Parameters

Input Description

value Text, boolean or number.

Content title
Display the workspace content title.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 925

Parameters

Input Description

label The text to display.

horizontal alignment The horizontal alignment of the element. If set, accepted values
are: 'start', 'end', 'center'.

Creating record?
Returns a boolean indicating if the form is displayed in the context of a record creation or duplication.

Custom action bar
A custom action bar.

Parameters

Input Description

start A list of 'Button's to display on the left of the action bar.

middle A list of 'Button's to display on the center of the action bar.

end A list of 'Button's to display on the right of the action bar.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 926

Date time input
Displays the date/time input.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

date picker button displayable? Indicates if the button opening the date picker is displayed
(read/write mode only).

now button displayed? Indicates if the button setting the date to the current time is
displayed (read/write mode only).

Declare
The declaration of a variable, in a 'with' block.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 927

Parameters

Input Description

name The name of the variable. Must be unique for a given 'with'
block.

content The value of the variable, which will be returned by 'var' blocks
referencing this.

See also With [p 950]

Default action bar
The default action bar.

Default toolbar
The model-driven toolbar.

Duplicating record?
Returns a boolean indicating if the form is displayed in the context of a record duplication.

Expand/Collapse
Displays its content inside an expand/collapse block.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 928

Parameters

Input Description

label Label displayed next to the arrow.

collapsed? Indicates if the group is initially collapsed or not.

content A list of components to be collapsible.

Flow
Displays its content in a fluid manner. If the elements don't fit in one row or column, they will wrap
to start a new one.

Parameters

Input Description

direction 'horizontal' or 'vertical', indicates in which direction to queue its
content.

item spacing The space between elements, in pixels.

content A list of elements to display either horizontally or vertically.

For each
Returns an array that is made of the result of the 'body' function, applied on each item of the 'of' array.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 929

Parameters

Input Description

item The name of the variable containing the current item.

array The array containing the items to transform.

return What to return for the current item.

Form
Standard table-like layout with labels on the left side and values on the right side.

Parameters

Input Description

content A list of 'Form row', 'Form group' or nodes. Nodes will result
in model driven display, 'Form row' and 'Form group' allow to
display custom content.

See also

Form row [p 931]

Form group [p 930]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 930

Form definition
Actual definition of a form.

Parameters

Input Description

toolbar Definition of the toolbar displayed on top of the form.

action bar Definition of the action bar displayed below the form.

help URL URL of the help page.

content The content of the layout.

Form group
Inside a 'Form', displays a collapsible group of items.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 931

Parameters

Input Description

node If set, the group label, description and content will be model
driven.

label The label of the group. May override the model driven label if a
node and a label are set.

description The description of the group. May override the model driven
description if a node and a description are set.

open? Indicates if the group is initially open.

content A list of 'Form row', 'Form group' or nodes. Nodes will result
in model driven display, 'Form row' and 'Form group' allow to
display custom content.

See also

Form [p 929]

Form row [p 931]

Form row
Inside a 'Form' or a 'Form group', displays a row, that is basically a label and a value.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 932

Parameters

Input Description

node If set, the label, description and content will be model driven.

display label? Indicates if the label should be displayed. If set to false in a
'Form' the content will span over both the label and content
area.

label The label of the row. May override the model driven label if a
node and a label are set.

description The description of the row. May override the model driven label
if a node and a label are set.

content The content to be displayed next to the label.

See also

Form [p 929]

Form group [p 930]

Form parameter
The 'record' is the node representing the displayed record. 'current page' is a number (1 by default)
representing the displayed page. This value can be changed by the 'Previous' and 'Next' buttons.

From...get
Extract a value from an object or a node.
<from "node" get "path/to/value"> is equivalent to <var "node/path/to/value">

Parameters

Input Description

from Base object or node, from which to extract data.

get Path of the data to extract, inside the object in 'from'.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 933

Function
The definition of an anonymous function. A function makes use of its parameters in its body to return
a result.

Parameters

Input Description

parameters List of 'param' blocks, defining the parameters accepted by this
function.

body Body describing the result of the function, using its parameters.

See also

Function parameter [p 934]

Function call [p 933]

Function call
Calls a function by setting actual values to its parameters.

Parameters

Input Description

function The function to call.

args The arguments to pass to the function.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 934

See also

Function call argument [p 934]

Function [p 933]

Function call argument
Actual value to pass to the parameter of the called function.

Parameters

Input Description

name The name of the parameter.

value The actual value to pass the the parameter.

See also Function call [p 933]

Function parameter
This is the declaration of a parameter of a function.

Parameters

Input Description

name The name of the parameter.

mandatory? Indicates if this parameter must be provided by the caller.

default value If set, this is the default value taken by this parameter if the
caller does not provide one.

See also Function [p 933]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 935

Grid
A layout allowing to place components in a grid with coordinates.

Parameters

Input Description

item spacing Space between elements, in pixels.

content A list of 'Grid element's, which specify where to display their
content.

See also Grid element [p 935]

Grid element
Inside a 'Grid', specifies the location of its content.

Parameters

Input Description

row The row where the element starts. Minimum value is 1.

column The column where the element starts. Minimum value is 1.

width The width of the element, in grid cells. Minimum value is 1.

height The height of the element, in grid cells. Minimum value is 1.

vertical alignment The vertical alignment of the element. If set, accepted values
are: 'start', 'end', 'center'.

horizontal alignment The horizontal alignment of the element. If set, accepted values
are: 'start', 'end', 'center'.

content The content inside the cell.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 936

See also Grid [p 935]

If
A block returning either the content of 'then', or the content 'else', based on the result of the test.

Parameters

Input Description

test A test determining which value to return. This must be a
boolean value.

then The value returned if the test is true.

else The value returned if the test is false.

Input parameter
Returns the raw value of an input parameter.

Parameters

Input Description

name The parameter name.

In role?
Returns a boolean indicating if the current user has the requested role.

Label
Displays the label of the given node.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 937

Parameters

Input Description

node The node for which to display the label.

Localized
Block which result depends on the user locale.

Parameters

Input Description

[locale] Each parameter relates to a locale. The result of the block will
be the one corresponding to the locale of the current user.

Message
Formats the given text by replacing java-like {0}, {1}, etc. placeholders by the argument at the given
index.

Parameters

Input Description

pattern Text with placeholders ({0}, {1}, etc.) which will be replaced
by the given arguments.

arguments The list of values which will replace the placeholders in the
pattern.

Next button
A button which will increment the 'current page' value by one.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 938

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Node
Overrides the definition of an existing node.

Parameters

Input Description

base The node to override.

mandatory? If set, overrides the mandatory indicator of the base node.

label If set, overrides the label of the node.

description If set, overrides the label of the node.

widget If set, overrides the default widget of the node.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 939

Nomenclature item
A nomenclature item is a (key, label) pair.

Parameters

Input Description

value The value of the item.

label The label of the item.

Not
Returns the inverse of the given boolean.

Object
An object composed of a list of (key, value) pairs.

Parameters

Input Description

content A list of 'property' blocks.

See also Property [p 941]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 940

Otherwise
Final choice in a 'choose' block. Will be returned if no 'when' case matched.

Parameters

Input Description

content The value to return if no 'when' case matched.

See also Choose [p 920]

Paragraph title
Display a paragraph title.

Parameters

Input Description

label The text to display.

horizontal alignment The horizontal alignment of the element. If set, accepted values
are: 'start', 'end', 'center'.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 941

Password
Displays the input password widget.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

Previous button
A button which will decrement the 'current page' value by one.

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Property
A property of an object.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 942

Parameters

Input Description

name Name of the property. Must be unique for a given object.

value Value of the property.

Radio button
Displays a radio button widget.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 943

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

label enabled? If set, indicates if the item label is to be added next to the
widget.

index The index for this enumeration item.

specific nomenclature If set, overrides the model-driven nomenclature.

Radio button group
Displays the radio button group widget.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 944

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

columns number If set, defines the number of columns to use for the layout of the
radio buttons.

specific nomenclature If set, overrides the model-driven nomenclature.

Revert button
Standard 'Revert' button.

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Save button
Standard 'Save' button.

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 945

Save and close button
Standard 'Save and close' button.

Parameters

Input Description

label If set, overrides the default label.

default? Indicates if this is the action to trigger when pressing 'Enter'.
Only one button should be the default one.

Tab
A tab, inside a 'Tab container'.

Parameters

Input Description

node If present, the tab title, description and content will be model
driven.

title The title of the tab. May override the model driven title if a
node and a title are set.

description The description of the tab. May override the model driven
description if a node and a description are set.

content The content of the tab. May override the model driven content
if a node and a content are set.

See also Tab container [p 946]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 946

Tab container
A container of tabs, which displays a list of tab names and one active tab.

Parameters

Input Description

content A list of 'Tab's.

See also Tab [p 945]

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 947

Text input
Displays the text input widget.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 948

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

height If set, defines the height of the widget, in pixels.

width If set, defines the width of the widget, in pixels.

multiline? If set, defines if the widget spans over multiple lines.

background If set, defines the background color, in hexadecimal format.

foreground If set, defines the foreground color, in hexadecimal format.

Toolbar named
The toolbar having the specified name.

Parameters

Input Description

name The name of the toolbar to display.

Variable
A reference to a variable declared by a 'with...declare' block. A path is also accepted if the variable
is an object or a node.

Parameters

Input Description

expression A reference to a variable declared by a 'with...declare' block. A
path is also accepted if the variable is an object or a node.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 949

When
A choice in a 'choose' block. If the test is true, the 'then' content will be returned, otherwise the next
block will be tested.

Parameters

Input Description

when A boolean test indicating if this case should be resolved.

then If the test is true, this value will be returned.

See also Choose [p 920]

Widget
Displays the default widget.

Parameters

Input Description

node The node for which to display the widget.

readonly? Indicates if the widget should be in readonly mode.

Documentation > Developer Guide > Data model > Custom forms

TIBCO EBX® Product Documentation 6.2.0 950

With
Declares variables that can be used in its 'return' statement.

Parameters

Input Description

variables A list of 'declare' blocks.

return The value to return. The variables declared in the 'variables'
statement can be used here, with 'var' blocks.

See also Declare [p 926]

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 951

CHAPTER 155
Workflow model

The workflow offers three types of steps: 'library' or 'specific' and 'script'.
'Library' is a bean defined in module.xml and is reusable. Using the 'library' bean improves the
ergonomics: parameters are dynamically displayed in the definition screens.
A 'specific' object is a bean defined only by its class name. In this case, the display is not dynamic.
A 'script' is a procedural language based on DSL (Domain Specific Language) used to define custom
tasks. The EBX script IDE is used to create and edit the script. The parameters of the workflow context
are dynamically displayed in the definition screens.
This chapter contains the following topics:

1. Bean categories

2. Sample of ScriptTask

3. Sample of ScriptTaskBean

4. Samples of UserTask

5. Samples of Condition

6. Sample of ConditionBean

7. Sample of SubWorkflowsInvocationBean

8. Sample of WaitTaskBean

9. Sample of ActionPermissionsOnWorkflow

10.Sample of WorkflowTriggerBean

11.Sample of trigger starting a process instance

155.1 Bean categories

Step Library Specific

Scripts ScriptTaskBean ScriptTask

Conditions ConditionBean Condition

User task UserTask

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 952

155.2 Sample of ScriptTask

Java Code
A script task has to override the method execute as in the following example:
public class NppScriptTask_CreateWorkingBranch extends ScriptTask
{
 public void executeScript(ScriptTaskContext aContext) throws OperationException
 {
 Repository repository = aContext.getRepository();
 String initialBranchString = aContext.getVariableString("initialBranch");
 AdaptationHome initialBranch = repository.lookupHome(HomeKey.forBranchName(initialBranchString));
 if (initialBranch == null)
 throw OperationException.createError("Null value for initialBranch");

 HomeCreationSpec spec = new HomeCreationSpec();
 spec.setParent(initialBranch);
 spec.setKey(HomeKey.forBranchName("Name"));
 spec.setOwner(Profile.EVERYONE);
 spec.setHomeToCopyPermissionsFrom(initialBranch);
 AdaptationHome newHome = repository.createHome(spec, aContext.getSession());
 //feeds dataContext
 aContext.setVariableString("workingBranch", newHome.getKey().getName());
 }
}

See also com.orchestranetworks.workflow.ScriptTask ScriptTaskAPI

155.3 Sample of ScriptTaskBean

Java Code
A script task bean has to override the method executeScript as in the following example:
public class ScriptTaskBean_CreateBranch extends ScriptTaskBean
{
 private String initialBranchName;

 private String newBranch;

 public String getInitialBranchName()
 {
 return this.initialBranchName;
 }

 public void setInitialBranchName(String initialBranchName)
 {
 this.initialBranchName = initialBranchName;
 }

 public String getNewBranch()
 {
 return this.newBranch;
 }

 public void setNewBranch(String newBranch)
 {
 this.newBranch = newBranch;
 }

 public void executeScript(ScriptTaskBeanContext aContext) throws OperationException
 {
 final Repository repository = aContext.getRepository();

 String initialBranchName = this.getInitialBranchName();
 final AdaptationHome initialBranch = repository.lookupHome(HomeKey.forBranchName(initialBranchName));
 final HomeCreationSpec spec = new HomeCreationSpec();
 spec.setParent(initialBranch);
 spec.setKey(HomeKey.forBranchName(XsFormats.SINGLETON.formatDateTime(new Date())));
 spec.setOwner(Profile.EVERYONE);
 spec.setHomeToCopyPermissionsFrom(initialBranch);
 final AdaptationHome branchCreate = repository.createHome(spec, aContext.getSession());

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 953

 this.setNewBranch(branchCreate.getKey().getName());
 }
}

See also com.orchestranetworks.workflow.ScriptTaskBean ScriptTaskBeanAPI

Configuration through module.xml
A script task bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.genericScriptTask.ScriptTaskBean_CreateBranch">
 <documentation xml:lang="fr-FR">
 <label>Créer une branche</label>
 <description>
 Ce script permet de créer une branche
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Create a branch</label>
 <description>
 This script creates a branch
 </description>
 </documentation>
 <properties>
 <property name="initialBranchName" input="true">
 <documentation xml:lang="fr-FR">
 <label>Branche initiale</label>
 <description>
 Nom de la branche initiale.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Initial branch</label>
 <description>
 Initial branch name.
 </description>
 </documentation>
 </property>
 <property name="newBranch" output="true">
 <documentation xml:lang="fr-FR">
 <label>Nouvelle branche</label>
 <description>
 Nom de la branche créée
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>New branch</label>
 <description>
 Created branch name.
 </description>
 </documentation>
 </property>
 </properties>
 </bean>
 </beans>
</module>

155.4 Samples of UserTask

Service declaration via module.xml
A built-in service can be declared in module.xml to be used in the user task definition.
 <services>
 <service name="ServiceModule">
 <resourcePath>/service.jsp</resourcePath>
 <type>branch</type>
 <documentation xml:lang="fr-FR">
 <label>Workflow service</label>
 <description>
 Ce service permet de ...
 </description>
 </documentation>
 <documentation xml:lang="en-US">

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 954

 <label>Service workflow</label>
 <description>
 The purpose of this service is ...
 </description>
 </documentation>
 <properties>
 <property name="param1" input="true">
 <documentation xml:lang="fr-FR">
 <label>Param1</label>
 <description>Param1 ...</description>
 </documentation>
 </property>
 <property name="param2" output="true">
 </property>
 </properties>
 </service>
 <serviceLink serviceName="adaptationService">
 <importFromSchema>
 /WEB-INF/ebx/schema/schema.xsd
 </importFromSchema>
 </serviceLink>
</services>

A more complex UserTask
The GUI is quite similar as the example above. The field 'Rule' must be filled to define the class
extending the 'UserTask' to invoke.
public class NppUserTask_ValidateProduct extends UserTask
{
 public void handleWorkItemCompletion(UserTaskWorkItemCompletionContext context)
 throws OperationException
 {
 if (context.getCompletedWorkItem().isRejected())
 {
 context.setVariableString(NppConstants.VAR_VALIDATION, "KO");
 context.completeUserTask();
 }
 else if (context.checkAllWorkItemMatchStrategy())
 {
 context.setVariableString(NppConstants.VAR_VALIDATION, "OK");
 context.completeUserTask();
 }
 }

 public void handleCreate(UserTaskCreationContext context) throws OperationException
 {
 CreationWorkItemSpec spec = CreationWorkItemSpec.forOfferring(NppConstants.ROLE_PVALIDATOR);
 spec.setNotificationMail("1");
 context.createWorkItem(spec);
 context.setVariableString(NppConstants.VAR_VALIDATION, "validating");
 }
}

See also com.orchestranetworks.workflow.UserTask UserTaskAPI

155.5 Samples of Condition

Java Code
The method evaluate has to be overridden:
public class NppCondition_IsValidationOK extends Condition
{
 public boolean evaluateCondition(ConditionContext context) throws OperationException
 {
 String validation = context.getVariableString("validationResult");
 boolean hasError = "KO".equals(validation);
 return !hasError;
 }
}

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 955

See also com.orchestranetworks.workflow.Condition ConditionAPI

155.6 Sample of ConditionBean

Java Code
The method evaluateCondition has to be overridden as in the following sample:
public class ConditionBean_IsBranchValid extends ConditionBean
{
 private String branchName;

 public String getBranchName()
 {
 return this.branchName;
 }

 public void setBranchName(String branchName)
 {
 this.branchName = branchName;
 }

 public boolean evaluateCondition(ConditionBeanContext aContext) throws OperationException
 {
 final Repository repository = aContext.getRepository();
 Severity severityForValidation = Severity.ERROR;
 String branchToTestName = this.getBranchName();
 final AdaptationHome branchToTest = repository.lookupHome(HomeKey.forBranchName(branchToTestName));
 if (branchToTest.getValidationReportsMap(severityForValidation) != null
 && branchToTest.getValidationReportsMap(severityForValidation).size() > 0)
 {
 return false;
 }
 return true;
 }
}

See also com.orchestranetworks.workflow.ConditionBean ConditionBeanAPI

Configuration through module.xml
The condition bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.genericScriptTask.ConditionBean_IsBranchValid">
 <documentation xml:lang="fr-FR">
 <label>Branche valide ?</label>
 <description>
 Ce script permet de tester si une branche est valide.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Branch valid ?</label>
 <description>
 This script allows to check if a branch is valid.
 </description>
 </documentation>
 <properties>
 <property name="branchName" input="true">
 <documentation xml:lang="fr-FR">
 <label>Branche à contrôler</label>
 <description>
 Nom de la branche à valider.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Branch to check</label>
 <description>
 Branch name to check.
 </description>
 </documentation>
 </property>
 </properties>
 </bean>

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 956

 </beans>
</module>

155.7 Sample of SubWorkflowsInvocationBean

Java Code
public class MySubWorkflowsInvocationBean extends SubWorkflowsInvocationBean
{
 @Override
 public void handleCreateSubWorkflows(SubWorkflowsCreationContext aContext)
 throws OperationException
 {
 final ProcessLauncher subWorkflow1 = aContext.registerSubWorkflow(
 AdaptationName.forName("validateProduct"),
 "validateProduct1");
 subWorkflow1.setLabel(UserMessage.createInfo("Validate the new product by marketing"));
 subWorkflow1.setInputParameter("workingBranch", aContext.getVariableString("workingBranch"));
 subWorkflow1.setInputParameter("code", aContext.getVariableString("code"));
 subWorkflow1.setInputParameter("service", aContext.getVariableString("marketing"));

 final ProcessLauncher subWorkflow2 = aContext.registerSubWorkflow(
 AdaptationName.forName("validateProduct"),
 "validateProduct2");
 subWorkflow2.setLabel(UserMessage.createInfo("Validate the new product by direction"));
 subWorkflow2.setInputParameter("workingBranch", aContext.getVariableString("workingBranch"));
 subWorkflow2.setInputParameter("code", aContext.getVariableString("code"));
 subWorkflow2.setInputParameter("service", aContext.getVariableString("direction"));

 // Conditional launching.
 if (aContext.getVariableString("productType").equals("book"))
 {
 final ProcessLauncher subWorkflow3 = aContext.registerSubWorkflow(
 AdaptationName.forName("generateISBN"),
 "generateISBN");
 subWorkflow3.setLabel(UserMessage.createInfo("Generate ISBN"));
 subWorkflow3.setInputParameter(
 "workingBranch",
 aContext.getVariableString("workingBranch"));
 subWorkflow3.setInputParameter("code", aContext.getVariableString("code"));
 }

 aContext.launchSubWorkflows();
 }
 @Override
 public void handleCompleteAllSubWorkflows(SubWorkflowsCompletionContext aContext)
 throws OperationException
 {
 aContext.getCompletedSubWorkflows();
 final ProcessInstance validateProductMarketing = aContext.getCompletedSubWorkflow("validateProduct1");
 final ProcessInstance validateProductDirection = aContext.getCompletedSubWorkflow("validateProduct2");
 if (aContext.getVariableString("productType").equals("book"))
 {
 final ProcessInstance generateISBN = aContext.getCompletedSubWorkflow("generateISBN");
 aContext.setVariableString("isbn", generateISBN.getDataContext().getVariableString(
 "newCode"));
 }

 if (validateProductMarketing.getDataContext().getVariableString("Accepted").equals("true")
 && validateProductDirection.getDataContext().getVariableString("Accepted").equals(
 "true"))
 aContext.setVariableString("validation", "ok");
 }
}

See also com.orchestranetworks.workflow.SubWorkflowsInvocationBean
SubWorkflowsInvocationBeanAPI

Configuration through module.xml
SubWorkflowsInvocationBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MySubWorkflowsInvocationBean"/>
 </beans>

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 957

</module>

155.8 Sample of WaitTaskBean

Java Code
public class MyWaitTaskBean extends WaitTaskBean
{
 @Override
 public void onStart(WaitTaskOnStartContext aContext)
 {
 Map<String, String> params = new HashMap<String, String>();
 params.put("resumeId", aContext.getResumeId());
 myMethod.callWebService(params);
 }

 @Override
 public void onResume(WaitTaskOnResumeContext aContext) throws OperationException
 {
 // Defines a specific mapping.
 aContext.setVariableString("code", aContext.getOutputParameters().get("isbn"));
 aContext.setVariableString("comment", aContext.getOutputParameters().get("isbnComment"));
 }
}

See also com.orchestranetworks.workflow.WaitTaskBean WaitTaskBeanAPI

Configuration through module.xml
WaitTaskBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyWaitTaskBean"/>
 </beans>
</module>

155.9 Sample of ActionPermissionsOnWorkflow

Java Code
package com.orchestranetworks.workflow.test;

import com.orchestranetworks.service.*;
import com.orchestranetworks.workflow.*;
import com.orchestranetworks.workflow.ProcessExecutionContext.*;

/**
 */
public class MyDynamicPermissions extends ActionPermissionsOnWorkflow
{

 public ActionPermission getActionPermission(
 WorkflowPermission aWorkflowAction,
 ActionPermissionsOnWorkflowContext aContext)
 {
 if (WorkflowPermission.VIEW.equals(aWorkflowAction)
 || WorkflowPermission.CREATE_PROCESS.equals(aWorkflowAction))
 return ActionPermission.getEnabled();
 return ActionPermission.getDisabled();
 }

}

See also com.orchestranetworks.workflow.ActionPermissionsOnWorkflow
ActionPermissionsOnWorkflowAPI

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 958

Configuration through module.xml
ActionPermissionsOnWorkflow bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyDynamicPermissions"/>
 </beans>
</module>

155.10 Sample of WorkflowTriggerBean

Java Code
public class MyWorkflowTriggerBean extends WorkflowTriggerBean
{
 @Override
 public void handleAfterProcessInstanceStart(
 WorkflowTriggerAfterProcessInstanceStartContext aContext) throws OperationException
 {
 final DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());
 final MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] After process instance start");
 spec.setBody("The workflow '"
 + policy.formatUserMessage(aContext.getProcessInstance().getLabel())
 + "' has been created.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeProcessInstanceTermination(
 WorkflowTriggerBeforeProcessInstanceTerminationContext aContext) throws OperationException
 {
 final DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 final MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before process instance termination");
 spec.setBody("The workflow '"
 + policy.formatUserMessage(aContext.getProcessInstance().getLabel())
 + "' has been completed. The created product is: '"
 + aContext.getVariableString(NppConstants.VAR_CODE) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleAfterWorkItemCreation(WorkflowTriggerAfterWorkItemCreationContext aContext)
 throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] After work item creation");
 WorkItem workItem = aContext.getWorkItem();
 State state = workItem.getState();
 String body = "The work item '" + policy.formatUserMessage(workItem.getLabel())
 + "' has been created. \n The step id is : " + aContext.getCurrentStepId()
 + ". \n The work item is in state : " + policy.formatUserMessage(state.getLabel());

 if (workItem.getOfferedTo() != null)
 body += "\n The role is :" + workItem.getOfferedTo().format();
 if (workItem.getUserReference() != null)
 body += "\n The user is :" + workItem.getUserReference().format();

 spec.setBody(body);

 spec.sendMail(Locale.US);
 }

 @Override

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 959

 public void handleBeforeWorkItemStart(WorkflowTriggerBeforeWorkItemStartContext aContext)
 throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item start");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been started. \n The current step id is : "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeWorkItemAllocation(
 WorkflowTriggerBeforeWorkItemAllocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item allocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been allocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeWorkItemDeallocation(
 WorkflowTriggerBeforeWorkItemDeallocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item deallocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been deallocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The old work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + ".");

 spec.sendMail(Locale.US);

 }

 @Override
 public void handleBeforeWorkItemReallocation(
 WorkflowTriggerBeforeWorkItemReallocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item reallocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been reallocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getUserReference(),
 aContext.getSession().getLocale())
 + "'. The old work item user is: '"

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 6.2.0 960

 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);

 }
 @Override
 public void handleBeforeWorkItemTermination(
 WorkflowTriggerBeforeWorkItemTerminationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item termination");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been terminated. \n The current step id is: " + aContext.getCurrentStepId()
 + ". \n The work item has been accepted ? " + aContext.isAccepted());

 spec.sendMail(Locale.US);
 }
}

See also com.orchestranetworks.workflow.WorkflowTriggerBean WorkflowTriggerBeanAPI

Configuration through module.xml
WorkflowTriggerBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyWorkflowTriggerBean"/>
 </beans>
</module>

155.11 Sample of trigger starting a process instance

Sample
public class TriggerWorkflow extends TableTrigger
{
 public void handleAfterModify(AfterModifyOccurrenceContext aContext) throws OperationException
 {
 ValueContext currentRecord = aContext.getOccurrenceContext();
 String code = (String) currentRecord.getValue(Path.parse("/code"));

 //Get published process
 PublishedProcessKey processPublishedKey = PublishedProcessKey.forName("productProcess");

 //Defines process instance
 WorkflowEngine engine = WorkflowEngine.getFromProcedureContext(aContext.getProcedureContext());
 ProcessLauncher launcher = engine.getProcessLauncher(processPublishedKey);

 //initialize Data Context
 launcher.setInputParameter("code", "/root/Client[./code=\"" + code + "\"]");
 launcher.setInputParameter("workingBranch", aContext.getAdaptationHome().getKey().getName());

 //Starts process
 launcher.launchProcess();

 }
 //...
}

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 961

User interface

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 6.2.0 962

CHAPTER 156
Interface customization

The TIBCO EBX® graphical interface can be customized through various EBX® APIs.
This chapter contains the following topics:

1. Using EBX® as a Web Component

2. Adding user services

3. Customizing forms

4. Customizing widgets

5. Customizing table filter

6. Customizing record label

7. Including CSS and JavaScript

156.1 Using EBX® as a Web Component
EBX® can be integrated into any application that is accessible through a supported web browser [p

512], thanks to the Web Component API.
A typical use is to integrate EBX® views into an organization's intranet framework. Web Components
can also be invoked from the EBX® user interface using User services [p 962].
To embed all or part of EBX® in a web page, the HTML tag <iframe> should be used by indicating the
URL to EBX®. This URL can be specified either manually or by using the UIHttpManagerComponent
API. A single web page may include several iframes that integrate EBX®. It is then possible to create
a portal made of tables, forms, hierarchical views, etc., from EBX®.

See also Using TIBCO EBX® as a Web Component [p 409]

156.2 Adding user services
A user service is an extension of EBX® that provides a graphical user interface (GUI) that allows
users to access specific or advanced functions.
Powerful custom user services can be developed using the same visual components and data validation
mechanisms as standard EBX® user interfaces.

See also User service overview [p 965]

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 6.2.0 963

156.3 Customizing forms
It is possible to override the default layout and behavior of forms in the user interface by using various
tools and API.

Custom forms editor It is possible to override the default layout of forms in the
user interface by using the 'Custom forms' extension in the
DMA. This extension provides a graphical editor, which
gives the possibility to customize the layout of a form,
while having the same components and standard behavior
as record forms using the default layout.

See also Custom forms [p 913]

Programmatic form layout It is also possible to use the UIForm API to override the
default layout of forms. This API provides the standard
input components from EBX®, which give the possibility
to customize the layout of a form, while having the same
components and standard behavior as record forms using
the default layout.

See also

UIFormAPI

UIFormPaneWriterAPI

UIWidgetAPI

UIFormHeaderAPI

UIFormBottomBarAPI

User service as form layout It is also possible to use user services to override the default
layout of forms. This API gives the possibility to customize
the layout of a form, while having the same components as
record forms using the default layout, with a customizable
behavior.

See also

UserServiceRecordFormFactoryAPI

Overview [p 965]

156.4 Customizing widgets
Custom widgets are included in the Java API to allow the development of user interface components
for fields or groups of fields. A custom widget (UICustomWidget) allows, for a given node, to control
the area where the input or display component is located. This allows having an input and display
component that is fully customizable in HTML. The standard components (UIWidgets) are available
and can be used. The custom widget can implement several display aspects: input component in the

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 6.2.0 964

form, display in the form, display in a table cell. If a custom widget writes its own HTML components,
it has the possibility to save the value in the database when submitting the form.

See also UICustomWidgetAPI

156.5 Customizing table filter
A table filter allows, for a given table, to create a criteria input form in order to apply a filter to the table
view. The UITableFilter API is used to implement a table filter with a custom UI. It provides methods
to create a UI that automatically adapts to the underlying data format (for example, by displaying a
combo box when applicable).

See also

UITableFilterAPI

Properties of data model elements [p 55]

UILabelRendererForHierarchyAPI

156.6 Customizing record label
EBX® uses a label to display a reference to a given record (for example a foreign key). Labels are
also used in the title of a record form and in hierarchical views. This label can be customized in the
model using expressions. It is also possible to customize labels using the UILabelRenderer API.

See also UILabelRendererAPI

156.7 Including CSS and JavaScript
It is possible to integrate CSS and JavaScript files in each EBX® page by declaring them in
the registration module. The inclusion of JavaScript files can be subject to conditions through
development depending on the context.

See also

Module registration [p 820]

Development recommendations [p 993]

UIDependencyRegistererAPI

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 6.2.0 965

CHAPTER 157
Overview

A user service is an extension to TIBCO EBX® that provides a graphical user interface (GUI) allowing
users to access specific or advanced functionalities.
An API is available allowing the development of powerful custom user services using the same visual
components and data validation mechanisms as standard EBX® user interfaces.
This chapter contains the following topics:

1. Nature

2. Declaration

3. Display

4. Legacy user services

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 6.2.0 966

157.1 Nature
User services exist in different types called natures. The nature defines the minimal elements
(dataspace, dataset, table, record...) that need to be selected to execute the service. The following table
lists the available natures.

Nature Description

Dataspace The nature of a user service that can be launched from the actions menu of a dataspace (branch or
snapshot) or from any context where the current selection implies selecting a dataspace.

Dataset The nature of a user service that can be launched from the actions menu of a dataset or from any context
where the current selection implies selecting a dataset.

TableView The nature of a user service that can be launched from the toolbar of a table, regardless of the selected
view, or from any context where the current selection implies selecting a table.

Record The nature of a user service that can be launched from the toolbar of a record form or from any context
where the current selection implies selecting a single record.

Hierarchy The nature of a user service that can be launched from the toolbar of a table when a hierarchy view is
selected.

HierarchyNode The nature of a user service that can be launched from the menu of a table hierarchy view node.
Currently, only record hierarchy nodes are supported.

Association The nature of a user service that can be launched from the target table view of an association or for any
context where the current selection implies selecting the target table view of an association.

AssociationRecord The nature of a user service that can be launched from the form of a target record of an association node
or from any context where the current selection implies selecting a single association target record.

157.2 Declaration
A user service can be declared at two levels:

• Module,

• Data model.

A service declared by a data model can only be launched when the current selection includes a dataset
of this model. The user service cannot be of the Dataspace nature.
A service declared by a module may be launched for any dataspace or dataset.
The declaration can add restrictions on selections that are valid for the user service.

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 6.2.0 967

157.3 Display
On the following figure are displayed the functional areas of a user service.

A. Header

B. Form
1. Breadcrumb

2. Message box button

3. Top toolbar

4. Navigation buttons

5. Help button

6. Close button (pop-ups only)

7. Tabs

8. Form pane (one per tab)

9. Bottom buttons

Most areas are optional and customizable. Refer to Quick start [p 969], Implementing a user service
[p 973] and Declaring a user service [p 987] for more details.

157.4 Legacy user services
Before the 5.8.0 version, user services were declared in XML and based on Servlet/JSP. Although this
type of declaration should no longer be used, the legacy documentation is still available.

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 6.2.0 968

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 6.2.0 969

CHAPTER 158
Quick start

This chapter contains the following topics:

1. Main classes

2. Hello world

158.1 Main classes
The minimum requirement is to implement two classes, one for the service declaration and one for
the implementation itself.

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 6.2.0 970

158.2 Hello world
The sample is a dataset user service that simply displays a "hello" message, it can be launched from
the action menu of a dataset:

The service implementation class must implement the interface
UserService<DatasetEntitySelection>:
/**
 * This service displays hello world!
 */
public class HelloWordService implements UserService<DatasetEntitySelection>
{
 public HelloWordService()
 {
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DatasetEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 // Set bottom bar
 UIButtonSpecNavigation closeButton = aConfigurator.newCloseButton();
 closeButton.setDefaultButton(true);
 aConfigurator.setLeftButtons(closeButton);

 // Set content callback
 aConfigurator.setContent(this::writeHelloWorld);
 }

 private void writeHelloWorld(
 UserServicePaneContext aPaneContext,

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 6.2.0 971

 UserServicePaneWriter aWriter)
 {
 // Display Hello World!

 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");
 aWriter.add("Hello World!");
 aWriter.add("</div>");
 }

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DatasetEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 // No context yet.
 }

 @Override
 public void validate(UserServiceValidateContext<DatasetEntitySelection> aContext)
 {
 // No custom validation is necessary.
 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DatasetEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // By default do not modify the outcome.
 return anEventOutcome;
 }
}

The declaration class must implement the interface UserServiceDeclaration.OnDataset:
/**
 * Declaration for service hello world!
 */
public class HelloWorldServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 // The service key identifies the user service.
 private static final ServiceKey serviceKey = ServiceKey.forName("HelloWorld");

 public HelloWorldServiceDeclaration()
 {
 }

 @Override
 public ServiceKey getServiceKey()
 {
 return serviceKey;
 }

 @Override
 public UserService<DatasetEntitySelection> createUserService()
 {
 // Creates an instance of the user service.
 return new HelloWordService();
 }

 @Override
 public void defineActivation(ActivationContextOnDataset aContext)
 {
 // The service is activated for all datasets instanciated with
 // the associated data model (see next example).
 }

 @Override
 public void defineProperties(UserServicePropertiesDefinitionContext aContext)
 {
 // This label is displayed in menus that can execute the user service.
 aContext.setLabel("Hello World Service");
 }

 @Override
 public void declareWebComponent(WebComponentDeclarationContext aContext)
 {
 }
}

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 6.2.0 972

In this sample, the user service is registered by a data model. The data model needs to define a schema
extension that implements the following code:
public class CustomSchemaExtensions implements SchemaExtensions
{
 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register the service.
 aContext.registerUserService(new HelloWorldServiceDeclaration());
 }
}

For details on the declaration of schema extensions, see SchemaExtensionsAPI.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 973

CHAPTER 159
Implementing a user service

This chapter contains the following topics:

1. Implementation interface

2. Life cycle and threading model

3. Object Context

4. Display setup

5. Database updates

6. Ajax

7. REST data services

8. File upload

9. File download

10.User service without display

159.1 Implementation interface
The following table lists, per nature, the interface to implement:

Nature Interface

Dataspace UserService<DataspaceEntitySelection>

Dataset UserService<DatasetEntitySelection>

TableView UserService<TableViewEntitySelection>

Record UserService<RecordEntitySelection>

Hierarchy UserService<HierarchyEntitySelection>

HierarchyNode UserService<HierarchyNodeEntitySelection>

Association UserService<AssociationEntitySelection>

AssociationRecord UserService<AssociationRecordEntitySelection>

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 974

159.2 Life cycle and threading model
The user service implementation class is:

• Instantiated at the first HTTP request by a call to its declaration createUserService()
UserServiceDeclaration.createUserServiceAPI method.

• Discarded when the current page goes out of scope or when the session times out.

Access to this class is synchronized by TIBCO EBX® to make sure that only one HTTP request is
processed at a time. Therefore, the class does not need to be thread-safe.
The user service may have attributes. The state of these attributes will be preserved between HTTP
requests. However, developers must be aware that these attributes should have moderate use of
resources, such as memory, not to overload the EBX® server.

159.3 Object Context
The object context is a container for objects managed by the user service. This context is initialized and
modified by the user service's implementation of the method UserService.setupObjectContextAPI.
An object of the object context is identified by an object key:
ObjectKey customerKey = ObjectKey.forName("customer");

An object can be:

• A record,

• A dataset,

• A new record not yet persisted,

• A dynamic object.

The object context is maintained between HTTP requests and usually only needs to be set up upon
the first request.
Once persisted, a new record object is automatically changed to a plain record object.
As with adaptations AdaptationAPI, path PathAPI expressions are used to reference a sub-element of
an object.
In the following sample, a pane writer adds a form input mapped to the attribute of an object:
// Add an input field for customer's last name.
aWriter.setCurrentObject(customerKey);
aWriter.addFormRow(Path.parse("lastName"));

In the following sample, an event callback gets the value of the attribute of an object:
// Get value of customer's last name.
ValueContext customerValueContext = aValueContext.getValueContext(customerKey);
String lastName = customerValueContext.getValue(Path.parse("lastName"));

A dynamic object is an object whose schema is defined by the user service itself. An API is provided
to define the schema programmatically. This API allows defining only instance elements (instance
nodes). Defining tables is not supported. It supports most other features available with standard
EBX® data models, such as types, labels, custom widgets, enumerations and constraints, including
programmatic ones.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 975

The following sample defines two objects having the same schema:
public class SampleService implements UserService<TableViewEntitySelection>
{
 // Define an object key per object:
 private static final ObjectKey _PersonObjectKey = ObjectKey.forName("person");
 private static final ObjectKey _PartnerObjectKey = ObjectKey.forName("partner");

 // Define a path for each property:
 private static final Path _FirstName = Path.parse("firstName");
 private static final Path _LastName = Path.parse("lastName");
 private static final Path _BirthDate = Path.parse("birthDate");

 ...

 // Define and register objects:
 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DataspaceEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 if (aContext.isInitialDisplay())
 {
 BeanDefinition def = aBuilder.createBeanDefinition();

 BeanElement firstName = def.createElement(_FirstName, SchemaTypeName.XS_STRING);
 firstName.setLabel("First name");
 firstName.setDescription("This is the given name");
 firstName.setMinOccurs(1);

 BeanElement lastName = def.createElement(_LastName, SchemaTypeName.XS_STRING);
 lastName.setLabel("Last name");
 lastName.setDescription("This is the familly name");
 lastName.setMinOccurs(1);

 BeanElement birthDate = def.createElement(_BirthDate, SchemaTypeName.XS_DATE);
 birthDate.setLabel("Birth date");
 birthDate.addFacetMax(new Date(), false);

 aBuilder.registerBean(_PersonObjectKey, def);
 aBuilder.registerBean(_PartnerObjectKey, def);
 }

 ...
 }

159.4 Display setup
The display is set up by the user service's implementation of the method UserService.setupDisplayAPI.
This method is called at each request and can set the following:

• The title (the default is the label specified by the user service declaration),

• The contextual help URL,

• The breadcrumbs,

• The toolbar,

• The bottom buttons.

If necessary, the header and the bottom buttons can be hidden.
The display setup is not persisted and, at each HTTP request, is reset to default before calling the
method UserService.setupDisplayAPI.
Bottom buttons
Buttons may be of two types: action and submit.
An action button triggers an action event without submitting the form. By default, the user needs to
acknowledge that, by leaving the page, the last changes will be lost. This behavior can be customized.
A submit button triggers a submit event that always submits the form.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 976

More information on events can be found in the following sections.
Content callback
This callback usually implements the interface UserServicePaneAPI to render a plain EBX® form. The
callback can also be an instance of UserServiceTabbedPaneAPI to render an EBX® form with tabs.
For specific cases, the callback can implement UserServiceRawPaneAPI. This interface has restrictions
but is useful when one wants to implement an HTML form that is not managed by EBX®.
Toolbars
Toolbars are optional and come in two flavors.
The form style:

The table view style:

The style is automatically selected: toolbars defined for a record are of the form style and toolbars
defined for a table are of the table view style.
Samples
The following sample implements a button that closes the current user service and redirects the user
back to the current selection, only if saving the data was successful:
public class SampleService implements UserService<...>
{
 private static final ObjectKey _RecordObjectKey = ObjectKey.forName("record");

 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<RecordEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...
 // Define a "save and close" button with callback onSave().
 aConfigurator.setLeftButtons(aConfigurator.newSaveCloseButton(this::onSave));
 }

 private UserServiceEventOutcome onSave(UserServiceEventContext anEventContext)

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 977

 {
 ProcedureResult result = anEventContext.save(_RecordObjectKey);
 if (result.hasFailed())
 {
 // Save has failed. Redisplay the user message.
 return null;
 }

 // Save has succeded.Close the service.
 return UserServiceNext.nextClose();
 }
}

The following sample is compatible with the Java 6 syntax. Only differences with the previous code
are shown:
public class SampleService implements UserService<...>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<RecordEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...
 // Define a "save and close" button with callback onSave().
 aConfigurator.setLeftButtons(aConfigurator.newSaveCloseButton(new UserServiceEvent() {
 @Override
 public UserServiceEventOutcome processEvent(UserServiceEventContext anEventContext)
 {
 return onSave(anEventContext);
 }
 }));
 }
}

The following sample implements a URL that closes the service and redirects the current user to
another user service:
public class SampleService implements UserService<...>
{
 ...
 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Displays an ULR that redirect current user.
 String url = aWriter.getURLForAction(this::goElsewhere);
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", url);
 aWriter.add(">Go elsewhere</a");
 }

 private UserServiceEventOutcome goElsewhere(UserServiceEventContext anEventContext)
 {
 // Redirects current user to another user service.
 ServiceKey serviceKey = ServiceKey.forModuleServiceName("CustomerModule", "CustomService");
 return UserServiceNext.nextService(serviceKey);
 }
}

The following code is an implementation of the method UserService.processEventOutcomeAPI,
sufficient for simple user services:
public class HelloWordService implements UserService<...>
{
 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DatasetEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // By default do not modify the outcome.
 return anEventOutcome;
 }
}

The following sample is a more complex "wizard" service that includes three steps, each having its
own UserService.setupDisplayAPI method:
// Custom outcome values.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 978

public enum CustomOutcome implements UserServiceEventOutcome {
 displayStep1, displayStep2, displayStep3
};

// All steps of the wizard service implement this interface.
public interface WizardStep
{
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator);
}

// The user service implementation.
public class WizardService implements UserService<...>
{
 // Attribute for current step.
 private WizardStep step = new WizardStep1();

 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...

 // Display current step.
 this.step.setupDisplay(aContext, aConfigurator);
 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DataspaceEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // Custom outcome value processing.

 if (anEventOutcome instanceof CustomOutcome)
 {
 CustomOutcome action = (CustomOutcome) anEventOutcome;
 switch (action)
 {
 case displayStep1:
 this.step = new WizardStep1();
 break;

 case displayStep2:
 this.step = new WizardStep2();
 break;

 case displayStep3:
 this.step = new WizardStep3();
 break;
 }

 // Redisplay the user service.
 return null;
 }

 // Let EBX® process the event outcome.
 return anEventOutcome;
 }
}

159.5 Database updates
An event callback may update the database.
The following sample saves two objects using a single transaction:
public class MultipleObjectsSampleService implements UserService<...>
{
 // This service defines a two objects having same schema.
 private static final ObjectKey _Person1_ObjectKey = ObjectKey.forName("person1");
 private static final ObjectKey _Person2_ObjectKey = ObjectKey.forName("person2");

 ...

 // Save button callback.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 979

 private UserServiceEventOutcome onSave(UserServiceEventContext aContext)
 {
 ProcedureResult result = aContext.save(_Person1_ObjectKey, _Person2_ObjectKey);
 if (result.hasFailed())
 {
 //Save failed. Redisplay the service.
 //The user interface will automatically report error messages.
 return null;
 }

 // Save succeeded. Close the service.
 return UserServiceNext.nextClose();
 }
}

The following sample updates the database using a procedure ProcedureAPI:
import com.orchestranetworks.service.*;
import com.orchestranetworks.userservice.*;

public class MultipleObjectsSampleService implements UserService<...>
{
 ...

 // Event callback.
 private UserServiceEventOutcome onUpdateSomething(UserServiceEventContext aContext)
 {
 Procedure procedure = new Procedure()
 {
 public void execute(ProcedureContext aContext) throws Exception
 {
 // Code that updates database should be here.
 ...
 }
 };

 UserServiceTransaction transaction = aContext.createTransaction();
 transaction.add(procedure);

 ProcedureResult result = transaction.execute();
 if (result.hasFailed())
 {
 aContext.addError("Procedure failed");
 }
 else
 {
 aContext.addInfo("Procedure succeeded");
 }

 return null;
}

159.6 Ajax
A user service can implement Ajax callbacks. An Ajax callback must implement the interface
UserServiceAjaxRequestAPI.
The client calls an Ajax callback using the URL generated by: UserServiceResourceLocator.
getURLForAjaxRequestAPI.
To facilitate the use of Ajax components, EBX® provides the JavaScript prototype
EBX_AJAXResponseHandler for sending the request and handling the response. For more information
on EBX_AJAXResponseHandler see UserServiceAjaxRequestAPI.
The following sample implements an Ajax callback that returns partial HTML:
public class AjaxSampleService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 980

 }

 /**
 * Displays an URL that will execute the callback
 * and display the returned partial HTML inside a <div> tag.
 */
 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Generate the URL of the Ajax callback.
 String url = aWriter.getURLForAjaxRequest(this::ajaxCallback);

 // The id of the <div> that will display the partial HTML returned by the Ajax callback.
 String divId = "sampleId";

 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");

 // Display the URL that will execute the callback.
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", "javascript:sample_sendAjaxRequest('" + url + "', '"
 + divId + "')");
 aWriter.add(">");
 aWriter.add("Click to call a user service Ajax callback");
 aWriter.add("");

 // Output the <div> tag that will display the partial HTML returned by the callback.
 aWriter.add("<div ");
 aWriter.addSafeAttribute("id", divId);
 aWriter.add("></div>");

 aWriter.add("</div>");

 // JavaScript method that will send the Java request.
 aWriter.addJS_cr();
 aWriter.addJS_cr("function sample_sendAjaxRequest(url, targetDivId) {");
 aWriter.addJS_cr(" var ajaxHandler = new EBX_AJAXResponseHandler();");

 aWriter.addJS_cr(" ajaxHandler.handleAjaxResponseSuccess = function(responseContent) {");
 aWriter.addJS_cr(" var element = document.getElementById(targetDivId);");
 aWriter.addJS_cr(" element.innerHTML = responseContent;");
 aWriter.addJS_cr(" };");

 aWriter.addJS_cr(" ajaxHandler.handleAjaxResponseFailed = function(responseContent) {");
 aWriter.addJS_cr(" var element = document.getElementById(targetDivId);");
 aWriter.addJS_cr(" element.innerHTML = \"<span class='" + UICSSClasses.TEXT.ERROR
 + "'>Ajax call failed\";");
 aWriter.addJS_cr(" }");

 aWriter.addJS_cr(" ajaxHandler.sendRequest(url);");
 aWriter.addJS_cr("}");
 }

 /**
 * The Ajax callback that returns partial HTML.
 */
 private void ajaxCallback(
 UserServiceAjaxContext anAjaxContext,
 UserServiceAjaxResponse anAjaxResponse)
 {
 UserServiceWriter writer = anAjaxResponse.getWriter();
 writer.add("<p style=\"color:green\">Ajax callback succeeded!</p>");
 writer.add("<p>Current data and time is: ");

 DateFormat format = DateFormat.getDateTimeInstance(
 DateFormat.FULL,
 DateFormat.FULL,
 Locale.US);
 writer.addSafeInnerHTML(format.format(new Date()));

 writer.add("</p>");
 }
}

159.7 REST data services
A user service can access REST data services through HTTP requests.
The client should use the URL generated by: UIResourceLocator.getURLForRestAPI. This URL
includes required information for the user authentication.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 981

For more information on REST data services see the Built-in RESTful services [p 1063].
The following sample implements a REST data service call whose response is printed in a textarea:
public class RestCallSampleService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Generates the URL for REST data service call without additional parameters
 final String url = aWriter.getURLForRest("/ebx-dataservices/rest/{specificPath}", null);

 final String resultAreaId = "restResult";

 // Displays a link for REST data service call
 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");
 aWriter.add("<p>This link will display the response after making a REST call</p>");
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href",
 "javascript:sendRestRequest('" + url + "', '" + resultAreaId + "')");
 aWriter.add(">");
 aWriter.add("Make the call.");
 aWriter.add("");
 aWriter.add("<textarea ");
 aWriter.addSafeAttribute("id", resultAreaId);
 aWriter.add(" readonly=\"readonly\" style=\"width: 100%;\" ></textarea>");
 aWriter.add("</div>");

 // JavaScript method that will send the HTTP REST request
 aWriter.addJS_cr("function sendRestRequest(url, targetId) {");
 aWriter.addJS_cr(" var xhttp = new XMLHttpRequest();");
 aWriter.addJS_cr(" xhttp.open('GET', url, true);");
 aWriter.addJS_cr(" xhttp.setRequestHeader('Content-type', 'application/json');");
 aWriter.addJS_cr(" xhttp.send();");
 aWriter.addJS_cr(" var element = document.getElementById(targetId);");
 aWriter.addJS_cr(" xhttp.onreadystatechange = function() {");
 aWriter.addJS_cr(" if (xhttp.readyState == 4)");
 aWriter.addJS_cr(" element.innerHTML = xhttp.responseText;");
 aWriter.addJS_cr(" }");
 aWriter.addJS_cr("}");
 }
}

159.8 File upload
A user service can display forms with file input fields.
The following sample displays a form with two input fields, a title and a file:
public class FileUploadService implements UserService<...>
{
 // This service defines a single object named "file".
 private static final ObjectKey _File_ObjectKey = ObjectKey.forName("file");

 // Paths for the "file" object.
 public static final Path _Title = Path.parse("title");
 public static final Path _File = Path.parse("file");

 ...

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DataspaceEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 if (aContext.isInitialDisplay())
 {
 // Create a definition for the "model" object.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 982

 BeanDefinition def = aBuilder.createBeanDefinition();
 aBuilder.registerBean(_File_ObjectKey, def);

 BeanElement element;

 element = def.createElement(_Title, SchemaTypeName.XS_STRING);
 element.setLabel("Title");
 element.setMinOccurs(1);

 // Type for a file must be BeanDefinition.OSD_FILE_UPLOAD.
 element = def.createElement(_File, BeanDefinition.OSD_FILE_UPLOAD);
 element.setLabel("File");
 element.setMinOccurs(1);
 }
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setTitle("File upload service");
 aConfigurator.setLeftButtons(aConfigurator.newSubmitButton("Upload", this::onUpload),
 aConfigurator.newCancelButton());

 // IMPORTANT: Following method must be called to enable file upload.
 // This will set form encryption type to "multipart/form-data".
 aConfigurator.setFileUploadEnabled(true);

 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aContext, UserServicePaneWriter aWriter)
 {
 final UIWidgetFileUploadFactory fileUploadFactory = new UIWidgetFileUploadFactory();

 aWriter.setCurrentObject(_File_ObjectKey);

 aWriter.startTableFormRow();

 // Title input.
 aWriter.addFormRow(_Title);

 // File upload input.
 UIWidgetFileUpload widget = aWriter.newCustomWidget(_File, fileUploadFactory);
 // Default filter for file names.
 widget.setAccept(".txt");
 aWriter.addFormRow(widget);

 aWriter.endTableFormRow();
 }

 private UserServiceEventOutcome onUpload(UserServiceEventContext anEventContext)
 {
 ValueContextForInputValidation valueContext = anEventContext.getValueContext(_File_ObjectKey);

 String title = (String) valueContext.getValue(_Title);
 UploadedFile file = (UploadedFile) valueContext.getValue(_File);

 InputStream in;
 try
 {
 in = file.getInputStream();
 }
 catch (IOException e)
 {
 // Should not happen.
 anEventContext.addError("Cannot read file.");
 return null;
 }

 // Do something with title and the input stream.
 return UserServiceNext.nextClose();
 }
}

For more information, see UIWidgetFileUploadAPI.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 983

159.9 File download
A user service can display URLs or buttons to download files. The actual downloading of a file is
under the control of the user service.
The following sample displays a URL to download a file:
public class FileDownloadService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aContext, UserServicePaneWriter aWriter)
 {
 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");

 // Generate and display the URL for the download.
 String downloadURL = aWriter.getURLForGetRequest(this::processDownloadRequest);

 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", downloadURL);
 aWriter.add(">Click here to download a sample file");

 aWriter.add("</div>");
 }

 private void processDownloadRequest(
 UserServiceGetContext aContext,
 UserServiceGetResponse aResponse)
 {
 // The file is plain text.
 aResponse.setContentType("text/plain;charset=UTF-8");
 // Remove the following statement to display the file directly in the browser.
 aResponse.setHeader("Content-Disposition", "attachment; filename=\"sample.txt\"");

 // Write a text file using UTF-8 encoding.
 PrintWriter out;
 try
 {
 out = new PrintWriter(new OutputStreamWriter(aResponse.getOutputStream(), "UTF-8"));
 }
 catch (IOException ex)
 {
 throw new RuntimeException(ex);
 }

 DateFormat format = DateFormat.getDateTimeInstance(
 DateFormat.FULL,
 DateFormat.MEDIUM,
 Locale.US);
 Date now = new Date();

 out.println("Hello !");
 out.println("This is a sample text file downloaded on " + format.format(now)
 + ", from EBX®.");

 out.close();
 }
}

159.10 User service without display
A user service may be designed to execute a task without display and return to the previous screen
or redirect the user to another screen.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 984

This type of service must implement the interface UserServiceExtended UserServiceExtendedAPI

and method UserServiceExtended.initializeAPI.
The following sample deletes selected records in the current table view:
public class DeleteRecordsService implements UserServiceExtended<TableViewEntitySelection>
{
 ...

 @Override
 public UserServiceEventOutcome initialize(
 UserServiceInitializeContext<TableViewEntitySelection> aContext)
 {
 final List<AdaptationName> records = new ArrayList<>();

 // Deletes all selected rows in a single transaction.
 RequestResult requestResult = aContext.getEntitySelection().getSelectedRecords().execute();
 try
 {
 for (Adaptation record = requestResult.nextAdaptation(); record != null; record =
 requestResult.nextAdaptation())
 {
 records.add(record.getAdaptationName());
 }
 }
 finally
 {
 requestResult.close();
 }

 Procedure deleteProcedure = new Procedure()
 {
 @Override
 public void execute(ProcedureContext aContext) throws Exception
 {
 for (AdaptationName record : records)
 {
 aContext.doDelete(record, false);
 }
 }
 };

 UserServiceTransaction transaction = aContext.createTransaction();
 transaction.add(deleteProcedure);

 // Adds an information messages for current user.
 ProcedureResult procedureResult = transaction.execute(true);
 if (!procedureResult.hasFailed())
 {
 if (records.size() <= 1)
 {
 aContext.addInfo(records.size() + " record was deleted.");
 }
 else
 {
 aContext.addInfo(records.size() + " records were deleted.");
 }
 }

 // Do not display the user service and return to current view.
 return UserServiceNext.nextClose();
 }

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<TableViewEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 //Do nothing.
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<TableViewEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 //Do nothing.
 }

 @Override
 public void validate(UserServiceValidateContext<TableViewEntitySelection> aContext)
 {
 //Do nothing.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 985

 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<TableViewEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 return anEventOutcome;
 }
}

Known limitation
If such service is called in the context of a Web component, an association, a perspective action or
a hierarchy node, The service will be launched, initialized and closed, but the service's target entity
will still be displayed.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 6.2.0 986

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 987

CHAPTER 160
Declaring a user service

This chapter contains the following topics:

1. Declaration interface

2. Life cycle and threading model

3. Registration

4. Service properties

5. Service activation scope

6. Web component declaration

7. User service groups

160.1 Declaration interface
The following table lists, per nature, the interface that the declaration class of a user service must
implement:

Nature Declaration Interface

Dataspace UserServiceDeclaration.OnDataspace

Dataset UserServiceDeclaration.OnDataset

TableView UserServiceDeclaration.OnTableView

Record UserServiceDeclaration.OnRecord

Hierarchy UserServiceDeclaration.OnHierarchy

HierarchyNode UserServiceDeclaration.OnHierarchyNode

Association UserServiceDeclaration.OnAssociation

AssociationRecord UserServiceDeclaration.OnAssociationRecord

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 988

160.2 Life cycle and threading model
The user service declaration class is instantiated at the TIBCO EBX® startup and must be coded to
be thread-safe. This is usually not an issue as most implementations should be immutable classes.

160.3 Registration
A user service declaration must be registered by a module or a data model.
Registration by a module is achieved by the module registration servlet by a code similar to:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)
 {
 // Register custom user service declaration.
 aContext.registerUserService(new CustomServiceDeclaration());
 }
}

For more information on the module registration servlet, see module registration [p 820] and
ModuleRegistrationServletAPI.
Registration by a data model is achieved by a code similar to:
public class CustomSchemaExtensions implements SchemaExtensions
{
 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register custom user service declaration.
 aContext.registerUserService(new CustomServiceDeclaration());
 }
}

For more information on data model extensions, see SchemaExtensionsAPI.

160.4 Service properties
The properties of a user service include its label, description, confirmation message and the group
that owns the service. All are optional but it is a good practice to at least define the label.
For more information, see UserServiceDeclaration.definePropertiesAPI.

160.5 Service activation scope
The activation scope defines on which selection the service is available.
Example of a service activation definition:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnTableView
{
 ...

 @Override
 public void defineActivation(ActivationContextOnTableView aContext)
 {
 // activates the service in all dataspaces except the "Reference" branch.
 aContext.includeAllDataspaces(DataspaceType.BRANCH);
 aContext.excludeDataspacesMatching(Repository.REFERENCE, DataspaceChildrenPolicy.NONE);

 // activates the service only on tables "table01" and "table03".
 aContext.includeSchemaNodesMatching(
 CustomDataModelPath._Root_Table01.getPathInSchema(),
 CustomDataModelPath._Root_Table03.getPathInSchema());

 // service will be enabled only when at least one record is selected.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 989

 aContext.forbidEmptyRecordSelection();

 // service will not be displayed in hierarchical views (neither in the
 // top toolbar, nor in the hierarchy nodes' menu).
 aContext.setDisplayForLocations(
 ActionDisplaySpec.HIDDEN,
 ToolbarLocation.HIERARCHICAL_VIEW_TOP,
 ToolbarLocation.HIERARCHICAL_VIEW_NODE);

 // service will be considered as disabled if not explicitly enabled
 // via the UI.
 aContext.setDefaultPermission(UserServicePermission.getDisabled());
 }
}

For more information about declaring the activation scope, see UserServiceDeclaration.
defineActivationAPI.
For more information about the resolution of the user service availability, see Resolving permissions
on services [p 492].

160.6 Web component declaration

Parameters declaration and availability in workflows and
perspectives
User services are automatically available as web components with a set of built-in parameters
depending on the service's nature. To define custom parameters and/or set the service web component
as available when configuring a workflow user task, a perspective menu action or a toolbar web
component action, UserServiceDeclaration.declareWebComponentAPI must be used.
Example of a web component declaration:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 ...

 @Override
 public void declareWebComponent(WebComponentDeclarationContext aContext)
 {
 // makes this web component available when configuring a workflow user task.
 aContext.setAvailableAsWorkflowUserTask(true);

 // adds a custom input parameter.
 aContext.addInputParameter(
 "source",
 UserMessage.createInfo("Source"),
 UserMessage.createInfo("Source of the imported data."));

 // modifies the built-in "instance" parameter to be "input/output" instead of "input".
 aContext.getBuiltInParameterForOverride("instance").setOutput(true);
 }
}

See Using TIBCO EBX® as a Web Component [p 409] for more information.

User service extension
It is possible to extend existing user services (built-in or custom) in order to add input/output
parameters when using these services as web components.
In order to do so, a user service extension must first be registered by a module or a data model.
Registration by a module is achieved by the module registration servlet by code similar to:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 ...

 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 990

 {
 // Register user service extension declaration.
 aContext.registerUserServiceExtension(new ServiceExtensionDeclaration());
 }
}

For more information on the module registration servlet, see module registration [p 820] and
ModuleRegistrationServletAPI.
Registration by a data model is achieved by a code similar to:
public class CustomSchemaExtensions implements SchemaExtensions
{
 ...

 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register user service extension declaration.
 aContext.registerUserServiceExtension(new ServiceExtensionDeclaration());
 }
}

For more information on the data model extension, see SchemaExtensionsAPI.

160.7 User service groups
User service groups are used to organize the display of user services in menus and permission
management screens.
The following types of service groups are available:

• Built-in User Service Groups [p 990] provided by EBX®,

• Custom User Service Groups [p 991] declared in a module.

The link between groups and services is made upon service declaration. See Associating a service
to a group [p 991].

Built-in User Service Groups
Available built-in service groups:

Service Group Key Description

@ebx-importExport Group containing all built-in import and export services
provided by EBX®. In the default menus, these services are
displayed in an "Import / Export" sub-menu.

@ebx-views Group containing services to display in the 'Views' menu.
Unlike other service groups, services associated with this
group are not displayed in the default menus, but only in the
'Views' menu displayed in the non-customizable part of the
table top toolbar. These services can still be added manually
to a custom toolbar.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 991

Declaring a User Service Group
User Service Groups must be declared while registering the module, using the method
ModuleServiceRegistrationContext.registerServiceGroupAPI:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 ...

 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)
 {
 // In CustomModuleConstants,
 // CUSTOM_SERVICE_GROUP_KEY = ServiceGroupKey.forServiceGroupInModule("customModule", "customGroup")

 // registers CUSTOM_SERVICE_GROUP_KEY service group
 aContext.registerServiceGroup(
 CustomModuleConstants.CUSTOM_SERVICE_GROUP_KEY,
 UserMessage.createInfo("Custom group"),
 UserMessage.createInfo("This group contains services related to..."));
 }
}

Associating a service to a group
The association of a service with a group is made at its declaration UserServiceDeclarationAPI, using
the method UserServicePropertiesDefinitionContext.setGroupAPI:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 ...

 @Override
 public void defineProperties(UserServicePropertiesDefinitionContext aContext)
 {
 // associates the current service to the CUSTOM_SERVICE_GROUP_KEY group
 aContext.setGroup(CustomModuleConstants.CUSTOM_SERVICE_GROUP_KEY);
 }
}

A service can be associated with either a built-in or a custom service group. In the latter case, this
service will be displayed in this built-in group, just like other built-in services belonging to this group.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 6.2.0 992

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 6.2.0 993

CHAPTER 161
Development recommendations

This chapter contains the following topics:

1. HTML

2. CSS

3. JavaScript

161.1 HTML
It is recommended to minimize the inclusion of specific HTML styles and tags to allow the default
styles of TIBCO EBX® to apply to custom interfaces. The approach of the API is to automatically
apply a standardized style to all elements on HTML pages, while simplifying the implementation
process for the developer.

XHTML
EBX® is a Rich Internet Application developed in XHTML 1.0 Transitional. It means that the
structure of the HTML is strict XML file and that all tags must be closed, including "br" tags. This
structure allows for greater control over CSS rules, with fewer differences in browser rendering.

iFrames
Using iFrame is allowed in EBX®, especially in collaboration with a URL of a
UIHttpManagerComponentAPI. For technical reasons, it is advised to set the src attribute of an iFrame
using JavaScript only. In this way, the iFrame will be loaded once the page is fully rendered and when
all the built-in HTML components are ready.

Example
The following example, developed from any UIComponentWriterAPI, uses a UIHttpManagerComponentAPI

to build the URL of an iFrame, and set it in the right way:
// using iFrame in the current page requires a sub session component
UIHttpManagerComponent managerComponent = writer.createWebComponentForSubSession();

// [...] managerComponent configuration

String iFrameURL = managerComponent.getURIWithParameters();

String iFrameId = "mySweetIFrame";

// place the iFrame in the page, with an empty src attribute
writer.add("<iframe id=\"").add(iFrameId).add("\" src=\"\" >").add("</iframe>");

// launch the iFrame from JavaScript

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 6.2.0 994

writer.addJS("document.getElementById(\"").addJS(iFrameId).addJS("\").src = \"").addJS(iFrameURL).addJS("\";");

161.2 CSS

Public CSS classes
The constant catalog UICSSClassesAPI offers the main CSS classes used in the software to style the
components. These CSS classes ensure a proper long-term integration into the software, because they
follow the background colors, borders, customizable text in the administration; the floating margins
and paddings fluctuate according to the variable density; to the style of the icons, etc.

See also UICSSUtilsAPI

Advanced CSS
EBX® allows to integrate to all its pages one or more external Cascading Style Sheet. These external
CSS, considered as resources, need to be declared in the Module registration [p 820].
In order to ensure the proper functioning of your CSS rules and properties without altering the
software, the following recommendations should be respected. Failure to respect these rules could
lead to:

• Improper functioning of the software, both aesthetically and functionally: risk of losing the
display of some of the data and some input components may stop working.

• Improper functioning of your CSS rules and properties, since the native CSS rules will impact
the CSS implementation.

Reserved prefixes for CSS identifiers and class names
The following prefixes should not be used to create CSS #ids and .classes.

ebx_ Internal built-in

yui Yahoo User Interface global

ygtv Yahoo User Interface tree view

layout-doc Yahoo User Interface layout

cke_ CK editor (used by HTML editor widget)

fa Font Awesome (icons used by perspectives and toolbars)

CSS classes used internally by EBX®
The following CSS classes should never be included in a ruleset that has no contextual selector.

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 6.2.0 995

If you do not prefix your CSS selector using one of the CSS classes below, it will cause conflicts and
corrupt the UI of EBX®.

selected YUI selected tree node

hd YUI floating pane header

bd YUI floating pane body

ft YUI floating pane footer

container-close YUI inner popup close button

underlay YUI inner popup shadow

hastitle YUI menu group with title

topscrollbar YUI menu top scroll zone

bottomscrollbar YUI menu bottom scroll zone

withtitle YUI calendar

link-close YUI calendar close button

collapse YUI layout closed pane indicator

pull-right Font Awesome parameter

pull-left Font Awesome parameter

Examples to avoid conflicts
Don't
.selected {
 background-color: red;
}

Do
#myCustomComponent li.selected {
 background-color: red;
}

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 6.2.0 996

161.3 JavaScript

Public JS functions
The catalog of JavaScript functions JavaScriptCatalogAPI offers a list of functions to use directly
(through copy-paste) in the JS files.

JavaScript call during page generation in Java
When generating the HTML of a Java component, it is possible to add specific JavaScript code with
the API UIJavaScriptWriterAPI.
This JavaScript is executed once the whole page is loaded. It is possible to instantly manage the
HTML elements written with UIBodyWriter.addAPI. Setting on-load functions (such as window.onload
= myFunctionToCallOnload;) is not supported because the execution context comes after the on-load
event.

Advanced JavaScript
EBX® allows to include one or more external JavaScript files. These external JavaScript files,
considered as resources, need to be declared in the Module registration [p 820]. For performance reasons,
it is recommended to include the JavaScript resource only when necessary (in a User service or a
specific form, for example). The API UIDependencyRegistererAPI allows a developer to specify the
conditions for which the JavaScript resources will be integrated into a given page according to its
context.
In order to ensure the proper functioning of your JavaScript resources without altering the software,
the following recommendations should be respected. Failure to respect them could lead to:

• Improper functioning of the software: if functions or global variables of the software were to be
erased, some input or display components (including the whole screen) may stop working.

• Improper functioning of your JavaScript instructions, since global variables or function names
could be erased.

Reserved JS prefixes
The following prefixes are reserved and should not be used to create variables, functions, methods,
classes, etc.

ebx_ Internal built-in API

EBX_ Internal built-in API

YAHOO Yahoo User Interface API

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 997

SOAP data services

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 998

CHAPTER 162
Introduction

This chapter contains the following topics:

1. Overview

2. Activation and configuration

3. Interactions

4. Security

5. Monitoring

6. SOAP and REST comparative

7. Limitations

162.1 Overview
Data services allow external systems to interact with the data governed in the TIBCO EBX® repository
using the SOAP/Web Services Description Language (WSDL) standards.
In order to invoke SOAP operations [p 1017], for an integration use case, a WSDL [p 1009] must be
generated from a data model. It will be possible to perform operations such as:

• Selecting, inserting, updating, deleting, or counting records

• Selecting dataset values

• Getting the differences on a table between dataspaces or snapshots, or between two datasets based
on the same data model

• Getting the credentials of records

Other generic WSDLs can be generated and allow performing operations such as:

• Creating, merging, or closing a dataspace

• Creating or closing a snapshot

• Validating a dataset, dataspace, or a snapshot

• Starting, resuming or ending a data workflow

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 999

• Administrative operations to manage access to the UI or to system information

Note

See SOAP and REST comparative [p 1006].

162.2 Activation and configuration
Data services are enabled by deploying the ebx-dataservices web application along with the other
EBX® modules. See Jakarta EE deployment [p 521] for more information.
In case of specific deployment, for example using reverse-proxy mode, see URLs computing [p 563]

for more information.
The default method for accessing data services is over HTTP, although it is also possible to use JMS
for the SOAP operations. See JMS configuration [p 561] and Using JMS [p 1000] for more information.

162.3 Interactions

Input and output message encoding
All input messages must be exclusively in UTF-8. All output messages are in UTF-8.

Tracking information
Depending on the data services operation being called, it may be possible to specify session tracking
information.

• Example for a SOAP operation, the request header contains:
<SOAP-ENV:Header>
 <!-- optional security header here -->
 <m:session xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <trackingInformation>String</trackingInformation>
 </m:session>
</SOAP-ENV:Header>

For more information, see Session.getTrackingInfoAPI in the Java API.

Session parameters
Depending on the data services operation being called, it is possible to specify session input
parameters. They are defined in the request body.
Input parameters are available on custom Java components with a session object, such as: triggers,
access rules, custom web services. They are also available on data workflow operations.

• Example for a SOAP operation, the optional request header contains:
<SOAP-ENV:Header>
 <!-- optional security header here -->
 <m:session xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <!-- optional trackingInformation header here -->
 <inputParameters>
 <parameter>
 <name>String</name>
 <value>String</value>
 </parameter>
 <!-- for some other parameters, copy complex
 element 'parameter' -->
 </inputParameters>
 </m:session>
</SOAP-ENV:Header>

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1000

For more information, see Session.getInputParameterValueAPI in the Java API.

Exception handling
In case of unexpected server error upon execution of:

• A SOAP operation, a SOAP exception response is returned to the caller via the soap:Fault
element. For example:
<soapenv:Fault>
 <faultcode>soapenv:java.lang.IllegalArgumentException</faultcode>
 <faultstring />
 <faultactor>admin</faultactor>
 <detail>
 <m:StandardException xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <code>java.lang.IllegalArgumentException</code>
 <label/>
 <description>java.lang.IllegalArgumentException:
 Parent home not found at
 com.orchestranetworks.XX.YY.ZZ.AA.BB(AA.java:44) at
 com.orchestranetworks.XX.YY.ZZ.CC.DD(CC.java:40) ...
 </description>
 </m:StandardException>
 </detail>
</soapenv:Fault>

Using JMS
It is possible to access SOAP operations using JMS instead of HTTP. The JMS architecture relies
on one JMS request queue (mandatory), on one JMS failure queue (optional), and on JMS response
queues, see configuration JMS [p 561]. The mandatory queue is the input queue. Request messages
must be put in the input queue, and response messages are put by EBX® in the replyTo queue of the
JMS request. The optional queue is the failure queue which allows you to replay an input message
if necessary. If the queue is set and activated in the configuration file and an exception occurs while
handling a request message, this input message will be copied in the failure queue.
The relationship between a request and a response is made by copying the messageId message
identifier field of the JMS request into the correlId correlation identifier field of the response.
JMS location points must be defined in the Lineage administration in order to specialize the generated
WSDL. If no specific location point is given, the default value will be jms:queue:jms/EBX_QueueIn.

162.4 Security

Authentication
Authentication is mandatory to access to the content. Several authentication methods are available
and described below. The descriptions are ordered by priority (EBX® applies the highest priority
authentication method first).

• 'Basic Authentication Scheme' method is based on the HTTP-Header Authorization in base 64
encoding, as described in RFC 2617 (Basic Authentication Scheme).
If the user agent wishes to send the userid "Alibaba" and password "open sesame",
it will use the following header field:
> Authorization: Basic QWxpYmFiYTpvcGVuIHNlc2FtZQ==

• 'Standard Authentication Scheme' is based on the HTTP Request. User and password are extracted
from request parameters. For more information on request parameters, see Parameters [p 1012]

section.

https://tools.ietf.org/html/rfc2617#section-2

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1001

For more information on this authentication scheme, see Directory.
authenticateUserFromLoginPasswordAPI.

• The 'SOAP Security Header Authentication Scheme' method is based on the Web Services
Security UsernameToken Profile 1.0 specification.
By default, the type PasswordText is supported. This is done with the following SOAP-Header
defined in the WSDL:
<SOAP-ENV:Header>
 <wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
 <wsse:UsernameToken>
 <wsse:Username>String</wsse:Username>
 <wsse:Password Type="wsse:PasswordText">String</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</SOAP-ENV:Header>

Note

Only available for SOAP operations [p 1017].

• 'Specific authentication Scheme' is based on the HTTP Request. An implementation of this
method can, for example, extract a password-digest or a ticket from the HTTP request. See
Directory.authenticateUserFromHttpRequestAPI for more information.

• The 'SOAP Specific Header Authentication Scheme'.
For more information, see Overriding the SOAP security header [p 1001].

Global permissions
Global access permissions can be independently defined for the SOAP and WSDL connector accesses.

See also Global permissions [p 629]

Overriding the SOAP security header
It is possible to override the default WSS header in order to define another security authentication
mechanism. Such an override is taken into account for both HTTP and JMS. To define and override,

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1002

use the 'SOAP Header Security declaration' configuration settings under Administration > Lineage,
which includes the following fields:

Schema location The URI of the Security XML Schema to import into the
WSDL.

Target namespace The target namespace of elements in the schema.

Namespace prefix The prefix for the target namespace.

Message name The message name to use in the WSDL.

Root element name The root element name of the security header. The name
must be the same as the one declared in the schema.

wsdl:part element name The name of the wsdl:part of the message.

The purpose of overriding the default security header is to change the declaration of the WSDL
message matching the security header so that it contains the following:
<wsdl:definitions ... xmlns:MyPrefix="MyTargetNameSpace" ...
 ...
 <xs:schema ...>
 <xs:import namespace="MyTargetNameSpace" schemaLocation="MySchemaURI"/>
 ...
 </xs:schema>
 ...
 <wsdl:message name="MySecurityMessage">
 <wsdl:part name="MyPartElementName" element="MyPrefix:MySecurityRootElement"/>
 </wsdl:message>
 ...
 <wsdl:operation name="...">
 <soap:operation soapAction="..." style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 <soap:header message="impl:MySecurityMessage" part="MyPartElementName" use="literal"/>
 ...
 </wsdl:operation>
</wsdl:definitions>

The corresponding XML Schema header declaration would be as follows:
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="MyNameSpace"
 xmlns:MyPrefix="MyNameSpace">
 <element name="MySecurityRootElement" type="MyPrefix:SpecificSecurity"/>
 <complexType name="SpecificSecurity">
 <sequence>
 <element name="AuthToken" type="string"/>
 </sequence>
 </complexType>
</schema>

A SOAP message using the XML schema and configuration above would have the following header:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Header>
 <m:MySecurityRootElement xmlns:m="MyNameSpace">
 <AuthToken>String</AuthToken>
 </m:MySecurityRootElement>
 ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 ...
 </SOAP-ENV:Body>

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1003

</SOAP-ENV:Envelope>

To handle this non-default header, you must implement the method: Directory.
authenticateUserFromSOAPHeaderAPI.

Note

Only available for SOAP operations [p 1017].

Lookup mechanism
Because EBX® offers several authentication methods, a lookup mechanism based on conditions was
set to know which method should be applied for a given request. The method application conditions
are evaluated according to the authentication scheme priority. If the conditions are not satisfied, the
server evaluates the next method. The following table presents the available authentication methods

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1004

for each supported protocol and their application conditions. They are ordered from the highest priority
to the lowest.

Operation / Protocol Authentication methods and application conditions

SOAP / JMS SOAP Security Header [p 1001]

• The SOAP request is received over the JMS protocol.

• The SOAP header content must contains a Security element.

SOAP Specific Header [p 1001]

• The SOAP request is received over the JMS protocol.

• The SOAP header content must not contain a Security element.

SOAP / HTTP Basic [p 1000]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 1000]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

SOAP Security Header [p 1001]

• The SOAP header content must contain a Security element.

• The HTTP request must not hold an Authorization header.

• No login is provided in the URL parameters.

Specific [p 1001]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

SOAP Specific Header [p 1001]

• The SOAP header content must not contain a Security element.

• The HTTP request must not hold an Authorization header.

• No login is provided in the URL parameters.

WSDL / HTTP Basic [p 1000]

• The HTTP request must not hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 1000]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

Specific [p 1001]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

In case of multiple authentication methods present in the same request, EBX® will return an HTTP
code 401 Unauthorized.

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1005

162.5 Monitoring
Data service events can be monitored through the log category ebx.dataServices, as declared in
the EBX® main configuration file. For example, ebx.log4j.category.log.dataServices= INFO,
ebxFile:dataservices.

See also

Configuring the EBX® logs [p 555]

TIBCO EBX® main configuration file [p 549]

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1006

162.6 SOAP and REST comparative

Operations SOAP REST

Data

Select metamodel X

Select or count records (with filter and/or view publication) X X

Select records with association values (first level) X

Update or delete records (with filter and/or view publication) X

Selector for possible enumeration values (with filter) X

Prepare for creation or duplication X

Insert, update or delete records X X

Select or count history records (with filter and/or view publication) X

Select node values from dataset X X

Update node value from dataset X

Get table or dataset changes between dataspaces or snapshots X

Refresh a replication unit X

Get credentials for records X

Generate service contract WSDL OpenAPI

Views

Look up published table views X

Datasets

Select dataset information X

Select root or child datasets X

Dataspaces

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1007

Operations SOAP REST

Select dataspace or snapshot information X

Select root or children dataspaces, or select snapshots X

Create, close, merge a dataspace X X

Create, close a snapshot X X

Validate a dataspace or a snapshot X

Validate a dataset X

Locking, unlocking a dataspace X X

Workflow

Start, resume or end a workflow X

Administration

Manage the default directory content 'Users', 'Roles'... tables. X X

Open, close the user interface X X

Select, insert, update, delete operations for administration dataset X

Select the system information X X

Staging API X (*)

Other

Develop web services from the Java API X (*)

(*) See REST Toolkit [p 1223] for more information.

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1008

162.7 Limitations

Date, time & dateTime format
Data services only support the following date and time formats:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-ddTHH:mm:ss.SSS 2007-12-31T11:55:00

SOAP naming convention
Due to the naming convention of the data service operations, each table defined within a data model
must have a unique name for the WSDL generation.

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1009

CHAPTER 163
WSDL generation

This chapter contains the following topics:

1. Supported standard

2. Operation types

3. WSDL download methods

4. HTTP examples

163.1 Supported standard
TIBCO EBX® generates a WSDL that complies with the W3C Web Services Description Language
1.1 standard.

https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1010

163.2 Operation types
A WSDL can be generated for different types of operations:

Operation type WSDL description

custom WSDL for EBX® add-ons.

dataset WSDL for dataset and replication operations.

directory WSDL for default EBX® directory operations. It is also possible to filter data using the tablePaths [p
1013] or operations [p 1013] parameters.

repository WSDL for dataspace or snapshot management operations.

tables WSDL for operations on the tables of a specific dataset.

userInterface Deprecated since version 5.8.1. This operation type has been replaced by administration. While
the user interface management operations are still available for backward compatibility reasons, it is
recommended to no longer use this type.

WSDL for user interface management operations (these operations can only be accessed by
administrators).

administration WSDL for administration operations like:

• user interface management

• system information retrieval

These operations can only be accessed by administrators.

workflow WSDL for EBX® workflow management operations.

163.3 WSDL download methods
EBX® supports the following methods:

• from the user interface

• from HTTP protocol

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1011

A WSDL can only be downloaded by authorized profiles:

Operation type Access right permissions

custom All profiles, if at least one web service is registered.

dataset All profiles.

directory All profiles, if the following conditions are valid:

• No specific directory implementation is used. (The built-in Administrator role is only subject to this
condition).

• Global access permissions are defined for the administration.

• 'Directory' dataset permissions have writing access for the current profile.

repository All profiles.

tables All profiles.

userInterface Deprecated since version 5.8.1. This operation type has been replaced by administration. While
the user interface management operations are still available for backward compatibility reasons, it is
recommended to no longer use this type.

Built-in administrator role or delegated administrator profiles, if all conditions are valid:

• Global access permissions are defined for the administration.

• 'User interface' dataset permissions have writing access for the current profile.

administration Built-in administrator role or delegated administrator profiles, if all conditions are valid:

• Global access permissions are defined for the administration.

• 'Administration' dataset permissions have write access for the current profile.

workflow All profiles.

WSDL download from the user interface
An authorized user can download an EBX® WSDL from the data services administration area.

Note

See Generating a WSDL for dataspace operations [p 238] in the user guide for more
information.

WSDL download from HTTP protocol
An application can download an EBX® WSDL using GET or POST HTTP method. The application has
to be authenticated using a profile with appropriate rights.

URL format
http[s]://<host>[:<port>]/<ebx-dataservices>/{type}[/{dataspace}[/{dataset}]]?
{queryParameters}

Where:

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1012

• <ebx-dataservices> corresponds to the 'ebx-dataservices.war' web application's path. The path
is composed by multiple, or none, URI segments followed by the web application's name.

• {type} corresponds to the operation type [p 1010].

• {dataspace} corresponds to the dataspace or snapshot identifier.

• {dataset} corresponds to the dataset name.

• {queryParameters} corresponds to common or dedicated operation parameters passed through
the URL.

Parameters
A request parameter can be specified by one of the following methods:

• a PathParam which corresponds to a path segment from the URL (recommended)

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1013

• a QueryParam which corresponds to a standard HTTP parameter with value.

Parameter name PathParam QueryParam Required Description

WSDL no yes yes Specifies the WSDL download operation.

Empty value.

login no yes no Specifies the user identifier.

Required when the standard authentication method is
used.

String type value.

password no yes no Specifies the user password.

Required when the standard authentication method is
used.

String type value.

type yes no yes Specifies the operation type [p 1010].

Possible values are: custom, dataset, directory,
administration, userInterface, repository,
tables or workflow.

String type value.

branch

version

yes yes (*) Specifies the dataspace or the snapshot identifier.

(*) required for tables and dataset types, ignored
otherwise.

String type value.

instance yes yes (*) Specifies the dataset name.

String type value.

tablePaths no yes no Specifies the list of table paths.

Optional for tables or directory types, ignored
otherwise.

If not defined, all tables are selected.

Each table path is separated by a comma character.

String type value.

operations no yes no Allows generating a WSDL for an operations subset.

Optional for tables or directory operation types,
ignored otherwise. If not defined, all operations for
the given type are generated.

This parameter's value is a concatenation of one or
more of the following characters:

• C = Count record(s)

• D = Delete record(s)

• E = Get credentials

• G = Get changes

• I = Insert record(s)

• U = Update record(s)

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1014

Parameter name PathParam QueryParam Required Description

• R = Read operations (equivalent to CEGS)

• S = Select record(s)

• W = Write operations (equivalent to DIU)

String type value.

namespaceURI yes yes (**) Specifies the unique name space URI of the custom
web service.

(**)Is required when type parameter is set to custom,
ignored otherwise.

URI type value.

attachmentFilename no yes (***) Specifies the attachment file name.

(***) optional if isContentInAttachment parameter
is defined and set to true, ignored otherwise.

String type value.

isContentInAttachment no yes no Specifies if the WSDL is downloaded as an
attachment.

Boolean type value.

Default value is false.

targetNamespace no yes no Overrides the target namespace URI of the WSDL.

URI type value.

Default value is urn:ebx:ebx-dataservices.

Message body
No message body is required.

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1015

HTTP codes
An HTTP code is always returned. Errors are indicated by a code above 400.

Status code Information

200 (OK) The WSDL content was successfully generated and is returned by the request (optionally in an
attachment [p 1014]).

400 (Bad request) The request is incorrect. This occurs when:

• A request element is incorrect.

• The unicity check on table names contains at least one error.

Note

See WSDL and table operations [p 910] for more information.

401 (Unauthorized) Request requires an authenticated user.

403 (Forbidden) Request is not allowed for the authenticated user.

405 (Method not
allowed)

Request is not allowed in this configuration.

500 (Internal error) Request generates an error (a stack trace and a detailed error message are returned).

Response body
The response body depends on the returned status code and on the requested WSDL content.

• 200 (OK): the HTTP header Content-Type is set to text/xml;charset=UTF-8.
If the content is in attachment, the HTTP header Content-Disposition is set to attachment;
filename*=UTF-8''<filename.wsdl>.

• 4xx: A detailed message is returned in the body. The HTTP header Content-Type is set to text/
html;charset=utf-8.

163.4 HTTP examples
Some of the following examples are displayed in two methods: PathParam and QueryParam.

• The WSDL will contain all repository operations, using standard authentication method.
http[s]://<host>[:<port>]/<ebx-dataservices>/repository?
WSDL&login=<login>&password=<password>

• The WSDL will contain all workflow operations.
http[s]://<host>[:<port>]/<ebx-dataservices>/workflow?WSDL

• The WSDL will contain all tables operations for the 'dataset1' dataset in 'dataspace1'
dataspace.
PathParam

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 6.2.0 1016

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?WSDL

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=<dataspace1>&instance=<dataset1>

• The WSDL will contain all tables with only read operations for the 'dataset1' dataset in
'dataspace1' dataspace.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?
WSDL&operations=R

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=dataspace1&instance=dataset1&operations=R

• The WSDL will contain the two selected tables operations for the 'dataset1' dataset in
'dataspace1' dataspace.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?
WSDL&tablePaths=/root/table1,/root/table2

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=dataspace1&instance=dataset1&tablePaths=/root/table1,/root/table2

• The WSDL will contain custom web service operations for the dedicated URI.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/custom/urn:ebx-
test:com.orchestranetworks.dataservices.WSDemo?WSDL

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/custom?WSDL&namespaceURI=urn:ebx-
test:com.orchestranetworks.dataservices.WSDemo

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1017

CHAPTER 164
SOAP operations

This chapter contains the following topics:

1. Operations generated from a data model

2. Operations on datasets and dataspaces

3. Operations on data workflows

4. Administrative services

164.1 Operations generated from a data model
For a data model used in an TIBCO EBX® repository, it is possible to dynamically generate
a corresponding WSDL, that defines its operations. When using this WSDL, it will be possible
to read and/or write in the EBX® repository. For example, for a table located at the path /
root/XX/exampleTable, the generated requests would follow the structure of its underlying data
model and include the name of the table <m:{operation}_exampleTable xmlns:m="urn:ebx-
schemas:dataservices_1.0">.

Attention
Since the WSDL and the SOAP operations tightly depend on the data model structure, it is important
to redistribute the up-to-date WSDL after any data model change.

Content policy
Access to the content of records, the presence or absence of XML elements, depend on the resolved
permissions [p 475] of the authenticated user session. Additional aspects, detailed below, can impact
the content.

Disabling fields from data model
The hiddenInDataServices property, defined in the data model, allows always hiding fields in data
services, regardless of the user profile. This parameter has an impact on the generated WSDL: any
hidden field or group will be absent from the request and response structure.
Modifying the hiddenInDataServices parameter value has the following impact on a client which
would still use the former WSDL:

• On request, if the data model property has been changed to true, and if the concerned field is
present in the WSDL request, an exception will be thrown.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1018

• On response, if the schema property has been changed to false, WSDL validation will return an
error if it is activated.

This setting of "Default view" is defined inside data model.

See also

Hiding a field in Data Services [p 904]

Permissions [p 475]

Association field
Read-access on table records can export the association fields as displayed in UI Manager. This feature
can be coupled with the 'hiddenInDataServices' model parameter.

Note

Limitations: change and update operations do not manage association fields. Also, the
select operation only exports the first level of association elements (the content of
associated objects cannot contain association elements).

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1019

Common request parameters
Several parameters are common to several operations and are detailed below.

Element Description Required

branch The identifier of the dataspace to which the dataset belongs. Either this
parameter or
the 'version'
parameter must
be defined.
Required for the
'insert', 'update'
and 'delete'
operations.

version The identifier of the snapshot to which the dataset belongs. Either this
parameter or
the 'branch'
parameter must
be defined

instance The unique name of the dataset which contains the table to query. Yes

predicate XPath predicate [p 431] defines the records on which the request is applied.
If empty, all records will be retrieved, except for the 'delete' operation
where this field is mandatory.

See also includesMetadata parameter [p 1021]

Only required
for the 'delete'
operation

data Contains the records to be modified, represented within the structure of
their data model. The whole operation is equivalent to an XML import.
The details of the operations performed on data content are specified in
the section Import [p 143].

Only required
for the insert
and update
operations

viewPublication This parameter can be combined with the predicate [p 1019] parameter as a
logical AND operation.

The behavior of this parameter is described in the section EBX® as a
Web Component [p 412].

It cannot be used if the 'viewId' parameter is used, and cannot be used on
hierarchical nor tile views.

No

viewId Deprecated since version 5.2.3. This parameter has been replaced by the
parameter 'viewPublication'. While it remains available for backward
compatibility, it will eventually be removed in a future version.

This parameter cannot be used if the 'viewPublication' parameter is used.

No

blockingConstraintsDisabled This property is available for all table updates data service operations.

If true, the validation process disables blocking constraints defined in
the data model.

If this parameter is not present, the default is false.

See Blocking and non-blocking constraints [p 885] for more information.

No

details The details element specifies the following option: No

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1020

Element Description Required

The optional attribute locale (default 'en-US') defines the language of
the blockingConstraintsDisabled [p 1019] parameter in which the validation
messages must be returned.

disableRedirectionToLastBroadcast This property is available for all data service operations.

If true, access to a delivery dataspace on a D3 primary node is not
redirected to the last broadcast snapshot. Otherwise, access to such a
dataspace is always redirected to the last snapshot broadcast.

If this parameter is not present, the default is false (redirection
on a D3 master enabled), unless the configuration property
ebx.dataservices.disableRedirectionToLastBroadcast.default [p 560] has
been set.

If the specified dataspace is not a delivery dataspace on a D3 primary
node, this parameter is ignored.

No

Select operations

Select request on table
<m:select_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <includesMetadata>String</includesMetadata>
 <viewPublication>String</viewPublication>
 <exportCredentials>boolean</exportCredentials>
 <pagination>
 <previousPageLastRecordPredicate>String</previousPageLastRecordPredicate>
 <pageSize>Integer</pageSize>
 </pagination>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
</m:select_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1021

with:

Element Description Required

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

predicate See the description under Common parameters [p 1019].

This parameter can be combined with the viewPublication [p 1019]

parameter as a logical AND operation.

viewPublication See the description under Common parameters [p 1019].

includesMetadata The response contains the specified metadata. Each returned record
contains additional elements called steps under the ebx-metadata root
element.

For instance, a 'system' step value will contain technical data. See also
the optimistic locking [p 1036] section:

<system>
 <uuid>7FE03810-6A67-11ED-A892-00FF20216100</uuid>
 <creator>Uadmin</creator>
 <creation_time>2022-11-12T00:07:40.858</creation_time>
 <updater>Uadmin</updater>
 <update_time>2022-11-12T00:07:40.831</update_time>
</system>

String value steps (default value is empty) must be separated by a
comma: system, teamUp. All steps can be returned using the ebx-all
value.

No

includesTechnicalData Deprecated since version 6.1.0 and replaced by includesMetadata
request parameter. The response will contain technical data if true. See
also the optimistic locking [p 1036] section.

Each returned record will contain additional attributes for this technical
information, for instance:

...<table
ebxd:lastTime="2010-06-28T10:10:31.046"
 ebxd:lastUser="Uadmin"
ebxd:uuid="9E7D0530-828C-11DF-B733-0012D01B6E76">... .

No

exportCredentials If true the select will also return the credentials for each record. No

pagination Specifies the pagination configuration, see child elements below. No

pageSize (nested under the
pagination element)

Specifies the maximum number of records per page.

Integer type, default value is 10.

See also ebx.dataservices.pagination.pageSize.default [p 560]

The value 0 selects the maximum recommended page size, default is
10000.

See also ebx.dataservices.pagination.maxSize.default [p 560]

No

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1022

Element Description Required

Note

If the specified or default page size value exceeds the
maximum recommended page size, the maximum page
size is used.

previousPageLastRecordPredicate
(nested under the pagination
element)

When pagination is enabled, XPath predicate that defines the record
after which the page must fetched, this value is provided by the previous
response, as the element lastRecordPredicate. If the passed record is
not found, the first page will be returned.

No

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

Select response on table
<ns1:select_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <data>
 <XX>
 <TableName>
 <a>key1
 valueb
 <c>1</c>
 <d>1</d>
 </TableName>
 </XX>
 </data>
 <credentials>
 <XX>
 <TableName predicate="./a='key1'">
 <a>W
 W
 <c>W</c>
 <d>W</d>
 </TableName>
 </XX>
 </credentials>
 <lastRecordPredicate>./a='key1'</lastRecordPredicate>
</ns1:select_{TableName}Response>

with:

Element Description

data Content of records that are displayed following the table path.

credentials Contains the access right for each node of each record.

lastRecordPredicate Only returned if the pagination is enabled, this defines the last
records in order to be used on the next request in the element
previousPageLastRecordPredicated.

See also the optimistic locking [p 1036] section.

Select request on dataset
This operation returns dataset content without table.
<m:selectInstance xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1023

</m:selectInstance>

with:

Element Description Required

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

Select response on dataset
<ns1:selectInstanceResponse xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <data>
 <settings>
 <XX>
 <a>key1
 valueb
 <c>1</c>
 <d>true</d>
 </XX>
 </settings>
 </data>
</ns1:selectInstanceResponse>

with:

Element Description

data Dataset content without table.

Delete operation
Deletes records or, for a child dataset, defines the record state as "occulting" or "inherited" according
to the record context. Records are selected by the predicate parameter.

Delete request
<m:delete_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <instance>String</instance>
 <predicate>String</predicate>
 <includeOcculting>boolean</includeOcculting>
 <inheritIfInOccultingMode>boolean</inheritIfInOccultingMode>
 <checkNotChangedSinceLastTime>dateTime</checkNotChangedSinceLastTime>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <disableRedirectionToLastBroadcast>Boolean</disableRedirectionToLastBroadcast>
</m:delete_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1024

with:

Element Description Required

branch See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

predicate See the description under Common parameters [p 1019].

includeOcculting Includes the records in occulting mode.

Default value is false.

No

inheritIfInOccultingMode Inherits the record from its parent if it is in occulting mode.

Default value is false.

No

occultIfInherit Deprecated since version 5.7.0 Occults the record if it is in inherit mode.

Default value is false.

No

checkNotChangedSinceLastTime Timestamp used to ensure that the record has not been modified since the
last read. Also see the optimistic locking [p 1036] section.

No

blockingConstraintsDisabled See the description under Common parameters [p 1019].

details See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

Delete response
If one of the provided parameters is illegal, if a required parameter is missing, if the action is not
authorized or if no record is selected, an exception is returned. Otherwise, the specific response is
returned:
<ns1:delete_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
</ns1:delete_{TableName}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a
localized message. The locale of the message is retrieved from
the request parameter or from the user session.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1025

Count operation

Count request
<m:count_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
</m:count_{TableName}>

with:

Element Description

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

predicate See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

Count response
<ns1:count_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <count>Integer</count>
</ns1:count_{TableName}Response>

with:

Element Description

count The number of records that correspond to the predicate in the
request.

Update operation

Update request
<m:update_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <instance>String</instance>
 <updateOrInsert>boolean</updateOrInsert>
 <byDelta>boolean</byDelta>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
 <data>
 <XX>
 <TableName>
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 </TableName>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1026

 </XX>
 </data>
</m:update_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

updateOrInsert If true and the record does not currently exist, the operation creates the
record.

boolean type, the default value is false.

No

byDelta If true and an element does not currently exist in the incoming message,
the target value is not changed.

If false and node is declared hiddenInDataServices, the target value is
not changed.

The complete behavior is described in the sections Insert and update
operations [p 144].

No

blockingConstraintsDisabled See the description under Common parameters [p 1019].

details See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

data See the description under Common parameters [p 1019].

See also Optimistic locking [p 1036]

Update response
<ns1:update_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
</ns1:update_{TableName}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a
localized message. The locale of the message is retrieved from
the request parameter or from the user session.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1027

Insert operation

Insert request
<m:insert_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <instance>String</instance>
 <byDelta>boolean</byDelta>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
 <data>
 <XX>
 <TableName>
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 </TableName>
 </XX>
 </data>
</m:insert_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

byDelta If true and an element does not currently exist in the incoming message,
the target value is not changed.

If false and node is declared hiddenInDataServices, the target value is
not changed.

The complete behavior is described in the sections Insert and update
operations [p 144].

No

blockingConstraintsDisabled See the description under Common parameters [p 1019].

details See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

data See the description under Common parameters [p 1019].

Insert response
<ns1:insert_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
 <inserted>
 <predicate>./a='String'</predicate>
 </inserted>
</ns1:insert_{TableName}Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1028

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a localized
message. The locale of the message is retrieved from the request
parameter or from the user session.

predicate A predicate matching the primary key of the inserted record. When
several records are inserted, the predicates follow the declaration order of
the records in the input message.

Get changes operations
Returns changes according to the Content policy [p 1017].

Get changes requests
Changes between two datasets:
<m:getChangesOnDataSet_{schemaName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <compareWithBranch>String</compareWithBranch>
 <compareWithVersion>String</compareWithVersion>
 <compareWithInstance>String</compareWithInstance>
 <resolvedMode>boolean</resolvedMode>
 <includeInstanceUpdates>boolean</includeInstanceUpdates>
</m:getChangesOnDataSet_{schemaName}>

Changes between two tables:
<m:getChanges_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <compareWithBranch>String</compareWithBranch>
 <compareWithVersion>String</compareWithVersion>
 <resolvedMode>boolean</resolvedMode>
 <pagination>
 <pageSize>Integer</pageSize>
 </pagination>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
</m:getChanges_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1029

with:

Element Description Required

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

compareWithBranch The identifier of the dataspace with which to compare. One of either this
parameter or the
'compareWithVersion
[p 1029]' parameter
must be defined.

compareWithVersion The identifier of the snapshot with which to compare. One of either this
parameter or the
'compareWithBranch
[p 1029]' parameter
must be defined.

compareWithInstance The identifier of the dataset with which to compare. If it is
undefined, instance [p 1029] parameter is used.

No

resolvedMode Defines whether or not the difference is calculated in resolved
mode. Default is true.

See Resolved mode DifferenceHelper.resolvedModeAPI for more
information.

No

includeInstanceUpdates Defines if the content updates of the dataset are included. Default is
false.

No

pagination Enables pagination context for the operations getChanges and
getChangesOnDataSet.

Allows client to define pagination context size. Each page contains
a collection of inserted, updated and/or deleted records of tables
according to the maximum size.

Get changes persisted context is built at first call according to the
page size parameter in request.

The pagination context is persisted on the server file system [p 627]

and allows invoking the next page until last page or when a timeout
is reached.

For creation: Defines pageSize parameter.

For next: Defines context element with identifier from previous
response.

Enables pagination, see child elements below.

No

pageSize (nested under
pagination element)

Defines maximum number of records in each page. Minimal size is
50.

No (Only for
creation)

context (nested under
pagination element)

Defines content of pagination context. No (Only for next)

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1030

Element Description Required

identifier (nested under context
element)

Pagination context identifier. Yes

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

Note

If none of the compareWithBranch or compareWithVersion parameters are specified, the
comparison will be made with their parent:

• if the current dataspace or snapshot is a dataspace, the comparison is made with its initial
snapshot (includes all changes made in the dataspace);

• if the current dataspace or snapshot is a snapshot, the comparison is made with its parent
dataspace (includes all changes made in the parent dataspace since the current snapshot
was created);

• returns an exception if the current dataspace is the 'Reference' dataspace.

See also DifferenceHelperAPI

Get changes responses
Changes between two datasets:
<ns1:getChangesOnDataSet_{schemaName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <updated>
 <changes>
 <path>... Path of changed terminal value ...</path>
 <path>...</path>
 </changes>
 <data>
 ... see the whole content of dataset values (without table) ...
 </data>
 </updated>
 <getChanges_{TableName1}>
 ... see the getChanges between tables response example ...
 </getChanges_{TableName1}>
 <getChanges_{TableName2}>
 ... see the getChanges between tables response example ...
 </getChanges_{TableName2}>
 ...
</ns1:getChangesOnDataSet_{schemaName}Response>

Changes between two tables:
<ns1:getChanges_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <inserted>
 <XX>
 <TableName>
 <a>AVALUE3
 BVALUE3
 <c>CVALUE3</c>
 <d>DVALUE3</d>
 </TableName>
 </XX>
 </inserted>
 <updated>
 <changes>
 <change predicate="./a='AVALUE2'">
 <path>/b</path>
 <path>/c</path>
 </change>
 </changes>
 <data>
 <XX>
 <TableName>
 <a>AVALUE2

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1031

 BVALUE2.1
 <c>CVALUE2.1</c>
 <d>DVALUE2</d>
 </TableName>
 </XX>
 </data>
 </updated>
 <deleted>
 <predicate>./a='AVALUE1'</predicate>
 </deleted>
</ns1:getChanges_{TableName}Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1032

with:

Element Description Required

inserted Contains inserted record(s) from choice compareWithBranch or
compareWithVersion.

Content under this element corresponding to an XML export of inserted
records.

No

updated Contains updated record(s) or dataset content. No

changes (nested under updated
element)

Only the group of field have been updated. Yes

change (nested under changes
element)

Group of fields have been updated with own XPath predicate attribute
of the record.

Yes

path (nested under change
element)

Path in the record. Yes

path (nested under changes
element)

Path in the dataset. Yes

data (nested under updated
element)

Content under this element corresponding to an XML export of dataset or
updated records.

No

deleted Records have been deleted from context of request.

Content corresponding to a list of predicate element who contains the
XPath predicate of record.

No

pagination When pagination is enabled on request.

Get changes persisted context allows invoking the next page until last
page or when the context timeout is reached.

Contains a next page: Defines context element with identifier.

Is the last page: Defines context element without identifier.

Enables pagination, see child elements below.

No

context (nested under
pagination element)

Defines content of pagination context. Yes (Only for
next and last)

identifier (nested under context
element)

Pagination context identifier. Not defined at last returned page. No

pageNumber (nested under
context element)

Current page number in pagination context. Yes

totalPages (nested under context
element)

Total pages in pagination context. Yes

Get changes operation with pagination enabled
Only pagination element and sub elements have been described.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1033

For creation:
Extract of request:
...
 <pagination>
 <!-- on first request for creation -->
 <pageSize>Integer</pageSize>
 </pagination>
...

Extract of response:
...
 <pagination>
 <!-- on next request to continue -->
 <context>
 <identifier>String</identifier>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

For next:
Extract of request:
...
 <pagination>
 <context>
 <identifier>String</identifier>
 </context>
 </pagination>
...

Extract of response:
...
 <pagination>
 <!-- on next request to continue -->
 <context>
 <identifier>String</identifier>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

For last:
Extract of request:
...
 <pagination>
 <context>
 <identifier>String</identifier>
 </context>
 </pagination>
...

Extract of response:
...
 <pagination>
 <context>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1034

Get credentials operation

Get credentials request
<m:getCredentials_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <viewPublication>String</viewPublication>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
</m:getCredentials_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

predicate See the description under Common parameters [p 1019].

viewPublication See the description under Common parameters [p 1019].

Get credentials response
<ns1:getCredentials_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <XX>
 <TableName>
 <a>R
 W
 <c>H</c>
 <d>W</d>
 ...
 </TableName>
 </XX>
</ns1:getCredentials_{TableName}Response>

With the following possible values:

• R: for read-only

• W: for read-write

• H: for hidden

Multiple chained operations

Multiple operations request
It is possible to run multiple operations across tables in the dataset, while ensuring a consistent
response. The operations are executed sequentially, according to the order defined on the client side.
All operations are executed in a single transaction with a SERIALIZABLE isolation level. If all requests
in the multiple operation are read-only, they are allowed to run fully concurrently along with other
read-only transactions, even in the same dataspace.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1035

When an error occurs during one operation in the sequence, all updates are rolled back and the client
receives a StandardException error message with details.
See Concurrency [p 826].
<m:multi_ xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <disableRedirectionToLastBroadcast>boolean</disableRedirectionToLastBroadcast>
 <details locale="Locale"/>
 <request id="id1">
 <{operation}_{TableName}>
 ...
 </{operation}_{TableName}>
 </request>
 <request id="id2">
 <{operation}_{TableName}>
 ...
 </{operation}_{TableName}>
 </request>
</m:multi_>

with:

Element Description Required

branch See the description under Common parameters [p 1019].

version See the description under Common parameters [p 1019].

instance See the description under Common parameters [p 1019].

blockingConstraintsDisabled See the description under Common parameters [p 1019].

details See the description under Common parameters [p 1019].

disableRedirectionToLastBroadcast See the description under Common parameters [p 1020].

request This element contains one operation, like a single operation without
branch, version and instance parameters. This element can be repeated
multiple times for additional operations. Each request can be identified
by an 'id' attribute. In a response, this 'id' attribute is returned for
identification purposes.

Operations such as count, select, getChanges, getCredentials,
insert, delete or update.

Yes

Note:

• Does not accept a limit on the number of request elements.

• The request id attribute must be unique in multi-operation requests.

• If all operations are read only (count, select, getChanges, or getCredentials) then the whole
transaction is set as read-only for performance considerations.

Limitation:

• The multi operation applies to one model and one dataset (parameter instance).

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1036

See also

ProcedureAPI

RepositoryAPI

Multiple operations response
See each response operation for details.
<ns1:multi_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <response id="id1">
 <{operation}_{TableName}Response>
 ...
 </{operation}_{TableName}Response>
 </response>
 <response id="id2">
 <{operation}_{TableName}Response>
 ...
 </{operation}_{TableName}Response>
 </response>
</ns1:multi_Response>

with:

Element Description

response This element contains the response of one operation. It is be repeated
multiple times for additional operations. Each response is identified by an
'id' attribute set in the request or automatically generated.

The content of the element corresponds to the response of a single
operation, such as count, select, getChanges, getCredentials,
insert, delete or update.

Optimistic locking
To prevent an update or a delete operation on a record that was read earlier but may have changed in
the meantime, an optimistic locking mechanism is provided.
A select request can include technical information by adding the element includesMetadata with
system value:
<m:select_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <includesMetadata>system</includesMetadata>
</m:select_{TableName}>

Use the value of the ebx-metadata/system/update_time element in the following update request. If
the record was changed since the specified time, the update cancels. To prevent update of a modified
record, add the ebx-metadata/system/update_time element value.
<m:update_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <updateOrInsert>true</updateOrInsert>
 <data>
 <XX>
 <TableName>
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 <ebx-metadata>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1037

 <system>
 ...
 <update_time>2010-06-28T10:10:31.046</update_time>
 </system>
 </ebx-metadata>
 </TableName>
 </XX>
 </data>
</m:update_{TableName}>

The value of the lastTime attribute can also be used to prevent deletion on a modified record:
<m:delete_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <checkNotChangedSinceLastTime>2010-06-28T10:10:31.046</checkNotChangedSinceLastTime>
</m:delete_{TableName}>

Note

You can use the checkNotChangedSinceLastTime element more than once, but only for
the same record. This implies that if the predicate element returns more than one record,
the request will fail.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1038

164.2 Operations on datasets and dataspaces
Parameters for operations on dataspaces and snapshots are as follows:

Element Description Required

branch Identifier of the target dataspace on
which the operation is applied. When
not specified, the 'Reference' dataspace
is used except for the merge dataspace
operation where it is required.

One of either this parameter or the
'version' parameter must be defined.
Required for the dataspace merge,
locking, unlocking and replication
refresh operations.

version Identifier of the target snapshot on which
the operation is applied.

One of either this parameter or the
'branch' parameter must be defined

versionName Identifier of the snapshot to create. If
empty, it will be defined on the server
side.

No

childBranchName Identifier of the dataspace child to create.
If empty, it will be defined on the server
side.

No

instance The unique name of the dataset on which
the operation is applied.

Required for the replication refresh
operation.

ensureActivation Defines if validation must also check
whether this instance is activated.

Yes

details Defines if validation returns details.

The optional attribute
severityThreshold defines the lowest
severity level of message to return. The
possible values are, in descending order
of severity, 'fatal', 'error', 'warning', or
'info'. For example, setting the value
to 'error' will return error and fatal
validation messages. If this attribute is
not defined, all levels of messages are
returned by default.

The optional attribute locale (default
'en-US') defines the language in which
the validation messages are to be
returned.

No. If not specified, no details are
returned.

owner Defines the owner.

Must respect the inner format as returned
by Profile.formatAPI.

No

branchToCopyPermissionFrom Defines the identifier of the dataspace
from which to copy the permissions.

No

documentation Documentation for a dedicated language. No

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1039

Element Description Required

Multiple documentation elements may
be used for several languages.

locale (nested under the documentation
element)

Locale of the documentation. Only required when the documentation
element is used

label (nested under the documentation
element)

Label for the language. No

description (nested under the
documentation element)

Description for the language. No

Validate a dataspace

Validate dataspace request
<m:validate xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
</m:validate>

Validate dataspace response
<ns1:validate_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <validationReport>
 <instanceName>String</instanceName>
 <fatals>boolean</fatals>
 <errors>boolean</errors>
 <infos>boolean</infos>
 <warnings>boolean</warnings>
 </validationReport>
</ns1:validate_Response>

Validate a dataset

Validate dataset request
<m:validateInstance xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <ensureActivation>boolean</ensureActivation>
 <details severityThreshold="fatal|error|warning|info" locale="Locale"/>
</m:validateInstance>

Validate dataset response
<ns1:validateInstance_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <validationReport>
 <instanceName>String</instanceName>
 <fatals>boolean</fatals>
 <errors>boolean</errors>
 <infos>boolean</infos>
 <warnings>boolean</warnings>
 <details>
 <reportItem>
 <severity>{fatal|error|warning|info}</severity>
 <message>
 <internalId />
 <text>String</text>
 </message>
 <subject>
 <table>Path</table>
 <predicate>String</predicate>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1040

 <path>Path</path>
 </subject>
 </reportItem>
 </details>
 </validationReport>
</ns1:validateInstance_Response>

Create a dataspace

Create dataspace request
<m:createBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <owner>String</owner>
 <branchToCopyPermissionFrom>String</branchToCopyPermissionFrom>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
 <childBranchName>String</childBranchName>
</m:createBranch>

Create dataspace response
<ns1:createBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <childBranchName>String</childBranchName>
</ns1:createBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Create a snapshot

Create snapshot request
<m:createVersion xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <versionName>String</versionName>
 <owner>String</owner>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
</m:createVersion>

Create snapshot response
<ns1:createVersion_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <versionName>String</versionName>
</ns1:createVersion_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1041

Locking a dataspace

Lock dataspace request
<m:lockBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <durationToWaitForLock>Integer</durationToWaitForLock>
 <message>
 <locale>Locale</locale>
 <label>String</label>
 </message>
</m:lockBranch>

with:

Element Description Required

durationToWaitForLock This parameter defines the maximum duration (in seconds) that the operation waits
for a lock before aborting.

No,
does not
wait by
default

message User message of the lock. Multiple message elements may be used. No

locale (nested under the
message element)

Locale of the user message. Only
required
when the
message
element
is used

label (nested under the
message element)

The user message. No

Lock dataspace response
<ns1:lockBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:lockBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'94' indicates that the dataspace has been already locked by
another user.

Otherwise, a SOAP exception is thrown.

Unlocking a dataspace

Unlock dataspace request
<m:unlockBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
</m:unlockBranch>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1042

Unlock dataspace response
<ns1:unlockBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:unlockBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Otherwise, a SOAP exception is thrown.

Merge a dataspace

Merge dataspace request
<m:mergeBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <deleteDataOnMerge>boolean</deleteDataOnMerge>
 <deleteHistoryOnMerge>boolean</deleteHistoryOnMerge>
</m:mergeBranch>

with:

Element Description Required

deleteDataOnMerge This parameter is available for the merge dataspace operation. Sets whether the
specified dataspace and its associated snapshots will be deleted upon merge.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX® main
configuration file [p 560].

See Deleting data and history [p 625] for more information.

No

deleteHistoryOnMerge This parameter is available for the merge dataspace operation. Sets whether the
history associated with the specified dataspace will be deleted upon merge. Default
value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX®
main configuration file [p 560].

See Deleting data and history [p 625] for more information.

No

Note

The merge decision step is bypassed during merges performed through data services. In
such cases, the data in the child dataspace automatically overrides the data in the parent
dataspace.

Merge dataspace response
<ns1:mergeBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:mergeBranch_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1043

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Close a dataspace or snapshot

Close dataspace or snapshot request
Close dataspace request:
<m:closeBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <deleteDataOnClose>boolean</deleteDataOnClose>
 <deleteHistoryOnClose>boolean</deleteHistoryOnClose>
</m:closeBranch>

Close snapshot request:
<m:closeVersion xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <version>String</version>
 <deleteDataOnClose>boolean</deleteDataOnClose>
</m:closeVersion>

with:

Element Description Required

deleteDataOnClose This parameter is available for the close dataspace and close snapshot operations.
Sets whether the specified snapshot, or dataspace and its associated snapshots, will
be deleted upon closure.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine this default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX® main
configuration file [p 560].

See Deleting data and history [p 625] for more information.

No

deleteHistoryOnClose This parameter is available for the close dataspace operation. Sets whether the
history associated with the specified dataspace will be deleted upon closure. Default
value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX®
main configuration file [p 560].

See Deleting data and history [p 625] for more information.

No

Close dataspace or snapshot response
Close dataspace response:
<ns1:closeBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:closeBranch_Response>

Close snapshot request:
<ns1:closeVersion_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:closeVersion_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1044

Replication refresh

Replication refresh request
<m:replicationRefresh_${schema} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <instance>String</instance>
 <unitName>String</unitName>
</m:replicationRefresh_${schema}>

with:

Element Description Required

branch See the description under Common parameters [p 1038]. Yes

instance See the description under Common parameters [p 1038]. Yes

unitName Name of the replication unit.

See also Replication refresh information [p 460]

Yes

Replication refresh response
<ns1:replicationRefresh_${schema}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:replicationRefresh_${schema}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

164.3 Operations on data workflows
Parameters for data workflows operations are retrieved from the SOAP header in the session.
Deprecated since version 5.7.0 to define parameters in the SOAP message body.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1045

See session parameters [p 999] for more information.

Element Description Required

parameters Deprecated since version 5.7.0 While it remains available for backward
compatibility, it will eventually be removed in a future major version.

Note

The parameters element is ignored if at least one
session parameter has been defined.

No

parameter (nested under the
parameters element). Multiple
parameter elements may be used.

An input parameter for the workflow. No

name (nested under the
parameter element)

Name of the parameter. Yes

value (nested under the
parameter element)

Value of the parameter. No

Start a workflow
Start a workflow from a workflow launcher. It is possible to start a workflow with localized
documentation and specific input parameters (with name and optional value).

Note

The workflow creator is initialized from the session and the workflow priority is retrieved
from the last published version.

Sample request:
<m:workflowProcessInstanceStart xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <publishedProcessKey>String</publishedProcessKey>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
</m:workflowProcessInstanceStart>

with:

Element Description Required

publishedProcessKey Identifier of the workflow launcher. Yes

documentation See the description under Common parameters [p 1038]. No

parameters Deprecated since version 5.7.0 See the description under Common
parameters [p 1045].

No

Sample response:
<m:workflowProcessInstanceStart_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1046

 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceStart_Response>

with:

Element Description Required

processInstanceId Deprecated since version 5.6.1 This parameter has been replaced by the
'processInstanceKey' parameter. While it remains available for backward
compatibility, it will eventually be removed in a future major version.

No

processInstanceKey Workflow identifier. No

Resume a workflow
Resume a workflow in a wait step from a resume identifier. It is possible to define specific input
parameters (with name and optional value).
Sample request:
<m:workflowProcessInstanceResume xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <resumeId>String</resumeId>
</m:workflowProcessInstanceResume>

with:

Element Description Required

resumeId Resume identifier of the waiting task. Yes

parameters Deprecated since version 5.7.0 See the description under Common
parameters [p 1045].

No

Sample response:
<m:workflowProcessInstanceResume_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceResume_Response>

with:

Element Description Required

status '00' indicates that the operation has been executed successfully.

'20' indicates that the workflow has not been found.

'21' indicates that the event has already been received.

Yes

processInstanceKey Identifier of the workflow. This parameter is returned if the operation has
been executed successfully.

No

End a workflow
End a workflow from its identifier.
Sample request:
<m:workflowProcessInstanceEnd xmlns:m="urn:ebx-schemas:dataservices_1.0">

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1047

 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceEnd>

with:

Element Description Required

processInstanceKey Identifier of the workflow. Either this
parameter or
'publishedProcessKey'
and
'processInstanceId'
parameters must be
defined.

publishedProcessKey Deprecated since version 5.6.1 Due to a limitation this parameter
has been replaced by the 'processInstanceKey' parameter. While it
remains available for backward compatibility, it will eventually be
removed in a future major version.

No

processInstanceId Deprecated since version 5.6.1 Due to a limitation this parameter
has been replaced by the 'processInstanceKey' parameter. While it
remains available for backward compatibility, it will eventually be
removed in a future major version.

No

Sample response:
<m:workflowProcessInstanceEnd_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</m:workflowProcessInstanceEnd_Response>

with:

Element Description Required

status '00' indicates that the operation has been executed successfully. Yes

164.4 Administrative services

Directory services
The services on directory provide operations on the 'Users' and 'Roles' tables of the default directory.
To execute an operation related to these services, the authenticated user must be a member of the built-
in role 'Administrator'.
The technical dataspace and dataset must be set to ebx-directory. For all SOAP operation syntaxes,
see Operations generated from a data model [p 1017] for more information.

Create a user in the directory
This example of a SOAP insert request adds a user to the EBX® directory.
<m:insert_user xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>ebx-directory</branch>
 <instance>ebx-directory</instance>
 <data>
 <directory>
 <users>
 <login>login</login>
 <lastName>lastname</lastName>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1048

 <firstName>firstname</firstName>
 <email>firstname.lastname@email.com</email>
 <password>***</password>
 <passwordMustChange>true</passwordMustChange>
 <builtInRoles>
 <administrator>false</administrator>
 <readOnly>false</readOnly>
 </builtInRoles>
 <comments>a comment</comments>
 </users>
 </directory>
 </data>
</m:insert_user>

For the insert SOAP response syntax, see insert response [p 1027] for more information.

User interface operations
See Application locking [p 634] for more information.
Parameters for operations on the user interface are as follows:

Element Description Required

closedMessage Message to be displayed to users when the user interface is closed to
access.

No

Close user interface request
The close operation removes all user sessions that are not acceptable in this mode.
<m:close xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <closedMessage>Access is temporarily forbidden.</closedMessage>
</m:close>

Close user interface response
<ns1:close_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:close_Response>

Open user interface request
<m:open xmlns:m="urn:ebx-schemas:dataservices_1.0"/>

Open user interface response
<ns1:open_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:open_Response>

System information operation
This operation returns the EBX® system information. The information returned is the same as the
information contained in the log header kernel.log or in the UI tab 'Administration' > 'System
Information'. The response contains several keys, labels, and values representing the configuration
and status of EBX®. To execute this operation, the authenticated user must be a member of the built-
in role 'Administrator'.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1049

Parameters
The following parameter is applicable.

Parameter Description Required

details Defines attributes that must be applied to response
messages.

The attribute locale (default: EBX® default locale)
defines the language in which the system item messages
must be returned.

No, but if specified,
the locale attribute
must be provided.

System information request
This SOAP request will return all EBX® instance's system information and format them using "en_US"
locale.
<m:systemInformation xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <details locale="en_US" />
</m:systemInformation>

System information response
<ns1:systemInformation_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <bootInfoEBX>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 <content>String</content>
 ...
 </infoItem>
 ...
 </bootInfoEBX>
 <repositoryInfo>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 <content>String</content>
 ...
 </infoItem>
 ...
 </repositoryInfo>
 <bootInfoVM>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 ...
 </infoItem>
 ...
 </bootInfoVM>
</ns1:systemInformation_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 6.2.0 1050

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 1051

REST data services

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1052

CHAPTER 165
Introduction

This chapter contains the following topics:

1. Overview

2. Activation and configuration

3. Interactions

4. Security

5. Monitoring

6. SOAP and REST comparative

7. Limitations

165.1 Overview
REST data services allow external systems to interact with data governed in the TIBCO EBX®
repository using the RESTful built-in services.
The request and response syntax for built-in services are described in the chapter Built-in RESTful
services [p 1063].
Built-in REST data services allow performing operations such as:

• Selecting, inserting, updating, deleting, or counting records

• Selecting or counting history records

• Selecting, updating, or counting dataset values

• Selecting or updating dataspace or snapshot information

• Selecting children dataspaces or snapshots

• Creating, merging, or closing a dataspace

• Creating or closing a snapshot

• Administrative operations to manage access to the UI or to system information

Note

See SOAP and REST comparative [p 1060].

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1053

165.2 Activation and configuration
REST and SOAP Data services are activated by deploying the ebx-dataservices web application
along with the other EBX® modules. See Jakarta EE deployment [p 521] for more information.
In case of specific deployment, for example using reverse-proxy mode, see URLs computing [p 563]

for more information.
Only HTTP(S) protocols are supported.

165.3 Interactions

Body media types
Input and output messages must be exclusively in JSON format with UTF-8 encoding for REST built-
in. However, input message can also be used to pass HTML form data.
See Content-Type [p 1067] for more information.

Tracking information
Depending on the data services operation being called, it may be possible to specify session-tracking
information.

• Example for a RESTful operation, the extended JSON format request contains:
{
 "procedureContext": // JSON Object (optional)
 {
 "trackingInformation": "String" // JSON String (optional)
 },
 ...
}

For more information, see Session.getTrackingInfoAPI in the Java API.

Session parameters
Depending on the data services operation being called, it is possible to specify session input
parameters. They are defined in the request body.
Input parameters are available on custom Java components with a session object, such as: triggers,
access rules, custom web services. They are also available on data workflow operations.

• Example for a RESTful operation, the extended JSON format request contains:
{
 "procedureContext": // JSON Object (optional)
 {
 "trackingInformation": "String", // JSON String (optional)
 "inputParameters": // JSON Array (optional)
 [
 // JSON Object for each parameter
 {
 "name": "String", // JSON String (required)
 "value": "String" // JSON String (optional)
 },
 ...
]
 },
 ...
}

For more information, see Session.getInputParameterValueAPI in the Java API.

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1054

Session channel
The session channel allows to filter what can be selected or modified, from the EBX® repository, when
using a REST built-in or REST toolkit service. The filter is based on table, group or field configuration
where the visibility is defined through the data model, by specifying a default view [p 903].
It can be specified through the query parameter ebx-channel [p 1068]. It's available values are:

• dataServices

• ui

The filter behavior is described by this combinatorial:

Data services channel

XML element Value Schema node type View Behaviour

Default tabular view Hidden for content and
not sortable

CustomView (tabular
or hierarchical)

Hidden for meta,
content, filter and sort

Default form record Hidden for meta and
content

<hiddenInDataservices> true field node

Default form record
field

Not found

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1055

User Interface channel

XML element Value Schema node type View Behaviour

Tree view hidden for meta and
content

Default tabular view not found

CustomView (tabular
or hierarchical)

forbidden

Default form record

Default form record
field

table node

Custom form record

not found

Default tabular view hidden for content and
not sortable

Default form record hidden for content

<hidden> true

field node

Default form record
field

not found

CustomView (tabular
or hierarchical)

hidden for meta,
content, filter and sort

<hiddenInViews> true field node

Custom form record hidden for meta and
content

Default tabular view

CustomView (tabular
or hierarchical)

Default form record

Default form record
field

true

Custom form record

not filterable

Default tabular view

<hiddenInSearch>

textSearchOnly

field node

CustomView (tabular
or hierarchical)

not filterable except
for text search

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1056

XML element Value Schema node type View Behaviour

Default form record

Default form record
field

Custom form record

Note

The above field nodes can only be under table nodes.

Procedure context
Depending on the data services operation being called, it is possible to overwrite the default procedure
context configuration. They are defined in the request body and are applied within the built-in
operation.
Procedure context can be applied to custom REST Toolkit services.

• Example for a RESTful operation, the JSON request body contains:
{
 "procedureContext": // JSON Object (optional)
 {
 "commitThreshold": Integer // JSON Number (optional)
 },
 ...
}

For more information, see ProcedureContext.setCommitThresholdAPI, SessionContext.
getProcedureUtilityAPI and ProcedureUtility.executeAPI in the Java API.

Exception handling
When an error occurs, a JSON exception response is returned to the caller. In most cases the exception
takes JSON format like in the REST Toolkit.

See also REST Toolkit exception handling [p 1233]

{
 "code": 999, // JSON Number, HTTP error code or EBX® error code
 // in case of HTTP error 422 (optional)
 "errors": [// Additional messages to give details (optional).
 {
 "message": "Message 1" // JSON String
 },
 {
 "message": "Message 2"
 }
]
}

If there are errors when inserting or updating multiple records [p 1090], an error report is returned.
{
 "code": 999, // JSON Number, HTTP status code
 "errors": [
 {
 "level": "...", // JSON String, severity level (optional)
 "rowIndex": 999, // JSON Number, request row index (optional)
 "userCode": "...", // JSON String, user code (optional)
 "message": "...", // JSON String, message

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1057

 "blocksCommit": "...", // JSON String, Type of blocking constraints (optional)
 "details": "...", // JSON String, URL (optional)
 "pathInRecord": "...", // JSON String, Path in record (optional)
 "pathInDataset": "..." // JSON String, Path in dataset (optional)
 }
]
}

The response contains an HTTP status code and a table of errors. The severity level of each error is
specified by a character, with one of the possible values (fatal, error, warning, info).
The HTTP error 422 (Unprocessable entity) corresponds to a functional error. It contains a user code
under the userCode key and is a JSON String type.

See also

HTTP codes [p 1070]

Severity.getLabelAPI

165.4 Security

Authentication
Authentication is mandatory to access to the content. Several authentication methods are available
and described below. The descriptions are ordered by priority (EBX® applies the highest priority
authentication method first).

• 'Token Authentication Scheme' method is based on the HTTP-Header Authorization, as
described in RFC 2617.
> Authorization: <tokenType> <accessToken>

For more information on this authentication scheme, see Token authentication operations [p 1073].

See also HTTP Authorization header policy [p 562]

• 'Basic Authentication Scheme' method is based on the HTTP-Header Authorization in base64
encoding, as described in RFC 2617 (Basic Authentication Scheme).
If the user agent wishes to send the userid "Alibaba" and password "open sesame",
it will use the following header field:
> Authorization: Basic QWxpYmFiYTpvcGVuIHNlc2FtZQ==

Note

The WWW-Authenticate [p 1069] header can be valued with this method.

See also HTTP Authorization header policy [p 562]

• 'Standard Authentication Scheme' is based on the HTTP Request. User and password are extracted
from request parameters. For more information on request parameters, see Parameters [p 1012]

section.
For more information on this authentication scheme, see Directory.
authenticateUserFromLoginPasswordAPI.

• The 'REST Forward Authentication Scheme' is used only when calling a REST service from a
user service [p 962], that reuses the current authenticated session.

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617#section-2

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1058

For more information, see Implementing a user service [p 973] making a call to REST data services
[p 980].

• 'Specific authentication Scheme' is based on the HTTP Request. For example, an implementation
can extract a password-digest or a ticket from the HTTP Request. See Directory.
authenticateUserFromHttpRequestAPI for more information.

• 'Anonymous authentication Scheme' is used only to access the REST services handling the
authentication operations. The credentials acquisition, password changes, etc. implies that the
user cannot be known yet.

Global permissions
Global access permissions can be independently defined for the REST built-in and REST OpenAPI
services. See Global permissions [p 629] for more information.

Lookup mechanism
Because EBX® offers several authentication methods, a lookup mechanism based on conditions was
set to know which method should be applied for a given request. The method application conditions
are evaluated according to the authentication scheme priority. If the conditions are not satisfied, the
server evaluates the next method. The following table presents the available authentication methods
for each supported protocol and their application conditions. They are ordered from the highest priority
to the lowest.

Operation / Protocol Authentication methods and application conditions

REST / HTTP Token [p 1057]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word EBX.

• No login is provided in the URL parameters.

Basic [p 1057]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 1057]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

Rest forward [p 1057]

• The HTTP request must not contain an Authorization header.

• No login is provided in the URL parameters.

Specific [p 1058]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

Anonymous [p 1058]

• None of the previous authentication methods can be applied.

• The requested REST service is handling an authentication operation.

In case of multiple authentication methods present in the same request, EBX® will return an HTTP
code 401 Unauthorized.

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1059

165.5 Monitoring
Data service events can be monitored through the log category ebx.dataServices, as declared in
the EBX® main configuration file. For example, ebx.log4j.category.log.dataServices= INFO,
ebxFile:dataservices.

See also

Configuring the EBX® logs [p 555]

TIBCO EBX® main configuration file [p 549]

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1060

165.6 SOAP and REST comparative

Operations SOAP REST

Data

Select metamodel X

Select or count records (with filter and/or view publication) X X

Select records with association values (first level) X

Update or delete records (with filter and/or view publication) X

Selector for possible enumeration values (with filter) X

Prepare for creation or duplication X

Insert, update or delete records X X

Select or count history records (with filter and/or view publication) X

Select node values from dataset X X

Update node value from dataset X

Get table or dataset changes between dataspaces or snapshots X

Refresh a replication unit X

Get credentials for records X

Generate service contract WSDL OpenAPI

Views

Look up published table views X

Datasets

Select dataset information X

Select root or child datasets X

Dataspaces

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1061

Operations SOAP REST

Select dataspace or snapshot information X

Select root or children dataspaces, or select snapshots X

Create, close, merge a dataspace X X

Create, close a snapshot X X

Validate a dataspace or a snapshot X

Validate a dataset X

Locking, unlocking a dataspace X X

Workflow

Start, resume or end a workflow X

Administration

Manage the default directory content 'Users', 'Roles'... tables. X X

Open, close the user interface X X

Select, insert, update, delete operations for administration dataset X

Select the system information X X

Staging API X (*)

Other

Develop web services from the Java API X (*)

(*) See REST Toolkit [p 1223] for more information.

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 6.2.0 1062

165.7 Limitations

Date, time & dateTime format
Data services only support the following date and time formats:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-ddTHH:mm:ss.SSS 2007-12-31T11:55:00

JMS
• JMS protocol is not supported.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1063

CHAPTER 166
Built-in RESTful services

This chapter contains the following topics:

1. Introduction

2. Request

3. Response

4. Administration operations

5. Token authentication operations

6. Data operations

7. Form data operations

8. Dataset operations

9. Dataspace operations

10.Health operations

11.OpenAPI operations

12.Staging operations

13.Limitations

166.1 Introduction
The architecture used is called ROA (Resource-Oriented Architecture), it can be an alternative to
SOA (Service-Oriented Architecture). The chosen resources are readable and/or writable by third-
party systems, according to the request content.
The HATEOAS approach of the built-in RESTful services also allows for an intuitive and
straightforward navigation, which implies that the data details could be obtained through a link.

Note

All operations are stateless.

166.2 Request
This chapter describes the elements to use in order to build a conform REST request, such as: the
HTTP method, the URL format, the header fields and the message body.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1064

See also

Interactions [p 1053]

Security [p 1057]

HTTP method
Considered HTTP methods for built-in RESTful services, are:

• GET: used to select master data defined in the URL (the size limit of the URL depends on the
application server and on the browser; it must be lower than or equal to 2kB).

• POST: used to insert records in a table, or to select the master data defined in the URL (the size
limit is 2MB or more, depending on the application server. Each parameter is limited to a value
containing 1024 characters).

• PUT: used to update the master data defined in the URL.

• DELETE: used to delete either the record defined in the URL, or multiple records defined by the
table URL and the record keys in the message body.

URL
REST URL contains:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/{categoryVersion}/
{specificPath}[:{extendedAction}]?{queryParameters}

Where:

• <ebx-dataservices> corresponds to the 'ebx-dataservices.war' web application's path. The path
is composed by multiple, or none, URI segments followed by the web application's name.

• {category} corresponds to the operation category [p 1065].

• {categoryVersion} corresponds to the category version: current value is v1.

• {specificPath} corresponds to a specific path inside the category.

• {extendedAction} corresponds to the extended action name (optional).

• {queryParameters} corresponds to common [p 1068] or dedicated operation parameters passed in
the URL.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1065

Operation category
Specializes the operation; it is added in the path of the URL in {category}, and takes one of the
following values:

admin Administration operations reserved to administrators.
See Administration operations [p 1071] for more
information.

auth Manages token authentication method.
See Token authentication operations [p 1073] and Token
Authentication Scheme [p 1057] for more information.

data or data-compact Lists dataset content; requests a table, a record or a field
record content, including modified operations on dataset
node, table, record and record field. A compact format is
available, to ease interaction in simple use cases.
Manages dataspace and snapshot life cycle.
See Data operations [p 1076], Dataspace operations [p

1111] and Compact format limitations [p 1126] for more
information.

data-bo or data-compact-bo Requests a table, a record, or a field record content
enables navigation through defined business objects [p 78].
A compact format is available to ease interaction in simple
use cases.
Deletes a record with its related records under other tables
defined on business object [p 78] relationships.
See Data operations [p 1076] for more information.

form-data or form-data-compact Validates incoming data, and returns a report before
inserting or updating a dataset node, record or record field.
(A compact format is available to ease interaction for simple
use cases.)
See Form data operations [p 1105] and Compact format
limitations [p 1126] for more information.

health Server health information returns information for a
monitoring tool or container probes.
See Health operations [p 1119] for more information.

history Lists the content of a history dataset; requests a history table,
a history of a record or a history record.
See Data operations [p 1076] for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1066

See also History [p 451]

api Generates the OpenAPI document of the selected resource.
See OpenAPI operations [p 1121] for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1067

Header fields
These header field definitions are used by TIBCO EBX®.

Accept Used to specify (by order of preference) content types
to be used in the response: the first supported one will
be chosen and specified in the response header Content-
Type. Currently, the only supported one is application/
json. If none is supported, the result depends on property
ebx.dataservices.rest.request.checkAccept:

• If true, an HTTP error response is returned with code
406.

• If false, the response is returned with the default
content type, that is application/json.

See also Configuring data services [p 560]

Accept-Language Used to specify the preferred locale for the response. The
supported locales are defined in the schema model.
If none of the preferred locales is supported, the default
locale for the current model is used.

Authorization Supported authentication schemes include 'Basic
Authentication Scheme' and 'Token Authentication
Scheme'; if another scheme is used, the request is rejected.

See also Authentication [p 1057]

Content-Type Used to specify the request body media type. The
supported types are application/json and application/x-
www-form-urlencoded. If the request value is not supported,
then an HTTP error message is returned with the code
415(Unsupported media type).

See also Configuring data services [p 560]

X-Requested-With If present and in case of authentication failure, prevents
from adding the WWW-Authenticate header in the response.

See also Response header WWW-Authenticate [p 1069]

See RFC2616 for more information about HTTP Header Field Definitions.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1068

Common parameters
These optional parameters are available for all data service operations.

Parameter Description

disableRedirectionToLastBroadcast This parameter only has impact in a D3 architecture.

If true, access to a delivery dataspace on a D3 primary node is not redirected to the
last broadcast snapshot. Otherwise, access to such a dataspace is always redirected
to the last broadcast snapshot.

If the specified dataspace is not a delivery dataspace on a D3 primary node, this
parameter is ignored.

Boolean type value. If this parameter is not present, the default is false
(redirection to a D3 master enabled), unless the configuration property
ebx.dataservices.disableRedirectionToLastBroadcast.default [p 560] has been set.

See also Primary node [p 697]

ebx-indent

indent (Deprecated since 6.0.0)

Specifies whether the response should be indented, to be easier to read for a human.

Boolean type, default value is false.

ebx-channel Specifies the session channel [p 1054].

String type, possible values are:

• dataServices

• ui

The default value is dataServices.

See also Constants.Data.PARAM_EBX_CHANNELAPI

Message body
It contains the request data using the JSON format, see Extended JSON request body [p 1131] and
Compact JSON request body [p 1161].

Note

Requests may define a message body only when using POST or PUT HTTP methods.

166.3 Response
This chapter describes the responses returned by built-in RESTful services.

• See Exception handling [p 1056] for details on standard error handling (where the HTTP code is
greater than or equal to 300).

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1069

Header fields
These header field definitions are used by EBX®.

Content-Language Indicates the locale used in the response for labels and
descriptions.

Content-Type Indicates the response body content type.

Location If a new record has been successfully inserted, the query
URL for this record is returned by this field.

WWW-Authenticate This header field is added to the HTTP response when
authentication fails with the 401 (Unauthorized) HTTP
code. Its value consists of a list with at least one
authentication method applicable to the request URI. It is
present if and only if the following conditions are verified:

• the 'Basic Authentication Scheme' method is enabled
and

• the X-Requested-With HTTP header is not present.

If the client is able to interpret the authentication method, it
is possible to resubmit the request providing the appropriate
credentials.
The administration property
ebx.dataservices.rest.auth.tryBasicAuthentication [p 560]

must be set to true.

See also

Request header X-Requested-With [p 1067]

Authentication [p 1057]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1070

HTTP codes

HTTP code Description

200 (OK) The request has been successfully handled.

201 (Created) A new record has been created, in this case, the header field Location is returned
with its resource URL.

204 (No content) The request has been successfully handled but no response body is returned.

206 (Partial Content) The request has been successfully handled but a consistent partial response body is
returned.

400 (Bad request) The request URL or body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to read or modify the specified resource for the authenticated
user.

This error is also returned when the user:

• is not allowed to modify a field mentioned in the request message body.

• is not allowed to access the REST connector.

For more details, see Global permissions [p 1058].

404 (Not found) The resource specified in the URL cannot be found.

406 (Not acceptable) Content type defined in the request's Accept parameter is not supported. This error
can be returned only if the EBX® property ebx.rest.request.checkAccept is set
to true.

409 (Conflict) A concurrent modification has occurred.

See also Optimistic locking [p 1101]

415 (Unsupported media type) The request content is not supported, the request header value Content-Type is not
supported by the operation.

422 (Unprocessable entity) The new resource's content cannot be accepted for semantic reasons.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

Message body
The response body content's format depends on the HTTP code value:

• HTTP codes from 200 included to 300 excluded: the content format depends on the associated
request (Extended JSON [p 1134] and Compact JSON [p 1164] samples).

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1071

With the exception of code 204 (No content).

• HTTP codes greater than or equal to 300: the content describes the error. See JSON [p 1056] for
details on the format.

166.4 Administration operations
Administration operations are related to:

• the administration category.

• the administration dataspaces accessible through the data category.

Note

administration category and administration dataspaces can only be used by
administrators.

Directory operations
The EBX® default directory configuration is manageable with built-in RESTful services. The users
and roles tables, the mailing lists and other objects are concerned. For more information, see Users
and roles directory [p 661].

Note

Triggers are present on the directory's tables, ensuring the data consistency.

The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/Bebx-directory/ebx-directory

Directory configuration operations
The EBX® default directory configuration is manageable like dataset nodes. It can be accessed
and modified through the data category operations. Each field is self-described when metamodel is
requested.
See select [p 1077] and update [p 1094] operations for more information.

Mailing lists operations
There are two default mailing lists that can be configured in the EBX® directory: one for everybody
and one for administrators. These lists can be handled like dataset nodes through the data category
operations.
See select [p 1077] and update [p 1094] operations for more information.

Directory users operations
Users can be manipulated like records of the data category using the operations of the latter. For
security purposes, an administrator cannot delete himself. The user's salutation must be chosen among
the ones available in the 'salutations' table.
See select [p 1077], update [p 1094], insert [p 1090] and delete [p 1096] operations for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1072

Directory roles operations
Roles are records of the data category and can be managed with its operations. EBX® roles are
assigned to users through the 'usersRoles' association table. 'usersRoles' is automatically fed when the
directory is administered through the user interface. However, it is not the case through data services
and role assignments require manual operations. Roles inclusions are specified in the 'rolesInclusions'
association table. As for the 'usersRoles' table, the management of roles inclusions requires manual
operations. Each table is self-descriptive when metamodel is requested.
See select [p 1077], update [p 1094], insert [p 1090] and delete [p 1096] operations for more information.

User interface operations
The EBX® user interface can be opened or closed to users for maintenance needs. Handled
information is similar to what is contained in the UI tab 'Administration' > 'User interface
configuration' > 'Advanced perspective' > 'Graphical interface configuration' > 'Application locking'.
The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/Bebx-manager/ebx-manager/
domain/toolStatus

See also Application locking [p 634]

Retrieve user interface state
User interface status and the unavailability message are accessible like dataset nodes.
See Select operation [p 1077] and the Extended JSON [p 1143] or Compact JSON [p 1168] example, for
more information.

Open or close user interface
User interface status and the unavailability message can be modified like dataset nodes using the
update operation. To open the user interface set the content of toolStatus to true, or to false to
close it.
See Update operation [p 1094] and the Extended JSON [p 1134] or Compact JSON [p 1163] examples,
for more information.

System information operation
This operation returns system information on the EBX® server. This is accepted for GET and POST
HTTP methods. Warning: no update will be possible in the POST HTTP method because the request
body is ignored. The information returned is the same as the information contained in the log
header kernel.log or in the UI tab 'Administration' > 'System Information'. The response contains
several keys, labels, and values representing the configuration and status of EBX®. The mode of
representation of the response may be flat or hierarchical.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/admin/v1/systemInformation

See also

TIBCO EBX® main configuration file [p 549]

Repository administration [p 618]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1073

Parameters
The following parameter is applicable.

Parameter Description

systemInformationMode Specifies the returned mode:

• flat: A flat representation under the following information groups:
bootInfoEBX, repositoryInfo and bootInfoVM.

• hierarchical: A hierarchical representation.

String type, default value is flat.

HTTP codes

HTTP code Description

200 (OK) The system information was successfully returned.

400 (Bad request) The request is not correct, it contains one of the following errors:

• the HTTP method is not GET nor POST,

• the HTTP parameter systemInformationMode is not correct,

• the operation is not supported.

• the request path is invalid.

403 (Forbidden) The user is not an administrator.

Response body
It is returned, if and only if, the HTTP code is 200 (OK). The content structure depends on the provided
parameter systemInformationMode or its default value.
See the JSON [p 1182] example of the flat representation.
See the JSON [p 1182] example of the hierarchical representation.

166.5 Token authentication operations
These operations allow to create or revoke an authentication token. Authentication tokens have a
timeout period. If a token is not used to access the EBX® server within this period, it will automatically
be revoked. This timeout period is refreshed on each access to EBX® server.

Note

The token timeout is modifiable through the administration property
ebx.dataservices.rest.auth.token.timeout [p 560] (the default value is 30 minutes).

Create token operation
This operation requires using the POST HTTP method with a request containing the user's credentials
and, optionally, session parameters [p 1053].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1074

The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/token:create

Message body
A message body must be defined in the HTTP request. It necessarily contains one of the following
set of data:

• A login and a password value. Both JSON attributes are mandatory and of String types.
See Directory.authenticateUserFromLoginPasswordAPI for more information.

• The specific JSON attribute set to true. When activated, this flag allows to performed a
user authentication against the whole HTTP request. Warning, even if login and password
attributes are defined in the JSON request's body, setting specific to true lead to a specific user
authentication.
See Directory.authenticateUserFromHttpRequestAPI for more information.

See the JSON [p 1181] examples of a token creation request.

HTTP codes

HTTP code Description

200 (OK) The token was successfully created.

400 (Bad request) For one of the following reasons:

• the syntax is not correct,

• the HTTP method is not POST,

• the operation is not supported.

401 (Unauthorized) For one of the following reasons:

• The login and/or password is/are incorrect.

• Authentication data for other methods is defined.

422 (Unprocessable entity) For one of the following reasons:

• PasswordMustChange: The password must be changed (only available with the
default directory). See Change password operation [p 1075].

• RestrictedAccess: User access is closed for maintenance or other actions
(reserved to administrators).

Response body
If the HTTP code is 200 (OK), the body holds the token value and its type.
See the JSON [p 1183] example of a token creation response.
The token can later be used to authenticate a user by setting the HTTP-Header Authorization
accordingly.

See also 'Token authentication Scheme' method [p 1057]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1075

Change password operation
This operation modifies the password of an existing user account. It can be used in an authenticated
context: login parameter, if present, is checked against the current session or taken from it, if absent.
It could also be used in an unauthenticated context, for example when the Create token operation [p

1073] aborts with the HTTP code 422 (Unprocessable entity) with reason: PasswordMustChange.
It requires the use of:

• the EBX® default directory

• the POST HTTP method

• the message body containing the structure specified below

The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/user:changePassword

Message body
The message body must be defined in the request. It necessarily contains a password and a
passwordNew, the login is optional (all are String).
See the JSON [p 1181] example of a password change and token creation request.

HTTP codes

HTTP code Description

204 (No content) The password has been changed.

400 (Bad request) For one of the following reasons:

• the EBX® default directory is required,

• the syntax is not correct,

• the HTTP method is not POST,

• the provided login and the user's session one mismatch

• the operation is not supported.

401 (Unauthorized) For the following reason:

• The login and/or password is/are incorrect.

422 (Unprocessable entity) For one of the following reasons:

• PasswordChangeAbort: passwordNew is empty.

• PasswordChangeAbort: passwordNew is equal to password.

• PasswordChangeAbort: password is incorrect.

• RestrictedAccess: User access is closed for maintenance or other actions
(reserved to administrators).

Response body
If HTTP code 204 (No content) is returned, then the password has been modified.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1076

Revoke token operation
This operation requires using the POST HTTP method. No message body is needed.
The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/token:revoke

Header fields

Authorization This field is required, tokenType and accessToken fields
must have the values returned from the "token create"
operation.
> Authorization: <tokenType> <accessToken>

HTTP codes

HTTP code Description

204 (No content) The token has been revoked successfully.

400 (Bad request) For one of the following reasons:

• the configuration is not activated,

• the syntax is incorrect,

• the HTTP method is not POST,

• the operation is not supported.

401 (Unauthorized) Authentication has failed.

166.6 Data operations
The data category operations concern the datasets, the dataset fields, tables, records or record fields.
The data-compact category operations concern the dataset fields, tables, records or record fields.
The data-bo category operations concern data category operations with features to navigate through
business objects [p 78].
The data-compact-bo category operations concern data-compact category operations with features
to navigate through business objects [p 78].
The history category operations concern historized content from datasets, tables, records or record
fields.
The form-data category operations concern the dataset fields, records or record fields when constraints
must remain valid on content creation or update.
The form-data-compact category operations concern the dataset fields, records or record fields when
constraints must remain valid on content creation or update.
See Form data operations [p 1105] for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1077

Select operation
Select operation returns hierarchical content. This operation may use one of the following methods:

• GET HTTP method,

• POST HTTP method without message body or

• POST HTTP method with a message body, with :select URL extended action and optionally
session parameters [p 1053].

URL formats are:

• Dataset tree, depending on operation category [p 1065]:
The data, or data-compact, category returns the hierarchy of the selected dataset which includes
group and table nodes.
The history category returns the hierarchy of the selected history dataset which includes the
pruned groups for history table nodes only.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}

Note

Terminal nodes and sub-nodes are not included.

• Dataset node: the data, or data-compact, category returns the terminal nodes contained in the
selected node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}[:select]

Note

Not applicable with the history category.

• Table, depending on operation category [p 1065]:
the data, or data-compact, category returns the table content and/or metamodel, current page
records and URLs for pagination.
The history category returns the history table content and/or metamodel, current page records
and URLs for pagination.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}[:select]

See also

Count operation [p 1098]

Look up table views operation [p 1104]

• Record, depending on operation category [p 1065]:
the data, or data-compact, category returns the record content and/or metamodel.
The history category returns history record content and/or metamodel.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}[:select]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1078

http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}[:select]?primaryKey={xpathExpression}

Note

The record access by the primary key (primaryKey parameter) is limited to its root
node. It is recommended to use the encoded primary key, available in the details
field in order to override this limitation. Similarly, for a history record, use the
encoded primary key, available in the historyDetails field.

• Field, depending on operation category [p 1065]:
the data, or data-compact, category returns the field record content where structure depends on
its type.
The history category returns the field history record content where structure depends on its type.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}[:select]

Note

The field must be either an association node, a selection node, a terminal node or
above.

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data, data-
compact, data-bo, data-bo-compact or history).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node, that can be a group node or a table
node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• {xpathExpression} corresponds to the record primary key, using the XPath expression.

• {pathInRecord} corresponds to the path starting from the table node.

• :select extended action is required when POST HTTP method is used with a body message.

Business object [p 78] categories (data-bo and data-compact-bo) enrich the responses of Table,
Record, and Field requests by adding data from other tables.

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1079

Parameters
The following parameters are applicable to the select operation.

Parameter Description

includeContent Includes the content field with the content corresponding to the selection.

Boolean type, default value is true.

includeDetails Includes the details field in the metamodel and in the content, for each indirect
reachable resource. The returned value corresponds to its URL resource.

Type Boolean, default value is true.

See also includeMetamodel [p 1080]

includeHistory Includes those fields for a historized content:

• The history property in the metamodel. The returned value corresponds to a
boolean value.

• The historyDetails property in the content and for each indirectly reachable
resource. This point is coupled to the includeDetails [p 1079] parameter. The
returned value corresponds to its URL resource.

Boolean type, default value is false.

Note

The includeHistory parameter is ignored in the history
category, the default value is true.

See also

includeMetamodel [p 1080]

includeDetails [p 1079]

includeLabel Includes the label field associated with each simple type content.

Possible values are:

• yes: the label is included for the foreign key, enumeration, record and selector
values.

• all: the label field is included, as for the yes value and also for the Content of
simple type [p 1157].

See also SchemaNode.displayOccurrenceAPI

• no: the label field is not included (integration use case).

String type, default value is yes.

Note

The label field is not included if it is equal to the content field.

includeMeta Deprecated since 6.1.0, replaced by includeMetamodel [p 1080].

includeMetadata The response contains the specified metadata. Each returned record contains
additional elements called steps under the ebx-metadata root element.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1080

Parameter Description

For instance, the 'system' step value will contain technical data. See optimistic
locking [p 1101] for more information.

String value (default value is empty) steps must be separated by a comma: system,
teamUp. All steps can be returned using the ebx-all value.

See also Technical data [p 1178]

includeMetamodel Includes the meta field corresponding to the description of the structure returned in
the content field.

Boolean type, default value is false.

See also

Metamodel [p 1143]

includeHistory [p 1079]

includeDetails [p 1079]

includeMergeInfo Includes the merge_info corresponding to a field of the technical data of an history
transaction and has a potentially high access cost.

Boolean type, default value is true.

Note

This parameter is ignored with the data category.

See also REST access to history table [p 590]

includeOpenApiDetails Includes the OpenAPI specification URL for each describable node.

Type Boolean, default value is false.

Note

This query parameter is ignored if the includeDetails [p 1079] one is
set to false.

See also

OpenAPI operations [p 1121]

includeDetails [p 1079]

includeSelector Includes the selector field in the response, for each indirect reachable resource.
The returned value corresponds to its URL resource.

Type Boolean, default value is true.

See also selector [p 1086]

includeSortCriteria Includes the sortCriteria field corresponding to the list of sort criteria applied.

The sort criteria parameters are added by using:

• sort [p 1083]

• sortOnLabel [p 1084]

• viewPublication [p 1085]

Boolean type, default value is false.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1081

Parameter Description

Example JSON [p 1151]

includeTechnicals Deprecated since 6.1.0, replaced by includeMetadata [p 1079].

Note

This parameter is ignored with the history category.

includeValidation Includes the validation report corresponding to the selection.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

See also includeDetails [p 1079]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1082

Table parameters
The following parameters are applicable to tables, associations and selection nodes.

Parameter Description

filter Quick search predicate or complete XPath predicate [p 431] expression defines the
field values to which the request is applied. If empty, all records will be retrieved.

String type value.

Note

The history code operation value is usable with ebx-
operationCode path field from the meta section associated with
this field.

See also

sort by relevancy [p 1084]

includeMetadata parameter [p 1079]

See also Search predicate [p 432]

historyMode Specifies the filter context applied on table.

String type, possible values are:

• CurrentDataSpaceOnly: history in current dataspace

• CurrentDataSpaceAndAncestors: history in current dataspace and ancestors

• CurrentDataSpaceAndMergedChildren: history in current dataspace and
merged children

• AllDataSpaces: history in all dataspaces

The default value is CurrentDataSpaceOnly.

See also history [p 1065]

Note

This parameter is ignored with the data category.

includeOcculting Includes the records in occulting mode.

Boolean type, default value is false.

See also Inheritance [p 1102]

primaryKey Search a record by a primary key, using the XPath expression. The XPath predicate
[p 431] expression should only contain field(s) of the primary key and all of them.
Fields are separated by the operator and. A field is represented by one of the
following possibilities according to its simple type:

• For the date, time or dateTime types: use the date-equal(path, value)

• For other types: indicate the path, the = operator and the value.

Example with a composed primary key: ./pk1i=1 and date-equal(./
pk2d,'2015-11-13')

The response will only contain the corresponding record, otherwise an error is
returned. Consequently, the other table parameters are ignored (as filter [p 1082],
viewPublication [p 1085], sort [p 1083], etc.)

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1083

Parameter Description

String type value.

pageFirstRecordFilter Deprecated since 5.9.0, replaced by pageRecordFilter

pageRecordFilter Specifies a server side built filter, for pagination, pointing to a record. This filter is
strongly linked to the pageAction value and should not be modified on the client
side. The filter takes the form of a record XPath predicate [p 431] expression used to
figure out the pagination contexts.

String type.

See also Pagination [p 1174]

pageAction Specifies the pagination action to perform from the identifier held by
pageRecordFilter.

String type, default value is first. The possible values are:

• first

• previous

• next

• last

See also RequestPaginationAPI

pageSize Specifies the maximum number of records per page.

Integer type, default value is based on the user preferences. If the specified value is
0, selects with the maximum recommended page size, default is 10000.

See also ebx.dataservices.pagination.maxSize.default [p 560]

Note

If the specified page size value exceeds the maximum page size,
the maximum page size is selected.

sort Specifies that the operation result will be sorted according to the specified criteria.
The criteria are composed of one or more criterion, the result will be sorted by
priority from the left. A criterion is composed of the field path and, optionally, the
sorting order (ascending or descending, on value or on label). This parameter can be
combined with:

1. the sortOnLabel [p 1084] parameter as a new criteria added after the sort.

2. the viewPublication [p 1085] parameter as a new criteria added after the sort.

The value structure is as follows:
<path1>:<order>;...;<pathN>:<order>

Where:

• <path1> corresponds to the field path in priority 1.

• <order> corresponds to the sorting order, with one of the following values:

• asc: ascending order on value (default),

• desc: descending order on value,

• lasc: ascending order on label,

• ldesc: descending order on label.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1084

Parameter Description

String type, the default value orders according to the primary key fields (ascending
order on value).

Note

The history code operation value is usable with the ebx-
operationCode path field from the meta section associated with
this field.

Note

This parameter is ignored when the sort by relevancy [p 1084] is
activated.

Note

includeMetadata parameter [p 1079]

See also Request.setSortCriteriaAPI

sortByRelevancy Specifies that the operation result will be sorted by relevancy, only if these
conditions are fulfilled:

• The Quick Search [p 122] is activated by specifying an osd:search predicate
directly in the filter [p 1082] parameter.

• The request is not applied on an inherited dataset, history table or mapped table.

String type. The possible values are:

• lasc: ascending order on label,

• ldesc: descending order on label.

If the sort by relevancy is activated, the following parameters are ignored: sort [p

1083], sortOnLabel [p 1084], sortPriority [p 1085] and sort criteria defined through the
viewPublication [p 1085].

See also Search predicate [p 432]

sortOnLabel Specifies that the operation result will be sorted according to the record label. This
parameter can be combined with:

1. the sort [p 1083] parameter as a new criteria added before the sortOnLabel.

2. the viewPublication [p 1085] parameter as a new criteria added after the
sortOnLabel.

The value structure is as follows:
<order>

Where:

• <order> corresponds to the sorting order, with one of the following values:

• lasc: ascending order on label,

• ldesc: descending order on label.

The behavior of this parameter is described in the section defaultLabel [p 855].

String type value.

See also Limitation [p 1126]

Note

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1085

Parameter Description

This parameter is ignored when the sort by relevancy [p 1084] is
activated.

sortPriority Overrides the default priority of sort groups:

• sort

• sortOnLabel

• sortFromView

Comma separated String type, default value is: sort,sortOnLabel,sortFromView.

Note

This parameter is ignored when the sort by relevancy [p 1084] is
activated.

viewPublication Specifies the name of the published view. This parameter can be combined with:

1. the filter [p 1082] parameter as the logical and operation.

2. the sort [p 1083] parameter as a new criteria added before the viewPublication.

3. the sortOnLabel [p 1084] parameter as new criteria added before the
viewPublication.

The behavior of this parameter is described in the section EBX® as a Web
Component [p 412].

String type value.

Note

The sort criteria, defined through this parameter, is ignored when
the sort by relevancy [p 1084] is activated.

See also Look up table views operation [p 1104]

Selector parameters
The following parameters are only applicable to fields that return an enumeration, foreign key or
osd:resource (Example JSON [p 1158]). By default, a pagination mechanism is always enabled. Some

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1086

selector's select operations require input values. Thus, the uses of POST HTTP method message body
[p 1132] allows to provide a record content.

Parameter Description

selector Specifies whether:

• true: returns all possible values (includes their labels)

• false: returns the current values for the current field.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

firstElementIndex Specifies the index of the first element returned. It must be an integer higher than or
equal to 0.

Integer type, default value is 0.

pageSize Specifies the maximum number of elements per page.

Integer type, default value is based on the user preferences. If the specified value is
0, selects with the maximum recommended page size, default is 10000.

See also ebx.dataservices.pagination.maxSize.default [p 560]

Note

If the specified page size value exceeds the maximum page size,
the maximum page size is selected.

selectorFilter Specifies the filter of the selector.

String type value, the syntax complies with the Quick Search [p 122].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1087

HTTP codes

HTTP code Description

200 (OK) The selected resource is successfully retrieved.

206 (Partial Content) Partial content is returned. It happens on business object categories when the size of
the response exceeds the defined limit.

See ebx.dataservices.rest.bo.maxResponseSizeInKB and performance [p 590] for
more information.

Note

The serialized records in the partial content are not truncated.

400 (Bad request) The request is incorrect. This occurs when:

• The selected field in a record or a dataset is sub-terminal,

• The XPath predicate of the filter parameter is malformed or contains
unfilterable nodes.

• The XPath predicate of the primaryKey parameter is malformed or is not a
record primary key.

• The sort criteria of the sort parameter have an invalid syntax or contain
unsortable nodes.

• pageAction parameter value is not included in allowed values, or
pageRecordFilter is malformed or non-existent when selecting next or
previous page.

• pageSize parameter value is below 2.

• The table view for the viewPublication parameter is either hierarchical, non-
existent or non-published.

• The selector parameter is used for a non-enumerated node, or the
firstElementIndex is negative, higher than or equal to the number of values.

403 (Forbidden) The selected resource is hidden for the authenticated user.

404 (Not found) The selected resource is not found.

Response body
After a successful dataset, table, record or field selection, the result is returned in the response body.
The content depends on the provided parameters and selected data.
Examples: Extended JSON [p 1135], Compact JSON [p 1164].

Prepare operations
Prepare for creation or duplication operations are used to create a new transient record with an initial
content or with the content of a record to duplicate. A transient record corresponds to a content that
is not persisted yet. Default values and fields, initialized by table triggers, are considered. Only field
values with, at least, read-only access permissions are returned. These operations can optionally return
metamodel to improve and assist data capture on the client side. Auto-incremented fields are only
returned in the metamodel. By enabling the selector parameter, a transient record's field can be queried
to the retrieve possible values of an enumerated field, a foreign key, etc. Furthermore, selector's select

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1088

operations allows to provide input record data [p 1132] to manage use cases like getting metamodel on
a custom programmatic enumeration, etc.

See also TableTrigger.handleNewContextAPI

See also Default value [p 57]

After being modified on the client side, the record can be submitted to be persisted using the built-in
Form insert operation [p 1105] or Insert operation [p 1090] operations.
These prepare operations may use one of the following methods:

• GET HTTP method,

• POST HTTP method without message body or

• POST HTTP method with a message body and optionally session parameters [p 1053].

Available URL formats are:

• Prepare for creation

• Record:
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{tablePath}:prepareForCreation

• Record field:
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{tablePath}:prepareForCreation/{pathInRecord}

• Prepare for duplication

• Record:
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{tablePath}/{encodedPrimaryKey}:prepareForDuplication

• Record field:
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{tablePath}/{encodedPrimaryKey}:prepareForDuplication/{pathInRecord}

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data or data-
compact).

• {dataspace} corresponds to B followed by the dataspace identifier.

• {dataset} corresponds to the dataset identifier.

• {tablePath} corresponds to the table path node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• {pathInRecord} corresponds to the path starting from the table node.

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1089

Parameters
The following parameters are applicable to the prepare operations:

Parameter Description

includeDetails Includes the details field in the metamodel and the content, for each indirect
reachable resource. The returned value corresponds to its URL resource.

Type Boolean, default value is true.

See also includeMetamodel [p 1089]

includeMeta Deprecated since 6.1.0, replaced by includeMetamodel [p 1089].

includeMetamodel Includes the meta field holding the description of the structure returned in the
content field.

Boolean type, default value is false.

See also Metamodel [p 1143]

includeSelector Includes the selector field in the content, for each indirect reachable resource. The
returned value corresponds to its URL resource.

Type Boolean, default value is true.

See also selector [p 1086]

Selector parameters
The available parameters are similar to the selector operation ones.

See also Selector parameters [p 1085]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1090

HTTP codes

HTTP code Description

200 (OK) The selected resource has been successfully retrieved.

400 (Bad request) The request is incorrect. This occurs when:

• The selected field in a record is sub-terminal,

• pageSize parameter value is below 2, or is a string different from unbounded.

• The selector parameter is used for a non-enumerated node, or the
firstElementIndex is negative, higher than or equal to the number of values.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) The selected resource is hidden from the authenticated user.

404 (Not found) The selected resource could not be found.

Response body
After a successful prepare for a creation or duplication request, the transient record is returned in the
response body. The content depends on the provided parameters and selected data. However, it takes
a format similar to the select operation record.
Examples: Extended JSON [p 1141], Compact JSON [p 1167].

Insert operation
Insert operation uses the POST HTTP method. A body message is required to specify data. This
operation supports the insertion of one or more records in a single transaction. Moreover, it is also
possible to update record(s) through parameterization.

• Record: insert a new record or modify an existing one in the selected table.

• Record table: insert or modify one or more records in the selected table, while securing a
consistent answer. Operations are executed sequentially, in the order defined on the client side.
When an error occurs during a table operation, all updates are cancelled and the client receives
an error message with detailed information.

http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/{dataset}/
{pathInDataset}[:mass]

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data or data-
compact).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the table node.

• :mass extended action is required when updating a filtered set of records (see filter parameter
[p 1092]).

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1091

Parameters
The following parameters are applicable with the insert operation.

Parameter Description

includeDetails Includes the details field in the content to access to the details of the data. The
returned value corresponds to its URL resources.

Type Boolean, the default value is false.

Note

Only applicable on the record table.

See also Insert operation report [p 1177]

includeForeignKey Includes the foreignKey field in the answer for each record. The returned value
corresponds to the value of a foreign key field that was referencing this record.

Boolean type, the default value is false.

Note

Only applicable on the record table.

See also Insert operation report [p 1177]

includeLabel Includes the label field in the answer for each record.

Possible values are:

• yes: the label field is included.

• no: the label field is not included (use case: integration).

String type, the default value is no.

Note

Only applicable on the record table.

See also Insert operation report [p 1177]

updateOrInsert Specifies the behavior when the record to insert already exists:

• If true: the existing record is updated with new data.

For a request on a record table, the code field is added to the report in order to
specify if this is an insert 201 or an update 204.

• If false (default value): a client error is returned and the operation is aborted.

Boolean type value.

byDelta Specifies the behavior for setting value of nodes that are not defined in the request
body. This is described in the Update modes [p 1179] section.

Boolean type, the default value is true.

Note

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1092

Parameter Description

Applicable on record in update mode and if the updateOrInsert [p

1091] parameter is true.

filter Determines the records updated using a quick search predicate, or a complete XPath
predicate [p 431] expression when a large number of records are updated. The request
body must be a record structure with the fields to update. This parameter must use
the :mass extended action. Otherwise, an error is returned.

Use the ebx-all value to select all records.

When the viewPublication [p 1092] query parameter is used, the scope is limited to the
filtered view.

String type value that must not be empty. Otherwise, an error is returned.

Note

When using the query parameters includeDetails [p 1091],
includeLabel [p 1091] or includeForeignKey [p 1091], only the first
1000 report entries are returned in the report.

viewPublication Specifies the name of the published view to be considered during a massive update.

The behavior of this parameter is described in the EBX® as a Web Component [p 412]

section.

String type value.

blockingConstraintsDisabled Specifies whether blocking constraints are ignored. If they are, the operation is
committed regardless of the validation error created. Otherwise, the operation is
aborted.

Boolean type with a default value of false.

See Blocking and non-blocking constraints [p 885] for more information.

Message body
The request must define a message body. The format depends on the inserted object type:

• Record: similar to the select operation of a record but without the record's header (example
Extended JSON [p 1132], Compact JSON [p 1162]).

• Record table: Similar to the select operation on a table but without the pagination information
(example Extended JSON [p 1133], Compact JSON [p 1162]).

See also Inheritance [p 1102]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1093

HTTP codes

HTTP code Description

200 (OK) If the request relates to a record table.

The insert request was applied successfully, an optional report is returned in the
response body.

201 (Created) If the request relates to a record.

A new record has been created, in this case, the header field Location is returned
with its resource URL.

204 (No content) If the request relates to a record.

Only available if updateOrInsert is true, an existing record has been successfully
updated, in this case, the header field Location is returned with its resource URL.

400 (Bad request) The request is incorrect. This occurs when the body message structure does not
comply with what was mentioned in Message body [p 1092].

403 (Forbidden) Authenticated user is not allowed to create a record or the request body contains a
read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, only available if updateOrInsert is true, the Optimistic
locking [p 1101] is activated and the content has changed in the meantime, it must be
reloaded before update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking validation error occurs (only available if
blockingConstraintsDisabled is false).

• The record cannot be inserted because a record with the same primary key
already exists (only available if updateOrInsert is false).

• The record cannot be inserted because the definition of the primary key is either
non-existent or incomplete.

• The record cannot be updated because the value of the primary key cannot be
modified.

Response body
The response body format depends on the inserted object type:

• Record: is empty if the operation was executed successfully. The header field Location is returned
with its URL resource.

• Record table: (optional) contains a table of element(s), corresponding to the insert operation
report (example JSON [p 1177]). This report is automatically included in the response body, if at
least one of the following options is set:

• includeForeignKey

• includeLabel

• includeDetails

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1094

See also Inheritance [p 1102]

Update operation
This operation allows the modification of a single dataset or record. The PUT HTTP method must be
used. Available URL formats are:

• Dataset node: modifies the values of terminal nodes contained in the selected node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}

• Record: modifies the content of selected record.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}

Note

Also available for POST HTTP method. In this case, the URL must point to the table
and the parameter updateOrInsert must be set to true.

Note

Use Insert operation [p 1090] with updateOrInsert=true and byDelta=true
parameters to modify the content of several records.

• Field: update of a single field of the selected record.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}

Note

The field must be either a terminal node or above.

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data or data-
compact).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node:

• For dataset node operations, this must be any terminal node or above except table node,

• For record and field operations, this corresponds to the table node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• {pathInRecord} corresponds to the path starting from the table node.

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1095

Parameters
Here are the parameters applicable with the update operation.

Parameter Description

blockingConstraintsDisabled Specifies whether blocking constraints are ignored, if so, the operation is committed
regardless of the validation error created, otherwise, the operation would be aborted.

Boolean type, default value is false.

See Blocking and non-blocking constraints [p 885] for more information.

byDelta Specifies the behavior for setting value of nodes that are not defined in the request
body. This is described in the Update modes [p 1179] section.

Boolean type, the default value is true.

checkNotChangedSinceLastUpdateTime Timestamp in datetime format used to ensure that the record has not been modified
since the last read. Also see the Optimistic locking [p 1101] section.

DateTime type value.

Message body
The request must define a message body.
The structure is the same as for:

• the dataset node (sample Extended JSON [p 1131], Compact JSON [p 1161]),

• the record (sample Extended JSON [p 1132], Compact JSON [p 1162]),

• the record fields (sample Extended JSON [p 1133], Compact JSON [p 1162]),

depending on the updated scope, by only keeping the content entry.

See also Inheritance [p 1102]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1096

HTTP codes

HTTP code Description

204 (No content) The record, field or dataset node has been successfully updated.

400 (Bad request) The request is incorrect. This occurs when the body request structure does not
comply.

403 (Forbidden) Authenticated user is not allowed to update the specified resource or the request
body contains a read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, the Optimistic locking [p 1101] is activated and the content
has changed in the meantime, it must be reloaded before the update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking validation error occurs (only available if
blockingConstraintsDisabled is false).

• The record cannot be updated because the value of the primary key cannot be
modified.

Delete operation
The operation uses the DELETE HTTP method.
Two URL formats are available:

• Record: delete a record specified in the URL.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}/{encodedPrimaryKey}

• Record table: deletes several records in the specified table, while providing a consistent answer.
This mode requires a body message containing a record table. The deletions are executed
sequentially, according to the order defined in the table. When an error occurs during a table
operation, all deletions are cancelled and an error message is displayed with detailed information.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}[:mass]

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the table node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• :mass extended action is required when deleting a filtered set of records (see filter parameter [p

1097]).

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1097

In a child dataset context, this operation modifies the inheritanceMode property value of the record
as follows:

• A record with inheritance mode set to inherit or overwrite becomes occult.

• A record with inheritance mode set to occult becomes inherit if the inheritIfInOccultingMode
operation parameter is set to true or is undefined, otherwise there is no change.

• A record with inheritance mode set to root is simply deleted.

See also Inheritance [p 1102]

Business object [p 78] categories (data-bo and data-compact-bo) will do cascade deletion of all related
records to the record to delete through business object relations.

Parameters
Here are the following parameters applicable with delete operation.

Parameter Description

includeOcculting Includes occulted records.

Boolean type, the default value is false.

inheritIfInOccultingMode Deprecated since 5.8.1 While it remains available for backward compatibility
reasons, it will eventually be removed in a future version.

Inherits the record if it is in occulting mode.

Boolean type, the default value is true.

checkNotChangedSinceLastUpdateTime Timestamp in datetime format used to ensure that the record has not been modified
since the last read. Also see the Optimistic locking [p 1101] section.

DateTime type value.

blockingConstraintsDisabled Specifies whether blocking constraints are ignored, if so, the operation is committed
regardless of the validation error created, otherwise, the operation would be aborted.

Boolean type, default value is false.

See Blocking and non-blocking constraints [p 885] for more information.

filter Quick search predicate or complete XPath predicate [p 431] expression that defines the
records to which the massive delete is applied. This parameter must imperatively be
used with :mass extended action otherwise an error would be returned.

The ebx-all value is used to select all records.

When the viewPublication [p 1097] query parameter is used, the scope is limited to the
filtered view.

String type value, it must not be empty otherwise an error would be returned.

viewPublication Specifies the name of the published view to be considered during the massive
delete.

The behavior of this parameter is described in the section EBX® as a Web
Component [p 412].

String type value.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1098

Message body
The request must define a message body only when deleting several records without using filter or
deleteAll query parameter:

• Record table: The message contains a table of elements related to a record, with for each element
one of the following properties:

• details: corresponds to the record URL, it is returned by the select operation.

• primaryKey: corresponds to the primary key of the record, using the XPath expression.

• foreignKey: corresponds to the value that a foreign key would have if it referred to a record.

See also PrimaryKeyAPI

Examples: Extended JSON [p 1134], Compact JSON [p 1163].

HTTP codes

HTTP code Description

200 (OK) The operation has been executed successfully. A report is returned in the response
body.

400(Bad request) The request is incorrect. This occurs when:

• the structure of the message body does not comply with Message body [p 1098].

• the message body contains a record table while the URL specifies a record.

403 (Forbidden) Authenticated user is not allowed to delete or occult the specified record.

404 (Not found) The selected record is not found. In the child dataset context, it should be necessary
to use the includeOcculting parameter.

409 (Conflict) Concurrent modification, The Optimistic locking [p 1101] is activated and the content
has changed in the meantime, it must be reloaded before deleting the record.

The parameter value checkNotChangedSinceLastUpdateTime exists but does not
correspond to the actual last update date of the record.

422 (Unprocessable entity) Only available if blockingConstraintsDisabled is false, the operation fails
because of a blocking validation error.

Response body
After a successful record deletion or occulting, a report is returned in the response body. It contains
the number of deleted, occulted and inherited record(s).
Example JSON [p 1178].

Count operation
Count operation may use one of the following methods:

• GET HTTP method,

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1099

• POST HTTP method without message body or

• POST HTTP method with message body but without content field on root.

The URL formats are:

• Dataset node: the data category returns the number of terminal nodes contained in the selected
node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}:count

Note

Not applicable with the history category.

• Table depending on the operation category [p 1065]:
the data category returns the number of table records.
The history category returns the number of table history records.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}:count

• Field depending on the operation category [p 1065]:
the data category counts the record fields.
The history category counts the history record field.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}:count

Note

The field must be either an association node, a selection node, a terminal node or
above.

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data or data-
compact).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node, that can be a group node or a table
node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• {pathInRecord} corresponds to the path starting from the table node.

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1100

Parameters
The following parameters are applicable to the count operation.

Parameter Description

count Deprecated since 6.0.0, replaced by the extended action from the URL. It is used to
specify whether this is a count operation or a selection operation.

Boolean type, default value is false.

Table parameters
The following parameters are applicable to tables, associations and selection nodes.

Parameter Description

filter Quick search predicate or complete XPath predicate [p 431] expression defines the
field values to which the request is applied. If empty, all records will be considered.

String type value.

Note

The history code operation value is usable with the ebx-
operationCode path field from the meta section associated with
this field.

historyMode Specifies the filter context applied on table.

String type, possible values are:

• CurrentDataSpaceOnly: history in current dataspace

• CurrentDataSpaceAndAncestors: history in current dataspace and ancestors

• CurrentDataSpaceAndMergedChildren: history in current dataspace and
merged children

• AllDataSpaces: history in all dataspaces

The default value is CurrentDataSpaceOnly.

See also history [p 1065]

Note

This parameter is ignored with the data category.

includeOcculting Includes the records in occulting mode.

Boolean type, default value is false.

viewPublication Specifies the name of the published view to be considered during the count
execution. This parameter can be combined with:

• the filter [p 1100] parameter as the logical and operation.

The behavior of this parameter is described in the section EBX® as a Web
Component [p 412].

String type value.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1101

Selector parameters
The following parameters are only applicable to fields that return an enumeration, foreign key or
osd:resource.

Parameter Description

selector Specifies whether:

• true: returns the number of all possible values

• false: returns the number of possible values for the current field.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

selectorFilter Specifies the filter of the selector.

String type value, the syntax complies with the Quick Search [p 122].

HTTP codes

HTTP code Description

200 (OK) The selected resource is successfully counted.

400 (Bad request) The request is incorrect. This occurs when:

• The selected field in a record or a dataset is sub-terminal.

• The selected dataset field is a dataset tree.

• The quick search predicate or complete XPath predicate of the filter
parameter is malformed or contains unfilterable nodes.

• The table view for the viewPublication parameter is either hierarchical, non-
existent or non-published.

• The selector parameter is used for a non-enumerated node, or the
firstElementIndex is negative, higher than or equal to the number of values.

403 (Forbidden) The selected resource is hidden for the authenticated user.

404 (Not found) The selected resource is not found.

Optimistic locking
To prevent an update or a delete operation on a record that was previously read but may have changed
in the meantime, an optimistic locking mechanism is provided.
To enable optimistic locking, a select request must set the includeMetadata parameter including the
system value.
See Technical data [p 1178] for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1102

The update_time property value must be included in the following request. If the record has been
changed since the specified time, the update or delete operation will be cancelled.

• Record: update whole or partial content of the selected record.
The update_time value should be added to the request body to prevent update of a modified
record.
See the JSON [p 1132] example of a record.

• Field: update of a single field of the selected record.
The update_time value must be declared in the request URL by the
checkNotChangedSinceLastUpdateTime parameter to prevent the update of a modified record.

The update_time property value can also be used in the request URL
checkNotChangedSinceLastUpdateTime parameter to prevent deletion on a modified record.

Note

The checkNotChangedSinceLastUpdateTime parameter may be used more than once but
only on the same record. This implies that if the request URL returns more than one
record, the request will fail.

Inheritance
EBX® inheritance features are supported by built-in RESTful services using specific properties and
automatic behaviors. In most cases, the inheritance state will be automatically computed by the server
according to the record and field definition or content. Every action that modifies a record or a
field may have an indirect impact on those states. In order to fully handle the inheritance life cycle,
direct modifications of the state are allowed under certain conditions. Forbidden or incoherent explicit
alteration attempts are ignored.

See also Inheritance and value resolution [p 470]

Record inheritance life cycle in built-in RESTful services

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1103

Inheritance properties
The following table describes properties related to the EBX® inheritance features.

Property Location Description

inheritance record or table metamodel Specifies if dataset inheritance is activated for the table. The
value is computed from the data model and cannot be modified
through built-in RESTful services.

See also inheritance property in metamodel. [p 1144]

inheritedField field metamodel Specifies the field's value source. The source data are directly
taken from the data model and cannot be modified through
built-in RESTful services.

See also inheritedField property in metamodel. [p 1145]

record in child dataset Specifies the record's inheritance state. To set a record's
inheritance from overwrite to inherit, its inheritanceMode
value must be explicitly provided in the request. In this specific
case, the content property will be ignored if present. occult
and root explicit values are always ignored. An overwrite
explicit value without a content property is ignored.

Note

Inherited record's fields are necessarily
inherit.

Note

Root records in child dataset will always be
root.

Possible values are: root, inherit, overwrite, occult. For
more information, see Record lookup mechanism [p 472].

inheritanceMode

field in overwrite record Specifies the field's inheritance state. To set a field's inheritance
to inherit, its inheritanceMode value must be explicitly
provided in the request. The content property will be ignored
in this case. overwrite explicit value without a content
property is ignored.

Note

inheritanceMode at field level does not
appear for root, inherit and occult records.

Note

inheritedFieldMode and inheritanceMode
properties cannot be both set on the same
field.

Possible values are: inherit, overwrite. For more
information, see Inheritance and value resolution [p 470].

inheritedFieldMode inherited field Specifies the inherited field's inheritance state. To set a field's
inheritance to inherit, its inheritedFieldMode value must be

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1104

Property Location Description

explicitly provided in the request. The content property will
be ignored in this case. overwrite explicit values without a
content property are ignored.

Note

inheritedFieldMode and inheritanceMode
properties cannot be both set on the same
field.

Note

inheritedFieldMode has priority over the
inheritanceMode property.

Possible values are: inherit, overwrite. For more
information, see Value lookup mechanism [p 473].

Look up table views operation
The "look up published views" operation may use one of the following methods:

• GET HTTP method or

• POST HTTP method without message body.

The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{tablePath: [^:]*}:publishedViews

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the image
identifier.

• {dataset} corresponds to the dataset identifier.

• {tablePath: [^:]*} corresponds to the table path.

Parameters
No specific parameter for this operation.

Codes HTTP

HTTP code Description

200 (OK) Information successfully returned.

400 (Bad request) Incorrect request, contains an error.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) The specified resource read permission has been denied to the authenticated user.

404(Not found) The selected resource cannot be found.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1105

Response body
It contains a collection of authorized view information (including the access URI).
Example: JSON [p 1184].

166.7 Form data operations
The form-data category operations concern the dataset fields, records or record fields when creating
or modifying content must comply with constraints on user form submit. They are intended to be used
in a user form management context.
The request body of an operation is very similar to the equivalent operation of the data category in
the sens that an incoming data validation feature and a result report has been added to the response.
The data validation can not be deactivated, a parameter blockingConstraintsDisabled from the
data category operations is not applicable. The validation phase fails when, at least, one constraint
with a blocksCommit level set to onInsertUpdateOrDelete or onUserSubmit-checkModifiedValues is
violated.
See Blocking and non-blocking constraints [p 885] for more information.

Form insert operation
Insert form uses the POST HTTP method and requires a message body holding the data. This operation
supports one or multiple records in a single transaction. Moreover, it is also possible to update
record(s).

• Record: validate and insert a new record or modify an existing one in the selected table.

• Record table: validate and insert or modify one or more records in the selected table, while
securing a consistent response. Operations are executed sequentially, in the order defined on the
client side. When an error occurs during a table operation, all updates are cancelled and the client
receives an error message with detailed information. The maximum number of records is limited
to 100.

http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/{dataset}/
{pathInDataset}[:mass]

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: form-data or
form-data-compact).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the table node.

• :mass extended action is required when updating a filtered set of records (see filter parameter
[p 1106]).

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1106

Parameters
The following parameters are applicable with this insert operation.

Parameter Description

includeDetails Includes the details field in the answer to access the data details. The returned
value corresponds to its URL resources.

Type Boolean, the default value is false.

Note

Only applicable for a multiple records insertion.

includeForeignKey Includes the foreignKey field in the answer for each record. The returned value
corresponds to the value of a foreign key field that was referencing this record.

Boolean type, the default value is false.

Note

Only applicable for a multiple records insertion.

includeLabel Includes the label field in the answer for each record.

Possible values are:

• yes: the label field is included.

• no: the label field is not included (use case: integration).

String type, the default value is no.

Note

Only applicable for a multiple records insertion.

updateOrInsert Specifies the behavior when the record to insert already exists:

• If true: the existing record is updated with new data.

• If false: a client error is returned and the operation is aborted.

Boolean type, default value is false.

filter Determines the records updated using a quick search predicate, or complete XPath
predicate [p 431] expression when a large number of records are updated. The request
body must be a record structure with the fields to update. This parameter must use
the:mass extended action. Otherwise, an error is returned.

Use the ebx-all value to select all records.

When the viewPublication [p 1107] query parameter is used, the scope is limited to the
filtered view.

String type value that must not be empty. Otherwise, an error is returned.

Note

When using the query parameters includeDetails [p 1106],
includeLabel [p 1106] or includeForeignKey [p 1106], only the first
1000 report entries are returned in the report.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1107

Parameter Description

viewPublication Specifies the name of the published view used during a massive update.

The behavior of this parameter is described in the section EBX® as a Web
Component [p 412].

String type value.

Message body
The request must define a message body. The format is similar to the data category insert operation's
message body [p 1092].

HTTP codes

HTTP code Description

200 (OK) • The request body holds multiple records: the insert/update request was applied
successfully, a report is returned in the response body.

• The request body holds only one record and updateOrInsert is true: the
update request was applied successfully, a report is returned in the response
body.

201 (Created) The request body holds only one non-existing record: a new record has been
created and the header field Location is returned with its resource URL. Moreover,
a report is returned in the response body.

400 (Bad request) The request is incorrect. This occurs when the body message structure:

• does not comply with what was mentioned in Message body [p 1107].

• complies with what was mentioned in Message body [p 1107], but number of
record insert/update more than 100.

403 (Forbidden) Authenticated user is not allowed to create a record or the request body contains a
read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, only available if updateOrInsert is true, the Optimistic
locking [p 1101] is activated and the content has changed in the meantime, it must be
reloaded before update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking constraint has been violated. In this case an appropriate report is
returned in the response body.

• The record cannot be inserted because another one with the same primary key
already exists (only available if updateOrInsert is false).

• The record cannot be inserted because the definition of the primary key is either
non-existent or incomplete.

• The record cannot be updated because the value of the primary key cannot be
modified.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1108

Response body
The response body will always hold a validation report. However in case of failure, the response body
corresponds to a JSON Exception handling response.

• Record: The header field Location is returned with its URL resource. The validation report will
be include in response body.

• Record table: (optional) Contains a list of validations report for each element, corresponding to
the multiple validation report.

See also Form data category [p 1171]

Form update operation
As for the data or data-compact category update operation, it allows the modification of a single
dataset or record and the PUT HTTP method must be used. Available URL formats are:

• Dataset node: validates and modifies the values of terminal nodes contained in the selected node.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}

• Record: validates and modifies the content of the selected record.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}

Note

Also available for POST HTTP method. In this case, the URL must point to the table
and the parameter updateOrInsert must be set to true.

• Field: validates and update of a single field of the selected record.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}

Note

The field must be either a terminal node or above.

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: form-data or
form-data-compact).

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node:

• for dataset node operations, this must be any terminal node or above except table node,

• for record and field operations, this corresponds to the table node.

• {encodedPrimaryKey} corresponds to the percent encoded representation of the primary key (see
RFC-3986 Uniform Resource Identifier).

• {pathInRecord} corresponds to the path starting from the table node.

https://datatracker.ietf.org/doc/html/rfc3986

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1109

Parameters
Here are the parameters applicable with the update operation.

Parameter Description

byDelta Specifies the behavior for setting value of nodes that are not defined in the request
body. This is described in the Update modes [p 1179] section.

Boolean type, the default value is true.

checkNotChangedSinceLastUpdateTime Timestamp in datetime format used to ensure that the record has not been modified
since the last read. Also see the Optimistic locking [p 1101] section.

DateTime type value.

Message body
The request must define a message body. The format is the same as for the data category update
operation message body [p 1095].

HTTP codes

HTTP code Description

200(Ok) The update request was applied successful and a report is returned in the response
body.

400 (Bad request) The request is incorrect. This occurs when the body request structure does not
comply.

403 (Forbidden) Authenticated user is not allowed to update the specified resource or the request
body contains a read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, the Optimistic locking [p 1101] is activated and the content
has changed in the meantime, it must be reloaded before the update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking constraint has been violated. In this case an appropriate report is
returned in the response body.

• The record cannot be updated because the value of the primary key cannot be
modified.

Response body
The response body has the same format and behavior as the Form Insert operation [p 1108].

166.8 Dataset operations
These operations perform selection over datasets.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1110

See also Datasets [p 116]

Select datasets
Select operations can use the GET or POST methods.

Note

When POST is used, the message body is always ignored.

URL formats are:

• Root: returns the root datasets of a given dataspace.
A pagination mechanism is always enabled.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}

• Children: returns the children datasets of a given dataset.
A pagination mechanism is always enabled.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}:children

• Information: returns dataset information.
http[s]://<host>[:<port>]/ebx-dataservices/rest/{category}/v1/{dataspace}/
{dataset}:information

Where:

• {category} corresponds to the operation category [p 1065] (possible values are: data or data-
compact).

• {dataspace} corresponds to B followed by the dataspace's identifier or to V followed by the
snapshot's identifier.

• {dataset} corresponds to the dataset identifier.

Parameters
The following query parameters are applicable to Root and Children operations.

Parameter Description

includeLabel See includeLabel [p 1079] for more information.

includeDetails See includeDetails [p 1079] for more information.

includeOpenApiDetails See includeOpenApiDetails [p 1080] for more information.

includeValidation See includeValidation [p 1081] for more information.

includeHistory See includeHistory [p 1079] for more information.

firstElementIndex See firstElementIndex [p 1086] for more information.

pageSize See pageSize [p 1086] for more information.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1111

The following query parameters are applicable to Information operation.

Parameter Description

includeLabel See includeLabel [p 1079] for more information.

HTTP codes

HTTP code Description

200 (OK) The request has been successfully handled.

400 (Bad request) The request is incorrect. This occurs when:

• firstElementIndex parameter's value is malformed or out of bound.

• pageSize parameter's value is malformed or out of bound.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) The selected resource is hidden from the authenticated user.

404 (Not found) The selected resource could not be found.

Response body
After a successful selection, the result is returned in the response body. The content depends on the
provided parameters and selected data.
The format is linked to the selected object type:

• For Root and Children, see the extended JSON [p 1137] and compact JSON [p 1164] example.

• For Information, see the extended JSON [p 1138] and compact JSON [p 1165] example.

166.9 Dataspace operations
These operations perform a selection or life cycle management over dataspaces.

See also Dataspaces [p 98]

Beta feature: Select dataspaces or snapshots
Select operation may use one of the following methods: GET or POST. A pagination mechanism is
always enabled.
URL formats are:

• Root: returns root dataspaces
http[s]://<host>[:<port>]/ebx-dataservices/rest/data/v1/

• Children: returns children dataspaces of a given dataspace
http[s]://<host>[:<port>]/ebx-dataservices/rest/data/v1/{dataspace}:children

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1112

• Snapshots: returns snapshots of a given dataspace
http[s]://<host>[:<port>]/ebx-dataservices/rest/data/v1/{dataspace}:snapshots

• Information: returns a dataspace, or a snapshot, information
http[s]://<host>[:<port>]/ebx-dataservices/rest/data/v1/{dataspace}:information

Where:

• {dataspace} corresponds to B followed by the dataspace's identifier or to V followed by the
snapshot's identifier.

Parameters
The following query parameters are applicable to Root, Children and Snapshots operations.

Parameter Description

includeClosed Includes the closed dataspaces to the selection.

Boolean type, default value is false.

includeAdministration Includes the administration dataspaces to the selection.

Boolean type, default value is false.

pageRecordFilter Specifies a server side built filter, for pagination, pointing to a record. This filter is
strongly linked to the pageAction value and should not be modified on the client
side. The filter takes the form of a record XPath predicate [p 431] expression used to
figure out the pagination contexts.

String type.

See also Pagination [p 1174]

pageAction Specifies the pagination action to perform from the identifier held by
pageRecordFilter.

String type, default value is first. The possible values are:

• first

• previous

• next

• last

See also RequestPaginationAPI

pageSize Specifies the maximum number of records per page.

Integer type, default value is based on the user preferences. The value should be
between 2 and 100.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1113

HTTP codes

HTTP code Description

200 (OK) The request has been successfully handled.

400 (Bad request) The request is incorrect. This occurs when:

• pageAction parameter's value is not included in allowed values.

• pageRecordFilter is malformed or non-existent when selecting next or
previous page.

• pageSize parameter's value is out of bound.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) The selected resource is hidden from the authenticated user.

404 (Not found) The selected resource could not be found.

Response body
After a successful selection, the result is returned in the response body. The content depends on the
provided parameters and selected data.
The format is linked to the selected object type:

• For Root, Children, or Snapshots, see the JSON [p 1185] example.

• For Information, see the JSON [p 1187] example.

Beta feature: Create a child dataspace or a snapshot
Creates the dataspace or snapshot as specified. This operation use the POST method with a body request
(with no specific query parameter).

See also Repository.createHomeAPI

URL format are:

• Dataspace:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:createDataspace

• Snapshot:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:createSnapshot

Where:

• {dataspace} corresponds to B followed by the dataspace identifier.

Request body
The body specifies the features of the dataspace or the snapshot to create.

See also HomeCreationSpecAPI

See the JSON [p 1188] example.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1114

HTTP codes

HTTP code Description

201 (Created) A new dataspace or snapshot has been created, in this case, the header field
Location is returned with its resource URL.

400 (Bad request) The request body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to create the specified resource for the authenticated user.

404 (Not found) The resource specified in the request body cannot be found.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

Beta feature: Locking a dataspace
Locks the specified dataspace. If the dataspace is already locked:

• by the same user, then the lock is kept,

• by another user and during the wait duration, then the lock is acquired,

• otherwise, the lock is rejected.

This operation uses the POST method and consumes Content-Type header set to:

• application/x-www-form-urlencoded: with HTTP parameters in the body or

• application/json: with HTTP parameters in the URL and Session parameters [p 1053] into JSON
body.

When it succeeds, no response body is returned.

See also

Permissions for locking or unlocking a dataspace [p 477]

LockSpec.lockAPI

The URL format is:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:lock

Where:

• {dataspace} corresponds to B followed by the dataspace identifier.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1115

Parameters
The following query parameters are applicable to the operation.

Parameter Description

durationToWaitForLock When the dataspace is locked by another user, specifies the maximum duration to
wait for acquiring the lock.

The duration is specified in seconds. If the value is set to 0, then the locking attempt
is perform immediately. Due to several reasons, the wait duration can not exceed 60
seconds. Otherwise, the value is overwritten with its maximum value.

Integer type, default value is 0.

HTTP codes

HTTP code Description

204 (No content) The request has been successfully handled but no response body is returned.

400 (Bad request) The request URL or body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to lock the specified resource for the authenticated user.

404 (Not found) The resource specified in the URL cannot be found.

409 (Conflict) The resource is already locked by another user, the lock is rejected after
durationToWaitForLock parameter's value.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

Beta feature: Unlocking a dataspace
Unlocks the specified dataspace. If the dataspace is:

• locked by the same user, then the lock is released,

• locked by another user, the current user is an administrator, and the forceByAdministrator query
parameter is set to true, then the lock is released,

• not locked, the lock status is unchanged,

• otherwise, the unlock is rejected.

This operation uses the POST method and consumes Content-Type header set to:

• application/x-www-form-urlencoded: with HTTP parameters in the body or

• application/json: with HTTP parameters in the URL and Session parameters [p 1053] into JSON
body.

When it succeeds, no response body is returned.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1116

See also

Permissions for locking or unlocking a dataspace [p 477]

LockSpec.unlockAPI

The URL format is:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:unlock

Where:

• {dataspace} corresponds to B followed by the dataspace identifier.

Parameters
The following query parameters are applicable to the operation.

Parameter Description

forceByAdministrator When the dataspace is locked by another user, an administrator can force the
unlocking.

Boolean type, default value is false.

HTTP codes

HTTP code Description

204 (No content) The request has been successfully handled but no response body is returned.

400 (Bad request) The request URL or body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to unlock the specified resource for the authenticated user.

404 (Not found) The resource specified in the URL cannot be found.

409 (Conflict) The resource is already locked by another user, or the current user is administrator
but forceByAdministrator parameter is false, the unlock is rejected.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

Beta feature: Merge a dataspace
Merges the specified dataspace to its parent. It is possible to perform deletion, after the merge, on
history and / or on data.
This operation uses the POST method and consumes Content-Type header set to:

• application/x-www-form-urlencoded: with HTTP parameters in the body or

• application/json: with HTTP parameters in the URL and Session parameters [p 1053] into JSON
body.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1117

When it succeeds, no response body is returned.

Note

The merge decision step is bypassed for merges performed through data services. In such
cases, the data in the child dataspace automatically overrides the data in its parent.

See also

ProcedureContext.doMergeToParentAPI

Deleting data and history [p 625]

The URL format is:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:merge

Where:

• {dataspace} corresponds to B followed by the dataspace identifier.

Parameters
The following query parameters are applicable to the operation.

Parameter Description

deleteHistoryOnMerge Sets whether the history associated with the specified dataspace will be deleted upon
merge.

Boolean type, default value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX®
main configuration file [p 560].

deleteDataOnMerge Sets whether the specified dataspace and its associated snapshots will be deleted
upon merge.

Boolean type, default value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX® main
configuration file [p 560].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1118

HTTP codes

HTTP code Description

204 (No content) The request has been successfully handled but no response body is returned.

400 (Bad request) The request URL contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to merge the specified resource for the authenticated user.

404 (Not found) The resource specified in the URL cannot be found.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

Beta feature: Close a dataspace or a snapshot
Closes the specified dataspace or snapshot. It is possible to perform deletion, after close, on history
and / or on data.
This operation uses the POST method and consumes Content-Type header set to:

• application/x-www-form-urlencoded: with HTTP parameters in the body or

• application/json: with HTTP parameters in the URL and Session parameters [p 1053] into JSON
body.

When it succeeds, no response body is returned.

See also

Repository.closeHomeAPI

Deleting data and history [p 625]

The URL format is:
http[s]://<host>[:<port>]/.../data/v1/{dataspace}:close

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1119

Parameters
The following query parameters are applicable to the operation.

Parameter Description

deleteHistoryOnClose Sets whether the history associated with the specified dataspace will be deleted upon
close.

Boolean type, default value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX®
main configuration file [p 560].

deleteDataOnClose Sets whether the specified dataspace and its associated snapshots will be deleted
upon close.

Boolean type, default value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX® main
configuration file [p 560].

HTTP codes

HTTP code Description

204 (No content) The request has been successfully handled but no response body is returned.

400 (Bad request) The request URL or body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to close the specified resource for the authenticated user.

404 (Not found) The resource specified in the URL cannot be found.

422 (Unprocessable entity) A blocking constraint has been violated.

500(Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX® logs.

166.10 Health operations

Overview
Operations health helps monitor the EBX® server.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1120

Started operation
Returns status code 200 (Ok) when EBX® is started and initialized, otherwise it returns 503 (Service
unavailable).
The URL format is:
http[s]://<host>[:<port>]/.../health/v1/started

HTTP codes

HTTP code Description

200 (OK) The request was successfully handled and a response body is returned.

503 (Service unavailable) EBX® is not yet started and initialized. A message is returned to help with
diagnostics.

Response body
See the JSON [p 1189] example.

Check operation
Returns the status code 200 (Ok) when EBX® is started and checked, otherwise it returns 503 (Service
unavailable).
The URL format is:
http[s]://<host>[:<port>]/.../health/v1/check

HTTP codes

HTTP code Description

200 (OK) The request was successfully handled and a response body is returned.

503 (Service unavailable) EBX® is not yet started and initialized. A message is returned to help with
diagnostics.

Response body
See the JSON [p 1189] example.

Stopped operation
Returns the status code 200 (Ok) when the EBX® repository is shutdown, otherwise it returns 503
(Service unavailable).
The URL format is:
http[s]://<host>[:<port>]/.../health/v1/stopped

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1121

HTTP codes

HTTP code Description

200 (OK) The request was successfully handled and a response body is returned.

503 (Service unavailable) EBX® is not yet started and initialized. A message is returned to help with
diagnostics.

Response body
See the JSON [p 1189] example.

166.11 OpenAPI operations

Overview
The api [p 1065] category operations comply with the OpenAPI specification 3.0.X to generate JSON
documents. These documents facilitate development and consumption by structuring and describing
the available REST built-in resources and the operations associated with them.
OpenAPI document HATEOAS links are available through the select data operations when using the
includeOpenApiDetails [p 1080] query parameter.
The REST OpenAPI services permissions are globally defined in Global permissions [p 1058].
Making the proper types mapping for generating a client, in a specific language, is essential. The
OpenAPI format can be used to validate the input or to map the value to a specific type, in the chosen
programming language. See Content of simple type [p 1157] for more information.

Note

Tools that do not support a specific format may default back to the type alone.

Generate OpenAPI documents
The operations use the GET or POST HTTP method to generate the OpenAPI document of a dataset,
a table, or a schema node.
The URL formats are:

• Dataset:
http[s]://<host>[:<port>]/ebx-dataservices/rest/api/v1/{category}/v1/{dataspace}/
{dataset}

• Table and Schema node:
http[s]://<host>[:<port>]/ebx-dataservices/rest/api/v1/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}

Where:

• {category} corresponds to an operation category [p 1065] among data [p 1076], data-compact [p

1076] or form-data [p 1105].

https://swagger.io/docs/specification/data-models/data-types/

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1122

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of:

• a table node,

• a dataset terminal node or above.

Note

The generated document will not depend on user permissions. The whole fields will be
presented.

HTTP codes

HTTP code Description

200(OK) The request has been successfully handled.

401(Unauthorized) Authentication has failed.

403(Forbidden) Permission was denied to read the specified resource.

404(Not found) The resource, specified in the URL, cannot be found.

166.12 Staging operations
The Staging [p 721] REST API is designed to interact with source and target servers. It allows users to
manage domains using export and import of staging archives.
The complete description of the services is available via OpenAPI on the following link:
http[s]://<host>[:<port>]/ebx-dataservices/rest/api/v1/staging/v1

In the development run mode [p 571], the Swagger UI is available on the following link.
http[s]://<host>[:<port>]/ebx-dataservices/rest/api/v1/staging/v1/ui

See also Visual documentation [p 1236]

Domain management operations
The domains service allows the users to manage domains. The provided features are:

• Select the list of available domains.

• Select a domain by unique name.

• Create a new domain.

• Select the components of a domain.

• Add a component to a domain.

• Remove a component from a domain, the component is deleted.

https://swagger.io/tools/swagger-ui/

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1123

Staging element navigation operations
The elements service is designed to display the whole elements of an instance in a hierarchical way.
It is mainly designed for a UI interface that supports an hierarchical view with levels handling. The
purpose of using query parameters instead of a structured body is to use links for easier navigation.
The provided features are:

• Expands the content of an element.

• Expands the content of a specific type of elements under a selected element.

Archive manipulation operations
The archives service is designed for importing/exporting staging archives to/from a running instance
in a single request. It is also used for uploading archives for asynchronous import. The provided
features are:

• Export the archive of a domain.

• Import an archive to a running instance.

• Upload an archive for an asynchronous import.

The easiest way to export a staging archive via cURL
curl --request GET 'http[s]://<host>[:<port>]/ebx-dataservices/rest/staging/v1/archives/<domain>?
login=<login>&password=<password>'

The easiest way to import a staging archive via cURL
curl --request POST 'http[s]://<host>[:<port>]/ebx-dataservices/rest/staging/v1/archives?
login=<login>&password=<password>'
--header 'Content-Type: application/zip'
--data-binary '@/<archive-path-on-disk>'

Export operations
The exports service is designed to handle advanced export features. The archive is exported and stored
on the server for a predefined period. The user can retrieve information about the archive, and it will
be available to download it until it expires. The provided features are:

• Initiate an export.

• Get the status of an initiated export.

• Download an exported archive.

This endpoint can work in both synchronous and asynchronous modes.

Synchronous mode
A blocking mode that responds after exporting the whole archive on the server. The Archive will be
immediately downloadable.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1124

Asynchronous mode
A non-blocking mode that responds with an export ID and launches a task to export the archive. The
client must poll the status endpoint to retrieve the status of the export. When the status changes to
"Exported", the archive would be downloadable.

For consistency, any staging asynchronous job is aborted if it does not complete before 60 minutes
of work.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1125

Import operations
The imports service is designed to handle advanced import features. The archive is uploaded and
stored on the server for a predefined period. The user can initiate an import asynchronously or retrieve
information about an in-progress or completed import.
The archive is uploaded using the archives service with the option asyncImport=true.
The provided features are:

• Initiate an import by using an already uploaded archive.

• Get the status/report of an initiated import.

The archive name can be retrieved from an old import to initiate a re-import of the same archive with
different options. It will be available until it expires.
This endpoint works only in asynchronous mode:

166.13 Limitations

General limitations
• Indexes, in the request URL {pathInDataset} or {pathInRecord}, are not supported.

• Dataset nodes and field operations applied to nodes that are sub-terminal are not supported.
See Access properties [p 901] for more information about terminal nodes.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1126

Compact format limitations
• Inheritance [p 1102], tracking information [p 1053], session parameters [p 1053] and procedure context

[p 1056] are not handled in the compact format [p 1161]. Use the extended [p 1131] one instead.

• History category [p 1065] is not supported in the compact format [p 1161].

Business object category limitations
• In business object category [p 1065]: sort, filter, and history [p 1065] selection features can not be

applied to a field under a relationship defined in a business object.

Read operations
• Within the selector, the pagination context is limited to the nextPage property.

• When the sortByRelevancy [p 1084] parameter is activated, the ones below are ignored:
sort [p 1083], sortOnLabel [p 1084], sortPriority [p 1085] and sort criteria defined through the
viewPublication [p 1085].

• Within the viewPublication parameter, the hierarchical and tile views are not supported.

• The sortOnLabel parameter ignores programmatic labels.

• The system information response's properties cannot be browsed through the REST URL with
the hierarchical representation.
See System information operation [p 1072] for more information.

• The prepare for creation operation does not support a dataset node.

• The select dataspaces operation [p 1111] does not sort them by label.

• The select snapshots operation [p 1111] does not sort them by creation date.

• The select snapshots operation [p 1111] can not include the initial snapshots.

Write operations
• Association fields cannot be updated, therefore, the list of associated records cannot be modified

directly.

• Control policy onUserSubmit-checkModifiedValues of the user interface is not supported.
To retrieve validation errors, invoke the select operation on the resource by including the
includeValidation parameter.
See Blocking and non-blocking constraints [p 885] for more information.

Directory operations
• Changing or resetting a password for a user is not supported.

OpenAPI operations
• The document generation is not available through the user interface.

• The document generation REST services does not support the YAML format.

• Supports only Data operations [p 1076] and Form data operations [p 1105] except:

• Select Dataset tree, Dataset node and Field operations.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1127

• Insert or delete multiple records in a single request.

• Use of the HTTP header content-type: x-www-form-urlencoded to send query parameters
in the body request.

• The 'Basic Authentication Scheme' [p 1057] is the only described method.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 6.2.0 1128

Documentation > Developer Guide > REST data services > JSON Formats > Introduction

TIBCO EBX® Product Documentation 6.2.0 1129

CHAPTER 167
Introduction

This chapter contains the following topics:

1. Overview

167.1 Overview
The JSON (JavaScript Object Notation) is the data-interchange format used by TIBCO EBX®'s
RESTful operations [p 1063].
This format is lightweight, self-describing and can be used to design UIs or to integrate EBX® in
company's information system.
The following JSON formats are available:

• Using the extended format [p 1131], the data context is exhaustive and contains features to retrieve
metamodel data, labels, validation report, inheritance data, URLs (OpenAPI, details, selector,
historyDetails, etc.), history advanced data, except for association fields and selection nodes.
However, these fields are reachable from the response through URL links called details included
by default.

• Using the compact format [p 1161], the data context is limited to master data without metamodel
data except links for enumerated fields.

See also Hiding a field in Data Services [p 904]

The amount of retrieved data is limited by a pagination [p 1174] mechanism which can be configured.
URL links allow reaching:

• Tables, records, dataset non-terminal nodes, foreign keys, resource fields through the details
property. See includeDetails [p 1079] for more information.

• Possible values for foreign keys or enumerations, by activating the selector parameter. See
includeSelector [p 1080] for more information.

See also Activation and configuration [p 1053]

Note

JSON data are always encoded with the UTF-8 charset.

Documentation > Developer Guide > REST data services > JSON Formats > Introduction

TIBCO EBX® Product Documentation 6.2.0 1130

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1131

CHAPTER 168
Extended

This chapter contains the following topics:

1. Introduction

2. Global structure

3. Metamodel

4. Sort criteria

5. Validation report

6. Constraints

7. Content

168.1 Introduction
The JSON extended format is used to retrieve master data, technical information and metadata. It is
designed in an expanded way that allows to include several features such as validation, sorting and
so on. To activate the extended format, the unsuffixed REST category, like data or form-data, must
be used in the URL.

168.2 Global structure

JSON Request body
The request body is represented by a JSON Object whose content varies according to the operation
and the category.

Data category
The request body contains at least a content property which hold master data values.

• Dataset node
Specifies the target values of terminal nodes under the specified node. This request is used for
the dataset node update operation.
{
 "content": {
 "nodeName1": {
 "content": true
 },
 "nodeName2": {
 "content": 2

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1132

 },
 "nodeName3": {
 "content": "Hello"
 }
 }
}

See also Update operation [p 1094]

• Record
Specifies the target record content by setting the value of each field. For missing fields, the
behavior depends on the request parameter byDelta. This structure is used for table record insert,
record update or selector's select operation when local enumeration dependency field values are
declared.

See also Inheritance [p 1102]

Some technical data can be added beside the content property such as lastUpdateDate.

See also Optimistic locking [p 1101]

{
 ...
 "lastUpdateDate": "2015-12-25T00:00:00.001",
 ...
 "content": {
 "gender": {
 "content": "Mr."
 },
 "lastName": {
 "content": "Chopin"
 },
 "lastName-en": {
 "content": "Chopin",
 "inheritedFieldMode": "inherit"
 },
 "firstName": {
 "content": "Fryderyk"
 },
 "firstName-en": {
 "content": "Frédéric",
 "inheritedFieldMode": "overwrite"
 },
 "birthDate": {
 "content": "1810-03-01"
 },
 "deathDate": {
 "content": "1849-10-17"
 },
 "jobs": {
 "content": [
 {
 "content": "CM"
 },
 {
 "content": "PI"
 }
]
 },
 "infos": {
 "content": [
 {
 "content": "https://en.wikipedia.org/wiki/Chopin"
 }
]
 }
 }
}

See also

Insert operation [p 1090]

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1133

Update operation [p 1094]

• Record fields
Specifies the target values of fields under the record terminal node by setting the value of each
field. For missing fields, the behavior depends on the request parameter byDelta. This structure
is only used for table record updates.

See also Inheritance [p 1102]

{
 "content": [
 {
 "content": "CM"
 },
 {
 "content": "PI"
 }
]
}

See also Update operation [p 1094]

• Record table
Defines the content of one or more records by indicating the value of each field. For missing
fields, the behavior depends on the byDelta parameter of the request. This structure is used upon
insert or update records in the table.
{
 "rows": [
 {
 "content": {
 "gender": {
 "content": "M"
 },
 "lastName": {
 "content": "Saint-Saëns"
 },
 "firstName": {
 "content": "Camille"
 },
 "birthDate": {
 "content": "1835-10-09"
 },
 ...
 }
 },
 {
 "content": {
 "gender": {
 "content": "M"
 },
 "lastName": {
 "content": "Debussy"
 },
 "firstName": {
 "content": "Claude"
 },
 "birthDate": {
 "content": "1862-10-22"
 },
 ...
 }
 }
]
}

See also

Insert operation [p 1090]

Update operation [p 1094]

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1134

• Record table to deleted
Defines one or more records. This structure is used upon deleting several records from the same
table.
{
 "rows": [
 {
 "details": "http://.../root/table/1"
 },
 {
 "details": "http://.../root/table/2"
 },
 {
 "primaryKey": "./oid=3"
 },
 {
 "foreignKey": "4"
 },
 ...
]
}

See also Delete operation [p 1096]

• Field
Specifies the target field content. This request is used for field update.
The request has the same structure as defined in node value [p 1156] by only keeping the content
entry. Additional entries are simply ignored.

See also Update operation [p 1094]

• Open or close user interface
Specifies whether the user interface is open or close and the unavailability message.
{
 "content": {
 "toolStatus": {
 "content": true // or false
 },
 "toolStatusCloseMessage": {
 "content": "Access is temporarily forbidden for maintenance."
 }
 }
}

See also User interface operations [p 1072]

Only writable fields can be mentioned in the request, this excludes the following cases:

• Association node,

• Selection node,

• Value function,

• JavaBean field that does not have a setter,

• Unwritable permission on node for authenticated user.

JSON Response body
The response body is represented by a JSON Object whose content depends on the operation and
the category.

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1135

Data category
The selection operation contains two different parts.
The first one named meta contains the exhaustive structure of the response.
The second, regrouping content, rows, pagination... etc, contains the values corresponding to the
request.

• Dataset tree
Contains the hierarchy of table and non-terminal group nodes.
{
 "meta": {
 "fields": [
 {
 "name": "rootName",
 "label": "Localized label",
 "description": "Localized description",
 "type": "group",
 "pathInDataset": "/rootName",
 "fields": [
 {
 "name": "settings",
 "label": "Settings",
 "type": "group",
 "pathInDataset": "/rootName/settings",
 "fields": [
 {
 "name": "settingA",
 "label": "A settings label",
 "type": "group",
 "pathInDataset": "/rootName/settings/settingA"
 },
 {
 "name": "settingB",
 "label": "B settings label",
 "type": "group",
 "pathInDataset": "/rootName/settings/settingB"
 }
]
 },
 {
 "name": "table1",
 "label": "Table1 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "pathInDataset": "/rootName/table1"
 },
 {
 "name": "table2",
 "label": "Table2 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "pathInDataset": "/rootName/table2"
 }
]
 }
]
 },
 "validation": [
 {
 "level": "error",
 "message": "Value must be greater than or equal to 0.",
 "details": "http://.../rootName/settings/settingA/settingA1?includeValidation=true"
 },
 {
 "level": "error",
 "message": "Field 'Settings A2' is mandatory.",
 "details": "http://.../rootName/settings/settingA/settingA2?includeValidation=true"
 }
],
 "content": {
 "rootName": {
 "details": "http://.../rootName",
 "openApiDetails": "http://.../api/.../rootName",
 "content": {
 "settings": {

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1136

 "details": "http://.../rootName/settings",
 "openApiDetails": "http://.../api/.../rootName/settings",
 "content": {
 "weekTimeSheet": {
 "details": "http://.../rootName/settings/settingA",
 "openApiDetails": "http://.../api/.../rootName/settings/settingA"
 },
 "vacationRequest": {
 "details": "http://.../rootName/settings/settingB",
 "openApiDetails": "http://.../api/.../rootName/settings/settingB"
 }
 }
 },
 "table1": {
 "details": "http://.../rootName/table1",
 "openApiDetails": "http://.../api/.../rootName/table1",
 "boDetails": "http://.../data-bo/.../rootName/table1"
 },
 "table2": {
 "details": "http://.../rootName/table2",
 "openApiDetails": "http://.../api/.../rootName/table2",
 "boDetails": "http://.../data-bo/.../rootName/table2"
 }
 }
 }
 }
}

The meta and validation properties are optional.

See also

Metamodel [p 1143]

Validation report [p 1152]

Select operation [p 1077]

• Dataset node
Contains the list of terminal nodes under the specified node.
{
 "meta": {
 "fields": [
 {
 "name": "nodeName1",
 "label": "Localized label of the field node 1",
 "description": "Localized description",
 "type": "boolean",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInDataset": "/rootName/.../nodeName1"
 },
 {
 "name": "nodeName2",
 "label": "Localized label of the field node 2",
 "type": "int",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInDataset": "/rootName/.../nodeName2"
 }
]
 },
 "content": {
 "nodeName1": {
 "content": true
 },
 "nodeName2": {
 "content": -5,
 "validation": [
 {
 "level": "error",
 "message": "Value must be greater than or equal to 0."
 }
]
 }
 }
}

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1137

See also Select operation [p 1077]

• Datasets List
JSON Object containing the list of root or children datasets for respectively the specified
dataspace or dataset.
Every dataset JSON Object has the following properties:

JSON property JSON format Description Required

key String Specifies the dataset formatted key.

Format: [a-zA-Z_][-a-zA-Z0-9_.]*

Yes

label String Documentation label in the current locale. It is only present
if the value is different from the key.

No

isSelectAllowed Boolean Specifies whether the dataset can be selected, according to
the user's permissions.

Yes

details String Specifies the dataset's REST resource URL. No

information String Specifies the dataset's information REST resource URL. No

hasChildren Boolean Specifies whether the dataset has children, according to the
user's permissions.

Yes

children String Specifies the dataset's children REST resource URL. It is
only present when the hasChildren property key's value is
true and a details link is requested.

No

childrenHistory String Specifies the history dataset's children REST resource URL.
It is only present when the hasChildren property key's
value is true and a details link is requested.

See also includeHistory [p 1079]

No

{
 "rows": [
 {
 "key": "mydataset",
 "isSelectAllowed": true,
 "details": "http://.../data/v1/BReference/mydataset",
 "information": "http://.../data/v1/BReference/mydataset:information",
 "hasChildren": true,
 "children": "http://.../data/v1/BReference/mydataset:children"
 },
 {
 // Another dataset
 }
],
 "pagination": {
 "firstPage": "http://.../data/v1/BReference?pageSize=4",
 "nextPage": "http://.../data/v1/BReference?pageSize=4&firstElementIndex=4",
 "previousPage": null,
 "lastPage": "http://.../data/v1/BReference?pageSize=4&firstElementIndex=8"
 }
}

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1138

See also Select datasets [p 1110]

• Dataset information

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1139

JSON Object containing the following properties:

JSON property JSON format Description Required

content Object Corresponds to the dataset information. Yes

key String Specifies the dataset formatted key value.

Format: [a-zA-Z_][-a-zA-Z0-9_.]*, limited to 64
characters maximum.

Yes

documentation Array of JSON
Object

Corresponds to the localized documentation with a JSON
Object by locale.

No

locale (nested
under the
documentation
property)

String Documentation locale. Yes

label (nested
under the
documentation
property)

String Documentation label. No

description
(nested under the
documentation
property)

String Documentation description. No

dataModel JSON Object Specifies the dataset schema location. Only packaged in
module schemas and publications are supported.

Yes

module (nested
under the
dataModel
property)

String Specifies the module name where the dataset schema is
located.

No

pathInModule
(nested under
the dataModel
property)

String Specifies the path in the module where the dataset schema is
located.

No

publication
(nested under
the dataModel
property)

String Specifies the publication name of the dataset schema. No

dataModel
(nested under
the dataModel
property)

String Specifies the data model name of the dataset schema
publication.

No

versionName
(nested under
the dataModel
property)

String Specifies the version name of the dataset schema
publication.

No

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1140

JSON property JSON format Description Required

parent String Specifies the parent dataset formatted key value. If there is
no parent, then it holds a null value.

Yes

activated Boolean Specifies whether the dataset is activated. Yes

owner String Specifies the owner profile. Yes

creator String Specifies the creator profile. Yes

creation_time Date Specifies the creation time. Yes

updater String Specifies the updater profile. Yes

update_time Date Specifies the update time. Yes

{
 "content": {
 "key": "mydataset",
 "documentation": [
 {
 "locale": "en-US",
 "label": "My label",
 "description": "My description"
 },
 {
 "locale": "fr-FR",
 "label": "Mon libellé",
 "description": "Ma description"
 }
],
 "dataModel": {
 "module": "modulename",
 "pathInModule": "/WEB-INF/ebx/schemas/mydataset.xsd"
 },
 "parent": null,
 "activated": true,
 "owner": "Beveryone",
 "creator": "Uadmin",
 "creation_time": "2023-10-10T15:49:03.023",
 "updater": "Uadmin",
 "update_time": "2023-10-10T15:49:03.005"
 }
}

See also Select datasets [p 1110]

• Table
JSON Object containing the following properties:

• (Optional) The table metamodel [p 1143],

• (Optional) The sort criteria applied,

• (Optional) The table validation report,

• The rows property corresponding to a JSON Array of the selected records. Each record is
represented by an JSON Object. If no record is selected then the JSON Array is empty.

• (Optional) the pagination property, containing pagination [p 1174] data.
{
 "rows": [
 {

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1141

 "label": "Claude Levi-Strauss",
 "details": "http://.../root/individu/1",
 "content": {
 "id": {
 "content": 1
 },
 ...
 }
 },
 {
 "label": "Sigmoud Freud",
 "details": "http://.../root/individu/5",
 "content": {
 "id": {
 "content": 2
 },
 ...
 }
 },
 ...
 {
 "label": "Alfred Dreyfus",
 "details": "http://.../root/individu/10",
 "content": {
 "id": {
 "content": 30
 },
 ...
 }
 }
],
 "sortCriteria": [
 {
 "path": "/name",
 "order": "lasc"
 },
 ...
],
 "pagination": {
 "firstPage": null,
 "previousPage": null,
 "nextPage": "http://.../root/individu?pageRecordFilter=./id=9&pageSize=9&pageAction=next",
 "lastPage": "http://.../root/individu?pageSize=9&pageAction=last"
 }
}

See also Select operation [p 1077]

• Record
JSON Object containing:

• The label,

• (Optional) The record URL,

• (Optional) The technical data [p 1178],

• (Optional) The table metamodel [p 1143],

• (Optional) The record validation report,

• (Optional) The inheritance mode of the record, which can be: root, inherit, overwrite or
occult.

See also

Record lookup mechanism [p 472]

Inheritance [p 1102]

• The record content.
{
 "label": "Name1",
 "details": "http://.../rootName/table1/pk1",
 "creationDate": "2015-02-02T19:00:53.142",

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1142

 "creationUser": "admin",
 "lastUpdateDate": "2015-09-01T17:22:24.684",
 "lastUpdateUser": "admin",
 "inheritanceMode": "root",
 "meta": {
 "name": "table1",
 "label": "Table1 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "primaryKeys": [
 "/pk"
],
 "inheritance": "true",
 "fields": [
 {
 "name": "pk",
 "label": "Identifier",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInRecord": "pk",
 "filterable": true,
 "sortable": true
 },
 {
 "name": "name",
 "label": "Name",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInRecord": "name",
 "filterable": true,
 "sortable": true
 },
 {
 "name": "name-fr",
 "label": "Nom",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "inheritedField": {
 "sourceNode": "./name"
 },
 "pathInRecord": "name-fr",
 "filterable": true,
 "sortable": true
 },
 {
 "name": "parent",
 "label": "Parent",
 "description": "Localized description.",
 "type": "foreignKey",
 "minOccurs": 1,
 "maxOccurs": 1,
 "foreignKey": {
 "tablePath": "/rootName/table1",
 "details": "http://.../rootName/table1"
 },
 "enumeration": "foreignKey",
 "pathInRecord": "parent",
 "filterable": true,
 "sortable": true
 }
]
 },
 "content": {
 "pk": {
 "content": "pk1"
 },
 "name": {
 "content": "Name1"
 },
 "name-fr": {
 "content": "Name1",
 "inheritedFieldMode": "inherit"
 },
 "parent": {
 "content": null,
 "selector":"http://.../rootName/table1?selector=true",
 "validation": [
 {
 "level": "error",
 "message": "Field 'Parent' is mandatory."
 }

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1143

]
 }
 },
 "validation": {
 ...
 }
}

See also

Select operation [p 1077]

Prepare operations [p 1087]

• Fields
For association or selection nodes, contains the target table with the associated records if, and
only if, the includeDetails parameter is set to true.
For other kinds of nodes, contains the current node value [p 1156].

See also Select operation [p 1077]

• Retrieve the user interface state
Contains the user interface status and the unavailability message.
{
 "content": {
 "toolStatus": {
 "content": true,
 "label": "Open",
 "selector": "http://.../domain/toolStatus/toolStatus?selector=true"
 },
 "toolStatusCloseMessage": {
 "content": "Access is temporarily forbidden for maintenance."
 }
 }
}

See also User interface operations [p 1072]

Note

Nodes, records and fields, property and values may be hidden depending on their
resolved permissions (see permissions [p 475]) .

168.3 Metamodel
This section can be activated on demand with the includeMetamodel [p 1080] parameter. It describes the
structure and the JSON typing of the content section.
This section is deactivated by default for selection operations.

See also

Select operation [p 1077]

Prepare operations [p 1087]

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1144

Structure for table
Table metamodel is represented by a JSON Object with the following properties:

JSON property JSON format Description Required

name String Specifies the name of the authorized table defined in the model. Yes

label String Specifies the table's label. If undefined, the name of the schema
node is returned.

Yes

description String Specifies the table's description. No

type String Specifies the node's type, the value is always equal to: table. Yes

minOccurs Number Specifies the number of minimum authorized record(s). Yes

maxOccurs Number or String Specifies the number of maximum authorized record(s) or
unbounded.

Yes

history Boolean Specifies if the table content is historized. Its value is true if
history is activated, false otherwise.

See also History [p 451]

No

primaryKeyFields Array Specifies the primary key composition which is represented as an
array of the paths.

Yes

inheritance Boolean Specifies whether the dataset inheritance is activated for
the table. Its value is true if inheritance is activated, false
otherwise.

See also Inheritance and value resolution [p 470]

No

fields Array Specifies the direct children of the record node which are
represented as an array of fields. Each field may also recursively
contain sub-fields.

Yes

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1145

Structure for field
Each authorized field is represented by a JSON Object with the following properties:

JSON property JSON format Description Required

name String Specifies the name of the authorized field defined in the model. Yes

label String Specifies the node's label. If undefined, the name of the schema
node is returned.

Yes

description String Specifies the field's description. No

type String Specifies the field's type, which can be a: simple type [p 1157],
group, table, foreignKey [p 1145], association [p 1146], etc.

Yes

minOccurs Number Specifies the number of minimum authorized occurrence(s). Yes

maxOccurs Number or
String

Specifies the number of maximum authorized occurrence(s) or
unbounded.

Yes

readOnly Boolean Specifies whether the field access permission is defined as read-
only from the data model access properties. That is, if its data
can be read or written. Its value is true if the field is read only,
false otherwise.

See also

Access properties [p 901]

AccessPermissionAPI

Yes

autoIncrement Boolean Specifies whether the field is auto-incremented. This property is
only available for integer field type. Its value is true if the field
is auto-incremented, false otherwise.

See also Auto-incremented values [p 893]

No

checkNullInput Boolean Specifies whether the check of the constraints on null fields, at
user input, is activated or not. Its value is true when activated,
false otherwise.

The constraint check is activated when the field has the
property osd:checkNullInput [p 888] set to true.

Yes

inheritedField Object Holds information related to the inherited field's value source.

{
 "inheritedField": {
 "sourceRecord": "/path/to/record", // (optional)
 "sourceNode": "./path/to/Node"
 }
}

See also Inheritance and value resolution [p 470]

No

foreignKey Object Holds information related to the target table. No (*)

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1146

JSON property JSON format Description Required

See also Structure for foreign key field [p 1147]

association Object Holds information related to the association table.

See also Structure for the association field [p 1148]

No (*)

enumeration String Specifies if the field is an enumeration value. Possible values
are:

• dynamic

• foreignKey

• nomenclature

• programmatic

• resource

• static

See also SchemaFacetEnumerationAPI

According to its value, indicates if the field can be used for
retrieving possible values by using the selector [p 1157] request
parameter.

No

enumerationDependencies Array of JSON
Object

Specifies the metadata enumeration dependencies list. Only
available for enumeration types among: foreignKey, dynamic
or programmatic.

See also Structure for the enumeration dependencies [p

1150]

No

valueFunction Boolean Specifies if the field is a computed value.

See also Computed values [p 891]

No

linkedField Object Holds information related to the linked field.

See also

SchemaNode.getSchemaLinkedField() SchemaNode.
getSchemaLinkedFieldAPI

Structure for the linked field [p 1149]

No

pathInDataset String Specifies the relative field's path starting from the schema node. No (**)

pathInRecord String Specifies the relative field's path starting from the table node. No (*)

filterable Boolean Specifies whether the field can be used to filter records using
the filter [p 1082] request parameter.

No (*)

hiddenFilterPolicy String Specifies the hidden filter policy.

The possible values are: textSearchOnly, true or false.

No (*)

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1147

JSON property JSON format Description Required

See also

Hiding a field in structured search tools [p 904]

SchemaNodeDefaultView.getHiddenInSearchAPI

sortable Boolean Specifies whether the field can be used in sort criteria using the
sort [p 1083] request parameter.

No (*)

constraints Array of JSON
Object

Specifies the field's non-programmatic constraints.

See also Constraints [p 1152]

No

fields Array of JSON
Object

Holds the structure and typing of each field group. No

isBusinessObjectRelation Boolean Specifies whether the field structure is in the current table or
given through a business object.

No

(*) Only available for table, record and record field operations.
(**) Only available for dataset tree operations.

Structure for foreign key field
The foreign key field metamodel is represented by a JSON Object.
{
 "dataspace": "BAuthors",
 "dataset": "Authors",
 "tablePath": "/root/Authors",
 "details": "http://.../BAuthors/Authors/root/Authors"
}

It holds the following properties:

JSON property JSON format Description Required

dataspace String Specifies the target dataspace or snapshot identifier. If not
specifies then it corresponds to the same dataspace as the table's
one.

No

dataset String Specifies the target dataset's identifier. If not specifies then it
corresponds to the same dataset as the table's one.

No

tablePath String Specifies the target table's path. Yes

details String Specifies the target table's REST resource URL.

See also includeDetails parameter [p 1079]

No

historyDetails String Specifies the history target table's REST resource URL.

See also includeDetails parameter [p 1079]

No

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1148

Structure for the association field
The association field metamodel is represented by a JSON Object. This object holds properties which
depend on the association type:

• tableRefInverse

{
 "type": "tableRefInverse",
 "dataspace": "BTitles",
 "dataset": "Titles",
 "tablePath": "/root/Titles",
 "details": "http://.../BTitles/Titles/root/Titles",
 "fieldToSource": "/root/Titles/au_id",
 "filter": "./unit_price > 10"
}

• linkTable

{
 "type": "linkTable",
 "tablePath": "/root/Inventory",
 "details": "http://.../BInventory/Inventory/root/Inventory",
 "linkTablePath": "/root/Inventory",
 "fieldToSource": "/root/Inventory/store",
 "fieldToTarget": "/root/Inventory/item",
 "filter": "./price > 10"
}

• xpathLink

{
 "type": "xpathLink",
 "tablePath": "/root/Inventory",
 "details": "http://.../BAuthors/Authors/root/Inventory",
 "predicate": "/root/Inventory[./price < 100]",
 "filter": "./price > 10"
}

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1149

It holds the following properties:

JSON property JSON format Description Required

type String Specifies the association type. The possible values are:
tableRefInverse, linkTable, xpathLink

See also Associations [p 863]

Yes

dataspace String Specifies the target dataspace or snapshot identifier. If not
specifies, then it corresponds to the same dataspace as the table's
one.

No

dataset String Specifies the target dataset's identifier. If not specifies, then it
corresponds to the same dataset as the table's one.

No

tablePath String Specifies the path of the target table. Yes

details String Specifies the target table's REST resource URL.

See also includeDetails parameter [p 1079]

No

fieldToSource String Specifies the field which refers to the source table of the
association.

Defined if the association type is tableRefInverse or
linkTable.

No

fieldToTarget String Specifies the path of the field to the target table.

Defined if the association type is linkTable.

No

linkTablePath String Specifies the path of the link table.

Defined if the association type is linkTable.

No

predicate String Specifies the criteria of the association, relative to the current
node.

Defined if the association type is xpathLink.

No

filter String Specifies the XPath predicate expression to filter the associated
objects.

No

Structure for the linked field
The linked field metamodel is represented by a JSON Object.
{
 "relationshipField": "/au_id",
 "tablePath": "/root/Authors",
 "linkedFieldPath": "/birth_date",
 "details": "http://.../BAuthors/Authors/root/Authors"
}

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1150

It holds the following properties:

JSON property JSON format Description Required

relationshipField String Specifies the field's path holding the relationship used by this
linked field.

See also SchemaLinkedField.getRelationshipNodeAPI

Yes

tablePath String Specifies the table's path referred by this linked field. Yes

linkedFieldPath String Specifies the path referred by this linked field.

See also SchemaLinkedField.getLinkedFieldAPI

Yes

details URI Specifies the target table's REST resource URL.

See also includeDetails parameter [p 1079]

No

See also

Linked fields [p 873]

SchemaLinkedFieldAPI

Structure for the enumeration dependencies
The metamodel enumeration dependency object is represented by a JSON Object.
{
 "localModify": false,
 "dataspace": "BAuthors",
 "dataset": "Authors",
 "targetPath": "/root/Authors",
 "details": "http://.../BAuthors/Authors/root/Authors"
}

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1151

It holds the following properties:

JSON property JSON format Description Required

localModify Boolean Specifies whether the enumeration dependency field is impacted
by modifications performed on a field in the same record.

Yes

dataspace String Specifies the target dataspace or snapshot identifier of the
enumeration dependency. If not specified then it corresponds to
the same dataspace as the record's one.

No

dataset String Specifies the target dataset's identifier of the enumeration
dependency. If not specifies then it corresponds to the same
dataset as the record's one.

No

targetPath String Specifies the target path of the enumeration dependency. Yes

details String Specifies the target REST resource table URL of the enumeration
dependency.

See also includeDetails parameter [p 1079]

No

168.4 Sort criteria
The sort criteria, applied to the request, can be returned on demand, by using the includeSortCriteria
[p 1080] parameter (deactivated by default). If it is activated, a sortCriteria property is directly added
to the response root node.
A sortCriteria property is represented as a JSON Array that contains ordered sort criterion. Each
sort criterion corresponds to a JSON Object with the following properties:

JSON property JSON format Description Required

path String Field's path. Yes

order String Possible values are: asc, lasc, desc or ldesc. Yes

The sortByRelevancy property is represented by a JSON Array, itself holding a JSON Object with
the following properties:

JSON property JSON format Description Required

order String Defines whether the sort is done in ascending or
descending order. Possible values are: lasc or ldesc.

See sortByRelevancy [p 1084] for more information.

Yes

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1152

168.5 Validation report
The validation can be activated on demand with the includeValidation [p 1081] parameter (deactivated
by default). If it is activated, validation properties are directly added on target nodes with one or
several messages. For messages without target node's path, a validation property is added on the
root node.
A validation property is represented by a JSON Array, holding a JSON Object per message,
corresponding to a validation item, with the following properties:

JSON property JSON format Description Required

level String Severity level of the validation item. The possible
values are: info, warn, error, fatal.

Yes

message String Description of the validation item. Yes

details String

corresponding to an absolute
URL.

URL of the resource associated with the validation
item.

Only available on table and dataset scopes, if the
associated resource exist and if it is included.

See also includeDetails parameter [p 1079]

No

168.6 Constraints
This section is automatically activated when the node has a read-write permission. It provides the non-
programmatic constraints declared on the data model.

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1153

The constraints property is represented by a JSON Array. Every constraint is taking the form of a
JSON Object. They have the following properties:

JSON property JSON format Description Required

type String Specifies the type of the constraint

See also Constraint Types [p 1154]

Yes

level String Specifies the severity level of the constraint. The
possible values are: fatal, error, warning or info.

Yes

content Object Specifies the value of the non-programmatic
constraint. This value can be a simple type, like a
String, or a JSON Object.

No

min Integer Specifies the minimum value for excludeSegment [p
1154] constraint type.

No

max Integer Specifies the maximum value for excludeSegment [p
1154] constraint type.

No

message String Specifies the validation message returned when the
value of the field does not comply with the constraint.

Yes

blocksCommit String Specifies the control policy management for blocking
or non-blocking constraint.

See Blocking and non-blocking constraints [p 885] for
more information.

No

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1154

Constraint Types
This section lists the non-programmatic constraints types.

Type Description

mandatory Defines the field is mandatory

fixedLengthStatic Defines the exact number of characters required for this field.

fixedLengthDynamic Points out a field which provides the exact number of characters required for this one.

minLengthStatic Defines the minimum number of characters allowed for this field.

minLengthDynamic Points out a field which provides the minimum number of characters allowed for this
one.

maxLengthStatic Defines the maximum number of characters allowed for this field.

maxLengthDynamic Points out a field which provides the maximum number of characters allowed for this
field.

excludeSegment Defines an inclusive range of not allowed values for this field.

excludeValue Defines a list of not allowed values for this field.

fractionDigits Defines the maximum number of decimal allowed for this field.

pattern Defines the regular expression pattern that must be match by the field's value.

totalDigits Defines the maximum number of digits allowed for this integer or decimal field.

boundaryMinInclusiveStatic Defines the minimum value allowed (including the minimum value) for this field.

boundaryMinExclusiveStatic Defines the minimum value allowed (excluding the minimum value) for this field.

boundaryMinInclusiveDynamic Defines a field that provide the minimum value allowed (including the minimum
value) for this field.

boundaryMinExclusiveDynamic Defines a field that provide the minimum value allowed (excluding the minimum
value) for this field.

boundaryMaxInclusiveStatic Defines the maximum value allowed (including maximum value) for this field.

boundaryMaxExclusiveStatic Defines the maximum value allowed (excluding the maximum value) for this field.

boundaryMaxInclusiveDynamic Defines a field that provide the maximum value allowed (including the maximum
value) for this field.

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1155

Type Description

boundaryMaxExclusiveDynamic Defines a field that provide the maximum value allowed (excluding the maximum
value) for this field.

See also

XML Schema supported facets [p 875]

Extended facets [p 879]

168.7 Content
This section can be deactivated on demand with the includeContent [p 1079] parameter (activated by
default). It provides the content of the record values, dataset, or field of one of the content fields for
an authorized user. It also has additional information, including labels, technical information, URLs...
The content is represented by a JSON Object with a property set for each sub-node.

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1156

Node value

JSON property JSON format Description Required

content Content of simple type [p 1157]

Content of group and list [p

1158]

Contains the node value. Available for all nodes
except for association and selection. However,
their content can be retrieved by invoking the URL
provided in their details property.

No

details String

corresponding to an absolute
REST resource URL.

Returns the node details when invoked.

The response type depends on the meta type.

• foreignKey: target record (available on table,
record and field operations).

• resource: target resource [p 880] (available on
dataset node, table, record and field operations).

• association: target table containing the
associated records (available on table and record
operations).

• selection: target table containing the associated
records (available on table and record operations).

• group: target dataset group node (available on
dataset tree operation).

• table: target table (available on dataset tree
operation).

Example:

http://.../BReference/dataset/root/table/pk/
associationField

No

historyDetails String

corresponding to an absolute
REST resource URL.

Returns the node history details when invoked.

See also includeHistory [p 1079]

No

label String Contains the foreign key or enumeration label in the
current locale.

The default label is returned if the current locale is not
supported.

No

inheritanceMode String Contains the node's inheritance state, considering
only dataset inheritance. inheritedFieldMode and
inheritanceMode properties cannot be both defined
on the same node.

See also

inheritedFieldMode [p 1156]

Record lookup mechanism [p 472]

No

inheritedFieldMode String Contains the node's field inheritance state, considering
dataset and field inheritance. When both inheritances
are used, field inheritance has priority over the dataset
one. inheritedFieldMode and inheritanceMode
properties cannot be both defined on the same node.

See also

No

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1157

JSON property JSON format Description Required

inheritanceMode [p 1156]

Value lookup mechanism [p 473]

selector String

corresponding to an absolute
URL.

Contains the appropriate URL for selector [p 1157]

operation.

Example:

http://.../BReference/dataset/root/table/pk/
enumField?selector=true

No

validation Array Contains the validation report that concerns the
current node context.

See also Validation report [p 1152]

No

Content of simple type
A simple field value is stored in a JSON Object and its content is the value of the content property.

See also Simple types formats [p 1176]

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1158

Content of group and list

XML Schema JSON format Examples Meta type

Group

xs:complexType

Object

Contains a property per sub-node.

Example for a simple-occurrence group.

{
 "road": {
 "content": "11 rue scribe"
 },
 "zipcode": {
 "content": "75009"
 },
 "country": {
 "content": "France"
 }
}

group

List

maxOccurs > 1

Array

Contains an array of all field
occurrences represented by a
JSON Object.

Each object is represented as a
node value [p 1156].

Example for a multi-occurrence field of xs:int type.

[
 {
 "content": 0
 },
 {
 "content": 1
 },
 {
 "content": 2
 },
 {
 "content": 3
 }
]

Example for a multi-occurrence group.

[
 {
 "content": {
 "road": {
 "content": "11 rue scribe"
 },
 "zipcode": {
 "content": "75009"
 },
 "country": {
 "content": "France"
 }
 }
 },
 {
 "content": {
 "road": {
 "content": "711 Atlantic Ave"
 },
 "zipcode": {
 "content": "MA 02111"
 },
 "country": {
 "content": "United States"
 }
 }
 }
]

Meta of
simple type
[p 1176],

or

group

Selector
By invoking the URL represented by the selector property on a field that provides an enumeration,
it returns a JSON Object containing the following properties:

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1159

• rows corresponding to an Array of JSON Object where each one contains two entries: the returned
content that can be persisted and the corresponding label. The list of established possible items
depends on the current context.

• (Optional) pagination containing pagination [p 1174] data (activated by default).
{
 "rows": [
 {
 "content": "F",
 "label": "feminine"
 },
 {
 "content": "M",
 "label": "masculine"
 }
],
 "pagination": {
 "firstPage": null,
 "nextPage": null,
 "previousPage": null,
 "lastPage": null
 }
}

See also includeSelector [p 1080]

Documentation > Developer Guide > REST data services > JSON Formats > Extended

TIBCO EBX® Product Documentation 6.2.0 1160

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1161

CHAPTER 169
Compact

This chapter contains the following topics:

1. Introduction

2. Global structure

3. Content

169.1 Introduction
The JSON compact format purpose is to retrieve the master data using a lightweight structure. It
follows the key-value design to display data in the simplest way and without any technical information.
To activate the compact format, the compact suffixed REST category, like data-compact or form-
data-compact, must be used in URL.

169.2 Global structure

JSON Request body
The request body is represented by a JSON Object whose content varies according to the operation
and the category.

Data category
• Dataset node

Specifies the target values of terminal nodes under the specified node. This request is used for
the dataset node update operation.
{
 "nodeName1": true,
 "nodeName2": 2,
 "nodeName3": "Hello"
}

To ensure a JSON symmetric structure between the HTTP request and the HTTP response,
enumeration node request format is like the following:
{
 "enumerationNode": {
 "key": "a key value"
 }
}

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1162

See also Update operation [p 1094]

• Record
Specifies the target record content by setting the value of each field. For missing fields, the
behavior depends on the request parameter byDelta. This structure is used for table record insert,
record update or selector's select operation when local enumeration dependency field values are
declared.
{
 "gender": {
 "key": "M"
 },
 "lastName": "Chopin",
 "lastName-en": "Chopin",
 "firstName": "Fryderyk",
 "firstName-en": "Frédéric",
 "birthDate": "1810-03-01",
 "deathDate": "1849-10-17",
 "jobs": [
 {
 "key": "CM"
 },
 {
 "key": "PI"
 }
],
 "infos": [
 "https://en.wikipedia.org/wiki/Chopin"
]
}

See also

Insert operation [p 1090]

Update operation [p 1094]

• Record fields
Specifies the target values of fields under the record terminal node by setting the value of each
field. For missing fields, the behavior depends on the request parameter byDelta. This structure
is only used for table record updates.
{
 "jobs": [
 {
 "key": "CM"
 },
 {
 "key": "PI"
 }
]
}

See also Update operation [p 1094]

• Record table
Defines the content of one or more records by indicating the value of each field. For missing
fields, the behavior depends on the parameter of the request byDelta. This structure is used upon
insert or update records in the table.
[
 {
 "gender": {
 "key": "M"
 },
 "lastName": "Saint-Saëns",
 "firstName": "Camille",
 "birthDate": "1835-10-09",

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1163

 ...
 },
 {
 "gender": {
 "key": "M"
 },
 "lastName": "Debussy",
 "firstName": "Claude",
 "birthDate": "1862-10-22",
 ...
 }
]

See also

Insert operation [p 1090]

Update operation [p 1094]

• Record table to delete
Defines one or more records. This structure is used upon deleting several records from the same
table.
[
 {
 "details": "http://.../root/table/1"
 },
 {
 "details": "http://.../root/table/2"
 },
 {
 "primaryKey": "./oid=3"
 },
 {
 "foreignKey": "4"
 },
 ...
]

See also Delete operation [p 1096]

• Field
Specifies the target field content. This request is used upon field update.
The request has the same structure as defined in node value [p 1168].

See also Update operation [p 1094]

• Open or close user interface
Specifies whether the user interface is open or close and the unavailability message.
{
 "toolStatus": {
 "key": true, // or false
 "label": "Open"
 },
 "toolStatusCloseMessage": "Access is temporarily forbidden for maintenance."
}

See also User interface operations [p 1072]

Only writable fields can be mentioned in the request, this excludes the following cases:

• Association node,

• Selection node,

• Value function,

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1164

• JavaBean field that does not have a setter,

• Unwritable permission on node for the authenticated user.

JSON Response body
The response body is represented by a JSON Object whose content depends on the operation and
the category.

Data category
• Dataset tree

Contains the hierarchy of table and non-terminal group nodes.
{
 "hasChildren": false,
 "rootName": {
 "settings": {
 "weekTimeSheet": {},
 "vacationRequest": {}
 },
 "table1": {},
 "table2": {}
 }
}

See also Select operation [p 1077]

• Dataset node
Contains the list of terminal nodes under the specified node.
{
 "nodeName1": true,
 "nodeName2": 2,
 "nodeName3": "Hello"
}

See also Select operation [p 1077]

• Datasets list
JSON Object containing the list of root or children datasets for the respectively specified
dataspace or dataset.
Every dataset JSON Object has the following properties:

JSON property JSON format Description Required

key String Specifies the dataset formatted key.

Format: [a-zA-Z_][-a-zA-Z0-9_.]*

Yes

isSelectAllowed Boolean Specifies whether the dataset can be selected, according to
the user's permissions.

Yes

hasChildren Boolean Specifies whether the dataset has children, according to the
user's permissions.

Yes

{
 "rows": [
 {
 "key": "mydataset",

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1165

 "isSelectAllowed": true,
 "hasChildren": true
 },
 {
 // Another dataset
 }
],
 "pagination": {
 "firstPage": "http://.../data/v1/BReference?pageSize=4",
 "nextPage": "http://.../data/v1/BReference?pageSize=4&firstElementIndex=4",
 "previousPage": null,
 "lastPage": "http://.../data/v1/BReference?pageSize=4&firstElementIndex=8"
 }
}

See also Select datasets [p 1110]

• Dataset information

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1166

JSON Object containing the following properties:

JSON property JSON format Description Required

key String Specifies the dataset formatted key value.

Format: [a-zA-Z_][-a-zA-Z0-9_.]*, limited to 64
characters maximum.

Yes

dataModel JSON Object Specifies the dataset schema location. Only packaged in
module schemas and publications are supported.

Yes

module (nested
under the
dataModel
property)

String Specifies the module name where the dataset schema is
located.

No

pathInModule
(nested under
the dataModel
property)

String Specifies the path in the module where the dataset schema is
located.

No

publication
(nested under
the dataModel
property)

String Specifies the publication name of the dataset schema. No

dataModel
(nested under
the dataModel
property)

String Specifies the data model name of the dataset schema
publication.

No

versionName
(nested under
the dataModel
property)

String Specifies the version name of the dataset schema
publication.

No

parent String Specifies the parent dataset formatted key value. If there is
no parent, then it holds a null value.

Yes

activated Boolean Specifies whether the dataset is activated. Yes

owner String Specifies the owner profile. Yes

creator String Specifies the creator profile. Yes

creation_time Date Specifies the creation time. Yes

updater String Specifies the updater profile. Yes

update_time Date Specifies the update time. Yes

{
 "key": "mydataset",
 "dataModel": {
 "module": "modulename",

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1167

 "pathInModule": "/WEB-INF/ebx/schemas/mydataset.xsd"
 },
 "parent": null,
 "activated": true,
 "owner": "Beveryone",
 "creator": "Uadmin",
 "creation_time": "2023-10-10T15:49:03.023",
 "updater": "Uadmin",
 "update_time": "2023-10-10T15:49:03.005"
}

See also Select datasets [p 1110]

• Table
JSON Object containing the following properties:

• rows corresponding to JSON Array of selected records. Each record is represented by a JSON
Object. If no record is selected, then the JSON Array is empty.

• (Optional) pagination containing pagination [p 1174] data.
{
 "rows": [
 {
 "id": 1,
 "firstName": "Claude",
 "lastName": "Levi-Strauss"
 },
 {
 "id": 2,
 "firstName": "Sigmoud",
 "lastName": "Freud"
 },
 {
 "id": 3,
 "firstName": "Alfred",
 "lastName": "Dreyfus"
 }
],
 "pagination": {
 "firstPage": null,
 "previousPage": null,
 "nextPage": "http://.../root/individu?pageRecordFilter=./id=9&pageSize=9&pageAction=next",
 "lastPage": "http://.../root/individu?pageSize=9&pageAction=last"
 }
}

See also Select operation [p 1077]

• Record
JSON Object containing the record content.
{
 "pk": "pk1",
 "name": "Name1",
 "name-fr": "Name1",
 "parent": null
}

See also

Select operation [p 1077]

Prepare operations [p 1087]

• Fields
The compact json format does not support the association and selection nodes.
For other kinds of nodes, they contain the current node value [p 1168].

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1168

See also Select operation [p 1077]

• Retrieve the user interface state
Contains the user interface status and the unavailability message.
{
 "toolStatus": {
 "key": true, // or false
 "label": "Open"
 },
 "toolStatusCloseMessage": "Access is temporarily forbidden for maintenance."
}

See also User interface operations [p 1072]

Note

Nodes, records and fields property and value may be hidden depending on their resolved
permissions (see permissions [p 475]) .

169.3 Content
This section is always included and contains master data without any additional fields.

Node value
The node value contains only the data or the label and the details link in case of enumeration. It is
available for all nodes except association and selection.

Content of simple types
Corresponds to a key-value JSON entry which describes the node content.

See also Simple types formats [p 1176]

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1169

Content of group, list and enumeration

XML Schema JSON format Examples

Group

xs:complexType

Object

Contains a property per sub-node.

Example for a simple-occurrence group.

{
 "road": "11 rue scribe",
 "zipcode": "75009",
 "country": "France"
}

List

maxOccurs > 1

Array

Contains an array of all field
occurrences represented by a JSON
Object or a simple type.

Each JSON Object is composed of
node values [p 1168].

Example for a multi-occurrence field of xs:int type.

[
 0,
 1,
 2,
 3,
 4
]

Example for a multi-occurrence group.

[
 {
 "road": "11 rue scribe",
 "zipcode": "75009",
 "country": "France"
 },
 {
 "road": "711 Atlantic Ave",
 "zipcode": "MA 02111",
 "country": "United States"
 }
]

Enumeration

xs:string

Object

Contains key, link and label
properties.

Example for a foreign key.

{
 "key":"1",
 "details":"http://.../Bdataspace/dataset/root/
nationality/FRA",
 "label":"Française"
}

Documentation > Developer Guide > REST data services > JSON Formats > Compact

TIBCO EBX® Product Documentation 6.2.0 1170

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1171

CHAPTER 170
Common

This chapter contains the following topics:

1. Introduction

2. Global structure

3. Form validation report

4. Content

5. Update modes

6. Known limitations

170.1 Introduction
The common specifications are used in both compact [p 1161] and Extended [p 1131] formats.

170.2 Global structure

JSON Response body

Form data category
The response body contains a JSON Object per handled resources. That is, the JSON root Object for
a single handled resource is a JSON Object as well as for multiple handled resources. The several
properties are directly placed into the JSON Object.

• If the insert/update of a single record request or update field in table/dataset request was
successful, the code JSON property may be absent and if not, it corresponds to the HTTP response
code associated to the handled resource. The validation report is always present. Some properties
are optional and added when requested using request parameters. See Form data operations [p 1105]

for more information.
{
 "validation": [
 {
 "level": "error",
 "message": "Field 'Value' is mandatory.",
 "blocksCommit": "never",
 "pathInRecord": "/value"
 },
 {
 "level": "error",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1172

 "pathInRecord": "/code"
 },
 {
 "level": "warning",
 "message": "Value 'AD150' is prohibited.",
 "blocksCommit": "never",
 "pathInRecord": "/code"
 }
]
}

• If the insert multiple record request was successful, the code JSON property may be absent and if
not, it corresponds to the HTTP response code associated to the handled resource. The validation
report is always present. Some properties are optional and added when requested using request
parameters.
{
 "rows": [
 {
 "label": "My Lable1",
 "details": "http://.../root/table/1",
 "foreignKey": "1",
 "validation": [
 {
 "level": "error",
 "message": "Field 'Value' is mandatory.",
 "blocksCommit": "never",
 "pathInRecord": "/value"
 },
 {
 "level": "error",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",
 "pathInRecord": "/code"
 },
 {
 "level": "warning",
 "message": "Value 'AD150' is prohibited.",
 "blocksCommit": "never",
 "pathInRecord": "/code"
 }
]
 },
 {
 "label": "My Lable2",
 "details": "http://.../root/table/2",
 "foreignKey": "2",
 "validation": [
 {
 "level": "error",
 "message": "Field 'Value' is mandatory.",
 "blocksCommit": "never",
 "pathInRecord": "/value"
 },
 {
 "level": "error",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",
 "pathInRecord": "/code"
 },
 {
 "level": "warning",
 "message": "Value 'AD150' is prohibited.",
 "blocksCommit": "never",
 "pathInRecord": "/code"
 }
]
 }
]
}

• If the insert/update of a single record request or update field in table/dataset failed, the response
body corresponds to a JSON Exception handling response.
{
 "code": 422,
 "errors": [
 {
 "level": "error",
 "userCode": "Validation",
 "message": "Field 'Category' is mandatory.",

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1173

 "blocksCommit": "never",
 "pathInRecord": "/category"
 },
 {
 "level": "error",
 "userCode": "Validation",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",
 "pathInRecord": "/code"
 }
]
}

• If the insert multiple record request failed, the response body corresponds to a JSON Exception
handling response.
{
 "code": 422,
 "errors": [
 {
 "level": "error",
 "rowIndex": 0,
 "userCode": "Validation",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",
 "pathInRecord": "/code"
 },
 {
 "level": "error",
 "rowIndex": 0,
 "userCode": "Validation",
 "message": "Field 'Value Less Than' is mandatory.",
 "blocksCommit": "never",
 "pathInRecord": "/less_than_value"
 },
 {
 "level": "error",
 "rowIndex": 1,
 "userCode": "Validation",
 "message": "Values between 'AD100' and 'AD200' (included) are prohibited.",
 "blocksCommit": "onUserSubmit-checkModifiedValues",
 "pathInRecord": "/code"
 },
 {
 "level": "error",
 "rowIndex": 1,
 "userCode": "Validation",
 "message": "Field 'Value Less Than' is mandatory.",
 "blocksCommit": "never",
 "pathInRecord": "/less_than_value"
 }
]
}

See also

Form validation report [p 1173]

Exception handling [p 1056]

170.3 Form validation report
This report can be retrieve by using the Form data operations [p 1105]. It provides every validation
constraint on the requested resource.

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1174

Those constraints have the following properties:

JSON property JSON format Description Required

message String Description of the constraint. Yes

blocksCommit String Control policy of the constraint. The possible values
are: onInsertUpdateOrDelete, onUserSubmit-
checkModifiedValues, never.

See Blocking and non-blocking constraints [p 885] for
more information.

Yes

level String Severity level of the constraint. The possible values
are: info, warning, error or fatal.

Yes

pathInDataset String Relative field path starting from the schema node. No(**)

pathInRecord String Relative field path starting from the table node. No (*)

(*) Only available for record and record field operations.
(**) Only available for dataset operations.

See also Form data category [p 1171]

170.4 Content

Pagination
Use pagination to return a limited and parameterizable number of data. Pagination can be applied to
the following data types: records, association values, selection node values, selectors, dataspaces and
datasets. A context named pagination is always returned. This context allows you to browse data in
a similar manner to the UI.
The pagination is always enabled.

See also

Select operation [p 1077]

Select datasets [p 1110]

Beta feature: Select dataspaces or snapshots [p 1111]

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1175

The following provides detailed information related to this context:

JSON property JSON format Description Required

firstPage String or null (*) URL to access the first page. Yes

previousPage String or null (*) URL to access the previous page. Yes

nextPage String or null (*) URL to access the next page. Yes

lastPage String or null (*) URL to access the last page. Yes

Note

(*) Only defines whether data is available in this context and not in the response.

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1176

Content of simple type

XML Schema JSON format Examples Meta type OpenAPI

xs:string

xs:Name

osd:text

String (Unicode characters,
cf. RFC4627)

"A text"

"The escape of \"special
character\" is preceded by a
backslash."

null

string

name

text

type: string

format: n/a

osd:html String (Unicode characters,
cf. RFC4627)

"<p>An HTML tag can thus
be written without trouble</
p>"

html type: string

format: html

osd:email String (Unicode characters,
cf. RFC4627)

"employee@mycompany.com" email type: string

format: email

osd:locale String (Language tag, cf.
RFC1766)

"en-US" locale type: string

format: locale

xs:string

(Foreign key)

String

contains the value of the
formatted foreign key.

"0"

"true|99"

foreignKey type: string

format: n/a

xs:boolean Boolean true

false

null

boolean type: boolean

format: n/a

xs:decimal Number or null -10.5

20.001

15

-1e-13

decimal type: number

format: double

xs:date String with format: "yyyy-
MM-dd"

"2015-04-13" date type: string

format: date

xs:time String with format:

• "HH:mm:ss"

• "HH:mm:ss.SSS"

"11:55:00"

"11:55:00.000"

time type: string

format: date-
time

xs:dateTime String with format:

• "yyyy-MM-
ddTHH:mm:ss"

• "yyyy-MM-
ddTHH:mm:ss.SSS"

"2015-04-13T11:55:00"

"2015-04-13T11:55:00.000"

dateTime type: string

format: date-
time

xs:anyURI String (Uniform Resource
Identifier, cf. RFC3986)

"https://fr.wikipedia.org/wiki/
René_Descartes"

anyURI type: string

format: uri

https://swagger.io/docs/specification/data-models/data-types/
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc1766.txt
https://tools.ietf.org/html/rfc3986

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1177

XML Schema JSON format Examples Meta type OpenAPI

xs:int

xs:integer

Number or null 1596 int type: integer

format: int32

osd:resource String

contains the resource formatted
value.

"ebx-tutorial:ext-
images:frontpages/Bach.jpg"

resource type: string

format: n/a

osd:color String with format: "#[A-Fa-
f0-9]{6}"

contains the formatted value
for the color.

"#F6E0E0" color type: string

format: n/a

osd:datasetName String with format: "[a-zA-
Z_][-a-zA-Z0-9_.]*" and 64
characters max.

contains the formatted value of
the dataset name.

"ebx-tutorial" dataset type: string

format: n/a

osd:dataspaceKey String with format: [BV][a-
zA-Z0-9_:.\-\|]+ and 33
characters max.

contains the formatted key
value of the dataspace.

"Bebx-tutorial" dataspace type: string

format: n/a

Insert operation report
When invoking the insert operation with a record table, it can optionally return a report. The report
includes a JSON Object that contains the following properties:

• count contains an int of JSON Number type, that defines the number of processed records since
the listed rows can not be exhaustive in several cases.

• isPartialList contains a boolean of JSON Boolean type, that is true if the listed rows are only
a partial list of the whole processed records, false otherwise.

• rows contains a JSON Array, where each element corresponds to the result of a request element.

• code contains an int of JSON Number type, and allows to know whether the record has been
inserted or updated. This property is included if, and only if, the updateOrInsert parameter is
set to true.

• foreignKey contains a string of JSON String type, corresponding to the content to be used
as a foreign key for this record. This property is included if, and only if, the parameter
includeForeignKey is set to true.

• label contains a string of JSON String type, and allows to retrieve the record label. This
property is included if, and only if, the parameter includeLabel is set to yes.

• details containing a string of JSON String type, corresponding to the resource URL. This
property is included if, and only if, the parameter includeDetails is set to true.

{
 "count": 2,
 "isPartialList": false,
 "rows": [
 {
 "code": 204,

https://swagger.io/docs/specification/data-models/data-types/

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1178

 "foreignKey": "62",
 "label": "Claude Debussy",
 "details": "http://.../root/individu/62"
 },
 {
 "code": 201,
 "foreignKey": "195",
 "label": "Camille Saint-Saëns",
 "details": "http://.../root/individu/195"
 }
]
}

See also Insert operation [p 1090]

Delete operation report
When invoking the delete operation, a report is returned. The report includes a JSON Object that
contains the following properties:

• deletedCount containing an integer of JSON Number type, corresponds to the number of deleted
records.

• occultedCount containing an integer of JSON Number type, corresponds to the number of occulted
records.

• inheritedCount containing an integer of JSON Number type, corresponds to the number of
inherited records.

{
 "deletedCount": 1,
 "inheritedCount": 0,
 "occultedCount": 0
}

See also Delete operation [p 1096]

Technical data
Each returned record can contain its system records metadata under ebx-metadata/system properties
corresponding to the technical data. System metadata are requestable and sortable.
To include records metadata, see includeMetadata=system [p 1079] parameter value for select operation.

JSON property JSON format Description Required

uuid String Universally Unique Identifier of the record Yes

creator String Creation user's identifier.

See UserReferenceAPI for more information.

Yes

creation_time String Creation date Yes

updater String Last update user's identifier.

See UserReferenceAPI for more information.

Yes

update_time String Last update date. Yes

For extended format:
{

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1179

 ...,
 "ebx-metadata":{
 "content":{
 "system":{
 "content":{
 "uuid":{
 "content":"7FE03810-6A67-11ED-A892-00FF20216100"
 },
 "creator":{
 "content":"Uadmin"
 },
 "creation_time":{
 "content":"2022-11-22T14:13:47.793"
 },
 "updater":{
 "content":"Uadmin"
 },
 "update_time":{
 "content":"2022-11-29T17:46:55.686"
 }
 }
 }
 }
 }
}

For compact format:
{
 ...,
 "ebx-metadata":{
 "system":{
 "uuid":"7FE03810-6A67-11ED-A892-00FF20216100",
 "creator":"Uadmin",
 "creation_time":"2022-11-22T14:13:47.793",
 "updater":"Uadmin",
 "update_time":"2022-11-29T17:46:55.686"
 }
 }
}

See also Optimistic locking [p 1101]

170.5 Update modes
The byDelta mode allows to ignore data model elements that are missing from the JSON source
document. This mode is enabled (by default) through RESTful operations. The following table
summarizes the behavior of insert and update operations when elements are not included in the source
document.

Documentation > Developer Guide > REST data services > JSON Formats > Common

TIBCO EBX® Product Documentation 6.2.0 1180

See the RESTful data services operations update [p 1094] and insert [p 1090], as well as ImportSpec.
setByDeltaAPI in the Java API for more information.

State in the JSON source document Behavior

The property does not exist in the source document If the byDelta mode is activated (default):

• For the update operation, the field value remains
unchanged.

• For the insert operation, the behavior is the same as when
the byDelta mode is disabled.

If the byDelta mode is disabled through the RESTful
operation parameter:

The target field is set to one of the following values:

• If the element defines a default value, the target field is set
to that default value.

• If the element is of a type other than a string or list, the
target field value is set to null.

• If the element is an aggregated list, the target field value is
set to an empty list value.

• If the element is a string that differentiates null from an
empty string, the target field value is set to null. If it is a
string that does not differentiate the two, an empty string.

• If the element (simple or complex) is hidden in the data
services, the target value remains unchanged.

See also Hiding a field in Data Services [p 904]

Note

The user performing the import must have the
required permissions to create or change the
target field value. Otherwise, the operation
will be aborted.

The element is present and its value is null (for example,
"content": null)

The target field is always set to null except for lists, in which
case it is not supported.

170.6 Known limitations

Field values
The value of fields xs:date, xs:time and xs:dateTime does not contain a time zone associated with
the JSON-primitive type.

Indexing and search strategy
Filterable [p 1146] and sortable [p 1147] values from the metamodel are limited to the default search
strategy.

See also Search [p 499]

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1181

CHAPTER 171
Others

This chapter contains the following topics:

1. Introduction

2. Global structure

171.1 Introduction
The Extended [p 1131] and Compact [p 1161] JSON formats can handle most of the use cases, however
some operations and REST categories require specific formats like the followings.

171.2 Global structure

JSON Request body
The Request body is represented by a JSON Object whose content varies according to the operation
and the category.

Auth category
The request body holds several properties directly placed in the root JSON Object.

• Token creation
Specifies the login and password to use for an authentication token creation attempt.
{
 "login": "...", // JSON String
 "password": "..." // JSON String
}

Specifies the specific attribute, to activate the user authentication against the HTTP request, for
an authentication token creation attempt.
{
 "specific": true // JSON Boolean
}

See also Create token operation [p 1073]

• Password change
Specifies the login, password and passwordNew to use for the password change.
{

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1182

 "login": "...", // JSON String
 "password": "...", // JSON String
 "passwordNew": "..." // JSON String
}

See also Change password operation [p 1075]

JSON Response body
The response body is represented by a JSON Object whose content depends on the operation and
the category.

Admin category
The selection operation for this category only provides the requested values under a content property.

• System information
Contains EBX® instance's system information. The representation of these data can be flat or
hierarchical.
Flat representation:
{
 "content": {
 "bootInfoEBX": {
 "label": "EBX® configuration",
 "content": {
 "product.version": {
 "label": "EBX® product version",
 "content": "5.8.1 [...] Enterprise Edition"
 },
 "product.configuration.file": {
 "label": "EBX® main configuration file",
 "content": "System property [ebx.properties=./ebx.properties]"
 },
 // others keys
 }
 },
 "repositoryInfo": {
 "label": "Repository information",
 "content": {
 "repository.identity": {
 "label": "Repository identity",
 "content": "00905A5753FD"
 },
 "repository.label": {
 "label": "Repository label",
 "content": "My repository"
 },
 // others keys
 }
 },
 "bootInfoVM": {
 "label": "System information",
 "content": {
 "java.home": {
 "label": "Java installation directory",
 "content": "C:\\JTools\\jdk1.8.0\\jre"
 },
 "java.vendor": {
 "label": "Java vendor",
 "content": "Oracle Corporation"
 },
 // others keys
 }
 }
 }
}

Hierarchical representation:
{
 "content": {
 "bootInfoEBX": {
 "label": "EBX® configuration",

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1183

 "content": {
 "product": {
 "content": {
 "version": {
 "label": "EBX® product version",
 "content": "5.8.1 [...] Enterprise Edition"
 },
 "configuration": {
 "content": {
 "file": {
 "label": "EBX® main configuration file",
 "content": "System property [ebx.properties=./ebx.properties]"
 }
 }
 }
 }
 },
 "vm": {
 "content": {
 "startTime": {
 "label": "VM start time",
 "content": "2017/09/11-10:04:17-0729 CEST"
 },
 "identifier": {
 "label": "VM identifier",
 "content": "1"
 }
 }
 },
 // other hierarchical keys
 }
 }
 }
}

See also System information operation [p 1072]

Auth category
The response body contains several properties directly placed in the root JSON Object.

• Token creation
Contains the token value and its type.
{
 "accessToken": "...", // JSON String
 "tokenType": "..." // JSON String
}

See also Create token operation [p 1073]

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1184

Data category

Look up table views
The response body contains a content property holding a JSON Array, itself composed by JSON
Objects with the following properties:

JSON property JSON format Description Required

details String Corresponds to the view access URL. Yes

label String View's label. No

viewPublication String Published view's name.

See also Table viewPublication parameter [p 1085]

Yes

viewType String Enumeration whose value corresponds to one of the following:

• SimpleTabular: Simple tabular view.

• Hierarchy: Hierarchical view.

• Tile: Tile view.

Yes

{
 "content": [
 {
 "details": "http://.../data/v1/Bebx-directory/ebx-directory/directory/users?viewPublication=custom-
directory",
 "label": "My custom directory view",
 "viewPublication": "custom-directory",
 "viewType": "SimpleTabular"
 },
 {
 ...
 }
]
}

See also Look up table views operation [p 1104]

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1185

Beta feature: Dataspaces selection
The returned response body contains dataspaces in a rows JSON Array property, where each inner
JSON Object corresponds to a dataspace with the following properties:

JSON property JSON format Description Required

label String Documentation label in the current locale. No

description String Documentation description in the current locale. No

details String Specifies the dataspace's REST resource URL. Yes

information String Specifies the dataspace's information REST resource URL. Yes

key String Specifies the dataspace or snapshot formatted key.

Format: [BV][a-zA-Z0-9_:.\-\|]{1,33} and percent encoded
afterward.

Yes

isSelectAllowed Boolean Specifies if the dataspace can be selected, according to the user's
permissions.

Yes

hasChildren Boolean Specifies if the dataspace has children, according to the user's
permissions.

Note

Not applicable for snapshots.

Yes

children String Specifies the dataspace's children REST resource URL. If
hasChildren property key value is false then the returned value
is null.

Note

Not applicable for snapshots.

No

snapshots String Specifies the dataspace's snapshots REST resource URL.

Note

Not applicable for snapshots.

Yes

{
 "rows": [
 {
 "label": "Master Data - Reference",
 "description": "Reference dataspace in EBX.",
 "details": "http://.../data/v1/BReference",
 "information": "http://.../data/v1/BReference:information",
 "key": "BReference",
 "closed": false,
 "isSelectAllowed": true,
 "hasChildren": true,
 "children": "http://.../data/v1/BReference:children",
 "snapshots": "http://.../data/v1/BReference:snapshots"
 },
 {

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1186

 // An other dataspace
 }
],
 "pagination": {
 "firstPage": null,
 "previousPage": null,
 "nextPage": null,
 "lastPage": null
 }
}

See also

Pagination [p 1174]

Beta feature: Select dataspaces or snapshots [p 1111]

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1187

Beta feature: Dataspace information
The response body contains a content JSON Object property, holding the following properties:

JSON property JSON format Description Required

content Object Corresponds to the dataspace or the snapshot information. Yes

key String Specifies the dataspace or snapshot formatted key value.

Format: [BV][a-zA-Z0-9_:.\-\|]+ limited to 33 characters
maximum.

Yes

documentation Array of JSON
Object

Corresponds to the localized documentation with a JSON Object
by locale.

No

locale String Documentation locale (nested under the documentation
property).

Yes

label String Documentation label (nested under the documentation
property).

No

description String Documentation description (nested under the documentation
property).

No

closed Boolean Specifies if the dataspace is closed. Yes

locked Boolean Specifies if the dataspace is locked.

Note

Not applicable for snapshots.

Yes

parent String Specifies the parent dataspace or snapshot formatted key value. No

administration Boolean Specifies if the dataspace or the snapshot is an administration
one.

Yes

owner String Specifies the owner profile. No

creator String Specifies the creator profile. Yes

creationDate Date Specifies the creation date. Yes

{
 "content": {
 "key": "BReference",
 "documentation": [
 {
 "locale": "en-US",
 "label": "Master Data - Reference",
 "description": "Reference dataspace in EBX."
 },
 {
 "locale": "fr-FR",
 "label": "Données - Référence",
 "description": "Espace de données référence de EBX."
 }

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1188

],
 "closed": false,
 "locked": false,
 "parent": null,
 "administration": false,
 "relationalMode": false,
 "owner": "Badministrator",
 "creator": "Badministrator",
 "creationDate": "2019-04-28T19:49:04.838"
 }
}

See also Beta feature: Select dataspaces or snapshots [p 1111]

Beta feature: Dataspace child or snapshot creation
The response body contains a content JSON Object property, holding the following properties:

JSON property JSON format Description Required

key String Specifies the dataspace or snapshot formatted key
value.

Format: [BV][a-zA-Z0-9_:.\-\|]+ limited to 33
characters maximum.

The default value is a timestamp.

No

owner String Specifies the owner profile.

Default value is null.

No

documentation Array of JSON
Object

Corresponds to the localized documentation with
a JSON Object by locale.

Default value is null.

No

locale String Documentation locale (nested under the
documentation property).

Yes

label String Documentation label (nested under the
documentation property).

Default value is null.

No

description String Documentation description (nested under the
documentation property).

Default value is null.

No

dataspaceKeyToCopyPermissionsFrom String Specifies the dataspace's formatted key value
from which to copy permissions.

Note

Not applicable for snapshots
creation.

No

{
 "content": {
 "key": "BMyData",
 "owner": "Beveryone",
 "documentation": [
 {
 "locale": "en-US",
 "label": "My dataspace",
 "description": "This space contains my data"

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1189

 }
],
 "dataspaceKeyToCopyPermissionsFrom": "BReference"
 }
}

See also Beta feature: Create a child dataspace or a snapshot [p 1113]

Health category

Health started and check responses
The response body contains a JSON String value corresponding to an OK value.

Health stopped response
The response body contains a JSON String value corresponding to an enumeration value. Possible
values: OK or NO

Documentation > Developer Guide > REST data services > JSON Formats > Others

TIBCO EBX® Product Documentation 6.2.0 1190

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 1191

SQL in EBX®

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1192

CHAPTER 172
Introduction

This chapter contains the following topics:

1. Overview

2. Mapping data model entities

3. Mapping data types

4. SQL syntax

5. Limitations and performance guidelines

172.1 Overview
This documentation covers Structured Query Language (SQL) queries and expressions in EBX®.
EBX® supports standard SQL queries to retrieve rows selected from one or more tables. Some EBX®
SQL language features are extensions to the standard. Supported EBX® SQL syntax includes: table
expressions (SELECT, FROM, WHERE, GROUP BY and HAVING clauses), DISTINCT, ORDER
BY, LIMIT and OFFSET, combining queries (UNION [ALL]), and WITH (except RECURSIVE
modifier).
The goal of this API is to provide to developers the ability to retrieve data from EBX® using a well-
known standard.
EBX® SQL is accessible through Java APIs, especially from the class QueryAPI. The queries also
support parameters. See Query.setParameterAPI.
Queries can involve a single dataset or multiple datasets, see QueryBuilderAPI to know more about
how to create a query.

172.2 Mapping data model entities
The following section provides a detailed explanation about the mapping of the EBX® concepts into
SQL.

Table (in data model)
EBX® tables are mapped naturally to SQL tables. In the data model, there can be more than one
EBX® table with the same name. This ambiguity can occur when tables are in groups. To remove
the ambiguity, use the full path of the table surrounded by double quotes (for example, "my_group/
my_table" no longer conflicts with "other_group/my_table"). You can also use the entity name of

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1193

the table, which is unique inside the data model. You can use the table name only if it does not collide
with an entity name or another table name.

See also Entity mappings using the Data Model Assistant [p 86]

Fields
In SQL Standard, the structure of a table consists of one or more columns. Every element (including
fields) whose parent is an EBX® table, is mapped to a column.

Groups
In SQL Standard, the structure of a table consists of one or more columns. Every element whose parent
is an EBX® table is mapped to a column. This includes groups that are mapped to SQL columns as
SQL structure types.

Associations
In SQL Standard, querying data among multiple tables is based on foreign keys and primary keys.
These concepts in EBX® are similar to those in SQL. Therefore, joins between tables in SQL can
also be done using EBX® foreign and primary keys.

172.3 Mapping data types
Handling data through SQL is highly dependent on its data type. For example, in predicates, columns
can be compared only if they have the same SQL data type. The SQL data types are types according
to the type in the data model.

Simple data types
Supported standard SQL data types

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1194

This table lists all of the simple types defined in the XML Schema that are supported by EBX®, along
with their corresponding standard SQL types.

XML Schema type SQL type Java type Notes

xs:string VARCHAR java.lang.String

xs:boolean BOOLEAN java.lang.Boolean Values: TRUE, FALSE,
UNKNOWN

xs:decimal DECIMAL java.math.BigDecimal

xs:dateTime TIMESTAMP java.util.Date

xs:time TIME java.util.Date The date portion of the
returned Date is always set to
'1970/01/01'.

xs:date DATE java.util.Date The time portion of the
returned Date is always set to
the beginning of the day (that
is, '00:00:00').

xs:anyURI VARCHAR java.net.URI

xs:Name (xs:string
restriction)

VARCHAR java.lang.String

xs:int INT java.lang.Integer

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#int

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1195

Extended simple types defined by EBX®
EBX® provides pre-defined simple data types. These types are defined by the internal schema
common-1.0.xsd. Their definition is detailed in the section Extended simple types defined by EBX®
[p 842]

XML Schema type SQL type Java class

osd:text (xs:string restriction) VARCHAR java.lang.String

osd:html (xs:string restriction) VARCHAR java.lang.String

osd:email (xs:string restriction) VARCHAR java.lang.String

osd:password (xs:string restriction) VARCHAR java.lang.String

osd:color (xs:string restriction) VARCHAR java.lang.String

osd:resource (xs:anyURI restriction) VARCHAR internal class

osd:locale (xs:string restriction) VARCHAR java.util.Locale

osd:dataspaceKey (xs:string
restriction)

VARCHAR java.lang.String

osd:datasetName (xs:string
restriction)

VARCHAR java.lang.String

List (multi-valued) types
Lists are handled as SQL Arrays. Their corresponding Java class is java.util.List.
Note: in order to filter on a multivalued field, first it has to be "normalized" via the UNNEST SQL
operator (be aware that this is not recommended in terms of performance and can be quite inefficient
on large tables):

• SELECT T.s FROM myTable T, UNNEST(T.list) as L(item) WHERE L.item = 'test'

• SELECT p.name FROM Person p, UNNEST(p.addresses) AS ad(street, city) WHERE ad.city
= 'Paris'

Complex types
Complex types are handled as SQL Structured types. Their corresponding Java class is Object[]. This
applies to foreign keys (see below) and group [p 29]s, because they are defined through complex types.
Use the dot operator to access fields inside the SQL Structure types. For example, use address.street
to access the field street of the field address, if it is a complex type. When you reference a sub-field
of a complex type in a query, you must always use the table name or alias:

• SELECT customer.address.street FROM customer

• SELECT c.address.street FROM customer c

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://en.wikipedia.org/wiki/Structured_type

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1196

TableRef types
In EBX®, a table can have a primary key composed of multiple fields. Foreign keys are defined by a
single field with the osd:tableRef [p 859] declaration. The standard SQL syntax has been extended to
extract the value of any targeted primary key field. In the Extraction of foreign keys example [p 437],
the following SQL expressions are valid:

• tableA.fkb.id = 123

• YEAR(tableA.fkb.date) > 2018

Note

Even if the primary key is composed of only one field, the name of the field must be
specified to access the value. For example, if the primary key is composed of a single
id, fkb.id must be used to access the value, as in tableA.fkb.id = 123

A typical example of tableRef usage would be SQL joins:
SELECT * FROM employee JOIN department ON employee.fkDept.id = department.id

Or in case the referenced table has a composite primary key:
SELECT * FROM tableA JOIN tableB ON tableA.fkB.id1 = tableB.id1 AND tableA.fkB.id2 =
tableB.id2

Analogously, we could perform the same JOIN via the string representation of the key, using
FK_AS_STRING built-in function [p 1221] and $pk system column [p 1198]:
SELECT * FROM tableA JOIN tableB ON FK_AS_STRING(tableA.fkB) = tableB."$pk"

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1197

Metadata fields
EBX® SQL provides also access to some metadata information. These fields are not returned by a
SQL statement, unless they are explicitly referenced. For example, "SELECT * FROM ..." does not
return metadata fields, but "SELECT metadataField FROM ..." does.

Name Description SQL
type

Java class Examples

creator The creator Adaptation.
getCreatorAPI of the record.

VARCHAR java.lang.String SELECT t."ebx-
metadata"."system"."creator" FROM
myTable t

SELECT t.* FROM
myTable t WHERE t."ebx-
metadata"."system"."creator" =
'Uuser1'

SELECT t.* FROM myTable
t ORDER BY t."ebx-
metadata"."system"."creator"

creation_time The creation
time Adaptation.
getTimeOfCreationAPI of the
record.

TIMESTAMP java.util.Date SELECT t."ebx-
metadata"."system"."creation_time"
FROM myTable t

SELECT t.* FROM
myTable t WHERE t."ebx-
metadata"."system"."creation_time"
> TIMESTAMP'2001-06-10 14:57:20'

SELECT t.* FROM myTable
t ORDER BY t."ebx-
metadata"."system"."creation_time"

updater The last user Adaptation.
getLastUserAPI who modified
the record.

VARCHAR java.lang.String SELECT t."ebx-
metadata"."system"."updater" FROM
myTable t

SELECT t.* FROM
myTable t WHERE t."ebx-
metadata"."system"."updater" =
'Uuser1'

SELECT t.* FROM myTable
t ORDER BY t."ebx-
metadata"."system"."updater"

update_time The time of the last
modification Adaptation.
getTimeOfLastModificationAPI

of the record.

TIMESTAMP java.util.Date SELECT t."ebx-
metadata"."system"."update_time"
FROM myTable t

SELECT t.* FROM
myTable t WHERE t."ebx-
metadata"."system"."update_time"
> TIMESTAMP'2001-06-10 14:57:20'

SELECT t.* FROM myTable
t ORDER BY t."ebx-
metadata"."system"."update_time"

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1198

System columns
Apart from the fields present in a table, EBX® SQL provides some extra system columns. These
columns are not returned by a SQL statement, unless they are explicitly referenced. For example,
"SELECT * FROM ..." does not return systems columns, but "SELECT systemColumnName FROM ..."
does.

Name Description SQL type Java class Examples

$adaptation The AdaptationAPI

representing the table
record.

internal
type

com.onwbp.adaptation.Adaptation SELECT t."$adaptation"
FROM myTable t WHERE
t.value>100

$pk String representation
of the primary key of
the record.

See
also PrimaryKey.
syntaxAPI

VARCHAR java.lang.String SELECT t.* FROM myTable1 t
WHERE t."$pk"='123'

SELECT t.* FROM myTable2 t
WHERE t."$pk"='123|abc'

SELECT t."$pk" FROM
myTable3 t WHERE
t.value>100

SELECT t.value FROM
myTable3 t ORDER BY
t."$pk"

172.4 SQL syntax

Supported standard operators and functions
An operator is a reserved word or a character used primarily in a SQL statement's WHERE clause
to perform operation(s), such as comparisons and arithmetic operations. These Operators are used
to specify conditions in a SQL statement, and to serve as conjunctions for multiple conditions in a
statement. EBX® supports most of the SQL standard operators and functions. Some functions and
operators can have optional parameters: they are surrounded by square brackets in the documentation.
Generally, there are five types of operators and functions:

• Comparison operators and functions [p 1202]

• Arithmetic operators and functions [p 1206]

• Logical operators [p 1210]

• String operators and functions [p 1214]

• Date and time functions [p 1218]

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1199

The following table lists all of the operators' associativity and precedence, highest to lowest.

Operator Associativity

. left

[] (array element) left

+ - (unary plus, minus) right

* / % left

+ - left

BETWEEN, IN, LIKE, CONTAINS, and so on -

< > = <= >= <> != left

IS NULL, IS FALSE, IS NOT TRUE, and so on -

NOT right

AND left

OR left

Escaping identifiers
In the following cases, the identifier must be escaped by using double quotes:

• when using the absolute path to identify a table (for example, "/root/myTable").

• when the field to identify is a reserved word (for example, "user", "order").

• when referring to a system column with a table alias (for example, t."$adaptation", t."$pk").

• when referring to a metadata field (for example, t."ebx-metadata"."system"."creation_time").

The following example shows a query to illustrate all cases:
SELECT t."user", t."$pk" FROM "/root/myTable" t WHERE t."order" = 1

Explain plan
EBX® SQL supports EXPLAIN PLAN FOR ... syntax to get the plan information of a query.
The result is similar to Query.explainAPI.
Example: EXPLAIN PLAN FOR SELECT id FROM myTable

172.5 Limitations and performance guidelines
• Certain internal join optimizations do not support RIGHT and FULL joins, so avoid these join

types if possible.

Documentation > Developer Guide > SQL in EBX® > Introduction

TIBCO EBX® Product Documentation 6.2.0 1200

• The maximum precision and scale for numeric or decimal values is 1000.

• Queries using GROUP BY and/or aggregate functions (MIN, MAX, and so on) are not optimized, except
for COUNT, which can be optimized in some circumstances.

• Currently, MIN and MAX operators do not exploit internal indices. Instead, use the following
equivalent queries, which are probably more efficient:
SELECT val FROM myTable ORDER BY val DESC NULLS LAST LIMIT 1 instead of SELECT MAX(val)
FROM myTable

SELECT val FROM myTable ORDER BY val LIMIT 1 instead of SELECT MIN(val) FROM myTable

Documentation > Developer Guide > SQL in EBX® > Comparison operators

TIBCO EBX® Product Documentation 6.2.0 1201

Documentation > Developer Guide > SQL in EBX® > Comparison operators

TIBCO EBX® Product Documentation 6.2.0 1202

CHAPTER 173
Comparison operators

The table below lists all the SQL arithmetic operators and functions supported by EBX®, along with
their standard SQL syntax. Some functions may have optional parameters: they are surrounded by
square brackets.

Operator syntax Description and example(s)

value1 = value2 Equals

SELECT 1 = 0 : false

SELECT 4 = 4 : true

value1 <> value2 Not equals

SELECT 1 <> 0 : true

SELECT 4 <> 4 : false

value1 > value2 Greater than

SELECT 1 > 0 : true

SELECT 4 > 4 : false

value1 >= value2 Greater than or equal

SELECT 1 >= 0 : true

SELECT 4 >= 4 : true

value1 < value2 Lower than

SELECT 1 < 0 : false

SELECT 4 < 4 : false

value1 <= value2 Less than or equal

SELECT 1 <= 0 : false

SELECT 4 <= 4 : true

value IS NULL Whether value is null

SELECT 1 IS NULL : false

SELECT NULL IS NULL : true

value IS NOT NULL Whether value is not null

Documentation > Developer Guide > SQL in EBX® > Comparison operators

TIBCO EBX® Product Documentation 6.2.0 1203

Operator syntax Description and example(s)

SELECT 1 IS NOT NULL : true

SELECT NULL IS NOT NULL : false

value1 IS DISTINCT FROM value2 Whether two values are not equal, treating null values as the
same

SELECT 1 IS DISTINCT FROM 1 : false

SELECT 1 IS DISTINCT FROM 4 : true

SELECT 1 IS DISTINCT FROM NULL : true

SELECT NULL IS DISTINCT FROM NULL : false

value1 IS NOT DISTINCT FROM value2 Whether two values are equal, treating null values as the same

SELECT 1 IS NOT DISTINCT FROM 1 : true

SELECT 1 IS NOT DISTINCT FROM 4 : false

SELECT 1 IS NOT DISTINCT FROM NULL : false

SELECT NULL IS NOT DISTINCT FROM NULL : true

value1 BETWEEN value2 AND value3 Whether value1 is greater than or equal to value2 and less than
or equal to value3

SELECT 4 BETWEEN 3 AND 10 : true

SELECT 1 BETWEEN 3 AND 10 : false

value1 NOT BETWEEN value2 AND value3 Whether value1 is greater than or equal to value2 and less than
or equal to value3

SELECT 4 NOT BETWEEN 3 AND 10 : false

SELECT 1 NOT BETWEEN 3 AND 10 : true

string1 LIKE string2 Whether string1 matches pattern string2. The wildcard '%'
represents zero, one or multiple characters. The wildcard
'_' represents one single character. Use 'ESCAPE' to define
a escape character (if you want to escape a wildcard). To
find if string1 starts with a sequence, use pattern 'sequence
%' (analogously use '%sequence' for ends with). The matching
is case sensitive. To perform a case insensitive matching, use
UPPER (or LOWER) on string1 and pattern.

SELECT name FROM employee WHERE name LIKE 'S%' :
Smith, Saunders

SELECT name FROM employee WHERE UPPER(name) LIKE 'SM
%' : Smith

SELECT name FROM employee WHERE name LIKE '_m%' :
Smith

SELECT 'abcd%' LIKE '%!%' ESCAPE '!' : true

string1 NOT LIKE string2 Whether string1 does not match pattern string2. The wildcard
'%' represents zero, one or multiple characters. The wildcard
'_' represents one single character. Use 'ESCAPE' to define a
escape character (if you want to escape a wildcard). To find if
string1 does not start with a sequence, use pattern 'sequence
%' (analogously use '%sequence' for ends with). The matching
is case sensitive. To perform a case insensitive matching, use
UPPER (or LOWER) on string1 and pattern.

SELECT name FROM employee WHERE name NOT LIKE 'S%' :
 Hamilton

Documentation > Developer Guide > SQL in EBX® > Comparison operators

TIBCO EBX® Product Documentation 6.2.0 1204

Operator syntax Description and example(s)

SELECT name FROM employee WHERE UPPER(name) NOT LIKE
'SM%' : Hamilton, Saunders

SELECT name FROM employee WHERE name NOT LIKE '_m
%' : Hamilton, Saunders

SELECT 'abcd%' NOT LIKE '%!_' ESCAPE '!' : true

value IN (value [, value]*) Whether value is equal to a value in a list

SELECT firstname FROM employee WHERE name IN
('Smith', 'Hamilton') : John, Maria

value NOT IN (value [, value]*) Whether value is not equal to every value in a list

SELECT firstname FROM employee WHERE name NOT IN
('Smith', 'Hamilton') : Jennifer

value IN (sub-query) Whether value is equal to a row returned by sub-query

SELECT e.firstname FROM employee e WHERE
e.department.id IN (SELECT d.id FROM department d
WHERE d.name='IT') : John

Documentation > Developer Guide > SQL in EBX® > Arithmetic operators and functions

TIBCO EBX® Product Documentation 6.2.0 1205

Documentation > Developer Guide > SQL in EBX® > Arithmetic operators and functions

TIBCO EBX® Product Documentation 6.2.0 1206

CHAPTER 174
Arithmetic operators and functions

The following table lists all of the SQL arithmetic operators and functions supported by EBX®, along
with their standard SQL syntax. Some functions can have optional parameters: they are surrounded
by square brackets.

Operator syntax Description and example(s)

+ numeric Returns numeric

SELECT +4 : 4

- numeric Returns numeric

SELECT -4 : -4

numeric1 + numeric2 Returns numeric1 plus numeric2

SELECT 18 + 4 : 22

numeric1 - numeric2 Returns numeric1 minus numeric2

SELECT 18 - 4 : 14

numeric1 * numeric2 Returns numeric1 multiplied by numeric2

SELECT 18 * 4 : 72

numeric1 / numeric2 Returns numeric1 divided by numeric2

SELECT 18 / 4 : 4

ABS(numeric) Returns the absolute value of numeric

SELECT ABS(-243.5) : 243.5

ACOS(numeric) Returns the arc cosine of numeric

SELECT ACOS(-1) : 3.141592653589793

ASIN(numeric) Returns the arc sine of numeric

SELECT ABS(0.25) : 0.25

ATAN(numeric) Returns the arc tangent of numeric

SELECT ATAN(2.5) : 1.1902899496825317

Documentation > Developer Guide > SQL in EBX® > Arithmetic operators and functions

TIBCO EBX® Product Documentation 6.2.0 1207

Operator syntax Description and example(s)

ATAN2(numeric, numeric) Returns the arc tangent of the numeric coordinates

SELECT ATAN2(0.50, 1) : 0.4636476090008061

CEIL(numeric) Rounds numeric up, and returns the smallest number that is
greater than or equal to numeric

SELECT CEIL(25.75) : 26

CEILING(numeric) Rounds numeric up, and returns the smallest number that is
greater than or equal to numeric

SELECT CEILING(25.75) : 26

COS(numeric) Returns the cosine of numeric

SELECT COS(2) : -0.4161468365471424

COT(numeric) Returns the cotangent of numeric

SELECT COT(6) : -3.436353004180128

DEGREES(numeric) Converts numeric from radians to degrees

SELECT DEGREES(1.5) : 85.94366926962348

EXP(numeric) Returns e raised to the power of numeric

SELECT EXP(1) : 2.718281828459045

FLOOR(numeric) Rounds numeric down, and returns the largest number that is
less than or equal to numeric

SELECT FLOOR(25.75) : 25

LN(numeric) Returns the natural logarithm (base e) of numeric

SELECT LN(2) : 0.6931471805599453

LOG10(numeric) Returns the base-10 logarithm of numeric

SELECT LOG10(2) : 0.3010299956639812

MOD(numeric1, numeric2) Returns the remainder (modulus) of numeric1 divided by
numeric2. The result is negative only if numeric1 is negative

SELECT MOD(18, 4) : 2

POWER(numeric1, numeric) Returns numeric1 raised to the power of numeric2

SELECT POWER(4, 2) : 16.0

RADIANS(numeric) Converts numeric from degrees to radians

SELECT RADIANS(180) : 3.141592653589793

RAND([seed]) Returns a random double using numeric as the seed value if
specified

SELECT RAND(6) : 0.9891840064573959

Documentation > Developer Guide > SQL in EBX® > Arithmetic operators and functions

TIBCO EBX® Product Documentation 6.2.0 1208

Operator syntax Description and example(s)

RAND_INTEGER([seed,] numeric) Generates a random integer between 0 and numeric - 1
inclusive, initializing the random number generator with seed if
specified

SELECT RAND_INTEGER(100, 5) : 0

SELECT RAND_INTEGER(6, 100) : 11

ROUND(numeric1, numeric2) Rounds numeric1 to numeric2 places right to the decimal point

SELECT ROUND(135.375, 2) : 135.38

SIGN(numeric) Returns the signum of numeric

SELECT SIGN(255.5) : 1

SIN(numeric) Returns the sine of numeric

SELECT SIN(2) : 0.9092974268256817

SQRT(numeric) Returns the square root of numeric

SELECT SQRT(64) : 8.0

TAN(numeric) Returns the tangent of numeric

SELECT TAN(1.75) : -5.52037992250933

TRUNCATE(numeric1[, numeric2]) Truncates numeric1 to 0 (if no numeric2 specified) places right
to the decimal point

SELECT TRUNCATE(135.375) : 135

SELECT TRUNCATE(135.375, 2) : 135.37

Documentation > Developer Guide > SQL in EBX® > Logical operators

TIBCO EBX® Product Documentation 6.2.0 1209

Documentation > Developer Guide > SQL in EBX® > Logical operators

TIBCO EBX® Product Documentation 6.2.0 1210

CHAPTER 175
Logical operators

The following table lists all of the SQL logical operators supported by EBX®, along with their
standard SQL syntax.

Operator syntax Description and example(s)

boolean1 OR boolean2 Whether boolean1 is TRUE or boolean2 is TRUE

SELECT TRUE OR TRUE : true

SELECT TRUE OR FALSE : true

SELECT FALSE OR TRUE : true

SELECT FALSE OR FALSE : false

boolean1 AND boolean2 Whether boolean1 is TRUE and boolean2 is TRUE

SELECT TRUE AND TRUE : true

SELECT TRUE AND FALSE : false

SELECT FALSE AND TRUE : false

SELECT FALSE AND FALSE : false

NOT boolean Whether boolean is not TRUE; returns UNKNOWN if boolean
is UNKNOWN

SELECT NOT TRUE : false

SELECT NOT FALSE : true

SELECT NOT UNKNOWN : null

boolean IS FALSE Whether boolean is FALSE; returns FALSE if boolean is
UNKNOWN

SELECT TRUE IS FALSE : false

SELECT FALSE IS FALSE : true

boolean IS NOT FALSE Whether boolean is not FALSE; returns TRUE if boolean is
UNKNOWN

SELECT TRUE IS NOT FALSE : true

SELECT FALSE IS NOT FALSE : false

boolean IS TRUE Whether boolean is TRUE; returns TRUE if boolean is
UNKNOWN

SELECT TRUE IS TRUE : true

Documentation > Developer Guide > SQL in EBX® > Logical operators

TIBCO EBX® Product Documentation 6.2.0 1211

Operator syntax Description and example(s)

SELECT FALSE IS TRUE : false

boolean IS NOT TRUE Whether boolean is not TRUE; returns FALSE if boolean is
UNKNOWN

SELECT TRUE IS NOT TRUE : false

SELECT FALSE IS NOT TRUE : true

boolean IS UNKNOWN Whether boolean is UNKNOWN

SELECT TRUE IS UNKNOWN : false

SELECT FALSE IS UNKNOWN : false

boolean IS NOT UNKNOWN Whether boolean is not UNKNOWN

SELECT TRUE IS NOT UNKNOWN : true

SELECT FALSE IS NOT UNKNOWN : true

Documentation > Developer Guide > SQL in EBX® > Logical operators

TIBCO EBX® Product Documentation 6.2.0 1212

Documentation > Developer Guide > SQL in EBX® > String operators and functions

TIBCO EBX® Product Documentation 6.2.0 1213

Documentation > Developer Guide > SQL in EBX® > String operators and functions

TIBCO EBX® Product Documentation 6.2.0 1214

CHAPTER 176
String operators and functions

The following table lists all of the SQL string operators and functions supported by EBX®, along
with their standard SQL syntax. Some functions can have optional parameters: they are surrounded
by square brackets.

Operator syntax Description and example(s)

string || string Concatenates two character strings

SELECT 'Hello ' || 'world !' : Hello world !

CHAR_LENGTH(string) Returns the number of characters in a character string

SELECT CHAR_LENGTH('Alfreds Futterkiste') : 19

CHARACTER_LENGTH(string) As CHAR_LENGTH(string)

SELECT CHARACTER_LENGTH('Alfreds Futterkiste') : 19

UPPER(string) Returns a character string converted to upper case

SELECT UPPER('SQL Tutorial is FUN!') : SQL TUTORIAL
IS FUN!

POSITION(string1 IN string2 [FROM integer]) Returns the position of the first occurrence of string1 in string2
starting at a given point if specified

SELECT POSITION('is fun' IN 'Tutorial is FUN!') : 0

SELECT POSITION('fun' IN 'Tutorial is FUN, very
FUN!' FROM 17) : 0

TRIM({ BOTH | LEADING | TRAILING } character FROM
string)

Removes the longest string containing only the character from
the start/end/both ends of string

SELECT TRIM(' ' FROM ' #SQL Tutorial! ') : #SQL
Tutorial!

SELECT TRIM(LEADING ' ' FROM ' #SQL Tutorial! ') :
#SQL Tutorial!

SELECT TRIM(TRAILING ' ' FROM ' #SQL Tutorial! ') :
#SQL Tutorial!

SELECT TRIM(BOTH ' ' FROM ' #SQL Tutorial! ') :
#SQL Tutorial!

OVERLAY(string1 PLACING string2 FROM integer [FOR
integer2])

Replaces a substring of string1 with string2

Documentation > Developer Guide > SQL in EBX® > String operators and functions

TIBCO EBX® Product Documentation 6.2.0 1215

Operator syntax Description and example(s)

SELECT OVERLAY('Tutorial is very FUN!' PLACING
'VERY' FROM 13) : Tutorial is VERY FUN!

SELECT OVERLAY('Tutorial is very FUN!' PLACING
'VERY' FROM 13 FOR 4) : Tutorial is VERY FUN!

SUBSTRING(string FROM integer [FOR integer]) Returns a substring of a character string starting at a given point

SELECT SUBSTRING('Tutorial is very FUN!' FROM 13) :
very FUN!

SELECT SUBSTRING('Tutorial is very FUN!' FROM 13 FOR
4) : very

Documentation > Developer Guide > SQL in EBX® > String operators and functions

TIBCO EBX® Product Documentation 6.2.0 1216

Documentation > Developer Guide > SQL in EBX® > Date and time functions

TIBCO EBX® Product Documentation 6.2.0 1217

Documentation > Developer Guide > SQL in EBX® > Date and time functions

TIBCO EBX® Product Documentation 6.2.0 1218

CHAPTER 177
Date and time functions

The following table lists all of the SQL date and time functions supported by EBX®, along with their
standard SQL syntax. Some functions can have optional parameters: they are surrounded by square
brackets.

Operator syntax Description and example(s)

CURRENT_TIME Returns the current time in the session time zone, in a value of
datatype TIMESTAMP WITH TIME ZONE

CURRENT_DATE Returns the current date in the session time zone, in a value of
datatype DATE

CURRENT_TIMESTAMP Returns the current date and time in the session time zone, in a
value of datatype TIMESTAMP WITH TIME ZONE

Cast strings to timestamps Note that datetime values displayed in EBX (UI and export
files) are in local time zone, whereas the timestamp literals
created by the SQL parser are in UTC; therefore if the server
is not in UTC, you might need to create the literals on the local
time zone to avoid this mismatch and get the expected results
(see third example). You should also consider if the datetime
value has millisecond precision (which is not displayed by EBX
UI) in order to write your filter (see last example).

SELECT COUNT(*) FROM employee WHERE
lastProfileUpdateTime=TIMESTAMP'2017-06-28
18:06:12' : 0

SELECT COUNT(*) FROM employee WHERE
lastProfileUpdateTime=CAST('2017-06-28 18:06:12' AS
TIMESTAMP) : 0

SELECT COUNT(*) FROM employee WHERE
lastProfileUpdateTime=CAST('2017-06-28 18:06:12
Europe/Paris' AS TIMESTAMP WITH LOCAL TIME ZONE) :
1

SELECT COUNT(*) FROM employee e WHERE e."ebx-
metadata"."system"."update_time">=TIMESTAMP'2023-08-28
09:56:55' AND e."ebx-
metadata"."system"."update_time"<TIMESTAMP'2023-08-28
09:56:56' : 1

YEAR(date) Extracts and returns the value of the year from a datetime value
expression. Returns an integer.

SELECT YEAR(TIMESTAMP '1971-07-20 09:34:21') : 1971

Documentation > Developer Guide > SQL in EBX® > Date and time functions

TIBCO EBX® Product Documentation 6.2.0 1219

Operator syntax Description and example(s)

SELECT YEAR(DATE '1968-07-20') : 1968

SELECT YEAR(hiringDate) FROM employee WHERE
name='Smith' : 2015

SELECT YEAR(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 2017

QUARTER(date) Extracts and returns the value of the quarter from a datetime
value expression. Returns an integer between 1 and 4.

SELECT QUARTER(TIMESTAMP '1971-07-20 09:34:21') : 3

SELECT QUARTER(hiringDate) FROM employee WHERE
name='Smith' : 4

SELECT QUARTER(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 2

QUARTER(date) Extracts and returns the value of the month from a datetime
value expression. Returns an integer between 1 and 12.

SELECT MONTH(TIMESTAMP '1971-07-20 09:34:21') : 7

SELECT MONTH(hiringDate) FROM employee WHERE
name='Smith' : 10

SELECT MONTH(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 6

WEEK(date) Extracts and returns the value of the week from a datetime
value expression. Returns an integer between 1 and 53.

SELECT WEEK(TIMESTAMP '1971-07-20 09:34:21') : 29

SELECT WEEK(hiringDate) FROM employee WHERE
name='Smith' : 42

SELECT WEEK(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 26

DAYOFYEAR(date) Extracts and returns the value of the day of year from a
datetime value expression. Returns an integer between 1 and
366.

SELECT DAYOFYEAR(TIMESTAMP '1971-07-20 09:34:21') :
 201

SELECT DAYOFYEAR(hiringDate) FROM employee WHERE
name='Smith' : 287

SELECT DAYOFYEAR(lastProfileUpdateTime) FROM
employee WHERE name='Smith' : 179

DAYOFMONTH(date) Extracts and returns the value of the day of month from a
datetime value expression. Returns an integer between 1 and
31.

SELECT DAYOFMONTH(TIMESTAMP '1971-07-20 09:34:21') :
 20

SELECT DAYOFMONTH(hiringDate) FROM employee WHERE
name='Smith' : 14

SELECT DAYOFMONTH(lastProfileUpdateTime) FROM
employee WHERE name='Smith' : 28

DAYOFWEEK(date) Extracts and returns the value of the day of week from a
datetime value expression. Returns an integer between 1 and 7.

Documentation > Developer Guide > SQL in EBX® > Date and time functions

TIBCO EBX® Product Documentation 6.2.0 1220

Operator syntax Description and example(s)

SELECT DAYOFWEEK(TIMESTAMP '1971-07-20 09:34:21') :
 3

SELECT DAYOFWEEK(hiringDate) FROM employee WHERE
name='Smith' : 4

SELECT DAYOFWEEK(lastProfileUpdateTime) FROM
employee WHERE name='Smith' : 4

HOUR(date) Extracts and returns the value of the hours from a datetime
value expression. Returns an integer between 0 and 23.

SELECT HOUR(TIMESTAMP '1971-07-20 09:34:21') : 9

SELECT HOUR(TIME '10:34:21') : 10

SELECT HOUR(workStart) FROM employee WHERE
name='Smith' : 8

SELECT HOUR(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 16

MINUTE(date) Extracts and returns the value of the minutes from a datetime
value expression. Returns an integer between 0 and 59.

SELECT MINUTE(TIMESTAMP '1971-07-20 09:34:21') : 34

SELECT MINUTE(TIME '10:35:21') : 35

SELECT MINUTE(workStart) FROM employee WHERE
name='Smith' : 0

SELECT MINUTE(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 6

SECOND(date) Extracts and returns the value of the seconds from a datetime
value expression. Returns an integer between 0 and 59.

SELECT HOUR(TIMESTAMP '1969-07-20 09:34:21') : 9

SELECT SECOND(TIME '10:34:22') : 22

SELECT SECOND(workStart) FROM employee WHERE
name='Smith' : 0

SELECT SECOND(lastProfileUpdateTime) FROM employee
WHERE name='Smith' : 12

Documentation > Developer Guide > SQL in EBX® > EBX® SQL functions

TIBCO EBX® Product Documentation 6.2.0 1221

CHAPTER 178
EBX® SQL functions

The following table lists all of the EBX® built-in SQL functions, along with their syntax. Some
functions can have optional parameters: they are surrounded by square brackets.

Operator syntax Description and example(s)

FK_AS_STRING(tableRefValue) Returns the string representation of a tableRef value. This
function cannot be used on aggregated lists. This 1-parameter
version of FK_AS_STRING can only be used on unambiguous
contexts; in other scenarios, e.g. in certain queries after a
UNION or UNNEST, the 3-parameter version must be used
(see below).

SELECT e.name FROM employee e WHERE
FK_AS_STRING(e.department) = '1' : Smith

SELECT FK_AS_STRING(e.department) FROM employee e
WHERE e.name = 'Smith' : 1

FK_AS_STRING('referencedDatasetName',
'referencedTableName', tableRefValue)

Returns the string representation of a tableRef value. This
function cannot be used on aggregated lists. See QueryBuilder
JavaDoc to learn more about the referenced dataset names.

SELECT e.name FROM employee e WHERE
FK_AS_STRING('_public', '/root/department',
e.department) = '1' : Smith

SELECT FK_AS_STRING('_public', '/root/department',
e.department) FROM employee e WHERE e.name =
'Smith' : 1

Documentation > Developer Guide > SQL in EBX® > EBX® SQL functions

TIBCO EBX® Product Documentation 6.2.0 1222

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1223

CHAPTER 179
REST Toolkit

This chapter contains the following topics:

1. Introduction

2. Application definitions

3. Service and operation definitions

4. Serialization of a table record

5. Authentication and lookup mechanism

6. REST authentication and permissions

7. URI builders

8. Exception handling

9. Monitoring

10.Packaging and registration

11.OpenAPI

12.Limitations

179.1 Introduction
TIBCO EBX® offers the possibility to develop custom REST services using the REST Toolkit. The
REST Toolkit supports JAX-RS 2.1 (JSR-370) and JSON-B (JSR-367).
A REST service is implemented by a Java class and its operations are implemented by Java methods.
The response can be generated by serializing POJO objects. The request input can be unserialized
to POJOs. Various input and output formats, including JSON, are supported. For more details on
supported formats, see media types [p 1225].
Rest Toolkit supports the following:

• Injectable objects
EBX® provides injectable objects useful to authenticate the request's user, to access the EBX®
repository or to built URIs without worrying about the configuration (for example reverse-proxy
[p 1053] or REST forward [p 980] modes);
JAX-RS injectable objects are also supported.

• Annotations

https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=367

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1224

EBX® provides annotations to describe resources, grant anonymous access or add restrictions
to a method.
JAX-RS ans JSON-B annotations are also supported.

• logging and debugging utilities.

See also JAX-RS: JavaTM API for RESTful Web Services 2.1

179.2 Application definitions
An EBX® module, that includes custom REST services, must provide at least one REST Toolkit
application class. A REST Toolkit application class extends the EBX® RESTApplicationAbstractAPI

class. The minimum requirement is to define the base URL, using the @ApplicationPath annotation
and the set of packages to scan for REST service classes.

Note

Only packages accessible from the web application's classloader can be scanned.

Note

It is possible to register REST resource classes or singletons,
packaged inside or outside the web application archive, through the
ApplicationConfigurator.register(java.lang.Class) ApplicationConfigurator.
registerAPI or ApplicationConfigurator.register(java.lang.Object)
ApplicationConfigurator.registerAPI methods.

Note

If no packages scope is defined, then every class reachable from the web application's
classloader will be scanned.

The application path cannot be "/" and must not collide with an existing
resource from the module. It is recommended to use "/rest" (the value of the
RESTApplicationAbstract.REST_DEFAULT_APPLICATION_PATH constant).
EBX® DocumentationAPI annotation is optional. It is displayed to administrators in 'Technical
configuration' > 'Modules and data models' or when logging and debugging.
import jakarta.ws.rs.*;

import com.orchestranetworks.rest.*;
import com.orchestranetworks.rest.annotation.*;

@ApplicationPath(RESTApplicationAbstract.REST_DEFAULT_APPLICATION_PATH)
@Documentation("My REST sample application")
public final class RESTApplication extends RESTApplicationAbstract
{
 public RESTApplication()
 {
 // Adds one or more package names which will be used to scan for components.
 super((cfg) -> cfg.addPackages(RESTApplication.class.getPackage()));
 }
}

179.3 Service and operation definitions
A REST Toolkit service is implemented by a Java class and its operations are implemented by its
methods.

https://download.oracle.com/otndocs/jcp/jaxrs-2_1-final-spec/index.html

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1225

Class and methods can be annotated by @Path to specify the access path. The @Path annotation
value defined at the class level will prepend the ones defined on methods. Warning, only one @Path
annotation is allowed per class or method.
Media types accepted and produced by a resource are respectively defined by the @Consumes and
@Produces JAX-RS annotations. The supported media types are:

• application/json (MediaType.APPLICATION_JSON_TYPE)

• application/octet-stream (MediaType.APPLICATION_OCTET_STREAM_TYPE)

• application/x-www-form-urlencoded (
MediaType.APPLICATION_FORM_URLENCODED_TYPE)

• multipart/form-data (MediaType.MULTIPART_FORM_DATA_TYPE)

• text/css

• text/html (MediaType.TEXT_HTML_TYPE)

• text/plain (MediaType.TEXT_PLAIN_TYPE)

Valid HTTP(S) methods are specified by JAX-RS annotations @GET, @POST, @PUT, etc. Only one of
these annotations can be set on each Java method (this means that a Java method can support only
one HTTP method).
Warning: URL parameters with a name prefixed with ebx- are reserved by REST Toolkit and should
not be defined by custom REST services, unless explicitly authorized by the EBX® documentation.

URL and sample
The REST URL to access the description service for the sample is defined below:
http[s]://<host>[:<port>]/<path to webapp>/rest/track/v1/description

Where:

• <path to webapp> corresponds to the web application's path holding the REST Toolkit
application, itself serving the sample service. The path is composed by multiple, or none, URI
segments followed by the web application's name.

Note

Please note that /rest/track/v1/description corresponds to the concatenation of the
application's @ApplicationPath and service's @Path annotations.

The following REST Toolkit service sample provides methods to query and manage track data:
import java.net.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.regex.*;
import java.util.stream.*;

import jakarta.servlet.http.*;
import jakarta.ws.rs.*;
import jakarta.ws.rs.container.*;
import jakarta.ws.rs.core.*;

import com.orchestranetworks.rest.annotation.*;
import com.orchestranetworks.rest.inject.*;

/**
 * The REST Toolkit Track service v1.
 */
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
@Path("/track/v1")
@Documentation("Track service")

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#APPLICATION_JSON_TYPE
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#APPLICATION_OCTET_STREAM_TYPE
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#APPLICATION_FORM_URLENCODED_TYPE
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#MULTIPART_FORM_DATA_TYPE
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#TEXT_HTML_TYPE
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/core/MediaType.html#TEXT_PLAIN_TYPE

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1226

public final class TrackService
{
 @Context
 private ResourceInfo resourceInfo;

 @Context
 private SessionContext sessionContext;

 private static final Map<Integer, TrackDTO> TRACKS = new ConcurrentHashMap<>();

 /**
 * Gets service description
 */
 @GET
 @Path("/description")
 @Documentation("Gets service description")
 @Produces({ MediaType.TEXT_PLAIN, MediaType.APPLICATION_JSON })
 @AnonymousAccessEnabled
 public String handleServiceDescription()
 {
 return this.resourceInfo.getResourceMethod().getAnnotation(Documentation.class).value();
 }

 /**
 * Selects tracks.
 */
 @GET
 @Path("/tracks")
 @Documentation("Selects tracks")
 public Collection<TrackDTO> handleSelectTracks(
 @QueryParam("singerFilter") final String singerFilter, // a URL parameter holding a Java regular expression
 @QueryParam("titleFilter") final String titleFilter) // a URL parameter holding a Java regular expression
 {
 final Pattern singerPattern = TrackService.compilePattern(singerFilter);
 final Pattern titlePattern = TrackService.compilePattern(titleFilter);

 return TRACKS.values()
 .stream()
 .filter(Objects::nonNull)
 .filter(track -> singerPattern == null || singerPattern.matcher(track.singer).matches())
 .filter(track -> titlePattern == null || titlePattern.matcher(track.title).matches())
 .collect(Collectors.toList());
 }

 private static Pattern compilePattern(final String aPattern)
 {
 if (aPattern == null || aPattern.isEmpty())
 return null;

 try
 {
 return Pattern.compile(aPattern);
 }
 catch (final PatternSyntaxException ignore)
 {
 // ignore invalid pattern
 return null;
 }
 }

 /**
 * Counts all tracks.
 */
 @GET
 @Path("/tracks:count")
 @Documentation("Counts all tracks")
 public int handleCountTracks()
 {
 return TRACKS.size();
 }

 /**
 * Selects a track by id.
 */
 @GET
 @Path("/tracks/{id}")
 @Documentation("Selects a track by id")
 public TrackDTO handleSelectTrackById(@PathParam("id") Integer id)
 {
 final TrackDTO track = TRACKS.get(id);
 if (track == null)
 throw new NotFoundException("Track id [" + id + "] does not found.");
 return track;
 }

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1227

 /**
 * Deletes a track by id.
 */
 @DELETE
 @Path("/tracks/{id}")
 @Documentation("Deletes a track by id")
 public void handleDeleteTrackById(@PathParam("id") Integer id)
 {
 if (!TRACKS.containsKey(id))
 throw new NotFoundException("Track id [" + id + "] does not found.");
 TRACKS.remove(id);
 }

 /**
 * Inserts or updates one or several tracks.
 * <p>
 * The complex response structure corresponds to one of:
 *
 * An empty content with the <code>location<code> HTTP header defined
 * to the access URI.
 * A JSON array of {@link ResultDetailsDTO} objects.
 *
 */
 @POST
 @Path("/tracks")
 @Documentation("Inserts or updates one or several tracks")
 public Response handleInsertOrUpdateTracks(List<TrackDTO> tracks)
 {
 int inserted = 0;
 int updated = 0;

 final ResultDetailsDTO[] resultDetails = new ResultDetailsDTO[tracks.size()];
 int resultIndex = 0;

 final URI base = this.sessionContext.getURIInfoUtility()
 .createBuilderForRESTApplication()
 .path(this.getClass())
 .segment("tracks")
 .build();

 for (final TrackDTO track : tracks)
 {
 final String id = String.valueOf(track.id);
 final URI uri = UriBuilder.fromUri(base).segment(id).build();

 final int code;
 if (TRACKS.containsKey(track.id))
 {
 code = HttpServletResponse.SC_NO_CONTENT;
 updated++;
 }
 else
 {
 code = HttpServletResponse.SC_CREATED;
 inserted++;
 }

 TRACKS.put(track.id, track);

 resultDetails[resultIndex++] = ResultDetailsDTO.create(
 code,
 null,
 String.valueOf(track.id),
 uri);
 }

 if (inserted == 1 && updated == 0)
 return Response.created(resultDetails[0].details).build();

 return Response.ok().entity(resultDetails).build();
 }

 /**
 * Updates one track.
 */
 @PUT
 @Path("/tracks/{id}")
 @Documentation("Update one track")
 public void handleUpdateOneTrack(@PathParam("id") Integer id, TrackDTO aTrack)
 {
 final TrackDTO track = TRACKS.get(id);
 if (track == null)
 throw new NotFoundException("Track id [" + id + "] does not found.");

 if (aTrack.id != null && !aTrack.id.equals(track.id))

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1228

 throw new BadRequestException("Selected track id [" + id
 + "] is not equals to body track id.");

 TRACKS.put(aTrack.id, aTrack);
 }
}

This REST service uses the following Java classes, which represent a Data Transfer Objects (DTO),
to serialize and deserialize data:
/**
 * DTO for a track.
 */
public final class TrackDTO
{
 public Integer id;
 public String singer;
 public String title;
}

import java.net.*;

/**
 * DTO for result details.
 */
@JsonbPropertyOrder({ "code", "label", "foreignKey", "details" })
public final class ResultDetailsDTO
{
 public int code;
 public String label;
 public String foreignKey;
 public URI details;

 public static ResultDetailsDTO create(
 final int aCode,
 final String aForeignKey,
 final URI aDetails)
 {
 return ResultDetailsDTO.create(aCode, null, aForeignKey, aDetails);
 }

 public static ResultDetailsDTO create(
 final int aCode,
 final String aLabel,
 final String aForeignKey,
 final URI aDetails)
 {
 final ResultDetailsDTO result = new ResultDetailsDTO();
 result.code = aCode;
 result.label = aLabel;
 result.foreignKey = aForeignKey;
 result.details = aDetails;
 return result;
 }
}

179.4 Serialization of a table record

Built-in serializers
Default JSON serializers and deserializers are provided to handle table records when declared in DTOs
as ContentHolderAPIs. Both extended [p 1132] and compact [p 1162] JSON formats of record are supported.
/**
 * DTO for a singer.
 */
public final class SingerDTO
{
 @Table(
 dataModel = "urn:ebx:module:tracks-module:/WEB-INF/ebx/schemas/tracks.xsd",
 tablePath = "/root/Singers")
 public ContentHolder content;
}

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1229

A same DTO can be used for serialization and deserialization. In case of serialization, a
ContentHolderForInputAPI instance will be automatically created and filled with the proper data.
Afterwards, this instance will be able to copy its data into a ValueContextForUpdateAPI. To deserialize
a table records, a ContentHolderForOutputAPI must be created in the REST operation JAVA method
and returned. The provided AdaptationAPI data will then be transformed into a valid peace of JSON
and placed into the HTTP response body.
/**
 * The REST Toolkit Singer service v1.
 */
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
@Path("/singer/v1")
@Documentation("Singer service")
public final class SingerService
{
 ...

 /**
 * Selects a singer by id.
 */
 @GET
 @Path("/singers/{id}")
 @Documentation("Selects a singer by id")
 public SingerDTO handleSelectSingerById(final @PathParam("id") Integer id)
 {
 // find the singer adaptation by id
 final Adaptation singerRecord = ... ;

 final SingerDTO singerDTO = new SingerDTO();
 singerDTO.content = ContentHolderForOutput.createForRecord(singerRecord);
 return singerDTO;
 }

 /**
 * Inserts one singer.
 */
 @POST
 @Path("/singers")
 @Documentation("Inserts one singer")
 public void handleInsertOneSinger(final SingerDTO aSingerDTO)
 {
 final ProgrammaticService svc = ... ;
 final AdaptationTable singersTable = ... ;
 final ProcedureResult procedureResult = svc.execute(
 (aContext) -> {
 final ValueContextForUpdate createContext = aContext.getContextForNewOccurrence(singersTable); ;
 aSingerDTO.content.asContentHolderForInput().copyTo(createContext);
 aContext.doCreateOccurrence(createContext, singersTable);
 });

 if (procedureResult.hasFailed())
 throw new UnprocessableEntityException(
 procedureResult.getException().getLocalizedMessage());
 }

 /**
 * updates one singer.
 */
 @PUT
 @Path("/singers/{id}")
 @Documentation("updates one singer")
 public void handleUpdateOneSinger(@PathParam("id") final Integer id, final SingerDTO aSingerDTO)
 {
 final ProgrammaticService svc = ... ;
 final AdaptationTable singersTable = ... ;
 final ProcedureResult procedureResult = svc.execute(
 (aContext) -> {
 // find the singer adaptation by id
 final Adaptation singerRecord = ... ;

 if (singerRecord == null)
 throw new NotFoundException("Singer with the id ["+ id + "] has not been found.");

 final ValueContextForUpdate createContext = aContext.getContext(singerRecord.getAdaptationName()); ;
 aSingerDTO.content.asContentHolderForInput().copyTo(createContext);
 aContext.doModifyContent(singerRecord, createContext);
 });

 if (procedureResult.hasFailed()){

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1230

 final Exception ex = procedureResult.getException();
 final Throwable cause = ex.getCause();
 if(cause instanceof NotFoundException)
 throw (NotFoundException) cause;

 throw new UnprocessableEntityException(ex.getLocalizedMessage());
 }
 }
}

The default JSON format of the responses, only composed of business data fields, is called compact.
{
 "singer":{
 "firstname":"Frank",
 "lastname":"Sinatra"
 }
}

To add technical fields or metadata, the ExtendedOutputAPI annotation must be placed over the
ContentHolderAPI field. The annotation must declare every wished options or the ALL one.
/**
 * DTO for a singer with technical fields.
 */
public final class SingerWithTechnicalsDTO
{
 @Table(
 dataModel = "urn:ebx:module:tracks-module:/WEB-INF/ebx/schemas/tracks.xsd",
 tablePath = "/root/Singers")
 @ExtendedOutput({Include.LABEL,Include.TECHNICALS,Include.CONTENT})
 public ContentHolder content;
}

{
 "singer":{
 "label": "23",
 "creationDate": "2018-09-04T15:35:10.706",
 "creationUser": "user",
 "lastUpdateDate": "2018-10-02T17:05:47.090",
 "lastUpdateUser": "user",
 "content":{
 "firstname":{
 "content":"Frank",
 "label":"First Name"
 },
 "lastname":{
 "content":"Sinatra",
 "label":"Last Name"
 }
 }
 }
}

To use the extended JSON format for input HTTP requests the ExtendedInputAPI annotation must be
placed over the ContentHolderAPI field.
/**
 * DTO for a singer using the extended JSON format.
 */
public final class SingerExtendedInputDTO
{
 @Table(
 dataModel = "urn:ebx:module:tracks-module:/WEB-INF/ebx/schemas/tracks.xsd",
 tablePath = "/root/Singers")
 @ExtendedInput
 public ContentHolder content;
}

Custom serializers
Since TIBCO EBX® is based on JSON-B (JSR-367), custom serializers and deserializers can be
defined through JsonbTypeSerializer and JsonbTypeDeserializer annotations.

https://jcp.org/en/jsr/detail?id=367
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/json/bind/annotation/JsonbTypeSerializer.html
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/json/bind/annotation/JsonbTypeDeserializer.html

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1231

By default, java.math.BigDecimal is serialized into a JSON String. To override this behaviour,
implement a custom serializer to a JSON Number.
/**
 * Serializes decimal values in numbers.
 */
public final class BigDecimalSerializerInJsonNumber implements JsonbSerializer<BigDecimal>
{
 @Override
 public void serialize(
 final BigDecimal aBigDecimal,
 final JsonGenerator aJsonGenerator,
 final SerializationContext aSerializationContext)
 {
 if (aBigDecimal == null)
 aJsonGenerator.writeNull();
 else
 aJsonGenerator.write(aBigDecimal);
 }
}

/**
 * DTO for a vynil.
 */
public final class VinylDTO
{
 @JsonbTypeSerializer(BigDecimalSerializerInJsonNumber.class)
 public BigDecimal price;

 @JsonbTypeSerializer(CustomTrackDtoSerializer.class)
 @JsonbTypeDeserializer(CustomTrackDtoDeserializer.class)
 public TrackDTO track;
}

179.5 Authentication and lookup mechanism
A custom REST service developed with REST Toolkit supports the same authentication methods
and lookup mechanism as the built-in REST data services. However, there is a slight difference
concerning the 'Anonymous authentication Scheme' since its scope can be wider by using the
AnonymousAccessEnabledAPI. See REST authentication and permissions [p 1231] for more information.

See also

Authentication [p 1057]

Lookup mechanism [p 1058]

179.6 REST authentication and permissions
By default, every REST resource Java method requires users to be authenticated.
However, some methods may need to be accessible anonymously. These methods must be annotated
by AnonymousAccessEnabledAPI.
Some methods may need to be restricted to given profiles. These methods may be annotated by
AuthorizationAPI to specify an authorization rule. An authorization rule is a Java class that implements
the AuthorizationRuleAPI interface.
import jakarta.ws.rs.*;

import com.orchestranetworks.rest.annotation.*;

/**
 * The REST Toolkit service v1.
 */
@Path("/service/v1")
@Documentation("Service")
public final class Service
{
 ...

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1232

 /**
 * Gets service description
 */
 @GET
 @AnonymousAccessEnabled
 public String handleServiceDescription()
 {
 ...
 }

 /**
 * Gets restricted service
 */
 @GET
 @Authorization(IsUserAuthorized.class)
 public RestrictedServiceDTO handleRestrictedService()
 {
 ...
 }
}

179.7 URI builders
REST Toolkit provides an utility interface URIInfoUtilityAPI to generate URIs. An instance of this
interface is accessible through the injectable built-in object SessionContextAPI.

URI builders for built-in
Several URI builders interfaces have been designed to ease built-in RESTful services URI build. Each
interface constitute an aggregation of methods related to the same functional concept. This division
allows development of modular and generic algorithms. Some of these interfaces are themselves
aggregation of other ones, leading to intuitive use of the builders since only consistent combination of
method calls are allowed. For example, a URI builder configured for the REST hierarchy category
will not allow calls to record URI build methods, since record access are part of the REST data
category concept.
Moreover, these URI builders are preconfigured according to:

• the data from the incoming HTTP request which constitute the base configuration,

• the Module public path prefix [p 570] which prepends the EBX® module segment, if it exists,

• the data services lineage setting [p 563] which overrides the whole previous configuration, if it
exists,

• The REST forward [p 980] mode which overrides partially the previous configuration since only a
peace of the URI's path is kept, if it is activated.

See URIBuilderForBuiltinAPI and CategoryURIBuilderAPI for more information.

URI builders for resources
URI builders to generate resource access URI are also available. Since resources are seen as only one
functional concept, every methods have been defined in the same interface.
Like the URI builder for built-in data services, these ones are already preconfigured according to:

• the data from the incoming HTTP request which constitute the base configuration,

• the external resources settings [p 563] which overrides all or part of the previous configuration, if
they exist,

• the Module public path prefix [p 570] which prepends the EBX® module segment, if it exists.

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1233

URI builders for server and application
When URIs to services or resources not covered by the previous builders must be build, the default
preconfigured URI builders should be used. There are two default URI builders which only differ
in their ending path segment. The first one end its path at the server's segment (just before the
EBX® module segment) and the second at the REST application's last segment (defined in the
@ApplicationPath annotation).
These default URI builders are already preconfigured according to:

• the data from the incoming HTTP request which constitute the base configuration,

• the Module public path prefix [p 570] which prepends the EBX® module segment, if it exists.

179.8 Exception handling
A REST Toolkit Java method can produce a standard HTTP error response by throwing a Java
exception that extends the JAX-RS class jakarta.ws.rs.WebApplicationException. JAX-RS defines
exceptions for various HTTP status codes. EBX® defines UnprocessableEntityExceptionAPI that adds
support for the HTTP 422(Unprocessable entity) code.
Plain Java exceptions are mapped to the HTTP status code 500 (Internal server error).
{
 "code": 999, // JSON Number, HTTP error code or EBX® error code
 // in case of HTTP error 422 (optional)
 "errors": [// Additional messages to give details (optional).
 {
 "message": "Message 1" // JSON String
 },
 {
 "message": "Message 2"
 }
]
}

179.9 Monitoring
REST Toolkit events monitoring is similar to the data services log configuration. The difference is the
property key which must be ebx.log4j.category.log.restServices.

See also

Monitoring [p 1059]

Configuring the EBX® logs [p 555]

Some additional properties are available to configure the log messages. See Configuring REST toolkit
services [p 561] for further information.

179.10 Packaging and registration
All applications and components are required to be packaged into the module's Web Application (war
file).
The JAX-RS libraries, except the JAX-RS client API, are already included in ebx.jar and must not
be packaged in the war file.
See Jakarta EE deployment [p 521] for more information.

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1234

The registration of a REST Toolkit application is integrated into the EBX® module registration
process. The registration class must extend ModuleRegistrationListenerAPI, declare the Servlet 3.0
annotation @WebListener and override the handleContextInitialized method.
See Module registration [p 820] for more information.
import jakarta.servlet.annotation.*;

import com.orchestranetworks.module.*;

@WebListener
public final class RegistrationModule extends ModuleRegistrationListener
{
 @Override
 public void handleContextInitialized(final ModuleInitializedContext aContext)
 {
 // Registers dynamically a REST Toolkit application.
 aContext.registerRESTApplication(RESTApplication.class);
 }
}

179.11 OpenAPI

Overview
The OpenAPI documents, generated through the TIBCO EBX® native integration, comply with the
OpenAPI V3 specification . By structuring and describing the available REST resources of a REST
Toolkit application and associated the operations, These documents facilitate their development and
consumption. However, only the JSON format is currently supported.

Activation
To activate the OpenAPI documents generation:

• The OpenApiApplicationPathAPI annotation must be set on the REST Toolkit application class to
document. This annotation requires the definition of a unique path used to configure the OpenAPI
operations' base URI.

Note

The OpenAPI application path will be followed by the generator version (i.e. /
{open-api-application-path}/v1). It is recommended to not use paths like /open-
api as there will be confusion between the generator version and the open-api
specification version.

• The OpenApiResourceAPI annotation must be set on the REST Toolkit class resources to consider
during the documentation process.

Configuration
The parameter ebx.restservices.openApi.unpublished.applications can be used to not publish
the OpenAPI endpoints on a specific environment.
##
Comma-separated list of canonical application class names
whose OpenAPI descriptions will not be published.
##
ebx.restservices.openApi.unpublished.applications=com.example.RestApplication

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1235

The parameter ebx.restservices.openapi.style.short.name can be used to simplify the names of
the generated schemas.
##
If true, only the simple name of the DTO classes will be used to name the OpenAPI schemas.
It also removes the DTO and Dto suffixes at the end of the class name.
Default value is false.
Note that this may cause conflicts between DTOs with the same name under different packages.
It is not recommended, when set to true, to use the underscore character '_' in @Schema
annotations since it cause calculation errors.
##
ebx.restservices.openapi.style.short.name=true

Operations
The OpenAPI operations use the GET or POST HTTP method to generate the JSON document of an
entire application or a single service.
The URL format for application is:
http[s]://<host>[:<port>]/<open-api-path>/v1

The URL format for a single service is:
http[s]://<host>[:<port>]/<open-api-application-path>/v1/{resourcePath: [^:]*}

Where:

• <open-api-application-path> corresponds to the unique path mentioned in the
OpenApiApplicationPathAPI annotation.

• {resourcePath: [^:]*} corresponds to the REST resource's path to document.

HTTP codes

HTTP code Description

200(OK) The document has been successfully generated.

401(Unauthorized) Authentication has failed.

403(Forbidden) The specified resource read permission has been denied to the current user.

404(Not found) The resource, specified in the URL, cannot be found.

Enhance documentation

MicroProfile OpenAPI
In addition to the JAX-RS annotations that will be processed, by default, to generate the OpenAPI
documents, TIBCO EBX® supports the Microprofile OpenAPI annotations. These annotations are
used to enhance the description without needing to rewrite portions of the OpenAPI document that

https://download.eclipse.org/microprofile/microprofile-open-api-1.0/microprofile-openapi-spec.html#_annotations

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1236

are already covered by the REST Toolkit framework. The annotations can be used on both application
and resource classes depending on their type.

Note

If not explicitly defined on a resource class, the OpenAPIDefinition annotation will
be inherited from its REST Toolkit application class. This annotation describes the root
document object of the OpenAPI document.

Serialization of a table record
There are further actions to take when a ContentHolderAPI is used in a DTO to serialize a table record
[p 1228].

• The TableAPI annotation must be set on the field.

• The Schema annotation must tag the field for processing.

Note

The ref value of the Schema annotation must be non empty and unique in the
whole application scope.

/**
 * DTO for a singer.
 */
public final class SingerDTO
{
 @Table(
 dataModel = "urn:ebx:module:tracks-module:/WEB-INF/ebx/schemas/tracks.xsd",
 tablePath = "/root/Singers")
 @Schema(ref = "singer")
 public ContentHolder content;
}

Note

Note that due to a limitation the metadata field is not added in this case.

Permissions
In development run mode, anonymous access to OpenAPI endpoints is granted to any user. In
production and integration run modes, the OpenAPI access permissions are inherited from the ones
of the underlying resources [p 1231].

See also EBX® run mode [p 571]

• The resource's documentation will only contain the operations accessible by the current user.

• A permission denied will be returned if the current user can not access any operation.

• The REST Toolkit application's documentation will only contain the allowed scopes of resources.

• A permission denied will be returned if the current user can not access any resource.

Visual documentation
In the development run mode [p 571], the Swagger UI is available through the UI tab Administration
 > Technical configuration > Modules and data models. It allows to view and interact with
the documented resources of the corresponding REST Toolkit application. Visual documentation
facilitates back-end implementation and client-side consumption.

https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/openapi/annotations/OpenAPIDefinition.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/openapi/annotations/media/Schema.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/openapi/annotations/media/Schema.html
https://swagger.io/tools/swagger-ui/

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1237

The Swagger UI is also directly available through the following URLs:
URL format for application OpenAPI visualisation:
http[s]://<host>[:<port>]/<open-api-application-path>/v1/ui

URL format for a single service OpenAPI visualisation:
http[s]://<host>[:<port>]/<open-api-application-path>/v1/ui/{resourcePath: [^:]*}

Where:

• <open-api-application-path> corresponds to the unique path mentioned in the
OpenApiApplicationPathAPI annotation.

• {resourcePath: [^:]*} corresponds to the REST resource's path to document.

Note

When using a reverse proxy or HTTPS configuration, the OpenAPI UI is considered an
external resource. This means that external resource URLs [p 563] must be configured
correctly.

179.12 Limitations

OpenAPI The metadata field is not added on table record serialization.
See Serialization of a table record [p 1236] for more
information.
DTO classes using Java generics that are not lists or maps
are not supported.

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 6.2.0 1238

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1239

CHAPTER 180
Record permission

This chapter contains the following topics:

1. Introduction

2. Lexical structure

3. Identifiers

4. Types

5. Field access

6. Operators

7. Null value management

8. If statement

9. Return statement

10.Context variables

11.Context functions

12.Other functions

180.1 Introduction
Use the record permission DSL (Domain Specific Language) to specify access rules on records of
a given table.
The main goals of the record permission DSL are to not require Java coding, and to be easy to use
by people without deep programming knowledge.
You can specify permission on any table using a script. The script consists of a sequence of if then
else and return statements that indicate the permission for a record.
You can edit the script using the Data Model Assistant (DMA) [p 38] .

180.2 Lexical structure

Introduction
The script has following structure:
begin
 <statement 1>

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1240

 <statement 2>
 ...
 <last statement>
end

All statements except the last one must be an "if then" [p 1247] or an "if then else" [p 1248] statement.
The last statement can be an "if then" [p 1247] , "if then else" [p 1248] or "return" [p 1249] statement.
Example:
if isMember(administrator) then
 // Administrator has no restrictions.
 return readWrite;

if isMember('french-team') and record.Country='F' then
 //Members of 'french-team' can view and modify data for France.
 return readWrite;

if isMember('us-team') and record.Country='US' then
 //Members of 'us-team' can view and modify data for US.
 return readWrite;

// This statement is not actually needed as 'hidden' is the default permission.
return hidden;

Character set
The Unicode character set is supported.

Character case sensitivity
The DSL is case-sensitive.

Comments
A single line comment extends from // to the end of the current line:
// This is a comment
if record.LastName = 'Doe' then // This is another comment.
 return readOnly;

A multi-line comment extends from /* and ends with */ :
/* This is a sample of a multi-line
 comment */
if record.isActive then
 return readWrite;

Keywords
There are two types of keyword:

• Reserved keywords are: if , then , else , begin , end , return , null , and , or , not , true , false
, _ebx .

• Unreserved keywords are all other keywords defined by the DSL.

The main difference between the two types of keywords is that unreserved ones, but not reserved ones,
can be used as plain (unquoted) identifiers.

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1241

180.3 Identifiers

Unquoted identifier
An unquoted identifier is an unlimited-length sequence of letters, digits or underscore (_). The first
character must be a letter.
Valid letters are a to z and A to Z . Valid digits are 0 to 9 .
An unquoted identifier cannot be equal to a reserved keyword.

Quoted identifiers
A quoted identifier is an unlimited length of Unicode characters
Quoted identifiers must be used surrounded by double quotes.
An unquoted identifier can be used surrounded by double quotes. This means that identifier "a_name"
is equal to a_name.
Quoted identifiers can be reserved keywords except "_ebx" .

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1242

180.4 Types

Supported types
The following types are supported:

Type EBX® corresponding types

Boolean xs:boolean

Decimal xs:decimal

xs:int

xs:integer

String xs:string

xs:anyURI

xs:Name

osd:text

osd:html

osd:email

osd:password

osd:color

osd:resource

osd:locale

osd:dataspaceKey

osd:datasetName

Timestamp xs:dateTime

Date xs:date

Time xs:time

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1243

Literals

String literal
String literals can be any sequence of Unicode characters surrounded by single quotes. The following
table displays characters that need to be replaced by an escape sequence:

Character Escape sequence

Tab \t

Backspace \b

New line \n

Carriage return \r

Form feed \f

Single quote \'

Backlash \\

A character can be specified by a Unicode escape sequence that has the format \uXXXX with XXXX
the hexadecimal code of the Unicode character.
Examples

Value Syntax

O’Harra 'O\'Harra'

Noël 'No\u00EBl'

été '\u00e9\u00E9'

Note
An invalid escape or Unicode sequence generates an error at compile time.

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1244

Decimal literal
The following decimal formats are supported:

Format Examples

Integer 546

-67

Floating point 54.987

-433.876

0.00054

-0.0032

Exponent notation 34.654e-5

-45E+65

1.543e23

Timestamp literal
Timestamp literals have the format dt(yyyy-MM-dd hh:mm:ss.sss) .
Seconds are optional. When seconds are not specified, 0 is assumed. Seconds can have fractions up
to millisecond precision.
The dates that are not valid in the Gregorian calendar generate an error at compile time.
Examples:
dt(2010-01-02 00:00:00.000)
dt(2019-2-3 12:56:7)
dt(2019-2-3 12:56:7.5)
dt(2019-5-7 1:6)

Date literal
Date literals have format d(yyyy-MM-dd) .
The dates that are not valid in the Gregorian calendar generate an error at compile time.
Examples:
d(2010-01-02)
d(2019-2-3)
dt(2019-5-7)

Time literal
Time literals have the format t(hh:mm:ss.sss) .
Seconds are optional. When seconds arenot specified, 0 is assumed. Seconds can have fractions up
to millisecond precision.
Invalid times generate an error at compile time.
Examples:
t(00:00:00)
t(12:56:7)
t(12:56:7.5)
t(1:6)

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1245

Boolean literal
Boolean literals are true and false .

180.5 Field access

Simple fields
Only access to optimized/indexed table field is supported. Dot notation is used to access tables fields.
For example, a condition of current table fields whose path is ./OfficeAddress/City would be:
if record.OfficeAddress.City = 'Paris' then
 return readWrite;

The alias record always refers to the current record. Depending on context, other aliases might be
available.
Each step (parts separated by a dot) is an identifier [p 1241] . This means that the following quoted
notation can be used for any step:
if record."OfficeAddress".City = 'Paris' then
 return readWrite;

This is useful for steps equal to a reserved keyword or using characters, such as the minus character
(-) or dot (.), which are not compatible with unquoted identifiers.
At runtime, any step can evaluate to null . In this case, the full field expression evaluates to null .

Foreign table fields
You can access foreign tables by "following" foreign keys using dot notation.
In the following example, the field Supervisor is a foreign key:
if record.Supervisor.Name = 'John Doe' then
 return readWrite;

There can be multiple levels of foreign keys, such as in the following example:
if record.Supervisor.Supervisor.Supervisor.Name = 'John Doe' then
 return readOnly;

List (multi-valued) field access
Multi-valued fields are not supported.

Associations
Aggregate functions can take as input expressions based on an association. In the following example,
the field ManagedUsers is an association:
// All users that manage at least 2 persons have read write access.
if count(record.ManagedUsers[]) >= 2 then
 return readWrite;

You can apply a filter on an association. You must use an alias to access fields from the association.
An association alias is declared using : . In the following example, the alias is u1 :
// All users that manage at least one person whose office is in Briton has read only access.
if exists(record.ManagedUsers:u1[u1.OfficeAddress.City='Briton']) then
 return readOnly;

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1246

A filter on an association can reference a field of the current record:
// All users that manage at least one person whose office is in the same city as user has read only access.
if exists(record.ManagedUsers:t1[t1.OfficeAddress.City=record.OfficeAddress.City]) then
 return readOnly;

Note
Currently, it is not possible to:

• Use an aggregate function in between [] .

• Select fields of an association to aggregate values.

180.6 Operators
By default, operation evaluation order is based on precedence and associativity. The order of
evaluation can be indicated explicitly by using parentheses.
The following table shows all operators from highest to lowest precedence and their associativity:

Precedence Level Operator Operand type Result type Associativity

8 [] (access to an
element of a list)

. (access to fields)

() (parenthesis)

List index must be a
decimal.

Can be any type. Left to right.

7 not Boolean. Boolean.

6 *

/

Decimal. Decimal. Left to right.

5 +

-

Decimal. Decimal. Left to right.

4 <

<=

>

>=

String, Decimal,
timestamp, date, time
(3).

Boolean. Not associative.

3 =

<>

String, decimal,
timestamp, date, time,
boolean (3).

Boolean.

2 and Boolean. Boolean. Left to right.

1 or Boolean. Boolean. Left to right.

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1247

180.7 Null value management

Arithmetic operators
An arithmetic operator (* , / , + and -) returns null if any operand is null .

Comparison operators
A Comparison operator (< , <= , > , => , = and <>) returns null if any operand is null .

Boolean operators
Boolean operators use thread-value logic.
Truth table for and is:

And true false null

true true false null

false false false false

null null false null

Truth table for or is:

Or true false null

true true true true

false true false null

null true null null

Index expressions
An indexed expression with an index that evaluates null or is out of range returns null .

Functions
Functions usually return null if a parameter is null . An exception is the function isNull(value) , which
never returns null .

180.8 If statement

"If then" statement
An "if then" statement has the following syntax:
if condition-expression then

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1248

 then-body-statement

The condition expression must evaluate to a boolean type.
If the expression evaluates to true , the "then" statement is executed. If the expression evaluates to
false or null , the "then" statement is ignored.
The 'then' statement is a body statement [p 1248] .

"If then else" statement
An "if then else" statement has the following syntax:
if condition-expression then
 then-body-statement
else
 else-body-statement

The condition expression must be of boolean type.
If the expression evaluates to true , then the "then" statement is executed. If the expression evaluates
to false or null , then the "else" statement is executed.
A "then" or "else" statement is a body statement [p 1248] .
Note
The expression:
if condition-expression then
 statement-a;
else
 statement-b;

might not be equivalent to:
if not condition-expression then
 statement-b;
else
 statement-a;

Indeed, if the expression is null, then the "else" statement is executed in both cases.

"Then" or "else" body statement
A body statement can be:

• A return statement [p 1249] ,

• An "if then" [p 1247] or "if then else" [p 1248] statement,

• A statement block.

A statement block is used to group multiple statements. It starts with the keyword begin and ends
with the keyword end .
begin
 <statement 1>
 <statement 2>
 ...
 <last statement>
end

All statements except last one must be an "if then" [p 1247] or an "if then else" [p 1248] statement.
The last statement can be a "if then" [p 1247] , "if then else" [p 1248] or a "return" [p 1249] statement.
if isMember('sales-team')then
begin
 if record.Country='F' then
 return readWrite;

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1249

 if record.Country='UK' then
 return readOnly;
end
else
begin
 if record.Country='D' then
 return readOnly;

 if record.Country='B' then
 return readWrite;

 return hidden;
end

180.9 Return statement
A return statement specifies access to records that meet given conditions.
The following table shows valid return statements.

Return statement Description

return hidden; The record is hidden (the user has no access).

return readOnly; The record is read only for the current user.

return readWrite; The record can be read and modified by the current user.

If no return statement applies to a given record, the value hidden is assumed.

180.10 Context variables

Introduction
Record permissions can depend on the current dataspace, dataset, or session.

Dataspace
The predefined alias dataspace provides access to information on the current dataspace.

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1250

This alias gives access to the following fields:

Name Type Description

name string The name of the dataspace. Because the
dataspace namespace and the snapshot
namespace are independent, the returned
string is only an identifier in the context
of one of the namespaces. For a global
dataspace or snapshot identifier, use the
field id .

id string The persistent identifier of a dataspace
or snapshot. Compared to name , this
identifier additionally specifies whether
this id is for a dataspace or a snapshot.

isSnapshot boolean Is true if dataspace is a snapshot and
false if dataspace is a branch.

Example:
if dataspace.name = 'branch-R' then
 return readOnly;

Dataset
The predefined alias dataset provides access to information on the current dataset.
This alias has the following fields:

Name Type Description

name string The name of the dataset.

Example:
if dataset.name = 'TEST' then
 return readWrite;

Session
The predefined alias session provides access to information on the current user session.
This alias has the following fields:

Name Type Description

userId string The current user’s id.

userEmail string The current user’s email.

trackingInfo string The current session’s tracking
information.

To check current user’s roles, see Roles [p 1251] .

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1251

Example:
if session.userId = 'jdoe' then
 return readWrite;

180.11 Context functions

Roles
The following table describes the isMember() function:

Syntax Description

isMember('rolea', 'roleb'…) Returns true if the current user has at least one of the specified
roles.

The following built-in roles must be specified without quotes:
administrator , readOnly , everyone .

Custom roles are specified as string literals. Specifying a role
that does not exist is not an error. (It is considered as a role with
no members.)

Note

The roles administrator and 'administrator' can be two
distinct roles. This means that isMember(administrator)
might not return the same result as is_member('administrator').
The same rule applies for other built in roles.

Example:
if isMember('SALES', 'SUPPORT') then
 return readWrite;

// Role administrator and not surrounded by quotes:
if isMember(administrator, 'SUPPORT') then
 return readOnly;

Session
The following table describes the session functions:

Syntax Description

getSessionInputParameter(parameterKey,
lookupInParentSessions)

Returns the session input parameter corresponding to the
specified parameterKey .

In the context of a workflow interaction, the function looks for
the parameter in the input parameters of the workflow task.

When lookupInParentSessions is true , the function looks for
the parameter in the parent sessions.

Otherwise, it looks for the parameter only in the current session.

isInWorkflowInteraction(lookupInParentSessions) Returns true if the current session is in a workflow interaction
context.

When lookupInParentSessions is true , the function returns
true if a parent session is in a workflow interaction context.

Otherwise, the function evaluates only the context of the current
session.

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1252

Example:
// Give read write access if the scripted rule is called in a workflow interaction context and the 'instance'
 input parameter for the workflow task is 'Library'.
if isInWorkflowInteraction(true) and getSessionInputParameter('instance', true) = 'Library' then
 return readWrite;

180.12 Other functions

String matching functions
A string matching function takes three parameters:

• A stringExpression that evaluates to a string.

• A pattern that must be a string literal.

• An optional boolean literal isCaseSensitive that indicates if matching is case-sensitive. If omitted,
it is assumed that matching is case-insensitive.

Syntax Description

matches(stringExpression, pattern, isCaseSensitive) Returns true if stringExpression matches a java regular
expression pattern .

startsWith(stringExpression, pattern, isCaseSensitive) Returns true if stringExpression starts with string pattern .

endsWith(stringExpression, pattern, isCaseSensitive) Returns true if stringExpression ends with string pattern .

contains(stringExpression, pattern, isCaseSensitive) Returns true if stringExpression contains a string pattern .

containsWholeWord(stringExpression, pattern, isCaseSensitive) Returns true if stringExpression contains a whole word
pattern .

Examples:
// Give read write access if first name starts with 'a', 'b' or 'c' (case-sensitive).
if matches(record.FirstName, '[a-c].*', true) then
 return readWrite;

// Give read only access if first name starts with 'Lé' (case-insensitive).
if startsWith(record.FirstName, 'Lé') then
 return readOnly;

// Give read only access if first name ends with 'my' (case-insensitive).
if endsWith(record.FirstName, 'my') then
 return readOnly;

// Give read only access if email contains with 'BeauMont@' (case-sensitive).
if contains(record.Email, 'BeauMont@', true) then
 return readOnly;

// Give read write access if last name contains the whole word 'Michel' (case-insensitive).
if containsWholeWord(record.LastName, 'Michel', false) then
 return readWrite;

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1253

Aggregate functions
The following aggregate function can be used with associations:

Syntax Description

count(expression) Returns the number of rows of an expression.

exists(expression) Returns true if the expression evaluates to at least one row.

Examples:
// Give read write access if managed users count is at least 2.
if count(record.ManagedUsers[]) >= 2 then
 return readWrite;

// Give read only access if count of managed users that are not in Paris is less than 4.
if count(record.ManagedUsers:m1[m1.OfficeAddress.City<>'Paris']) < 4 then
 return readOnly;

// Give read write access if managed users count is at least 1.
if exists(record.ManagedUsers[]) then
 return readWrite;

// Give read write access if count of managed users that are not in Briton is at least 1.
if exists(record.ManagedUsers:u1[u1.OfficeAddress.City<>'Briton']) then
 return readWrite;

Date and time functions
The following table lists the date and time functions.

Syntax Description

datetimeNow() Returns the current date and time

dateNow() Returns the current date

timeNow() Returns the current time

Examples:
// Give read write access if the last possible update date hasn't expired yet.
if record.LastPossibleUpdateDate >= dateNow() then
 return readWrite;
else
 return readOnly;

Miscellaneous functions
The following table describes built-in functions that return a boolean.

Syntax Description

isNull(value) Returns true if value is null. Value can be an expression be of
any type.

Examples:
// Give read write access if no supervisor.
if isNull(record.supervisor) then

Documentation > Developer Guide > Record permission

TIBCO EBX® Product Documentation 6.2.0 1254

 return readWrite;

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 1255

EBX® Script

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1256

CHAPTER 181
Reference

This chapter contains the following topics:

1. Introduction

2. Lexical structure

3. Identifiers

4. References

5. Types

6. Keyword raise

7. Literals

8. Operators

9. Assignments

10.Statement blocks

11.Variables and constants

12.Predefined variables

13.Functions and procedures

14.Exported function or procedures

15.If statement

16.Loops

17.Units

18.Logging and debugging

19.Initial script

181.1 Introduction
EBX Script is a simple and quite powerful language intended to be used anywhere where Java is
currently needed like EBX customization (computed values, table trigger, script task…).
It is based on the DSL (Domain Specific Language). DSL is a procedural and strongly statically typed
language.
To write a script, the EBX IDE can be used. It is an integrated development environment that provides
tools and features to assist in defining scripts for function fields, table triggers and script tasks. It

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1257

includes an editor with various features like syntax highlighting, contextual code completion, source
compiling and publishing.
When a new function field or a table trigger is created using the DMA [p 38] , a default script is created
in the EBX IDE.
When a script task is created using the IDE, it can be specified in the Workflow Model [p 189] .

181.2 Lexical structure

Introduction
A script has following structure:
<unit usage statement 1>
<unit usage statement 2>
...
<unit usage statement N>

<model usage statement 1>
<model usage statement 2>
...
<model usage statement M>

<function or procedure definition 1>
<function or procedure definition 2>
...
<function or procedure definition M>

For more information, see Types declared in a data model [p 1262] , Unit [p 1277] and function and
procedure [p 1273] .
The following example is a script of a function field.
// This field returns the full address for current record.
export function getValue(): string
begin
 var address := _ebx.record.FirstName | ' ' | _ebx.record.LastName;

 for street in record.OfficeAddress.Street do
 begin
 address |= '\n' | street;
 end;

 address |= '\n' | _ebx.record.OfficeAddress.ZipCode | ' ' | _ebx.record.OfficeAddress.City;
 address |= '\n' | _ebx.record.OfficeAddress.Country;

 return address;
end

The following example is a script of a table trigger.
 //This trigger adds the full name of current record.
export procedure onBeforeCreate()
begin
_ebx.record.fullName := _ebx.record.firstName | ' ' | _ebx.record.lastName;
end

Character set
The Unicode character set is supported.

Character case sensitivity
The DSL is case-sensitive.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1258

Comments
A single line comment extends from // to the end of the current line:
// This is a comment
if _ebx.record.LastName = 'Doe' then // This is another comment.
 return true;

A multi-line comment extends from /* and ends with */ :
/* This is an example of a multi-line
 comment */
if _ebx.record.isActive then
 return false;

Keywords
The reserved keywords are: and , or , not , uses , as , frommodelexport , typeof , tableof
, primarykeyof , mutable , immutable , modifiableunmodifiable , persistedfunction , procedure
, const , var , if , then , else , for , while , in , do , begin , end , return , true , false , raise , null .
Reserved keywords cannot be used as plain (unquoted) identifiers.

181.3 Identifiers

Unquoted identifier
An unquoted identifier is an unlimited-length sequence of letters, digits, or underscore (_). The
first character must be a letter or an underscore.
Valid letters are a to z and A to Z . Valid digits are 0 to 9 .
An unquoted identifier may not be equal to a reserved keyword.

Quoted identifiers
A quoted identifier is an unlimited length of any Unicode character except double quote (").
Quoted identifiers must be used surrounded by double quotes.
An unquoted identifier can be used surrounded by double quotes.This means that identifier "a_name"
is equal to a_name.
Quoted identifiers can be reserved keywords.

181.4 References

References to data models
A script may declare references to data models.
For data models deployed as an XSD file, supported syntaxes are:
references model short_name from module module_name as alias;
references model short_name from module module_name;
references model file_path from module module_name as alias;

The short name is the name of the file without the path and extension. For exemple the short name of
/WEB-INF/ebx/schemas/Directory.xsd is Directory .
If no alias is specified, the alias is assumed to be equal to the short name or the file path.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1259

It is possible to declare a data model from current module by using one of the following syntaxes:
references model short_name from module . as alias;
references model short_name from module .;
references model file_path from module . as alias;

For embedded models, use one of the following syntaxes:
references model short_name as alias;
references model short_name;

Data model references samples:
references model Directory from module "ebx-test" as dic;
references model Directory from module "ebx-test";
references model "/WEB-INF/ebx/schemas/userservice/Directory.xsd" from module "ebx-test" as dic;

references model Directory from module . as dic;
references model Directory from module .;
references model "/WEB-INF/ebx/schemas/userservice/Directory.xsd" from module . as dic;

references model catalog as cat;
references model catalog;

References to datasets
A script may declare references to datasets. Supported syntaxes are:
references dataset dataset_name from dataspace dataspace_name as alias;
references dataset dataset_name from dataspace dataspace_name;

references dataset dataset_name from snapshot snapshot_name as alias;
references dataset dataset_name from snapshot snapshot_name;

If no alias is specified, the alias is assumed to be equal to the dataset name.
Declaring a reference to a dataset also declares a reference to its data model with same alias. Dataset
references sample:
references dataset catalog from dataspace database_catalogue as s1;

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1260

181.5 Types

Predefined types
The following predefined types are supported:

Type Keyword Properties EBX® corresponding types

Boolean boolean xs:boolean

Decimal (unlimited precision) decimal xs:decimal

Integer (32 bits) int xs:int

xs:integer

String string length (int greater or equal to
0)

xs:string

xs:Name

osd:text

osd:html

osd:email

osd:password 1

osd:color

osd:dataspaceKey

osd:datasetName

Timestamp (millisecond
precision and without time-
zone)

timestamp year

month (1 to 12)

day (1 to 31)

hour (0 to 23)

minute (0 to 59)

second (0.000 to 59.999)

xs:dateTime

Date (without time-zone) date year

month (1 to 12)

day (1 to 31)

xs:date

Time (millisecond precision) time hour (0 to 23)

minute (0 to 59)

second (0.000 to 59.999)

xs:time

Locale locale osd:locale

URI (Uniform Resource
Identifier)

uri xs:anyURI

Resource resource osd:resource

Dataspace dataspace name

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1261

Type Keyword Properties EBX® corresponding types

identifier (the name prefixed
by 'B' or 'V')

isSnapshot (Is true if the
dataspace is a snapshot)

Dataset dataset name

dataspace

Transaction transaction dataspace

isAllPrivileges (read/write
boolean property)

executionInformation (read/
write string property)

executionTimestamp

executionUUIDString

1 It is not possible to define a function field for type osd:password .

Complex types
A complex type is the type of a group (complex) node defined in an EBX® schema.
For more information, see the chapter complex variables [p 1271]

List types
The DSL supports lists. Declare a list by using the following syntax:
list<item_type>

A list is unmodifiable by default. You can declare a modifiable list by using following syntax:
modifiable list<item_type>

An item cannot be added, removed, or replaced if the list is unmodifiable.
Use indexed notation to set or get a value. (The first index is 0):
// Set first value of cities.
cities[0] := 'Paris';

// Get the second item of cities.
return cities[1];

An index can be any expression of int or decimal type. If the index is a decimal, the fractional part
is ignored.
A get expression returns null if the index is null, negative, or out of range.
A set expression reports an error at runtime if the index is null, negative, or out of range.
The property size returns the size of the list:
var size := cities.size;

You can iterate a list.For more information, see for loops [p 1276] .
Multi-value schema fields
Schema fields that are multi-valued are considered of list type.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1262

A multi-valued schema field is a field that has its maximum number of values (maxOccurs) greater
than one or set to "unbounded".
Indexed notation is used to access or set a value. The first index is 0. In the following example, record
field 'OfficeAddress/street' is multi-valued:
// Return the second line of the street part of the address.
return OfficeAddress.street[1].

The typeof keyword can be used with multi-valued fields (see chapter keyword typeof [p 1262]).

Keyword typeof
Use the keyword typeof to specify a type depending on a field or variable.
For example, to reference the type of record field OfficeAddress , use the following syntax:
typeof record.OfficeAddress

If a field is multi-valued, it is considered a list. You can reference the type of an item of the list using
following syntax:
typeof record.Addresses[*]

Types declared in a data model
To reference the type of a field in current data model that has path /root/User/Address , use the
following syntax:
var address: .User.Address;

Note that '/' are replaced by '.' and that first step is omitted.
To get the type of a field in from a data model that has path /root/Sales/Amount in a data model
declared with alias 'hist', use the following syntax:
var amount: hist.Sales.Amount

If a field is multi-valued, it is considered a list. You can reference the type of an item of the list using
following syntax:
var products: hist.Sales.products[*]

Record, table, primary key
If path "/root/test/table" of a data model sample is for a model, use one of the following syntaxes for
specifying a record:
var immutableRecord1: sample.test.table;
var immutableRecord2: immutable sample.test.table
var mutableRecord: mutable sample.test.table

When no modifier is specified, a type is immutable.
Use the following syntax for specifying a table:
var aTable: tableof sample.test.table;
aTable := db.findTable<.directory.Customer>(_ebx.dataset);

Use one of the following syntaxes for specifying a primary key:
var immutablePrimaryKey1: primarykeyof sample.test.table;
var immutablePrimaryKey: immutable primarykeyof sample.test.table
var mutablePrimaryKey: mutable primarykeyof sample.test.table

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1263

When no modifier is specified, the primary key is immutable.

Type modifiers
A type may be:

• immutable : it is not possible to modify an item of this type.

• mutable : it may be possible to modify an item of this type.

A simple type is always immutable.
You can assign a mutable value to a variable or a return value of a compatible immutable type, but
assigning an immutable value to a mutable variable or return value generates an error at compile time.
You can specify an immutable type using one of following syntax:
immutable typeof record.OfficeAddress
immutable .User.Address
immutable hist.Sales.Amount

You can specify an mutable type using one of following syntax:
mutable typeof record.OfficeAddress
mutable .User.Address
mutable hist.Sales.Amount

Some types may not support immutable or mutable keywords and generate an error at compile time.
A list may be:

• unmodifiable : it is not possible to remove on insert an item. Items may be immutable or not.

• modifiable : it is possible to remove on insert an item. Items may be immutable or not.

You can assign a modifiable list to a variable or a return value of a compatible unmodifiable list type,
but assigning an unmodifiable list to a modifiable variable or return list generates an error at compile
time.
You can modify a mutable complex or list object, but other constraints may apply that can prevent
modifying some attributes of an object.
You can specify an unmodifiable list type using following syntax:
unmodifiable typeof _ebx.record.Addresses[*]
unmodifiable .User.children[*]
unmodifiable hist.Sales.products[*]

You can specify a modifiable list type using following syntax:
modifiable typeof _ebx.record.Addresses[*]
modifiable .User.children[*]
modifiable hist.Sales.products[*]

181.6 Keyword raise
Use the keyword raise to reports an error during the execution of a trigger or a function field.
The following syntax is used to raise an error without a message:
raise code;

The following syntax is used to raise an error with a message:
raise code, message;

• code is the error identifier. It must be an integer 32 value.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1264

• message specifies the error message to be displayed.It is an optional string value.

Example of using the keyword raise in a function field:
// this function raises an error when the name is empty.
uses core.string as string;
export function getValue(): string
begin
 var name := _ebx.record.name;
 if not string.isEmpty(name) then
 return name;

//value cannot be empty!
 raise 341i;
end

Example of using the keyword raise in a table trigger:
// this trigger checks sales amount and reports an error if the allowed amount is exceeded.
export procedure onBeforeCreate()
begin
if (_ebx.record.amount > 1000) then
raise 450 , 'Sales Amount '| _ebx.record.amount |' has exceeded the allowed amount of 1000';
end

181.7 Literals

String literal
String literals can be any sequence of Unicode characters surrounded by single quotes. The following
table displays characters that need to be replaced by an escape sequence:

Character Escape sequence

Tab \t

Backspace \b

New line \n

Carriage return \r

Form feed \f

Single quote \'

Backlash \\

Specify a character by using a Unicode escape sequence that has format \uXXXX , where XXXX is
the hexadecimal code of the Unicode character.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1265

Examples

Value Syntax

O’Harra 'O\'Harra'

Noël 'No\u00EBl'

été '\u00e9t\u00E9'

Note
An invalid escape or Unicode sequence generates an error at compile time.

Decimal literal
The following decimal formats are supported:

Format Examples

Without fraction 546

-67

Floating point 54.987

-433.876

0.00054

-0.0032

Exponent notation 34.654e-5

-45E+65

1.543e23

Integer (32 bits) literal
Integer 32 bits literals have a format similar to 90324i or -543i .
The value must be between -2147483648i and 2147483647i inclusive.
Attention: If the i letter is missing the value will be considered a decimal.

Timestamp literal
Timestamp literals have the format dt(yyyy-MM-dd hh:mm:ss.sss) .
Seconds are optional. When they are not specified, 0 is assumed. Seconds can have fractions up to
millisecond precision.
Any dates that are not valid in the Gregorian calendar generate errors at compile time.
Examples:
dt(2010-01-02 00:00:00.000)
dt(2019-2-3 12:56:7)
dt(2019-2-3 12:56:7.5)
dt(2019-5-7 1:6)

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1266

Date literal
Date literals have the format d(yyyy-MM-dd) .
Any dates that are not valid in the Gregorian calendar generate errors at compile time.
Examples:
d(2010-01-02)
d(2019-2-3)
dt(2019-5-7)

Time literal
Time literals have the format t(hh:mm:ss.sss) .
Seconds are optional. When they are not specified, 0 is assumed. Seconds can have fractions up to
millisecond precision.
Invalid times generate an error at compile time.
Examples:
t(00:00:00)
t(12:56:7)
t(12:56:7.5)
t(1:6)

Boolean literal
A Boolean literal is either the keyword true or the keyword false .

Null literal
A null literal is the keyword null .
Use this literal only in the following situations:

• To set a variable or field,

• As a return value.

Note
It is not possible to use this keyword to test if a variable or a field is null . Instead, use the function
isNull() .

181.8 Operators

Precedence
By default, operation evaluation order is based on precedence and associativity. Use parentheses to
explicitly indicate the order of evaluation.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1267

The following table shows all operators, from highest to lowest precedence, and their associativity:

Precedence Level Operator Operand type Result type Associativity

9 (access to an element
of a list)

. (access to fields)

() (parenthesis)

List index must be an
int or a decimal.

Can be any type. Left to right.

8 not boolean boolean

7 *

/

decimal or int decimal Left to right.

6 +

-

decimal or int decimal Left to right.

5 | (string concatenation) string string Left to right.

4 <

<=

>

>=

string, decimal, int,
timestamp, date, time
(3).

boolean Not associative.

3 =

<>

string, decimal, int,
timestamp, date, time,
boolean (3).

boolean

2 and boolean boolean Left to right.

1 or boolean boolean Left to right.

Arithmetic operators
All arithmetic operators (* , / , + and -) are evaluated in decimal with 34 digits precision (IEEE 754R
Decimal128 format). Values of ìnt type are always converted to decimal before comparison.
Result is null if any operand is null .
A decimal value is automatically converted when assigned to an int type variable. An error occurs
if the value cannot be converted because it is not an integer, is greater than 2147483647, or is less
than -2147483648.

String concatenation operator
The string concatenation operator (|) operands can be of any type and are automatically converted to
a string before concatenation. The null value is replaced by the empty string.
The string concatenation operator (|) replaces all null operands by the empty string before executing
the concatenation.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1268

Boolean operators
Boolean operators use thread-value logic.
The truth table for the and operator is as follows:

And true false null

true true false null

false false false false

null null false null

The truth table for the or operator is as follows:

Or true false null

true true true true

false true false null

null true null null

Comparison operators
A comparison operator (< , <= , > , => , = and <>) compares two operands of same type. Values of
int type are always converted to decimal before comparison.
The returned value of a comparator is of boolean type. This value is true or false only if all operands
are not null . It is null if any of its operand is null .

Built-in and unit functions
Built-in and unit functions usually return null if a parameter is null .
There can be exceptions, so be sure to read the API documentation [p 1291] .

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1269

181.9 Assignments
The following table shows all assignment operators:

Operator Operand type Description

:= Can be used with any type. Standard assignment.

|= string a |= b is equivalent to a := a | b

+= decimal, int a += b is equivalent to a := a + b

-= decimal, int a -= b is equivalent to a := a - b

*= decimal, int a *= b is equivalent to a := a * b

/= decimal, int a /= b is equivalent to a := a / b

181.10 Statement blocks
A statement block is used to group multiple statements. It starts by the keyword begin and ends with
the keyword end . Most statements need to be terminated by a ; :
begin
 statement_1;
 statement_2;
end

A statement block can contain one or more statement blocks that can also contain statement blocks:
begin
 statement_1;
 begin
 statement_2_1;
 statement_2_3;
 begin
 statement_3_1;
 statement_3_2;
 end
 end
 statement_3;
end

181.11 Variables and constants

Introduction
Any statement in a block can declare a variable or a constant.
A variable or a constant always has a type that is fixed when the variable is declared.
A value can be assigned to a variable using the assignment operator := .
Its is an error to assign a value of the wrong type to a variable, or to change the value of a constant
after its declaration.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1270

Assignment statements

Declaration with type detection
A variable or constant type can be detected automatically if initialized when declared. This feature
is called type inference.
Syntax for a variable is:
var variable_name := a_value;

The syntax for a constant is:
const const_name := a_value;

Examples:
begin
 var firstName := 'John'; // Variable of type string.
 var age := 30i; // Variable of type int.
 var cost := 34.54; // Variable of type decimal.
 var value := 43; // Variable of type decimal not int
 // because the letter `i` is missing.
 var address := record.address; // Variable of an immutable complex.

 const MAX_AGE := 100i; // Constant of type int.
 const DEFAULT_COUNTRY := 'France'; // Constant of type string.
end

Note
A constant is not necessarily immutable.

Explicit type definition
It is possible to explicitly specify the variable’s type.
The syntax for a variable is:
// Following variable initial value is null.
var variable_1_name : variable_1_type;

// Value a_value must be compatible with type variable_1_type.
var variable_2_name : variable_1_type := a_value;

The syntax for a constant is:
const const_name : variable_1_type := a_value;

Examples:
begin
 var firstName : string;
 firstName := 'John';

 var age : int;
 age := 30;
 var address : typeof record.address;
 address := record.address;

 const MAX_AGE : int := 100;
 const DEFAULT_COUNTRY : string := 'France';
end

Variables that are not initialized have a null value:
begin
 var firstName : string;
 if isNull(fistName) then
 do_something(); // Statement will be executed.
end

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1271

The following statements have errors:
begin
 // Following will not compile because variable is not initialized and no type
 // is defined.
 var firstName;
 // Following will not compile because variable type is decimal and value is
 // a string.
 var amount : decimal := 'test';
end

Scope
A variable or constant scope spans from its declaration to the end of the statement block where it
was declared:
begin
 var firstName := 'John';
 var lastName := 'Doe';

 begin
 // Following is OK because firstName and lastName are visible.
 var fullName := firstName | ' ' | lastName;

 end

 // Following will NOT compile because fullName is out of the scope.
 var message := 'Please contact ' | fullName;
end

A variable with same name cannot exist in same block or sub blocks:
begin
 var firstName := 'John';

 begin
 var firstName := 'Bob'; // Error! Variable already declared.

 end
end

The following is correct:
begin
 begin
 var firstName := 'Bob';

 end
 // The following is not an error, because block where previous variable was
 // declared is ended.
 var firstName := 'John';
end

Complex variables
Variable or constants of complex type can be declared using type detection or typeof keyword [p 1262] .
Dot notation is used to access fields of a variable of complex type.
Examples:
// Declaration using type detection.
var address1 := _ebx.record.OfficeAddress;

// Declaration using typeof notation.
var address2 : typeof _ebx.record.OfficeAddress;
address2 := address1;

Each step (parts separated by a dot) is an identifier [p 1258] . This means that following quoted notation
can be used for any step:
var city := _ebx.record."OfficeAddress".City;

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1272

This is useful for steps equal to a reserved keyword or using characters, such as the minus character
(-) or dot (.), that are not compatible with unquoted identifiers.
At runtime, any step can evaluate to null . In this case the full field expression evaluates to null .

Multi-valued fields
Multi-valued fields are treated as ordered lists. Index notation [index] is used to access an item of the
list. Indexes are 0 based (first index is 0).
In the following example, the field "Address" is multivalued:
var city := _ebx.record.Address[1].City;

If an index is out of bound, the indexed expression will return null . In this case the full field expression
evaluates to null .
An index may be a decimal or int expression . If decimal` the fractional part will be ignored.

181.12 Predefined variables

Introduction
Predefined variables allow access to information of the context. The following predefined variables
described in this section are common to contexts (function field, table trigger). They are constant and
of an immutable complex type.
Note that there are some specific predefined variables for each contexts: function field, table trigger
and script task.
For details on these specific variables, see the links Function field [p 1279] , Table trigger [p 1287] and
Script Task [p 1281] .

Dataspace
The predefined variable _ebx.dataspace provides access to information on the current dataspace.
This variable has following fields:

Name Type Description

name string The name of the dataspace. Since the
dataspace namespace and the snapshot
namespace are independent, the returned
string is only an identifier in the context
of one of the namespaces. For a global
dataspace or snapshot identifier, use field
id .

identifier string The persistent identifier of a dataspace
or snapshot. Compared to name , this
identifier additionally specifies whether
this id is for a dataspace or a snapshot.

isSnapshot boolean Is true if dataspace is a snapshot and
false if dataspace is a branch.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1273

Example:
// Returns details on the current dataspace.
export function getValue(): string
begin
 if _ebx.dataspace.isSnapshot then
 return 'Snapshot: ' | dataspace.name;
 else
 return 'Branch: ' | dataspace.name;
end

Dataset
The predefined variable _ebx.dataset provides access to information on the current dataset.
This variable has the following fields:

Name Type Description

name string The name of the dataset

dataspace dataspace The dataspace of the dataset

Example:
// Returns the current dataset name.
export function getValue(): string
begin
 return _ebx.dataset.name;
end

Root
The predefined variable _ebx.root is available when the current script is for a table trigger or for a
function field. It provides read-only access to the fields of current datasets.
Its fields are defined by the current EBX® schema.
Examples:
// this function field returns information on current dataset data.
export function getValue(): string
begin
 return _ebx.root.City | ' ' | _ebx.root.Region;
end

// this trigger logs information of current dataset data.
uses core.log as log;
export procedure onNewContext()
begin
 log.info(_ebx.root.City | ' ' | _ebx.root.Region);
end

181.13 Functions and procedures

Functions
Functions are methods that return a value.
A function with no parameters has the following syntax:
function function_name(): return_value_type
begin

 return a_value;

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1274

end

A function with parameters has the following syntax:
function function_name(
 parameter_1 : parameter_1_type,
 parameter_2 : parameter_2_type...,): return_value_type
begin

 return a_value;
end

It’s possible to declare a parameter constant using the const keyword:
function function_name(const parameter_1 : parameter_1_type): return_value_type
begin

 return a_value;
end

The last statement of a function must always be a return statement. The function can include as many
return statement as necessary.
Example:
function getFullName(firstName: string, lastName: string): string
begin
 if isNull(firstName) then
 return lastName;

 return firstName | ' ' | lastName;
end

It is illegal to return a value different from the one declared:
function getValue(): string
begin
 return 0; // Error! Return type is decimal, not string.
end

Procedures
Procedures are methods that do not return a value.
A procedure with no parameters has the following syntax:
procedure procedure_name()
begin

end

A procedure with parameters has the following syntax:
procedure procedure_name(
 parameter_1 : parameter_1_type,
 parameter_2 : parameter_2_type...)
begin

end

It’s possible to declare a parameter constant using the const keyword:
function procedure_name(const parameter_1 : parameter_1_type): return_value_type
begin

 return a_value;
end

A procedure cannot have a return statement, but the function can include as many return statements
as necessary. A procedure statement cannot return a value.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1275

181.14 Exported function or procedures
An exported function can be called directly by EBX®. Only one exported function or procedure is
allowed per script. Its signature (name, return type) depends on the context.
For details on the exported function or procedure of each context, see the Function field [p 1279] and
the Table trigger [p 1287] .

Parameters
Simple type parameters are passed by value. This means that a function or a procedure receives a
copy of the original value.
Complex and list types are passed by reference. This means that a function or a procedure receives
the original object. If the function or procedure modifies the object, the original one is modified.

181.15 If statement

"If then" statements
An "if then" statement has the following syntax:
if condition-expression then
 then-statement

The condition expression must evaluate to a boolean type.
The 'then' statement can be a statement block [p 1269] .

"If then else" statements
An "if then else" statement has following syntax:
if condition-expression then
 then-statement
else
 else-statement

The condition expression must be of boolean type.
A 'then' or 'else' statement can be a statement block [p 1269] .
Note
Expression:
if condition-expression then
 statements-a;
else
 statements-b;

Cannot be equivalent to:
if not condition-expression then
 statements-b;
else
 statements-a;

Indeed, if the expression is null, the else statement is executed in both cases.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1276

181.16 Loops

"For in do" loops
A "for in do" loop statement is used to select each item of a list and execute a block statement. It
has following syntax:
for item_variable_name in list do
begin
 statement_a;
 statement_b;
 ...
end

The block statement is executed once for each value of the list. At each iteration, the read-only item
variable takes a value of the list in the order of the list.
The name of the item variable must be unique in the current scope or an error will be generated at
compile time.
If a single statement must be executed for each item, the following simpler syntax can be used:
for item_variable_name in list do statement;

The following example iterates a list of complex:
// Concatenate all city addresses in a single string.
var cities := '';
for address in _ebx.record.Addresses do
begin
 if cities <> '' then cities |= ', ';
 cities |= address.city;
end

"While do" loops
A "while do" loop statement is used to execute a statement block until a condition is true . It has
following syntax:
while condition do
begin
 statement_a;
 statement_b;
 ...
end

If a single statement must be executed, the following simpler syntax can be used:
while condition do statement_a;

The following example calculates factorial of a value:
function factorial(value : decimal): decimal
begin
 var factorial := value;
 while(value > 1) do
 begin
 value -= 1;
 factorial *= value;
 end
 return factorial;
end

A decimal type is used instead of an int type to avoid out of range errors.

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1277

181.17 Units
EBX® provides an API that is packaged in "units".
A unit can define multiple function or procedures.
Except for the default one, a unit must be declared before usage. The declaration must be at the top
of the script and must follow these types of syntaxes:
uses package_name.unit_name_a;
uses package_name.unit_name_b as alias_b;

Currently, package_name is always core . A unit alias must be unique in a script.
Methods can be referenced using following syntaxes:
value1 := package_name.unit_name_a.function_a();
value2 := package_name.unit_name_a.function_b(parameter1, parameter2);

value3 := alias_a.function_c();
value4 := alias_a.function_d(parameter1, parameter2);

package_name.unit_name_a.procedure_a();
package_name.unit_name_a.procedure_b(parameter1, parameter2);

alias_a.procedure_c();
alias_a.procedure_d(parameter1, parameter2);

The following example uses the core.list unit to create a list:
uses core.list as list;

export function getValue(): typeof _ebx.record.Cities
begin
 return list.of('Paris', 'Bruxelles', 'Berlin');
end

For details on the provided units, see the API Documentation [p 1291] .

181.18 Logging and debugging
The unit unit.log [p 1291] provides a function that can be used to log a message.
A message logged by scripts can be viewed using Administration>Repository
management>Scripting EBX® menu.
Another useful feature is that if a runtime encounters an error while executing a script, it is usually
logged with the line in the script where the error occurred.

181.19 Initial script
When a new function field or table trigger is created using the DMA [p 38] , an initial script is created.
The following example is a script created for a table trigger:
uses core.datetime as datetime;
export procedure onBeforeCreate()
begin
record.inscriptionDate := datetime.now();
end

The following example is a script created for a function field of type string:
// Returns the full name.
export function getValue(): string
begin
 return _ebx.record.FirstName | ' ' | _ebx.record.LastName;
end

Documentation > Developer Guide > EBX® Script > Reference

TIBCO EBX® Product Documentation 6.2.0 1278

For details on initial script, see the Function field [p 1279] and the Table trigger [p 1287] .

Documentation > Developer Guide > EBX® Script > Usage > Function field

TIBCO EBX® Product Documentation 6.2.0 1279

CHAPTER 182
Function field

This chapter contains the following topics:

1. Introduction

2. Initial script

3. Predefined variable

182.1 Introduction
The DSL (Domain Specific Language) is used to define a function field. For more information on
DSL, see Reference [p 1256]

To create and modify a function field, use the Data Model Assistant (DMA) [p 38] .
The Data Model Assistant (DMA) includes a script editor that provides contextual code completion.

182.2 Initial script

Introduction
When a function field is first edited using use the Data Model Assistant (DMA) [p 38] , EBX® provides
an initial script with the correct definition of the exported function.
The following example is a script created for a function field of type string:
// Returns the full name.
export function getValue(): string
begin
 if isNull(record.FirstName) then
 return _ebx.record.LastName;

 return _ebx.record.FirstName | ' ' | _ebx.record.LastName;
end

Exported function
An exported function can be called directly by EBX®. Only one exported function is allowed per
script. Its signature (name, and return type) depends on the type of the function field and should not
be changed..
For the field of a record, definition must be similar to:
export function getValue(): typeof _ebx.record.<path>
begin
 ...

Documentation > Developer Guide > EBX® Script > Usage > Function field

TIBCO EBX® Product Documentation 6.2.0 1280

end

For the field of a dataset, definition must be similar to:
export function getValue(): typeof _ebx.root.<path>
begin
 ...
end

182.3 Predefined variable

Introduction
Predefined variables allow access to the context of the function field. The following contextual
variable is specific to function fields. It is constant and of an immutable complex type. For more
details on common predefined variables, see the Reference [p 1256] .

Record
The predefined variable _ebx.record is available only if the current script is for a function field of a
table. It allows read-only access to the current record.
Its fields are defined by the current EBX® schema.
Example:
// Returns the full name.
export function getValue(): string
begin
 return _ebx.record.FirstName | ' ' | _ebx.record.LastName;
end

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1281

CHAPTER 183
Script task

This chapter contains the following topics:

1. Introduction

2. Initial script

3. Predefined variables

4. Transaction

183.1 Introduction
A Workflow model is defined by a sequence of steps. A step may be a script task. The script task is
an automatic task that is performed without human user involvement. It is based on the procedural
language DSL (Domain Specific Language) to define custom operations. For more information on
DSL, see Reference [p 1256] .
When the task is ready to start, the engine will execute the script. Once the script is completed, the
task is also be completed.
To create and modify a script task, use the EBX IDE editor that provides contextual code completion.

183.2 Initial script

Introduction
When a script task is first edited using use the script IDE, EBX® provides an initial script with the
correct definition of the exported procedure.
An initial script task has following structure:
<unit usage statement 1>
<unit usage statement 2>
...
<unit usage statement N>

export procedure executeScriptTask()
begin
 ...
 <statement 1>
 <statement 2>
 ...
end

The following example is a script of a workflow task that logs a message.
uses core.log as log;
export procedure executeScriptTask()

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1282

begin
 log.info('A new script task is executed');
end

Exported procedure
An exported procedure can be called directly by EBX®. Only one exported procedure is allowed per
script task.
The signature of the script task procedure is the following:
export procedure executeScriptTask()

This signature can not be changed.

183.3 Predefined variables

Introduction
Predefined variables allow access to the context of a script task. The following contextual variable
_ebx.parameters is specific to script task. It is constant and of an immutable complex type. Note that
the common predefined variables of contexts (function field, table trigger) described in Reference [p

1256] can not used in the context of script task.

_ebx.parameters
The predefined variable _ebx.parameters provides access to the parameters of the script task context.
The parameters of the script task can be input and/or output . They are defined by using the script IDE.
The predefined variable _ebx.workflow provides access to information about the workflow model
like the identifier, the creator, the last modification date, etc. These parameter are read-only.
The parameters of the variable _ebx.parameters have the following properties:

Property Description

name the name of the parameter.

type The type of the parameter can be string, boolean, locale…

isInput When this property is checked, the parameter is defined as an
input. The parameter is not modifiable.

isOutput When this property is checked, the parameter is defined as an
output. The parameter is readable and modifiable by the script.
If the output parameter is not also input , its initial value is
null.

The syntax to get the value of an input parameter is :
var a_value := _ebx.parameters.input_parameter_name;

where input_parameter_name is the name of the input parameter.
The syntax to set the value of an output parameter is :
_ebx.parameters.output_parameter_name := a_value;

where output_parameter_name is the name of the output parameter.

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1283

Examples:
export procedure executeScriptTask()
begin
 var id:=_ebx.parameters.id; // input parameter of type string.
 var active:=_ebx.parameters.isActive; // input parameter of type boolean.

 _ebx.parameters.country:='USA'; // output parameter of type string.
 _ebx.parameters.locale:=locale.of('fr','FR'); // output parameter of type locale.
 _ebx.parameters.isActive:= false; // output parameter of type boolean.

 _ebx.parameters.message='Task A :' | _ebx.parameters.message; // input output parameter of type string.
end

// This task saves information of a person in the table
export procedure executeScriptTask()
begin
 var id:=_ebx.parameters.id;
 var firstName:=_ebx.parameters.firstName;
 var lastName:=_ebx.parameters.lastName;
 _ebx.parameters.fullName := firstName | ' ' | lastName;
 savePerson(id,firstName, lastName,_ebx.task.fullName);
end

_ebx.workflow
The predefined variable _ebx.workflow provides a read-only access to information on the current
workflow model. This contextual variable is constant and of an immutable complex type.
It has the following fields:

Name Type Description

id string The identifier of the workflow model

publicationId string The publication identifier of the
workflow model

creationDate date The creation date of the workflow model

lastModificationDate date The last modification date of the
workflow model

Example:
// This script task logs information of the current workflow model.
uses core.log as log;
export procedure onNewContext()
begin
var message := ' Workflow identifier : ' |_ebx.workflow.id;
message |= '\n Workflow creation date : ' | _ebx.workflow.creationDate;
message |= '\n Workflow last modification date: ' | _ebx.workflow.lastModificationDate;
log.info(message);
end

183.4 Transaction

Introduction
In the context of script tasks, users may need to perform some actions on a dataspace under a
transaction (i.e. update, modify, delete records, etc). Hence, if one or more actions fail, all other actions
must back out leaving the state of the dataspace unchanged. The transaction ensures that the integrity
state of data is never compromised.

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1284

Execute statement
The syntax to declare a transaction is the following:
execute transaction transaction_variable_name on dataspace_variable
begin
 // Transaction block.
...
 <statement_1>
 <statement_2>
...
end

• transaction_variable_name is the name of the transaction variable.

• dataspace_variable is the dataspace on which the transaction is executed. It is of type
'dataspaceType'.

Constants defined in encompassing scopes can be accessed by the transaction block, but non-
constant variables cannot.
Return statements are not allowed in the transaction block.
Example:
references model "model.xsd" from module "ebx-test" as schema;
uses core.data as db;

export procedure executeScriptTask()
begin
 var myDataspace := db.lookupDataspace('Bdataspace');

 const id := 'xxx';

 // executes a transaction that creates an new record in the table
 execute transaction tr on myDataspace
 begin
 var dataset := db.findDataset(tr.dataspace, 'dataset');
 var tableA:=db.findTable<schema.tableA>(dataset);
 var recordA:= db.recordOf(tr, tableA);
 recordA.id:=id; // the 'id' value is declared outside the transaction block. It must be const.
 db.saveRecord(recordA);
 end
end

Notes
Several transaction statements can be defined per script task. The name of transaction variable must
be unique in the current scope otherwise an error will be generated at compile time.
export procedure executeScriptTask()
begin
 execute transaction tr_a on myDataspace
 begin
 <statement_a>;
 end

 execute transaction tr_b on myDataspace
 begin
 <statement_b>;
 end
end

The nested transactions are not allowed in the script task procedure. An error will be raised at compile
time.
export procedure executeScriptTask()
begin
 execute transaction tr on myDataspace
 begin
 <statement_a>;
 // nested transaction is not allowed here !
 execute transaction tr on myDataspace
 begin
 <statement_b>;
 end

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1285

 end
end

Documentation > Developer Guide > EBX® Script > Usage > Script task

TIBCO EBX® Product Documentation 6.2.0 1286

Documentation > Developer Guide > EBX® Script > Usage > Table trigger

TIBCO EBX® Product Documentation 6.2.0 1287

CHAPTER 184
Table trigger

This chapter contains the following topics:

1. Introduction

2. Initial script

3. Predefined variables

184.1 Introduction
The trigger defines procedures that are implicitly and automatically executed when some operations
are performed on the table, such as creations, updates, or deletions.
The trigger can be executed either just before the event (insert, delete, update) or just after.
The DSL (Domain Specific Language) is used to define a table trigger. For more details on DSL, see
the Reference [p 1256] .
To create a table trigger, use the Data Model Assistant (DMA) [p 38] .
To edit and modify a script of the table trigger, use the EBX IDE that provides contextual code
completion.

184.2 Initial script

Introduction
When a table trigger is first edited using the DMA [p 38] , EBX® provides an initial script with the
correct definition of the exported procedure.
An initial script of a table trigger has following structure:
<unit usage statement 1>
<unit usage statement 2>
...
<unit usage statement N>

export procedure trigger_signature_name()
begin
 ...
 <statement 1>
 <statement 2>
 ...
end

The following script is a an example of before create trigger:
// this trigger calculates automatically the total and the percentage of students marks.

Documentation > Developer Guide > EBX® Script > Usage > Table trigger

TIBCO EBX® Product Documentation 6.2.0 1288

export procedure onBeforeCreate()
Begin
_ebx.record.total := _ebx.record.subj1 + _ebx.record.subj2 + _ebx.record.subj3;
_ebx.record.per :=(_ebx.record.total/60)*100;
end

The following script is a an example of before modify trigger:
// this trigger updates automatically the last modification date.
uses core.datetime as datetime;
export procedure onBeforeModify()
begin
_ebx.record.lastModificationDate := datetime.now();
end

Exported procedures
An exported procedure can be called directly by EBX®. Only one exported procedure is allowed per
script in a table trigger.
The signatures of table trigger procedures are the following:

• onNewContext() : is called when a new context of record is created.

• onBeforeCreate() : is called before the creation of a record.

• onAfterCreate() : is called after the creation of a record.

• onBeforeModify() : is called before the modification of a record.

• onAfterModify() : is called after the modification of a record.

• onBeforeDelete() : is called before deleting a record.

• onAfterDelete() : is called after deleting a record.

• onBeforeTransactionCancel() : is called before a cancel.

• onBeforeTransactionCommit() : is called before a commit.

Node: The exported procedure signature (name) depends on the trigger’s type and should not be
changed.

184.3 Predefined variables

Introduction
Predefined variables allow access to the context of a table trigger. The following contextual variables
are specific to the table trigger. For more details on common predefined variables, see the Reference
[p 1256] .

Session
The predefined variable _ebx.session provides access to information on the current session. This
contextual variable is constant and of an immutable complex type.

Documentation > Developer Guide > EBX® Script > Usage > Table trigger

TIBCO EBX® Product Documentation 6.2.0 1289

It has the following fields:

Name Type Description

userId string The identifier of the current user

userEmail string The email of the current user

locale string The locale of the current session

Example:
// this triggers logs information of the current session.
uses core.log as log;
export procedure onNewContext()
begin
var message := ' Session locale : ' | _ebx.session.locale;
message |= '\n User id : ' | _ebx.session.userId;
message |= '\n User email: ' | _ebx.session.userEmail;
log.info(message);
end

Record
The predefined variable _ebx.record allows read/write access to the current record to be created,
updated or deleted. Its fields are defined by the current EBX® schema.
Example:
// This trigger adds the full name and the modification date of a new created person.
uses core.datetime as datetime;
export procedure onBeforeCreate()
begin
 _ebx.record.inscriptionDate := datetime.now();
 _ebx.record.fullName := _ebx.record.firstName | ' ' | _ebx.record.lastName;
end

NextRecord
The predefined variable _ebx.nextRecord allows read-write access to the next record to be updated.
It is available only for onBeforeModify triggers. It is defined by the current EBX® schema.
Example:
uses core.datetime as datetime;
export procedure onBeforeModify()
Begin

 if (_ebx.nextRecord.phone <> _ebx.record.phone) then
 begin
 _ebx.nextRecord.phoneChangeDate := datetime.now();
 _ebx.nextRecord.description := 'old phone number is ' | _ebx.record.phone | '
 and New Phone number is ' | _ebx.nextRecord.phone ;
 end
 end

PreviousRecord
The predefined variable _ebx.previousRecord allows read-only access to the previous record after an
update. It is available only for OnAfterModify triggers. It is defined by the current EBX® schema.
Example:
// This trigger logs all data modifications of the table sales.
uses core.log as log;
uses core.datetime as datetime;
export procedure OnAfterModify()

Documentation > Developer Guide > EBX® Script > Usage > Table trigger

TIBCO EBX® Product Documentation 6.2.0 1290

begin
var message := ' Sales id : ' | _ebx.record.sales_id;
message |= '\n Previous amount : ' | _ebx.previousRecord.amount;
message |= '\n Current amount : ' | _ebx.record.amount;
message |= '\n Updated on : ' | datetime.now();
log.info(message);
end

Transaction
The predefined variable _ebx.transaction provides a read-only access to the current transaction of
the trigger. It is available only in the context of a table trigger. This variable is constant and of an
immutable complex type. The transaction is needed to perform some operations on the dataspace
(update, modify, delete records, etc). It ensure that the integrity state of data is never compromised
when some actions fail.
Example:
uses core.data as d;
// The trigger creates a new record in a table.
export procedure onAfterCreate()
begin
var tableA := d.findTable<.tableName>(_ebx.dataset)
var recordA:= d.recordOf(_ebx.transaction, tableA);
// Update the record.
...
d.saveRecord(recordA);
end

Documentation > Developer Guide > EBX® Script > API > Unit summary

TIBCO EBX® Product Documentation 6.2.0 1291

CHAPTER 185
Unit summary

Units Description

default [p 1293] The default unit.

core.complex [p 1295] Script unit that provides methods to create and update complex values.

core.data [p 1298] Script unit that provides database operations (insert, modify, update, lookup).

core.date [p 1315] Script unit that provides date functions.

core.datetime [p 1320] Script unit that provides datetime functions.

core.list [p 1328] Script unit that provides methods to create and update lists.

core.locale [p 1335] Script unit that provides functions for managing locales.

core.log [p 1337] Script unit that provides methods to log messages.

core.math [p 1340] Script unit that provides mathematical functions and constants.

core.number Script unit that provides number functions and constants.

core.resource [p 1351] This script unit methods that generates resource references compatible with the schema type
ods:resource.

core.string [p 1356] Script unit that provides string manipulation functions.

core.time [p 1361] Script unit that provides time functions.

core.uri [p 1365] Script unit that provides functions for managing Uniform Resource Identifier (URI) references.

Documentation > Developer Guide > EBX® Script > API > Unit summary

TIBCO EBX® Product Documentation 6.2.0 1292

Documentation > Developer Guide > EBX® Script > API > Unit default

TIBCO EBX® Product Documentation 6.2.0 1293

CHAPTER 186
Unit default

The default unit. This unit is automatically included in a script.
Methods from this script can be called directly and do not require a uses statement.

Methods

function isFalseOrNull(value: boolean): boolean [p 1293]

Returns true if value is false of null.

function isNull(value: any_type): boolean [p 1293]

Returns true if value is null.

function isTrueOrNull(value: boolean): boolean [p 1294]

Returns true if value is true or null.

This chapter contains the following topics:

1. isFalseOrNull

2. isNull

3. isTrueOrNull

186.1 isFalseOrNull
function isFalseOrNull(value: boolean): boolean
Returns true if value is false of null.
Parameters :
value: a boolean value.
Return :
true if value is null or false, or else false. Never returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

186.2 isNull
function isNull(value: any_type): boolean

Documentation > Developer Guide > EBX® Script > API > Unit default

TIBCO EBX® Product Documentation 6.2.0 1294

Returns true if value is null.
Parameters :
value a value of any type.
Return :
true if value is null or else false. Never returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

186.3 isTrueOrNull
function isTrueOrNull(value: boolean): boolean
Returns true if value is true or null.
Parameters :
value: a boolean value.
Return :
true if value is null or true, or else false. Never returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.complex

TIBCO EBX® Product Documentation 6.2.0 1295

CHAPTER 187
Unit core.complex

Script unit that provides methods to create and update complex values.

Methods

foreignKeyOf<foreignKeyType>(): foreignKeyType [p 1295]

Create an instance of a foreign key type.

of<complexType>(): complexType [p 1296]

Create an instance of a complex type.

primaryKeyOf<primaryKeyType>(): primaryKeyType [p 1296]

Create an instance of a primary key type.

This chapter contains the following topics:

1. foreignKeyOf

2. of

3. primaryKeyOf

187.1 foreignKeyOf
foreignKeyOf<foreignKeyType>(): foreignKeyType
Create an instance of a foreign key type.
Note: A foreign key field contains a primary key on the referenced table.
This method is equivalent to the method complex.primaryKeyOf. The method
complex.primaryKeyOf should be preferred
Example:

uses core.complex as complex;

export function getValue(): typeof _ebx.record.Supervisor
begin
 var foreignKey := complex.foreignKeyOf<typeof _ebx.record.Supervisor>();
 foreignKey.Id := 435;
 return foreignKey;
end

Function Types :

Documentation > Developer Guide > EBX® Script > API > Unit core.complex

TIBCO EBX® Product Documentation 6.2.0 1296

primaryKeyType: the primary key type. Can be the type of a foreign key or a an expression
foreignKeyOf. Is mandatory.
Return :
the new foreign key object. Is always mutable.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

187.2 of
of<complexType>(): complexType
Create an instance of a complex type.

Example:

uses core.complex as complex;

export function getValue(): typeof _ebx.record.OfficeAddress
begin
 var value := complex.of<typeof _ebx.record.OfficeAddress>();
 value.Street := '4323 Broadway';
 value.City := 'New York';
 value.State := 'NY';
 value.Zip := '10019';
 value.Country := 'USA';
 return value;
end

Function Types :
complexType: the object type. Is mandatory. Should be an expression typeof identifier.
Return :
the new object. Is always the mutable version of the specified type.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

187.3 primaryKeyOf
primaryKeyOf<primaryKeyType>(): primaryKeyType
Create an instance of a primary key type.
Note: A foreign key field contains a primary key on the referenced table.
Example:

uses core.complex as complex;

export function getValue(): typeof _ebx.record.Supervisor
begin
 var foreignKey := complex.primaryKeyOf<typeof _ebx.record.Supervisor>();
 foreignKey.Id := 435;
 return foreignKey;
end

Function Types :
primaryKeyType: the primary key type. Can be the type of a foreign key or an expression
primaryKeyOf. Is mandatory.
Return :
the new primary key object. Is always mutable.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1297

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1298

CHAPTER 188
Unit core.data

Script unit that provides database operations (insert, modify, update, lookup).

Methods

procedure addDataset(sql: queryType, alias: string, dataset: datasetType) [p 1301]

Adds a dataset to a query.

function createQuery(sql: string, datasets: string...): [p 1302]

Creates a query.

procedure deleteRecord(transaction: transactionType, record: recordType) [p 1302]

Deletes a read only record.

procedure deleteRecordByPrimaryKey(transaction: transactionType, table: tableType, primaryKey: primaryKeyType) [p 1303]

Deletes a record specified by its primary key.

function executeQuery(query: query): list of tupleType. [p 1303]

Executes the query.

function explain(query: query): string. [p 1304]

Returns a meaningful string representation of the query plan.

function fetchFirst(query: query): tuple. [p 1304]

Executes the query and returns the first tuple.

function fetchOne(query: query): tuple. [p 1304]

Executes the query and returns a single tuple or null if the number of tuple is not exactly one.

function field<fieldType>(tuple: tupleType, alias: string): fieldType. [p 1305]

Returns the value of the field by specified alias.

function fieldByIndex<fieldType>(tuple: tupleType, index: int): fieldType. [p 1305]

Returns the value of the field at specified index position.

function fieldNames(result: query_result): list<string> [p 1306]

Returns the names of the fields in the result of the query.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1299

Methods

function findDataset(dataspace: dataspaceType, name: string): datasetType [p 1306]

Returns the dataset specified by its name.

function findDataspace(name: string): dataspaceType [p 1307]

Returns the dataspace specified by its name.

function findSnapshot(name: string): snapshotType [p 1307]

Returns the snapshot specified by its name.

function findTable<tableType>(dataset: datasetType): tableType [p 1307]

Returns a table of the specified dataset.

function lookupDataset(dataspace: dataspaceType, name: string): datasetType [p 1308]

Returns the dataset specified by its name.

function lookupDatasetFieldForUpdate(transaction: transactionType, dataset: datasetType): updatableFieldType [p 1308]

Returns an updatable field of the specified dataset.

function lookupDataspace(name: string): dataspaceType [p 1309]

Returns the dataspace specified by its name.

function lookupRecord(table: tableType, primaryKey: PrimaryType): recordType [p 1309]

Returns a read only record specified by its primary key.

function lookupRecordByFullXPath(table: tableType, xPath: string): recordType [p 1310]

Returns a read only record specified by an XPath.

function lookupRecordByFullXPathForUpdate(transaction:transactionType,table: tableType, xPath: string): recordType [p 1310]

Returns an updatable record specified by an XPath.

function lookupRecordForUpdate(transaction: transactionType, table: tableType, primaryKey: PrimaryKeyType):
updatableRecordType [p 1311]

Returns an updatable record specified by its primary key.

function lookupSnapshot(name: string): snapshotType [p 1311]

Returns the snapshot specified by its name.

function record<recordType>(tuple: tupleType, alias: string): recordType. [p 1312]

Returns a read-only record by specified alias.

function recordByIndex<recordType>(tuple: tupleType, index: int): recordType. [p 1312]

Returns a read-only record at index position.

function recordOf(transaction: transactionType, table: tableType): recordType [p 1313]

Create a new record for a table.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1300

Methods

procedure saveField(field: updatableFieldType) [p 1313]

Saves the dataset field.

procedure saveRecord(record: updatableRecordType) [p 1313]

Saves the record.

procedure setFetchSize(query: query, number: int) [p 1314]

Provides a hint to the underlying data with the number of records to fetch at a time from the result.

procedure setParameter(query: query, position: int, value: fieldType) [p 1314]

Sets a value to a positional parameter in the query.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1301

This chapter contains the following topics:

1. addDataset

2. createQuery

3. deleteRecord

4. deleteRecordByPrimaryKey

5. executeQuery

6. explain

7. fetchFirst

8. fetchOne

9. field

10.fieldByIndex

11.fieldNames

12.findDataset

13.findDataspace

14.findSnapshot

15.findTable

16.lookupDataset

17.lookupDatasetFieldForUpdate

18.lookupDataspace

19.lookupRecord

20.lookupRecordByFullXPath

21.lookupRecordByFullXPathForUpdate

22.lookupRecordForUpdate

23.lookupSnapshot

24.record

25.recordByIndex

26.recordOf

27.saveField

28.saveRecord

29.setFetchSize

30.setParameter

188.1 addDataset
procedure addDataset(sql: queryType, alias: string, dataset: datasetType)
Adds a dataset to a query. This method must be called before executeQuery or explain.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1302

Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var sql :='select t.calA, t.colB from d1.tableA t where t.id=xx';
 var query :=d.createQuery(sql);
 var dataset1 := d.findDataset(_ebx.dataspace, 'dataset-name1');
 d.addDataset(query, 'd1', dataset1);
end

Parameters :
sql: the sql query.
alias: the alias of the dataset to be added to the query.
dataset: the dataset to be added to the query.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.2 createQuery
function createQuery(sql: string, datasets: string...):
Creates a query. Raises an error if the sql string is not a valid select; for example, it contains syntax
errors, it references missing tables, missing columns, etc.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var sql := 'select t.calA, t.colB from tableA t where t.id=xx';
 var query := d.createQuery(sql);
end

Parameters :
sql: the string representation of the sql query.
Return :
the query.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.3 deleteRecord
procedure deleteRecord(transaction: transactionType, record: recordType)
Deletes a read only record. Raises an error if the deletion fails.
Example:
uses core.data as d;
export procedure onAfterDelete()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 var record := d.lookupRecord(tableA,_ebx.record.foreignKey);
 // deletes the record
 d.deleteRecord(_ebx.transaction,record);
end

Parameters :
transaction: the transaction.
record: the record.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1303

Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.4 deleteRecordByPrimaryKey
procedure deleteRecordByPrimaryKey(transaction: transactionType, table: tableType,
primaryKey: primaryKeyType)
Deletes a record specified by its primary key. Raises an error if the deletion fails. Deleting a record
that does not exist is not an error.
. Example 1:
uses core.data as d;
uses core.complex as c;
export procedure onAfterDelete()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);

 // Creates the primary key.
 var pk := c.primaryKeyOf<.tableName>();
 pk.field1 := ...;
 pk.field2 := ...;

 // Deletes the record using the primary key.
 d.deleteRecordByPrimaryKey(_ebx.transaction, table, pk);
end

Example 2:
uses core.data as d;
export procedure onAfterDelete()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);

 // Deletes the record referenced by a foreign key. A foreign key is also a primary key.
 d.deleteRecordByPrimaryKey(_ebx.transaction,table,_ebx.record.foreignKey);
end

Parameters :
transaction: the transaction.
table: the table.
primaryKey: the primary key.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.5 executeQuery
function executeQuery(query: query): list of tupleType.
Executes the query. Raises an error if nodes used in the query are forbidden.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var query := d.createQuery('select t.colA, t.colB" from s1.tableA t where t.colC=?');
 d.addDataset(query, 's1', d.findDataset(_ebx.dataspace, 'dataset-name'));
 a.setParameter(query, 0, 'A value');

 var queryResult := d.executeQuery(query);
 for tuple in queryResult do
 begin
 // Do something with tuple.
 ...
 end
 d.close(queryResult)
end

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1304

Parameters :
query: the sql query.
Return :
the result for the query.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.6 explain
function explain(query: query): string.
Returns a meaningful string representation of the query plan.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var query := d.createQuery('select t."$pk" as id from table t');
 var queryPlan := d.explain(query);
 ...
end

Parameters :
query: the sql query.
Return :
the representation of the query plan.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.7 fetchFirst
function fetchFirst(query: query): tuple.
Executes the query and returns the first tuple. Raises an error if nodes used in the query are forbidden.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var query := d.createQuery('select t.colA, t.colB" from s1.tableA t where t.colC=?');
 d.addDataset(query, 's1', d.findDataset(_ebx.dataspace, 'dataset-name'));
 a.setParameter(query, 0, 'A value');

 var tuple := d.fetchFirst(query);
 // Do something with tuple.
 ...
end

Parameters :
query: the sql query.
Return :
the first tuple for the query on null if query returns no result.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.8 fetchOne
function fetchOne(query: query): tuple.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1305

Executes the query and returns a single tuple or null if the number of tuple is not exactly one. Raises
an error if nodes used in the query are forbidden.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var query := d.createQuery('select t.colA, t.colB" from s1.tableA t where t.colC=?');
 d.addDataset(query, 's1', d.findDataset(_ebx.dataspace, 'dataset-name'));
 a.setParameter(query, 0, 'A value');

 var tuple := d.fetchOne(query);
 // Do something with tuple.
 ...
end

Parameters :
query: the sql query.
Return :
the first tuple for the query on null if query returns no result.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.9 field
function field<fieldType>(tuple: tupleType, alias: string): fieldType.
Returns the value of the field by specified alias.
Example:
uses core.data as d;
export procedure onBeforeDelete()
begin
 var query := d.createQuery('select a.col1 as c1, a.col2 as c2 from tableA a');
 var queryResult := d.executeQuery(query);
 for tuple in queryResult do
 begin
 var field1 := d.field<string>(tuple,'c1');
 var field2 := d.field<decimal>(tuple,'c2');
 // Do something with field values
 ...
 end;
 ...
end

Function Types :
fieldType: the field type. Is mandatory.
Parameters :
tuple: the tuple of the query result.
alias: the alias of the field.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.10 fieldByIndex
function fieldByIndex<fieldType>(tuple: tupleType, index: int): fieldType.
Returns the value of the field at specified index position.
Example:
uses core.data as d;
export procedure onBeforeModify()

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1306

begin
 var query := d.createQuery('select a.col1, a.col2 from tableA a');
 var queryResult := d.executeQuery(query);
 for tuple in queryResult do
 begin
 var field1 := d.fieldByIndex<string>(tuple,0);
 var field2 := d.fieldByIndex<date>(tuple,1);
 // Do something with field values.
 ...
 end;
 ...
end

Function Types :
fieldType: the field type. Is mandatory.
Parameters :
tuple: the tuple of the query result.
index: the position of the field. First position is 0.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.11 fieldNames
function fieldNames(result: query_result): list<string>
Returns the names of the fields in the result of the query.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var query := d.createQuery('select t.* from table t');
 var names := d.fieldNames(query);
 for name in names do
 begin
 // Do something with name.
 ...
 end;
end

Parameters :
result: the sql query.
Return :
the names of the fields in the query result.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.12 findDataset
function findDataset(dataspace: dataspaceType, name: string): datasetType
Returns the dataset specified by its name. Raises an error if the dataset is not found.

uses core.data as d;

procedure doSomething()
begin
 var dataspace := d.findDataspace('dataspace-name');
 var dataset := d.findDataset(dataspace, 'dataset-name');
 ...
end

Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1307

dataspace: the dataspace that owns the dataset.
name: the name of the dataset.
Return :
the dataset specified by its name.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.13 findDataspace
function findDataspace(name: string): dataspaceType
Returns the dataspace specified by its name. Raises an error if the dataspace is not found.
Example:
uses core.data as d;

begin
 var dataspace := d.findDataspace('dataspace-name');
 ...
end

Parameters :
name: the name of the dataspace.
Return :
the dataspace.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.14 findSnapshot
function findSnapshot(name: string): snapshotType
Returns the snapshot specified by its name. Raises an error if the snapshot is not found.
Example:
uses core.data as d;

procedure doSomething()
begin
 var snapshot := d.findSnapshot('snapshot-name');
 ...
end

Parameters :
name: the name of the snapshot.
Return :
the snapshot.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.15 findTable
function findTable<tableType>(dataset: datasetType): tableType
Returns a table of the specified dataset. Raises an error if the table is not found.

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1308

Example:
uses core.data as d;

procedure doSomething()
begin
 var customerTable := db.findTable<.Customer>(_ebx.dataset);
 ...
end

Function Types :
complexType: the table type.
Parameters :
dataset: the dataset that owns the table.
Return :
the table.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.16 lookupDataset
function lookupDataset(dataspace: dataspaceType, name: string): datasetType
Returns the dataset specified by its name. Returns null if the dataset is not found.

uses core.data as d;

procedure doSomething()
begin
 var dataspace := d.lookupDataspace('dataspace-name');
 var dataset := d.lookupDataset(dataspace, 'dataset-name');
 ...
end

Parameters :
dataspace: the dataspace that owns the dataset.
name: the name of the dataset.
Return :
the dataset specified by its name.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.17 lookupDatasetFieldForUpdate
function lookupDatasetFieldForUpdate(transaction: transactionType, dataset: datasetType):
updatableFieldType
Returns an updatable field of the specified dataset. Raises an error if the dataset is not owned by the
dataspace used to create the transaction.
Example:
uses core.data as d;

export procedure onAfterModify()
begin

 var dataset := d.findDataset(_ebx.dataspace,'dataset-name');
 var field := d.lookupDatasetFieldForUpdate<typeof _ebx.root>(_ebx.transaction,dataset);
 field.fieldA := 'AA';
 field.fieldB := 'BB';
 ...

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1309

 d.saveField(field);
end

Parameters :
transaction: the transaction.
dataset: The dataset must be owned by the dataspace used to create the transaction.
Return :
the updatable field.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.18 lookupDataspace
function lookupDataspace(name: string): dataspaceType
Returns the dataspace specified by its name. Returns null if the dataspace is not found.
Example:
uses core.data as d;

procedure doSomething()
begin
 var dataspace := d.findDataspace('dataspace-name');
 ...
end

Parameters :
name: the name of the dataspace.
Return :
the dataspace.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.19 lookupRecord
function lookupRecord(table: tableType, primaryKey: PrimaryType): recordType
Returns a read only record specified by its primary key. Returns null if the record does not exist.
Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 // Fetch the record referenced by the foreign key.
 var record := d.lookupRecord(table, _ebx.record.foreignKey);
 // Do something with record.
 ..
end

Parameters :
table: the table.
primaryKey: the primary key.
Return :
the record specified by its primary key or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1310

188.20 lookupRecordByFullXPath
function lookupRecordByFullXPath(table: tableType, xPath: string): recordType
Returns a read only record specified by an XPath. Returns null if the record does not exist.
The XPath must specify the value of each primary key field.
An example of XPath is:
/root/table[./pk-field1='a' and ./pk-field2='b']

Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 var xpath:='/root/table[./pk-field1='a' and ./pk-field2='b']';
 // Fetch the record specified by an XPath.
 var record := d.lookupRecordByFullXPath(table, xpath);
 // Do something with record.
 ..
end

Parameters :
table: the table.
xPath: the xPath expression.
Return :
the record specified by the xPath or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.21 lookupRecordByFullXPathForUpdate
function lookupRecordByFullXPathForUpdate(transaction:transactionType,table: tableType,
xPath: string): recordType
Returns an updatable record specified by an XPath. Returns null if the record does not exist.
The XPath must specify the value of each primary key field.
An example of XPath is:
/root/table[./pk-field1='a' and ./pk-field2='b']

Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 var xpath='/root/table[./pk-field1='a' and ./pk-field2='b']';
 // Fetch the record specified by an XPath.
 var record := d.lookupRecordByFullXPathForUpdate(_ebx.transaction,table, xpath);
 // Update the record.
 record.field3:='XX';
 record.field4:='YY';
 ..
 d.saveRecord(record);
end

Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1311

transaction: the transaction.
table: the table.
xPath: the xPath expression.
Return :
the record specified by the xPath or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.22 lookupRecordForUpdate
function lookupRecordForUpdate(transaction: transactionType, table: tableType,
primaryKey: PrimaryKeyType): updatableRecordType
Returns an updatable record specified by its primary key. Returns null if the record does not exist.
Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 // Fetch the record referenced by the foreign key.
 var record := d.lookupRecordForUpdate(_ebx.transaction,table, _ebx.record.foreignKey);
 // Update the record.
 record.fieldA:='A';
 record.fieldB:='B';
 ..
 d.saveRecord(record);
end

Parameters :
transaction: the transaction.
table: the table.
primaryKey: the primary key.
Return :
the updatable record specified by its primary key or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.23 lookupSnapshot
function lookupSnapshot(name: string): snapshotType
Returns the snapshot specified by its name. Returns null if the specified snapshot is not found.
Example:
uses core.data as d;

procedure doSomething()
begin
 var snapshot := d.lookupSnapshot('snapshot-name');
 ...
end

Parameters :
name: the name of the snapshot.
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1312

the snapshot.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.24 record
function record<recordType>(tuple: tupleType, alias: string): recordType.
Returns a read-only record by specified alias.
Example:
uses core.data as d;
export procedure onAfterModify()
begin
 var query := d.createQuery('select a."$adaptation" as rd from tableA a');
 var queryResult := d.executeQuery(query);
 for tuple in queryResult do
 begin
 var record := d.record<.tableA>(tuple,'rd');
 // Do something with the record.
 ...
 end;
 ...
end

Function Types :
recordType: the record type. Is mandatory.
Parameters :
tuple: the tuple of the query result.
alias: the alias of the field.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.25 recordByIndex
function recordByIndex<recordType>(tuple: tupleType, index: int): recordType.
Returns a read-only record at index position.
Example:
uses core.data as d;
export procedure onBeforeModify()
begin
 var query := d.createQuery('select a."$adaptation" from s1.tableA a', 'Bdataspace1\dataset1 s1');
 var queryResult := d.executeQuery(query);
 for tuple in queryResult do
 begin
 var record := d.record<.tableA>(tuple,0);
 // Do something with the record.
 ...
 end;
 ...
end

Function Types :
complexType: the record type. Is mandatory.
Parameters :
tuple: the tuple of the query result.
index: the position of the field.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1313

188.26 recordOf
function recordOf(transaction: transactionType, table: tableType): recordType
Create a new record for a table. Default values are set as specified in the schema.
Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var table := d.findTable<.tableName>(_ebx.dataset);
 var record := d.recordOf(_ebx.transaction, table);
 // Update the record.
 record.pk:='IDA';
 record.field1:='A1';
 record.field2:='A2';
 ...
 d.saveRecord(record);
end

Parameters :
transaction: the transaction.
table: the table.
Return :
the new record.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.27 saveField
procedure saveField(field: updatableFieldType)
Saves the dataset field. Raises an error if the operation fails.
Example:
uses core.data as d;

export procedure onAfterCreate()
begin
 var field := d.lookupDatasetFieldForUpdate<typeof _ebx.root>(_ebx.transaction,'dataset-name');
 field.fieldA := 'AA';
 field.fieldB := 'BB';
 d.saveField(field);
end

Parameters :
field: the dataset field to save.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.28 saveRecord
procedure saveRecord(record: updatableRecordType)
Saves the record. Raises an error if the operation fails.
The record is updated with new values. Example:
uses core.data as d;

export procedure onAfterCreate()
begin

Documentation > Developer Guide > EBX® Script > API > Unit core.data

TIBCO EBX® Product Documentation 6.2.0 1314

 var table := d.findTable<.tableName>(_ebx.dataset);
 var record := d.recordOf(_ebx.transaction, table);
 // Update the record.
 ...
 d.saveRecord(record);
end

Parameters :
record: the record to save.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.29 setFetchSize
procedure setFetchSize(query: query, number: int)
Provides a hint to the underlying data with the number of records to fetch at a time from the result.
Example:
uses core.data as d;
export procedure onAfterCreate()
begin
 var sql := 'select * from tableA where id=xx';
 var query := d.createQuery(sql);
 d.setFetchSize(query,50);
 ...
end

Parameters :
query: the query.
number: the number of record to fetch.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

188.30 setParameter
procedure setParameter(query: query, position: int, value: fieldType)
Sets a value to a positional parameter in the query. Example:
uses core.data as d;
uses core.locale as locale;
export procedure onAfterModify()
begin
 var query := d.createQuery('select * from table tableA t where t.col1=? and t.col2=?');
 d.setParameter(query, 0, 'Paris');
 d.setParameter(query, 1, d(1956-06-17));
 var queryResult := d.executeQuery(query);
 ...
end

Parameters :
query: the query.
position: the position of the parameter in the query.
value: value of the parameter.
Can be used in: Script tasks [p 1281], Table triggers [p 1287]

Documentation > Developer Guide > EBX® Script > API > Unit core.date

TIBCO EBX® Product Documentation 6.2.0 1315

CHAPTER 189
Unit core.date

Script unit that provides date functions.

Methods

function addDays(value: date, days: decimal): date [p 1316]

Adds days to a date.

function addMonths(value: date, months: decimal): datetime [p 1316]

Adds months to a date.

function addYears(value: date, years: decimal): date [p 1316]

Adds years to a date.

function days(startValue: date, endValue: date): decimal [p 1317]

Returns the number of days between two dates.

function fromDatetime(value: datetime): date [p 1317]

Converts a date and time to a date.

function months(startValue: date, endValue: date): decimal [p 1317]

Returns the number of months between two dates.

function now(): date [p 1317]

Returns current date.

function dateOf(year: decimal, month: decimal, day: decimal): date [p 1318]

Creates a date given year, month and day.

function years(startValue: date, endValue: date): decimal [p 1318]

Returns the number of full years between two dates.

Documentation > Developer Guide > EBX® Script > API > Unit core.date

TIBCO EBX® Product Documentation 6.2.0 1316

This chapter contains the following topics:

1. addDays

2. addMonths

3. addYears

4. days

5. fromDatetime

6. months

7. now

8. of

9. years

189.1 addDays
function addDays(value: date, days: decimal): date
Adds days to a date.
Parameters :
value: the input date
months: the number of days to be added. Must be an integer.
Return :
the new date or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.2 addMonths
function addMonths(value: date, months: decimal): datetime
Adds months to a date.
Parameters :
value: the input date
months: the number of months to be added. Must be an integer.
Return :
the new date or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.3 addYears
function addYears(value: date, years: decimal): date
Adds years to a date.
Parameters :
value: the input date
years: the number of years to be added. Must be an integer.

Documentation > Developer Guide > EBX® Script > API > Unit core.date

TIBCO EBX® Product Documentation 6.2.0 1317

Return :
the new date or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.4 days
function days(startValue: date, endValue: date): decimal
Returns the number of days between two dates.
Parameters :
startValue: the input start date
endValue: the input end date
Return :
the number of days or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.5 fromDatetime
function fromDatetime(value: datetime): date
Converts a date and time to a date. The input time part is ignored.
Parameters :
value: the input date and time
Return :
the new date or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.6 months
function months(startValue: date, endValue: date): decimal
Returns the number of months between two dates.
Parameters :
startValue: the input start date
endValue: the input end date
Return :
the number of months or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.7 now
function now(): date
Returns current date.
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.date

TIBCO EBX® Product Documentation 6.2.0 1318

the current date.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields without search optimization
[p 1279]

189.8 of
function dateOf(year: decimal, month: decimal, day: decimal): date
Creates a date given year, month and day.
Parameters :
year: the input year
month: the input month
day: the input day
Return :
the new date or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

189.9 years
function years(startValue: date, endValue: date): decimal
Returns the number of full years between two dates.
Parameters :
startValue: the input start date
endValue: the input end date
Return :
the number of years or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1319

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1320

CHAPTER 190
Unit core.datetime

Script unit that provides datetime functions.

Methods

function addDays(value: datetime, days: decimal): datetime [p 1321]

Adds days to a date and time.

function addHours(value: datetime, hours: decimal): datetime [p 1321]

Adds hours to a date and time.

function addMinutes(value: datetime, minutes: decimal): datetime [p 1322]

Adds minutes to a date and time.

function addMonths(value: datetime, months: decimal): datetime [p 1322]

Adds months to a date and time.

function addSeconds(value: datetime, seconds: decimal): datetime [p 1322]

Adds seconds to a date and time.

function addYears(value: datetime, years: decimal): datetime [p 1323]

Adds years to a date and time.

function days(startValue: datetime, endValue: datetime): decimal [p 1323]

Returns the number of days between two date and times.

function fromDate(value: date): datetime [p 1323]

Converts a date to date and time with time set to 00:00:00.

function fromDateAndTime(dateValue: date, timeValue: time): datetime [p 1323]

Creates a date and time given date and time values.

function months(startValue: date, endValue: date): decimal [p 1324]

Returns the number of months between two date and times.

function now(): datetime [p 1324]

Returns current date and time.

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1321

Methods

function of(year: decimal, month: decimal, day: decimal, hour: decimal, minute: decimal, second: decimal): datetime [p 1324]

Creates a date and time given year, month, day, hours, minutes and seconds.

function seconds(startValue: datetime, endValue: datetime): decimal [p 1325]

Returns the number of seconds between two date and times.

function years(startValue: date, endValue: date): decimal [p 1325]

Returns the number of full years between two date and times.

This chapter contains the following topics:

1. addDays

2. addHours

3. addMinutes

4. addMonths

5. addSeconds

6. addYears

7. days

8. fromDate

9. fromDateAndTime

10.months

11.now

12.of

13.seconds

14.years

190.1 addDays
function addDays(value: datetime, days: decimal): datetime
Adds days to a date and time.
Parameters :
value: the input date and time
months: the number of days to be added. Must be an integer.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.2 addHours
function addHours(value: datetime, hours: decimal): datetime

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1322

Adds hours to a date and time.
Parameters :
value: the input date and time
hours: the number of hours to be added. Must be an integer.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.3 addMinutes
function addMinutes(value: datetime, minutes: decimal): datetime
Adds minutes to a date and time.
Parameters :
value: the input date and time
minutes: the number of minutes to be added. Must be an integer.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.4 addMonths
function addMonths(value: datetime, months: decimal): datetime
Adds months to a date and time.
Parameters :
value: the input date and time
months: the number of months to be added. Must be an integer.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.5 addSeconds
function addSeconds(value: datetime, seconds: decimal): datetime
Adds seconds to a date and time. Fractions of seconds are supported with millisecond precision.
Parameters :
value: the input date and time
seconds: the number of seconds to be added. Fractions are rounded to three decimal digits.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1323

190.6 addYears
function addYears(value: datetime, years: decimal): datetime
Adds years to a date and time.
Parameters :
value: the input date and time
months: the number of years to be added. Must be an integer.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.7 days
function days(startValue: datetime, endValue: datetime): decimal
Returns the number of days between two date and times. This function is equivalent to
days(toDate(startValue), toDate(endValue)).
Parameters :
startValue: the input start date and time
endValue: the input end date and time
Return :
the number of days or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.8 fromDate
function fromDate(value: date): datetime
Converts a date to date and time with time set to 00:00:00.
Parameters :
value: the input date
Return :
the new date and time or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.9 fromDateAndTime
function fromDateAndTime(dateValue: date, timeValue: time): datetime
Creates a date and time given date and time values.
Parameters :
dateValue: the input date
timeValue: the input time
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1324

the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.10 months
function months(startValue: date, endValue: date): decimal
Returns the number of months between two date and times.
Parameters :
startValue: the input start date and time
endValue: the input end date and time
Return :
the number of months or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.11 now
function now(): datetime
Returns current date and time.
Return :
the current date and time.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields without search optimization
[p 1279]

190.12 of
function of(year: decimal, month: decimal, day: decimal, hour: decimal, minute: decimal,
second: decimal): datetime
Creates a date and time given year, month, day, hours, minutes and seconds. Fractions of seconds are
supported with millisecond precision.
Parameters :
year: the input year
month: the input month
day: the input day
hour: the input hour
minute: the input minute
second: the input second. Fractions are rounded to three decimal digits.
Return :
the new date and time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1325

190.13 seconds
function seconds(startValue: datetime, endValue: datetime): decimal
Returns the number of seconds between two date and times. Fractions of seconds are supported with
millisecond precision.
Parameters :
startValue: the input start date and time inclusive
endValue: the input end date and time exclusive
Return :
the number of seconds or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

190.14 years
function years(startValue: date, endValue: date): decimal
Returns the number of full years between two date and times.
Parameters :
startValue: the input start date and time
endValue: the input end date and time
Return :
the number of years or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.datetime

TIBCO EBX® Product Documentation 6.2.0 1326

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1327

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1328

CHAPTER 191
Unit core.list

Script unit that provides methods to create and update lists.

Methods

procedure add(values: list<ItemType>, element: ItemType) [p 1329]

Add an element to values list.

procedure addAll(values: list<ItemType>, elements: list<ItemType>): boolean [p 1330]

Add all elements to values list.

function contains(values: list<ItemType>, element: ItemType): boolean [p 1330]

Returns true if values list contains an element.

function containsAll(values: list<ItemType>, element: ItemType): boolean [p 1330]

Returns true if values list contains all elements.

function indexOf(values: list<ItemType>, element: ItemType) [p 1330]

Return the index of the first occurrence of element in values list.

function isEmpty(value: list<ItemType>): boolean [p 1331]

Returns true if value is null or a zero size list.

function lastIndexOf(values: list<ItemType>, element: ItemType) [p 1331]

Return the index of the last occurrence of element in values list.

function of<ItemType>(value: ItemType [, value: ItemType]...): list<ItemType> [p 1331]

Creates a list with the elements passed as parameters.

function remove(values: list<ItemType>, element: ItemType): boolean [p 1332]

Remove the first occurrence of an element from values list.

function removeAll(values: list<ItemType>, elements: list<ItemType>): boolean [p 1332]

Remove all elements from values list.

function retainAll(values: list<ItemType>, elements: list<ItemType>): boolean [p 1332]

Retains only the elements in the values list that are contained in the elements.

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1329

Methods

procedure reverse(values: list<ItemType>) [p 1332]

Reverses the order of elements in values.

procedure reverseSort(values: list<ItemType>) [p 1333]

Sorts the specified values list into descending order, according to the natural ordering of its elements.

procedure sort(values: list<ItemType>) [p 1333]

Sorts the specified values list into ascending order, according to the natural ordering of its elements.

function subList<ItemType>(values: list<ItemType>, startIndex: decimal, endIndex: decimal): list<ItemType> [p 1333]

Returns a new list that contains a subsequence of elements from values list.

This chapter contains the following topics:

1. add

2. addAll

3. contains

4. containsAll

5. indexOf

6. isEmpty

7. lastIndexOf

8. of

9. remove

10.removeAll

11.retainAll

12.reverse

13.reverseSort

14.sort

15.subList

191.1 add
procedure add(values: list<ItemType>, element: ItemType)
Add an element to values list.
Parameters :
values: the input list.
element: the input element to add. Its type must be compatible with the type of the list.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1330

191.2 addAll
procedure addAll(values: list<ItemType>, elements: list<ItemType>): boolean
Add all elements to values list.
Parameters :
values: the input list.
elements: the elements to add. The element type must be compatible with the type of the list.
Return :
true after values list contents was modified by this call else false.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.3 contains
function contains(values: list<ItemType>, element: ItemType): boolean
Returns true if values list contains an element.
Parameters :
values: the input list. Contents must be of the same kind then element.
element: the input element to look for. Must be of the same kind than values contents.
Return :
true if value contains the element else false.
Returns null if values is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.4 containsAll
function containsAll(values: list<ItemType>, element: ItemType): boolean
Returns true if values list contains all elements.
Parameters :
values: the input list. Contents must be of the same kind then element.
elements: the input elements to look for. Must be of the same kind than values.
Return :
true if value contains all elements else false.
Returns null if any parameters is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.5 indexOf
function indexOf(values: list<ItemType>, element: ItemType)
Return the index of the first occurrence of element in values list.
Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1331

values: the input list.
element: the input element to look for. Its type must be compatible with the type of the list.
Return :
the index of the first occurrence of element in values list or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.6 isEmpty
function isEmpty(value: list<ItemType>): boolean
Returns true if value is null or a zero size list.
Parameters :
values: an input list.
Return :
true if value is null or a zero size list, or else false. Never returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.7 lastIndexOf
function lastIndexOf(values: list<ItemType>, element: ItemType)
Return the index of the last occurrence of element in values list.
Parameters :
values: the input list.
element: the input element to look for.
Return :
the index of the last occurrence of element in values list or null if not found.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.8 of
function of<ItemType>(value: ItemType [, value: ItemType]...): list<ItemType>
Creates a list with the elements passed as parameters. All elements must be of same type.

Example:

uses core.list as list;

function getCities(): list<string>
begin
 return list.of('Paris', 'Bruxelles', 'Berlin');
end

Function Types :
ItemType: the type of an item of the returned list. Is optional if at least one value is specified.
Parameters :
value: an item to add to the list. All items must be of same type.
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1332

the new list. It is updatable.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.9 remove
function remove(values: list<ItemType>, element: ItemType): boolean
Remove the first occurrence of an element from values list.
Parameters :
values: the input list.
element: the input element to add. Its type must be compatible with the type of the list.
Return :
true if values list contents was modified by this call else false.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.10 removeAll
function removeAll(values: list<ItemType>, elements: list<ItemType>): boolean
Remove all elements from values list.
Parameters :
values: the input list.
elements: the elements to remove. The element type must be compatible with the type of the list.
Return :
true if values list contents was modified by this call else false.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.11 retainAll
function retainAll(values: list<ItemType>, elements: list<ItemType>): boolean
Retains only the elements in the values list that are contained in the elements. In other words, removes
from the values list all of its elements that are not contained in the elements.
Parameters :
values: the input list.
elements: the elements to retain. The element type must be compatible with the type of the list.
Return :
true if values list contents was modified by this call else false.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.12 reverse
procedure reverse(values: list<ItemType>)
Reverses the order of elements in values. Does nothing if values is null or a zero size list.
Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1333

values: the input list to reverse.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.13 reverseSort
procedure reverseSort(values: list<ItemType>)
Sorts the specified values list into descending order, according to the natural ordering of its elements.
Does nothing if values is null or a zero size list.
Parameters :
values: the input list to sort.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.14 sort
procedure sort(values: list<ItemType>)
Sorts the specified values list into ascending order, according to the natural ordering of its elements.
Does nothing if values is null or a zero size list.
Parameters :
values: the input list to sort
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

191.15 subList
function subList<ItemType>(values: list<ItemType>, startIndex: decimal, endIndex: decimal):
list<ItemType>
Returns a new list that contains a subsequence of elements from values list.
The subList start from the specified startIndex and extends to the endIndex of the input list.
Function Types :
ItemType: the type of an item of the returned list. It is optional.
Parameters :
values: the input list
startIndex: the input start index. Must be a positive integer or zero.
endIndex: the input end index. Must be a positive integer or zero.
Return :
the new list or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.list

TIBCO EBX® Product Documentation 6.2.0 1334

Documentation > Developer Guide > EBX® Script > API > Unit core.locale

TIBCO EBX® Product Documentation 6.2.0 1335

CHAPTER 192
Unit core.locale

Script unit that provides functions for managing locales.

Methods

function fromString(value: string): locale [p 1335]

Creates a locale from a string.

function of(language: string, country: string): locale [p 1335]

Creates a locale.

This chapter contains the following topics:

1. fromString

2. of

192.1 fromString
function fromString(value: string): locale
Creates a locale from a string.
Parameters :
value: A locale, for example 'en-US'.
Return :
the locale.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

192.2 of
function of(language: string, country: string): locale
Creates a locale.
Parameters :
language: An ISO 639 alpha-2 or alpha-3 language code.
country: An ISO 3166 alpha-2 country code or a UN M.49 numeric-3 area code.
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.locale

TIBCO EBX® Product Documentation 6.2.0 1336

the locale.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.log

TIBCO EBX® Product Documentation 6.2.0 1337

CHAPTER 193
Unit core.log

Script unit that provides methods to log messages.\n\nThis message can be viewed using
administration user interface provide by EBX.

Methods

procedure error(message: string) [p 1337]

Logs an error message.

procedure info(message: string) [p 1337]

Logs an information message.

procedure warn(message: string) [p 1338]

Logs a warning message.

This chapter contains the following topics:

1. error

2. info

3. warn

193.1 error
procedure error(message: string)
Logs an error message.
Parameters :
value: message: the message.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

193.2 info
procedure info(message: string)
Logs an information message.
Parameters :
value: message: the message.

Documentation > Developer Guide > EBX® Script > API > Unit core.log

TIBCO EBX® Product Documentation 6.2.0 1338

Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

193.3 warn
procedure warn(message: string)
Logs a warning message.
Parameters :
value: message: the message.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1339

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1340

CHAPTER 194
Unit core.math

Script unit that provides mathematical functions and constants.

Methods

function abs(value: decimal): decimal [p 1342]

Returns the absolute value of a decimal value.

function acos(value: decimal): decimal [p 1342]

Returns the arc cosine of a value.

function asin(value: decimal): decimal [p 1343]

Returns the arc sine of a value.

function atan(value: decimal): decimal [p 1343]

Returns the arc tangent of a value.

function cbrt(value: decimal): decimal [p 1344]

Returns the cube root of a decimal value.

function ceil(value: decimal): decimal [p 1344]

Returns the integer ceil value of the input value.

function cos(value: decimal): decimal [p 1344]

Returns the trigonometric cosine of an angle.

function e(): decimal [p 1344]

Returns e value: 2.

function exp(value: decimal): decimal [p 1345]

Returns Euler's number e raised to the power of a decimal value.

function floor(value: decimal): decimal [p 1345]

Returns the integer floor value of the input value.

function log(value: decimal): decimal [p 1345]

Returns the natural logarithm (base e) of the input value.

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1341

Methods

function pi(): decimal [p 1345]

Returns pi value: 3.

function round(value: decimal): decimal [p 1346]

Returns the integer round value of the input value.

function roundDown(value: decimal): decimal [p 1346]

Returns the integer round down value of the input value.

function roundHalfDown(value: decimal): decimal [p 1346]

Returns the integer round half down value of the input value.

function roundHalfEven(value: decimal): decimal [p 1346]

Returns the integer round half even value of the input value.

function roundUp(value: decimal): decimal [p 1347]

Returns the integer round up value of the input value.

function scaleByPowerOfTen(value: decimal, power: decimal): decimal [p 1347]

Returns the value scale by power of ten.

function sin(value: decimal): decimal [p 1347]

Returns the trigonometric sine of an angle.

function sqrt(value: decimal): decimal [p 1347]

Returns the positive square root of a value.

function tan(value: decimal): decimal [p 1348]

Returns the trigonometric tangent of an angle.

function toDegrees(value: decimal): decimal [p 1348]

Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

function toRadians(value: decimal): decimal [p 1348]

Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1342

This chapter contains the following topics:

1. abs

2. acos

3. asin

4. atan

5. cbrt

6. ceil

7. cos

8. e

9. exp

10.floor

11.log

12.pi

13.round

14.roundDown

15.roundHalfDown

16.roundHalfEven

17.roundUp

18.scaleByPowerOfTen

19.sin

20.sqrt

21.tan

22.toDegrees

23.toRadians

194.1 abs
function abs(value: decimal): decimal
Returns the absolute value of a decimal value.
Parameters :
value: the input value.
Return :
the absolute value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.2 acos
function acos(value: decimal): decimal

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1343

Returns the arc cosine of a value.
The returned angle is in the range 0.0 through pi.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value. Absolute value must not be greater than 1.
Return :
the arc cosine of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.3 asin
function asin(value: decimal): decimal
Returns the arc sine of a value.
The returned angle is in the range -pi/2 through pi/2.
Special cases:
If the input value is zero, then the result is a zero.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value. Absolute value must not be greater than 1.
Return :
the arc sine of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.4 atan
function atan(value: decimal): decimal
Returns the arc tangent of a value.
The returned angle is in the range -pi/2 through pi/2.
Special cases:
If the input value is zero, then the result is a zero.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value.
Return :
the arc tangent of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1344

194.5 cbrt
function cbrt(value: decimal): decimal
Returns the cube root of a decimal value. Calculations use double-precision 64-bit IEEE 754 floating
point.
Parameters :
value: the input value.
Return :
the cube root of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.6 ceil
function ceil(value: decimal): decimal
Returns the integer ceil value of the input value.
Parameters :
value: the input value.
Return :
the ceil value of the input value or null if input value is null..
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.7 cos
function cos(value: decimal): decimal
Returns the trigonometric cosine of an angle.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.

Parameters :
value: the input value in radians.
Return :
the cosine of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.8 e
function e(): decimal
Returns e value: 2.718281828459045235360287471352662
Return :
e value.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1345

194.9 exp
function exp(value: decimal): decimal
Returns Euler's number e raised to the power of a decimal value.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value.
Return :
the value e^value where e is the base of the natural logarithms.
If the input value is null returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.10 floor
function floor(value: decimal): decimal
Returns the integer floor value of the input value.
Parameters :
value: the input value.
Return :
the floor value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.11 log
function log(value: decimal): decimal
Returns the natural logarithm (base e) of the input value.
Calculations use double-precision 64-bit IEEE 754 floating point.
Parameters :
value: the input value. Must be strictly greater than zero.
Return :
the natural logarithm of the input value a or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.12 pi
function pi(): decimal
Returns pi value: 3.141592653589793238462643383279503
Return :
pi value.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1346

194.13 round
function round(value: decimal): decimal
Returns the integer round value of the input value. This method uses the standard round half up
rounding mode.
Parameters :
value: the input value.
Return :
the round half up value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.14 roundDown
function roundDown(value: decimal): decimal
Returns the integer round down value of the input value.
Parameters :
value: the input value.
Return :
the round down value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.15 roundHalfDown
function roundHalfDown(value: decimal): decimal
Returns the integer round half down value of the input value.
Parameters :
value: the input value.
Return :
the round half down value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.16 roundHalfEven
function roundHalfEven(value: decimal): decimal
Returns the integer round half even value of the input value.
Parameters :
value: the input value.
Return :
the round half even value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1347

194.17 roundUp
function roundUp(value: decimal): decimal
Returns the integer round up value of the input value.
Parameters :
value: the input value.
Return :
the round up value of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.18 scaleByPowerOfTen
function scaleByPowerOfTen(value: decimal, power: decimal): decimal
Returns the value scale by power of ten.
Parameters :
value: the input value.
power: the power of ten that the value will be scale to to. Must be an integer.
Return :
the input value scaled by the power of ten or null if input value or power is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.19 sin
function sin(value: decimal): decimal
Returns the trigonometric sine of an angle.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Special cases:
If the input value is zero, then the result is a zero.
Parameters :
value: the input value in radians.
Return :
the sine of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.20 sqrt
function sqrt(value: decimal): decimal
Returns the positive square root of a value.
Calculations use double-precision 64-bit IEEE 754 floating point.
Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1348

value: the input value. Must be positive or null.
Return :
the positive square root of the input value or null if input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.21 tan
function tan(value: decimal): decimal
Returns the trigonometric tangent of an angle.
Special cases:
If the input value is zero, then the result is a zero.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value in radians.
Return :
the tangent of the input value or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.22 toDegrees
function toDegrees(value: decimal): decimal
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
The conversion from degrees to radians is generally inexact.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :
value: the input value in radians
Return :
the measurement of the input value in degrees or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

194.23 toRadians
function toRadians(value: decimal): decimal
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
The conversion from radians to degrees is generally inexact;
users should not expect cos(toRadians(90.0)) to exactly equal 0.0.
Calculations are executed after conversion in double and use double-precision 64-bit IEEE 754
floating point.
Parameters :

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1349

value: the input value in degrees
Return :
the measurement of the input value in radians or null if the input value is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.math

TIBCO EBX® Product Documentation 6.2.0 1350

Documentation > Developer Guide > EBX® Script > API > Unit core.resource

TIBCO EBX® Product Documentation 6.2.0 1351

CHAPTER 195
Unit core.resource

This script unit methods that generates resource references compatible with the schema type
ods:resource.
Example:
uses core.resource as resource;

export function getValue(): typeof record.functions.ResourceValue
begin
 return resource.toImage('ebx-test','on_anim_wait.gif');
end

Methods

function toHtml(moduleName: string, filePath: string): string [p 1352]

Returns a reference to an image resource.

function toIcon(moduleName: string, filePath: string): string [p 1352]

Returns a reference to an icon resource.

function toImage(moduleName: string, filePath: string): string [p 1352]

Returns a reference to an image resource.

function toJavaScript(moduleName: string, filePath: string): string [p 1352]

Returns a reference to an JavaScript file resource.

function toStyleSheet(moduleName: string, filePath: string): string [p 1353]

Returns a reference to an style sheet file resource.

This chapter contains the following topics:

1. toHtml

2. toIcon

3. toImage

4. toJavaScript

5. toStyleSheet

Documentation > Developer Guide > EBX® Script > API > Unit core.resource

TIBCO EBX® Product Documentation 6.2.0 1352

195.1 toHtml
function toHtml(moduleName: string, filePath: string): string
Returns a reference to an image resource.
Parameters :
moduleName: the module name.
filePath: the local file path for the resource.
Return :
the resource string compatible with the schema type ods:resource.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

195.2 toIcon
function toIcon(moduleName: string, filePath: string): string
Returns a reference to an icon resource.
Parameters :
moduleName: the module name.
filePath: the local file path for the resource.
Return :
the resource string compatible with the schema type ods:resource.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

195.3 toImage
function toImage(moduleName: string, filePath: string): string
Returns a reference to an image resource.
Parameters :
moduleName: the module name.
filePath: the local file path for the resource.
Return :
the resource string compatible with the schema type ods:resource.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

195.4 toJavaScript
function toJavaScript(moduleName: string, filePath: string): string
Returns a reference to an JavaScript file resource.
Parameters :
moduleName: the module name.
filePath: the local file path for the resource.

Documentation > Developer Guide > EBX® Script > API > Unit core.resource

TIBCO EBX® Product Documentation 6.2.0 1353

Return :
the resource string compatible with the schema type ods:resource.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

195.5 toStyleSheet
function toStyleSheet(moduleName: string, filePath: string): string
Returns a reference to an style sheet file resource.
Parameters :
moduleName: the module name.
filePath: the local file path for the resource.
Return :
the resource string compatible with the schema type ods:resource.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.resource

TIBCO EBX® Product Documentation 6.2.0 1354

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1355

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1356

CHAPTER 196
Unit core.string

Script unit that provides string manipulation functions.

Methods

function contains(value: string, searchString: string): boolean [p 1357]

Returns true if a value string contains a searchString.

function endsWith(value: string, suffix: string): boolean [p 1357]

Returns true if a value string ends with a suffix.

function isEmpty(value: string): boolean [p 1358]

Returns true if value is null or a zero length string.

function join(separator: string [, substring: string]...): string [p 1358]

Returns a new string compose of all input substrings separated by as separator string.

function replaceAll(value: string, pattern: string, replacement: string): string [p 1358]

Returns a new string with all pattern occurrences in input value string replaced with replacement.

function replaceFirst(value: string, pattern: string, replacement: string): string [p 1358]

Returns a new string with the first pattern occurrence in input value string replaced with replacement.

function right(value: string, index: decimal): string [p 1359]

Returns a new string that contains the right characters from value string.

function startsWith(value: string, prefix: string): boolean [p 1359]

Returns true if a value string starts with a prefix.

function substring(value: string, startIndex: decimal, endIndex: decimal): string [p 1359]

Returns a new string that contains a subsequence of characters from value string.

function toLowerCase(value: string): string [p 1360]

Returns a new string with all characters from input value string to lower case.

function toUpperCase(value: string): string [p 1360]

Returns a new string with all characters from input value string to upper case.

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1357

Methods

This chapter contains the following topics:

1. contains

2. endsWith

3. isEmpty

4. join

5. replaceAll

6. replaceFirst

7. right

8. startsWith

9. substring

10.toLowerCase

11.toUpperCase

196.1 contains
function contains(value: string, searchString: string): boolean
Returns true if a value string contains a searchString.
Parameters :
value: the input string
searchString: the input searchString to look for
Return :
true if value contains the searchString or else false.
Returns null if any parameters is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.2 endsWith
function endsWith(value: string, suffix: string): boolean
Returns true if a value string ends with a suffix.
Parameters :
value: the input string
prefix: the input suffix to look for
Return :
true if value ends with suffix or else false.
Returns null if any parameters is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1358

196.3 isEmpty
function isEmpty(value: string): boolean
Returns true if value is null or a zero length string.
Parameters :
value: a string value.
Return :
true if value is null or a zero length string, or else false. Never returns null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.4 join
function join(separator: string [, substring: string]...): string
Returns a new string compose of all input substrings separated by as separator string.
Parameters :
separator: the input separator string
substring: a substring to add to the result string. All element must be string.
Return :
a new string compose of all input substrings separated by the separator input.
If any parameters is null or no substrings is provided return null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.5 replaceAll
function replaceAll(value: string, pattern: string, replacement: string): string
Returns a new string with all pattern occurrences in input value string replaced with replacement.
Parameters :
value: the input string
pattern: the string pattern (regex) to replace
replacement: the replacement string
Return :
the new string or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.6 replaceFirst
function replaceFirst(value: string, pattern: string, replacement: string): string
Returns a new string with the first pattern occurrence in input value string replaced with replacement.
Parameters :
value: the input string

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1359

pattern: the string pattern (regex) to replace
replacement: the replacement string
Return :
the new string or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.7 right
function right(value: string, index: decimal): string
Returns a new string that contains the right characters from value string.
The staring starts from the specified index and extends to the end of the string.
Parameters :
value: the input string
index: the input start index (inclusive). Must be an integer greater or equal to zero and less or equal
than the length of the string
Return :
the new string or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.8 startsWith
function startsWith(value: string, prefix: string): boolean
Returns true if a value string starts with a prefix.
Parameters :
value: the input string
prefix: the input prefix to look for
Return :
true if value starts with prefix or else false.
Returns null if any parameters is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.9 substring
function substring(value: string, startIndex: decimal, endIndex: decimal): string
Returns a new string that contains a subsequence of characters from value string.
The sub string start from the specified startIndex and extends to the endIndex of the input string.
Parameters :
value: the input string
startIndex: the input start index (inclusive). Must be an integer greater or equal to zero and less or
equal than the length of the string.

Documentation > Developer Guide > EBX® Script > API > Unit core.string

TIBCO EBX® Product Documentation 6.2.0 1360

endIndex: the input end index (exclusive). Must be an integer greater or equal to startIndex and less
or equal than the length of the string.
Return :
the new string or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.10 toLowerCase
function toLowerCase(value: string): string
Returns a new string with all characters from input value string to lower case.
Parameters :
value: the input string
Return :
the lower cased string or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

196.11 toUpperCase
function toUpperCase(value: string): string
Returns a new string with all characters from input value string to upper case.
Parameters :
value: the input string
Return :
the upper cased string or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.time

TIBCO EBX® Product Documentation 6.2.0 1361

CHAPTER 197
Unit core.time

Script unit that provides time functions.

Methods

function addHours(value: time, hours: decimal): time [p 1362]

Adds hours to a time.

function addMinutes(value: time, minutes: decimal): time [p 1362]

Adds minutes to a time.

function addSeconds(value: time, seconds: decimal): time [p 1362]

Adds seconds to a time.

function fromDatetime(value: datetime): datetime [p 1362]

Converts a date and time to a time.

function now(): time [p 1363]

Returns current time.

function of(hours: decimal, minutes: decimal, day: decimal): time [p 1363]

Creates a time given hours, minutes and seconds.

function seconds(startValue: time, endValue: time): decimal [p 1363]

Returns the number of seconds between two times.

This chapter contains the following topics:

1. addHours

2. addMinutes

3. addSeconds

4. fromDatetime

5. now

6. of

7. seconds

Documentation > Developer Guide > EBX® Script > API > Unit core.time

TIBCO EBX® Product Documentation 6.2.0 1362

197.1 addHours
function addHours(value: time, hours: decimal): time
Adds hours to a time. The calculation wraps around midnight.
Parameters :
value: the input time
hours: the number of hours to be added. Must be an integer.
Return :
the new time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

197.2 addMinutes
function addMinutes(value: time, minutes: decimal): time
Adds minutes to a time. The calculation wraps around midnight.
Parameters :
value: the input time
minutes: the number of minutes to be added. Must be an integer.
Return :
the new time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

197.3 addSeconds
function addSeconds(value: time, seconds: decimal): time
Adds seconds to a time. Fractions of seconds are supported with millisecond precision. The calculation
wraps around midnight.
Parameters :
value: the input time
seconds: the number of seconds to be added. Fractions are rounded to three decimal digits.
Return :
the new time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

197.4 fromDatetime
function fromDatetime(value: datetime): datetime
Converts a date and time to a time. The date part is ignored.
Parameters :
value: the input date and time
Return :

Documentation > Developer Guide > EBX® Script > API > Unit core.time

TIBCO EBX® Product Documentation 6.2.0 1363

the new time or null if parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

197.5 now
function now(): time
Returns current time.
Return :
the current time.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields without search optimization
[p 1279]

197.6 of
function of(hours: decimal, minutes: decimal, day: decimal): time
Creates a time given hours, minutes and seconds. Fractions of seconds are supported with millisecond
precision.
Parameters :
hour: the input hour
minute: the input minute
second: the input second. Fractions are rounded to three decimal digits.
Return :
the new time or null if any parameter is null.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

197.7 seconds
function seconds(startValue: time, endValue: time): decimal
Returns the number of seconds between two times.
Parameters :
startValue: the input start date and time inclusive
endValue: the input end date and time exclusive
Return :
the number of seconds or null if any parameter is null. Return value may have a fractional part.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.time

TIBCO EBX® Product Documentation 6.2.0 1364

Documentation > Developer Guide > EBX® Script > API > Unit core.uri

TIBCO EBX® Product Documentation 6.2.0 1365

CHAPTER 198
Unit core.uri

Script unit that provides functions for managing Uniform Resource Identifier (URI) references.

Methods

function of(value: string): uri [p 1365]

Creates an URI reference from a string.

This chapter contains the following topics:

1. of

198.1 of
function of(value: string): uri
Creates an URI reference from a string.
Parameters :
value: the input value, for example 'https://www.tibco.com'.
Return :
the URI.
Can be used in: Script tasks [p 1281], Table triggers [p 1287], Function fields [p 1279]

Documentation > Developer Guide > EBX® Script > API > Unit core.uri

TIBCO EBX® Product Documentation 6.2.0 1366

Documentation > Developer Guide

TIBCO EBX® Product Documentation 6.2.0 1367

EBX® Script IDE

Documentation > Developer Guide > EBX® Script IDE > Overview of the EBX® Script IDE

TIBCO EBX® Product Documentation 6.2.0 1368

CHAPTER 199
Overview of the EBX® Script IDE

Accessible as a built-in EBX® perspective, the Script IDE allows you to write functions, triggers, and
workflow scripts using the EBX® Script Language (ESL) directly in your browser. The IDE provides
significant benefits in terms of user accessibility, convenience, and efficiency. It also alleviates the
need to use Java for the aforementioned tasks. It maintains the same performance, but involves less
overhead as no compilation and deployment of custom modules is required. Additionally, ESL's design
makes it accessible to those without a Java programming background.
The documentation for the IDE is organized as follows:

• How to guide [p 1369]: Similar to a quick start guide, this guide provides high level instructions
on performing common tasks. This section is intended for those with programming experience
or who are already comfortable with ESL.

• Tutorials: The tutorials are essentially lessons for users that don't have much programming
experience and guide you through the following processes:

• Functions [p 1373]

• Triggers [p 1379]

• Workflow scripts [p 1383]

• User interface Reference [p 1389]: This section highlights the IDEs UI components.

Documentation > Developer Guide > EBX® Script IDE > How to guide

TIBCO EBX® Product Documentation 6.2.0 1369

CHAPTER 200
How to guide

This chapter contains the following topics:

1. Overview

2. Create functions

3. Create and manage workflow script tasks

4. Create triggers

5. Use history to roll back changes

6. Check the scripting logs

200.1 Overview
This section is intended for more experienced TIBCO EBX® users and provides high-level
information on common tasks related to the EBX® Script IDE. The Administration Guide > EBX®
Script section of the documentation provides details about the EBX® Script Language (ESL). The
Administration Guide > EBX® Script IDE > Tutorials section provides more detailed informations
on some basic use cases that are designed for less experienced users.

200.2 Create functions
Prior to writing a function in the EBX® Script IDE, you must first create a data model field using the
function type. After field creation, the script is available to edit in the Script IDE.
To add a function type field to your data model:

1. Create a new data model field and set the Kind of element to Function.

2. Use the Data type field to specify the desired data type. The data type selected will automatically
be reflected in the script in the IDE.

3. Save and optionally publish your data model. Note that once the field is saved, the script outline
is automatically created and available to work with in the IDE. However, you cannot publish the
script until the data model publication is up to date. So it might be a good idea to publish the
data model at this time.

Documentation > Developer Guide > EBX® Script IDE > How to guide

TIBCO EBX® Product Documentation 6.2.0 1370

200.3 Create and manage workflow script tasks
The creation of workflow script tasks can be done directly in the Script IDE. Once a workflow script
is published, it is available to use in a workflow model.
To create a workflow script:

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. Create a new script by selecting Create next to the Workflow in the Navigation tab.

3. Add required information and parameters:

1. Enter a script name, label, and optional description.

2. Add parameters that are used as input/output to access EBX® components, such as
dataspaces, datasets, tables, and records.

4. After writing the script, select the Publish button at the bottom of the Script tab.
The script is now available to select in a workflow model task by doing the following:

1. Select Script from the Step type menu, and click Next.

2. For the Script set the Input mode to Script and use the Script name menu to select the
workflow script.

200.4 Create triggers
Prior to writing the logic for a trigger in the EBX® Script IDE, you must first add a trigger to a data
model. Once you create the trigger in the data model, it is automatically available in the EBX® Script
IDE.
To add a trigger to a table in your data model:

1. Open the data model and select the Advanced properties tab of the desired data model element.

2. Add and configure a trigger that uses the [Built-in] EBX Script component.

3. Save and then optionally publish your data model. Note that once the table is saved after adding
the trigger, the trigger's outline is automatically created and available to work with. However, you
cannot publish the script until the data model publication is up to date. So it might be a good idea
to publish the data model at this time.

200.5 Use history to roll back changes
Each script in the IDE includes a history of all revisions to the script. Each revision is created when
the script is saved.
To view changes to a script:

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. Select the History tab at the top of the workspace.

3. Use the Revisions column to browse changes and copy/paste or make edits to the current revision
column.

Documentation > Developer Guide > EBX® Script IDE > How to guide

TIBCO EBX® Product Documentation 6.2.0 1371

4. Use the buttons at the bottom of the tab to save, compile, and publish the script.

200.6 Check the scripting logs
When you include logging in a script, you can access log output in the following location:
Administration > Scripting management > Script logs > Logs.

Documentation > Developer Guide > EBX® Script IDE > How to guide

TIBCO EBX® Product Documentation 6.2.0 1372

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1373

CHAPTER 201
Creating functions

This chapter contains the following topics:

1. Introduction to functions

2. Function prerequisite: add functions to data model

3. Creating a function

4. Creating a non-indexed function

201.1 Introduction to functions
A function takes an instruction set designed to perform actions on your data. Think of it like a small
application that takes data as input, processes it according to a set of rules, and then produces a desired
output. For example, a function might combine the values from two fields, calculate the average value
from a set of numbers, or simply check whether certain conditions are true.
Functions can also handle more complex data operations efficiently without requiring a deep
understanding of the underlying technical complexities. In summary, even if you are new to data
operations, functions allow you to manipulate and analyze data effectively, easing tasks that would
otherwise require extensive technical knowledge.

Indexed vs non-indexed functions
When a function is indexed, it means that the field the function operates on is optimized for search
queries. However, an indexed function cannot access the machine’s local time or other methods that
are incompatible with optimised search. This tutorial includes examples of each type of function.

How this tutorial is organized
This tutorial shows how to create and publish functions in the EBX® Script IDE. It does not cover
complex use cases, or all of the user interface options. To follow along, you can create the basic
data model shown below and leave out the fields highlighted in red as they are created in the tutorial
prerequisite section:

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1374

The parts that make up this tutorial are:

1. Function prerequisites [p 1374]

2. Creating a function [p 1375]

3. Creating a non-indexed function [p 1376]

201.2 Function prerequisite: add functions to data model
Prior to writing a function in the EBX® Script IDE, you must first create a data model field and specify
that it is a function. This field will display the output from your function. Therefore, the data type of
this field must correspond to the expected return type of your function (e.g., date, string, integer, etc.).
To add a function type field to your data model:

1. Open your data model in the DMA, and create the following fields:

• Field 1: The function written for this field will concatenate the first and last name fields and
should return a string.

• Name: full_name

• Label and description: Full name

• Kind of element: Field and tic the Function checkbox.

• Data type: String

• Field 2: The function written for this field will use a person's last login to determine whether
they are considered an active user. Its return/data type will be Boolean.

• Name: status

• Label and description: Active user

• Kind of element: Field and tic the Function checkbox.

• Data type: Boolean

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1375

2. Save and optionally publish your data model. Note that once the field is saved, the script outline
is automatically generated and available to work with. However, you cannot publish the script
until the data model publication is up to date. So it might be a good idea to publish the data model
at this time.
What's next? Create an indexed [p 1375] or non-indexed [p 1376] function.

201.3 Creating a function
By default, when a function is created, it is set to be indexed. So no special consideration is required.
However, you can check to see whether your function is indexed by selecting the Information tab
and ensuring the Index property is checked.
Script tip: Familiarize yourself with built-in ESL functions and variables. See the API reference
documentation for more information.
To create a function that can be indexed:

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. In the Navigation pane on the left of the screen locate, and select the Full name function created
in the prerequisite section above. The icon indicates a function.
As shown below, the function is automatically populated based on the field's data type (string)
and returns a string value:
export function getValue(): string
begin
 return 'A string value';
end

3. In this example function, a value is computed as follows:

• Retrieve the Person's first and last name using the _ebx.record.first_name and
_ebx.record.last_name variables, respectively. In these variables, the _ebx.record is a built-
in function that accesses the current record and the .<name> is the name of the field you want
to retrieve in the data model. See Creating a non-indexed function [p 1376] for an example of
how to use additional built-in functions.

• Return a single value made of the combined first and last name with a space character
separating the two values. All of this logic goes in a single return statement, which is
terminated using a semi-colon (pipe characters add elements to the string):
export function getValue(): string
begin
return _ebx.record.first_name | ' ' | _ebx.record.last_name;
end

4. Save the script. The IDE automatically checks for any compilation errors and will display them
in the Messages section below the script.

5. If no errors are found, select Publish all to publish the script.

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1376

The following image shows the result of the script where the Full name field is populated:

201.4 Creating a non-indexed function
This function example demonstrates how to create a non-indexed function. It also shows how to use an
import to add built-in functionality to a script. In ESL, related functions and procedures are organized
into Units. To use a unit's functions, declare the unit in a script using the following syntax: uses
core.<unit_name> as <alias>;.
Script tip: Write out the pseudocode for more complicated functions before you start coding. The
pseudocode for this example reads: Get the number of days between the last login and today; if this
number is greater than 30 return false, otherwise (else) return true indicating this is an active user.
To create an non-indexed function:

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. In the Navigation pane on the left of the screen locate, and select the Active function created in
the prerequisite section above. Functions are indicated by this icon.
As shown below, the function is automatically populated based on the field's boolean data type,
which returns true or false:
export function getValue(): boolean
begin
 return false;
end

3. Disable indexing. As this script accesses the machine's local time, it cannot be indexed:

1. Select the Information tab at the top of the script.

2. Deselect the Compatible with optimized search checkbox.

3. Return to the Script tab.

4. Write the logic that determines what the function will achieve. In this example, the function
determines whether a user is considered active by getting the user's last login date, today's date,
and calculating the difference. If the difference is less than 30 days, the user is active:

• Add the following line to the top of the script as the core.date unit contains the days()
function to calculate the number of days between two dates.
uses core.date as date;

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1377

• Use an if then else statement to check whether a condition is true. The if uses the days()
function to get the number of days since a user's last login and the > operator checks whether
the number of days is greater than 30.
uses core.date as date;
export function getValue(): boolean
begin

if date.days(_ebx.record.last_login, date.now()) > 30 then
return false;
else
return true;

end

5. Save the script. The IDE automatically checks for any compilation errors and will display them
in the Messages section below the script.

6. If no errors are found, select Publish all to publish the script.
The following image shows the result of the script where the Active user field is populated to
indicate whether a user is considered active:

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating functions

TIBCO EBX® Product Documentation 6.2.0 1378

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating triggers

TIBCO EBX® Product Documentation 6.2.0 1379

CHAPTER 202
Creating triggers

This chapter contains the following topics:

1. Introduction to triggers

2. Trigger prerequisite: add trigger to data model table

3. Creating a triggered procedure

202.1 Introduction to triggers
In the EBX® Script Language (ESL), a trigger is a scripted procedure that automatically executes in
response to specific events, such as changes to a record (creation, update, or deletion). You can use
triggers to enforce business rules, validate data, or perform automated tasks aligned with these events.
By ensuring that conditions are met, or actions are taken whenever an event occurs, it enhances data
integrity and consistency.

How this tutorial is organized
This tutorial shows how to create and publish triggers in the EBX® Script IDE. It does not cover
complex use cases, or all of the user interface options. To follow along, you can create the basic data
model shown below (this model is a continuation of the model used in the function tutorial [p 1373]):

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating triggers

TIBCO EBX® Product Documentation 6.2.0 1380

The parts that make up this tutorial are:

• Completing prerequisites [p 1380]

• Creating a triggered procedure [p 1381]

202.2 Trigger prerequisite: add trigger to data model table
Prior to writing the logic for a trigger in the EBX® Script IDE, you must first add a trigger to a data
model element. This tutorial demonstrates adding a trigger to a table. Once you create the trigger in
the data model, it is automatically available in the EBX® Script IDE.
To add a trigger to a data model table:

1. Open the docPerson data model and select the person table.

2. Select the Advanced properties tab and click the + icon next to Triggers.

3. Configure the trigger:

• For the trigger's Component, select [Built-in] EBX Script .

• For the trigger's Parameters:

• Script name: Enter a name for the trigger. This name is used by the IDE to identify this
trigger. For this example, enter: lastModificationDate.

• The type of trigger: Use the menu to select the desired trigger type. For this tutorial,
use: Trigger after modification.

4. Save and then optionally publish your data model. Note that once the table is saved after adding
the trigger, the trigger's script outline is automatically created and available to work with in the
IDE. However, you cannot publish the script until the data model publication is up to date. So it
might be a good idea to publish the data model at this time.
Whats next? create and publish a script [p 1381] for a triggered procedure.

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating triggers

TIBCO EBX® Product Documentation 6.2.0 1381

202.3 Creating a triggered procedure
As procedures in ESL don't return a value, they are more suitable for triggers, which usually execute a
set of instructions based on an event. The event used in this example that initiates the execution of the
scripted procedure is modification of a record. The goal is to populate the Person table's Last modified
field with the current date anytime a record is modified.
Script tip: use variables to hold values that can change over time, or are computed based on inputs
or even other variables. This example uses variables to hold values that specify a data model, table,
and PK. These values are required to update a record. Create variables using the following syntax:
var <variable_name> := <assignment> where var declares the variable with a <variable_name>,
the := assigns a value, and the value can be a direct value, expression, or result of a method call.

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. In the Navigation pane on the left of the screen locate @trigger folder, and select the trigger
created in the prerequisite steps [p 1380].
As shown below, the trigger is based on the type of trigger selected in the prerequisite steps and
set to execute after modification:
export procedure onAfterModify()
begin
end

3. Write the instructions for the procedure:

1. Import functionality from the following units: core.data, core.date, and core.complex.
Additionally, add a reference to the data model containing the Person table, docPerson in
this case:
uses core.data as data;
uses core.complex as complex;
uses core.date as date;
references model docPerson;

2. Write the instructions for the procedure between the begin and end statements using variables
to store the table, the table's primary key, and the record.

• The table variable uses the findTable() function from the core.data unit to lookup
a table. It requires the following input: <dataModel.tableName>(_ebx.dataset). This
example uses the docPerson model and the person table. The predefined variable
_ebx.dataset provides required information on the dataset where the event is triggered.
var table := data.findTable<docPerson.person>(_ebx.dataset);

• The core.complex unit facilitates operations with complex data types, such as a primary
key. As shown below, use the built-in primaryKeyOf function (from core.complex) for
the table's primary key field. As a parameter, pass in the: dataModel.tableName in this
case: docPerson.person. This creates a PK with no assigned values. The next line of
code assigns the PK's id field to the value of a selected record:
var pk := complex.primaryKeyOf<primarykeyof docPerson.person>();
pk.id := _ebx.record.id;

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating triggers

TIBCO EBX® Product Documentation 6.2.0 1382

• The lookupRecordForUpdate function from the core.data unit gets a modified record.
Pass the current EBX® transaction as a parameter using the built-in variable:
_ebx.transaction. Then, pass the table and pk variables that were defined above.
var record := data.lookupRecordForUpdate(_ebx.transaction, table, pk);

3. Add the modification date to the record and save it:

• Specify which field to update using: record.fieldName. The field name in the example
model is last_modification_date:
record.last_modification_date := date.now();

• Save the updated record. Use the built-in saveRecord() function and pass the modified
record as the single parameter:
data.saveRecord(record);

• The complete procedure is:
uses core.data as data;
uses core.complex as complex;
uses core.date as date;
references model docPerson;

export procedure onAfterModify()
begin
 var table := data.findTable<docPerson.person>(_ebx.dataset);
 var pk := complex.primaryKeyOf<primarykeyof docPerson.person>();
 pk.id := _ebx.record.id;
 var record := data.lookupRecordForUpdate(_ebx.transaction, table, pk);

 record.last_modification_date := date.now();
 data.saveRecord(record);

end

4. Save the script. The IDE automatically checks for any compilation errors and will display them
in the Messages section below the script.

5. If no errors are found, select Publish all to publish the script.
The following image shows the result of the script where the Last modified field is updated each
time a record is changed:

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1383

CHAPTER 203
Creating a workflow script

This chapter contains the following topics:

1. Overview

2. Step 1: Writing and publishing the script

3. Step 2: Creating the workflow model

4. Step 3: Creating the workflow launcher and activation

203.1 Overview
Create and publish workflow script tasks directly from the EBX® Script IDE. Once a script is
published, you can use it in any EBX® workflow model. For more information on workflows, see
the TIBCO EBX® User Guide sections: Introduction to workflow models and Introduction to data
workflows.
This tutorial demonstrates how to:

• Step 1 [p 1384]: Create and publish a workflow script task that includes input and output
parameters. These parameters allow data to pass to and from the script.

• Step 2 [p 1386]: Create a workflow model and add the script task to a step in the model. During
this task, a data context is created in the model that captures context-dependant data values. The
values are populated when the workflow is launched. The values in the data context are mapped
with the script's I/O parameters.

• Step 3 [p 1387]: Create and activate a workflow launcher. EBX® includes a variety of ways to
initiate a workflow. This tutorial includes a simplified example to create and add a workflow
launcher to a table's Actions menu.

Before you begin
This tutorial uses the same data model and scripts as the Creating functions [p 1373] and Creating triggers
[p 1379] tutorials. To follow along with this tutorial, complete the other tutorials to have a data model
in the same state, or create your own copy of the model to follow along. The following image shows
the complete data model::

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1384

203.2 Step 1: Writing and publishing the script
You can create and write a workflow script directly in the Script IDE without any pre-requisites. This
example shows how to add input parameters to a script, which you map with a workflow's data context.
This enables data to pass to the workflow script and be processed.
Tutorial example use case: A business rule requires that no active users are deleted from the Person
table. This table includes a field that indicates whether a user is active. A user launches a workflow
when they want to delete a Person record. The script checks the users status. If the user is inactive, the
record is deleted; if they are active, a message is written to the logs saying the record cannot be deleted.
Script tip: Make it a habit to save and compile your script at regular intervals. This helps catch any
compile time errors and creates save points so that you can revert the script to a more stable state.
To write a workflow script task using the EBX® Script IDE:

1. If the EBX® Script IDE perspective is not open, click the icon at the top right of the EBX®
toolbar and select Script IDE.

2. Create a new script by selecting Create next to the Workflow section in the Navigation tab.

3. Add required information and parameters:

1. Enter the script name: statusBeforeDelete

2. Enter the label and optional description: Check status before delete

3. Add parameters to access data context components, such as a dataspace, dataset, table, and
record. These values provide input to the script and are operated on by the script's logic.
Add each of the following parameters and leave all options as default:

• WF_Script_dataspace

• WF_Script_dataset

• WF_Script_table

• WF_Script_requestXPath

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1385

4. Click Save at the bottom of the workspace.

5. Write the logic for the workflow script task in the Script tab.

1. Add the imports:
This script leverages pre-built functions included in the following EBX® Script language
(ESL) units: core.data, core.complex, and core.log. The syntax to declare a unit is:
uses core.<unit_name>;. A reference to the data model is also a required part of the data
context for this workflow example. The syntax to reference a model is: references model
<data_model_name>; The following example shows the imports:
uses core.data as data;
uses core.complex as complex;
uses core.log as log;

references model docPerson;

2. Create constants to hold the values based on user selection:
When a user selects a record and starts the workflow from a table's Actions menu, information
about the selected record is passed to the workflow script's input parameters. The constants
must hold the: dataspace, dataset, table, and selected record. Think of it as a parent/child
relationship; beginning with the dataspace, you declare the parent and when you declare a
child, the parent is passed as input. The following code is added after the begin statement in
the executeScriptTask() procedure:
// Create constants to hold the dataspace, dataset, and table
 const dataspace := data.findDataspace(_ebx.parameters.dataspace);
 const dataset := data.findDataset(dataspace, _ebx.parameters.dataset);
 const table := data.findTable<docPerson.person>(dataset);

3. Use a transaction to perform actions on selected data:
It is imperative to use a transaction when operating on context dependent data. A transaction
ensures data consistency by isolating affected data and only making changes if the transaction
is completed. In ESL, transactions are executed on dataspaces and have the following syntax:
execute transaction <transaction_name> on <dataspace> where <transaction_name> is
the variable name assigned to the transaction and <dataspace> is the dataspace name where
the transactions occurs. After initiating the transaction, the sample code:

• Gets the current record using its XPath.

• Creates a complex object to store the selected record's primary key.

• Assigns the currently selected record's id to the PK's id attribute.
// Initiate transaction
 execute transaction tr on dataspace
 begin
 // Get current record using XPath
 var currRecord := data.lookupRecordByFullXPathForUpdate(tr, table, _ebx.parameters.requestXPath);
 // Create 'primary key' object
 var pk := complex.primaryKeyOf<docPerson.person>();
 // assign the value from the currently selected record's 'id' field to the objects 'id' parameter
 pk.id := currRecord.id;
 end

4. Write the logic to check the user's status and either delete the record or write a message to
the log:
In the example, an if then else statement passes in the selected record's status
field. A status of false means the user is inactive and can be deleted, calling the
deleteRecordByPrimaryKey() function. The else only executes if the user is active and sends

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1386

an info type log message. To view EBX® Script log messages, navigate to: Administration
> Scripting management > Script logs.
 // If the user is considered 'not active', then delete
 // If they are active write an info message instead
 if currRecord.status = false then
 begin
 data.deleteRecordByPrimaryKey(tr, table, pk);
 end
 else
 log.info('Active users cannot be deleted.');

The full workflow script task example:
uses core.data as data;
uses core.complex as complex;
uses core.log as log;

references model docPerson;

export procedure executeScriptparameters()
begin
 // Create constants to hold the dataspace, dataset, and table
 const dataspace := data.findDataspace(_ebx.parameters.dataspace);
 const dataset := data.findDataset(dataspace, _ebx.parameters.dataset);
 const table := data.findTable<docPerson.person>(dataset);

 // Initiate transaction
 execute transaction tr on dataspace
 begin
 // Get current record using XPath
 var currRecord := data.lookupRecordByFullXPathForUpdate(tr, table, _ebx.parameters.requestXPath);
 // Create 'primary key' object
 var pk := complex.primaryKeyOf<docPerson.person>();
 // assign the value from the currently selected record's 'id' field to the objects 'id' parameter
 pk.id := currRecord.id;

 // If the user is considered 'not active', then delete
 // If they are active write an info message instead
 if currRecord.status = false then
 begin
 data.deleteRecordByPrimaryKey(tr, table, pk);
 end
 else
 log.info('Active users cannot be deleted.');

 end
end

6. Publish the script to make it available for use in a workflow model using the Publish button at
the bottom of the Script tab.

What's next?: Create the workflow model [p 1386] that will use the script you wrote in the steps above.

203.3 Step 2: Creating the workflow model
A workflow model definition includes steps and their order of execution. These models are highly
versatile and can range from straightforward, single-step processes to complex, multi-layered
sequences. This tutorial focuses on the interaction between a script written in the IDE and a workflow
model. A simple workflow model example is used to achieve this.
To create a workflow model:

1. In the main EBX® toolbar, select Workflow models and then click Create a workflow model.

2. Provide a unique name that does not include spaces or special characters. To follow along with
this example, use deletePerson.

3. Create a data context:
A data context is used to capture context-dependant data values, such as a selected record's id.

1. Navigate to Workflow modeling > Workflow model configuration > Data context.

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1387

2. Click the '+' icon to add the following list of variables and set each variable's Input
parameter to Yes:

• WF_Variable_XPath

• WF_Variable_dataspace

• WF_Variable_dataset

• WF_Variable_table

Each variable gets mapped to a parameter from the workflow script. The names should be
similar to the script's parameter names, but it might be a good idea to include additional
descriptive information. This helps you differentiate between workflow model variables and
script parameters.

4. Add a step to the workflow model that executes the workflow script task:

1. Navigate to Workflow modeling > Workflow model steps and in the workflow diagram.

2. Hover your mouse over the line between Initial transition and Final step, and click the +
icon.

3. Provide the task name: deletePersonScript

4. Select Script from the Step type menu, and click Next.

5. Configure the script:

1. Leave the Hidden in progress view and Progress strategy at their default values.
For the Script group, set the Input mode to Script.

2. Use the Script name menu to select the statusBeforeDelete script.
A list of the script's input parameters displays.

6. Use the wand icon to map each input parameter (these come from the workflow script) with
the corresponding variable from the data context created in step 2.

7. Click Create.

8. Save and close the step.

9. Select Publish to initiate the publication process and if the information displayed looks OK,
select Publish at the bottom of the page.

203.4 Step 3: Creating the workflow launcher and
activation

A workflow must be initiated by a workflow launcher. You can configure a workflow launcher in
several ways. For the sake of brevity, this example demonstrates how to create a workflow that users
can launch directly from a table's Actions menu. This requires creation of a workflow launcher and
workflow activation.
To create a workflow launcher and activation:

1. Navigate to: Administration > Workflow management > Workflow launchers > Launchers.

2. Create a new record:

1. Enter the launcher name: DeleteInactiveUser

Documentation > Developer Guide > EBX® Script IDE > Tutorials > Creating a workflow script

TIBCO EBX® Product Documentation 6.2.0 1388

2. Use the Workflow publication name menu to select the deletePerson workflow model
publication.
The Data context variables group displays below.

3. For Documentation, add the name displayed in the table menu: Delete an inactive user

4. Map the data context variables with the EBX® built-in data context types. These values are
automatically populated based on the active context when a users selects data to delete and
launches the workflow.

5. Save, but do not close the record.
The Launcher activations section displays.

3. Create a workflow launcher activation
A workflow launcher activation determines the accessibility of a workflow launcher. The launcher
is available to the selected profiles when they are viewing the specified tables.

1. Click + to create a new launcher activation.

2. Select the docPerson data model.

3. Select the Person table.

4. For Profiles, ensure your profile is added.

5. Save and close.

4. Save and close the record.
The workflow that uses the script we created can now be launched from the Person table's Actions
menu.

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1389

CHAPTER 204
User interface reference

This chapter contains the following topics:

1. Navigation pane

2. Workspace

204.1 Navigation pane
The Navigation pane is located on the left of the screen and functions like a file explorer. It's where
you can browse and select your scripts. Additionally, it has quick action icons that take you to specific
components in the Data Model Assistant (DMA) and publish scripts.
Two main sections provide top-level organization for scripts that apply to Data models and those that
apply to Workflow models. Note that the data models include navigation and the workflow scripts do

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1390

not. This is because data model scripts such as functions and triggers are applicable to specific data
models, whereas workflow scripts can be used in any workflow model.

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1391

The following image and table describe available icons and actions in the Navigation pane:

1) The Publish all icon publishes all scripts in a given data
model.

2) The View in DMA icon opens the Data model assistant
(DMA) with the selected item in focus.

3) The Create button creates a new workflow script.

4) The Delete icon displays when you mouse over a script
and deletes the corresponding workflow script.

204.2 Workspace
The Workspace is the main area where you write and edit scripts; it's where the coding takes place.
The Workspace contains the following tabs and sections:

• Script tab: You can write, edit, and view your scripts in this tab. It includes the following features:

• Code completion

• Hover for tooltips/help on individual components

• Syntax highlighting

• Compilation and error detection

• Script saving and publishing

The Script tab includes a toolbar at the top with icons to call out various actions. Hover your
mouse over each icon for a brief description of each.
The main body of the Script tab is where the actual script is written. At the bottom is an
expandable messages section that displays information after saving, or compiling the script.
Below the messages are the following buttons:

• Save: automatically compiles and then saves the script.

• Compile: complies the script without saving it.

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1392

• Publish all: publishes all scripts contained in the related data model.

• Information tab: This tab displays details about the selected script. It is also where you specify
whether capable scripts are indexed for search optimization.

• Parameters tab (workflow scripts only): Allows you to add and manage parameters applied to
the script.

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1393

• History tab: Efficiently manage script revisions in this tab. It offers a clear, chronological
overview of all saved changes to your script. Each entry in the history is a snapshot of a specific
change, allowing you to quickly understand how your script has evolved over time.
Rollback functionality: Use the arrows to undo individual changes and rollback your script to an
earlier state.

Documentation > Developer Guide > EBX® Script IDE > User interface reference

TIBCO EBX® Product Documentation 6.2.0 1394

TIBCO EBX® Product Documentation 6.2.0 1395

Migration Guide

Documentation > Migration Guide > Migration introduction

TIBCO EBX® Product Documentation 6.2.0 1396

CHAPTER 205
Migration introduction

This chapter contains the following topics:

1. Overview

2. Migration roadmap

205.1 Overview
Repository migration from EBX® 5.9 to 6 is automatic on server startup. However, you must perform
several technical and functional tasks prior to startup to ensure the automatic migration is successful.
Some of these tasks include:

• Backing up and cleaning your existing 5.9 environment.

• Addressing custom modules.

• Understanding the new scalable architecture and its impact on custom Java code performance.

• Aligning with new hardware and memory requirements.

Note

The version numbering conventions used in this document are as follows:

• 5.9 refers to any release from 5.9.0 up to, and including, the most recent service pack
for 5.9.

• 6 refers to any release from 6.0.0 up to, and including, the most recent release.

• 6.0 refers to any release from 6.0.0 up to, and including, the most recent service pack
for 6.0.

• 6.x refers to any release from 6.1.0 up to, and including, the most recent release.

Likely the tasks mentioned above will be performed by different roles in your organization, in different
environments (dev, pre-prod, prod, etc.), and using multiple versions of your repository. Note that
some tasks must be performed multiple times; once in each environment. See the following to get
started:

• Migration roadmap [p 1397] outlines the different phases of the migration process and provides
links to the relevant documentation.

• Environment and hardware requirements [p 1399] outlines the impacts of migration on existing
hardware.

Documentation > Migration Guide > Migration introduction

TIBCO EBX® Product Documentation 6.2.0 1397

• Changes to supported add-ons [p 1403] provides details on the add-ons migrated to EBX® 6, those
with re-worked versions, and those that were discontinued.

Additional documentation resources
Review the following documentation for additional information related to the migration process:

• In the All release notes sections available at docs.tibco.com, carefully review the Backwards
compatibility sections for the releases leading up to the version you are migrating to. These
sections contain important information that can assist your migration efforts.

• In the TIBCO EBX® Administration Guide, read the Installation and configuration section.
This section contains performance tips, hardware guidelines, deployment information, and
environment-specific installation instructions.

205.2 Migration roadmap
The exact migration process depends on your organization's business requirements and
implementation of EBX®. What follows is a general guideline that addresses common requirements

https://docs.tibco.com/pub/ebx/latest/doc/html/en/index.html

Documentation > Migration Guide > Migration introduction

TIBCO EBX® Product Documentation 6.2.0 1398

and provides a foundation that you can build on and adapt to address your specific needs. The links
direct you to the relevant sections in the Migration Guide:

Step 1) Local environment
(Developers)

This phase involves:

• Downloading EBX® 6 JARs

• Understanding new EBX® 6 architecture

• Refactoring custom code to leverage performance and
ensure compatibility

• Compiling custom code with new JARs

• Running a test migration

• Generating binaries

See Step 1: Adapting custom code [p 1409] for detailed steps.

Step 2) Pre-production
environment (Dev Sec Ops)

This phase involves:

• Preparing a pre-production version of the repository.
See Step 2: Preparing the repository [p 1413] for detailed
steps.

• Understanding new environment and hardware
requirements. See Environment and hardware
requirements [p 1399] for more information.

• Deploying and testing in pre-production environment.
See Step 3: Deploying [p 1421] for detailed steps.

Step 3) Production environment
(Dev Sec Ops)

This phase involves:

• Preparing the production version of the repository. See
Step 2: Preparing the repository [p 1413] for detailed
steps.

• Ensuring the production environment complies with
the new environment and hardware requirements. See
Environment and hardware requirements [p 1399] for
more information.

• Deploying and testing in the production environment.
See Step 3: Deploying [p 1421] for detailed steps.

Documentation > Migration Guide > Environment and hardware requirements

TIBCO EBX® Product Documentation 6.2.0 1399

CHAPTER 206
Environment and hardware

requirements
This chapter contains the following topics:

1. Supported environments

2. Hardware resources

206.1 Supported environments
Only an EBX® 5.9 repository can be migrated to EBX® 6. If you are using an earlier version,
the repository must first be migrated to version 5.9. Additionally, migration for 6.0 Beta release
repositories to a 6 GA version is not supported.

Documentation > Migration Guide > Environment and hardware requirements

TIBCO EBX® Product Documentation 6.2.0 1400

See Supported environments [p 512] for more details on the necessary upgrades show below:

Browser support Please note that Microsoft Internet Explorer and the non-
Chromium version of Microsoft Edge are not supported
anymore.

JVM support Required Java Runtime Environment: either JRE 17 or 21
LTS. Java 8 and 11 are no longer supported.

IBM support WebSphere Application Server 9 is no longer supported.
WebSphere Application Server Liberty, for Java EE 8 only,
is supported from versions 6.0.0 up to, but excluding,
6.2.0. Subsequently, from version 6.2.0 onwards and due
to Jakarta EE 9+ migration, only Websphere Application
Server Liberty 23, or higher, for Jakarta EE 10, is supported.

Oracle support Oracle 12c is no longer supported. The minimum supported
version of Oracle is now 19c.

PostgreSQL support PostgreSQL 10 and 11 are no longer supported. The
minimum supported version of PostgreSQL is now 12.

Microsoft support SQL Server 2012 SP4 is no longer supported. The minimum
supported version of SQL Server is now 2014.

206.2 Hardware resources
You might need to upgrade your hardware as EBX® 6 introduces Apache Lucene to manage data
indexes. Indexes are now offloaded from memory to persistent storage. In addition to the high-level

Documentation > Migration Guide > Environment and hardware requirements

TIBCO EBX® Product Documentation 6.2.0 1401

recommendations in the following table, you should carefully review the information contained in
Performance and tuning [p 585]:

Disk Memory

Recommended • Ensuring sufficient disk space is
available to persist the Lucene
indexes.

• Using a high-performing drive such
as an SSD.

• If using a Storage Area Network
(SAN), pairing it with a other high
performance technology such as
Fiber Channel (FC).

See the performance section on disks [p

519] for more information regarding disk
requirements.

• Lowering memory allocation to the
Java Virtual Machine (JVM).

• Ensuring memory allocation to the
OS is sufficient.

• Tuning the garbage collector to
improve performance.

See the performance section on memory
[p 585] for more information regarding
memory requirements.

Not recommended • Sharing the EBX® root directory
with other EBX® instances. This
includes sharing between the active
and standby instances when failover
with hot standby is configured.

• Storing the root directory, which
contains the Lucene indexes, on a
network attached volume (NAT).

• Using anti-virus software on the root
directory.

See the performance section on disks [p

519] for more information regarding disk
requirements.

Documentation > Migration Guide > Environment and hardware requirements

TIBCO EBX® Product Documentation 6.2.0 1402

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1403

CHAPTER 207
Changes to supported add-ons

This chapter contains the following topics:

1. Overview

2. Manually migrating add-ons

3. Data Model and Visualization Add-on additional steps

4. Digital Asset Manager Add-on additional steps

207.1 Overview
Some add-ons were migrated to EBX® 6, others were replaced with re-worked versions, and a few
were phased out. You can find comprehensive details of these updates and discontinuations in the

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1404

table below. If you have any data model dependencies on removed or replaced add-ons, these must
be addressed prior to initiating the automatic migration process.

Add-on EBX® status and migration requirements

TIBCO EBX® Match and Merge
Add-on (Previously Match and
Cleanse (DAQA))

This add-on was discontinued and replaced by a reworked version in EBX® 6: the TIBCO
EBX® Match and Merge Add-on (MAME). The the configuration for DAQA is not migrated. If
you used this add-on in TIBCO EBX® 5.9, you must follow the instructions in Includes for
discontinued add-ons [p 1417] to ensure no artifacts remain that could prevent migration.

TIBCO EBX® Match and Merge
Add-on (MAME)

This add-on is a reworked version of, and replaces, the TIBCO EBX® Match and Merge
Add-on (previously Match and Cleanse DAQA). Since this add-on is new, no special
consideration is required during the migration process.

TIBCO EBX® Data Exchange Add-
on (ADIX)

In EBX® 6 there is a reworked version of this add-on: the TIBCO EBX® Data Exchange
Add-on (New) (DINT). The legacy add-on's configuration information is automatically
migrated. Even so, it is good practice to export a back up of the configuration.

TIBCO EBX® Data Exchange Add-
on (New) (DINT)

This add-on is a reworked version of the TIBCO EBX® Data Exchange Add-on (ADIX).
Since this add-on is new, no special consideration is required during the migration process.
Note that the legacy version of this add-on is still available in EBX® 6. To help designate
between versions of the add-on, the menus in the UI append (New) to the reworked
version.

TIBCO EBX® Insight Add-on
(DQID)

This add-on is available in EBX® 6 and its configuration information is automatically
migrated. A reworked version of this add-on is available, the TIBCO EBX® Insight Add-
on (New) (DPRA). Note that if you do not deploy the legacy version of the add-on, you
should remove any related Java extensions. See Java extensions for discontinued add-ons [p

1418] for additional information.

TIBCO EBX® Insight Add-on
(New) (DPRA)

This add-on is a reworked version of the TIBCO EBX® Insight Add-on (DQID). Since this
add-on is new, no special consideration is required during the migration process. Note that
the legacy version of this add-on is still available in EBX® 6. To help designate between
versions of the add-on, the menus in the UI append (New) to the reworked version.

TIBCO EBX® Information Search
Add-on (TESE)

Some of this add-on's functionality is now included in the core product and its
configuration is now significantly different. The add-on's configuration is not automatically
migrated.

TIBCO EBX® Digital Asset
Manager (DAMA)

The add-on's configuration is automatically migrated. APIs that were deprecated in earlier
versions are no longer available. Therefore, code review might be required to replace the
deprecated APIs with their new versions.

TIBCO EBX® Data Model and
Data Visualization (DMDV)

The add-on's configuration is not automatically migrated. You must export an archive of
the configuration and re-import it after successfully completing the migration process. See
Manually migrating add-ons [p 1405] for the steps to perform this task.

There is a new feature that defines link orientation. This is a required field and must be
defined for all links after migration. You can set it once and then apply the modification to
other records. See the instructions here [p 1406] for more details.

TIBCO EBX® EBX GO Add-on
(MODA)

This add-on's configuration is not automatically migrated. You must export an archive of
the configuration file and import it after successful migration. See Manually migrating add-
ons [p 1405] for the steps to perform this task.

TIBCO EBX® Rules Portfolio Add-
on (RPFL)

This add-on was discontinued. If this add-on was previously used, you should remove any
related Java extensions. See Java extensions for discontinued add-ons [p 1418] for additional
information.

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1405

Add-on EBX® status and migration requirements

TIBCO EBX® Graph View Add-on
(GRAM)

This add-on was discontinued.

TIBCO EBX® Information
Governance Add-on (IGOV)

This add-on was discontinued. If this add-on was previously used, you should remove any
related Java extensions. See Java extensions for discontinued add-ons [p 1418] for additional
information.

TIBCO EBX® Oracle Hyperion
EPM Add-on (HMFH)

This add-on was discontinued.

TIBCO EBX® Activity Monitoring
Add-on (MTRN)

This add-on was discontinued.

207.2 Manually migrating add-ons
To manually migrate add-on configurations, perform the following actions:

1. Export an archive of the add-on's configuration:

1. Navigate to the desired add-on:

• Administration > User interface > TIBCO EBX® Data Model and Data Visualization
Add-on

• Administration > TIBCO EBX® GO Add-on > Configuration

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1406

2. As shown in the following image, from the Actions menu, select Archives > Export.

3. Supply a name for the archive, leave the default settings, and select Export.
No messages display upon successful export.

2. Import the configuration archive:

1. Navigate to the desired add-on.

2. From the Actions menu, select Archives > Export.

3. From the Archive to import menu, select the name of the archive you exported in step 1.

4. Select Import.

207.3 Data Model and Visualization Add-on additional
steps

A new feature is included with the add-on that allows users to define link orientation. This is a required
field for all links and must be initialized. After migrating your repository and importing the add-on's
configuration archive, perform the following steps:

1. Navigate to Administration > User interface > TIBCO EBX® Data Model and Data Visualization
Add-on > Link configuration.

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1407

2. Open a record, set the Link orientation property, save and close the record.

3. Optionally apply the same modification to all records in the Link configuration table:

1. Select all records in the table.

2. Open the Actions menu and select Apply last modification.

Documentation > Migration Guide > Changes to supported add-ons

TIBCO EBX® Product Documentation 6.2.0 1408

207.4 Digital Asset Manager Add-on additional steps
Use the following steps to migrate the add-on from a version that is compatible with EBX® 5.9.X
to a version compatible with 6:

1. In the environment containing the old version of the add-on, navigate to Administration > User
interface > {addon.label.full}.

2. From the Actions menu, select Archives > Export.

3. In the environment containing the new version of the add-on, navigate to Administration > User
interface > {addon.label.full}.

4. From the Actions menu, select Archives > Export.
Note that since there is not a direct mapping of all properties from version 5 to 6, some tables will
have errors. Complete the following step to resolve these errors.

5. From the Actions menu, select Migrate digital asset manager data.

The following lists some of the terminology changes take place between versions 5 and 6 (other
changes are very minor):

• Drive type --> Connector

• File system --> Default connector

• External management --> External manager

• Display configuration --> Record detail view

• Editor configuration --> Drive view configuration

Documentation > Migration Guide > Step 1: Adapting custom code

TIBCO EBX® Product Documentation 6.2.0 1409

CHAPTER 208
Step 1: Adapting custom code

This chapter contains the following topics:

1. Overview

2. New architecture impact on custom code performance

3. Adapt code and test migration

208.1 Overview
As a developer, your role to support migration is to ensure that any custom code used in your EBX®
implementation compiles against the new EBX® binaries and is capable of successful deployment.
This task requires that you understand the differences [p 1410] in the new EBX® 6 architecture and
how it impacts performance of existing custom Java code. You should also familiarize yourself with
the information regarding backwards compatibility contained in the TIBCO EBX® Release Notes.
Begin the process of updating your custom code by reviewing the new architecture's impact on
custom code [p 1410]. Then follow the steps in Adapt code and test migration [p 1411]. After successful
completion of the test phase, you will have:

• Adjusted and tested your code.

• Made changes in your data models and projects required to successfully test migration in your
local environment.

• Generated new binaries capable of deployment and testing in the pre-production environment.

Documentation > Migration Guide > Step 1: Adapting custom code

TIBCO EBX® Product Documentation 6.2.0 1410

208.2 New architecture impact on custom code
performance

The new scalable architecture can impact the performance of custom Java code. Some scenarios that
worked well before might require adjustments. In particular, focus on replacing or optimizing the
following:

Repeated lookup by primary key Previously, when the cache in our custom EBX® in-
memory indexes could contain an entire table's data, it was
cheap to access records using random table lookups. This
type of access must now be rewritten to take advantage of
the new SQL features. Take for example Java code that
performed a nested loop join where a RequestResultAPI from
table A was iterated on and the osd:tableRef was looked up
in table B. You should now implement a QueryAPI that uses
an SQL join to handle the lookup.

Repeatedly creating similar
requests

EBX® now embeds the Apache Calcite framework to
optimize the submitted instances of QueryAPI and RequestAPI.
Query optimization does have a cost; it is generally low
and paid back when compared to executing a non-optimized
query. However, it can create significant overhead when a
loop generates numerous queries that differ by only a single
parameter. In this case, use of parameterized requests (see
Request.setXPathParameterAPI) or parameterized queries
(see Query.setParameterAPI) is optimal.

Programmatic access rules Programmatic access rules implement the Java interface
AccessRule. On query execution, setting a rule on a table
implies execution of the method getPermission for each
record. This negates the advantages of optimizing against
an index. Wherever possible, you should replace these
programmatic access rules with the new scripted record
permission rules.

Programmatic labels Programmatic labels implement the Java
interfaces TableRefDisplay, UILabelRenderer and
ConstraintEnumeration. On query execution, setting a
rule on a foreign key field implies execution of the
method displayOccurrence for each record. This negates
the advantages of optimizing against an index. Wherever
possible, use a pattern string instead.

Programmatic filters Programmatic filters implement the Java interface
AdaptationFilter. On query execution, using this filter
implies execution of the method accept for each record.
This negates the advantages of optimizing against an index.

Documentation > Migration Guide > Step 1: Adapting custom code

TIBCO EBX® Product Documentation 6.2.0 1411

Where possible, replace programmatic filters with the new
SQL queries.

Constraints with unknown
dependencies

Avoid constraints with unknown dependencies on large
datasets, as they are checked on each validation request. See
Data validation [p 587] for more information.

Unnecessary index refresh To improve transaction performance (Java implementations
of Procedure and also of TableTrigger), any unnecessary
index refresh should be avoided. For more information, see
Unnecessary index refresh [p 592].

Inherited fields As explained in the Search limitations [p 500], inherited
fields cannot benefit from the new index optimizations.
As a consequence all operations (querying, validation, data
comparison, etc.) that will be performed on inherited fields
will be slower compared to versions prior to EBX® 6.
It is strongly advised to not use inherited fields to avoid
performance issues. Wherever possible, depending of the
use case, it is recommendable to convert these fields into
linked fields [p 873] or to substitute the behavior of inherited
fields by simulating inheritance using triggers for instance.

208.3 Adapt code and test migration
It is important that prior to testing migration, you remove all JAR and WAR files related to EBX®
5 from your environment.

1. Repository preparation:
The following lists high-level tasks for preparing your local repository for your development
environment. When preparing a pre-production or production repository for migration, or for
more details on repository cleanup tasks mentioned in the following steps, see Step 2: Preparing
the repository [p 1413].

1. Backup your existing repository.

2. Start EBX® and ensure all data models compile without errors.

3. Ensure that no data model dependencies on discontinued add-ons exist. See Changes to
supported add-ons [p 1403] for more information.

4. Clean dataspaces and workflows. This step is optional. However, note that any closed
dataspaces are deleted during migration. Re-open any dataspace you want to keep. This step
is more beneficial for larger repositories where large numbers of dataspaces could lead to
longer migration times.

5. Ensure the URL policy conforms to 6.x requirements. Navigate to Administration > User
interface > User interface configuration > Advanced perspective > Interface configuration
> URL Policy and revert any existing settings. To update the URL computing configuration,
you can edit the ebx.properties file. See URLs computing [p 563] for more information.

6. Shutdown and then backup your clean repository.

Documentation > Migration Guide > Step 1: Adapting custom code

TIBCO EBX® Product Documentation 6.2.0 1412

2. Code preparation:

1. Download EBX® 6 binaries from TIBCO eDelivery and deploy the following JARs in your
local environment (located in <your download directory>/ebx.software/lib):

• When migrating to EBX® 6.0.x:

• For EBX® APIs: ebx.jar

• To support the new compression algorithm: ebx-lz4.jar

• When migrating to EBX® 6.x:

• To support the new compression algorithm: ebx-lz4.jar

• For EBX® Java APIs: ebx-api.jar

• For third-party Java APIs: ebx-resources-api.jar

2. Review the following to ensure any custom code complies with new recommendations and
requirements:

• New architecture impact on custom code performance [p 1410]

• Release Notes > Backward compatibility sections.

• Java API changes [p 1423]

3. Recompile any custom libraries or webapps.

3. Initiate auto migration by starting your local server. The process should terminate successfully.
Look for the following log entry in the kernel.log file: EBX® Started and Initialized.
The following are common issues that can problems:

• Libraries not compiled using EBX® 6. If this is the case, EBX® throws the following
exception: java.lang.IncompatibleClassChangeError.

• Data model errors. If any errors were left unresolved, the migration process is automatically
terminated.

• Compile error in the project if the project isn't built correctly.

Once migration completes successfully in your local environment, you can deploy and test in a
pre-production environment with a larger repository. However, when testing in a pre-production
environment, it is imperative to follow the process outlined in Step 2: Preparing the repository [p 1413]

to prepare the repository prior to starting the application server.

https://edelivery.tibco.com/

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1413

CHAPTER 209
Step 2: Preparing the repository

This chapter contains the following topics:

1. Introduction

2. Task 1: Create a backup

3. Task 2: Prepare the repository

4. Task 3: Back up your clean repository

209.1 Introduction
It is strongly recommended to perform all migration tasks in at least a test and pre-production
environment prior to migrating a production environment. Once a server with the EBX® 6 artifacts
is started, the repository migration begins automatically; the process is not reversible. Migration can
only complete successfully if the data models in the repository contain no errors.

Note

You might want to use a copy of, or one that closely resembles, the repository in
production. This will allow you to estimate the effort needed to prepare the production
repository and allow you to see how long the automatic migration process will take, so
you can plan downtime accordingly.

To prepare your repository for migration, complete the steps in the following tasks:

• Task 1: Create a backup [p 1413]

• Task 2: Prepare the repository [p 1414]

• Task 3: Back up your clean repository [p 1419]

209.2 Task 1: Create a backup
The migration process is not reversible. With this in mind it is important to backup your repository
in its current state.
To back up your repository:

1. Shut down the application server hosting the EBX® 5 instance.

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1414

2. Back up your EBX® 5 repository. Include any relational database objects whose name starts
with the current repository prefix. This prefix is specified in the ebx.properties file under
ebx.persistene.table.prefix.

3. Back up and delete any EBX® logs, or move them to another folder.

4. Back up add-on configurations:
If you have the TIBCO EBX® Data Model and Data Visualization Add-on, or the TIBCO EBX®
GO Add-on, you will need to export the configuration archive and import it again after the
migration completes. See Manually migrating add-ons [p 1405] for instructions.

209.3 Task 2: Prepare the repository
It is important to clean your EBX® 5.9 environment to accelerate the migration process, especially
for repositories with large volumes of data. This process requires administrative access to EBX® as
the processes must be performed in the EBX® user interface.
You should clean the following repository elements:

• Dataspaces [p 1414]

• Workflows [p 1415]

• Data Models [p 1416]

• URL policy [p 1419]

Dataspace cleanup
Closed dataspaces are deleted during migration. You must re-open any dataspace you want to keep
prior to migration. We recommend that any closed dataspaces that will not be kept are deleted and
purged prior to migration as this can help optimize the migration processing time.
To manage your dataspaces:

1. Navigate to Administration > Dataspaces > Dataspaces/snapshots.

2. Reopen or delete dataspaces:

• To delete: Select the dataspaces to delete and from the table's Actions menu select Delete
dataspaces and history recursively.

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1415

• To reopen: Select the dataspaces to delete and from the table's Actions menu select Reopen
dataspaces and snapshots.

Workflow cleanup
Workflow cleanup is an optional step. However, all workflow tables are automatically migrated and
can increase the migration processing time as these tables can be large. If your business use case does
not require workflow history, or if it could be externalized in an audit trail "at rest" database, purging
the tables can speed up the migration process.
To delete completed workflows:

1. Navigate to Administration > Workflow > Execution of workflows > Workflows.

2. Create a filter on the table where Current state is set to Completed workflow.

3. Select all records and from the table's Actions menu, select Terminate and clean this workflow.

To delete workflow history:

1. Navigate to Administration > Workflow history > Workflows.

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1416

2. Select all records to delete and from the table's Actions menu select Clear from selected
workflows.

Data model cleanup
In order for successful completion of the migration process, all data models used by the repository's
datasets must compile without errors. This strict requirement is in place to prevent loss of data and
to ensure a consistent repository state at the end of the migration process. Additionally, any artifacts
from discontinued add-ons should be removed from data models.
To clean your data models, see the topics addressed in the following sections:

• Data model errors [p 1416]

• Discontinued add-ons [p 1417]

• Java extensions [p 1418]

Resolve data model errors
To resolve data model errors:

1. Locate data model errors by checking the following locations:

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1417

• Navigate to Administration > Technical configuration > Modules and data models and look
for any data model errors.

• Open the kernel.log file and search for error [-].

2. Perform the actions required to fix the data model errors. Alternatively, if the data model is no
longer in use, you can delete it. However, this must also be done in any dataspaces that define a
dataset based on the data model, including any child dataspaces.

3. Restart the application server and double check the Modules and data models table, and the logs
to be sure no models are still in a state of error.

Includes for discontinued add-ons
The TIBCO EBX® Match and Merge Add-on (DAQA) might be included in a data model. If this is
the case, the include instruction must be removed from the data model as well as any elements based
on its data type.

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1418

To address discontinued add-ons:

1. Open the kernel.log file and search for any data model compilation report that begins with
****** Schema. Check whether the report contains the following info line: Include: Module:
ebx-addon-daqa.
In the following example, the custom module ebx-sample-test contained the inclusion in the
Persons model:

2. Open your data model's XSD and remove the following: /WEB_INF/ebx/schema/ebx-addon-daqa-
types.xsd.

3. Search for and remove any elements with a defined type of DaqaMetaData.

4. Search for and modify any other elements that were using the elements modified in the step above.

Java extensions for discontinued add-ons
Any Java extension provided by a discontinued add-on must be removed from data models. You must
check all XSD files and delete any reference to the non-exhaustive list below:

• For the TIBCO EBX Information Governance Add-on (IGOV), check for use of the following:
com.orchestranetworks.addon.igov.IGovLabelingSchemaDocumentation

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1419

• For the TIBCO EBX Rules Portfolio Add-on (RPFL), check for use of the following data model
extension: com.orchestranetworks.addon.rpfl.DefaultSchemaExtension

• For the TIBCO EBX Information Search Add-on (TESE), check for use of the following
table filter: com.orchestranetworks.addon.tese.SearchTableFilter. This add-on is not
discontinued, however if you replace it with the reworked version and do not deploy the legacy
version, you must remove the trigger.

• For the TIBCO EBX Insight Add-on (DQID), check for use of the following
trigger: com.orchestranetworks.addon.dqid.controller.DQIdTrigger. This add-on is not
discontinued, however if you replace it with the reworked version and do not deploy the legacy
version, you must remove the trigger.

In addition to checking for the items listed above, it is a good idea to check toolbars defined by the
data model as they can sometimes include user services from the add-ons.

URL policy
The URL policy from 5.9 is deprecated and if you do not update it, issues can occur when attempting
to access the UI. To ensure the URL policy conforms to 6.x requirements, navigate to Administration
> User interface > User interface configuration > Advanced perspective > Interface configuration
> URL Policy and revert any existing settings. To update the URL computing configuration, you can
edit the ebx.properties file. See URLs computing [p 563] for more information.

209.4 Task 3: Back up your clean repository
Back up your current repository:

1. Shut down the application server hosting the EBX® 5.9 instance.

2. Back up your 5.9 repository. Include any relational database objects whose name starts
with the current repository prefix. This prefix is specified in the ebx.properties file under
ebx.persistene.table.prefix.

3. Back up and delete any EBX® logs, or move them to another folder.

4. Back up add-on configurations:
If you have the TIBCO EBX® Data Model and Data Visualization Add-on, or the TIBCO EBX®
GO Add-on, you will need to export the configuration archive and import it again after the
migration completes. See Manually migrating add-ons [p 1405] for instructions.

Documentation > Migration Guide > Step 2: Preparing the repository

TIBCO EBX® Product Documentation 6.2.0 1420

Documentation > Migration Guide > Step 3: Deploying

TIBCO EBX® Product Documentation 6.2.0 1421

CHAPTER 210
Step 3: Deploying

This chapter contains the following topics:

1. Overview

210.1 Overview
What follows are the high-level steps to deploy. If you have questions, refer to the TIBCO EBX®
Installation Guide as it contains more detailed information and includes platform specific notes.

Attention
If you are deploying add-ons, it is a prerequisite to launch the repackaging ant task included in the
Add-ons Bundle. Its location is as follows (see the TIBCO EBX® Add-ons Versioning and Packaging
Guide for additional details): <Add-ons Bundle location>\script\ebxRepackageWithLGPL.xml.

To deploy:

1. Stop your application server.

2. Deploy libraries:

1. For the EBX® core product, the following are located in <EBX® 6 bundle location>
\ebx.software\lib:

• When migrating to EBX® 6.0.x:

• For EBX®: ebx.jar

• To support the new compression algorithm: ebx-lz4.jar

• For email support: jakarta.mail-2.0.1.jar

• When migrating to EBX® 6.x.x:

• For EBX®: ebx.jar

• To support the new compression algorithm: ebx-lz4.jar

• For third-party Java APIs: ebx-resources-api.jar

• For email support: jakarta.mail-2.0.1.jar

2. For EBX® Add-ons: <EBX® Add-ons Bundle location>\lib\ebx-addons.jar.

3. Any custom libraries compiled using EBX® 6.

Documentation > Migration Guide > Step 3: Deploying

TIBCO EBX® Product Documentation 6.2.0 1422

3. Deploy web applications:

1. For the EBX® core product (located in <EBX® 6 bundle location>\ebx.software\webapps
\wars-packaging):

• ebx-dataservices.war

• ebx-dma.war

• ebx-manager.war

• ebx-root-1.0.war

• ebx-ui.war

• ebx.war

• ebx-authenticator.war (for version 6.1.3 and newer only)

• ebx-ide.war (for version 6.2.0 and newer only)

• ebx-hub.war (for version 6.2.0 and newer only)

2. For EBX® Add-ons (located in <EBX® Add-ons bundle location>\wars):

• ebx-addon-common.war (mandatory)

• ebx-addon-adix.war

• ebx-addon-dama.war

• ebx-addon-dint.war

• ebx-addon-dmdv.war

• ebx-addon-dpra.war

• ebx-addon-dqid.war

• ebx-addon-mame.war

• ebx-addon-moda.war

• ebx-addon-tese.war

3. All of your project-specific WAR files complied using EBX® 6.

4. Start your application server. The amount of time that the automatic migration process takes
depends on the volume of migrated data.
Successful migration is indicated by the following message in the kernel.log file: ******** EBX®
started and initialized ********.
If a data model is still in error, migration will stop. Use the kernel.log file to find the root cause
and follow the instructions in Data model cleanup [p 1416].

Documentation > Migration Guide > Java API changes

TIBCO EBX® Product Documentation 6.2.0 1423

CHAPTER 211
Java API changes

The following resources list the Java API changes between versions. During the migration process it
is important to review these changes and update your custom code accordingly. If migrating from 5.9
to 6.x, you should review the content in both links. Note that the links open the documents directly
on TIBCO's documentation site to ensure access to the most up-to-date changes.

• Changes between 6.0 and 6.x

• Changes between 5.9 and 6.0

https://docs.tibco.com/pub/ebx/latest/doc/html/en/releasenotes/6.1-newJavaAPI.html
https://docs.tibco.com/pub/ebx/latest/doc/html/en/releasenotes/6.0-newJavaAPI.html

Documentation > Migration Guide > Java API changes

TIBCO EBX® Product Documentation 6.2.0 1424

TIBCO EBX® Product Documentation 6.2.0 1425

Notices

Documentation > Notices > Documentation and Support

TIBCO EBX® Product Documentation 6.2.0 1426

CHAPTER 212
Documentation and Support

For information about this product, you can read the documentation, contact TIBCO Support, and
join TIBCO Community.
This chapter contains the following topics:

1. How to Access TIBCO Documentation

2. Product-Specific Documentation

3. How to Contact TIBCO Support

4. How to Join TIBCO Community

212.1 How to Access TIBCO Documentation
Documentation for TIBCO products is available on the TIBCO Product Documentation website,
mainly in HTML and PDF formats.
The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product.

212.2 Product-Specific Documentation
The documentation for the TIBCO EBX® is available on the TIBCO EBX® Product Documentation
page. This page contains the latest version of each document.
The documentation for the TIBCO EBX® Add-ons is available on the TIBCO EBX® Add-ons
Product Documentation page. This page contains the latest version of each document.
To view the documents for Add-on Bundles that are compatible with other versions of TIBCO EBX®,
use the Bundle version menu to select the desired release.

212.3 How to Contact TIBCO Support
Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

• For accessing the Support Knowledge Base and getting personalized content about products you
are interested in, visit the TIBCO Support website.

• For creating a Support case, you must have a valid maintenance or support contract with TIBCO.
You also need a user name and password to log in to TIBCO Support website. If you do not have
a user name, you can request one by clicking Register on the website.

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-ebx
https://docs.tibco.com/products/tibco-ebx-add-ons/
https://docs.tibco.com/products/tibco-ebx-add-ons/
https://support.tibco.com
https://support.tibco.com
https://support.tibco.com

Documentation > Notices > Documentation and Support

TIBCO EBX® Product Documentation 6.2.0 1427

212.4 How to Join TIBCO Community
TIBCO Community is the official channel for TIBCO customers, partners, and employee subject
matter experts to share and access their collective experience. TIBCO Community offers access to
Q&A forums, product wikis, and best practices. It also offers access to extensions, adapters, solution
accelerators, and tools that extend and enable customers to gain full value from TIBCO products. In
addition, users can submit and vote on feature requests from within the TIBCO Ideas Portal. For a
free registration, go to TIBCO Community.

https://ideas.tibco.com
https://community.tibco.com

Documentation > Notices > Documentation and Support

TIBCO EBX® Product Documentation 6.2.0 1428

Documentation > Notices > Legal and Third-Party

TIBCO EBX® Product Documentation 6.2.0 1429

CHAPTER 213
Legal and Third-Party

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF
SUCH EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE
USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED
IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT
OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE
“LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE
OF AND AN AGREEMENT TO BE BOUND BY THE SAME.
This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of Cloud Software Group, Inc.
TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO EBX®, TIBCO EBX® Data Exchange Add-on,
TIBCO EBX® Add-on's Root Module, TIBCO EBX® Digital Asset Manager Add-on, TIBCO EBX®
Match and Merge Add-on, TIBCO EBX® Data Model and Data Visualization Add-on, TIBCO EBX®
Insight Add-on, TIBCO EBX® Graph View Add-on, TIBCO EBX® Add-on for Oracle Hyperion
EPM, TIBCO EBX® Information Governance Add-on, TIBCO EBX® GO Add-on, TIBCO EBX®
Activity Monitoring Add-on, TIBCO EBX® Rule Portfolio Add-on, and TIBCO EBX® Information
Search Add-on are either registered trademarks or trademarks of Cloud Software Group, Inc. in the
United States and/or other countries.
Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/
or its affiliates.
This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which
is available at: https://scripts.sil.org/OFL.
Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

https://scripts.sil.org/OFL

Documentation > Notices > Legal and Third-Party

TIBCO EBX® Product Documentation 6.2.0 1430

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED,
DIRECTLY OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS
SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME"
FILES.
This and other products of Cloud Software Group, Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.
Copyright© 2006-2024. Cloud Software Group, Inc. All Rights Reserved

https://www.tibco.com/patents

	Table of contents
	User Guide
	Introduction
	1. How TIBCO EBX® works
	2. Using the user interface
	3. Glossary

	Data models
	4. Introduction to data models
	Implementing data models
	5. Creating a data model
	6. Configuring the data model
	7. Implementing the data model structure
	8. Properties of data model elements
	9. Data validation controls on elements
	10. Data model extensions
	11. Working with an existing data model

	Publishing and versioning data models
	12. Publishing a data model
	13. Versioning an embedded data model

	Dataspaces
	14. Introduction to dataspaces
	15. Creating a dataspace
	16. Working with existing dataspaces
	17. Snapshots

	Datasets
	18. Introduction to datasets
	19. Creating a dataset
	20. Viewing data
	21. Editing data
	File import and export services
	22. XML import and export
	23. CSV import and export

	24. Working with existing datasets
	25. Dataset inheritance

	Collaborative features (Team Up)
	26. Introduction to collaborative features (Team Up)
	27. Comments
	28. Ratings
	29. Tags

	Workflow models
	30. Introduction to workflow models
	31. Creating and implementing a workflow model
	32. Configuring the workflow model
	33. Publishing workflow models

	Data workflows
	34. Introduction to data workflows
	35. Using the Data Workflows area user interface
	36. Work items
	Managing data workflows
	37. Launching and monitoring data workflows
	38. Administration of data workflows

	Data services
	39. Introduction to data services
	40. Generating data service WSDLs

	EBX® Metadata Management
	41. Introduction to metadata management
	42. Key terms
	43. Accessing the metadata perspective
	User Interface
	44. Overview of the User Interface
	Navigation pane
	45. Navigation pane overview
	Metadata catalog
	46. Catalog overview
	47. Creating applications
	48. Creating data elements
	49. Provisioning
	50. Regular expressions

	Governance
	51. Governance overview
	52. Defining a business term

	Metadata
	53. Metadata section overview
	54. Managing assets

	Technology
	55. Technology overview
	56. Create an instance
	57. Create a system
	58. Create a system type
	59. Create an infrastructure
	60. Create a provider

	Privacy
	61. Privacy overview
	62. Processing activities
	63. Consents
	64. Data breaches
	65. Requests

	66. Workspace
	67. Home page
	68. Custom views

	Advanced data services
	69. Advanced data services overview
	70. Metadata harvesting
	71. Asset sampling
	72. Asset classification
	73. Lineage

	Collaboration
	74. Collaboration overview
	75. Metadata comments
	76. Metadata ratings
	77. Tag metadata
	78. Managing metadata with collaborative workflows

	Reference Manual
	Integration
	79. Overview of integration and extension
	80. Using TIBCO EBX® as a Web Component
	81. Built-in user services
	82. Supported XPath syntax

	Localization
	83. Labeling and localization
	84. Extending TIBCO EBX® internationalization

	Persistence
	85. Overview of persistence
	86. History
	87. Replication
	88. Data model evolutions

	Other
	89. Inheritance and value resolution
	90. Permissions
	91. Criteria editor
	92. Search

	Administration Guide
	93. Administration overview
	Installation & configuration
	94. Supported environments
	95. Disk requirements
	96. Jakarta EE deployment
	Installation notes
	97. Installation note for JBoss EAP 8.0.X
	98. Installation note for WebSphere Application Server Liberty 23.X
	99. Installation note for Tomcat 10.1.X

	100. TIBCO EBX® main configuration file
	101. Initialization and first-launch assistant
	102. Managing TIBCO EBX® add-ons
	103. User authentication
	104. Performance and tuning
	105. Configuration notes

	EBX® Container Edition
	106. Building the image
	107. Running the image
	108. Customizing the image

	Technical administration
	109. Repository administration
	110. UI administration
	111. UI – Workflow launcher
	112. Users and roles directory
	113. Data model administration
	114. Database mapping administration
	115. Workflow management
	116. Task scheduler
	117. Audit trail
	118. Collaborative features (Team Up)
	119. Other

	Distributed Data Delivery (D3)
	120. Introduction to D3
	121. D3 broadcasts and delivery dataspaces
	122. D3 JMS Configuration
	123. D3 administration

	124. Staging
	EBX® Metadata Management application
	125. Metadata Administration Perspective
	126. User roles
	127. Permissions
	128. User interface configuration
	129. Workflows
	130. Web Services and API
	Metadata Agent
	131. Installing the TIBCO® Metadata Agent
	132. TIBCO TDV Metadata Adapter installation
	133. TIBCO® EBX® Metadata Adapter installation
	134. TIBCO® Metadata Agent Framework
	135. Administration of TIBCO® Metadata Agent
	136. Technical Users
	137. TIBCO® Metadata Agents
	138. Items managed by Metadata Agent
	139. Harvesting configurations

	Security Guide
	140. Security Best Practices

	Developer Guide
	Introduction
	141. Packaging TIBCO EBX® modules
	142. Mapping to Java
	143. Tools for Java developers
	144. Terminology changes

	Data model
	145. Introduction
	146. Data types
	147. Tables and relationships
	148. Constraints
	149. Triggers and functions
	150. Labels and messages
	151. Additional properties
	152. Data services
	153. Toolbars
	154. Custom forms

	155. Workflow model
	User interface
	156. Interface customization
	User services
	157. Overview
	158. Quick start
	159. Implementing a user service
	160. Declaring a user service

	161. Development recommendations

	SOAP data services
	162. Introduction
	163. WSDL generation
	164. SOAP operations

	REST data services
	165. Introduction
	166. Built-in RESTful services
	JSON Formats
	167. Introduction
	168. Extended
	169. Compact
	170. Common
	171. Others

	SQL in EBX®
	172. Introduction
	173. Comparison operators
	174. Arithmetic operators and functions
	175. Logical operators
	176. String operators and functions
	177. Date and time functions
	178. EBX® SQL functions

	179. REST Toolkit
	180. Record permission
	EBX® Script
	181. Reference
	Usage
	182. Function field
	183. Script task
	184. Table trigger

	API
	185. Unit summary
	186. Unit default
	187. Unit core.complex
	188. Unit core.data
	189. Unit core.date
	190. Unit core.datetime
	191. Unit core.list
	192. Unit core.locale
	193. Unit core.log
	194. Unit core.math
	195. Unit core.resource
	196. Unit core.string
	197. Unit core.time
	198. Unit core.uri

	EBX® Script IDE
	199. Overview of the EBX® Script IDE
	200. How to guide
	Tutorials
	201. Creating functions
	202. Creating triggers
	203. Creating a workflow script

	204. User interface reference

	Migration Guide
	205. Migration introduction
	206. Environment and hardware requirements
	207. Changes to supported add-ons
	208. Step 1: Adapting custom code
	209. Step 2: Preparing the repository
	210. Step 3: Deploying
	211. Java API changes

	Notices
	212. Documentation and Support
	213. Legal and Third-Party

