
Copyright © 1997-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Enterprise Message Service™
User Guide
Version 10.3.0 | February 2024

TIBCO Enterprise Message Service™ User Guide

2 | Contents

Contents
Contents 2

About this Product 23

Overview 25
Jakarta Messaging Overview 25

Jakarta Messaging Compliance 26

Jakarta Messaging Message Models 26
Point-to-Point 27

Publish and Subscribe 28

EMS Destination Features 30

Client APIs 31
Sample Code 32

TIBCO Rendezvous Java Applications 32

Administration 32
Administering the Server 33

User and Group Management 33

Using TIBCO Hawk 34

Modes, Roles, and States 34

Security 35

Fault Tolerance 36

Routing 36

Integrating with Third-Party Products 36

Transaction Support 36

Containerization 37

Messages 38
EMS Extensions to Jakarta Messaging Messages 38

TIBCO Enterprise Message Service™ User Guide

3 | Contents

Jakarta Messaging Message Structure 39
Jakarta Messaging Message Header Fields 39

EMS Message Properties 41

Jakarta Messaging Message Bodies 44

Maximum Message Size 45

Message Priority 45

Message Delivery Modes 46
PERSISTENT 46

NON_PERSISTENT 47

RELIABLE_DELIVERY 48

How EMS Manages Persistent Messages 48
Persistent Messages Sent to Queues 49

Persistent Messages Published to Topics 49

Persistent Messages and Synchronous File Storage 50

Store Messages in Multiple Stores 51
Store Types 52

Default Stores 53

Configuring File-Based Stores 53

Character Encoding in Messages 54
Supported Character Encodings 55

Sending Messages 55

Message Compression 56
About Message Compression 56

Setting Message Compression 57

Message Acknowledgment 57
NO_ACKNOWLEDGE 59

EXPLICIT_CLIENT_ACKNOWLEDGE 59

EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE 59

Message Selectors 60
Identifiers 60

Literals 60

TIBCO Enterprise Message Service™ User Guide

4 | Contents

Expressions 61

Operators 62

White Space 63

Performance 63

Data Type Conversion 65

Sending Messages Synchronously and Asynchronously 66
Sending Synchronously 66

Sending Asynchronously 67

Receiving Messages Synchronously and Asynchronously 68

Destinations 69
Destination Overview 70

Destination Names 71

Static Destinations 71

Dynamic Destinations 71

Temporary Destinations 72

Destination Bridges 72

Destination Name Syntax 72
Examples of Destination Names 74

Destination Properties 75
exclusive 76

expiration 77

export 78

flowControl 78

global 79

import 79

maxbytes 80

maxmsgs 82

maxRedelivery 82

overflowPolicy 83

prefetch 85

redeliveryDelay 90

TIBCO Enterprise Message Service™ User Guide

5 | Contents

secure 91

sender_name 91

sender_name_enforced 92

store 93

trace 94

Temporary Destination Properties 94
Usage Notes 95

Creating and Modifying Destinations 96
Creating Secure Destinations 97

Wildcards 97
Wildcards * and > 98

Overlapping Wildcards and Disjoint Properties 98

Wildcards in Topics 99

Wildcards in Queues 99

Wildcards and Dynamically Created Destinations 99

Inheritance 100
Inheritance of Properties 101

Inheritance of Permissions 102

Destination Bridges 103
Create a Bridge 105

Access Control and Bridges 107

Transactions 107

Flow Control 107
Enable Flow Control 108

Enforce Flow Control 108

Routes and Flow Control 109

Destination Bridges and Flow Control 109

Flow Control, Threads and Deadlock 110

Delivery Delay 111

Getting Started 112
About the Sample Clients 112

TIBCO Enterprise Message Service™ User Guide

6 | Contents

Compiling the Sample Java Clients 113

Creating Users with the EMS Administration Tool 114

Point-to-Point Messaging Example 115
Creating a Queue 115

Starting the Sender and Receiver Clients 116

Publish and Subscribe Messaging Example 117
Creating a Topic 117

Starting the Subscriber Clients 117

Starting the Publisher Client and Sending Messages 118

Creating a Secure Topic 120

Creating a Durable Subscriber 122

Running the EMS Server 124
Starting and Stopping the EMS Server 124

Types of Configuration Files 124

Starting the EMS Server Using a Sample Configuration 125

Starting the EMS Server Using JSON Configuration 125

Starting the EMS Server Using Options 126

Stopping the EMS Server 129

Running the EMS Server as a Windows Service 129
emsntsrg 129

Error Recovery Policy 133

Security Considerations 134
Secure Environment 134

Destination Security 134

Authorization Parameter 135

Admin Password 135

Connection Security 135

Communication Security 136

Sources of Authentication Data 136

Timestamp 137

Passwords 137

TIBCO Enterprise Message Service™ User Guide

7 | Contents

Audit Trace Logs 137

Managing Access to Shared File-Based Stores 138

Performance Tuning 138
Setting Thread Affinity for Increased Throughput 139

Increasing Network Threads without Setting Thread Affinity 139

Determine Core Allocation 139

Transparent Huge Pages 140

Network I/O Connections 140

Other Considerations 141

Using the EMS Administration Tool 142
Starting the EMS Administration Tool 142

Options for tibemsadmin 142

When You First Start tibemsadmin 146

Naming Conventions 147
Name Length Limitations 147

Command Listing 148
activate_dr_site 148

add member 148

addprop factory 149

addprop queue 149

addprop route 149

addprop topic 150

autocommit 150

commit 150

compact 151

connect 151

create bridge 152

create durable 152

create factory 153

create group 153

create jndiname 153

TIBCO Enterprise Message Service™ User Guide

8 | Contents

create queue 153

create route 154

create rvcmlistener 154

create topic 155

create user 155

delete all 155

delete bridge 156

delete connection 156

delete durable 156

delete factory 157

delete group 157

delete jndiname 157

delete message 157

delete queue 157

delete route 158

delete rvcmlistener 158

delete topic 158

delete user 158

disconnect 159

echo 159

exit 159

grant queue 160

grant topic 160

grant admin 161

help 161

info 162

jaci clear 162

jaci resetstats 162

jaci showstats 162

purge all queues 163

purge all topics 163

purge durable 163

TIBCO Enterprise Message Service™ User Guide

9 | Contents

purge queue 164

purge topic 164

remove member 164

removeprop factory 164

removeprop queue 164

removeprop route 165

removeprop topic 165

resume route 165

revoke admin 165

revoke queue 166

revoke topic 166

rotatelog 166

save_and_exit 167

set password 167

set server 168

setprop factory 173

setprop queue 174

setprop route 174

setprop topic 174

setup_dr_site 175

show bridge 175

show bridges 176

show config 176

show consumer 177

show consumers 177

show connections 180

show db 183

show durable 184

show durables 185

show factory 186

show factories 186

show jndiname 186

TIBCO Enterprise Message Service™ User Guide

10 | Contents

show jndinames 187

show group 187

show groups 187

show members 188

show message 188

show messages 188

show parents 188

show queue 189

show queues 190

show route 191

show routes 192

show rvcmtransportledger 192

show rvcmlisteners 193

show server 193

show stat 193

show state 194

show store 194

show stores 196

show subscriptions 197

show topic 198

show topics 200

show transaction 202

show transactions 204

show transport 205

show transports 205

show user 205

show users 206

showacl admin 206

showacl group 206

showacl queue 206

showacl topic 207

showacl user 207

TIBCO Enterprise Message Service™ User Guide

11 | Contents

shutdown 208

suspend route 208

time 208

timeout 208

transaction commit 209

transaction rollback 209

updatecrl 209

whoami 209

Configuration Files 210
Location of Configuration Files 210

Mechanics of Configuration 210

tibemsd.conf 211
Global System Parameters 225

Storage File Parameter 237

Connection and Memory Parameters 238

Detecting Network Connection Failure Parameters 244

Fault Tolerance Parameters 247

Message Tracking Parameters 254

TIBCO FTL Transport Parameters 255

Rendezvous Transport Parameters 259

Tracing and Log File Parameters 260

Statistic Gathering Parameters 263

TLS Server Parameters 266

HTTPS Server Parameters 271

OAuth 2.0 Parameters 273

Extensible Security Parameters 275

JVM Parameters 277

Using Other Configuration Files 278
acl.conf 279

bridges.conf 280

durables.conf 281

TIBCO Enterprise Message Service™ User Guide

12 | Contents

factories.conf 283

groups.conf 287

jaas.conf 288

queues.conf 288

routes.conf 289

stores.conf 291

tibrvcm.conf 295

topics.conf 296

transports.conf 297

users.conf 301

Authentication and Permissions 302
Setting up EMS Authentication and Access Control 302

Users and Groups 303
Users 303

Groups 304

Administration Commands and External Users and Groups 305

Enable Authentication and Access Control 306
Server Access Control and Authentication 306

Destination Access Control 307

Authentication Methods 307

Authentication Using OAuth 2.0 308
Obtaining an Access Token 308

Configure OAuth 2.0 in the EMS Server 311

Authenticate Administrative Connections 312

Administrator Permissions 312
Predefined Administrative User and Group 313

Granting and Revoking Administration Permissions 313

Enforcement of Administrator Permissions 315

Global Administrator Permissions 315

Destination-Level Permissions 318

Protection Permissions 319

TIBCO Enterprise Message Service™ User Guide

13 | Contents

User Permissions 321
Queue and Topic Permissions 321

Example of Setting User Permissions 323

Inheritance of User Permissions 323

Revoking User Permissions 324

When Permissions Are Checked 324
Example of Permission Checking 325

Extensible Security 327
Overview of Extensible Security 327

How Extensible Security Works 327

Extensible Authentication 328
Enable Extensible Authentication 329

Prebuilt Authentication Modules 329

Writing an Authentication Module 329

Extensible Permissions 331
Cached Permissions 331

How Permissions are Granted 333

Implications of Wildcards on Permissions 335

Enable Extensible Permissions 336

Permissions Module 337

The JVM in the EMS Server 338
Enable the JVM 338

JAAS Authentication Modules 339
Overview of the JAAS Authentication Modules 339

Prebuilt JAAS Modules 339

Custom JAAS Modules 340

Multiple JAAS Modules 340

Enabling Authentication Using JAAS Modules 341

Prebuilt JAAS Modules 342
LDAP Simple Authentication 342

TIBCO Enterprise Message Service™ User Guide

14 | Contents

LDAP Authentication 345

LDAP Group User Authentication 349

Host Based Authentication 354

Connection Limit Authentication 356

Using Multiple JAAS Modules 358
Example: Two Authentication Requirements 358

Example: One Authentication is Sufficient 359

Migrating to the EMS JAAS Modules 359
Former EMS Server LDAP Parameter to JAAS Module Parameter Mapping 360

Parameters Requiring Conversion 362

Dynamic Groups 363

Example 363

Troubleshooting Problems in the JAAS Modules 365

Grid Stores 367
Grid Stores Overview 367

Fault-Tolerance with Grid Stores 368

Understanding Grid Store Intervals 368

Implications for Statistics 370

Configuring and Deploying Grid Stores 370
Deploying a Simple TIBCO ActiveSpaces Data Grid 370

Connecting Multiple Servers to the Same Data Grid 374

Configuring Grid Stores 374

Managing the JSON Configuration 376

Server Configuration Upload/Download 376

Server Command-Line Options for Grid Stores 379

FTL Stores 381
FTL Stores Overview 381

Fault-Tolerance with FTL Stores 382

Deciding Between FTL Stores and File-Based Stores 383

Configuring and Deploying FTL Stores 384

TIBCO Enterprise Message Service™ User Guide

15 | Contents

Configuring the FTL Server Cluster 385

Sections in the FTL Server Cluster Configuration 385

Logging With FTL Stores 393

Initializing FTL Server Cluster Security 393

Deploying the FTL Server Cluster 395

Configuring FTL Stores in the EMS Server 396

Managing the JSON Configuration 402

Server Configuration Upload/Download 402

Shutting Down the FTL Server Cluster 405

Disaster Recovery 408

Developing an EMS Client Application 413
Jakarta Messaging Specification 413

Jakarta Messaging 3.0.0 Specification 413

Jakarta Messaging 2.0.3 Specification 414

JMS 2.0 Specification 414

JMS 1.1 Specification 415

JMS 1.0.2b Specification 415

Sample Clients 415

Programmer Checklists 416
Java Programmer’s Checklist 416

C Programmer’s Checklist 417

C# Programmer’s Checklist 420

Connection Factories 425
Looking up Connection Factories 425

Dynamically Creating Connection Factories 425

Set Connection Attempts, Timeout, and Delay Parameters 426

Connect to the EMS Server 428
Start, Stop and Close a Connection 429

Create a Session 429

Set an Exception Listener 430

Dynamically Create Topics and Queues 432

TIBCO Enterprise Message Service™ User Guide

16 | Contents

Create a Message Producer 434
Configure a Message Producer 435

Create a Completion Listener for Asynchronous Sending 436

Create a Message Consumer 438
Create a Message Listener for Asynchronous Message Consumption 441

Messages 444
Create Messages 444

Set and Get Message Properties 445

Send Messages 446

Receive Messages 448

The EMS Implementation of JNDI 450
Create and Modify Administered Objects in EMS 450

Create Connection Factories for Secure Connections 451

Create Connection Factories for Fault-Tolerant Connections 452

Look up Administered Objects Stored in EMS 452
Look Up Objects Using Full URL Names 455

Perform Secure Lookups 455

Perform Fault-Tolerant Lookups 457

Interoperation with TIBCO FTL 459
Message Translation 459

Configuration 460
Enabling 460

Transports 461

Destinations 461

Configure EMS Transports for TIBCO FTL 462
Requirements 462

EMS Transport for FTL Definitions 463

Topics 465
Import Only when Subscribers Exist 466

Queues 466

TIBCO Enterprise Message Service™ User Guide

17 | Contents

Configuration 466

Import—Start and Stop 467

Message Translation 467
Jakarta Messaging Header Fields 467

Jakarta Messaging Property Fields 469

Message Body 470

Message Fields 471

Interoperation with TIBCO Rendezvous 474
Scope 474

Message Translation 474

Configuration 475
Enabling 475

Transports 475

Destinations 475

RVCM Listeners 476

Configure EMS Transports for Rendezvous 476
How Rendezvous Messages are Imported 476

Queue Limit Policies 477

Transport Definitions 477

Topics 483
import 483

export 483

Example 483

Import Only when Subscribers Exist 484

Wildcards 484

Certified Messages 484
RVCM Ledger 484

Subject Collisions 485

Queues 485
Configuration 485

Import—Start and Stop 486

TIBCO Enterprise Message Service™ User Guide

18 | Contents

Wildcards 486

Import Issues 486
Field Identifiers 486

JMSDestination 487

JMSReplyTo 487

JMSExpiration 487

Guaranteed Delivery 488

Export Issues 488
JMSReplyTo 488

Certified Messages 489

Guaranteed Delivery 489

Message Translation 489
Jakarta Messaging Header Fields 489

Jakarta Messaging Property Fields 491

Message Body 492

Data Types 494

Pure Java Rendezvous Programs 496

Monitor Server Activity 498
Server Health and Metrics 498

Log Files and Tracing 499
Configure the Log File 500

Trace Messages for the Server 501

Message Tracing 505
Enable Message Tracing for a Destination 505

Enable Message Tracing on a Message 506

Monitor Server Events 507
System Monitor Topics 507

Monitor Messages 507

View Monitor Topics 522

Performance Implications of Monitor Topics 524

Server Statistics 524

TIBCO Enterprise Message Service™ User Guide

19 | Contents

Overall Server Statistics 525

Enable Statistics Gathering 526

Display the Statistics 528

TLS Protocol 529
TLS Support in TIBCO Enterprise Message Service 529

Implementations 530

Digital Certificates 530
Digital Certificate File Formats 531

Private Key Formats 532

File Names for Certificates and Keys 532

Configure TLS in the Server 534
TLS Parameters 534

Command Line Options 534

Configure HTTPS in the Server 535

Configure TLS in EMS Clients 535
Client Digital Certificates 535

Configure TLS 536

Specify Cipher Suites 539
Syntax for Cipher Suites 540

Supported Cipher Suites 543

TLS Authentication Only 543
Motivation 544

Preconditions 544

Enable FIPS Compliance 544
Enable the EMS Server 545

Enable EMS Clients 545

Fault Tolerance 547
Fault Tolerance Overview 547

Shared State 547

Unshared State Failover 548

TIBCO Enterprise Message Service™ User Guide

20 | Contents

Shared State Failover Process 549
Detection 549

Response 550

Role Reversal 550

Client Transfer 551

Message Redelivery 552

Heartbeat Parameters 553

Configuration Files 554

Unshared State Failover Process 554
Detection 554

Response 555

Message Loss 555

Unsupported Features 556

Dual State Failover 556

Shared State 558
Implement Shared State 558

Messages Stored in Shared State 561

Shared State Storage 561

Configure Fault-Tolerant Servers 562
Shared State 562

Unshared State 565

Fault Tolerance with a JSON Configuration 566
Configuring Fault Tolerance 566

Configuration Errors 566

Configure Clients for Shared State Failover Connections 567
Specify More Than Two URLs 568

Set Reconnection Failure Parameters 568

Configure Clients for Unshared State Failover Connections 570
Include the Unshared State Library 570

Create an Unshared State Connection Factory 570

Specify Server URLs 571

TIBCO Enterprise Message Service™ User Guide

21 | Contents

Set Connect Attempt and Reconnect Attempt Behavior 572

Routes 574
Overview 574

Route 574
Basic Operation 574

Global Destinations 575

Unique Routing Path 576

Zone 576
Basic Operation 576

Eliminate Redundant Paths with a One-Hop Zone 577

Overlapping Zones 578

Active and Passive Routes 579
Active-Passive Routes 579

Active-Active Routes 580

Configure Routes and Zones 580
Routes to Fault-Tolerant Servers 582

Routing and TLS 583

Routed Topic Messages 586
Registered Interest Propagation 586

Selectors for Routing Topic Messages 588

Routed Queues 592
Owner and Home 593

Example 593

Producers 594

Consumers 594

Configuration 595

Browsing 595

Transactions 595

Authentication and Authorization for Routes 596
Authentication 596

ACL 600

TIBCO Enterprise Message Service™ User Guide

22 | Contents

Conversion of Server Configuration Files to JSON 601

Monitor Messages 603
Description of Monitor Topics 603

Description of Topic Message Properties 606

Error and Status Messages 617
Error and Status Codes 617

TIBCO Documentation and Support Services 682

Legal and Third-Party Notices 684

TIBCO Enterprise Message Service™ User Guide

23 | About this Product

About this Product
TIBCO is proud to announce the latest release of TIBCO Enterprise Message Service™
software.

This release is the latest in a long history of TIBCO products that leverage the power of the
Information Bus® technology to enable truly event-driven IT environments. To find out
more about how TIBCO Enterprise Message Service software and other TIBCO products are
powered by TIB® technology, please visit us at www.tibco.com.

TIBCO Enterprise Message Service software lets application programs send and receive
messages according to the Jakarta Messaging protocol. It also integrates with TIBCO FTL
and TIBCO Rendezvous.

TIBCO EMS software is part of TIBCO® Messaging.

Product Editions

TIBCO Messaging is available in a community edition and an enterprise edition.

TIBCO Messaging - Community Edition is ideal for getting started with TIBCO Messaging, for
implementing application projects (including proof of concept efforts), for testing, and for
deploying applications in a production environment. Although the community license limits
the number of production clients, you can easily upgrade to the enterprise edition as your
use of TIBCO Messaging expands.

The community edition is available free of charge. It is a full installation of the TIBCO
Messaging software, with the following limitations and exclusions:

 l Users may run up to 100 connections in a production environment. A connection is as
defined in the Jakarta Messaging Specification and established between an
application built with the TIBCO Enterprise Message Service Client Libraries and an
instance of the TIBCO Enterprise Message Service Server.

 l Users do not have access to TIBCO Support, but you can use TIBCO Community as a
resource (https://community.tibco.com).

 l Available on Red Hat Enterprise Linux Server, Microsoft Windows & Windows Server
and Apple macOS.

http://www.tibco.com/
https://community.tibco.com/

TIBCO Enterprise Message Service™ User Guide

24 | About this Product

TIBCO Messaging - Community Edition has the following additional limitations and
exclusions:

 l Excludes Fault Tolerance of the server.

 l Excludes Unshared State Failover.

 l Excludes Routing of messages between servers.

 l Excludes JSON configuration files.

 l Excludes EMS OSGi bundle.

 l Excludes grid store and FTL store types.

TIBCO Messaging - Enterprise Edition is ideal for all application development projects, and
for deploying and managing applications in an enterprise production environment. It
includes all features presented in this documentation set, as well as access to TIBCO
Support.

TIBCO Enterprise Message Service™ User Guide

25 | Overview

Overview
The following sections contain a general overview of Jakarta Messaging and TIBCO
Enterprise Message Service concepts.

Jakarta Messaging Overview
Jakarta Messaging is a Java framework specification for messaging between applications.
This specification was developed to supply a uniform messaging interface among
enterprise applications.

Using a message service allows you to integrate the applications within an enterprise. For
example, you may have several applications: one for customer relations, one for product
inventory, and another for raw materials tracking. Each application is crucial to the
operation of the enterprise, but even more crucial is communication between the
applications to ensure the smooth flow of business processes. Message-oriented-
middleware (MOM) creates a common communication protocol between these applications
and allows you to easily integrate new and existing applications in your enterprise
computing environment.

The Jakarta Messaging framework (an interface specification, not an implementation) is
designed to supply a basis for MOM development. TIBCO Enterprise Message Service
implements Jakarta Messaging and integrates support for connecting with TIBCO FTL and
TIBCO Rendezvous. This chapter describes the concepts of Jakarta Messaging and its
implementation in TIBCO Enterprise Message Service. For more information on Jakarta
Messaging requirements and features, see the following sources:

 l Jakarta Messaging specification, available through
https://jakarta.ee/specifications/messaging/2.0.

 l Java Message Service by Richard Monson-Haefel and David A. Chappell, O’Reilly and
Associates, Sebastopol, California, 2001.

https://jakarta.ee/specifications/messaging/2.0

TIBCO Enterprise Message Service™ User Guide

26 | Overview

Jakarta Messaging Compliance
TIBCO Enterprise Message Service 10.3 has passed the Eclipse Foundation Technology
Compatibility Kit (TCK) tests for Jakarta Messaging 2.0 and 3.0. Therefore, Enterprise
Message Service 10.3 is compliant with the Jakarta Messaging 2.0 and 3.0 specifications,
assuming the following requirements are met:

 l All EMS software must be run on a supported operating system. Supported systems
are listed in the readme file.

 l The EMS software must be properly installed to include correct versions of software
the EMS is dependent on.

 l The EMS server configuration parameter jms_2_0_compliance must be set to true.

Note: Jakarta Messaging 2.0 TCK tests were run using Open Java Development
Kit 8, as the corresponding version of the TCK does not support later Java
versions.
Jakarta Messaging 3.0 TCK tests were run using Open Java Development Kit 11.

Jakarta Messaging Message Models
Jakarta Messaging is based on creation and delivery of messages. Messages are structured
data that one application sends to another.

The creator of the message is known as the producer and the receiver of the message is
known as the consumer. The TIBCO EMS server acts as an intermediary for the message
and manages its delivery to the correct destination. The server also provides enterprise-
class functionality such as fault-tolerance, message routing, and communication with
TIBCO FTL and TIBCO Rendezvous.

The following image illustrates an application producing a message, sending it by way of
the server, and a different application receiving the message.

TIBCO Enterprise Message Service™ User Guide

27 | Overview

Jakarta Messaging supports these messaging models:

 l Point-to-Point (queues)

 l Publish and Subscribe (topics)

Point-to-Point
Point-to-point messaging has one producer and one consumer per message. This style of
messaging uses a queue to store messages until they are received. The message producer
sends the message to the queue; the message consumer retrieves messages from the
queue and sends acknowledgment that the message was received.

More than one producer can send messages to the same queue, and more than one
consumer can retrieve messages from the same queue. The queue can be configured to be
exclusive, if desired. If the queue is exclusive, then all queue messages can only be
retrieved by the first consumer specified for the queue. Exclusive queues are useful when
you want only one application to receive messages for a specific queue. If the queue is not
exclusive, any number of receivers can retrieve messages from the queue. Non-exclusive
queues are useful for balancing the load of incoming messages across multiple receivers.
Regardless of whether the queue is exclusive or not, only one consumer can ever consume
each message that is placed on the queue.

The following image illustrates point-to-point messaging using a non-exclusive queue. Each
message consumer receives a message from the queue and acknowledges receipt of the
message. The message is taken off the queue so that no other consumer can receive it.

TIBCO Enterprise Message Service™ User Guide

28 | Overview

Publish and Subscribe
In a publish and subscribe message system, producers address messages to a topic. In this
model, the producer is known as a publisher and the consumer is known as a subscriber.

Many publishers can publish to the same topic, and a message from a single publisher can
be received by many subscribers. Subscribers subscribe to topics, and all messages
published to the topic are received by all subscribers to the topic. This type of message
protocol is also known as broadcast messaging because messages are sent over the
network and received by all interested subscribers, similar to how radio or television
signals are broadcast and received.

The following image illustrates publish and subscribe messaging. Each message consumer
subscribes to a topic. When a message is published to that topic, all subscribed consumers
receive the message.

Durable Subscribers for Topics
By default, subscribers only receive messages when they are active. If messages arrive on
the topic when the subscriber is not available, the subscriber does not receive those

TIBCO Enterprise Message Service™ User Guide

29 | Overview

messages.

The EMS APIs allow you to create durable subscribers to ensure that messages are
received, even if the message consumer is not currently running. Messages for durable
subscriptions are stored on the server as long as durable subscribers exist for the topic, or
until the message expiration time for the message has been reached, or until the storage
limit has been reached for the topic. Durable subscribers can receive messages from a
durable subscription even if the subscriber was not available when the message was
originally delivered.

When an application restarts and recreates a durable subscriber with the same ID, all
messages stored on the server for that topic are delivered to the durable subscriber.

See Create a Message Consumer for details on how to create durable subscribers.

Shared Subscriptions for Topics
Shared subscriptions allow an application to share the work of receiving messages on a
topic among multiple message consumers.

When multiple consumers share a subscription, only one consumer in the group receives
each new message. This is similar in function to a queue; however, there are no restrictions
placed on the type of consumers to the topic, meaning that a topic can have a mix of
shared and not shared, durable and non-durable consumers. When a message is published
to the topic, the same message goes to all the matching subscriptions.

Shared subscriptions are created with a specific name, and optionally a client ID.
Consumers sharing the subscription specify this name when subscribing to the topic. If the
shared subscription type is durable, it persists and continues to accumulate messages until
deleted. If the shared subscription type is non-durable, it persists only so long as
subscribers exist.

For example, the topic foo might have the following subscriptions:

 l not shared, non-durable subscription

 l not shared, durable subscription

 l shared, non-durable subscription called mySharedSub with three shared consumers

 l shared, durable subscription called myDurableSharedSub with two shared consumers

TIBCO Enterprise Message Service™ User Guide

30 | Overview

If a message is received on foo, each of the above four subscriptions receive that same
message. For the shared subscriptions mySharedSub and myDurableSharedSub, the message
is delivered to only one of its respective shared consumers.

If the shared consumers of the shared durable subscription myDurableSharedSub are
closed, then the shared durable subscription continues to exist and accumulate messages
until it is deleted, or until the application creates a new durable shared consumer named
myDurableSharedSub to resume this subscription. If the shared consumers of mySharedSub
are all closed, the subscription is removed from topic foo.

See Create a Message Consumer for details on how to create shared subscriptions.

EMS Destination Features
TIBCO Enterprise Message Service allows you to configure destinations to enhance the
functionality of each messaging model.

The EMS destination features allow you to:

 l Set a secure mode for access control at the queue or topic level, so that some
destinations may require permission and others may not. See Destination Control.

 l Set threshold limits for the amount of memory used by the EMS server to store
messages for a topic or a queue and fine-tune the server’s response to when the
threshold is exceeded. See flowControl and overflowPolicy.

 l Route messages sent to destinations to other servers. See Routes.

 l Create bridges between destinations of the same or different types to create a hybrid
messaging model for your application. This can be useful if your application requires
that you send the same message to both a topic and a queue. For more information
on creating bridges between destinations and situations where this may be useful,
see Destination Bridges.

 l Control the flow of messages to a destination. This is useful when message producers
send messages much faster than message consumers can receive them. For more
information on flow control, see Flow Control.

 l Exchange messages with TIBCO FTL and TIBCO Rendezvous. Queues can receive
messages. Topics can either receive or send messages. See Interoperation with TIBCO
FTL and Interoperation with TIBCO Rendezvous.

 l Set queues to be exclusive or non-exclusive. Only one receiver can receive messages

TIBCO Enterprise Message Service™ User Guide

31 | Overview

from an exclusive queue. More than one receiver can receive messages from non-
exclusive queues. See exclusive.

 l Specify a redelivery policy for queues. When messages must be redelivered, you can
specify a property on the queue that determines the maximum number of times a
message should be redelivered. See maxRedelivery.

 l Trace and log all messages passing through a destination. See trace.

 l Include the user name of the message producer in the message. See sender_name
and sender_name_enforced.

 l Administrator operations can use wildcards in destination names. The wildcard
destination name is the parent, and any names that match the wildcard destination
name inherit the properties of the parent. See Wildcards.

 l Use the store property to cause messages sent to a destination to be written to a
store file. Set the destination store to store=$sys.failsafe to direct the server to
write messages to the file synchronously and guarantee that messages are not lost
under any circumstances. See store for more information.

 l Specify that a consumer is to receive batches of messages in the background to
improve performance. Alternatively, you can specify that queue receivers are to only
receive one message at a time. See prefetch for more information.

Client APIs
Java applications use the javax.jms package to send or receive Jakarta Messaging
messages. This is a standard set of interfaces, specified by the Jakarta Messaging
specification, for creating the connection to the EMS server, specifying the type of message
to send, and creating the destination (topic or queue) on which to send or receive
messages. You can find a description of the javax.jms package in TIBCO Enterprise
Message Service Java API Reference included in the online documentation.

Because EMS implements the Jakarta Messaging standard, you can also view the
documentation on these interfaces along with the Jakarta Messaging specification at
https://jakarta.ee/specifications/messaging/2.0.

TIBCO Enterprise Message Service includes parallel APIs for other development
environments. See the following for more information:

 l TIBCO Enterprise Message Service C & COBOL API Reference

https://jakarta.ee/specifications/messaging/2.0

TIBCO Enterprise Message Service™ User Guide

32 | Overview

 l TIBCO Enterprise Message Service .NET API Reference (online documentation)

Sample Code
EMS includes several example programs that illustrate the various features of EMS.

You may wish to view these example programs when reading about the corresponding
features in this manual. The examples are included in the samples subdirectory of the EMS
installation directory.

For more information about running the examples, see Getting Started.

TIBCO Rendezvous Java Applications
EMS includes a Java class that allows pure Java TIBCO Rendezvous applications to connect
directly with the EMS server.

For more information see Pure Java Rendezvous Programs.

Administration
EMS provides mechanisms for administering server operations and creating objects that
are managed by the server, such as ConnectionFactories and Destinations.

Administration functions can be issued either using the command-line administration tool
or by creating an application that uses the administration API (either Java or .NET). The
command-line administration tool is described in EMS Administration Tool. The
administration APIs are described in the online documentation.

The administration interfaces allow you to create and manage administered objects such
as ConnectionFactories, Topics, and Queues. EMS clients can retrieve references to these
administered objects by using Java Naming and Directory Interface (JNDI). Creating static
administered objects allows clients to use these objects without having to implement the
objects within the client.

TIBCO Enterprise Message Service™ User Guide

33 | Overview

Administering the Server
EMS has several administration features that allow you to monitor and manage the server.
The following table provides a summary of administration features and details where in the
documentation you can find more information.

Feature More Information

Configuration files allow you to specify server
characteristics.

Configuration Files

Administration tool provides a command line interface
for managing the server.

EMS Administration Tool

Authentication and permissions can restrict access to
the server and to destinations. You can also specify
who can perform administrative activities with
administrator permissions.

Authentication and Permissions

Configure log files to provide information about
various server activity.

Monitor Server Activity

The server can publish messages when various system
events occur. This allows you to create robust
monitoring applications that subscribe to these
system monitor topics.

Monitor Server Activity

The server can provide various statistics at the desired
level of detail.

Monitor Server Activity

User and Group Management
EMS provides facilities for creating and managing users and groups locally for the server.
The EMS server can also use an external system, such as an LDAP server (using JAAS
modules) for authenticating users and storing group information.

See Authentication and Permissions for more information about configuring EMS to work
with external systems for user and group management.

TIBCO Enterprise Message Service™ User Guide

34 | Overview

Using TIBCO Hawk
You can use TIBCO Hawk® for monitoring and managing the EMS server. See TIBCO Hawk
documentation for more information.

Modes, Roles, and States
The mode of an EMS server is determined by its configuration, and dictates how it operates
in its environment. If a fault tolerant mode is selected, two EMS servers are required and
each operates in a defined role. How an EMS server is operating at any given moment can
be determined by viewing its fault tolerant state.

For example, an EMS server operating in fault tolerant mode can play either a primary or
secondary role. Once both EMS servers in the fault tolerant pair have been started, one of
the two servers will be in the active state while its peer will be in the standby state. In the
event of a failover, the server that was standby becomes active.

Modes

By default, the EMS server operates in standalone mode. However, it can also be
configured to run in a fault tolerant mode:

 l Standalone — the default EMS server mode.

 l Classic Fault Tolerant — configured through the ft_active parameter if using file-
based stores or grid stores and through the FTL configuration if using FTL stores.

Roles

Each server operating in a fault tolerant mode has a distinct role: primary or secondary.

These roles are implicit for EMS servers started using tibemsd.conf files. They are explicit
for EMS servers started using a JSON configuration file. For JSON-configured servers, the
primary server is the EMS server started without the -secondary command line parameter,
while the secondary server is started with it. In the .conf files, each server in the fault
tolerant pair has a distinct tibemsd.conf file.

TIBCO Enterprise Message Service™ User Guide

35 | Overview

Note: Although EMS servers using FTL stores are JSON-configured, the primary
and secondary roles for a fault-tolerant EMS server pair are still implicit.

States

The state of the EMS server tells you about its current operations.

Use the info or show state command in the administration tool to determine the state of
the EMS server.

State Description

active The server is fully operational and ready to service clients.

standby The server is in classic fault tolerant mode and is ready to take over should its
peer fail.

Security
For communication security between servers and clients, and between servers and other
servers, you must explicitly configure TLS within EMS.

Transport Layer Security (TLS) is a protocol for transmitting encrypted data over the
Internet or an internal network. TLS works by using public and private keys to encrypt data
that is transferred over the TLS connection.

EMS supports TLS between the following components:

 l between an EMS client and the EMS server

 l between the administration tool and the EMS server

 l between the administration APIs and the EMS server

 l between routed servers

 l between fault-tolerant servers (not applicable when using FTL stores)

See TLS Protocol for more information about TLS support in EMS.

TIBCO Enterprise Message Service™ User Guide

36 | Overview

Fault Tolerance
You can configure EMS servers as primary and secondary servers to provide fault tolerance
for your environment. The primary and secondary servers act as a pair, one of them
starting out in the active state and the other in the standby state. The active server accepts
client connections and performs the work of handling messages, while the standby server
acts as a backup in case of failure. If the active server fails, the standby server assumes
operation and becomes the active server.

See Fault Tolerance for more information about the fault-tolerance features of EMS.

Routing
EMS provides the ability for servers to route messages between each other. Topic messages
can be routed across multiple hops, provided there are no cycles (that is, the message can
not be routed to any server it has already visited). Queue messages can travel at most one
hop to any other server from the server that owns the queue.

EMS stores and forwards messages in most situations to provide operation when a route is
not connected.

See Routes for more information about the routing features of EMS.

Integrating with Third-Party Products
EMS allows you to work with third-party naming/directory service products or with third-
party application servers.

Transaction Support
TIBCO Enterprise Message Service can integrate with Jakarta Transactions API (JTA)
compliant transaction managers. EMS implements all interfaces necessary to be JTA
compliant.

The EMS C API is compliant with the X/Open XA specification. The EMS .NET API supports
Microsoft Distributed Transaction Coordinator (MS DTC) with .NET Framework. Transactions

TIBCO Enterprise Message Service™ User Guide

37 | Overview

created using MSDTC in a .NET Framework client are seen as XA transactions in C and Java
clients.

Containerization
TIBCO Enterprise Message Service supports containerization.

Refer to the corresponding TIBCO Community pages for specific solutions involving
environments such as Docker, Kubernetes, OpenShift, etc.

TIBCO Enterprise Message Service™ User Guide

38 | Messages

Messages
The following sections provide an overview of EMS messages.

EMS Extensions to Jakarta Messaging Messages
The Jakarta Messaging specification details a standard format for the header and body of a
message. Properties are provider-specific and can include information on specific
implementations or enhancements to Jakarta Messaging functionality. See EMS Message
Properties for the list of message properties that are specific to EMS.

In addition to the EMS message properties, EMS provides a select number of extensions to
Jakarta Messaging. These are:

 l The Jakarta Messaging standard specifies two delivery modes for messages,
PERSISTENT and
NON_PERSISTENT. EMS also includes a RELIABLE_DELIVERY mode that eliminates some
of the overhead associated with the other delivery modes. See RELIABLE_DELIVERY.

 l For consumer sessions, you can specify a NO_ACKNOWLEDGE mode so that consumers
do not need to acknowledge receipt of messages, if desired. EMS also provides an
EXPLICIT_CLIENT_ACKNOWLEDGE and EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE mode
that restricts the acknowledgment to single messages. See Message
Acknowledgement.

 l EMS extends the MapMessage and StreamMessage body types. These extensions allow
EMS to exchange messages with TIBCO Rendezvous, which contains certain features
not available within the Jakarta Messaging MapMessage and StreamMessage.

TIBCO Enterprise Message Service adds these two extensions to the MapMessage and
StreamMessage body types:

 o You can insert another MapMessage or StreamMessage instance as a submessage
into a MapMessage or StreamMessage, generating a series of nested messages,
instead of a flat message.

 o You can use arrays as well as primitive types for the values.

These extensions add considerable flexibility to the MapMessage and

TIBCO Enterprise Message Service™ User Guide

39 | Messages

StreamMessage body types. However, they are extensions and therefore not
compliant with Jakarta Messaging specifications. Extended messages are
tagged as extensions with the vendor property tag JMS_TIBCO_MSG_EXT.

For more information on compatibility with Rendezvous messages, see Message
Body.

Jakarta Messaging Message Structure
Jakarta Messaging messages have a standard structure.

The Jakarta Messaging message structure includes the following sections:

 l Header (required)

 l Properties (optional)

 l Body (optional)

Jakarta Messaging Message Header Fields
The header contains predefined fields that contain values used to route and deliver
messages.

Header Field Set by Comments

JMSDestination send or
publish
method

Destination to which message is sent

JMSDeliveryMode send or
publish
method

Persistent or non-persistent message. The default is
persistent.

EMS extends the delivery mode to include a
 RELIABLE_DELIVERY mode.

JMSExpiration send or
publish
method

Length of time that message will live before
expiration. If set to 0, message does not expire. The
time-to-live is specified in milliseconds.

TIBCO Enterprise Message Service™ User Guide

40 | Messages

Header Field Set by Comments

If the server expiration property is set for a
destination, it will override the JMSExpiration value
set by the message producer.

JMSDeliveryTime send or
publish
method

Read-only field. If the message producer has a delivery
delay set, then the time returned here after calling the
send method represents the earliest time when the
EMS server will deliver the message to consumers.
Once the message has been received, it carries that
same value. This value is calculated by adding the
delivery delay value held by the message producer to
the time the message was sent. For transactions, the
delivery time is calculated using the time the client
sends the message, not the time the transaction is
committed.

For more information, see Delivery Delay.

JMSPriority send or
publish
method

Uses a numerical ranking, between 0 and 9, to define
message priority as normal or expedited. Larger
numbers represent higher priority.

See Message Priority for more information.

JMSMessageID send or
publish
method

Value uniquely identifies each message sent by a
provider.

JMSTimestamp send or
publish
method

Timestamp of time when message was handed off to a
provider to be sent. Message may actually be sent
later than this timestamp.

JMSCorrelationID message
client

This ID can be used to link messages, such as linking a
response message to a request message. Entering a
value in this field is optional. The JMS Correlation ID
has a recommended maximum of 4 KB. Higher values
may result in the message being rejected.

TIBCO Enterprise Message Service™ User Guide

41 | Messages

Header Field Set by Comments

JMSReplyTo message
client

A destination to which a message reply should be
sent. Entering a value for this field is optional.

JMSType message
client

Message type identifier.

JMSRedelivered Jakarta
Messaging
provider

If this field is set, it is possible that the message was
delivered to the client earlier, but not acknowledged
at that time.

EMS Message Properties
In the properties area, applications, vendors, and administrators on Jakarta Messaging
systems can add optional properties. The properties area is optional, and can be left
empty. The Jakarta Messaging specification describes the Jakarta Messaging message
properties. This section describes the message properties that are specific to EMS.

TIBCO-specific property names begin with JMS_TIBCO. Client programs may use the TIBCO-
specific properties to access EMS features, but not for communicating application-specific
information among client programs.

The EMS properties are summarized in the following table and described in more detail in
subsequent sections.

Property Description More Info

JMS_TIBCO_CM_PUBLISHER Correspondent name of an
RVCM sender for messages
imported from TIBCO
Rendezvous.

Import RVCM

JMS_TIBCO_CM_SEQUENCE Sequence number of an RVCM
message imported from TIBCO
Rendezvous.

Import RVCM

JMS_TIBCO_COMPRESS Allows messages to be Message

TIBCO Enterprise Message Service™ User Guide

42 | Messages

Property Description More Info

compressed for more efficient
storage.

Compression

JMS_TIBCO_DISABLE_SENDER Specifies that the user name of
the message sender should not
be included in the message, if
possible.

Including the
Message Sender

JMS_TIBCO_IMPORTED Set by the server when the
message has been imported
from TIBCO FTL or TIBCO
Rendezvous.

Import (for FTL)

Import (for RV)

JMS_TIBCO_MSG_EXT Extends the functionality of the
MapMessage and
StreamMessage body types to
include submessages or arrays.

EMS Extensions to
Jakarta Messaging
Messages

Import (for RV)

JMS_TIBCO_MSG_TRACE Specifies the message should
be traced from producer to
consumer.

Message Tracing

JMS_TIBCO_PRESERVE_UNDELIVERED Specifies the message is to be
placed on the undelivered
message queue if the message
must be removed.

Undelivered
Message Queue

JMS_TIBCO_SENDER Contains the user name of the
message sender.

Including the
Message Sender

Undelivered Message Queue
If a message could not be delivered for one of the reasons below, the server checks the
message’s JMS_TIBCO_PRESERVE_UNDELIVERED property. If that property is set to true, the
server moves the message to the undelivered message queue, $sys.undelivered.
Otherwise, the message is deleted by the server.

TIBCO Enterprise Message Service™ User Guide

43 | Messages

The server will examine the JMS_TIBCO_PRESERVE_UNDELIVERED property of the message if
any of the following conditions are met:

 l the message has expired

 l the message has exceeded the value specified by the maxRedelivery property on a
queue

 l the message had a delivery delay that has expired and was sent to a destination that
has reached its maxmsgs limit and also has overflowPolicy=rejectIncoming

$sys.undelivered is a system queue that is always present and cannot be deleted. To
make use of it, the application that sends or publishes the message must set the boolean
JMS_TIBCO_PRESERVE_UNDELIVERED property to true before sending or publishing the
message.

You can only set the undelivered property on individual messages, there is no way to set
the undelivered message queue as an option at the per-topic or per-queue level.

You should create a queue receiver to receive and handle messages as they arrive on the
undelivered message queue. If you wish to remove messages from the undelivered
message queue without receiving them, you can purge the $sys.undelivered queue with
the administration tool, using the purge queue command described under Command
Listing. You can also remove messages using the administrative API included with TIBCO
Enterprise Message Service.

Note that $sys.undelivered ignores the global destination property setting. Messages in
the undelivered message queue are not routed to other servers.

Filtering Messages in the Undelivered Message Queue

You can filter messages in the undelivered message queue by destination using a selector.
Note that this is an exception to the Jakarta Messaging Specification that is made only for
messages in the undelivered message queue. In the undelivered message queue, the
JMSDestination header field can be used in a selector the same way that a supported
header field or any other message property with a string value is used.

The expected value of the JMSDestination field depends on the original message
destination type and name:

JMSDestination operator 'Topic|Queue[destination_name]'

For example:

TIBCO Enterprise Message Service™ User Guide

44 | Messages

JMSDestination='Queue[A]'
 JMSDestination='Topic[B7]'
 JMSDestination NOT LIKE 'Queue[A]'
 JMSDestination LIKE 'Queue[A]'
 JMSDestination LIKE 'Q%'
 JMSDestination IS NOT NULL
 JMSDestination IN ('Queue[H]','Queue[J]')
 JMSDestination NOT IN ('Topic[H]','Topic[J]')
 JMSDestination='Queue[A]' OR JMSDestination='Queue[B]'

Including the Message Sender
Within a message, EMS can supply the user name given by the message producer when a
connection is created. The sender_name and sender_name_enforced server properties on
the destination determine whether the message producer’s user name is included in the
sent message.

When a user name is included in a message, a message consumer can retrieve that user
name by getting the string message property named JMS_TIBCO_SENDER.

When the sender_name property is enabled and the sender_name_enforced property is not
enabled on a destination, message producers can specify that the user name is to be left
out of the message. Message producers can specify the JMS_TIBCO_DISABLE_SENDER
boolean property for a particular message, and the message producer’s user name will not
be included in the message. However, if the sender_name_enforced property is enabled,
the JMS_TIBCO_DISABLE_SENDER property is ignored and the user name is always included
in the message.

Jakarta Messaging Message Bodies
A Jakarta Messaging message has one of several types of message bodies, or no message
body at all.

The types of messages are described in the following table.

Message Type Contents of Message Body

Message This message type has no body. This is useful for simple event

TIBCO Enterprise Message Service™ User Guide

45 | Messages

Message Type Contents of Message Body

notification.

TextMessage A java.lang.String.

MapMessage A set of name/value pairs. The names are java.lang.String objects, and
the values are Java primitive value types or their wrappers. The entries
can be accessed sequentially by enumeration or directly by name. The
order of entries is undefined.

When EMS is exchanging messages with Rendezvous, you can generate a
series of nested MapMessages, as described in EMS Extensions to Jakarta
Messaging Messages.

BytesMessage A stream of uninterrupted bytes. The bytes are not typed; that is, they
are not assigned to a primitive data type.

StreamMessage A stream of primitive values in the Java programming language. Each set
of values belongs to a primitive data type, and must be read sequentially.

When EMS is exchanging messages with Rendezvous, you can generate a
series of nested StreamMessages, as described in EMS Extensions to
Jakarta Messaging Messages.

ObjectMessage A serializable object constructed in the Java programming language.

Maximum Message Size
EMS supports messages up to a maximum size of 2 GB. However, we recommend that
application programs use smaller messages, since messages approaching this maximum
size will strain the performance limits of most current hardware and operating system
platforms.

Message Priority
The Jakarta Messaging specification includes a JMSPriority message header field in which
senders can set the priority of a message, as a value in the range [0,9]. EMS does support

#JMSPRIORITY

TIBCO Enterprise Message Service™ User Guide

46 | Messages

message priority (though it is optional, and other vendors might not implement it).

When the EMS server has several messages ready to deliver to a consumer client, and must
select among them, then it delivers messages with higher priority before those with lower
priority.

However, priority ordering applies only when the server has a backlog of deliverable
messages for a consumer. In contrast, when the server has only one message at a time to
deliver to a consumer, then the priority ordering feature will not be apparent.

You can set default message priority for the Message Producer, as described in Configure a
Message Producer. The default priority can be overridden by the client when sending a
message, as described in Send Messages.

Also refer to Jakarta Messaging Specification, chapter 3.4.10.

Message Delivery Modes
The JMSDeliveryMode message header field defines the delivery mode for the message.
Jakarta Messaging supports PERSISTENT and NON_PERSISTENT delivery modes for both topic
and queue. EMS extends these delivery modes to include a RELIABLE_DELIVERY mode.

You can set the default delivery mode for the Message Producer, as described in Configure
a Message Producer. This default delivery mode can be overridden by the client when
sending a message, as described in Send Messages.

PERSISTENT
When a producer sends a PERSISTENT message, the producer must wait for the server to
reply with a confirmation. The message is persisted on disk by the server. This delivery
mode ensures delivery of messages to the destination on the server in almost all
circumstances. However, the cost is that this delivery mode incurs two-way network traffic
for each message or committed transaction of a group of messages.

TIBCO Enterprise Message Service™ User Guide

47 | Messages

NON_PERSISTENT
Sending a NON_PERSISTENT message omits the overhead of persisting the message on disk
to improve performance.

If authorization is disabled on the server, the server does not send a confirmation to the
message producer.

If authorization is enabled on the server, the default condition is for the producer to wait
for the server to reply with a confirmation in the same manner as when using PERSISTENT
mode.

Regardless of whether authorization is enabled or disabled, you can use the
npsend_check_mode parameter in the tibemsd.conf file to specify the conditions under
which the server is to send confirmation of NON_PERSISTENT messages to the producer. See
the description for npsend_check_mode for details.

TIBCO Enterprise Message Service™ User Guide

48 | Messages

RELIABLE_DELIVERY
EMS extends the Jakarta Messaging delivery modes to include reliable delivery. Sending a
RELIABLE_DELIVERY message omits the server confirmation to improve performance
regardless of the authorization setting.

Also see authorization.

When using RELIABLE_DELIVERY mode, the server never sends the producer a receipt
confirmation or access denial and the producer does not wait for it. Reliable mode
decreases the volume of message traffic, allowing higher message rates, which is useful for
messages containing time-dependent data, such as stock price quotations.

When you use the reliable delivery mode, the client application does not receive any
response from the server. Therefore, all publish calls will always succeed (not throw an
exception) unless the connection to the server has been terminated.

In some cases a message published in reliable mode may be disqualified and not handled
by the server because the destination is not valid or access has been denied. In this case,
the message is not sent to any message consumer. However, unless the connection to the
server has been terminated, the publishing application will not receive any exceptions,
despite the fact that no consumer received the message.

How EMS Manages Persistent Messages
Jakarta Messaging defines two message delivery modes, PERSISTENT and NON_PERSISTENT,
and EMS defines a RELIABLE_DELIVERY mode.

For more information see Message Delivery Modes.

NON_PERSISTENT and RELIABLE_DELIVERY messages are never written to persistent storage.
PERSISTENT messages are written to persistent storage when they are received by the EMS
server.

TIBCO Enterprise Message Service™ User Guide

49 | Messages

Persistent Messages Sent to Queues
Persistent messages sent to a queue are always written to disk. Should the server fail
before sending persistent messages to subscribers, the server can be restarted and the
persistent messages will be sent to the subscribers when they reconnect to the server.

Persistent Messages Published to Topics
Persistent messages published to a topic are written to disk only if that topic has at least
one durable subscriber or one subscriber with a fault-tolerant connection to the EMS
server.

In the absence of a durable subscriber or subscriber with a fault-tolerant connection, there
are no subscribers that need messages resent in the event of a server failure. In this case,
the server does not needlessly save persistent messages. This improves performance by
eliminating the unnecessary disk I/O to persist the messages.

TIBCO Enterprise Message Service™ User Guide

50 | Messages

This behavior is consistent with the Jakarta Messaging specification because durable
subscribers to a topic cause published messages to be saved. Additionally, subscribers to a
topic that have a fault-tolerant connection need to receive messages from the new active
server after a failover. However, non-durable subscribers without a fault-tolerant
connection that re-connect after a server failure are considered newly created subscribers
and are not entitled to receive any messages created prior to the time they are created
(that is, messages published before the subscriber re-connects are not resent).

Persistent Messages and Synchronous File Storage
When using file-based stores or FTL stores, persistent messages received by the EMS server
are by default written asynchronously to disk. This means that, when a producer sends a
persistent message, the server does not wait for the write-to-disk operation to complete
before returning control to the producer.

Should the server fail before completing the write-to-disk operation, the producer has no
way of detecting the failure to persist the message and taking corrective action.

You can set the mode parameter to sync for a given file-based store or FTL store to specify
that persistent messages for the topic or queue be synchronously written to disk.
When mode = sync, the producer remains blocked until the write-to-disk operation is
completed. In the case of FTL stores, the producer will continue to remain blocked until

TIBCO Enterprise Message Service™ User Guide

51 | Messages

the message has been replicated to the other EMS servers in the cluster and written to
disk. This parameter is not relevant in the case of grid stores, where the disk access mode
is always synchronous.

When using file-based stores, the EMS server writes persistent messages to a store file. To
prevent two servers from using the same store file, each server restricts access to its store
file for the duration of the server process. For details on how EMS manages access to
shared file-based stores, see Managing Access to Shared File-Based Stores.

When using FTL stores, the EMS server stores persistent messages in FTL. See Persistence
with FTL Stores for more information.

Store Messages in Multiple Stores
The EMS server writes PERSISTENT messages to disk while waiting for confirmation of
receipt from the subscriber. Messages are persisted to a store. The EMS server can write
messages to different types of stores: file-based stores, grid stores, and FTL stores.

By default, the EMS server writes persistent messages to file-based stores. There are three
default stores, as described in Default Stores. You can configure the system to change the
default stores' properties, and also to store persistent messages to one or more store files,
filtering them by destination. Stores are defined in the stores.conf configuration file, and
associated with a destination using the store destination property.

Stores have properties that allow you to control how the server manages them. For
example:

 l When using file-based stores:

 o Preallocate disk space for the store file.

 o Truncate the file periodically to relinquish disk space.

 o Specify whether messages are written synchronously or asynchronously.

 l When using grid stores:

 o Specify the rate at which the store contents are scanned.

 l When using FTL stores:

 o Specify whether messages are persisted synchronously or asynchronously.

With the multiple stores feature, you can configure your messaging application to store
messages in different locations for each application, or create separate stores for related

TIBCO Enterprise Message Service™ User Guide

52 | Messages

destinations. For example, you can create one store for messages supporting Marketing,
and one for messages supporting Sales. Because stores are configured in the server, they
are transparent to clients.

When using the multiple stores feature, all stores must be of the same type. Configuring
multiple store types in the same server is not supported.

The EMS Administration Tool allows administrators to review the system’s configured
stores and their settings by using the show stores and show store commands.

Store Types
TIBCO Enterprise Message Service allows you to configure several different types of stores,
described here.

File-Based Stores

The EMS server stores persistent messages in file-based stores. You can use the default
store files, or create your own file-based stores. You direct the EMS server to write
messages to these store files by associating a destination with a store.

File-based stores are enabled by default, and the server automatically defines three default
stores, described below. You do not need to do anything in order to use the default stores.

The section Configuring File-Based Stores describes how to change store settings or create
custom stores.

Grid Stores

The EMS server can store messages in a TIBCO ActiveSpaces data grid. See Grid Stores for a
full description of this feature.

FTL Stores

The EMS server can store messages in a TIBCO FTL server cluster. See FTL Stores for a full
description of this feature.

TIBCO Enterprise Message Service™ User Guide

53 | Messages

Default Stores
The EMS server defines these default stores, and writes persistent messages and meta data
to them:

 l $sys.nonfailsafe—Persistent messages without a store property designation are
written to $sys.nonfailsafe by default. The server writes messages to this store
using asynchronous I/O calls.

 l $sys.failsafe—Associate a destination with this store to write messages
synchronously. The server writes messages to this store using synchronous I/O calls.

 l $sys.meta—The server writes state information about durable subscribers, fault-
tolerant connections, and other metadata in this store.

The EMS server creates these default stores as file-based stores automatically, and no steps
are required to enable or deploy them. However, you can change the system configuration
to customize the default store file settings, or even override the default store settings to
either point to different file location, or write to a grid store or FTL store.

If the EMS server is started as a service under an FTL server, or with grid store command
line parameters and the default stores are not present in the configuration, the server
automatically creates the three default stores as FTL stores or grid stores respectively.

Configuring File-Based Stores
This section describes the basic steps required to configure file-based stores.

For information on grid stores and FTL stores, see Configuring and Deploying Grid Stores
and Configuring and Deploying FTL Stores. Settings for creating and configuring multiple
stores are managed in the EMS server, and are transparent to clients. To configure the
multiple stores feature, follow these steps:

Procedure
 1. Setup and configure stores in the stores.conf file.

Stores are created and configured in the stores.conf file. Each store must have a

TIBCO Enterprise Message Service™ User Guide

54 | Messages

unique name. The stores are configured through parameters.

File-based stores have two required parameters, type and file, which determine that
the store is a file-based store, and set its location and filename. Optional parameters
allow you to determine other settings, including how messages are written to the file,
the minimum size of the file, and whether the EMS server attempts to truncate the
file.

 2. Associate destinations with the configured stores.

Messages are sent to different stores according to their destinations. Destinations are
associated with specific stores with the store parameter in the topics.conf and
queues.conf files.

When using file-based stores, you can also change store associations dynamically using the
setprop topic or setprop queue command in the EMS Administration Tool.

Multiple destinations can be mapped to the same store, either explicitly or using wildcards.
Even if no stores are configured, the server sends persistent messages that are not
associated with a store to default stores. See Default Stores for more information.

For details about the store parameter, see store.

Character Encoding in Messages
Character encodings are named sets of numeric values for representing characters. For
example, ISO 8859-1, also known as Latin-1, is the character encoding containing the
letters and symbols used by most Western European languages.

If your applications are sending and receiving messages that use only English language
characters (that is, the ASCII character set), you do not need to alter your programs to
handle different character encodings. The EMS server and application APIs automatically
handle ASCII characters in messages.

Character sets become important when your application is handling messages that use
non-ASCII characters (such as the Japanese language). Also, clients encode messages by
default as UTF-8. Some character encodings use only one byte to represent each character,
but UTF-8 can potentially use between one and four bytes to represent the same character.
For example, the Latin-1 is a single-byte character encoding. If all strings in your messages
contain only characters that appear in the Latin-1 encoding, you can potentially improve
performance by specifying Latin-1 as the encoding for strings in the message.

TIBCO Enterprise Message Service™ User Guide

55 | Messages

EMS clients can specify a variety of common character encodings for strings in messages.
The character encoding for a message applies to strings that appear in any of the following
places within a message:

 l property names and property values

 l MapMessage field names and values

 l data within the message body

The EMS client APIs (Java, .NET and C) include mechanisms for handling strings and
specifying the character encoding used for all strings within a message. The following
sections describe the implications of string character encoding for EMS clients.

Note: Nearly all character sets include unprintable characters. EMS software
does not prevent programs from using unprintable characters. However,
messages containing unprintable characters (whether in headers or data) can
cause unpredictable results if you instruct EMS to print them. For example, if you
enable the message tracing feature, EMS prints messages to a trace log file.

Supported Character Encodings
Each message contains the name of the character encoding used to encode strings within
the message. This character encoding name is one of the canonical names for character
encodings contained in the Java specification.

You can obtain a list of canonical character encoding names from the java.sun.com
website.

Java and .NET clients use these canonical character encoding names when setting or
retrieving the character encoding names.

Sending Messages
When a client sends a message, the message stores the character encoding name used for
strings in that message. Java clients represent strings using Unicode. A message created by
a Java client that does not specify an encoding will use UTF-8 as the named encoding
within the message.

http://java.sun.com/

TIBCO Enterprise Message Service™ User Guide

56 | Messages

UTF-8 uses up to four bytes to represent each character, so a Java client can improve
performance by explicitly using a single-byte character encoding, if possible.

Java clients can globally set the encoding to use with the setEncoding method or the
client can set the encoding for each message with the setMessageEncoding method. For
more information about these methods, see TIBCO Enterprise Message Service Java API
Reference.

Typically, C clients manipulate strings using the character encoding of the machine on
which they are running. The EMS C client library itself does not do any encoding or
decoding of characters. When sending a message, an EMS C client application can use
tibemsMsg_SetEncoding to put information into the message describing the encoding
used. When receiving a message in an EMS C client application, the encoding can be
retrieved using tibemsMsg_GetEncoding. Use a third party library to do the actual decoding
based on the retrieved encoding information.

Message Compression
The TIBCO Enterprise Message Service client can compress the body of a message before
sending the message to the server. EMS supports message compression/decompression
across client types (Java, C and C#). For example, a Java producer may compress a
message and a C consumer may decompress it.

About Message Compression
Message compression is especially useful when messages will be stored on the server
(persistent queue messages, or topics with durable subscribers). Setting compression
ensures that messages will take less memory space in storage. When messages are
compressed and then stored, they are handled by the server in the compressed form.
Compression assures that the messages will usually consume less space on disk and will be
handled faster by the EMS server.

The compression option only compresses the body of a message. Headers and properties
are never compressed. It is best to use compression when the message bodies will be large
and the messages will be stored on a server.

When messages will not be stored, compression is not as useful. Compression normally
takes time, and therefore the time to send or publish and receive compressed messages is

TIBCO Enterprise Message Service™ User Guide

57 | Messages

generally longer than the time to send the same messages uncompressed. There is little
purpose to message compression for small messages that are not be stored by the server.

Setting Message Compression
Message compression is specified for individual messages. That is, message compression, if
desired, is set at the message level. TIBCO Enterprise Message Service does not define a
way to set message compression at the per-topic or per-queue level.

To set message compression, the application that sends or publishes the message must
access the message properties and set the boolean property JMS_TIBCO_COMPRESS to true
before sending or publishing the message.

Compressed messages are handled transparently. The client code only sets the JMS_TIBCO_
COMPRESS property. The client does not need to take any other action. The client
automatically decompresses any compressed messages it receives.

Message Acknowledgment
The interface specification for Jakarta Messaging requires that message delivery be
guaranteed under many, but not all, circumstances.

The following figure illustrates the basic structure of message delivery and
acknowledgment.

The following describes the steps in message delivery and acknowledgment:

 1. A message is sent from the message producer to the machine on which the EMS
server resides.

TIBCO Enterprise Message Service™ User Guide

58 | Messages

 2. For persistent messages, the EMS server sends a confirmation to the producer that
the message was received.

 3. The server sends the message to the consumer.

 4. The consumer sends an acknowledgment to the server that the message was
received. A session can be configured with a specific session mode that specifies how
the consumer-to-server acknowledgment is handled. These session modes are
described below.

 5. In many cases, the server then sends a confirmation of the acknowledgment to the
consumer.

The Jakarta Messaging specification defines three levels of acknowledgment for non-
transacted sessions:

 l CLIENT_ACKNOWLEDGE specifies that the consumer is to acknowledge all messages that
have been delivered so far by the session. When using this mode, it is possible for a
consumer to fall behind in its message processing and build up a large number of
unacknowledged messages.

 l AUTO_ACKNOWLEDGE specifies that the session is to automatically acknowledge
consumer receipt of messages when message processing has finished.

 l DUPS_OK_ACKNOWLEDGE specifies that the session is to "lazily" acknowledge the
delivery of messages to the consumer. "Lazy" means that the consumer can delay
acknowledgment of messages to the server until a convenient time; meanwhile the
server might redeliver messages. This mode reduces session overhead. Should
Jakarta Messaging fail, the consumer may receive duplicate messages.

EMS extends the Jakarta Messaging session modes to include:

 l NO_ACKNOWLEDGE

 l EXPLICIT_CLIENT_ACKNOWLEDGE

 l EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE

Warning: The Simplified Jakarta Messaging API introduced in JMS 2.0 supports
the session modes defined in the Jakarta Messaging specification:
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, and
SESSION_TRANSACTED. However, it does not support the EMS extended session
modes.

The session mode is set when creating a Session, as described in Create a Session.

TIBCO Enterprise Message Service™ User Guide

59 | Messages

NO_ACKNOWLEDGE
NO_ACKNOWLEDGE mode suppresses the acknowledgment of received messages.

After the server sends a message to the client, all information regarding that message for
that consumer is eliminated from the server. Therefore, there is no need for the client
application to send an acknowledgment to the server about the received message. Not
sending acknowledgments decreases the message traffic and saves time for the receiver,
therefore allowing better utilization of system resources.

Note: Sessions created in no-acknowledge receipt mode cannot be used to
create durable subscribers.

Also, queue receivers on a queue that is routed from another server are not
permitted to specify NO_ACKNOWLEDGE mode.

EXPLICIT_CLIENT_ACKNOWLEDGE
EXPLICIT_CLIENT_ACKNOWLEDGE is like CLIENT_ACKNOWLEDGE except it acknowledges only
the individual message, rather than all messages received so far on the session.

One example of when EXPLICIT_CLIENT_ACKNOWLEDGE would be used is when receiving
messages and putting the information in a database. If the database insert operation is
slow, you may want to use multiple application threads all doing simultaneous inserts. As
each thread finishes its insert, it can use EXPLICIT_CLIENT_ACKNOWLEDGE to acknowledge
only the message that it is currently working on.

EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE
EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE is like DUPS_OK_ACKNOWLEDGE except it 'lazily'
acknowledges only the individual message, rather than all messages received so far on the
session.

TIBCO Enterprise Message Service™ User Guide

60 | Messages

Message Selectors
A message selector is a string that lets a client program specify a set of messages, based on
the values of message headers and properties. A selector matches a message if, after
substituting header and property values from the message into the selector string, the
string evaluates to true. Consumers can request that the server deliver only those
messages that match a selector.

The syntax of selectors is based on a subset of the SQL92 conditional expression syntax.

Identifiers
Identifiers can refer to the values of message headers and properties, but not to the
message body. Identifiers are case-sensitive.

Basic Syntax

An identifier is a sequence of letters and digits, of any length, that begins with a letter. As
in Java, the set of letters includes _ (underscore) and $ (dollar).

Illegal

Certain names are exceptions, which cannot be used as identifiers. In particular, NULL,
TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, and ESCAPE are defined to have special
meaning in message selector syntax.

Value

Identifiers refer either to message header names or property names. The type of an
identifier in a message selector corresponds to the type of the header or property value. If
an identifier refers to a header or property that does not exist in a message, its value is
NULL.

Literals
String Literal

A string literal is enclosed in single quotes. To represent a single quote within a literal, use
two single quotes; for example, 'literal''s'. String literals use the Unicode character
encoding. String literals are case sensitive. The server has a limit of 32,767 string literals in
a selector string.

TIBCO Enterprise Message Service™ User Guide

61 | Messages

Exact Numeric Literal

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and
+62; numbers of long are supported.

Approximate Numeric Literal

An approximate numeric literal is a numeric value with a decimal point (such as 7., -95.7,
and +6.2), or a numeric value in scientific notation (such as 7E.3 and -57.9E2); numbers in
the range of double are supported. Approximate literals use floating-point literal syntax of
the Java programming language.

Boolean Literal

The boolean literals are TRUE and FALSE (case insensitive).

Internal computations of expression values use a 3-value boolean logic similar to SQL.
However, the final value of an expression is always either TRUE or FALSE, but never
UNKNOWN.

Expressions
Selectors as Expressions

Every selector is a conditional expression. A selector that evaluates to true matches the
message; a selector that evaluates to false or unknown does not match.

Arithmetic Expression

Arithmetic expressions are composed of numeric literals, identifiers (that evaluate to
numeric literals), arithmetic operations, and smaller arithmetic expressions.

Conditional Expression

Conditional expressions are composed of comparison operations, logical operations, and
smaller conditional expressions.

Order of Evaluation

Order of evaluation is left-to-right, within precedence levels. Parentheses override this
order.

TIBCO Enterprise Message Service™ User Guide

62 | Messages

Operators
Case Insensitivity

Operator names are case-insensitive.

Logical Operators

Logical operators in precedence order: NOT, AND, OR.

Comparison Operators

Comparison operators: =, >, >=, <, <=, <> (not equal).

These operators can compare only values of comparable types. (Exact numeric values and
approximate numerical values are comparable types.) Attempting to compare
incomparable types yields false. If either value in a comparison evaluates to NULL, then
the result is unknown (in SQL 3-valued logic).

Comparison of string values is restricted to = and <>. Two strings are equal if and only if
they contain the same sequence of characters.

Comparison of boolean values is restricted to = and <>.

Arithmetic Operators

Arithmetic operators in precedence order:

 l +, - (unary)

 l *, / (multiplication and division)

 l +, - (addition and subtraction)

Arithmetic operations obey numeric promotion rules of the Java programming language.

Between Operator

arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 AND arithmetic-expr3

The BETWEEN comparison operator includes its endpoints. For example:

 l age BETWEEN 5 AND 9 is equivalent to age >= 5 AND age <= 9

 l age NOT BETWEEN 5 AND 9 is equivalent to age < 5 OR age > 9

String Set Membership

identifier [NOT] IN (string-literal1, string-literal2, ...)

TIBCO Enterprise Message Service™ User Guide

63 | Messages

The identifier must evaluate to either a string or NULL. If it is NULL, then the value of this
expression is unknown. You can use a maximum of 32,767 string-literals in the string set.

Pattern Matching

identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

The identifier must evaluate to a string.

The pattern-value is a string literal, in which some characters bear special meaning:

 l _ (underscore) can match any single character.

 l % (percent) can match any sequence of zero or more characters.

 l escape-character preceding either of the special characters changes them into
ordinary characters (which match only themselves).

Null Header or Property

identifier IS NULL

This comparison operator tests whether a message header is null, or a message property is
absent.

identifier IS NOT NULL

This comparison operator tests whether a message header or message property is non-null.

White Space
White space is any of the characters space, horizontal tab, form feed, or line terminator—or
any contiguous run of characters in this set.

Performance
In order to efficiently handle queue consumers with a selector when there is a large
backlog of messages in the queue, message headers and properties are cached in the
memory of the server for the queue. The caching begins for a given queue the first time a
queue consumer with a selector is created.

This may result in an increase of the memory footprint of the server when such queue
consumers are created. Both new incoming messages and messages already existing in the
backlog are optimized through the server cache. If the server is restarted and a fault

TIBCO Enterprise Message Service™ User Guide

64 | Messages

tolerant consumer on the queue is restored, then all recovered messages in that queue are
optimized.

TIBCO Enterprise Message Service™ User Guide

65 |

Data Type Conversion
The following table summarizes legal data type conversions. The symbol X in the following table indicates that a value written into a message as the row type can be extracted as the column type. This
table applies to all message values—including map pairs, headers and properties except as noted below.

 bool byte short char int long float double string byte[]

bool X X

byte X X X X X

short X X X X

char X X

int X X X

long X X

float X X X

double X X

string X X X X X X X X

byte[] X

Note:
 l Message properties cannot have byte array values.

 l Values written as strings can be extracted as a numeric or boolean type only when it is possible to parse the string as a number of that type.

TIBCO Enterprise Message Service™ User Guide

66 |

Sending Messages Synchronously and
Asynchronously
TIBCO Enterprise Message Service supports two modes of sending messages:

 l Synchronous sending blocks the application thread until the entire send is complete.

 l Asynchronous sending offloads the notification of the success or failure to another
thread, thereby increasing performance in certain situations.

Each sending mode has certain benefits. The following sections describe the benefits of the
different modes.

Sending Synchronously
Because synchronous sending does not have the overhead involved in asynchronous
sending, it yields better performance in most cases. Synchronous sending is also the best
choice when sending the following types of messages:

 l Non-Persistent Messages

When high performance is a concern, use synchronous sending for non-persistent or
reliable messages. Although asynchronous sending of non-persistent messages is
supported, it is generally not recommended.

 l Transactions

Typically, it makes sense for applications to use synchronous sending when using
transactions. Sending messages within a transaction does not require a response
from the server, so higher throughput can be obtained sending synchronously within
a transaction.

Synchronous sending simplifies a transaction; coordination of asynchronous send
notifications and committing or rolling back a transaction introduces complexity to
the application.

See Send Messages for details.

TIBCO Enterprise Message Service™ User Guide

67 |

Sending Asynchronously
The message producer can send messages asynchronously by registering a completion
listener to monitor message send success or failure.

Operating in a thread separate from that of the message producer, the completion listener
manages the response to a successful or failed send, leaving the message producer free to
perform other operations. See Create a Completion Listener for Asynchronous Sending for
details.

Asynchronous sending can increase performance in certain circumstances. One of the best
uses for asynchronous sending is when sending persistent messages. High level outgoing
message throughput can be obtained when sending non-transacted persistent messages.

There are other considerations for the application programmer when sending messages
asynchronously. These considerations are described below.

Concurrent Message Use
For simplicity, it is suggested that application programmers create a new message for
every asynchronous send call. If concurrent message use is acceptable in an application,
messages may be reused when sending asynchronously, but generally it is not
recommended due to the complexity it may add.

Warning: During asynchronous sends, the application programmer should be
very aware of concurrent message usage between the application and the thread
handling completion listeners. The message passed to the completion listener is
the same message passed to the MessageProducer send method, which means
modification of that particular message is reflected in both the application
thread and the thread invoking the completion listener.

For example, if a TextMessage is asynchronously sent with the text of foo, and
then the same message object's text is subsequently set to bar, it is conceivable
that when the completion listener is invoked the message will contain bar even
though it contained foo at the time it was sent.

TIBCO Enterprise Message Service™ User Guide

68 |

Memory Use
Application programmers should be aware that some additional memory is used by the
EMS server when asynchronously sending. Memory use increases if the performance of
completion listeners is slower than overall application send rates.

Fault Tolerant Failovers
Because send notifications are handled in a separate thread when messages are sent
asynchronously, it is possible to receive messages out of order after a fault tolerant switch.

For example, consider an application that sends messages A, B, and C. Message A succeeds,
Message B fails, but message C succeeds immediately after reconnect to the fault tolerant
server. The application may not know message B failed before message C was sent.
Message consumers could conceivably receive messages in the order of A, C, B; it is up to
the application to appropriately handle this situation.

Receiving Messages Synchronously and
Asynchronously
The EMS APIs allow for both synchronous or asynchronous message consumption. For
synchronous consumption, the message consumer explicitly invokes a receive call on the
topic or queue.

When synchronously receiving messages, the consumer remains blocked until a message
arrives. See Receive Messages for details.

The consumer can receive messages asynchronously by registering a message listener to
receive the messages. When a message arrives at the destination, the message listener
delivers the message to the message consumer. The message consumer is free to do other
operations between messages. See Create a Message Listener for Asynchronous Message
Consumption for details.

TIBCO Enterprise Message Service™ User Guide

69 | Destinations

Destinations
Destinations for messages can be either Topics or Queues. A destination can be created
statically in the server configuration files, or dynamically by a client application.

Servers connected by routes exchange messages sent to temporary topics. As a result,
temporary topics are ideal destinations for reply messages in request/reply interactions.

TIBCO Enterprise Message Service™ User Guide

70 |

Destination Overview
The following table summarizes the differences between static, dynamic, and temporary destinations. The sections that follow provide more detail.

Aspect Static Dynamic Temporary

Purpose Static destinations let administrators configure EMS behavior at the
enterprise level. Administrators define these administered objects, and
client programs use them—relieving program developers and end
users of the responsibility for correct configuration.

Dynamic destinations give client programs the flexibility to
define destinations as needed for short-term use.

Temporary destinations are ideal for limited-
scope uses, such as reply subjects.

Scope of
Delivery

Static destinations support concurrent use. That is, several client
processes (and in several threads within a process) can create local
objects denoting the destination, and consume messages from it.

Dynamic destinations support concurrent use. That is,
several client processes (and in several threads within a
process) can create local objects denoting the destination,
and consume messages from it.

Temporary destinations support only local
use. That is, only the client connection that
created a temporary destination can
consume messages from it.

However, servers connected by routes do
exchange messages sent to temporary
topics.

Creation Administrators create static destinations using EMS server
administration tools or administration API.

Client programs create dynamic destinations, if permitted by
the server configuration.

Client programs create temporary
destinations.

Lookup Client programs lookup static destinations by name. Successful lookup
returns a local object representation of the destination.

Not applicable. Not applicable.

Duration A static destination remains in the server until an administrator
explicitly deletes it.

A dynamic destination remains in the server as long as at
least one client actively uses it. The server automatically
deletes it (at a convenient time) when all applicable
conditions are true:

 l Topic or Queue

All client programs that access the destination have
disconnected.

 l Topic

No offline durable subscribers exist for the topic.

 l Queue

Queue, no messages are stored in the queue.

A temporary destination remains in the
server either until the client that created it
explicitly deletes it, or until the client
disconnects from the server.

TIBCO Enterprise Message Service™ User Guide

71 |

Destination Names
A destination name is a string divided into elements, each element separated by the dot
character (.). The dot character allows you to create multi-part destination names that
categorize destinations.

For example, you could have an accounting application that publishes messages on several
destinations. The application could prefix all messages with ACCT, and each element of the
name could specify a specific component of the application. ACCT.GEN_LEDGER.CASH,
ACCT.GEN_LEDGER.RECEIVABLE, and ACCT.GEN_LEDGER.MISC could be subjects for the
general ledger portion of the application.

Separating the subject name into elements allows applications to use wildcards for
specifying more than one subject. See Wildcards for more information. The use of
wildcards in destination names can also be used to define "parent" and "child" destination
relationships, where the child destinations inherit the properties from its parents. See
Inheritance of Properties.

Static Destinations
Configuration information for static destinations is stored in configuration files for the EMS
server. Changes to the configuration information can be made in a variety of ways. To
manage static destinations, you can edit the configuration files using a text editor, you can
use the administration tool, or you can use the administration APIs.

Clients can obtain references to static destinations through a naming service such as JNDI
or LDAP. See Creating and Modifying Destinations for more information about how clients
use static destinations.

Dynamic Destinations
Dynamic destinations are created on-the-fly by the EMS server, as required by client
applications. Dynamic destinations do not appear in the configuration files and exist as
long as there are messages or consumers on the destination. A client cannot use JNDI to
lookup dynamic queues and topics.

TIBCO Enterprise Message Service™ User Guide

72 |

When you use the show queuesor show topics command in the administration tool, you
see dynamic topics and queues have an asterisk (*) in front of their name in the list of
topics or queues. If a property of a queue or topic has an asterisk (*) character in front of
its name, it means that the property was inherited from the parent queue or topic and
cannot be changed.

See Dynamically Create Topics and Queues for details on topics and queues can be
dynamically created by the EMS server.

Temporary Destinations
TIBCO Enterprise Message Service supports temporary destinations as defined in Jakarta
Messaging specification and its API.

Servers connected by routes exchange messages sent to temporary topics. As a result,
temporary topics are ideal destinations for reply messages in request/reply interactions.

For more information on temporary queues and topics, refer to the Jakarta Messaging
documentation described in Third Party Documentation.

Destination Bridges
You can create server-based bridges between destinations of the same or different types to
create a hybrid messaging model for your application. This allows all messages delivered to
one destination to also be delivered to the bridged destination. You can bridge between
different destination types, between the same destination type, or to more than one
destination. For example, you can create a bridge between a topic and a queue or from a
topic to another topic.

See Destination Bridges for more information about destination bridging.

Destination Name Syntax
TIBCO Enterprise Message Service places few restrictions on the syntax and interpretation
of destination names. System designers and developers have the freedom to establish their
own conventions when creating destination names. The best destination names reflect the
structure of the data in the application itself.

TIBCO Enterprise Message Service™ User Guide

73 |

Structure

A destination name is a string divided into elements, each element separated by the dot
character (.). The dot character allows you to create multi-part destination names that
categorize destinations.

Empty strings ("") are not permitted in destination names. Likewise, elements cannot
incorporate the dot character by using an escape sequence.

Although they are not prohibited, we recommend that you do not use tabs, spaces, or any
unprintable character in a destination name. You may, however, use wildcards. See
Wildcards for more information.

Length

Destinations are limited to a total length of 249 characters. However, some of that length is
reserved for internal use. The amount of space reserved for internal use varies according to
the number of elements in the destination; destinations that include the maximum number
of elements are limited to 196 characters.

A destination can have up to 64 elements. Each element cannot exceed 127 characters. Dot
separators are not included in element length.

Destination Name Performance Considerations

When designing destination naming conventions, remember these performance
considerations:

 l Shorter destination names perform better than long destination names.

 l Destinations with several short elements perform better than one long element.

 l A set of destinations that differ early in their element lists perform better than
subjects that differ only in the last element.

Special Characters in Destination Names

These characters have special meanings when used in destination names:

TIBCO Enterprise Message Service™ User Guide

74 |

Char Char Name Special Meaning

. Dot Separates elements within a destination name.

> Greater-than Wildcard character, matches one or more trailing elements.

* Asterisk Wildcard character, matches one element.

For more information on wildcard matching, see Wildcards * and >.

Examples of Destination Names
These examples illustrate the syntax for destination names.

Examples of Destination Names

Valid Examples

NEWS.LOCAL.POLITICS.CITY_COUNCIL

NEWS.NATIONAL.ARTS.MOVIES.REVIEWS

CHAT.MRKTG.NEW_PRODUCTS

CHAT.DEVELOPMENT.BIG_PROJECT.DESIGN

News.Sports.Baseball

finance

This.long.subject_name.is.valid.even.though.quite.uninformative

Invalid Examples

News..Natural_Disasters.Flood (null element)

WRONG. (null element)

TIBCO Enterprise Message Service™ User Guide

75 |

Examples of Destination Names

.TRIPLE.WRONG.. (three null elements)

News.Tennis.Stats.Roger\.Federer (backslash in the element Roger will be included in the
element name, and will not escape the dot)

Destination Properties
The following section contain a description of properties for topics and queues.

You can set the destination properties directly in the topics.conf or queues.conf file or by
means of the setprop topic or setprop queue command in the EMS Administration Tool.

The following table lists the properties that can be assigned to topics and queues. The
sections that follow describe each property.

Property Topic Queue

exclusive No Yes

expiration Yes Yes

export Yes No

flowControl Yes Yes

global Yes Yes

import Yes Yes

maxbytes Yes Yes

maxmsgs Yes Yes

maxRedelivery No Yes

TIBCO Enterprise Message Service™ User Guide

76 |

Property Topic Queue

overflowPolicy Yes Yes

prefetch Yes Yes

redeliveryDelay No Yes

secure Yes Yes

sender_name Yes Yes

sender_name_enforced Yes Yes

store Yes Yes

trace Yes Yes

exclusive
The exclusive property is available for queues only (not for topics), and cannot be used
with global queues.

When exclusive is set for a queue, the server sends all messages on that queue to one
consumer. No other consumers can receive messages from the queue. Instead, these
additional consumers act in a standby role; if the primary consumer fails, the server selects
one of the standby consumers as the new primary, and begins delivering messages to it.

You can set exclusive using the form:

 exclusive

Non-Exclusive Queues & Round-Robin Delivery

By default, exclusive is not set for queues and the server distributes messages in a round-
robin—one to each receiver that is ready. If any receivers are still ready to accept
additional messages, the server distributes another round of messages—one to each
receiver that is still ready. When none of the receivers are ready to receive more messages,
the server waits until a queue receiver reports that it can accept a message.

TIBCO Enterprise Message Service™ User Guide

77 |

This arrangement prevents a large buildup of messages at one receiver and balances the
load of incoming messages across a set of queue receivers.

expiration
If an expiration property is set for a destination, the server honors the overridden
expiration period and retains the message for the length of time specified by the expiration
property.

However, the server overrides the JMSExpiration value set by the producer in the message
header with the value 0 and therefore the consuming client does not expire the message.

You can set the expiration property for any queue and any topic using the form:

 expiration=time[msec|sec|min|hour|day]

where time is the number of seconds. Zero is a special value that indicates messages to the
destination never expire.

You can optionally include time units, such as msec, sec, min, hour or day to describe the
time value as being in milliseconds, seconds, minutes, hours, or days, respectively. For
example:

 expiration=10min

means 10 minutes.

When a message expires it is either destroyed or, if the JMS_TIBCO_PRESERVE_UNDELIVERED
property on the message is set to true, the message is placed on the undelivered queue so
it can be handled by a special consumer. See Undelivered Message Queue for details.

All machines running EMS servers must be synchronized using NTP. If you use grid stores or
FTL stores, all machines running ActiveSpaces and FTL processes must also be
synchronized using NTP. Machines running EMS clients do not need to synchronized. For
information about how non-synchronized client machines are handled, refer to the
clock_sync_interval parameter.

TIBCO Enterprise Message Service™ User Guide

78 |

export
The export property allows messages published by a client to a topic to be exported to the
external systems with configured transports.

You can set export using the form:

 export="list"

where list is one or more transport names, as specified by the [transport_name] ids in the
transports.conf file. Multiple transport names in the list are separated by commas.

For example:

 export="RV1,RV2"

You can configure transports for TIBCO FTL or Rendezvous reliable and certified messaging
protocols. You can specify the name of one or more transports of the same type in the
export property.

You must purchase, install, and configure the external system (for example, Rendezvous)
before configuring topics with the export property. Also, you must configure the
communication parameters to the external system by creating a named transport in the
transports.conf file.

For complete details about external message services, see:

 l Interoperation with TIBCO FTL

 l Interoperation with TIBCO Rendezvous

flowControl
The flowControl property specifies the target maximum size the server can use to store
pending messages for the destination. Should the number of messages exceed the
maximum, the server will slow down the producers to the rate required by the message
consumers.

This is useful when message producers send messages much more quickly than message
consumers can consume them. Unlike the behavior established by the overflowPolicy
property, flowControl never discards messages or generates errors back to producer.

TIBCO Enterprise Message Service™ User Guide

79 |

You can set flowControl using the form:

 flowControl=size[KB|MB|GB]

where size is the maximum number of bytes of storage for pending messages of the
destination. If you specify the flowControl property without a value, the target maximum
is set to 256KB.

You can optionally include a KB, MB or GB after the number to specify kilobytes,
megabytes, or gigabytes, respectively. For example:

 flowControl=1000KB

Means 1000 kilobytes.

The flow_control parameter in tibemsd.conf file must be set to enabled before the value
in this property is enforced by the server. See Flow Control for more information about
flow control.

global
Messages destined for a topic or queue with the global property set are routed to the
other servers that are participating in routing with this server.

You can set global using the form:

 global

For further information on routing between servers, see Routes.

import
The import property allows messages published by an external system to be received by a
EMS destination (a topic or a queue), as long as the transport to the external system is
configured.

You can set import using the form:

 import="list"

TIBCO Enterprise Message Service™ User Guide

80 |

where list is one or more transport names, as specified by the [NAME] ids in the
transports.conf file. Multiple transport names in the list are separated by commas. For
example:

 import="RV1,RV2"

You can configure transports for TIBCO FTL or Rendezvous reliable and certified messaging
protocols. You can specify the name of one or more transports of the same type in the
import property.

You must purchase, install, and configure the external system (for example, Rendezvous)
before configuring topics with the import property. Also, you must configure the
communication parameters to the external system by creating a named transport in the
transports.conf file.

For complete details about external message services, see:

 l Interoperation with TIBCO FTL

 l Interoperation with TIBCO Rendezvous

maxbytes
Topics and queues can specify the maxbytes property in the form:

 maxbytes=value[KB|MB|GB]

where value is the number of bytes. For example:

 maxbytes=1000

Means 1000 bytes.

You can optionally include a KB, MB or GB after the number to specify kilobytes,
megabytes, or gigabytes, respectively. For example:

 maxbytes=1000KB

Means 1000 kilobytes.

TIBCO Enterprise Message Service™ User Guide

81 |

For queues, maxbytes defines the maximum size (in bytes) that the queue can store,
summed over all messages in the queue. Should this limit be exceeded, messages will be
rejected by the server and the message producer send calls will return an error (see also
overflowPolicy). For example, if a receiver is off-line for a long time, then the queue size
could reach this limit, which would prevent further memory allocation for additional
messages.

If maxbytes is zero, or is not set, the server does not limit the memory allocation for the
queue.

You can set both maxmsgs and maxbytes properties on the same queue. Exceeding either
limit causes the server to reject new messages until consumers reduce the queue size to
below these limits.

Warning: If the maxbytes limit is not set on a destination, the server still checks
to see if that destination’s memory footprint is growing beyond a threshold. If
so, a warning is logged. For more details, see large_destination_memory and
large_destination_count.

For topics, maxbytes limits the maximum size (in bytes) that the topic can store for delivery
to each durable or non-durable online subscriber on that topic. That is, the limit applies
separately to each subscriber on the topic. For example, if a durable subscriber is off-line
for a long time, pending messages accumulate until they exceed maxbytes; when the
subscriber consumes messages (freeing storage) the topic can accept additional messages
for the subscriber. For a non-durable subscriber, maxbytes limits the number of pending
messages that can accumulate while the subscriber is online.

Warning: Under certain conditions, because of the pipelined nature of message
processing or the requirements of transactional messaging, the maxbytes limit
can be slightly exceeded. You may see message totals that are marginally larger
than the set limit.

When a destination inherits different values of this property from several parent
destinations, it inherits the smallest value.

Note: You can further protect against consumers that receive messages without
acknowledging them using the parameter disconnect_non_acking_consumers.

TIBCO Enterprise Message Service™ User Guide

82 |

maxmsgs
Topics and queues can specify the maxmsgs property in the form:

 maxmsgs=value

where value defines the maximum number of messages that can be waiting in a queue.
When adding a message would exceed this limit, the server does not accept the message
into storage, and the message producer’s send call returns an error (but see also
overflowPolicy).

If maxmsgs is zero, or is not set, the server does not limit the number of messages in the
queue.

Warning: If the maxmsgs limit is not set on a destination, the server still checks
to see if that destination’s memory footprint is growing beyond a threshold. If
so, a warning is logged. For more details, see large_destination_memory and
large_destination_count.

You can set both maxmsgs and maxbytes properties on the same queue. Exceeding either
limit causes the server to reject new messages until consumers reduce the queue size to
below these limits.

Warning: Under certain conditions, because of the pipelined nature of message
processing or the requirements of transactional messaging, the maxmsgs limit
can be slightly exceeded. You may see message totals that are marginally larger
than the set limit.

Note: You can further protect against consumers that receive messages without
acknowledging them using the parameter disconnect_non_acking_consumers.

maxRedelivery
The maxRedelivery property specifies the number of attempts the server should make to
deliver a message sent to a queue.

Set maxRedelivery using the form:

TIBCO Enterprise Message Service™ User Guide

83 |

 maxRedelivery=count

where count is an integer between 2 and 255 that specifies the maximum number of times
a message can be delivered to receivers. A value of zero disables maxRedelivery, so there
is no maximum.

Once the server has attempted to deliver the message the specified number of times, the
message is either destroyed or, if the JMS_TIBCO_PRESERVE_UNDELIVERED property on the
message is set to true, the message is placed on the undelivered queue so it can be
handled by a special consumer. See Undelivered Message Queue for details.

For messages that have been redelivered, the JMSRedelivered header property is set to
true and the JMSXDeliveryCount property is set to the number of times the message has
been delivered to the queue. If the server restarts, the current number of delivery attempts
in the JMSXDeliveryCount property is not retained.

Note: In the event of an abrupt exit by the client, the maxRedelivery count can
be mistakenly incremented. An abrupt exit prevents the client from
communicating with the server; for example, when the client exits without
closing the connection or when the client application crashes. If a client
application exits abruptly, the EMS server counts all messages sent to the client
as delivered, even if they were not presented to the application.

overflowPolicy
Topics and queues can specify the overflowPolicy property to change the effect of
exceeding the message capacity established by either maxbytes or maxmsgs.

Set the overflowPolicy using the form:

 overflowPolicy=default|discardOld|rejectIncoming

If overflowPolicy is not set, then the policy is default.

The effect of overflowPolicy on the maxbytes and maxmsgs behaviors differs depending on
whether you set it on a topic or a queue, so the impact of each overflowPolicy value is
described separately for topics and queues.

If wildcards are used in the .conf file the inheritance of the overflowPolicy policy from
multiple parents works as follows:

TIBCO Enterprise Message Service™ User Guide

84 |

 l If a child destination has a non-default overflowPolicy policy set, then that policy is
used and it does not inherit any conflicting policy from a parent.

 l If a parent has OVERFLOW_REJECT_INCOMING set, then it is inherited by the child
destination over any other policy.

 l If no parent has OVERFLOW_REJECT_INCOMING set and a parent has
OVERFLOW_DISCARD_OLD policy set, then that policy is inherited by the child
destination.

 l If no parent has the OVERFLOW_REJECT_INCOMING or OVERFLOW_DISCARD_OLD set, then
the default policy is used by the child destination.

default
For topics, default specifies that messages are sent to each subscriber in turn. If the
maxbytes or maxmsgs setting has been reached for a subscriber, that subscriber does not
receive the message. No error is returned to the message producer.

For queues, default specifies that new messages are rejected by the server and an error is
returned to the producer if the established maxbytes or maxmsgs value has been exceeded.

Note: When delivery delay is enabled for a topic, the behavior of
overflowPolicy=default mimics that of a queue. That is, when maxbytes or
maxmsgs has been reached, new messages are rejected by the server and an
error is returned to the producer.

discardOld
For topics, discardOld specifies that, if any of the subscribers have an outstanding number
of undelivered messages on the server that are over the message limit, the oldest
messages are discarded before they are delivered to the subscriber.

The discardOld setting impacts subscribers individually. For example, you might have
three subscribers to a topic, but only one subscriber exceeds the message limit. In this
case, only the oldest messages for the one subscriber are discarded, while the other two
subscribers continue to receive all of their messages.

When messages for a topic or queue exceed the maxbytes or maxmsgs value, the oldest
messages are silently discarded. No error is returned to the producer.

TIBCO Enterprise Message Service™ User Guide

85 |

rejectIncoming
For topics, rejectIncoming specifies that, if any of the subscribers have an outstanding
number of undelivered messages on the server that are over the message limit, all new
messages are rejected and an error is returned to the producer.

For queues, rejectIncoming specifies that, if messages on the queue have exceeded the
maxbytes or maxmsgs value, all new messages are rejected and an error is returned to the
producer. (This is the same as the default behavior.)

Examples
To discard messages on myQueue when the number of queued messages exceeds 1000,
enter:

setprop queue myQueue maxmsgs=1000,overflowPolicy=discardOld

To reject all new messages published to myTopic when the memory used by undelivered
messages for any of the topic subscribers exceeds 100KB, enter:

setprop topic myTopic maxbytes=100KB,overflowPolicy=rejectIncoming

prefetch
The message consumer portion of a client and the server cooperate to regulate fetching
according to the prefetch property. The prefetch property applies to both topics and
queues.

You can set prefetch using the form:

 prefetch=value

where value is one of the values in prefetch Values.

prefetch Values
The following table lists values used with the prefetch property.

TIBCO Enterprise Message Service™ User Guide

86 |

Value Description

2 or
more

The message consumer automatically fetches messages from the server. The
message consumer never fetches more than the number of messages specified by
value.

See Automatic Fetch Enabled for details.

1 The message consumer automatically fetches messages from the server—initiating
fetch only when it does not currently hold a message.

none Disables automatic fetch. That is, the message consumer initiates fetch only when
the client calls receive—either an explicit synchronous call, or an implicit call (in
an asynchronous consumer).

This value cannot be used with topics or global queues.

See Automatic Fetch Disabled for details.

0 The destination inherits the prefetch value from a parent destination with a
matching name. If it has no parent, or no destination in the parent chain sets a
value for prefetch, then the default value is 5 queues and 64 for topics.

When a destination does not set any value for prefetch, then the default value is 0
(zero; that is, inherit the prefetch value).

See Inheritance for details.

Note: If both prefetch and maxRedelivery are set to a non-zero value, then
there is a potential to lose prefetched messages if one of the messages exceeds
the maxRedelivery limit. For example, prefetch=5 and maxRedelivery=4. The
first message is redelivered 4 times, hits the maxRedelivery limit and is sent to
the undelivered queue (as expected). However, the other 4 pre-fetched messages
are also sent to the undelivered queue and are not processed by the receiving
application. The work around is to set prefetch=none, but this can have
performance implications on large volume interfaces.

TIBCO Enterprise Message Service™ User Guide

87 |

Background
Delivering messages from the server destination to a message consumer involves two
independent phases—fetch and accept.

 l The fetch phase is a two-step interaction between a message consumer and the
server.

 o The message consumer initiates the fetch phase by signaling to the server that
it is ready for more messages.

 o The server responds by transferring one or more messages to the client, which
stores them in the message consumer.

 l In the accept phase, client code takes a message from the message consumer.

The receive call embraces both of these phases. It initiates fetch when needed and it
accepts a message from the message consumer.

To reduce waiting time for client programs, the message consumer can prefetch
messages—that is, fetch a batch of messages from the server, and hold them for client
code to accept, one by one.

acl.conf
This file defines all permissions on topics and queues for all users and groups.

The format of the file is:

TOPIC=topic USER=user PERM=permissions
 TOPIC=topic GROUP=group PERM=permissions
 QUEUE=queue USER=user PERM=permissions
 QUEUE=queue GROUP=group PERM=permissions
 ADMIN USER=user PERM=permissions
 ADMIN GROUP=group PERM=permissions

Parameter
Name

Description

TOPIC Name of the topic to which you wish to add permissions.

TIBCO Enterprise Message Service™ User Guide

88 |

Parameter
Name

Description

QUEUE Name of the queue to which you wish to add permissions.

ADMIN Specifies that you wish to add administrator permissions.

USER Name of the user to whom you wish to add permissions.

GROUP Name of the group to which you wish to add permissions. The designation
all specifies a predefined group that contains all users.

PERM Permissions to add.

The permissions which can be assigned to queues are send, receive and
browse. The permissions which can be assigned to topics are publish,
subscribe and durable and use_durable. The designation all specifies all
possible permissions. For information about these permissions, refer to When
Permissions Are Checked and Inheritance of Permissions.

Administration permissions are granted to users to perform administration
activities. See Administrator Permissions for more information about
administration permissions.

Example

ADMIN USER=sys-admins PERM=all
 TOPIC=foo USER=user2 PERM=publish,subscribe
 TOPIC=foo GROUP=group1 PERM=subscribe

Automatic Fetch Enabled
To enable automatic fetch, set prefetch to a positive integer. Automatic fetch ensures that
if a message is available, then it is waiting when client code is ready to accept one. It can
improve performance by decreasing or eliminating client idle time while the server
transfers a message.

However, when a queue consumer prefetches a group of messages, the server does not
deliver them to other queue consumers (unless the first queue consumer’s connection to
the server is broken).

TIBCO Enterprise Message Service™ User Guide

89 |

Note: A positive prefetch must be configured in order to use receiveNoWait
function calls.

Automatic Fetch Disabled
To disable automatic fetch, set prefetch=none.

Even when prefetch=none, a queue consumer can still hold a message. For example, a
receive call initiates fetch, but its timeout elapses before the server finishes transferring
the message. This situation leaves a fetched message waiting in the message consumer. A
second receive call does not fetch another message; instead, it accepts the message that
is already waiting. A third receive call initiates another fetch.

Notice that a waiting message still belongs to the queue consumer, and the server does not
deliver it to another queue consumer (unless the first queue consumer’s connection to the
server is broken). To prevent messages from waiting in this state for long periods of time,
code programs either to call receive with no timeout, or to call it (with timeout)
repeatedly and shorten the interval between calls.

Note: Automatic fetch cannot be disabled for global queues or for topics.

Inheritance
When a destination inherits the prefetch property from parent destination with matching
names, these behaviors are possible:

 l When all parent destinations set the value none, then the child destination inherits
the value none.

 l When any parent destination sets a non-zero numeric value, then the child
destination inherits the largest value from among the entire parent chain.

 l When none of the parent destinations sets any non-zero numeric value, then the
child destination uses the default value (which is 5).

TIBCO Enterprise Message Service™ User Guide

90 |

redeliveryDelay
When redeliveryDelay is set, the EMS server waits the specified interval before returning
an unacknowledged message to the queue.

When a previously delivered message did not receive a successful acknowledgment, the
EMS server waits the specified redelivery delay before making the message available again
in the queue. This is most likely to occur in the event of a transaction rollback, session or
message recovery, session or connection close, or the abrupt exit of a client application.
However, note that the delay time is not exact, and in most situations will exceed the
specified redeliveryDelay.

Note: The redelivery delay is not available for routed queues.

The value can be specified in seconds, minutes, or hours. The value may be in the range of
15 seconds and 8 hours.

You can set redeliveryDelay using the form:

 redeliveryDelay=time[sec|min|hour]

where time is the number of seconds. Zero is a special value that indicates no redelivery
delay.

You can optionally include time units, such as sec, min, or hour describe the time value as
being in seconds, minutes, or hours, respectively. For example:

 redeliveryDelay=30min

specifies a redelivery delay of 30 minutes.

During the delay interval, messages are placed in the $sys.redelivery.delay queue. This
queue can be browsed, but it cannot be consumed from or purged. However, purging the
queue from which the delayed message came, or removing the message using its message
ID, immediately removes that message from $sys.redelivery.delay.

Note: While a message is on the $sys.redelivery.delay queue, it is not on the
queue from which it came and so it is not included in statistical message counts.
This includes maxmsgs, maxbytes, flowControl, and so on.

TIBCO Enterprise Message Service™ User Guide

91 |

secure
When the secure property is enabled for a destination, it instructs the server to check user
permissions whenever a user attempts to perform an operation on that destination.

You can set secure using the form:

 secure

If the secure property is not set for a destination, the server does not check permissions
for that destination and any authenticated user can perform any operation on that topic or
queue.

Note: The secure property is independent of TLS—it controls basic
authentication and permission verification within the server. To configure secure
communication between clients and server, see TLS Protocol.

The server authorization property acts as a master switch for checking permissions. That
is, the server checks user permissions on secure destinations only when the authorization
property is enabled. To enforce permissions, you must both enable the authorization
configuration parameter, and set the secure property on each affected destination.

See Authentication and Permissions for more information on permissions and the secure
property.

sender_name
The sender_name property specifies that the server may include the sender’s user name for
messages sent to this destination.

You can set sender_name using the form:

 sender_name

When the sender_name property is enabled, the server takes the user name supplied by the
message producer when the connection is established and places that user name into the
JMS_TIBCO_SENDER property in the message.

The message producer can override this behavior by specifying a property on a message. If
a message producer sets the JMS_TIBCO_DISABLE_SENDER property to true for a message,

TIBCO Enterprise Message Service™ User Guide

92 |

the server overrides the sender_name property and does not add the sender name to the
message.

If authentication for the server is turned off, the server places whatever user name the
message producer supplied when the message producer created a connection to the
server. If authentication for the server is enabled, the server authenticates the user name
supplied by the connection and the user name placed in the message property will be an
authenticated user. If TLS is used, the TLS connection protocol guarantees the client is
authenticated using the client’s digital certificate.

sender_name_enforced
The sender_name_enforced property specifies that messages sent to this destination must
include the sender’s user name. The server retrieves the user name of the message
producer using the same procedure described in the sender_name property above.

However, unlike, the sender_name property, there is no way for message producers to
override this property.

You can set sender_name_enforced using the form:

 sender_name_enforced

If the sender_name property is also set on the destination, this property overrides the
sender_name property.

Note: In some business situations, clients may not be willing to disclose the user
name of their message producers.
If this is the case, these clients may wish to avoid sending messages to
destinations that have the sender_name or sender_name_enforced properties
enabled.

In these situations, the operator of the EMS server should develop a policy for
disclosing a list of destinations that have these properties enabled. This will
allow clients to avoid sending messages to destinations that would cause their
message producer usernames to be exposed.

TIBCO Enterprise Message Service™ User Guide

93 |

store
The store property determines where messages sent to this destination are stored.
Messages may be stored in a file, in a TIBCO ActiveSpaces data grid, or in a TIBCO FTL
server cluster.

See Store Messages in Multiple Stores for more information on using and configuring
multiple stores.

Warning: When using the setprop or addprop commands to change the store
settings for a topic or queue, note that existing messages are not migrated to
the new store. As a result, stopping the EMS server and deleting the original
store may result in data loss, if a destination still had messages in the original
store.

Set the store property using this form:

 store=name

where name is the name of a store, as defined in the stores.conf file.

For example, this will send all messages sent to the destination giants.games to the store
named baseball; messages sent to all other destinations will be stored in everythingelse:

 > store=everythingelse
 giants.games store=baseball

Only one store is allowed for each destination. If there is a conflict, for example if
overlapping wildcards cause a topic to inherit multiple store properties, the topic creation
will fail.

Note: This parameter cannot be used without first enabling this feature in the
tibemsd.conf file. The stores.conf file must also exist, but can be left empty if
the only store names that are associated with destinations are the default
stores. These rules apply when using a JSON configuration file as well.

See Store Messages in Multiple Stores for more information.

TIBCO Enterprise Message Service™ User Guide

94 |

trace
The trace property specifies that tracing should be enabled for this destination.

You can set trace using the form:

 trace = [body]

Specifying trace (without =body), generates trace messages that include the message
sequence, message ID, and message size. Specifying trace=body generates trace messages
that include the message body. See Message Tracing for more information about message
tracing.

Temporary Destination Properties
Temporary destinations, both topics and queues, support the following properties:

 l maxbytes

 l maxmsgs

 l overflowPolicy

Temporary destinations tend to be short-lived objects by nature. Applications have no
control over destination names for temporary topics and queues. For these reasons, you
cannot directly set the above supported properties on temporary destinations.

However, EMS defines a special temporary destination wildcard that can be used to assign
properties and values to temporary topics and queues by way of inheritance.

The temporary destination wildcard is defined as TMP.>, and can be used for both topics
and queues. All properties set on topics using the wildcard are inherited by all temporary
topics. Similarly, all properties set on queues using the wildcard are inherited by all
temporary queues.

Although the same wildcard is used for both destination types, property values assigned
using the wildcard are not shared between topics and queues. That is, you can assign one
overflowPolicy to all temporary topics, and a different overflowPolicy to all temporary
queues.

Properties can also be set on the TMP.> temporary destination wildcard through a variety
of ways:

TIBCO Enterprise Message Service™ User Guide

95 |

 l Using the following tibemsadmin commands:

 o create topic TMP.> [properties]

 o create queue TMP.> [properties]

 o addprop topic TMP.> [properties]

 o addprop queue TMP.> [properties]

 o setprop topic TMP.> [properties]

 o setprop queue TMP.> [properties]

 l In the topics.conf and queues.conf configuration files.

 l In the JSON configuration file.

Topics

Properties set on the TMP.> topic are immediately and directly inherited by all existing
temporary topics and all temporary topics created in the future.

Queues

Properties set on the TMP.> queue are immediately and directly inherited by all existing
temporary queues and all temporary queues created in the future.

Usage Notes
The temporary destination wildcard TMP.> can only be used to set properties on
temporary topics or queues through inheritance.

 l TMP.> cannot be used to send or receive messages.

 l TMP.> cannot be used as the source or target of a destination bridge.

 l You cannot create a durable subscription on the temporary topic wildcard TMP.>.

 l You cannot use TMP.> to import or export messages from TIBCO FTL or
Rendezvous.

 l TMP.> never inherits any properties from other destination wildcards. For example,
TMP.> does not inherit from the wildcard >.

TIBCO Enterprise Message Service™ User Guide

96 |

Creating and Modifying Destinations
Destinations are typically "static" administered objects that can be stored in a JNDI or
LDAP server. Administered objects can also be stored in the EMS server and looked up
using the EMS implementation of JNDI.

This section describes how to use the EMS Administration Tool to create and modify
destination objects in EMS. For more information, see EMS Administration Tool.

You create a queue using the create queue command and a topic using the create topic
command. For example, to create a new queue named myQueue, enter:

 create queue myQueue

To create a topic named myTopic, enter:

 create topic myTopic

The queue and topic data stored on the EMS server is located in the queues.conf and
topics.conf files, respectively. You can use the show queues and show topics commands
to list all of the queues and topics on your EMS server and the show queue and show topic
commands to show the configuration details of specific queues and topics.

A queue or topic may include optional properties that define the specific characteristics of
the destination. These properties are described in Destination Properties and they can be
specified when creating the queue or topic or modified for an existing queue or topic using
the addprop queue, addprop topic, setprop queue, setprop topic, removeprop queue,
and removeprop topic commands.

For example, to discard messages on myQueue when the number of queued messages
exceeds 1000, you can set an overflowPolicy by entering:

 addprop queue myQueue maxmsgs=1000,overflowPolicy=discardOld

To change the overflowPolicy from discardOld to rejectIncoming, enter:

 addprop queue myQueue overflowPolicy=rejectIncoming

The setprop queue and setprop topic commands remove properties that are not
explicitly set by the command. For example, to change maxmsgs to 100 and to remove the
overflowPolicy parameter, enter:

TIBCO Enterprise Message Service™ User Guide

97 |

 setprop queue myQueue maxmsgs=100

Creating Secure Destinations
By default, all authenticated EMS users have permissions to perform any action on any
topic or queue.

You can set the secure property on a topic or queue and then use the grant topic or
grant queue command to specify which users and/or groups are allowed to perform which
actions on the destination.

The secure property requires that you enable the authorization property on the EMS
server.

For example, to create a secure queue, named myQueue, to which only users "joe" and
"eric" can send messages and "sally" can receive messages, in the EMS Administration
Tool, enter:

 set server authorization=enabled
 create queue myQueue secure
 grant queue myQueue joe send
 grant queue myQueue eric send
 grant queue myQueue sally receive

See Authentication and Permissions for more information.

Wildcards
You can use wildcards when specifying statically created destinations in queues.conf and
topics.conf.

The use of wildcards in destination names can be used to define "parent" and "child"
destination relationships, where the child destinations inherit the properties and
permissions from its parents. You must first understand wildcards to understand the
inheritance rules described in Inheritance.

TIBCO Enterprise Message Service™ User Guide

98 |

Wildcards * and >
To understand the rules for inheritance of properties, it is important to understand the use
of the two wildcards, * and >.

 l The wildcard > by itself matches any destination name.

 l When > is mixed with text, it matches one or more trailing elements. For example:

 foo.>

Matches foo.bar, foo.boo, foo.boo.bar, and foo.bar.boo.

 l The wildcard * means that any token can be in the place of *. For example:

 foo.*

Matches foo.bar and foo.boo, but not foo.bar.boo.

 foo.*.bar

Matches foo.boo.bar, but not foo.bar.

Overlapping Wildcards and Disjoint Properties
Some destination properties are disjoint, and the server allows that property to be set only
once for each destination. If an existing destination includes a value for a disjoint property
and you attempt to assign a different value, the action will fail.

Overlapping wildcard destinations can cause conflicts with disjoint properties. For example,
consider the following configuration of the store property:

topic.sample.> store=$sys.failsafe
 topic.sample.quotes.* store=$sys.nonfailsafe

The topic topic.sample.quotes.tibx would be assigned both stores, $sys.failsafe and
$sys.nonfailsafe. Therefore, the wildcard topics topic.sample.> and
topic.sample.quotes.* cannot coexist. Their creation would fail.

EMS currently has only one disjoint property: store.

TIBCO Enterprise Message Service™ User Guide

99 |

Wildcards in Topics
TIBCO Enterprise Message Service enables you to use wildcards in topic names in some
situations.

 l You can subscribe to wildcard topics.

If you subscribe to a topic containing a wildcard, you will receive any message
published to a matching topic. For example, if you subscribe to foo.* you will receive
messages published to a topic named foo.bar.

You can subscribe to a wildcard topic (for example foo.*), whether or not there is a
matching topic in the configuration file (for example, foo.*, foo.>, or foo.bar).
However, if there is no matching topic name in the configuration file, no messages
will be published on that topic.

 l You cannot publish to wildcard topics.

 l If foo.bar is not in the configuration file, then you can publish to foo.bar if foo.* or
foo.> exists in the configuration file.

 l On routed topic messages, subscribers must specify a topic that is a direct subset (or
equal) of the configured global topic. For more information, see Wildcards.

Wildcards in Queues
TIBCO Enterprise Message Service enables you to use wildcards in queue names in some
situations. You can neither send to nor receive from wildcard queue names. However, you
can use wildcard queue names in the configuration files.

For example, if the queue configuration file includes a line:

foo.*

then users can dynamically create queues foo.bar, foo.bob, and so forth, but not
foo.bar.bob.

Wildcards and Dynamically Created Destinations
The EMS server may dynamically create destinations on behalf of its clients. The use of
wildcards in the .conf files can be used to control the allowable names of dynamically

TIBCO Enterprise Message Service™ User Guide

100 |

created destinations.

The same basic wildcard rules apply to dynamically created destinations as described
above for static destinations.

Examples
 l If the queues.conf file contains:

 >

The EMS server can dynamically create a queue with any name.

 l If the topics.conf file contains only:

 foo.>

The EMS server can dynamically create topics with names like foo.bar, foo.boo,
foo.boo.bar, and foo.bar.boo.

 l If the queues.conf file contains only:

 foo.*

The EMS server can dynamically create queues with names like foo.bar and foo.boo,
but not foo.bar.boo.

 l If the topics.conf file contains only:

 foo.*.bar

The EMS server can dynamically create topics with names like foo.boo.bar, but not
foo.bar.

Inheritance
The following sections describe the inheritance of properties and permissions.

The Wildcards, Destination Properties, and Authentication and Permissions sections
provide useful information in this context

TIBCO Enterprise Message Service™ User Guide

101 |

Inheritance of Properties
All destination properties are inheritable for both topics and queues. This means that a
property set for a "wildcarded" destination is inherited by all destinations with matching
names.

For example, if you have the following in your topics.conf file:

foo.* secure

foo.bar

foo.bob

Topics foo.bar and foo.bob are secure topics because they inherit secure from their
parent, foo.*. If your EMS server were to dynamically create a foo.new topic, it too would
have the secure property.

The properties inherited from a parent are in addition to the properties defined for the
child destination.

For example, if you have the following in your topics.conf file:

foo.* secure
 foo.bar sender_name

Then foo.bar has both the secure and sender_name properties.

In the above example, there is no way to make topic foo.* secure without making foo.bar
secure. In other words, EMS does not offer the ability to remove inherited properties.
However, for properties that are assigned values, you can override the value established in
a parent.

For example, if you have the following in your queues.conf file:

foo.* maxbytes=200
 foo.bar maxbytes=2000

The foo.bar queue has a maxbytes value of 2000.

When there are multiple ancestors for a destination, the destination inherits the properties
from all of the parents. For example:

TIBCO Enterprise Message Service™ User Guide

102 |

> sender_name
 foo.* secure
 foo.bar trace

The foo.bar topic has the sender_name, secure and trace properties.

When there are multiple parents for a destination that contain conflicting property values,
the destination inherits the smallest value. For example:

> maxbytes=2000
 foo.* maxbytes=200
 foo.bar

The foo.bar topic has a maxbytes value of 200.

Property inheritance is powerful, but can be complex to understand and administer. You
must plan before assigning properties to topics and queues. Using wildcards to assign
properties must be used carefully. For example, if you enter the following line in the
topics.conf file:

> store=mystore

you make every topic store messages, regardless of additional entries. This might require a
great deal of memory for storage and greatly decrease the system performance.

Inheritance of Permissions
Inheritance of permissions is similar to inheritance of properties. If the parent has a
permission, then the child inherits that permission.

For example, if Bob belongs to GroupA, and GroupA has publish permission on a topic,
then Bob has publish permission on that topic.

Permissions for a single user are the union of the permissions set for that user, and of all
permissions set for every group in which the user is a member. These permission sets are
additive. Permissions have positive boolean inheritance. Once a permission right has been
granted through inheritance, it can not be removed.

All rules for wildcards apply to inheritance of permissions. For example, if a user has
permission to publish on topic foo.*, the user also has permission to publish on foo.bar
and foo.new.

TIBCO Enterprise Message Service™ User Guide

103 |

For more information on wildcards, refer to Wildcards. For more information on
permissions, refer to User Permissions.

Destination Bridges
Some applications require the same message to be sent to more than one destination,
possibly of different types.

For example, an application may send messages to a queue for distributed load balancing.
That same application, however, may also need the messages to be published to several
monitoring applications. Another example is an application that publishes messages to
several topics. All messages however, must also be sent to a database for backup and for
data mining. A queue is used to collect all messages and send them to the database.

An application can process messages so that they are sent multiple times to the required
destinations. However, such processing requires significant coding effort in the application.
EMS provides a server-based solution to this problem. You can create bridges between
destinations so that messages sent to one destination are also delivered to all bridged
destinations.

Bridges are created between one destination and one or more other destinations of the
same or of different types. That is, you can create a bridge from a topic to a queue or from
a queue to a topic. You can also create a bridge between one destination and multiple
destinations. For example, you can create a bridge from topic a.b to queue q.b and topic
a.c.

When specifying a bridge, you can specify a particular destination name, or you can use
wildcards. For example, if you specify a bridge on topic foo.* to queue foo.queue,
messages delivered to any topic matching foo.* are sent to foo.queue.

Note: Because global topics are routed between servers and global queues are
limited to their neighbors, in most cases the best practice is to send messages to
a topic and then bridge the topic to a queue.

When multiple bridges exist, using wildcards to specify a destination name may result in a
message being delivered twice. For example, if the queues Q.1 and Q.> are both bridged to
QX.1, the server will deliver two copies of sent messages to QX.1.

The following figures illustrate example bridging scenarios.

TIBCO Enterprise Message Service™ User Guide

104 |

Bridging a topic to a queue:

Bridging a topic to multiple destinations:

TIBCO Enterprise Message Service™ User Guide

105 |

Bridging a queue to multiple destinations:

Note: When a bridge exists between two queues, the message is delivered to
both queues. The queues operate independently; if the message is retrieved
from one queue, that has no effect on the status of the message in the second
queue.

Bridges are not transitive. That is, messages sent to a destination with a bridge are only
delivered to the specified bridged destinations and are not delivered across multiple
bridges. For example, topic A.B has a bridge to queue Q.B. Queue Q.B has a bridge to topic
B.C. Messages delivered to A.B are also delivered to Q.B, but not to B.C.

The bridge copies the source message to the target destination, which assigns the copied
message a new message identifier. Note that additional storage may be required,
depending on the target destination store parameters.

Create a Bridge
Bridges are configured using the bridges.conf configuration file.

You specify a bridge using the following syntax:

TIBCO Enterprise Message Service™ User Guide

106 |

[destinationType:destinationName]
 destinationType=destinationToBridgeTo selector="msg-selector"

where destinationType is the type of the destination (either topic or queue),
destinationName is the name of the destination from which you wish to create a bridge,
destinationToBridgeTo is the name of the destination you wish to create a bridge to, and
selector="msg-selector" is an optional message selector to specify the subset of messages
the destination should receive.

Each destinationName can specify wildcards, and therefore any destination matching the
pattern will have the specified bridge. Each destinationName can specify more than one
destinationToBridgeTo.

For example, the bridges illustrated in the images Bridging a topic to a queue and Bridging
a topic to multiple destinations would be specified as the following in bridges.conf:

[topic:A.B]
 queue=queue.B
 topic=C.B

Specifying a message selector on a bridged destination is described in the following
section.

Note: Deleting the source destination or a target destination of a bridge is
prohibited. The server prevents you from deleting the source destination,
however it does not prevent you from deleting a target destination. Regardless,
prior to deleting a destination that is the source or target of a bridge, you must
first remove the bridge.

Select the Messages to Bridge
By default, all messages sent to a destination with a bridge are sent to all bridged
destinations. This can cause unnecessary network traffic if each bridged destination is only
interested in a subset of the messages sent to the original destination. You can optionally
specify a message selector for each bridge to determine which messages are sent over that
bridge.

Message selectors for bridged destinations are specified as the selector property on the
bridge. The following is an example of specifying a selector on the bridges defined in the
previous section:

TIBCO Enterprise Message Service™ User Guide

107 |

[topic:A.B]
 queue=queue.B
 topic=C.B selector="urgency in('medium', 'high')"

For detailed information about message selector syntax, see the documentation for the
Message class in the relevant EMS API reference document.

Access Control and Bridges
Message producers must have access to a destination to send messages to that
destination. However, a bridge automatically has permission to send to its target
destination. Special configuration is not required.

Transactions
When a message producer sends a message within a transaction, all messages sent across
a bridge are part of the transaction. Therefore, if the transaction succeeds, all messages are
delivered to all bridged destinations. If the transaction fails, no consumers for bridged
destinations receive the messages.

If a message cannot be delivered to a bridged destination because the message producer
does not have the correct permissions for the bridged destination, the transaction cannot
complete, and therefore fails and is rolled back.

Flow Control
In some situations, message producers may send messages more rapidly than message
consumers can receive them. The pending messages for a destination are stored by the
server until they can be delivered, and the server can potentially exhaust its storage
capacity if the message consumers do not receive messages quickly enough.

To avoid this, EMS allows you to control the flow of messages to a destination. Each
destination can specify a target maximum size for storing pending messages. When the
target is reached, EMS blocks message producers when new messages are sent. This
effectively slows down message producers until the message consumers can receive the
pending messages.

TIBCO Enterprise Message Service™ User Guide

108 |

Enable Flow Control
The flow_control parameter in tibemsd.conf enables and disables flow control globally
for the EMS server.

When flow_control is disabled (the default setting), the server does not enforce any flow
control on destinations. When flow_control is enabled, the server enforces any flow
control settings specified for each destination. See Configuration Files for more information
about working with configuration parameters.

When you wish to control the flow of messages on a destination, set the flowControl
property on that destination. The flowControl property specifies the target maximum size
of stored pending messages for the destination. The size specified is in bytes, unless you
specify the units for the size. You can specify KB, MB, or GB for the units. For example,
flowControl = 60MB specifies the target maximum storage for pending messages for a
destination is 60 Megabytes.

Enforce Flow Control
The value specified for the flowControl property on a destination is a target maximum for
pending message storage. When flow control is enabled, the server may use slightly more
or less storage before enforcing flow control, depending upon message size, number of
message producers, and other factors.

Setting the flowControl property on a destination but specifying no value causes the
server to use a default value of 256KB.

When the storage for pending messages is near the specified limit, the server blocks all
new calls to send a message from message producers. The calls do not return until the
storage has decreased below the specified limit, or the flowControl limit is increased.
Once message consumers have received messages and the pending message storage goes
below the specified limit, the server allows the send message calls to return to the caller
and the message producers can continue processing.

Flow Control in the Absence of Consumers
The server enforces flow control on destinations regardless of the presence of consumers.

TIBCO Enterprise Message Service™ User Guide

109 |

Note: Prior to release 8.4, if there was no message consumer for a destination,
the server would not enforce flow control for the destination. That is, if a queue
had no started receiver, the server did not enforce flow control for that queue.
Also, if a topic had inactive durable subscriptions or no current subscriber, the
server did not enforce flow control for that topic. For topics, if flow control was
set on a specific topic (for example, foo.bar), then flow control was enforced as
long as there were subscribers to that topic or any parent topic (for example, if
there were subscribers to foo.*).

This behavior can be restored by setting the
flow_control_only_with_active_consumer property but note that this property
and the corresponding behavior are deprecated and will be removed in a future
release.

Routes and Flow Control
For global topics where messages are routed between servers, flow control can be
specified for a topic on either the server where messages are produced or the server where
messages are received. Flow control is not relevant for queue messages that are routed to
another server.

If the flowControl property is set on the topic on the server receiving the messages, when
the pending message size limit is reached, messages are not forwarded by way of the route
until the topic subscriber receives enough messages to lower the pending message size
below the specified limit.

If the flowControl property is set on the topic on the server sending the messages, the
server may block any topic publishers when sending new messages if messages cannot be
sent quickly enough by way of the route. This could be due to network latency between
the routed servers or it could be because flow control on the other server is preventing
new messages from being sent.

Destination Bridges and Flow Control
Flow control can be specified on bridged destinations.

If you wish the flow of messages sent over the bridge to slow down when receivers on the
bridged-to destination cannot process the messages quickly enough, you must set the
flowControl property on both destinations on either side of the bridge.

TIBCO Enterprise Message Service™ User Guide

110 |

Flow Control, Threads and Deadlock
When using flow control, you must be careful to avoid potential deadlock. When flow
control is in effect for a destination, producers to that destination can block waiting for
flow control signals from the destination’s consumers. If any of those consumers are within
the same thread of program control, a potential for deadlock exists.

Namely, the producer will not unblock until the destination contains fewer messages, and
the consumer in the blocked thread cannot reduce the number of messages.

The simplest case to detect is when producer and consumer are in the same session
(sessions are limited to a single thread). But more complex cases can arise. Deadlock can
even occur across several threads, or even programs on different hosts, if dependencies
link them. For example, consider the situation in the following image that illustrates a flow
control deadlock across two threads:

 l Producer P1 in thread T1 has a consumer C2 in thread T2.

 l Producer P2 in T2 has a consumer C1 in T1.

 l Because of the circular dependency, deadlock can occur if either producer blocks its
thread waiting for flow control signals.

The dependency analysis is analogous to mutex deadlock. You must analyze your programs
and distributed systems in a similar way to avoid potential deadlock.

TIBCO Enterprise Message Service™ User Guide

111 |

Delivery Delay
The delivery delay feature allows the message producer to specify the earliest time at
which a message should be delivered to consumers. This is done by using the
setDeliveryDelay() method to set the minimum length of time that must elapse after a
message is sent before the EMS server may deliver the message to a consumer.

Whenever a message is sent to destination dest with a non-zero delivery delay for the first
time, the server dynamically creates a queue named $sys.delayed.q.dest when dest is a
queue, or $sys.delayed.t.dest when dest is a topic.

$sys.delayed queues support browsing and purging but do not support other permissions
such as receive or send. They inherit destination limits, security, and storage selection
properties from dest. However, note that a $sys.delayed.t queue created for a topic that
has the secure property cannot be browsed.

Note that the $sys.delayed queue corresponding to a destination takes any maxmsgs
property setting from the destination. That is, if dest has property maxmsgs set to X, its
$sys.delayed queue also has maxmsgs set to X. This doubles the number of messages that
can potentially be held for dest in the server.

If the maxmsgs limit has been reached and the destination has the property
overflowPolicy=rejectIncoming, when the delivery delay expires for a message one of
two things can happen. If the message has the JMS_TIBCO_PRESERVE_UNDELIVERED set to
true, it is put on the $sys.undelivered queue. Otherwise, the message is discarded.

Note that, when delivery delay is enabled for a topic, the behavior of
overflowPolicy=default mimics that of a queue. That is, when maxbytes or maxmsgs has
been reached, new messages are rejected by the server and an error is returned to the
producer.

TIBCO Enterprise Message Service™ User Guide

112 | Getting Started

Getting Started
This following topics provide a quick introduction to setting up a simple EMS configuration
and running some sample client applications to publish and subscribe users to a topic.

About the Sample Clients
The EMS sample clients were designed to allow you to run TIBCO Enterprise Message
Service with minimum start-up time and coding.

The EMS_HOME/samples directory contains several subdirectories. The c, cs, and java
subdirectories contain the C, .NET and Java sample clients.

In this chapter, you will compile and run the Java sample clients. For information on how
to run the C and .NET sample clients, see the readme files in their respective directories.

The EMS_HOME/samples/java directory contains the following sets of files:

 l Sample clients for TIBCO Enterprise Message Service implementation.

 l The JNDI subdirectory contains sample clients that use the JNDI lookup technique.

 l The tibrv subdirectory contains sample clients that demonstrate the interoperation
of TIBCO Enterprise Message Service with TIBCO Rendezvous applications.

 l The admin subdirectory contains samples that illustrate the use of the administration
API.

The EMS_HOME/samples/c directory contains sample clients.

On Windows platforms only, the EMS_HOME\samples\cs directory contains two sets of files:

 l Sample clients for TIBCO Enterprise Message Service implementation.

 l The admin subdirectory contains samples that illustrate the use of the administration
API.

In this chapter, you will use some of the sample clients in the EMS_HOME/samples/java
directory. For information on compiling and running the other sample clients, see the
Readme files in their respective folders.

TIBCO Enterprise Message Service™ User Guide

113 | Getting Started

Compiling the Sample Java Clients
To compile and run the sample Java clients you need to execute "setup" script, which is
located in the EMS_HOME/samples/java directory.

On Windows systems, the setup file is setup.bat.

On UNIX systems, the setup file is setup.sh.

Procedure
 1. Make sure you have JDK 1.8 or greater installed and that you’ve added the bin

directory to your PATH variable.

 2. Open a command line or console window, and navigate to the
EMS_HOME/samples/java directory.

 3. Open the correct setup script file and verify that the TIBEMS_ROOT environment
variable identifies the correct pathname to your EMS_HOME directory. For example,
on a Windows system this might look like:

> set TIBEMS_ROOT=C:\tibco\ems\10.3

 4. Enter setup to set the environment and classpath:

> setup

 5. Compile the samples:

> javac -d . *.java

This compiles all the samples in the directory, except for those samples in the JNDI,
tibrv, and admin subdirectories.

If the files compile successfully, the class files will appear in the
EMS_HOME/samples/java directory. If they do not compile correctly, an error
message appears.

TIBCO Enterprise Message Service™ User Guide

114 | Getting Started

Creating Users with the EMS Administration
Tool
In this example, you will create topics and users using the EMS Administration Tool. You
must first start the EMS server before starting the EMS administration tool.

Follow these steps to start the EMS server and to use the administration tool to create two
new users.

Note: All of the parameters you set using the administration tool in this chapter
can also be set by editing the configuration files described in Configuration Files.
You can also programmatically set parameters using the C, .NET, or Java APIs.
Parameters set programmatically by a client are only set for the length of the
session.

Procedure
 1. Start the EMS server

Start the EMS server as described in Starting and Stopping the EMS Server.

 2. Start the Administration Tool and Connect to the EMS Server

 a. Start the EMS administration tool as described in Starting the EMS
Administration Tool.

 b. After starting the administration tool, connect it to the EMS server.

To connect the EMS administration tool to the EMS server, execute one of the
following commands:

 l If you are using TIBCO Enterprise Message Service on a single computer, type
connect in the command line of the Administration tool:

> connect

You will be prompted for a login name. If this is the first time you’ve used the
EMS administration tool, follow the procedure described in When You First Start
tibemsadmin.

Once you have logged in, the screen will display:

connected to tcp://localhost:7222

TIBCO Enterprise Message Service™ User Guide

115 | Getting Started

tcp://localhost:7222>

 l If you are using TIBCO Enterprise Message Service in a network, use the connect
server command as follows:

> connect [server URL] [user-name] [password]

For more information on this command, see connect.

For further information on the administration tool, see Starting the EMS
Administration Tool and Command Listing.

 3. Create Users

Once you have connected the administration tool to the server, use the create user
command to create two users.

In the administration tool, enter:

 tcp://localhost:7222> create user user1

 tcp://localhost:7222> create user user2

The tool will display messages confirming that user1 and user2 have been created.

You have now created two users. You can confirm this with the show users
command:

 tcp://localhost:7222> show users

 User Name Description

 user1

 user2

For more information on the create user command, refer to create user.

Point-to-Point Messaging Example
This section demonstrates how to use point-to-point messaging, as described in Point-to-
Point.

Creating a Queue
In the point-to-point messaging model, client send messages to and receive messages from
a queue.

TIBCO Enterprise Message Service™ User Guide

116 | Getting Started

To create a new queue in the administration tool, use the create queue command to
create a new queue named myQueue:

 tcp://localhost:7222> create queue myQueue

For more information on the create queue command, refer to create queue. For more
information on the commit command, see commit and autocommit.

Starting the Sender and Receiver Clients

Procedure
 1. Open two command line windows and in each window navigate to the

EMS_HOME/samples/java folder.

 2. In each command line window, enter setup to set the environment and classpath:

> setup

 3. In the first command line window, execute the tibjmsMsgProducer application to
direct user1 to place some messages to the myQueue queue:

> java tibjmsMsgProducer -queue myQueue -user user1 Hello User2

 4. In the second command line window, execute the tibjmsMsgConsumer client to direct
user2 to read the messages from the message queue:

> java tibjmsMsgConsumer -queue myQueue -user user2

The messages placed on the queue are displayed in the receiver’s window.

Note: Messages placed on a queue by the sender are persistent until
acknowledged by the receiver, so you can start the sender and receiver
clients in any order.

TIBCO Enterprise Message Service™ User Guide

117 | Getting Started

Publish and Subscribe Messaging Example
In this section, you will execute a message producer client and two message consumer
clients that demonstrate the publish/subscribe messaging model described in Publish and
Subscribe. This example is not intended to be comprehensive or representative of a robust
application.

To execute the client samples, you must give them commands from within the sample
directory that contains the compiled samples. For this exercise, open three separate
command line windows and navigate to the EMS_HOME/samples/java directory in each
window.

For more information on the samples, refer to the readme file within the sample directory.
For more information on compiling the samples, refer to Compiling the Sample Java
Clients.

Creating a Topic
In the publish/subscribe model, you publish and subscribe to topics.

To create a new topic in the administration tool, use the create topic command to create
a new topic named myTopic:

 tcp://localhost:7222> create topic myTopic

For more information on the create topic command, refer to create topic. For more
information on the commit command, see commit and autocommit.

Starting the Subscriber Clients
You start the subscribers first because they enable you to observe the messages being
received when you start the publisher.

Procedure

To start user1 as a subscriber:

 1. In the first command line window, navigate to EMS_HOME/samples/java.

TIBCO Enterprise Message Service™ User Guide

118 | Getting Started

 2. Enter setup to set the environment and classpath:

> setup

 3. Execute the tibjmsMsgConsumer client to assign user1 as a subscriber to the myTopic
topic:

> java tibjmsMsgConsumer -topic myTopic -user user1

The screen will display a message showing that user1 is subscribed to myTopic.

To start user2 as a subscriber:

 4. In the second command line window, navigate to the EMS_HOME/samples/java folder.

 5. Enter setup to set the environment and classpath:

> setup

 6. Execute the tibjmsMsgConsumer application to assign user2 as a subscriber to the
myTopic topic:

> java tibjmsMsgConsumer -topic myTopic -user user2

The screen will display a message showing that user2 is subscribed to myTopic.

Note: The command windows do not return to the prompt when the
subscribers are running.

Starting the Publisher Client and Sending Messages
Setting up the publisher is very similar to setting up the subscriber. However, while the
subscriber requires the name of the topic and the user, the publisher also requires
messages.

To start the publisher:

Procedure
 1. In the third command line window, navigate to the EMS_HOME/samples/java folder.

TIBCO Enterprise Message Service™ User Guide

119 | Getting Started

 2. Enter setup to set the environment and classpath:

> setup

 3. Execute the tibjmsMsgProducer client to direct user1 to publish some messages to
the myTopic topic:

> java tibjmsMsgProducer -topic myTopic -user user1 hello user2

where ’hello' and ’user2’ are separate messages.

Note: In this example, user1 is both a publisher and subscriber.

Result
The command line window will display a message stating that both messages have been
published:

 Publishing on topic 'myTopic'
 Published message: hello
 Published message: user2

After the messages are published, the command window for the publisher returns to the
prompt for further message publishing.

Note: Note that if you attempt to use the form:

java tibjmsMsgProducer -topic myTopic -user user1

without adding the messages, you will see an error message, reminding you that
you must have at least one message text.

The first and second command line windows containing the subscribers will show that
each subscriber received the two messages:

Subscribing to destination: myTopic

 Received message: TextMessage={ Header={ JMSMessageID={ID:EMS-
SERVER.16C5B5C81B3CB4:1}
JMSDestination={Topic[myTopic]} JMSReplyTo={null} JMSDeliveryMode={PERSISTENT}

TIBCO Enterprise Message Service™ User Guide

120 | Getting Started

JMSRedelivered={false} JMSCorrelationID={null} JMSType={null} JMSTimestamp={Thu
Mar 07 18:18:01 CST 2019} JMSDeliveryTime={Thu Mar 07 18:18:01 CST 2019}
JMSExpiration={0} JMSPriority={4} } Properties={ JMSXDeliveryCount={Integer:1}
} Text={hello} }
 Received message: TextMessage={ Header={ JMSMessageID={ID:EMS-
SERVER.16C5B5C81B3CB4:2}
JMSDestination={Topic[myTopic]} JMSReplyTo={null} JMSDeliveryMode={PERSISTENT}
JMSRedelivered={false} JMSCorrelationID={null} JMSType={null} JMSTimestamp={Thu
Mar 07 18:18:01 CST 2019} JMSDeliveryTime={Thu Mar 07 18:18:01 CST 2019}
JMSExpiration={0}
JMSPriority={4} } Properties={ JMSXDeliveryCount={Integer:1} } Text={user2} }

Creating a Secure Topic
In this example, you make myTopic into a secure topic and grant user1 permission to
publish to the myTopic and user2 permission to subscribe to myTopic.

Adding the secure Property to the Topic
When the secure property is added to a topic, only users who have been assigned a certain
permission can perform the actions allowed by that permission. For example, only users
with publish permission on the topic can publish, while other users cannot publish.

If the secure property is not added to a topic, all authenticated users have all permissions
(publish, subscribe, create durable subscribers) on that topic.

For more information on the secure property, see the section about secure. For more
information on topic permissions, see Authentication and Permissions,.

To enable server authorization and add the secure property to a topic, do the following
steps:

Procedure
 1. In each subscriber window, enter Control-C to stop each subscriber.

 2. In the administration tool, use the set server command to enable the
authorization property:

tcp://localhost:7222> set server authorization=enabled

TIBCO Enterprise Message Service™ User Guide

121 | Getting Started

The authorization property enables checking of permissions set on destinations.

 3. Enter the following command to add the secure property to a topic named myTopic:

tcp://localhost:7222> addprop topic myTopic secure

For more information on the set server command, refer to set server. For more
information on the addprop topic command, refer to addprop topic.

Granting Topic Access Permissions to Users
To see how permissions affect the ability to publish and receive messages, grant publish
permission to user1 and subscribe permission to the user2.

Use the grant topic command to grant permissions to users on the topic myTopic.

In the administration tool, enter:

 tcp://localhost:7222> grant topic myTopic user1 publish
 tcp://localhost:7222> grant topic myTopic user2 subscribe

For more information on the grant topic command, refer to grant topic.

Starting the Subscriber and Publisher Clients
Start the subscribers, as described in Starting the Subscriber Clients. Note that you cannot
start user1 as a subscriber because user1 has permission to publish, but not to subscribe.
As a result, you receive an exception message including the statement:

 Operation not permitted.

User2 should start as a subscriber in the same manner as before.

You can now start user1 as the publisher and send messages to user2, as described in
Starting the Publisher Client and Sending Messages.

TIBCO Enterprise Message Service™ User Guide

122 | Getting Started

Creating a Durable Subscriber
As described in Publish and Subscribe, subscribers, by default, only receive messages when
they are active. If messages are published when the subscriber is not available, the
subscriber does not receive those messages. You can create durable subscriptions, where
subscriptions are stored on the server and subscribers can receive messages even if it was
inactive when the message was originally delivered.

In this example, you create a durable subscriber that stores messages published to topic
myTopic on the EMS server.

To start user2 as a durable subscriber:

Procedure
 1. In the a command line window, navigate to the EMS_HOME/samples/java folder.

 2. Enter setup to set the environment and classpath:

> setup

 3. Execute the tibjmsDurable application to assign user2 as a durable subscriber to the
myTopic topic:

> java tibjmsDurable -topic myTopic -user user2

 4. In the administration tool, use the show durables command to confirm that user2 is
a durable subscriber to myTopic:

tcp://localhost:7222> show durables
 Topic Name Durable User Msgs Size
* myTopic subscriber user2 0 0.0 Kb

 5. In the subscriber window, enter Ctrl+C to stop the subscriber.

 6. In another command line window, execute the tibjmsMsgProducer client, as
described in Starting the Publisher Client and Sending Messages:

> java tibjmsMsgProducer -topic myTopic -user user1 hello user2

 7. Restart the subscriber:

TIBCO Enterprise Message Service™ User Guide

123 | Getting Started

> java tibjmsDurable -topic myTopic -user user2

The stored messages are displayed in the subscriber window.

 8. Enter Ctrl+C to stop the subscriber and then unsubscribe the durable subscription:

> java tibjmsDurable -unsubscribe

The subscriber is no longer durable and any additional messages published to the
myTopic topic are lost.

TIBCO Enterprise Message Service™ User Guide

124 | Running the EMS Server

Running the EMS Server
To use TIBCO Enterprise Message Service with your applications, the TIBCO Enterprise
Message Service Server must be running.

Starting and Stopping the EMS Server
The server and the clients work together to implement TIBCO Enterprise Message Service.
The server implements all types of message persistence and no messages are stored on the
client side. The following topics describe how to start and stop the EMS Server.

Types of Configuration Files
You can choose to have the TIBCO Enterprise Message Service server store configuration
settings in a single JSON-based configuration file. This file holds the entire configuration of
the server without the need for sub-files. Furthermore, a single JSON configuration file
holds the configuration settings for a pair of fault-tolerant servers. JSON-based
configuration files use the .json file extension.

The JSON configuration standard was introduced in an earlier version of EMS. Prior to that
release, the configuration of the server could only be stored in a set of text-based
configuration files with names ending in .conf. The main configuration file name defaults to
tibemsd.conf and a set of sub-files such as queues.conf hold information on specific types
of configuration items. These configuration files are described in the present book.

A server can be started either with a set of .conf files or with a single .json file. However,
servers using stores of type as or ftl can only be configured with a JSON-based
configuration. In this particular case, the configuration is hosted in either TIBCO
ActiveSpaces or TIBCO FTL.

You can convert a text-based server configuration to a single tibemsd.json file using the
tibemsconf2json utility, which is described in the Conversion of Server Configuration Files
to JSON section.

TIBCO Enterprise Message Service™ User Guide

125 | Running the EMS Server

Starting the EMS Server Using a Sample
Configuration
To start the EMS server from the command line using sample configuration files, navigate
to EMS_HOME/samples/config and perform the following steps:

Procedure
 1. Create a local directory called datastore (for example,

/opt/tibco/ems/samples/config/datastore)

 2. Execute the command:
tibemsd -config tibemsd.conf

Starting the EMS Server Using JSON Configuration
This section and the next describe the steps to start the TIBCO Enterprise Message Service
server using the JSON configuration file when using file-based stores or grid stores. For
details on starting the server with FTL stores, see Configuring and Deploying FTL Stores.

Procedure
 1. From the command line, navigate to EMS_HOME/bin.

 2. Enter the following command and option:

tibemsd -config json-file-path

where json-file-path is the path to your JSON configuration file. For example:

tibemsd -config /tibemsconfig/tibemsd.json

If the server is unable to find the JSON configuration file at json-file-path, it
automatically creates a default JSON configuration file at that location.

When started using the JSON configuration, the server silently ignores any unknown
parameters. For example, no configuration errors are thrown if the tibemsd.json file
contains an obsolete parameter.

TIBCO Enterprise Message Service™ User Guide

126 | Running the EMS Server

Note: For information on converting .conf configuration files to JSON
configuration files, see Conversion of Server Configuration Files to JSON.

Starting Fault Tolerant Server Pairs
With a JSON-based configuration, fault tolerant pairs share a single JSON configuration file.
Primary and secondary server roles are determined when the servers are started.

Start the primary EMS server as usual. Start the secondary server using the -secondary flag.
For example, where the JSON configuration file is tibemsd.json:

 l To start the primary server:
tibemsd -config tibemsd.json

 l To start the secondary server:
tibemsd -config tibemsd.json -secondary

Starting the EMS Server Using Options
To start the EMS server from the command line using options:

Procedure
 1. Navigate to the samples subdirectory.

Sample EMS server configuration files are located in EMS_HOME/samples/config. For
more information, see 'Installing TIBCO Enterprise Message Service' in TIBCO
Enterprise Message Service Installation.

The EMS server dynamically loads the OpenSSL and compression shared libraries. If
the tibemsd executable is executed from the samples directory, it automatically
locates these libraries. If the server is moved elsewhere, the shared library directory
must be moved as well.

 2. Start the tibemsd

Type tibemsd [options]

where options are described in tibemsd Options. The command options to tibemsd
are similar to the parameters you specify in tibemsd.conf, and the command options

TIBCO Enterprise Message Service™ User Guide

127 | Running the EMS Server

override any value specified in the parameters. See tibemsd.conf for more
information about configuration parameters.

tibemsd Options
The tibemsd options override any value specified in the parameters.

Note: A number of these options are unsupported when using FTL stores. See
the Unsupported tibemsd Options section for details.

Option Description

-config config file name config file name is the name of the main
configuration file for tibemsd server. Default is
tibemsd.conf.

For example, to start an EMS server using the
default JSON configuration file, use:

tibemsd -config tibemsd.json

If using grid stores, this option has a different
purpose. See Server Command-Line Options for
Grid Stores for more information.

-trace items Specifies the trace items. These items are not
stored in the configuration file. The value has
the same format as the value of log_trace
parameter specified with set server
command of the administration tool; see Trace
Messages for the Server.

-secondary Specifies the secondary server in a fault
tolerant pair. This option is only valid for EMS
servers started using JSON config.

-module_path Specifies a directory or directories that contain
external shared library files such as those of

TIBCO Enterprise Message Service™ User Guide

128 | Running the EMS Server

Option Description

FTL, ActiveSpaces, and Rendezvous.

This parameter is only relevant when using FTL
or Rendezvous transports or grid stores.

-ssl_password string Private key password.

-ssl_trace Print the certificates loaded by the server and
do more detailed tracing of TLS-related
situation.

-ssl_debug_trace Turns on tracing of TLS connections.

-ft_active active_url URL of the active server. If this server can
connect to the active server, it will act as a
standby server. If this server cannot connect to
the active server, it will become the active
server.

-ft_heartbeat seconds Heartbeat signal for the active server, in
seconds. Default is 3.

-ft_activation seconds Activation interval (maximum length of time
between heartbeat signals) which indicates
that active server has failed. Set in seconds:
default is 10. This interval should be set to at
least twice the heartbeat interval.

-forceStart Causes the server to delete corrupted
messages in the stores, allowing the server to
start even if it encounters errors.

Note that using this option causes data loss,
and it is important to backup store data before
using -forceStart. See Error Recovery Policy
for more information.

Grid Store Options Options required for starting the EMS server

TIBCO Enterprise Message Service™ User Guide

129 | Running the EMS Server

Option Description

with grid stores. See Server Command-Line
Options for Grid Stores for more information.

Stopping the EMS Server
You can stop the EMS server by using the shutdown command from the EMS Administration
Tool. For more information, see shutdown.

Running the EMS Server as a Windows Service
Some situations require the EMS server to start automatically. You can satisfy this
requirement by registering it with the Windows service manager. The emsntsrg utility
facilitates registry.

emsntsrg
The emsntsrg utility registers or unregisters the EMS server as a Windows service.

Syntax

emsntsrg /i [/a]|[/d] service_name emsntsct_directory service_directory [arguments] [suffix]
 emsntsrg /r [service_name] [suffix]

Remarks

Some situations require the EMS server processes to start automatically. You can satisfy
this requirement by registering these with the Windows service manager. This utility
facilitates registry.

TIBCO Enterprise Message Service™ User Guide

130 | Running the EMS Server

Restrictions

You must have administrator privileges to change the Windows registry.

Location

Locate this utility program as an executable file in the EMS bin directory.

Parameter Description

/i Insert a new service in the registry (that is, register a new
service).

/a Automatically start the new service. Optional with /i.

You can use either /a or /d but not both.

/d Automatically start the new service with a delay. Optional with
/i.

You can use either /a or /d but not both.

/? Display usage.

service_name Insert or remove a service with this base name.

When inserting a service, this parameter is required, and must
be tibemsd.

When removing a service, this parameter is optional. However,
if it is present, it must be tibemsd.

emsntsct_directory Use this directory pathname to specify the location of the
emsntsct.exe executable. The emsntsrg utility registers the
emsntsct.exe program as a windows service. The
emsntsct.exe program then invokes the associated tibemsd.

By default, emsntsct.exe is located in EMS_HOME\bin.

This parameter is only required when installing a service.

service_directory Use this directory pathname to locate the service executable,

TIBCO Enterprise Message Service™ User Guide

131 | Running the EMS Server

Parameter Description

tibemsd. Required.

arguments Supply command line arguments. Optional with /i.

Enclose the entire arguments string in double quote characters.

suffix When registering more than one instance of a service, you can
use this suffix to distinguish between them in the Windows
services applet. Optional.

/r Remove a service from the registry.

Register

To register tibemsd as a Windows service, run the utility with this command line:

emsntsrg /i [/a]|[/d] tibemsd emsntsct_directory tibemsd_directory
[arguments] [suffix]

 l Example 1

This simple example registers one tibemsd service:

emsntsrg /i tibemsd C:\tibco\ems\10.3\bin C:\tibco\ems\10.3\bin

 l Example 2

This example registers a service with command line arguments:

emsntsrg /i tibemsd C:\tibco\ems\10.3\bin C:\tibco\ems\10.3\bin "-
trace DEFAULT"

 l Example 3

This pair of example commands registers two tibemsd services with different
configuration files. In this example, the numerical suffix and the configuration
directory both reflect the port number that the service uses.

TIBCO Enterprise Message Service™ User Guide

132 | Running the EMS Server

emsntsrg /i tibemsd C:\tibco\ems\10.3\bin C:\tibco\ems\10.3\bin
"-config C:\tibco\ems\10.3\7222\tibemsd.conf" 7222
 emsntsrg /i tibemsd C:\tibco\ems\10.3\bin C:\tibco\ems\10.3\bin
"-config C:\tibco\ems\10.3\7223\tibemsd.conf" 7223

Notice these aspects of this example:

 o When installing tibemsd, if you supply a -config argument, the service process
finds the directory containing the main configuration file (tibemsd.conf), and
creates all secondary configuration files in that directory. In this example, each
service uses a different configuration directory.

 o When you register several EMS services, you must avoid configuration conflicts.
For example, two instances of tibemsd cannot listen on the same port.

Remove

To unregister a service, run the utility with this command line:

 emsntsrg /r [service_name] [suffix]

Both parameters are optional. If the service_name is present, it must be tibemsd. To supply
the suffix parameter, you must also supply the service_name. When both parameters are
absent, the utility removes the services named tibemsd.

Command Summary

To view a command line summary, run the utility with this command line:

 emsntsrg

Windows Services Applet

The Windows services applet displays the name of each registered service. For EMS
services, it also displays this additional information:

 l The suffix (if you supply one)

 l The process ID (PID)—when the service is running

TIBCO Enterprise Message Service™ User Guide

133 | Running the EMS Server

Error Recovery Policy
During startup the EMS server can encounter a number of errors while it recovers
information from the stores.

Potential errors include:

 l Low-level file errors. For example, corrupted disk records.

 l Low-level object-specific errors. For example, a record that is missing an expected
field.

 l Inter-object errors. For example, a session record with no corresponding connection
record.

When the EMS server encounters one of these errors during startup, the recovery policy is:

 l By default, the server exits startup completely when a corrupt disk record error is
detected. Because the state can not be safely restored, the server can not proceed
with the rest of the recovery. You can then examine your configuration settings for
errors. If necessary, you can then copy the store and configuration files for
examination by TIBCO Support.

 l You can direct the server to delete bad records by including the -forceStart
command line option. This prevents corruption of the server runtime state.

 l The server exits if it runs out of memory during startup.

It is important to backup all stores before restarting the server with the -forceStart
option, because data will be lost when the problematic records are deleted. To back up
file-based stores, you can simply create a copy of the store files. For grid stores and FTL
stores, you will need to back up the associated ActiveSpaces or FTL deployment. Refer to
the TIBCO ActiveSpaces Administration and TIBCO FTL Administration product guides for
instructions on creating backups for these products.

Keep in mind that different type of records are stored in the stores. The most obvious are
the persistent Jakarta Messaging Messages that your applications have sent. However,
other internal records are also stored. If a consumer record used to persist durable
subscriber state information were to be corrupted and later deleted with the -forceStart
option, all Jakarta Messaging messages that were persisted (and valid in the sense that
they were not corrupted) would also be lost because the durable subscription itself would
not be recovered.

When running in this mode, the server still reports any errors found during the recovery,
but problematic records are deleted and the recovery proceeds. This mode may report

TIBCO Enterprise Message Service™ User Guide

134 | Running the EMS Server

more issues than are reported without the -forceStart option, because without that flag
the server stops with the very first error.

Warning: We strongly recommended that you make a backup of all the stores
before restarting the server with the -forceStart option. The backup is useful
when doing a postmortem analysis to find out what records were deleted with
the -forceStart option.

Security Considerations
Warning: This section highlights information relevant to secure deployment. We
recommend that all administrators read this section.

Secure Environment
To ensure secure deployment, EMS administration must meet certain criteria.

These criteria include:

 l Correct Installation: EMS is correctly installed and configured.

 l Physical Controls: The computers where EMS is installed are located in areas where
physical entry is controlled to prevent unauthorized access. Only authorized
administrators have access, and they cooperate in a benign environment.

 l Domain Control: The operating system, file system and network protocols ensure
domain separation for EMS, to prevent unauthorized access to the server, its
configuration files, LDAP servers, etc.

 l Benign Environment: Only authorized administrators have physical access or
domain access, and those administrators cooperate in a benign environment.

Destination Security
Three interacting factors affect the security of destinations (that is, topics and queues). In a
secure deployment, you must properly configure all three of these items.

TIBCO Enterprise Message Service™ User Guide

135 | Running the EMS Server

 l The server’s authorization parameter (see Authorization Parameter, below)

 l The secure property of individual destinations (see secure)

 l The ACL permissions that apply to individual destinations (see Authentication and
Permissions)

Authorization Parameter
The authorization parameter of the server acts as a master switch for checking
permissions for connection requests and operations on secure destinations.

The default value of this parameter is disabled—the server does not check any
permissions, and allows all operations. For secure deployment, you must enable this
parameter.

Admin Password
For ease in installation and initial testing, the default setting for the admin password is no
password at all. Until you set an actual password, the user admin can connect without a
password. Once the administrator password has been set, the server always requires it.

To configure a secure deployment, the administrator must change the admin password
immediately after installation; see Assigning a Password to the Administrator.

Connection Security
When authorization is enabled, the server requires a name and password before users
can connect. Only authenticated users can connect to the server. The form of
authentication can be either an X.509 certificate or a username and password (or both).

When authorization is disabled, the server does not check user authentication; user (non-
admin) connections are allowed. However, even when authorization is disabled, admin
connections must still supply the correct password to connect to the server.

Even when authorization is enabled, the administrator (admin) may explicitly allow
anonymous user connections, which do not require password authorization. To allow these
connections, create a user with the name anonymous and no password.

TIBCO Enterprise Message Service™ User Guide

136 | Running the EMS Server

Note: Creating the user anonymous does not mean that anonymous has all
permissions. Individual topics and queues can still be secure, and the ability to
use these destinations (either sending or receiving) is controlled by the access
control list of permissions for those destinations. The user anonymous can access
only non-secure destinations.

Nonetheless, this feature (anonymous user connections) is outside the tested
configuration of EMS security certification.

For more information on destination security, refer to the destination property secure, and
Create Users.

Communication Security
For communication security between servers and clients, and between servers and other
servers, you must explicitly configure TLS within EMS .

TLS communication requires software to implement TLS on both server and client. The
EMS server includes the OpenSSL implementation. Java client programs use JSSE (part of
the Java environment). JSSE is not a part of the EMS product. C client programs can use
the OpenSSL library shipped with EMS.

For more information, see TLS Protocol

Sources of Authentication Data
The server uses only one source of X.509 certificate authentication data, namely, the server
parameter ssl_server_trusted (its value is set in EMS an configuration file). The server
can use three sources of secure password authentication data:

 l Local data from the EMS configuration files.

 l External data from an LDAP server (using provided JAAS LoginModules).

 l A user-supplied JAAS LoginModule.

You must safeguard the security of EMS configuration files and LDAP servers.

For more information, see ssl_server_trusted.

TIBCO Enterprise Message Service™ User Guide

137 | Running the EMS Server

Timestamp
The administration tool can either include or omit a timestamp associated with the output
of each command.

To ensure a secure deployment, you must explicitly enable the timestamp feature. Use the
following administration tool command:

time on

Passwords

Warning: Passwords are a significant point of vulnerability for any enterprise.
We recommend enforcing strong standards for passwords.

For security equivalent to single DES (an industry minimum), security experts
recommend passwords that contain 8–14 characters, with at least one upper
case character, at least one numeric character, and at least one punctuation
character.

EMS software does not automatically enforce such standards for passwords. You must
enforce such policies within your organization.

Audit Trace Logs
Audit information is output to log files (and stderr), and is configured by the server
parameters log_trace and console_trace.

For more information on these parameters, see Tracing and Log File Parameters.

The DEFAULT setting includes +ADMIN, so all administrative operations produce audit
output. For further details, see Server Tracing Options.

Audit information in log files always includes a time stamp.

Administrators can read and print the log files for audit review using tools (such as text
editors) commonly available within all IT environments. EMS software does not include a
special tool for audit review.

#ID-00005418

TIBCO Enterprise Message Service™ User Guide

138 | Running the EMS Server

Managing Access to Shared File-Based Stores
To prevent two EMS servers from using the same store file, each server restricts access to
its store file for the duration of the server process. This section describes how EMS
manages locked file-based stores. Shared store locking for grid stores and FTL stores is
handled directly by ActiveSpaces and FTL, respectively.

Windows

On Windows platforms, servers use the standard Windows CreateFile function, supplying
FILE_SHARE_READ as the dwShareMode (third parameter position) to restrict access to other
servers.

UNIX

On UNIX platforms, servers use the standard fcntl operating system call to implement
cooperative file locking:

 struct flock fl;
 int err;

 fl.l_type = F_WRLCK;
 fl.l_whence = 0;
 fl.l_start = 0;
 fl.l_len = 0;

 err = fcntl(file, F_SETLK, &fl);

To ensure correct locking, we recommend checking the operating system documentation
for this call, since UNIX variants differ in their implementations.

Performance Tuning
By default, the TIBCO Enterprise Message Service server has the following general thread
architecture:

 l A single thread to process network traffic.

 l One thread for each store.

TIBCO Enterprise Message Service™ User Guide

139 | Running the EMS Server

 l Additional threads for various background tasks such as expiring messages,
connecting routes, and so on.

Setting Thread Affinity for Increased Throughput
If the default behavior of the EMS server cannot provide the required throughput and the
EMS server machine has multiple cores, you can assign specific cores to the EMS threads
that handle network traffic and stores.

For instance, with a 4-core machine, you can use the processor_ids parameter to assign
core 0 and core 1 to handle network traffic. You can also use the store configuration
processor_id parameter to assign core 2 to handle the $sys.failsafe store. This
configuration causes the EMS server to create two threads that handle network traffic, and
sets the affinity of them to core 0 and core 1 respectively. It also sets the affinity of the
thread handling the store $sys.failsafe to core 2. No affinity is set for other threads.

Increasing Network Threads without Setting Thread
Affinity
If you want to increase the number of network threads without assigning them to specific
cores, use the network_thread_count parameter.

The network_thread_count lets the EMS server control the number of network threads and
also lets the administrator control the thread affinity externally (for example, by using the
Linux taskset command).

If you set the thread affinity externally, we recommend that you avoid setting any thread
affinity in the EMS server for either network traffic or stores.

The EMS server ignores the network_thread_count if the processor_ids parameter is also
specified.

Determine Core Allocation
The phrase "less is more" summarizes the best practices for EMS performance tuning.

 l When the EMS server does not set thread affinity, the operating system can better

TIBCO Enterprise Message Service™ User Guide

140 | Running the EMS Server

schedule EMS server threads to react to changing workloads on the machine. Also
examine if the application is making efficient use of the API before changing the
default behavior. For example, when performing persistent messaging operations,
consider using multiple threads in the applications (each with its own session) or
consider using local transactions to batch sends and acknowledgments.

 l Use the minimum number of threads to handle network traffic. Specifying a single
thread may yield sufficient performance improvements over the default behavior, so
start testing affinity there. Using excessive numbers of threads leads to greater
thread contention for global data structures, which can reduce throughput and waste
machine resources. Excessive numbers can also lead to more unbalanced connection
assignments. TIBCO tests have shown that three (or four under some workloads) is
the maximum useful number for network traffic.

 l Specifying thread affinity to specific cores can provide the highest performance but
can also lead to a configuration that does not react well to changing workloads. If
you specify thread affinity for network traffic for persistent messaging, also set thread
affinity for stores in order to prevent contention between threads handling those
tasks.

Transparent Huge Pages
The Transparent Huge Pages (THP) feature of Linux does not have a significant impact on
the performance of EMS.

Network I/O Connections
When a client connects to the EMS server, the EMS server assigns it to one of the threads
handling network traffic based on which of those threads have the fewest existing
connections. This balances the total number of connections evenly across those threads.

Note that if all the connections to one thread are closed, the EMS server does not move
existing connections from other threads in order to rebalance them.

Also note that the EMS server does not account for the traffic generated by those
connections. For instance, the EMS server could assign ten connections to one thread and
ten connections to another thread but still have an unbalanced state if the first ten
connections account for 90% of all network traffic to the EMS server.

TIBCO Enterprise Message Service™ User Guide

141 | Running the EMS Server

Other Considerations
 l When assigning cores for EMS use, ensure that the Operating System does not

schedule those cores for other processes.

 l Assign cores on the same die if possible. This reduces cache sharing between dies.
High levels of cache sharing between dies reduces memory performance.

 l Hyper-threads are not real cores. Disable hyper-threading if possible. Do not assign
cores to the EMS server such that it sets affinity for two "cores" that are actually
sharing the same physical core by hyper-threading.

TIBCO Enterprise Message Service™ User Guide

142 | Using the EMS Administration Tool

Using the EMS Administration Tool
The following sections give an overview of the commands in use in the administration tool
for TIBCO Enterprise Message Service.

Starting the EMS Administration Tool
The EMS Administration Tool is located in your EMS_HOME/bin directory and is a stand-
alone executable named tibemsadmin on UNIX and tibemsadmin.exe on Windows
platforms.

The EMS server must be started as described in Running the EMS Server before you start
the EMS Administration Tool.

Note: When a system uses shared configuration files in the .conf format, actions
performed using the tibemsadmin tool take effect only when connected to the
active server.

When a system uses a shared configuration file in the .json format, most
commands in the tibemsadmin tool are unavailable when connected to a server
that is not in the active state. In such a situation, the only commands available
are show connections, show state, shutdown, and rotatelog. In the particular
case of systems configured to use FTL stores, non-active servers also support the
activate_dr_site, setup_dr_site, show server, and show config commands.

Additionally, if the tibemsadmin tool is connected to the standby server, it will
be disconnected when a failover occurs.

Options for tibemsadmin
Type tibemsadmin -help to display information about tibemsadmin startup parameters. All
tibemsadmin parameters are optional.

TIBCO Enterprise Message Service™ User Guide

143 | Using the EMS Administration Tool

Option Description

-help or -h Print the help screen.

-script script-file Execute the specified text file containing tibemsadmin
commands then quit. Any valid tibemsadmin command
described in this chapter can be executed.

Line breaks within the file delimit each command. That is,
every command must be contained on a single line (no
line breaks within the command), and each command is
separated by a line break.

-server server-url Connect to specified server.

-user user-name Use this user name to connect to the server.

If the server is configured for OAuth 2.0 authentication,
use this user name to obtain an OAuth 2.0 access token as
part of the Authentication Using OAuth 2.0.

-password password Use this password to connect to the server.

If the server is configured for OAuth 2.0 authentication,
use this password to obtain an OAuth 2.0 access token as
part of the Authentication Using OAuth 2.0.

-pwdfile password-file Use the clear-text password in the specified file to connect
to the server. If both -pwdfile and -password options are
given, the password specified through the -password
option takes precedence.

-oauth2_access_token The OAuth 2.0 access token to use to authenticate with
the EMS server.

If an access token is directly provided via this option,
none of the other -oauth2_ options should be specified.

-oauth2_server_url The HTTP(S) URL of the OAuth 2.0 authorization server
that will issue the access tokens to be used to
authenticate with the EMS server.

TIBCO Enterprise Message Service™ User Guide

144 | Using the EMS Administration Tool

Option Description

-oauth2_client_id The OAuth 2.0 client ID to use when connecting to the
OAuth 2.0 authorization server.

This parameter is required regardless of the grant type to
be used for requesting access tokens.

-oauth2_client_secret The OAuth 2.0 client secret to use when connecting to the
OAuth 2.0 authorization server.

This parameter is required regardless of the grant type to
be used for requesting access tokens.

-oauth2_server_trust_file A file containing one or more PEM-encoded public
certificates that can be used to validate the OAuth 2.0
authorization server's identity.

This parameter is only required if establishing an HTTPS
connection to the authorization server.

-oauth2_disable_verify_
hostname

If set, the name in the CN field of the OAuth 2.0
authorization server’s certificate will not be verified.

This parameter is optional. Hostname verification is
performed by default.

-oauth2_expected_hostname The name that is expected in the CN field of the OAuth 2.0
authorization server's certificate.

This parameter is optional and only relevant when
 -oauth2_disable_verify_hostname is not set to true.

-ignore Ignore errors when executing script file. This parameter
only ignores errors in command execution but not syntax
errors in the script.

-mangle [password] Mangle the password and quit. Mangled string in the
output can be set as a value of one of these passwords
from the configuration files:

 l server password

TIBCO Enterprise Message Service™ User Guide

145 | Using the EMS Administration Tool

Option Description

 l server TLS password

-ssl_trusted filename File containing trusted certificate(s). This parameter may
be entered more than once if required.

-ssl_identity filename File containing client certificate and (optionally) extra
issuer certificate(s), and the private key.

-ssl_issuer filename File containing extra issuer certificate(s) for client-side
identity.

-ssl_key filename File containing the private key.

-ssl_password password Private key or PKCS#12 password. If the password is
required, but has not been specified, it will be prompted
for.

-ssl_pwdfile password-file Use the private key or PKCS12 password in the specified
file to connect to the server. If both -ssl_pwdfile and
-ssl_password options are given, the password specified
through the -ssl_password option takes precedence.

-ssl_noverifyhost Do not verify the server's certificate. Server certificate
verification is enabled by default.

-ssl_noverifyhostname Do not verify hostname against the name on the
certificate.

-ssl_hostname name Name expected in the certificate sent by the host.

-ssl_trace Show loaded certificates and certificates sent by the host.

-ssl_debug_trace Show additional tracing, which is useful for debugging.

TIBCO Enterprise Message Service™ User Guide

146 | Using the EMS Administration Tool

Note: When a command specifies -user and -password, that information is not
stored for later use. It is only used to connect to the server specified in the same
command line. The user name and password entered on one command line are
not reused with subsequent connect commands entered in the script file or
interactively.

Examples

tibemsadmin -server "tcp://host:7222"
 tibemsadmin -server "tcp://host:7222" -user admin -password
secret

Some options are needed when you choose to make a TLS connection. For more
information on TLS connections, refer to TLS Protocol.

When You First Start tibemsadmin
The administration tool has a default user with the name admin. This is the default user for
logging in to the administration tool.

To protect access to the server configuration, you must assign a password to the user
admin.

Assigning a Password to the Administrator

Procedure
 1. Log in and connect to the administration tool, as described directly above.

 2. Use the set password command to change the password:

set password admin password

Result
When you restart the administration tool and type connect, the administration tool now
requires your password before connecting to the server.

TIBCO Enterprise Message Service™ User Guide

147 | Using the EMS Administration Tool

For further information about setting and resetting passwords, refer to set password.

Naming Conventions
These rules apply when naming users, groups, topics or queues:

 l $ is illegal at the beginning of the queue or topic names—but legal at the beginning
of user and group names.

 l A user name cannot contain colon (":") character.

 l Space characters are permitted in a description field—if the entire description field is
enclosed in double quotes (for example, "description field").

 l Both * and > are wildcards, and cannot be used in names except as wildcards.

For more information about wildcards, see Wildcards.

 l Dot separates elements within a destination name (foo.bar.*) and can be used only
for that purpose.

Name Length Limitations
The following length limitations apply for these parameter names:

 l Destination name — cannot exceed 249 characters. For more information on topic
and queue naming conventions, see Destination Name Syntax.

 l Username — cannot exceed 255 characters. The username parameter is described in
users.conf.

 l Group name — cannot exceed 255 characters. The group-name parameter is
described in groups.conf.

 l Client ID — cannot exceed 255 characters.

 l Connection URL — cannot exceed 1000 characters.

Note: For more information on Client ID and Connection URL, see
factories.conf.

 l Passwords — cannot exceed 4096 characters. This length limitation applies to

TIBCO Enterprise Message Service™ User Guide

148 | Using the EMS Administration Tool

passwords used by the tibemsd to authenticate connecting clients or servers.

Command Listing
The command line interface of the administration tool allows you to perform a variety of
functions. Note that when a system uses shared configuration files, the actions performed
using the administration tool take effect only when connected to the active server.

Note: Many of the commands listed below accept arguments that specify the
names of users, groups, topics or queues. For information about the syntax and
that apply to these names, see Naming Conventions.

TLS aspects are addressed in TLS Protocol.

The following is an alphabetical listing of the commands including command syntax and a
description of each command.

activate_dr_site
activate_dr_site

This command is only available when using FTL stores with Disaster Recovery configured.

Inform the FTL servers at the disaster recovery site that their site of operations is now the
new primary site.

This command should be issued to one of the EMS servers in the fault-tolerant pair at the
disaster recovery site. It should only ever be used if the primary site becomes unavailable.

add member
add member group_name user_name [,user2,user3,...]

Add one or more users to the group. User names that are not already defined are added to
the group as external users; see Administration Commands and External Users and Groups.

TIBCO Enterprise Message Service™ User Guide

149 | Using the EMS Administration Tool

addprop factory
addprop factory factory-name properties ...

Adds properties to the factory. Property names are separated by spaces.

See factories.conf for the list of factory properties.

Example

addprop factory MyTopicFactory ssl_trusted=cert1.pem
ssl_trusted=cert2.pem ssl_verify_host=disabled

addprop queue
addprop queue queue-name properties,...

Adds properties to the queue. Property names are separated by commas.

For information on properties that can be assigned to queues, see Destination Properties.

addprop route
addprop route route-name prop=value[prop-value...]

Adds properties to the route.

Destination (topic and queue) properties must be separated by commas but properties of
routes and factories are separated with spaces.

You can set the zone_name and zone_type parameters when creating a route, but you
cannot subsequently change them.

For route properties, see Configure Routes and Zones.

For the configuration file routes.conf, see routes.conf.

TIBCO Enterprise Message Service™ User Guide

150 | Using the EMS Administration Tool

addprop topic
addprop topic topic_name properties,...

Adds properties to the topic. Property names are separated by commas.

For information on properties that can be assigned to topics, see Destination Properties.

autocommit
autocommit [on|off]

When autocommit is set to on, the changes made to the configuration files are
automatically saved to disk after each command. When autocommit is set to off, you must
manually use the commit command to save configuration changes to the disk.

By default, autocommit is set to on when interactively issuing commands.

Entering autocommit without parameters displays the current setting of autocommit (on or
off).

Note: Regardless of the autocommit setting, the EMS server acts on each admin
command immediately making it part of the configuration. The autocommit
feature only determines when the configuration is written to the files.

commit
commit

Commits all configuration changes into files on disk.

TIBCO Enterprise Message Service™ User Guide

151 | Using the EMS Administration Tool

compact
compact store-name max-time
compact

Compacts a specified store of type file, or all stores of type ftl. Compaction is not
available for stores of type as.

For stores of type file:

 l Since compaction for file-based stores can be a lengthy operation and it blocks other
operations, a time limit (in seconds) must be specified for the operation through the
max-time parameter. Note that max-time must be a number greater than zero.

 l If truncation is not enabled for the store file, the compact command does not reduce
the file size. Enable truncation using the file_truncate parameter in the
stores.conf file. See stores.conf for more information.

 l We recommend compacting the store files only when the Used Space usage is 30% or
less (see show store).

For stores of type ftl:

 l FTL stores are designed to automatically compact in the background when the
underlying FTL deployment reaches a certain threshold of unused disk space. The
compact command can be used to manually trigger this compaction process.

 l The store-name and max-time arguments are not supported for the compact
command when using FTL stores. The compaction process occurs at the FTL level
and automatically affects all FTL stores; and since the compaction process occurs
asynchronously over time, a time limit is not required.

connect
connect [server-url {admin|user_name} password]

Connects the administration tool to the server. Any administrator can connect. An
administrator is either the admin user, any user in the $admin group, or any user that has
administrator permissions enabled. See Administrator Permissions for more information
about administrator permissions.

TIBCO Enterprise Message Service™ User Guide

152 | Using the EMS Administration Tool

server-url is usually in the form:

protocol://host-name:port-number

for example:

tcp://myhost:7222

The protocol can be tcp or ssl.

If a user name or password are not provided, the user is prompted to enter a user name
and password, or only the password, if the user name was already specified in the
command.

You can enter connect with no other options and the administrative tool tries to connect
to the local server on the default port, which is 7222.

create bridge
create bridge source=type:dest_name target=type:dest_name [selector=msg-selector]

Creates a bridge between destinations.

type is either topic or queue.

For further information, see bridges.conf.

create durable
create durable topic-name durable-name [property, ... ,property]

Creates a static durable subscriber.

For descriptions of parameters and properties, and information about conflict situations,
see durables.conf.

TIBCO Enterprise Message Service™ User Guide

153 | Using the EMS Administration Tool

create factory
create factory factory_name factory_parameters

Creates a new connection factory.

For descriptions of factory parameters, see factories.conf.

create group
create group group_name "description"

Creates a new group of users.

Initially, the group is empty. You can use the add member command to add users to the
group.

create jndiname
create jndiname new_jndiname topic|queue|jndiname name

Creates a JNDI name for a topic or queue, or creates an alternate JNDI name for a topic
that already has a JNDI name.

The following example will create new JNDI name FOO referring the same object referred
by JNDI name BAR

create jndiname FOO jndiname BAR

create queue
create queue queue_name [properties]

TIBCO Enterprise Message Service™ User Guide

154 | Using the EMS Administration Tool

Creates a queue with the specified name and properties. The possible queue properties are
described in Destination Properties. Properties are listed in a comma-separated list, as
described in queues.conf.

create route
create route name url=URL [properties ...]

Creates a route.

The name must be the name of the other server to which the route connects.

The local server connects to the destination server at the specified URL. If you have
configured fault-tolerant servers, you may specify the URL as a comma-separated list of
URLs.

The route properties are listed in routes.conf and are specified as a space-separated list
of parameter name and value pairs.

You can set the zone_name and zone_type parameters when creating a route, but you
cannot subsequently change them.

If a passive route with the specified name already exists, this command promotes it to an
active-active route; see Active and Passive Routes.

For additional information on route parameters, see Configure Routes and Zones.

create rvcmlistener
create rvcmlistener transport_name cm_namesubject

Registers an RVCM listener with the server so that any messages exported to a tibrvcm
transport (including the first message sent) are guaranteed for the specified listener. This
causes the server to perform the TIBCO Rendezvous call tibrvcmTransport_AddListener.

The parameters are:

 l transport_name — the name of the transport to which this RVCM listener applies.

 l cm_name — the name of the RVCM listener to which topic messages are to be

TIBCO Enterprise Message Service™ User Guide

155 | Using the EMS Administration Tool

exported.

 l subject — the RVCM subject name that messages are published to. This should be the
same name as the topic names that specify the export property.

For more information, see tibrvcm.conf and Rendezvous Certified Messaging (RVCM)
Parameters.

create topic
create topic topic_name [properties]

Creates a topic with specified name and properties. See Destination Properties for the list
of properties. Properties are listed in a comma-separated list, as described in topics.conf.

create user
create user user_name ["user_description"] [password=password]

Creates a new user. Following the user name, you can add an optional description of the
user in quotes. The password is optional and can be added later using the set password
command.

Note: User names cannot contain colon (:) characters.

delete all
delete all users|groups|topics|queues|durables [topic-name-pattern|queue-name-
pattern]

If used as delete all users|groups|topics|queues|durables without the optional
parameters, the command deletes all users, groups, topics, or queues (as chosen).

TIBCO Enterprise Message Service™ User Guide

156 | Using the EMS Administration Tool

If used with a topic or queue, and the optional parameters, such as those seen below, the
command deletes all topics and queues that match the topic or queue name pattern.

delete all topics|queues topic-name-pattern|queue-name-pattern

delete bridge
delete bridge source=type:dest_name target=type:dest_name

Delete the bridge between the specified source and target destinations.

type is either topic or queue.

See Destination Bridges for more information on bridges.

delete connection
delete connection connection-id

Delete the named connection for the client. The connection ID is shown in the first column
of the connection description printed by show connection.

delete durable
delete durable durable-name [client ID]

Delete the named durable subscriber.

When both the durable name and the client ID are specified, the server looks for a durable
named clientID:durable-name in the list of durables. If a matching durable subscriber is not
found, the administration tool prints an error message including the fully qualified durable
name.

See also, Conflicting Specifications.

TIBCO Enterprise Message Service™ User Guide

157 | Using the EMS Administration Tool

delete factory
delete factory factory-name

Delete the named connection factory.

delete group
delete group group-name

Delete the named group.

delete jndiname
delete jndiname jndiname

Delete the named JNDI name. Notice that deleting the last JNDI name of a connection
factory object will remove the connection factory object as well.

See The EMS Implementation of JNDI for more information.

delete message
delete message messageID

Delete the message with the specified message ID.

delete queue
delete queue queue-name

Delete the named queue.

TIBCO Enterprise Message Service™ User Guide

158 | Using the EMS Administration Tool

delete route
delete route route-name

Delete the named route.

delete rvcmlistener
delete rvcmlistener transport_name cm_namesubject

Unregister an RVCM listener with the server so that any messages being held for the
specified listener in the RVCM ledger are released. This causes the server to perform the
TIBCO Rendezvous call tibrvcmTransport_RemoveListener.

The parameters are:

 l transport_name — the name of the transport to which this RVCM listener applies.

 l cm_name — the name of the RVCM listener to which topic messages are exported.

 l subject — the RVCM subject name that messages are published to. This should be the
same name as the topic names that specify the export property.

For more information, see tibrvcm.conf and Rendezvous Certified Messaging (RVCM)
Parameters.

delete topic
delete topic topic-name

Delete the named topic.

delete user
delete user user-name

TIBCO Enterprise Message Service™ User Guide

159 | Using the EMS Administration Tool

Delete the named user.

disconnect
disconnect

Disconnect the administrative tool from the server.

echo
echo [on|off]

Echo controls the reports that are printed into the standard output. When echo is off the
administrative tool only prints errors and the output of queries. When echo is on, the
administrative tool report also contains a record of successful command execution.

Choosing the parameter on or off in this command controls echo. If echo is entered in the
command line without a parameter, it displays the current echo setting (on or off). This
command is used primarily for scripts.

The default setting for echo is on.

exit
exit (aliases: quit, q, bye, end)

Exit the administration tool.

The administrator may choose the exit command when there are changes in the
configuration have which have not been committed to disk. In this case, the system will
prompt the administrator to use the commit command before exiting.

TIBCO Enterprise Message Service™ User Guide

160 | Using the EMS Administration Tool

grant queue
grant queue queue-name user=name | group=namepermissions

Grants specified permissions to specified user or group on specified queue. The name
following the queue name is first checked to be a group name, then a user name.

Specified permissions are added to any existing permissions. Multiple permissions are
separated by commas. Enter all in the permissions string if you choose to grant all possible
user permissions.

User permissions are:

 l receive

 l send

 l browse

For more information on queue permissions, see User Permissions.

Destination-level administrator permissions can also be granted with this command. The
following are administrator permissions for queues.

 l view

 l create

 l delete

 l modify

 l purge

For more information on destination permissions, see Destination-Level Permissions.

grant topic
grant topic topic-name user=name | group=namepermissions

Grants specified permissions to specified user or group on specified topic. The name
following the topic name is first checked to be a group name, then a user name.

TIBCO Enterprise Message Service™ User Guide

161 | Using the EMS Administration Tool

Specified permissions are added to any existing permissions. Multiple permissions are
separated by commas. Enter all in the permissions string if you choose to grant all possible
permissions.

Topic permissions are:

 l subscribe

 l publish

 l durable

 l use_durable

For more information on topic permissions, see User Permissions.

Destination-level administrator permissions can also be granted with this command. The
following are administrator permissions for topics.

 l view

 l create

 l delete

 l modify

 l purge

For more information on destination permissions, see Destination-Level Permissions.

grant admin
grant admin user=name | group=name admin_permissions

Grant the named global administrator permissions to the named user or group. For a
complete listing of global administrator permissions, see Global Administrator Permissions.

help
help (aliases: h, ?)

TIBCO Enterprise Message Service™ User Guide

162 | Using the EMS Administration Tool

Display help information.

Enter help commands for a summary of all available commands.

Enter helpcommand for help on a specific command.

info
info (alias: i)

Shows server name and information about the connected server.

jaci clear
jaci clear

Empties the JACI permission cache of all entries.

jaci resetstats
jaci resetstats

Resets all statistics counters for the JACI cache to zero.

jaci showstats
jaci showstats

Prints statistics about JACI cache performance.

TIBCO Enterprise Message Service™ User Guide

163 | Using the EMS Administration Tool

purge all queues
purge all queues [pattern]

Purge all or selected queues.

When used without the optional pattern parameter, this command erases all messages in
all queues for all receivers.

When used with the pattern parameter, this command erases all messages in all queues
that fit the pattern (for example: foo.*).

purge all topics
purge all topics [pattern]

Purge all or selected topics.

When used without the optional pattern parameter, this command erases all messages in
all topics for all subscribers.

When used with the pattern parameter, this command erases all messages in all topics that
fit the pattern (for example: foo.*).

purge durable
purge durable durable-name [client ID]

Purge all messages in the topic for the named durable subscriber.

When both the durable name and the client ID are specified, the server looks for a durable
named clientID:durable-name in the list of durables.

TIBCO Enterprise Message Service™ User Guide

164 | Using the EMS Administration Tool

purge queue
purge queue queue-name

Purge all messages in the named queue.

purge topic
purge topic topic-name

Purge all messages for all subscribers on the named topic.

remove member
remove member group-name user-name[,user2,user3,...]

Remove one or more named users from the named group.

removeprop factory
removeprop factory factory-name properties

Remove the named properties from the named factory. See Connection Factory Parameters
for a list of properties.

removeprop queue
removeprop queue queue-name properties

Remove the named properties from the named queue.

#ID-00002B38

TIBCO Enterprise Message Service™ User Guide

165 | Using the EMS Administration Tool

removeprop route
removeprop route route-name properties

Remove the named properties from the named route.

You cannot remove the URL.

You can set the zone_name and zone_type parameters when creating a route, but you
cannot subsequently change them.

For route parameters, see Configure Routes and Zones.

For the configuration file routes.conf, see routes.conf.

removeprop topic
removeprop topic topic-name properties

Remove the named properties from the named topic.

resume route
resume route route-name

Resumes sending messages to named route, if messages were previously suspended using
the suspend route command.

revoke admin
revoke admin user=name | group=name permissions

Revoke the specified global administrator permissions from the named user or group. See
Authentication and Permissions, for more information about administrator permissions.

TIBCO Enterprise Message Service™ User Guide

166 | Using the EMS Administration Tool

revoke queue
revoke queue queue-name user=name | group=name permissions
 revoke queue queue-name * [user | admin | both]

Revoke the specified permissions from a user or group for the named queue.

User and group permissions for queues are receive, send, browse, and all. Administrator
permissions for queues are view, create, delete, modify, and purge.

If you specify an asterisk (*), all user-level permissions on this queue are removed. You can
use the optional admin parameter to revoke all administrative permissions, or the both
parameter to revoke all user-level and administrative permissions on the queue.

For more information, see Authentication and Permissions.

revoke topic
revoke topic topic-name user=name | group=name permissions
 revoke topic topic-name * [user | admin | both]

Revoke the specified permissions from a user or group for the named topic.

User and group permissions for topics are subscribe, publish, durable, use_durable, and
all. Administrator permissions for topics are view, create, delete, modify, and purge.

If you specify an asterisk (*), all user-level permissions on this topic are removed. You can
use the optional admin parameter to revoke all administrative permissions, or the both
parameter to revoke all user-level and administrative permissions on the topic.

For more information, see Authentication and Permissions.

rotatelog
rotatelog

Force the current log file to be backed up and truncated. The server starts writing entries
to the newly empty log file.

TIBCO Enterprise Message Service™ User Guide

167 | Using the EMS Administration Tool

The backup file name is the same as the current log file name with a sequence number
appended to the filename. The server queries the current log file directory and determines
what the highest sequence number is, then chooses the next highest sequence number for
the new backup name. For example, if the log file name is tibems.log and there is already
a tibems.log.1 and tibems.log.2, the server names the next backup tibems.log.3.

This command is not supported if the EMS server is using FTL stores.

save_and_exit
save_and_exit

When using in-memory replication with FTL stores, save the state of each server to disk
and exit. Each server's state is written to a file named <FTL server name>.state in its FTL
store-specific data directory. If a state file already exists in the directory, the server will first
rename it as <FTL server name>.state.backup before writing the new state file.

This command should be used when all FTL servers have to be shut down. The YAML
configuration of the FTL server cluster will need to be altered to instruct each of the
servers to load its saved state upon restart.

This command is only relevant when using FTL stores with in_memory_replication
enabled. See Shutting down and Restarting an In-Memory Cluster for more details.

set password
set password user-name [password]

Set the password for the named user.

If you do not supply a password in the command, the server prompts you to type one.

 l To reset a password, type:

set password user-name

Type a new password at the prompt.

TIBCO Enterprise Message Service™ User Guide

168 | Using the EMS Administration Tool

 l To remove a password, use this command without supplying a password, and press
the Enter key at the prompt (without typing a password).

Warning: Passwords are a significant point of vulnerability for any enterprise.
We recommend enforcing strong standards for passwords.

For security equivalent to single DES (an industry minimum), security experts
recommend passwords that contain 8–14 characters, with at least one upper
case character, at least one numeric character, and at least one punctuation
character.

set server
set server parameter=value [parameter=value ...]

The set server command can control many parameters. Multiple parameters are
separated by spaces. The following table describes the parameters you can set with this
command.

Parameter Description

password [= string] Sets server password used by the server to
connect to other routed servers. If the
value is omitted it is prompted for by the
administration tool. Entered value will be
stored in the main server configuration file
in mangled form (but not encrypted).

To reset this password, enter the empty
string twice at the prompt.

authorization=enabled|disabled Sets the authorization mode in the
tibemsd.conf file.

After a transition from disabled to enabled,
the server checks ACL permissions for all
subsequent requests. While the server

TIBCO Enterprise Message Service™ User Guide

169 | Using the EMS Administration Tool

Parameter Description

requires valid authentication for existing
producers and consumers, it does not
retroactively reauthenticate them; it denies
access to users without valid prior
authentication.

log_trace=trace-items Sets the trace preference on the file
defined by the logfile parameter. If
logfile is not set, the values are stored
but have no effect.

The value of this parameter is a comma-
separated list of trace options. For a list of
trace options and their meanings, see
Server Tracing Options.

You may specify trace options in three
forms:

 l plain A trace option without a prefix
character replaces any existing trace
options.

 l + A trace option preceded by + adds
the option to the current set of trace
options.

 l - A trace option preceded by -
removes the option from the current
set of trace options.

Examples

The following example sets the trace log to
only show messages about access control
violations.

log_trace=ACL

The next example sets the trace log to
show all default trace messages, in

TIBCO Enterprise Message Service™ User Guide

170 | Using the EMS Administration Tool

Parameter Description

addition to TLS messages, but ADMIN
messages are not shown.

log_trace=DEFAULT,-ADMIN,+SSL

console_trace=console-trace-items Sets trace options for output to stderr.
The values are the same as for log_trace.
However, console tracing is independent of
log file tracing.

If logfile is defined, you can stop console
output by specifying:

console_trace=-DEFAULT

Note that important error messages (and
some other messages) are always output,
overriding the trace settings.

Examples
 See log_trace above.

client_trace={enabled|disabled}
[target=location] [filter=value]

Administrators can trace a connection or
group of connections. When this property
is enabled, the client generates trace
output for opening or closing a connection,
message activity, and transaction activity.
This type of tracing does not require
restarting the client program.

The client sends trace output to location,
which may be either stderr (the default)
or stdout.

You can specify a filter to selectively trace
specific connections. The filter can be user,
connid or clientid. The value can be a
user name or ID (as appropriate to the
filter).

TIBCO Enterprise Message Service™ User Guide

171 | Using the EMS Administration Tool

Parameter Description

When the filter and value clause is absent,
the default behavior is to trace all
connections.

Setting this parameter using the
administration tool does not change its
value in the configuration file
tibemsd.conf.

max_msg_memory=value Maximum memory the server can use for
messages.

For a complete description, see
 max_msg_memory in tibemsd.conf.

Specify units as KB, MB or GB. The minimum
value is 8MB. Zero is a special value,
indicating no limit.

Lowering this value will not immediately
free memory occupied by messages.

msg_swapping=enabled|disabled Enables or disables the ability to swap
messages to disk.

track_message_ids=enabled|disabled Enables or disables tracking messages by
MessageID.

track_correlation_ids=
enabled|disabled

Enables or disables tracking messages by
CorrelationID.

ssl_password[=string] This sets a password for TLS use only.

Sets private key or PKCS#12 file password
used by the server to decrypt the content
of the server identity file. The password is
stored in mangled form.

ft_ssl_password[=string] This sets a password for TLS use with Fault
Tolerance.

TIBCO Enterprise Message Service™ User Guide

172 | Using the EMS Administration Tool

Parameter Description

Sets private key or PKCS#12 file password
used by the server to decrypt the content
of the FT identity file. The password is
stored in mangled form.

This parameter is not supported when the
EMS server is using FTL stores.

server_rate_interval=num Sets the interval (in seconds) over which
overall server statistics are averaged. This
parameter can be set to any positive
integer greater than zero.

Overall server statistics are always
gathered, so this parameter cannot be set
to zero. By default, this parameter is set to
1.

Setting this parameter allows you to
average message rates and message size
over the specified interval.

statistics=enabled|disabled Enables or disables statistic gathering for
producers, consumers, destinations, and
routes. By default this parameter is set to
disabled.

Disabling statistic gathering resets the total
statistics for each object to zero.

rate_interval=num Sets the interval (in seconds) over which
statistics for routes, destinations,
producers, and consumers are averaged.
By default, this parameter is set to 3
seconds. Setting this parameter to zero
disables the average calculation.

detailed_statistics=
NONE| PRODUCERS,CONSUMERS,ROUTES

Specifies which objects should have
detailed statistic tracking. Detailed statistic
tracking is only appropriate for routes,

TIBCO Enterprise Message Service™ User Guide

173 | Using the EMS Administration Tool

Parameter Description

producers that specify no destination, or
consumers that specify wildcard
destinations. When detailed tracking is
enabled, statistics for each destination are
kept for the object.

Setting this parameter to NONE disables
detailed statistic tracking. You can specify
any combination of PRODUCERS,
CONSUMERS, or ROUTES to enable
tracking for each object. If you specify
more than one type of detailed tracking,
separate each item with a comma.

statistics_cleanup_interval=num Specifies how long (in seconds) the server
should keep detailed statistics if the
destination has no activity. This is useful
for controlling the amount of memory used
by detailed statistic tracking. When the
specified interval is reached, statistics for
destinations with no activity are deleted.

max_stat_memory=num Specifies the maximum amount of memory
to use for detailed statistic gathering. If no
units are specified, the amount is in bytes,
otherwise you can specify the amount
using KB, MB, or GB as the units.

Once the maximum memory limit is
reached, the server stops collecting
detailed statistics. If statistics are deleted
and memory becomes available, the server
resumes detailed statistic gathering.

setprop factory
setprop factory factory-name properties ...

TIBCO Enterprise Message Service™ User Guide

174 | Using the EMS Administration Tool

Set the properties for a connection factory, overriding any existing properties. Multiple
properties are separated by spaces. See Connection Factory Parameters for the list of the
properties that can be set for a connection factory.

setprop queue
setprop queue queue-name properties, ...

Set the properties for a queue, overriding any existing properties. Any properties on a
queue that are not explicitly specified by this command are removed.

Multiple properties are separated by commas. See Destination Properties for the list of the
properties that can be set for a queue.

setprop route
setprop route route-name properties ...

Set the properties for a route, overriding any existing properties. Any properties on a route
that are not explicitly specified by this command are removed.

You can set the zone_name and zone_type parameters when creating a route, but you
cannot subsequently change them.

Multiple properties are separated by spaces. For route parameters, see routes.conf and
Configure Routes and Zones.

setprop topic
setprop topic topic-name properties

Set topic properties, overriding any existing properties. Any properties on a topic that are
not explicitly specified by this command are removed.

Multiple properties are separated by commas. See Destination Properties for the list of the
properties that can be set for a topic.

#ID-00002B38

TIBCO Enterprise Message Service™ User Guide

175 | Using the EMS Administration Tool

setup_dr_site
setup_dr_site url_list

This command is only available when using FTL stores with Disaster Recovery configured.

Establish a new Disaster Recovery (DR) site after the original DR site has become the new
primary site.

This command must be issued to the active EMS server of the FTL server cluster at the
designated new DR site.

The url_list is a pipe-separated list of URLs of the FTL server cluster at the primary site.
Each URL should be of the form:

<FTL server name>@<host>:<port>

show bridge
show bridge topic|queue bridge_source

Display information about the configured bridges for the named topic or queue. The
bridge_source is the name of the topic or queue established as the source of the bridge.

The following is example output for this command:

Target Name Type Selector
 queue.dest Q
 topic.dest.1 T "urgency in ('high', 'medium')"
 topic.dest.2 T

The names of the destinations to which the specified destination has configured bridges
are listed in the Target Name column. The type and the message selector (if one is defined)
for the bridge are listed in the Type and Selector column.

TIBCO Enterprise Message Service™ User Guide

176 | Using the EMS Administration Tool

show bridges
show bridges [type=topic|queue] [pattern]

Shows a summary of the destination bridges that are currently configured. The type option
specifies the type of destination established as the bridge source. For example, show
bridges topic shows a summary of configured bridges for all topics that are established
as a bridge source. The pattern specifies a pattern to match for source destination names.
For example show bridges foo.* returns a summary of configured bridges for all source
destinations that match the name foo.*. The type and pattern are optional.

The following is example output for this command:

 Source Name Queue Targets Topic Targets
 Q queue.source 1 1
 T topic.source 1 2

Destinations that match the specified pattern and/or type are listed in the Source Name
column. The number of bridges to queues for each destination is listed in the Queue
Targets column. The number of bridges to topics for each destination is listed in the Topic
Targets column.

show config
show config

Shows the configuration parameters for the connected server. The output includes:

 l configuration files

 l server database

 l server JVM

 l listen ports

 l configuration settings

 l message tracking

 l server tracing parameters

TIBCO Enterprise Message Service™ User Guide

177 | Using the EMS Administration Tool

 l statistics settings

 l fault-tolerant setup

 l external transport setup

 l server TLS setup

show consumer
show consumer consumerID

Shows details about a specific consumer. The consumerID can be obtained from the show
consumers output.

show consumers
show consumers [topic=name | queue=name] [durable] [user=name]
[connection=id] [sort=conn|user|dest|msgs] [full]

Shows information about all consumers or only consumers matching specified filters.
Output of the command can be controlled by specifying the sort or full parameter. If the
topic or queue parameter is specified, then only consumers on destinations matching
specified queue or topic are shown. The user and/or connection parameters show
consumers only for the specified user or connection. Note that while the queue browser is
open, it appears as a consumer in the EMS server.

The durable parameter shows only durable topic subscribers and queue receivers, but it
does not prevent queue consumers to be shown. To see only durable topic consumers, use:

show consumers topic=> durable

The sort parameter sorts the consumers by either connection ID, user name, destination
name, or number of pending messages. The full parameter shows all columns listed below
and can be as wide as 120-140 characters or wider. Both topic and queue consumers are
shown in separate tables, first the topic consumers and then the queue consumers.

TIBCO Enterprise Message Service™ User Guide

178 | Using the EMS Administration Tool

Note: When connected to an EMS 8.0 or higher server, this command no longer
displays offline durable subscribers. In order to see offline durables, use the
command show durables or show subscriptions.

Heading Description

Id Consumer ID.

Conn Consumer's connection ID.

If performed on an EMS 7.x or earlier server, this field displays '-' to indicate
a disconnected durable topic subscriber.

Sess Consumer's session ID.

If performed on an EMS 7.x or earlier server, this field displays '-' to indicate
a disconnected durable topic subscriber.

T Consumer type character which can be one of:

For topic consumer:

 l T - non-durable topic subscriber.

 l D - durable topic subscriber.

 l R - system-created durable for a routed topic.

 l P - proxy subscriber on route's temporary topic.

For queue consumer:

 l Q - regular queue receiver.

 l q - inactive queue receiver.

 l P - system-created receiver on global queue for user receiver created
in one of routes.

Topic/Queue Name of the subscription topic or queue.

Name (Topics Only.) Durable or shared subscription name. This column is shown

show consumers (description of output fields)

TIBCO Enterprise Message Service™ User Guide

179 | Using the EMS Administration Tool

Heading Description

for topic consumers if at least one consumer is a durable or shared
consumer.

SAS[NMBS] Description of columns:

 l S - '+' if consumer's connection started, '-' otherwise.

 l A - mode of consumer's session, values are:

 o N - no acknowledge

 o A - auto acknowledge

 o D - dups_ok acknowledge

 o C - client acknowledge

 o T - session is transactional

 o X - XA or MS DTC session

 o Z - connection consumer

 l S - '+' if consumer has a selector, '-' otherwise.

 l N - (TOPICS ONLY) '+' if subscriber is "NoLocal."

 l B - (QUEUES ONLY) '+' if consumer is a queue browser.

 l S - (TOPICS ONLY) '+' if this is a shared consumer.

Pre Prefetch value of the consumer's destination.

Pre Dlv Number of prefetch window messages delivered to consumer

Msgs Sent Current number of messages sent to consumer which are not yet
acknowledged by consumer's session.

Size Sent Combined size of unacknowledged messages currently sent to consumer.
Value is rounded and shown in bytes, (K)ilobytes, (M)egabytes or
(G)igabytes.

Pend Msgs (Topics Only.) Total number of messages pending for the topic consumer.

Pend Size (Topics Only.) Combined size of messages pending for the topic consumer.

TIBCO Enterprise Message Service™ User Guide

180 | Using the EMS Administration Tool

Heading Description

Value is rounded and shown in bytes, (K)ilobytes, (M)egabytes or
(G)igabytes.

Uptime Uptime of the consumer.

Last Sent Approximate time elapsed since last message was sent by the server to the
consumer. Value is approximate with precision of 1 second.

Last Ackd Approximate time elapsed since last time a message sent to the consumer
was acknowledged by consumer's session. Value is approximate with
precision of 1 second.

Total Sent Total number of messages sent to consumer since it was created. This
includes resends due to session recover or rollback.

Total Acked Total number of messages sent to the consumer and acknowledged by
consumer's session since consumer created.

show connections
show connections [type=q|t|s] [host=hostname] [user=username] [version]
[address] [counts] [full]

Show connections between clients and server. The table show connections (description of
output fields) describes the output.

The type parameter selects the subset of connections to display as shown in the following
table. The host and user parameters can further narrow the output to only those
connections involving a specific host or user. When the version flag is present, the display
includes the client’s version number.

If the address parameter is specified, then the IP address is printed in the output table. If
the counts parameter is specified, then number of producers, consumers and temporary
destinations are printed. Specifying the full parameter prints all of the available
information.

#TABLE_E376E892D0F44578B6F947374A2964ED
#TABLE_E376E892D0F44578B6F947374A2964ED

TIBCO Enterprise Message Service™ User Guide

181 | Using the EMS Administration Tool

Type Description

type=q Show queue connections only.

type=t Show topic connections only.

type=s Show system connections only.

absent Show queue and topic connections, but not system connections.

Heading Description

L The type of client. Can be one of the following:

 l J — Java client

 l C — C client

 l # — C# client

 l - — unknown system connection

Version The EMS version of the client.

ID Unique connection ID. Each connection is assigned a unique, numeric ID that
can be used to delete the connection.

FSXT Connection type information.

The F column displays whether the connection is fault-tolerant.

 l - — not a fault-tolerant connection, that is, this connection has no
alternative URLs

 l + — fault-tolerant connection, that is, this connection has alternative
URLs

The S column displays whether the connection uses TLS.

 l - — connection is not TLS

 l + — connection is TLS

The X column displays whether the connection is an XA or MS DTC

show connections (description of output fields)

TIBCO Enterprise Message Service™ User Guide

182 | Using the EMS Administration Tool

Heading Description

transaction.

 l - — connection is not XA or MS DTC

 l + — connection is either an XA or MS DTC connection

The T column displays the connection type.

 l C — generic user connection

 l T — user TopicConnection

 l Q — user QueueConnection

 l A — administrative connection

 l R — system connection to another route server

 l F — system connection to the fault-tolerant server

S Connection started status, + if started, - if stopped.

IP Address Shows client IP address.

The address or full parameter must be specified to display this field.

Port The ephemeral port used by the client on the client machine.

The address or full parameter must be specified to display this field.

Host Connection's host name. (If the name is not available, this column displays
the host’s IP address.)

Address Connection's IP address.

If you supply the keyword address, then the table includes this column.

User Connection user name. If a user name was not provided when the connection
was created, it is assigned the default user name anonymous.

ClientID Client ID of the connection.

Sess Number of sessions on this connection.

TIBCO Enterprise Message Service™ User Guide

183 | Using the EMS Administration Tool

Heading Description

Prod Number of producers on this connection.

The counts or full parameter must be specified to display this field.

Cons Number of consumers on this connection.

The counts or full parameter must be specified to display this field.

TmpT Number of temporary topics created by this connection.

The counts or full parameter must be specified to display this field.

TmpQ Number of temporary queues created by this connection.

The counts or full parameter must be specified to display this field.

Uncomm Number of messages in uncommitted transactions on the connection.

The counts or full parameter must be specified to display this field.

UncommSize The combined size, in bytes, of messages in uncommitted transactions on
the connection.

The counts or full parameter must be specified to display this field.

Uptime Time that the connection has been in effect.

show db
show db

Print a summary of the server’s databases. Databases are also printed by show stores, the
preferred command. This command is only supported when using file-based stores.

See show store for details about a specific database.

TIBCO Enterprise Message Service™ User Guide

184 | Using the EMS Administration Tool

show durable
show durable durable-name [client ID]

Show information about a durable subscriber.

When both the durable name and the client ID are specified, the server looks for a durable
named clientID:durable-name in the list of durables.

Heading Description

Durable
Subscriber

Fully qualified name of the durable subscriber. This name concatenates the
client ID (if any) and the subscription name (separated by a colon).

Subscription
name

Full name of the durable subscriber.

Shared yes if this is a shared durable subscription, no otherwise.

Client ID Client ID of the subscriber’s connection.

Topic The topic from which the durable subscription receives messages.

Type dynamic—created by a client

static—configured by an administrator

Status online

offline

Username Username of the durable subscriber (that is, of the client’s connection).

If the durable subscriber is currently offline, the value in this column is
offline.

Consumer ID This internal ID number is not otherwise available outside the server.

No Local enabled—the subscriber does not receive messages sent from its local
connection (that is, the same connection as the subscriber).

show durable (description of output field)

TIBCO Enterprise Message Service™ User Guide

185 | Using the EMS Administration Tool

Heading Description

disabled—the subscriber receives messages from all connections.

Selector The subscriber receives only those messages that match this selector.

Pending Msgs Number of all messages in the topic. (This count includes the number of
delivered messages.)

Delivered Msgs Number of messages in the topic that have been delivered to the durable
subscriber, but not yet acknowledged.

Pending Msgs
Size

Total size of all pending messages

show durables
show durables [pattern]

If a pattern is not entered, this command shows a list of all durable subscribers on all
topics.

If a pattern is entered (for example foo.*) this command shows a list of durable
subscribers on topics that match that pattern.

Heading Description

Topic
Name

Name of the topic.

An asterisk preceding this name indicates a dynamic durable subscriber.
Otherwise the subscriber is static (configured by an administrator).

Durable Full name of the durable subscriber.

Shared Y to indicate that this is a shared durable subscription, N otherwise.

show durable (description of output fields)

TIBCO Enterprise Message Service™ User Guide

186 | Using the EMS Administration Tool

Heading Description

User Name of the user of this durable subscriber. If the durable subscriber is
currently offline, the value in this column is offline. If this is a shared durable
subscription, the value of this column is shared.

For users defined externally, there is an asterisk in front of the user name.

Msgs Number of pending messages

Size Total size of pending messages

For more information, see Destination Properties.

show factory
show factory factory-name

Shows properties of specified factory.

show factories
show factories [generic|topic|queue]

Shows all factories. You can refine the listed output by specifying only generic, topic, or
queue factories be listed.

show jndiname
show jndiname jndi-name

Shows the object that the specified name is bound to by the JNDI server.

TIBCO Enterprise Message Service™ User Guide

187 | Using the EMS Administration Tool

show jndinames
show jndinames [type]

The optional parameter type can be:

 l destination

 l topic

 l queue

 l factory

 l topicConnectionFactory

 l queueConnectionFactory

When type is specified only JNDI names bound to objects of the specified type are shown.
When type is not specified, all JNDI names are shown.

show group
show group group-name

Shows group name, description, and number of members in the group.

For groups defined externally, there is an asterisk in front of the group name. Only external
groups with at least one currently connected user are shown.

show groups
show groups

Shows all user groups.

For groups defined externally, there is an asterisk in front of the group name.

TIBCO Enterprise Message Service™ User Guide

188 | Using the EMS Administration Tool

show members
show members group-name

Shows all user members of specified user group.

show message
show message messageID

Shows the message for the specified message id.

This command requires that tracking by message ID be turned on using the
 track_message_ids configuration parameter.

show messages
show messages correlationID

Shows the message IDs of all messages with the specified correlation ID set as
JMSCorrelationID message header field. You can display the message for each ID returned
by this command by using the show message messageID command.

This command requires that tracking by correlation ID be turned on using the
 track_correlation_ids configuration parameter.

show parents
show parents user-name

Shows the user’s parent groups. This command can help you to understand the user’s
permissions.

TIBCO Enterprise Message Service™ User Guide

189 | Using the EMS Administration Tool

show queue
show queue queue-name

Shows the details for the specified queue.

Note: If the queue is a routed queue, specify only the name of the queue (do not
specify the server using the queue-name@server form).

Heading Description

Queue Full name of the queue.

Type dynamic—created by a client

static—configured by an administrator

Properties A list of property names that are set on the queue, and their values. For an
index list of property names, see Destination Properties.

JNDI Names A list of explicitly assigned JNDI names that refer to this queue.

Bridges A list of bridges from this queue to other destinations.

Receivers Number of consumers on this queue.

Pending
Msgs

Number of all messages in the queue, followed by the number of persistent
messages in parenthesis.

These counts include the number of delivered messages.

Delivered
Msgs

Number of messages in the queue that have been delivered to a consumer,
but not yet acknowledged.

Pending
Msgs Size

Total size of all pending messages, followed by the size of all persistent
messages in parenthesis.

show queue (description of output fields)

TIBCO Enterprise Message Service™ User Guide

190 | Using the EMS Administration Tool

show queues
show queues [pattern-name [notemp|static|dynamic] [first=n|next=n|last=n]]

If a pattern-name is not entered, this command shows a list of all queues.

If a pattern-name is entered (for example foo.* or foo.>) this command shows a list of
queues that match that pattern. See Wildcards * and > for more information about using
wildcards.

You can further refine the list of queues that match the pattern by using one of the
following parameters:

 l notemp — do not show temporary queues

 l static — show only static queues

 l dynamic — show only dynamic queues

When a pattern-name is entered, you can also cursor through the list of queues using one
of the following commands, where n is whole number:

 l first=n — show the first n queues

 l next=n — show the next n queues

 l last=n — show the next n queues and terminate the cursor

The cursor examines n queues and displays queues that match the pattern-name. Because
it does not traverse the full list of queues, the cursor may return zero or fewer than n
queues. To find all matching queues, continue to use next until you receive a Cursor
complete message.

A * appearing before the queue name indicates a dynamic queue.

Heading Description

Queue Name Name of the queue. If the name is prefixed with an asterisk (*),
then the queue is temporary or was created dynamically.
Properties of dynamic and temporary queues cannot be changed.

SNFGXIBCT Prints information on the topic properties in the order

show queues (description of output fields)

TIBCO Enterprise Message Service™ User Guide

191 | Using the EMS Administration Tool

Heading Description

(S)ecure (N)sender_name or sender_name_enforced (F)ailsafe
(G)lobal e(X)clusive (I)mport (B)ridge (C)flowControl (T)race

The characters in the value section show:

- Property not present

+ Property is present, and was set on the queue itself

* Property is present, and was inherited from another queue

Note that inherited properties cannot be removed.

Pre Prefetch value. If the value is followed by an asterisk (*), then it is
inherited from another queue or is the default value.

Rcvrs Number of currently active receivers

All Msgs

 Msgs

 Size

Number of pending messages

Total size of pending messages

Persistent Msgs

 Msgs

 Size

Number of pending persistent messages

Total size of pending persistent messages

For more information, see Destination Properties.

show route
show route route-name

Shows the properties (URL and TLS properties) of a route.

TIBCO Enterprise Message Service™ User Guide

192 | Using the EMS Administration Tool

show routes
show routes

Shows the properties (URL and TLS properties) of all created routes.

These commands print the information described in the following table.

Heading Description

Route Name of the route.

T Type of route:

 l A indicates an active route.

 l P indicates a passive route.

ConnID Unique ID number of the connection from this server to the server at the
other end of the route.

A hyphen (-) in this column indicates that the other server is not connected.

URL URL of the server at the other end of the route.

ZoneName Name of the zone for the route.

ZoneType Type of the zone:

 l m indicates a multi-hop zone.

 l 1 indicates a one-hop zone.

show rvcmtransportledger
show rvcmtransportledger transport_name [subject-or-wildcard]

Displays the TIBCO Rendezvous certified messaging (RVCM) ledger file entries for the
specified transport and the specified subject. You can specify a subject name, use

TIBCO Enterprise Message Service™ User Guide

193 | Using the EMS Administration Tool

wildcards to retrieve all matching subjects, or omit the subject name to retrieve all ledger
file entries.

For more information about ledger files and the format of ledger file entries, see TIBCO
Rendezvous documentation.

show rvcmlisteners
show rvcmlisteners

Shows all RVCM listeners that have been created using the create rvcmlistener
command or by editing the tibrvcm.conf file.

show server
show server (aliases: info, i)

Shows server name and information about the connected server.

show stat
show stat consumers [topic=name|queue=name] [user=name]
 [connection=id] [total]
 show stat producers [topic=name|queue=name] [user=name]
 [connection=id] [total]
 show stat route name [topic=name|queue=name] [total] [wide]
 show stat topic name [total] [wide]
 show stat queue name [total] [wide]

Displays statistics for the specified item. You can display statistics for consumers,
producers, routes, or destinations. Statistic gathering must be enabled for statistics to be
displayed. Also, detailed statistics for each item can be displayed if detailed statistic
tracking is enabled. Averages for inbound/outbound messages and message size are
available if an interval is specified in the rate_interval configuration parameter.

TIBCO Enterprise Message Service™ User Guide

194 | Using the EMS Administration Tool

The total keyword specifies that only total number of messages and total message size for
the item should be displayed. The wide keyword displays inbound and outbound message
statistics on the same line.

See Server Statistics for a complete description of statistics and how to enable/disable
statistic gathering options.

Note: When connected to an EMS 8.0 or higher server, this command does not
return statistics for offline durable subscribers.

show state
show state

Shows the state and a minimal subset of the information about the connected EMS server.

show store
show store store-name

Show the details of a specific store.

The store-name must be the exact name of a specific store.

This command prints a table of information described in the following table.

Heading Description

Type Type of store:

 l file indicates a file-based store.

 l as indicates a grid store.

 l ftl indicates an FTL store.

Message Count The number of messages in the store.

TIBCO Enterprise Message Service™ User Guide

195 | Using the EMS Administration Tool

Heading Description

Swapped Count The number of messages that have been swapped from process memory
to the store.

Average Write
Time

Average time in seconds a write call takes. (Not available for
asynchronous file stores.)

Write Usage The ratio between time spent within write calls and the time specified by
the server_rate_interval. (Not available for asynchronous file stores.)

Access Mode asynchronous—the server stores messages in the store using
asynchronous I/O calls.

synchronous—the server stores messages in the store using synchronous
I/O calls.

Message Size Total size of all messages in the store.

Swapped Size The total size of swapped messages in the store.

Headings specific to file-based stores

File File name associated with this store file, as it is set by the file parameter
in the stores.conf file.

Pre-allocation
Minimum

The amount of disk space, if any, that is preallocated to this file.

Periodic
Truncation

enabled—the EMS server occasionally truncates the store file,
relinquishing unused disk space.

disabled—the EMS server does not truncate the store file to relinquish
unused disk space.

Destination
Defrag Batch Size

The size of the batch used by the destination defrag feature.

File Size The size of the store file, including unused allocated file space.

TIBCO Enterprise Message Service™ User Guide

196 | Using the EMS Administration Tool

Heading Description

Free Space The amount of unused allocated file space.

Fragmentation The level of fragmentation in the file.

Used Space The amount of used space in the file.

Storage Write
Rate

The number of bytes written per second.

Headings specific to grid stores

Grid URL The pipe-separated URLs of the data grid the store is connected to.

Grid Name Name of the data grid the store is connected to.

Discard Scan
Interval

The maximum length of time that the EMS server takes to examine all
messages in the grid store.
This interval is controlled with the scan_iter_interval store parameter.
See scan_iter_interval for more information.

Discard Scan
Interval Bytes

The bytes read and processed every Discard Scan Interval. This number is
proportional to the grid store file size, and must be kept within the limits
of your storage medium. See Understanding Grid Store Intervals for more
information.

First Scan
Finished

true—all the data in the store has been examined at least once since the
EMS server startup.

false—not all data has been examined since the EMS server last started.
When false, certain server statistics (such as the Message Count field)
may be underreported as a result of expired or purged messages still in
the store. See Implications for Statistics for more information.

show stores
show stores

TIBCO Enterprise Message Service™ User Guide

197 | Using the EMS Administration Tool

Print a list of the server’s stores.

show subscriptions
show subscriptions [topic=name] [name=sub-name] [shared=only|none]
[durable=only|none] [sort=msgs|topic|name|cons|id]

This command prints information about all topic subscriptions, or only subscriptions
matching specified filters. Command output is controlled using the sort parameter.

If topic=name is specified, then only subscriptions on destinations matching specified
topic are shown. If name=sub-name is specified, then only subscriptions of that name are
shown.

If durable=only is specified, then only durable subscriptions are shown.

If durable=none is specified, then only non-durable subscriptions are shown.

If shared=only is specified, then only shared subscriptions are shown.

If shared=none is specified, then only unshared subscriptions are shown.

The parameter sort allows you to specify how the command output is sorted in the output
table. You can use to sort by number of pending messages, topic name, subscription name,
number of consumers on that subscription, or the subscription's identifier.

Heading Description

Id The ID of the subscription.

T The subscription type:

 l T — non-durable subscription

 l D — durable subscription

Topic Name of the topic associated with the subscription.

Name Name of the subscription (durable or shared name).

show subscriptions (description of output fields)

TIBCO Enterprise Message Service™ User Guide

198 | Using the EMS Administration Tool

Heading Description

If this is an unshared non-durable subscription, this value is empty.

SS Description of columns:

 l S - '+' if the subscription has a selector, '-' otherwise.

 l S - '+' if the subscription is shared, '-' otherwise.

Cons Count The number of active consumers on this subscription.

For an unshared non-durable subscription, the value is always 1.

For a durable subscription, the value can be 0, meaning that there is no active
consumer and the subscription is offline.

Pend Msgs Total number of messages pending for the subscription.

Pend Size Combined size of messages pending for the subscription.

Value is rounded and shown in bytes, (K)ilobytes, (M)egabytes or (G)igabytes.

Uptime The length of time, in hours, minutes, and seconds, since the subscription was
created.

show topic
show topic topic-name

Heading Description

Topic Full name of the topic.

Type dynamic—created by a client

static—configured by an administrator

show topic (description of output fields)

TIBCO Enterprise Message Service™ User Guide

199 | Using the EMS Administration Tool

Heading Description

Properties A list of property names that are set on the topic, and their values. For
an index list of property names, see Destination Properties.

JNDI Names A list of explicitly assigned JNDI names that refer to this topic.

Bridges A list of bridges from this topic to other destinations.

Subscriptions Number of subscriptions on this topic. (This count also includes durable
subscriptions.)

Durable
Subscriptions

The number of durable subscriptions on the topic.

Consumers Number of active consumers on this topic.

Note: When a durable consumer is offline, it is not included in the count
reported here.

However, if this command is performed on an EMS 7.x or earlier server,
the count also includes offline durable consumers.

Durable
Consumers

Number of active durable consumers on this topic.

Note: When a durable consumer is offline, it is not included in the count
reported here.

However, if this command is performed on an EMS 7.x or earlier server,
the count also includes offline durable consumers.

Pending Msgs The total number of messages sent but not yet acknowledged by the
consumer, followed by the number of persistent messages in
parenthesis. These counts include copies sent to multiple subscribers.

Pending Msgs Size Total size of all pending messages, followed by the size of all persistent
messages in parenthesis.

The server accumulates the following statistics only when the administrator has enabled
statistics. Otherwise these items are zero.

Total Inbound Cumulative count of all messages delivered to the topic.

TIBCO Enterprise Message Service™ User Guide

200 | Using the EMS Administration Tool

Heading Description

Msgs

Total Inbound
Bytes

Cumulative total of message size over all messages delivered to the
topic.

Total Outbound
Msgs

Cumulative count of messages consumed from the topic by consumers.
Each consumer of a message increments this count independently of
other consumers, so one inbound message results in n outbound
messages (one per consumer).

Total Outbound
Bytes

Cumulative total of message size over all messages consumed from the
topic by consumers. Each consumer of a message contributes this total
independently of other consumers.

show topics
show topics [pattern-name [notemp|static|dynamic] [first=n|next=n|last=n]]

If a pattern-name is not entered, this command shows a list of all topics.

If a pattern-name is entered (for example foo.* or foo.>) this command shows a list of
topics that match that pattern. See Wildcards * and > for more information about using
wildcards.

You can further refine the list of topics that match the pattern by using one of the following
parameters:

 l notemp — do not show temporary topics

 l static — show only static topics

 l dynamic — show only dynamic topics

When a pattern-name is entered, you can also cursor through the list of topics using one of
the following commands, where n is whole number:

 l first=n — show the first n topics

 l next=n — show the next n topics

TIBCO Enterprise Message Service™ User Guide

201 | Using the EMS Administration Tool

 l last=n — show the next n topics and terminate the cursor

The cursor examines n topics and displays topics that match the pattern-name. Because it
does not traverse the full list of topics, the cursor may return zero or fewer than n topics.
To find all matching topics, continue to use next until you receive a Cursor complete
message.

Heading Description

Topic Name Name of the topic. If the name is prefixed with an asterisk (*), then the
topic is temporary or was created dynamically. Properties of dynamic
and temporary topics cannot be changed.

SNFGEIBCTM Prints information on the topic properties in the order:

(S)ecure (N)sender_name or sender_name_enforced (F)ailsafe (G)lobal
(E)xport (I)mport (B)ridge (C)flowControl (T)race (M)ulticast

The characters in the value section show:

- Property not present

+ Property is present, and was set on the topic itself

* Property is present, and was inherited from another topic

Note that inherited properties cannot be removed.

Subs Number of current subscriptions on the topic, including durable
subscriptions.

If this command is performed on an EMS 7.x or earlier server, the
count reflects the number of subscribers, not the number of
subscriptions.

Durs Number of durable subscriptions on the topic.

If this command is performed on an EMS 7.x or earlier server, the
count reflects the number of durable subscribers, not the number of
subscriptions.

All Msgs
The total number of messages sent but not yet acknowledged by the

show topics (description of output fields)

TIBCO Enterprise Message Service™ User Guide

202 | Using the EMS Administration Tool

Heading Description

Msgs

Size

consumer. This count includes copies sent to multiple subscribers. To
see the count of actual messages (not multiplied by the number of topic
subscribers) sent to all destinations, use the show server command.
Total size of pending messages

Persistent Msgs
Msgs

Size

The total number of persistent messages sent but not yet acknowledged
by the consumer
Total size of pending persistent messages

For more information, see Destination Properties.

show transaction
show transaction XID

Shows a list of messages that were sent or received within the specified transaction. This
command returns information on transactions in prepared, ended, and roll back states
only. Transactions in a suspended or active state are not included.

Heading Description

State Transaction state:

 l A active

 l E ended

 l R rollback only

 l P prepared

 l S suspended

Suspended transactions can be rolled back, but cannot be rolled forward

show transaction (description of output fields)

TIBCO Enterprise Message Service™ User Guide

203 | Using the EMS Administration Tool

Heading Description

(committed).

Remaining time
before timeout

The seconds remaining before the TX timeout is reached. For example, 3
sec.

This field is only applicable for transactions in State ENDSUCCESS or
ROLLBACKONLY.

Messages to be consumed

Message ID The message ID of the message. null indicates the message ID could not
be obtained or was disabled. If track_message_ids is not enabled, this
field displays Disabled.

Type The destination type to which the message was sent:

 l Q queue

 l T topic

Destination The destination name to which the message was sent. null indicates that
destination could not be found.

Consumer ID The consumer ID of the Consumer that is consuming the message. Zero
indicates that the consumer is offline.

Messages to be produced

Message ID The message ID of the message. null indicates the message ID could not
be obtained or was disabled. If track_message_ids is not enabled, this
field displays Disabled.

Type The destination type to which the message was sent:

 l Q queue

 l T topic

Destination The destination name to which the message was sent. null indicates
that destination could not be found.

JMSTimestamp The timestamp indicating the time at which the message was created.

TIBCO Enterprise Message Service™ User Guide

204 | Using the EMS Administration Tool

show transactions
show transactions

Shows the XID for all client transactions that were created using the XA or MS DTC
interfaces. Each row presents information about one transaction. The XID is the
concatenation of the Format ID, GTrid Len, Bqual Len, and Data fields for a transaction. For
example, if show transactions returns the row:

State Format ID GTrid Len Bqual Len Data
 E 0 6 2 branchid

then the XID is 0 6 2 branchid.

Note that the spaces are required.

Heading Description

State Transaction state:

 l A active

 l E ended

 l R rollback only

 l P prepared

 l S suspended

Suspended transactions can be rolled back, but cannot be rolled forward
(committed).

Format ID The XA transaction format identifier.

0 = OSI CCR naming is used

>0 = some other format is used

-1 = NULL

GTrid Len The number of bytes that constitute the global transaction ID.

show transactions (description of output fields)

TIBCO Enterprise Message Service™ User Guide

205 | Using the EMS Administration Tool

Heading Description

Bqual Len The number of bytes that constitute the branch qualifier.

Data The global transaction identifier (gtrid) and the branch qualifier (bqual).

show transport
show transport transport

Displays the configuration for the specified transport defined in transports.conf.

See Configure EMS Transports for TIBCO FTL and Configure EMS Transports for Rendezvous
for details.

show transports
show transports

Lists all configured transport names in transports.conf.

show user
show user user-name

Shows user name and description. If no user name is specified, this command displays the
currently logged in user.

For users defined externally, there is an asterisk in front of the user name.

TIBCO Enterprise Message Service™ User Guide

206 | Using the EMS Administration Tool

show users
show users

Shows all users.

For users defined externally, there is an asterisk in front of the user name. Only currently
connected external users are shown.

showacl admin
showacl admin

Shows all administrative permissions for all users and groups, but does not include
administrative permissions on destinations.

showacl group
showacl group group-name [admin]

Shows all permissions set for a given group. Shows the group and the set of permissions.
You can optionally specify admin to show only the administrative permissions for
destinations or principals. Specifying showacl admin shows all administrative permissions
for all users and groups (not including administrative permissions on destinations).

showacl queue
showacl queue queue-name [admin]

Shows all permissions set for a queue. Lists all entries from the acl file. Each entry shows
the “grantee” (user or group) and the set of permissions. You can optionally specify admin
to show only the administrative permissions for destinations or principals. Specifying
showacl admin shows all administrative permissions for all users and groups (not including
administrative permissions on destinations).

TIBCO Enterprise Message Service™ User Guide

207 | Using the EMS Administration Tool

showacl topic
showacl topic topic-name [admin]

Shows all permissions set for a topic. Lists all entries from the acl file. Each entry shows
the “grantee” (user or group) and the set of permissions. You can optionally specify admin
to show only the administrative permissions for destinations or principals. Specifying
showacl admin shows all administrative permissions for all users and groups (not including
administrative permissions on destinations).

showacl user
showacl user user-name [admin | all | admin-all]

Shows the user and the set of permissions granted to the user for destinations and
principals.

showacl user username — displays permissions granted directly to the user. (An
administrator can use this form of the command to view own permissions, even without
permissions to view any other user permissions.)

showacl user username admin — displays administrative permissions granted directly to
the user.

showacl user username all — displays direct and inherited (from groups to which the user
belongs) permissions.

showacl user username admin-all — displays all administrative permissions for a given
user (direct and inherited)

Note: The output from this command displays inherited permissions prefixed
with a '*'. Inherited permissions cannot be changed. An attempt to revoke an
inherited permission for the principal user will not change the permission.

TIBCO Enterprise Message Service™ User Guide

208 | Using the EMS Administration Tool

shutdown
shutdown

Shuts down currently connected server.

When issued to an EMS server that is using FTL stores, this command will shut down both
the EMS server and the FTL server hosting it.

suspend route
suspend route route-name

Suspends outgoing messages to the named route.

Message flow can be recovered later using the command resume route.

time
time [on | off]

Specifying on places a timestamp before each command’s output. By default, the
timestamp is off.

timeout
timeout [seconds]

Show or change the current command timeout value. The timeout value is the number of
seconds the Administration Tool will wait for a response from the server after sending a
command.

By default, the timeout is 30 seconds. When timeout is entered with the optional seconds
parameter, the timeout value is reset to the specified number of seconds. When entered
without parameter, the current timeout value is returned.

TIBCO Enterprise Message Service™ User Guide

209 | Using the EMS Administration Tool

transaction commit
transaction commit XID

Commits the transaction identified by the transaction ID. The transaction must be in the
ended or prepared state. To obtain a transaction ID, issue the show transactions
command, and cut and paste the XID into this command.

transaction rollback
transaction rollback XID

Rolls back the transaction identified by the transaction ID. The transaction must be in the
ended, rollback only, or the prepared state. To obtain a transaction ID, issue the show
transactions command, and cut and paste the XID into this command.

Note: Messages sent to a queue with prefetch=none and
maxRedelivery=number properties are not received number times by an EMS
application that receives in a loop and does an XA rollback after the XA prepare
phase.

updatecrl
updatecrl

Immediately update the server’s certificate revocation list (CRL).

whoami
whoami

Alias for the show user command to display the currently logged in user.

TIBCO Enterprise Message Service™ User Guide

210 | Configuration Files

Configuration Files
This chapter describes configuring TIBCO Enterprise Message Service.

Location of Configuration Files
The installation process places a complete set of configuration files in
EMS_HOME/samples/config. For deployment, we recommend copying files from this
directory to a production configuration directory, and modifying those copies.

When selecting a production configuration directory, we recommend using a file system
with regular backup commensurate with your need for reliability and disaster recovery. It is
essential that the EMS server have both read and write privileges in the configuration
directory.

Mechanics of Configuration

Configuration Files

The EMS server reads configuration files only once, when the server starts. It ignores
subsequent changes to the configuration files. If you change a configuration file, use the
shutdown command from the EMS Administration Tool to shut down the server and then
restart the server as described in Running the EMS Server.

Administrative Requests

You can also change the server configuration with administrative requests, using either
tibemsadmin (a command line tool), the Java or .NET administrative APIs, or TIBCO
Administrator™ (a separate TIBCO product).

When the server validates and accepts an administrative request, it writes the change to
the appropriate configuration file as well (overwriting any manual changes to that file). This

TIBCO Enterprise Message Service™ User Guide

211 | Configuration Files

policy keeps configuration files current in case the server restarts (for example, in a fault-
tolerant situation, or after a hardware failure).

Re-installing or updating EMS overwrites the files in the bin/ and
samples/config/ directories. Do not use these directories to configure your deployment.

tibemsd.conf
The main configuration file controls the characteristics of the EMS server. This file is usually
named tibemsd.conf, but you can specify another file name when starting the server.

You can find more information about starting the server in Running the EMS Server.

An example of the tibemsd.conf file is included in the
config-file-directory/cfmgmt/ems/data/ directory, where config-file-directory is specified
during TIBCO Enterprise Message Service installation. You can edit this configuration file
with a text editor. There are a few configuration items in this file that can be altered using
the administration tool, but most configuration parameters must be set by editing the file
(that is, the server does not accept changes to those parameters). See EMS Administration
Tool for more information about using the administration tool.

Several parameters accept boolean values. In the description of the parameter, one specific
set of values is given (for example, enable and disable), but all parameters that accept
booleans can have the following values:

 l enable, enabled, true, yes, on

 l disable, disabled, false, no, off

Parameters that take multiple elements cannot contain spaces between the elements,
unless the elements are enclosed in starting and ending double quotes. Parameters are
limited to line lengths no greater than 256,000 characters in length.

The following table summarizes the parameters in tibemsd.conf according to category.
The sections that follow provide more detail on each parameter.

Parameter Description

Global System Parameters

always_exit_on_disk_error Enable or disable the server behavior to

TIBCO Enterprise Message Service™ User Guide

212 | Configuration Files

Parameter Description

exit on any disk error.

authorization Enable or disable server authorization.

auth_thread_count Specifies the number of EMS server threads
dedicated to authenticating incoming
connections.

compliant_queue_ack Guarantees that a message will not be
redelivered after a client has successfully
acknowledged its receipt from a routed
queue.

disconnect_non_acking_consumers Causes the server to review
unacknowledged pending messages size
and counts in consumers.

flow_control Enable or disable flow control for
destinations.

flow_control_only_with_active_consumer Restore the flow control behavior that was
enforced before release 8.4.

listen Specifies the port on which the server is to
listen for connections from clients.

max_msg_field_print_size Limits the size of string fields in trace
messages.

max_msg_print_size Limits the size of the printed message of
traced messages.

module_path Specifies a directory or directories that
contain external shared library files such as
those of FTL, ActiveSpaces, and
Rendezvous.

monitor_listen Specifies the port on which the server is to

TIBCO Enterprise Message Service™ User Guide

213 | Configuration Files

Parameter Description

listen for health check and Prometheus
metrics requests.

network_thread_count Specifies the number of network threads
used by the EMS server.

npsend_check_mode Specifies when the server is to provide
confirmation upon receiving a
NON_PERSISTENT message from a producer.

password Password used to authenticate with other
servers that have authorization enabled.

processor_ids Specifies the processors to be used for
network I/O traffic.

routing Enable or disable routing functionality for
this server.

secondary_monitor_listen Specifies the port on which the server
designated as secondary in a fault tolerant
pair is to listen for health check and
Prometheus metrics requests.

selector_logical_operator_limit Limits the number of operators that the
server reviews during selector evaluation.

server Name of server.

startup_abort_list Specifies conditions under which the server
is to exit during its initialization sequence.

user_auth Specifies the source of authentication
information used to authenticate users
attempting to access the EMS server.

xa_default_timeout Specifies the TX timeout for XA
transactions.

TIBCO Enterprise Message Service™ User Guide

214 | Configuration Files

Parameter Description

Storage File Parameter

store Specifies the directory in which the server
stores data when using file-based stores.

Connection and Memory Parameters

destination_backlog_swapout Specifies the maximum number of
messages per destination that are stored in
the server before message swapping is
enabled.

handshake_timeout Specifies the amount of time that the EMS
server waits for a connection to complete.

large_destination_count Specifies the number of messages that an
unbounded destination can gather before
the server starts logging warnings about
that destination's message count.

large_destination_memory Specifies the size in memory that an
unbounded destination can grow to before
the server starts logging warnings about
that destination's size.

max_client_msg_size Sets a maximum size for incoming
messages.

max_connections Specifies the maximum number of
simultaneous client connections to the
server.

max_msg_memory Specifies the maximum memory the server
can use for messages.

msg_pool_block_size Specifies the size of the pool to be pre-
allocated by the server to store messages.

TIBCO Enterprise Message Service™ User Guide

215 | Configuration Files

Parameter Description

msg_swapping Enable or disable message swapping.

prefetch_none_timeout_request_reply Prevents the memory utilization of the
server to grow in the context of a specific
scenario that involves calling receive with a
short timeout in a loop on a queue with
prefetch set to none.

reserve_memory Specifies the amount of memory to reserve
for use in emergency situations.

socket_send_buffer_size Sets the size of the send buffer used by
clients when connecting to the EMS server.

socket_receive_buffer_size Sets the size of the receive buffer used by
clients when connecting to the EMS server.

Detecting Network Connection Failure Parameters

active_route_connect_time Specifies the interval at which an EMS
server will attempt to connect or reconnect
a route to another server.

client_heartbeat_server Specifies the interval clients are to send
heartbeats to the server.

clock_sync_interval Periodically sends the EMS server's UTC
time to clients.

server_timeout_client_connection Specifies the period of time server will wait
for a client heartbeat before terminating
the client connection.

server_heartbeat_server Specifies the interval this server is to send
heartbeats to another server.

server_timeout_server_connection Specifies the period of time this server will
wait for a heartbeat from another server

TIBCO Enterprise Message Service™ User Guide

216 | Configuration Files

Parameter Description

before terminating the connection to that
server.

server_heartbeat_client Specifies the interval this server is to send
heartbeats to all of its clients.

client_timeout_server_connection Specifies the period of time a client will
wait for a heartbeat from the server before
terminating the connection.

Fault Tolerance Parameters

ft_active Specifies the URL of the active server.

ft_heartbeat Specifies the interval the active server is to
send a heartbeat signal to the standby
server to indicate that it is still operating.

ft_activation Specifies the maximum length of time
between heartbeat signals the standby
server is to wait before assuming the active
server has failed.

ft_reconnect_timeout Specifies the maximum length of time the
standby server is to wait for clients to
reconnect after becoming the active server
in a failover situation.

ft_ssl_identity Specifies the server's digital certificate.

ft_ssl_issuer Specifies the certificate chain member for
the server.

ft_ssl_private_key Specifies the server's private key.

ft_ssl_password Specifies the password for private keys.

ft_ssl_trusted Specifies the list of trusted certificates.

TIBCO Enterprise Message Service™ User Guide

217 | Configuration Files

Parameter Description

ft_ssl_verify_host Specifies whether the fault-tolerant server
should verify the other server's certificate.

ft_ssl_verify_hostname Specifies whether the fault-tolerant server
should verify the name in the CN field of
the other server's certificate.

ft_ssl_expected_hostname Specifies the name the server is expected
to have in the CN field of the fault-tolerant
server's certificate.

ft_ssl_ciphers Specifies the cipher suites used by the
server.

ft_oauth2_access_token_file Specifies the path to a file containing the
OAuth 2.0 access token to use to
authenticate with the FT peer EMS server.

ft_oauth2_server_url The HTTP(S) URL of the OAuth 2.0
authorization server that will issue the
access tokens to be used to authenticate
with the FT peer.

ft_oauth2_client_id The OAuth 2.0 client ID to use when
authenticating with the OAuth 2.0
authorization server.

This parameter is required regardless of
the grant type to be used for requesting
access tokens.

ft_oauth2_client_secret The OAuth 2.0 client secret to use when
authenticating with the OAuth 2.0
authorization server.

This parameter is required regardless of
the grant type to be used for requesting
access tokens.

TIBCO Enterprise Message Service™ User Guide

218 | Configuration Files

Parameter Description

ft_oauth2_grant_type The grant type to use for requesting access
tokens from the OAuth 2.0 authorization
server.

The type can be:

 l client_credentials–for Client
Credentials Grant.

 l password–for Resource Owner
Password Credentials Grant.

If the password grant is specified, the
server and password parameter values are
used as the username and password for
the grant.

The default value of this parameter is
client_credentials.

ft_oauth2_server_trust_file A file containing one or more PEM-encoded
public certificates that can be used to
validate the OAuth 2.0 authorization
server's identity.

This parameter is only required if
establishing an HTTPS connection to the
authorization server.

ft_oauth2_disable_verify_hostname If set, the EMS server will not verify the
name in the CN field of the OAuth 2.0
authorization server's certificate.

This parameter is optional. Hostname
verification is performed by default.

ft_oauth2_expected_hostname The name that the EMS server expects in
the CN field of the OAuth 2.0 authorization
server's certificate.

This parameter is optional and only
relevant when ft_oauth2_disable_

TIBCO Enterprise Message Service™ User Guide

219 | Configuration Files

Parameter Description

verify_hostname is not set to true.

Message Tracking Parameters

track_message_ids Enable or disable message tracking by
message ID.

track_correlation_ids Enable or disable message tracking by
correlation ID.

TIBCO FTL Transport Parameters

ftl_log_level Determines the trace level of FTL messages
logged in the server when the EMS Server
FTL trace item is enabled.

ftl_trustfile Specifies the trust file for the EMS server to
validate the TIBCO FTL server on a TLS
connection.

ftl_url Required. Specifies the URL at which the
EMS server can connect to the TIBCO FTL
server.

ftl_username The username that the EMS server should
use to authenticate itself when connecting
to the TIBCO FTL server.

ftl_password Specifies the password that the EMS server
should use to authenticate itself when
connecting to the TIBCO FTL server.

ftl_oauth2_access_token_file Specifies the path to a file containing the
OAuth 2.0 access token to use to
authenticate with the FTL deployment.

ftl_oauth2_server_url The HTTP(S) URL of the OAuth 2.0
authorization server that will issue the

TIBCO Enterprise Message Service™ User Guide

220 | Configuration Files

Parameter Description

access tokens to be used to authenticate
with the FTL deployment.

ftl_oauth2_client_id The OAuth 2.0 client ID to use when
authenticating with the OAuth 2.0
authorization server.

This parameter is required regardless of
the grant type to be used for requesting
access tokens.

ftl_oauth2_client_secret The OAuth 2.0 client secret to use when
authenticating with the OAuth 2.0
authorization server.

This parameter is required regardless of
the grant type to be used for requesting
access tokens.

ftl_oauth2_server_trust_file A file containing one or more PEM-encoded
public certificates that can be used to
validate the OAuth 2.0 authorization
server's identity.

This parameter is only required if
establishing an HTTPS connection to the
authorization server.

ftl_oauth2_disable_verify_hostname If set, the EMS server will not verify the
name in the CN field of the OAuth 2.0
authorization server's certificate.

This parameter is optional. Hostname
verification is performed by default.

ftl_oauth2_expected_hostname The name that the EMS server expects in
the CN field of the OAuth 2.0 authorization
server's certificate.

This parameter is optional and only

TIBCO Enterprise Message Service™ User Guide

221 | Configuration Files

Parameter Description

relevant when ftl_oauth2_disable_
verify_hostname is not set to true.

tibftl_transports Enable or disable the TIBCO FTL transports
defined in transports.conf file.

TIBCO Rendezvous Transport Parameters

tibrv_transports Enable or disable the TIBCO Rendezvous
transports defined in transports.conf file.

Tracing and Log File Parameters

client_trace Enable or disable client generation of trace
output for opening or closing a connection,
message activity, and transaction activity.

console_trace Specifies the trace options for output to
stderr.

logfile Name and location of the server log file.

log_trace Specifies the trace options on the file
defined by the logfile parameter.

logfile_max_count Specifies the maximum number of log files
to be kept.

logfile_max_size Specifies the maximum log file size before
the log file is copied to a backup and then
emptied.

secondary_logfile Name and location of the server log file
used by the server designated as secondary
in a fault tolerant pair.

trace_client_host Specifies whether the trace statements

TIBCO Enterprise Message Service™ User Guide

222 | Configuration Files

Parameter Description

related to connections identify the host by
its hostname, its IP address, or both.

Statistic Gathering Parameters

server_rate_interval Specifies the interval at which overall
server statistics are averaged.

statistics Enables or disables statistic gathering for
producers, consumers, destinations, and
routes.

rate_interval Specifies the interval at which statistics for
routes, destinations, producers, and
consumers are averaged.

detailed_statistics Specifies which objects should have
detailed statistic tracking.

statistics_cleanup_interval Specifies how long the server should keep
detailed statistics if the destination has no
activity.

max_stat_memory Specifies the maximum amount of memory
to use for detailed statistic gathering.

TLS Server Parameters

ssl_server_ciphers Specifies the cipher suites used by the
server.

ssl_require_client_cert Specifies if the server is to only accept TLS
connections from clients that have digital
certificates.

ssl_require_route_cert_only Overrides ssl_require_client_cert to
restrict requiring digital certificates to TLS
connections only from routes.

TIBCO Enterprise Message Service™ User Guide

223 | Configuration Files

Parameter Description

ssl_use_cert_username Specifies if a client's user name is to
always be extracted from the CN field of
the client's digital certificate.

ssl_cert_user_specname Specifies a special username to identify
which clients are to have their usernames
taken from their digital certificates.

ssl_server_identity Specifies the server's digital certificate.

ssl_server_key Specifies the server's private key.

ssl_password Specifies the password for private keys.

ssl_server_issuer Specifies the certificate chain member for
the server.

ssl_server_trusted Specifies the list of CA root certificates the
server trusts as issuers of client certificates.

ssl_crl_path Specifies the pathname to the certificate
revocation list (CRL) files.

ssl_crl_update_interval Specifies the interval at which the server is
to update its CRLs.

ssl_auth_only Specifies whether the server allows clients
to request the use of TLS only for
authentication.

fips140-2 Enables the server for FIPS compliance.

Extensible Security Parameters

jaas_config_file Specifies the location of the JAAS
configuration file used to run a custom
authentication LoginModule.

TIBCO Enterprise Message Service™ User Guide

224 | Configuration Files

Parameter Description

jaas_login_timeout Specifies the length of time, in
milliseconds, that the server waits for the
JAAS authentication module to execute
and respond.

jaci_class Specifies the name of the class that
implements the extensible permissions
interface.

jaci_timeout Specifies the length of time, in
milliseconds, that the server waits for the
JACI permissions module to execute and
respond.

security_classpath Includes the JAR files and dependent
classes used by the JAAS LoginModules
and JACI modules.

OAuth 2.0 Authentication Parameters

oauth2_server_validation_key The PEM-encoded public key or JWKS to
use for validating the OAuth 2.0 JWT access
tokens presented by incoming connection
requests.

oauth2_user_claim The claim in the OAuth 2.0 access token
that contains the EMS user to be
associated with the incoming connection.

oauth2_group_claim The claim in the OAuth 2.0 access token
that contains the list of groups the EMS
user belongs to.

This parameter is optional. If not specified,
the EMS server will assume that the user
does not belong to any groups.

oauth2_audience The expected value of the audience claim

TIBCO Enterprise Message Service™ User Guide

225 | Configuration Files

Parameter Description

in OAuth 2.0 access tokens presented by
incoming connections.

This parameter is optional. If omitted, the
EMS server will not validate the audience
claim.

JVM Parameters

jre_library Enables the JVM in the EMS server.

jre_option Passes command line options to the JVM at
start-up.

Global System Parameters

always_exit_on_disk_error
Enable or disable the server behavior to exit on any disk error.

always_exit_on_disk_error = enable | disable

Defaults to disable.

authorization
Enable or disable server authorization.

authorization = enabled | disabled

Authorization is disabled by default. If you require that the server verify user credentials
and permissions on secure destinations, you must enable this parameter.

See Enable Access Control for more information.

TIBCO Enterprise Message Service™ User Guide

226 | Configuration Files

For example:

authorization = enabled

See Authentication and Permissions for more information about this parameter.

auth_thread_count
Specifies the number of EMS server threads dedicated to authenticating incoming
connections.

auth_thread_count = threads

The threads count must be a positive integer. The default value is 4.

compliant_queue_ack
Guarantees that, once a client successfully acknowledges a message received from a
routed queue, the message will not be redelivered. This is accomplished by the EMS server
waiting until the message has been successfully acknowledged by the queue’s home EMS
server before sending the response to the client.

compliant_queue_ack = enable | disable

The compliant_queue_ack parameter is enabled by default. Because of the extra overhead
incurred with compliant queue acknowledgments, you can disable this feature when
performance is an issue. If compliant queue acknowledgment is disabled and a message is
redelivered, the message’s JMSRedelivered indicator will be set.

disconnect_non_acking_consumers
This parameter works in conjunction with the maxbytes and maxmsgs destination
properties. In situations where consumers consume messages but do not acknowledge
them, the messages are held in the server until they are confirmed. This can push the
server above the set limits.

disconnect_non_acking_consumers = enabled | disabled

TIBCO Enterprise Message Service™ User Guide

227 | Configuration Files

When enabled, disconnect_non_acking_consumers causes the server to check the number
and size of pending messages sent to a consumer. If the maxbytes or maxmsgs limit is
reached and the consumer has not acknowledged its messages, the server discards the
messages sent to the consumer and disconnects the consumer’s connection. This protects
the server against applications that consume messages without ever acknowledging them.

Before enabling this property, ensure that the maxbytes and maxmsgs limits are set with
reference to the prefetch setting, the size of the transaction (if transacted receive), or
number of messages acknowledged when using client or explicit client acknowledgment
mode. Otherwise the server may disconnect the consumer before it has a chance to
acknowledge the messages.

When routes are deployed, all routed servers should use the same
disconnect_non_acking_consumers setting. Additionally, if maxbytes or maxmsgs is set for a
global destination, the same setting should be applied on all servers. The server does not
discard or disconnect a routed consumer, since disconnecting the route may impact other
well-behaved applications. Servers discard and disconnect their local consumers, which
other servers involved are made aware of and discard messages for those remote
consumers accordingly.

This parameter is disabled by default.

flow_control
Specifies whether flow control for destinations is enabled or disabled.

flow_control = enable | disable

By default, flow control is disabled. When flow control is enabled, the flowControl
property on each destination specifies the target maximum storage for pending messages
on the destination.

See Flow Control for more information about flow control.

flow_control_only_with_active_consumer
Restores the flow control behavior that was enforced before release 8.4. This property and
the corresponding behavior are deprecated and will be removed in a future release.

flow_control_only_with_active_consumer = enable | disable

TIBCO Enterprise Message Service™ User Guide

228 | Configuration Files

By default, this parameter is disabled. For more information, see Flow Control in the
Absence of Consumers.

listen
Specifies the port on which the server is to listen for connections from clients.

listen=protocol://servername:port

For example:

listen=tcp://localhost:7222

If you are enabling TLS, for example:

listen=ssl://localhost:7222

You can use multiple listen entries if you have computers with multiple interfaces. For
example:

listen=tcp://localhost:7222
 listen=tcp://localhost:7224

If localhost is specified, or if the servername is not present, then the server uses every
available interface. For example:

listen=tcp://7222
 listen=ssl://7243

You can use an IP address instead of a host name. For example:

listen=tcp://192.168.10.107:7222

When specifying an IPv6 address, use square brackets around the address specification. For
example:

listen=tcp://[2001:cafe::107]:7222

TIBCO Enterprise Message Service™ User Guide

229 | Configuration Files

Note: This parameter is not supported when using FTL stores. See the
Parameters Unsupported for FTL Stores section for details.

max_msg_field_print_size
Limits the size of string fields in trace messages. If a string field is larger than size, the field
is truncated in the trace message.

max_msg_field_print_size = size [KB|MB|GB]

Specify signed 32-bit integer values as KB, MB or GB. The minimum permitted size is 1 KB.
By default, the field limit is 1 KB.

max_msg_print_size
Limits the size of the printed message of traced messages. If the message is larger than
size, the message is truncated.

max_msg_print_size = size [KB|MB|GB]

Specify signed 32-bit integer values as KB, MB or GB. The minimum permitted size is 8 KB.
By default, the field limit is 8 KB.

module_path
module_path = shared-library-directory

where shared-library-directory is the absolute path to the directory containing any external
library the server may need. This may include TIBCO FTL, ActiveSpaces, and Rendezvous
libraries.

You can specify multiple directories (for example, to load TIBCO FTL, ActiveSpaces, and
Rendezvous libraries). Separate paths using a colon (:) on UNIX platforms, or semicolon (;)
on Windows platforms.

For example:

TIBCO Enterprise Message Service™ User Guide

230 | Configuration Files

module_path = c:\tibco\ftl\6.10\bin

monitor_listen
Specifies the port on which the server is to listen for health check and Prometheus metrics
requests.

monitor_listen=protocol://servername:port

For example:

monitor_listen = http://machine1:7220

If you are enabling TLS, for example:

monitor_listen = https://machine1:7220

When using localhost as the servername, the listen will only be accessible from the local
machine. If you omit the servername, the listen will behave similarly to setting localhost
in the server listen parameter.

For example:

monitor_listen = http://:7220

You can use an IP address instead of hostname.

For example:

monitor_listen = http://192.168.10.107:7220

When specifying an IPv6 address, use square brackets around the address specification.

For example:

monitor_listen = http://[2001:cafe::107]:7220

You can use only one monitor_listen entry at a time. For more information, see Server
Health and Metrics.

TIBCO Enterprise Message Service™ User Guide

231 | Configuration Files

Note: This parameter is not supported when using FTL stores. See the
Parameters Unsupported for FTL Stores section for details.

network_thread_count
Specifies the number of network threads used by the EMS server.

network_thread_count = threads

The threads count can be any positive integer. The default value is 1.

When set, this parameter allows the EMS server to control the number of threads while still
allowing the system administrator to control the thread affinity externally (for example, by
using the Linux taskset command).

If you intend to set the thread affinity externally, we recommend that you avoid setting any
thread affinity in the EMS server for either network traffic of stores.

The EMS server ignores this parameter if the processor_ids parameter is also specified.

npsend_check_mode
Specifies when the server is to provide confirmation upon receiving a NON_PERSISTENT
message from a producer.

npsend_check_mode = [always | never | temp_dest | auth | temp_auth]

The npsend_check_mode parameter applies only to producers sending messages using NON_
PERSISTENT delivery mode and non-transactional sessions.

Message confirmation has a great deal of impact on performance and should only be
enabled when necessary. The circumstances in which a producer might want the server to
send confirmation a NON_PERSISTENT message are:

 l When authorization is enabled, so the producer can take action if permission to
send the message is denied by the server.

 l When sending to a temporary destination, so the producer can take action if the

TIBCO Enterprise Message Service™ User Guide

232 | Configuration Files

message is sent to a temporary destination that has been destroyed.

 l The message exceeded queue/topic limit (requires rejectIncoming policy for topics).

 l Bridging of the message has failed.

 l The server is out of memory or has encountered some other severe error.

The possible npsend_check_mode parameter modes are:

 l default (no mode specified) - this means the server only provides confirmation of a
NON_PERSISTENT message if authorization is enabled.

 l always - the server always provides confirmation of a NON_PERSISTENT message.

 l never - the server never provides confirmation of NON_PERSISTENT messages.

 l temp_dest - the server provides confirmation of a NON_PERSISTENT message only
when sending to a temporary destination.

 l auth - the server provides confirmation of a NON_PERSISTENT message only if
authorization was enabled when the connection was created.

 l temp_auth - the server provides confirmation of a NON_PERSISTENT message if
sending to a temporary destination or if authorization was enabled when the
connection was created.

password
The password used when connecting to another EMS server that has authorization enabled.

password = password

For information on authorization between routed servers, see Routing and Authorization.

For information on authorization between fault tolerant server pairs, see Authorization and
Fault-Tolerant Servers.

processor_ids
Setting this parameter causes the EMS Server to start as many network I/O threads as there
are processor IDs specified in the list. Each network I/O thread is bound to the given
processor ID, which means that the thread can execute only on that processor.

TIBCO Enterprise Message Service™ User Guide

233 | Configuration Files

processor_ids = processor-id1,processor-id2,...

Note: Do not use this parameter if the default behavior provides sufficient
throughput.

Specify the processor-id as an integer. Ask your system administrator for the valid
processor IDs on the EMS Server host. Note that the IDs can be listed in any order. List IDs
in a comma-separated list, with no spaces separating list items. For example:

processor_ids = 0,1,3,6

On startup, the parameter is parsed and the server refuses to start (regardless of the
presence of the startup_abort_list parameter) if:

 l The list is malformed. That is, if it contains invalid values such as non-numeric
elements.

 l The server is unable to bind a network I/O thread to a given processor ID. This can
happen when the processor ID has been disabled, or the tibemsd process has been
restricted by the system administrator to a set of processors that does not contain
this processor ID. Additionally, the server cannot correctly bind the network I/O
thread to the process ID if spaces are included in the parameter definition.

Note: Do not use hyper threading.

For instance, consider a machine with 24 processors, with 2 dies and processor
IDs ranging from 0 to 5 and 12 to 17 on the first die, and 6 to 11 and 18 to 23 on
the second die. In this example, you should specify processor IDs in either the 0
to 5 range, or the 6 to 11 range.

Specifying processor IDs 0 and 12 in the list would cause thrashing because two
network I/O threads would be bound to the same processor (or core). Also, for
optimal performance, processor IDs should be from the same die.

This parameter can be used in conjunction with the stores.conf parameter processor_id.
For more information, see Performance Tuning.

TIBCO Enterprise Message Service™ User Guide

234 | Configuration Files

routing
Enables or disables routing functionality for this server.

routing = enabled | disabled

For example:

routing = enabled

See Routes for more information about routing.

secondary_monitor_listen
Specifies the port on which the server designated as secondary in a fault tolerant pair is to
listen for health check and Prometheus metrics requests.

secondary_monitor_listen = http://machine1:7220

If you are enabling TLS, for example:

secondary_monitor_listen = https://machine1:7220

If the secondary_monitor_listen is not set, the secondary server assumes the value of
monitor_listen.

For more information, see monitor_listen.

Note: This parameter is available only for JSON-configured EMS servers that are
using file-based stores or grid stores.

selector_logical_operator_limit
Limits the number of operators that the server reviews during selector evaluation.

selector_logical_operator_limit = number

TIBCO Enterprise Message Service™ User Guide

235 | Configuration Files

The server evaluates operators until reaching the specified number of false conditions. The
server then stops evaluating further to protect itself from too many recursive evaluations. A
very long selector clause, such as one including many OR conditions, can cause recursive
selector evaluation and lead to a stack overflow in the EMS server.

number may be any positive integer. The default value is 5000. Zero is a special value,
indicating no limit.

For example, if selector_logical_operator_limit = 10 and the selector is:

a=1 or b=2 or c=3 or d=4 or e=5 or f=6 or g=7 or h=8 or i=9 or j=10 or
k=11 or l=12 or m=13 or n=14 or o=15 or p=16 or q=17 or r=18 or s=19 or
t=20 or u=21 or v=22 or w=23 or x=24 or y=25 or z=26

if the first 10 conditions are false, the server stops further evaluation.

server
Name of server.

server = serverName

Server names are limited to at most 64 characters, and may not include the dot character
(.).

startup_abort_list
Specifies conditions that cause the server to exit during its initialization sequence.

startup_abort_list=[SSL,TRANSPORTS,CONFIG_FILES,CONFIG_ERRORS,
DB_FILES]

You may specify any subset of the conditions in a comma-separated list. The list cannot
contain spaces between the elements, unless the elements are enclosed in starting and
ending double quotes. If a space is included but not enclosed in quotation marks, the
server ignores any conditions following the space.

Conditions that do not appear in the list are ignored by the server. The default is an empty
list.

TIBCO Enterprise Message Service™ User Guide

236 | Configuration Files

The conditions are:

 l SSL—If TLS initialization fails, then it exits.

 l TRANSPORTS—If any of the transports cannot be created as specified in the
configuration files, then it exits.

 l CONFIG_FILES—If any configuration file listed in tibemsd.conf does not exist, then it
exits.

 l CONFIG_ERRORS—If the server detects any errors while reading the config files, then it
exits.

Note that the tibemsd silently ignores any unknown parameters when it is started
using the JSON configuration. For example, no configuration errors are thrown if the
tibemsd.json file contains an obsolete parameter.

 l DB_FILES—If the server cannot find one or more of its stores, then it exits. Stores
include the default stores as well as any stores configured in the stores.conf
configuration file.

Note that if DB_FILES is not included in the startup_abort_list and the server
cannot find a store, the server will create the missing store. For best results, do not
include DB_FILES the first time a server is started, allowing it to create the stores.
After initial startup or a major store configuration change (such as the addition of a
new store), include DB_FILES in the list so that on restart the server will only start if
all the configured stores are present.

user_auth
Specifies the authentication methods to be used by the EMS server.

user_auth = [local, jaas, oauth2]

This parameter can have one or more of the following values (separated by comma
characters):

 l local—authenticate incoming connection requests by validating the presented user
credentials against locally defined user information (users.conf and groups.conf).

 l jaas—authenticate incoming connection requests by validating the presented user
credentials using a custom or provided JAAS authentication module, including LDAP
support (see Extensible Authentication).

TIBCO Enterprise Message Service™ User Guide

237 | Configuration Files

 l oauth2—authenticate incoming connection requests by validating the presented
OAuth 2.0 access token (see Authentication Using OAuth 2.0).

Each time the server receives a connection request, it attempts to authenticate it via each
of the specified authentication methods in the order that this parameter specifies. The EMS
server accepts successful authentication using any of the specified methods.

Note: The user_auth setting does not affect authentication of the default
administrator. The server always authenticates the admin user from the local
configuration file. See Assigning a Password to the Administrator for more
information.

xa_default_timeout
Specifies the default TX timeout, in seconds, for XA transactions. The default is 0, which
specifies no timeout.

xa_default_timeout = seconds

The default timeout setting cannot be changed dynamically. However, you can specify a
different transaction timeout for each individual XA resource using the API.

Storage File Parameter
The parameter described here configures file-based stores. For information about grid
stores see Configuring and Deploying Grid Stores. For information about FTL stores, see
Configuring and Deploying FTL Stores.

store
store = directory

Directory in which the server stores data files. For example:

store = /usr/tmp

TIBCO Enterprise Message Service™ User Guide

238 | Configuration Files

Connection and Memory Parameters
The parameters described in the following topics affect the memory and connection
management of the EMS server.

destination_backlog_swapout
Specifies the number of messages that may be stored in the server's memory before
message swapping is enabled. The limit given is for each destination. For example, if the
limit is 10,000 and you have three queues, the server can store up to 30,000 unswapped
messages in memory.

destination_backlog_swapout = number

The specified number may be any positive value. When destination_backlog_swapout is 0,
the server attempts to immediately swap out the message.

By default, the limit for each destination is 1024 messages.

handshake_timeout
handshake_timeout = seconds

The amount of time that the EMS server waits for an incoming connection to complete
depends on the server_timeout_server_connection and
server_timeout_client_connection properties.

If either is specified, the connection handshake times out only after the duration
mentioned in one of these properties. If both are specified, the largest of the two values is
used. If neither is specified, you can set the period (in seconds) using handshake_timeout.
The period specified must be a positive integer. If absent, the timeout defaults to 3
seconds. When the timeout is reached, the EMS server closes the connection and continues
handling other clients.

The handshake_timeout server property, in addition to controlling the wait time for an
incoming connection to complete, also controls:

 l The amount of time that the server waits for an outgoing route connection to

TIBCO Enterprise Message Service™ User Guide

239 | Configuration Files

complete;

 l The amount of time the server waits for an incoming TLS connection to complete the
TLS handshake. Note that this is independent from the wait time for the incoming
TLS connection to complete.

large_destination_count
Specifies the number of messages that an unbounded destination (a destination without
either of its maxbytes or maxmsgs properties set) can gather before the server starts logging
warnings about that destination’s message count.

large_destination_count = number

By default, large_destination_count is not set and the server establishes its own
message count threshold. It can be set dynamically. Zero is a special value that disables
the logging of the corresponding warning.

large_destination_memory
Specifies the size in memory that an unbounded destination (a destination without either
of its maxbytes or maxmsgs properties set) can grow to before the server starts logging
warnings about that destination’s size.

large_destination_memory = size [KB|MB|GB]

By default, large_destination_memory is not set and the server establishes its own size
threshold. It can be set dynamically. Zero is a special value that disables the logging of the
corresponding warning.

max_client_msg_size
Maximum size allowed for an incoming message. This parameter setting instructs the
server to reject incoming messages that are larger than the specified size limit.

max_client_msg_size = size [KB|MB|GB]

TIBCO Enterprise Message Service™ User Guide

240 | Configuration Files

Specify whole numbers as KB, MB or GB. The maximum value is 2 GB. However, we
recommend that the application programs use smaller messages, since messages
approaching this maximum size will strain the performance limits of most current
hardware and operating system platforms.

When omitted or zero, the EMS server accepts and attempts to process messages of any
size.

Note: While using FTL stores, the default value of this parameter is set to 10 MB.
The maximum value is still 2 GB.

max_connections
Maximum number of simultaneous client connections.

max_connections = number

Set to 0 to allow unlimited simultaneous connections.

max_msg_memory
Maximum memory the server can use for messages. This parameter lets you limit the
memory that the server uses for messages, so server memory usage cannot grow beyond
the system’s memory capacity.

max_msg_memory = size [KB|MB|GB]

When msg_swapping is enabled, and messages overflow this limit, the server begins to
swap messages from process memory to disk. Swapping allows the server to free process
memory for incoming messages, and to process message volume in excess of this limit.

When the server swaps a message to disk, a small record of the swapped message remains
in memory. If all messages are swapped out to disk, and their remains still exceed this
memory limit, then the server has no room for new incoming messages. The server stops
accepting new messages, and send calls in message producers result in an error. (This
situation probably indicates either a very low value for this parameter, or a very high
message volume.)

TIBCO Enterprise Message Service™ User Guide

241 | Configuration Files

Specify units as KB, MB or GB. The minimum value is 8 MB. The default value of 0 (zero)
indicates no limit.

For example:

max_msg_memory = 512MB

msg_pool_block_size
To lessen the overhead costs associated with malloc and free, the server pre-allocates
pools of storage for messages. This parameter determines the behavior of these pools.
Performance varies depending on operating system platform and usage patterns.

msg_pool_block_size = size

Note: Consult with your TIBCO support representative before using this
parameter.

The size argument determines the approximate number of internal message structs that a
block or pool can accommodate (not the number of bytes).

msg_pool_block_size instructs the server to allocate an expandable pool. Each time the
server exhausts the pool, the server increases the pool by this size, as long as additional
storage is available. The value may be in the range 32 to 65536.

When this parameter is not present, the default is msg_pool_block_size 128.

msg_swapping
This parameter enables and disables the message swapping feature (described above for
max_msg_memory).

msg_swapping = enable | disable

The default value is enabled, unless you explicitly set it to disabled.

TIBCO Enterprise Message Service™ User Guide

242 | Configuration Files

prefetch_none_timeout_request_reply
Prevents the memory utilization of the server to grow in the context of the following
scenario.

The combination of a client consuming from a queue with prefetch set to none and calling
receive with a short timeout in a loop can cause the memory utilization of the server to
grow significantly. This can happen when the receive timeout is so short that the server
doesn't have a chance to deliver a message to the consumer before being asked again,
causing a backup of receive requests in the server.

To prevent this from happening, enable this parameter.

prefetch_none_timeout_request_reply = enable | disable

Defaults to disable.

Note: Consult with your TIBCO support representative before using this
parameter.

reserve_memory
When reserve_memory is non-zero, the EMS server allocates a block of memory for use in
emergency situations to prevent the EMS server from being unstable in low memory
situations.

reserve_memory = size

When the server process exhausts memory resources, it disables clients and routes from
producing new messages, and frees this block of memory to allow consumers to continue
operation (which tends to free memory).

The EMS server attempts to reallocate its reserve memory once the number of pending
messages in the server has dropped to 10% of the number of pending messages that were
in the server when it experienced the allocation error. If the server successfully reallocates
memory, it begins accepting new messages.

The reserve_memory parameter only triggers when the EMS server has run out of memory
and therefore is a reactive mechanism. The appropriate administrative action when an EMS
server has triggered release of reserve memory is to drain the majority of the messages by

TIBCO Enterprise Message Service™ User Guide

243 | Configuration Files

consuming them and then to stop and restart the EMS server. This allows the operating
system to reclaim all the virtual memory resources that have been consumed by the EMS
server. A trace option, MEMORY, is also available to help show what the server is doing
during the period when it is not accepting messages.

Specify size in units of MB. When non-zero, the minimum block is 16MB. When absent, the
default is zero.

Note: There are a variety of limits that the user can set to prevent the EMS
server from storing excessive messages, which can lead to situations where the
EMS server runs out of memory.
These include global parameters, such as max_msg_memory, as well as destination
properties such as maxbytes. These limits should be used to prevent the
reserve_memory mechanism from triggering.

socket_send_buffer_size
Sets the size (in bytes) of the send buffer used by clients when connecting to the EMS
server.

socket_send_buffer_size = size [KB|MB|GB]

The specified size may be:

 l any number greater than 512

 l 0 to use the default buffer size

 l -1 to skip the call for the specified buffer

 l Optionally, specify units of KB, MB, or GB for units. If no units are specified, the file size
is assumed to be in bytes.

When omitted, the server skips the call for the specified buffer. In this case, the operating
system's auto-tuning controls buffering.

socket_receive_buffer_size
Sets the size (in bytes) of the receive buffer used by clients when connecting to the EMS
server.

TIBCO Enterprise Message Service™ User Guide

244 | Configuration Files

socket_receive_buffer_size = size [KB|MB|GB]

The specified size may be:

 l any number greater than 512

 l 0 to use the default buffer size

 l -1 to skip the call for the specified buffer

 l Optionally, specify units of KB, MB, or GB for units. If no units are specified, the file size
is assumed to be in bytes.

When omitted, the server skips the call for the specified buffer. In this case, the operating
system's auto-tuning controls buffering.

Detecting Network Connection Failure Parameters
This feature lets servers and clients detect network connection failures quickly. When these
parameters are absent, or this feature is disabled, tibemsd closes a connection only upon
the operating system notification.

active_route_connect_time
Specifies the interval (in seconds) at which an EMS server attempts to connect or reconnect
a route to the another server. The default is 2 seconds.

active_route_connect_time = interval

client_heartbeat_server
In a server-to-client connection, clients send heartbeats to the server at this interval (in
seconds).

client_heartbeat_server = interval

The client_heartbeat_server parameter must be specified when a
server_timeout_client_connection is set.

TIBCO Enterprise Message Service™ User Guide

245 | Configuration Files

The client_heartbeat_server interval should be no greater than
one third of the server_timeout_client_connection limit.

This setting also ensures that garbage collection occurs on the connection. Collection is
triggered by incoming messages and heartbeats. If the size of messages can vary widely or
there is not a steady stream of message traffic, can use this parameter to ensure that
collection occurs.

When omitted or zero, client_heartbeat_server is disabled.

clock_sync_interval
Periodically send the EMS server’s Coordinated Universal Time (UTC) time to clients. This
allows EMS clients to update their offset.

clock_sync_interval = seconds

The time specified, in seconds, determines the interval at which clock sync commands are
sent from the server to its clients.

When omitted or zero, the EMS server sends the offset time only when the EMS client
connects to the server. If clock_sync_interval is -1, the offset is never sent, not even on
connect. Clients do not adjust their time values to match the server time.

server_timeout_client_connection
In a server-to-client connection, if the server does not receive a heartbeat for a period
exceeding this limit (in seconds), it closes the connection.

server_timeout_client_connection = limit

We recommend setting this value to approximately 3 times the heartbeat interval, as it is
specified in client_heartbeat_server.

Note: If you do not set the client_heartbeat_server parameter when a
server_timeout_client_connection is specified, a configuration error is
generated during startup. If CONFIG_ERRORS is part of the startup_abort_list,
the server will not start. If not, the error is printed but the server starts, and
clients will be disconnected after server_timeout_client_connection seconds.

TIBCO Enterprise Message Service™ User Guide

246 | Configuration Files

Zero is a special value, which disables heartbeat detection in the server (although clients
still send heartbeats).

server_heartbeat_server
In a server-to-server connection, this server sends heartbeats at this interval (in seconds).
The two servers can be connected either by a route, or as a fault-tolerant pair.

server_heartbeat_server = interval

When using FTL stores, this parameter only affects server-to-server route connections. It
has no effect on the behavior of fault-tolerance.

server_timeout_server_connection
In a server-to-server connection, if this server does not receive a heartbeat for a period
exceeding this limit (in seconds), it closes the connection. This parameter applies to
connections from other routes and to the standby server connection.

server_timeout_server_connection = limit

We recommend setting this value to approximately 3.5 times the heartbeat interval of the
other server. When the other server or the network are heavily loaded, or when client
programs send very large messages, we recommend a larger multiple.

Note: In a fault-tolerant configuration, the server_timeout_server_connection
parameter has no effect on the standby server following a failover. The standby
server activates only after the timeout set by the ft_activation parameter.

When using FTL stores, this parameter only affects server-to-server route connections. It
has no effect on the behavior of fault-tolerance.

server_heartbeat_client
In a server-to-client connection, the server sends heartbeats to all clients at this interval (in
seconds).

TIBCO Enterprise Message Service™ User Guide

247 | Configuration Files

server_heartbeat_client = interval

When omitted or zero, the default is 5 seconds.

client_timeout_server_connection
In a server-to-client connection, if a client does not receive a heartbeat for a period
exceeding this limit (in seconds), it closes the connection.

client_timeout_server_connection = limit

We recommend setting this value to approximately 3.5 times the heartbeat interval.

Zero is a special value, which disables heartbeat detection in the client (although the
server still sends heartbeats).

Fault Tolerance Parameters
See Fault Tolerance for more information about these parameters.

The fault tolerance parameters that begin with the prefix ft_ssl are used to secure
communications between pairs of fault tolerant servers. See TLS for additional information
about this process.

Aside from ft_reconnect_timeout, none of the parameters in this section are applicable
when using FTL stores. See Fault-Tolerance with FTL Stores for more details.

ft_active
Specifies the URL of the active server. If this server can connect to the active server, it will
act as a standby server. If this server cannot connect to the active server, it will become the
active server.

ft_active = URL

TIBCO Enterprise Message Service™ User Guide

248 | Configuration Files

ft_heartbeat
Specifies the interval (in seconds) the server is to send a heartbeat signal to its peer to
indicate that it is still operating.

ft_heartbeat = seconds

Default is 3 seconds.

ft_activation
Activation interval (maximum length of time between heartbeat signals) which indicates
that server has failed.

ft_activation = seconds

Set in seconds: default is 10. This interval should be set to at least twice the heartbeat
interval.

For example:

ft_activation = 60

See the server_timeout_server_connection parameter for more information on
heartbeats.

ft_reconnect_timeout
The amount of time (in seconds) that a standby server waits for clients to reconnect (after
it becomes the active server in a failover situation).

ft_reconnect_timeout = seconds

If a client does not reconnect within this time period, the server removes its state from the
shared state files. The ft_reconnect_timeout time starts once the server has fully
recovered the shared state, so this value does not account for the time it takes to recover
the store files.

The default value of this parameter is 60.

TIBCO Enterprise Message Service™ User Guide

249 | Configuration Files

ft_ssl_identity
The path to a file that contains the certificate in one of the supported formats. The
supported formats are PEM, DER, or PKCS#12. A DER format file can only contain the
certificate; it cannot contain both the certificate and a private key.

ft_ssl_identity = pathname

See File Names for Certificates and Keys for more information on file types for digital
certificates.

ft_ssl_issuer
Certificate chain member for the server. Supply the entire chain, including the CA root
certificate. The server reads the certificates in the chain in the order they are presented in
this parameter.

ft_ssl_issuer = chain_member

The certificates must be in PEM, DER, PKCS#7, or PKCS#12 format. A DER format file can
only contain a single certificate; it cannot contain a certificate chain. See File Names for
Certificates and Keys for more information on file types for digital certificates.

ft_ssl_private_key
The server’s private key. If it is included in the digital certificate in ft_ssl_identity, then
this parameter is not needed.

ft_ssl_private_key = key

This parameter supports private keys in the following formats: PEM, DER, PKCS#12.

You can specify the actual key in this parameter, or you can specify a path to a file that
contains the key. See File Names for Certificates and Keys for more information on file
types for digital certificates.

TIBCO Enterprise Message Service™ User Guide

250 | Configuration Files

ft_ssl_password
Private key or password for private keys.

ft_ssl_password = password

You can set passwords by way of the tibemsadmin tool. When passwords are set with this
tool, the password is obfuscated in the configuration file. See EMS Administration Tool for
more information about using tibemsadmin to set passwords.

ft_ssl_trusted
List of trusted certificates. This sets which Certificate Authority certificates should be
trusted as issuers of the client certificates.

ft_ssl_trusted = trusted_certificates

The certificates must be in PEM, DER, or PKCS#7 format. You can either provide the actual
certificates, or you can specify a path to a file containing the certificate chain. If using a
DER format file, it can contain only a single certificate, not a certificate chain.

See File Names for Certificates and Keys for more information on file types for digital
certificates.

ft_ssl_verify_host
Specifies whether the fault-tolerant server should verify the other server’s certificate.

ft_ssl_verify_host = enabled | disabled

The values for this parameter are enabled or disabled.

By default, this parameter is enabled, signifying the server should verify the other server’s
certificate.

When this parameter is set to disabled, the server establishes secure communication with
the other fault-tolerant server, but does not verify the server’s identity.

TIBCO Enterprise Message Service™ User Guide

251 | Configuration Files

ft_ssl_verify_hostname
Specifies whether the fault-tolerant server should verify the name in the CN field of the
other server’s certificate.

ft_ssl_verify_hostname = enabled | disabled

The values for this parameter are enabled and disabled. By default, this parameter is
enabled, signifying the fault-tolerant server should verify the name of the connected host
or the name specified in the ft_ssl_expected_hostname parameter against the value in
the server’s certificate. If the names do not match, the connection is rejected.

When this parameter is set to disabled, the fault-tolerant server establishes secure
communication with the other server, but does not verify the server’s name.

ft_ssl_expected_hostname
Specifies the name the server is expected to have in the CN field of the fault-tolerant
server’s certificate.

ft_ssl_expected_hostname = serverName

If this parameter is not set, the expected name is the hostname of the server.

This parameter is used when the ft_ssl_verify_hostname parameter is set to enabled.

ft_ssl_ciphers
Specifies the cipher suites used by the server; each suite in the list is separated by a colon
(:). This parameter can use the OpenSSL name for cipher suites or the longer, more
descriptive names.

ft_ssl_ciphers = cipherSuite

See Specify Cipher Suites for more information about the cipher suites available in EMS
and the OpenSSL names and longer names for the cipher suites.

TIBCO Enterprise Message Service™ User Guide

252 | Configuration Files

ft_oauth2_access_token_file
Specifies the path to a file containing an OAuth 2.0 access token to use to authenticate
with the fault-tolerant peer EMS server.

ft_oauth2_access_token_file = pathname

If an access token is provided using this parameter, the EMS server will not attempt to
obtain access tokens from an OAuth 2.0 authorization server even if ft_oauth2_server_url
and other relevant parameters are set.

ft_oauth2_server_url
Specifies the HTTP or HTTPS URL of the OAuth 2.0 authorization server from which the EMS
server will obtain access tokens for authenticating with its fault-tolerant peer EMS server.

ft_oauth2_server_url = http://hostname:port

If connecting to a secure OAuth 2.0 authorization server:

ft_oauth2_server_url = https://hostname:port

ft_oauth2_client_id
The OAuth 2.0 client ID to use when authenticating with the OAuth 2.0 authorization server.
This parameter and ft_oauth2_client_secret are both required in order to obtain access
tokens from the authorization server, regardless of the grant type to be used.

ft_oauth2_client_id = client_id

ft_oauth2_client_secret
The OAuth 2.0 client secret to use when authenticating with the OAuth 2.0 authorization
server. This parameter and ft_oauth2_client_id are both required in order to obtain access
tokens from the authorization server, regardless of the configured grant type.

TIBCO Enterprise Message Service™ User Guide

253 | Configuration Files

ft_oauth2_client_secret = client_secret

ft_oauth2_grant_type
The grant type to use for requesting access tokens from the OAuth 2.0 authorization server.

The accepted values are:

 l client_credentials–for Client Credentials grant.

 l password–for Resource Owner Password Credentials grant.

ft_oauth2_grant_type = client_credentials|password

If using the resource owner password credentials grant type, the username and password
included in the grant are the server name and server password configured through the
server and password parameters.

If this parameter is not set, the client credentials grant type is used by default.

ft_oauth2_server_trust_file
Specifies the path to a file containing one or more PEM-encoded public certificates that
can be used to validate a secure OAuth 2.0 authorization server's identity.

ft_oauth2_server_trust_file = trust_file

This parameter is only required if an HTTPS URL was specified for ft_oauth2_server_url.

ft_oauth2_disable_verify_hostname
When this parameter is enabled, the EMS server will not verify the hostname in the CN field
of the OAuth 2.0 authorization server’s certificate.

ft_oauth2_disable_verify_hostname = enabled|disabled

This parameter is disabled by default.

TIBCO Enterprise Message Service™ User Guide

254 | Configuration Files

ft_oauth2_expected_hostname
The name that the EMS server expects in the CN field of the OAuth 2.0 authorization
server’s certificate.

ft_oauth2_expected_hostname = hostname

If this parameter is not set, the expected name is the hostname of the authorization server.

This parameter is not relevant when the ft_oauth2_disable_verify_hostname parameter
is set to true.

Message Tracking Parameters
The parameters described in the following topics configure the message tracking behavior
of the EMS server.

track_message_ids
Tracks messages by message ID. Default is disabled.

track_message_ids = enabled | disabled

Enabling this parameter allows you to display messages using the show messagemessageID
command in the administration tool.

track_correlation_ids
Tracks messages by correlation ID. Disabled by default.

track_correlation_ids = enabled | disabled

Enabling this parameter allows you to display messages using the show
messagescorrelationID command in the administration tool.

TIBCO Enterprise Message Service™ User Guide

255 | Configuration Files

TIBCO FTL Transport Parameters
The parameters listed here enable the EMS server to connect to a TIBCO FTL server using
transports configured in the transports.conf file.

Note: The EMS server creates a single FTL event queue that is used for all EMS
transports for FTL configured in the transports.conf file.

For more information, see Interoperation with TIBCO FTL.

ftl_log_level
Optional. Determines the trace level of FTL messages logged in the server when the EMS
Server FTL trace item is enabled.

ftl_log_level = level

When absent, the ftl_log_level defaults to warn.

For more details, see the TIBCO FTL documentation on logging.

ftl_trustfile
Optional. Specifies the trust file for the EMS server to validate the FTL server on a TLS
connection.

ftl_trustfile = file name

The trust file must be the same as that used by other FTL clients to validate the FTL server.

Note: For the trust file to be used, the ftl_url must start with https:// instead
of http://.

Note: If the ftl_url starts with https:// but a ftl_trustfile is not provided,
a warning is logged that the connection is not secure.

 Sets the com.tibco.ftl.trust.type and com.tibco.ftl.trust.file properties in the

TIBCO Enterprise Message Service™ User Guide

256 | Configuration Files

following way:

 l If ftl_url starts with https:// and ftl_trustfile exists:

com.tibco.ftl.trust.type is set to
TIB_REALM_HTTPS_CONNECTION_USE_SPECIFIED_TRUST_FILE and

com.tibco.ftl.trust.file is set to the contents of ftl_trustfile

 l If ftl_url starts with https:// and ftl_trustfile does not exist:

com.tibco.ftl.trust.type is set to TIB_REALM_HTTPS_CONNECTION_TRUST_EVERYONE
and com.tibco.ftl.trust.file is not set

If the environment variable TIB_FTL_TRUST_FILE is set, the content of ftl_trustfile
is ignored, and the content of the environment variable is used for validating the FTL
server (if ftl_url starts with https://). For more details, see the TIBCO FTL
documentation on realms.

ftl_url
Required. Specifies the URL at which the EMS server can connect to the TIBCO FTL server.

ftl_url = URL

For example, ftl_url=http://localhost:5633.

For more details, see the TIBCO FTL documentation on realms.

ftl_username
Optional. The username that the EMS server should use to authenticate itself when
connecting to the TIBCO FTL server.

ftl_username = user

Sets the com.tibco.ftl.client.username property. For more details, see the TIBCO FTL
documentation on realms.

When authenticating with FTL using OAuth 2.0, this parameter determines the grant type
used to request access tokens from the OAuth 2.0 authorization server. If ftl_username is
not set, the Client Credentials Grant type is used. If ftl_username is set, the

TIBCO Enterprise Message Service™ User Guide

257 | Configuration Files

Resource Owner Password Credentials Grant type is used, with ftl_username and ftl_
password serving as the username and password credentials.

ftl_password
Optional. The password that the EMS server should use to authenticate itself when
connecting to the TIBCO FTL server. Note that the password can be stored in a mangled
form.

ftl_password = password

Sets the com.tibco.ftl.client.userpassword property. For more details, see the TIBCO
FTL documentation on realms.

This parameter may need to be set if authenticating with FTL using OAuth 2.0. See
ftl_username for details.

ftl_oauth2_access_token_file
Specifies the path to a file containing an OAuth 2.0 access token to use to authenticate
with the FTL deployment.

ftl_oauth2_access_token_file = pathname

If an access token is provided via this parameter, the EMS server will always use that
access token for authentication with the FTL deployment. The server will not attempt to
obtain access tokens from an OAuth 2.0 provider even if ftl_oauth2_server_url and other
relevant parameters are set.

ftl_oauth2_server_url
Specifies the HTTP or HTTPS URL of the OAuth 2.0 authorization server from which the EMS
server will obtain access tokens for authenticating with the FTL deployment.

ftl_oauth2_server_url = http://hostname:port

If connecting to a secure OAuth 2.0 authorization server:

TIBCO Enterprise Message Service™ User Guide

258 | Configuration Files

ftl_oauth2_server_url = https://hostname:port

ftl_oauth2_client_id
The OAuth 2.0 client ID to use when authenticating with the OAuth 2.0 authorization server.
This parameter and ftl_oauth2_client_secret are both required in order to obtain
access tokens from the authorization server, regardless of the configured grant type.

ftl_oauth2_client_id = client_id

ftl_oauth2_client_secret
The OAuth 2.0 client secret to use when authenticating with the OAuth 2.0 authorization
server. This parameter and ftl_oauth2_client_id are both required in order to obtain
access tokens from the authorization server, regardless of the grant type to be used.

ftl_oauth2_client_secret = client_secret

ftl_oauth2_server_trust_file
Specifies the path to a file containing one or more PEM-encoded public certificates for
validating a secure OAuth 2.0 authorization server's identity.

ftl_oauth2_server_trust_file = trust_file

This parameter is only required if an HTTPS URL was specified for ftl_oauth2_server_url.

ftl_oauth2_disable_verify_hostname
When this parameter is enabled, the EMS server will not verify the hostname in the CN field
of the OAuth 2.0 authorization server’s certificate.

ftl_oauth2_disable_verify_hostname = enabled|disabled

TIBCO Enterprise Message Service™ User Guide

259 | Configuration Files

This parameter is disabled by default.

ftl_oauth2_expected_hostname
The name that the EMS server expects in the CN field of the OAuth 2.0 authorization
server’s certificate.

ftl_oauth2_expected_hostname = hostname

If this parameter is not set, the expected name is the hostname of the authorization server.

This parameter is not relevant when the ftl_oauth2_disable_verify_hostname parameter
is set to true.

tibftl_transports
Specifies whether the TIBCO FTL transports defined in transports.conf are enabled or
disabled.

tibftl_transports = enabled | disabled

Unless you explicitly set this parameter to enabled, the default value is disabled—that is,
all transports are disabled and will neither send messages to external systems nor receive
messages from them.

Rendezvous Transport Parameters
For more information, see Interoperation With TIBCO Rendezvous.

tibrv_transports
Specifies whether TIBCO Rendezvous transports defined in transports.conf are enabled
or disabled.

tibrv_transports = enabled | disabled

TIBCO Enterprise Message Service™ User Guide

260 | Configuration Files

Unless you explicitly set this parameter to enabled, the default value is disabled—that is,
all transports are disabled and will neither send messages to external systems nor receive
message from them.

Tracing and Log File Parameters
See Monitor Server Activity, for more information about these parameters.

Note: When using FTL stores, only the client_trace, console_trace, and
trace_client_host parameters are applicable. All other log file related
parameters are unsupported. See Logging With FTL Stores for details.

client_trace
Administrators can trace a connection or group of connections. When this property is
enabled, the server instructs each client to generate trace output for opening or closing a
connection, message activity, and transaction activity. This type of tracing does not require
restarting the client program.

client_trace = {enabled|disabled} [target=location]
 [user|connid|clientid=value]

Each client sends trace output to location, which may be either stderr (the default) or
stdout.

Note: You can also direct client tracing output to a file, using the
tibems_SetTraceFile, Tibjms.setTraceFile and Tibems.SetTraceFile in the
C, Java and .NET libraries, respectively.

The default behavior is to trace all connections. You can specify either user, connid or
clientid to selectively trace specific connections. The value can be a user name or ID (as
appropriate).

Setting this parameter using the administration tool does not change its value in the
configuration file tibemsd.conf; that is, the value does not persist across server restarts
unless you set it in the configuration file.

http://reldist.na.tibco.com/docs/ems/8.5.0/doc/html/api/javadoc/com/tibco/tibjms/Tibjms.html#setTraceFile-java.lang.String-
http://reldist.na.tibco.com/docs/ems/8.5.0/doc/html/api/dotnetdoc/html/class_t_i_b_c_o_1_1_e_m_s_1_1_tibems.html#a299ee9eb893c61d974493af4a4e00dea

TIBCO Enterprise Message Service™ User Guide

261 | Configuration Files

console_trace
Sets trace options for output to stderr. The possible values are the same as for log_trace.
However, console tracing is independent of log file tracing.

console_trace = traceOptions

If logfile is defined, you can stop console output by specifying:

console_trace=-DEFAULT

Note: Important error messages (and some other messages) are always output,
overriding the trace settings.

logfile
Name and location of the server log file.

logfile = pathname

If the pathname contains spaces, it must be enclosed in double quotes.

By default, the logfile specified here is used by both servers in fault tolerant pair.
Optionally, a JSON-configured server pair can set the secondary_logfile parameter to
direct the server designated as secondary to write to a different file.

log_trace
Sets the trace preference on the file defined by the logfile parameter. If logfile is not
set, the values have no effect.

log_trace = traceOptions

The value of this parameter is a comma-separated list of trace options. For a list of trace
options and their meanings, see Server Tracing Options,.

You may specify trace options in three forms:

#ID-00005418

TIBCO Enterprise Message Service™ User Guide

262 | Configuration Files

 l plain A trace option without a prefix character replaces any existing trace options.

 l + A trace option preceded by + adds the option to the current set of trace options.

 l - A trace option preceded by - removes the option from the current set of trace
options.

The following example sets the trace log to only show messages about access control
violations.

log_trace=ACL

The next example sets the trace log to show all default trace messages, in addition to TLS
messages, but ADMIN messages are not shown.

log_trace=DEFAULT,-ADMIN,+SSL

logfile_max_count
Specifies the maximum number of log files to be kept.

logfile_max_count = integer

Specify any number greater than 2.

When 0 or not specified, there is no limit to the number of log files kept.

logfile_max_size
Specifies the recommended maximum log file size before the log file is rotated. Set to 0 to
specify no limit. Use KB, MB, or GB for units (if no units are specified, the file size is
assumed to be in bytes).

logfile_max_size = size [KB|MB|GB]

The server periodically checks the size of the current log file. If it is greater than the
specified size, the file is copied to a backup and then emptied. The server then begins
writing to the empty log file until it reaches the specified size again.

TIBCO Enterprise Message Service™ User Guide

263 | Configuration Files

Backup log files are named sequentially and stored in the same directory as the current
log.

secondary_logfile
Name and location of the server log file used by the secondary EMS server in a fault
tolerant pair. The EMS server designated as primary in the pair writes to the file specified
by the logfile parameter.

secondary_logfile = pathname

If the secondary_logfile parameter is not set, the secondary server assumes the value of
logfile.

If the pathname contains spaces, it must be enclosed in double quotes.

For more information, see logfile.

Note: This parameter is available only for JSON-configured EMS servers using
file-based stores or grid stores.

trace_client_host
Trace statements related to connections can identify the host by its hostname, its IP
address, or both. When absent, the default is hostname. The both_with_port option
displays the ephemeral port used on the host as well as the IP address and hostname.

trace_client_host = [hostname|address|both|both_with_port]

Statistic Gathering Parameters
See Monitor Server Activity, for more information about these parameters.

TIBCO Enterprise Message Service™ User Guide

264 | Configuration Files

server_rate_interval
Sets the interval (in seconds) over which overall server statistics are averaged.

server_rate_interval = seconds

This parameter can be set to any positive integer greater than zero.

Overall server statistics are always gathered, so this parameter cannot be set to zero. By
default, this parameter is set to 1.

Setting this parameter allows you to average message rates and message size over the
specified interval.

statistics
Enables or disables statistic gathering for producers, consumers, destinations, and routes.
By default this parameter is set to disabled.

statistics = enabled | disabled

Disabling statistic gathering resets the total statistics for each object to zero.

rate_interval
Sets the interval (in seconds) over which statistics for routes, destinations, producers, and
consumers are averaged.

rate_interval = seconds

By default, this parameter is set to 3 seconds. Setting this parameter to zero disables the
average calculation.

detailed_statistics
Specifies which objects should have detailed statistic tracking.

detailed_statistics = NONE | [PRODUCERS,CONSUMERS,ROUTES]

TIBCO Enterprise Message Service™ User Guide

265 | Configuration Files

Detailed statistic tracking is only appropriate for routes, producers that specify no
destination, or consumers that specify wildcard destinations. When detailed tracking is
enabled, statistics for each destination are kept for the object.

Setting this parameter to NONE disabled detailed statistic tracking. You can specify any
combination of PRODUCERS, CONSUMERS, or ROUTES to enable tracking for each object. If
you specify more than one type of detailed tracking, separate each item with a comma.

For example:

detailed_statistics = NONE

Turns off detailed statistic tracking.

detailed_statistics = PRODUCERS,ROUTES

Specifies detailed statistics should be gathered for producers and routes.

statistics_cleanup_interval
Specifies how long (in seconds) the server should keep detailed statistics if the destination
has no activity.

statistics_cleanup_interval = seconds

This is useful for controlling the amount of memory used by detailed statistic tracking.
When the specified interval is reached, statistics for destinations with no activity are
deleted.

max_stat_memory
Specifies the maximum amount of memory to use for detailed statistic gathering.

max_stat_memory = size [KB|MB|GB]

If no units are specified, the amount is in bytes, otherwise you can specify the amount
using KB, MB, or GB as the units.

TIBCO Enterprise Message Service™ User Guide

266 | Configuration Files

Once the maximum memory limit is reached, the server stops collecting detailed statistics.
If statistics are deleted and memory becomes available, the server resumes detailed
statistic gathering.

TLS Server Parameters
See TLS Protocol for more information about these parameters.

ssl_server_ciphers
Specifies the cipher suites used by the server; each suite in the list is separated by a colon
(:). This parameter must follow the OpenSSL cipher string syntax.

ssl_server_ciphers = cipherSuites

For example, you can enable the cipher suites for security level 2 with the following setting:

ssl_server_ciphers = @SECLEVEL=2

See Specify Cipher Suites for more information about the cipher suites available in EMS
and the syntax for specifying them in this parameter.

ssl_require_client_cert
If this parameter is set to enable, the server only accepts TLS connections from clients that
have digital certificates. Connections from clients without certificates are denied.

ssl_require_client_cert = enable | disable

If this parameter is set to disable, then connections are accepted from clients that do not
have a digital certificate.

Whether this parameter is set to enable or disable, clients that do have digital certificates
are always authenticated against the certificates supplied to the ssl_server_trusted
parameter.

The default value is disable.

TIBCO Enterprise Message Service™ User Guide

267 | Configuration Files

ssl_require_route_cert_only
This parameter overrides the ssl_require_client_cert parameter.

ssl_require_route_cert_only = enable | disable

If ssl_require_route_cert_only is set to enable, the server requires a digital certificate
only for TLS connections coming from routes,
regardless of the value of ssl_require_client_cert. In this case, the server does not
require a digital certificate for TLS connections coming from clients and from its fault-
tolerant peer.

If ssl_require_route_cert_only is set to disable, whether the server requires a digital
certificate for TLS connections coming from all sources (routes, clients, and fault-tolerant
peer) still depends on the value of ssl_require_client_cert.

The default value is disable.

ssl_use_cert_username
If this parameter is set to enable, a client’s user name is always extracted from the CN field
of the client’s digital certificate, if the digital certificate is specified.

ssl_use_cert_username = enable | disable

If a different username is provided through the connection factory or API calls, then that
username is discarded. Only the username from the CN is used.

The CN field is either a username, an email address, or a web address.

Note: When ssl_use_cert_username is enabled, the username given by the CN
becomes the only valid username. Any permissions associated with a different
username, for example one assigned with an API call, are ignored.

ssl_cert_user_specname
This parameter is useful if clients are required to supply a username, but you wish to
designate a special username to use when the client’s username should be taken from the

TIBCO Enterprise Message Service™ User Guide

268 | Configuration Files

client’s digital certificate.

ssl_cert_user_specname = username

For example, you may wish all clients to specify their username when logging in. This
means the ssl_use_cert_username parameter would be set to disable. The username is
supplied by the user, and not taken from the digital certificate. However, you may wish one
username to signify that the client logging in with that name should have the name taken
from the certificate. A good example of this username would be anonymous. All clients
logging in as anonymous will have their user names taken from their digital certificates.

The value specified by this parameter is the username that clients will use to log in when
the username should be taken from their digital certificate. A good example of the value of
this parameter would be anonymous.

Also, the value of this parameter is ignored if ssl_use_cert_username is set to enable, in
which case all client usernames are taken from their certificates. This parameter has no
effect for users that have no certificate.

ssl_server_identity
The server’s digital certificate in PEM, DER, or PKCS#12 format. You can specify the path to
a file that contains the certificate in one of the supported formats.

ssl_server_identity = certificate

This parameter must be specified if any TLS ports are listed in the listen parameter.

PEM and PKCS#12 formats allow the digital certificate to include the private key. If these
formats are used and the private key is part of the digital certificate,
then setting ssl_server_key is optional.

For example:

ssl_server_identity = certs/server.cert.pem

TIBCO Enterprise Message Service™ User Guide

269 | Configuration Files

ssl_server_key
The server’s private key. If it is included in the digital certificate in ssl_server_identity,
then this parameter is not needed.

ssl_server_key = private_key

This parameter supports private keys in the following formats: PEM, DER, PKCS#8,
PKCS#12.

You must specify a path to a file that contains the key.

ssl_password
Private key or password for private keys. This password can optionally be specified on the
command line when tibemsd is started.

ssl_password = password

If TLS is enabled, and the password is not specified with this parameter or on the
command line, tibemsd will ask for the password upon startup.

You can set passwords by way of the tibemsadmin tool. When passwords are set with this
tool, the password is obfuscated in the configuration file. See EMS Administration Tool for
more information about using tibemsadmin to set passwords.

Note: Because connection factories do not contain the ssl_password (for
security reasons), the EMS server uses the password that is provided in the
"create connection" call for user authentication. If the create connection
password is different from the ssl_password, the connection creation will fail.

ssl_server_issuer
Certificate chain member for the server. The server reads the certificates in the chain in the
order they are presented in this parameter.

ssl_server_issuer = chain_member

TIBCO Enterprise Message Service™ User Guide

270 | Configuration Files

The same certificate can appear in multiple places in the certificate chain.

The certificates must be in PEM, DER, PKCS#7, or PKCS#12 format. A DER format file can
only contain a single certificate, it cannot contain a certificate chain.

See File Names for Certificates and Keys for more information on file types for digital
certificates.

ssl_server_trusted
List of CA root certificates the server trusts as issuers of client certificates.

ssl_server_trusted = certificates

Specify only CA root certificates. Do not include intermediate CA certificates.

The certificates must be in PEM, DER, or PKCS#7 format. You can either provide the actual
certificates, or you can specify a path to a file containing the certificate chain. If using a
DER format file, it can contain only a single certificate, not a certificate chain.

For example:

ssl_server_trusted = certs\CA1_root.pem
 ssl_server_trusted = certs\CA2_root.pem

See File Names for Certificates and Keys for more information on file types for digital
certificates.

ssl_crl_path
A non-null value for this parameter activates the server’s certificate revocation list (CRL)
feature.

ssl_crl_path = pathname

The server reads CRL files from this directory. The directory should contain only CRL files. If
other files are located in the pathname directory, TLS initialization will fail.

TIBCO Enterprise Message Service™ User Guide

271 | Configuration Files

ssl_crl_update_interval
The server automatically updates its CRLs at this interval (in hours).

ssl_crl_update_interval = hours

When this parameter is absent, the default is 24 hours.

ssl_auth_only
When enabled, the server allows clients to request the use of TLS only for authentication
(to protect user passwords).

ssl_auth_only = enable | disable

For an overview of this feature, see TLS Authentication Only.

When disabled, the server ignores client requests for this feature. When absent, the default
value is disabled.

fips140-2
When true, the EMS server is enabled to run in FIPS 140-2 compliant mode. When false or
excluded, the server is not FIPS compliant.

fips140-2 = true | false

For more information, see Enable FIPS Compliance.

HTTPS Server Parameters
See TLS Protocol for more information about these parameters.

TIBCO Enterprise Message Service™ User Guide

272 | Configuration Files

monitor_ssl_identity
The digital certificate used for the Server Health and Metrics HTTPS listen in PEM, DER, or
PKCS#12 format. You can specify the path to a file that contains the certificate in one of
the supported formats.

monitor_ssl_identity = certificate

If this parameter is not specified, the identity file configured for the server’s TLS listen is
used in its place. If neither are specified, the server will fail to start up.

PEM, PKCS#12 formats allow the digital certificate to include the private key. If these
formats are used and the private key is part of the digital certificate, then setting
monitor_ssl_key is optional.

For example:

monitor_ssl_identity = certs/server.cert.pem

monitor_ssl_key
The private key used for the Server Health and Metrics HTTPS listen. If it is included in the
digital certificate in monitor_ssl_identity, then this parameter is not needed.

monitor_ssl_key = private_key

If this parameter is not specified, the private key file configured for the server’s TLS listen is
used in its place. If neither are specified, the server will fail to start up.

This parameter supports private keys in the following formats: PEM, DER, PKCS#8,
PKCS#12.

You must specify a path to a file that contains the key.

monitor_ssl_password
Password for the private key used for the Server Health and Metrics HTTPS listen.

monitor_ssl_password = password

TIBCO Enterprise Message Service™ User Guide

273 | Configuration Files

If this parameter is not specified, the password for the private key file configured for the
server’s TLS listen is used in its place. If neither are specified, the server will fail to start up.

monitor_ssl_trusted
List of CA root certificates the server trusts as issuers of client certificates. This list only
applies to incoming connections on the Server Health and Metrics HTTPS listen.

monitor_ssl_trusted = certificates

If this parameter is not specified, an attempt is made to use the list from the server’s TLS
listen.

Specify only CA root certificates. Do not include intermediate CA certificates.

The certificates must be in PEM or DER format. You can either provide the paths to
certificates as individual monitor_ssl_trusted entries, or you can specify a path to a file
containing the certificate chain. If using a DER format file, it can contain only a single
certificate, not a certificate chain.

For example:

monitor_ssl_trusted = certs\CA1_root.pem
 monitor_ssl_trusted = certs\CA2_root.pem

See File Names for Certificates and Keys for more information on file types for digital
certificates.

OAuth 2.0 Parameters
See Authentication Using OAuth 2.0 for more information on using OAuth 2.0 in EMS.

oauth2_server_validation_key
Specifies the path to a file containing the PEM-encoded public key or JSON Web Key Set
(JWKS) to use for validating the signature of an OAuth 2.0 JWT access token presented by
an incoming connection request.

TIBCO Enterprise Message Service™ User Guide

274 | Configuration Files

oauth2_server_validation_key = public_key|JWKS

oauth2_user_claim
Specifies the claim in the OAuth 2.0 access token that contains the EMS user to associate
with the incoming connection request.

oauth2_user_claim = claim_name

oauth2_group_claim
Specifies the claim in the OAuth 2.0 access token that contains the list of groups that the
EMS user belongs to.

oauth2_group_claim = claim_name

This parameter is optional. If not specified, the EMS server will assume that the incoming
connection is associated with an EMS user that does not belong to any groups.

oauth2_audience
Specifies the expected value of the ‘aud’ claim in the access token presented by the
incoming connection request.

oauth2_audience = audience

The EMS server can be configured to accept multiple audience values. For example:

oauth2_audience = ems_aud1
 oauth2_audience = ems_aud2

This parameter is optional. If not specified, the JWT audience will not be verified.

TIBCO Enterprise Message Service™ User Guide

275 | Configuration Files

Extensible Security Parameters
The extensible security feature allows you to write your own authentication and
permissions modules for the server.

For more information on this feature, see Extensible Security.

jaas_config_file
Specifies the location of the JAAS configuration file used by the EMS server to run a custom
authentication LoginModule.

jaas_config_file = file-name

For more information, see Loading the LoginModule in the EMS Server.

This parameter is required to enable the extensible security feature for authentication.

For example:

jaas_config_file = jaas.conf

jaas_login_timeout
Specifies the length of time, in milliseconds, that the EMS server will wait for the JAAS
authentication module to execute and respond.

jaas_login_timeout = milliseconds

This timeout is used each time the server passes a username and password to the
LoginModule. If the module does not return a response, the server denies authentication.

This parameter is optional. If it is not included, the default timeout is 10000 milliseconds.

For example:

jaas_login_timeout = 250

TIBCO Enterprise Message Service™ User Guide

276 | Configuration Files

jaci_class
Specifies the name of the class that implements the extensible permissions interface.

jaci_class = class-name

The class must be written using the Java Access Control Interface (JACI). For more
information about writing a custom application using JACI to grant permissions, see
Permissions Module.

For example:

jaci_class = com.userco.auth.CustomAuthorizer

jaci_timeout
Specifies the length of time, in milliseconds, that the EMS server will wait for the JACI
permissions module to execute and respond.

jaci_timeout = milliseconds

This timeout is used each time the server passes a destination, username, and action to
the permissions module. If the module does not return a response, the server denies
authorization.

This parameter is optional. If it is not included, the default timeout is 10000 milliseconds.

For example:

jaci_timeout = 250

security_classpath
Includes the JAR files and dependent classes used by the JAAS LoginModules and JACI
modules.

security_classpath = classpath

TIBCO Enterprise Message Service™ User Guide

277 | Configuration Files

This parameter is required to enable the extensible security feature for authentication and
the extensible security feature for granting permissions.

For example:

security_classpath = .:/usr/local/custom/user_jaci_plugin.jar

JVM Parameters
These parameters enable and configure the Java virtual machine (JVM) in the EMS server.

For more information on how the JVM works in EMS, see Enable the JVM.

jre_library
Enables the JVM in the EMS server, where path is the absolute path to the JRE shared
library file that is installed with the JRE.

jre_library = path

Depending on your platform, this could be jvm.dll, libjvm.so, libjvm.dylib, and so
forth.

If this parameter is not included, the JVM is disabled by default.

If the path contains any spaces, the path must be enclosed in quotation marks.

For example:

jre_library =
"C:\Program Files\Java\jdk1.8.0_121\jre\bin\server\jvm.dll"

jre_option
Passes command line options to the JVM at start-up.

jre_option = JVMoption

TIBCO Enterprise Message Service™ User Guide

278 | Configuration Files

The jre_option parameter can be used to define Java system properties, which are used
by applications running in the JVM, such as extensible security modules.

You can use multiple jre_option entries in order to pass more than one options to the
JVM. Permitted values for JVMoption include most JVM options that are defined by Sun
Microsystems.

For example, this restricts the maximum heap size of the JVM to 256 megabytes:

jre_option = -Xmx256m

Using Other Configuration Files
In addition to the main configuration file, there are several other configuration files used
for various purposes.

These configuration files can be edited by hand, but you can also use the administration
tool or the administration APIs to modify some of these files. See EMS Administration Tool
for more information about using the administration tool.

Configuration File Description

acl.conf Defines EMS access control lists.

bridges.conf Defines bridges between destinations.

durables.conf Defines static durable subscribers.

factories.conf Defines the connection factories stored as JNDI names on
the EMS server.

groups.conf Defines EMS groups.

jaas.conf Locates and loads the LoginModule.

queues.conf Defines EMS Queues.

routes.conf Defines routes between this and other EMS servers

TIBCO Enterprise Message Service™ User Guide

279 | Configuration Files

Configuration File Description

stores.conf Defines the locations of the stores where the EMS server will
store messages.

tibrvcm.conf Defines the TIBCO Rendezvous certified messaging (RVCM)
listeners for use by topics that export messages to a tibrvcm
transport.

topics.conf Defines EMS Topics.

transports.conf Defines transports used by EMS to import messages from or
export messages to TIBCO FTL and Rendezvous.

users.conf Defines EMS users.

acl.conf
This file defines all permissions on topics and queues for all users and groups.

The format of the file is:

TOPIC=topic USER=user PERM=permissions
 TOPIC=topic GROUP=group PERM=permissions
 QUEUE=queue USER=user PERM=permissions
 QUEUE=queue GROUP=group PERM=permissions
 ADMIN USER=user PERM=permissions
 ADMIN GROUP=group PERM=permissions

Parameter
Name

Description

TOPIC Name of the topic to which you wish to add permissions.

QUEUE Name of the queue to which you wish to add permissions.

ADMIN Specifies that you wish to add administrator permissions.

TIBCO Enterprise Message Service™ User Guide

280 | Configuration Files

Parameter
Name

Description

USER Name of the user to whom you wish to add permissions.

GROUP Name of the group to which you wish to add permissions. The designation
all specifies a predefined group that contains all users.

PERM Permissions to add.

The permissions which can be assigned to queues are send, receive and
browse. The permissions which can be assigned to topics are publish,
subscribe and durable and use_durable. The designation all specifies all
possible permissions. For information about these permissions, refer to When
Permissions Are Checked and Inheritance of Permissions.

Administration permissions are granted to users to perform administration
activities. See Administrator Permissions for more information about
administration permissions.

Example

ADMIN USER=sys-admins PERM=all
 TOPIC=foo USER=user2 PERM=publish,subscribe
 TOPIC=foo GROUP=group1 PERM=subscribe

bridges.conf
This file defines bridges between destinations.

See Destination Bridges for more information about destination bridges.

The format of the file is:

[destinationType:destinationName] # mandatory -- include brackets
destinationType=destinationToBridgeTo1 [selector="msg-selector"]
destinationType=destinationToBridgeTo2 [selector="msg-selector"]
 ...

TIBCO Enterprise Message Service™ User Guide

281 | Configuration Files

The destination-name can be any specific destination or a wildcard pattern to match
multiple destinations.

Parameter Name Description

destinationType The type of the destination. That is, topic or
queue.

destinationName The name of the destination.

destinationToBridgeTo One or more names of destinations to which to
create a bridge.

selector="msg-selector" This optional property specifies a message
selector to limit the messages received by the
bridged destination.

For detailed information about message selector
syntax, see the ’Message Selectors’ section in
description for the Message class in TIBCO
Enterprise Message Service Java API Reference.

Example

[topic:myTopic1]
 topic=myTopic2
 queue=myQueue1

durables.conf
This file defines static durable subscribers.

The file consists of lines with either of these formats:

topic-name durable-name
 [route]
 [clientid=id]
 [nolocal]
 [selector="msg-selector"]

TIBCO Enterprise Message Service™ User Guide

282 | Configuration Files

Parameter
Name

Description

topic-name The topic of the durable subscription.

durable-name The name of the durable subscriber.

route When present, the subscriber is another server, and the durable-name is the
name of that server.

When this property is present, no other properties are permitted.

clientid=id The client ID of the subscriber’s connection.

nolocal When present, the subscriber does not receive messages published from its
own connection.

selector=
msg-selector

When present, this selector narrows the set of messages that the durable
subscriber receives.

For detailed information about message selector syntax, see the ’Message
Selectors’ section in description for the Message class in TIBCO Enterprise
Message Service Java API Reference.

Example

topic1 dName1
 topic2 dName2 clientid=myId,nolocal
 topic3 dName3 selector="urgency in ('high','medium')"
 topic4 Paris route

Conflicting Specifications

When the server detects an conflict between durable subscribers, it maintains the earliest
specification, and outputs a warning. Consider these examples:

 l A static specification in this file takes precedence over a new durable dynamically
created by a client.

 l An existing durable dynamically created by a client takes precedence over a new

TIBCO Enterprise Message Service™ User Guide

283 | Configuration Files

static durable defined by an administrator.

 l A static durable subscription takes precedence over a client attempting to
dynamically unsubscribe (from the same topic and durable name).

Conflict can also arise because of wildcards. For example, if a client dynamically creates a
durable subscriber for topic foo.*, and an administrator later attempts to define a static
durable for topic foo.1, then the server detects this conflict and warns the administrator.

Configuration

To configure durable subscriptions in this file, we recommend using the create durable
command in the tibemsadmin tool; see create durable.

If the create durable command detects an existing dynamic durable subscription with the
same topic and name, it promotes it to a static subscription, and writes a specification to
the file durables.conf.

factories.conf
This file defines the connection factories for the internal JNDI names.

The file consists of factory definitions with this format:

[factory-name] # mandatory -- square brackets included
 type = generic|xageneric|topic|queue|xatopic|xaqueue|
 url = url-string
 metric = connections | byte_rate
 clientID = client-id
 [connect_attempt_count|connect_attempt_delay|
 connect_attempt_timeout|reconnect_attempt_count|
 reconnect_attempt_delay|reconnect_attempt_timeout = value]
 [tls-prop = value]*

Parameter Name Description

Mandatory Parameters

These parameters are required. Values given to these parameters cannot be overridden using
API calls.

TIBCO Enterprise Message Service™ User Guide

284 | Configuration Files

Parameter Name Description

[factory-name] [factory-name] is the name of the connection factory.

Note that the square brackets [] DO NOT indicate that
the factory-name is optional; they must be included around the name.

type Type of the connection factory. The value can be:

 l generic: Generic connection

 l xageneric: Generic XA connection

 l topic: Topic connection

 l queue: Queue connection

 l xatopic: XA topic connection

 l xaqueue: XA queue connection

url This string specifies the servers to which this factory creates
connections:

 l A single URL specifies a unique server. For example:

tcp://host1:8222

 l A pair of URLs separated by a comma specifies a pair of fault-
tolerant servers. For example:

tcp://host1:8222,tcp://backup1:8222

 l A set of URLs separated by vertical bars specifies a load
balancing among those servers. For example:

tcp://a:8222|tcp://b:8222|tcp://c:8222

 l You can combine load balancing with fault tolerance. For
example:

tcp://a1:8222,tcp://a2:8222|tcp://b1:8222,tcp://b2:8222

This example defines two servers (a and b), each of which has a

TIBCO Enterprise Message Service™ User Guide

285 | Configuration Files

Parameter Name Description

fault-tolerant backup. The client program checks the load on
the active a server and the active b server, and connects to the
one that has the smaller load. If it cannot connect to one of the
active servers, the client attempts to connect to the standby
server. For example, if it cannot connect to b1, it connects to
b2.

The connection URL cannot exceed 1000 characters.

For cautionary information, see Load Balancing.

Optional Parameters

These parameters are optional. The values of these parameters can be overridden using API
calls.

metric The factory uses this metric to balance the load among a group of
servers:

 l connections—Connect to the server with the fewest client
connections.

 l byte_rate—Connect to the server with the lowest byte rate.
Byte rate is a statistic that includes both inbound and
outbound data.

When this parameter is absent, the default metric is connections.

For cautionary information, see Load Balancing.

clientID The factory associates this client ID string with the connections that it
creates. The client ID cannot exceed 255 characters in length.

connect_attempt_
count

A client program attempts to connect to its server (or in fault-tolerant
configurations, it iterates through its URL list) until it establishes its
first connection to an EMS server. This property determines the
maximum number of iterations. When absent, the default is 2.

connect_attempt_
delay

When attempting a first connection, the client sleeps for this interval
(in milliseconds) between attempts to connect to its server (or in
fault-tolerant configurations, iterations through its URL list). When

TIBCO Enterprise Message Service™ User Guide

286 | Configuration Files

Parameter Name Description

absent, the default is 500 milliseconds.

connect_attempt_
timeout

When attempting to connect to the EMS server, you can set this
connection timeout period to abort the connection attempt after a
specified period of time (in milliseconds).

reconnect_attempt_
count

After losing its server connection, a client program configured with
more than one server URL attempts to reconnect, iterating through
its URL list until it re-establishes a connection with an EMS server.
This property determines the maximum number of iterations. When
absent, the default is 4.

reconnect_attempt_
delay

When attempting to reconnect, the client sleeps for this interval (in
milliseconds) between iterations through its URL list. When absent,
the default is 500 milliseconds.

reconnect_attempt_
timeout

When attempting to reconnect to the EMS server, you can set this
connection timeout period to abort the connection attempt after a
specified period of time (in milliseconds).

tls-prop TLS properties for connections that this factory creates.

For further information on TLS, refer to Configure a Connection
Factory.

Example

[north_america]
 type = topic
 url = tcp://localhost:7222,tcp://server2:7222
 clientID = "Sample Client ID"
 ssl_verify_host = disabled

Configuration

To configure connection factories in this file, we recommend using the tibemsadmin tool;
see create factory.

TIBCO Enterprise Message Service™ User Guide

287 | Configuration Files

Load Balancing

Warning: Do not specify load balancing in situations with durable
subscribers.

If a client program that a creates durable subscriber connects to server A using a
load-balanced connection factory, then server A creates and supports the
durable subscription. If the client program exits and restarts, and this time
connects to server B, then server B creates and supports a new durable
subscription—however, pending messages on server A remain there until the
client reconnects to server A.

Do not specify load balancing when your application requires strict
message ordering.

Load balancing chooses from among multiple servers, which inherently violates
strict ordering.

groups.conf
This file defines all groups. The format of the file is:

group-name1:"description"
 user-name1
 user-name2
group-name2:"description"
 user-name1
 user-name2

Parameter
Name

Description

group-name The name of the group. The group name cannot exceed 255 characters in
length.

description A string describing the group.

user-name One or more users that belong to the group.

Group Parameters

TIBCO Enterprise Message Service™ User Guide

288 | Configuration Files

Example

administrators: "TIBCO Enterprise Message Service administrators"
 admin
 Bob

jaas.conf
This file directs the TIBCO Enterprise Message Service server to the JAAS LoginModule.

See Loading the LoginModule in the EMS Server for more information about the jaas.conf
file.

queues.conf
This file defines all queues.

The format of the file is:

[jndi-name1, jndi-name2, ...]queue-name property1, property2, ...

Note: Note that, while including JNDI names is optional, the square brackets []
must be included around JNDI names if they are included. For more information
about setting JNDI names, see create jndiname.

For example, you might enter:

test store=mystore,secure,prefetch=2

Only queues listed in this file or queues with names that match the queues listed in this file
can be created by the applications (unless otherwise permitted by an entry in acl.conf).
For example, if queue foo.* is listed in this file, queues foo.bar and foo.baz can be
created by the application.

Properties of the queue are inherited by all static and dynamic queues with matching
names. For example, if test.* has the property secure, then test.1 and test.foo are also

TIBCO Enterprise Message Service™ User Guide

289 | Configuration Files

secure. For information on properties that can be assigned to queues, see Destination
Properties.

For further information on the inheritance of queue properties, refer to Wildcards * and >
and Inheritance of Properties.

Note: In the sample file, a > wildcard at the beginning of the file allows the
applications to create valid queues with any name. A > at the beginning of the
queue configuration file means that name-matching is not required for creation
of queues.

Restrictions and rules on queue names are described in Destination Name Syntax.

routes.conf
This file defines routes between this TIBCO Enterprise Message Service server and other
TIBCO Enterprise Message Service servers.

Note: Routes may only be configured administratively, using the administration
tool (see Using the EMS Administration Tool), or the administration APIs (see
com.tibco.tibjms.admin.RouteInfo in the online documentation). Directly
editing the routes.conf file causes errors.

The format of the file is:

[route-name] # mandatory -- square brackets included.
 url=url-string
 zone_name=zone_name
 zone_type=zone_type
 topic_prefetch=value
 [selector]*
 [tls-prop = value]*
 [oauth2-prop = value]*

Parameter Name Description

[route-name] [route-name] is the name of the passive server (at the other

TIBCO Enterprise Message Service™ User Guide

290 | Configuration Files

Parameter Name Description

end of the route); it also becomes the name of the route.
Note that the square brackets [] DO NOT indicate that the
 route-name is an option; they must be included around the
name.

url The URL of the server to and from which messages are
routed.

zone_name The route belongs to the routing zone with this name. When
absent, the default value is default_mhop_zone.

You can set this parameter when creating a route, but you
cannot subsequently change it.

For further information, see these sections:

 l Zone

 l Configure Routes and Zones

zone_type The zone type is either 1hop or mhop. When omitted, the
default value is mhop.

You can set this parameter when creating a route, but you
cannot subsequently change it.

The EMS server will refuse to start up if the zone type in the
routes.conf file does not match the zone type already
created in the $sys.meta file that holds the shared state for
the primary and secondary server.

topic_prefetch A prefetch value for the route. Setting a prefetch at the
route level allows you to assign larger values for WAN routing
functions.

If topic_prefetch is not set, the route uses the prefetch
value specified for the destination. If a topic_prefetch is set
for the route and a different prefetch is set for the
destination, the topic_prefetch value overrides the
destination prefetch.

See the prefetch destination property for valid settings.

TIBCO Enterprise Message Service™ User Guide

291 | Configuration Files

Parameter Name Description

selector Topic selectors (for incoming_topic and outgoing_topic
parameters) control the flow of topics along the route.

For syntax and semantics, see Selectors for Routing Topic
Messages.

tls-prop TLS properties for this route.

For further information on TLS, refer to TLS Parameters for
Routes.

oauth2-prop OAuth 2.0 authentication properties for this route. These
properties will be used to obtain the OAuth 2.0 access tokens
that will be used to authenticate with the server at the other
end of the route.

For further information on OAuth 2.0, refer to Authentication
and Authorization for Routes.

Example

[test_route_2]
 url = tcp://server2:7222
 ssl_verify_host = disabled

stores.conf
This file defines the locations of stores where the EMS server will store messages or
metadata (if the default $sys.meta definition is overridden). You can configure one or
many stores in the stores.conf file.

Store parameters specific to file-based stores are described here. Grid store parameters are
described in Configuring and Deploying Grid Stores and FTL store parameters are described
in Configuring and Deploying FTL Stores.

The format of the file is:

TIBCO Enterprise Message Service™ User Guide

292 | Configuration Files

[store_name] # mandatory -- square brackets included
 type=file
 file=name
 file_destination_defrag=size
 [file_minimum=value]
 [file_truncate=value]
 [mode=async|sync]
 [processor_id=processor id]

Parameter Name Description

[store_name] [store_name] is the name that identifies
this store file configuration.

Note that the square brackets [] DO NOT
indicate that the store_name is an option;
they must be included around the name.

type Identifies the store type. This parameter is
required for all store types. The type can
be:

 l file — for file-based stores.

 l as — for grid stores.

 l ftl — for FTL stores.

file The filename that will be used when
creating this store file. This parameter is
required for file stores. For example,
mystore.db.

The location for this file can be specified
using absolute or relative path names. If
no path separators are present, the file
will be saved in the location specified by
the store parameter in the tibemsd.conf
file, if any is specified there.

mode The mode determines whether messages
will be written to the store synchronously

TIBCO Enterprise Message Service™ User Guide

293 | Configuration Files

Parameter Name Description

or asynchronously. Mode is either:

 l async — the server stores messages
in this file using asynchronous I/O
calls.

 l sync — the server stores messages
in this file using synchronous I/O
calls.

When absent, the default for file-
based stores is async.

processor_id When specified, the EMS Server binds the
storage thread of this store to the
specified processor.

Do not use this parameter if the default
behavior provides sufficient throughput. If
no processor ID is specified for a store,
the store is not bound to a specific
processor.

Specify the processor-id as an integer.

This parameter has similar requirements,
limitations, and benefits as the
processor_ids parameter in
tibemsd.conf.

For use guidelines, see Performance
Tuning.

file_destination_defrag This parameter specifies a maximum
batch size used by the destination defrag
feature.

Destination defrag improves store file
performance by maintaining contiguous
space for new messages, while improving
server read performance. When persistent

TIBCO Enterprise Message Service™ User Guide

294 | Configuration Files

Parameter Name Description

pending messages begin to accumulate in
a queue, messages are grouped into a
batch that is re-written to disk. Messages
are written close together, allowing the
server to read them more efficiently when
later delivering the messages to
consumers.

Specify size in bytes, KB, MB or GB.

The size should be set to a size that is
known to be acceptable for the disk
where the store points to. For instance, if
it is set to 2MB, your disk must be able to
write a 2MB batch efficiently.

If file_destination_defrag is zero or
absent, the destination defrag feature is
disabled.

file_minimum This parameter preallocates disk space for
the store file. Preallocation occurs when
the server first creates the store file.

You can specify units of MB or GB. Zero is a
special value, which specifies no
minimum preallocation. Otherwise, the
value specified must be greater than 4MB.

For example:

 file_minimum = 32MB

If file_truncate is set to true, the
file_minimum parameter prevents the
EMS server from truncating the file below
the set size.

When this parameter is absent, there is no
default minimum preallocation.

TIBCO Enterprise Message Service™ User Guide

295 | Configuration Files

Parameter Name Description

file_truncate Determines whether the EMS server will
occasionally attempt to truncate the store
file, relinquishing unused disk space.

When file_truncate is true, the store
file can be truncated, but not below the
size set in file_minimum.

When this parameter is absent, the
default is true, and the server will
periodically attempt to truncate the store
file.

Example

[my_sync]
 type = file
 file = /var/local/tibems/my_sync.db
 file_destination_defrag=2MB
 file_minimum = 10MB
 file_truncate = true
 mode = sync

tibrvcm.conf
This file defines the TIBCO Rendezvous certified messaging (RVCM) listeners for use by
topics that export messages to a tibrvcm transport. The server preregisters these listeners
when the server starts up so that all messages (including the first message published) sent
by way of the tibrvcm transport are guaranteed. If the server does not preregister the
RVCM listeners before exporting messages, the listeners are created when the first message
is published, but the first message is not guaranteed.

The format of this file is

transport listenerName subjectName

TIBCO Enterprise Message Service™ User Guide

296 | Configuration Files

Parameter Name Description

transport The name of the transport for this RVCM listener.

listenerName The name of the RVCM listener to which topic messages are to
be exported.

subjectName The RVCM subject name that messages are published to. This
should be the same name as the topic names that specify the
export property.

Example

RVCM01 listener1 foo.bar
 RVCM01 listener2 foo.bar.bar

topics.conf
This file defines all topics.

The format of the file is:

[jndi-name1, jndi-name2, ...]topic-name property1, property2, ...

Note: Note that, while including JNDI names is optional, the square brackets []
must be included around JNDI names if they are included. For more information
about setting JNDI names, see create jndiname.

For example, you might enter:

business.inventory global, import="FTL01,FTL02", export="FTL02",
maxbytes=1MB

Only topics listed in this file or topics with names that match the topics listed in this file
can be created by the applications (unless otherwise permitted by an entry in acl.conf).
For example, if topic foo.* is listed in this file, topics foo.bar and foo.baz can be created
by the application.

TIBCO Enterprise Message Service™ User Guide

297 | Configuration Files

Properties of the topic are inherited by all static and dynamic topics with matching names.
For example, if test.* has the property secure, then test.1 and test.foo are also secure.
For information on properties that can be assigned to topics, see Destination Properties.

For further information on the inheritance of topic properties, refer to Wildcards * and >
and Inheritance of Properties.

Restrictions and rules on topic names are described in Destination Name Syntax.

transports.conf
This file defines transports for importing messages from or exporting messages to TIBCO
FTL and Rendezvous.

The format of the file is:

[transport_name] # mandatory -- square brackets included
 type = tibftl | tibrv | tibrvcm # mandatory
 [topic_import_dm = TIBEMS_PERSISTENT |
 TIBEMS_NON_PERSISTENT |
 TIBEMS_RELIABLE]
 [queue_import_dm = TIBEMS_PERSISTENT |
 TIBEMS_NON_PERSISTENT |
 TIBEMS_RELIABLE]
 [export_headers = true | false]
 [export_properties = true | false]
 transport-specific-parameters

Parameter Name Description

[transport_name] The name of the transport. Note that the square
brackets [] DO NOT indicate that the transport_
name is an option; they must be included around
the name.

type Transport type.

 l tibftl identifies TIBCO FTL transport

 l tibrv identifies TIBCO Rendezvous
transport

TIBCO Enterprise Message Service™ User Guide

298 | Configuration Files

Parameter Name Description

 l tibrvcm identifies TIBCO Rendezvous
Certified Messaging transport

Each transport includes additional transport-
specific-parameters.

topic_import_dm

queue_import_dm

EMS sending clients can set the JMSDeliveryMode
header field for each message. However,
Rendezvous clients cannot set this header.
Instead, these two parameters determine the
delivery modes for all topic messages and queue
messages that tibemsd imports on this transport.

TIBEMS_PERSISTENT |
TIBEMS_NON_PERSISTENT | TIBEMS_RELIABLE

When absent, the default is
 TIBEMS_NON_PERSISTENT.

export_headers When true, tibemsd includes Jakarta Messaging
header fields in exported messages.

When false, tibemsd suppresses Jakarta
Messaging header fields in exported messages.

When absent, the default value is true.

export_properties When true, tibemsd includes Jakarta Messaging
properties in exported messages.

When false, tibemsd suppresses Jakarta
Messaging properties in exported messages.

When absent, the default value is true.

transport-specific-parameters See Transport-specific Parameters.

Note: If you have multiple TIBCO Rendezvous transports configured in your
transports.conf file, and if the EMS server fails to create a transport based on
the last entry, the server will continue to traverse through the entries and
attempt to create further transports.

TIBCO Enterprise Message Service™ User Guide

299 | Configuration Files

Transport-specific Parameters

tibftl transports

If type = tibftl, the extended syntax is:

 [endpoint = endpoint-name]
 [import_subscriber_name = subscriber-name]
 [import_match_string = {"fieldname1":value1,...,"fieldnameN":valueN}]
 [export_format = format-name]
 [export_constant = constant1,value1]
 ...
 [export_constant = constantN,valueN]

See TIBCO FTL Parameters for descriptions.

tibrv transports

If type = tibrv, the extended syntax is:

[service = service]
[network = network]
[daemon = daemon]
[temp_destination_timeout = seconds]
[rv_queue_policy = [TIBRVQUEUE_DISCARD_NONE |
 TIBRVQUEUE_DISCARD_FIRST |
 TIBRVQUEUE_DISCARD_LAST]:max_msgs:qty_discard]

See Rendezvous Parameters for descriptions.

tibrvcm transports

If type = tibrvcm, the extended syntax is:

rv_tport = name # mandatory
[cm_name = name]
[ledger_file = file-name]
[sync_ledger = true | false]
[request_old = true | false]
[explicit_config_only = true | false]
[default_ttl = seconds]
[rv_queue_policy = [TIBRVQUEUE_DISCARD_NONE |

TIBCO Enterprise Message Service™ User Guide

300 | Configuration Files

 TIBRVQUEUE_DISCARD_FIRST |
 TIBRVQUEUE_DISCARD_LAST]:max_msgs:qty_discard]

See Rendezvous Certified Messaging (RVCM) Parameters for descriptions.

Example

[FTL01]
 type = tibftl
 endpoint = EP1
 import_subscriber_name = sub1
 import_match_string = {"f1":"foo","f2":true}
 export_format = format-1
 export_constant = constant1,value1
 export_constant = constant2,value2
 export_constant = constant3,value3

[RV01]
 type = tibrv
 topic_import_dm = TIBEMS_RELIABLE
 queue_import_dm = TIBEMS_PERSISTENT
 service = 7780
 network = lan0
 daemon = tcp:host5:7885

[RVCM01]
 type = tibrvcm
 export_headers = true
 export_properties = true
 rv_tport = RV02
 cm_name = RVCMTrans1
 ledger_file = ledgerFile.store
 sync_ledger = true
 request_old = true
 default_ttl = 600

[RV02]
 type = tibrv
 topic_import_dm = TIBEMS_PERSISTENT
 queue_import_dm = TIBEMS_PERSISTENT
 service = 7780
 network = lan0
 daemon = tcp:host5:7885
 rv_queue_policy = TIBRVQUEUE_DISCARD_LAST:10000:100

TIBCO Enterprise Message Service™ User Guide

301 | Configuration Files

users.conf
This file defines all users.

The format of the file is:

username:password:"description"

Parameter
Name

Description

username The name of the user. The username cannot exceed 255 characters in length.

password Leave this item blank when creating a new user. For example:

bob::"Bob Smith"

There is one predefined user, the administrator.

User passwords are not entered in this configuration file, and remain empty
(and therefore not secure) until you set them using the administration tool;
see Assigning a Password to the Administrator. You can also create users and
assign passwords using API calls; see the API reference for the language you
are working with.

description A string describing the user.

Example

admin::"Administrator"
 Bob::"Bob Smith"
 Bill::"Bill Jones"

After the server has started and passwords have been assigned, the file will look like this:

admin:1urmKVgq78:"Administrator"
 Bob:2sldfkj;lsafd:"Bob Smith"
 Bill:3tyavmwq92:"Bill Jones"

TIBCO Enterprise Message Service™ User Guide

302 | Authentication and Permissions

Authentication and Permissions
The EMS server supports authentication of incoming connections through user and
password validation, JAAS authentication modules, and OAuth 2.0.

The EMS server also supports access control (authorization) through enforcement of
permissions on users and groups. EMS supports two basic levels of permissions:
administrator and user.

Administrator permissions control the ability of a user to log in as an administrator to
create, delete, or view the status of users, destinations, connections, factories, and so on.
Administrators with the correct permissions can control user access to the EMS server by
creating users, assigning passwords, and setting permissions.

User permissions apply to the activities a user can perform on each destination (topic and
queue). Using permissions, you can control which users have permission to send, receive,
or browse messages for queues. You can also control who can publish or subscribe to
topics, or who can create durable subscriptions to topics. Permissions are stored in the
access control list for the server.

Note: Authentication has some similar characteristics to Transport Layer
Security (TLS). TLS allows for servers to require user authentication by way of
the user’s digital certificate. TLS does not, however, specify any access control at
the destination level. TLS and the authentication and access control features
described in this chapter can be used together or separately to ensure secure
access to your system. See TLS Protocol for more information about TLS.

Setting up EMS Authentication and Access
Control
The following procedure describes the general process for administrators to configure
authentication and permissions and where to find more information on performing each
step.

TIBCO Enterprise Message Service™ User Guide

303 | Authentication and Permissions

Procedure
 1. Enable authentication and access control for the system. See Enable Authentication

and Access Control.

 2. Determine which destinations require access control, and enable access control for
those destinations. See Destination Access Control .

 3. Configure the list of authentication methods. See Authentication Methods.

 4. Determine the names of the authorized users of the system and create usernames
and passwords for these users. See Users.

 5. Optionally, set up groups and assign users to groups. See Groups.

 6. Determine which users need administrator permissions, and decide whether
administrators can perform actions globally or be restricted to a subset of actions.
See Administrator Permissions for more information.

Users and Groups
The following sections describe users and groups in EMS.

Users
Users are specific, named IDs that allow you to identify yourself to the server. When a client
attempts to connect to the server, it presents a set of credentials to identify itself as a
particular user. These credentials can either be a username and corresponding password,
or an OAuth 2.0 access token containing a username (see Authentication Using OAuth 2.0).

Note: In special cases, you may wish to allow anonymous access to the server.
In this case, a connect request does not have to supply a username or password.
To configure the server to allow anonymous logins, you must create a user
named anonymous and specify no password. Anonymous logins are not
permitted unless the anonymous user exists.

Clients logging in anonymously are only able to perform the actions that the
anonymous user has permission to perform.

TIBCO Enterprise Message Service™ User Guide

304 | Authentication and Permissions

Users are the basis for access control in the EMS server. Users can be assigned server-wide
administrative permissions and destination-level permissions. These permissions dictate
what actions the user can perform once connected to the EMS server.

There is one predefined user, admin, that performs administrative tasks, such as creating
other users.

You can create and remove users and change passwords by specifying the users in the
users.conf configuration file, using the tibemsadmin tool, or by using the administration
APIs. For more information about specifying users in the configuration file, see users.conf.
For more information about specifying users using the tibemsadmin tool, see EMS
Administration Tool. For more information on the administration APIs, see the online
documentation.

EMS can also obtain user information from an external directory (such as an LDAP server),
or an OAuth 2.0 access token presented by the connecting client. Such externally-
configured users must be defined and managed directly via the external directory or OAuth
2.0 provider.

Groups
Groups allow you to create classes of users. Groups make access control administration
significantly simpler because you can grant and revoke permissions to large numbers of
users with a single operation on the group.

Each user can belong to as many groups as necessary. A user’s permissions are the union
of the permissions of the groups the user belongs to, in addition to any permissions
granted to the user directly.

You can create, remove, or add users to groups by specifying the groups in groups.conf,
using the tibemsadmin tool, or by using the administration APIs. For more information
about specifying groups in the configuration file, see groups.conf. For more information
about specifying groups using the tibemsadmin tool, see EMS Administration Tool. For
more information on the administration APIs, see the online documentation.

EMS can also obtain group information from an external directory (such as an LDAP server),
or an OAuth 2.0 access token presented by the connecting client. Such externally-
configured groups must be defined and managed directly using the external directory, or
the OAuth 2.0 provider.

TIBCO Enterprise Message Service™ User Guide

305 | Authentication and Permissions

Note: EMS can retrieve both static and dynamic groups from an external
directory.

Administration Commands and External Users and
Groups
You can perform administrative commands on users and groups defined either locally (in
the EMS server’s local configuration files), or externally (in an external directory accessed
through JAAS, or in an OAuth 2.0 provider). Furthermore, you can combine users and
groups that are defined in different locations (for example, you can grant and revoke
permissions for users and groups defined externally, or add externally-defined users to
locally-defined groups).

Note: In order to combine users and groups in this manner, the user_auth
configuration parameter must have at least two authentication methods
specified. See Authentication Methods for details.

When you attempt to view users and groups using the show user/s or show group/s
commands, any externally-defined users and groups have an asterisk next to their names.
Externally-defined users and groups will only appear in the output of these commands in
the following situations:

 l an externally-defined user successfully authenticates

 l a user belonging to an externally-defined group successfully authenticates

 l an externally-defined user has been added to a locally-defined group

 l permissions on a topic or queue have been granted to an externally-defined user or
group

Therefore, not all externally-defined users and groups may appear when the show user/s
or show group/s commands are executed. Only the users and groups that meet the above
criteria at the time the command is issued will appear.

You can create users and groups with the same names as externally-defined users and
groups. If a user or group exists in the server’s configuration and is also defined externally,
the local definition of the user takes precedence. Locally-defined users and groups will not
have an asterisk by their names in the show user/s or show group/s commands.

TIBCO Enterprise Message Service™ User Guide

306 | Authentication and Permissions

You can also issue the delete user or delete group command to delete users and groups
from the local server’s configuration. The permissions assigned to the user or group are
also deleted when the user or group is deleted. If you delete a user or group that is defined
externally, this deletes the user or group from the server’s memory and deletes any
permissions assigned in the access control list, but it has no effect on the external
definition of that user or group (for example, it will not be deleted from the external
directory or OAuth 2.0 provider). The externally-defined user can once again log in, and the
user is created in the server’s memory and any groups to which the user belongs are also
created. However, any permissions for the user or group have been deleted and therefore
must be re-granted.

Enable Authentication and Access Control
Administrators can enable or disable authentication and access control for the server.
Administrators can also enable and disable permission checking for specific destinations.

Server Access Control and Authentication
The authorization property in the main configuration file enables or disables authentication
of incoming connections and the checking of permissions for all destinations managed by
the server.

Warning: The default setting is disabled. For secure deployments, the
administrator must explicitly set authorization to enabled.

When authorization is disabled, the server grants any connection request, and does not
check permissions when a client accesses a destination (for example, publishing a message
to a topic).

When authorization is enabled, the server grants connections only upon successful
authentication. The server checks permissions for client operations involving secure
destinations.

To enable authorization, either edit tibemsd.conf (set the authorization property to
enabled, and restart the server). Or you can use the tibemsadmin tool to dynamically
enable authorization with the following set server command:

TIBCO Enterprise Message Service™ User Guide

307 | Authentication and Permissions

 set server authorization=enabled

Authorization does affect connections between fault-tolerant server pairs; see Authorization
and Fault-Tolerant Servers.

Administrators must always log in with the correct administration username and password
to perform any administrative function—even when authorization is disabled.

Destination Access Control
When authorization is enabled, the server verifies user and group permissions before
allowing operations on destinations, such as sending a message or receiving a message.
However, this destination access control is only applicable for those destinations that have
the secure property enabled. All operations by applications on the destination with secure
enabled are verified by the server according to the permissions listed in acl.conf.
Destinations with secure disabled continue to operate without any restrictions.

Note: The secure property is independent of TLS-level security. The secure
property controls only basic authentication and permission verification. It does
not affect the security of communication between clients and server.

When a destination does not have the secure property set, any authenticated user can
perform any actions on that topic or queue.

See Destination Properties for more information about destination properties.

Authentication Methods
The parameter user_auth in tibemsd.conf determines the authentication methods the EMS
server can use to authenticate incoming connection requests - either from EMS clients or
other EMS servers. This parameter can have one or more of the following values (separated
by comma characters):

 l local—authenticate incoming connection requests by validating the presented user
credentials against locally defined user information (users.conf and groups.conf).

 l jaas—authenticate incoming connection requests by validating the presented user

TIBCO Enterprise Message Service™ User Guide

308 | Authentication and Permissions

credentials using a custom or provided JAAS authentication module, including LDAP
support (see Extensible Authentication).

 l oauth2—authenticate incoming connection requests by validating the presented
OAuth 2.0 access token (see Authentication Using OAuth 2.0).

Each time the server receives a connection request, it attempts to authenticate it via each
of the specified authentication methods in the order that this parameter specifies. The EMS
server accepts successful authentication using any of the specified methods.

Authentication Using OAuth 2.0
TIBCO EMS supports authentication of client connections via OAuth 2.0.

When connecting to an EMS server configured with OAuth 2.0 authentication, an EMS client
must authenticate itself to the server by presenting an access token issued by an OAuth 2.0
authorization server. This access token must be a signed JSON Web Token (JWT) that
includes a claim containing the user that the client will identify itself as to the server (see
Users); and optionally, another claim containing the list of groups the user belongs to (see
Groups).

The EMS server validates the access token’s signature and claims and accepts or rejects the
connection request accordingly. If this authentication process is successful, the EMS client
will be allowed to connect as the EMS user specified in the access token. The server will
enact access control for the client connection based on the permissions defined in the
acl.conf file (and the Extensible Security permissions module, if applicable).

In order for an OAuth 2.0 authorization server to issue an access token with the expected
claims, the relevant EMS user and group information must be made available to it.
Depending on your OAuth 2.0 provider, there may be a number of options available for
achieving this. For example, you may be able to define EMS users and groups directly in
your provider, or you may be able to integrate your provider with an external
authentication service such as LDAP. Refer to your OAuth 2.0 provider’s documentation for
instructions.

Obtaining an Access Token
EMS clients require an access token to connect to an EMS server configured with OAuth 2.0
authentication. Additionally, an EMS server itself may require an access token to connect to

TIBCO Enterprise Message Service™ User Guide

309 | Authentication and Permissions

another EMS server or a TIBCO messaging product that is configured for OAuth 2.0
authentication.

Note: EMS only supports access tokens in the form of signed JWTs with
asymmetric validation keys. Unsigned JWTs, or JWTs with symmetric validation
keys are not supported.

The EMS client APIs and the EMS server can be configured to use either the Client
Credentials grant or Resource Owner Password Credentials grant for obtaining OAuth 2.0
access tokens.

Client Credentials Grant
In the Client Credentials grant, the EMS client (or EMS server) presents a client ID and client
secret to the OAuth 2.0 authorization server. The authorization server uses these
credentials to authenticate the EMS client and issues it an access token.

This is the preferred grant type for both the EMS client and EMS server.

Resource Owner Password Credentials Grant
In the resource owner password credentials grant, the EMS client (or EMS server) first
authenticates itself to the OAuth 2.0 authorization server by presenting a client ID and
client secret, then provides an EMS user and password for validation by the authorization
server. If both authentication operations are successful, the authorization server issues an
access token to the client.

Refresh tokens are supported with this grant type. If the authorization server issues a
refresh token along with the requested access token, the EMS client (or EMS server) will
use that refresh token instead of the grant for requesting the next access token. If it fails to
obtain a new access token using the refresh token, it will try again using the grant.

This grant type has been deemed legacy and is expected to be removed in a future update
to the OAuth 2.0 framework. It should only be used in situations where the client
credentials grant type is not feasible.

TIBCO Enterprise Message Service™ User Guide

310 | Authentication and Permissions

Using Externally-Obtained Access Tokens
In addition to the above grant types, the EMS client APIs and the EMS server can be
configured to use access tokens obtained via external means. If access tokens are directly
configured in this manner, the EMS server and client APIs will not attempt to obtain access
tokens using the OAuth 2.0 grants.

Note: The EMS client APIs additionally support user-defined callbacks for
obtaining access tokens. This method of obtaining access tokens requires the
use of new APIs. Existing EMS client applications will need to be modified to use
the new APIs in order to make use of this method. Refer to the corresponding
client API documentation for details.

User-defined callbacks are only available in the client APIs. This method of
obtaining access tokens is not supported in the EMS server.

Access Token Expiration
OAuth 2.0 JWT access tokens can have an expiration time specified through the ‘exp’ claim.
The EMS server enforces access token expiration by disconnecting the associated EMS
client (or EMS server).

In order to minimize connection disruptions due to access token expirations, the EMS
server periodically examines the access tokens of all connected EMS clients to check for
upcoming expirations. If an access token is nearing the end of its lifetime, the EMS server
will send a request for re-authentication to the client. This provides the client the
opportunity to procure a new access token and authenticate with the EMS server again
before the current access token expires.

If an EMS client (or EMS server) obtained its access token using one of the supported grant
types, upon receiving a re-authentication request from the EMS server, it will automatically
procure a new access token from the OAuth 2.0 authorization server and re-authenticate
itself with the EMS server without any connection disruption.

If an EMS client obtained its access token through other means (see Access Token
Expiration), it will need to be told how to handle the re-authentication request from the
EMS server via a user-defined callback. Refer to the relevant EMS client API documentation
for details.

TIBCO Enterprise Message Service™ User Guide

311 | Authentication and Permissions

Configure OAuth 2.0 in the EMS Server
To enable OAuth 2.0 authentication of incoming connections to the EMS server, add oauth2
to the user_auth server parameter.

user_auth=oauth2

Note: The EMS server can be configured to use oauth2 alongside other
authentication methods. See Authentication Methods for details.

In order to validate the signature and claims of access tokens presented by incoming
connections, the oauth2_server_validation_key and oauth2_user_claim server
parameters must also be set. See OAuth 2.0 Parameters for descriptions of all required and
optional OAuth 2.0 related server parameters.

Access Tokens for Outgoing Connections
Depending on its configuration, the EMS server may need to initiate an outgoing
connection to a different EMS server or another TIBCO messaging product that is
configured with OAuth 2.0 authentication. In these scenarios, the EMS server requires
additional configuration relating to OAuth 2.0 access token procurement. Refer to the
following sections for details.

 l To configure OAuth 2.0 authentication between a fault-tolerant EMS server pair, see
Authentication and Authorization for Fault-Tolerant Servers.

 l To configure OAuth 2.0 authentication for routes between EMS servers, see
Authentication and Authorization for Routes.

 l To configure OAuth 2.0 authentication between the EMS server and an FTL
deployment for FTL transports, see TIBCO FTL Transport Parameters.

 l If using FTL stores, the configuration for OAuth 2.0 authentication in the EMS server
differs. See tibemsd Service Parameters for more information.

TIBCO Enterprise Message Service™ User Guide

312 | Authentication and Permissions

Authenticate Administrative Connections
Administrative connections, such as those created by the EMS Administration Tool and the
EMS administrative API, are authenticated differently than client connections.

When establishing an administrative connection, local authentication is always attempted
first, regardless of the authentication methods specified through user_auth. If the local
authentication attempt fails, authentication will proceed as per the user_auth parameter.

It is recommended that users making administrative connections to the EMS server are not
defined both locally (users.conf) and externally (in an external directory, or an OAuth 2.0
provider). Administrative users should only be defined in one place.

An exception is the default administrative user, admin, which is always defined locally by
the EMS server. If the default administrative user is to be defined elsewhere and
authenticated through jaas or oauth2 authentication methods, one can set an undisclosed
password for the default administrative user in the EMS server's user configuration file
(users.conf) so that local authentication of the admin user never succeeds, thus allowing
the other authentication methods to be used instead.

Administrator Permissions
Administrators are a special class of users that can manage the EMS server. Administrators
create, modify, and delete users, destinations, routes, factories, and other items. In
general, administrators must be granted permission to perform administration activities
when using the Administration Tool or administration API. Administrators can be granted
global permissions (for example, permission to create users or to view all queues), and
administrators can be granted permissions to perform operations on specific destinations
(for example, purging a queue, or viewing properties for a particular topic).

TIBCO Enterprise Message Service™ User Guide

313 | Authentication and Permissions

Warning: Administrator permissions control what administrators can view and
change in the server only when using the Administration Tool or administration
API. Administrator commands create entries in each of the configuration files
(for example, tibemsd.conf, acl.conf, routes.conf, and so on).

You should control access to the configuration files so that only certain system
administrators can view or modify the configuration files. If a user can view or
modify the configuration files, setting permissions to control which destination
that user can manage would not be enforced when the user manually edits the
files.

Use the facilities provided by your Operating System to control access to the
server’s configuration files.

Administrators must be created using the administration tool, the administration APIs, or in
the configuration files.

Predefined Administrative User and Group
There is a special, predefined user named admin that can perform any administrative
action. You cannot grant or revoke any permissions to admin. You must assign a password
for admin immediately after installation.

For more information about changing the admin password, see When You First Start
tibemsadmin.

There is also a special group named $admin for system administrator users. When a user
becomes a member of this group, that user receives the same permissions as the admin
user. You cannot grant or revoke administrator permissions from any user that is a member
of the $admin group. You should only assign the overall system administrator(s) to the
$admin group.

Granting and Revoking Administration Permissions
You grant and revoke administrator permissions to users using the grant and revoke
commands in tibemsadmin, or by means of the Java or .NET administration API. You can
either grant global administrator permissions or permissions on specific destinations.

TIBCO Enterprise Message Service™ User Guide

314 | Authentication and Permissions

See Global Administrator Permissions for a complete list of global administrator
permissions. See Destination-Level Permissions for a description of administrator
permissions for destinations.

Global and destination-level permissions are granted and revoked separately using
different administrator commands. See Command Listing for the syntax of the grant and
revoke commands.

If a user has both global and destination-level administrator permissions, the actions that
user can perform are determined by combining all global and destination-level
administrator permissions granted to the user. For example, if an administrator is granted
the view-destination permission, that administrator can view information about all
destinations, even if the view permission is not granted to the administrator for specific
destinations.

The admin user or all users in the $admin group can grant or revoke any administrator
permission to any user. All other users must be granted the change-admin-acl permission
and the view-user and/or the view-group permissions before they can grant or revoke
administrator permissions to other users.

If a user has the change-admin-acl permission, that user can only grant or revoke
permissions that have been granted to the user. For example, if user BOB is not part of the
$admin group and he has only been granted the change-admin-acl and view-user
permissions, BOB cannot grant any administrator permissions except the view-user or
change-admin-acl permissions to other users.

Users have all administrator permissions that are granted to any group to which they
belong. You can create administrator groups, grant administrator permissions to those
groups, and then add users to each administrator group. The users will be able to perform
any administrative action that is allowed by the permissions granted to the group to which
the user belongs.

Any destination-level permission granted to a user or group for a wildcard destination is
inherited for all child destinations that match the parent destination.

If protection permissions are set up, administrators can only grant or revoke permissions to
other users that have the same protection permission as the administrator. See Protection
Permissions for more information about protection permissions.

TIBCO Enterprise Message Service™ User Guide

315 | Authentication and Permissions

Enforcement of Administrator Permissions
An administrator can only perform actions for which the administrator has been granted
permission. Any action that an administrator performs may be limited by the set of
permissions granted to that administrator.

For example, an administrator has been granted the view permission on the foo.*
destination. This administrator has not been granted the global view-destination
permission. The administrator is only able to view destinations that match the foo.*
parent destination. If this administrator is granted the global view-acl permission, the
administrator is only able to view the access control list for destinations that match the
foo.* parent. Any access control lists for other destinations are not displayed when the
administrator performs the showacl topic or showacl queue commands.

If the administrative user attempts to execute a command without permission, the user
may either receive an error or simply see no output. For example, if the administrator
issues the showacl queue bar.foo command, the administrator receives a “Not authorized
to execute command” error because the administrator is not authorized to view any
destination except those that match foo.*.

Note: An administrator can always change his/her own password, even if the
administrator is not granted the change-user permission.

An administrator can always view his/her own permissions by issuing the:

showacl username

command, even if the administrator is not granted the view-acl permission.

Global Administrator Permissions
Certain permissions allow administrators to perform global actions, such as creating users
or viewing all queues.

The following table describes the global administrator permissions.

TIBCO Enterprise Message Service™ User Guide

316 | Authentication and Permissions

Permission Allows Administrator To...

all Perform all administrative commands.

view-all View any item that can be administered (for example,
users, groups, topics, and so on).

change-acl Grant and revoke user-level permissions.

change-admin-acl Grant and revoke administrative permissions.

change-bridge Create and delete destination bridges.

change-connection Delete connections.

create-destination Create any destination.

modify-destination Modify any destination.

delete-destination Delete any destination.

change-durable Delete durable subscribers.

change-factory Create, delete, and modify factories.

change-group Create, delete, and modify groups.

change-message Delete messages stored in the server.

change-route Create, delete, and modify routes

change-server Modify server parameters.

change-user Create, delete, and modify users.

purge-destination Purge destinations.

purge-durable Purge durable subscribers.

shutdown Shut down the server.

TIBCO Enterprise Message Service™ User Guide

317 | Authentication and Permissions

Permission Allows Administrator To...

view-acl View user-level permissions.

view-admin-acl View administrative permissions.

view-connection View connections, producers and consumers.

view-bridge View destination bridges.

view-destination View destination properties and information.

view-durable View durable subscribers.

To view a durable subscriber, you must also have view-
destination permission (because information about a
durable subscriber includes information about the
destination to which it subscribes.)

view-factory View factories.

view-group View all groups.

Granting this permission implicitly grants view-user as
well.

view-message View messages stored in the server.

view-route View routes.

view-server View server configuration and information.

view-user View any user.

Note: Any type of modification to an item requires that the user can view that
item. Therefore, granting any create, modify, delete, change, or purge
permission implicitly grants the permission to view the associated item.

Granting the view permissions is useful when you want specific users to only be
able to view items. It is not necessary to grant the view permission if a user
already has a permission that allows the user to modify the item.

TIBCO Enterprise Message Service™ User Guide

318 | Authentication and Permissions

Global permissions are stored in the acl.conf file, along with all other permissions. Global
permissions in this file have the following syntax:

ADMIN USER=<username> PERM=<permission>

or

ADMIN GROUP=<groupname> PERM=<permission>

For example, if a user named BOB is granted the view-user global administration
permission and the group sys-admins is granted the change-acl permission, the following
entries are added to the acl.conf file:

ADMIN USER=BOB PERM=view-user
 ADMIN GROUP=sys-admins PERM=change-acl

Destination-Level Permissions
Administrators can be granted permissions on each destination. Destination-level
permissions control the administration functions a user can perform on a specific
destination. Global permissions granted to a user override any destination-level
permissions.

The typical use of destination-level administration permissions is to specify permissions on
wildcard destinations for different groups of users. This allows you to specify particular
destinations over which a group of users has administrative control. For example, you may
allow one group to control all ACCOUNTING.* topics, and another group to control all
PAYROLL.* queues.

The following table describes the destination-level administration permissions.

Permission Allows Administrator To...

view View information for this destination.

create Create the specified destination. This permission is useful when used with
wildcard destination names. This allows the user to create any destination
that matches the specified parent.

TIBCO Enterprise Message Service™ User Guide

319 | Authentication and Permissions

Permission Allows Administrator To...

delete Delete this destination.

modify Change the properties for this destination.

purge Either purge this queue, if the destination is a queue, or purge the durable
subscribers, if the destination is a topic with durable subscriptions.

Note: Any type of modification to an item requires that the user can view that
item. Therefore, granting create, modify, delete, change, or purge implicitly
grants the permission to view the associated item.

Granting the view permissions is useful when you want specific users to only be
able to view items. It is not necessary to grant the view permission if a user
already has a permission that allows the user to modify the item.

Administration permissions for a destination are stored alongside all other permissions for
the destination in the acl.conf file. For example, if user BOB has publish and subscribe
permissions on topic foo, and then BOB is granted view permission, the acl listing would
look like the following:

TOPIC=foo USER=BOB PERM=publish,subscribe,view

Note: Both user and administrator permissions for a destination are stored in
the same entry in the acl.conf file. This is for convenience rather than for
clarity. User permissions specify the actions a client application can perform on
a destination (publish, subscribe, send, receive, and so on). Administrator
permissions specify what administrative commands the user can perform on the
destination when using the administration tool or administration API.

Protection Permissions
Protection permissions allow you to group users into administrative domains so that
administrators can only perform actions within their domain. An administrator can only
perform administrative operations on a user that has the same protection permission as
the user.

TIBCO Enterprise Message Service™ User Guide

320 | Authentication and Permissions

There are four protection permissions (protect1, protect2, protect3, and protect4) that
allow you to create four groups of administrators. Protection permissions do not apply to
the admin user or users in the $admin group — these users can perform any action on any
user regardless of protection permissions.

To use protection permissions, grant one of the protection permissions to a set of users
(either individually, or to a defined group(s)). Then, grant the same protection permission
to the administrator that can perform actions on those users.

For example, there are four departments in a company: sales, finance, manufacturing, and
system administrators. Each of these departments has a defined group and a set of users
assigned to the group. Within the system administrators, there is one manager and three
other administrators, each responsible for administering the resources of the other
departments. The manager of the system administrators can perform any administrator
action. Each of the other system administrators can only perform actions on members of
the groups for which they are responsible.

The user name of the manager is mgr, the user names of the other system administrators
are admin1, admin2, and admin3. The following commands illustrate the grants necessary
for creating the example administration structure.

add member $admin mgr
 grant admin sales protect1
 grant admin admin1 protect1,all
 grant admin manufacturing protect2
 grant admin admin2 protect2,all
 grant admin finance protect3
 grant admin admin3 protect3,all

Note: You can grant a protection permission, in addition to the all permission.
This signifies that the user has all administrator privileges for anyone who also
has the same protection permission. However, if you revoke the all permission
from a user, all permissions, including any protection permissions are removed
from the access control list for the user.

An administrator is able to view users that have a different protection permission set, but
the administrator can only perform actions on users with the same protection permission.

For example, admin1 can perform any action on any user in the sales group, and can view
any users in the manufacturing or finance groups. However, admin1 is not able to grant
permissions, change passwords, delete users from, or perform any other administrative
action on users of the manufacturing or finance groups. The mgr user is able to perform

TIBCO Enterprise Message Service™ User Guide

321 | Authentication and Permissions

any action on any user, regardless of their protection permission because mgr is a member
of the $admin group.

User Permissions
User permissions are stored in the access control list and determine the actions a user can
perform on a destination. A user’s permissions are the union of the permissions granted
explicitly to that user along with any permissions the user receives by belonging to a
group.

When granting user permissions, you specify the user or group to whom you wish to grant
the permission, the name of the destination, and the permission(s) to grant. Granting
permissions is an action that is independent from both the authorization server
parameter, and the secure property of the relevant destinations. The currently granted
permissions are stored in the access control file, however, the server enforces them only if
the authorization is enabled, and only for secure destinations.

Note: When setting permissions for users and groups defined externally, user
and group names are case-sensitive. Make sure you use the correct case for the
name when setting the permissions.

User permissions can only be granted by an administrator with the appropriate
permissions described in Administrator Permissions.

You assign permissions either by specifying them in the acl.conf file, using the
tibemsadmin tool, or by using the administration APIs. When setting user permissions, you
can specify either explicit destination names or wildcard destination names. See
Inheritance of User Permissions for more information on wildcard destination names and
permissions.

Queue and Topic Permissions
The permissions that can be granted to users to access queues and topics are listed in the
following tables.

TIBCO Enterprise Message Service™ User Guide

322 | Authentication and Permissions

Name Description

receive permission to create queue receivers

send permission to create queue senders

browse permission to create queue browsers

Queue Permission

Name Description

subscribe permission to create non-durable subscribers on the topic

publish permission to publish on the topic

durable permission to create, delete, or modify durable subscribers on the topic

use_durable permission to use an existing durable subscriber on the topic, but not to
create, delete, or modify the durable subscriber

Topic Permission

TIBCO Enterprise Message Service™ User Guide

323 | Authentication and Permissions

Example of Setting User Permissions
The user bob has the following permission recorded in the acl.conf file:

USER=bob TOPIC=foo PERM=subscribe,publish

This set of permissions means that bob can subscribe to topic foo and publish messages to
it, but bob cannot create durable subscribers to foo.

If bob is a member of group engineering and the group has the following entry in the acl
file:

GROUP=engineering TOPIC=bar PERM=subscribe,publish

then bob can publish and subscribe to topics foo and bar.

If both the user bob and the group engineering have entries in the acl.conf file, then bob
has permissions that are a union of all permissions set for bob directly and the permissions
of the group engineering.

Inheritance of User Permissions
When you grant permissions to users for topics or queues with wildcard specifications, all
created topics and queues that match the specification will have the same granted
permissions as the permissions on the parent topic.

If there are multiple parent topics, the user receives the union of all parent topic
permissions for any child topic. You can add permissions to a user for topics or queues that
match a wildcard specification, but you cannot remove permissions.

For example, you can grant user Bob the browse permission on queue foo.*. The user Bob
receives the browse permission on the foo.bar queue, and you can also grant Bob the
send permission on the foo.bar queue. However, you cannot take away the inherited
browse permission from Bob on the foo.bar queue.

See Wildcards for more information about wildcards in destination names.

TIBCO Enterprise Message Service™ User Guide

324 | Authentication and Permissions

Revoking User Permissions
Administrators can revoke permissions for users to create consumers on a destination.
Without permission, the user cannot create new consumers for a destination—however,
existing consumers of the destination continue to receive messages.

You can only revoke a permission that is granted directly. That is, you cannot revoke a
permission from a user that the user receives from a group. Also, you cannot revoke a
permission that is inherited from a parent topic. The revoke command in tibemsadmin can
only remove items from specific entries in the acl.conf file. The revoke command cannot
remove items that are inherited from other entries.

You can revoke permissions in several ways:

 l Remove or edit entries in the acl.conf file.

 l Use the revoke commands in tibemsadmin.

 l Use the administration APIs.

When Permissions Are Checked
If permissions are enforced (that is, the authorization configuration property is set, and
the secure property is set for the destination), the server checks them when a user
attempts to perform an operation on a destination. For example, create a subscription to a
topic, send a message to a queue, and so on. Since permissions can be granted or revoked
dynamically, the server checks them each time an operation is performed on a destination
(and each time a consumer or producer is created).

For specific (non-wildcard) destination names, permissions are checked when a user
performs one of the following actions:

 l creates a subscription to a topic

 l attempts to become a consumer for a queue

 l publishes or sends a message to a topic or queue

 l attempts to create queue browser

A user cannot create or send a message to a destination for which he or she has not
explicitly been granted the appropriate permission. So, before creating or sending
messages to the destination, a user must be granted permissions on the destination.

TIBCO Enterprise Message Service™ User Guide

325 | Authentication and Permissions

However, for wildcard topic names (queue consumers cannot specify wildcards),
permissions are not checked when users create non-durable subscriptions. Therefore, a
user can create a subscription to topic foo.* without having explicit permission to create
subscriptions to foo.* or any child topics. This allows administrators to grant users the
desired permissions after the user’s application creates the subscriptions. You may wish to
allow users to subscribe to unspecific wildcard topics, then grant permission to specific
topics at a later time. Users are not able to receive messages based on their wildcard
subscriptions until permissions for the wildcard topic or one or more child topics are
granted.

Attempts to perform an operation by a user who does not have the permission to perform
it are traced in the server log file.

Note: When creating a durable subscriber, users must have the durable
permission explicitly set for the topic they are subscribing to. For example, to
create a durable subscriber to topic foo.*, the user must have been granted the
durable permission to create durable subscriptions for topic foo.*. To subscribe
an existing durable subscriber to a topic,
you must have either durable or use_durable permission set on that topic.

Example of Permission Checking
This example walks through a scenario for granting and revoking permissions to a user,
and describes what happens as various operations are performed.

 1. User bob is working with a EMS application that subscribes to topics and displays
any messages sent to those topics.

 2. User bob creates a subscription to user.*. This topic is the parent topic of each user.
Messages are periodically sent to each user (for example, messages are sent to the
topic user.bob). Because the same application is used by many users, the application
creates a subscription to the parent topic.

 3. User bob creates a subscription to topic corp.news. This operation fails because bob
has not been granted access to that topic yet.

 4. A message is sent to the topic user.bob, but the application does not receive the
message because bob has not been granted access to the topic yet.

 5. The administrator, as part of the daily maintenance for the application, grants access

TIBCO Enterprise Message Service™ User Guide

326 | Authentication and Permissions

to topics for new users. The administrator grants the subscribe permission to topic
user.bob and corp.* to user bob. These grants occur dynamically, and user bob is
now able to receive messages sent to topic user.bob and can subscribe to topic
corp.news.

 6. The administrator sends a message on the topic user.bob to notify bob that access
has been granted to all corp.* topics.

 7. The application receives the new message on topic user.bob and displays the
message.

 8. User bob attempts to create a subscription for topic corp.news and succeeds.

 9. A message is sent to topic corp.news. User bob’s application receives this message
and displays it.

 10. The administrator notices that bob is a contractor and not an employee, so the
administrator revokes the subscribe permission on topic corp.* to user bob.

The subscription to corp.news still exists for user bob’s application, but bob cannot
create any new subscriptions to children of the corp.* topic.

TIBCO Enterprise Message Service™ User Guide

327 | Extensible Security

Extensible Security
The following sections outline how to develop and implement custom authentication and
permissions modules.

Overview of Extensible Security
The extensible security feature allows you to use your own authentication and permissions
systems, in addition to the prebuilt JAAS modules included in EMS, to authenticate users
and authorize them to perform actions such as publish and subscribe operations.
Developing custom applications to grant authentication and permissions gives you more
flexibility in architecting your system.

How Extensible Security Works
Extensible security works by allowing you to write your own authentication and
permissions modules, which run in a Java virtual machine (JVM) in the EMS server. The
modules connect to the server using the Java Authentication and Authorization Service
(JAAS) for authentication modules, and the Java Access Control Interface (JACI) for
permissions modules.

If the extensible security features are enabled when the EMS server starts, the server
checks each user as it connects for authentication, and checks user permissions when they
attempt to perform actions that require authorization.

Permission results are cached in the server for specified timeouts, and the permissions
module is re-invoked when a cached permission expires. The server then replaces the old
permission data with new data.

Extensible authentication and extensible permissions are enabled in the tibemsd.conf
configuration file. Extensible security modules can connect to external security services,
such as single sign on (SSO) servers or LDAP directories, which operate outside of the
TIBCO Enterprise Message Service framework. Extensible security modules can work in
tandem with the EMS acl.conf configuration file. The following figure shows the different
security methods available in the server.

TIBCO Enterprise Message Service™ User Guide

328 | Extensible Security

Extensible Authentication
The extensible authentication feature uses the Java virtual machine (JVM) and the Java
Authentication and Authorization Service (JAAS) to allow you to run your own Java-based
authentication module in the EMS server.

Your authentication module, or LoginModule, runs in the JVM within the EMS server, and is
accessed by tibemsd using the JAAS interface. This is a flexible way to extend the security
of your EMS application. The LoginModule can be used to augment existing authentication
processes, or can be the sole method of authentication used by the EMS server.
The user_auth parameter in the main configuration file determines when the LoginModule
is used.

Each time an EMS client attempts to create a connection to the server, the server will
authenticate the client before accepting the connection. When extensible authentication is
enabled, tibemsd passes user information to the LoginModule, which returns an allow or
deny response.

If more than one authentication mechanism is enabled, when a user attempts to
authenticate, the server seeks corresponding authentication information from each of the
specified locations in the order determined by the user_auth parameter. The EMS server
accepts successful authentication using any of the specified sources.

For example, if local authentication appears before JAAS authentication, the server will
search for the provided username and password first in the users.conf file. If the user

TIBCO Enterprise Message Service™ User Guide

329 | Extensible Security

does not exist there or if the provided username and password don't match, the EMS
server passes those to the LoginModule, which allows or denies the connection attempt.

Enable Extensible Authentication
Extensible authentication is enabled in the EMS server, through parameters in the
tibemsd.conf configuration file. The required parameters are:

 l authorization—directs the server to verify user credentials and permissions on
secure destinations.

 l user_auth—directs the EMS server to use the LoginModule for authentication.

 l security_classpath—specifies the JAR files and dependent classes used by the
LoginModule.

 l jaas_config_file—specifies the configuration file, usually jaas.conf, that loads the
LoginModule. For more information, see the Example jaas.conf Configuration File.

Because the LoginModule runs in the Java virtual machine, you must also enable the JVM
in the EMS server. See Enable the JVM for more information.

Prebuilt Authentication Modules
TIBCO Enterprise Message Service includes several supported JAAS authentication modules
that offer flexible authentication for the EMS server. The source files of the prebuilt
modules are provided in EMS_HOME/src/java/jaas, and provide an excellent template for
developing custom modules. Multiple instances of any prebuilt JAAS module can be used
in any stacked combination to suit the authentication requirements of your environment.

These modules are described in JAAS Authentication Modules.

Writing an Authentication Module
The LoginModule is a custom module that runs inside the EMS server within a JVM. The
LoginModule is written using JAAS, a set of APIs provided by Sun Microsystems, and used
to create plugable Java applications. JAAS provides the interface between your code and
the EMS server. JAAS is a standard part of JRE, and is installed with EMS.

TIBCO Enterprise Message Service™ User Guide

330 | Extensible Security

LoginModule Requirements
In order to implement extensible authentication, you must write a LoginModule
implementing the JAAS interface.

There are some requirements for a LoginModule that will run in the EMS server:

 l The LoginModule must accept the username and password from the EMS server by
way of the NameCallback and PasswordCallback callbacks. The EMS server passes
the username and password to the LoginModule using these callbacks, ignoring the
prompt argument.

 l If the username and password combination is invalid, the LoginModule must throw a
FailedLoginException. The EMS server then rejects the corresponding connection
attempt.

 l The LoginModule must be thread-safe. That is, the LoginModule must be able to
function both in a multi-threaded environment and in a single-threaded environment.

 l The LoginModule should perform authentication only, by determining whether a
username and password combination is valid. For information about custom
permissions, see Extensible Permissions.

 l The LoginModule, like the Permissions Module, should not perform long operations,
and should return values quickly. As these modules become part of the EMS server’s
message handling process, slow operations can have a severe effect on performance.

 l The LoginModule must be named EMSUserAuthentication.

More information about JAAS, including documentation of JAAS classes and interfaces, is
available through http://java.sun.com/products/jaas/.

Load the LoginModule in the EMS Server
The EMS server locates and loads the LoginModule based on the contents of the
configuration file specified by the jaas_config_file parameter in the tibemsd.conf file.
Usually, the JAAS configuration file is named jaas.conf. This file contains the
configuration information used to invoke the LoginModule.

The contents of the jaas.conf file should follow the JAAS configuration syntax, as
documented at:
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

http://java.sun.com/products/jaas/
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

TIBCO Enterprise Message Service™ User Guide

331 | Extensible Security

Note: The LoginModule in the JAAS configuration file must have the name
EMSUserAuthentication.

Example jaas.conf Configuration File

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.example.FlatFileUserAuthLoginModule required
debug=true filename=jaas_users.txt;
 };

Extensible Permissions
The extensible permissions feature uses the Java virtual machine (JVM) and the Java
Access Control Interface (JACI) to allow you to run your own Java-based permissions
module in the EMS server.

Your Permissions Module runs in the JVM within the EMS server, and connects to tibemsd
using the JACI interface. Like the LoginModule, the Permissions Module provides an extra
layer of security to your EMS application. It does not supersede standard EMS procedures
for granting permissions. Instead, the module augments the existing process.

When a user attempts to perform an action, such as subscribing to a topic or publishing a
message, the EMS server checks the acl.conf file, the Permissions Module, and cached
results from previous Permissions Module queries, for authorization. This process is
described in detail in Granting Permissions.

Cached Permissions
In order to speed the authorization process, the EMS server caches responses received
from the Permissions Module in two pools, the allow cache and the deny cache. Before
invoking the Permissions Module, the server first checks these caches for a cache entry
matching the user’s request.

TIBCO Enterprise Message Service™ User Guide

332 | Extensible Security

What is Cached
Each cache entry consists of a username and action, and the authorization result response
from the Permissions Module.

Properties of cache entries:

 l The username is specific; the cached permission applies only to this user.

 l The action is also specific. Only one action is included in each cache entry. Actions
that require authorization are the same as those listed in the acl.conf file.

 l The destination can include wildcards. That is, a single cache entry can determine
the user’s authorization to perform the action on multiple destinations.

If the response from the Permissions Module authorized the action, the permission is
cached in the allow cache. If the action was denied, it is cached in the deny cache.

How Long Permissions are Cached
Permissions Module results also include timeouts, which determine how long the cache
entry is kept in the cache before it expires.

When a timeout has expired, the entry is removed from the cache. Because these timeouts
are assigned by the Permissions Module, you can control how often the Permissions
Module is called, and therefore how much load it puts on the EMS server.

Warning: Long timeouts on permissions cache entries can increase performance,
but they also lower the system’s responsiveness to changes in permissions.
Consider timeout lengths carefully when writing your Permissions Module.

Administer the Cache
You can view and reset cache statistics, as well as clear all cache entries.

These commands are available in the administration tool:

 l jaci showstats

 l jaci resetstats

TIBCO Enterprise Message Service™ User Guide

333 | Extensible Security

 l jaci clear

How Permissions are Granted
When an EMS client attempts to perform an action that requires permissions, the EMS
server looks in several locations for authorization.

 1. First, the server checks the acl.conf for authorization. This is the standard EMS
mechanism for granting permissions, as is documented in Authentication and
Permissions.

 2. Next, the server checks the Permissions Module allow cache for authorization. If an
entry matching the username, action, and destination exists in the cache, the request
is allowed.

Because destinations with wildcards can exist in the cache, an entry can have a
wildcard destination that contains the requested destination. If that entry specifies
the same username and action, the request is allowed. For more information on this
topic, see Implications of Wildcards on Permissions below.

 3. The server then checks the deny cache for a matching entry. If an entry exists in the
deny cache, the request is denied.

As in the allow cache, wildcards used in destinations can result in a cache entry with
a destination that contains the requested destination. If that entry matches the
username and action, the request is denied. For more information on this topic, see
Implications of Wildcards on Permissions below.

 4. Finally, if there are no matching entries in either cache, the server passes the
username, action type, and destination to the Permissions Module, which returns an
allow or deny authorization response. The response is also saved to the cache for the
timeout specified in the response.

If the Permissions Module does not respond to the request within the timeout
specified by the jaci_timeout parameter in the tibemsd.conf file, the server denies
authorization by default.

Actions that require permissions are the same as those listed in the acl.conf file, and
include operations such as subscribe to a topic and publishing to a queue. Permissions are
described in acl.conf. The following figure shows the decision tree the server follows
when granting or denying permissions.

TIBCO Enterprise Message Service™ User Guide

334 | Extensible Security

Note: In general, permissions are checked when a client initiates an operation.
In the case of a browsing request, it’s useful to note that the server reviews
permissions only at certain points during the browsing operation.

The server checks for browsing permission when a client starts to browse a
queue and whenever the client needs to refresh its list of browse-able messages.
The client receives the list of messages from the server when it first begins
browsing. The server refreshes the list and rechecks permissions whenever the
client browses to the end of the current list.

Durable Subscribers
When a durable subscriber is disconnected from the EMS server, the server continues to
accumulate messages for the client. However, while the client is disconnected, there is no
user associated with the durable subscriber. Because of this, the server cannot immediately
check permissions for a message that is received when the client is not connected.

When a user later reconnects to the server and resubscribes to the durable subscription,
the server checks permissions for the subscribe operation itself, but all messages in the
backlog are delivered to the consumer without additional permission checks.

TIBCO Enterprise Message Service™ User Guide

335 | Extensible Security

Special Circumstances
There are some special circumstances under which the request, although it is not exactly
matched in the acl.conf file, will be denied without reference to either the permissions
cache or the Permissions Module. Any request will be denied if, in the acl.conf

 l The username exists but is not associated with any destinations.

 l The username exists and is associated with destinations, but not with the specific
destination in the request.

 l The username is part of a group, but the group is not associated with any
destinations.

 l The username is part of a group and the group is associated with destinations, but
not with the specific destination in the request.

In general entries in the acl.conf file supersede entries in the Permissions Module,
allowing you to optimize permission checks in well-defined static cases. When the
acl.conf does not mention the user, the Permissions Module is fully responsible for
permissions.

Implications of Wildcards on Permissions
A permission result from the Permissions Module can allow or deny the user authorization
to perform the action on a range of destinations by including wildcards in the destination
name.

For example, even though the application attempts to have user mwalton publish on topic
foo.bar.1, the Permissions Module can grant permission to user mwalton to publish
messages to the topic foo.bar.*. For as long as this authorization is cached, mwalton can
also publish to the topics foo.bar.baz and foo.bar.boo, because foo.bar.* contains both
those topics.

As long as a permission to perform an action on a destination is cached in the allow cache,
the user will be authorized to perform that action, even if the permission is revoked in the
external system used by the Permissions Module. This permission also extends to any
destination contained by the authorized destination through the use of wildcards. The EMS
server checks the allow cache for permissions before checking the deny cache and before
sending an uncached permission request to the Permissions Module. In other words, the
authorization status cannot be changed until the timeout on the cache entry expires and it
is removed from the cache.

TIBCO Enterprise Message Service™ User Guide

336 | Extensible Security

Similarly, an entry in the deny cache remains there until the timeout has expired and the
entry is removed. Only then does the EMS server send the request to the Permissions
Module, so that a change in status can take effect.

Overlapping wildcards can make this situation even more complex. For example, consider
these three destinations:

foo.*.baz
 foo.bar.*
 foo.>

It might seem that, if foo.*.baz were in a cache, then foo.bar.* would match it and
permissions for that destination would come from the cache. In fact, however, permissions
could not be determined by the cache entry, because foo.bar.* intersects but is not a
subset of foo.*.baz. That is, not every destination that matches foo.bar.* will also match
foo.*.baz. The destination foo.bar.boo, for example, would be granted permissions by
foo.bar.*, but not by foo.*.baz.

Since not all destinations that foo.bar.* matches will also match foo.*.baz, we say that
foo.*.baz intersects foo.bar.*. The cache entry can determine a permission if the
requested destination is a subset of the cache entry, but not if it is merely an intersection.
In this case, permissions cannot be determined by the cache.

The destination foo.>, on the other hand, contains as subsets both foo.bar.* and
foo.*.baz, because any destination name that matches either foo.bar.* or foo.*.baz will
also match foo.>. If foo.> is in the cache, permissions will be determined by the cache.

Enable Extensible Permissions
Extensible permissions are enabled in the EMS server, through parameters in the
tibemsd.conf configuration file.

The required parameters are:

 l authorization—enables authorization.

 l jaci_class—specifies the class that implements the Permissions Module.

 l security_classpath—specifies the JAR files and dependent classes used by the
Permissions Module.

The Permissions Module will be used to grant permissions only to those destinations that
are defined as secure in the topics.conf and queues.conf configuration files. If there are

TIBCO Enterprise Message Service™ User Guide

337 | Extensible Security

no topics or queues that include the secure property, then the Permissions Module will
never be called because the server does not check permissions at all.

Because the Permissions Module runs in the Java virtual machine, you must also enable
the JVM in the EMS server. See Enable the JVM for more information.

Permissions Module
The Permissions Module is a custom module that runs inside the EMS server within a JVM.
The Permissions Module is written using JACI, a set of APIs developed by TIBCO Software
Inc. that you can use to create a Java module that will authorize EMS client requests.

JACI provides the interface between your code and the EMS server. JACI is a standard
component of EMS, and JACI classes and interfaces are documented in
com.tibco.tibems.tibemsd.security.

Requirements
In order to implement extensible permissions, you must write a Permissions Module
implementing the JACI interface.

There are some requirements for a Permissions Module that will run in the EMS server:

 l The Permissions Module must implement the JACI Authorizer interface, which
accepts information about the operation to be authorized.

 l The Permissions Module must return a permission result, by way of the
AuthorizationResult class. Permission results contain:

 o An allowed parameter, where true means that the request is allowed and false
means the request is denied.

 o A timeout, which determines how long the permission result will be cached.
Results can be cached for a time of up to 24 hours, or not at all.

 o The destination on which the user is authorized to perform the action. The
destination returned can be more inclusive than the request. For example, if
the user requested to subscribe to the topic foo.bar, the permission result can
allow the user to subscribe to foo.*. If a destination is not included in the
permission result, then the allow or deny response is limited to the originally
requested destination.

TIBCO Enterprise Message Service™ User Guide

338 | Extensible Security

 o The action type that the permission result replies to. For example,
authorization to publish to the destination, or authorization to receive
messages from a queue. Permissions can be granted to multiple action types,
for example permission to publish and subscribe on foo.>. Note that the EMS
server creates one cache entry for each action specified in the result.

 l The Permissions Module must be thread-safe. That is, the Permissions Module must
be able to function both in a multi-threaded environment and in a single-threaded
environment.

 l The Permissions Module, like the LoginModule, should not employ long operations,
and should return values quickly. As these modules become part of the EMS server’s
message handling process, slow operations can have a severe effect on performance.

Documentation of JACI classes and interfaces is available through the
com.tibco.tibems.tibemsd.security package.

The JVM in the EMS Server
The Java virtual machine (JVM) is a virtual machine on the Java platform, capable of
running inside the EMS server.

Select independent Java modules can operate in the JVM and plug into the EMS server.
The JVM is required to use the following TIBCO Enterprise Message Service features:

 l Extensible Security—see Extensible Security.

 l JAAS Authentication Modules —see JAAS Authentication Modules.

Enable the JVM
The Java virtual machine is enabled in the EMS server, through parameters in the
tibemsd.conf configuration file.

The parameters that enable and configure the JVM are:

 l jre_library—enables the JVM.

 l jre_option—allows you to pass standard JVM options, defined by Sun Microsystems,
to the JVM at start-up.

For more information about these parameters, see JVM Parameters and tibemsd.conf.

TIBCO Enterprise Message Service™ User Guide

339 | JAAS Authentication Modules

JAAS Authentication Modules
TIBCO provides several compiled and fully functional JAAS modules that can be used to
enable LDAP and host-based authentication in the EMS server.

Overview of the JAAS Authentication Modules
The JAAS Authentication modules are LoginModules that use the JVM in the EMS server to
authenticate connections to the EMS server.

Refer to Extensible Authentication for further information the use of JAAS in TIBCO
Enterprise Message Service.

Prebuilt JAAS Modules
TIBCO Enterprise Message Service provides a number of JAAS modules that can be used
with the EMS server. These default modules are very flexible, and offer a variety of
configuration options to suit most needs.

An EMS server file, tibemsd-jaas.conf, that is preconfigured to use the prebuilt JAAS
modules, is located with the other sample configuration files in the EMS_
HOME/samples/config directory.

The module classes are found in EMS_HOME/bin/tibemsd_jaas.jar, and example module
configuration files can be found in EMS_HOME/samples/config/jaas directory.

The default modules are:

 l LDAP Simple Authentication — a simple user authentication scheme using LDAP. This
module requires the fewest parameters and is easiest to configure.

 l LDAP Authentication — a full featured user authentication scheme using LDAP. This
module provides greater functionality and better performance than the LDAP Simple
Authentication module.

 l LDAP Group User Authentication — a full featured user authentication scheme using

TIBCO Enterprise Message Service™ User Guide

340 | JAAS Authentication Modules

LDAP. An extension of LDAP Authentication, this module also retrieves LDAP group
membership information and passes it back into the EMS server, where it may be
used for authorization. This modules provides the most functionality but generates
more requests to the LDAP server.

 l Host Based Authentication — authentication based on the hostname or IP of a user
connection. The module is most often used in conjunction with other modules, or in
situations where only specific network nodes may authenticate to the EMS server.

Custom JAAS Modules
The default JAAS modules included with your TIBCO Enterprise Message Service
installation will accommodate most environments. However, sometimes specialized
support for authentication is required.

To support this, well-documented source-code is provided for all of the EMS JAAS modules
in the directory:

EMS_HOME/src/java/jaas

The readme.txt file in that directory contains instructions on compiling the source files.

Multiple JAAS Modules
The prebuilt JAAS modules support stacking, which provides great flexibility. Using
multiple modules, you can direct the EMS server to check authentication using any
arrangement of the modules.

A common example would stack the LDAP Authentication module with the Host Based
Authentication module to authenticate a user by credentials and IP address. Another
example would include stacking multiple LDAP Authentication modules to search different
branches of an LDAP tree.

There are no restrictions on which or how many modules can be stacked.

For examples of stacking, see Using Multiple JAAS Modules.

TIBCO Enterprise Message Service™ User Guide

341 | JAAS Authentication Modules

Enabling Authentication Using JAAS Modules
The JAAS modules are designed to be simple to use.

A default EMS server configuration file, tibemsd-jaas.conf, is located with the other
sample configuration files in the EMS_HOME/samples/config directory.

This file provides a default JAAS configuration that includes the security-related parameters
required to use any of the TIBCO EMS JAAS modules. However, some additional steps are
required to complete the configuration.

Procedure
 1. Configure the JAAS Module

Create a JAAS module configuration file with parameter values appropriate to your
environment.

If you are using one of the provided default modules, locate the configuration file for
the desired module in the EMS_HOME/samples/config/jaas directory, and configure
the module parameters for your environment. It is a good practice to copy this file
along side your other EMS configuration files.

The prebuilt JAAS modules and their parameters are described in Prebuilt JAAS
Modules.

 2. Configure the EMS Server Parameters

The default EMS_HOME/samples/config/tibemsd-jaas.conf file is configured for JAAS.
This file can be copied as tibemsd.conf, or the server can be started with the
-config parameter to specify this file. See Starting the EMS Server Using Options for
details.

If you prefer to manually configure JAAS, then take the following steps to modify the
main EMS server configuration file, tibemsd.conf:

 a. Set the jre_library parameter to enable the JVM. For more information, see
The JVM in the EMS Server.

 b. Set the security_classpath parameter to include the following JAR files:

EMS_HOME/bin/tibemsd_jaas.jar
EMS_HOME/lib/tibjmsadmin.jar
EMS_HOME/lib/tibjms.jar
EMS_HOME/lib/jakarta.jms-api-2.0.3.jar

TIBCO Enterprise Message Service™ User Guide

342 | JAAS Authentication Modules

For example:

security_classpath = c:\tibco\ems\10.3\bin\tibemsd_
jaas.jar;c:\tibco\ems\10.3\lib\tibjmsadmin.jar;c:\tibco\ems\10
.3\lib\tibjms.jar;c:\tibco\ems\10.3\lib\jakarta.jms-api-
2.0.3.jar

 c. Set the jaas_config_file to reference the JAAS module configuration file
created in Step 1.

For example:

jaas_config_file = jaas_configuration.txt

 d. Set the user_auth parameter to enable JAAS for LDAP authentication.

For example:

user_auth=jaas

Prebuilt JAAS Modules
This section provides detailed descriptions of the prebuilt JAAS modules.

Configuration files for these modules are provided in the EMS_HOME/samples/config/jaas
directory.

For the LDAP modules, properties added in the JAAS configuration file that do not begin
with tibems are passed into every LDAP context creation, allowing LDAP-specific
parameters to be set in the JAAS configuration file.

Properties that must be set in the environment, such as TLS related properties, are
configured through the jre_option parameter in the EMS server configuration. However, a
TLS key store location can be set using the tibems.ldap.truststore parameter for
convenience. See the parameter descriptions for each module type for details.

LDAP Simple Authentication
The LDAP Simple Authentication module implements a very basic form of LDAP
authentication. The module validates all connections (users, routes, and so on) by

TIBCO Enterprise Message Service™ User Guide

343 | JAAS Authentication Modules

authenticating to the LDAP server. The authentication process uses the name and
password that the application used when connecting to the EMS server.

The user name must be in the form of a distinguished name, unless a user name pattern is
supplied through the tibems.ldap.user_pattern parameter. When a user pattern is
supplied, the DN used for the lookup is that pattern string, with %u replaced with the name
of the user.

Authentication Process
The simple authentication login module creates a local LDAP context, binding to the LDAP
server as a particular user with credentials from the incoming connection. The result of the
bind dictates authentication success or failure.

Implementation
The LDAP Simple Authentication module name is:
com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication

The JAAS configuration file entry for this login module should have a section similar to the
following:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication required
 tibems.ldap.url="ldap://ldapserver:389"
 tibems.ldap.user_pattern="CN=%u" ;
 };

Parameters
The LDAP Simple Authentication Module parameters are listed in the following table.

Parameter Description

debug When set to true, enables debug output for the
module. Enabling this parameter may aid in
diagnosing configuration problems.

TIBCO Enterprise Message Service™ User Guide

344 | JAAS Authentication Modules

Parameter Description

Warning: Enabling the debug flag may create
security vulnerabilities by revealing information in
the log file.

The default setting is false.

tibems.ldap.operation_timeout The timeout, in milliseconds, set for LDAP connect
and LDAP read operations.

If not set, these two LDAP operations will follow
their default behavior.

tibems.ldap.truststore The key store that is used for TLS connections.

On Windows, the trust store must use forward
slashes or escape backslashes when specifying a
path.

tibems.ldap.url The location of the LDAP server. Specify a single
URL or comma-separated list of URLs. Each URL
must use the format described by RFC 2255.

The server configuration can be defined as a
single URL, or as a series of LDAP URLs
representing the primary and backups servers. To
configure a backup, provide a comma-separated
list of URLs. For example:

ldap://localhost:389,ldap://localhost:489

The servers are attempted in the order listed.
Should the first server in the list be unavailable or
fail, the next URL is tried. Any number of backup
servers may be specified.

The default is ldap://localhost:389.

tibems.ldap.user_pattern The user pattern to use with simple LDAP
authentication.

When a user pattern is supplied, the DN used for

TIBCO Enterprise Message Service™ User Guide

345 | JAAS Authentication Modules

Parameter Description

the lookup will be this pattern string entered
here, with '%u' replaced with the name of the
user. For example, uid=%u;ou=People.

The default pattern is CN=%u.

LDAP Authentication
The LDAP Authentication login module is a more fully featured LDAP authentication
module. This module validates all connections (users, routes, and so on) by authenticating
to the LDAP server using the supplied credentials.

This EMS JAAS module keeps one lookup context open using a manager context, and then
uses copies of that context to search for users. This allows the LDAP implementation to
reuse the connection for subsequent searches, improving performance.

Authentication Process
This implementation queries LDAP, and optionally a user cache, to authenticate a user. A
context with LDAP manager credentials is first used to look up a user and retrieve the
complete distinguished name of the user's entry. If the user exists, a separate LDAP context
is then created to authenticate the user. For performance reasons, the manager context,
once created, exists for the lifetime of the module.

Should connectivity with the LDAP server break, multiple reconnection attempts may be
made based on the parameters.

To increase performance, you can enable user caching. When enabled, a user is added to
the user cache after being authenticated though LDAP. This allows for faster authentication
on subsequent logins. If the user cache entry is found to be expired, the user is
authenticated with LDAP again and the cache is updated.

Implementation
The LDAP Authentication module name is:
com.tibco.tibems.tibemsd.security.jaas.LDAPAuthentication.

TIBCO Enterprise Message Service™ User Guide

346 | JAAS Authentication Modules

The JAAS configuration file entry for this login module should have a section similar to the
following:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPAuthentication required
 tibems.ldap.url="ldaps://ldapserver:391"
 tibems.ldap.truststore="/certificates/cacerts"
 tibems.ldap.user_base_dn="ou=Marketing,dc=company,dc=com"
 tibems.ldap.user_attribute="uid"
 tibems.ldap.scope="subtree"
 tibems.cache.enabled=true
 tibems.cache.user_ttl=600
 tibems.ldap.manager="CN=Manager"
 tibems.ldap.manager_password="password" ;
 };

Parameters
The LDAP Authentication Module parameters are listed in the following table.

Parameter Description

debug When set to true, enables debug output for the module.
Enabling this parameter may aid in diagnosing
configuration problems.

Warning: Enabling the debug flag may create security
vulnerabilities by revealing information in the log file.

The default setting is false.

tibems.ldap.operation_timeout The timeout set for LDAP connect and LDAP read
operations. The property is specified in milliseconds.

If not set, these two LDAP operations will follow their
default behavior.

tibems.ldap.truststore The key store that is used for TLS connections.

On Windows, the trust store must use forward slashes or
escape backslashes when specifying a path.

TIBCO Enterprise Message Service™ User Guide

347 | JAAS Authentication Modules

Parameter Description

tibems.ldap.url The location of the LDAP server. Specify a single URL or
comma-separated list of URLs. Each URL must use the
format described by RFC 2255.

The server configuration can be defined as a single URL,
or as a series of LDAP URLs representing the primary and
backups servers. To configure a backup, provide a
comma-separated list of URLs. For example:

ldap://localhost:389,ldap://localhost:489

The servers are attempted in the order listed. Should the
first server in the list be unavailable or fail, the next URL
is tried. Any number of backup servers may be specified.

The default is ldap://localhost:389.

tibems.ldap.user_base_dn The base DN used for the LDAP search. For example:

ou=People,dc=TIBCO,dc=com

tibems.cache.enabled When true, enables caching of user information for better
performance.

The default is false.

tibems.cache.instance A string that represents an instance of the user cache.
When stacked login modules specify the same instance,
they share the same user cache as a form of optimization.

The default is a unique cache based on the values of the
tibems.ldap.url, tibems.ldap.user_base_dn, and
tibems.ldap.user_attribute parameters.

tibems.cache.user_ttl Specifies the maximum time (in seconds) that cached
LDAP data is retained before it is refreshed.

The default is 60.

tibems.ldap.user_filter The filter used when searching for a user.

TIBCO Enterprise Message Service™ User Guide

348 | JAAS Authentication Modules

Parameter Description

If a more complex filter is needed, use this property to
override the default. Any occurrence of {0} in the search
string will be the user attribute, and {1} will be replaced
with the user name.

The default is {0}={1}.

tibems.ldap.manager The distinguished name of the user that this module uses
when binding to the LDAP server to perform a search.

The specified user must have permissions to search LDAP
for users under the entry specified by
tibems.ldap.user_base_dn.

The default is CN=Manager.

tibems.ldap.manager_password The password used when binding to the LDAP server as
the manager. This password may be mangled using the
EMS Administration Tool.

tibems.ldap.retries The number of times that the module should reattempt a
connection if there is a communication failure with the
LDAP server.

If one or more backup severs are specified in
tibems.ldap.url, this parameter determines the number
of times the EMS server iterates through the list of
backup LDAP servers.

The default value is 0, meaning no retries are attempted.

tibems.ldap.retry_delay The module waits this number of milliseconds before
retrying the connection to the LDAP server.

The default is 1000.

tibems.ldap.scope The scope of the search. Valid values include:

 l onelevel

 l subtree

TIBCO Enterprise Message Service™ User Guide

349 | JAAS Authentication Modules

Parameter Description

 l object

The default is to use a one level search.

tibems.ldap.user_attribute The attribute that is compared to the user name for the
search.

The default is uid.

LDAP Group User Authentication
The LDAP Group User Authentication module extends the full featured LDAP Authentication
module and provides additional group information to the EMS server. This module
validates all connections (users, routes, and so on) by authenticating to the LDAP server
using the supplied credentials, and then updates the EMS server with any related group
information found.

If caching is enabled, changes to group membership in the LDAP server are not reflected in
EMS until the user's entry in the cache has expired.

Authentication Process
The Group User LDAP module authenticates a user just as the LDAP Authentication module
does, but will make additional requests to garner group membership information from
LDAP and update the EMS server for authorization purposes.

For example, consider a user "Joe", who belongs to the "Engineering" group in the LDAP
server. When an application connects to the EMS server using Joe's credentials, the
information that Joe belongs to the Engineering group is passed back up to the server after
a successful authentication. If access controls are set up in EMS for the group Engineering,
then Joe inherits those permissions.

Implementation
The LDAP Group User Authentication module name is:
com.tibco.tibems.tibemsd.security.jaas.LDAPGroupUserAuthentication

TIBCO Enterprise Message Service™ User Guide

350 | JAAS Authentication Modules

The JAAS configuration file entry for this module should have an entry similar to:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPGroupUserAuthentication required
 tibems.ldap.url="ldap://ldapserver:389"
 tibems.ldap.user_base_dn="ou=Marketing,dc=company,dc=com"
 tibems.ldap.user_attribute="uid"
 tibems.ldap.scope="subtree"
 tibems.ldap.group_base_dn="ou=Groups,dc=company"
 tibems.ldap.group_member_attribute="uniqueMember"
 tibems.ldap.dynamic_group_base_dn="ou=Groups,dc=company"
 tibems.ldap.dynamic_group_class="groupOfURLs"
 tibems.ldap.dynamic_group_member_attribute="uid"
 tibems.ldap.dynamic_group_filter="(objectClass=GroupOfURLs)"
 tibems.cache.enabled=true
 tibems.cache.user_ttl=600
 tibems.ldap.manager="CN=Manager"
 tibems.ldap.manager_password="password" ;
 };

Parameters
In addition to all parameters available for the LDAP Authentication module, which are
described in the following table, the following parameters are supported:

Parameter Description

tibems.ldap.group_attribute The attribute of a static LDAP group that
contains the group name.

Default is cn.

tibems.ldap.group_base_dn The base path for the LDAP static group
search. If null or not set, static groups are not
searched.

tibems.ldap.group_filter The filter used in the static group search. By
default, a filter is created using the ems_
ldap.group_member_attribute parameter. If
a more complex filter is needed, use this
property to override the default. Any
occurrence of {0} in the search string is

TIBCO Enterprise Message Service™ User Guide

351 | JAAS Authentication Modules

Parameter Description

replaced with the group member attribute.
Any occurrence of {1} is replaced with the
user DN. {2} contains solely the user name
for cases where the DN does not match group
membership.

Default is {0}={1}.

tibems.ldap.group_member_attribute The attribute ID of a dynamic LDAP group
object that specifies the name of members of
the group.

Default is uniqueMember.

tibems.ldap.group_scope The scope of the static group search. Valid
values include onelevel, subtree, and
object.

Default is to use a subtree search.

tibems.ldap.dynamic_group_base_dn Base path for the LDAP dynamic group
search. If null or not set, dynamic groups are
not searched.

tibems.ldap.dynamic_group_class The class name of a dynamic group.

Default is groupOfURLs.

tibems.ldap.dynamic_group_attribute The attribute of an LDAP dynamic group that
contains the group name.

Default is cn.

tibems.ldap.dynamic_group_filter The filter used in the dynamic group search.
By default, a filter is created using the
ems_ldap.dynamic_group_member_attribute
property. If a more complex filter is needed,
use this property to override the default. Any
occurrence of {0} is replaced with the group

TIBCO Enterprise Message Service™ User Guide

352 | JAAS Authentication Modules

Parameter Description

member property. Any occurrence of {1} is
replaced with the DN of the user for cases
where that may be required. A {2} in the
search string is replaced with the user name.

When using
tibems.ldap.dynamic_group_search_direct,
a simple filter should be used which matches
all dynamic groups that may contain the
user. For example,
(objectClass=GroupOfURLs).

Default is {0}={1}.

tibems.ldap.dynamic_group_member_
attribute

The attribute ID of a dynamic LDAP group
object that specifies the name of members of
the group.

Default is uniqueMember.

tibems.ldap.dynamic_group_member_url The attribute of a dynamic LDAP group object
that specifies the URL generating the
membership list.

Default is memberURL.

tibems.ldap.dynamic_group_scope The scope of the dynamic group search. Valid
values include onelevel, subtree, and
object.

Default is to use a subtree search.

tibems.ldap.dynamic_group_search_direct Changes the search algorithm used for
determining membership of dynamic groups.

Normally, LDAP servers automatically
populate dynamic groups based on a
configured search URL. However, some LDAP
servers have issues where the generated

TIBCO Enterprise Message Service™ User Guide

353 | JAAS Authentication Modules

Parameter Description

attributes representing members of the
groups are not properly returned by a search.
When enabled, this parameter changes the
group search algorithm to parse out a DN,
scope, and filter from the search URL
specified by the dynamic group and use
those to search for a user. Use of this
parameter is only recommended when it has
been determined that dynamic group
searches are not working.

Default is false.

tibems.ldap.backlink_group_base_dn The base path for the back-linked LDAP
group search.

By default, back-linked group searches are
not enabled. If enabled, back-linked groups,
including nested groups, are searched using
back link parameters. To disable nested
searches for back links, set
tibems.ldap.nested_groups_enabled to
false.

Back link parameter defaults are set for use
with Active Directory, the most commonly
used LDAP server supporting back links.

tibems.ldap.backlink_group_attribute The attribute that contains the groups an
LDAP object (member or group) belongs to.

Default is memberOf.

tibems.ldap.backlink_group_rdn A back-link RDN that specifies the name
portion of the DN representing the group. If
the entire contents of the back link value is
to be used as the group name, do not set this
value.

TIBCO Enterprise Message Service™ User Guide

354 | JAAS Authentication Modules

Parameter Description

Default is CN.

tibems.ldap.backlink_group_filter A back-link filter used by a group search to
find groups the member belongs to. If nested
groups are not used, then it is highly
advisable to disable nested groups.

Default is (distinguishedName={1}).

tibems.ldap.backlink_group_scope The scope of the back link group search.
Valid values include onelevel, subtree, and
object.

Default is to use a subtree search.

Host Based Authentication
The Host Based Authentication module authenticates a user based on the IP address or
host name that is associated with their client connection during authentication.

When enabled, the IP address of the incoming connection is evaluated against a whitelist
of IP addresses and/or IP masks. If any of the IP addresses or masks result in a match, IP
authentication for the user is considered successful.

If an IP match is not found, then the host name of the incoming connection is compared
with the configured whitelist of patterns, which may be specific host names or regular
expressions. If the connection's host name evaluates to true with any of the patterns in the
list, authentication is considered successful.

Either the host name or IP mask must match for authentication success.

Authentication Process
When a client connects to the EMS server, this module compares the IP address with the
specified IP net/prefix list, if configured. If that is not successful, then the hostname is
compared with the list of hostnames or domain names. Should none of the above succeed,
authentication fails.

TIBCO Enterprise Message Service™ User Guide

355 | JAAS Authentication Modules

Warning: If hostname verification is configured, the module may do a DNS
lookup. This could impact performance.

Implementation
The Host Based Authentication module name is:
com.tibco.tibems.tibemsd.security.jaas.HostBasedAuthentication

The JAAS configuration file entry for this login module should have a section similar to the
following:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.HostBasedAuthentication required
 tibems.hostbased.accepted_hostnames="'production.*','.tibco.com'"
 tibems.hostbased.accepted_addresses"10.1.2.23, 10.100.0.0/16, 0:0:0:0:0:0:0:1"
 };

Parameters
The Host Based Authentication Module parameters are listed in the following table.

Parameter Description

debug When set to true, enables debug output for
the module. Enabling this parameter may aid
in diagnosing configuration problems.

Warning: Enabling the debug flag may
create security vulnerabilities by revealing
information in the log file.

The default setting is false.

tibems.hostbased.accepted_hostnames A comma delimited list of host names or
patterns to compare with the incoming
connection's host name, as known by the
EMS server. A match results in successful
authentication.

TIBCO Enterprise Message Service™ User Guide

356 | JAAS Authentication Modules

Parameter Description

Host names or domains can be explicitly
specified, or any regular expression working
with the Java Pattern class may be used. A
domain may be used by beginning the string
with a dot (.). Each host-name or pattern
must be encapsulated by a single quote and
separated by a comma. These entries are
compared with the hostname associated
with the IP of the connecting EMS client.

WARNING: This could have a performance
impact as a NIS or DNS lookup may be
performed. If this property is not set, host
names are not checked during
authentication.

For example:

'host1', '.tibco.com', '^.*_
SERVER\\.tibco\\.com'

tibems.hostbased.accepted_addresses A comma delimited list of IP addresses or
net/prefix (CIDR notation) masks to compare
with the incoming connection's IP address.

Both IPV4 and IPV6 are supported. Any
match results in successful authentication. If
this property is not set, IP address checking
is disabled.

For example:

10.1.2.23, 10.100.0.0/16,
0:0:0:0:0:0:0:1

Connection Limit Authentication
The Connection Limit Authentication module limits the number of active connections a
user can have at any one time.

TIBCO Enterprise Message Service™ User Guide

357 | JAAS Authentication Modules

Authentication Process
When a client connects, the user name is identified and then authenticated based on the
number of connections open for that user. If the number of connections is less than the
configured limit, the user is authenticated successfully, and the internal connection count
is incremented. When a user disconnects, the internal connection count is decremented.

A client’s user name can be specified as one of the following types: hostname, IP address,
LDAP ID, or LDAP ID and hostname.

Note: If you plan on stacking this module with other JAAS modules, it is
important to use this as the final JAAS module and to list all of the JAAS
modules as 'requisite'. This ensures that the internal connection count of the
Connection Limit Authentication module remains accurate.

Implementation
The Connection Limit Authentication module name is:
com.tibco.tibems.tibemsd.security.jaas.ConnectionLimitAuthentication

The JAAS configuration file entry for this login module should have a section similar to the
following:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.ConnectionLimitAuthentication required
 tibems.connectionlimit.max_connections="5"
 tibems.connectionlimit.type="HOSTNAME" ;
};

Parameters
The Host Based Authentication Module parameters are listed in the following table.

Parameter Description

debug When set to true, enables debug output for the module.
Enabling this parameter may aid in diagnosing

TIBCO Enterprise Message Service™ User Guide

358 | JAAS Authentication Modules

Parameter Description

configuration problems.

Warning: Enabling the debug flag may create security
vulnerabilities by revealing information in the log file.

The default setting is false.

tibems.connectionlimit.max_
connections

An integer to indicate the number of connections allowed
per user.

tibems.connectionlimit.type Identifies the type of user for an incoming connection.
For example: "HOSTNAME", "IP", "LDAPID", or
"LDAPID@HOSTNAME".

Using Multiple JAAS Modules
You can stack the provided JAAS modules to suit your environment and authentication
needs. There are no restrictions on which or how many modules can be stacked.

To stack multiple JAAS modules, include the desired module configurations and JAAS flags
in the same configuration file that is reference by the
JAAS configuration parameter, jaas_config.

The behavior and authentication requirements of the included modules are controlled by
the module Flag value assigned to each module in the stack. For more information, see the
Oracle javax.security.auth.login.Configuration Class documentation for information
on using multiple JAAS modules.

Example: Two Authentication Requirements
In this example, a user is authenticated based on network location. If that succeeds, the
user is then authenticated using LDAP credentials. Both must succeed for the user to be
authenticated.

This behavior is controlled by the requisite Flag.

TIBCO Enterprise Message Service™ User Guide

359 | JAAS Authentication Modules

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.HostBasedAuthentication requisite
 tibems.hostbased.accepted_addresses="10.98.48.45, ::1"
 tibems.hostbased.accepted_hostnames="'jsmith.*','.tibco.com'";
 com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication requisite
 tibems.ldap.user_pattern="uid=%u,ou=People,dc=tibco.com"
 tibems.ldap.url="ldap://localhost:389" ;
 };

Example: One Authentication is Sufficient
In this example, a user is authenticated against multiple LDAP branches. If authentication
fails in the first branch, the second is tried. Only one module instance needs to succeed for
the user to be authenticated.

This behavior is controlled by the sufficient Flag.

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication sufficient
 tibems.ldap.user_pattern="uid=%u,ou=People,dc=Local"
 tibems.ldap.url="ldap://localhost:389" ;
 com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication sufficient
 tibems.ldap.user_pattern="uid=%u,ou=People,dc=Remote"
 tibems.ldap.url="ldap://localhost:389" ;
 };

Migrating to the EMS JAAS Modules
Servers earlier than EMS 10.0 used to support user LDAP authentication within the EMS
server through a set of server properties that started with ldap_. Migrating from this now
unsupported authentication mechanism to the JAAS modules is relatively straightforward.
Many of the parameters directly map to each other. Nevertheless, there are some
differences and so care must still be taken.

The LDAP Group User Authentication module provides similar functionality to that of the
pre-EMS 10.0 server. However, if group membership is not required for authentication, then
the LDAP Authentication module is a better choice.

TIBCO Enterprise Message Service™ User Guide

360 |

Former EMS Server LDAP Parameter to JAAS Module Parameter Mapping
When parameters have an exact equivalent, as indicated in the notes column, the same values from the Former EMS Server LDAP parameters can be used in the JAAS modules, except that the JAAS
modules expect parameter values to be enclosed in quotes.

Former EMS Server LDAP Parameter EMS JAAS Equivalent Notes

ldap_url tibems.ldap.url Exact

ldap_principal tibems.ldap.manager Exact

ldap_credential tibems.ldap.manager_password Exact

ldap_cache_enabled tibems.cache.enabled Exact

ldap_cache_ttl tibems.cache.user_ttl Exact

ldap_conn_type tibems.ldap.url See ldap_conn_type below.

ldap_tls_cacert_file tibems.ldap.truststore See ldap_tls Parameters.

ldap_tls_cacert_dir tibems.ldap.truststore See ldap_tls Parameters.

ldap_tls_cipher_suite N/A See ldap_tls Parameters.

ldap_tls_rand_file N/A See ldap_tls Parameters.

ldap_tls_cert_file tibems.ldap.truststore See ldap_tls Parameters.

ldap_tls_key_file tibems.ldap.truststore See ldap_tls Parameters.

ldap_user_class tibems.ldap.user_filter See ldap_user_class and
ldap_static_group_class.

ldap_user_attribute tibems.ldap.user_attribute Exact

ldap_user_base_dn tibems.ldap.user_base_dn Exact

ldap_user_scope tibems.ldap.scope Exact

ldap_user_filter tibems.ldap.user_filter See Filters.

TIBCO Enterprise Message Service™ User Guide

361 |

Former EMS Server LDAP Parameter EMS JAAS Equivalent Notes

ldap_group_base_dn tibems.ldap.group_base_dn Exact

ldap_group_scope tibems.ldap.group_scope Exact

ldap_group_filter tibems.ldap.group_filter See Filters.

ldap_all_groups_filter N/A See Filters.

ldap_static_group_class tibems.ldap.group_filter See ldap_user_class and
ldap_static_group_class.

ldap_static_group_attribute tibems.ldap.group_attribute Exact

ldap_static_group_member_filter tibems.ldap.group_filter See Filters.

ldap_static_member_attribute tibems.ldap.group_member_attribute Exact

ldap_dynamic_group_class tibems.ldap.dynamic_group_class Exact

ldap_dynamic_group_attribute tibems.ldap.dynamic_group_attribute Exact

ldap_dynamic_member_url_attribute tibems.ldap.dynamic_group_member_url Exact

TIBCO Enterprise Message Service™ User Guide

362 |

Parameters Requiring Conversion

ldap_conn_type

The connection type is indirectly supported by the JAAS modules through the protocol
portion of the LDAP URL.

 l ldap:// creates a TCP connection.

 l ldaps:// creates a TLS connection.

If the startTLS LDAP extension is required, additional JNDI parameters may be specified
through the JAAS configuration. Alternately, you can customize the JAAS module. See
Custom JAAS Modules for more information.

ldap_tls Parameters

The JAAS modules have the ability to pass any parameters to JNDI. It is up to the user to
determine what java TLS parameters to pass to JNDI through the JAAS configuration.

In most cases, only a certificate key store is required. For convenience, the
tibems.ldap.truststore parameter can be used to specify the store. Refer to Java
documentation for additional information regarding the use of TLS.

Filters

Filters perform the same function in the JAAS modules as they do when LDAP
authentication is configured within the EMS server, but the specification of the filter
parameters is slightly different.

Be sure to substitute the EMS server's %s filters for the appropriate {n} JAAS module filter.

ldap_user_class and ldap_static_group_class

The ldap_user_class and ldap_static_group_class parameters are not necessary in the
JAAS modules.

LDAP class names are specified in the filters, as in the following examples:

TIBCO Enterprise Message Service™ User Guide

363 |

tibems.ldap_user_filter="(&({0}={1})(objectClass=uniqueMember))"

and

tibems.ldap.group_filter="(&({0}={1})(objectClass=groupofUniqueNames))"

Refer to the filter documentation to map various identifiers. For example, in converting the
user filter, the former EMS server LDAP parameter, %s maps to {1} in the JAAS filter. Many
group searches should work with a filter similar to:

(&{0}={1})(objectClass=<group class>)

However, dynamic groups do allow you to specify the class in order to mirror the search
algorithm used by the former EMS server native LDAP functionality.

Dynamic Groups
Dynamic groups in LDAP should normally behave similarly to static groups in LDAP.
However, some LDAP implementations require a modified search algorithm.

In order to perform this type of search with the JAAS modules, set the parameter:

tibems.ldap.dynamic_group_search_direct="true"

It is recommended this is parameter be enabled after you have determined that there is a
problem, or when using an OpenLDAP server. In some cases, this is required in order to
mirror the former EMS server native LDAP functionality.

Example
This section provides a walk through converting an existing set of pre-EMS 10.0 LDAP
parameters using the LDAP Group User Authentication login module.

 1. Set the jre_library parameter to enable the JVM.

For more information, see The JVM in the EMS Server.

 2. Set the security_classpath.

TIBCO Enterprise Message Service™ User Guide

364 |

For example:

security_classpath =
c:\tibco\ems\10.3\bin\tibemsd_jaas.jar;
c:\tibco\ems\10.3\lib\tibjmsadmin.jar;
c:\tibco\ems\10.3\lib\tibjms.jar;c:\tibco\ems\10.3\lib\jakarta.jms-
api-2.0.3.jar

 3. Enable JAAS for LDAP authentication by modifying the user_auth parameter. Remove
ldap from the list of authentication sources, and verify that jaas is present.

For example:

user_auth=jaas

 4. Edit the provided
com.tibco.tibems.tibemsd.security.jaas.LDAPGroupUserAuthentication module
for your LDAP server configuration:

 a. Locate the sample configuration file ems_ldap_with_groups.txt in
 EMS_HOME\samples\config\jaas.

 b. Copy the file to a secure location, ideally alongside the other EMS server
configuration files.

 5. Set the jaas_config_file to reference the JAAS module configuration file created in
Step 4 above.

For example:

jaas_config_file = ems_ldap_with_groups.txt

LDAP Parameters in the tibemsd.conf

Consider the following LDAP server configuration parameters in the EMS server
configuration file, tibemsd.conf:

ldap_url = ldap://ldaphost:389
 ldap_principal = cn=Manager
 ldap_credential =manfPSdYgyVTQloUv36Km36AEOrARW
 ldap_user_class = person
 ldap_user_attribute = uid
 ldap_user_base_dn = "ou=People,dc=TIBCO"

TIBCO Enterprise Message Service™ User Guide

365 |

 ldap_user_scope = subtree
 ldap_user_filter = "(&(uid=%s)(objectclass=person))"
 ldap_group_base_dn = "ou=Groups,dc=TIBCO"
 ldap_group_scope = subtree
 ldap_group_filter = "(&(cn=%s)(objectclass=groupOfUniqueNames))"
ldap_static_group_class = groupOfUniqueNames
 ldap_static_group_attribute = cn
 ldap_static_member_attribute = uniqueMember
 ldap_cache_enabled = FALSE

Mapped to LDAP Group User Authentication Module

The LDAP configuration parameters shown above map to the following JAAS configuration
file:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPGroupUserAuthentication required
 tibems.ldap.url="ldap://ldaphost:389"
 tibems.ldap.manager="cn=Manager"
 tibems.ldap.manager_password="manfPSdYgyVTQloUv36Km36AEOrARW"
 tibems.ldap.user_attribute="uid"
 tibems.ldap.user_base_dn="ou=People,dc=TIBCO"
 tibems.ldap.scope="subtree"
 tibems.ldap.user_filter="(&(uid={1})(objectclass=person))"
 tibems.ldap.group_base_dn="ou=Groups,dc=TIBCO"
 tibems.ldap.group_scope="subtree"
 tibems.ldap.group_filter="(&({0}={1}(objectclass=groupOfUniqueNames))"
 tibems.ldap.group_attribute="cn"
 tibems.ldap.group_member_attribute="uniqueMember"
 tibems.ldap.cache.enabled = "false" ;
};

Troubleshooting Problems in the JAAS Modules
In order to troubleshoot JAAS modules,

Procedure
 1. Add JAAS to the EMS server trace options in the main server configuration file:

TIBCO Enterprise Message Service™ User Guide

366 |

console_trace = DEFAULT,+JAAS,+JVM,+JVMERR

 2. Enable debugging in the JAAS module itself, by setting the debug parameter to true:

EMSUserAuthentication {
 com.tibco.tibems.tibemsd.security.jaas.LDAPSimpleAuthentication required
 debug="true"
 tibems.ldap.url="ldap://ldapserver:389"
 tibems.ldap.user_pattern="CN=%u"
 };

Warning: Note that enabling the debug flag may create security
vulnerabilities by revealing information in the log file. This parameter
should be enabled only for troubleshooting purposes.

Result
This will provide a list of parameters passed into LDAP, which is useful in identifying any
mistyped parameters or default values that need to be changed. Verbose output is
provided to help identify the problem.

When developing a custom JAAS module, it is possible for a runtime exception inside a
JAAS method to cause the JAAS module to fail. In those cases, catching and printing
exceptions to the default output stream provides valuable information.

TIBCO Enterprise Message Service™ User Guide

367 | Grid Stores

Grid Stores
You can configure TIBCO Enterprise Message Service to store messages, state information,
and configuration information in supported versions of TIBCO ActiveSpaces.

The following topics describe grid stores. For information about other store types, see
Store Messages in Multiple Stores and FTL Stores.

Note: The EMS server supports grid stores only on Linux.

Grid Stores Overview
Grid stores are designed to achieve a minimal EMS server memory footprint and quick EMS
server recovery time upon failover. When configured to use grid stores, the majority of
server data is stored in an ActiveSpaces data grid and is read into memory only on-
demand. A small portion of the information may be cached to speed up message
processing, but the remainder is removed from memory once relevant operations are
completed. This approach decouples the EMS server's memory usage and failover time
from the size of its stores.

When using grid stores, persistent message data and state information are always written
to the ActiveSpaces data grid. However, non-persistent data is still stored in memory in
most cases. Non-persistent messages can be moved to the data grid if message swapping
is enabled. When message swapping is enabled and the maximum message memory limit
or the destination swap out threshold have been exceeded, non-persistent messages will
be swapped from memory to the data grid. The impact of non-persistent messages on
server memory can be reduced by setting a low value for max_msg_memory or destination_
backlog_swapout parameters.

This storage-centered design of grid stores lends itself to quick server start-up times. As
opposed to other store types, the entirety of each store's contents is not read upon server
start-up or failover. Instead, the server continuously performs incremental scans of the grid
stores in the background. This allows for much faster server recovery when the store sizes
have grown very large.

TIBCO Enterprise Message Service™ User Guide

368 | Grid Stores

The server scans through its grid stores incrementally in the background and discards stale
data, such as purged and expired messages. As a result, purged and expired messages are
not immediately removed, and may remain in a grid store longer than they would in a file-
based or FTL store - although they are not delivered to consumers. The scanning behavior
is determined by parameter settings in the store's configuration, and is further described in
Understanding Grid Store Intervals.

A full background scan of the grid stores must be completed in order to obtain the correct
overall statistics. Due to this, querying the server for a total pending message count before
the grid stores have been fully scanned may return an inaccurate value. However, querying
specific destinations, consumers or durables will return an accurate count. See Implications
for Statistics for more information.

The latency costs in communicating with ActiveSpaces can make grid stores slower than
file-based stores or FTL stores. The strength of grid stores lies with their scalability and
consistent recovery time regardless of store size.

Fault-Tolerance with Grid Stores
An ActiveSpaces data grid deployment provides data persistence and replication
capabilities that support Shared State fault-tolerance in EMS. For information on how to
configure data replication in ActiveSpaces, see the TIBCO ActiveSpaces Concepts product
guide.

When using grid stores, a fault-tolerant EMS server pair's configuration is stored within an
ActiveSpaces data grid. This allows the configuration to be accessible to EMS servers
running in separate machines or containers. Static configuration elements including JAAS
modules, JAAS module configuration files, JACI modules and digital certificates are not
stored in the data grid and must still be maintained manually.

Understanding Grid Store Intervals
Grid stores are designed to ensure a quick EMS server start-up time. To enable this
functionality, the EMS server must continually monitor stores in the background. The
server reads through grid stores incrementally and discards stale data, such as purged and
expired messages.

In order to keep the background activity from degrading server performance, the
examination is performed in increments. The length of these increments and the amount of

TIBCO Enterprise Message Service™ User Guide

369 | Grid Stores

data processed each increment are controlled by two parameter settings. These
parameters can be configured for each grid store.

The default parameter settings are optimized for best performance in most production
environments (see Configuring Grid Stores for information about the default values).
However, if the amount of data in a grid store grows significantly, the read rates associated
with the background activity may begin to affect message transmission rates in the EMS
server. If the EMS server performance is negatively affected by the size of the grid store,
you can tune the grid store parameter values to spread grid store background activity over
a longer period of time, thereby decreasing the associated read rates.

 l scan_target_interval: the maximum amount of time allowed before each message
in the store is examined.

For example, if the scan_target_interval is 24 hours, each section of the grid store
will be examined at least once every day. Because purged and expired messages are
not removed from the grid store until they are examined by this background process,
this means that it can take up to 24 hours before a message is removed from the
queue following a purge command (making underlying storage space available for re-
use).

 l scan_iter_interval: the length of time between each increment of background
activity.

For example, if the scan_iter_interval is 10 seconds, the EMS server begins
examining a new section of the grid store every 10 seconds. The amount of data read
in each increment is dependent on the total size of the store and the length of the
scan_target_interval. The server must examine enough data in each interval to
fully traverse the store within the target interval.

Example

For example, assume that scan_iter_interval is 10 seconds, scan_target_interval is 1
day (86,400 seconds), and the grid store contains 9 GB of data. Every 10 seconds, the EMS
server will examine about 1 MB of data. This produces an average read rate of about 100
KB/sec, which is unlikely to produce performance degradation with most modern storage
mediums.

If EMS server performance does slow, you may need to increase the scan_target_interval
value in order to spread the background activity over a longer period of time. You can
monitor the settings for problems using the show store command and checking the ratio of
"Discard Scan Interval Bytes" to "Discard Scan interval". For best results, this ratio should
be kept below 20% of the system capacity. Adhering to this ratio will help ensure that the
background activity does not occupy an excessive amount of system resources.

TIBCO Enterprise Message Service™ User Guide

370 | Grid Stores

Implications for Statistics
The background monitoring and cleanup that occurs in the grid store also affects some key
server statistics. Before the first scan has been completed for all grid stores, some message
statistics reported by the server may be inaccurate.

For example, when the EMS server first starts, the "Pending Messages" and "Pending
Message Size" counts reported by the info command in the administration tool can be
understated, because the command only reports on messages it has scanned before the
command is issued. Similarly, the "Message Count" and "Message Size" reported by the
show store command may report a smaller number than actually exist in the store.

Once the first scan is complete, these counts can be considered accurate. To check the
scan status on a grid store, use the show store command. The statistics returned include a
"First scan finished" field, which reports the scan status since the last EMS server start
time. When the value of this field is true, the server statistics can be considered accurate.

If it is important to acquire the correct values for these statistics sooner, you will need to
decrease the scan_target_interval.

Configuring and Deploying Grid Stores
This section describes the steps required to configure and deploy grid stores. The ability to
use grid stores is contingent upon the deployment of a TIBCO ActiveSpaces data grid or the
availability of an existing TIBCO ActiveSpaces data grid.

Deploying a Simple TIBCO ActiveSpaces Data Grid
The instructions in this section outline the steps involved in running grid stores with a
minimal ActiveSpaces data grid setup that is suitable for a development environment. For
information on designing, configuring and deploying an ActiveSpaces data grid that is
suitable for your production environment, refer to the TIBCO ActiveSpaces Concepts and
TIBCO ActiveSpaces Administration product guides.

Before you begin
 l TIBCO FTL must already be installed on the host machine that is to run the FTL

TIBCO Enterprise Message Service™ User Guide

371 | Grid Stores

server.

 l TIBCO ActiveSpaces must already be installed on all host machines that are to run
the state keeper or node processes.

Overview

An ActiveSpaces data grid suitable for use with grid stores is composed of the following
components:

 l Realm service (runs as part of a TIBCO FTL server)

 l Administrative daemon

 l State keeper

 l Node

 l Proxy

Embedded Proxy

The ActiveSpaces proxy facilitates communication between the EMS server and the data
grid. While the EMS server requires an external proxy process to connect to the data grid
during startup, all subsequent communication between the server’s grid stores and the
data grid is carried out via an ActiveSpaces proxy embedded directly in the server. Using
this embedded proxy improves grid store performance by eliminating any would-be server
to proxy communication latency. Note that the embedded proxy must be included in the
data grid definition. See the Defining the Data Grid and Component Processes section for
details.

Starting a FTL server

This section describes the steps to bring up the FTL server.

Procedure
 1. Navigate to an empty directory that can be used as the realm configuration data

directory.

cd data_dir_1

#GUID-FE1ED4B3-0FAD-4B5D-A08D-D7108C3A1AFF

TIBCO Enterprise Message Service™ User Guide

372 | Grid Stores

The FTL server uses the current directory as the default location to store its working
data files. When the FTL server detects an empty working directory, it begins with a
default realm definition.

If you have already begun to configure the realm definition, then navigate to your
existing data directory instead.

 2. Start the FTL server executable.

tibftlserver -n <name>@<host>:<port>

Where,

<name> is a unique name for the FTL server, for example, ftl1.

<port> is any port not bound by another process.

ActiveSpaces component processes initiate contact with the FTL server at this
address.

Defining the Data Grid and Component Processes

This section describes the steps to define the data grid and its component processes in the
FTL server.

Procedure
 1. In a text editor, start editing a script file.

 2. Add the script command to create the data grid by using the syntax:

grid create statekeeper_count=1 copyset_size=1 grid_name

Where, grid_name is a unique name for this data grid.

 3. Add the script commands to create the copyset, node, state keeper, external proxy
and embedded proxy:

copyset create copyset_name
 node create --copyset copyset_name node_name
 keeper create keeper_name
 proxy create proxy_name
 proxy create _embedded_proxy

 Where copyset_name, node_name, keeper_name, and proxy_name are any unique

TIBCO Enterprise Message Service™ User Guide

373 | Grid Stores

name for each of these components.

Note: Copysets and nodes in ActiveSpaces relate to horizontal data
partitioning and data replication. When only a single copyset and node are
defined as in this case, the data grid does not perform horizontal
partitioning or replication.

 4. Run the script using the tibdg administration tool to create the data grid.

 tibdg -s script_file_path -r http://<host>:<port>

 where <host> and <port> refer to the pipe-separated FTL server URLs.

Starting the Data Grid Processes

This section describes the steps to bring up the data grid component processes.

Procedure
 1. Start the administrative daemon process

tibdgadmind -r http://<host>:<port>

 2. Start the state keeper process.

 tibdgkeeper -n keeper_name -r http://<host>:<port> -g grid_name

 3. Start the node process

 tibdgnode -n node_name -r http://<host>:<port> -g grid_name

 4. Start the proxy process

tibdgproxy -n proxy_name -r http://<host>:<port> -g grid_name

For all of the above <host> and <port>, refer to the pipe-separated FTL server URLs.

keeper_name, node_name, proxy_name and grid_name refer to the names chosen in Defining
the Data Grid and Component Processes

TIBCO Enterprise Message Service™ User Guide

374 | Grid Stores

You can now run the following tibdg command to verify that all component processes are
running and that the data grid is online:

tibdg -r http://<host>:<port> status

In a development environment, the FTL server, administrative daemon, state keeper, node,
proxy, and EMS server processes can be started on the same host machine.

Connecting Multiple Servers to the Same Data Grid
There is no limit placed on the number of EMS servers using grid stores that can connect to
a particular data grid. The grid store definitions in the data grid are differentiated based on
the server name, meaning the only limitation in this respect is that servers with identical
names - outside of a fault-tolerant pair - will not be able to use the same data grid.

Configuring Grid Stores
When using grid stores, the EMS server requires the configuration to be JSON-based. See
Managing the JSON Configuration for details on how to create a JSON configuration file.

The following table describes the store parameters for grid stores.

Parameter Name Description

Required Parameters

[store_name] [store_name] is the name that identifies this store
configuration.

Note that the square brackets [] DO NOT indicate that the
store_name is an option; they must be included around the
name.

type=as Identifies the store type. This parameter is required for all
store types. The type corresponding to grid stores is as
(abbreviation of ActiveSpaces).

TIBCO Enterprise Message Service™ User Guide

375 | Grid Stores

Parameter Name Description

Other available store types are as follows:

 l file—for file-based stores.

 l ftl—for FTL stores.

Optional Parameters

scan_iter_interval Determines the length of time between each interval of the
store scan. The EMS server begins scanning a new section of
the grid store at the time interval specified here.

Specify time in units of msec, sec, min, hour or day to
describe the time value as being in milliseconds, seconds,
minutes, hours, or days, respectively.

For example:

scan_iter_interval=100msec

By default, the server examines grid stores every 10
seconds.

For more information, see Understanding Grid Store
Intervals.

scan_target_interval Controls the approximate length of time taken to complete
a full scan of the grid store.

Specify time in units of msec, sec, min, hour or day to
describe the time value as being in milliseconds, seconds,
minutes, hours, or days, respectively.

For example: scan_target_interval=12hour
By default, the scan interval is 24 hours.

For more information, see Understanding Grid Store
Intervals.

Note: Grid stores do not support an asynchronous write mode option as
asynchronous writes are not supported by ActiveSpaces.

TIBCO Enterprise Message Service™ User Guide

376 | Grid Stores

EMS does not support configuration of multiple store types in the same server. If using grid
stores, all stores in the configuration must be of type as.

Managing the JSON Configuration
Creating and editing the JSON configuration can be done using the tibemsconf2json tool
and TIBCO Messaging Manager, respectively.

Using the tibemsconf2json Tool

If the server configuration is first defined via the .conf configuration files, the
tibemsconf2json tool can then be used to convert the .conf configuration files into a JSON
configuration file. See Conversion of Server Configuration Files to JSON for more
information.

The configuration for a grid store in stores.conf would be of the following format:

[store_name] # mandatory -- square brackets included.
 type = as
 [scan_iter_interval = time]
 [scan_target_interval = time]

The tibemsconf2json tool cannot be used to make changes to the JSON configuration file
after it has been generated.

Using the TIBCO Messaging Manager
Subsequent modifications to the JSON configuration should be done using TIBCO
Messaging Manager. For details, refer to the TIBCO Messaging Manager documentation.

Server Configuration Upload/Download
When configured to use grid stores, the EMS server will first connect to the data grid and
fetch the configuration information before beginning its start-up sequence. The JSON
configuration must be available in the data grid prior to starting the EMS server. If no
configuration is available in the data grid, the EMS server will start-up with a default
configuration.

TIBCO Enterprise Message Service™ User Guide

377 | Grid Stores

The tibemsjson2grid tool can be used to upload JSON configuration files to a specified
data grid. It can also download JSON configuration files from a specified data grid.

Running the tibemsjson2grid Tool

The tibemsjson2grid tool is invoked from the command line. The tool is dependent on FTL
and ActiveSpaces C client libraries, so the LD_LIBRARY_PATH environment variable must be
set before running it.

export LD_LIBRARY_PATH=<AS_HOME>/lib:<FTL_HOME>/lib:$LD_LIBRARY_PATH
tibemsjson2grid options

tibemsjson2grid Options

The following table shows the options that are used with the tibemsjson2grid tool.

Option Description

-url url The pipe-separated URLs of the data grid the store is
connected to.

-name gridname The name of the data grid to connect to.

-key uniquevalue The value passed to this parameter should be a unique
value that identifies a specific JSON configuration.

Uploading a JSON configuration with a non-unique
combination -key and -name values will overwrite the
existing configuration corresponding to that
combination.

-json pathname The absolute path to the JSON configuration file to be
uploaded to the data grid.

When the -download parameter is specified, the
downloaded JSON configuration will be written to the
value passed to this parameter.

-download When specified, tibemsjson2grid will download the
JSON configuration from the data grid and write it to
the file passed to -json.

TIBCO Enterprise Message Service™ User Guide

378 | Grid Stores

Option Description

If this parameter is not specified, the tool will default to
uploading the JSON configuration to the data grid.

-trustfile path Path to the plaintext file that contains the FTL server’s
public certificate. Required for TLS communication with
a secure FTL server.

-user user User name to use when connecting to an FTL server
that has authentication enabled.

-password password Password to use when connecting to an FTL server that
has authentication enabled.

To hide the password from casual observers, see the
Password Security section of the TIBCO FTL
Administration guide.

Examples
 Example 1

Uploading configuration to the data grid:

tibemsjson2grid -url http://hostname:8080 -name devgrid -key uniquekey
-json tibemsd.json

 Example 2

Downloading configuration from a data grid:

tibemsjson2grid -url http://hostname:8080 -name devgrid -key uniquekey
-json tibemsd.json -download

Example 3

Uploading configuration to a secure data grid:

tibemsjson2grid -url https://hostname:8080 -name devgrid -key uniquekey
-trustfile ftl-trust.pem -user user1 -password password -json
tibemsd.json

TIBCO Enterprise Message Service™ User Guide

379 | Grid Stores

Server Command-Line Options for Grid Stores
When starting the EMS server with grid stores, the server must be pointed to the data grid
where message data and configuration information will be stored and retrieved from. This
is done via the following server command line options.

Option Description

-grid_url url The pipe-separated URLs of the data grid
the store is connected to.

-grid_name datagrid_name The name of the data grid to connect to.

-config key The key specified while uploading the JSON
configuration to the data grid.

-module_path path_list List of paths to lib directories of
ActiveSpaces and FTL installations.

-grid_trust_file path Path to the plaintext file that contains the
FTL server’s public certificate. Required for
TLS communication with a secure FTL
server.

-grid_user user User name to use when connecting to an
FTL server that has authentication enabled.

-grid_password password Password to use when connecting to an FTL
server that has authentication enabled.

To hide the password from casual
observers, see the Password Security section
of the TIBCO FTL Administration guide.

The syntax for starting the EMS server with grid stores is as follows:

tibemsd -grid_url <url> -grid_name <datagrid_name> -config <key>
-module_path <path_list> [-grid_trust_file <path>
-grid_user <user> -grid_password <password>]

TIBCO Enterprise Message Service™ User Guide

380 | Grid Stores

Examples

Example 1

tibemsd -grid_url http://hostname:8080 -grid_name devgrid -config
uniquekey -module_path AS_HOME/lib:FTL_HOME/lib

Example 2

tibemsd -grid_url https://hostname:8080 -grid_name devgrid -config
uniquekey -module_path AS_HOME/lib:FTL_HOME/lib -grid_trust_file
ftl-trust.pem -grid_user user1 -grid_password password

TIBCO Enterprise Message Service™ User Guide

381 | FTL Stores

FTL Stores
You can configure TIBCO Enterprise Message Service to store messages, state information,
and configuration information in supported versions of TIBCO FTL.

The following topics describe FTL stores. For information about other store types, see Store
Messages in Multiple Stores and Grid Stores.

Note: The FTL stores feature is only supported on Linux platforms.

FTL Stores Overview
Note: Release 10.2 of EMS introduced a redesigned version of FTL stores with
improved performance capabilities and more robust fault-tolerance and disaster
recovery features. Release 10.3 introduces asynchronous disk persistence. It is
highly recommended that existing FTL stores deployments be migrated to the
current release. Refer to the EMS 10.3 Release Notes for information on
migrating deployments from EMS 10.1 and EMS 10.2.

FTL stores have a somewhat unique configuration and deployment model in comparison to
other EMS storage types. When using FTL stores, the EMS server runs as a service within an
FTL server – which is an umbrella process that launches and manages a number of
messaging services that constitute a TIBCO FTL deployment. The integration of EMS with
FTL in this manner reduces latency in communication between the EMS server and its FTL
backend. Additionally, it also allows EMS to make use of FTL’s disaster recovery
capabilities.

In terms of functionality, FTL stores are similar to file-based stores. When using FTL stores,
all pending persistent message information and state information is maintained in EMS
server memory and persisted on disk via FTL. Keeping this information in memory reduces
the amount of disk reads required and facilitates faster message processing

As with file-based stores, an EMS server using FTL stores must recover all state information
and pending message information before it can activate. Depending on the situation, this is

TIBCO Enterprise Message Service™ User Guide

382 | FTL Stores

achieved either by reading the contents of all stores from disk via FTL, or by processing the
data that has already been replicated to the EMS server by FTL.

Fault-Tolerance with FTL Stores
As a storage mechanism, a cluster of coordinating FTL servers provides data persistence
and replication features that support Shared State fault-tolerance in EMS. The FTL server
cluster must be formed of 3 constituent FTL servers in order to support EMS fault-tolerance
with FTL stores. A single FTL server can only be configured to run a standalone EMS server
with FTL stores.

Each of the three FTL servers in the cluster has its own EMS server running under it. One of
those three EMS servers is configured as standby_only, meaning that it will always remain
in the fault-tolerant standby state and can never transition to the active state. This server's

TIBCO Enterprise Message Service™ User Guide

383 | FTL Stores

only purpose is to perform data replication and provide redundancy. The other two EMS
servers comprise the actual fault-tolerant EMS server pair. One of these is chosen by the
cluster to enter the active state and the other becomes its fault-tolerant peer in standby
state.

A client making a fault-tolerant connection to these EMS servers would specify only the
URLs of the fault-tolerant EMS server pair. The URL of the standby_only EMS server should
not be used since that EMS server will never activate.

The fault-tolerant EMS server pair makes use of the connections between the FTL servers in
the cluster for fault-tolerance related communication. This means that the specifics of
fault-tolerance are handled by the FTL server cluster rather than the EMS servers
themselves. The majority of EMS server parameters and options relating to configuration of
fault-tolerance are not applicable when using FTL stores.

To provide data redundancy, the persistence capabilities of FTL are leveraged to
consistently replicate FTL store data to at least a majority of EMS servers running within
the FTL server cluster. By default, the FTL store data replicated to each server is also
persisted on disk to provide an additional layer of redundancy (See Persistence with FTL
Stores). In most fault-tolerant failover scenarios, the standby EMS server already has the
required store data in memory and is able to activate with minimal recovery time.

When using FTL stores, the EMS server configuration is stored in the FTL server cluster. This
allows the configuration to be accessible to EMS servers running in separate machines or
containers. Static configuration elements including JAAS modules, JAAS module
configuration files, JACI modules and digital certificates are not stored in the cluster and
must still be maintained manually.

Deciding Between FTL Stores and File-Based
Stores
When making the decision between FTL stores and file-based stores for a fault-tolerant
EMS server deployment, there are three main criteria to consider.

Availability of Shared Storage

If a shared storage mechanism that meets the Support Criteria for shared state is available,
file-based stores would be the preferred option. However, when such a storage mechanism
is not available, or does not provide reasonable I/O speeds, FTL stores offer a strong,

TIBCO Enterprise Message Service™ User Guide

384 | FTL Stores

performant alternative that fulfills all the data persistence and replication requirements
needed for EMS fault-tolerance. A good example of this is in cloud-based deployments,
where shared storage may not be an option, or may be prohibitively slow even when
available. FTL stores would be able to leverage the more performant storage options
offered by the cloud service provider to support a fault-tolerant deployment. Additionally, a
cloud-based deployment of FTL stores would also be capable of deploying across multiple
availability zones to provide a level of redundancy and availability that may not be
achievable using shared storage.

Failover Time

For deployments where a large amount of backlogged persistent message data is expected,
FTL stores can provide faster recovery time than file-based stores in most fault-tolerant
failover scenarios. With smaller pending message backlogs, the fault-tolerant failover
recovery times for both store types will be comparable.

Disaster Recovery

Another criteria to consider is whether disaster recovery is important for the deployment.
When using FTL stores, EMS is able to leverage its integration with FTL to provide disaster
recovery as an in-built feature. The EMS server does not have this capability when using
file-based stores.

Configuring and Deploying FTL Stores
FTL stores have been designed such that an EMS user should be able to deploy them with
minimal knowledge of TIBCO FTL. The following sections cover all information required for
configuring and deploying EMS with FTL stores. If you would like to learn more about FTL
servers or FTL in general, refer to the TIBCO FTL Administration product guide.

The ability to use FTL stores is contingent upon the deployment of an FTL server or FTL
server cluster that has been configured to support FTL stores, as well as the availability of
an EMS server configuration that has been configured with FTL stores.

TIBCO Enterprise Message Service™ User Guide

385 | FTL Stores

Configuring the FTL Server Cluster
An individual FTL server or a cluster of coordinating FTL servers are configured via a YAML-
based configuration file. The YAML below shows the basic template for an FTL server
cluster consisting of 3 FTL servers configured to support FTL stores.

globals:
 core.servers:
 <name of FTL server #1>: <host>:<port>
 <name of FTL server #2>: <host>:<port>
 <name of FTL server #3>: <host>:<port>
 servers:
 <name of FTL server #1>:
 - tibemsd:
 -listens: <comma-separated list of URLs for EMS server #1>
 exepath: EMS_HOME/bin/tibemsd
 -config_wait:
 <name of FTL server #2>:
 - tibemsd:
 -listens: <comma-separated list of URLs for EMS server #2>
 exepath: EMS_HOME/bin/tibemsd
 -config_wait:
 <name of FTL server #3>:
 - tibemsd:
 -listens: <comma-separated list of URLs for EMS server #3>
 exepath: EMS_HOME/bin/tibemsd
 -config_wait:
 -standby_only:

While this YAML template configures a cluster of 3 FTL servers, it can easily be adapted for
a standalone FTL server by removing server entries from the servers section and from the
core.servers list in the globals section.

In addition to the examples in the next section, sample YAML configuration files can be
found under the EMS_HOME/samples/config directory of the EMS installation.

Sections in the FTL Server Cluster Configuration
Provided below is a brief description of each section of the YAML configuration file and a
list of all required and optional parameters that can be included in those sections in the
context of FTL stores. Parameters not mentioned in the following sections are not
supported for use with FTL stores.

TIBCO Enterprise Message Service™ User Guide

386 | FTL Stores

globals

The globals section contains parameters that directly affect the operation of the FTL
servers in the cluster.

Parameter Name Description

core.servers This parameter is mandatory.

A list of the names of the FTL servers in the cluster
along with their location.

tls.secure The password that was used to encrypt the keystore
file.

When this parameter is present, all communication
between the FTL servers in the cluster will be
encrypted.

The value for this parameter should be of the form:

file:<path to keystore_password_file>

where keystore_password_file is a file containing
the chosen password for authentication. See
Initializing FTL Server Cluster Security for details.

auth.url The URL of a flat file with the following contents:

admin: <password>, ftl-admin,ftl-internal

When present, authentication is enabled in the FTL
server so that it requires and verifies username and
password credentials from coordinating FTL servers in
the cluster and from the tibemsjson2ftl and
tibftladmin tools.

The value for this parameter must be of the form:

file://<path to flat file>

This parameter must be set if the tls.secure
parameter is specified.

See Initializing FTL Server Cluster Security.

TIBCO Enterprise Message Service™ User Guide

387 | FTL Stores

servers

The servers section must contain a list of all FTL servers in the cluster. For each server in
the list, a sub-list of services whose behavior is to be configured can be specified. No
service should be specified more than once for a given server.

The table below details the parameters available to configure each service.

Parameter Name Description

tibemsd Service Parameters

exepath This parameter is mandatory and must be configured
for each FTL server in the cluster.

The path to the tibemsd executable. This executable
is located at EMS_HOME/bin/tibemsd.

-listens A comma-separated list of one or more listen URLs
for the EMS server.

This parameter must be used in place of the listen
EMS server parameter when using FTL stores. If not
specified, the EMS server will start with the default
listen URL tcp://7222.

Refer to the listen section for information about
EMS server listen URL syntax.

-config_wait When this parameter is specified for all tibemsd
services, the EMS servers within the FTL server cluster
will wait for an EMS configuration to become
available in the cluster before starting up. This
parameter does not accept a value.

If this parameter is not specified for all tibemsd
services, and an EMS configuration is not available in
the cluster, the EMS servers will start with default
configuration.

See the Server Configuration Upload/Download
section for instructions on uploading the EMS
configuration to the FTL server cluster.

TIBCO Enterprise Message Service™ User Guide

388 | FTL Stores

Parameter Name Description

-standby_only This parameter informs the FTL server that its EMS
server is configured to be standby_only, meaning
that it cannot ever transition to active state. This
parameter does not accept a value.

Only one of the 3 FTL servers in this section should
have this parameter set for its tibemsd service. The
selected FTL server will be the one whose EMS server
will not be part of the fault-tolerant EMS server pair,
and whose URL will not be used by clients.

This parameter should not be specified if the
configuration is for a standalone FTL server.

-preferred_active Setting this parameter designates the EMS server as
the preferred active server.

In situations where either EMS server in the fault-
tolerant pair could potentially enter the active state,
the server configured with -preferred_active, will
always be the one to activate.

Configuring this parameter for an EMS server does
not guarantee that the server will always be in the
active state. The preferred active server will enter the
standby state if its fault-tolerant peer EMS server is
already in the active state.

-store The path to the directory where the FTL server will
write out FTL store-specific data. If not specified, FTL
store data will be written to the current working
directory by default.

-monitor_listen The URL at which the EMS server will listen for health
check and Prometheus metrics requests.

This URL should follow the same syntax as described
in the monitor_listen section.

TIBCO Enterprise Message Service™ User Guide

389 | FTL Stores

Parameter Name Description

-oauth2_server_validation_key The path to the PEM-encoded public key or JWKS to
use when validating the signature of OAuth 2.0 access
tokens presented by incoming connections.

This parameter should be used in place of the
oauth2_server_validation_key EMS server
parameter.

-oauth2_audience The expected value of the 'aud' claim in OAuth 2.0
access tokens presented by incoming connections.

This parameter should be used in place of the
oauth2_audience EMS server parameter.

load The path to the state file from which the FTL server
will load its state information during startup.

This parameter is only applicable in the context of
restarting an FTL server cluster when in_memory_
replication is enabled.

See Shutting Down and Restarting an In-Memory
Cluster for more information.

<EMS server command line option> Any EMS server command line option can be included
in this section. For example, -ssl_trace.

realm Service Parameters

data The general data directory for the FTL server. This
directory will contain all non-FTL store specific data.
If not specified, the default is the current working
directory.

drto When present, this FTL server cluster recognizes
another given FTL server cluster as belonging to a
disaster recovery site and attempts to connect to it.

Supply a pipe-separated list of the URLs of the FTL

TIBCO Enterprise Message Service™ User Guide

390 | FTL Stores

Parameter Name Description

servers in the disaster recovery site’s FTL server
cluster. Each URL should be of the form:

<FTL server name>@<host>:<port>

(You must also configure the disaster recovery FTL
servers using the drfor parameter.)

drfor When present, this FTL server cluster recognizes that
it is in the disaster recovery site for a primary site FTL
server cluster.

Supply a pipe-separated list of URLs of the FTL
servers in the primary site’s FTL server cluster. Each
URL should be of the form:

<FTL server name>@<host>:<port>

(You must also configure the primary site FTL servers
using the drto parameter.)

user The username that the FTL server clusters at the
primary and DR sites will use to authenticate each
other.

If the authentication data for the primary and DR
sites was created based on the steps in Initializing
FTL Server Cluster Security, the value passed to this
option should be admin.

This parameter must be specified if setting up
disaster recovery with secure FTL server clusters.

password The password that the FTL server clusters at the
primary and DR sites will use to authenticate each
other.

The value for this parameter should be of the form:

file:<path to password_file>

where password_file is a file containing the chosen

TIBCO Enterprise Message Service™ User Guide

391 | FTL Stores

Parameter Name Description

password for authentication. See Initializing FTL
Server Cluster Security for details.

This parameter must be specified if setting up
disaster recovery with secure FTL server clusters.

ftlserver.properties Parameters

logfile The prefix for the filenames of the rolling log files
generated by the FTL server.

If the prefix includes a directory path, the FTL server’s
log files will be generated under that directory. If not,
the FTL server will generate its log files in the current
directory.

Any directories included in the prefix value must
already exist.

If this parameter is not specified, the FTL server will
send log output to the console.

max.log.size The maximum size of each FTL server log file in bytes.

max.logs The maximum number of rolling log files that can be
created.

Examples

Example 1
Configuration for a standalone FTL server that does not have security enabled and is using
the default data directories.

globals:
 core.servers:
 ftls1: host1:8080
 servers:
 ftls1:
 - tibemsd:
 -listens: tcp://host1:7222

TIBCO Enterprise Message Service™ User Guide

392 | FTL Stores

 exepath: /opt/tibco/ems/10.3/bin/tibemsd
 -config_wait:

Example 2
Configuration for a secure FTL server cluster that specifies generic and FTL store-specific
data directories, has logging configured and is also configured to replicate data to a
disaster recovery site.

globals:
 core.servers:
 ftls1: host1:8080
 ftls2: host2:8085
 ftls3: host3:8090
 tls.secure: file:/opt/deployment/keystore_password_file
 auth.url: file:///opt/deployment/users.txt
 servers:
 ftls1:
 - tibemsd:
 -listens: ssl://host1:7222
 exepath: /opt/tibco/ems/10.3/bin/tibemsd
 -store: /opt/deployment/ftls1/ftlstore_data
 -config_wait:
 - realm:
 data: /opt/deployment/ftls1/ftlserver_data
 drto: dr_ftls1@host4:8080|dr_ftls2@host5:8085|dr_ftls3@host6:8090
 user: admin
 password: file:/opt/deployment/password_file
 - ftlserver.properties:
 logfile: /opt/deployment/ftls1/logs/log
 max.log.size: 1048576
 max.logs: 100
 ftls2:
 - tibemsd:
 -listens: ssl://host2:7224
 exepath: /opt/tibco/ems/10.3/bin/tibemsd
 -store: /opt/deployment/ftls2/ftlstore_data
 -config_wait:
 - realm:
 data: /opt/deployment/ftls2/ftlserver_data
 drto: dr_ftls1@host4:8080|dr_ftls2@host5:8085|dr_ftls3@host6:8090
 user: admin
 password: file:/opt/deployment/password_file
 - ftlserver.properties:
 logfile: /opt/deployment/ftls2/logs/log
 max.log.size: 1048576
 max.logs: 100

TIBCO Enterprise Message Service™ User Guide

393 | FTL Stores

 ftls3:
 - tibemsd:
 -listens: ssl://host3:7226
 exepath: /opt/tibco/ems/10.3/bin/tibemsd
 -store: /opt/deployment/ftls3/ftlstore_data
 -config_wait:
 -standby_only:
 - realm:
 data: /opt/deployment/ftls3/ftlserver_data
 drto: dr_ftls1@host4:8080|dr_ftls2@host5:8085|dr_ftls3@host6:8090
 user: admin
 password: file:/opt/deployment/password_file
 - ftlserver.properties:
 logfile: /opt/deployment/ftls3/logs/log
 max.log.size: 1048576
 max.logs: 100

Logging With FTL Stores
When using FTL stores, the logfile EMS server parameter and supporting parameters log_
trace, logfile_max_size and logfile_max_count are unsupported. Consequently, the
rotatelog administration command is also unsupported. Since the EMS server runs as a
service under an FTL server, the EMS server console output is written out as part of the FTL
server logs. The FTL server’s logging capabilities should be used to capture both FTL and
EMS output.

The logfile, max.logs and max.log.size YAML configuration parameters can be used to
configure the FTL server to send its console output to a set of rolling log files. See the
parameter descriptions in the ftlserver.properties Parameters section for more details.

Note that the trace options set via the console_trace EMS server parameter will determine
which EMS server traces are seen in the FTL server logs.

For further information on FTL server logging, refer to the TIBCO FTL Administration guide.

Initializing FTL Server Cluster Security
This section details the steps to set up FTL server cluster security. Please note that both
TLS-secured communication and authentication must be configured in order to enable
security in the FTL server cluster. Deploying with only one of these is not supported.

TIBCO Enterprise Message Service™ User Guide

394 | FTL Stores

Before you begin
- TIBCO FTL must already be installed on the machine where this procedure is to be
performed.
- The clocks on all machines where FTL servers will be running must be synchronized.
- The YAML configuration must have been generated.

Procedure

1. Choose a password that will be used to encrypt the private key data, ie: the keystore
password. Write the password to a file.

echo <password> > keystore_password_file

2. Run the following command to generate the TLS data files.

tibftlserver --init-security file:<path to keystore_password_file>

This results in the generation of two files - the trust file which contains the public
certificate and the keystore file which contains the encrypted private key data.

3. Copy the trustfile and keystore to the general data directory of each FTL server in
the cluster. See Deploying the FTL Server Cluster for details on configuring the
general data directory and FTL store-specific data directory for an FTL server.

4. Add the tls.secure parameter to the globals section of the YAML configuration file
and specify the path to keystore_password_file.

globals:
 # ...
 tls.secure: file:<absolute path to keystore_password_file>

Note: There are several other ways to pass the keystore password to the
tls.secure parameter. See the Password Security section of the TIBCO FTL
Administration product guide for details.

5. Choose a password to be used for authentication and create a new file containing
the authentication data for the FTL server cluster.

echo "admin: <password>, ftl-admin,ftl-internal" > users.txt

If setting up disaster recovery, also write the password to a separate file.

TIBCO Enterprise Message Service™ User Guide

395 | FTL Stores

echo <password> > password_file

6. Add the auth.url parameter to the globals section of the YAML configuration file
and specify the path to the users.txt file.

globals:
 # ...
 auth.url: file://<absolute path to users.txt file>

Note: As an alternative to flat file based internal authentication, FTL also offers
support for authentication via an external service. See the Authentication Service
section of the TIBCO FTL Administration product guide for details.

With these steps completed, the FTL server cluster can be deployed by following the steps
in the next section.

Deploying the FTL Server Cluster

Before you begin
- TIBCO FTL and TIBCO EMS must already be installed on each machine where an FTL
server is to be started.
- The clocks on all machines where FTL servers will be running must be synchronized.
- The YAML configuration must have been generated.

Procedure

Repeat the following steps for each FTL server in the cluster.

1. Choose two existing empty directories or create two new directories to serve as the
general FTL server data directory and the FTL store-specific data directory.

2. Configure the FTL server to use one of the chosen directories as its general data
directory and the other as its FTL store-specific data directory. This can be done by
adding the data and -store parameters under the corresponding server entry in the
servers section of the YAML configuration.

servers:
 # ...

TIBCO Enterprise Message Service™ User Guide

396 | FTL Stores

 <FTL server name>:
 # ...
 - realm:
 data: <absolute path to general FTL server data directory>
 - tibemsd:
 # ...
 -store: <absolute path to FTL store-specific data
directory>

If not specified, both the general data directory and the FTL store-specific data
directory for the FTL server will default to the current working directory.

3. Run the FTL server executable.

tibftlserver -n <FTL server name> -c <path to YAML configuration>

Configuring FTL Stores in the EMS Server
This section lists the stores.conf parameters, tibemsd.conf parameters and EMS server
options that are required, unique, unsupported, or which have differing behavior for FTL
stores.

The EMS server only supports JSON-based configuration when using FTL stores. All .conf
configuration files will need to be converted into a JSON-based configuration file. See
Managing the JSON Configuration for details on how to do this.

stores.conf Parameters
The following table describes the stores.conf parameters required for FTL stores. Any
stores.conf parameters not listed here are unsupported when using FTL stores.

Parameter Name Description

[store_name] [store_name] is the name that identifies this store
configuration.

Note that the square brackets [] DO NOT indicate that the
store_name is an option; they must be included around the

TIBCO Enterprise Message Service™ User Guide

397 | FTL Stores

Parameter Name Description

name.

type=ftl Identifies the store type. This parameter is required for all
store types. The type corresponding to FTL stores is ftl.

Other available store types are as follows:

 l file – for file-based stores.

 l as – for grid stores.

mode The mode determines whether messages persisted in the
store will be written to disk synchronously or asynchronously
by FTL. The value can be either:

async - messages are persisted on disk using asynchronous
I/O calls.

sync - messages are persisted on disk using synchronous I/O
calls.

If not specified, the default for FTL stores is async.

See Persistence with FTL Stores for more information.

EMS does not support configuration of multiple store types in the same server. If using FTL
stores, all stores in the configuration must be of type ftl.

tibemsd.conf Parameters
The following table describes the tibemsd.conf parameters that are specific to FTL stores,
unsupported with FTL stores, or which behave differently when used with FTL stores.

Parameter Name Description

Parameters Specific to FTL Stores

in_memory_replication When enabled, data will be replicated to all EMS
servers in the cluster, but will not be persisted to

TIBCO Enterprise Message Service™ User Guide

398 | FTL Stores

Parameter Name Description

disk.

Enabling this parameter will enhance the
performance of FTL stores at the cost of disk
persistence.

See In-Memory Replication for more information.

ftl_disk_preallocation This parameter reserves disk space for the FTL
persistence underlying FTL stores. The value should
be specified units of MB or GB.

For example:

ftl_disk_preallocation = 20GB

This option should be considered if the FTL stores
deployment experiences performance issues when
there is a large pending message backlog.

This option is not applicable if
in_memory_persistence is enabled.

Parameters With Differing Behavior for FTL Stores

max_client_msg_size When using FTL stores, the default value of this
parameter is set to 10 MB instead of being
unbounded. Even though the maximum possible
value is still 2 GB, we recommend that application
programs use much smaller messages, since larger
messages will strain the performance limits of most
current hardware and operating system platforms.

server_heartbeat_server
server_timeout_server_connection

When using FTL stores, these parameters only affect
server-to-server route connections. They have no
effect on the behavior of fault-tolerance. The
specifics of fault-tolerance are handled directly by
FTL.

TIBCO Enterprise Message Service™ User Guide

399 | FTL Stores

Parameter Name Description

Parameters Unsupported for FTL Stores

All parameters with prefix ft_ aside
from ft_reconnect_timeout

In general, any parameters that configure fault-
tolerance between EMS servers are ignored when
using FTL stores. The specifics of fault-tolerance are
handled directly by FTL.

This means that all parameters that begin with the
prefix ft_ are ignored if a server is using FTL
stores, with the one exception being the ft_
reconnect_timeout parameter which is still
honored.

listen This parameter is ignored when present in the EMS
server configuration.

The EMS server listen URLs must be configured via
the -listens parameter in the FTL server YAML
configuration.

module_path When using FTL stores, this parameter cannot be
used to specify the FTL shared libraries to be
loaded by the EMS server. The EMS server will
always load the FTL shared libraries corresponding
to the hosting FTL server.

store This parameter may cause unexpected behavior if
present in the EMS server configuration.

The location of the FTL store data must be
configured via the -store parameter in the FTL
server YAML configuration.

monitor_listen
health_check_listen (deprecated)

This parameter may cause unexpected behavior if
present in the EMS server configuration.

The monitor_listen parameter in the FTL server
YAML configuration must be used to configure the
port on which the EMS server listens for health

TIBCO Enterprise Message Service™ User Guide

400 | FTL Stores

Parameter Name Description

check and Prometheus metrics requests.

logfile
log_trace
logfile_max_count
logfile_max_size

When using FTL stores, the EMS server log file
should not be configured. See the Logging With FTL
Stores section for details on setting up FTL server
logging.

secondary_logfile
secondary_monitor_listen
secondary_health_check_listen
(deprecated)

These parameters are ignored when present in the
EMS server configuration.

When using FTL stores, the EMS server roles are
implicit. Since these parameters are only valid
when the secondary role is explicitly defined, they
are unsupported for FTL stores.

Persistence with FTL Stores
FTL stores can be configured to persist data to disk synchronously, asynchronously, or only
in-memory. Each configuration offers its own advantages in terms of performance and
reliability.

Synchronous

If an FTL store is configured with mode=sync, all data sent to the store is synchronously
written to disk via FTL.

Synchronous mode for FTL stores provides high reliability with guaranteed message
persistence on disk. Message processing performance may be lower than other persistence
modes due to the additional latency introduced by synchronous disk writes.

Asynchronous Replication

If an FTL store is configured with mode=async, all data sent to the store is persisted to disk
asynchronously. Messages sent to a destination that is mapped to an asynchronous mode
FTL store are synchronously replicated to at least a majority of EMS servers within the
cluster to guarantee data persistence and redundancy in memory, then asynchronously
written to disk via FTL.

TIBCO Enterprise Message Service™ User Guide

401 | FTL Stores

Asynchronous mode for FTL stores can offer higher performance at the cost of guaranteed
message persistence on disk. This persistence mode can be especially advantageous in
deployments with slower disks.

If the mode parameter is not configured for a user-defined FTL store, it is set to
asynchronous persistence mode by default.

In-Memory Replication

The in_memory_replication EMS server parameter can be used to configure the
deployment to persist message data and state information only in memory and avoid all
disk writes. This parameter applies to all FTL stores in the deployment and overrides the
mode parameter of all stores.

In-memory persistence mode offers higher FTL store performance at the cost of disk
persistence. This persistence model is only suggested for deployments with higher
tolerance for message loss. Users are encouraged to measure whether the desired
performance is achievable using synchronous or asynchronous persistence modes before
considering in-memory persistence.

The procedure for shutting down the FTL server cluster differs when this parameter is
enabled. See Shutting Down and Restarting an In-Memory Cluster for details.

Unsupported tibemsd Options
The table below lists the EMS server command-line options that are unsupported when
using FTL stores. All unsupported EMS server command-line options are ignored when
specified in the FTL server YAML configuration.

Option Description

-config When using FTL stores, the EMS server reads its
configuration directly from the FTL server cluster.
The tibemsjson2ftl tool must be used to upload
the EMS server configuration to the FTL server
cluster.

-secondary When using FTL stores, the EMS server roles are
implicit, which makes the -secondary option

TIBCO Enterprise Message Service™ User Guide

402 | FTL Stores

Option Description

irrelevant.

-ft_active
-ft_activation

When using FTL stores, the specifics of fault-
tolerance are handled by the FTL server cluster.

Managing the JSON Configuration
Creating and editing the JSON configuration can be done using the tibemsconf2json tool
and TIBCO Messaging Manager, respectively.

Using the tibemsconf2json Tool

The entirety of the EMS server configuration can first be defined via the .conf configuration
files. The tibemsconf2json tool can then be used to convert the .conf configuration files
into a JSON configuration file. See Conversion of Server Configuration Files to JSON for
more information.

The configuration for an FTL store in stores.conf would be of the following format:

[store_name] # mandatory -- square brackets included.
type=ftl
 [mode=async|sync]

The tibemsconf2json tool cannot be used to make changes to the JSON configuration file
after it has been generated.

Using the TIBCO Messaging Manager

Subsequent modifications to the JSON configuration should be done using TIBCO
Messaging Manager. For details, refer to the TIBCO Messaging Manager documentation.

Server Configuration Upload/Download
When configured to use FTL stores, the EMS server will first connect to the FTL server
cluster and fetch the configuration information before beginning its start-up sequence. The

TIBCO Enterprise Message Service™ User Guide

403 | FTL Stores

JSON configuration must be available in the FTL server cluster prior to starting the EMS
server. If no configuration is available in the cluster, the EMS server will start-up with a
default configuration.

The tibemsjson2ftl tool can be used to upload JSON configuration files to a specified FTL
server cluster. It can also download JSON configuration files from a specified cluster.

Running the tibemsjson2ftl Tool

When the EMS server doesn’t find an EMS server configuration in the FTL server cluster, its
subsequent behavior is dependent on whether the -config_wait parameter has been set
in the FTL server cluster configuration. If present, the EMS server will halt its start-up
process until the configuration becomes available. This provides the user with a chance to
upload their own EMS server configuration to the cluster. If the parameter is not present,
the server will simply start with a default configuration.

The tibemsjson2ftl tool can be used to upload JSON-based EMS configuration files to a
specified FTL server cluster. It can also download JSON configuration files from a specified
cluster.

The tibemsjson2ftl tool is invoked from the command-line. The tool is dependent on the
FTL C client libraries, so the LD_LIBRARY_PATH environment variable must be set before
running it.

export LD_LIBRARY_PATH=<FTL_HOME>/lib:$LD_LIBRARY_PATH
 tibemsjson2ftl options

tibemsjson2ftl Options

The following table shows the options that are used with the tibemsjson2ftl tool.

Option Description

-url url The pipe-separated list of URLs of the FTL server cluster to
connect to.

The URLs must be in one of these forms:

http://<host>:<port>
https://<host>:<port>

TIBCO Enterprise Message Service™ User Guide

404 | FTL Stores

Option Description

-json pathname The absolute path to the JSON configuration file to be
uploaded to the FTL server cluster.

When the -download parameter is specified, the downloaded
JSON configuration will be written to the value passed to this
parameter.

-download When specified, tibemsjson2ftl will download the JSON
configuration from the FTL server cluster and write it to the file
passed to -json.

If this parameter is not specified, the tool will default to
uploading the JSON configuration to the FTL server cluster.

-trustfile path Path to the trust file created in the Initializing FTL Server
Cluster Security section. Required when connecting to a secure
FTL server cluster.

-user user User name to use when connecting to an FTL server cluster that
has authentication enabled.

If the cluster’s authentication data was created based on the
steps in Initializing FTL Server Cluster Security, the value
passed to this option should be admin.

-password password Password to use when connecting to an FTL server cluster that
has authentication enabled. This should be the same password
written to the users.txt file in Initializing FTL Server Cluster
Security.

To hide the password from casual observers, see the Password
Security section of the TIBCO FTL Administration guide.

-oauth2_access_token
token

The OAuth 2.0 access token to use when connecting to an FTL
server cluster configured with OAuth 2.0 authentication.

This option is not required when connecting to an FTL server
cluster that uses a different authentication method.

TIBCO Enterprise Message Service™ User Guide

405 | FTL Stores

Examples

Example 1

Uploading configuration to an FTL server cluster:

tibemsjson2ftl -url http://hostname:8080 -json tibemsd.json

Example 2

Downloading configuration from an FTL server cluster:

tibemsjson2ftl -url http://hostname:8080 -json tibemsd.json -download

Example 3

Uploading configuration to a secure FTL server cluster:

tibemsjson2ftl -url https://hostname:8080 -json tibemsd.json -trustfile
ftl-trust.pem -user admin -password password

Shutting Down the FTL Server Cluster
This section describes the methods available for shutting down an individual FTL server or
an entire FTL server cluster, thereby shutting down any EMS servers running under those
FTL servers.

Note: Killing an EMS server process is not supported. Since each EMS server runs
as a service within an FTL server, killing an EMS server process will simply cause
its hosting FTL server to automatically restart it.

EMS Administration Tool
The tibemsadmin tool can be used to shut down an individual FTL server. When connected
to an EMS server that is using FTL stores, the tibemsadmin shutdown command will shut

TIBCO Enterprise Message Service™ User Guide

406 | FTL Stores

down both the EMS server and its hosting FTL server process.

See the Using the EMS Administration Tool section for a list of tibemsadmin options and
usage instructions.

FTL Administration Tool
The FTL administration tool can be used to shut down an FTL server or FTL server cluster,
thereby shutting down any EMS servers running under those FTL servers. This tool is
available as part of the TIBCO FTL installation under FTL_HOME/bin/tibftladmin.

tibftladmin Options

The following table describes the tibftladmin options that are relevant to FTL stores.

Option Description

–-ftlserver url URL of the FTL server to connect to. This URL can belong to
any one of the FTL servers in the cluster.

URL must be in one of these forms:

http://<host>:<port>
https://<host>:<port>

--shutdown Shut down the FTL server process and all its services,
including its associated EMS server.

–-shutdown_cluster Alternative to the --shutdown option.

Shut down all FTL server processes in the cluster and all their
services, including all associated EMS servers.

--tls.trust.file path Path to the trust file created in the Initializing FTL Server
Cluster Security section. Required when connecting to a
secure FTL server cluster.

--user user User name to use when connecting to an FTL server cluster
that has authentication enabled.

TIBCO Enterprise Message Service™ User Guide

407 | FTL Stores

Option Description

If the cluster’s authentication data was created based on the
steps in Initializing FTL Server Cluster Security, the value
passed to this option should be admin.

--password password Password to use when connecting to an FTL server cluster
that has authentication enabled. This should be the same
password written to the users.txt file in Initializing FTL Server
Cluster Security.

To hide the password from casual observers, see the
Password Security section of the TIBCO FTL Administration
guide.

Examples

Example 1

Shut down one of the FTL servers in the cluster:

tibftladmin --ftlserver http://hostname:8080 --shutdown

Example 2

Shut down the entire FTL server cluster:

tibftladmin --ftlserver http://hostname:8080 --shutdown_cluster

Example 3

Shut down a secure FTL server cluster:

tibftladmin --ftlserver http://hostname:8080 --shutdown --tls.trust.file
ftl-trust.pem --user admin --password password

TIBCO Enterprise Message Service™ User Guide

408 | FTL Stores

Shutting Down and Restarting an In-Memory Cluster
When the in_memory_replication parameter is enabled, data is persisted only in-memory
and is not written to disk. This means that performing a shutdown of the entire FTL server
cluster by normal means would result in the loss of all FTL server state information – and
thereby, all EMS server state information. To prevent this from happening, the cluster
should only be shut down using the save_and_exit EMS administration tool command.
This command will instruct each FTL server in the cluster to write its state to disk and then
shut down. The state information for each FTL server will be written to a state file named
<FTL server name>.state under its FTL store-specific data directory.

When the FTL server cluster needs to be restarted, the first step should be to modify the
YAML configuration to instruct the cluster to load its saved state from disk upon startup.
This can be done by adding the load parameter to the tibemsd service of each FTL server
present in the YAML configuration. Each FTL server’s load parameter must be supplied with
the absolute path to the matching state file that was generated during the cluster
shutdown.

servers:
 <name of FTL server #1>
 # ...
 - tibemsd
 # ...
 load: <path to state file of FTL server #1>
 <name of FTL server #2>
 # ...
 - tibemsd
 # ...
 load: <path to state file of FTL server #2>
 <name of FTL server #3>
 # ...
 - tibemsd
 # ...
 load: <path to state file of FTL server #3>

Disaster Recovery
When using FTL stores, the disaster recovery capabilities of TIBCO FTL are extended to
EMS. Setting up a Disaster Recovery (DR) site of operations can minimize EMS server
downtime in the event that the primary site of operations becomes disabled.

TIBCO Enterprise Message Service™ User Guide

409 | FTL Stores

FTL’s disaster recovery implementation works as follows. Whenever the FTL server cluster
receives data that needs to be replicated among its constituent FTL servers, it immediately
also forwards it to an identical FTL server cluster running in a remote DR site. This means
that if the FTL server cluster at the primary site becomes unavailable, the cluster at the DR
site, and thereby the EMS servers at the DR site, can pick up right where things left off. The
only information that would have been lost is in-flight data that the FTL server cluster was
in the process of replicating when the primary site went down. Data replication to the DR
site is asynchronous and does not add latency to operations at the primary site.

Setting up the Disaster Recovery Site
FTL server clusters at both the primary site and DR site first need to be configured to
support disaster recovery and then deployed.

Procedure

1. If the FTL server cluster at the primary site is already running, first shut it down
using the EMS or FTL administration tool. See Shutting Down the FTL Server Cluster
for more information.

2. Add the drto parameter to the YAML configuration of the FTL server cluster at the
primary site. This parameter must be supplied with a pipe-separated list of URLs of
all the FTL servers belonging to the cluster at the DR site. Each URL must be of the
form <FTL server name>@<host>:<port>. If security is configured for the FTL
servers at the primary site, the user and password parameters will also need to be
added to the YAML configuration.

servers:
 <name of FTL server #1>
 # ...
 - realm:
 drto: <name of DR FTL server #1>@<host>:<port>|<name of DR FTL
server #2>@<host>:<port>|<name of DR FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of FTL server #2>
 # ...
 - realm:
 drto: <name of DR FTL server #1>@<host>:<port>|<name of DR FTL
server #2>@<host>:<port>|<name of DR FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of FTL server #3>

TIBCO Enterprise Message Service™ User Guide

410 | FTL Stores

 # ...
 - realm:
 drto: <name of DR FTL server #1>@<host>:<port>|<name of DR FTL
server #2>@<host>:<port>|<name of DR FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>

3. Start (or restart) the FTL server cluster at the primary site.

4. Copy the YAML configuration of the FTL server cluster at the primary site to the DR
site. If security is configured at the primary site, also copy over the trustfile,
keystore, keystore_password_file, password_file, and users.txt file. Rename the FTL
servers in the YAML configuration file such that there are no repeated FTL server
names between the primary and DR sites. Remove all occurrences of the drto
parameter. Alter any URLs in the core.servers list and -listens parameters that
overlap with URLs in the primary site. Also modify any invalid paths present in the
configuration.

Once the YAML has been modified for the DR site, add the drfor parameter. This
parameter must be supplied with a pipe-separated list of URLs of the FTL servers in
the primary site’s cluster. Each URL must be of the form <FTL server
name>@<host>:<port>. If security is configured for the FTL servers at the primary
site, the user and password parameters will also need to be added to the YAML
configuration.

servers:
 <name of DR FTL server #1>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server
#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of DR FTL server #2>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server
#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of DR FTL server #3>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server

TIBCO Enterprise Message Service™ User Guide

411 | FTL Stores

#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>

5. Start up the FTL server cluster at the DR site. The primary site's FTL server cluster
will connect to the DR site's FTL server cluster at this point.

Recovering After Disaster
In the event that the FTL server cluster – and thereby the EMS servers – at the primary site
becomes unavailable, the FTL servers at the DR site will need to be notified that their site
of operations has become the new primary.

This can be done by connecting the EMS admin tool to any one of the EMS servers and
issuing the activate_dr_site command.

echo activate_dr_site > admin.script
tibemsadmin -server <EMS server URL> -script admin.script

Issuing this command will cause one of the EMS servers that is not configured as
-standby_only to transition into active state.

Re-establishing a Disaster Recovery Site
Once the issues at the original primary site have been fixed, it can then be used as the new
DR site for the current primary site. To do this the following steps will need to be
performed.

Procedure

1. At the new DR site, start by deleting the general data directories and FTL store-
specific data directories of the previous FTL server cluster to remove any residual
artifacts.

2. Copy the YAML configuration from the FTL server cluster at the new primary site to
the new DR site. If security is configured at the new primary site, also copy over the
trustfile, keystore, keystore_password_file, password_file, and users.txt file. Rename
the FTL servers in the YAML configuration file so that they have the exact same
names that were used by the FTL servers in the original primary site. Alter any URLs
in the core.servers list and -listens parameters that overlap with URLs in the new

TIBCO Enterprise Message Service™ User Guide

412 | FTL Stores

primary site. Also modify any invalid paths present in the configuration.

Once the above changes have been made, replace the value of the drfor parameter
with a pipe-separated list of URLs of the FTL servers in the new primary site cluster.
Each URL must be of the form <FTL server name>@<host>:<port>. If security is
configured for the FTL servers at the new primary site, the user and password
parameters will also need to be added to the YAML configuration.

servers:
 <name of DR FTL server #1>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server
#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of DR FTL server #2>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server
#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>
 <name of DR FTL server #3>
 # ...
 - realm
 drfor: <name of FTL server #1>@<host>:<port>|<name of FTL server
#2>@<host>:<port>|<name of FTL server #3>@<host>:<port>
 user: admin
 password: file:<path to password_file>

3. Start up the FTL server cluster at the new DR site.

4. The FTL server cluster at the new primary site will need to be informed that it needs
to start replicating to a new DR site. This can be done by connecting the EMS admin
tool to the active EMS server and issuing the setup_dr_site command. This
command must be provided with a pipe-separated list of URLs of the FTL servers in
the new DR site. Each URL must be of the form <FTL server name>@<host>:<port>.

echo setup_dr_site <name of DR FTL server #1>@<host>:<port>|<name of DR FTL server
#2>@<host>:<port>|<name of DR FTL server #3>@<host>:<port>
> admin.script
 tibemsadmin -server <EMS server URL> -script admin.script

TIBCO Enterprise Message Service™ User Guide

413 | Developing an EMS Client Application

Developing an EMS Client Application
The following topics outline the development of EMS client applications in Java, C, and C#.

Jakarta Messaging Specification
EMS implements the Jakarta Messaging 2.0 and 3.0 specifications, which are backward
compatible with earlier versions of the specification.

While the old JMS 1.0.2b interfaces are still supported, newly developed applications
should use the JMS 2.0 or 1.1 interfaces instead. It is recommended to avoid using 1.0.2b
interfaces, in particular due to their lack of flexibility. With these, an application initially
written to work with topics has to be reworked if it needs to use queues, whereas an
application based on the 1.1 or 2.0 APIs relies on a generic destination infrastructure that
would not need to be altered significantly.

To get a better understanding and illustration of how the various Jakarta Messaging
objects relate to each other, refer to the Jakarta Messaging Specification and to the
samples client applications provided with EMS.

The code examples in this chapter illustrate the use of the JMS 2.0 interface.

Jakarta Messaging 3.0.0 Specification
Jakarta EE, formerly Java EE, has renamed the javax.jms package into jakarta.jms with
the Jakarta EE 9 release. The Jakarta Messaging 3.0 specification reflects the corresponding
change of namespace. EMS implements both Jakarta Messaging 2.0 (javax.jms
namespace) and 3.0 (jakarta.jms namespace) in the form of two sets of jar files.

To run applications based on the Jakarta Messaging 2.0 API, include in your CLASSPATH the
relevant jar files from the following list:

 l jakarta.jms-api-2.0.3.jar (which replaces jms-2.0.jar)

 l tibjms.jar

 l tibjmsadmin.jar

https://jakarta.ee/specifications/messaging/2.0

TIBCO Enterprise Message Service™ User Guide

414 | Developing an EMS Client Application

 l tibjmsufo.jar

 l tibrvjms.jar

To run applications based on the Jakarta Messaging 3.0 API, primarily for use in the Jakarta
EE 9+ world, use the following files instead:

 l jakarta.jms-api-3/jakarta.jms-api-3.0.0.jar

 l jakarta.jms-api-3/jakarta.jms-tibjms.jar

 l jakarta.jms-api-3/jakarta.jms-tibjmsadmin.jar

 l jakarta.jms-api-3/jakarta.jms-tibjmsufo.jar

 l jakarta.jms-api-3/jakarta.jms-tibrvjms.jar

This applies to every mention of a Jakarta Messaging 2.0 based jar file throughout the
present book.

Jakarta Messaging 2.0.3 Specification
The JMS specification has been renamed Jakarta Messaging specification as part of Jakarta
EE, which has been moved to the Eclipse Foundation. The changes introduced in JMS 2.0.1
and Jakarta Messaging 2.0.2 and 2.0.3 are mostly cosmetic, such as the replacement of
"JMS" with "Jakarta Messaging" in the API Javadoc, where appropriate.

JMS 2.0 Specification
The JMS 2.0 specification introduces several new features, including delivery delay, shared
subscriptions, asynchronous sending and the Simplified API.

The Simplified API is offered in addition to the API originally provided with JMS 1.1, which
is now called the Classic API. The Simplified API is less verbose than the Classic API, and
introduces several important new objects:

 l JMSContext

Used to create messages, as well as JMS consumers and JMS producers. Each JMS
context uses one session and one connection, but does not expose those.
Additionally, multiple JMS context objects can share the same connection.

 l JMSConsumer

TIBCO Enterprise Message Service™ User Guide

415 | Developing an EMS Client Application

A message consumer that has the ability to receive a message body without the need
to use a Message object.

 l JMSProducer

Similar to an anonymous message producer, and provides a convenient API for
configuring delivery options, message properties, and message headers.

Methods in the Simplified API throw unchecked exceptions rather than checked exceptions.
For a sample showing the Simplified API in use, see the new Java sample file called
tibjmsJMSContextSendRecv.java. This sample file demonstrates the Simplified API in the
simplest possible way; for greater detail, refer to the Java API Reference Pages.

JMS 1.1 Specification
In the JMS 1.1 specification, applications using the point to point (queues) or publish and
subscribe (topics) models use the same interfaces to create objects.

The specification refers to these interfaces as common facilities because these interfaces
create objects that can be used for either topics or queues.

JMS 1.0.2b Specification
The JMS 1.0.2b specification defined specific interfaces for topics and for queues.

The JMS 1.0.2b interfaces have the same structure as the JMS 1.1 common facilities, but
the interfaces are specific to topics or queues.

Sample Clients
TIBCO Enterprise Message Service includes several sample client applications that illustrate
various features of EMS. You may wish to view these sample clients when reading about
the corresponding features in this manual.

The samples are included in the EMS_HOME/samples/java, EMS_HOME/samples/c, and
EMS_HOME/samples/cs subdirectories of the EMS installation directory. Each subdirectory
includes a README file that describes how to compile and run the sample clients.

TIBCO Enterprise Message Service™ User Guide

416 | Developing an EMS Client Application

Getting Started walks through the procedures for setting up your EMS environment and
running some of the sample clients.

Programmer Checklists
This section provides a checklist that outlines the steps for creating an EMS application in
each language:

 l Java Programmer’s Checklist

 l C Programmer’s Checklist

 l C# Programmer’s Checklist

Java Programmer’s Checklist

Install
 l Install the EMS software release, which automatically includes the EMS jar files in the

EMS_HOME/lib subdirectory.

 l Add the full pathnames for the following jar files to your CLASSPATH:

jakarta.jms-api-2.0.3.jar
tibjms.jar

 l Programs that use the unshared state failover API must add the following file to the
CLASSPATH:

tibjmsufo.jar

 l Programs that use OAuth 2.0 authentication must add the following file to the
CLASSPATH:

json_simple-1.1.jar

 l Programs that are set to operate in FIPS 140-2 compliant mode must add the

TIBCO Enterprise Message Service™ User Guide

417 | Developing an EMS Client Application

following files to the CLASSPATH:

bc-fips-1.0.2.4.jar
 bctls-fips-1.0.17.jar

Note: All jar files listed in this section are located in the lib subdirectory of the
TIBCO Enterprise Message Service installation directory.

Code

Import the following packages into your EMS application:

import javax.jms.*;
 import javax.naming.*;

Compile

Compile your EMS application with the javac compiler to generate a .class file.

For example:

javac MyApp.java

generates a MyApp.class file.

Run

Use the java command to execute your EMS .class file.

For example:

java MyApp

C Programmer’s Checklist
Developers of EMS C programs can use this checklist during the five phases of the
development cycle.

TIBCO Enterprise Message Service™ User Guide

418 | Developing an EMS Client Application

Install

Install the EMS software release, which includes the EMS client libraries, binaries, and
header files.

Code

Application programs must:

 l Add EMS_HOME/include to the include path.

 l Include the tibems.h header file:

 #include <tibems/tibems.h>

 l Programs that use the C administration API must also include the emsadmin.h header
file:

 #include <tibems/emsadmin.h>

 l Programs that use the unshared state failover API must also include the tibufo.h
header file:

 #include <tibems/tibufo.h>

 l Call tibems_Open() to initialize the EMS C API and tibems_Close() to deallocate the
memory used by EMS when complete.

Compile and Link
 l Compile programs with an ANSI-compliant C compiler.

 l Link with the appropriate EMS C library files; see Link These Library Files.

See the samples/c/readme.txt file for details.

Run

 l UNIX

TIBCO Enterprise Message Service™ User Guide

419 | Developing an EMS Client Application

The library path must include the EMS_HOME/lib directories (which contain the
shared library files).

 l Windows

The PATH must include the ems\10.3\bin directory.

 l All Platforms

The application must be able to connect to a EMS server process (tibemsd).

Link These Library Files

EMS C programs must link the appropriate library files. The following sections describe
which files to link for your operating system platform:

 l UNIX

 l Microsoft Windows

UNIX

Include EMS_HOME/lib in your library path.

Linker Flag Description

-ltibems All programs must link using this library flag.

-ltibemslookup
 

Programs that reference the defunct EMS LDAP lookup API must link
using this library flag. This is provided so as not to break builds but will
no longer provide the feature. Non-LDAP JNDI lookups are still supported.

-ltibemsadmin Programs that use the C administration library must link using this library
flag.

-ltibemsufo Programs that use the unshared state failover library must link using this
library flag.

TIBCO Enterprise Message Service™ User Guide

420 | Developing an EMS Client Application

Microsoft Windows

Library File Description

Use the /MT compiler option.

tibems.lib All programs must link this library.

tibemslookup.lib Programs that reference the defunct EMS LDAP lookup API must link
using this library. This is provided so as not to break builds but will no
longer provide the feature. Non-LDAP JNDI lookups are still supported.

tibemsadmin.lib Programs that use the C administration library must link using this
library.

tibemsufo.lib Programs that use the C unshared state failover library must link using
this library.

C# Programmer’s Checklist
Developers of EMS C# programs can use this checklist during the four phases of the
development cycle.

The EMS .NET client libraries are built to the .NET Standard 2.0 specification. They can be
used to build both .NET Framework applications, which can only run on Windows, and
.NET Core applications, which can run on both Windows and Linux.

Install

Install the EMS software release, which automatically includes the EMS assembly DLLs in
the EMS_HOME\bin subdirectory.

Code

Import the correct EMS assembly (see the following table).

TIBCO Enterprise Message Service™ User Guide

421 | Developing an EMS Client Application

Version DLL

.NET API TIBCO.EMS.dll

.NET Administration API TIBCO.EMS.ADMIN.dll

.NET Unshared State API TIBCO.EMS.UFO.dll

Compile

Both .NET Framework and .NET Core applications can be built using the Microsoft dotnet
build tool, C# project files (*.csproj) and, optionally, solution files (*.sln).

For example, to build a .NET Framework EMS application:

> dotnet build my-EMS-net-program.csproj -f net48

 This will create a .NET Framework executable application: my-EMS-net-program.exe.

And to build a .NET Core EMS application:

> dotnet build my-EMS-net-core-program.csproj -f netcoreapp6.0

 This will create a .NET Core DLL application: my-EMS-net-core-program.dll.

The EMS_HOME/samples/cs and EMS_HOME/samples/cs/admin directories contain sample C#
project files (*.csproj) and solution files (*.sln) that are used to build the .NET
Framework and .NET Core sample applications.

Run

The .NET Framework application built in the above example can be executed directly in the
.NET Framework environment:

> my-EMS-net-program.exe

 The .NET Core application built in the above example can be executed in the .NET Core
runtime environment:

> dotnet my-EMS-net-core-program.dll

TIBCO Enterprise Message Service™ User Guide

422 | Developing an EMS Client Application

 l In the .NET Framework environment, the EMS assembly must be in the global
assembly cache (this location is preferred), or in the system path, or in the same
directory as your program executable.

 l In the .NET Framework environment, to automatically upgrade to the latest .NET
assemblies, include the appropriate policy file in the global cache. See Automatic
Upgrades Between Versions for more information.

 l In the .NET Core environment, the EMS assembly must be in the same directory as
your application executable.

 l In both the .NET Framework and .NET Core environments, the application must be
able to connect to a EMS server process (tibemsd).

Assembly Versioning in the Windows .NET Framework
Environment
TIBCO Enterprise Message Service assembly DLLs are versioned using the format
1.0.release.version, where release is the EMS release number and version is an arbitrary
value. For example, the assembly version number for software release 10.3.0 is similar to
1.0.1030.3.

Automatic Upgrades Between Versions

In order to allow for seamless upgrades between releases, the TIBCO Enterprise Message
Service installation includes policy and configuration files that redirect existing applications
from an older assembly to the newest assembly. There is a policy and configuration file for
each EMS library:

 l A policy.1.0.assembly file. For example, policy.1.0.TIBCO.EMS.dll. The policy file
must be included in the global cache to enable automatic upgrades.

 l An assembly.config file. For example, TIBCO.EMS.dll.config. The configuration file
must be present when the related policy file is added to the global cache.

The following table shows the policy and configuration files for each EMS assembly.

TIBCO Enterprise Message Service™ User Guide

423 | Developing an EMS Client Application

Version Files

.NET API policy.1.0.TIBCO.EMS.dll
TIBCO.EMS.dll.config

.NET Administration API policy.1.0.TIBCO.EMS.ADMIN.dll
TIBCO.EMS.ADMIN.dll.config

.NET Unshared State API policy.1.0.TIBCO.EMS.UFO.dll
TIBCO.EMS.UFO.dll.config

Enabling Updates

To enable automatic updates for a library, add the appropriate policy file to the global
cache. Note that the related configuration file must be located in the directory with the
policy file in order to add the policy file to the global cache.

Disabling Automatic Upgrades

If you do not want your older applications to automatically move to the newer version, do
not include the policy DLL in the global cache. When the policy.1.0.assembly file is
absent, the client application is not upgraded.

Running Multiple Clients from Different EMS Releases

To deploy two or more applications that are built with different TIBCO Enterprise Message
Service releases:

 l Build clients using the different .NET client assemblies.

 l Include all desired versions of the .NET client assemblies in the global cache.

 l Do not include the policy DLL in the global cache.

Excluded Features and Restrictions
This section summarizes features that are not available in the .NET library.

TIBCO Enterprise Message Service™ User Guide

424 | Developing an EMS Client Application

Feature Framework Core

Distributed transactions Yes No

XA protocols for external transactions managers No No

ConnectionConsumer, ServerSession, ServerSessionPool No No

LDAP JNDI Lookups Yes Windows only

Character Encoding

.NET programs represent strings within messages as byte arrays. Before sending an
outbound message, EMS programs translate strings to their byte representation using an
encoding, which the program specifies. Conversely, when EMS programs receive inbound
messages, they reconstruct strings from byte arrays using the same encoding.

When a program specifies an encoding, it applies to all strings in message bodies (names
and values), and properties (names and values). It does not apply to header names nor
values. The method BytesMessage.WriteUTF always uses UTF-8 as its encoding.

 l Outbound Messages

Programs can determine the encoding of strings in outbound messages in three
ways:

 o Use the default global encoding, UTF-8.

 o Set a non-default global encoding (for all outbound messages) using
Tibems.SetEncoding.

 o Set the encoding for an individual message using Tibems.SetMessageEncoding.

 l Inbound Messages

An inbound message from another EMS client explicitly announces its encoding. A
receiving client decodes the message using the proper encoding.

For more information about character encoding, see Character Encoding in Messages.

TIBCO Enterprise Message Service™ User Guide

425 | Developing an EMS Client Application

Connection Factories
A client must connect to a running instance of the EMS server to perform any Jakarta
Messaging operations. A connection factory is an object that encapsulates the data used to
define a client connection to an EMS server. The minimum factory parameters are the type
of connection and the URL for the client connection to the EMS server.

A connection factory is either dynamically created by the application or obtained from a
data store by means of a naming service, such as a Java Naming and Directory Interface
(JNDI) server or a Lightweight Directory Access Protocol (LDAP) server.

Looking up Connection Factories
EMS provides a JNDI implementation that can be used to store connection factories. Java,
C, and C# clients can use the EMS JNDI implementation to lookup connection factories.

You can also store connection factories in any JNDI-compliant naming service or in an
LDAP server. Java clients can lookup connection factories in any JNDI-compliant naming
service. C# clients can use LDAP servers but C clients cannot.

Look up Administered Objects Stored in EMS describes how to lookup a connection factory
from an EMS server. How to create connection factories in a EMS server is described in
Create and Modify Administered Objects in EMS.

Dynamically Creating Connection Factories
Normally client applications use JNDI to look up a Connection Factory object. However,
some situations require clients to connect to the server directly. To connect to the EMS
server directly, the application must dynamically create a connection factory.

The following examples show how to create a connection factory in each supported
language for Jakarta Messaging connections. Each API also supports connection factories
for Jakarta Messaging XA connections.

In each example, the serverUrl parameter in these expressions is a string defining the
protocol and the address of the running instance of the EMS Server. The serverUrl
parameter has the form:

 serverUrl = protocol://host:port

TIBCO Enterprise Message Service™ User Guide

426 | Developing an EMS Client Application

The supported protocols are tcp and ssl. For example:

 serverUrl = tcp://server0:7222

For a fault-tolerant connection, you can specify two or more URLs. For example:

 serverUrl = tcp://server0:7222,tcp://server1:7344

See Configure Clients for Shared State Failover Connections for more information. For
details on using TLS for creating secure connections to the server, see Configure TLS in
EMS Clients and Create Connection Factories for Secure Connections.

 l Java

To dynamically create a TibjmsConnectionFactory object in a Java client:

ConnectionFactory factory = new com.tibco.tibjms.TibjmsConnectionFactory
(serverUrl);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

To dynamically create a tibemsConnectionFactory type in a C client:

factory = tibemsConnectionFactory_Create();
status = tibemsConnectionFactory_SetServerURL(factory, serverUrl);

See the tibemsMsgProducer.c sample client for a working example.

 l C# To dynamically create a ConnectionFactory object in a C# client:

ConnectionFactory factory = new TIBCO.EMS.ConnectionFactory(serverUrl);

See the csMsgProducer.cs sample client for a working example.

Set Connection Attempts, Timeout, and Delay
Parameters
By default, a client will attempt to connect to the server two times with a 500 ms delay
between each attempt.

TIBCO Enterprise Message Service™ User Guide

427 | Developing an EMS Client Application

A client can modify this behavior by setting new connection attempt count and delay
values. There are also a number of factors that may cause a client to hang while
attempting to create a connection to the EMS server, so you can set a connection timeout
value to abort a connection attempt after a specified period of time. For best results,
timeouts should be at least 500 milliseconds. EMS also allows you to establish separate
count, delay and timeout settings for reconnections after a fault-tolerant failover, as
described in Set Reconnection Failure Parameters.

The following examples establish a connection count of 10, a delay of 1000 ms and a
timeout of 1000 ms.

 l Java

Use the TibjmsConnectionFactory object’s setConnAttemptCount(),
setConnAttemptDelay(), and setConnAttemptTimeout() methods to establish new
connection failure parameters:

factory.setConnAttemptCount(10);
factory.setConnAttemptDelay(1000);
factory.setConnAttemptTimeout(1000);

 l C

Use the tibemsConnectionFactory_SetConnectAttemptCount and
tibemsConnectionFactory_SetConnectAttemptDelay functions to establish new
connection failure parameters:

status = tibemsConnectionFactory_SetConnectAttemptCount(factory, 10);
status = tibemsConnectionFactory_SetConnectAttemptDelay(factory, 1000);
status = tibemsConnectionFactory_SetConnectAttemptTimeout(factory, 1000);

 l C#

Use the ConnectionFactory.SetConnAttemptCount,
ConnectionFactory.SetConnAttemptDelay, and
ConnectionFactory.SetConnAttemptTimeout and methods to establish new
connection failure parameters:

factory.setConnAttemptCount(10);
factory.setConnAttemptDelay(1000);
factory.setConnAttemptTimeout(1000);

TIBCO Enterprise Message Service™ User Guide

428 | Developing an EMS Client Application

Connect to the EMS Server
A connection with the EMS server is defined by the Connection object obtained from a
Connection Factory.

For more information, see Connection Factories.

A connection is a fairly heavyweight object, so most clients will create a connection once
and keep it open until the client exits. Your application can create multiple connections, if
necessary.

The following examples show how to create a Connection object.

 l Java

Use the TibjmsConnectionFactory object’s createConnection() method to create a
Connection object:

Connection connection = factory.createConnection(userName, password);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsConnectionFactory_CreateConnection function to create a
connection of type tibemsConnection:

tibemsConnection connection = NULL;
status = tibemsConnectionFactory_CreateConnection(factory, &connection,
userName, password);

If there is no connection factory, a C client can use the tibemsConnection_Create
function to dynamically create a tibemsConnection type:

status = tibemsConnection_Create(&connection, serverUrl, NULL, userName,
password);

The tibemsConnection_Create function exists for backward compatibility, but the
recommended procedure is that you create tibemsConnection objects from factories.

See the tibemsMsgProducer.c sample client for a working example.

 l C#

Use the ConnectionFactory.CreateConnection method to create a Connection
object:

../api/javadoc/javax/jms/Connection.html

TIBCO Enterprise Message Service™ User Guide

429 | Developing an EMS Client Application

Connection connection =factory.CreateConnection(userName, password);

See the csMsgProducer.cs sample client for a working example.

Start, Stop and Close a Connection
Before consuming messages, the Message Consumer client must "start" the connection. If
you wish to temporarily suspend message delivery, you can "stop" the connection. When a
client application exits, all open connections must be "closed."

See Create a Message Consumer for more details about Message Consumers.

Unused open connections are eventually closed, but they do consume resources that could
be used for other applications. Closing a connection also closes any sessions created by
the connection.

See the "start," "stop" and "close" methods for the Java Connection object, the C
tibemsConnection type, and the C# Connection object.

Create a Session
A Session is a single-threaded context for producing or consuming messages. You create
Message Producers or Message Consumers using Session objects.

A Session can be transactional to enable a group of messages to be sent and received in a
single transaction. A non-transactional Session can define the acknowledge mode of
message objects received by the session. See Message Acknowledgement for details.

 l Java

Use the Connection object’s createSession() method to create a Session object.

For example, to create a Session that uses the default AUTO_ACKNOWLEDGE session
mode:

Session session = connection.createSession();

The EMS extended session modes, such as NO_ACKNOWLEDGE, require that you include
the com.tibco.tibjms.Tibjms constant when you specify the EMS session mode. For

TIBCO Enterprise Message Service™ User Guide

430 | Developing an EMS Client Application

example, to create a Session that uses the NO_ACKNOWLEDGE session mode:

Session session =
connection.createSession(com.tibco.tibjms.Tibjms.NO_ACKNOWLEDGE);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsConnection_CreateSession function to create a session of type
tibemsSession:

tibemsSession session = NULL;
status = tibemsConnection_CreateSession(connection,&session, TIBEMS_FALSE,
TIBEMS_AUTO_ACKNOWLEDGE);

See the tibemsMsgProducer.c sample client for a working example.

 l C#

Use the Connection.CreateSession method to create a Session object:

Session session = connection.CreateSession(false, Session.AUTO_ACKNOWLEDGE);

See the csMsgProducer.cs sample client for a working example.

Set an Exception Listener
All the APIs support the ability to set an exception listener on the connection that gets
invoked when a connection breaks or experiences a fault-tolerant failover.

When the event is a disconnect, the exception handler can call various EMS methods
without any problem. However, when the event is a fault-tolerant failover, the exception
handler is not allowed to call any EMS method. To do so risks a deadlock. You can call the
setExceptionOnFTSwitch method to receive an exception that contains the new server URL
after a fault-tolerant failover has occurred.

The following examples demonstrate how to establish an exception listener for a
connection.

 l Java

Implement an ExceptionListener.onException method, use the Connection

TIBCO Enterprise Message Service™ User Guide

431 | Developing an EMS Client Application

object’s setExceptionListener method to register the exception listener, and call
Tibjms.setExceptionOnFTSwitch to call the exception handler after a fault-tolerant
failover:

public class tibjmsMsgConsumer
 implements ExceptionListener
{
.....
public void onException(JMSException e)
 {
 /* Handle exception */
 }
.....
connection.setExceptionListener(this);
com.tibco.tibjms.Tibjms.setExceptionOnFTSwitch(true);
.....
}

See the tibjmsMsgConsumer.java sample client for a working example (without the
setExceptionOnFTSwitch call).

 l C

Define an onException function to handle exceptions,
use the tibemsConnection_SetExceptionListener function to call onException
when an error is encountered, and call tibems_setExceptionOnFTSwitch to call the
exception handler after a fault-tolerant failover:

void onException(
 tibemsConnection conn,
 tibems_status reason,
 void* closure)
 {
 /* Handle exception */
 }

 status = tibemsConnection_SetExceptionListener(
 connection,
 onException,
 NULL);
 tibems_setExceptionOnFTSwitch(TIBEMS_TRUE);

See the tibemsMsgConsumer.c sample client for a working example (without the
setExceptionOnFTSwitch call).

TIBCO Enterprise Message Service™ User Guide

432 | Developing an EMS Client Application

 l C#

Implement an IExceptionListener.OnException method, set the Connection
object’s ExceptionListener property to register the exception listener, and call
Tibems.SetExceptionOnFTSwitch to call the exception handler after a fault-tolerant
failover:

 public class csMsgConsumer : IExceptionListener
 {
.....
 public void OnException(EMSException e)
 {
 /* Handle exception */
 }

 connection.ExceptionListener = this;
 TIBCO.EMS.Tibems.SetExceptionOnFTSwitch(true);

 }

See the csMsgConsumer.cs sample client for a working example (without the
setExceptionOnFTSwitch call).

Dynamically Create Topics and Queues
EMS provides a JNDI implementation that can be used to store topics and queues. Java, C,
and C# clients can use the EMS JNDI implementation to lookup topics and queues.

You can also store topics and queues in any JNDI-compliant naming service or in an LDAP
server. Java clients can lookup topics and queues in any JNDI-compliant naming service.
C# clients can use LDAP servers but C clients cannot.

Look up Administered Objects Stored in EMS describes how to lookup topics and queues
from an EMS server.

Clients can also create destinations as needed. If a client requests the creation of a
destination that already exists, the existing destination is used. If the destination does not
exist, and the specification of the topics.conf, queues.conf, or acl.conf files allow the
destination, the server dynamically creates the new destination. The new destination
inherits properties and permissions from its ancestors as described in Wildcards and
Dynamically Created Destinations. The destination is managed by the server as long as
clients that use the destination are running.

TIBCO Enterprise Message Service™ User Guide

433 | Developing an EMS Client Application

Note: Because dynamic destinations do not appear in the configuration files, a
client cannot use JNDI to lookup dynamically created queues and topics.

The following examples show how to create destinations dynamically:

 l Java

Use the Session object’s create topic method to create a topic as a Destination
object:

Destination topic = session.createTopic(topicName);

Use the Session object’s createQueue() method to create a queue as a Destination
object:

Destination queue = session.createQueue(queueName);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsTopic_Create function to create a topic of type tibemsDestination:

tibemsDestination topic = NULL;
status = tibemsTopic_Create(&topic,topicName);

Use the tibemsQueue_Create function to create a queue of type tibemsDestination:

tibemsDestination queue = NULL;
status = tibemsQueue_Create(&queue,queueName);

See the tibemsMsgProducer.c sample client for a working example.

 l C#

Use the Session.CreateTopic method to create a Topic object:

Destination topic = session.CreateTopic(topicName);

Use the Session.CreateQueue method to create a Queue object:

Destination queue = session.CreateQueue(queueName);

TIBCO Enterprise Message Service™ User Guide

434 | Developing an EMS Client Application

See the csMsgProducer.cs sample client for a working example.

Create a Message Producer
A Message Producer is an EMS client that either publishes messages to a topic or sends
messages to a queue. When working with topics, a Message Producer is commonly referred
to as a Publisher.

Optionally, when creating a Message Producer, you can set the destination to NULL and
specify the destination when you send or publish a message, as described in Send
Messages.

You must have send permission on a queue to create a message producer that sends
messages to that queue. You must have durable permission on the topic to create a new
durable subscriber for that topic, and have at least use_durable permission on the topic to
attach to an existing durable subscriber for the topic. See User Permissions for details.

The following examples create a message producer that sends messages to the queue that
was dynamically created in Dynamically Create Topics and Queues.

 l Java

Use the Session object’s createProducer() method to create a MessageProducer
object:

MessageProducer QueueSender = session.createProducer(queue);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsSession_CreateProducer function to create a message producer of
type tibemsMsgProducer:

tibemsMsgProducer QueueSender = NULL;
status = tibemsSession_CreateProducer(session,&QueueSender,queue);

See the tibemsMsgProducer.c sample client for a working example.

 l C#

Use the Session.CreateProducer method to create a MessageProducer object:

TIBCO Enterprise Message Service™ User Guide

435 | Developing an EMS Client Application

MessageProducer QueueSender = session.CreateProducer(queue);

See the csMsgProducer.cs sample client for a working example.

Configure a Message Producer
A message producer can be configured to generate messages with default headers and
properties that define how those messages are to be routed and delivered.

Specifically, you can:

 l Set the producer's default delivery mode.

 l Set whether message IDs are disabled.

 l Set whether message timestamps are disabled.

 l Set the producer's default priority.

 l Set the default length of time that a produced message should be retained by the
message system.

For example, as described in the Message Delivery Modes, you can set the message deliver
mode to either PERSISTENT, NON_PERSISTENT, or RELIABLE_DELIVERY.

 l Java

Use the MessageProducer object’s setDeliveryMode() method to configure your
Message Producer with a default delivery mode of RELIABLE_DELIVERY:

QueueSender.setDeliveryMode(com.tibco.tibjms.Tibjms.RELIABLE_DELIVERY);

To configure the Message Producer with a default delivery mode of NON_PERSISTENT:

QueueSender.setDeliveryMode(javax.jms.DeliveryMode.NON_PERSISTENT);

See the tibjmsMsgProducerPerf.java sample client for a working example.

Note: Delivery mode cannot be set by using the Message.setJMSDeliveryMode()
method. According to the Jakarta Messaging specification, the publisher ignores
the value of the JMSDeliveryMode header field when a message is being
published.

TIBCO Enterprise Message Service™ User Guide

436 | Developing an EMS Client Application

 l C

Use the tibemsMsgProducer_SetDeliveryMode function to configure your Message
Producer to set a default delivery mode for each message
it produces to RELIABLE_DELIVERY:

tibems_int deliveryMode = TIBEMS_RELIABLE;
status tibemsMsgProducer_SetDeliveryMode(QueueSender, deliveryMode);

 l C#

Set the DeliveryMode on the MessageProducer object to RELIABLE_DELIVERY:

QueueSender.DeliveryMode = DeliveryMode.RELIABLE_DELIVERY;

See the csMsgProducerPerf.cs sample client for a working example.

Create a Completion Listener for Asynchronous
Sending
TIBCO Enterprise Message Service provides APIs for a Message Producer to send messages
either synchronously or asynchronously. For asynchronous sending, you need to implement
a CompletionListener that serves as an asynchronous event handler for message send
result notification.

A completion listener implementation has two methods: onCompletion() is invoked after a
message has successfully been sent, and onException() is invoked if the send failed. These
methods are invoked in a different thread from that in which the message was sent. You
implement the methods to perform the desired actions when the application is notified of
send success or failure. Your implementation should handle all exceptions, and it should
not throw any exceptions.

Once you create a completion listener, you pass it as an argument into the
MessageProducer send method, or into the JMSProducer setAsync() method. If passed
into the JMSProducer setAsync method, the JMSProducer will always send
asynchronously.

 l Java

Create an implementation of the CompletionListener interface, create a

TIBCO Enterprise Message Service™ User Guide

437 | Developing an EMS Client Application

CompletionListener and pass that into the appropriate send method:

/* create connection, session, producer, message */
TibjmsCompletionListener completionListener = new
 TibjmsCompletionListener();
msgProducer.send(destination, msg, completionListener);

Create a CompletionListener class and Implement the onCompletion() and
onException() method to perform the desired actions when a message arrives:

class TibjmsCompletionListener implements CompletionListener
{
 public void onCompletion(Message msg)
 {
 /* Handle the send success case for the message */
 }
 public void onException(Message msg, Exception ex)
 {
 /* Handle the send failure case for the message */
 }
}

See the tibjmsMsgProducer.java sample client for a working example.

 l C

In C, Implement an onCompletion() function to perform the desired actions when a
message is sent:

static void
 onCompletion(tibemsMsg msg, tibems_status status, void* closure)
 {
 if (status == TIBEMS_OK)
 {
 /* Handle the send success case for the message */
 }
 else
 {
 /* Handle the send failure case for the message */
 }
 }
 /* Create a connection, session, and producer. When sending, pass
 * the onCompletion() function as the tibemsMsgCompletionCallback
 */
 status = tibemsMsgProducer_AsyncSend(producer, msg, onCompletion,
NULL);

TIBCO Enterprise Message Service™ User Guide

438 | Developing an EMS Client Application

See the tibemsMsgProducer.c sample client for a working example.

 l C#

Create an implementation of the ICompletionListener interface, create a
CompletionListener and pass that into the appropriate send method.

EMSCompletionListener completionListener = new EMSCompletionListener();
producer.Send(destination, msg, completionListener);

Create an implementation of the IMessageListener interface to perform actions
when a message is sent:

class EMSCompletionListener : ICompletionListener
{
 public void OnCompletion(Message msg)
 {
 /* Handle the send success case for the message */
 }
 public void OnException(Message msg, Exception ex)
 {
 /* Handle the send failure case for the message */
 }
}

See the csMsgProducer.cs sample client for a working example.

Create a Message Consumer
Message consumers are clients that receive messages published to a topic or sent to a
queue. When working with topics, a Message Consumer is commonly referred to as a
Subscriber.

A Message Consumer can be created with a "message selector" that restricts the
consumption of message to those with specific properties. When creating a Message
Consumer for topics, you can set a noLocal attribute that prohibits the consumption of
messages that are published over the same connection from which they are consumed.

Carefully consider the message selectors that are used with queue consumers. Because
messages that do not match a queue consumer’s message selectors remains in the queue
until it is retrieved by another consumer, a non-matching message can experience many

TIBCO Enterprise Message Service™ User Guide

439 | Developing an EMS Client Application

failed selectors. This is especially so when queue consumers connect, consume a message,
and immediately disconnect.

As described in Durable Subscribers for Topics, messages published to topics are only
consumed by active subscribers to the topic; otherwise the messages are not consumed
and cannot be retrieved later. You can create a durable subscriber that ensures messages
published to a topic are received by the subscriber, even if it is not currently running. For
queues, messages remain on the queue until they are either consumed by a Message
Consumer, the message expiration time has been reached, or the maximum size of the
queue is reached.

The following examples create a Message Consumer that consumes messages from the
queue and a durable subscriber that consumes messages from a topic. The queue and
topic are those that were dynamically created in Dynamically Create Topics and Queues.

Note: The createDurableSubscriber method either creates a new durable
subscriber for a topic or attaches the client to a previously created durable
subscriber. A user must have durable permission on the topic to create a new
durable subscriber for that topic. A user must have at least use_durable
permission on the topic to attach to an existing durable subscriber for the topic.
See User Permissions for details.

 l Java

Use the Session object’s createConsumer() method to create a MessageConsumer
object:

 MessageConsumer QueueReceiver = session.createConsumer(queue);

See the tibjmsMsgConsumer.java sample client for a working example.

The following Session.createDurableSubscriber() method creates a durable
subscriber, named "MyDurable":

 TopicSubscriber subscriber = session.createDurableSubscriber
(topic,"myDurable");

See the tibjmsDurable.java sample client for a working example.
Shared Subscriptions

Use the Session object's createSharedConsumer() method to create or add to a
shared subscription:

TIBCO Enterprise Message Service™ User Guide

440 | Developing an EMS Client Application

MessageConsumer cons1 = session.createSharedConsumer(topic, "mySharedSub");
MessageConsumer cons2 = session.createSharedConsumer(topic, "mySharedSub");

cons1 and cons2 are two shared consumers on the same subscription called
mySharedSub. If a message is published to the topic, then one of those two
consumers will receive it. Note that shared consumers on a given subscription do not
have to use the same session/connection.

Use the Session object's createSharedDurableConsumer() method to create or add
to a shared durable subscription:

MessageConsumer cons1 = session.createSharedDurableConsumer(topic,
"myDurableSharedSub"); MessageConsumer cons2 =
session.createSharedDurableConsumer(topic, "myDurableSharedSub");

cons1 and cons2 are two shared durable consumers on the same durable
subscription called myDurableSharedSub. If a message is published to the topic, then
one of those two consumers will receive it. Note that shared durable consumers on a
given subscription do not have to use the same session/connection.

 l C

Use the tibemsSession_CreateConsumer function to create a message consumer of
type tibemsMsgConsumer:

 tibemsMsgConsumer QueueReceiver = NULL;
 status = tibemsSession_CreateConsumer(session, &QueueReceiver, queue,
NULL, TIBEMS_FALSE);

See the tibemsMsgConsumer.c sample client for a working example.

The following tibemsSession_CreateDurableSubscriber function creates a durable
subscriber, named "myDurable," of type tibemsMsgConsumer:

 tibemsMsgConsumer msgConsumer = NULL;
 status = tibemsSession_CreateDurableSubscriber(session, &msgConsumer,
topic, "myDurable", NULL, TIBEMS_FALSE);

See the tibemsDurable.c sample client for a working example.

 l C#

Use the Session.CreateConsumer method to create a MessageConsumer object:

TIBCO Enterprise Message Service™ User Guide

441 | Developing an EMS Client Application

 MessageConsumer QueueReceiver = session.createConsumer(queue);

See the csMsgConsumer.cs sample client for a working example.

The following Session.CreateDurableSubscriber method creates a durable
subscriber, named "MyDurable":

 TopicSubscriber subscriber =
 session.CreateDurableSubscriber(topic, "myDurable");

See the csDurable.cs sample client for a working example.

Create a Message Listener for Asynchronous
Message Consumption
EMS allows a Message Consumer to consume messages either synchronously or
asynchronously. For synchronous consumption, the Message Consumer explicitly calls a
receive method on the topic or queue. For asynchronous consumption, you can implement
a Message Listener that serves as an asynchronous event handler for messages.

A Message Listener implementation has one method, onMessage, that is called by the EMS
server when a message arrives on a destination. You implement the onMessage method to
perform the desired actions when a message arrives. Your implementation should handle
all exceptions, and it should not throw any exceptions.

Once you create a Message Listener, you must register it with a specific Message Consumer
before calling the connection’s start method to begin receiving messages.

A Message Listener is not specific to the type of the destination. The same listener can
obtain messages from a queue or a topic, depending upon the destination set for the
Message Consumer with which the listener is registered.

Note: The J2EE 1.3 platform introduced message-driven beans (MDBs) that are a
special kind of Message Listener. See the J2EE documentation for more
information about MDBs.

 l Java

Create an implementation of the MessageListener interface, create a

TIBCO Enterprise Message Service™ User Guide

442 | Developing an EMS Client Application

MessageConsumer, and use the MessageConsumer object’s setMessageListener()
method to register the Message Listener with the Message Consumer:

 public class tibjmsAsyncMsgConsumer implements MessageListener
 {
 /* Create a connection, session and consumer */
 ...
 MessageConsumer QueueReceiver =
 session.createConsumer(queue);
 QueueReceiver.setMessageListener(this);
 connection.start();
 }

Note: Do not use the Session.setMessageListener() method, which is
used by application servers, rather than by applications.

Implement the onMessage() method to perform the desired actions when a message
arrives:

 public void onMessage(Message message)
 {
 /* Process message and handle exceptions */
 }

See the tibjmsAsyncMsgConsumer.java sample client for a working example.

 l C

Implement an onMessage() function to perform the desired actions when a message
arrives:

 void onMessage(tibemsMsgConsumer QueueReceiver,
 tibemsMsg message, void* closure)
 {
 /* Process message and handle exceptions */
 }

In another function, that creates a tibemsMsgConsumer and uses the
tibemsMsgConsumer_SetMsgListener function to create a message listener for the
Message Consumer, specifying onMessage() as the callback function:

void run()
{

../api/javadoc/javax/jms/MessageConsumer.html

TIBCO Enterprise Message Service™ User Guide

443 | Developing an EMS Client Application

 tibemsMsgConsumer QueueReceiver = NULL;
 /* Create a connection, session and consumer */
 ...
 status = tibemsSession_CreateConsumer(session,
 &QueueReceiver, queue, NULL, TIBEMS_FALSE);
 status = tibemsMsgConsumer_SetMsgListener(QueueReceiver,
 onMessage, NULL);
 status = tibemsConnection_Start(connection);
}

See the tibemsAsyncMsgConsumer.c sample client for a working example.

 l C#

Create an implementation of the IMessageListener interface, use
Session.CreateConsumer to create a MessageConsumer, and set the MessageListener
property on the MessageConsumer object to register the Message Listener with the
Message Consumer:

 public class csAsyncMsgConsumer : IMessageListener
 {
 /* Create a connection, session and consumer */
 ...
 MessageConsumer QueueReceiver =
 session.CreateConsumer(queue);
 QueueReceiver.MessageListener = this;
 connection.Start();
 }

Implement the IMessageListener.OnMessage method to perform the desired actions
when a message arrives:

 public void OnMessage(Message message) {
 try
 {
 /* Process message and handle exceptions */
 }
 }

See the csAsyncMsgConsumer.cs and csAsyncMsgConsumerUsingDelegate.cs sample
clients for working examples.

TIBCO Enterprise Message Service™ User Guide

444 | Developing an EMS Client Application

Messages
Messages are a self-contained units of information used by Jakarta Messaging applications
to exchange data or request operations.

Create Messages
As described in Jakarta Messaging Message Bodies , EMS works with the following types of
messages:

 l Messages with no body

 l Text Messages

 l Map Messages

 l Bytes Messages

 l Stream Messages

 l Object Messages

There is a separate create method for each type of message.

The following examples show how to create a simple text message containing the string
"Hello."

 l Java

Use the Session object’s createTextMessage() method to create a TextMessage:

 TextMessage message = session.createTextMessage("Hello");

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsTextMsg_Create function to create a text message of type
tibemsTextMsg:

 tibemsTextMsg message = "Hello";
 status = tibemsTextMsg_Create(&message);

See the tibemsMsgProducer.c sample client for a working example.

TIBCO Enterprise Message Service™ User Guide

445 | Developing an EMS Client Application

 l C#

Use the Session.CreateTextMessage method to create text message of type
TextMessage:

 TextMessage message = session.CreateTextMessage("Hello");

See the csMsgProducer.cs sample client for a working example.

Set and Get Message Properties
Before a client sends a message, it can use a "set property" method to set the message
properties. The client can check the message properties with a "get property" method.

For more information on message properties, see EMS Message Properties.

 l Java

Use the Message object’s setBooleanProperty() method
to set the JMS_TIBCO_PRESERVE_UNDELIVERED property to true:

message.setBooleanProperty("JMS_TIBCO_PRESERVE_UNDELIVERED", true);

Use the getStringProperty() method to get the user ID of the JMS_TIBCO_SENDER:

userID = message.getStringProperty("JMS_TIBCO_SENDER");

 l C

Use the tibemsMsg_SetBooleanProperty function
to set the JMS_TIBCO_PRESERVE_UNDELIVERED property to true:

status = tibemsMsg_SetBooleanProperty(message,
 "JMS_TIBCO_PRESERVE_UNDELIVERED", true);

Use the tibemsMsg_GetStringProperty function to get the user ID
of the JMS_TIBCO_SENDER:

 char* userID = NULL;

 status = tibemsMsg_GetStringProperty(message,"JMS_TIBCO_SENDER", &userID);

TIBCO Enterprise Message Service™ User Guide

446 | Developing an EMS Client Application

 l C#

Use the Message.SetBooleanProperty method to set the
JMS_TIBCO_PRESERVE_UNDELIVERED property to true:

message.SetBooleanProperty("JMS_TIBCO_PRESERVE_UNDELIVERED", true);

Use the Message.GetStringProperty method to get the user ID
of the JMS_TIBCO_SENDER:

string userID = message.GetStringProperty("JMS_TIBCO_SENDER");

Send Messages
Use a Message Producer client to send messages to a destination. You can either send a
message to the destination specified by the Message Producer or, if the Message Producer
specifies NULL as the destination, you can send a message to a specific destination.

In either case, you can optionally set the JMSDeliveryMode, JMSExpiration, and
JMSPriority message header fields described in Jakarta Messaging Message Header Fields
when sending each message.

The following examples show different ways to send a text message in each language:

 l Send the message to the Message Producer, QueueSender, created in Create a
Message Producer.

 l Use a Message Producer with a NULL destination that sends the message to the topic
created in Dynamically Create Topics and Queues.

 l Use a Completion Listener, created in Create a Message Listener for Asynchronous
Message Consumption, to send the message asynchronously.

See EMS Extensions to Jakarta Messaging Messages for more information about creating
messages.

 l Java

Use the MessageProducer object’s send() method to send a message to the
destination specified by the MessageProducer object:

TIBCO Enterprise Message Service™ User Guide

447 | Developing an EMS Client Application

 QueueSender.send(message);

Use the following form of the send() method to send a message to a specific
destination:

 MessageProducer NULLsender = session.createProducer(null);

 NULLsender.send(topic, message);

Use the form of the send() method with a completion listener argument to send a
message asynchronously:

 QueueSender.send(message, completionListener);

See the tibjmsMsgProducer.java sample client for a working example.

 l C

Use the tibemsMsgProducer_Send function to send a message to the destination
specified by the tibemsMsgProducer:

 status = tibemsMsgProducer_Send(QueueSender, message);

Use the tibemsMsgProducer_SendToDestination function to send the message to a
specific destination:

 status = tibemsMsgProducer_SendToDestination(NULLsender,
 topic, message);

See the tibemsMsgProducer.c sample client for a working example.

Note: Unlike the Java and C# APIs, in the C API, you can use the
tibemsMsgProducer_SendToDestination function to specify the
destination regardless of whether a destination is in the
tibemsMsgProducer.

 l C#

Use the MessageProducer.Send method to send a message to the destination
specified by the MessageProducer:

TIBCO Enterprise Message Service™ User Guide

448 | Developing an EMS Client Application

 QueueSender.Send(message);

Use the following form of the MessageProducer.Send method to send a message to a
specific destination:

 MessageProducer NULLsender = session.CreateProducer(NULL);
 NULLsender.Send(topic, message);

See the csMsgProducer.cs sample client for a working example.

Receive Messages
A Message Consumer receives messages from a destination and acknowledges the receipt
of messages using the mode established for the session, as described in Create a Session.

Before receiving messages, the Message Consumer must start the connection to the EMS
server. Before exiting, the Message Consumer must close the connection.

The following examples start the connection created in Connect to the EMS Server;
synchronously receive messages from the queue created in Dynamically Create Topics and
Queues, and then close the connection.

Note: You can also implement a Message Listener for your Message Consumer to
asynchronously receive messages, as described in Create a Message Listener for
Asynchronous Message Consumption.

 l Java

Use the Connection object’s start() method to start the connection:

 connection.start();

Use the MessageConsumer object’s receive() method to receive a message. This is
typically used in a loop for the duration the client wishes to receive messages:

 Message message = QueueReceiver.receive();

When the client has finished receiving messages, it uses the Close() method to close
the connection:

TIBCO Enterprise Message Service™ User Guide

449 | Developing an EMS Client Application

 connection.close();

See the tibjmsMsgConsumer.java sample client for a working example.

 l C

Use the tibemsConnection_Start function to start the connection:

 status = tibemsConnection_Start(connection);

Use the tibemsMsgConsumer_Receive function to receive a message. This is typically
used in a loop for the duration the client wishes to receive messages:

 tibemsMsg message = NULL;
 status = tibemsMsgConsumer_Receive(QueueReceiver,&message);

When the client has finished receiving messages, use the tibemsConnection_Close
function to close the connection:

 status = tibemsConnection_Close(connection);

See the tibemsMsgConsumer.c sample client for a working example.

 l C#

Use the Connection.Start function to start the connection:

 connection.Start();

Use the MessageConsumer.Receive function to receive a message. This is typically
used in a loop for the duration the client wishes to receive messages:

 Message message = QueueReceiver.receive();

When the client has finished receiving messages, use the Connection.Close function
to close the connection:

 connection.Close();

See the csMsgConsumer.cs sample client for a working example.

TIBCO Enterprise Message Service™ User Guide

450 | The EMS Implementation of JNDI

The EMS Implementation of JNDI
The EMS server provides a implementation of JNDI that enables you to lookup connection
factories, topics and queues, which are collectively referred to as administered objects.
Java clients can look up administered objects stored in EMS using standard JNDI calls. The
C and C# APIs provide similar calls to look up object data in the EMS server.

How to create topics and queues is described in Creating and Modifying Destinations.

Create and Modify Administered Objects in EMS
You can create administered objects for storage in EMS using either the administration tool
or the administration APIs, or directly in the configuration files. This section describes how
to create administered objects using the administration tool.

To create a connection factory, use the create factory command in the EMS
Administration Tool. For example, to create a generic connection factory, named
myFactory, that establishes a TCP connection to port 7344 on server1, start the EMS
Administration Tool and enter:

 create factory myFactory generic URL=tcp://server1:7344

The connection factory data stored on the EMS server is located in the factories.conf file.
You can use the show factories command to list all of the connection factories on your
EMS server and the show factory command to show the configuration details of a specific
connection factory.

A connection factory may include optional properties for balancing server load and
establishing thresholds for attempted connections, as described in Connection Factory
Parameters. These properties can be specified when creating the factory or modified for an
existing factory using the addprop factory, setprop factory, and removeprop factory
commands.

For example, to set the maximum number of connection attempts for the connection
factory, myFactory, from the default value of 2 to 5, start the EMS Administration Tool and
enter:

#ID-00002B38
#ID-00002B38

TIBCO Enterprise Message Service™ User Guide

451 | The EMS Implementation of JNDI

 addprop factory myFactory connect_attempt_count=5

And to reset the value back to 2, enter:

 setprop factory myFactory connect_attempt_count=2

Create Connection Factories for Secure Connections
This topic describes how to create a static connection factory for establishing a TLS
connection.

Similar TLS parameters must be used when looking up the connection factory, as described
in Perform Secure Lookups.

Connections that are to be secured using TLS identify the transport protocol as ’ssl’ and
may include any number of the TLS configuration parameters listed in TLS Server
Parameters.

For example, to create a generic connection factory, named mySecureFactory, that
establishes a TLS connection to port 7243 on server1, start the EMS Administration Tool
and enter:

create factory mySecureFactory generic URL=ssl://server1:7243

To create a factory to set up a generic connection and check the server's certificate to
confirm the name of the server is myServer, enter (all one line):

create factory MySSLFactory generic url=ssl://7243
ssl_verify_host=enabled ssl_expected_hostname=myServer ssl_trusted=
certs/server_root.cert.pem

To create a factory to set up a topic connection, check the server's certificate (but not the
name inside the certificate), and to set the ssl_auth_only parameter so that TLS is only
used by the client when creating the connection, enter (all one line):

create factory AnotherSSLFactory topic url=ssl://7243
ssl_verify_host=enabled ssl_verify_hostname=disabled ssl_trusted=
certs/server_root.cert.pem ssl_auth_only=enabled

TIBCO Enterprise Message Service™ User Guide

452 | The EMS Implementation of JNDI

Note: These samples assume that the certificate server_root.cert.pem is
located in "certs" subdirectory of the directory where the server is running.

See TLS Protocol for details.

Create Connection Factories for Fault-Tolerant
Connections
When connecting a fault-tolerant client to EMS, you must specify two or more EMS servers
in your connection factory. When creating a connection factory for a fault-tolerant client,
specify multiple server URLs in the url argument of the create factory command.

For example, to create a generic connection factory, named myFtFactory, that establishes
TCP connections to port 7545 on the primary server, server0, and port 7344 on the
secondary server, server1, start the EMS Administration Tool and enter (on one line):

create factory myFtFactory generic url=tcp://server0:7545,tcp://server1:7344

 Should server0 become unavailable, the client will connect to server1. See Fault Tolerance
for details.

Look up Administered Objects Stored in EMS
You can lookup objects from an EMS server by name. All clients can lookup objects in the
EMS naming service. Alternatively, Java applications can lookup objects in a third-party
JNDI server, and C# clients can lookup objects in a third-party LDAP server.

To lookup administered objects stored in EMS, you need to create the initial context that
identifies the URL of the naming service provider and any other properties, such as the
username and password to authenticate the client to the service. The naming service
provider URL has form:

 tibjmsnaming://host:port

The following examples demonstrate how to access Jakarta Messaging administered
objects when using TIBCO Enterprise Message Service. Each of these examples assume that

TIBCO Enterprise Message Service™ User Guide

453 | The EMS Implementation of JNDI

a connection factory, named ConFac, exists in the factories.conf file, a topic.sample
topic exists in topics.conf, and a queue.sample queue exists in queues.conf.

 l Java

Create an InitialContext object for the initial context, which consists of the
provider context factory and JNDI provider URL, as well as the username and
password to authenticate the client to the EMS server:

Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.tibco.tibjms.naming.TibjmsInitialContextFactory");
 env.put(Context.PROVIDER_URL,"tibjmsnaming://localhost:7222");
 env.put(Context.SECURITY_PRINCIPAL, "userName");
 env.put(Context.SECURITY_CREDENTIALS, "password");
InitialContext jndiContext = new InitialContext(env);

Look up a connection factory, named ConFac, and destinations, named topic.sample
and queue.sample, from the initial context:

ConnectionFactory factory =
 (javax.jms.ConnectionFactory)
 jndiContext.lookup("ConFac");
javax.jms.Topic sampleTopic =
 (javax.jms.Topic)jndiContext.lookup("topic.sample");
javax.jms.Queue sampleQueue =
 (javax.jms.Queue)jndiContext.lookup("queue.sample");

See the tibjmsJNDI.java sample client located in the EMS_HOME/samples/java/JNDI
directory.

 l C

Create a tibemsLookupContext object for the initial context, which consists of the
JNDI provider URL and the username and password to authenticate the client to the
EMS server:

tibemsLookupContext* contextstatus = NULL;
status = tibemsLookupContext_Create(
 &context,
 "tcp://localhost:7222",
 "userName",
 "password");

Use the tibemsLookupContext_LookupConnectionFactory function to look up a
connection factory, named ConFac, and use the tibemsLookupContext_

TIBCO Enterprise Message Service™ User Guide

454 | The EMS Implementation of JNDI

LookupDestination function to look up the destinations, named and queue.sample,
from the initial context:

topic.sample
 tibemsConnectionFactory factory = NULL;
 tibemsDestination sampleTopic = NULL;
 tibemsDestination sampleQueue = NULL;
 status = tibemsLookupContext_Lookup(context,
 "ConFac",
 (void**)&factory);
 status = tibemsLookupContext_Lookup(context,
 "sample.queue",
 (void**)&sampleQueue);
 status = tibemsLookupContext_Lookup(context,
 "topic.sample,
 (void**)&sampleTopic);

 l C#

Create a ILookupContext object for the initial context, which consists of the JNDI
provider URL and the username and password to authenticate the client to the EMS
server.

Hashtable env = new Hashtable();
 env.Add(LookupContext.PROVIDER_URL,
 "tibjmsnaming://localhost:7222");
 env.Add(LookupContext.SECURITY_PRINCIPAL", "myUserName");
 env.Add(LookupContext.SECURITY_CREDENTIALS", "myPassword");
LookupContextFactory lcf = new LookupContextFactory();
ILookupContext searcher = lcf.CreateContext(
 LookupContextFactory.TIBJMS_NAMING_CONT
 EXT,
 env);

Use the ILookupContext.Lookup method to look up a connection factory, named
ConFac, and destinations, named topic.sample and queue.sample, from the initial
context:

ConnectionFactory factory =
 (ConnectionFactory) searcher.Lookup("ConFac");
Topic sampleTopic =
 (Topic)searcher.Lookup("topic.sample");
TIBCO.EMS.Queue sampleQueue =
 (TIBCO.EMS.Queue)searcher.Lookup("queue.sample");

../api/dotnetdoc/html/class_t_i_b_c_o_1_1_e_m_s_1_1_lookup_context.html

TIBCO Enterprise Message Service™ User Guide

455 | The EMS Implementation of JNDI

Look Up Objects Using Full URL Names
Java clients can look up administered objects using full URL names. In this case, the
Context.URL_PKG_PREFIXES property is used in place of the Context.PROVIDER_URL
property.

For example:

Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES,"com.tibco.tibjms.naming");
 env.put(Context.PROVIDER_URL,"tibjmsnaming://localhost:7222");
 env.put(Context.SECURITY_PRINCIPAL,"userName");
 env.put(Context.SECURITY_CREDENTIALS,"password");
 jndiContext = new InitialContext(env);

When using full URL names, you can look up objects like the following example:

Topic sampleTopic = (javax.jms.Topic)jndiContext.lookup(
 "tibjmsnaming://emshost:7222/topic.sample");
 Queue sampleQueue = (javax.jms.Queue)jndiContext.lookup(
 "tibjmsnaming://emshost:7222/queue.sample");

For further information on how to use full URL names, refer to the tibjmsJNDIRead.java
example located in the EMS_HOME/samples/java/JNDI directory.

Perform Secure Lookups
TIBCO Enterprise Message Service client programs can perform secure JNDI lookups using
the Transport Layer Security (TLS) protocol. To accomplish this, the client program must
set TLS properties in the environment when the InitialContext is created. The TLS
properties are similar to the TLS properties for the TIBCO Enterprise Message Service
server.

See TLS Protocol for more information about using TLS in the TIBCO Enterprise Message
Service server.

The following examples illustrate how to create an InitialContext that can be used to
perform JNDI lookups using the TLS protocol.

 l Java

TIBCO Enterprise Message Service™ User Guide

456 | The EMS Implementation of JNDI

In this example, the port number specified for the Context.PROVIDER_URL is set to
the TLS listen port that was specified in the server configuration file tibjsmd.conf. The
value for TibjmsContext.SECURITY_PROTOCOL is set to ssl. Finally, the value of
TibjmsContext.SSL_ENABLE_VERIFY_HOST is set to "false" to turn off server
authentication. Because of this, no trusted certificates need to be provided and the
client will then not verify the server it is using for the JNDI lookup against the
server’s certificate.

Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.tibco.tibjms.naming.TibjmsInitialContextFactory");
 env.put(Context.PROVIDER_URL, tibjmsnaming://emshost:7223);
 env.put(Context.URL_PKG_PREFIXES, "com.tibco.tibjms.naming")
 env.put(TibjmsContext.SECURITY_PROTOCOL, "ssl");
 env.put(TibjmsContext.SSL_ENABLE_VERIFY_HOST,
 new Boolean("false"));
Context context = new InitialContext(env);

 l C

Create a tibemsSSLParams object and use the tibemsSSLParams_SetIdentityFile
function to establish the client identity by means of a pkcs12 file. Use the
tibemsLookupContext_CreateSSL function to create a tibemsLookupContext object
that uses a TLS connection for the initial context.

tibemsLookupContext* context = NULL;
tibemsConnection_Factory factory = NULL;
tibemsSSLParams sslParams = NULL;
tibems_status status = TIBEMS_OK;
sslParams = tibemsSSLParams_Create();
status = tibemsSSLParams_SetIdentityFile(
 ssl_params,
 "client_identity.p12",
 TIBEMS_SSL_ENCODING_AUTO);
status = tibemsLookupContext_CreateSSL(
 &context,
 "tcp://localhost:7222",
 "userName",
 "password",
 sslParams,
 "pk_password");

 l C#

Create a ILookupContext object for the initial context over a TLS connection. The TLS

TIBCO Enterprise Message Service™ User Guide

457 | The EMS Implementation of JNDI

Store Info consists of a pkcs12 file that identifies the client and the client’s password,
which are stored in an EMSSSLFileStoreInfo object.

string ssl_identity = client_identity.p12;
string ssl_target_hostname = "server";
string ssl_password = "password";
EMSSSLFileStoreInfo StoreInfo = new EMSSSLFileStoreInfo();
 info.SetSSLClientIdentity(ssl_identity);
 info.SetSSLPassword(ssl_password.ToCharArray());
Hashtable env = new Hashtable();
 env.Add(LookupContext.PROVIDER_URL, "adc1.na.tibco.com:10636");
 env.Add(LookupContext.SECURITY_PRINCIPAL", "myUserName");
 env.Add(LookupContext.SECURITY_CREDENTIALS", "myPassword");
 env.Add(LookupContext.SECURITY_PROTOCOL, "ssl");
 env.Add(LookupContext.SSL_TARGET_HOST_NAME,
 ssl_target_hostname);
 env.Add(LookupContext.SSL_STORE_TYPE,
 EMSSSLStoreType.EMSSSL_STORE_TYPE_FILE);
 env.Add(LookupContext.SSL_STORE_INFO, StoreInfo);

Perform Fault-Tolerant Lookups
TIBCO Enterprise Message Service can perform fault-tolerant JNDI lookups. If the active
server fails and the standby server becomes active, the JNDI provider automatically uses
the new active server for JNDI lookups. You accomplish this by providing multiple URLs in
the Context.PROVIDER_URL property when creating the InitialContext. Specify more than
one URL separated by commas (,) in the property.

Example

The following illustrates setting up the Context.PROVIDER_URL property with the URLs of a
primary EMS server on the machine named emshost and a secondary EMS server on the
machine named backuphost.

env.put(Context.PROVIDER_URL,
"tibjmsnaming://emshost:7222,tibjmsnaming://backuphost:7222");

Assuming emshost starts out as active, if at any time it fails the JNDI provider automatically
switches to the EMS server on the host backuphost for JNDI lookups. If emshost is repaired
and restarted, it then becomes the standby EMS server.

TIBCO Enterprise Message Service™ User Guide

458 | The EMS Implementation of JNDI

Limitations of Fault-Tolerant JNDI Lookups

Fault-tolerant JNDI lookups do not occur in scenarios:

 l When using full URL names in argument to the lookup method.

 l When looking up an object that has been bound into a foreign naming/directory
service such as LDAP.

TIBCO Enterprise Message Service™ User Guide

459 | Interoperation with TIBCO FTL

Interoperation with TIBCO FTL
TIBCO Enterprise Message Service can exchange messages with supported versions of
TIBCO FTL.

Scope
 l EMS can import and export messages to TIBCO FTL through an EMS topic.

 l EMS can import messages from TIBCO FTL to an EMS queue (but queues cannot
export).

Warning: Do not configure EMS and FTL round-tripping. That is, do not send
messages from EMS to FTL and then back to EMS, or the other way around.

Message Translation
EMS and TIBCO FTL use different formats for messages and their data.

TIBCO Enterprise Message Service™ User Guide

460 | Interoperation with TIBCO FTL

When tibemsd imports or exports a messages, it translates the message and its data to the
appropriate format; for details, see Message Translation.

Configuration
In classic EMS configuration, the tibemsd uses definitions and parameters in three
configuration files to guide the exchange of messages with TIBCO FTL. In JSON-configured
servers, all configuration options are in the same file.

Enabling
An EMS server is part of exactly one FTL realm, so all EMS transports for TIBCO FTL use the
same TIBCO FTL realm. Thus, some parameters are shared for every EMS transport
instance. These parameters are found in tibemsd.conf.

To enable EMS transports for TIBCO FTL, you must set these parameters in the
configuration file tibemsd.conf:

 l tibftl_transports globally enables or disables message exchange with TIBCO FTL.
The default value is disabled. To use EMS transports for TIBCO FTL, you must
explicitly set this parameter to enabled.

 l ftl_url specifies the URL at which the EMS server is connected to the FTL server. For
a TLS connection, this URL starts with https:// rather than http://.

 l ftl_trustfile specifies the trust file that is used to validate the FTL server on a TLS
connection.

 l module_path specifies the location of the TIBCO FTL shared library files. If the EMS
server is configured to use FTL stores, the value of this parameter is ignored and the
FTL shared library files corresponding to the hosting FTL server are used instead.

If connecting to a TIBCO FTL deployment that is configured for OAuth 2.0 authentication,
the following parameters will also need to be set in tibemsd.conf:

 l ftl_oauth2_server_url specifies the URL of the OAuth 2.0 authorization server from
which access tokens will be obtained for authenticating with TIBCO FTL.

 l ftl_oauth2_client_id specifies the OAuth 2.0 client ID to use when authenticating
with the OAuth 2.0 authorization server to obtain access tokens.

TIBCO Enterprise Message Service™ User Guide

461 | Interoperation with TIBCO FTL

 l ftl_oauth2_client_secret specifies the OAuth 2.0 client secret to use when
authenticating with the OAuth 2.0 authorization server to obtain access tokens.

Additional optional parameters can be used to further configure how the EMS server and
FTL server interact. See TIBCO FTL Transport Parameters.

Transports
Transport definitions (in the configuration file transports.conf) specify the
communication protocol between EMS and TIBCO FTL.

For more information, see Configure EMS Transports for TIBCO FTL.

Destinations
Destination definitions (in the configuration files topics.conf and queues.conf) can set
the import and export properties to specify one or more EMS transport for TIBCO FTL.

 l import instructs tibemsd to import messages that arrive on those transports from
TIBCO FTL, and deliver them to the EMS destination. When a destination is
configured to import a given tibftl transport and the optional
import_subscriber_name transport property is not set, tibemsd creates a single
default FTL durable for the transport with the following name:
<server name>:<transport name>. For example, if tibemsd.conf
has server = EMS-SERVER and transports.conf has a [FTL1] transport defined, the
corresponding durable name comes as EMS-SERVER:FTL1. However, if
import_subscriber_name is set, then tibemsd creates a FTL subscriber by that name
instead of the aforementioned FTL durable.

Note: An FTL administrator can monitor the status of this default FTL
durable and, if relevant, the FTL administrator can decide to configure it as
static and alter its behavior.

 l export instructs tibemsd to take messages that arrive on the EMS destination, and
export them to TIBCO FTL using those EMS transports for TIBCO FTL. When a
destination is configured to export a given tibftl transport, the EMS server creates a
single FTL publisher for the transport.

For details, see Topics, and Queues.

TIBCO Enterprise Message Service™ User Guide

462 | Interoperation with TIBCO FTL

Configure EMS Transports for TIBCO FTL
EMS transports mediate the flow of messages between TIBCO Enterprise Message Service
and TIBCO FTL.

Note: In TIBCO FTL, transport refers to the underlying mechanism that moves
message data between FTL publishers and subscribers.

In TIBCO Enterprise Message Service, a transport is a more narrowly defined
concept, referring specifically to the connections between an EMS server and an
external system.

The EMS server joins a TIBCO FTL realm as any other TIBCO FTL client would. EMS
transport definitions (in the file transports.conf) configure the behavior of these
connections.

All messages received from the transports for TIBCO FTL that are configured in the
transports.conf file are processed in a single TIBCO FTL event queue.

After being dispatched from the TIBCO FTL event queue, all TIBCO FTL messages that are
imported through an EMS transport are processed by the EMS server. The EMS server
creates Jakarta Messaging message copies of the incoming TIBCO FTL messages and begins
processing them as EMS messages. EMS transports for TIBCO FTL determine how the
messages are converted to EMS messages.

If the EMS server cannot keep up with the rate of incoming TIBCO FTL messages, FTL could
begin discarding messages before they have been successfully imported by EMS.

Requirements
To successfully deploy the EMS transport for TIBCO FTL, in the TIBCO FTL deployment, you
must configure transports to be server-defined / of type Auto (see the TIBCO FTL
documentation for more information on the server-defined 'Server' transport and on the
'Auto' transport type). Other types of transports are not supported.

TIBCO Enterprise Message Service™ User Guide

463 | Interoperation with TIBCO FTL

EMS Transport for FTL Definitions
transports.conf contains zero or more transport definitions. Each definition begins with
the name of a transport, surrounded by square brackets. Subsequent lines set the
parameters of the transport.

Parameter Description

type Required. For all EMS transports for TIBCO FTL, the value must be
tibftl.

TIBCO FTL Parameters

The syntax and semantics of these parameters are identical to the corresponding parameters
in TIBCO FTL clients. For full details, see the TIBCO FTL documentation set.

endpoint Optional. Specify a TIBCO FTL endpoint name. To define multiple
transports that use the same TIBCO FTL endpoint, include the same
endpoint name in each transport definition.

If absent, the endpoint name defaults to the name of the EMS
transport.

import_subscriber_
name

Optional. The name of the FTL subscriber this EMS transport for
FTL creates when it receives messages. If not set, then an EMS
transport that receives FTL messages creates a default FTL durable
instead. See Destinations for details on the FTL durable name.

import_match_string Optional. Creates a content matcher object to filter messages.
Specify content matchers using the syntax:

{"fieldname1":value1,...,"fieldnameN":valueN}

The following rules must be observed:

 l Field name and value declarations must conform to the
match string syntax described in the TIBCO FTL
documentation.

 l The import_match_string must be specified on a single line.
No manual line breaks may be inserted. Spaces are not

TIBCO Enterprise Message Service™ User Guide

464 | Interoperation with TIBCO FTL

Parameter Description

allowed.

For example:

import_match_string =
{"Item":"Book","Title":"Outliers","Stocked":true}

export_format Optional. Specifies a format name to be used when a message is
created.

If not provided, the EMS server passes NULL to the TIBCO FTL
message create call, resulting in a dynamically formatted message.

export_constant Optional. Defines fields that are always set to a constant value.
Each line adds additional constants. For example:

export_constant = constant1,value1
 export_constant = constant2,value2
 export_constant = constant3,value3

Example

These examples from transports.conf illustrate the syntax of EMS transport for FTL
definitions.

[FTL1]
 type = tibftl
 endpoint = EP1
 import_subscriber_name = sub1
 import_match_string = {"f1":"foo","f2":true}
 export_format = format-1
 export_constant = constant1,value1
 export_constant = constant2,value2
 export_constant = constant3,value3

 [FTL2]
 type = tibftl

TIBCO Enterprise Message Service™ User Guide

465 | Interoperation with TIBCO FTL

Topics
Topics can both export and import messages. Accordingly, you can configure topic
definitions (in the configuration file topics.conf) with import and export properties that
specify one or more external transports:

import

import instructs tibemsd to import messages that arrive on those EMS transports from
TIBCO FTL, and deliver them to the EMS destination. Each named tibftl transport can be
named on only one EMS destination. That is, if the transport FTL01 is included on import
property for destination myTopics.Fiction, it cannot also be added to the destination
myTopics.Nonfiction.

Warning: An EMS transport for TIBCO FTL may be specified as an import
transport by only one destination. If the topics.conf configuration has a transport
for TIBCO FTL included as an import transport by more than one destination, the
server handles this as a configuration error.

export

export instructs tibemsd to take messages that arrive on the EMS destination, and export
them to TIBCO FTL using the specified EMS transport for TIBCO FTL.

Note: The EMS server never re-exports an imported message on the same topic.

(For general information about topics.conf syntax and semantics, see topics.conf. You can
also configure topics using the administration tool command addprop topic.)

Example

For example, the following tibemsadmin commands configure the topic myTopics.news to
import messages on the transports FTL01 and FTL02, and to export messages on the
transport FTL02.

addprop topic myTopics.news import="FTL01,FTL02"
 addprop topic myTopics.news export="FTL02"

TIBCO Enterprise Message Service™ User Guide

466 | Interoperation with TIBCO FTL

TIBCO FTL messages with subject myTopics.news arrive at tibemsd over the transports
FTL01 and FTL02. EMS clients can receive those messages by subscribing to myTopics.news.

EMS messages sent to myTopics.news are exported to TIBCO FTL over transport FTL02.
TIBCO FTL clients of the corresponding daemons can receive those messages by
subscribing to the endpoint associated with myTopics.news in the FTL02 transport
definition.

Import Only when Subscribers Exist
When a topic specifies import on a connected transport, tibemsd imports messages only
when the topic has at least one subscriber.

For more information, see import.

Queues
Queues can import messages, but cannot export them.

Configuration
You can configure queue definitions (in the configuration file queues.conf) with the import
property to specify one or more external transports.

import instructs tibemsd to import messages that arrive on those EMS transports from
TIBCO FTL, and deliver them to the EMS destination.

(For general information about queues.conf syntax and semantics, see queues.conf. You
can also configure queues using the administration tool command addprop queue.)

Example

For example, the following tibemsadmin command configures the queue myQueue.in to
import messages on the EMS transports FTL01 and FTL02.

addprop queue myQueue.in import="FTL01,FTL02"

TIBCO Enterprise Message Service™ User Guide

467 | Interoperation with TIBCO FTL

TIBCO FTL messages with subject myQueue.in arrive at tibemsd over the transports FTL01
and FTL02. EMS clients can receive those messages by subscribing to myQueue.in.

Import—Start and Stop
When a queue specifies import on a connected transport, tibemsd immediately begins
importing messages to the queue, even when no receivers exist for the queue.

For static queues (configured by an administrator) tibemsd continues importing until you
explicitly delete the queue. When the queue is deleted, the transport no longer imports
messages.

Message Translation
The following topics describe how a message is translated by the EMS server when either
imported from or exported to FTL.

Jakarta Messaging Header Fields
EMS supports the predefined JMS header fields.

For more information, see Jakarta Messaging Message Header Fields.

Note: The JMSTimestamp Jakarta Messaging header field is a special case.

The Jakarta Messaging header JMSTimestamp corresponds to the time when the
message was created. If this header field is not present when the tibemsd
receives the message, it sets theJMSTimestamp to the current time.

TIBCO FTL messages do not have destinations or subjects, or a mandatory set of
predefined header fields. Instead, message fields and their values are set for individual
messages.

If the export_headers is defined as true in the common EMS transport properties, the EMS
server converts the Jakarta Messaging header fields and their values to TIBCO FTL fields
and values and adds them to the outgoing message. This allows TIBCO FTL to use content
matchers on the fields.

TIBCO Enterprise Message Service™ User Guide

468 | Interoperation with TIBCO FTL

If the export_headers property is false, then the Jakarta Messaging header fields and
their values are not included in the exported TIBCO FTL message. This includes the
destination name. That is, if export_headers = false for the transport, then the message
exported to TIBCO FTL will not contain the destination name.

When converting the Jakarta Messaging header fields to TIBCO FTL message fields, header
fields are given the prefix _emshdr:. For example, the JMSDeliveryMode header field is
assigned the field name _emshdr:JMSDeliveryMode when inserted into the TIBCO FTL
message.

The following table presents the mapping of Jakarta Messaging header fields to TIBCO FTL
message field name and types (that is, the name and type of the corresponding field in the
exported message).

Jakarta Messaging Header Name TIBCO FTL Field Name FTL Field Type

JMSDestination _emsHdr:JMSDestination char*

JMSDeliveryMode _emsHdr:JMSDeliveryMode tibint64_t

JMSPriority _emsHdr:JMSPriority tibint64_t

JMSMessageID _emsHdr:JMSMessageID char*

JMSTimestamp _emsHdr:JMSTimestamp tibint64_t

JMSCorrelationID _emsHdr:JMSCorrelationID char*

JMSType _emsHdr:JMSType char*

JMSDeliveryTime _emsHdr:JMSDeliveryTime tibint64_t

JMSExpiration _emsHdr:JMSExpiration tibint64_t

JMSRedelivered _emsHdr:JMSRedelivered tibint64_t

JMSReplyTo _emsHdr:JMSReplyTo char*

TIBCO Enterprise Message Service™ User Guide

469 | Interoperation with TIBCO FTL

Jakarta Messaging Property Fields
EMS supports the Jakarta Messaging property fields described in EMS Message Properties.

Import
When importing a TIBCO FTL message to an EMS message, tibemsd sets these EMS
properties:

 l JMS_TIBCO_IMPORTED gets the value true, to indicate that the message did not
originate from an EMS client.

 l JMS_TIBCO_MSG_EXT gets the value true, to indicate that the message might contain
submessage fields or array fields.

Export
TIBCO FTL messages do not have destinations or subjects, or a mandatory set of
predefined header fields. Instead, message fields and their values are set for individual
messages.

If export_properties is defined as true in the common EMS transport properties, the EMS
server converts the Jakarta Messaging properties and their values to TIBCO FTL fields and
values and adds them to the outgoing message. This allows TIBCO FTL to use content
matchers on the fields.

When converting the Jakarta Messaging properties to TIBCO FTL message fields, the
property fields are given the prefix _emsprop:. For example the JMS_TIBCO_SENDER property
would become the _emsprop:JMS_TIBCO_SENDER field.

The tibemsd server ignores any Jakarta Messaging property fields that are not set, or are
set to null—it omits them from the exported message.

You can instruct tibemsd to exclude the properties fields from the exported message by
setting the transport property export_properties = false.

TIBCO Enterprise Message Service™ User Guide

470 | Interoperation with TIBCO FTL

Message Body
tibemsd can export messages with most Jakarta Messaging message body types to TIBCO
FTL. However, Object messages and Stream messages cannot be exported. They are
discarded with a warning.

tibemsd can import messages with any message format from TIBCO FTL.

For information about Jakarta Messaging body types, see Jakarta Messaging Message
Bodies. For information about the structure of messages, see Jakarta Messaging Message
Structure.

Import
When importing a TIBCO FTL message, tibemsd translates it to an EMS message body type
based on the TIBCO FTL message format.

TIBCO FTL Message Format EMS Message Type

FTL Message Map Message

Built-in Opaque Format Map Message with a bytes field, _data.

Keyed Opaque Format Map Message with two fields:

 l _key (char*)

 l _data (bytes)

Export
When exporting an EMS message, tibemsd translates it to a TIBCO FTL message with the
following structure:

 l When export_headers is enabled on the EMS transport, Jakarta Messaging header
fields are converted to TIBCO FTL message fields. See Jakarta Messaging Header
Fields. When the transport parameter export_headers is false, these fields are
omitted.

 l When export_properties is enabled on the EMS transport, Jakarta Messaging

TIBCO Enterprise Message Service™ User Guide

471 | Interoperation with TIBCO FTL

property fields are converted to TIBCO FTL message fields. See Jakarta Messaging
Property Fields. When the transport parameter export_properties is false, these
fields are omitted.

 l When translating the data fields of an EMS message, the results depend on the
Jakarta Messaging body type.

Jakarta
Messaging Body
Type

Export Translation

MapMessage An FTL message of the format specified. If no format was specified,
it is a dynamically formatted FTL message.

BytesMessage An FTL message with one opaque field with the key of _data.

TextMessage FTL message with a _text field.

Message Empty FTL message.

ObjectMessage Not converted.

Messages with this Jakarta Messaging body type cannot be
exported to TIBCO FTL.

StreamMessage Not converted.

Messages with this Jakarta Messaging body type cannot be
exported to TIBCO FTL.

Message Fields
When tibemsd converts messages, it converts fields individually, based on field type. Some
field types are equivalent between EMS and TIBCO FTL, while converting others may result
in some information loss of data type, or require additional formatting.

The mapping of equivalent fields is bidirectional. These field types are equivalent in EMS
and TIBCO FTL, and no additional formatting is required during conversion:

TIBCO Enterprise Message Service™ User Guide

472 | Interoperation with TIBCO FTL

EMS Field Type TIBCO FTL Field Type

tibems_long tibint64_t

tibems_long array tibint64_t array

tibems_double tibdouble_t

tibems_double array tibdouble_t array

char* char*

MapMsg Message

bytes Opaque

Import
Not all TIBCO FTL field types are supported by EMS. When tibemsd imports a TIBCO FTL
message, these fields are converted into EMS sub-messages as shown below.

TIBCO FTL Field
Type

EMS Field Type Map Message Field Name

Message Array Sub-message with message fields
named 0, 1, and so on.

_ftlMsgArray:fieldname

char* array Sub-message with message fields
named 0, 1, and so on.

_ftlStringArray:fieldname

tibDateTime Sub-message with two fields:

 l s — long, representing
seconds.

 l n — long, representing
nanoseconds.

_ftlDateTime:fieldname

tibDateTime
array

Sub-message containing
tibDateTime equivalent sub-

_ftlDateTimeArray:fieldname

TIBCO Enterprise Message Service™ User Guide

473 | Interoperation with TIBCO FTL

TIBCO FTL Field
Type

EMS Field Type Map Message Field Name

messages. Each submessage
contains two fields:

 l s — long, representing
seconds.

 l n — long, representing
nanoseconds.

tibInbox Discarded during conversion N/A

Export
When exporting an EMS message, tibemsd translates it to a TIBCO FTL message. Not all
field types that are supported by EMS map to TIBCO FTL. When tibemsd converts these
fields, some information about data size is lost. The EMS fields are converted to TIBCO FTL
fields as shown here:

EMS Field Type TIBCO FTL Field Type

tibems_wchar tibint64_t

tibems_byte tibint64_t

tibems_short tibint64_t

tibems_short_array tibint64_t array

tibems_int tibint64_t

tibems_int_array tibint64_t array

tibems_float tibdouble_t

tibems_float_array tibdouble_t array

TIBCO Enterprise Message Service™ User Guide

474 | Interoperation with TIBCO Rendezvous

Interoperation with TIBCO Rendezvous
TIBCO Enterprise Message Service can exchange messages with supported versions of
TIBCO Rendezvous.

Scope
 l EMS can import and export messages to an external system through an EMS topic.

 l EMS can import messages from an external system to an EMS queue (but queues
cannot export).

Message Translation
EMS and Rendezvous use different formats for messages and their data. When tibemsd
imports or exports a messages, it translates the message and its data to the appropriate
format.

For more information, see Message Translation.

TIBCO Enterprise Message Service™ User Guide

475 | Interoperation with TIBCO Rendezvous

Configuration
tibemsd uses definitions and parameters in four configuration files to guide the exchange
of messages with Rendezvous.

Enabling
The parameter tibrv_transports (in the configuration file tibemsd.conf) globally enables
or disables message exchange with Rendezvous. The default value is disabled. To use
these transports, you must explicitly set this parameter to enabled.

The parameter module_path (in the configuration file tibemsd.conf) specifies the location
of the Rendezvous shared library files.

Transports
Transport definitions (in the configuration file transports.conf) specify the
communication protocol between EMS and the external system.

For more information, see Configure EMS Transports for Rendezvous.

Destinations
Destination definitions (in the configuration files topics.conf and queues.conf) can set
the import and export properties to specify one or more transports:

 l import instructs tibemsd to import messages that arrive on those transports from
Rendezvous, and deliver them to the EMS destination.

 l export instructs tibemsd to take messages that arrive on the EMS destination, and
export them to Rendezvous via those transports.

For details, see Topics, and Queues.

TIBCO Enterprise Message Service™ User Guide

476 | Interoperation with TIBCO Rendezvous

RVCM Listeners
When exporting messages on a transport configured for certified message delivery, you can
pre-register RVCM listeners in the file tibrvcm.conf .

For details, see tibrvcm.conf, and Certified Messages

Configure EMS Transports for Rendezvous
Transports mediate the flow of messages between EMS and TIBCO Rendezvous.

tibemsd connects to Rendezvous daemons in the same way as any other Rendezvous client
would. Transport definitions (in the file transports.conf) configure the behavior of these
connections. You must properly configure these transports.

Additionally, you must configure the parameter module_path (in the configuration file
tibemsd.conf) to specify the location of the Rendezvous shared library files.

How Rendezvous Messages are Imported
The EMS server connects to the Rendezvous daemon as any other Rendezvous client
would. Messages received from the Rendezvous daemon are stored in Rendezvous queues,
then are dispatched to callbacks. The EMS server creates Jakarta Messaging message
copies of the Rendezvous messages, and begins processing them as EMS messages.
Transports determine how messages are imported.

Rendezvous messages that are imported through a transport are held in queues specific to
that transport. Each transports is associated with a different Rendezvous queue, which
holds as many Rendezvous messages as necessary. The number of pending messages in
the queue will grow if the rate of incoming Rendezvous messages is greater than the rate
at which the EMS server is able to process the corresponding EMS messages.

Depending on the import delivery mode defined for the transport, the EMS messages will
be persisted on disk, which increases the likelihood of backlog in the Rendezvous queues,
and which in turn results in a EMS process memory growth. This memory growth is not
accounted for in any of the EMS server statistics.

TIBCO Enterprise Message Service™ User Guide

477 | Interoperation with TIBCO Rendezvous

Queue Limit Policies
In order to limit the number of pending messages in Rendezvous queues, a transport
property allows you to set a queue limit policy, as you would for TIBCO Rendezvous client
applications.

When the queue limit for the transport is reached, the Rendezvous library discards a set
number of messages. The default policy is TIBRVQUEUE_DISCARD_NONE, which means that no
message is ever discarded. Setting TIBRVQUEUE_DISCARD_FIRST or TIBRVQUEUE_DISCARD_
LAST allows you to specify the maximum number of Rendezvous messages that can be
pending in the queue before the discard policy that you have selected is applied. When the
limit is reached, the number of messages discarded is based on the discard amount value.

When the limit is reached, Rendezvous messages are discarded, and so are not imported as
EMS messages, regardless of the EMS import delivery mode. As stated above, a Rendezvous
message becomes a EMS message only after it has been dispatched from the Rendezvous
queue. If a queue limit is exceeded, reliable Rendezvous messages are lost.

Rendezvous certified messages are not lost, but the message flow is interrupted. The
redelivery of the missed messages is handled automatically by the Rendezvous libraries,
and can not be controlled by the EMS server.

Reaching a queue limit also generates a Rendezvous advisory that is logged (see RVADV log
and console trace in the TIBCO Rendezvous documentation), indicating which transport
reached its queue limit. This advisory goes into an independent, non limited, Rendezvous
queue. If lots of advisories are generated, this internal queue may also grow, signaling that
the limit policy is not appropriate for your environment.

Take care when setting a queue limit policy. In a controlled environment where the risk of
Rendezvous producers overwhelming the EMS server is low, there is no need to set a queue
limit policy.

Transport Definitions
transports.conf contains zero or more transport definitions. Each definition begins with
the name of a transport, surrounded by square brackets. Subsequent lines set the
parameters of the transport.

TIBCO Enterprise Message Service™ User Guide

478 | Interoperation with TIBCO Rendezvous

Parameter Description

type Required. For Rendezvous transports, the value
must be either tibrv or tibrvcm.

Rendezvous Parameters

Use these properties for either tibrv or tibrvcm transports.

The syntax and semantics of these parameters are identical to the corresponding parameters
in Rendezvous clients. For full details, see the Rendezvous documentation set.

service When absent, the default value is 7500.

network When absent, the default value is the host
computer’s primary network.

daemon When absent, the default value is an rvd process on
the local host computer. When transporting
messages between EMS and Rendezvous, the rvd
process must be configured to run on the same host
as the EMS daemon (tibemsd).

To connect to a non-default daemon, supply
protocol:hostname:port. You may omit any of the
three parts. The default protocol is tcp. The default
hostname is the local host computer. The default
port is 7500.

Rendezvous Certified Messaging (RVCM) Parameters

Use these properties only for tibrvcm transports.

The syntax and semantics of these parameters are identical to the corresponding parameters
in Rendezvous CM clients. For full details, see the Rendezvous documentation set.

cm_name The name of the correspondent RVCM listener
transport.

rv_tport Required. Each RVCM transport depends in turn
upon an ordinary Rendezvous transport. Set this

TIBCO Enterprise Message Service™ User Guide

479 | Interoperation with TIBCO Rendezvous

Parameter Description

parameter to the name of a Rendezvous transport
(type tibrv) defined in the EMS configuration file
transports.conf.

ledger_file Name for file-based ledger.

sync_ledger true or false. If true, operations that update the
ledger do not return until changes are written to the
storage medium.

request_old true or false. If true, this transport server requests
unacknowledged messages sent from other RVCM
senders while this transport was unavailable.

default_ttl This parameter sets default CM time limit (in
seconds) for all CM messages exported on this
transport.

explicit_config_only true or false. If true, tibemsd allows RVCM
listeners to register for certified delivery only if they
are configured in advance with the EMS server
(either in tibrvcm.conf or using the create
rvcmlistener command). That is, tibemsd ignores
registration requests from non-configured listeners.

If false (the default), tibemsd allows any RVCM
listener to register.

EMS Parameters

Use these properties for either tibrv or tibrvcm transports.

topic_import_dm

queue_import_dm

EMS sending clients can set the JMSDeliveryMode
header field for each message. However,
Rendezvous clients cannot set this header. Instead,
these two parameters determine the delivery modes
for all topic messages and queue messages that
tibemsd imports on this transport.

TIBCO Enterprise Message Service™ User Guide

480 | Interoperation with TIBCO Rendezvous

Parameter Description

TIBEMS_PERSISTENT | TIBEMS_NON_PERSISTENT |
TIBEMS_RELIABLE

When absent, the default is TIBEMS_NON_
PERSISTENT.

export_headers When true, tibemsd includes Jakarta Messaging
header fields in exported messages.

When false, tibemsd suppresses Jakarta Messaging
header fields in exported messages.

When absent, the default value is true.

export_properties When true, tibemsd includes Jakarta Messaging
properties in exported messages.

When false, tibemsd suppresses Jakarta Messaging
properties in exported messages.

When absent, the default value is true.

rv_queue_policy Set the queue limit policy for the Rendezvous queue
used by the transport to hold incoming Rendezvous
messages. This parameter has three parts:

policy:max_msgs:qty_discard

where policy is one of the queue limit policies
described below, max_msgs is the maximum
number of messages permitted in the queue before
discard, and qty_discard is the number of messages
that the EMS server discards when max_msgs is
reached.

The queue limit policies are:

 l TIBRVQUEUE_DISCARD_NONE — do not discard
messages. Use this policy when the queue
has no limit on the number of messages it

TIBCO Enterprise Message Service™ User Guide

481 | Interoperation with TIBCO Rendezvous

Parameter Description

can contain.

 l TIBRVQUEUE_DISCARD_FIRST — discard the
first message in the queue. The first message
in the queue is the oldest message, which if
not discarded would be the next message
dispatched from the queue.

 l TIBRVQUEUE_DISCARD_LAST — discard the last
message in the queue. The last message is
the most recent message received into the
queue.

For example, the following would cause the
Rendezvous library to discard the 100 oldest
messages in the queue when the total number of
messages in the queue reached 10,000:

rv_queue_policy=TIBRVQUEUE_DISCARD_
FIRST:10000:100

If the rv_queue_policy is not present, the default
queue limit policy is TIBRVQUEUE_DISCARD_NONE.

temp_destination_timeout Specifies the amount of time the server is to keep
the temporary destination (created for the RV inbox)
after its last use of the destination. This is useful for
a multi-server configuration. For example, in a
configuration in which rv-requester -> serverA ->
serverB -> rv-responder, setting temp_destination_
timeout=60 on serverB specifies that serverB is to
hold the temporary destination for 60 seconds.

Example

These examples from transports.conf illustrate the syntax of transport definitions.

[RV01]
 type = tibrv

TIBCO Enterprise Message Service™ User Guide

482 | Interoperation with TIBCO Rendezvous

 topic_import_dm = TIBEMS_RELIABLE
 queue_import_dm = TIBEMS_PERSISTENT
 service = 7780
 network = lan0
 daemon = tcp:host5:7885

 [RV02]
 type = tibrv
 service = 7890
 network = lan0
 daemon = tcp:host5:7995
 temp_destination_timeout = 60

 [RVCM01]
 type = tibrvcm
 export_headers = true
 export_properties = true
 rv_tport = RV02
 cm_name = RVCMTrans1
 ledger_file = ledgerFile.store
 sync_ledger = true
 request_old = true
 default_ttl = 600

In the following two examples, RVCM03 is an RVCM transport which does not define a queue
limit policy, but references the RV transport RV03, which does have a queue limit policy. If
Rendezvous messages are published to a subject that in EMS has the destination property
import=RVCM03, no Rendezvous message will ever be discarded because each transport
uses its own queue. Only messages that are imported directly through the RV03 transport
will potentially be discarded, should the queue limit of 10000 messages be reached.

[RV03]
 type = tibrv
 service = 7890
 network = lan0
 daemon = tcp:host5:7995
 rv_queue_policy = TIBRVQUEUE_DISCARD_LAST:10000:100

 [RVCM03]
 type = tibrvcm
 rv_tport = RV03
 cm_name = RVCMTrans2
 ledger_file = ledgerFile2.store
 sync_ledger = true

TIBCO Enterprise Message Service™ User Guide

483 | Interoperation with TIBCO Rendezvous

 request_old = true
 default_ttl = 600

Topics
Topics can both export and import messages. Accordingly, you can configure topic
definitions (in the configuration file topics.conf) with import and export properties that
specify one or more external transports:

import
import instructs tibemsd to import messages that arrive on those transports from
Rendezvous, and deliver them to the EMS destination.

export
export instructs tibemsd to take messages that arrive on the EMS destination, and export
them to Rendezvous via those transports.

Note: The EMS server never re-exports an imported message on the same topic.

(For general information about topics.conf syntax and semantics, see topics.conf. You can
also configure topics using the administration tool command addprop topic.)

Example
For example, the following tibemsadmin commands configure the topic myTopics.news to
import messages on the transports RV01 and RV02, and to export messages on the
transport RV02.

addprop topic myTopics.news import="RV01,RV02"
 addprop topic myTopics.news export="RV02"

TIBCO Enterprise Message Service™ User Guide

484 | Interoperation with TIBCO Rendezvous

Rendezvous messages with subject myTopics.news arrive at tibemsd over the transports
RV01 and RV02. EMS clients can receive those messages by subscribing to myTopics.news.

EMS messages sent to myTopics.news are exported to Rendezvous over transport RV02.
Rendezvous clients of the corresponding daemons can receive those messages by
subscribing to myTopics.news.

Import Only when Subscribers Exist
When a topic specifies import on a connected transport, tibemsd imports messages only
when the topic has has registered subscribers.

Wildcards
Wildcards in the import property obey EMS syntax and semantics (which is identical to
Rendezvous syntax and semantics).

For more information, see Destination Name Syntax.

Certified Messages
You can import and export TIBCO Rendezvous certified messages (tibrvcm transport) to
EMS topics. Rendezvous certified transports guarantee message delivery.

RVCM Ledger
tibrvcm transports can store information about subjects in a ledger file. You can review the
ledger file using an administration tool command; see show rvcmtransportledger.

For more information about ledger files, see TIBCO Rendezvous documentation.

TIBCO Enterprise Message Service™ User Guide

485 | Interoperation with TIBCO Rendezvous

Subject Collisions
Subscribers to destinations that import from RVCM transports are subject to the same
restrictions that direct RVCM listeners. These restrictions are described in the TIBCO
Rendezvous documentation, and include subject collisions.

When importing messages from RV, the EMS server creates RVCM listeners using a single
name for each transport. This can result in subject collisions if the corresponding EMS
subscribers have overlapping topics.

Queues
Queues can import messages, but cannot export them.

See import and export for more information.

Configuration
You can configure queue definitions (in the configuration file queues.conf) with the import
property that specify one or more external transports.

import instructs tibemsd to import messages that arrive on those transports from
Rendezvous, and deliver them to the EMS destination.

(For general information about queues.conf syntax and semantics, see queues.conf. You
can also configure queues using the administration tool command addprop queue.)

Example

The following tibemsadmin command configures the queue myQueue.in to import
messages on the transports RV01 and RV02.

addprop queue myQueue.in import="RV01,RV02"

Rendezvous messages with subject myQueue.in arrive at tibemsd over the transports RV01
and RV02. EMS clients can receive those messages by subscribing to myQueue.in.

TIBCO Enterprise Message Service™ User Guide

486 | Interoperation with TIBCO Rendezvous

Import—Start and Stop
When a queue specifies import on a connected transport, tibemsd immediately begins
importing messages to the queue, even when no receivers exist for the queue.

For static queues (configured by an administrator) tibemsd continues importing until you
explicitly delete the queue.

Wildcards
Wildcards in the import property obey EMS syntax and semantics (not Rendezvous syntax
and semantics).

For more information, see Destination Name Syntax.

EMS clients cannot subscribe to wildcard queues—however, you can define wildcards
queues in the EMS server for the purpose of property inheritance. That is, you can
configure a static queue named foo.* and set properties on it, so that child queues named
foo.bar and foo.baz will both inherit those properties.

If you define a queue that imports foo.*, tibemsd begins importing all matching messages
from Rendezvous. As messages arrive, tibemsd creates dynamic child queues (for example,
foo.bar and foo.baz) and delivers the messages to them. Notices that tibemsd delivers
messages to these dynamic child queues even when no consumers exist to drain them.

Import Issues
This section presents issues associated with importing messages to EMS from
Rendezvous—whether on a topic or a queue.

Field Identifiers
When importing and translating Rendezvous messages, tibemsd is only able to process
standard message field types that are identified by name in the Rendezvous program
application. Custom fields and fields identified using a field identifier cannot be imported
to EMS.

TIBCO Enterprise Message Service™ User Guide

487 | Interoperation with TIBCO Rendezvous

JMSDestination
When tibemsd imports and translates a Rendezvous message, it sets the JMSDestination
field of the EMS message to the value of the Rendezvous subject.

Therefore, imported destination names must be unique. When a topic and a queue share
the same name, at most one of them may set the import property. For example, if a topic
foo.bar and a queue foo.bar are both defined, only one may specify the import property.

See JMSDestination for more information.

JMSReplyTo
When tibemsd imports and translates a Rendezvous message, it sets the JMSReplyTo field
of the EMS message to the value of the Rendezvous reply subject, so that EMS clients can
reply to the message.

Usually this value represents a Rendezvous subject. You must explicitly configure tibemsd
to create a topic with a corresponding name, which exports messages to Rendezvous.

See JMSReplyTo for more information.

JMSExpiration
When tibemsd imports and translates a Rendezvous certified message, it sets the
JMSExpiration field of the EMS message to the time limit of the certified message.

See JMSExpiration for more information.

If the message time limit is exceeded, the sender program no longer certifies delivery.

Note that if the expiration property is set for a destination, it will override the
JMSExpiration value set by the message producer.

TIBCO Enterprise Message Service™ User Guide

488 | Interoperation with TIBCO Rendezvous

Guaranteed Delivery

Note: For full end-to-end certified delivery from Rendezvous to EMS, all three of
these conditions must be true:

 l Rendezvous senders must send labeled messages on RVCM transports. See
the TIBCO Rendezvous Concepts manual for more information.

 l The transport definition must set topic_import_dm or queue_import_dm
(as appropriate) to TIBEMS_PERSISTENT.

 l Either a durable queue or a subscriber for the EMS topic must exist.

Export Issues
This section presents issues associated with exporting messages from EMS to Rendezvous.

JMSReplyTo

Topics

Consider an EMS message in which the field JMSReplyTo contains a topic. When exporting
such a message to Rendezvous, you must explicitly configure tibemsd to import replies
from Rendezvous to that reply topic.

Temporary Topics

Consider an EMS message in which the field JMSReplyTo contains a temporary topic. When
tibemsd exports such a message to Rendezvous, it automatically arranges to import replies
to that temporary topic from Rendezvous; you do not need to configure it explicitly.

TIBCO Enterprise Message Service™ User Guide

489 | Interoperation with TIBCO Rendezvous

Certified Messages

RVCM Registration

When an RVCM listener receives its first labeled message, it registers to receive subsequent
messages as certified messages. Until the registration is complete, it receives labeled
messages as reliable messages. When exporting messages on a tibrvcm transport, we
recommend either of two actions to ensure certified delivery for all exported messages:

 l Create the RVCM listener before sending any messages from EMS clients.

 l Pre-register an RVCM listener, either with the administration tool (see create
rvcmlistener), or in the configuration file tibrvcm.conf (see tibrvcm.conf).

Guaranteed Delivery
For full end-to-end certified delivery to Rendezvous from EMS, the following condition must
be true:

 l EMS senders must send persistent messages.

Message Translation
The following topics describe how a message is translated by the EMS server when either
imported from or exported to Rendezvous.

Jakarta Messaging Header Fields
EMS supports the predefined Jakarta Messaging header fields described in Jakarta
Messaging Message Header Fields.

Special Cases
The following header fields are special cases:

TIBCO Enterprise Message Service™ User Guide

490 | Interoperation with TIBCO Rendezvous

 l Jakarta Messaging header JMSDestination corresponds to Rendezvous subject.

 l Jakarta Messaging header JMSReplyTo corresponds to Rendezvous reply subject.

 l Jakarta Messaging header JMSExpiration corresponds to the time limit of the
Rendezvous certified message.

 l Jakarta Messaging header JMSTimestamp corresponds to the time when the message
was created. If this header field is not present, when the tibemsd receives the
message it sets the JMSTimestamp to the current time.

Import
When importing a Rendezvous message to an EMS message, tibemsd does not set any
Jakarta Messaging header fields, except for the special cases noted above.

Export
When exporting an EMS message to a Rendezvous message, tibemsd groups all the Jakarta
Messaging header fields into a single submessage within the Rendezvous message. The
field JMSHeaders contains that submessage. Fields of the submessage map the names of
Jakarta Messaging header fields to their values.

The tibemsd server ignores any Jakarta Messaging header fields that are not set, or are set
to null—it omits them from the exported message.

You can instruct tibemsd to suppress the entire header submessage in the exported
message by setting the transport property export_headers = false.

The following table shows the mapping of Jakarta Messaging header fields to Rendezvous
data types (that is, the type of the corresponding field in the exported message).

Jakarta Messaging Header Name Rendezvous Type

JMSDeliveryMode TIBRVMSG_U8

JMSDeliveryTime TIBRVMSG_U64

JMSPriority TIBRVMSG_U8

TIBCO Enterprise Message Service™ User Guide

491 | Interoperation with TIBCO Rendezvous

Jakarta Messaging Header Name Rendezvous Type

JMSTimestamp TIBRVMSG_U64

JMSExpiration TIBRVMSG_U64

JMSType TIBRVMSG_STRING

JMSMessageID TIBRVMSG_STRING

JMSCorrelationID TIBRVMSG_STRING

JMSRedelivered TIBRVMSG_BOOL

JMSDestination send subject in TIBCO Rendezvous

JMSReplyTo reply subject in TIBCO Rendezvous

Jakarta Messaging Property Fields

Import
When importing a Rendezvous message to an EMS message, tibemsd sets these EMS
properties:

 l JMS_TIBCO_IMPORTED gets the value true, to indicate that the message did not
originate from an EMS client.

 l JMS_TIBCO_MSG_EXT gets the value true, to indicate that the message might contain
submessage fields or array fields.

Import RVCM
In addition to the two fields described above, when tibemsd imports a certified message
on a tibrvcm transport, it can also set these properties (if the corresponding information is
set in the Rendezvous message).

TIBCO Enterprise Message Service™ User Guide

492 | Interoperation with TIBCO Rendezvous

Property Description

JMS_TIBCO_CM_PUBLISHER A string value indicating the correspondent
name of the TIBCO Rendezvous CM transport
that sent the message (that is, the sender
name).

JMS_TIBCO_CM_SEQUENCE A long value indicating the CM sequence
number of an RVCM message imported from
TIBCO Rendezvous.

Export
When exporting an EMS message to a Rendezvous message, tibemsd groups all the Jakarta
Messaging property fields into a single submessage within the Rendezvous message. The
field JMSProperties contains that submessage. Fields of the submessage map the names
of Jakarta Messaging property fields to their values.

The tibemsd server ignores any Jakarta Messaging property fields that are not set, or are
set to null—it omits them from the exported message.

You can instruct tibemsd to suppress the entire properties submessage in the exported
message by setting the transport property export_properties = false.

Message Body
tibemsd can export messages with any Jakarta Messaging message body type to TIBCO
Rendezvous. Conversely, tibemsd can import messages with any message type from TIBCO
Rendezvous.

For information about Jakarta Messaging body types, see Jakarta Messaging Message
Bodies.

For information about the structure of messages, see Jakarta Messaging Message Structure.

TIBCO Enterprise Message Service™ User Guide

493 | Interoperation with TIBCO Rendezvous

Import
When importing a Rendezvous message, tibemsd translates it to an EMS message body
type based on the presence of the field as seen in the following table.

Rendezvous Field EMS Body Type

JMSBytes JMSBytesMessage

JMSObject JMSObjectMessage

JMSStream JMSStreamMessage

JMSText JMSTextMessage

None of these fields are present. JMSMapMessage

Note: The field names DATA and _data_ are reserved. We strongly discourage
you from using these field names in EMS and Rendezvous applications, and
especially when these two message transport mechanisms interoperate.

Note: Only standard Rendezvous fields identified by name can be imported into
EMS. Custom fields and fields identified in the Rendezvous application by field
identifiers cannot be imported.

Export
When exporting an EMS message, tibemsd translates it to a Rendezvous message with the
following structure.

 l The field JMSHeaders contains a submessage; see Jakarta Messaging Header Fields.
When the transport parameter export_headers is false, this field is omitted.

 l The field JMSProperties contains a submessage; see Jakarta Messaging Property
Fields. When the transport parameter export_properties is false, this field is
omitted.

 l When translating the data fields of an EMS message, the results depend on the

TIBCO Enterprise Message Service™ User Guide

494 | Interoperation with TIBCO Rendezvous

Jakarta Messaging body type. The following table specifies the mapping.

Jakarta
Messaging Body
Type

Export Translation

BytesMessage The message data translates to a byte array that contains the bytes of the
 original EMS message.

The field JMSBytes receives this data. It has type TIBRVMSG_OPAQUE.

TextMessage The message data translates to a UTF-8 string corresponding to the text
of the original EMS message.

The field JMSText receives this data. It has type TIBRVMSG_STRING.

ObjectMessage The message data translates to a byte array containing the serialized Java
 object.

The field JMSObject receives this data. It has type TIBRVMSG_OPAQUE.

StreamMessage The message data translates to a byte array that encodes the objects in
the original EMS message.

The field JMSStream receives this data. It has type TIBRVMSG_OPAQUE.

MapMessage The message data fields map directly to top-level fields in the Rendezvous
 message. The fields retain the same names as in the original EMS
message.

See also, EMS Extensions to Jakarta Messaging Messages.

Data Types
The mapping between EMS datatypes and Rendezvous datatypes is bidirectional, except for
the Rendezvous types that have no corresponding EMS type (for these types the mapping is
marked as unidirectional in the middle column).

TIBCO Enterprise Message Service™ User Guide

495 | Interoperation with TIBCO Rendezvous

EMS Map Rendezvous

Boolean TIBRVMSG_BOOL

Byte TIBRVMSG_I8

Short <— TIBRVMSG_U8

Short TIBRVMSG_I16

Integer <— TIBRVMSG_U16

Integer TIBRVMSG_I32

Long <— TIBRVMSG_U32

Long TIBRVMSG_I64

Long <— TIBRVMSG_U64

Float TIBRVMSG_F32

Double TIBRVMSG_F64

Short <— TIBRVMSG_IPPORT16

Integer <— TIBRVMSG_IPADDR32

MapMessage TIBRVMSG_MSG

Long <— TIBRVMSG_DATETIME

byte[] TIBRVMSG_OPAQUE

java.lang.String TIBRVMSG_STRING

byte[] <— TIBRVMSG_XML

byte[] <— TIBRVMSG_I8ARRAY

TIBCO Enterprise Message Service™ User Guide

496 | Interoperation with TIBCO Rendezvous

EMS Map Rendezvous

short[] <— TIBRVMSG_U8ARRAY

short[] TIBRVMSG_I16ARRAY

int[] <— TIBRVMSG_U16ARRAY

int[] TIBRVMSG_I32ARRAY

long[] <— TIBRVMSG_U32ARRAY

long[] TIBRVMSG_I64ARRAY

long[] <— TIBRVMSG_U64ARRAY

float[] TIBRVMSG_F32ARRAY

double[] TIBRVMSG_F64ARRAY

Pure Java Rendezvous Programs
TIBCO Enterprise Message Service is shipped with the tibrvjms.jar file that you can
include in your TIBCO Rendezvous applications. This JAR file includes the implementation
of the com.tibco.tibrv.TibrvJMSTransport class. This class extends the
com.tibco.tibrv.TibrvNetTransport class and allows your pure Java Rendezvous
programs to communicate directly with the EMS server instead of through rva.

the application must include tibrvjms.jar and EITHER tibrvjweb.jar OR tibrvj.jar, but
CANNOT include tibrvnative.jar

To use the TibrvJMSTransport class, your application must include tibrvjms.jar
(included with EMS) and either tibrvjweb.jar or tibrv.jar (included with TIBCO
Rendezvous). Your application cannot include tibrvnative.jar.

TIBCO Enterprise Message Service™ User Guide

497 | Interoperation with TIBCO Rendezvous

Note: You can use TibrvJMSTransport only in Rendezvous applications. This
class is not intended for use in your EMS Java clients.

Both TIBCO Rendezvous and EMS must be purchased, installed, and configured
before creating pure Java Rendezvous applications that use the
TibrvJMSTransport class.

The TibrvJMSTransport class provides Rendezvous reliable communication only. Other
types of communication, such as certified messaging, are not supported by this transport.

Applications using this transport can send messages to a topic on an EMS server that has
the same topic name as the subject of the message. EMS topics receiving Rendezvous
messages sent by way of the TibrvJMSTransport do not need to specify the import
property. This transport cannot be used to send messages to Jakarta Messaging queues.

For more information about TibrvNetTransport and how to create use transports in TIBCO
Rendezvous Java programs, see TIBCO Rendezvous documentation. For more information
about the additional methods of TibrvJMSTransport, see the TIBCO Enterprise Message
Service Java API Reference.

TIBCO Enterprise Message Service™ User Guide

498 | Monitor Server Activity

Monitor Server Activity
System administrators must monitor and manage the TIBCO Enterprise Message Service
server. The logging, monitoring, and statistics facilities provided by the server allow system
administrators to effectively view system activity and track system performance.

Server Health and Metrics
You can configure the TIBCO Enterprise Message Service server to service HTTP(S) GET
requests for the current health and metrics of the server on a dedicated port.

This feature can be used to support the health check probes in Kubernetes. For more
information refer to the Kubernetes documentation.

Configure the Monitor Listen

The monitor_listen configuration property in tibemsd.conf controls the interface and
port the server will service HTTP(S) health check and Prometheus metrics requests on. If
this property is not set, the server will not attempt to service these type of requests. This
property cannot be set dynamically.

You can use only one monitor_listen and this listen should not conflict with other server
listens.

These same restrictions apply to secondary_monitor_listen which is used by a server
designated as secondary in a fault tolerant pair.

Whether a monitor listen uses HTTP or HTTPS is specified in the property itself. For
information on how to configure explicit TLS properties for these monitor listens, refer to
the Configure HTTPS in the Server section of the TLS Protocol chapter. If any of the
corresponding properties is unset, the server attempts to use the corresponding TLS
property applicable to the regular server listens in its place.

TIBCO Enterprise Message Service™ User Guide

499 | Monitor Server Activity

Health Check Response

A requestor can check whether the server is live or ready. An OK response to a liveness
request means the server is up and running. An OK response on a readiness request means
the server is in the active state while a BAD response means the server is not.

Liveness requests to the server should be HTTP(S) GET requests for the path /isLive.
Readiness requests to the server should be HTTP(S) GET requests for the path /isReady.

For example: http://machine:7220/isLive and http://machine:7220/isReady.

Prometheus Metrics

You can configure TIBCO Enterprise Message Service to provide Prometheus-formatted
metrics over an HTTP(S) listen port. This is the same port used to service health check
responses.

 l Metrics describing overall server state and the state of all queues and topics can be
monitored at the path /metrics.

 l Metrics describing the overall server state can be monitored at the path
/metrics/server.

 l Metrics describing the state of all queues and topics can be monitored at the paths
/metrics/queues and /metrics/topics.

 l Metrics describing individual destinations can be monitored at the paths
/metrics/queues/<queue name> and /metrics/topics/<topic name>. In addition to
naming an individual queue or topic, you can specify a wildcard to select metrics
from a group of queues or topics. This type of request would yield the same set of
individual metrics but just for the matching queues or topics. See Wildcards for more
information.

Log Files and Tracing
You can configure the TIBCO Enterprise Message Service server to write a variety of
information to the log. Several parameters and commands control where the log is located
as well as what information is written to the log. The log can be written to a file, to the
system console, or to both.

TIBCO Enterprise Message Service™ User Guide

500 | Monitor Server Activity

Configure the Log File
The logfile configuration parameter in tibemsd.conf controls the location and the name
of the log file.

You can specify that the log file should be backed up and emptied after it reaches a
maximum size. This allows you to rotate the log file and ensure that the log file does not
grow boundlessly. The logfile_max_size configuration parameter allows you to specify
the maximum size of the current log file. Set the parameter to 0 to specify no limit. Use KB,
MB, or GB units.

Once the log file reaches its maximum size, it is copied to a file with the same name as the
current log file except a sequence number is appended to the name of the backup file. On
startup—and only on startup—the server queries the directory and determines the first
available sequence number. It then uses the next sequence number when it needs to back
up the current log file. By doing so, you can keep a continuous sequencing, as long as you
retain the most recent log file (highest sequence number) between server restarts.
Conversely, if you move or remove all log files before a server restart, then the sequencing
will restart at 1.

For example, if the current log file is named tibems.log, the first copy is named
tibems.log.1, the second is named tibems.log.2, and so on. Similarly, if the highest
sequence number in use when the server starts is 19, or tibemsd.log.19, then the next
backup file created will be named tibemsd.log.20. This is true even if you removed
tibemsd.log.19 and all other log files after the server started.

If logfile_max_count is specified, the server keeps at most the number of log files
specified by that parameter, including the current log file. When the maximum number of
log files has been reached and the server needs to back up the current log file, it deletes
the oldest log file (the ones with smallest number). If you change the parameter setting,
after the server is restarted, the next time it needs to rotate the log file it deletes however
many of the lowest sequence numbered files required to reach the logfile_max_count
maximum.

You can also dynamically force the log file to be backed up and truncated using the
rotatelog command in tibemsadmin. See Command Listing for more information about
the rotatelog command.

For other configuration parameters that affect the log file, see Tracing and Log File
Parameters.

TIBCO Enterprise Message Service™ User Guide

501 | Monitor Server Activity

Trace Messages for the Server
The TIBCO Enterprise Message Service server can be configured to produce trace messages.
These messages can describe actions performed for various areas of functionality (for
example, Access Control, Administration, or Routing). These messages can also provide
information about activities performed on or by the server, or the messages can provide
warnings in the event of failures or illegal actions.

Trace messages can be sent to a log file, the console, or both. You configure tracing in the
following ways:

 l By configuring the log_trace and/or console_trace parameters in the tibemsd.conf
file; see set server.

 l By specifying the -trace option when starting the server

 l By using the set server command when the server is running.

log_trace and console_trace can be used to configure what types of messages are to go
to the log file and to the console.

Note: When you want trace messages to be sent to a log file, you must also
configure the logfile configuration parameter. If you specify log_trace, and
the logfile configuration parameter is not set to a valid file, the tracing options
are stored, but they are not used until the server is started with a valid log file.

Server Tracing Options
When configuring log or console tracing, you have a variety of options for the types of trace
messages that can be generated.

Specify tracing with a comma-separated list of trace options. You may specify trace options
in three forms:

 l plain: A trace option without a prefix character replaces any existing trace options.

 l +: A trace option preceded by + adds the option to the current set of trace options.

 l -: A trace option preceded by - removes the option from the current set of trace
options.

TIBCO Enterprise Message Service™ User Guide

502 | Monitor Server Activity

Trace Option Description

DEFAULT Sets the trace options to the default set. This includes:

 l INFO

 l WARNING

 l ACL

 l LIMITS

 l ROUTE

 l ADMIN

 l RVADV

 l CONNECT_ERROR

 l CONFIG

 l MSG

ACL Prints a message when a user attempts to perform an
unauthorized action. For example, if the user attempts to publish
a message to a secure topic for which the user has not been
granted the publish permission.

ADMIN Prints a message whenever an administration function is
performed.

AUTH Prints a message when the server authenticates an incoming
connection with JAAS or OAuth 2.0.

CONFIG Prints information about configuration files and their contents as
the EMS server is starting up.

CONNECT Prints a message when a user attempts to connect to the server.

CONNECT_ERROR Prints a message when an error occurs on a connection.

DEST Prints a message when a dynamic destination is created.

FLOW Prints a message when the server enforces flow control or stops

TIBCO Enterprise Message Service™ User Guide

503 | Monitor Server Activity

Trace Option Description

enforcing flow control on a destination.

FTL Prints trace messages related to TIBCO FTL transports.

INFO Prints messages as the server performs various internal
housekeeping functions, such as creating a configuration file,
opening the persistent database files, and purging messages. Also
prints a message when tracking by message ID is enabled or
disabled.

JAAS Prints messages related to any extensible security modules.

Messages are printed when a username and password are passed
to the LoginModule for authentication, and when a user and
action are passed to the Permissions Modules for authorization.

JNDI Prints a trace message for each JNDI lookup performed by a
client, including the name and type of the object looked up and
its return value.

JVM Prints startup information about the JVM configuration, as well as
any output from custom modules running in the JVM that uses
System.out.

JVMERR Prints output from custom modules running in the JVM that uses
System.err.

LIMITS Prints a message when a limit is exceeded, such as the maximum
size for a destination.

LOAD Prints the paths of any dynamically loaded libraries. The tibemsd
can load FTL, ActiveSpaces, and Rendezvous libraries.

MEMORY Prints a server trace information when reserve memory is
triggered because of low server memory conditions.

MSG Specifies that message trace messages should be printed.
Message tracing is enabled/disabled on a destination or on an

TIBCO Enterprise Message Service™ User Guide

504 | Monitor Server Activity

Trace Option Description

individual message. If message tracing is not enabled for any
messages or destinations, no trace messages are printed when
this option is specified for log or console tracing. See Message
Tracing for more information about message tracing.

OAUTH2 Prints messages related to OAuth 2.0 authentication.

OAUTH2_DEBUG Prints detailed messages related to the OAuth 2.0 authentication
process.

PRODCONS Prints a message when a client creates or closes a producer or
consumer.

ROUTE Prints a message when routes are created or when a route
connection is established.

ROUTE_DEBUG Prints status and error messages related to the route.

RVADV Prints TIBCO Rendezvous advisory messages whenever they are
received.

SSL Prints detailed messages of the TLS process, including certificate
content.

SSL_DEBUG Prints messages that trace the establishment of TLS connections.

TX Prints a message when a client performs a transaction.

WARNING Prints a message when a failure of some sort occurs, usually
because the user attempts to do something illegal. For example,
a message is printed when a user attempts to publish to a
wildcard destination name.

Examples

The following example sets the trace log to only show messages about access control
violations.

TIBCO Enterprise Message Service™ User Guide

505 | Monitor Server Activity

 log_trace=ACL

The next example sets the trace log to show all default trace messages, in addition to TLS
messages, but ADMIN messages are not shown.

 log_trace=DEFAULT,-ADMIN,+SSL

Message Tracing
In addition to other server activity, you can trace messages as they are processed.

Trace entries for messages are only generated for destinations or messages that specify
tracing should be performed. For destinations, you specify the trace property to enable
the generation of trace messages. For individual messages, the JMS_TIBCO_MSG_TRACE
property specifies that tracing should be performed for this message, regardless of the
destination settings. The sections below describe the tracing properties for destinations
and messages.

Message trace entries can be output to either the console or the log. The MSG trace option
specifies that message trace entries should be displayed, and the DEFAULT trace option
includes the MSG option. See Trace Messages for the Server for more information about
specifying trace options.

You must set the tracing property on either destinations or messages and also set the MSG
or DEFAULT trace option on the console or the log before you can view trace entries for
messages.

Note: EMS tracing features do not filter unprintable characters from trace
output. If your application uses unprintable characters within messages
(whether in data or headers), the results of message tracing are unpredictable.

Enable Message Tracing for a Destination
The trace property on a destination specifies that trace entries are generated for that
destination.

TIBCO Enterprise Message Service™ User Guide

506 | Monitor Server Activity

The trace property can optionally be specified as trace=body. Setting trace=body includes
the message body in trace messages. The EMS server prints up to one kilobyte of a
message string field, and up to a total message size of 8 KB. The trace message indicates if
the full message is not printed.

Setting trace without the body option specifies that only the message sequence and
message ID are included in the trace message.

When message tracing is enabled for a destination, a trace entry is output for each of the
following events that occur in message processing:

 l messages are received into a destination

 l messages are sent to consumers

 l messages are imported or exported to/from an external system

 l messages are acknowledged

 l messages are sent across a destination bridge

 l messages are routed

Replies to request messages are traced only when the reply destination has the trace
property. Similarly, replies to exported messages are only traced when the trace property
is set.

Enable Message Tracing on a Message
You can enable tracing on individual messages by setting the JMS_TIBCO_MSG_TRACE
property on the message.

The value of the property can be either null (Java/.NET null or NULL in C) or the string
"body". Setting the property to null specifies only the message ID and message sequence
will be included in the trace entries for the message. Setting the property to "body"
specifies the message body will be included in the trace entries for the message.

When the JMS_TIBCO_MSG_TRACE property is set for a message, trace entries are generated
for the message as it is processed, regardless of whether the trace property is set for any
destinations the message passes through. Trace messages are generated for the message
when it is sent by the producer and when it is received by the consumer.

TIBCO Enterprise Message Service™ User Guide

507 | Monitor Server Activity

Monitor Server Events
The TIBCO Enterprise Message Service server can publish topic messages for internal
system events. For example, the server can publish a message when users connect or
disconnect.

System event messages contain detail about the event stored in properties of the message.
This section gives an overview of the monitoring facilities provided by the server. For a list
of monitor topics and a description of the message properties for each topic, see Monitor
Messages.

System Monitor Topics
The TIBCO Enterprise Message Service server can publish messages to various topics when
certain events occur. There are several types of event classes, each class groups a set of
related events. For example, some event classes are connection, admin, and route. Each
event class is further subdivided into the events for each class. For example, the
connection class has two events: connect and disconnect. These event classes are used to
group the system events into meaningful categories.

All system event topic names begin with $sys.monitor. The remainder of the name is the
event class followed by the event. For example, the server publishes a message to the topic
$sys.monitor.connection.disconnect whenever a client disconnects from the server.
The naming scheme for system event topics allows you to create wildcard subscriptions for
all events of a certain class. For example, to receive messages whenever clients connect or
disconnect, you would create a topic subscriber for the topic $sys.monitor.connection.*.

Monitor topics are created and maintained by the server. Monitor topics are not listed in
the topics.conf file. Users can subscribe to monitor topics but cannot create them.

Monitor Messages
You can monitor messages processed by a destination as they are sent, received, or
acknowledged.

You can also monitor messages that have prematurely exited due to expiration, being
discarded, or a maxRedelivery failure.

TIBCO Enterprise Message Service™ User Guide

508 | Monitor Server Activity

The $sys.monitor topic for monitor messages has the following format:

$sys.monitor.D.E.destinationName

where D is the type of destination, E is the event you wish to monitor, and destinationName
is the name of the destination whose messages you wish to monitor.

Message monitoring qualifiers
Possible values of D and E in message monitoring topics.

Qualifier Value Description

D T Destination to monitor is a topic. Include the message body in the
monitor message as a byte array. Use the createFromBytes()
method when viewing the monitor message to recreate the message
body, if desired.

t Destination to monitor is a topic. Do not include the message body
in the monitor message.

Q Destination to monitor is a queue. Include the message body in the
monitor message as a byte array. Use the createFromBytes()
method when viewing the monitor message to recreate the message
body, if desired.

q Destination to monitor is a queue. Do not include the message body
in the monitor message.

E s Monitor message is generated when a message is sent by the server
to:

 l a consumer

 l a route

 l an external system by way of a transport

r Monitor message is generated when a message is received by the
specified destination. This occurs when the message is:

 l Sent by a producer

TIBCO Enterprise Message Service™ User Guide

509 | Monitor Server Activity

Qualifier Value Description

 l Sent by a route

 l Forwarded from another destination by way of a bridge

 l Imported from transport to an external system

a Monitor message is generated when a message is acknowledged.

p Monitor message is generated when a message prematurely exits
due to expiration, being discarded, or a maxRedelivery failure.

* Monitor message is generated when a message is sent, received, or
acknowledged for the specified destination.

For example, $sys.monitor.T.r.corp.News is the topic for monitoring any received
messages to the topic named corp.News. The message body of any received message is
included in monitor messages on this topic. The topic $sys.monitor.q.*.corp.* monitors
all message events (send, receive, acknowledge) for all queues matching the name corp.*.
The message body is not included in this topic’s messages.

The messages sent to this type of monitor topic include a description of the event,
information about where the message came from (a producer, route, external system, and
so on), and optionally the message body, depending upon the value of D. See Monitor
Messages, for a complete description of the properties available in monitor messages.

You must explicitly subscribe to a message monitoring topic. That is, subscribing to
$sys.monitor.> will subscribe to all topics beginning with $sys.monitor, but it does not
subscribe you to any specific message monitoring topic such as
$sys.monitor.T.*.foo.bar. However, if another subscriber generates interest in the
message monitor topics, this subscriber will also receive those messages.

You can specify wildcards in the destinationName portion of the message monitoring topic
to subscribe to the message monitoring topic for all matching destinations. For example,
you can subscribe to $sys.monitor.T.r.> to monitor all messages received by all topics.
For performance reasons, you may want to avoid subscribing to too many message
monitoring topics. See Performance Implications of Monitor Topics for more information.

TIBCO Enterprise Message Service™ User Guide

510 | Monitor Server Activity

Description of Monitor Topics

Topic Message Is Published When...

$sys.monitor.admin.change The administrator has made a change to the
configuration.

$sys.monitor.connection.connect A user attempts to connect to the server.

$sys.monitor.connection.disconnect A user connection is disconnected.

$sys.monitor.connection.error An error occurs on a user connection.

$sys.monitor.consumer.create A consumer is created.

$sys.monitor.consumer.destroy A consumer is destroyed.

$sys.monitor.flow.engaged Stored messages rise above a destination’s limit,
engaging the flow control feature.

$sys.monitor.flow.disengaged Stored messages fall below a destination’s limit,
disengaging the flow control feature.

$sys.monitor.limits.connection Maximum number of hosts or connections is
reached.

$sys.monitor.limits.queue Maximum bytes for queue storage is reached.

$sys.monitor.limits.server Server memory limit is reached.

$sys.monitor.limits.topic Maximum bytes for durable subscriptions is
reached.

$sys.monitor.producer.create A producer is created.

$sys.monitor.producer.destroy A producer is destroyed.

$sys.monitor.queue.create A dynamic queue is created.

TIBCO Enterprise Message Service™ User Guide

511 | Monitor Server Activity

Topic Message Is Published When...

$sys.monitor.route.connect A route connection is attempted.

$sys.monitor.route.disconnect A route connection is disconnected.

$sys.monitor.route.warning An issue worth warning about occurs on a route
connection.

$sys.monitor.route.error An error occurs on a route connection.

$sys.monitor.route.interest A change in registered interest occurs on the
route.

$sys.monitor.server.info The server sends information about an event; for
example, a log file is rotated.

$sys.monitor.server.warning The active server detects a disconnection from
the standby server.

$sys.monitor.topic.create A dynamic topic is created.

$sys.monitor.tx.action A local transaction commits or rolls back.

$sys.monitor.xa.action An XA transaction commits or rolls back.

$sys.monitor.D.E.destination A message is handled by a destination. The name
of this monitor topic includes two qualifiers (D
and E) and the name of the destination you wish
to monitor.

D signifies the type of destination and whether to
include the entire message:

 l T — topic, include full message (as a byte
array) into each event

 l t — topic, do not include full message into
each event

 l Q — queue, include full message (as a byte

TIBCO Enterprise Message Service™ User Guide

512 | Monitor Server Activity

Topic Message Is Published When...

array) into each event

 l q — queue, do not include full message
into each event

E signifies the type of event:

 l r for receive

 l s for send

 l a for acknowledge

 l p for premature exit of message

 l * for all event types

For example, $sys.monitor.T.r.corp.News is the
topic for monitoring any received messages to
the topic named corp.News. The message body
of any received messages is included in monitor
messages on this topic. The topic
$sys.monitor.q.*.corp.* monitors all message
events (send, receive, acknowledge) for all
queues matching the name corp.*. The message
body is not included in this topic’s messages.

The messages sent to this type of monitor topic
include a description of the event, information
about where the message came from (a
producer, route, external system, and so on), and
optionally the message body, depending upon
the value of D.

See Monitor Messages for more information
about message monitoring.

Description of Topic Message Properties
Each monitor message can have a different set of these properties.

TIBCO Enterprise Message Service™ User Guide

513 | Monitor Server Activity

Property Contents

conn_connid Connection ID of the connection that generated the event.

conn_ft Whether the client connection is a connection to a fault-
tolerant server.

conn_hostname Hostname of the connection that generated the event.

conn_ssl Whether the connection uses the TLS protocol.

conn_type Type of connection that generated the event. This property
can have the following values:

 l Admin

 l Topic

 l Queue

 l Generic

 l Route

 l FT (connection to fault-tolerant server)

 l Unknown

conn_username User name of the connection that generated the event.

conn_xa Whether the client connection is an XA connection.

event_action The action that caused the event. This property can have the
values listed in Event Action Property Values.

event_class The type of monitoring event (that is, the last part of the
topic name without the $sys.monitor).

For message monitoring, the value of this property is always
set to message.

event_description A text description of the event that has occurred.

TIBCO Enterprise Message Service™ User Guide

514 | Monitor Server Activity

Property Contents

event_reason The reason the event occurred (usually an error). The values
this property can have are described in Event Reason
Property Values.

event_route For routing, the route that the event occurred on.

message_bytes When the full message is to be included for message
monitoring, this field contains the message as a byte array.
You can use the createFromBytes method (in the various
client APIs) to recover the message.

mode Message delivery mode. This values of this property can be
the following:

 l persistent

 l non_persistent

 l reliable

msg_correlation_id JMS correlation ID.

msg_id Message ID.

msg_seq Message sequence number.

msg_size Message size, in bytes.

msg_timestamp Message timestamp.

msg_expiration Message expiration.

replyTo Message JMSReplyTo.

rv_reply Message RV reply subject.

source_id ID of the source object.

source_name Name of the source object involved with the event. This

TIBCO Enterprise Message Service™ User Guide

515 | Monitor Server Activity

Property Contents

property can have the following values:

 l XID (global transaction ID)

 l message_id

 l connections (number of connections)

 l unknown (unknown name)

 l Any server property name

 l the name of the user, or anonymous

source_object Source object that was involved with the event. This
property can have the following values:

 l producer

 l consumer

 l topic

 l queue

 l permissions

 l durable

 l server

 l transaction

 l user

 l group

 l connection

 l message

 l jndiname

 l factory

 l file

 l limits (a limit, such as a memory limit)

 l route

TIBCO Enterprise Message Service™ User Guide

516 | Monitor Server Activity

Property Contents

 l transport

source_value Value of source object.

stat_msgs Message count statistic for producer or consumer.

stat_size Message size statistic for producer or consumer.

target_admin Whether the target object is the admin connection.

target_created Time that the consumer was created (in milliseconds since
the epoch).

target_dest_name Name of the target destination

target_dest_type Type of the target destination.

target_durable Name of durable subscriber when target is durable
subscriber.

target_group Group name that was target of the event

target_hostname Hostname of the target object.

target_id ID of the target object.

target_name Name of the object that was the target of the event. This
property can have the following values:

 l XID (global transaction ID)

 l message_id

 l connections (number of connections)

 l unknown (unknown name)

 l Any server property name

 l the name of the user, or anonymous

TIBCO Enterprise Message Service™ User Guide

517 | Monitor Server Activity

Property Contents

target_nolocal No Local flag when target is durable subscriber.

target_object The general object that was the target of the event. This
property can have the following values:

 l producer

 l consumer

 l topic

 l queue

 l durable

 l server

 l transaction

 l user

 l group

 l connection

 l message

 l jndiname

 l factory

 l file

 l limits (a limit, such as a memory limit)

 l route

 l transport

target_selector Selector when the target is a consumer.

target_subscription Subscription of the target object when target is durable
subscriber.

target_url URL of the target object.

TIBCO Enterprise Message Service™ User Guide

518 | Monitor Server Activity

Property Contents

target_username Username of the target object.

target_value Value of the object that was the target of the event, such as
the name of a topic, queue, and so on.

Event Action
Value

Description

accept connection accepted

acknowledge message is acknowledged

add user added to a group

admin_commit administrator manually committed an XA transaction

admin_rollback administrator manually rolled back an XA transaction

commit transaction committed

connect connection attempted

create something created

delete something deleted

disconnect connection disconnected

flow_engaged stored messages rise above a destination’s limit, engaging the flow
control feature

flow_disengaged stored messages fall below a destination’s limit, disengaging the flow
control feature

interest registered interest for a route

Event Action Property Values

TIBCO Enterprise Message Service™ User Guide

519 | Monitor Server Activity

Event Action
Value

Description

modify something changed

grant permission granted

premature_exit message prematurely exited

purge topic, queue, or durable subscriber purged

receive message posted into destination

remove user removed from a group

resume administrator resumed a route

revoke permission revoked

rollback transaction rolled back

rotate_log log file rotated

send message sent by server to another party

subscribe subscription request

suspend administrator suspended a route

txcommit administrator manually committed a local transaction

txrollback administrator manually rolled back a local transaction

xacommit an application committed an XA transaction (2-phase)

xacommit_1phase an application committed an XA transaction (1-phase)

xastart an application started a new XA transaction

TIBCO Enterprise Message Service™ User Guide

520 | Monitor Server Activity

Event Action
Value

Description

xastart_join an application has joined (that is, added) a resource to an existing
transaction

xastart_resume an application resumed a suspended XA transaction

xaend_fail an application ended an XA transaction, indicating failure

xaend_success an application ended an XA transaction, indicating success

xaend_suspend an application suspended an XA transaction

xaprepare an application prepared an XA transaction

xarecover an application called recover (to get a list of XA transactions)

xarollback an application rolled back an XA transaction

Event Action Value Description

accept connection accepted

acknowledge message is acknowledged

add user added to a group

admin_commit administrator manually committed an XA transaction

admin_rollback administrator manually rolled back an XA transaction

commit transaction committed

connect connection attempted

create something created

Event Reason Property Values

TIBCO Enterprise Message Service™ User Guide

521 | Monitor Server Activity

Event Action Value Description

delete something deleted

disconnect connection disconnected

flow_engaged stored messages rise above a destination’s limit, engaging the
flow control feature

flow_disengaged stored messages fall below a destination’s limit, disengaging the
flow control feature

interest registered interest for a route

modify something changed

grant permission granted

premature_exit message prematurely exited

purge topic, queue, or durable subscriber purged

receive message posted into destination

remove user removed from a group

resume administrator resumed a route

revoke permission revoked

rollback transaction rolled back

rotate_log log file rotated

send message sent by server to another party

subscribe subscription request

suspend administrator suspended a route

TIBCO Enterprise Message Service™ User Guide

522 | Monitor Server Activity

Event Action Value Description

txcommit administrator manually committed a local transaction

txrollback administrator manually rolled back a local transaction

xacommit an application committed an XA transaction (2-phase)

xacommit_1phase an application committed an XA transaction (1-phase)

xastart an application started a new XA transaction

xastart_join an application has joined (that is, added) a resource to an
existing transaction

xastart_resume an application resumed a suspended XA transaction

xaend_fail an application ended an XA transaction, indicating failure

xaend_success an application ended an XA transaction, indicating success

xaend_suspend an application suspended an XA transaction

xaprepare an application prepared an XA transaction

xarecover an application called recover (to get a list of XA transactions)

xarollback an application rolled back an XA transaction

View Monitor Topics
Monitor topics are similar to other topics. To view these topics, create a client application
that subscribes to the desired topics.

Because monitor topics contain potentially sensitive system information, authentication
and permissions are always checked when clients access a monitor topic. That is, even if
authentication for the server is disabled, clients are not able to access monitor topics
unless they have logged in with a valid username and password and the user has
permission to view the desired topic.

TIBCO Enterprise Message Service™ User Guide

523 | Monitor Server Activity

The admin user and members of the $admin group have permission to perform any server
action, including subscribing to monitor topics. All other users must be explicitly granted
permission to view monitor topics before the user can successfully create subscribers for
monitor topics. For example, if user BOB is not a member of the $admin group, and you
wish to allow user BOB to monitor all connection events, you can grant BOB the required
permission with the following command using the administration tool:

grant topic $sys.monitor.connection.* BOB subscribe

Bob’s application can then create a topic subscriber for $sys.monitor.connect.* and view
any connect or disconnect events.

Note: Topics starting with $sys.monitor do not participate in any permission
inheritance from parent topics other than those starting with $sys.monitor (that
is, *.* or *.> is not a parent of $sys.monitor).

Therefore, granting permission to a user to subscribe to > does not allow that
user to subscribe to $sys.monitor topics. You must explicitly grant users
permission to $sys.monitor topics (or parent topics, such as
$sys.monitor.admin.*) for a user to be able to subscribe to that topic.

Monitor topics publish messages of type MapMessage. Information about the event is stored
within properties in the message. Each system event has different properties. Monitor
Messages, describes each of the monitor topics and the message properties for the
messages published on that topic. Your application can receive and display all or part of a
monitor message, just as it would handle any message sent to a topic. However, there are
some ways in which monitor messages are handled differently from standard messages:

 l Monitor messages cannot be routed to other servers.

 l Monitor messages are not stored persistently on disk.

 l Monitor messages are not swapped from process memory to disk.

You can have any number of applications that subscribe to monitor messages. You can
create different applications that subscribe to different monitor topics, or you can create
one application that subscribes to all desired monitor topics. Your topic subscribers can
also use message selectors to filter the monitor messages so your application receives only
the messages it is interested in.

TIBCO Enterprise Message Service™ User Guide

524 | Monitor Server Activity

Performance Implications of Monitor Topics
The TIBCO Enterprise Message Service server only generates messages for monitor topics
that currently have subscribers. So, if no applications subscribe to monitor topics, no
monitor messages are generated. Generating a monitor message does consume system
resources, and therefore you should consider what kinds of monitoring your environment
requires. System performance is affected by the number of subscribers for monitor topics
as well as the frequency of messages for those topics.

For development and testing systems, monitoring all system events is probably desirable.
Usually, development and testing systems do not have large message volumes, and
monitoring can give you information about system problems.

For production systems, monitoring all events may have an adverse effect on system
performance. Therefore, you should not create topic subscribers for $sys.monitor.> in
your production system. Also, monitor events are likely to be added in future releases, so
the number of monitor topics may grow. Subscriptions to monitor topics in production
systems should always be limited to specific monitor topics or wildcard subscriptions to
specific classes of monitor topics that are required.

Also, consider the frequency of messages to each monitor topic. System administration
events, such as creating topics, routes, and changing permissions, do not occur frequently,
so creating subscriptions for these types of events will most likely not have a significant
effect on performance.

Also, using message selectors to limit monitor messages can improve performance slightly.
The server does not send any messages that do not match a subscriber’s message selector.
Even though the message is not sent, the message is still generated. Therefore there is still
system overhead for subscribers to a monitor topic, even if all messages for that topic do
not match any subscriber’s message selector filter.

Server Statistics
The TIBCO Enterprise Message Service server allows you to track incoming and outgoing
message volume, message size, and message statistics for the server overall as well as for
each producer, consumer, or route. You can configure the type of statistics collected, the
interval for computing averages, and amount of detail for each type.

TIBCO Enterprise Message Service™ User Guide

525 | Monitor Server Activity

Statistic tracking can be set in the server’s configuration file, or you can change the
configuration dynamically using commands in the administration tool or by creating your
own application with the administration APIs.

Statistics can be viewed using the administration tool, or you can create your own
application that performs more advanced analysis of statistics using the administration
APIs.

This section details how to configure and view statistics using the configuration files and
administration tool commands. For more information about the administration APIs, see
the description of com.tibco.tibjms.admin in the online documentation.

Note: The TIBCO Enterprise Message Service server tracks the number of
incoming or outgoing messages, but only messages sent or received by a
producer, consumer, or route are tracked. The server also sends system
messages, but these are not included in the number of messages.

However, the server can add a small amount of data to a message for internal
use by the server. This overhead is counted in the total message size, and you
may notice that some messages have a greater message size than expected.

Overall Server Statistics
The server always collects certain overall server statistics. This includes the rate of inbound
and outbound messages (expressed as number of messages per second), message memory
usage, disk storage usage, and the number of destinations, connections, and durable
subscriptions. Gathering this information consumes virtually no system resources, therefore
these statistics are always available. You can view overall server statistics by executing the
show server command.

The default interval for collecting overall server statistics is 1 second. You may wish to view
average system usage statistics over a larger interval. The server_rate_interval
configuration parameter controls the collection interval for server statistics. The parameter
can be set in the configuration file or dynamically using the set server command. This
parameter can only be set to positive integers greater than zero.

TIBCO Enterprise Message Service™ User Guide

526 | Monitor Server Activity

Enable Statistics Gathering
Each producer, consumer, destination, and route can gather overall statistics and statistics
for each of its destinations. To enable statistic gathering, you must set the statistics
parameter to enabled. This parameter can be specified in the configuration file, and it can
be changed dynamically using the set server command.

The statistics parameter allows you to globally enable and disable statistic gathering.
Statistics are kept in server memory for the life of each object. If you wish to reset the total
statistics for all objects to zero, disable statistic gathering, then re-enable it. Server
statistics are also reset when the server shuts down and restarts, or in the event of a fault-
tolerant failover.

For each producer, consumer, destination, and route the total number of sent/received
messages and total size of messages is maintained. Also, producers and consumers keep
these statistics for each destination that they use to send or receive messages.

The rate of incoming/outgoing messages and message size is calculated over an interval.
By default, the average is calculated every three seconds. You can increase or decrease this
value by altering the rate_interval parameter. This parameter can be set in the
configuration file or dynamically using the set server command. Setting this parameter to
0 disables the tracking of statistics over an interval—only the total statistics for the
destination, route, producer, or consumer are kept.

Gathering total statistics for producers, consumers, destinations, and routes consumes few
system resources. Under most circumstances, enabling statistic gathering and average
calculations should not affect system performance.

Detailed Statistics
In some situations, the default statistic gathering may not be sufficient. For example, if a
topic subscriber subscribes to wildcard topics, the total statistics for all topics that match
the wildcard are kept. You may wish to get further detail in this case and track the
statistics for each actual topic the subscriber receives.

The following situations may require detailed statistic gathering:

 l Topic subscribers that subscribe to wildcard topics

 l Message producers that do not specify a destination when they are created. These
message producers can produce messages for any destination, and the destination
name is specified when a message is sent.

TIBCO Enterprise Message Service™ User Guide

527 | Monitor Server Activity

 l Routes can have incoming and outgoing messages on many different topics.

To enable detailed statistics, set the detailed_statistics parameter to the type of
statistics you wish to receive. The parameter can have the following values:

 l NONE — disables detailed statistic gathering.

 l CONSUMERS — enables detailed statistics for topic subscribers with wildcard topic
names.

 l PRODUCERS — enables detailed statistics for producers that do not specify a
destination when they are created.

 l ROUTES — enables detailed statistics for routes.

You can set the detailed_statistics parameter to NONE or any combination of CONSUMERS,
PRODUCERS, or ROUTES. To specify more than one type of detailed statistic gathering,
provide a comma-separated list of values. You can set the detailed_statistics parameter
in the configuration file or dynamically by using the set server command. For example, the
following set server command enables detailed statistic tracking for producers and
routes.

 set server detailed_statistics = PRODUCERS,ROUTES

Collecting detailed statistics does consume memory, and can adversely affect performance
when gathering a high volume of statistics. There are two parameters that allow you to
control resource consumption when collecting detailed statistics. First, you can control the
amount of time statistics are kept, and second you can set a maximum amount of memory
for detailed statistic gathering. When application programs create many dynamic
destinations, we recommend against gathering detailed statistics.

The statistics_cleanup_interval parameter controls how long detailed statistics are
kept. This parameter can be set either in the configuration file or dynamically with the set
server command. By default, statistics are kept for 15 seconds. For example, if there is a
topic subscriber for the topic foo.*, and the subscriber receives a message on topic
foo.bar, if no new messages arrive for topic foo.bar within 15 seconds, statistics for topic
foo.bar are deleted for that consumer. You can set this parameter to 0 to signify that all
detailed statistics are to be kept indefinitely. Of course, statistics for an object only exist as
long as the object itself exists. That is, if a message consumer terminates, all detailed
statistics for that consumer are deleted from memory.

The max_stat_memory parameter controls the amount of memory used by detailed
statistics. This parameter can be set either in the configuration file or dynamically with the
set server command. By default, this parameter is set to 0 which signifies that detailed

TIBCO Enterprise Message Service™ User Guide

528 | Monitor Server Activity

statistics have no memory limit. If no units are specified, the value of this parameter is in
bytes. Optionally, you can specify units as KB, MB, or GB. When the specified limit is
reached, the server stops collecting new statistics. The server will only resume collecting
statistics if the amount of memory used decreases
(for example, if the statistics_cleanup_interval is set and old statistics are removed).

Display the Statistics
When statistic collecting is enabled, you can view statistics for producers, consumers,
routes, and destinations using the show stat command in the administration tool.

The show stat command allows you to filter the statistics based on destination name, user
name, connection ID, or any combination of criteria. You can optionally specify the total
keyword to retrieve only the total statistics (this suppresses the detailed output). You can
also optionally specify the "wide" keyword when displaying statistics for destinations or
routes. This specifies that inbound and outbound message statistics should be displayed
on the same line (the line can be 100 characters or more).

The following illustrates displaying statistics for a route where detailed statistic tracking is
enabled.

 tcp://server1:7322> show stat route B
 Inbound statistics for route 'B':
 Total Count Rate/Second
 Destination Msgs Size Msgs Size
 <total> 189 37.9 Kb 10 2.0 Kb
 Topic: dynamic.0 38 7.6 Kb 2 0.4 Kb
 Topic: dynamic.1 38 7.6 Kb 2 0.4 Kb
 Topic: dynamic.2 38 7.6 Kb 2 0.4 Kb
 Topic: dynamic.3 38 7.6 Kb 2 0.4 Kb
 Topic: dynamic.4 37 7.4 Kb 2 0.4 Kb
 Outbound statistics for route 'B':
 Total Count Rate/Second
 Destination Msgs Size Msgs Size
 <total> 9538 1.9 MB 10 2.1 Kb
 Topic: dynamic.0 1909 394.9 Kb 2 0.4 Kb
 Topic: dynamic.1 1908 394.7 Kb 2 0.4 Kb
 Topic: dynamic.2 1907 394.5 Kb 2 0.4 Kb
 Topic: dynamic.3 1907 394.5 Kb 2 0.4 Kb
 Topic: dynamic.4 1907 394.5 Kb 2 0.5 Kb

See show stat for more information and detailed syntax of the show stat command.

TIBCO Enterprise Message Service™ User Guide

529 | TLS Protocol

TLS Protocol
Transport Layer Security (TLS) is a protocol that provides secure authentication and
transmits encrypted data over the Internet or an internal network.

The TLS protocol is complex, and this chapter is not a complete description of TLS.
Instead, this chapter describes how to configure TLS in the TIBCO Enterprise Message
Service server and in client applications that communicate with the server. For a more
complete description of TLS, see the TLS specification at https://tools.ietf.org/html/rfc5246
and the article at https://en.wikipedia.org/wiki/Transport_Layer_Security.

Note: If end-to-end data security is necessary, note that it requires using an
encrypted storage. For example for file stores, that would involve placing the
EMS store files in an encrypted file system.

TLS Support in TIBCO Enterprise Message
Service
TIBCO Enterprise Message Service supports the Transport Layer Security (TLS) protocol.

TLS uses public and private keys to encrypt data over a network connection to secure
communication between pairs of components:

 l between an EMS client and the tibemsd server

 l between the tibemsadmin tool or API and the tibemsd server

 l between MSGMX and the tibemsd server

 l between two routed servers

 l between two fault-tolerant servers (not applicable when using FTL stores)

TLS provides secure communication that works with other mechanisms for authentication
available in the EMS server. When authorization is enabled in the server, the connection
undergoes a two-phase authentication process. First, a TLS hand-shake between client and
server initializes a secure connection. Second, the EMS server checks the credentials of the

https://tools.ietf.org/html/rfc5246
https://en.wikipedia.org/wiki/Transport_Layer_Security

TIBCO Enterprise Message Service™ User Guide

530 | TLS Protocol

client using the supplied username and password. If the connecting client does not supply
a valid username and password combination, the connection fails, even if the TLS
handshake succeeded.

Tip: When authorization is enabled, usernames and passwords are always
checked, even on TLS secured connections.

Implementations
The TIBCO Enterprise Message Service server and the C client libraries use OpenSSL for TLS
support.

For more information, see www.openssl.org.

EMS Java clients use JSSE (from Sun JavaSoft). JSSE is included in Java distributions.

EMS .NET Framework clients use the Microsoft implementation of TLS. The Microsoft
implementation of TLS is compatible with OpenSSL. Certificates required by the client can
either be stored in files or the Microsoft certificate store. However, Microsoft requires that
the root certificate be installed in the Microsoft Certificate Store, even when certificate files
are in use.

EMS distributions usually build and include the latest version of OpenSSL publicly available
at the time of release. For exact version numbers see the Third Party Software License
Agreements documented in the TIBCO Software Inc. End User License Agreement for TIBCO
Enterprise Message Service.

Digital Certificates
Digital certificates are data structures that represent identities. EMS uses certificates to
verify the identities of servers and clients. Though it is not necessary to validate either the
server or the client for them to exchange data over TLS, certificates provide an additional
level of security.

A digital certificate is issued either by a trusted third-party certificate authority, or by a
security officer within your enterprise. Usually, each user and server on the network
requires a unique digital certificate, to ensure that data is sent from and received by the
correct party.

http://www.openssl.org/

TIBCO Enterprise Message Service™ User Guide

531 | TLS Protocol

In order to support TLS, the EMS server must have a digital certificate. Optionally, EMS
clients may also be issued certificates. If the server is configured to verify client certificates,
a client must have a certificate and have it verified by the server. Similarly, an EMS client
can be configured to verify the server’s certificate. Once the identity of the server and/or
client has been verified, encrypted data can be transferred over TLS between the clients
and server.

A digital certificate has two parts—a public part, which identifies its owner (a user or
server); and a private key, which the owner keeps confidential.

The public part of a digital certificate includes a variety of information, such as the
following:

 l The name of the owner, and other information required to confirm the unique
identity of the subject. This information can include the URL of the web server using
the digital certificate, or an email address.

 l The subject’s public key.

 l The name of the certificate authority (CA) that issued the digital certificate.

 l A serial number.

 l The length of time the certificate will remain valid—defined by a start date and an
end date.

The most widely-used standard for digital certificates is ITU-T X.509. TIBCO Enterprise
Message Service supports digital certificates that comply with X.509 version 3 (X.509v3);
most certificate authorities, such as Verisign and Entrust, comply with this standard.

Digital Certificate File Formats
TIBCO Enterprise Message Service supports the following file formats for digital certificates:

 l PEM (Privacy Enhanced Mail)

 l DER (Distinguished Encoding Rules)

 l PKCS#7

 l PKCS#12

 l Java KeyStore (for client digital certificates)

TIBCO Enterprise Message Service™ User Guide

532 | TLS Protocol

Private Key Formats
TIBCO Enterprise Message Service supports the following file formats for private keys:

 l PEM (Privacy Enhanced Mail)

 l DER (Distinguished Encoding Rules)

 l PKCS#8

 l PKCS#12

The EMS server uses OpenSSL to read private keys. It does not read Java KeyStore files.

File Names for Certificates and Keys
For all parameters that specify the identity (digital certificate), private key, issuer
(certificate chain), or trusted list of certificate authorities, valid files must be specified. Not
all types of files are supported for clients and servers. The description of each parameter
details which formats it supports.

The following table lists the valid types of files.

Extension Description

.pem PEM encoded certificates and keys (allows the certificate and private key to be
stored together in the same file)

.der DER encoded certificates

.p8 PKCS#8 file

.p7b PKCS#7 file

.p12 PKCS12 file (allows the certificate and private key to be stored together in the
same file)

.jks Java KeyStore file

Certificates are located in the EMS_HOME/samples/certs directory. EMS is installed with
some sample certificates and private keys that are used by the sample configuration files.

TIBCO Enterprise Message Service™ User Guide

533 | TLS Protocol

The sample certificates include:

 l A root, self-signed certificate and corresponding private keys in encrypted PEM and
PKCS8 formats:

 server_root.cert.pem
 server_root.key.pem
 server_root.key.p8

 l A server certificate and corresponding private keys in encrypted PEM and PKCS8
formats. This certificate is issued by server_root.cert.pem and is used by the
server:

 server.cert.pem
 server.key.pem
 server.key.p8

 l A root, self-signed certificate and corresponding private key in encrypted PEM and
PKCS8 formats.

 client_root.cert.pem
 client_root.key.pem
 client_root.key.p8

 l A client certificate and corresponding private key in encrypted PEM and PKCS8
formats. This certificate is issued by client_root.cert.pem and is used by the
clients:

 client.cert.pem
 client.key.pem
 client.key.p8

 l A PKCS12 file that includes the client.cert.pem client certificate, the
client.key.pem client private key, and the client_root.cert.pem issuer certificate:

 client_identity.p12

TIBCO Enterprise Message Service™ User Guide

534 | TLS Protocol

Configure TLS in the Server
To use TLS, each instance of tibemsd must have a digital certificate and a private key. The
server can optionally require a certificate chain or trusted certificates.

Set the server to listen for TLS connections from clients by using the listen parameter in
tibemsd.conf. To specify that a port accept TLS connections, specify the TLS protocol in
the listen parameter as follows:

listen = ssl://localhost:7243

TLS Parameters
Several TLS parameters can be set in tibemsd.conf. The minimum configuration is only
one required parameter—ssl_server_identity. However, if the server’s certificate file
does not contain its private key, then you must specify it in ssl_server_key.

TLS Server Parameters provides a complete description of the TLS parameters that can be
set in tibemsd.conf.

Command Line Options
The server accepts a few command-line options for TLS.

When starting tibemsd, you can specify the following options:

 l -ssl_trace—enables tracing of loaded certificates. This prints a message to the
console during startup of the server that describes each loaded certificate.

 l -ssl_debug_trace—enables more detailed TLS tracing for debugging only; it is not
for use in production systems.

 l -ssl_password—specifies the private key password. Alternatively, you can specify
this password in the ssl_server_password parameter in tibemsd.conf. If you do not
supply a password using either of these methods, tibemsd will prompt for the
password when it starts. For more information, see the description of the ssl_
password configuration parameter.

TIBCO Enterprise Message Service™ User Guide

535 | TLS Protocol

Configure HTTPS in the Server
You can configure TIBCO Enterprise Message Service to provide health checks and
Prometheus-formatted metrics over an HTTP(S) listen port. For more information about
this feature, refer to the Server Health and Metrics.

To use HTTPS, each instance of tibemsd must have a digital certificate and a private key.
The server can optionally be configured to handle trusted certificates.

Set the server to listen for HTTPS requests by using the monitor_listen parameter in
tibemsd.conf. To specify that a port accepts HTTPS connections, specify the HTTPS
protocol in the monitor_listen parameter as follows:

monitor_listen = https://servername:port

HTTPS Properties

There are a few HTTPS properties that can be set in tibemsd.conf. None are strictly
required for the HTTPS listen to work as any unset parameter results in the matching
server TLS parameter to be used in its place. For example, if monitor_ssl_identity is
unset, the configured ssl_server_identity is used in its place. HTTPS Server Parameters
provides a complete description of the TLS parameters that can be set in tibemsd.conf.

Configure TLS in EMS Clients
In basic TLS connections to the EMS server, with standard ciphers, EMS Java clients require
no additional libraries or JAR files. The use of ciphers that use stronger encryption may
require the installation of the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files into the JRE.

Client Digital Certificates
When client authentication with a digital certificate is required by the EMS server (see the
description of the ssl_require_client_cert parameter in tibemsd.conf), the client may
combine its client certificate and private key in a single file in one of the following formats:

 l PKCS#12

TIBCO Enterprise Message Service™ User Guide

536 | TLS Protocol

 l Java KeyStore

You can also store the private key file separately from the client certificate file. If this is the
case, the certificate and private key must be stored in one of the following formats:

 l PEM

 l PKCS#8

The format of the client digital certificate and private key file depends on the TLS vendor
used by the client. For more information about formats, see your TLS vendor’s
documentation.

Configure TLS
A client connecting to an EMS server can configure TLS characteristics in the following
ways:

 l Create a connection factory that specifies the appropriate TLS parameters and use
JNDI to lookup the connection factory. The server URL in the connection factory must
specify the TLS protocol, and the factory must specify appropriate TLS parameters.

A preconfigured connection factory is the preferred mechanism in many situations.
See Create Connection Factories for Secure Connections and Perform Secure Lookups
for details on how to create a connection factory with TLS parameters in EMS.

 l Dynamically create a connection factory, as described in Dynamically Creating
Connection Factories and set the global TLS parameters locally using the TibjmsSSL
class (Java), tibemsSSLParams type (C), or EMSSSL class (C#).

Specifying any TLS parameters within a connection factory causes all global TLS
parameters set with the TibjmsSSL class, tibemsSSLParams type or EMSSSL class to be
ignored.

Configure a Connection Factory
You can configure a connection factory using the administration tool or the administration
APIs.

See EMS Administration Tool.

When configuring a connection factory, you can specify several TLS parameters, similar to
the server parameters that you can configure in tibemsd.conf.

TIBCO Enterprise Message Service™ User Guide

537 | TLS Protocol

Note: When configuring a connection factory, EMS does not verify any file names
specified in the TLS parameters. At the time the factory is retrieved using JNDI,
the EMS server attempts to resolve any file references. If the files do not match
the supported types or the files are not found, the JNDI lookup fails with a
ConfigurationException.

Note: Because connection factories do not contain the ssl_password (for
security reasons), the EMS server uses the password that is provided in the
"create connection" call for user authentication. If the create connection
password is different from the ssl_password, the connection creation will fail.

The following table describes the TLS parameters that can be set in a connection factory.

For more information about each parameter, see the description of the equivalent
parameter in tibemsd.conf.

Parameter Description

ssl_vendor The vendor name of the TLS implementation that the client
uses. Since software release 8.4.0, only one vendor (JSSE) is
supported for the Java client, so use of this parameter is
optional in that context.

ssl_identity The client’s digital certificate.

For more information on file types for digital certificates,
see File Names for Certificates and Keys.

ssl_issuer Issuer’s certificate chain for the client’s certificate. Supply
the entire chain, including the CA root certificate. The client
reads the certificates in the chain in the order they are
presented in this parameter.

Example

ssl_issuer = certs\CA_root.pem
 ssl_issuer = certs\CA_child1.pem
 ssl_issuer = certs\CA_child2.pem

TIBCO Enterprise Message Service™ User Guide

538 | TLS Protocol

Parameter Description

For more information on file types for digital certificates,
see File Names for Certificates and Keys.

ssl_private_key The client’s private key. If the key is included in the digital
certificate in ssl_identity, then you may omit this
parameter.

For more information on file types for digital certificates,
see File Names for Certificates and Keys.

ssl_trusted List of CA certificates to trust as issuers of server
certificates. Supply only CA root certificates.

For more information on file types for digital certificates,
see File Names for Certificates and Keys.

ssl_verify_host Specifies whether the client should verify the server’s
certificate. The values for this parameter are enabled or
disabled. By default, this parameter is enabled, signifying
the client should verify the server’s certificate.

When disabled, the client establishes secure
communication with the server, but does not verify the
server’s identity.

ssl_verify_hostname Specifies whether the client should verify the name in the
CN field of the server’s certificate. The values for this
parameter are enabled and disabled. By default, this
parameter is enabled, signifying the client should verify the
name of the connected host or the name specified in the
ssl_expected_hostname parameter against the value in the
server’s certificate. If the names do not match, the client
rejects the connection.

When disabled, the client establishes secure
communication with the server, but does not verify the
server’s name.

ssl_expected_hostname The name the client expects in the CN field of the server’s

TIBCO Enterprise Message Service™ User Guide

539 | TLS Protocol

Parameter Description

certificate. If this parameter is not set, the expected name is
the hostname of the server.

The value of this parameter is used when the
 ssl_verify_hostname parameter is enabled.

ssl_ciphers Specifies the cipher suites that the client can use.

Supply a colon-separated list of cipher names. Names may
be either OpenSSL names, or longer descriptive names.

For more information, see Specify Cipher Suites.

ssl_auth_only Specifies whether TLS should be used to encrypt all server-
client communications, or only client authentication.

When enabled, the client requests TLS be used only for
authentication. The server then uses TCP communications
for further data exchange. When disabled or absent, all
communication between the client and server must be TLS
encrypted.

For an overview of this feature, see TLS Authentication
Only.

Specify Cipher Suites
On the EMS server, specify cipher suites using the ssl_server_ciphers configuration
parameter in tibemsd.conf.

For more information about server configuration files, see Configuration Files.

For clients connecting with a connection factory, specify cipher suites using the
ssl_ciphers connection factory parameter. For more information, see Configure TLS in
EMS Clients.

TIBCO Enterprise Message Service™ User Guide

540 | TLS Protocol

Syntax for Cipher Suites
EMS uses OpenSSL for TLS support. Therefore, the cipher suite names can be specified as
the OpenSSL name for the cipher suite.

When specifying cipher suites, the usual way to specify more than one cipher suite is to
separate each suite name with a colon (:) character. Alternatively, you can use spaces and
commas to separate names.

Java Client Syntax
The syntax for specifying the list of cipher suites is different for Java clients than for any
other location where cipher suites can be specified. For Java clients, you specify a qualifier
(for example, + to add the suite) followed by the cipher suite name. Cipher suite names are
case-sensitive. The following table describes the qualifiers you can use when specifying
cipher suite names in a ConnectionFactory for Java clients.

Qualifier Description

+ Add the cipher to the list of ciphers.

- Remove the cipher from the list of ciphers.

> Move the cipher to the end of the list.

< Move the cipher to the beginning of the list.

ALL All ciphers from the list (except null ciphers). You can use this keyword to add
or remove all ciphers.

At least one cipher suite must be present, otherwise the TLS connection fails to
initialize. So, if you use -ALL, you must subsequently add the desired ciphers to
the list.

This example specifies cipher suites in the ssl_ciphers connection factory parameter in a
Java client:

-ALL:+ECDHE-RSA-AES256-GCM-SHA384:<ECDHE-RSA-AES128-GCM-SHA256

TIBCO Enterprise Message Service™ User Guide

541 | TLS Protocol

This example specifies cipher suites using Java names:

-ALL:+TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:+TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384:<SSL_RSA_WITH_3DES_EDE_CBC_SHA

Syntax for All Other Cipher Suite Specifications
For any cipher suite list that is not specified in a connection factory of a Java client, use
the OpenSSL syntax. In particular, C clients and the ssl_server_ciphers configuration
parameter require OpenSSL syntax.

While the full syntax of OpenSSL cipher suite selection is supported for TLSv1.2 cipher
suites, we recommend using a simplified form based on the SECLEVEL directive. (See the
OpenSSL documentation on SECLEVEL for details at
https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_security_level.html.) For
instance, a cipher specification consisting of only @SECLEVEL=2 will yield a set of ciphers
that is secure, but maintains a moderate level of backward compatibility.

In OpenSSL syntax, specifying a cipher suite name adds that cipher suite to the list. Each
cipher suite name can be preceded by a qualifier. Cipher suite names are case-sensitive.
The following table describes the qualifiers available using OpenSSL syntax.

Note: The syntax described in the table below only applies to TLSv1.2 cipher
suites. TLSv1.3 connections are subject only to the SECLEVEL restrictions.
TLSv1.3 cipher suites always take priority over TLSv1.2 ones.

Qualifier Description

/ When entered as the first item in the list, this option causes EMS to begin with
an empty list, and add the ciphers that follow the slash.

If the / does not prefix the cipher list, then EMS prefixes the cipher list with the
OpenSSL cipher string DEFAULT.

This modifier can only be used at the beginning of the list. If the / appears
elsewhere, the syntax of the cipher suite list will be incorrect and cause an
error.

https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_security_level.html

TIBCO Enterprise Message Service™ User Guide

542 | TLS Protocol

Qualifier Description

+ Moves the cipher to the end of the list.

This qualifier is used to move an existing cipher. It can not be used to add a
new cipher to the list.

- Remove the cipher from the list of ciphers. When this option is used, the cipher
can be added later on in the list of ciphers.

! Permanently disable the cipher within the list of ciphers. Use this option if you
wish to remove a cipher and you do not want later items in the list to add the
cipher to the list. This qualifier takes precedence over all other qualifiers.

ALL All ciphers from the list (except null ciphers). You can use this keyword to add
or remove all ciphers.

At least one cipher suite must be present or the TLS connection fails to
initialize. So, after using -ALL, you should add at least one cipher to the list.

This example specifies cipher suites in the ssl_server_ciphers configuration parameter.

ssl_server_ciphers = -ALL:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384

This example illustrates disabling ECDHE-RSA-AES128-GCM-SHA256, then adding all other
ciphers:

ssl_server_ciphers = !ECDHE-RSA-AES128-GCM-SHA256:ALL

Default Cipher List
The EMS server and C client library use DEFAULT as their default cipher list. For details on
the cipher suites corresponding to DEFAULT for a given version of OpenSSL, refer to the
OpenSSL documentation.

TIBCO Enterprise Message Service™ User Guide

543 | TLS Protocol

Supported Cipher Suites
For a current list of supported cipher suites, run the help ciphers command in the
tibemsadmin in tool.

Note that this list is only relevant to the release of TIBCO Enterprise Message Service that
ships with the particular version of tibemsadmin that is running when the help command is
issued

Supported Cipher Suites for the Server and C Clients
The EMS server and C client library support a subset of the cipher suites that OpenSSL
supports.

Supported Cipher Suites for Java Clients
For Java clients, restrictions apply to some of the newer cipher suites. Using these may
require adjustments to some of the following: JVM version, JVM vendor, JCE unlimited
strength jurisdiction policy files, the java.security properties file and X509 certificate
digital signature algorithms.

Note: Some updates of Java might deactivate compromised cipher suites. If
absolutely required, refer to the Java documentation to reactivate them.

Supported Cipher Suites for .NET Clients
In general, the .NET client library supports the cipher suites that .NET supports. Refer to
your MSDN documentation or contact Microsoft support for complete details on supported
ciphers on specific .NET environments.

TLS Authentication Only
EMS servers can use TLS for secure data exchange (standard usage), or only for client
authentication. This section describes the use of TLS for client authentication.

TIBCO Enterprise Message Service™ User Guide

544 | TLS Protocol

Motivation
Some applications require strong or encrypted authentication, but do not require message
encryption.

In this situation, application architects could configure TLS with a null cipher. However,
this solution incurs internal overhead costs of TLS calls, decreasing message speed and
throughput.

For optimal performance, the preferred solution is to use TLS only to authenticate clients,
and then avoid TLS calls thereafter, using ordinary TCP communications for subsequent
data exchange. Message performance remains unaffected.

Preconditions
All the following preconditions must be satisfied to use TLS only for authentication:

 l The server must explicitly enable the parameter ssl_auth_only in the tibemsd.conf
configuration file.

 l The client program must request a connection that uses TLS for authentication only.
Clients can specify this request in factories by enabling the ssl_auth_only
parameter, or by calling:

 o Java: TibjmsSSL.setAuthOnly

 o C: tibemsSSLParams_SetAuthOnly

 o C#: EMSSSL.SetAuthOnly

See Also

Server parameter ssl_auth_only

Client parameter ssl_auth_only

Enable FIPS Compliance
You can enable TIBCO Enterprise Message Service to run in compliance with Federal
Information Processing Standard (FIPS), Publication 140-2.

TIBCO Enterprise Message Service™ User Guide

545 | TLS Protocol

Enable the EMS Server

Note: The EMS server supports FIPS compliance only on the Linux and Windows
platforms.

To enable FIPS 140-2 operations in the EMS server:

 l Set the fips140-2 parameter in the main configuration file to true.

 l Ensure that incompatible parameters, listed below, are not included in the server
configuration files.

 l Ensure that the ssl_server_ciphers parameter for the EMS server is configured to
use a supported cipher suite.

When fips140-2 is enabled, on start-up the EMS server initializes in compliance with FIPS
140-2. If the initialization is successful, the EMS server prints a message indicating that it is
operating in this mode. If the initialization fails, the server exits
(regardless of the startup_abort_list setting).

Incompatible Parameters

In order to operate in FIPS compliant mode, you must not include these parameters in the
tibemsd.conf file:

 l ssl_server_ciphers

 l ft_ssl_ciphers

These parameters cannot be included in the routes.conf file:

 l ssl_ciphers

Enable EMS Clients
Java and C client applications can operate in FIPS compliance:

 l Java Clients

TIBCO Enterprise Message Service™ User Guide

546 | TLS Protocol

Java clients that use the Bouncy Castle FIPS provider can operate in FIPS 140-2
compliant mode. To do so, perform both of the following:

 o Set the TLS vendor to bcfips before calling any other EMS methods; refer to
the EMS Java documentation for details.

 o Start the JVM with -Dorg.bouncycastle.fips.approved_only=true

For backward compatibility reasons, an alternative to setting the TLS vendor to
bcfips consists of setting the com.tibco.security.FIPS property to true.

If the tibco.tibjms.ssl.debug.trace property has been set to true and the Java
client set to operate in FIPS 140-2 compliant mode, upon initializing the TLS
infrastructure the client prints a message listing BCFIPS as the FIPS Provider.

 l C Clients

To enable FIPS 140-2 operations in the C client, load the required FIPS and base
OpenSSL providers before calling any EMS functions. This can be done by setting
the OPENSSL_CONF and OPENSSL_MODULES environment variables, as per the
OpenSSL 3.0 documentation.

For example:

export OPENSSL_CONF=/opt/tibco/ems/10.3/lib/openssl-client.cnf
 export OPENSSL_MODULES=/opt/tibco/ems/10.3/lib

If tibemsSSL_SetDebugTrace(TIBEMS_TRUE) has been called and FIPS 140-2
operations have been successfully enabled, upon establishing a new TLS
connection the C client prints a message indicating that fips is among the
OpenSSL providers that have been loaded.

Note: The Java and C clients support FIPS compliance only on the Linux and
Windows platforms.

TIBCO Enterprise Message Service™ User Guide

547 | Fault Tolerance

Fault Tolerance
The following sections describe the fault tolerance features of TIBCO Enterprise Message
Service.

Fault Tolerance Overview
You can arrange TIBCO Enterprise Message Service servers for fault-tolerant operation by
configuring a pair of servers—one primary and one secondary.

Upon startup, the first server to start reaches the active state and the other the standby
state. The active server accepts client connections, and interacts with clients to deliver
messages. If the active server fails, the standby server becomes active and resumes
operation in its place.

Shared State
A pair of fault-tolerant servers can have access to shared state, which consists of
information about clients and persistent messages.

Note: You cannot use more than two servers in a fault-tolerant configuration.

This information enables the standby server to properly assume responsibility for those
clients and messages. The following image illustrates a fault-tolerant configuration of EMS.

TIBCO Enterprise Message Service™ User Guide

548 | Fault Tolerance

Locking

To prevent the standby server from assuming the role of the active server, the active server
locks the shared state during normal operation. If the active server fails, the lock is
released, and the standby server can obtain the lock and become active.

Unshared State Failover
You can also include additional servers that do not share state. As with shared state, the
clients can automatically reconnect to additional servers.

However, unlike shared state, unshared state is controlled by the EMS client. As a result, it
is up to client producers to catch failures on send that may occur during an unshared state
failover, and to then resend the affected message. As this may lead to duplicate or out-of-
order messages, the corresponding client consumers should be equipped to filter out
duplicates and re-order messages if dictated by the application requirements.

The following image illustrates an unshared state fault-tolerant configuration of EMS.

TIBCO Enterprise Message Service™ User Guide

549 | Fault Tolerance

Shared State Failover Process
This section presents details of the shared state failover sequence.

Detection
A standby server detects a failure of the active server in either of the following ways:
Heartbeat Failure or Connection Failure.

 l Heartbeat Failure—The active server sends heartbeat messages to the standby server
to indicate that it is still operating. When a network failure stops the servers from
communicating with each other, the standby server detects the interruption in the
steady stream of heartbeats. For details, see Heartbeat Parameters.

 l Connection Failure—The standby server can detect the failure of its TCP connection
with the active server. When the active server process terminates unexpectedly, the
standby server detects the broken connection.

TIBCO Enterprise Message Service™ User Guide

550 | Fault Tolerance

Response
When a standby server (B) detects the failure of the active server (A), then B attempts to
assume the role of active server. First, B obtains the lock on the current shared state. When
B can access this information, it becomes the new active server.

Lock Unavailable
If B cannot obtain the lock immediately, it alternates between attempting to obtain the
lock (and become the active server), and attempting to reconnect to A (and resume as a
standby server)—until one of these attempts succeeds.

Role Reversal
When B becomes the new active server, A can restart as a standby server, so that the two
servers exchange roles.

GUID-1358B4C9-10C6-47E8-8053-7BC4FD467C0B.png

TIBCO Enterprise Message Service™ User Guide

551 | Fault Tolerance

Client Transfer
Clients of A that are configured to failover to standby server B automatically transfer to B
when it becomes the new active server. B reads the client’s current state from the shared
storage to deliver any persistent messages to the client.

Client Notification
Client applications can receive notification when shared state failover occurs.

 l Java

To receive notification, Java client programs set the system property
tibco.tibjms.ft.switch.exception to any value, and define an ExceptionListener
to handle failover notification; see the class com.tibco.tibjms.Tibjms in TIBCO
Enterprise Message Service Java API Reference.

 l C

To receive notification, C client programs call tibems_setExceptionOnFTSwitch
(TIBEMS_TRUE) and register the exception callback in order to receive the notification
that the reconnection was successful.

TIBCO Enterprise Message Service™ User Guide

552 | Fault Tolerance

 l C#

To receive notification, .NET client programs call Tibems.SetExceptionOnFTSwitch
(true), and define an exception listener to handle failover notification; see the
method Tibems.SetExceptionOnFTSwitch in TIBCO Enterprise Message Service .NET
API Reference.

Message Redelivery
Qualified messages will be redelivered in a failover situation.

 l Persistent

When a failure occurs, messages with delivery mode PERSISTENT, that were not
successfully acknowledged before the failure, are redelivered.

 l Synchronous Mode

When using durable subscribers, EMS guarantees that a message with PERSISTENT
delivery mode and written to a store with the property mode=sync, will not be lost
during a failure.

 l Delivery Succeeded

Any messages that have been successfully acknowledged or committed are not
redelivered, in compliance with the Jakarta Messaging specification.

 l Topics

All topic subscribers continue normal operation after a failover.

Transactions
A (non-XA) transaction is considered active when at least one message has been sent or
received by the session, and the transaction has not been successfully committed. An XA
transaction is considered active when the XA start method is called.

After a failover, attempting to commit the active transaction results in a
javax.jms.TransactionRolledBackException. Clients that use transactions must handle
this exception, and resend any messages sent during the transaction. The standby server,
upon becoming active, automatically redelivers any messages that were delivered to the
session during the transaction that rolled back.

TIBCO Enterprise Message Service™ User Guide

553 | Fault Tolerance

Queues
For queue receivers, any messages that have been sent to receivers, but have not been
acknowledged before the failover, may be sent to other receivers immediately after the
failover.

A receiver trying to acknowledge a message after a failover may receive the
javax.jms.IllegalStateException. This exception signifies that the attempted
acknowledgment is for a message that has already been sent to another queue receiver.
This exception only occurs in this scenario, or when the session or connection have been
closed. This exception cannot occur if there is only one receiver at the time of a failover,
but it may occur for exclusive queues if more than one receiver was started for that queue.

When a queue receiver catches a javax.jms.IllegalStateException, the best course of
action is to call the Session.recover() method. Your application program should also be
prepared to handle redelivery of messages in this situation. All queue messages that can be
redelivered to another queue receiver after a failover always have the header field
JMSRedelivered set to true; application programs must check this header to avoid
duplicate processing of the same message in the case of redelivery.

Note: Acknowledged messages are never redelivered (in compliance with the
Jakarta Messaging specification). The case described above occurs when the
application cannot acknowledge a message because of a failover.

Heartbeat Parameters
When the active server heartbeat stops, the standby server waits for its activation interval
(elapsed time since it detected the most recent heartbeat); then the standby server
retrieves information from shared storage and assumes the role of active server.

The default heartbeat interval is 3 seconds, and the default activation interval is 10
seconds. The activation interval must be at least twice the heartbeat interval. Both
intervals are specified in seconds. You can set these intervals in the server configuration
files. See Fault Tolerance Parameters for details.

Note: When using FTL stores, the heartbeat and activation intervals are
managed by the FTL server cluster. See Fault-Tolerance with FTL Stores for more
details.

TIBCO Enterprise Message Service™ User Guide

554 | Fault Tolerance

Configuration Files
When an active server fails, its standby server assumes the status of the active server and
resumes operation. Before becoming the active server, the standby server re-reads its
configuration files.

If the two servers share configuration files, then the administrative changes to an active
server carry over to its standby once the latter becomes active.

Note: When fault-tolerant servers share configuration files, you must limit
configuration changes to the active server only. Separately reconfiguring the
standby server can cause it to overwrite the shared configuration files;
unintended misconfiguration can result.

Additionally, when a server that is a member of a fault-tolerant pair requires a
restart, both servers must be restarted to activate the change. When the active
server is shut down, the standby server does not reinitialize its properties (such
as listens, heartbeats, timeouts, and so on) or stores during activation. It does
reinitialize objects such as queues, topics, factories, routes, and so on.

Unshared State Failover Process
The following topics detail the unshared state failover sequence of events.

To configure clients, see Configure Clients for Unshared State Failover Connections.

Detection
Unshared state failover is initiated by the EMS client. When a client setup for unshared
state detects a lost connection to server (A), it attempts to connect to server (B), as defined
in the connection factory.

TIBCO Enterprise Message Service™ User Guide

555 | Fault Tolerance

Note: Unshared state is not limited to two servers. Unlike shared state failover,
unshared state is controlled by the EMS client. The client can include more than
two URLs in its list of additional servers.

Response
Clients with unshared state connections automatically connect to B after losing the
connection to A.

When clients setup for unshared state detect lost connections to server A, they create new
connections to server B. All runtime objects from the client's connection are recreated,
including sessions, destinations, message producers, and message consumers.

Because unshared state is defined in the connection factory, B remains the current server
as long as the connection is active. If the connection to B is lost, clients attempt to connect
to another server defined in the connection factory

Message Loss
Because B does not have access to persistent messages that were not delivered or
acknowledged prior to the failover, some messages may be lost or delivered out of order
across the failover process. To prevent message loss, use shared state failover.

TIBCO Enterprise Message Service™ User Guide

556 | Fault Tolerance

Unsupported Features
These features and Java classes are not supported with unshared state connections:

 l XA transactions

 l Durable topic subscribers

 l ConnectionConsumer

 l ServerSession

 l ServerSessionPool

 l QueueRequestor

 l TopicRequestor

Dual State Failover
An unshared state connection factory can include shared-state server pairs in its list of
backup servers. When both shared state and unshared state servers are included, the
failover process is a combination of both types of failover.

The following image illustrates the dual state failover process.

TIBCO Enterprise Message Service™ User Guide

557 | Fault Tolerance

In this example, servers A1 and A2 share state. Servers B1 and B2 also share state.
However, A1 and A2 do not share state with B1 and B2.

The EMS clients created connections using a connection factory with A1, A2 + B1, B2. The
initial server connections were with server A1. When the connection to A1 failed, the
failover process proceeded as described in Shared State Failover Process, and the clients
connect to A2.

A2 then failed, before A1 restarted. The clients next created connections to B1, recreating
all runtime objects from the connection (as described above in Unshared State Failover

TIBCO Enterprise Message Service™ User Guide

558 | Fault Tolerance

Process). B1 is now the active server. Because B1 and B2 share state, If B1 fails, B2
becomes the active server.

Shared State
For the most robust failover protection, the active server and standby server must share
the same state.

Shared state includes the following categories of information:

 l persistent message data (for queues and topics)

 l client connections of the active server

 l metadata about message delivery

During a failover, the standby server re-reads all shared state information.

Implement Shared State
If using file-based stores, we recommend that you implement shared state using shared
storage devices. The shared state must be accessible to both the active and standby
servers. If using grid stores or FTL stores, shared state is provided by the ActiveSpaces or
FTL deployment.

Support Criteria
If your stores are file-based, there are several options available for implementing shared
storage, using a combination of hardware and software. EMS requires that your storage
solution guarantees the following listed criteria.

Warning: Always consult your shared storage vendor and your operating system
vendor to ascertain that the storage solution you select satisfies all four criteria.

TIBCO Enterprise Message Service™ User Guide

559 | Fault Tolerance

Criterion Description

Write Order The storage solution must write data blocks to shared storage in the same
order as they occur in the data buffer.

(Solutions that write data blocks in any other order (for example, to
enhance disk efficiency) do not satisfy this requirement.)

Synchronous
Write
Persistence

Upon return from a synchronous write call, the storage solution guarantees
that all the data have been written to durable, persistent storage.

Distributed File
Locking

The EMS servers must be able to request and obtain an exclusive lock on
the shared storage. The storage solution must not assign the locks to two
servers simultaneously. (See Software Options.)

EMS servers use this lock to determine the primary server.

Unique Write
Ownership

The EMS server process that has the file lock must be the only server
process that can write to the file. Once the system transfers the lock to
another server, pending writes queued by the previous owner must fail.

Hardware Options
Consider these examples of commonly-sold hardware options for shared storage:

 l Dual-Port SCSI device

 l Storage Area Network (SAN)

 l Network Attached Storage (NAS)

SCSI and SAN
Dual-port SCSI and SAN solutions generally satisfy the Write Order and Synchronous Write
Persistence criteria. (The clustering software must satisfy the remaining two criteria.) As
always, you must confirm all four requirements with your vendors.

TIBCO Enterprise Message Service™ User Guide

560 | Fault Tolerance

NAS
NAS solutions require a CS (rather than a CFS) to satisfy the Distributed File Locking
criterion (see below).

Some NAS solutions satisfy the criteria, and some do not; you must confirm all four
requirements with your vendors.

NAS with NFS
When NAS hardware uses NFS as its file system, it is particularly difficult to determine
whether the solution meets the criteria. Our research indicates the following conclusions:

 l NFS v2 and NFS v3 definitely do not satisfy the criteria.

 l NFS v4 with TCP might satisfy the criteria. Consult with the NAS vendor to verify that
the NFS server (in the NAS) satisfies the criteria. Consult with the operating system
vendor to verify that the NFS client (in the OS on the server host computer) satisfies
the criteria. When both vendors certify that their components cooperate to guarantee
the criteria, then the shared storage solution supports EMS.

 l NFS over UDP is not supported under any circumstances.

For more information on how the EMS locks shared store files, see Managing Access to
Shared File-Based Stores.

Software Options
Consider these examples of commonly-sold software options:

 l Cluster Server (CS)

A cluster server monitors the EMS server processes and their host computers, and
ensures that exactly one server process is running at all times. If that server fails, the
CS restarts it; if the CS fails to restart it, it starts the other server instead.

 l Clustered File System (CFS)

A clustered file system lets the two EMS server processes run simultaneously. It even
lets both servers mount the shared file system simultaneously. However, the CFS
assigns the lock to only one server process at a time. The CFS also manages
operating system caching of file data, so the standby server has an up-to-date view of

TIBCO Enterprise Message Service™ User Guide

561 | Fault Tolerance

the file system (instead of a stale cache).

With dual-port SCSI or SAN hardware, either a CS or a CFS might satisfy the Distributed File
Locking criterion. With NAS hardware, only a CS can satisfy this criterion (CFS software
generally does not). Of course, you must confirm all four requirements with your vendors.

Messages Stored in Shared State
Messages with PERSISTENT delivery mode are stored, and are available in the event of
active server failure. Messages with NON_PERSISTENT delivery mode are not available if the
active server fails.

For more information about recovery of messages during failover, see Message Redelivery.

Shared State Storage
By default, the tibemsd server creates three stores to store shared state.

 l $sys.failsafe—This store holds persistent messages using synchronous I/O calls.

 l $sys.nonfailsafe—This store stores messages using asynchronous I/O calls.

 l $sys.meta—This store holds state information about durable subscribers, fault-
tolerant connections, and other metadata.

These stores are fully customizable through parameters in the stores configuration file.
More information about these stores and the default configuration settings are fully
described in stores.conf.

When using file-based stores, to prevent two servers from using the same store file, each
server restricts access to its store file for the duration of the server process. For more
information on how the EMS manages shared store files, see Managing Access to Shared
File-Based Stores. When using grid stores or FTL stores, this store exclusivity is handled by
ActiveSpaces and FTL respectively.

Note: These default stores can be changed or modified. See Default Stores for
more information.

TIBCO Enterprise Message Service™ User Guide

562 | Fault Tolerance

Configure Fault-Tolerant Servers
The following topics describe how to configure fault-tolerant servers, for the shared state
and the unshared state scenarios.

Shared State
To configure an EMS server as a fault-tolerant secondary when using file-based stores or
grid stores, set the below parameters in its main configuration file (or on the server
command line). The primary and secondary roles cannot be explicitly defined when using
FTL stores.

 l server Set this parameter to the same server name in the configuration files of
both the primary server and the secondary server.

 l ft_active In the configuration file of the primary server, set this parameter to the
URL of the secondary server. In the configuration file of the secondary server, set this
parameter to the URL of the active server.

When a server configured for fault tolerance starts, it attempts to connect to its peer
server. If it establishes a connection to its peer, then it enters the standby state. If it cannot
establish a connection to its peer, then it becomes the active server.

While a server is in the standby state, it does not accept connections from clients. To
administer the standby server, the admin user can connect to it using the administration
tool. Standby servers started with a JSON configuration file cannot be administered.

Authentication and Authorization for Fault-Tolerant
Servers

Note: Authentication and authorization for fault-tolerance is configured through
FTL when the EMS servers are using FTL stores. See Configuring and Deploying
FTL Stores for details.

EMS authentication and authorization interact with fault tolerance. If authorization is
enabled and the two EMS Servers are configured for fault tolerance, then both servers in a
fault-tolerant pair must be configured. The exact configuration requirements vary
depending on the authentication method to be used.

TIBCO Enterprise Message Service™ User Guide

563 | Fault Tolerance

User & Password
When using user credential based authentication (see the local or jaas Authentication
Methods), a server will authenticate its fault-tolerant peer server by validating the user
name and password provided as part of the connection request from the peer server.

This following files must be updated to perform local authentication:

 l The tibemsd.conf file for each server must have the same server name and
password (the server and password parameters must be the same on each server).

 l The user name and password in the users.conf file for each server must match the
values of the server and password parameters in the tibemsd.conf file.

Note: If the two EMS Servers are not sharing a users.conf file, make sure that
you create a user with the same name as the EMS Server, and set the user's
password with the value of the "server" password.

For example, you have two EMS Servers (Server 1 and Server 2) that are named "EMS-
SERVER" and are to use a password of "mySecret", but which do not share a users.conf
file. To set the user names and passwords, start the EMS Administration Tool on each
server, as described in EMS Administration Tool, and do the following.

From the active (Server 1), enter:

 set server password=mySecret
 create user EMS-SERVER password=mySecret

From the standby (Server 2), enter:

 set server password=mySecret
 create user EMS-SERVER password=mySecret

From the active (Server 1), enter:

 set server authorization=enabled

From the standby (Server 2), enter:

 set server authorization=enabled

TIBCO Enterprise Message Service™ User Guide

564 | Fault Tolerance

For jaas authentication, the tibemsd.conf changes are still required. However, a JAAS
authentication module must be configured in lieu of the users.conf changes. See JAAS
Authentication Modules for details.

OAuth 2.0
When using oauth2 authentication (see Authentication Methods) the EMS server will
authenticate its fault-tolerant peer server by validating an OAuth 2.0 access token received
as part of the peer server’s connection request.

For OAuth 2.0 authentication to be successful between fault-tolerant peer servers, both
servers will need to be configured to authenticate incoming connections via OAuth 2.0.
Both servers will also need to be configured to procure OAuth 2.0 access tokens and
include them in their connection requests to each other.

Follow the instructions in the Authentication Using OAuth 2.0 section to enable
authentication of incoming connection requests in both servers.

The ft_oauth2_server_url, ft_oauth2_client_id and ft_oauth2_client_secret
parameters must also be configured in both servers in order for them to obtain the OAuth
2.0 access tokens required to authenticate each other. Refer to Fault Tolerance Parameters
for the full list of available parameters relating to OAuth 2.0 and fault-tolerance.

TLS

Note: TLS security for fault-tolerance related communication is configured
through FTL when using FTL stores. See Configuring and Deploying FTL Stores
for details.

You can use TLS to secure communication between a pair of fault-tolerant servers.

Parameters in the main configuration file (tibemsd.conf) affect this behavior. The relevant
parameters all begin with the prefix ft_ssl.

The server initializing a secure connection to another server uses the ft_ssl parameters
to determine the properties of its secure connection to the other server. The receiving
server validates the incoming connection against its own ssl_ parameters. For more
information about ft_ssl parameters, see Fault Tolerance Parameters. For more
information about ssl_ parameters, see TLS Server Parameters.

TIBCO Enterprise Message Service™ User Guide

565 | Fault Tolerance

Also see TLS Protocol.

Reconnect Timeout
When a standby server assumes the role of the active server during failover, clients attempt
to reconnect to the standby server (that is, the new active) and continue processing their
current message state. Before accepting reconnects from the clients, the new active server
reads its message state from the shared state files.

You can instruct the server to clean up state information for clients that do not reconnect
before the time limit specified by the ft_reconnect_timeout configuration parameter. The
ft_reconnect_timeout time starts once the server has fully recovered the shared state, so
this value does not account for the time it takes to recover the store files. See
ft_reconnect_timeout for details.

Unshared State
When configuring a fault tolerant pair that does not share state, you must ensure that both
servers use identical configurations.

This is especially important for these configuration settings:

 l Destinations

Both servers must support the same destinations.

 l Routes

Messages must be able to arrive at the endpoints, using equivalent or identical
routes across servers.

 l Access Control

Access control must be setup identically in both servers, so that the users.conf,
groups.conf, and acl.conf file settings match.

 l TLS

When TLS is deployed, both servers must use the same certificate(s).

TIBCO Enterprise Message Service™ User Guide

566 | Fault Tolerance

Fault Tolerance with a JSON Configuration
Note: This section is only applicable when using file-based stores or grid stores.
To configure fault-tolerance when using FTL stores, see the Fault-Tolerance with
FTL Stores and Configuring and Deploying FTL Stores sections.

When using a JSON configuration, the same JSON file is used to manage both servers in a
fault tolerant pair. Primary and secondary server roles are determined when the servers are
started.

All but two configuration settings are shared by both EMS servers: the listen and
ft_active parameters are configured separately.

 l The primary server, if elected active, listens for client connections on ports defined in
the "primary_listens" node of the configuration. If elected standby, it listens for the
secondary server on the URL that is flagged using the "ft_active" Boolean within the
"secondary_listens" node.

 l Conversely, the secondary server, if elected standby, listens for the primary server on
the URL that is flagged using the "ft_active" Boolean within the "primary_listens"
node. If elected active, it listens for client connections on ports defined in the
"secondary_listens" node.

Configuring Fault Tolerance
To configure a fault tolerant server pair using a JSON configuration, refer to the TIBCO
Messaging Manager documentation.

Configuration Errors
When an EMS server is started, the fault tolerance mechanism is triggered by the presence
of a URL in the "secondary_listens" node of a primary tibemsd, or by that of a URL in the
"primary_listens" node of a secondary tibemsd.

Once fault tolerance is triggered, the EMS server generates an error if it finds that the
"ft_active" Boolean was not set for any URL in its peer’s node. If CONFIG_ERRORS is present
in the startup_abort_list parameter, the tibemsd aborts startup. Otherwise, the tibemsd

https://docs.tibco.com/products/tibco-messaging-manager
https://docs.tibco.com/products/tibco-messaging-manager

TIBCO Enterprise Message Service™ User Guide

567 | Fault Tolerance

cancels fault tolerance and starts without checking its peer. This results in a file lock error
for the EMS server that is started second.

Configure Clients for Shared State Failover
Connections
When a failover occurs and the standby server takes the active state, clients attempt to
reconnect to this server (that is, the new active server). To enable a client to reconnect,
you must specify the URLs of both servers when creating a connection.

Specify multiple servers as a comma-separated list of URLs. Both URLs must use the same
protocol (either tcp or ssl). For example, to identify the first server as
tcp://server0:7222, and the second server as tcp://server1:7344 (if first server is not
available), you can specify:

 serverUrl=tcp://server0:7222, tcp://server1:7344

The client attempts to connect to each URL in the order listed. If a connection to one URL
fails, the client tries the next URL in the list. The client tries the URLs in sequence until all
URLs have been tried. If the first failed connection was not the first URL in the list, the
attempts wrap to the start of the list (so each URL is tried).

For information on how to lookup a fault-tolerance URL in the EMS naming service, see
Perform Fault-Tolerant Lookups.

Note: The reconnection logic in the client is triggered by the specifying multiple
URLs when connecting to a server. If no secondary server is present, the client
must still provide at least two URLs (typically pointing to the same server) in
order for it to automatically reconnect to the server when it becomes available
after a failure.

TIBCO Enterprise Message Service™ User Guide

568 | Fault Tolerance

Note: When messages are sent in non-persistent or reliable modes, the
consumer does not normally wait for a server reply to its acknowledgements.
However, a fault tolerant consumer does wait for a server reply
(when using a session mode other than DUPS_OK_ACKNOWLEDGE or
EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE). This is true for shared state
configurations. Unshared state configurations, which tolerate lost, duplicated,
and out-of-order messages during a failover, do not wait for server
acknowledgements.

Specify More Than Two URLs
Even though there are only two servers (the primary and secondary servers), clients can
specify more than two URLs for the connection.

For example, if each server has more than one listen address, a client can reconnect to the
same server at a different address (that is, at a different network interface).

Set Reconnection Failure Parameters
EMS allows you to establish separate parameters for initial connection attempts and
reconnection attempts.

How to set the initial connection attempt parameters is described in Set Connection
Attempts, Timeout and Delay Parameters. This section describes the parameters you can
establish for reconnection attempts following a fault-tolerant failover.

The reason for having separate connect and reconnect attempt parameters is that there is
a limit imposed by the operating system to the number of connection attempts the EMS
server can handle at any particular time. (For example, in UNIX, this limit is adjusted by the
ulimit setting.) Under normal circumstances, each connect attempt is distributed so it is
less likely for the server to exceed its maximum accept queue. However, during a fault-
tolerant failover, all of the clients automatically try to reconnect to the new active server at
approximately the same time. When the number of connections is large, it may require
more time for each client to reconnect than for the initial connect.

By default, a client will attempt reconnection 4 times with a 500 ms delay between each
attempt. You can modify these settings in the factories.conf file or by means of your
client connection factory API, as demonstrated by the examples in this section.

TIBCO Enterprise Message Service™ User Guide

569 | Fault Tolerance

The following examples establish a reconnection count of 10, a delay of 1000 ms and a
timeout of 1000 ms.

 l Java

Use the TibjmsConnectionFactory object’s setReconnAttemptCount(),
setReconnAttemptDelay(), and setReconnAttemptTimeout() methods to establish
new reconnection failure parameters.

 factory.setReconnAttemptCount(10);
 factory.setReconnAttemptDelay(1000);
 factory.setReconnAttemptTimeout(1000);

 l C

Use the tibemsConnectionFactory_SetReconnectAttemptCount,
tibemsConnectionFactory_SetReconnectAttemptDelay, and
tibemsConnectionFactory_SetReconnectAttemptTimeout functions to establish new
reconnection failure parameters.

status = tibemsConnectionFactory_SetReconnectAttemptCount(factory, 10);
 status = tibemsConnectionFactory_SetReconnectAttemptDelay(factory, 1000);
 status = tibemsConnectionFactory_SetReconnectAttemptTimeout(factory, 1000);

 l C#

Use the ConnectionFactory.SetReconnAttemptCount,
ConnectionFactory.SetReconnAttemptDelay, and
ConnectionFactory.SetReconnAttemptTimeout methods to establish new
reconnection failure parameters:

 factory.setReconnAttemptCount(10);
 factory.setReconnAttemptDelay(1000);
 factory.setReconnAttemptTimeout(1000);

TIBCO Enterprise Message Service™ User Guide

570 | Fault Tolerance

Configure Clients for Unshared State Failover
Connections

Warning: Unshared state failover is an extension of the Jakarta Messaging
specification. Because state is not shared among servers, messages can be lost,
duplicated, or delivered out-of-order across the failover process.

Unshared state connections are created differently from shared state connections in
several important ways.

 l For Java applications, a JAR file must be present in the environment CLASSPATH of
the client.

 l For C applications, a header file must be included and clients must link using the
unshared state library.

 l The connection must be created using an unshared state connection factory.

 l The server URLs must be specified using unshared state syntax.

Include the Unshared State Library
 l Java Applications

Before creating the connection factory, ensure that the CLASSPATH includes the JAR
file: tibjmsufo.jar

 l C Applications

Include the tibemsufo.h header file.

 l C# Applications

Include the TIBCO.EMS.UFO.dll file.

Create an Unshared State Connection Factory
To create unshared state connections, use the relevant methods:

 l Java Applications

TIBCO Enterprise Message Service™ User Guide

571 | Fault Tolerance

java com.tibco.tibems.ufo package.

 l C Applications

tibemsufo library and functions.

 l C# Applications

TIBCO.EMS.UFO package.

Methods called inside a MessageListener callback immediately return an EMSException
indicating the connection has been terminated.

Connection Recovery
When an unshared state connection fails, the connection’s ExceptionListener callback is
invoked. To recover the connection—repair it so that it is connected to an active server—
the client application calls the connection factory’s recoverConnection method or
tibemsUFOConnectionFactory_RecoverConnection function.

This must be performed in the ExceptionListener callback. The recover connection
method blocks until the connection (and its related objects, including sessions, producers,
and consumers) are fully recreated, or until it has failed in all its attempts to recreate these
objects.

As long as the unshared state client has a valid connection, the API behaves the same as
the standard EMS client. However, when the unshared state client’s connection is broken,
the API performs as follows:

 1. Methods called inside a MessageListener callback immediately return a Java
exception ConnectionFailureException or C status of
TIBEMS_SERVER_NOT_CONNECTED.

 2. Methods called elsewhere block until the connection is valid again.

Note that the connection is considered broken from the point where the underlying
TCP/TLS connection fails, and until
recoverConnection or tibemsConnectionFactory_RecoverConnection successfully returns.

Specify Server URLs
When a server connection is lost during an unshared state failover, clients attempt to
reconnect to the second server. To enable a client to reconnect, you must specify the URLs

TIBCO Enterprise Message Service™ User Guide

572 | Fault Tolerance

of both servers when creating a connection.

 l Unshared State

Specify multiple servers as a list of URLs separated by plus (+) signs. For example,
to identify the first server as tcp://server0:7222, and the second server as
tcp://server1:7344, you can specify:

 serverUrl=tcp://server0:7222+tcp://server1:7344

 l Dual State

To combine shared state server pairs with unshared state servers, use commas to
separate the servers that share state, and plus (+) signs to separate servers that do
not share state. For example, this line specifies server a1 and a2 as a fault-tolerant
pair that share state, and servers b1 and b2 as a second pair with shared state:

serverUrl=tcp://a1:8222,tcp://a2:8222+tcp://b1:8222,tcp://b2:8222

Note that a1 and a2 do not share state with b1 and b2.

The client attempts to connect to each URL in the order listed. If a connection to one URL
fails, the client tries the next URL in the list. The client tries the URLs in sequence until all
URLs have been tried. If the first failed connection was not the first URL in the list, the
attempts wrap to the start of the list (so each URL is tried). If none of the attempts
succeed, the connection fails.

Note: Server lookup functions do not permit unshared state syntax. That is, you
cannot separate server URLs using the plus (+) symbol during a server lookup.

Set Connect Attempt and Reconnect Attempt
Behavior
The effect of setting connect attempt and reconnect attempt properties at the application
level is different when applied to unshared state connection factories.

If the EMS client is using a shared state connection factory, then the values specified by
way of properties or API calls will be the values used during client connect and reconnect
sequences. However, if the client is using an unshared state factory, then the application

TIBCO Enterprise Message Service™ User Guide

573 | Fault Tolerance

layer values do not directly override the connect_attempt_count and
reconnect_attempt_count properties set in the unshared state connection factory. Instead,
the value specified at the application level is multiplied by the value in the connection
factory to determine the resulting count. Also if the connect_attempt_delay and/or
reconnect_attempt_delay are overridden at the application layer, the resulting actual
delays can vary significantly from the override value.

For example, if the unshared state connection factory has a connect_attempt_count value
of 5 and the Java system property com.tibco.tibjms.connect.attempts is set to 3 for the
Java client, then the effective connect_attempt_count will be 15.

See Also

The connection factory connect attempt and reconnect attempt properties are
documented in factories.conf.

The sections Set Connection Attempts, Timeout and Delay Parameters and Set
Reconnection Failure Parameters describe the use of these settings.

TIBCO Enterprise Message Service™ User Guide

574 | Routes

Routes
The following sections describe routing of messages among TIBCO Enterprise Message
Service servers.

Overview
TIBCO Enterprise Message Service servers can route messages to other servers.

 l Topic messages can travel one hop or multiple hops (from the first server).

 l Queue messages can travel only one hop to the home queue, and one hop from the
home queue.

You can define routes using an administrative interface (that is, configuration files,
tibemsadmin, or administration APIs).

Route

Basic Operation
 l Each route connects two TIBCO Enterprise Message Service servers.

 l Each route forwards messages between corresponding destinations (that is, global
topics with the same name, or explicitly routed queues) on its two servers.

 l Routes are bidirectional; that is, each server in the pair forwards messages along the
route to the other server.

For example, the compact view at the top of the following image denotes a route between
two servers, A and B. The exploded view beneath it illustrates the behavior of the route.
Each server has a global topic named T1, and a routed queue Q1; these destinations
correspond, so the route forwards messages between them. In addition, server A has a

TIBCO Enterprise Message Service™ User Guide

575 | Routes

global topic T2, which does not correspond to any topic on server B. The route does not
forward messages from T2.

Global Destinations
Routes forward messages only between global destinations—that is, for topics the global
property must be set on both servers (for queues, see Routed Queues).

For more information about destination properties, See Destination Properties.

The following image illustrates a route between two servers, C and D, with corresponding
destinations T1 and T2. Notice that T1 is global on both C and D, so both servers forward
messages across the route to the corresponding destination. However, T2 is not global on
C, neither C nor D forward T2 messages to one another.

TIBCO Enterprise Message Service™ User Guide

576 | Routes

Unique Routing Path
It is illegal to define a set of routes that permit a message to reach a server by more than
one path. TIBCO Enterprise Message Service servers detect illegal duplicate routes and
report them as configuration errors.

The following image depicts two sets of routes. On the left, the routes connecting servers
A, B, C, D and E form an acyclic graph, with only one route connecting any pair of servers;
this configuration is legal (in any zone).

In contrast, the routing configuration on the right is illegal in a multi-hop zone. The graph
contains redundant routing paths between servers Q and S (one direct, and one through R
and T).

Note: Note that the configuration on the right is illegal only in a multi-hop zone;
it is legal in a one-hop zone. For further information, see Zone.

Zone
Zones restrict the behavior of routes, so you can configure complex routing paths. Zones
affect topic messages, but not queue messages.

Basic Operation
A zone is a named set of routes. Every route belongs to a zone.

A zone affects the forwarding behavior of its routes:

TIBCO Enterprise Message Service™ User Guide

577 | Routes

 l In a multi-hop (mhop) zone, topic messages travel along all applicable routes to all
servers connected by routes within the zone.

 l In a one-hop (1hop) zone, topic messages travel only one hop (from the first server).

 l Queue messages travel only one hop, even within multi-hop zones.

For example, the following figure depicts a set of servers connected by routes within a
multi-hop zone, Z1. If a client sends a message to a global topic on server B, the servers
forward the message to A, C, D and E (assuming there are subscribers at each of those
servers). In contrast, if Z1 were a one-hop zone, B would forward the message to A, C and
D—but D would not forward it E.

Eliminate Redundant Paths with a One-Hop Zone
The following image illustrates an enterprise with four servers:

 l B1 and B2 serve producers at branch offices of an enterprise.

 l M serves consumers at the main office, which process the messages from the
branches.

 l R serves consumers that record messages for archiving, auditing, and backup.

The goal is to forward messages from B1 and B2 to both M and R. The routing graph seems
to contain a cycle—the path from B1 to M to B2 to R duplicates the route from B1 to R.
However, since these routes belong to the one-hop zone Z2, it is impossible for messages
to travel the longer path. Instead, this limitation results in the desired result—forwarding
from B1 to M and R, and from B2 to M and R.

TIBCO Enterprise Message Service™ User Guide

578 | Routes

Overlapping Zones
A server can have routes that belong to several zones. When zones overlap at a server, the
routing behavior within each zone does not limit routing in other zones. That is, when a
forwarded message reaches a server with routes in several zones, the message crosses
zone boundaries, and its hop count is reset to zero.

The following image illustrates an enterprise with one-hop zones connecting all the servers
in each of several cities in a fully-connected graph. Zone TK connects all the servers in
Tokyo; zone NY connects all the servers in New York; zone PA connects all the servers in
Paris. In addition, the multi-hop zone WO connects one server in each city.

When a client of server TK3 produces a message, it travels one hop to each of the other
Tokyo servers. When the message reaches TK1, it crosses into zone WO. TK1 forwards the
message to NY1, which in turn forwards it to PA1. When the message reaches NY1, it
crosses into zone NY (with hop count reset to zero); NY1 forwards it one hop to each of the
other New York servers. Similarly, when the message reaches PA1, it crosses into zone PA
(with hop count reset to zero); PA1 forwards it one hop to each of the other Paris servers.

TIBCO Enterprise Message Service™ User Guide

579 | Routes

Active and Passive Routes
A route connects two servers. You may configure a route at either or both of the servers.

Active-Passive Routes
When you configure a route at only one server, this asymmetry results in different
perspectives on the route.

 l A route is active from the perspective of the server where it is configured. This server
actively initiates the connection to the other server, so we refer to it as the active
server, or initiating server.

 l A route is passive from the perspective of the other server. This server passively
accepts connection requests from the active server, so we refer to it as the passive
server.

A server can have both active and passive routes. That is, you can configure server S to
initiate routes, and also configure other servers to initiate routes to S.

TIBCO Enterprise Message Service™ User Guide

580 | Routes

You can specify and modify the properties of an active route, but not those of a passive
route. That is, properties of routes are associated with the server where the route is
configured, and which initiates the connection.

Note: Defining a route specifies a zone as well (either implicitly or explicitly). The
first route in the zone defines the type of the route; subsequent routes in the
same zone must have the same zone type (otherwise, the server reports an
error).

Active-Active Routes
Two servers can both configure an active route one to the other. This arrangement is called
an active-active configuration.

For example, server A specifies a route to server B, and B specifies a route to A. Either
server can attempt to initiate the connection. This configuration results in only one
connection; it does not result in redundant routes.

You can promote an active-passive route to an active-active route. To promote a route, use
this command on the passive server:

 create route name url=url

The url argument is required, so that the server (where the route is being promoted) can
connect to the other server if the route becomes disconnected. See create route for more
information.
 The promoted route behaves as a statically configured route—that is, it persists messages
for durable subscribers, and stores its configuration in routes.conf, and administrators
can modify its properties.

Configure Routes and Zones
You can create routes using the administration tool, or the administration APIs (see
com.tibco.tibjms.admin.RouteInfo in the online documentation).

TIBCO Enterprise Message Service™ User Guide

581 | Routes

Syntax

To create a route using the administration tool, first connect to one of the servers, then use
the create route command with the following syntax:

create route name url=URL zone_name=zone_name zone_type=1hop|mhop properties

 l name is the name of the server at the other end of the route; it also becomes the
name of the route.

 l URL specifies the other server by its URL—including protocol and port.

If your environment is configured for fault tolerance, the URL can be a comma-
separated list of URLs denoting fault-tolerant servers. For more information about
fault tolerance, see Fault Tolerance.

 l zone_name specifies that the route belongs to the routing zone with this name. When
absent, the default value is default_mhop_zone (this default yields backward
compatibility with configurations from releases earlier than 4.0).

 l The zone type is either 1hop or mhop. When omitted, the default value is mhop.

 l properties is a space-separated list of properties for the route. Each property has the
syntax:

prop_name=value

For gating properties that control the flow of topics along the route, see Selectors for
Routing Topic Messages.

For properties that configure the Transport Layer Security (TLS) protocol for the
route, see Routing and TLS.

For properties that configure OAuth 2.0 authentication for the route, see
Authentication.

Example

For example, these commands on server A would create routes to servers B and C. The
route to B belongs to the one-hop zone Z1. The route to C belongs to the multi-hop zone
ZM.

TIBCO Enterprise Message Service™ User Guide

582 | Routes

 create route B url=tcp://B:7454 zone_name=Z1 zone_type=1hop
 create route C url=tcp://C:7455 zone_name=ZM zone_type=mhop

Show Routes

You can display these routes using the show routes command in the administration tool:

 show routes
 Route T ConnID URL Zone T
 B A 3 tcp://B:7454 Z1 1
 C A - tcp://C:7455 ZM m

 l The Route column lists the name of the passive server.

 l The T column indicates whether the route is active (A) or passive (P), from the
perspective of server A.

 l The ConnID column contains either an integer connection ID if the route is currently
connected, or a dash (-) if the route is not connected.

Routes to Fault-Tolerant Servers
You can configure servers for fault tolerance. Client applications can specify the primary
and secondary servers.

Once a client has connected to the active server, if its connection to the server fails, the
client can connect to the standby server and resume operation. Similarly, a route
specification can specify primary and secondary passive servers, so that if the route to the
active-state server fails, the active-route server can connect to the standby-state server and
resume routing.

Failover behavior for route connections is similar to that for client connections; see
Configure Clients for Shared State Failover Connections.

Example

create route B url=tcp://B:7454,tcp://BBackup:7454 zone_name=Z1
zone_type=1hop

TIBCO Enterprise Message Service™ User Guide

583 | Routes

Routing and TLS
When configuring a route, you can specify TLS parameters for the connection. Although
both participants in a TLS connection must specify a similar set of parameters, each server
specifies this information in a different place.

 l The passive server must specify TLS parameters in its main configuration file,
tibemsd.conf.

 l When an active server initiates a TLS connection, it sends the route’s TLS parameters
to identify and authenticate itself to the passive server. You can specify these
parameters when creating the route, or you can specify them in the route
configuration file, routes.conf.

You can configure the server to require a digital certificate only for TLS connections coming
from routes, while not requiring such a certificate for TLS connections coming from clients
or from its fault-tolerant peer.

For more information, see ssl_require_route_cert_only.

TLS Parameters for Routes
The following table lists parameters that you can specify in the routes.conf configuration
file, or on the command line when creating a route. The parameters for configuring TLS
between routed servers are similar to the parameters used to configure TLS between server
and clients; see TLS Protocol.

Parameter Description

ssl_identity The server’s digital certificate in PEM, DER, or PKCS#12
format. You can copy the digital certificate into the
specification for this parameter, or you can specify the
path to a file that contains the certificate in one of the
supported formats. A DER format file can only contain the
certificate; it cannot contain both the certificate and a
private key.

For more information, see File Names for Certificates and
Keys.

TIBCO Enterprise Message Service™ User Guide

584 | Routes

Parameter Description

ssl_issuer Certificate chain member for the server. Supply the entire
chain, including the CA root certificate. The server reads
the certificates in the chain in the order they are presented
in this parameter.

The certificates must be in PEM, DER, PKCS#7 or PKCS#12
format. A DER format file can only contain a single
certificate; it cannot contain a certificate chain.

Example

ssl_issuer = certs\CA_root.pem
 ssl_issuer = certs\CA_child1.pem
 ssl_issuer = certs\CA_child2.pem

For more information, see File Names for Certificates and
Keys.

ssl_private_key The local server’s private key. If the digital certificate in
ssl_identity already includes this information, then you
may omit this parameter.

This parameter accepts private keys in PEM, DER and
PKCS#12 formats.

You can specify the actual key in this parameter, or you
can specify a path to a file that contains the key.

For more information, see File Names for Certificates and
Keys.

ssl_password Private key or password for private keys.

You can set passwords using the tibemsadmin tool. When
passwords are set with this tool, the password is
obfuscated in the configuration file. For more information,
see Using the EMS Administration Tool.

ssl_trusted List of certificates that identify trusted certificate
authorities.

TIBCO Enterprise Message Service™ User Guide

585 | Routes

Parameter Description

The certificates must be in PEM, DER or PKCS#7 format.
You can either provide the actual certificates, or you can
specify a path to a file containing the certificate chain. If
using a DER format file, it can contain only a single
certificate, not a certificate chain.

For more information, see File Names for Certificates and
Keys.

ssl_verify_host Specifies whether the server must verify the other server’s
certificate. The values for this parameter are enabled and
disabled.

When omitted, the default is enabled, signifying the server
must verify the other server’s certificate.

When this parameter is disabled, the server establishes
secure communication with the other server, but does not
verify the server’s identity.

ssl_verify_hostname Specifies whether the server must verify the name in the
CN field of the other server’s certificate. The values for this
parameter are enabled and disabled.

When omitted, the default is enabled, signifying the server
must verify the name of the connected host or the name
specified in the ssl_expected_hostname parameter against
the value in the server’s certificate. If the names do not
match, the connection is rejected.

When this parameter is disabled, the server establishes
secure communication with the other server, but does not
verify the server’s name.

ssl_expected_hostname Specifies the name expected in the CN field of the other
server’s certificate. If this parameter is not set, the default
is the hostname of the other server.

This parameter is relevant only when the
ssl_verify_hostname parameter is enabled.

TIBCO Enterprise Message Service™ User Guide

586 | Routes

Parameter Description

ssl_ciphers Specifies a list of cipher suites, separated by colons (:).

This parameter accepts both the OpenSSL name for cipher
suites, or the longer descriptive names.

For information about available cipher suites and their
names, see Specify Cipher Suites.

Routed Topic Messages
A server forwards topic messages along routes only when the global property is defined for
the topic.

Topic messages can traverse multiple hops.

When a route becomes disconnected (for example, because of network problems), the
forwarding server stores topic messages. When the route reconnects, the server forwards
the stored messages.

Servers connected by routes do exchange messages sent to temporary topics.

For more information, see addprop topic and create topic.

Registered Interest Propagation
To ensure forwarding of messages along routes, servers propagate their topic subscriptions
to other servers.

For example, the top of the following image depicts an enterprise with three servers—A, M
and B—connected by routes in a multi-hop zone. The bottom of the figure illustrates the
mechanism at work within the servers to route messages from a producer client of server
A, through server M, to server B and its subscriber client. Consider this sequence of events.

TIBCO Enterprise Message Service™ User Guide

587 | Routes

 1. All three servers configure a global topic T1.

 2. At bottom right of the above figure, a client of server B creates a subscriber to T1.

 3. Server B, registers interest in T1 on behalf of the client by creating an internal
subscriber object.

 4. Because a route connects servers M and B, server B propagates its interest in T1 to
server M. In response, M creates an internal subscriber to T1 on behalf of server B.
This subscriber ensures that M forwards (that is, delivers) messages from topic T1 to
B. Server B behaves as a client of server M.

 5. Similarly, because a route connects servers A and M, server M propagates its interest
in T1 to server A. In response, A creates an internal subscriber to T1 on behalf of
server M. This subscriber ensures that A forwards messages from topic T1 to M.
Server M behaves as a client of server A.

 6. When a producer client of server A sends a message to topic T1, A forwards it to M. M
accepts the message on its topic T1, and forwards it to B. B accepts the message on
its topic T1, and passes it to the client.

Subscriber Client Exit

If the client of server B creates a non-durable subscriber to T1, then if the client process
exits, the servers delete the entire sequence of internal subscribers. When the client

TIBCO Enterprise Message Service™ User Guide

588 | Routes

restarts, it generates a new sequence of subscribers; meanwhile, the client might have
missed messages.

If the client of server B creates a durable subscriber to T1, then if the client process exits,
the entire sequence of internal subscribers remains intact; messages continue to flow
through the servers in store-and-forward fashion. When the client restarts, it can consume
all the messages that B has stored in the interim.

Server Failure

In an active-active route between servers B and M, if B fails, then M retains its internal
subscriber and continues to store messages for clients of B. When B reconnects, M forwards
the stored messages.

In an active-passive route configured on B, if B fails, then M removes its internal subscriber
and does not store messages for clients of B—potentially resulting in a gap in the message
stream. When B reconnects, M creates a new internal subscriber and resumes forwarding
messages.

In an active-passive route configured on A, if either server fails, then M retains its internal
subscriber in the same way as an active-active route. However, B does not retain its
internal state which it uses to suppress duplicate messages from A and can deliver
messages to its consumers after they have consumed them. Therefore, if it is desirable to
not lose messages and to not have duplicate messages, the route should be active-active.

Network Failure

If an active-passive connection between B and M is disrupted, M displays the same
behavior as during a server failure.

maxbytes

Combining durable subscribers with routes creates a potential demand for storage—
especially in failure situations. For example, if server B fails, then server M stores messages
until B resumes. We recommend that you set the maxbytes or maxmsgs property of the
topic (T1) on each server, to prevent unlimited storage growth (which could further disrupt
operation).

Selectors for Routing Topic Messages
A server forwards a global topic message along routes to all servers with subscribers for
that topic. When each of those other servers requires only a small subset of the messages,
this policy could potentially result in a high volume of unwanted network traffic.

TIBCO Enterprise Message Service™ User Guide

589 | Routes

You can specify message selectors on routes to narrow the subset of topic messages that
traverse each route.

Note: Message selectors on routes are different from message selectors on
individual subscribers, which narrow the subset of messages that the server
delivers to the subscriber client.

Example
The following figure illustrates an enterprise with a central server for processing customer
orders, and separate regional servers for billing those orders. For optimal use of network
capacity, we configure topic selectors so that each regional server gets only those orders
related to customers within its region.

Specifying Selectors
Specify message selectors for global topics as properties of routes. You can define these
properties in two ways:

 l Define selectors when creating the route (either in routes.conf, or with the

TIBCO Enterprise Message Service™ User Guide

590 | Routes

administrator command create route).

 l Manipulate selectors on an existing route (using the addprop, setprop, or removeprop
administrator commands).

Note: If you change the message selectors on a route, only incoming messages
are evaluated against the new selectors. Messages pending in the server are re-
evaluated only if the server is restarted.

Syntax
The message selector properties have the same syntax whether they appear in a command
or in a configuration file:

 incoming_topic=topicName selector="msg-selector"
 outgoing_topic=topicName selector="msg-selector"

Note: The terms incoming and outgoing refer to the perspective of the active
server—where the route is defined.

topicName is the name of a global topic.

msg-selector is a message selector string. For detailed information about
message selector syntax, see the documentation for class Message in TIBCO
Enterprise Message Service Java API Reference.

Example Syntax
As described in Example, an administrator might configure these routes on the central
order server:

setprop route Canada outgoing_topic="orders" selector="country='Canada'"
 setprop route Mexico outgoing_topic="orders" selector="country='Mexico'"
 setprop route USA outgoing_topic="orders" selector="country='USA'"

Those commands would create these entries in routes.conf:

TIBCO Enterprise Message Service™ User Guide

591 | Routes

[Canada]
 url=ssl://canada:7222
 outgoing_topic=orders selector="country='Canada'"
 ...
 [Mexico]
 url=ssl://mexico:7222
 outgoing_topic=orders selector="country='Mexico'"
 ...
 [USA]
 url=ssl://usa:7222
 outgoing_topic=orders selector="country='USA'"
 ...

Symmetry
outgoing_topic and incoming_topic are symmetric. Whether A specifies a route to B with
incoming_topic selectors, or B specifies a route to A with outgoing_topic selectors, the
effect is the same. That is, B sends only those messages that match the selector over the
route.

Active-Active Configuration
In an active-active configuration, you may specify selectors on either or both servers. If you
specify outgoing_topic selector S1 for topic T on server A, and incoming_topic selector
S2 for T on server B, then the effective selector for T on the route from A to B is (S1 AND
S2).

See also Active and Passive Routes.

Wildcards
You can specify wildcards in topic names. For each actual topic, the server uses logical AND
to combine all the selectors that match the topic.

TIBCO Enterprise Message Service™ User Guide

592 | Routes

Note: However, routing of topic messages is only reliably supported when the
subscriber's topic is a subset (or equal) of the configured global topic. Similarly,
intersections are not supported. For example, if topics.conf contains foo.* and
foo.a*, the following subscriptions are correct:

foo.*
 foo.1
 bar.a.b

The following subscriptions are not correct:

foo.>
 bar.*.b

Routed Queues
With respect to routing, queues differ from topics in several respects.

These differences can be summarized as:

 l Servers route queue messages between the queue owner and adjacent servers.

 l The concept of zones and hops does not apply to queue messages (only to topic
messages).

The left side of the following image depicts an enterprise with three servers—P, R and S—
connected by routes. The remainder of the image illustrates the mechanisms that routes
queue messages among servers (center) and their clients (right side).

TIBCO Enterprise Message Service™ User Guide

593 | Routes

Owner and Home
Server R defines a global queue named Q1. R is the owner of Q1.

Servers P and S define routed queues Q1@R. This designation indicates that these queues
depend upon and reflect their home queue (that is, Q1 on server R). Notice that the
designation Q1@R is only for the purpose of configuration; clients of P refer to the routed
queue as Q1.

Example
When J sends a message to Q1, server P forwards the message to the home queue—Q1 on
server R.

Now the message is available to receivers on all three servers, P, R and S—although only
one client can consume the message. Either Q1 on P receives it on behalf of K; or Q1 on S
receives it on behalf of N; or M receives it directly from the home queue.

TIBCO Enterprise Message Service™ User Guide

594 | Routes

Producers
From the perspective of producer clients, a routed queue stores messages and forwards
them to the home queue. For example, when J sends a message to Q1 on server P, P
forwards it to the queue owner, R, which delivers it to Q1 (the home queue).

The message is not available for consumers until it reaches the home queue. That is, client
K cannot consume the message directly from server P.

If server R fails, or the route connection from P to R fails, P continues to store messages
from J in its queue. When P and R resume communication, P delivers the stored messages
to Q1 on R.

Similarly, routed queues do not generate an exception when the maxbytes and maxmsgs
limits are exceeded in the routed server. Clients can continue to send messages to the
queue after the limit is reached, and the messages will be stored in the routed server until
the error condition is cleared.

Consumers
From the perspective of consumer clients, a routed queue acts as a proxy receiver. For
example, when L sends a message to Q1 on server R, Q1 on P can receive it from R on
behalf of K, and immediately gives it to K.

If server P fails, or the route connection from P to R fails, K cannot receive messages from
Q1 until the servers resume communication. Meanwhile, M and N continue to receive
messages from Q1. When P and R resume communication, K can again receive messages
through Q1 on P.

Note: Receiving messages from a routed queue using either a small timeout
(less than one second) or no wait can cause unexpected behavior. A small
timeout value increases the chances that protocol messages may not be
processed correctly between the routed servers. For example, queue receivers
may not be correctly destroyed.

TIBCO Enterprise Message Service™ User Guide

595 | Routes

Configuration
You must explicitly configure each routed queue in queues.conf—clients cannot create
routed queues dynamically.

Warning: Dynamic routed queues are not supported. In a future release, the
server will consider a routed queue with a wildcard as a misconfiguration and
will fail to start when startup_abort_list includes CONFIG_ERRORS.

You may use the administration tool or administration API to configure routed queues; see
addprop queue and create queue.

To configure a routed queue, specify the queue name and the server name of the queue
owner; for example, on server P, configure:

 Q1@R

Note: It is legal to use this notation even for the home queue. The queue owner
recognizes its own name, and ignores the location designation (@R).

It is illegal to configure a routed queue as exclusive.

Browsing
Queue browsers cannot examine routed queues. That is, you can create a browser only on
the server that owns the home queue.

Transactions
TIBCO Enterprise Message Service does not support transactional consumers on routed
queues (through the use of XA or local transacted sessions).

TIBCO Enterprise Message Service™ User Guide

596 | Routes

Authentication and Authorization for Routes

In the above image, servers A and B both configure active routes to one another. This
scenario will be used as an example to explain authentication and authorization for routes
in the following sections.

Authentication
When a server’s authorization parameter is enabled, other servers that actively connect
to it must authenticate themselves by user name and password, or by providing an OAuth
2.0 access token, depending on the server's user_auth parameter (see Authentication
Methods).

User & Password
When using the local or jaas authentication methods, a server will authenticate other
servers connecting to it by validating the user name and password presented by the
connecting servers.

In the scenario depicted in the image above:

 l Because A enabled authorization:

 o If using local authentication, A must configure a user named B.

 o If using jaas authentication, A must be able to validate B’s user credentials via

TIBCO Enterprise Message Service™ User Guide

597 | Routes

its JAAS authentication module.

 l However, because B disabled authorization, A need not identify itself to B, and B
need not configure, or be aware of a user named A.

Note: OAuth 2.0 authentication is not supported for active-passive route
configurations.

OAuth 2.0
When using oauth2 authentication, a server will authenticate other servers trying to
connect to it by validating the OAuth 2.0 access token presented by the connecting servers.

In the scenario depicted in the image above:

 l Because A enabled authorization, B must configure its route to provide an OAuth
2.0 access token when connecting to A.

 l However, because B disabled authorization, A need not identify itself to B. A does
not need to configure its route to provide an OAuth 2.0 access token when
connecting to B.

The following table describes all required and optional route configuration parameters
relating to the procurement of OAuth 2.0 access tokens. These parameters will need to be
specified for any route that is connecting to an EMS server configured with OAuth 2.0
authentication.

Parameter Description

oauth2_access_token_file Specifies the path to a file containing an
OAuth 2.0 access token to use for
authenticating with the server on the
other end of the route.

If an access token is provided using this
parameter, the EMS server will not
attempt to obtain access tokens from an
OAuth 2.0 authorization server even if
oauth2_server_url and other relevant
route configuration parameters are set.

TIBCO Enterprise Message Service™ User Guide

598 | Routes

Parameter Description

oauth2_server_url The HTTP(S) URL of the OAuth 2.0
authorization server that will issue the
access token to be used for
authenticating with the server on the
other end of the route.

oauth2_client_id The OAuth 2.0 client ID to use when
authenticating with the OAuth 2.0
authorization server.

This parameter and oauth2_client_
secret are both required in order to
obtain access tokens from the
authorization server, regardless of the
grant type to be used.

oauth2_client_secret The OAuth 2.0 client secret to use when
authenticating with the OAuth 2.0
authorization server.

This parameter and oauth2_client_id
are both required in order to obtain
access tokens from the authorization
server, regardless of the grant type to be
used.

oauth2_grant_type The grant type to use for requesting
access tokens from the OAuth 2.0
authorization server.

The type can be:

 l client_credentials–for Client
Credentials Grant.

 l password–for Resource Owner
Password Credentials Grant.

If the password grant is specified, the
server and password parameter values

TIBCO Enterprise Message Service™ User Guide

599 | Routes

Parameter Description

are used as the username and password
for the grant.

The default value of this parameter is
client_credentials.

oauth2_server_trust_file Specifies the path to a file containing
one or more PEM-encoded public
certificates that can be used to validate
a secure OAuth 2.0 authorization
server's identity.

This parameter is only required if an
HTTPS URL was specified for oauth2_
server_url.

oauth2_disable_verify_hostname If set, the EMS server will not verify the
name in the CN field of the OAuth 2.0
authorization server’s certificate.

This parameter is optional and is
disabled by default.

oauth2_expected_hostname The name that the EMS server expects
in the CN field of the OAuth 2.0
authorization server's certificate.

This parameter is optional. When it is
not set, the expected name is the
hostname of the authorization server.

This parameter is not relevant when the
oauth2_disable_verify_hostname
parameter is set to true.

See Authentication Using OAuth 2.0 more information about OAuth 2.0 authentication in
EMS.

TIBCO Enterprise Message Service™ User Guide

600 | Routes

ACL
When routing a secure topic or queue, servers consult the ACL specification before
forwarding each message. The servers must grant one another appropriate permissions to
send, receive, publish or subscribe.

For example, in above image, you don’t need an ACL for messages to flow from A (where a
producer is sending to) to B (where a consumer is consuming from) because B has
authorization turned off and messages are being sent to and consumed from queues.
However, if messages were to flow from B to A (producer connects to B and consumer
connects to A), then server A's ACL should grant user B send permission on the queue Q2.

If we were to use topics in this example, then for messages to flow from A to B, you would
need A to grant B the subscribe and durable permission on the topic (global on both
servers). And for messages to flow from B to A, you would have to grant topic B publish
permission on the topic.

Also see Authentication and Permissions.

TIBCO Enterprise Message Service™ User Guide

601 | Conversion of Server Configuration Files to JSON

Conversion of Server Configuration Files to
JSON
The tibemsconf2json utility is provided to convert a set of text-based EMS server
configuration files into a single JSON configuration file.

When using the utility, keep in mind that:

 l If there are any unsupported parameters in the source configuration file, the
tibemsconf2json utility issues a warning but continues converting.

Review the TIBCO Enterprise Message Service Release Notes for details about any
obsolete parameters that were removed from the current release.

 l To convert a fault tolerant pair, use the -secondaryconf option to merge the two
tibemsd.conf files of a fault tolerant pair of servers.

Syntax

To convert a EMS server configuration to JSON, use the command:

tibemsconf2json -conf source-file [-secondaryconf ft-source-file]
[-confencoding character-set-name] -json output-file | -console

where

 l source-file is the path to the tibemsd.conf to be converted. Sub-file names and
locations are derived from the content of the tibemsd.conf file. When converting
servers in a fault tolerant pair, specify the configuration file for the primary server.

 l ft-source-file is the path to the server configuration file for the second server in a fault
tolerant pair. Specify this path with the -secondaryconf option to convert a fault
tolerant pair.

 l character-set-name is the name of the character set that was used to encode the
source-file (and ft-source-file, if given). Any character encoding supported by the Java
SE platform can be specified. Specify the encoding using the Canonical Name for
java.lang API.

TIBCO Enterprise Message Service™ User Guide

602 | Conversion of Server Configuration Files to JSON

When omitted, the expected encoding is UTF-8. Note that the output JSON file is
always encoded with UTF-8.

 l output-file is the name and location of the new JSON file. This file must have the
 .json extension. For example, tibemsd.json. If no path is specified, the file is
created in the current working directory.

 l Alternately, specify -console to display the JSON output to the screen rather than
saving to file.

The tibemsconf2json utility converts the .conf file to a JSON-based configuration.

If -json output-file is specified, the file is created and saved in the location specified, or the
current working directory if no path is given. You can then start the EMS server using the
JSON configuration, as documented in the Starting the EMS Server Using JSON
Configuration section.

Convert a Fault Tolerant Pair

If a -secondaryconf ft-source-file is specified, the tibemsconf2json utility first converts the
primary configuration to JSON, then uses the secondary configuration to complete the
fault tolerant setup, deciding which one of the primary listen URLs must be marked as FT
Active and adding extra secondary listen URLs, if any.

Note that the secondary configuration is used only for the purpose of completing the fault
tolerant setup. With the only exception of the logfile property, any differences and
discrepancies between the two initial sets of configuration files that are outside fault
tolerance parameters are ignored.

Examples

Example 1

tibemsconf2json -conf EMS_HOME/samples/config/tibemsd.conf -json
tibemsd.json

Example 2

tibemsconf2json -conf EMS_HOME/samples/config/tibemsdft-1.conf
-secondaryconf EMS_HOME/samples/config/tibemsdft-2.conf -console

TIBCO Enterprise Message Service™ User Guide

603 | Monitor Messages

Monitor Messages
This section lists all the topics on which the server publishes messages for system events.
The message properties for messages published on each topic are also described.

See Monitor Server Events for more information about monitor topics and messages.

Description of Monitor Topics

Topic Message Is Published When...

$sys.monitor.admin.change The administrator has made a change to the
configuration.

$sys.monitor.connection.connect A user attempts to connect to the server.

$sys.monitor.connection.disconnect A user connection is disconnected.

$sys.monitor.connection.error An error occurs on a user connection.

$sys.monitor.consumer.create A consumer is created.

$sys.monitor.consumer.destroy A consumer is destroyed.

$sys.monitor.flow.engaged Stored messages rise above a destination’s limit,
engaging the flow control feature.

$sys.monitor.flow.disengaged Stored messages fall below a destination’s limit,
disengaging the flow control feature.

$sys.monitor.limits.connection Maximum number of hosts or connections is
reached.

$sys.monitor.limits.queue Maximum bytes for queue storage is reached.

TIBCO Enterprise Message Service™ User Guide

604 | Monitor Messages

Topic Message Is Published When...

$sys.monitor.limits.server Server memory limit is reached.

$sys.monitor.limits.topic Maximum bytes for durable subscriptions is
reached.

$sys.monitor.producer.create A producer is created.

$sys.monitor.producer.destroy A producer is destroyed.

$sys.monitor.queue.create A dynamic queue is created.

$sys.monitor.route.connect A route connection is attempted.

$sys.monitor.route.disconnect A route connection is disconnected.

$sys.monitor.route.warning An issue worth warning about occurs on a route
connection.

$sys.monitor.route.error An error occurs on a route connection.

$sys.monitor.route.interest A change in registered interest occurs on the
route.

$sys.monitor.server.info The server sends information about an event; for
example, a log file is rotated.

$sys.monitor.server.warning The active server detects a disconnection from
the standby server.

$sys.monitor.topic.create A dynamic topic is created.

$sys.monitor.tx.action A local transaction commits or rolls back.

$sys.monitor.xa.action An XA transaction commits or rolls back.

$sys.monitor.D.E.destination A message is handled by a destination. The name
of this monitor topic includes two qualifiers (D

TIBCO Enterprise Message Service™ User Guide

605 | Monitor Messages

Topic Message Is Published When...

and E) and the name of the destination you wish
to monitor.

D signifies the type of destination and whether to
include the entire message:

 l T — topic, include full message (as a byte
array) into each event

 l t — topic, do not include full message into
each event

 l Q — queue, include full message (as a byte
array) into each event

 l q — queue, do not include full message
into each event

E signifies the type of event:

 l r for receive

 l s for send

 l a for acknowledge

 l p for premature exit of message

 l * for all event types

For example, $sys.monitor.T.r.corp.News is the
topic for monitoring any received messages to
the topic named corp.News. The message body
of any received messages is included in monitor
messages on this topic. The topic
$sys.monitor.q.*.corp.* monitors all message
events (send, receive, acknowledge) for all
queues matching the name corp.*. The message
body is not included in this topic’s messages.

The messages sent to this type of monitor topic
include a description of the event, information
about where the message came from (a
producer, route, external system, and so on), and

TIBCO Enterprise Message Service™ User Guide

606 | Monitor Messages

Topic Message Is Published When...

optionally the message body, depending upon
the value of D.

See Monitor Messages for more information
about message monitoring.

Description of Topic Message Properties
Each monitor message can have a different set of these properties.

Property Contents

conn_connid Connection ID of the connection that generated the event.

conn_ft Whether the client connection is a connection to a fault-
tolerant server.

conn_hostname Hostname of the connection that generated the event.

conn_ssl Whether the connection uses the TLS protocol.

conn_type Type of connection that generated the event. This property
can have the following values:

 l Admin

 l Topic

 l Queue

 l Generic

 l Route

 l FT (connection to fault-tolerant server)

 l Unknown

conn_username User name of the connection that generated the event.

TIBCO Enterprise Message Service™ User Guide

607 | Monitor Messages

Property Contents

conn_xa Whether the client connection is an XA connection.

event_action The action that caused the event. This property can have the
values listed in Event Action Property Values.

event_class The type of monitoring event (that is, the last part of the
topic name without the $sys.monitor).

For message monitoring, the value of this property is always
set to message.

event_description A text description of the event that has occurred.

event_reason The reason the event occurred (usually an error). The values
this property can have are described in Event Reason
Property Values.

event_route For routing, the route that the event occurred on.

message_bytes When the full message is to be included for message
monitoring, this field contains the message as a byte array.
You can use the createFromBytes method (in the various
client APIs) to recover the message.

mode Message delivery mode. This values of this property can be
the following:

 l persistent

 l non_persistent

 l reliable

msg_correlation_id JMS correlation ID.

msg_id Message ID.

msg_seq Message sequence number.

TIBCO Enterprise Message Service™ User Guide

608 | Monitor Messages

Property Contents

msg_size Message size, in bytes.

msg_timestamp Message timestamp.

msg_expiration Message expiration.

replyTo Message JMSReplyTo.

rv_reply Message RV reply subject.

source_id ID of the source object.

source_name Name of the source object involved with the event. This
property can have the following values:

 l XID (global transaction ID)

 l message_id

 l connections (number of connections)

 l unknown (unknown name)

 l Any server property name

 l the name of the user, or anonymous

source_object Source object that was involved with the event. This
property can have the following values:

 l producer

 l consumer

 l topic

 l queue

 l permissions

 l durable

 l server

 l transaction

TIBCO Enterprise Message Service™ User Guide

609 | Monitor Messages

Property Contents

 l user

 l group

 l connection

 l message

 l jndiname

 l factory

 l file

 l limits (a limit, such as a memory limit)

 l route

 l transport

source_value Value of source object.

stat_msgs Message count statistic for producer or consumer.

stat_size Message size statistic for producer or consumer.

target_admin Whether the target object is the admin connection.

target_created Time that the consumer was created (in milliseconds since
the epoch).

target_dest_name Name of the target destination

target_dest_type Type of the target destination.

target_durable Name of durable subscriber when target is durable
subscriber.

target_group Group name that was target of the event

target_hostname Hostname of the target object.

TIBCO Enterprise Message Service™ User Guide

610 | Monitor Messages

Property Contents

target_id ID of the target object.

target_name Name of the object that was the target of the event. This
property can have the following values:

 l XID (global transaction ID)

 l message_id

 l connections (number of connections)

 l unknown (unknown name)

 l Any server property name

 l the name of the user, or anonymous

target_nolocal No Local flag when target is durable subscriber.

target_object The general object that was the target of the event. This
property can have the following values:

 l producer

 l consumer

 l topic

 l queue

 l durable

 l server

 l transaction

 l user

 l group

 l connection

 l message

 l jndiname

 l factory

TIBCO Enterprise Message Service™ User Guide

611 | Monitor Messages

Property Contents

 l file

 l limits (a limit, such as a memory limit)

 l route

 l transport

target_selector Selector when the target is a consumer.

target_subscription Subscription of the target object when target is durable
subscriber.

target_url URL of the target object.

target_username Username of the target object.

target_value Value of the object that was the target of the event, such as
the name of a topic, queue, and so on.

Event Action
Value

Description

accept connection accepted

acknowledge message is acknowledged

add user added to a group

admin_commit administrator manually committed an XA transaction

admin_rollback administrator manually rolled back an XA transaction

commit transaction committed

connect connection attempted

Event Action Property Values

TIBCO Enterprise Message Service™ User Guide

612 | Monitor Messages

Event Action
Value

Description

create something created

delete something deleted

disconnect connection disconnected

flow_engaged stored messages rise above a destination’s limit, engaging the flow
control feature

flow_disengaged stored messages fall below a destination’s limit, disengaging the flow
control feature

interest registered interest for a route

modify something changed

grant permission granted

premature_exit message prematurely exited

purge topic, queue, or durable subscriber purged

receive message posted into destination

remove user removed from a group

resume administrator resumed a route

revoke permission revoked

rollback transaction rolled back

rotate_log log file rotated

send message sent by server to another party

TIBCO Enterprise Message Service™ User Guide

613 | Monitor Messages

Event Action
Value

Description

subscribe subscription request

suspend administrator suspended a route

txcommit administrator manually committed a local transaction

txrollback administrator manually rolled back a local transaction

xacommit an application committed an XA transaction (2-phase)

xacommit_1phase an application committed an XA transaction (1-phase)

xastart an application started a new XA transaction

xastart_join an application has joined (that is, added) a resource to an existing
transaction

xastart_resume an application resumed a suspended XA transaction

xaend_fail an application ended an XA transaction, indicating failure

xaend_success an application ended an XA transaction, indicating success

xaend_suspend an application suspended an XA transaction

xaprepare an application prepared an XA transaction

xarecover an application called recover (to get a list of XA transactions)

xarollback an application rolled back an XA transaction

Event Action Value Description

accept connection accepted

Event Reason Property Values

TIBCO Enterprise Message Service™ User Guide

614 | Monitor Messages

Event Action Value Description

acknowledge message is acknowledged

add user added to a group

admin_commit administrator manually committed an XA transaction

admin_rollback administrator manually rolled back an XA transaction

commit transaction committed

connect connection attempted

create something created

delete something deleted

disconnect connection disconnected

flow_engaged stored messages rise above a destination’s limit, engaging the
flow control feature

flow_disengaged stored messages fall below a destination’s limit, disengaging the
flow control feature

interest registered interest for a route

modify something changed

grant permission granted

premature_exit message prematurely exited

purge topic, queue, or durable subscriber purged

receive message posted into destination

remove user removed from a group

TIBCO Enterprise Message Service™ User Guide

615 | Monitor Messages

Event Action Value Description

resume administrator resumed a route

revoke permission revoked

rollback transaction rolled back

rotate_log log file rotated

send message sent by server to another party

subscribe subscription request

suspend administrator suspended a route

txcommit administrator manually committed a local transaction

txrollback administrator manually rolled back a local transaction

xacommit an application committed an XA transaction (2-phase)

xacommit_1phase an application committed an XA transaction (1-phase)

xastart an application started a new XA transaction

xastart_join an application has joined (that is, added) a resource to an
existing transaction

xastart_resume an application resumed a suspended XA transaction

xaend_fail an application ended an XA transaction, indicating failure

xaend_success an application ended an XA transaction, indicating success

xaend_suspend an application suspended an XA transaction

xaprepare an application prepared an XA transaction

TIBCO Enterprise Message Service™ User Guide

616 | Monitor Messages

Event Action Value Description

xarecover an application called recover (to get a list of XA transactions)

xarollback an application rolled back an XA transaction

TIBCO Enterprise Message Service™ User Guide

617 | Error and Status Messages

Error and Status Messages
This section lists all possible error messages that the server can output, alphabetized by
category.

Category

The category indicates the general class of error.

This section is alphabetized by category.

Description The description explains the error category in more detail.

Resolution The resolution indicates possible recovery actions that administrators should
consider.

Errors These strings represent all instances of the error, as they appear in EMS
server code. Some categories have many error instances; others have only
one. These strings can include formatting characters.

Key to this section

Error and Status Codes

Admin command failed

Description An admin tool or program using the admin API attempted an operation that
failed for the given reason.

Resolution The admin tool or admin API provides the failure reason. The user of the tool
or API should examine the error and correct the syntax, parameter or
configuration that is causing the failure.

Errors Attempt by user %s to %s failed due to lack of permissions

TIBCO Enterprise Message Service™ User Guide

618 | Error and Status Messages

Admin command failed

%s: create %s failed: conflicting zone: existing consumer has a different zone

%s: create %s failed: detected duplicate durable subscription [%s] for topic
[%s].

%s: create %s failed: illegal to use wildcard %s [%s].

%s: create %s failed: invalid %s [%s].

%s: create %s failed: invalid session id=%d.

%s: create %s failed: invalid syntax of %s [%s].

%s: create %s failed: invalid temporary %s [%s].

%s: create %s failed: not allowed to create dynamic %s [%s].

Invalid consumer in recover one msg request.

Invalid sequence number in recover one msg request.

Authentication error

Description The EMS server failed to authenticate the user or password.

Resolution Ensure the user is defined to EMS by one of the methods allowed by the
user_auth parameter in the main configuration file. The user is either
specified by the application or in the TLS certificate. If the user is defined,
reset the password and try again.

Errors Unable to initialize connection, TLS username error.

LDAP authentication failed for user '%s', status = %d - %s

LDAP authentication failed for user '%s', LDAP server not found.

LDAP authentication failed for user '%s', no password provided

Bad or missing value for command line parameter

Description An invalid value was supplied for a command line parameter.

TIBCO Enterprise Message Service™ User Guide

619 | Error and Status Messages

Bad or missing value for command line parameter

Resolution Change the value of the named parameter to an acceptable value; for
information about tibemsd command line parameters, see EMS
documentation.

Errors '%s' requires an integer argument.

'%s' requires a positive integer argument.

'%s' requires a string argument.

Pathmap is only supported when using a JSON configuration file.

Cannot open pathmap file '%s': file not found or permission denied.

Invalid pathmap entry '%s'.

Basic initialization failed

Description tibemsd was unable to start.

Resolution Correct the configuration or startup parameters and restart.

Errors Unable to add admin user into admin group: error=(%d) %s

Fault tolerant activation has to be greater than 2x heartbeat

Server heartbeat client should be non-zero and no more than a third of the
client timeout server connection

Server heartbeat server should be non-zero and no more than a third of the
server timeout server connection

Client heartbeat server should be non-zero and no more than a third of the
server timeout client connection

Fault Tolerant configuration error, can't create loop.

Fault tolerant connection failed, fault tolerant mode not supported on '%s'.

Fault tolerant heartbeat has to be greater than 0

Initialization failed due to errors in configuration.

TIBCO Enterprise Message Service™ User Guide

620 | Error and Status Messages

Basic initialization failed

Initialization failed due to errors in TLS.

Initialization failed due to errors with transports.

Initialization failed. Exiting.

Initialization has failed. Exiting.

Initialization of thread pool failed (%s). Exiting.

Startup aborted.

Server failed to read configuration.

Initialization failed: storage for '%s' not found.

Failure initializing storage thread: %s.

Ignoring condition %s in startup_abort_list: not supported on this platform.

Ignoring condition ALL in startup_abort_list: not supported on this platform.
Using condition SSL instead.

Initialization failed due to errors with multicast.

Configuration error: dbstore_driver_name for store [%s] cannot be empty

Configuration error: dbstore_driver_url for store [%s] cannot be empty

Configuration error: dbstore_driver_dialect for store [%s] cannot be empty

Configuration error: dbstore_driver_username for store [%s] must be
specified

Configuration error: dbstore_driver_password for store [%s] must be specified

Error Loading JVM: %s

Unknown Error Loading JVM

Trying JVM location: %s

Error Loading JVM: %s

Unknown Error Loading JVM

Unable to create default store '%s': %d - %s

TIBCO Enterprise Message Service™ User Guide

621 | Error and Status Messages

Basic initialization failed

Configuration error: file=%s, line=%d: The parameter '%s' is not supported on
this platform

Unable to bind network IO thread: %d to Processor Id: %d. Exiting!

Unable to bind storage thread for store '%s' to Processor Id: %d. Exiting!

Unable to start Network IO Thread(s). Error: %d - %s

Configuration error: Unsupported store type configured for store %s

Configuration error: Mixing of grid, FTL, and/or file stores is not supported,
please configure only one type.

Configuration error: Missing ftlserver name in \drto\ spec of ftlserver yaml.
Individual urls should look like ftlservername@host:port

Configuration error: FTL server trust file, admin user and password are
required for secure setup.

Commit failed due to prior failure or after fault-tolerant switch

Description A warning message indicating that the commit of a client application's
transaction failed either because there were earlier errors when processing
this transaction or because the transaction was started on the active server
prior to a fault-tolerant failover.

Resolution The client application should retry the transaction.

Errors Commit failed due to prior failure or after fault-tolerant switch.

Compaction failed

Description Compaction of the store file failed.

Resolution The most likely cause of this error is running out of memory. Shut down
tibemsd and see remedies for Out of memory.

Errors Compaction of store '%s' failed: %d (%s). Please shutdown and restart

TIBCO Enterprise Message Service™ User Guide

622 | Error and Status Messages

Compaction failed

tibemsd.

Compaction of store '%s' failed: %d (%s).

Initialization of file_destination_defrag feature failed for queue '%s' (store
'%s') due to an out of memory condition. Feature is disabled.

file_destination_defrag of queue '%s' (store '%s') failed: %d (%s).

Configured durable differs from stored one

Description The durables configuration file specifies a durable with a given name and
client identifier with attributes that are different from the identically named
durable found in the meta.db file.

Resolution Correct the durables configuration file to match the durable defined in the
meta.db file or administratively delete the durable and re-define it.

Errors Configured durable '%s' differs from durable in storage, storage version used.

Create of global routed topic failed: not allowed to create dynamic topic

Description A server received an interest notification from another server that does not
match the allowed topics in its configuration.

Resolution This only is printed when the trace includes ROUTE_DEBUG. If the server's
topic definitions are as expected, this statement can be ignored or remove
the ROUTE_DEBUG trace specification to prevent printing.

Errors Create of global routed topic failed: not allowed to create dynamic topic [%s].

Create of routed queue failed: not allowed to create dynamic queue

Description A warning indicating that a tibemsd with a route to this daemon has a queue
configured to be global but this daemon does not permit the creation of that
queue dynamically.

TIBCO Enterprise Message Service™ User Guide

623 | Error and Status Messages

Create of routed queue failed: not allowed to create dynamic queue

Resolution Add the specified queue or a pattern that includes it to this daemon if you
want the queue to be accessible from this daemon, otherwise the warning
can be ignored.

Errors Create of routed queue failed: not allowed to create dynamic queue [%s].

Database record damaged

Description An error occurred reading one of the tibemsd store files.

Resolution Send details of the error and the situation in which it occurred to TIBCO
Support.

Errors Server failed to recover state.

Reverting incomplete batch for %s: %PRINTF_LLFMTd

Database Stores Setup Errors

Description In a database stores setup, errors occuring at runtime

Resolution Check your database server vendor and database administrator for failures
occuring during writes,deletes,reads of different records, for failures occuring
during database store open check with the database administrator for
permissions and the existence of the database. For failures occuring during a
FT setup where all the stores are database stores, please check with the
database server vendor or database administrator. In the case where both
are active, we recommend shutting down both the servers and investigating
the problem.

Errors Unable to open store [%s]: [ESTATUS = %d, ERRSTR = %s]

Failed to store message record in store [%s]: [ESTATUS = %d, ERRSTR = %s]

Failed to write ack record in store [%s]: [ESTATUS = %d, ERRSTR = %s]

Failed to write txn record in store [%s]: [ESTATUS = %d, ERRSTR = %s]

TIBCO Enterprise Message Service™ User Guide

624 | Error and Status Messages

Database Stores Setup Errors

Failed to update txn record in store [%s]: [ESTATUS = %d, ERRSTR = %s]

No memory to create no hold list for valid msgs record

No memory to create hold list for valid msgs record

No memory to create held list for valid msgs record

Failed to write valid msg record in store [%s]: [ESTATUS = %d, ERRSTR = %s
]

Failed to update msg record with record id [% PRINTF_LLFMT d] in store
[%s]: [ESTATUS = %d, ERRSTR = %s]

Failed to delete %s record id = % PRINTF_LLFMT d : [ESTATUS = %d, ERRSTR
= %s]

Failed to read message with store id = % PRINTF_LLFMT d: [ESTATUS = %d,
ERRSTR = %s]

Failed to initialize dbstore [%s]: [ERRSTR = %s]

Failed to open store [%s], error = %s

Unable to restore %s records from store [%s]: [ESTATUS = %d, ERRSTR = %s
]

Failed to delete meta record: [ESTATUS = %d, ERRSTR = %s]

Failed to beginTransaction: [ESTATUS = %d, ERRSTR = %s]

Failed to read message with store id = % PRINTF_LLFMT d: [ESTATUS = %d,
ERRSTR = %s]

Store [%s] locked by server %s

Store [%s] cannot be locked by server %s

Failed to store txn record: [txn id = % PRINTF_LLFMT d, ESTATUS = %d]

Failed to update txn record: [txn record id = % PRINTF_LLFMT d, ESTATUS =
%d]

Exception while processing msg from database store [%s], error = %d

Failed to write meta record: [ESTATUS = %d, ERRSTR = %s]

TIBCO Enterprise Message Service™ User Guide

625 | Error and Status Messages

Database Stores Setup Errors

Failed to update meta record: [ESTATUS = %d, ERRSTR = %s]

Failed to write connection record: error = %d

Failed to write session record: error = %d

Failed to write consumer record: error = %d

Failed to write producer record: error = %d

Failed to write zone record: error = %d

Failed to update connection record: error = %d

Failed to update consumer record: error = %d

Failed to write purge record: [ESTATUS = %d, ERRSTR = %s]

Commit Transaction Failed [ESTATUS = %d, ERRSTR = %s]

No Memory to create lock manager: Store [%s] cannot be locked by server %s

Could not find system record for store [%s]

Durable consumer was found in the store file for a route that does not exist

Description On server startup a durable consumer was found in the store file for a route
that is not listed in the routes.conf file. This happens if the routes.conf file
is manually edited.

Resolution Make routing changes via administration tools.

Errors Discarding durable '%s' for route '%s' because the route does not exist.

Dynamic Module Loading Errors

Description An error occurred when loading or using a shared library module.

Resolution Module loading is affected by the presence of shared libraries in the module
path. Use the +load tracing flag to get more information about how the
server is loading modules. See the section on Starting the EMS Server for

TIBCO Enterprise Message Service™ User Guide

626 | Error and Status Messages

Dynamic Module Loading Errors

more details.

Errors Problem loading %s: %s

Unknown problem loading %s.

Loaded %s

Problem binding %s: %s

Unknown problem binding %s.

Unable to locate %s

Fatal error: Returned from exec(), errno = %d

OpenSSL library version mismatch

Duplicate message detected

Description Warning generated when tibemsd receives a message with a message id that
matches another message's message id.

Resolution Only seen when message id tracking is enabled.

Errors Detected duplicate %s message, messageID='%s'

Destination backlog growth detected

Description Warning generated when a destination appears to be growing an unwieldy
backlog of messages.

Resolution Consume or purge a large number of messages from that destination.

Errors Destination growing very large: name=%s type=%s msg_count=%lld dest_
size=%lld (bytes) num_consumers=%d inbound_rate=%d (bytes/s) outbound
rate=%d (bytes/s)

Destination growing very large: name=%s type=%s msg_count=%lld dest_

TIBCO Enterprise Message Service™ User Guide

627 | Error and Status Messages

Destination backlog growth detected

size=%lld (bytes) num_consumers=%d inbound_rate=statistics_disabled
outbound_rate=statistics_disabled

The server will attempt to trace warnings about destinations that are growing
unbounded above %lld bytes or %lld messages.

The server will attempt to trace warnings about destinations that are growing
unbounded above %lld %s.

Set server properties 'large_destination_memory' and 'large_destination_
count' respectively to alter these thresholds.

Set server property '%s' to alter this threshold.

Error in configuration file

Description The server encountered an invalid configuration statement in the specified
configuration file on the specified line.

Resolution Examine the appropriate configuration file and correct the syntax error.

Errors Configuration warning: file=%s, line=%d: route '%s' does not have a user
configured for authorization.

TLS Configuration error: file=%s, line=%d: invalid certificate file name,
unknown extension or invalid encoding specification

Configuration error: file=%s, line=%d: illegal to specify %s for routed queue

Configuration error: file=%s, line=%d: bad destination specification: %s

Configuration warning: file=%s, line=%d: illegal to specify prefetch=none for
global or routed queue. Prefetch reset to default.

Configuration warning: file=%s, line=%d: illegal to specify prefetch=none for
topic. Prefetch reset to default.

Configuration error: file=%s, line=%d: ignored alias '%s' for %s '%s' because
such alias already exists

Configuration error: The specified file '%s' is empty or does not exist

TIBCO Enterprise Message Service™ User Guide

628 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: both tibrv_export and tibrvcm_export
are specified, ignoring tibrv_export

Configuration error: file=%s, line=%d: ignoring transport '%s' in %s list,
transport not found

Configuration error: file=%s, line=%d: multiple bridge entries for the same
destination '%s' are not allowed.

Configuration error: file=%s, line=%d: Ignoring durable, name cannot start
with $sys.route, use route property instead.

Configuration error: file=%s, line=%d: Rendezvous transport not specified for
Rendezvous CM transport '%s'

Configuration error: file=%s, line=%d: ignoring invalid max connections in the
line, reset to %s

Configuration error: file=%s, line=%d: ignoring invalid max_client_msg_size in
the line, reset to unlimited

Configuration error: file=%s, line=%d: value of %s out of range, reset to
default

Configuration error: max_msg_field_print_size >= max_msg_print_size,
resetting both to default

Configuration error: file=%s, line=%d: unable to create %s '%s': invalid
destination name, invalid parameters or out of memory

Configuration error: file=%s, line=%d: value of db_pool_size too big or less
than allowed minimum, reset to default value of %d bytes

Configuration error: file=%s, line=%d: Ignoring durable, route does not allow
clientid, selector or nolocal.

Configuration error: file=%s, line=%d: Route '%s' does not exist for configured
durable.

Configuration error: file=%s, line=%d: unable to process selector in route
parameters, error=%s

Configuration error: file=%s, line=%d: both tibrv_import and tibrvcm_import

TIBCO Enterprise Message Service™ User Guide

629 | Error and Status Messages

Error in configuration file

are specified, ignoring tibrv_import

Configuration error: file=%s, line=%d: ignored route '%s' because route
represents route to this server.

Configuration error: file=%s, line=%d: ignoring invalid topic selector
specifications in route parameters

Configuration error: file=%s, line=%d: value of max_msg_memory less than
allowed, reset to %dMB

Configuration error: file=%s, line=%d: ignored alias '%s' for factory because
such alias already exists

Configuration error: file=%s, line=%d: invalid certificate file name, unknown
extension or invalid encoding specification

Configuration error: file=%s, line=%d: ignored route '%s' because route has
invalid zone information.

Configuration error: file=%s, line=%d: ignored route '%s' because route with
such name or URL already exists.

Configuration error: file=%s, line=%d: value of msg_pool_size invalid or too
big or less than allowed minimum of %d, reset to default value of %d

TLS Configuration error: file=%s, line=%d: invalid private key file name,
unknown extension or invalid encoding specification

Configuration conflict: file=%s, line=%d: value of msg_pool_block_size
already set at line=%d. Ignoring msg_pool_size.

Configuration error: file=%s, line=%d: bridge has no targets, unable to
process

Configuration error: file=%s, line=%d: Illegal to specify routed queue as a
bridge source

Configuration error: file=%s, line=%d: TMP.> cannot be bridge source or
target destination

Configuration error: file=%s, line=%d: A temporary destination cannot be
bridge source or target destination

TIBCO Enterprise Message Service™ User Guide

630 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: client_trace error: %s

Configuration error: file=%s, line=%d: %s

Configuration warning: monitor_listen is set more than once, using last value
in the file

Configuration error: %smonitor_listen is malformed - %s

Configuration error: %smonitor_ssl_password not parseable or there were
issues accessing specified file

Configuration error: file=%s, line=%d: duplicate specification of transport type

Configuration error: file=%s, line=%d: duplicate value

Configuration error: file=%s, line=%d: Ignoring durable, duplicate of earlier
entry.

Configuration error: file=%s, line=%d: Ignoring durable, name is invalid.

Configuration error: file=%s, line=%d: Ignoring durable, name is missing or
invalid.

Configuration error: file=%s, line=%d: Ignoring durable, topic is invalid.

Configuration error: file=%s, line=%d: Ignoring durable, topic is missing or
invalid.

Configuration error: file=%s, line=%d: Ignoring durable, durable subscriptions
not supported on temporary destination wildcard TMP.>.

Configuration error: file=%s, line=%d: error in the bridge description, unable
to proceed.

Configuration error: file=%s, line=%d: error in permissions

Configuration error: file=%s, line=%d: error in the transport description,
unable to proceed.

Configuration error: file=%s, line=%d: errors in line, some options may have
been ignored

Error: unable to add bridge specified in file=%s, line=%d. Error=%s

TIBCO Enterprise Message Service™ User Guide

631 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: Unable to create destination defined by
the bridge source

Unable to create Rendezvous Certified transport '%s' because it references
undefined Rendezvous transport '%s'

Configuration error: file=%s, line=%d: failed to create ACL entry, reason=%s

exit_on_nonretryable_disk_error: file=%s, line=%d: invalid boolean property
value

consumed_msg_hold_time: file=%s, line=%d: invalid property value

active_route_connect_time: file=%s, line=%d: invalid property value

Fault tolerant reread error: file=%s, line=%d: invalid property value

Fault standby lock check error: file=%s, line=%d: invalid property value

Configuration error: file=%s, line=%d: ignored unknown permission '%s'

Configuration error: file=%s, line=%d: ignoring duplicate %s '%s' specified
earlier

Configuration error: file=%s, line=%d: ignoring duplicate transport name '%s'
in %s list

Configuration error: file=%s, line=%d: ignoring duplicate user

Configuration error: file=%s, line=%d: ignoring errors in permission line

Configuration error: file=%s, line=%d: ignoring invalid connect attempt count

Configuration error: file=%s, line=%d: ignoring invalid connect attempt delay

Configuration error: file=%s, line=%d: ignoring invalid connect attempt
timeout

Configuration error: file=%s, line=%d: ignoring invalid disk statistic period

Configuration error: file=%s, line=%d: ignoring invalid entry syntax

Configuration error: file=%s, line=%d: ignoring invalid factory load balancing
metric

Configuration error: file=%s, line=%d: ignoring invalid ft activation in the line

TIBCO Enterprise Message Service™ User Guide

632 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: ignoring invalid ft heartbeat in the line

Configuration error: file=%s, line=%d: ignoring invalid ft reconnect timeout in
the line

Configuration error: file=%s, line=%d: ignoring invalid line

Configuration error: file=%s, line=%d: ignoring invalid line in factory
parameters

Configuration error: file=%s, line=%d: ignoring invalid line in route
parameters

Configuration error: file=%s, line=%d: ignoring invalid line: invalid syntax in
the line

Configuration error: file=%s, line=%d: ignoring invalid reconnect attempt
count

Configuration error: file=%s, line=%d: ignoring invalid reconnect attempt
delay

Configuration error: file=%s, line=%d: ignoring invalid reconnect attempt
timeout

Configuration error: file=%s, line=%d: ignoring invalid value of %s

Configuration error: file=%s, line=%d: ignoring invalid value '%s' for property
'%s'

Configuration error: file=%s, line=%d: ignoring unknown property '%s'

Configuration error: file=%s, line=%d: ignoring unrecognized property '%s'

Configuration error: file=%s, line=%d: ignoring user out of group context

Configuration error: file=%s, line=%d: illegal to use predefined name %s

Configuration error: file=%s, line=%d: Invalid clientid value

Configuration error: file=%s, line=%d: invalid value of db_pool_size, reset to
default of %d bytes

Configuration error: file=%s, line=%d: invalid line syntax or line out of order

TIBCO Enterprise Message Service™ User Guide

633 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: invalid value of max memory, reset to
unlimited

Configuration error: file=%s, line=%d: invalid value of max_msg_memory,
reset to unlimited

Configuration error: file=%s, line=%d: invalid property value

Configuration error: file=%s, line=%d: invalid property value, reset to default.

Configuration error: file=%s, line=%d: invalid password

Configuration error: file=%s, line=%d: invalid value of reserve_memory, reset
to zero

Configuration error: file=%s, line=%d: invalid value of route_recover_interval,
reset to default %d

Configuration error: file=%s, line=%d: invalid value of route_recover_count,
line ignored

Configuration error: file=%s, line=%d: Invalid selector value

Configuration error: file=%s, line=%d: invalid syntax of %s, unable to
continue.

Configuration error: file=%s, line=%d: invalid transport parameter '%s'

Configuration error: file=%s, line=%d: invalid transport type '%s'

Configuration error: file=%s, line=%d: invalid trace_client_host value

Configuration error: file=%s, line=%d: invalid trace_millisecond value

Configuration error: file=%s, line=%d: invalid value of %s, reset to unlimited

Configuration error: file=%s, line=%d: invalid value '%s'

Configuration error: file=%s, line=%d: invalid value '%s' for parameter '%s'

Configuration error: file=%s, line=%d: invalid value of '%s'

Configuration error: file=%s, line=%d: invalid value of %s

Configuration error: file=%s, line=%d: invalid value of %s, reset to 256MB

TIBCO Enterprise Message Service™ User Guide

634 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: invalid value of %s, reset to default

Configuration error: file=%s, line=%d: line too long, ignoring it

Configuration error: file=%s, line=%d: maximum number of listen interfaces
reached.

Configuration error: file=%s, line=%d: multiple principals specified, line
ignored

Configuration error: file=%s, line=%d: multiple targets specified, line ignored

Configuration error: file=%s, line=%d: out of memory, unable to create
Rendezvous transport

Configuration error: file=%s, line=%d: no permissions found in acl entry

Configuration error: file=%s, line=%d: no target found in acl entry

Configuration error: file=%s, line=%d: %s '%s' not found

Configuration error: No topic exists for configured durable '%s%s%s'.

failed to create durable '%s', exception: %s.

Configuration error: file=%s, line=%d: no valid user or group found in acl
entry

Configuration conflict: file=%s, line=%d: Overriding value of msg_pool_size
already set at line=%d.

Configuration warning: file=%s, line=%d: parameter '%s' is deprecated

Configuration warning: file=%s, line=%d: parameter '%s' is no longer
supported

Configuration error: file=%s, line=%d: value of reserve_memory too small,
reset to 16MB

Configuration error: file=%s, line=%d: ignoring invalid line in route
parameters: invalid zone type, too long

Configuration error: file=%s, line=%d: ignoring invalid line in route
parameters: invalid topic prefetch

TIBCO Enterprise Message Service™ User Guide

635 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: ignoring invalid line in route
parameters: zone name exceeding %d bytes

Configuration error: file=%s, line=%d: ignoring invalid line in route
parameters: invalid OAuth 2.0 disable_verify_hostname

Routing Configuration error: file=%s, line=%d: invalid property value

Configuration warning: file=%s, line=%d: ignoring rvcmlistener, duplicate

Configuration error: file=%s, line=%d: ignoring rvcmlistener, first token is
invalid

Configuration error: file=%s, line=%d: ignoring rvcmlistener, invalid
destination

Configuration error: file=%s, line=%d: ignoring rvcmlistener, second token is
invalid

Configuration error: file=%s, line=%d: ignoring rvcmlistener, third token is
invalid

Configuration error: file=%s, line=%d: ignoring rvcmlistener, wildcards are not
permitted

TLS Configuration error: file=%s, line=%d: duplicate value

TLS Configuration error: file=%s, line=%d: invalid property value

Configuration error: file=%s, line=%d: syntax error in the line, ignoring

Configuration error: file=%s, line=%d: syntax errors in line, line ignored

Topic '%s' not valid in configured durable '%s'.

%s%sNo client ID for%s unshared durable '%s'.

Configuration error: file=%s, line=%d: Unrecognized attribute

Configuration error: file=%s, line=%d: user '%s' not found, ignoring

Configuration error: file=%s, line=%d: value is invalid or less than minimum
%d, reset to 0

Configuration error: file=%s, line=%d: value less than allowed minimum, reset

TIBCO Enterprise Message Service™ User Guide

636 | Error and Status Messages

Error in configuration file

to 0

Configuration error: file=%s, line=%d: value of %s less than allowed minimum
of %dKB, reset to unlimited

Configuration error: file=%s, line=%d: Invalid value or value does not fall
between %d and %d

Configuration error: Invalid line: file=%s, line=%d

Configuration error: Missing store header: file=%s, line=%d

Configuration error: Mixed mode configuration: file=%s, line=%d

Configuration error: Invalid store parameter: file=%s, line=%d

Configuration error: Store definition failed

Configuration error: Unrecognized store type requested.

Configuration error: Filename for store '%s' cannot be empty.

Configuration error: Store type '%s' is not supported on this platform.

Configuration error: Grid store '%s' must not be async.

Configuration error: Missing grid url for store '%s'.

Configuration error: Missing grid name for store '%s'.

Configuration error: Missing FTL server url for store '%s'.

Configuration error: Missing FTL application name for store '%s'.

Error occurred writing store definition into file.

Configuration error: file=%s, line=%d: ignoring channel '%s' on topic '%s',
channel does not exist

Configuration error: file=%s, line=%d: ignoring channel '%s' on topic '%s',
overlaps with channel '%s' on topic '%s'

Configuration error: file=%s, line=%d: ignoring channel '%s', duplicate name

Configuration error: file=%s, line=%d: ignoring channel '%s', address of
'%s:%d' already defined

TIBCO Enterprise Message Service™ User Guide

637 | Error and Status Messages

Error in configuration file

Configuration error: file=%s, line=%d: channel '%s', %s

Configuration error: file=%s, line=%d: channel '%s', no address specified.

Configuration error: file=%s, line=%d: channel '%s', invalid address syntax:
port not specified.

Configuration error: file=%s, line=%d: channel '%s', invalid address: group
must be in the range 224.0.0.0 to 239.255.255.255

Configuration error: file=%s, line=%d: channel '%s', interface must address a
valid multicast-capable network interface.

Configuration error: file=%s, line=%d: channel '%s', invalid address: port must
be in the range 1 to 65535

Configuration error: file=%s, line=%d: channel '%s', ttl must be in the range 1
to 255

Configuration error: file=%s, line=%d: channel '%s', priority must be in the
range -5 to 5

Configuration error: file=%s, line=%d: channel '%s', maxrate must be less
than 512MB

Configuration error: file=%s, line=%d: channel '%s', maxtime must be greater
than 0

Configuration error: file=%s, line=%d: cannot store messages in: %s

Configuration error: file=%s, line=%d: cannot find store: %s

Required store param 'type' not specified for store '%s'

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'file' type%s.

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'dbstore' type%s.

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'mstore' type%s.

Store '%s' already defined

TIBCO Enterprise Message Service™ User Guide

638 | Error and Status Messages

Error in configuration file

Configuration error: Store with similar dbstore_driver_url exists, file=%s,
line=%d

Configuration error: duplicate file name %s for stores %s and %s

Configuration warning: file=%s, line=%d: the discardAmount is too small for
the selected RV Queue Limit Policy. It is recommended to have at least 10%%
of the maxEvents

Configuration error: file=%s, line=%d: the discardAmount is too big compared
to the maxEvents value. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration error: file=%s, line=%d: maxEvents and discardAmount values
must be strictly positive for an RV Queue Limit Policy other than
TIBRVQUEUE_DISCARD_NONE. Defaulting to TIBRVQUEUE_DISCARD_NONE
policy

Configuration error: file=%s, line=%d: RV Queue Limit Policy '%s' unknown or
not supported. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration error: file=%s, line=%d: Error parsing the RV Queue Limit Policy
value '%s'. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration warning: file=%s, line=%d: The bridge's source destination '%s'
is dynamic but has no parent. The bridge should either be removed or a
static parent destination added

Attempting to change the type of existing store '%s' from '%s' to '%s'. Store
type changes are not permitted.

Only stores of type 'file' are permitted. Unable to create store '%s' of type
'%s'

Error writing commit request, errors already occurred in this transaction

Description A client application's attempt to commit a transaction failed because the
server encountered an error during an operation associated with the
transaction.

Resolution Examine previous error statements to determine the cause of the
operation failure and correct that before attempting the transaction again.

TIBCO Enterprise Message Service™ User Guide

639 | Error and Status Messages

Error writing commit request, errors already occurred in this transaction

Errors Error writing commit request, errors already occurred in this transaction.

Error writing configuration file

Description tibemsd was unable to update one of its configuration files following a
configuration change.

Resolution Check that the user that started the tibemsd has permission to change the
configuration files and that there is sufficient disk space on the device.

Errors Error occurred saving acl information

Error occurred saving bridges information

Error occurred saving durables information

Error occurred saving factories information

Error occurred saving file '%s'

Error occurred saving group information

Error occurred saving %s information

Error occurred saving main configuration file '%s'

Error occurred saving routes information

Error occurred saving tibrvcm information

Error occurred while updating main configuration file '%s'. Configuration has
not been saved.

Error occurred writing bridges into file.

Error occurred writing destination '%s' into file

Error occurred writing factory into file.

Error occurred writing group '%s' into file

Error occurred writing into the file '%s'.

Error occurred writing route into file.

TIBCO Enterprise Message Service™ User Guide

640 | Error and Status Messages

Error writing configuration file

I/O error occurred saving bridge information

I/O error occurred saving group information

I/O error occurred saving route information

I/O error occurred writing into file '%s'

Configuration error: file=%s, line=%d: Ignoring property '%s' which is not
supported in EMS Community Edition.

Error writing to store file

Description tibemsd was unable to write data to one of its store files.

Resolution Ensure that the directory containing the store files is mounted and accessible
to the tibemsd, and that there is free space available on the device

Errors A %s I/O error occurred on file descriptor %d: %s - %d

A %s I/O error occurred on file %s: %s - %d

Failed writing block data to '%s': %s

Failed writing message to '%s': I/O error or out of disk space.

Failed writing purge state for queue '%s': I/O error or out of disk space.

Failed writing purge state for topic consumer: I/O error or out of disk space.

Exception trying to create confirm record, %s.

Exception trying to create message from store: %s

Exception trying to create transaction record.

Exception trying to create valid messages record, %s.

Exception trying to export message to RV.

Failed writing message to '%s': %s.

Exception writing transaction commit record: %s.

Exception writing transaction rollback record: %s.

TIBCO Enterprise Message Service™ User Guide

641 | Error and Status Messages

Error writing to store file

Exception writing transaction prepare record: %s.

Failure deleting old version of transaction record: %s.

Failed deleting '%s' record from %s: %s

Exceeded system resources.

Description The system resources are inadequate for timely processing of server
activities.

Resolution Increase the specified resource or reduce the workload on this server.

Errors WARNING: Slow clock tick %d seconds, delayed messaging and timeouts may
occur. System appears overloaded.

WARNING: Connection timeouts delayed around %d seconds.

Missed transfer of global lock before a slow operation was reported. Last
offender grabbed lock around %d milliseconds ago.

WARNING: Slow processing protocol message of type %s, lasted around %d
milliseconds.

WARNING: Slow completing processing protocol message of type %s, lasted
around %d milliseconds.

WARNING: Slow removing messages, lasted around %d milliseconds. This
may have delayed connection timeouts.

WARNING: Slow swapping out messages, lasted around %d milliseconds. This
may have delayed connection timeouts.

WARNING: Slow processing message (%s%s), lasted around %d milliseconds.

WARNING: Slow processing message (%s ac=%d), lasted around %d
milliseconds.

WARNING: Slow processing event callback (%s), lasted around %d
milliseconds.

WARNING: Slow write to store (%s) lasted around %d milliseconds.

TIBCO Enterprise Message Service™ User Guide

642 | Error and Status Messages

Exceeded system resources.

WARNING: A single %s store (%s) lasted around %d seconds.

WARNING: Slow write to store (%s) (valid rec %g) lasted around %lld
milliseconds.

WARNING: Slow write to store (%s) (%d %s recs) lasted around %lld
milliseconds.

WARNING: Slow write to store (%s) (%lld tombstones and %lld msg recs size
%lld) lasted around %lld milliseconds.

WARNING: Slow write to store (%s) (removing %lld recs) lasted around %lld
milliseconds.

Failed to open TCP port

Description tibemsd was unable to open the tcp port.

Resolution Shutdown process that is using the port or change the value of the 'listen'
parameter in the server's tibemsd.conf file to a port that is not in use.

Errors Binding connection to TCP port %d failed:%d (%s).

File access error

Description tibemsd was unable to properly access the specified file.

Resolution Check that the path name is correct and the directory exists, the user that
started tibemsd has permission to read the specified directory and path, the
file exists if it isn't one that the tibemsd can create, the file is not being used
by another tibemsd or some other process.

Errors Configuration file '%s' not found.

Failed to create file '%s'

failed to open file '%s'.

failed to open log file '%s'.

TIBCO Enterprise Message Service™ User Guide

643 | Error and Status Messages

File access error

Failed to read message from store.

Failed to rename file %s into %s: %s

Unable to open metadata file '%s', error '%s'.

Unable to open metadata file '%s', file may be locked.

Unable to open store file '%s', error '%s'.

Unable to open store file '%s', file may be locked.

Unable to preallocate storage file '%s'.

I/O error occurred reading from the file '%s'.

Exiting on non-retryable disk error: %d

Exiting on disk error: %d

Exception trying to read message from store.

Failure reading bridged msg from store %s: %d - %s

Exception trying to read message list from store.

Error during file close of '%s' - %d.

Unable to write to file '%s': Header record is empty

Unable to truncate file '%s': Length is less than the header record

Unable to open FT State Replication determination file '%s', error '%s'.

Unable to open FT State Replication determination file '%s', file may be
locked.

Error upon accessing FT State Replication determination file '%s', invalid
header CRC.

Unable to write to FT State Replication determination file '%s', error '%s'.

Exiting due to error while accessing the FT State Replication determination
file.

Symbolic link '%s' is incorrect: %s.

TIBCO Enterprise Message Service™ User Guide

644 | Error and Status Messages

FIPS 140-2 Mode Errors

Description An error occurred while starting or running the server in FIPS 140-2 compliant
mode.

Resolution Check the configuration of TLS related parameters to make sure that no
incompatible ciphers or operations are requested.

Errors Cannot specify ldap_tls_cipher_suite in FIPS 140-2 mode.

Cannot specify ldap_tls_rand_file in FIPS 140-2 mode.

Cannot specify TLS cipher list in FIPS 140-2 mode.

Cannot specify random data source file in FIPS 140-2 mode.

Cannot specify ssl_server_ciphers in FIPS 140-2 mode.

The FIPS 140-2 mode is not supported on this platform.

FTL transport error

Description tibemsd encountered a FTL error.

Resolution Correct the FTL transport in the EMS configuration and/or the Application in
the FTL server.

Errors Error setting FTL message constant '%s'.

Constants (none).

Constant (string) %s:\%s\

Constant (long) %s: %PRINTF_LLFMTd

Exception Summary: %s

Exception:\n%s

The FTL application for this transport was administratively disabled. Please
restart this server to re-enable this FTL transport.

FTL Notification Type=%d: %s\n

Failed to process FTL password.

TIBCO Enterprise Message Service™ User Guide

645 | Error and Status Messages

FTL transport error

Connecting to the FTL server.

Setting a FTL discard policy is highly recommended.

Invalid FTL discard policy. Defaulting to \none\.

Global FTL Settings

FTL Server URLs: %s

Realm server Secondary URL: %s

Username: %s

Password: %s

Trust File: %s

Missing ftl_trustfile value. Trusting any FTL server without verifying trust in its
certificate. This is not secure.

Log Level: %s

Application Name: %s

Discard Policy: %s

Discard Amount: %d

Discard Max Events: %d

Freeing FTL Global resources.

FTL Global resources freed.

FTL Advisory:

Unable to start FTL dispatcher thread.

Unable to initialize FTL Transport (%s). For more information, enable FTL
tracing.

FTL Transport '%s' Ignoring unsupported FTL field type (%s).

Error importing FTL message. status = %s.

FTL Transport '%s': Skipping message (subscriber removed).

TIBCO Enterprise Message Service™ User Guide

646 | Error and Status Messages

FTL transport error

Error setting FTL message field '%s'

Conversion from EMS bytes message to FTL message failed.

Conversion from EMS text message to FTL message failed.

Conversion from EMS data message to FTL message failed.

Conversion from an EMS Object message to a FTL message is not supported.

Conversion from an EMS Stream message to a FTL message is not supported.

Conversion from EMS message type (%d) to a FTL message is not supported.

Unable to set FTL fields from EMS Properties.

Unable to set FTL fields from EMS header values.

Unable to export message (%s).

FTL Transport Settings

Topic Import Delivery Mode: %s.

Queue Import Delivery Mode: %s.

Endpoint: %s

Import Parameters

Match String: %s

Subscriber Name: %s

Export Parameters

Format: %s

FTL Transport '%s' removed subscriber.

FTL Transport '%s' removing subscriber.

FTL Transport '%s': Error removing subscriber.

Error creating subscriber '%s' on endpoint '%s'

Creating FTL Transport '%s'

TIBCO Enterprise Message Service™ User Guide

647 | Error and Status Messages

FTL transport error

Created FTL Transport '%s'

Failed to create FTL transport '%s'

FTL transport '%s' is creating a publisher.

FTL Transport '%s' created a publisher.

FTL transport '%s': Error creating publisher.

Destroyed FTL transport '%s'

Transport '%s' cannot subscribe to %s %s; already subscribed.

FTL Transports cannot be imported on a wildcard destination.

A FTL Transport can be used with only one destination.

FTL Transport '%s' has subscribed to %s %s.

FTL Transport '%s' failed to subscribe to %s %s.

FTL Transport '%s' has unsubscribed from %s %s.

FTL transport '%s' cannot be specified as an import by more than one
destination.

%s %s FTL Transport '%s' as an import for destination '%s'.

%s %s FTL Transport '%s' as an export for destination '%s'.

Internal error

Description The server detected an internal inconsistency.

Resolution Send the error statement and a description of the environment to TIBCO
Support.

Errors **Error** unable to process message, error = %s

Admin user not found during initialization

Error bridging transacted data message, '%s'.

Error processing xa commit request, %s. connID=% PRINTF_LLFMT d %s

TIBCO Enterprise Message Service™ User Guide

648 | Error and Status Messages

Internal error

Error processing xa end - transaction marked ROLLBACKONLY, %s. connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Error processing xa prepare request, %s. connID=% PRINTF_LLFMT d %s

Error processing xa rollback request, %s. connID=% PRINTF_LLFMT d %s

Error decoding sequence data in xa rollback request. connID=% PRINTF_
LLFMT d %s

Error decoding sequence data in route ack response.

Unable to create internal session

Problem setting flow stall recover message on route queue:%s: %s

Failed to handle connection initialization: %s.

Problem trying to recover routed consumer for queue %s: setting recover
message. Error: %s

Failed to send the flow stall recover request: %s.

Unable to handle transacted data message, '%s'.

Unable to handoff connection init message: %s.

Unable to initialize fault tolerant connection, remote server returned '%s'

Unable to process producer message, failed to add sender name, error=%s.

Unable to process sequence for message.

Unable to send recover ack on flow stall: %s

Handling of route flow stall recovery request from %s failed: unable to get
message property %s: %s

Handling of route flow stall recovery request failed: Unable to get message
properties:%s

Failed to send acknowledge to the stall recover request of server %s, will try
later. Error: %s

failed to send recover ack on stalled flow: invalid consumer

TIBCO Enterprise Message Service™ User Guide

649 | Error and Status Messages

Internal error

unable to create recovered connection, status: %s

Exception creating purge record.

Exception creating zone.

Exception creating zone: adding zone to state.

Exception in startup, exiting.

Exception preparing message for client send (%s): %s

Exception sending flow recover acknowledge

Exception sending routing information to %s - %s

Exception sending session init response

Exception sending queue acknowledge response to %s: %s

Exception trying to initialize connection.

Exception trying to initialize connection, can't send response: %s

Exception trying to initialize route.

Exception trying to initialize route '%s' configured durables: %s

Exception trying to process message, '%s'.

Exception trying to process message from store.

Failure queuing incoming message for processing: %s.

Failure queuing message for removal from system: %s.

Failure queuing message to add to dead queue: %s.

Failure discarding topic overflow: %s.

Failure processing system request.

Failure processing transaction message.

Failure bridging incoming message: %s.

Failed to pre-process bridge [%s:%s]: %d - %s

TIBCO Enterprise Message Service™ User Guide

650 | Error and Status Messages

Internal error

Failure verifying uniqueness of routed message: %s.

Failure scheduling message hold release: %s.

Failure scheduling meta record delete: %s.

Exception adding message write context: %s.

%s: Failure processing multicast request: %s

%s: Failure sending multicast request response: %s

%s: Failure processing multicast status: %s

%s: Failure sending multicast status response: %s

%s: Failure sending multicast configuration: %s

Failure sending multicast message on channel '%s': %s

Failure enqueuing multicast message on channel '%s': %s

Failure starting multicast engine: %s

Failure starting multicast channel '%s': %s

Failure posting multicast channel '%s' wake event: %s

Failed preparing message for writing: %s

Failed discarding local transaction: %s

Abandoning transaction record due to IO failure.

Error sending acknowledgment to route '%s': %s

Error processing acknowledgments from route '%s': %s

Failure starting delivery of delayed message seq = % PRINTF_LLFMTd: %s

Failure moving failed delivery delayed message seq = % PRINTF_LLFMTd to
dead queue: %s

Invalid connection

Description Warning indicating that tibemsd was attempting to reestablish delivery of

TIBCO Enterprise Message Service™ User Guide

651 | Error and Status Messages

Invalid connection

messages across a route to another tibemsd but was unable to find the
connection for that route.

Resolution Either reduce the tibemsd's memory requirement by consuming messages or
removing messages from its queues, or increase the amount of memory
available to the tibemsd by shutting down other processes on the machine or
increasing the machine's memory.

Errors Recovery flow stall for destination %s failed: invalid route connection

Invalid destination

Description An application is attempting to use a destination name that is not valid.

Resolution Alter application code to use an acceptable destination name.

Errors %s: create %s failed: Not permitted to use reserved queue [%s].

%s: %s failed: illegal to use wildcard %s [%s].

%s: %s failed: %s [%s] not configured.

At least one bridge is referencing %s [%s] as a target. This destination does
not exist and there is no parent that would allow its dynamic creation. The
destination has been forcefully created. To avoid this, the bridge(s)
referencing this target should be destroyed.

Use of '$' destination prefix is not supported [%s %s].

Invalid listen specification

Description The server could not parse the listen parameter in the tibemsd.conf file

Resolution Correct the listen parameter to match the form [protocol]://[url] as specified
in the manual.

Errors Invalid listen specification: '%s'.

Invalid request to create temporary destination.

TIBCO Enterprise Message Service™ User Guide

652 | Error and Status Messages

Invalid session

Description tibemsd received a request that referred to a session that doesn't currently
exist.

Resolution Send details of the error and the situation in which it occurred to TIBCO
Support.

Errors Cannot find session for ack

Cannot find session for ack range

%s: destroy %s failed: invalid session id=%d.

Unable to destroy session, invalid session.

Invalid session in commit request.

Invalid commit request.

Invalid session trying to update(%d) tx record.

Invalid session in commit transaction record.

Invalid session in recover request.

Invalid session in rollback request.

Invalid session in xa end request. connID=% PRINTF_LLFMT d

Invalid session in xa start request. connID=% PRINTF_LLFMT d

LDAP error - should always display LDAP error

Description An attempt to authenticate a client's userid and password using the
external LDAP server failed.

Resolution Examine the error code printed by the messaging server and consult the
manual for the external LDAP server.

Errors Filter '%s' contains an illegal type substitution character, only %%s is
allowed

Filter '%s' contains too many occurrences of %%s, max allowed is: %d

TIBCO Enterprise Message Service™ User Guide

653 | Error and Status Messages

LDAP error - should always display LDAP error

Filter '%s' too long, max length is %d characters

Invalid search scope: %s

LDAP Configuration error: file=%s, line=%d: invalid property value

LDAP is not present

LDAP search resulted %d hits.

Lookup of group '%s' produced incorrect or no results

Missing LDAP URL

Missing %s parameter

Zero entries returned from getting attributes for group '%s':

Failed adding user '%s' into LDAP user cache

LICENSE WARNING

Description The server detected a violation of its license.

Resolution This error only occurs with the evaluation version of the server or in an
embedded form. To correct this error either replace your evaluation version
with a production version or contact the vendor who supplied the embedded
version.

Errors License violation: %s.

Missing configuration

Description An essential attribute has not been configured.

Resolution Change the tibemsd.conf file so that a value for the attribute is provided.

Errors Configuration error with metadata database.

Configuration error with storage databases.

TIBCO Enterprise Message Service™ User Guide

654 | Error and Status Messages

Missing transaction

Description A client application attempted to change the state of a transaction that the
tibemsd does not have in its list of current transactions.

Resolution Check tibemsd trace logs to see if the transaction had been committed or
rolled back by an administrator, if not then check the client code to see if it
or its transaction manager are calling the transaction operations in the
correct order.

Errors Cannot find transaction referred to transaction record update(%d) request.
connID=% PRINTF_LLFMT d %s

Cannot find transaction referred to in xa commit request. connID=% PRINTF_
LLFMT d %s

Cannot find transaction referred to in xa prepare request. connID=% PRINTF_
LLFMT d %s

Cannot find transaction referred to in xa rollback request. connID=% PRINTF_
LLFMT d %s

Received prepare request for transaction already prepared. connID=%
PRINTF_LLFMT d %s

Cannot find transaction referred to in xa start (resume) request. connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Cannot find transaction referred to in xa start (join) request. connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Cannot find transaction referred to in xa end request. connID=% PRINTF_
LLFMT d sessID=% PRINTF_LLFMT d %s

Multicast Channel Allotted Bandwith Exceeded.

Description Indicates that a multicast channel's allotted bandwidth has been exceeded.

Resolution Either slow down the publisher(s), enable flow control, or increase the
multicast channel's allotted bandwidth by increasing the channel's maxrate
property or increasing the server's multicast_reserved_rate property.

Errors Multicast channel \'%s\' has exceeded its allotted bandwidth

TIBCO Enterprise Message Service™ User Guide

655 | Error and Status Messages

Multicast Daemon Status Codes and Errors

Description Errors occuring in the Multicast Daemon.

Resolution Check the configuration of the Multicast Daemon and Server, as well as the
health of the network.

Errors Interface IP address: %s

[%s] Connection created, connid=% PRINTF_LLFMT d

Error: Unable to set channel property \'%s\'=% PRINTF_LLFMT d

[%s] Created consumer consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd
topic=\'%s\'

Multicast Daemon Id=%s

Statistics enabled on a %d second interval.

Statistics disabled.

Rotating log from %s to %s

Memory allocation error, possible data loss.

Unrecoverable PGM error rc=%d, reason=%s

Could not parse configuration file \'%s\'

Interface IP address: %s

Tracing enabled.

Tracing disabled.

refused new connection with existing ID % PRINTF_LLFMT d

[%s] Connection destroyed, connid=%PRINTF_LLFMTd

Error sending to consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd from
channel \'%s\': %s

%s, status=%s

Attached channel \'%s\' to consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

TIBCO Enterprise Message Service™ User Guide

656 | Error and Status Messages

Multicast Daemon Status Codes and Errors

Error attaching channel \'%s\' to consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

Detaching channel \'%s\' from consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

Destroying consumer consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd

Channel configuration from server does not match existing channel \'%s\'

Ignoring additional PGM receiver created on group \'%s\', dport=%d,
sport=%d, channel=%s

Created channel: \'%s\'

Error: %s is not a valid multicast-capable IP address. Use the -ifc command
line parameter to specify a valid interface.

Multicast General Status Codes and Errors

Description General multicast errors that can occur in the Server and Multicast Daemon.

Resolution Check the configuration of the Multicast Daemon and Server, as well as the
health of the network.

Errors PGM ERROR: %s - %s (%d)

PGM ERROR: channel=\'%s\' - %s (%d)

Error setting PGM parameter %s=%u: %s (%d)

Error setting PGM parameter %s=\'%s\': %s (%d)

Error getting PGM parameter \'%s\': %s (%d)

Error getting PGM statistic \'%s\': %s (%d)

Received an invalid EMS Message.

Received a message spanning mulitple fragments.

PGM Session was reset for channel \'%s\', PGM seqno=%PRINTF_LLFMTd,
code=%c

TIBCO Enterprise Message Service™ User Guide

657 | Error and Status Messages

Multicast General Status Codes and Errors

Stopped receiving on channel \'%s\'

Started receiving on channel \'%s\'

Error receiving on channel \'%s\'

Stopped sending on channel \'%s\'

Started sending on channel \'%s\'

Error creating sender on channel \'%s\': %s

Grid and FTL store errors

Description An error occurred using a grid or FTL store.

Resolution

Errors Unable to step a statement (%s): %s: %d.

Store %s: %s: bind fail: %d.

Store %s: Fail retrieving msg interest info: %s.

Store %s: Fail writing transaction record: %s.

Store %s: Fail reading data: %s.

Store %s: Fail reading topic message: %s.

Store %s: Fail marking topic message non-pending: %s.

Store %s: Fail reading next topic message: %s.

Store %s: Fail reading queue message: %s.

Store %s: Fail getting next queue message: %s.

Store %s: Fail writing transaction info: %s.

Store %s: Fail recording transaction msg: %s.

Store %s: Fail recording transaction acks: %s.

Store %s: Fail completing transaction: %s.

TIBCO Enterprise Message Service™ User Guide

658 | Error and Status Messages

Grid and FTL store errors

Store %s: Invalid message interest for destination % PRINTF_LLFMT d.

Store %s: Invalid destination read.

Store %s: Failure restoring %s: %s.

Store %s: Failure restoring transaction msg: %s.

Store %s: Failure restoring transaction ack: %s.

Store %s: Failure resetting topic: %s.

Store %s: Correct functioning cannot be guaranteed due to mstore failure.
Exiting.

Grid store failure at %s:%d: %s

Grid store failure: %s

FTL store failure at %s:%d: %s

FTL store failure processing map add: %s

FTL store failure discarding map state: %s

failure updating grid store lease: %s

Grid store ownership lost

Grid store ownership lease update delayed by %d msecs

Unable to acquire ownership of grid store %s.

Missing grid trust file value. Trusting any grid without verifying trust in its
certificate. This is not secure.

Missing grid user name and/or user password value, so will attempt grid
connection without credentials. This is not secure.

Unable to retrieve user name and/or user password value from file, so will
attempt grid connection without credentials. This is not secure.

No memory available to process grid credentials. Aborting grid connect.

Missing FTL store trust file value. Trusting any FTL server without verifying
trust in its certificate. This is not secure.

TIBCO Enterprise Message Service™ User Guide

659 | Error and Status Messages

Grid and FTL store errors

Missing FTL store user name and/or user password value, so will attempt FTL
store connection without credentials. This is not secure.

Unable to retrieve user name and/or user password value from file, so will
attempt FTL store connection without credentials. This is not secure.

No memory available to process FTL store credentials. Aborting FTL store
connect.

Forced exit due to loss of primary status

lost primary status; trying to reacquire ...

regained primary status

retrying FTL store op due to persistence error

ftlserver shutdown requested: %s

ftlserver requested save and exit: %s

timeout initializing as service

failure handling pserver event: %s

All default stores are in synchronous mode

Out of memory

Description The server failed to allocate memory as it was attempting to perform an
operation.

Resolution Check how much memory the server process is using according to the
operating system. Compare this with how much memory and swap space the
host actually has. If there are sufficient memory and swap space, check the
operating system limits on the server process to determine if this is the
cause. If the limits are set to their maximum and this error occurs, reduce the
load on this server by moving some topics and queues to another server.

Errors %s trying to recreate persistent message.

Error during routed queue configuration, can not create routed queue

TIBCO Enterprise Message Service™ User Guide

660 | Error and Status Messages

Out of memory

consumer

Could not initialize monitor

Error: out of memory processing admin request

Error during route configuration, can not create routed queue consumer,
err=%s

Configuration error - duplicate group: file=%s, line=%d: ignoring line

Unable to create admin group: out of memory during initialization

Error: unable to create alias for %s '%s': no memory

Error: unable to create alias: out of memory

Unable to create import event for %s '%s' on transport '%s'

Unable to create internal connection, error=(%d) %s

Unable to create internal connection: out of memory during initialization

Error: unable to create %s '%s': no memory

Error: unable to create route while parsing file=%s, line=%d.

Unable to create temporary destination, out of memory

Failed to create reserve memory. Exiting.

Failed writing message to '%s': No memory for operation.

Unable to process message imported on transport '%s'.

Fault Tolerant configuration, no memory!

Fault Tolerant error, %s.

No memory.

No memory: %s.

No memory authenticating user '%s'

No memory authenticating via LDAP

TIBCO Enterprise Message Service™ User Guide

661 | Error and Status Messages

Out of memory

Out of memory while building admin response message

Out of memory while building JNDI response message

Out of memory creating global import event on transport '%s'

Out of memory creating import event for %s '%s' on transport '%s'

No memory creating stalled flows in destination

Out of memory during initialization

No memory for creating connection.

No memory generating dynamic route durable.

No memory in IO thread to create pool.

Out of memory while parsing bridges file

Out of memory while parsing factories file

Out of memory while parsing routes file

No memory performing routing operation.

Out of memory processing %s on %s '%s'

Out of memory processing administrative request

Out of memory processing message tracing

No memory processing purge record.

No memory while processing route interest

Out of memory processing transports

Out of memory processing transports configuration

Out of memory reading configuration.

Out of memory restoring routed consumer

Out of memory sending monitor message.

No memory sending topic routing information.

TIBCO Enterprise Message Service™ User Guide

662 | Error and Status Messages

Out of memory

%s trying to add message to %s queue.

No memory trying to add message to system.

No memory trying to cleanup route.

No memory to create ack record.

No memory to create client connection

No memory to create configured durable '%s%s%s'.

No memory to create configured durables

No memory to create confirm record.

No memory to create connection.

No memory to create consumer.

No memory trying to create destination.

No memory to create destination for consumer or browser.

No memory trying to create global topic destination.

No memory to create message from store.

No memory trying to create message producer.

No memory to create producer.

No memory trying to create queue browser.

No memory trying to create response message.

No memory to create routed consumer

No memory to create routed queue consumers

No memory trying to create routed queue destination.

No memory trying to create routed tmp queue destination.

No memory to create session.

No memory trying to create tmp destination for consumer.

TIBCO Enterprise Message Service™ User Guide

663 | Error and Status Messages

Out of memory

No memory trying to create transaction.

No memory to create valid messages record.

No memory restoring valid sequence number info.

No memory to create zone.

No memory trying to export message to RV.

No memory trying to export message to SS.

No memory trying to import message from RV%s.

No memory trying to import message from RVCM.

No memory trying to import message from SS. error=%s.

No memory trying to initialize connection.

No memory trying to initialize route connection.

No memory trying to parse configured durable.

No memory trying to process data message.

No memory trying to process queue message.

No memory to process route interest

No memory trying to process system request.

No memory trying to process topic consumer.

No memory trying to process topic message.

No memory trying to process xa end. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d %s

No memory trying to read message from store.

Route down while trying to recover routed consumer.

No memory trying to recover routed consumer.

No memory trying to recover one msg for routed consumer.

TIBCO Enterprise Message Service™ User Guide

664 | Error and Status Messages

Out of memory

No memory trying to recover route stall.

No memory trying to recover route stall, will try again.

No memory to restore messages.

No memory to restore prepared transactions.

No memory trying to retrieve for queue browser.

No memory trying to send recover/rollback response.

out of memory trying to send topic interest to routes

No memory to set clientID for connection.

No memory trying to setup queue route configuration

No memory trying to setup route configuration

No memory trying to setup topic route configuration

Route recovery of destination %s on route from %s will fail: No memory

Route recovery of destination %s on route from %s will fail: No memory to
create timer

Route recovery of destination %s on route from %s will fail: %s

Failed to initialize OpenSSL environment: out of memory

Out of memory queuing imported message for processing.

Out of memory gathering consumers for incoming message.

Out of memory scheduling message delete.

Out of memory preparing to write message.

Out of memory assembling list of message to store.

Out of memory processing route consumer.

Out of memory preparing message for writing.

Out of memory creating connection thread list.

TIBCO Enterprise Message Service™ User Guide

665 | Error and Status Messages

Out of memory

Out of memory creating RV transport thread list.

Out of memory delaying bridged flow control response.

Out of memory preparing to delay flow control response.

Out of memory delaying one flow control response.

Out of memory delaying set of flow control responses.

Out of memory trying to clear message hold.

Out of memory trying to delete held message.

Unable to update the valid messages record. Error code: %d - %s.

No memory scheduling message delete completion, Error code: %d.

No memory to build msg properties.

No memory to create prop.

No memory to set prop.

No memory getting the list of delivered messages. The JMSXDeliveryCount
property of some messages may no longer be accurate.

No memory getting the list of delivered messages from session % PRINTF_
LLFMT d. The JMSXDeliveryCount property of messages that were sent to this
session may no longer be accurate.

No memory getting the list of delivered messages during rollback of
transaction with xid: %s. The JMSXDeliveryCount property of messages that
were rolled-back may no longer be accurate.

Out of memory discarding message.

Out of memory advancing queue pending.

Out of memory adding message to pending list.

Out of memory returning message to pending list.

Out of memory trying to re-queue after xa rollback.

Out of memory finalizing restored queue: %s.

TIBCO Enterprise Message Service™ User Guide

666 | Error and Status Messages

Out of memory

Out of memory restoring queue flush state.

Out of memory detaching message during queue purge.

Out of memory removing message from queue.

Out of memory retrieving message by correlation id.

Out of memory scheduling cleanup of transaction ack: %s.

Out of memory setting message all acked: %s.

Out of memory cleaning up transaction: %s.

Out of memory updating sent state on ack.

Out of memory updating in-doubt state on ack.

Out of memory removing message from system.

Out of memory associating ack with data.

Out of memory associating ack with transaction.

Error setting mstore discard scan: %s.

Out of memory recording modified topic.

Out of memory re-queuing sent messages.

No memory trying to resend delivered messages following an xa end NOTA.
connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

%s to create consumer on %s [%s]

Failed to set delivery count in%smessage: status=%s

Failure to create per-mstore delayed delivery state: %s.

Protocol error, incorrect XID in XA request

Description The tibemsd received an XA End instruction from the third party Transaction
Manager which referred to a different transaction from the one currently in
use by the session.

TIBCO Enterprise Message Service™ User Guide

667 | Error and Status Messages

Protocol error, incorrect XID in XA request

Resolution Report this to the your Transaction Manager vendor.

Errors Incorrect xid in xa end (0x%x) request. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d %s

Protocol error, transaction in incorrect state

Description A client application's attempt to start an XA transaction failed because the
transaction already exists and is not in the correct state.

Resolution This error is most likely caused by an external transaction manager that
allowed two separate client applications to use the same XA transaction
identifier (XID). Consult the manual for the transaction manager or report this
to the transaction manager vendor.

Errors Cannot process xa start for a session when another transaction is already
active on that session. connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d
%s

Cannot process xa start with TMNOFLAGS when the transaction is already
active. connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

All clients participating in the same global transaction must use the same
protocol, connID=% PRINTF_LLFMT d

Invalid xa start (resume) request: the session was not previously suspended.
connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Error processing xa start - transaction marked ROLLBACKONLY. connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Error processing xa start request, %s. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d %s

Invalid xa end (suspend) request: session already suspended or not started.
connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Invalid xa end request: the session was neither associated with a transaction
nor suspended. connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Error processing xa prepare - transaction marked ROLLBACKONLY, %s.
connID=% PRINTF_LLFMT d %s

TIBCO Enterprise Message Service™ User Guide

668 | Error and Status Messages

Protocol message format error

Description tibemsd received a message with either missing or incomplete data.

Resolution Send details of the error and the situation in which it occurred to TIBCO
Support.

Errors Unable to confirm session, invalid request.

Unable to create consumer, invalid destination.

Unable to init session, invalid request.

Unable to process msg for export. error=%s.

Unable to recover consumer, invalid request.

Unable to recover consumer, invalid session.

Unable to recover one msg for consumer, invalid request.

Unable to recover one msg for consumer, invalid sequence number.

Unable to recover one msg for consumer, invalid session.

Unable to serve the flow stall recover request from server %s, invalid request.

Unable to start consumer, invalid consumer

Unable to server the flow stall recover request from server %s, invalid
consumer.

Unable to unsubscribe consumer, invalid client request.

%s: %s failed: illegal to use %s [%s] in standby state.

Invalid flag in xa end request. connID=% PRINTF_LLFMT d sessID=% PRINTF_
LLFMT d %s

Invalid flag in xa start request. connID=% PRINTF_LLFMT d sessID=% PRINTF_
LLFMT d %s

Invalid request to delete temporary destination: %s. connID=% PRINTF_
LLFMT d

Invalid request to delete temporary destination: not owner connection.

TIBCO Enterprise Message Service™ User Guide

669 | Error and Status Messages

Protocol message format error

Invalid xid in commit request.

Invalid xid in commit transaction record.

Invalid xid trying to update(%d) transaction record.

Invalid xid in rollback request.

Invalid xid in rollback transaction record.

Invalid xid in xa commit request. connID=% PRINTF_LLFMT d

Invalid xid in xa end request. connID=% PRINTF_LLFMT d sessID=% PRINTF_
LLFMT d

Invalid xid in xa prepare request. connID=% PRINTF_LLFMT d

Invalid xid in xa rollback request. connID=% PRINTF_LLFMT d

Invalid xid in xa start request. connID=% PRINTF_LLFMT d sessID=% PRINTF_
LLFMT d

Malformed routed message

Problem decoding sequence data in confirm: %s.

Problem decoding sequence data in rollback.

Problem decoding sequence data in xa end. connID=% PRINTF_LLFMT d
sessID=% PRINTF_LLFMT d %s

%s:%s queue browser failed: queue name is missing in request message

Received admin request with replyTo not set

Received JNDI request with replyTo not set.

Received unexpected message type %d

No destination in incoming data message.

Invalid %s message

TIBCO Enterprise Message Service™ User Guide

670 | Error and Status Messages

Protocol Sequence Error

Description A non-embedded java client is attempting to connect to a tibemsd that is
part of an embedded Jakarta Messaging environment.

Resolution Reconfigure the client to connect to a fully licensed tibemsd.

Errors Invalid client connect detected.

No closure.

Recovery errors

Description An error occurred during the recovery process.

Resolution If you are not able to fix the problem and need to restart the system, make a
backup of the store files and restart the server with the '-forceStart'
command line parameter. The server will then attempt to start regardless of
errors (except out-of-memory errors). In this mode, application messages
and/or internal records causing problems (due to file corruption or other) will
be deleted. Therefore, dataloss is likely to occur, so this command line
parameter should be used with extreme caution and only after understanding
the consequences. A copy of the store files can be sent to TIBCO Support for
post-mortem analysis.

Errors The recovery process stopped while processing a '%s' record (id=% PRINTF_
LLFMT d), error: %d - %s. Check the section 'Error Recovery Policy' from
chapter 'Running the EMS Server' in the User Guide before attempting to
restart the server

The recovery process stopped while processing a '%s' record (id=% PRINTF_
LLFMT d) due to an out-of-memory condition. Ensure that the system can
allocate sufficient memory to the EMS Server process before restarting it

Unable to get the session's context handle for %s record: %d - %s

Unable to get the list iterator for %s record

Unable to get next element from list for %s record

Unable to create %s object, no memory

TIBCO Enterprise Message Service™ User Guide

671 | Error and Status Messages

Recovery errors

Error occured while processing %s record id=% PRINTF_LLFMT d (%s) -
Unable to reconstruct message: %d - %s

Unable to recreate zone '%s': %d - %s

Unable to add zone '%s' to the system: %d - %s

Zone '%s' is defined as type '%s' in configuration but also is defined as type
'%s' in meta.db

Unable to recreate connection id=% PRINTF_LLFMT d, client id=%s: %d - %s

Discarding session id=% PRINTF_LLFMT d because the connection id=%
PRINTF_LLFMT d was not recovered. Recovery continues

Unable to recreate session id=% PRINTF_LLFMT d with connection id=%
PRINTF_LLFMT d and client id=%s: %d - %s

Unable to recreate consumer id=% PRINTF_LLFMT d with connection id=%
PRINTF_LLFMT d, session id=% PRINTF_LLFMT d, and client id=%s: invalid
destination: %s

No memory to create destination for consumer id=% PRINTF_LLFMT d

Discarding consumer id=% PRINTF_LLFMT d on destination '%s' because
connection id=% PRINTF_LLFMT d with client id=%s was not restored.
Recovery continues

Discarding consumer id=% PRINTF_LLFMT d on destination '%s' and
connection id=% PRINTF_LLFMT d with client id=%s because session id=%
PRINTF_LLFMT d was not restored. Recovery continues

%s recreating consumer id=% PRINTF_LLFMT d

Failed to build import selectors for consumer id=% PRINTF_LLFMT d: %d - %s

Failed to read import selectors for routed consumer id=% PRINTF_LLFMT d:
%d - %s

Discarding durable id=% PRINTF_LLFMT d (connection id=% PRINTF_LLFMT d,
client id=%s) on destination '%s' because the durable name is not specified.
Recovery continues

Unable to recreate producer id=% PRINTF_LLFMT d with connection id=%

TIBCO Enterprise Message Service™ User Guide

672 | Error and Status Messages

Recovery errors

PRINTF_LLFMT d, session id=% PRINTF_LLFMT d, and client id=%s: invalid
destination: %s

No memory to create destination for producer id=% PRINTF_LLFMT d

Discarding producer id=% PRINTF_LLFMT d on destination '%s' because
connection id=% PRINTF_LLFMT d was not restored. Recovery continues

Discarding producer id=% PRINTF_LLFMT d on destination '%s' with
connection id=% PRINTF_LLFMT d and client id=%s because session id=%
PRINTF_LLFMT d was not restored. Recovery continues

Unable to recreate purge record: invalid destination: %s

Unable to recreate purge record for destination %s: %d - %s

Error creating message for transaction record: %d - %s

Error creating message's store structure for transaction record: %d - %s

Unable to recover transaction record: transaction id missing: %d - %s

Unable to recover transaction id=% PRINTF_LLFMT d: %d - %s

Unable to recover ack record (txid=% PRINTF_LLFMT d, consid=% PRINTF_
LLFMT d, seqid=% PRINTF_LLFMT d, location=%s): %d - %s

Unable to recover ack record, cannot create message: %d - %s

Unable to recover sequence numbers from valid record: %s

Unable to recover message, can not create lock: %d - %s

Unable to restore held message from store, (location=%s) no memory

Unable to restore message sequence=% PRINTF_LLFMT d: (location=%s) %d -
%s

No memory to create destination for message

Inconsistency restoring routed message sequence=% PRINTF_LLFMT d

No memory to restore routed message sequence=% PRINTF_LLFMT d

Persisted message possibly corrupted: %s

Error creating message's store structure: %d - %s

TIBCO Enterprise Message Service™ User Guide

673 | Error and Status Messages

Rejected attempt to connect via TLS to TCP port

Description A client application attempted to connect to the server's TCP port using the
TLS protocol.

Resolution Change the client application's URL from ssl to tcp or change the server's
listen parameter from tcp to ssl. To activate a change of the server listen
parameter requires a restart of the server.

Errors Rejected attempt to connect via TLS to TCP port

Rejected attempt to connect via TCP to TLS port

Description A client application attempted to connect to the server's TLS port using the
TCP protocol.

Resolution Change the client application's URL from tcp to ssl or change the server's
listen parameter from ssl to tcp. To activate a change of the server listen
parameter requires a restart of the server.

Errors Rejected attempt to connect via TCP to TLS port

Rejected connect from route: invalid cycle in route

Description The multi-hop route support of the server does not support configuring a
cycle. However, it detected a configuration that would create a cycle.

Resolution Remove one of the routes that creates the cycle.

Errors [%s@%s]: rejected connect from route: invalid cycle in route: %s

Illegal, route to '%s' creates a cycle. Terminate the connection

Illegal, route to '%s' creates a cycle.

TIBCO Enterprise Message Service™ User Guide

674 | Error and Status Messages

Rendezvous transport error

Description tibemsd encountered a Rendezvous error.

Resolution See Rendezvous documentation for details of what the error means and how
to remedy it.

Errors Unable to create dispatcher for import event for %s '%s' on transport '%s',
error is %s

Unable to create inbox for import event for %s '%s' on transport '%s'

Unable to create Rendezvous Certified transport '%s': %s

Unable to create Rendezvous Certified transport '%s' because unable to
create Rendezvous transport '%s'

Unable to create Rendezvous transport '%s': %s

Unable to create TIBCO Rendezvous Certified Listener for %s '%s' on
transport '%s': %s

Failed to confirm RVCM message: %d (%s)

Failed to confirm RVCM message sequence % PRINTF_LLFMT u from cm
sender '%s'. Error: %d (%s)

Unable to store trackId % PRINTF_LLFMT d for RVCM message sequence %
PRINTF_LLFMTu from cm sender '%s'. Error: %d (%s)

Unable to retrieve trackId % PRINTF_LLFMT d. Error: %d (%s)

A problem occurred while importing RVCM message sequence % PRINTF_
LLFMT u from cm sender '%s'. Expecting a redelivery

Unable to queue the request type: %d. Transport '%s', destination '%s', CM
Sender '%s', CM Sequence % PRINTF_LLFMT u . Error: %d (%s)

Unable to queue the request type: %d. Transport '%s', destination '%s'. Error:
%d (%s)

Failed to disallow Rendezvous Certified Message listener '%s': %s

Unable to export topic message, error=%s.

Unable to pre-register certified listener '%s' on transport '%s': %s

TIBCO Enterprise Message Service™ User Guide

675 | Error and Status Messages

Rendezvous transport error

Rendezvous send failed on transport '%s', error='%s'

Unable to restart the CM Listener for %s '%s' (RVCM Transport '%s'). Error
code: %d '%s'

Unable to create the timer for the restart of the CM Listener for %s '%s'
(RVCM Transport '%s'). Error code: %d '%s'

Unable to stop the CM Listener for %s '%s' (RVCM Transport '%s'). Error code:
%d '%s'

Restoring consumer failed

Description Seen when tibemsd starts up and detects that the zone for a route as
specified in routes.conf has been changed.

Resolution Either delete the route or change its zone back and restart the tibemsd.

Errors Restoring consumer failed: Conflicting zone for route to [%s]: The route was
initially zone \%s\ type %s, but now \%s\ type %s. Zone change not allowed
while there are durable subscribers. Please delete the route first and create
new one.

Running on reserve memory

Description Warnings indicating that the tibemsd has run out of memory and is now
using its reserve memory

Resolution Either reduce the tibemsd's memory requirement by consuming messages or
removing messages from its queues, or increase the amount of memory
available to the tibemsd by shutting down other processes on the machine or
increasing the machine's memory.

Errors Running on reserve memory, ignoring new message.

Running on reserve memory, no more send requests accepted. Pending msg
count = % PRINTF_LLFMT d

Pending msg count = % PRINTF_LLFMT d

TIBCO Enterprise Message Service™ User Guide

676 | Error and Status Messages

Runtime Error in Fault-Tolerant Setup

Description In a fault-tolerant setup, error occurs at runtime.

Resolution Check the status of both servers (primary, secondary). In case of both active,
the file store data may be corrupted already and we recommend shutting
down both servers and investigating the situation.

Errors Fault-tolerance error: Dual-Active server detected at: '%s'

The active EMS server does not hold the lock on meta store

The standby EMS server could not find the specified meta store.

The active EMS server name is %s while the standby EMS server name is %s.
The names must be the same

A standby EMS server (%s) is already connected to the active EMS server

Fault Tolerant error (%s), can't create connection to '%s'.

Cannot determine which server should be active because both servers have
been forced to start separately. Please force one of them to start (\forcestart\
tibemsadmin command). The other server will discard its data.

This standby server is joining an active server and both have previously been
forced to start. This server is discarding its data.

Erasing content of store %s

Internal error: Identical non-0 FT determination counters

Store '%s' not defined on the active server, skipping it

Store '%s' on the active server has a different file name than on the standby
server

Store '%s' is not present in the standby server configuration

Error checking active server's configuration: %d - %s

The configuration used on startup is incompatible with the one sent by the
active server. Exiting!

TIBCO Enterprise Message Service™ User Guide

677 | Error and Status Messages

TLS initialization failed

Description The server failed attempting to initialize the OpenSSL library.

Resolution Examine the OpenSSL error and the EMS User Guide chapter describing the
use of TLS.

Errors Failed to process FT TLS password

Failed to process TLS password

Ignoring TLS listen port %s

Failed to initialize TLS: can not load certificates and/or private key and/or
CRL file(s) and/or ciphers.

Failed to initialize OpenSSL environment: error=%d, message=%s.

Failed to initialize TLS. Error=%s

Failed to initialize TLS: unable to obtain password

Failed to initialize TLS: server certificate not specified.

Failed to initialize TLS: server private key not specified.

Using secondary TLS password.

Using secondary TLS identity.

Using secondary TLS expected host name.

Using secondary TLS private key.

Standby server '%s' disconnected

Description Lost connection with the standby fault-tolerant server.

Resolution Determine if the standby server is running. If it is running, check for a
network partition.

Errors Standby server '%s' disconnected.

TIBCO Enterprise Message Service™ User Guide

678 | Error and Status Messages

Store file format mismatch

Description The store files specified were created from a different version of EMS that is
not supported by this version.

Resolution Revert to use the version of EMS that created the store file or locate the store
file conversion tool and use it to convert the store file to this version.

Errors Unsupported store format: %s (%d)

System call error, should be errno-driven

Description A low-level system function has failed.

Resolution Report the error to your system administrator and ask them to remedy the
problem.

Errors Accept() failed: too many open files. Please check per-process and system-
wide limits on the number of open files.

Accept() failed: %d (%s)

Select() failed: %d (%s)

%s%se=%p refs=%lu flags=%u type=%u id=%u subtype=%u q=%u cb_
count=%u ioType=%u ioSrc=%d ioValid=%d ioVChecked=%d cb=%p free_
cb=%p

Epoll_wait() failed: %d (%s)

Epoll_ctl() %s on fd %d failed: %d (%s)

ioctl() on /dev/poll failed: %d (%s)

write() %s update /dev/poll on fd %d failed: %d (%s)

Cannot retrieve user name of the current process.

Client connection not created, %s.

Could not obtain hostname

Could not resolve hostname '%s'. Possibly default hostname is not configured
properly while multiple network interfaces are present.

TIBCO Enterprise Message Service™ User Guide

679 | Error and Status Messages

System call error, should be errno-driven

Unable to listen for connections: %d (%s).

Unable to open socket for listening: %d (%s).

Closing connection from %s due to timeout, exceeded timeout of %d.

Could not %s sequential file optimization: %d.

Transaction action while previous action is incomplete.

Description State-modifying action is requested on a transaction for which another
such action is being processed.

Resolution Send details of the error and the situation in which it occurred to TIBCO
Support.

Errors Cannot request second state change for transaction while the first
request is in progress (%d, %d) %s.

Unexpected request to roll xa txn forward with previous operation (%d)
incomplete: %s.

Unexpected request to roll xa txn back with previous operation (%d)
incomplete: %s.

Unexpected request to prepare xa txn with previous operation (%d)
incomplete: %s.

Unexpected request to commit xa txn with previous operation (%d)
incomplete: %s.

Unexpected request to commit session with previous operation (%d)
incomplete.

Transaction timeout.

Description Transaction not completed before timeout. Offending transaction is
discarded.

TIBCO Enterprise Message Service™ User Guide

680 | Error and Status Messages

Transaction timeout.

Resolution Most likely, transaction manager error prevented it from advancing this
transaction in a timely manner. Verify correct operation of the transaction
manner.

Errors Rollback due to timeout on unprepared transaction. connID=% PRINTF_
LLFMT d %s

Unnecessary or duplicate message

Description tibemsd received a message with either missing or incomplete data.

Resolution Send details of the error and the situation in which it occurred to TIBCO
Support.

Errors Error processing xa start request, %s. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d

Error trying to enter standby for '%s', %s.

Unrecognized option

Description The server's command line contains an unrecognized option.

Resolution Run the server with the -help option and compare it with the command line
containing the unrecognized option.

Errors Unrecognized option: '%s'.

Monitoring issues

Description An issue has occurred related to the exposed monitor_listen or secondary_
monitor_listen.

Resolution Various.

Errors Monitor: Failed to find %s %s: %s

TIBCO Enterprise Message Service™ User Guide

681 | Error and Status Messages

Appliance State Replication Events.

Description A transition occurred in the State Replication feature.

Resolution Refer to the section of the documentation pertaining to State Replication.

Errors Transitioning to Server State: %s

Transitioning to Server State: %s

Forced exit to prevent dual-active servers

Forced early exit - caught signal during server startup

Site changed Disaster Recovery state: %s

Restarging to complete upgrade

OAuth error - should always display OAuth error

Description An attempt to authenticate a client using the external OAuth server failed.

Resolution Examine the error code printed by the messaging server and consult the
manual for the external OAuth server.

Errors The JWT token is expired.

The JWT token is not yet valid.

The JWT token is missing a required grant.

A JWT token grant has the wrong value.

The JWT token has an invalid audience.

The JWT token has an invalid subject.

The JWT token has an invalid issuer.

TIBCO Enterprise Message Service™ User Guide

682 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Enterprise Message
Service™ Product Documentation page:

 l TIBCO Enterprise Message Service™ Release Notes

 l TIBCO Enterprise Message Service™ Installation

 l TIBCO Enterprise Message Service™ User Guide

 l TIBCO Enterprise Message Service™ C and COBOL Reference

 l TIBCO Enterprise Message Service™ Java API Reference

 l TIBCO Enterprise Message Service™ .NET API Reference

Other TIBCO Product Documentation

When working with TIBCO Enterprise Message Service™, you may find it useful to read the
documentation of the following TIBCO products:

 l TIBCO® Messaging Manager

 l TIBCO FTL®

 l TIBCO ActiveSpaces®

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-enterprise-message-service
https://docs.tibco.com/products/tibco-enterprise-message-service

TIBCO Enterprise Message Service™ User Guide

683 | TIBCO Documentation and Support Services

 l TIBCO Rendezvous®

 l TIBCO® EMS Client for z/OS (CICS)

 l TIBCO® EMS Client for z/OS (MVS)

 l TIBCO® EMS Client for IBM i

How to Access Related Third-Party Documentation

When working with TIBCO Enterprise Message Service™, you may find it useful to read the
documentation of the following third-party products:

 l Jakarta Messaging™ Message specification, available through
https://jakarta.ee/specifications/messaging/2.0.

 l Java™ Message Service by Richard Monson-Haefel and David A. Chappell, O’Reilly and
Associates, Sebastopol, California, 2001.

 l Java™ Authentication and Authorization Service (JAAS) LoginModule Developer's
Guide and Reference Guide, available through
http://www.oracle.com/technetwork/java/javase/jaas/index.html.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

 l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

 l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the our product Support website. If you do not have a username, you can
request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://jakarta.ee/specifications/messaging/2.0
https://www.oracle.com/java/technologies/javase/javase-tech-security.html
https://support.tibco.com/s/
https://support.tibco.com/s/
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO Enterprise Message Service™ User Guide

684 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO Cloud Integration, TIBCO Flogo Apps, TIBCO Flogo,
TIB, Information Bus, TIBCO Enterprise Message Service, Rendezvous, and TIBCO Rendezvous are
either registered trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or
other countries.

Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition (J2EE), and all Java-
based trademarks and logos are trademarks or registered trademarks of Oracle Corporation in the
U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO Enterprise Message Service™ User Guide

685 | Legal and Third-Party Notices

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 1997-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	About this Product
	Overview
	Jakarta Messaging Overview
	Jakarta Messaging Compliance

	Jakarta Messaging Message Models
	Point-to-Point
	Publish and Subscribe
	Durable Subscribers for Topics
	Shared Subscriptions for Topics

	EMS Destination Features
	Client APIs
	Sample Code
	TIBCO Rendezvous Java Applications

	Administration
	Administering the Server
	User and Group Management
	Using TIBCO Hawk

	Modes, Roles, and States
	Security
	Fault Tolerance
	Routing
	Integrating with Third-Party Products
	Transaction Support
	Containerization

	Messages
	EMS Extensions to Jakarta Messaging Messages
	Jakarta Messaging Message Structure
	Jakarta Messaging Message Header Fields
	EMS Message Properties
	Undelivered Message Queue
	Including the Message Sender

	Jakarta Messaging Message Bodies
	Maximum Message Size

	Message Priority
	Message Delivery Modes
	PERSISTENT
	NON_PERSISTENT
	RELIABLE_DELIVERY

	How EMS Manages Persistent Messages
	Persistent Messages Sent to Queues
	Persistent Messages Published to Topics
	Persistent Messages and Synchronous File Storage

	Store Messages in Multiple Stores
	Store Types
	Default Stores
	Configuring File-Based Stores

	Character Encoding in Messages
	Supported Character Encodings
	Sending Messages

	Message Compression
	About Message Compression
	Setting Message Compression

	Message Acknowledgment
	NO_ACKNOWLEDGE
	EXPLICIT_CLIENT_ACKNOWLEDGE
	EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE

	Message Selectors
	Identifiers
	Literals
	Expressions
	Operators
	White Space
	Performance

	Data Type Conversion
	Sending Messages Synchronously and Asynchronously
	Sending Synchronously
	Sending Asynchronously
	Concurrent Message Use
	Memory Use
	Fault Tolerant Failovers

	Receiving Messages Synchronously and Asynchronously

	Destinations
	Destination Overview
	Destination Names
	Static Destinations
	Dynamic Destinations
	Temporary Destinations
	Destination Bridges

	Destination Name Syntax
	Examples of Destination Names

	Destination Properties
	exclusive
	expiration
	export
	flowControl
	global
	import
	maxbytes
	maxmsgs
	maxRedelivery
	overflowPolicy
	default
	discardOld
	rejectIncoming
	Examples

	prefetch
	prefetch Values
	Background
	acl.conf
	Automatic Fetch Enabled
	Automatic Fetch Disabled
	Inheritance

	redeliveryDelay
	secure
	sender_name
	sender_name_enforced
	store
	trace

	Temporary Destination Properties
	Usage Notes

	Creating and Modifying Destinations
	Creating Secure Destinations

	Wildcards
	Wildcards * and >
	Overlapping Wildcards and Disjoint Properties
	Wildcards in Topics
	Wildcards in Queues
	Wildcards and Dynamically Created Destinations

	Inheritance
	Inheritance of Properties
	Inheritance of Permissions

	Destination Bridges
	Create a Bridge
	Select the Messages to Bridge

	Access Control and Bridges
	Transactions

	Flow Control
	Enable Flow Control
	Enforce Flow Control
	Flow Control in the Absence of Consumers

	Routes and Flow Control
	Destination Bridges and Flow Control
	Flow Control, Threads and Deadlock

	Delivery Delay

	Getting Started
	About the Sample Clients
	Compiling the Sample Java Clients
	Creating Users with the EMS Administration Tool
	Point-to-Point Messaging Example
	Creating a Queue
	Starting the Sender and Receiver Clients

	Publish and Subscribe Messaging Example
	Creating a Topic
	Starting the Subscriber Clients
	Starting the Publisher Client and Sending Messages
	Creating a Secure Topic
	Adding the secure Property to the Topic
	Granting Topic Access Permissions to Users
	Starting the Subscriber and Publisher Clients

	Creating a Durable Subscriber

	Running the EMS Server
	Starting and Stopping the EMS Server
	Types of Configuration Files
	Starting the EMS Server Using a Sample Configuration
	Starting the EMS Server Using JSON Configuration
	Starting Fault Tolerant Server Pairs

	Starting the EMS Server Using Options
	tibemsd Options

	Stopping the EMS Server

	Running the EMS Server as a Windows Service
	emsntsrg

	Error Recovery Policy
	Security Considerations
	Secure Environment
	Destination Security
	Authorization Parameter
	Admin Password
	Connection Security
	Communication Security
	Sources of Authentication Data
	Timestamp
	Passwords
	Audit Trace Logs

	Managing Access to Shared File-Based Stores
	Performance Tuning
	Setting Thread Affinity for Increased Throughput
	Increasing Network Threads without Setting Thread Affinity
	Determine Core Allocation
	Transparent Huge Pages
	Network I/O Connections
	Other Considerations

	Using the EMS Administration Tool
	Starting the EMS Administration Tool
	Options for tibemsadmin
	When You First Start tibemsadmin
	Assigning a Password to the Administrator

	Naming Conventions
	Name Length Limitations

	Command Listing
	activate_dr_site
	add member
	addprop factory
	addprop queue
	addprop route
	addprop topic
	autocommit
	commit
	compact
	connect
	create bridge
	create durable
	create factory
	create group
	create jndiname
	create queue
	create route
	create rvcmlistener
	create topic
	create user
	delete all
	delete bridge
	delete connection
	delete durable
	delete factory
	delete group
	delete jndiname
	delete message
	delete queue
	delete route
	delete rvcmlistener
	delete topic
	delete user
	disconnect
	echo
	exit
	grant queue
	grant topic
	grant admin
	help
	info
	jaci clear
	jaci resetstats
	jaci showstats
	purge all queues
	purge all topics
	purge durable
	purge queue
	purge topic
	remove member
	removeprop factory
	removeprop queue
	removeprop route
	removeprop topic
	resume route
	revoke admin
	revoke queue
	revoke topic
	rotatelog
	save_and_exit
	set password
	set server
	setprop factory
	setprop queue
	setprop route
	setprop topic
	setup_dr_site
	show bridge
	show bridges
	show config
	show consumer
	show consumers
	show connections
	show db
	show durable
	show durables
	show factory
	show factories
	show jndiname
	show jndinames
	show group
	show groups
	show members
	show message
	show messages
	show parents
	show queue
	show queues
	show route
	show routes
	show rvcmtransportledger
	show rvcmlisteners
	show server
	show stat
	show state
	show store
	show stores
	show subscriptions
	show topic
	show topics
	show transaction
	show transactions
	show transport
	show transports
	show user
	show users
	showacl admin
	showacl group
	showacl queue
	showacl topic
	showacl user
	shutdown
	suspend route
	time
	timeout
	transaction commit
	transaction rollback
	updatecrl
	whoami

	Configuration Files
	Location of Configuration Files
	Mechanics of Configuration
	tibemsd.conf
	Global System Parameters
	always_exit_on_disk_error
	authorization
	auth_thread_count
	compliant_queue_ack
	disconnect_non_acking_consumers
	flow_control
	flow_control_only_with_active_consumer
	listen
	max_msg_field_print_size
	max_msg_print_size
	module_path
	monitor_listen
	network_thread_count
	npsend_check_mode
	password
	processor_ids
	routing
	secondary_monitor_listen
	selector_logical_operator_limit
	server
	startup_abort_list
	user_auth
	xa_default_timeout

	Storage File Parameter
	store

	Connection and Memory Parameters
	destination_backlog_swapout
	handshake_timeout
	large_destination_count
	large_destination_memory
	max_client_msg_size
	max_connections
	max_msg_memory
	msg_pool_block_size
	msg_swapping
	prefetch_none_timeout_request_reply
	reserve_memory
	socket_send_buffer_size
	socket_receive_buffer_size

	Detecting Network Connection Failure Parameters
	active_route_connect_time
	client_heartbeat_server
	clock_sync_interval
	server_timeout_client_connection
	server_heartbeat_server
	server_timeout_server_connection
	server_heartbeat_client
	client_timeout_server_connection

	Fault Tolerance Parameters
	ft_active
	ft_heartbeat
	ft_activation
	ft_reconnect_timeout
	ft_ssl_identity
	ft_ssl_issuer
	ft_ssl_private_key
	ft_ssl_password
	ft_ssl_trusted
	ft_ssl_verify_host
	ft_ssl_verify_hostname
	ft_ssl_expected_hostname
	ft_ssl_ciphers
	ft_oauth2_access_token_file
	ft_oauth2_server_url
	ft_oauth2_client_id
	ft_oauth2_client_secret
	ft_oauth2_grant_type
	ft_oauth2_server_trust_file
	ft_oauth2_disable_verify_hostname
	ft_oauth2_expected_hostname

	Message Tracking Parameters
	track_message_ids
	track_correlation_ids

	TIBCO FTL Transport Parameters
	ftl_log_level
	ftl_trustfile
	ftl_url
	ftl_username
	ftl_password
	ftl_oauth2_access_token_file
	ftl_oauth2_server_url
	ftl_oauth2_client_id
	ftl_oauth2_client_secret
	ftl_oauth2_server_trust_file
	ftl_oauth2_disable_verify_hostname
	ftl_oauth2_expected_hostname
	tibftl_transports

	Rendezvous Transport Parameters
	tibrv_transports

	Tracing and Log File Parameters
	client_trace
	console_trace
	logfile
	log_trace
	logfile_max_count
	logfile_max_size
	secondary_logfile
	trace_client_host

	Statistic Gathering Parameters
	server_rate_interval
	statistics
	rate_interval
	detailed_statistics
	statistics_cleanup_interval
	max_stat_memory

	TLS Server Parameters
	ssl_server_ciphers
	ssl_require_client_cert
	ssl_require_route_cert_only
	ssl_use_cert_username
	ssl_cert_user_specname
	ssl_server_identity
	ssl_server_key
	ssl_password
	ssl_server_issuer
	ssl_server_trusted
	ssl_crl_path
	ssl_crl_update_interval
	ssl_auth_only
	fips140-2

	HTTPS Server Parameters
	monitor_ssl_identity
	monitor_ssl_key
	monitor_ssl_password
	monitor_ssl_trusted

	OAuth 2.0 Parameters
	oauth2_server_validation_key
	oauth2_user_claim
	oauth2_group_claim
	oauth2_audience

	Extensible Security Parameters
	jaas_config_file
	jaas_login_timeout
	jaci_class
	jaci_timeout
	security_classpath

	JVM Parameters
	jre_library
	jre_option

	Using Other Configuration Files
	acl.conf
	bridges.conf
	durables.conf
	factories.conf
	groups.conf
	jaas.conf
	queues.conf
	routes.conf
	stores.conf
	tibrvcm.conf
	topics.conf
	transports.conf
	Transport-specific Parameters

	users.conf

	Authentication and Permissions
	Setting up EMS Authentication and Access Control
	Users and Groups
	Users
	Groups
	Administration Commands and External Users and Groups

	Enable Authentication and Access Control
	Server Access Control and Authentication
	Destination Access Control

	Authentication Methods
	Authentication Using OAuth 2.0
	Obtaining an Access Token
	Client Credentials Grant
	Resource Owner Password Credentials Grant
	Using Externally-Obtained Access Tokens
	Access Token Expiration

	Configure OAuth 2.0 in the EMS Server
	Access Tokens for Outgoing Connections

	Authenticate Administrative Connections
	Administrator Permissions
	Predefined Administrative User and Group
	Granting and Revoking Administration Permissions
	Enforcement of Administrator Permissions
	Global Administrator Permissions
	Destination-Level Permissions
	Protection Permissions

	User Permissions
	Queue and Topic Permissions
	Example of Setting User Permissions
	Inheritance of User Permissions
	Revoking User Permissions

	When Permissions Are Checked
	Example of Permission Checking

	Extensible Security
	Overview of Extensible Security
	How Extensible Security Works

	Extensible Authentication
	Enable Extensible Authentication
	Prebuilt Authentication Modules
	Writing an Authentication Module
	LoginModule Requirements
	Load the LoginModule in the EMS Server

	Extensible Permissions
	Cached Permissions
	What is Cached
	How Long Permissions are Cached
	Administer the Cache

	How Permissions are Granted
	Durable Subscribers
	Special Circumstances

	Implications of Wildcards on Permissions
	Enable Extensible Permissions
	Permissions Module
	Requirements

	The JVM in the EMS Server
	Enable the JVM

	JAAS Authentication Modules
	Overview of the JAAS Authentication Modules
	Prebuilt JAAS Modules
	Custom JAAS Modules
	Multiple JAAS Modules

	Enabling Authentication Using JAAS Modules
	Prebuilt JAAS Modules
	LDAP Simple Authentication
	Authentication Process
	Implementation
	Parameters

	LDAP Authentication
	Authentication Process
	Implementation
	Parameters

	LDAP Group User Authentication
	Authentication Process
	Implementation
	Parameters

	Host Based Authentication
	Authentication Process
	Implementation
	Parameters

	Connection Limit Authentication
	Authentication Process
	Implementation
	Parameters

	Using Multiple JAAS Modules
	Example: Two Authentication Requirements
	Example: One Authentication is Sufficient

	Migrating to the EMS JAAS Modules
	Former EMS Server LDAP Parameter to JAAS Module Parameter Mapping
	Parameters Requiring Conversion
	Dynamic Groups
	Example

	Troubleshooting Problems in the JAAS Modules

	Grid Stores
	Grid Stores Overview
	Fault-Tolerance with Grid Stores
	Understanding Grid Store Intervals
	Implications for Statistics
	Configuring and Deploying Grid Stores
	Deploying a Simple TIBCO ActiveSpaces Data Grid
	Connecting Multiple Servers to the Same Data Grid
	Configuring Grid Stores
	Managing the JSON Configuration
	Server Configuration Upload/Download
	Server Command-Line Options for Grid Stores

	FTL Stores
	FTL Stores Overview
	Fault-Tolerance with FTL Stores
	Deciding Between FTL Stores and File-Based Stores
	Configuring and Deploying FTL Stores
	Configuring the FTL Server Cluster
	Sections in the FTL Server Cluster Configuration
	Logging With FTL Stores
	Initializing FTL Server Cluster Security
	Deploying the FTL Server Cluster
	Configuring FTL Stores in the EMS Server
	stores.conf Parameters
	tibemsd.conf Parameters
	Persistence with FTL Stores
	Unsupported tibemsd Options

	Managing the JSON Configuration
	Server Configuration Upload/Download
	Shutting Down the FTL Server Cluster
	EMS Administration Tool
	FTL Administration Tool
	Shutting Down and Restarting an In-Memory Cluster

	Disaster Recovery
	Setting up the Disaster Recovery Site
	Recovering After Disaster
	Re-establishing a Disaster Recovery Site

	Developing an EMS Client Application
	Jakarta Messaging Specification
	Jakarta Messaging 3.0.0 Specification
	Jakarta Messaging 2.0.3 Specification
	JMS 2.0 Specification
	JMS 1.1 Specification
	JMS 1.0.2b Specification

	Sample Clients
	Programmer Checklists
	Java Programmer’s Checklist
	C Programmer’s Checklist
	C# Programmer’s Checklist
	Assembly Versioning in the Windows .NET Framework Environment
	Excluded Features and Restrictions

	Connection Factories
	Looking up Connection Factories
	Dynamically Creating Connection Factories
	Set Connection Attempts, Timeout, and Delay Parameters

	Connect to the EMS Server
	Start, Stop and Close a Connection

	Create a Session
	Set an Exception Listener
	Dynamically Create Topics and Queues
	Create a Message Producer
	Configure a Message Producer
	Create a Completion Listener for Asynchronous Sending

	Create a Message Consumer
	Create a Message Listener for Asynchronous Message Consumption

	Messages
	Create Messages
	Set and Get Message Properties
	Send Messages
	Receive Messages

	The EMS Implementation of JNDI
	Create and Modify Administered Objects in EMS
	Create Connection Factories for Secure Connections
	Create Connection Factories for Fault-Tolerant Connections

	Look up Administered Objects Stored in EMS
	Look Up Objects Using Full URL Names
	Perform Secure Lookups
	Perform Fault-Tolerant Lookups

	Interoperation with TIBCO FTL
	Message Translation
	Configuration
	Enabling
	Transports
	Destinations

	Configure EMS Transports for TIBCO FTL
	Requirements

	EMS Transport for FTL Definitions
	Topics
	Import Only when Subscribers Exist

	Queues
	Configuration
	Import—Start and Stop

	Message Translation
	Jakarta Messaging Header Fields
	Jakarta Messaging Property Fields
	Import
	Export

	Message Body
	Import
	Export

	Message Fields
	Import
	Export

	Interoperation with TIBCO Rendezvous
	Scope
	Message Translation
	Configuration
	Enabling
	Transports
	Destinations
	RVCM Listeners

	Configure EMS Transports for Rendezvous
	How Rendezvous Messages are Imported
	Queue Limit Policies

	Transport Definitions
	Topics
	import
	export
	Example

	Import Only when Subscribers Exist
	Wildcards
	Certified Messages
	RVCM Ledger
	Subject Collisions

	Queues
	Configuration
	Import—Start and Stop
	Wildcards

	Import Issues
	Field Identifiers
	JMSDestination
	JMSReplyTo
	JMSExpiration
	Guaranteed Delivery

	Export Issues
	JMSReplyTo
	Certified Messages
	Guaranteed Delivery

	Message Translation
	Jakarta Messaging Header Fields
	Special Cases
	Import
	Export

	Jakarta Messaging Property Fields
	Import
	Import RVCM
	Export

	Message Body
	Import
	Export

	Data Types

	Pure Java Rendezvous Programs

	Monitor Server Activity
	Server Health and Metrics
	Log Files and Tracing
	Configure the Log File
	Trace Messages for the Server
	Server Tracing Options

	Message Tracing
	Enable Message Tracing for a Destination
	Enable Message Tracing on a Message

	Monitor Server Events
	System Monitor Topics
	Monitor Messages
	Message monitoring qualifiers
	Description of Monitor Topics
	Description of Topic Message Properties

	View Monitor Topics
	Performance Implications of Monitor Topics

	Server Statistics
	Overall Server Statistics
	Enable Statistics Gathering
	Detailed Statistics

	Display the Statistics

	TLS Protocol
	TLS Support in TIBCO Enterprise Message Service
	Implementations

	Digital Certificates
	Digital Certificate File Formats
	Private Key Formats

	File Names for Certificates and Keys
	Configure TLS in the Server
	TLS Parameters
	Command Line Options

	Configure HTTPS in the Server
	Configure TLS in EMS Clients
	Client Digital Certificates
	Configure TLS
	Configure a Connection Factory

	Specify Cipher Suites
	Syntax for Cipher Suites
	Java Client Syntax
	Syntax for All Other Cipher Suite Specifications
	Default Cipher List

	Supported Cipher Suites
	Supported Cipher Suites for the Server and C Clients
	Supported Cipher Suites for Java Clients
	Supported Cipher Suites for .NET Clients

	TLS Authentication Only
	Motivation
	Preconditions

	Enable FIPS Compliance
	Enable the EMS Server
	Enable EMS Clients

	Fault Tolerance
	Fault Tolerance Overview
	Shared State
	Unshared State Failover

	Shared State Failover Process
	Detection
	Response
	Lock Unavailable

	Role Reversal
	Client Transfer
	Client Notification

	Message Redelivery
	Transactions
	Queues

	Heartbeat Parameters
	Configuration Files

	Unshared State Failover Process
	Detection
	Response
	Message Loss
	Unsupported Features
	Dual State Failover

	Shared State
	Implement Shared State
	Support Criteria
	Hardware Options
	SCSI and SAN
	NAS
	NAS with NFS
	Software Options

	Messages Stored in Shared State
	Shared State Storage

	Configure Fault-Tolerant Servers
	Shared State
	Authentication and Authorization for Fault-Tolerant Servers
	User & Password
	OAuth 2.0

	TLS
	Reconnect Timeout

	Unshared State

	Fault Tolerance with a JSON Configuration
	Configuring Fault Tolerance
	Configuration Errors

	Configure Clients for Shared State Failover Connections
	Specify More Than Two URLs
	Set Reconnection Failure Parameters

	Configure Clients for Unshared State Failover Connections
	Include the Unshared State Library
	Create an Unshared State Connection Factory
	Connection Recovery

	Specify Server URLs
	Set Connect Attempt and Reconnect Attempt Behavior

	Routes
	Overview
	Route
	Basic Operation
	Global Destinations
	Unique Routing Path

	Zone
	Basic Operation
	Eliminate Redundant Paths with a One-Hop Zone
	Overlapping Zones

	Active and Passive Routes
	Active-Passive Routes
	Active-Active Routes

	Configure Routes and Zones
	Routes to Fault-Tolerant Servers
	Routing and TLS
	TLS Parameters for Routes

	Routed Topic Messages
	Registered Interest Propagation
	Selectors for Routing Topic Messages
	Example
	Specifying Selectors
	Syntax
	Example Syntax
	Symmetry
	Active-Active Configuration
	Wildcards

	Routed Queues
	Owner and Home
	Example
	Producers
	Consumers
	Configuration
	Browsing
	Transactions

	Authentication and Authorization for Routes
	Authentication
	User & Password
	OAuth 2.0

	ACL

	Conversion of Server Configuration Files to JSON
	Monitor Messages
	Description of Monitor Topics
	Description of Topic Message Properties

	Error and Status Messages
	Error and Status Codes

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

