TIBCO Enterprise Message Service™
Installation on Red Hat OpenShift

Container Platform

Software Release 8.5
May 2019
Document Updated: August 2020

TIBCS

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Two-Second Advantage, TIBCO Cloud Integration, TIBCO
Flogo Apps, TIBCO Flogo, TIB, Information Bus, TIBCO Enterprise Message Service, Rendezvous, and
TIBCO Rendezvous are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file for
the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 1997-2020. TIBCO Software Inc. All Rights Reserved.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

https://www.tibco.com/patents

Contents
e o 1o 10 1 1 1 1S 0T 0o 4
TIBCO Documentation and SUPPOIt SEIVICES .. v vttt ttt et iteiie e eeereesenseneensenesaesossaananns 5
LT T 7
Fault Tolerance and Shared FOlder SetUP .. oo ittt ittt ittt it ttetteeteeeeeeneeneenasneenannns 8
Y T =T0 IS (] =T 1= 8
Control Access t0 NFS Shared FOIAErS e e e e e e e e e et 8
Setting Up the Shared FOIAETttt e e e e e e e e e e 8
EMS DOCKEN IMagE .« ottt ittt ettt ittt ettt ttettetteeaeeneeneeoeeaneenesneenesaeenneneeonaonaoneens 9
Creating the Base DOCKEr IMAGEottt et et et ettt e et e e e e e e et ettt e e e e eaeenes 9
Extending the Base DOCKEr IMAQEttt ettt e e e e e e e e 9
Provisioning FTL Client Libraries to Use the Corresponding TranSportSc.ouvireiint i e i eieeieaneanans 9
Provisioning Custom JAAS Authentication or JACI Authorization Modulesoi it 10
HOSHING the IMage ettt e e e e e e e e e et e e et 10
(O o T= 0 15] o111 8 T =1 (6 o 1S PR 11
(@ =T 1] T = T = (] =T 11
Provisioning the NFS Shared FOIAer e e et e et 11
Enabling Images to Run with the USER Specified inthe Dockerfile et 12
Modifying the Services NodePort range (OPtioNal)ttt e e et e e e e ieenees 12
EMS Server TEMPIALEottt et e et e e et e e e e e 13
(= 1z 1 0= (=] T o] [T o £ 13
Service Objects and EMS CleNt URLSttt ettt et et et et e et e e e 14
(D=7 o] (o) V0 01T 018 o] 1= o AP 14
Health Checks: Liveness and Readiness Probes ...t e 15
Creating a Deployment @Nd SEIVICEttt ettt et et et ettt e e e e e e et e it e i aeaeaeens 16
Stopping or Deleting an EMS SEIVETttt e et e et e e e 16
EMS Server ConfigUIatiONttt et ettt et e et e et e et e et ettt e 17
Central AdmiInistration Server TEMPIALEottt et e e ettt et et e e e e i e a e 17
Creating a Deployment and Service through the Web Console e 17
LIS 3 OCo] o) 1o 11 =14 o o PSS 20
(O =T 1T = TS T= o) 1 PPt 20
Modifying the TeMPIALe et e e e e et et e e e e e e e e 20
Modifying the tibemscreateimage EMS Docker Image Build SCript ...ttt ee i 21
Applying the MOdIfICAtIONSt e e e e ettt et ettt e e e e e 21

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

About this Product

TIBCO is proud to announce the latest release of TIBCO Enterprise Message Service' software.

This release is the latest in a long history of TIBCO products that leverage the power of the Information
Bus® technology to enable truly event-driven IT environments. To find out more about how TIBCO
Enterprise Message Service software and other TIBCO products are powered by TIB® technology,
please visit us at www.tibco.com.

TIBCO Enterprise Message Service software lets application programs send and receive messages
according to the Java Message Service (JMS) protocol. It also integrates with TIBCO FTL, TIBCO
Rendezvous, and TIBCO SmartSockets messaging products.

TIBCO EMS software is part of TIBCO" Messaging.

Product Editions

TIBCO Messaging is available in a community edition and an enterprise edition.

TIBCO Messaging - Community Edition is ideal for getting started with TIBCO Messaging, for
implementing application projects (including proof of concept efforts), for testing, and for deploying
applications in a production environment. Although the community license limits the number of
production clients, you can easily upgrade to the enterprise edition as your use of TIBCO Messaging
expands.

The community edition is available free of charge. It is a full installation of the TIBCO Messaging

software, with the following limitations and exclusions:

e Users may run up to 100 application instances or 1000 web/mobile instances in a production
environment.

o Users do not have access to TIBCO Support, but you can use TIBCO Community as a resource
(https://community.tibco.com).

o Available on Red Hat Enterprise Linux Server, Microsoft Windows & Windows Server and Apple
macOS.

TIBCO Messaging - Community Edition has the following additional limitations and exclusions:

o Excludes Fault Tolerance of the server.

* Excludes Unshared State Failover.

e Excludes Routing of messages between servers.
e Excludes Central Administration.

» Excludes JSON configuration files.

TIBCO Messaging - Enterprise Edition is ideal for all application development projects, and for
deploying and managing applications in an enterprise production environment. It includes all features
presented in this documentation set, as well as access to TIBCO Support.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

HTTP://WWW.TIBCO.COM/
https://community.tibco.com

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly
in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://
docs.tibco.com.

TIBCO Enterprise Message Service Documentation

The following documents for this product can be found on the TIBCO Enterprise Message Service ™
product documentation page:

o TIBCO Enterprise Message Service User’s Guide Read this manual to gain an overall understanding of
the product, its features, and configuration.

o TIBCO Enterprise Message Service Central Administration Read this manual for information on the
central administration interface.

o TIBCO Enterprise Message Service Installation Read the relevant sections of this manual before
installing this product.

o TIBCO Enterprise Message Service C & COBOL Reference The C API reference is available in HTML
and PDF formats.

o TIBCO Enterprise Message Service Java API Reference The Java API reference can be accessed only
through the HTML documentation interface.

e TIBCO Enterprise Message Service NET API Reference The NET API reference can be accessed only
through the HTML documentation interface.

 TIBCO Enterprise Message Service Installation on Red Hat OpenShift Container Platform This manual
describes how to run TIBCO Enterprise Message Service servers on the Red Hat" OpenShift
Container Platform.

o TIBCO Enterprise Message Service Release Notes Read the release notes for a list of new and changed
features. This document also contains lists of known issues and closed issues for this release. This
document is available only in PDF format.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO products:

e TIBCOFTL®

o TIBCO Rendezvous®

o TIBCO SmartSockets®

« TIBCO EMS® Client for z/OS (CICS)
e TIBCO EMS® Client for z/OS (MVS)
o TIBCO EMS® Client for IBM i

Third-Party Documentation

« Java™ Message Service specification, available through http://www.oracle.com/technetwork/
java/jms/index.html.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

https://docs.tibco.com
https://docs.tibco.com
https://docs.tibco.com/products/tibco-enterprise-message-service
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

o Java™ Message Service by Richard Monson-Haefel and David A. Chappell, O'Reilly and Associates,
Sebastopol, California, 2001.

o Java™ Authentication and Authorization Service (JAAS) LoginModule Developer's Guide and
Reference Guide, available through http://www.oracle.com/technetwork/java/javase/jaas/index.html.

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

e For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

o For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

» For creating a Support case, you must have a valid maintenance or support contract with TIBCO.
You also need a user name and password to log in to https://support.tibco.com. If you do not have a
user name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://community.tibco.com

Overview

Running TIBCO Enterprise Message Service on Red Hat OpenShift Container Platform involves:

e Preparing a shared folder on NFS.

o Creating a Docker® image embedding EMS and hosting it in a Docker registry.
e Provisioning the NFS shared folder in OpenShift.

o Configuring and creating EMS containers based on the EMS Docker image.
Supported Versions

Refer to the Release Notes for:

o The supported versions of the software involved.
o The EMS features supported on the OpenShift Container Platform.
Prerequisites

Before you continue, familiarize yourself with the following:

» Docker concepts.

» Red Hat OpenShift Container Platform administration.
o TIBCO EMS configuration.

o NFSv4.

Before you continue, make sure you have the following infrastructure in place:
* A machine equipped for building Docker images.
» A Docker registry.

e An OpenShift Container Platform cluster.

e A shared folder on an NFSv4 server.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

Fault Tolerance and Shared Folder Setup

Shared Storage

A traditional EMS server configured for fault tolerance relies on its state being shared by a primary and
a secondary instance, one being in the active state while the other is in standby, ready to take over. The
shared state relies on the server store and configuration files to be located on a shared storage such as a
SAN or a NAS using NFS.

By contrast, the fault tolerance model used by EMS on OpenShift relies on OpenShift restart
mechanisms. Only one EMS server instance is running and, in case of a server failure, will be restarted
inside its container. In case of a failure of the container or of the corresponding cluster node, the cluster
will recreate the container, possibly on a different node, and restart the EMS server there.

Within the container, the health of the EMS server is monitored by two health check probes:

o liveness
o readiness
For more information on the probes, see Health Checks: Liveness and Readiness Probes.

The server requires its state to be shared. The shared storage required by EMS on OpenShift is NFSv4.

Control Access to NFS Shared Folders
You can control access to the NFS shared folders using User and Group IDs.

Depending on how your NFS server is configured, programs accessing shared folders may have to run
with a specific user ID (uid) and group ID (gid).

While you can control the uid of a container through a field called runAsUser, controlling its gid is not
possible in version 3.11 of OpenShift. If your NFS setup requires controlling the gid used by the EMS
server, a workaround consists of creating a specific user and group in the EMS Docker image (see EMS
Docker Image) and setting its uid and gid to the desired values.

As a result, an EMS server running in a container started from that image will access its store, log,
configuration, and other files using the uid and gid specified by the NFS server.

Setting Up the Shared Folder

Procedure

1. Log on to a machine that can access the NFS shared folder with the user account meant to be used
by the EMS server.

2. Create the shared folder.
For example, ~/OpenShift/shared

3. Modify the permissions to your requirements.
For example, 750 (rwxr-x---)

Example

> mkdir -p ~/OpenShift/shared
> chmod -R 750 ~/OpenShift/shared

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

EMS Docker Image

Creating the Base Docker Image

The content of the container that will run on OpenShift derives from a Docker image that is first created
and then hosted in a Docker registry.

To create an EMS Docker image, use the samples/docker/tibemscreateimage script on a machine
equipped for building Docker images.

This script needs to be pointed to the software packages to be installed:

o EMS installation package
e Optional EMS hotfixes
o The Java package (optional)

The script also lets you choose whether to save the image as an archive and creates a user and group set
to the required uid and gid values to bypass the lack of a runAsGroup OpenShift feature mentioned in
section Control Access to NFS Shared Folders.

The following command creates a Docker image based on the EMS 8.5 Linux installation package,
adding a JVM, the 12500 uid and the 9500 gid.

> tibemscreateimage TIB_ems_8.5.0_linux_x86_64.zip \
-j <JRE installation package>.tar.gz \
-u 12500 \
-g 9500

The following examples illustrate how you can experiment with that Docker image:

» This following command creates a sample EMS server folder hierarchy and configuration in the
current directory and starts the corresponding server:

> docker run -p 7222:7222 -v ‘pwd :/shared ems:8.5.0 tibemsd

o To create a sample Central Administration server folder hierarchy and configuration in the current
directory and starts the corresponding server:

> docker run -p 8080:8080 -v ‘pwd :/shared ems:8.5.0 tibemsca

» You can override the creation and use of the sample configuration with your own setup. The
following example starts an EMS server using the <path to shared location>/<your server
config file> configuration.

> docker run -p 7222:7222 -v <path to shared location>:/shared \
ems:8.5.0 tibemsd -config /shared/<your server config file>

You can modify the tibemscreateimage script to suit your environment.

Extending the Base Docker Image

The base Docker image can be extended to include FTL client libraries, custom JAAS authentication,
and JACI authorization modules.

Provisioning FTL Client Libraries to Use the Corresponding Transports

Procedure

1. Copy the FTL client library files to a temporary folder.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

10

2. From the temporary folder, use a Dockerfile based on the example given below to copy these files
into the base Docker image:

FROM ems:8.5.0
COPY --chown=tibuser:tibgroup . /opt/tibco/ems/docker/ftl

Execute the command
> docker build -t ems:8.5.0_ftl .

3. After customizing your EMS configuration, include /opt/tibco/ems/docker/ftl in the Module
Path property.

Provisioning Custom JAAS Authentication or JACI Authorization Modules

Procedure

1. Copy your custom JAAS or JACI plugin files, including the static configuration files they may rely
on, to a temporary folder.

2. From the temporary folder, use a Dockerfile based on the example given below to copy these files
into the base Docker image:

FROM ems:8.5.0
COPY --chown=tibuser:tibgroup . /opt/tibco/ems/docker/security

Execute the command

> docker build -t ems:8.5.0_security .

3. After customizing your EMS configuration, make sure you include the relevant paths to those files
in the Security Classpath property.

The other required files are in their usual location /opt/tibco/ems/version/bin
and /opt/tibco/ems/version/lib.

%> Forexanqﬂe,/opt/tibco/ems/docker/security/userfjaasfplugin.jar:/opt/
tibco/ems/8.5/bin/tibemsd_jaas.jar:/opt/tibco/ems/8.5/1lib/tibjmsadmin. jar,
and so on.

Hosting the Image
Tag the image to match your Docker registry location and push it there.

For example:

> docker tag ems:8.5.0 docker.company.com/path/ems
> docker push docker.company.com/path/ems

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

11

OpenShift Setup

Creating a Project
Create a project with an OpenShift user that has the required permission.

For example:

> oc login -u <user>
> oCc new-project ems-project

Provisioning the NFS Shared Folder

A storage resource is provisioned in OpenShift by the cluster administrator through a Persistent
Volume (PV), which has to be of type NFS. A project can then claim that resource through a Persistent
Volume Claim (PVC). That claim will eventually be mounted as a volume inside containers.

In the case of an EMS project, we create one PV and one PVC at the same time since these are meant to
be bound together.

Procedure

1. Modify the samples/openshift/nfs-pv-pvc.yanl file for your setup.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-nfs-ems-project
annotations:
Should be replaced by spec.mountOptions in the future
volume.beta.kubernetes.io/mount-options: soft (1)
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteMany
nfs:
path: /vol/home/user/OpenShift/shared (2)
server: 10.98.128.50 (3)
persistentVolumeReclaimPolicy: Retain
claimRef:
name: claim-nfs-ems-project
namespace: ems-project (4)
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: claim-nfs-ems-project
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
volumeName: pv-nfs-ems-project

(1): Optional comma-separated list of NFS mount options used when the PV is mounted on a
cluster node.

(2): The path that is exported by the NFS server. In this example, we want the patch to match the ~/
OpenShift/shared folder created in Setting Up the Shared Folder.

(3): The host name or IP address of the NFS server.

(4): This needs to match the name of the project created previously.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

12

2. Switch to the system:admin cluster administrator and create the PV and PVC:

> oc login -u system:admin
> oc create -n ems-project -f nfs-pv-pvc.yaml

3. Check the result using the following command:
> oc get pv,pvce
& The same PV/PVC can be used by multiple pods within the same project.
Creating the PV/PVC is done once for the lifetime of the project.

Enabling Images to Run with the USER Specified in the Dockerfile

By default, programs in OpenShift containers run with a user the uid of which is automatically pre-
allocated by the cluster. As we need the EMS server to run with the specific uid required by NFS, we
must create a new Security Context Constraint (SCC) to address this. We will export the existing
restricted SCC and use it as a basis for our new SCC.

Procedure

1. As system:admin, export the restricted SCC into a file:
> oc get -o yaml scc/restricted > nfs-scc.yaml

2. Edit this file and give this SCC a new name by changing restricted into nfs-scc and give it a
higher priority.

3. Add auidRangeMax and a uidRangeMin field to the runAsUser entry. These define a range of
allowed uid values and should match the values you expect your pods to use for accessing NFS. For
example:

metadata:

name: nfs-scc (1)
priority: 9 (2)

runAsUser:
type: MustRunAsRange
uidRangeMax: 13000 (3)
uidRangeMin: 12000 (3)

(1): Name of this new SCC.

(2): Larger values mean greater priority.

(3): The range of allowed uid values will be 12000-13000. This works with the 12500 uid set in
Creating the Base Docker Image.

4. Create the new SCC using the following command

> oc create -f nfs-scc.yaml

5. Check the result

> oc get -o yaml scc/nfs-scc

% ‘ You create the SSC once for the lifetime of the cluster.

Edit the new SCC using the command:

> oc edit scc/nfs-scc

Modifying the Services NodePort range (Optional)

Services of type NodePort are used to expose EMS server listen ports outside the cluster. See Service
Object and EMS Client URLs for more information.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

13

The range of allowed values defaults to 30000-32767.
To use port numbers outside this range for the EMS server or Central Administration server, you can

alter the range in the Kubernetes Master Configuration:

Procedure

1. Locate the file master/master-config.yaml on each OpenShift Master and edit it to set the value
of servicesNodePortRange to the range of your choice.

For example:
serviceNodePortRange: 7000-8000

2. Restart each OpenShift Master service.

EMS Server Template

EMS server containers are created in an OpenShift cluster through the samples/openshift/tibemsd-
template.yaml sample template. This template includes sections that define a set of parameters, a
deployment, and a service.

Parameters Objects

The parameters let you configure the aspects of the container and service that can be adjusted at
creation time. These include:

Option Description

EMS_SERVICE_NAME The name of the service through which the EMS
server is accessible inside the cluster.

EMS_PUBLIC_PORT The port number through which the EMS server
is accessible (both inside and outside the
cluster).

EMS_INTERNAL_PORT The port number used by the EMS server inside

its container.

EMS_PROBE_PORT The internal port number on which the EMS
server responds to health check requests.

EMs_UID The uid the EMS server container must run as
with respect to accessing NFS.

EMS_IMAGE_LOCATION The location of the EMS Docker image in your
Docker registry.

EMS_PVC The name of the PVC previously configured to

access the NFS shared folder.

All parameters have a default value that can be overridden upon creation.

& ‘ The uid provided here must match the one used when creating the EMS Docker image.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

14

Service Objects and EMS Client URLs

The service object exposes the EMS server listen port (both inside and outside the cluster).

The service defined in tibemsd-template.yaml is of type NodePort, which means that the
corresponding port number will be accessible through all nodes of the cluster.

For example, if your cluster runs on three nodes called node1, node2 and node3 that can be addressed
by those host names. If you have exposed your EMS server through a service using port number 8222,
EMS clients running outside the cluster will be able to access it either through the tcp: //node1:8222,
tcp://node2:8222 or tep://node3: 8222 URL, regardless of the node where the container is actually
running. This works by virtue of each node proxying port 8222 into the service.

EMS clients running inside the cluster will be able to access the EMS server either in the fashion
described above or through its service name. Assuming the service name is emsdev01 and the port still
is 8222, that amounts to using the tcp://emsdev01:8222 URL.

To ensure EMS client automated fault-tolerance failover, these must connect with FT double URLs.
Using the example above: tcp://nodel:8222, tcp://nodel: 8222 from outside the cluster or tep://
emsdev01:8222, tcp://emsdev01:8222 from inside the cluster. For the first form, since all nodes will
proxy port 8222 into the service, repeating the same node name twice fits our purpose. The connection
factories in the sample EMS server configuration generated by default upon creating a container
illustrate that pattern. Should the EMS server or its container fail, clients will automatically reconnect to
the same URL once the server has been restarted.

You can use types of service other than NodePort if they fit your requirements.

Deployment Object

A deployment includes the definition of a set of containers and the desired behavior in terms of number
of replicas (underlying ReplicaSet) and deployment strategy.

kind: Deployment

spec:
replicas: 1 (1)

strategy:
type: Recreate (2)

template:

spec:

containers:

- name: tibemsd-container
image: ${EMS_IMAGE_LOCATION}
imagePullPolicy: Always (3)
env: (4)

- name: EMS_NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: EMS_PUBLIC_PORT
value: ${EMS_PUBLIC_PORT}

args: (5)

- tibemsd

livenessProbe: (6)

readinessProbe: (6)

ports:

- containerPort: ${{EMS_INTERNAL_PORT}}
name: tibemsd-tcp

protocol: TCP

securityContext:

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

15

runAsUser: ${{EMS_UID}} (7)

volumeMounts:
- mountPath: /shared (8)
name: tibemsd-volume (9)

restartPolicy: Always (10)

volumes:
- name: tibemsd-volume (9)
persistentVolumeClaim:
claimName: ${{EMS_PVC}} (11)

(1): The number of replicated pods: 1, since we want a single instance of the EMS server.

(2): The deployment strategy: Recreate means that an existing pod must be killed before a new one is
created.

(3): Determines if the EMS Docker image should be pulled from the Docker registry prior to starting
the container.

(4): Environment variables that will passed to the container.

(5): Arguments to be passed to the Docker ENTRYPOINT. For more information, see EMS Server
Configuration.

(6): For details on the liveness and readiness probes, see Liveness and Readiness Probes.
(7): The uid the container will run as.

(8): The path where our NFS shared folder will be mounted inside of the container.

(9): The internal reference to the volume defined here.

(10): The pod restart policy: Set such that the kubelet will always try to restart container. If the EMS
server stops or fails, its container will exit and be restarted.

(11): The name of the PVC created by the cluster administrator.

Health Checks: Liveness and Readiness Probes
Refer to the OpenShift and Kubernetes documentation for a description of health checks.

For an EMS server container, a liveness health check helps detect when an EMS server is not running.
When this health check fails a number of times in a row, the EMS server container is restarted.

A readiness health check helps detect when an EMS server that is up and running is not in the active
state. When this health check fails a number of times in a row, the EMS server endpoints are removed
from its container, such that the server is made unreachable. As it may or may not fit your operations, it
is up to you to decide whether you need the readiness health check. If not relevant, you may remove
the health check from the template.

The sample probes are configured in the deployment object:

livenessProbe:
httpGet:
path: /isLive
port: probe-tcp
initialDelaySeconds: 1 (1)
timeoutSeconds: 5 (2)
periodSeconds: 6 (3)
readinessProbe:
httpGet:
path: /isReady
port: probe-tcp
initialDelaySeconds: 1 (1)
timeoutSeconds: 5 (2)

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

16

periodSeconds: 6 (3)

(1): Number of seconds after the container has started before the probe is initiated.
(2): Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1.

(3): How often (in seconds) to perform the probe. Defaults to 10 seconds. Minimum value is 1.

Creating a Deployment and Service
Prerequisites

If you are logged in as a cluster administrator, log out and log back in as a regular user.

Procedure

1. Edit the tibemsd-template.yaml template and override the default parameters as needed.

2. Create a deployment and service with an EMS server using the modified template.

For example,

> oc login -u <user>
> oc process -f tibemsd-template.yaml -p EMS_SERVICE_NAME=emsdevO0l \
-p EMS_PUBLIC_PORT="7779" -p EMS_PVC="claim-nfs-ems-project" \
| oc create -f -

The oc process operation transforms the tibemsd-template.yaml template into a list of
resources using the default and overridden parameter values. That list is then passed on to oc

create for creation. In the above example, a deployment, a ReplicaSet, a pod, and a service are
created. All four objects can be selected using the emsdev01 label.

The service exposes itself as emsdev01 inside the cluster and maps the internal port 7222 to
port 7779 inside and outside the cluster. The PVC claim-nfs-ems-project is used to mount
the NFS shared folders. Default values of other parameters are used to pull the EMS Docker
image from the Docker registry and to set the uid of the container.

You can verify the results using the following commands:

> oc get --selector name=emsdev0l all
> oc describe deploy/emsdev0l
> oc describe svc/emsdevO01l

or in the OpenShift Web Console.

To deploy additional EMS servers

> oc process -f tibemsd-template.yaml -p EMS_SERVICE_NAME=emsdev02
-p EMS_PUBLIC_PORT="7780" -p EMS_PVC="claim-nfs-ems-project"
| oc create -f -
> oc process -f tibemsd-template.yaml -p EMS_SERVICE_NAME=emsdev03
-p EMS_PUBLIC_PORT="7781" -p EMS_PVC="claim-nfs-ems-project"
| oc create -f -

ey v

Stopping or Deleting an EMS Server

To stop an EMS server without deleting it, use the oc scale operation to set its number of replicas to 0.

For example,

> oc scale --replicas=0 deploy emsdevOl

To restart this EMS server, set the number of replicas to 1.

> oc scale --replicas=1 deploy emsdev0l

To delete an EMS server deployment and service, use the oc delete operation.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

17

For example,

> oc delete --selector name=emsdev0l deploy, svc

The corresponding pod and ReplicaSet will also be deleted.

EMS Server Configuration

As mentioned in Creating the Base Docker Image, running a container off of the EMS Docker image
creates a default EMS server folder hierarchy and configuration. In an OpenShift cluster, the
configuration will be created under ems/config/${EMS_SERVICE_NAME}. json in the NFS shared
folder if absent. The Central Administration server works in a similar way.

This is handled by the tibems. sh script embedded in tibemscreateimage and is invoked through the
Docker image ENTRYPOINT. It can be overridden by altering the args entry in the template and is
provided only for illustration purposes. You can either alter tibems. sh or directly provision your own
configuration files to suit your needs.

Central Administration Server Template

A Central Administration server container is created in an OpenShift cluster through the samples/
openshift/tibemsca-template.yaml sample template provided.

The structure of this template is almost identical to that of the EMS server template. Most of the
concepts described in previous sections also apply to the Central Administration server.

Example of deployment and service creation with a Central Administration server:

> oc process -f tibemsca-template.yaml \
-p EMSCA_SERVICE_NAME=emscadev0l -p EMSCA_PUBLIC_PORT="7080"
-p EMSCA_PVC="claim-nfs-ems-project" | oc create -f -

You can then use a Web browser to connect to http://nodel: 7080 and add EMS servers to Central
Administration.

Creating a Deployment and Service through the Web Console

You can create deployments and services using the OpenShift Web Console.

Procedure

1. Upload the templates to your project using the OpenShift Command Line Interface (CLI)

> oc create -f tibemsd-template.yaml
> oc create -f tibemsca-template.yaml

2. Log in to the Web Console, select project ems-project, and then Add to Project > Select from Project:

Browse E-"'-"'I'-'ﬂ
Deploy Image
Impart YAML / JSON

Select from Project

3. The two templates that you just uploaded are available for you to choose from.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

18

Select from Project b4

Selection Information Configuration Results

Select from Project

Bms-project

2 Items

B

TIBCO EMS TIBCO EMS Central
Administration

Concat | [<Back vailable

4. Select TIBCO EMS and click Next.
The Information screen displays links to reach the TIBCO EMS documentation and TIBCO Support.

Select from Project x

Selection Information Configuration Results

o

| TIBCO EMS
TIBECO Software Inc,

ationc Get Support

TIBCO Enterprise Message Service™ is TIBCO's standards-based Java™ Message Service (JMS), which allows any application that supports JMS,
whether home grown or third-party, to quickly and easily exchange messages.

5. Click Next.

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

19

The Configuration screen is displayed. This is where you can modify the template parameters with
values for this particular instance.

Select from Project X

Selection Information Configuration Results

L3

* EMS Service Name
emsdev(l =,

The name of the service through which the EMS server is accessible inside the cluster,

* Public Listen Port
7779

The port number through which the EMS server is accessible, both inside and outside the cluster.

* Internal Listen Port
7222 Y

The port number used by the EMS server inside its container.

* Health Check Probe Port
7800 Y

The internal part number on which the EMS server responds to health check requests.

* User ID
12500

The user ID the EMS server container must run as with respect to accessing NFS.

Cancel < Back m
6. Modify the values and click Create.

Select from Project x

Selection Information Configuration Results

@ TIBCO EMS has been created.

Continue to the project overview.

Applied Parameter Values
These parameters often include things like passwords. If you will need to reference these values later, copy them to a safe location.

Show parameter values

Cance < Back Close

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

20

TLS Configuration

The following topics describe how to modify the EMS server template and the Docker image build
script so that EMS clients can connect to the server through TLS (formerly SSL).

Whether an EMS listen port is configured for TCP or TLS makes no difference in terms of exposing it
through a service. However, you need to decide how to provision the corresponding certificate files.

While these could be placed in the NFS shared folder or embedded in the EMS Docker image, the
standard practice in the OpenShift world consists of using secret objects. These are meant to decouple
sensitive information from the pods and can be mounted into containers as volumes populated with
files to be accessed by programs.

In this example, the EMS server will be authenticated by EMS clients. This involves providing the
server with its certificate, private key and the corresponding password, which we will store inside a
secret. We will mount that secret into the container, point the EMS server configuration to the certificate
and private key files and pass the corresponding password to the server through its -ss1_password
command-line option.

Based on the sample certificates that ship with EMS, the files will eventually be made available inside
the container as follows:
/etc/secret/server.cert.pem

/etc/secret/server.key.pem
/etc/secret/ssl_password

Creating a Secret

To store the server certificate, private key, and the corresponding password in a secret, based on the
sample certificates available in the EMS package under ems/version/samples/certs:

> cd ../ems/<version>/samples

> oc create secret generic tibemsd-secret \
--from-file=server.cert.pem=certs/server.cert.pem \
--from-file=server.key.pem=certs/server.key.pem \
--from-literal=ssl_password=password

Check the result using these commands:

> oc describe secret tibemsd-secret
> oc get -o yaml secret/tibemsd-secret

Modifying the Template

The tibemsd-template.yaml template has to be modified to mount the secret as a volume. This
involves adding one entry to the volumes section and another to the volumeMounts section.
kind: Deployment

spec:
template:

spec:
containers:
- name: tibemsd-container

volumeMounts:

- mountPath: /shared
name: tibemsd-volume

- mountPath: /etc/secret
name: tibemsd-secret-volume
readOnly: true

volumes:

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

21

- name: tibemsd-volume
persistentVolumeClaim:
claimName: ${{EMS_PVC}}
- name: tibemsd-secret-volume
secret:
secretName: tibemsd-secret

& ‘ You should eventually convert the secretName entry into a parameter.

Modifying the tibemscreateimage EMS Docker Image Build Script
Procedure

1. Inthe tibemsd-configbase.json section
a) Modify the primary_listen to use ssl
"primary_ listens":[

{

}
1,

b) Add an ss1 section pointing to the certificate files:
"tibemsd": {

"url":"ssl://7222"

mesl":{
"ssl_server_identity":"/etc/secret/server.cert.pem",
"ssl_ server_key'":"/etc/secret/server.key.pem"
} ’
2. In the tibems.sh section

The tibemsd_run() function needs to be modified to launch the EMS server with the proper value
for its -ssl_password command-line option:

if [[\$# -ge 1 1]; then
PARAMS=\$ *
else
tibemsd_seed
PARAMS="-config /shared/ems/config/\$EMS_SERVICE_NAME.json -ssl_pass
word \ cat /etc/secret/ssl password\ "
fi

Applying the Modifications
Procedure

1. Regenerate the EMS Docker image, tag it, and push it to the Registry.
See Creating the Base Docker Image

2. Create a new deployment and service. See Creating a Deployment and Service.

You can check the result by connecting to the server with one of the EMS TLS sample clients:

> java tibjmsSSL -server ssl://nodel:7779 \
-ssl_trusted ../certs/server_root.cert.pem \
-ssl_hostname server

TIBCO Enterprise Message Service™ Installation on Red Hat OpenShift Container Platform

	Contents
	About this Product
	TIBCO Documentation and Support Services
	Overview
	Fault Tolerance and Shared Folder Setup
	Shared Storage
	Control Access to NFS Shared Folders
	Setting Up the Shared Folder

	EMS Docker Image
	Creating the Base Docker Image
	Extending the Base Docker Image
	Provisioning FTL Client Libraries to Use the Corresponding Transports
	Provisioning Custom JAAS Authentication or JACI Authorization Modules

	Hosting the Image

	OpenShift Setup
	Creating a Project
	Provisioning the NFS Shared Folder
	Enabling Images to Run with the USER Specified in the Dockerfile
	Modifying the Services NodePort range (Optional)
	EMS Server Template
	Parameters Objects
	Service Objects and EMS Client URLs
	Deployment Object
	Health Checks: Liveness and Readiness Probes
	Creating a Deployment and Service
	Stopping or Deleting an EMS Server
	EMS Server Configuration

	Central Administration Server Template
	Creating a Deployment and Service through the Web Console

	TLS Configuration
	Creating a Secret
	Modifying the Template
	Modifying the tibemscreateimage EMS Docker Image Build Script
	Applying the Modifications

