

TIBCO® Enterprise Runtime for R

Software Release 6.0.0

TIBCO®

Contents

Documentation and Support Services.....	8
TIBCO Enterprise Runtime for R System Requirements.....	9
System Requirement Changes from the Previous Version.....	11
Technical Guide.....	12
Run the TIBCO Enterprise Runtime for R Console.....	12
Customize the TERR Environment at Startup.....	12
TERRenviron.....	13
TERRprofile.....	14
.TERRData.....	15
.First.....	15
TIBCO Enterprise Runtime for R on macOS.....	15
Installing and running TIBCO Enterprise Runtime for R on a Mac.....	15
Configuring RStudio Mac Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine.....	16
Running Multiple Versions of TIBCO Enterprise Runtime for R on Mac.....	16
Uninstalling TIBCO Enterprise Runtime for R from a Mac operating system.....	16
Troubleshooting Running Java and TIBCO Enterprise Runtime for R on a Mac.....	17
Get Help with TIBCO Enterprise Runtime for R.....	17
Package Management in TIBCO Enterprise Runtime for R.....	18
Installation Options for Packages.....	18
Recommendations for Using R Securely.....	23
Manage your Packages when You Install a New Version of TERR.....	24
Use TIBCO Enterprise Runtime for R with TIBCO Spotfire.....	24
Batch Processing.....	25
Command Line Options for TIBCO Enterprise Runtime for R.....	25
CMD Commands in TIBCO Enterprise Runtime for R.....	27
Command Line Options for the build Command.....	27
Command Line Options for the check Command.....	28
Command Line Options for the INSTALL Command.....	28
Command Line Options for the Rdconv Command.....	29
Embed the Supported TIBCO Enterprise Runtime for R Engine.....	30
Internationalization.....	30
String Representation.....	31
S Language Parsing.....	31
Locale.....	31

File I O.....	31
Localized Messages.....	32
Move Data Between TIBCO Enterprise Runtime for R and Open-Source R.....	32
Transferring Data Objects from TIBCO Enterprise Runtime for R to Open-Source R (or Vice Versa).....	32
Transferring Data Objects from Open-Source R to TIBCO Enterprise Runtime for R.....	32
Transferring Data Objects from TIBCO Enterprise Runtime for R to Open-Source R.....	33
Manage Heap Size.....	33
Signal Handlers and TIBCO Enterprise Runtime for R.....	33
Working with the AsterDB Package.....	34
 Using TERR for Advanced Analytics in Spotfire.....	35
Data Type Mapping.....	35
Data Dimension Mapping.....	36
Accessing TIBCO Enterprise Runtime for R Directly from Spotfire.....	36
Getting Help with TIBCO Enterprise Runtime for R.....	37
Predictive Modeling.....	37
Building a Regression Model in Spotfire.....	37
Sharing a Model.....	39
Evaluating a Model.....	39
Expression Functions.....	40
Built-In TERR Expression Functions in Spotfire.....	40
Registering the TERR Script as an Expression Function.....	61
Embedding the Contents of a Script in an Expression Function.....	64
Aggregating Binned Weather Data Using TERR in Spotfire.....	67
Expression Function Editing.....	69
Data Functions.....	70
Registering a Data Function in Spotfire.....	70
Importing TERR Data Sets Using a Data Function.....	73
Testing Data Functions Inside and Outside of Spotfire.....	74
Enabling Debugging for Data Functions.....	76
Building a Spotfire Control to Check the Debugging Option.....	76
Debug a Simple Data Function.....	78
Sample Data Sets.....	81
Aggregation Data for Spotfire Examples.....	81
Air Data Set for Spotfire Examples.....	83
Car Data Set for Spotfire Examples.....	87
Observation Data Set for Spotfire Examples.....	90
Temperature Data Set for Spotfire Examples.....	92
 Package Management for the TIBCO Spotfire® Environment.....	94

Package Management Orientation.....	94
Find Help.....	94
Spotfire Packages and R Binary Packages.....	96
Manage Packages Through Roles.....	97
Package Installation Locations and Recommendations for Updating.....	98
Setting JAVA_HOME.....	100
Installing the rJava Package.....	101
Manage your Packages when You Install a New Version of TERR.....	102
Manage Packages Using Spotfire and TERR.....	103
Development Tools for Creating Packages.....	104
Packages Running in a Local TIBCO Enterprise Runtime for R Engine in Spotfire.....	106
The Spotfire SPK.....	111
Spotfire Package Maintenance.....	121
Install Packages on Spotfire Statistics Services.....	121
Uploading a Package to Spotfire Statistics Services From a Repository.....	121
Uploading a Package to Spotfire Statistics Services from Another Computer.....	124
Uploading a Package Using TSSS Connector.....	126
Validating the Package Upload.....	127
Manage Packages Between Spotfire and Spotfire Statistics Services.....	128
Changing the Local Engine Option.....	128
Troubleshooting TERR and Spotfire Packages.....	130
Graphics in TIBCO Enterprise Runtime for R.....	132
JavaScript-Enabled Packages.....	132
Creating a Plot with TERR and dygraphs.....	132
Mapping data with TERR and leaflet.....	134
Creating a 3D Interactive Map with TERR and threejs.....	136
Creating an Interactive Scatterplot Cloud with TERR and threejs.....	137
Displaying a Linear Model on a Scatterplot with ggvis.....	139
Calling RGraph to Create an Image File with the TERR RinR Package.....	140
Generating TERR Graphics in Spotfire Using Predictive Modeling.....	142
Creating a Formatted HTML Document with Graphed Data with the rmarkdown Package.....	144
Using TERR, the terrJava Package, and Java.....	146
To Call into Java from TIBCO Enterprise Runtime for R.....	146
To Load the terrJava Package.....	146
Troubleshooting Running Java and TIBCO Enterprise Runtime for R on a Mac.....	147
Other Useful Environment Variables.....	147
To Embed the TIBCO Enterprise Runtime for R Engine within a Java Application.....	148

Setting Up Environment Variables for a Java Application to Use TIBCO Enterprise Runtime for R.....	148
Java API for Using an Embedded TIBCO Enterprise Runtime for R Engine.....	150
To Pass Data Between Java and TIBCO Enterprise Runtime for R.....	150
Implement a Console Using the TerrJava API.....	151
To Spawn TIBCO Enterprise Runtime for R Engines in a Separate Process.....	153
A Console Application Using TerrJavaRemote.....	153
Run the Console Application Using TerrJavaRemote.....	155
Signal Handlers.....	155
To Call Embedded TIBCO Enterprise Runtime for R from an IntelliJ Project.....	156
Available Functions in TIBCO Enterprise Runtime for R.....	157
Basics.....	157
Basic System Variables.....	157
Categorical Data.....	158
Character Data ("String") Operations.....	160
Complex Numbers.....	162
Data Attributes.....	164
Data Manipulation.....	165
Data Types (not OO).....	172
Dates and Times.....	176
Environments, Scoping, and Packages.....	180
Lists.....	183
Graphics.....	185
Color.....	185
Computations Related to Plotting (Graphics).....	186
Devices.....	187
High-Level Plots.....	187
Interacting with Plots.....	188
Mathematics.....	188
Basic Arithmetic and Sorting.....	188
Linear Algebra.....	188
Logical Operators.....	190
Mathematical, Calculus, and Others.....	193
Matrices and Arrays.....	197
Optimization.....	200
Programming.....	201
Documentation.....	201
Error Handling.....	202
Input and Output Connections.....	204
Input and Output Files.....	205

Interfaces to Other Languages.....	209
Looping and Iteration.....	210
Methods and Generic Functions.....	212
Miscellaneous.....	216
Printing.....	216
Programming functions.....	219
Session Environment.....	227
Utilities.....	229
Statistics.....	236
Clustering.....	237
Computations Related to Plotting (Statistics).....	239
Curve (and Surface) Smoothing.....	239
Designed Experiments.....	239
Loess Objects.....	241
Multivariate Techniques.....	241
Non-Linear Regression.....	244
Nonparametric Statistics.....	244
Probability Distributions and Random Numbers.....	245
Regression.....	249
Regression and Classification Trees.....	252
Robust and Resistant Techniques.....	252
Simple Univariate Statistics.....	253
Statistical Inference.....	253
Statistical Models.....	255
Time Series.....	260
TERR.....	262
Functions Using the cURL Library for Access to URLs.....	263
Functions Not Available in TIBCO Enterprise Runtime for R.....	264
Base Functions Not Available in TIBCO Enterprise Runtime for R.....	265
Methods Functions Not Available in TIBCO Enterprise Runtime for R.....	265
Utilities Functions Not Available in TIBCO Enterprise Runtime for R.....	266
Statistics Functionality Not Available in TIBCO Enterprise Runtime for R.....	267
Clustering Functions.....	267
Density Functions.....	267
Distribution Functions.....	267
factor.analysis Functions.....	268
Graphics Functions.....	268
htest Functions.....	268
Miscellaneous Model Functions.....	268

Miscellaneous stats Functions.....	268
Optimization Functions.....	268
Time Series Functions.....	269
Configure RStudio to use TIBCO Enterprise Runtime for R.....	270
Configuring RStudio Windows Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine.....	270
Configuring RStudio Mac Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine.....	270
Configuring RStudio Linux Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine.....	271
Configuring RStudio Linux Server Edition to Run the TIBCO Enterprise Runtime for R Engine.....	271
Unsupported Features for Using TERR with RStudio.....	271
Troubleshooting RStudio with TIBCO Enterprise Runtime for R.....	272
Package Compatibility.....	273
TIBCO Enterprise Runtime for R Release Notes.....	276
New Features.....	276
Changes in Functionality, Features, and Compatibility.....	276
Deprecated and Removed Features.....	277
Update or Reinstall a Version of TERR.....	278
Package Compatibility.....	278
Closed Issues.....	281
Known Issues.....	281
Legal and Third-Party Notices.....	284
Index.....	285

Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other documentation included with the product. To access the latest documentation, visit <https://docs.tibco.com>.

System Requirements for Spotfire Products

For information about the system requirements for Spotfire products, visit <http://spotfi.re/sr>.

TIBCO Enterprise Runtime for R documentation

You can find the following documents for TIBCO Enterprise Runtime for R in the TIBCO Documentation Library.

- *TIBCO® Enterprise Runtime for R Technical Documentation*
- *Language Reference (HTML)*
- *Differences Between TIBCO® Enterprise Runtime for R and Open-Source R (HTML)*
- *Release Notes (PDF)*
- *License Agreement (PDF)*

You can also find links to CRAN package compatibility reports for this release on TIBCO Cloud™ Spotfire®. See links in the TERR *Release Notes* for more information.

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

- For an overview of TIBCO Support, visit <http://www.tibco.com/services/support>.
- For accessing the Support Knowledge Base and getting personalized content about products you are interested in, visit the TIBCO Support portal at <https://support.tibco.com>.
- For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You also need a user name and password to log in to <https://support.tibco.com>. If you do not have a user name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter experts to share and access their collective experience. TIBCO Community offers access to Q&A forums, product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and tools that extend and enable customers to gain full value from TIBCO products. In addition, users can submit and vote on feature requests from within the [TIBCO Ideas Portal](https://ideas.tibco.com). For a free registration, go to <https://community.tibco.com>.

For quick access to the TIBCO® Enterprise Runtime for R content, see <https://community.tibco.com/products/terr>.

TIBCO Enterprise Runtime for R System Requirements

TIBCO® Enterprise Runtime for R (TERR™) version 6.1.0 system requirements and third-party compatibility information are listed below.

Hard disk space
TERR™ requires 220 MB hard disk space

The following operating system versions have been tested with this version of TERR.

Tested operating systems	Tested version numbers
Microsoft® Windows	<ul style="list-style-type: none"> • 10 • 8 • 8.1 • 7
Microsoft Windows Server	<ul style="list-style-type: none"> • 2019 • 2016 • 2012 R2 • 2012
Red Hat® Enterprise Linux®	<ul style="list-style-type: none"> • 8.x 64-bit on x86-64 • 7.x 64-bit on x86-64 • 6.x 64-bit on x86-64
CentOS	<ul style="list-style-type: none"> • 8.x 64-bit on x86-64
SUSE® Enterprise Linux	<ul style="list-style-type: none"> • 15.x 64-bit on x86-64 • 12.x 64-bit on x86-64
Mac® OS X	Deprecated; no longer tested.

64-bit operating system strongly recommended.

The following third-party product versions have been tested with this version of TERR.

Third-party product	Tested version	Notes
Apache Tomcat	9.0.33	used by TIBCO Spotfire Statistics Services

Third-party product	Tested version	Notes
Java	11 through version 11.0.1	<p>The following packages supplied with TERR require a bit-matching (32 bit or 64 bit) version of Java and must have the <code>JAVA_HOME</code> environment variable set to the location of a tested version of Java.</p> <ul style="list-style-type: none"> • <code>parallel</code> • <code>sjdbc</code> • <code>terrJava</code>
Open-source R ¹	4.0.2	
OpenSSL	1.1.1g	
RStudio, RStudio Server ²	1.3.1093	<p>TERR has been tested for compatibility with the versions of the RStudio IDE listed here. Not all features are supported, and compatibility with future RStudio releases is not guaranteed. For more detailed compatibility information, type <code>help.start()</code> at the TERR command line, and in the resulting landing page, click the link <i>README for TIBCO Enterprise Runtime for R for RStudio</i>.</p>
TIBCO Spotfire®	TIBCO Spotfire 11.1.0	

¹

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

²

RStudio is available under separate open-source software license terms. TIBCO does not warrant, deliver, or support code or other material provided by RStudio, Inc., including but not limited to development tools and packages, and such code or other material does not constitute a part of the TIBCO Enterprise Runtime for R engine.

System Requirement Changes from the Previous Version

The following are changes in system requirements from version 5.1 to version 6.1.0 of TIBCO® Enterprise Runtime for R (TERR™).

Tested third-party software compatibility

Description	Version for this release	Status
Java	11	No change.
RStudio IDE compatibility	<ul style="list-style-type: none"> • RStudio Desktop 1.3.1093 • RStudio Server 1.3.1093 	Updated from version 1.2.5042.
SUSE Enterprise Linux	<ul style="list-style-type: none"> • 15.x 64-bit on x86-64 • 12.x 64-bit on x86-64 	No change.
open-source R	4.0.2	Updated from version 3.6.2.
Mac	Support for TERR on the Mac is deprecated and is no longer tested.	Deprecated.

Technical Guide

The TERR Technical Guide contains information on a variety of technical aspects of working with TERR.

You could be trying to configure the startup behavior of your TERR installation, or you might be working with code across international boundaries. You might be dealing with heap size issues, or need to move code between open-source R and TERR. If you have a question about TERR, start in this guide.

Run the TIBCO Enterprise Runtime for R Console

Regardless from where you use an installation of TIBCO® Enterprise Runtime for R (TERR™), you can run a console interface for writing and testing functions scripts, or for running a batch process.

- If you have installed the stand-alone TERR™ console, for example, on Microsoft Windows, you can run the TERR console by double-clicking the program from the **Start** menu in Windows.
- You can run the engine's executable `TERR.exe` from its installation location. For example, for the 64-bit TERR 6.1 installation on 64-bit Windows, the engine is installed in `C:\Program Files\TIBCO\tterr60\bin`.
- If you are running TERR in Spotfire, you can launch the TERR engine from the Spotfire menu by clicking **Tools > TERR Tools**, and then clicking **Launch TERR Console**. Also, you can find the executable in the same TERR Tools dialog by clicking **Copy TERR engine Path to Clipboard**.
- If you prefer to work in an integrated development environment, you can use the TERR engine with RStudio®. See *Technical Note: Configure RStudio® to use TIBCO® Enterprise Runtime for R* on <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

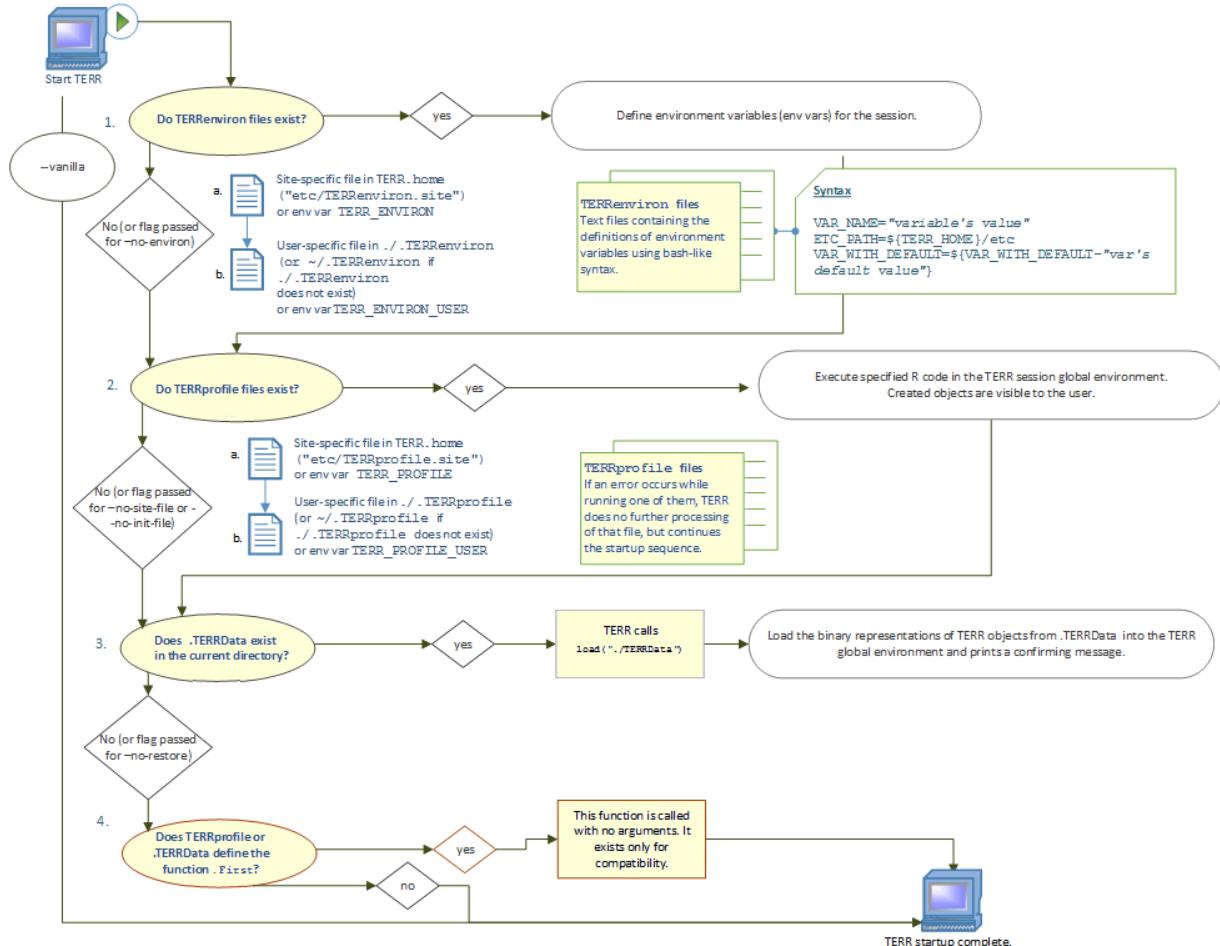
You can customize your TERR session by using the files `TERRenviron`, `TERRprofile`, `.TERRData`, and `.First`. See [Customize the TERR environment at startup](#) for more information.

Customize the TERR Environment at Startup

A user or an administrator can specify a variety of files, environment variables, and functions to customize a TERR session. These options are processed when the session starts. Changing them does not affect the current session of TERR.

Startup options are run in order and include the following.

1. `TERRenviron` files
2. `TERRprofile` files
3. `.TERRData` files
4. `.First` function


For both `TERRenviron` and `TERRprofile`, you can specify site-specific and user-specific files, which are processed in that order. Optionally, you can specify them as environment variables rather than files.

You can bypass running individual or all startup options by passing flags.

Optional startup flags	Description
<code>--vanilla</code>	All startup options ignored.
<code>--no-environ</code>	All <code>TERRenviron</code> files and environment variables are ignored.
<code>--no-site-file</code>	All site-specific profile files and environment variables are ignored.

Optional startup flags	Description
--no-init-file	All user-specific profile files and environment variables are ignored.

This flowchart shows you how these options are processed at startup.

TERRenviron

The optional TERRenviron files can contain the definitions of environment variables to specify such customizations as `JAVA_HOME` and the project directory for TERR. TERRenviron is the first file run in a customized TERR startup.

TERRenviron files can be defined in two places:

- The site-specific file in `TERR_HOME` (for example, in `etc/TERRenviron.site`)
- The user-specific file in `./.TERRenviron` (or in `~/TERRenviron` if `./.TERRenviron` does not exist).

You can define environment variables for the TERR session using bash-like syntax in the TERRenviron files. Typical lines are as follows.

```

VAR_NAME="variable's value"
ETC_PATH=${TERR_HOME}/etc
VAR_WITH_DEFAULT=${VAR_WITH_DEFAULT}-"var's default value"
  
```

- The syntax `${VAR_NAME}` specifies that `${VAR_NAME}` should be replaced with the value of the environment variable `VAR_NAME`. If the environment variable is not defined, it should be replaced with an empty string.

- The syntax `${VAR_WITH_DEFAULT—"var's default value"}` specifies that `${VAR_NAME—"var's default value"}` should be replaced with the value of the environment variable `VAR_NAME` if `VAR_NAME` is defined. Otherwise, it should be replaced with "var's default value".

If you want to start a session and bypass running the TERRenviron files, you can use one of the following techniques.

- Use the command line option `--no-environ`.
- Use the command-line option `--vanilla`.

You can use nonstandard-named TERRenviron files by defining the environment variables `TERR_ENVIRON` and `TERR_ENVIRON_USER`, setting the name to the site-specific and user-specific environment files, respectively.

TERR does not report warnings or errors if these files do not exist.

Example

```
JAVA_HOME="C:/Program Files/Java/jre8"
```

TERRprofile

The optional `TERRprofile` files can contain R code that is run in the TERR session global environment so that objects created in them are visible to the user.

`TERRprofile` files can be defined in two places:

- The site-specific file in `TERR_HOME` (for example, in `etc/TERRprofile`)
- The user-specific file in `./.TERRprofile` (or in `~/.TERRprofile` if `./.TERRprofile` does not exist).

If TERR encounters an error while running any code in `TERRprofile`, it does no further processing of the file but continues the startup sequence.

A profile file is run early in the startup sequence. You can depend on only the base package being loaded when they are run. You can use `loadNamespace("pkg")` or `library("pkg")` to load or attach other packages. Alternatively, you can use the double-colon syntax, such as `pkg::func()` to load the package `pkg` and run its function `func` as part of the startup sequence.

If you want to start a session and bypass running the `TERRprofile` files, you can use one of the following techniques.

- Use the command line options `--no-site-file` and `--no-init-file`, referring to the site-specific and user-specific profile files, respectively.
- Use the command-line option `--vanilla`.

You can use nonstandard-named `TERRprofile` files by defining the environment variables `TERR_PROFILE` and `TERR_PROFILE_USER`, setting the name to the site-specific and user-specific profile files, respectively.

TERR does not report warnings or errors if these files do not exist.

Example

Add the following line of code to the file `TERR_HOME\etc\TERRprofile.site`. When you next start TERR, the `RinR` package loads.

```
library("RinR")
```

.TERRData

The file `.TERRData` is created in the current directory by the function `save.image()` when you quit TERR and specify yes when prompted to save an image of the session.

`.TERRData` contains binary representations of TERR objects. On startup, if TERR finds this file in the current directory, it calls `load("./TERRData")` to load its objects into the global environment and displays a message that the previously saved workspace is restored.

.First

If you create a function called `.First` and put it in a `TERRprofile` file, or if it is saved in `.TERRData`, then it is run as part of the TERR startup.

the `.First` function is included in the startup options for backward compatibility only. We do not recommend using it.

If you override running `TERRprofile` using one of the command-line options, and you have defined `.First` in `TERRprofile`, it is not run.

If you include a `.First` function, be sure to test it to ensure that it works as expected to have it execute in subsequent sessions.

TIBCO Enterprise Runtime for R on macOS

Support for TERR on macOS has been deprecated and is no longer tested.

You can run install and run TERR in a Terminal window, or you can configure RStudio for the Mac to use the TERR engine, rather than the open-source R engine.

TERR installs only one package on macOS: `com.tibco.terr.framework`. (Open-source R installs four.)

Installing and running TIBCO Enterprise Runtime for R on a Mac

TERR provides a `.dmg` format file, which you can download and use to install TERR on an Apple macOS computer system.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

Procedure

1. Download the file `TIB_terr_version.number_macosx_x86_64.dmg` to your Mac.
2. Find the file in your download folder, and then double-click it to display the installer icon.
3. Double-click the icon to run the installer.
4. Follow the installer steps, supplying a password if prompted to do so.
TERR is installed on your Mac.
5. Open a Terminal window.
6. At the command prompt, type `terr`.
A TERR session starts. You can now type TERR commands at the command prompt.
7. Optional: At the TERR prompt, type `help.start()`.
A browser session is started, and the help page for TERR is displayed.

What to do next

If you use RStudio for Mac, you can configure it to use the TERR engine, also. For more information, see [Configuring RStudio Mac desktop edition to run the TIBCO Enterprise Runtime for R engine](#).

Configuring RStudio Mac Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine

You can use TERR in your RStudio installation on your Mac.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

Prerequisites

- You must be running a supported version of the Mac operating system.
- You must have installed a supported RStudio version for the Mac desktop.
- You must have installed TERR version 6.1 on your Mac. See [Installing and running TIBCO Enterprise Runtime for R on a Mac](#) on page 15 for more information.

Procedure

1. On your Mac, open a Terminal session.
2. At the command prompt, type `RStudio-TERR`.
RStudio launches with TERR as the language engine.

Running Multiple Versions of TIBCO Enterprise Runtime for R on Mac

When you run the TERR installer, it removes any previous versions of the TERR framework that it finds installed. You can work around this issue by running a package utility setting.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

Perform this task in the Terminal on a Mac when you want to run more than one version of TERR.

Prerequisites

Close any running TERR session.

Procedure

1. At the Terminal command prompt, run the command `sudo pkgutil --forget com.tibco.terr.framework`.
2. Close the Terminal and run the installer for the new version.
The newly-installed version now starts when you type `terr` at the command prompt.

To run the previously-forgotten version of TERR, you must locate its framework (`com.tibco.terr.framework`) and double-click it to launch that version.

Uninstalling TIBCO Enterprise Runtime for R from a Mac operating system

You can remove TERR from your Mac operating system by running a command in the Terminal window.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

Perform this task in a Terminal window on your macOS.

Prerequisites

A TERR installation on a supported version of macOS. See [system requirements](#) for more information.

Procedure

- At the Terminal command prompt, type the command to remove TERR, as follows.

```
sudo rm -rf /Library/Frameworks/TERR.framework /usr/local/bin/TERR /usr/local/bin/
TERRscript /usr/local/bin/RStudio-TERR
```


If you are prompted to supply a password, provide the administrator password for the computer.

The following three specified items are removed.

- The TERR framework package.
- Scripts for running TERR.
- A script to launch RStudio running TERR.

Result

TERR is removed from your macOS computer.

Troubleshooting Running Java and TIBCO Enterprise Runtime for R on a Mac

The `terrJava` package requires the Java Native Interface (JNI) capability, but this capability is not enabled by default in Oracle's JDK installation.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

When you call `.JavaMethod` (or another `terrJava` function) on the Mac, if you receive the following error message, you must add the missing capability to the `JDK Info.plist`.

```
Java installation at /Library/Java/JavaVirtualMachines/jdk1.8.0_73.jdk/Contents/Home does not
have required 'JNI' capability
```

Adding this missing capability to the Java configuration allows the JVM to start as expected.

Procedure

- Type the following one-line command to add the JNI capability to the `Info.plist`.

```
sudo /usr/libexec/PlistBuddy -c "Add :JavaVM:JVMCapabilities: string JNI" $JAVA_HOME/...
Info.plist
```

Get Help with TIBCO Enterprise Runtime for R

You can get complete help for TERR from the console's command line.

The TERR help landing page, available in a web browser instance, provides general information and reference. From the TERR console command-line, type `help.start()`. From the resulting web page, you can select one of the following.

- Browse the language reference by package.
- Search the language reference for a specific function.
- Open and read product documentation and technical notes available on docs.tibco.com.
- Review the differences between TERR and open-source R.
- Review the latest information about implemented functions by category.

You can also get command-line help for TERR from the shell command line. At the command prompt, type `TERR --help`.

For this command to work, you must have the engine location in your path, or you must run the command from its `bin` directory.

Package Management in TIBCO Enterprise Runtime for R

You can develop custom packages, or you can use one of the packages customized to use specifically with TERR and posted on the TERR Archive Network, or you can use one of the many packages developed and posted on the Comprehensive R Archive Network (CRAN).

- You can use TERR to develop packages to share with other R developers.
- You can install packages directly on a Spotfire Statistics Services server using `install.packages()` from the engine on the server.
- You can put the packages on a Spotfire Statistics Services server using the Eclipse plugin designed to deploy packages to Spotfire Statistics Services, or you can put the packages on a Spotfire Statistics Services server using the `spserverapi` package function `administrationService.uploadPackageVersion`. (See its help for more information.)
- You can use the functions in your custom packages or in CRAN packages in data functions developed for Spotfire analytics, and then share the Spotfire analytics with others.

See the [Package Management for the TIBCO Spotfire® Environment](#) for more information.

Be sure you follow the recommended practices for maintaining package versions.

Installation Options for Packages

Use the function `install.packages()` to install packages to use in TERR either in the stand-alone console, or in Spotfire. You can find packages in a variety of locations, including repositories, on reliable

web sites, or stored locally. See the TERR help topic for `install.packages()` for more detail and examples.

Package Location	Description	Example
TERR Archive Network (TRAN) repository	<p>The default location, <code>https://tran.tibco.com</code>, for installing packages using <code>install.packages()</code>. Used for packages that have been customized to work specifically with TERR. Requires no further arguments.</p>	<pre># install R Datasets Package # found on TRAN: install.packages("datasets")</pre>
	<p>Some packages customized and placed on TRAN require other packages not available on TRAN. Some of these packages cannot be installed using the TERR function <code>install.packages</code>, so the TRAN package cannot be successfully installed. If you encounter this situation, try building and installing the package using open-source R.</p> <p>For information on the installation differences between TERR and open-source R, see Specifying an older package from TRAN.</p>	
Microsoft R Application Network (MRAN) CRAN mirror repository	<p>The second value in <code>options("repos")</code> is initialized to a URL to the MRAN repository, which contains snapshots of the CRAN packages on any given date. This URL specifies a fixed date on MRAN and will not access CRAN package versions after that date.</p>	<pre>#install package tidyverse from # MRAN: install.packages("tidyverse")</pre>
Comprehensive R Archive Network (CRAN) repository	<p>CRAN is included in the default <code>options("repos")</code> to handle cases where the package is not available on TRAN or on MRAN (probably because it is a new package). If the default does not work, you can call <code>install.packages</code> setting the <code>repos</code> argument. One case where this option is useful is when accessing other repositories (such as Bioc).</p>	<pre># install rpart package from # CRAN: install.packages("rpart", , repos="https://cloud.r-project.org")</pre>
In-house repository	<p>You or someone in your organization has set up a CRAN-like repository (either on a network share or on a web server) using a tool like the <code>drat</code> package. All TERR or open-source R users in the organization can access the same package version from the repository.</p>	<pre>#download and install from a # local web service using a # URL: URL <- "https://mycompanysvc/ mypackage" install.packages(URL)</pre>
Locally-available packages	<p>If a trusted source gives you a package as a zip archive, you can put it on your computer and install it using <code>install.packages()</code>.</p>	<pre># install local newtree # package # from a zip file in the # working directory: install.packages("newtree_1. 2.zip")</pre>
Trusted URL	<p>If you are given a URL that contains a package you might want to use, and you trust the URL, you can pass the URL as the only argument to <code>install.packages()</code>.</p>	<pre>#download from a custom URL # and install # a custom package URL <- "https://customurl/ mypackage" install.packages(URL)</pre>

The repositories contain binary packages (for Windows) and source packages (for Linux and Windows). You can easily install most binary and source packages in TERR. If you have problems building from source, then build the packages using open-source R before installing them into TERR. Note that TERR does not build binary packages from source packages that contain Java source code.

Platform	Package type	Notes
Linux, Windows	Binary	Call <code>install.packages(pkgname)</code> . TERR installs the binary package into your specified package directory.
Linux	Source; no Java code, no C/C++ or Fortran code	Call <code>install.packages(pkgname)</code> . TERR builds the source package into a binary package and installs it into your specified package directory.
Linux, Windows	Source; C/C++ or Fortran code (no Java code)	<p> On Windows, first you must install the Rtools utilities package, which is maintained by Duncan Murdoch, and then update your PATH to specify the location of the utilities.</p> <ol style="list-style-type: none"> 1. If you have not already done so, install the package <code>rinclude</code> by calling <code>install.packages(rinclude)</code> 2. Call <code>install.packages(pkgname)</code>. <p> See Installation Options for Packages on page 18 for information on repositories accessed by <code>install.packages</code>.</p> <p>TERR builds the source package into a binary package and installs it into your specified package directory.</p> <p>If the package does not build and install, then try building it with open-source R, and then installing the binary as described here.</p>
Linux	Source; Java code	<ol style="list-style-type: none"> 1. Build the package using open-source R tools for building packages from source. The tools compile the source code to create the binary package. 2. Call <code>install.packages(pkgname)</code>.

See the help for `install.packages(pkgname)` for more information.

Due to changes in open-source R version 3.5 and resulting compatibility changes in TERR 5.0, packages that are built with a version of TERR prior to 5.0 must be rebuilt.

- To install a binary package from a repository, always call `install.packages(pkgname)` from TERR. The `install.packages` function finds the correct binary version in the repository for your version of TERR. Manually downloading the binary package from CRAN can result in errors when you use it with TERR.
- To install a package from source, try installing it first with TERR (with `install.packages` in TERR or with `TERR CMD INSTALL` from a command line).
- To install a package from source that you cannot build with TERR, install the package with the version of open-source R tested with TERR.

To get more information about the packages on TRAN, run the following code in TERR:

```
ap <- available.packages(contrib.urlgetOption("repos")[1],
 getOption("pkgType")))
# to print the entire matrix
ap
# to print just the package names
row.names(ap)
```

Setting JAVA_HOME

Some packages that you use with TERR require access to Java on your system. If you call the TERR function `Sys.getenv("JAVA_HOME")` and it returns an empty string, you must set `JAVA_HOME` so the packages can access Java.

Perform this task on your Windows Or Linux system.

Prerequisites

The following list describes a few of the packages that are either provided with TERR or that you can use with TERR, but they require a bit-matching 32-bit or 64-bit version of Java, version 6 or later. (You might find other packages that require Java. These instructions can help you prepare your TERR session for those packages, too.)

Package name	Provided in your TERR installation
parallel	yes
sjdbc	yes
terrJava	yes
rJava	no

 See [Installing the rJava package](#) for more information.

Procedure

1. Locate your Java installation and make a note of it.

Your system can have more than one version of Java. Generally, use the latest version. On Windows, you can find this path in the registry. On Linux, you can usually find a link to it in the `\user\bin` directory.

For example, on Windows, this path might be `C:/Program Files/jdk-11.0.1`.

2. Start a session of the TERR console.
3. At the TERR command prompt, type the command `Sys.getenv("JAVA_HOME="path_to_your_Java_installation")` where `path_to_your_Java_installation` is the path you noted in Step 1.

For example, on Windows, this call might look like the following.

```
> Sys.getenv("JAVA_HOME="C:/Program Files/jdk-11.0.1")
```

On Linux, this call might look like the following.

```
> Sys.getenv("JAVA_HOME="/usr/lib/jvm/java-11-sun/")
```

Your system environment `JAVA_HOME` is now set to the specified Java installation.

4. Optional: Check the setting for `JAVA_HOME` from TERR by typing `sys.getenv("JAVA_HOME")`. For example, on Windows, it might look like the following.

```
> Sys.getenv("JAVA_HOME")
[1] "C/Program Files/jdk-11.0.1"
```

What to do next

Install the package that requires setting `JAVA_HOME`. For an example, see [Installing the rJava package](#).

Installing the rJava Package

The rJava package gives access to low-level R functions to the Java interface, but it is not provided with TERR. These instructions help you prepare your computer to use rJava.

Prerequisites

The rJava package requires the following.

- A bit-matching 32-bit or 64-bit version of Java, version 6 or later, is installed. (Tested with version 11.0.1.)
- The system variable `JAVA_HOME` is set. Follow the instructions for [Setting JAVA_HOME](#) if you are unsure.

These instructions are for installing the rJava package for use with TERR 4.2 or later. If you are using an earlier version, and you cannot update your version of TERR, see the release notes for more information for the version of TERR you are running.

- For TERR version 3.1 and earlier, the rJava package does not work. To use rJava, update your version of TERR.
- For TERR version 3.2, you must use a build of rJava from TRAN. See that version's release notes for more information.

Perform this task in the TERR console or in TERR running under RStudio.

Procedure

1. At the command prompt, type `install.packages("rJava")`.
The rJava package is installed from the package repository to the `site-library` directory.
2. At the command prompt, type `library(rJava)`.
For example:

```
> library(rJava)
The following object(s) are masked _from_ 'package:utils':
  head, str, tail
The following object(s) are masked _from_ 'package:methods':
  new, show
The following object(s) are masked _from_ 'base':
  anyDuplicated, duplicated, rev, sort, unique
```

The rJava package is now in your search path.

3. At the command prompt, type `searchpaths()`.
For example:

```
> searchpaths()
[1] ".GlobalEnv"
[2] "C:/Program
  Files/TIBCO/terr60/site-library/rJava"
[3] "C:/Program
  Files/TIBCO/terr60/library/stats"
```

```
[4] "C:/Program
  Files/TIBCO/terr60/library/graphics"
[5] "C:/Program
  Files/TIBCO/terr60/library/grDevices"
[6] "C:/Program
  Files/TIBCO/terr60/library/utils"
[7] "C:/Program
  Files/TIBCO/terr60/library/methods"
[8] "C:/Program
  Files/TIBCO/terr60/library/base"
```

The absolute file path is returned for each package in the current environment. Note that by default, the newly-loaded rJava is listed second in the search path.

Recommendations for Using R Securely

The R Consortium, of which TIBCO is a proud member, has provided a summary of "Best Practices for Using R Securely."

We encourage anyone using open source R, whether with TIBCO products or not, to review those practices at the following site: <https://www.r-consortium.org/blog/2015/08/17/best-practices-for-using-r-securely>. This guidance essentially recommends that users who download R and R packages do so from a secure server using an encrypted HTTPS connection.

The following guidance provides information regarding how these recommendations do, or do not, apply to TERR.

Recommendation: If you download open-source R, always download it from a server using HTTPS

TERR is a commercial product, and you download it from our secure TIBCO Product Download site. This site use HTTPS.

Recommendation: If you download open-source R, check its MD5 checksums before you begin the installation

Customers downloading TERR from the TIBCO Product Download site should confirm the MD5 checksums following the same process as in detailed in the R Consortium blog post, cited in this topic.

Recommendation: If you have open-source R installed, configure it for secure file downloads

By default, TERR uses HTTPS for secure file download if a secure mirror is specified. There is no need to do any special configuration of TERR.

Recommendation: Always download CRAN packages from a secure mirror

We recommend TERR users follow this recommendation, and always download CRAN packages from a secure mirror. The [Best Practices post](#) includes a list of CRAN sites that use HTTPS.

By default, TERR installs packages from the Microsoft R Application Network (MRAN) snapshot with CRAN package versions available when this version of TERR was made available. This MRAN snapshot is a secure site.

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

Manage your Packages when You Install a New Version of TERR

When a new version of TERR is released, you might want to install it to take advantage of the changes. You can run older and newer versions of TERR on the same computer, or you can uninstall the older version(s). In either case, you probably want to make sure any custom-created packages or packages downloaded from a repository are kept available to the TERR version(s) you are running.

Uninstalling TERR does not remove the packages you installed. However, we recommend that you check for updates to any packages you have downloaded from package repositories after you install a new version of TERR. You can check for updated versions by calling `update.packages()`. See the help topic for `update.packages()` in the TERR *Language Reference* for more information.

The TERR installation includes the directory `TERR_HOME/site-library`, which is used by default. If you want to use another directory, you can define the environment variable `TERR_LIBS_SITE` and set it to the directory of your choice.

Initially, the `site-library` directory is empty. If you have permission to write to the `TERR_HOME` directory, any packages you create or download are installed in `TERR_HOME/site-library`.

Installing packages to the `site-library` directory provides the following advantages.

- It provides you with the means to protect and manage the packages you installed and want to keep, separate from the new installation.
- It separates the packages shipped with TERR so they can be updated with new releases, and so you do not accidentally change or remove them.

You should avoid changing any entries in the `TERR_HOME/library` directory. Doing so can cause TERR to behave in unexpected ways.

The directory `TERR_HOME/site-library` is added to the head of the search path, which is returned by `.libPaths()`. For example, on a Windows computer where you have permission to write to the `TERR_HOME` directory, this function call would appear as follows.

```
> .libPaths()
[1] "C:/Program Files/TIBCO/terr60/site-library"
[2] "C:/Program Files/TIBCO/terr60/library"
```

After installing the new version of TERR, you can just copy the packages from the older `TERR_HOME/site-library` directory to the new `TERR_HOME/site-library` directory.

If you are downloading packages to a computer where you do not have permission to write to the directory `TERR_HOME/site-library`, then packages are stored in the user directory. For example, on Windows, this directory is `[My Documents]/TERR/x86_64-pc-windows-library/<version>`, and, calling `.libPaths()` would appear as follows.

```
> .libPaths()
[1] "C:/users/jdoe/Documents/TERR/x86_64-pc-windows-library/terr6.0"
[2] "C:/Program Files/TIBCO/terr60/site-library"
[3] "C:/Program Files/TIBCO/terr60/library"
```

In this case, you can ignore the `site-library` directory (which remains empty) and manage your packages by copying them from the older `<version>` to the new `<version>` in the user directory location.

Use TIBCO Enterprise Runtime for R with TIBCO Spotfire

If you are developing and using data functions in Spotfire Analyst, you can select one of three possible TERR engines.

Spotfire provides three configuration options for using the TERR engine. You can set these options in the Spotfire Analyst user interface. On the Spotfire Analyst menu, click **Tools > Options**, and then scroll down and select the **Data Functions** option. In the resulting display, you can set one of the following:

- The locally-installed TERR engine, if you are running Spotfire Analyst.
- The default TIBCO Spotfire® Statistics Services deployed and configured with the TERR engine. If you are displaying data visualizations, you must have Spotfire Statistics Services deployed in your Spotfire Server.
- A custom Spotfire Statistics Services URL (such as the TIBCO Spotfire® Local Adapter).

Finding information	Resource
The default Spotfire Statistics Services URL.	See your Spotfire Server administrator.
Setting options for data functions.	<i>TIBCO Spotfire® User's Guide</i> , available from the Spotfire user interface.
Sharing Spotfire analyses that use TERR packages.	Package Management .
Creating functions that run the TERR engine in Spotfire Analyst.	Advanced Analytics in Spotfire .

Batch Processing

You can call the TERR engine non-interactively using a batch processing interface.

Batch processing is handled through standard input and standard output (`stdin/stdout`) redirection at the OS level, along with various optional arguments and settings.

For a list of commands that you can use for batch processing, see [Command Line Options for TIBCO Enterprise Runtime for R](#) on page 25.

Command Line Options for TIBCO Enterprise Runtime for R

From the shell command line, you can run the TERR command, passing in the following options, either interactively or in a batch process. You can also get help using the syntax and options described here.

Usage

```
TERR [options]
```

Description

Issue commands, either interactively or in a batch process, to TERR from the shell command line.

Options

`-o, --option=value` means that `-o value` and `--option=value` are synonymous.

Option	Description
<code>--args</code>	Do not process the rest of the arguments.
<code>--color</code>	Color input and output differently.
<code>--console-editor</code>	Use console line editor.

Option	Description
--console-encoding ENC, --console-encoding= ENC	Use character encoding ENC on stdin or stdout (defaults to --encoding value).
--debug	Enable more debug information.
--disable-signal-handlers	Disable signal handlers to catch OS-specific signals. The default behavior is to disable signal handlers.
-e EXPR	Runs EXPR and quits, unless --interactive is specified.
--echo-console	Always echo console input text in interactive mode (if neither is given, echoing is controlled by options('echo')).
--enable-signal-handlers	Enable signal handlers to catch OS-specific signals (the default is to disable signal handlers)
--encoding ENC, --encoding=ENC	This argument is always ignored: native encoding is always 'UTF-8'.
-f FILE, --file=FILE	Runs FILE and quits unless --interactive is specified.
-h, --help	Print this help message and exit.
-i, --interactive	Force interactive mode. <ul style="list-style-type: none"> If the engine is started with -e or -f, then the interactive command line is started after the specified expression or file is executed. If -e or -f is not specified, this ensures that interactive() returns TRUE, even if isatty(stdin()) is FALSE.
--internet2	Use Internet Explorer settings for proxies and other tasks. Microsoft Windows only.
--no-console-editor	Disable console line editor. This is also disabled if -e or -f is specified, or if isatty(stdin()) or isatty(stdout()) is FALSE.
--no-echo-console	Never echo console input text in interactive mode (if neither is given, echoing is controlled by options('echo'))
--no-environ	Do not read the site and user environment files.
--no-init-file	Do not read the user .TERRProfile file.
--no-readline	See --no-console-editor.
--no-restore	Do not restore saved workspace.
--no-restore-data	Do not restore saved workspace data.
--no-restore-history	Do not restore saved workspace history.
--no-save	Do not save workspace at end of session.
--no-site-file	Do not read the site .TERRProfile file.

Option	Description
--profile=TYPE	Enable profiling, where TYPE is one of the following: <ul style="list-style-type: none"> • time • objects • memory • coverage
-q, --quiet	Do not print startup message.
--read-init-file	Read the user .TERRProfile file.
--read-site-file	Read the site .TERRProfile file.
--restore	Restore saved workspace.
RHOME	Print path to the TERR home directory and exit.
-s, --no-echo	Run as quietly as possible.
--save	Save workspace at the end of the session.
--silent	Same as --quiet.
--spotfire	Used when launched by Spotfire.
--vanilla	Combine the following: <ul style="list-style-type: none"> • --no-save • --no-restore • --no-site-file • --no-init-file • --no-environ
--verbose	Print more information.
--version	Print version and copyright information, and then exit.
--version	Print version and copyright information and exit

CMD Commands in TIBCO Enterprise Runtime for R

You can issue a CMD command at the shell command line in TERR.

For these commands to work, you must have the engine location in your path, or you must run the command from its bin directory.

Command Line Options for the build Command

You can build packages from the command line by using the command `TERR CMD build` and specifying any of the following options to control the results.

Usage

```
TERR CMD build [options] pkgDirs
```

Description

Build packages specified by *pkgDirs*.

Options

-o, --option=value means that *-o value* and *--option=value* are synonymous.

Option	Description
<i>-h, --help</i>	Describe the arguments that can be passed to this command.
<i>--binary</i>	Build distributable archives of newly-installed packages.
<i>--md5</i>	Add MD5 sums.

Command Line Options for the check Command

You can check packages that you build for common errors from the command line by using the command `TERR CMD check` and specifying any of the following options to control the results.

Usage

```
TERR CMD check [options] pkgDirs
```

Description

Check packages specified by *pkgDirs* for common errors.

Options

-o, --option=value means that *-o value* and *--option=value* are synonymous.

Option	Description
<i>-h, --help</i>	Describe the arguments that can be passed to this command, and then exit.
<i>-v--version</i>	Print the package version information, and then exit.
<i>-l--library=LIB</i>	The library directory used for test installation of packages. (The default is <code>outdir</code> .)
<i>-o--outdir=DIR</i>	The directory where log files, TERR output, and other information is written. The default is <code>pkg.TERRcheck</code> in the current directory, where <code>pkg</code> is the name of the package checked.

Command Line Options for the INSTALL Command

You can install packages from the command line by using the command `TERR CMD INSTALL` and specifying any of the following options to control the installation.

Usage

```
TERR CMD INSTALL [options] pkgs
```

Description

Install packages specified by *pkgs*, which can be the names of source package directories, source package `.tar.gz` files, or binary (prebuilt) package `.zip` files.

Options

-o, --option=value means that *-o value* and *--option=value* are synonymous.

Other arguments that can be used with `R CMD INSTALL` are ignored.

Option	Description
<code>-h, --help</code>	Describe the arguments that can be passed to this command.
<code>-l, --library=LIB_DIR</code>	Install packages to the library directory <code>LIB_DIR</code> .
<code>--build</code>	Build distributable archives of newly-installed packages.
<code>--install-tests</code>	Install the specified package tests directory.
<code>-d, --debug</code>	Enable debugging messages.
<code>-v, --version</code>	Display the package installer version information.
<code>--no-R, --no-libs, --no-data, --no-help, --no-demo, --no-exec, --no-inst</code>	Suppress the installation of the specified part of the package (for testing).
<code>--no-configure</code>	Do not run the configuration scripts.
<code>--no-test-load</code>	Do not try to attach the package in a new TERR process after installing. Otherwise, an unattachable package is deleted.
<code>--clean</code>	After installation, remove from the source directory any files created during installation.
<code>--preclean</code>	Before installation, remove from the source directory any files made during a previous installation.
<code>--configure-args</code>	Command line arguments for the package configuration script.
<code>--configure-vars</code>	The environment variables set before running the package configuration script.
<code>--(with without)-keep.source</code>	Keep or do not keep the source information with the R functions.
<code>--(with without)-keep.parse.data</code>	Keep or do not keep the parse data with the R functions.

Command Line Options for the `Rdconv` Command

You can convert `.Rd` documentation to other formats by using the command `Rdconv` and specifying any of the following options to control the results.

Usage

```
<file-path-to>Rdconv.exe [OPTIONS] FILE
```

Description

Convert the file specified by `FILE` to the format specified by `--type=arg`.

Options

`-o, --option=value` means that `-o value` and `--option=value` are synonymous.

Option	Description
<code>-h, --help</code>	Print a help message for this command, and then exit.
<code>-v, --version</code>	Print file version information, and then exit.
<code>-d, --debug</code>	Enable debugging.
<code>-t, --type arg (=html)</code>	Convert to the format specified by <code>arg</code> .
<code>--encoding arg (=utf-8)</code>	Use <code>arg</code> as the output encoding.
<code>--package arg (=unknown)</code>	Use <code>arg</code> as the package name.
<code>-o, --output arg (=-)</code>	Use <code>arg</code> as the output file.
<code>--os arg (=windows)</code>	Assume the operating system <code>arg</code> (can be either UNIX or Windows).
<code>--run_dontrun</code>	Either comment out or do not comment out the <code>\dontrun</code> sections of examples.
<code>--run_donttest</code>	Either comment out or do not comment out <code>\donttest</code> sections of examples.

Embed the Supported TIBCO Enterprise Runtime for R Engine

The TERR engine is designed to be embedded in applications that require including a general computational statistical engine.

TERR has an embedding interface that implements a fully-compatible subset of the R embedding API, which is included in the open-source R engine developed by The R Project for Statistical Computing. Because TERR is targeted at adding computational functionality to applications, it includes none of the R embedding APIs providing GUI support.

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

- If you have an existing application that embeds the open-source R engine using the subset of the embedding APIs supported by TERR, you can embed the TERR engine by simply replacing the open-source R binaries with the TERR binaries.
- If you are developing an application and want to embed the TERR engine, you can do so by adding embedding support for the open-source R engine, and then including the TERR binaries instead of the open-source R binaries in the final application.

Internationalization

TERR supports many, but not all, localization features available in open-source R.

Open-source R has some support for internationalization and localization, representing strings with Unicode characters, and managing localized errors and messages in different languages.

Some of these differences include string representation, language parsing, locale, file input-output, localized messages, support for typing and displaying characters in the console in Japanese and other languages.

String Representation

TERR and open-source R vary in their string encodings.

Open-source R allows strings to be represented in any of four encodings:

- "unknown" (the default character encoding for the system)
- "latin1"
- "UTF-8"
- "bytes"

TERR currently creates all strings as "unknown" by default (note that "unknown" encoding is hard-wired to use UTF-8). The functions `Encoding` and `iconv` can be used for constructing strings with other encodings.

TERR allows adding Unicode characters into a string using an escape sequence such as "\u30A4" or "\U{30A4}" to create a string containing a single Japanese character. Alternatively, it is possible to add Unicode characters into a typed string by typing them, or copy-and-pasting them. Exactly which characters can be typed or printed depends on how the console is set up (described below).

The TERR string-manipulation functions (`substring`, `nchar`, `paste`, and so on) correctly handle UTF-8 strings. Functions for searching strings with regular expressions (`regexp`, `grep`, `strsplit`, and so on) correctly handle UTF-8 strings as the data or the pattern strings.

TERR implements several functions for constructing strings from integers or raw bytes: `intToUtf8`, `utf8ToInt`, `charToRaw`, `rawToChar`.

S Language Parsing

The manner in which TERR parses character types aids in internationalization.

The TERR parser can process text containing Unicode characters. All S language keywords (`function`, `for`, and so on) are ASCII. Numbers are parsed only when written with ASCII digits using the US number format (such as "1234.56").

All non-ASCII Unicode characters are treated as possible name characters, except for space characters. Thus, it is possible to have a `data.frame` column name, a factor level, or a variable name containing Japanese characters.

Locale

Programmers using TERR in other locations need to understand its locale limitations.

TERR does not currently recognize the "locale" where it is running, and it has limited support for locale-specific string handling (such as performing sort according to the alphabetic order defined for different countries). For more information about supported locale settings, see the help file for the function `sys.setlocale`.

File I O

Programmers need to understand character encoding arguments in TERR.

The functions for creating connections (such as `file` and `socketConnection`) have an `encoding` argument that specifies a character encoding for the connection. Characters are converted to or from that encoding when writing to or reading from the connection.

You can use the option `--console-encoding` and the function `terrUtils::setConsoleEncoding` to set the encoding for console reading or writing to `stdin` and `stdout`.

Localized Messages

Programmers need to understand the limitations of TERR

TERR does not currently do any locale-specific message handling. All messages and errors are in English.

Move Data Between TIBCO Enterprise Runtime for R and Open-Source R

You can transfer data objects between TERR and open-source R.

Both the TERR engine and the open-source R engine can read in plain ASCII data files (for example, csv files) using the `scan()` and `read.table()` functions. To transfer basic data objects (vectors, matrices, factors, and data frames, for example) between TERR and open-source R, you must use other functions.

Transferring Data Objects from TIBCO Enterprise Runtime for R to Open-Source R (or Vice Versa)

You can use the `dump` and `source` functions to transfer data objects between TERR and open-source R.

You can perform this task from either the open-source R system or the TERR system. The advantage of using this technique of transferring data objects between TERR and open-source R is that `dump()` creates an ASCII file that can be viewed and edited outside of both systems.

Prerequisites

You have access to the consoles for both open-source R and TERR and their base packages. Review the help files for further information about these functions prior to using them.

Procedure

1. From the system to transfer from, call the `dump()` function.

Provide the appropriate arguments, including a character vector giving the name(s) of the data object(s) and a file name to accept the output.

You can dump multiple objects into a single dump file.

An ASCII file containing the output is created.

2. From the system to transfer to, call the `source()` function.

Provide the name of the ASCII file created from calling `dump()`.

Transferring Data Objects from Open-Source R to TIBCO Enterprise Runtime for R

You can use this alternative to the `dump` and `source` functions if you do not need to see or edit the R output before using it in TERR.

Prerequisites

You have access to the consoles for both open-source R and TERR and their base packages. Review the help files for further information about these functions prior to using them.

Procedure

1. From open-source R, call the `save()` function.
A binary file containing the data object is created.

2. From TERR, call the `load()` function.

Provide the name of the file created by calling `save()` in open-source R.

Transferring Data Objects from TIBCO Enterprise Runtime for R to Open-Source R

You can use this alternative to the `dump` and `source` functions if you do not need to see or edit the TERR output before using it in R.

Prerequisites

You have access to the consoles for both open-source R and TERR and their base packages. Review the help files for further information about these functions prior to using them.

Procedure

1. From TERR, call the `save()` function.

You must set `RFormat=TRUE`. This option writes binary files in an open-source R-readable format.

A binary file containing the data object is created.

2. From open-source R, call the `load()` function.

Provide the name of the file created by calling `save()` in open-source R.

Manage Heap Size

TERR does not have built-in memory allocation size limits, except those imposed by the operating system (for example, the 2 gigabyte limit on 32-bit Windows). However, to prevent possible negative effects on the performance of other running applications, it is possible to set a limit on the total memory allocation by calling the `memory.limit` function.

The initial value of the `memory.limit` function is zero (meaning no limit), and it can be set to an integer for the number of megabytes. This limit might keep attempts at simultaneous large memory allocations (for example, those of large matrices) from succeeding.

The following example demonstrates increasing the total allocation limit to 2 gigabytes after hitting a 1 gigabyte limit with two large object allocations.

Each call to `memory.limit` returns the previous value of the limit.

```
memory.limit(1024) #set limit to 1GB
[1] 0
m <- 10000
n <- 10000
A <- matrix (runif (m*n),m,n)
# ~760 MegaByte - success
B <- matrix (runif (m*n),m,n)
# ~760 MegaByte more - failure due to initial 1GB limit
Error: out of memory
memory.limit(2*1024) # increase the limit to 2 GB
[1] 1024
memory.limit()
[1] 2048
B <- matrix (runif (m*n),m,n)
# ~760 MegaByte more - success after the limit increase
```

Signal Handlers and TIBCO Enterprise Runtime for R

TERR supports installing signal handlers.

Signal handlers are used to catch illegal operations (such as referencing an illegal memory location) that occur in foreign code called via the `.C()` or `.Call()` functions. If an illegal operation is caught by a signal handler, it will generate an error "Unhandled exception in foreign function" rather than crashing the process. Currently, these signal handlers are disabled by default, because they can interfere with signal handlers used by other software running in the same process. For example, we discovered problems when using Java and JDBC to access a database.

Sometimes when you need to investigate unexpected failures in foreign code, you might find it useful to enable the signal handlers during development to catch illegal operations. The signal handlers can be enabled when starting the TERR console application by specifying the option `--enable-signal-handlers`.

Working with the AsterDB Package

The TERR package AsterDB is provided in the Spotfire Statistics Services installation. If you are creating Spotfire Data Functions that use this package for a Teradata® Aster Database installation, see your system administrator.

The AsterDB package uses Java and requires special configuration before it is distributed for use. If it is distributed to you via a Spotfire update, make sure that you have installed a compatible version of Java, and that you have the JVM installed. Also, you must set the environment variable `JAVA_HOME` to that installation location.

Using TERR for Advanced Analytics in Spotfire

TERR is embedded in Spotfire and is used in various ways.

- You can use the predictive analytics tools built into Spotfire (which use the TERR engine "behind the scenes").
- You can access the engine directly using the TERR Tools in Spotfire to prototype, test, and debug functions.
- You can write ad hoc custom expressions that call TERR functions.
- You can write TERR data functions to store in the Spotfire library to reuse.

This documentation includes reference, information, example data sets, and walk-through tasks to help you learn how to use TERR in Spotfire.

Data Type Mapping

When you use TERR or open-source R expression functions or data functions in Spotfire, you must know how the supported data types are mapped between TERR (or open-source R) and Spotfire.

Spotfire data types	TERR or open-source R data types
Binary	raw
Boolean	logical
Currency	numeric
Date	POSIXct or POSIXlt with time zone UTC
DateTime	POSIXct or POSIXlt with time zone UTC
Integer	integer
LongInteger	numeric
Real	numeric
SingleReal	numeric
String	character (encoded as UTF-8)
Time	POSIXct or POSIXlt with zone UTC giving time on date 1/1/1970
TimeSpan	difftime

- All numeric invalid values in Spotfire are represented as NAs in TERR and open-source R engines. There is no special support for invalid values of other types. They become valid default values in TERR and open-source R engines.
- Spotfire converts TERR or open-source R factors to the data type String.
- Do not use the data type date when you use TERR or open-source R with Spotfire data types Date, DateTime, and Time. Spotfire converts the TERR data type date to the data type Real.
- Other data types than the ones included in this topic are not supported.

Open-source R is available under separate open source software license terms and is not part of TIBCO Spotfire Statistics Services. As such, open-source R is not within the scope of your license for TIBCO Spotfire Statistics Services. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

Data Dimension Mapping

When you use TERR or open-source R expression functions or data functions in Spotfire, you must know how the supported data dimensions are mapped between TERR (or open-source R) and Spotfire.

Spotfire data dimension	TERR and open-source R data dimension
Value	Vector of length 1
Column	Vector
Data table	data.frame

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

Accessing TIBCO Enterprise Runtime for R Directly from Spotfire

You can get direct access to TERR from your Spotfire installation. You can run the console, open an instance of the RStudio IDE that uses the TERR engine, or open the language reference. You can also find the path to the locally-installed TERR engine from Spotfire.

To start either the TERR console or the RStudio IDE, open Spotfire.

Prerequisites

You must have an installation of Spotfire 7.5 or later.

Procedure

- From menu, click **Tools > TERR Tools**.
- In the TERR Tools dialog box, click the option to perform.

Option	Description
Copy the TERR Engine Path to the Clipboard	Copy the contents of the text box Path to Local TERR Engine . You can paste this path into the Start command box to open the <code>engine</code> directory of the TERR installation in Spotfire.
Open the TERR Language Reference	Launch a web browser and display the Help landing page for TERR. From this page, you can access the language reference for the installed libraries and other technical documentation.
Launch TERR Console	Open the TERR console application in a separate window.
Launch RStudio IDE	Open an instance of RStudio that is configured to use the TERR engine installed with Spotfire.

Getting Help with TIBCO Enterprise Runtime for R

You can find help with the R language using the TERR language reference and other documentation directly from the Spotfire installation.

You can access help from the TERR console, or from Spotfire.

Procedure

1. From menu, click **Tools > TERR Tools**.
2. In the **TERR Tools** dialog box, click **Open TERR Language Reference**.
A web browser opens to display the TERR landing page.
3. Optional: To find descriptions of data sets included in the Sdatasets package, click **Included Packages**, and then from the list, click **Sdatasets**.

Predictive Modeling

Your data and the kind of analysis you need to do determines the type of prediction to apply. Spotfire provides four types of predictive modeling tools.

Predictive Model	Description
Linear regression	Models the numeric response column as a weighted sum of the predictor columns. The weights, also known as the regression coefficients, are selected by the method of least squares, which minimizes the sum of the squared differences between the observed response and the predictions based on the weighted sum.
Regression tree	A nonparametric regression method that creates a binary tree by recursively splitting the data on the predictor values. The splits are selected so that the variation in the Response column is smaller in each child node than in the parent node. Various options are used to control how deep the tree is grown. Predictions are based on the mean of all the Response values in the terminal node for an observation.
Logistic regression	A classification method used when the Response column is categorical with only two possible values. The probability of the possible outcomes is modeled with a logistic transformation as a weighted sum of the Predictor columns. The weights or regression coefficients are selected to maximize the likelihood of the observed data.
Classification tree	A nonparametric classification method that creates a binary tree by recursively splitting the data on the predictor values. The splits are selected so that the variation in the Response column is smaller in each child node than in the parent node. Various options are used to control how deep the tree is grown. Predictions are based on the mean of all the Response values in the terminal node for an observation.

Building a Regression Model in Spotfire

After you have determined which of the four Spotfire predictive models best suits your data and your desired analysis, use the predictive modeling options available to you from the **Tools** menu. This example task creates a regression model using sample data.

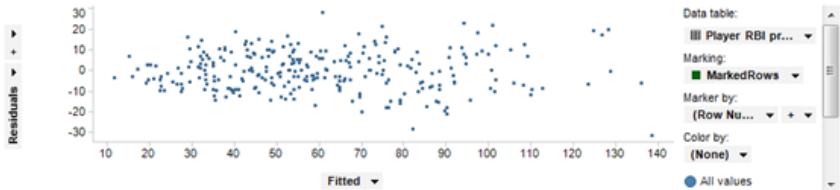
From Spotfire, you can build a predictive model that calls TERR for the statistical analysis. In this walkthrough task, build a linear regression model using the Spotfire predictive modeling tools.

For demonstration purposes, use the Baseball Player Statistics data example, available from the Spotfire Library, in *Demo/Analysis Files/Baseball*. Open the example DXP. (Optionally, use your own suitable data set.)

Prerequisites

A Spotfire license for advanced analytics.

Procedure


1. From the menu, click **Tools > Regression Modeling**.
2. Provide a suitable name and descriptive comment for the model.
3. From the **Model method** drop-down list, select **Linear Regression**, and then specify a **Data table**. For the example, specify **Baseball**.
4. For the **Response column**, select the response that you want to predict. For the example, to predict RBI (Runs Batted In), select RBI from the list.
5. From the **Predictor columns** box, select all of the variables to consider. You can select anything that is not a string. Select multiple predictor columns by holding down the control key as you click each one, or click **Add** for each predictor column you select. As you click **Add**, the predictor columns are added to the **Formula expression**. For the example, the formula expression to model for this example is as follows.

Formula expression:

'RBI' ~ 'At Bats' + 'Batting Average' + 'Salary' + 'Total Bases' + 'Runs Created' + 'Plate Appearances'

6. When you have the formula expression for the model, click **OK** to send the model specification to TERR and create the model. Spotfire displays the Model page based on your selections.
7. Review the Model page.

Display	Description
Model Summary	Provides the summary statistics appropriate for the particular model type. These statistics can give an indication of how well the model fits the data. It also displays an icon toolbar (), which you can use to edit the model, to create an evaluation model, to predict from the model, or to duplicate the model to manipulate.
Table of Coefficients	Provides the estimates of the coefficients, a measure of the variability or error of each estimate, and a test statistic ($t.value$ or $z.value$) of the null hypothesis that the coefficients is zero (in other words, not needed in the model). It also provides a p-value for the statistical test.
Residuals vs. Fitted	Shows the residuals on the Y-axis and the fitted values on the X-axis. Values that have the residual 0 are those that would end up directly on the estimated regression surface. The residuals vs fit plot is commonly used to detect non-linearity, unequal error variances and outliers. When a linear regression model is suitable for a data set, then the residuals are more or less randomly distributed around the 0 line. The formula created in Spotfire creates the following pattern:

Display	Description
Variable Importance	<p>Shows a summary of the variables that are most relevant for determining the outcome. If any of the variables has a very small relevancy, you might want to remove it from the model and rerun the analysis.</p> <p>Variable Importance</p> <p>Total Bases Batting Average At Bats Salary Runs Created Plate Appearances Home Runs</p> <p>Variable Importance</p>

8. Try duplicating the model and editing the copy to produce different results with different predictor columns.

What to do next

You can create an evaluation model, you can predict from the model, or you can export the model to share with others. See the Spotfire help for more information.

Sharing a Model

After you have built a predictive model in Spotfire, you can export it to a file on your desktop or on a network, or you can export it to the Spotfire library for use by others who have similar datasets.

The Analytic Models pane option is a toggle: To display it, or to hide it, click the option in the **View** menu. In this task, the Analytic Models pane is not yet displayed.

Prerequisites

You have a predictive model to share with others.

Procedure

1. On the menu, click **View > Analytic Models**.
2. From the Analytic Models pane, select the model to export, and then click the Export icon (↗) for that model.
The Save As dialog box is displayed, and you are prompted to save the file as a Spotfire Analytic Model File (.rds).
3. Name the file, and then save it to the location of your choice.

You can now share this analytic model with others, who can use it in various ways:

- In TERR, running under a different application such as Streambase®.
- In handling live events or in TIBCO BusinessEvents®.
- In TERR running under TIBCO Spotfire® Statistics Services.
- In another DXP file. For example, you could use this particular model with previous or subsequent years of baseball records.

Evaluating a Model

After you have created a predictive model in Spotfire, you can evaluate the model against data containing similar values to predict.

Perform this task in Spotfire, from the Model Summary pane.

Procedure

1. Click the icon for evaluating the model (evaluate icon).
2. In the Evaluate Analytic Model dialog box, specify the data table for which to apply the data, and then match the response columns and the predictor columns. Click **OK**.
Typically, you evaluate a model against another data table that includes the values you are trying to predict using the model. For example, you can compare sales figures from data captured from month to month.
Spotfire displays the evaluation.
3. Review the panes Evaluation Summary and Residuals vs. Predicted, and then apply any additional available diagnostic visualizations you want to review.
For a list of available diagnostic visualizations, see the Spotfire help.

Expression Functions

You can call a TERR script directly from the Spotfire expression language. Using a TERR expression function, you can perform an ad hoc analysis quickly and easily.

For ad-hoc expressions, you can embed the contents of a script directly in your expression language call. Alternatively, you can write a TERR script, and then register it as an expression function for use anytime from the Custom Expression dialog box in Spotfire.

After you have created an expression function, you can reopen it, edit it, and rerun it.

Built-In TERR Expression Functions in Spotfire

In the Spotfire Custom Expressions or Insert Calculated Column dialog box, from the **Function** list, you can select one of the built-in TERR expression functions provided for advanced statistical analysis.

Each function invokes the TERR engine. The results depend on the expression function you select.

- For nonaggregated functions, the TERR script should set the variable `output` to a vector or a one-column data frame, which is the same length as the input column(s), of the specified TERR data type. Spotfire converts the data type to the corresponding Spotfire data type.
- For aggregated functions, the TERR script should set the variable `output` to a scalar value of the specified TERR data type, which Spotfire converts to the corresponding Spotfire data type. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

Spotfire and TERR use the following naming convention for defining expression functions.

Expression function component	Description	Example
<code>TERR_<SpotfireDataType></code> or <code>TERRAggregation_<SpotfireDataType></code>	The built-in expression function.	<pre>TERR_Real("output <- input1/input2", [Mileage], [Fuel])</pre> <p>The TERR returned value (specified by <code>output</code>) is a vector of data type <code>numeric</code>, which Spotfire converts to a column of the Spotfire data type <code>Real</code>.</p>

Expression function component	Description	Example
input1, input2, input3... inputN [Colname], [Colname], [Colname], [Colname]	<p>Each input (inputN) is a parameter that is passed in to the TERR expression function, and that corresponds to a column name (Colname) in the same numerical order.</p> <p>The column names corresponding to the inputs are added as the last component of the expression, immediately after the calculation's closing quotation marks and comma, and immediately before the closing parenthesis. Each column name is enclosed in square brackets. Column names are separated by commas.</p>	<pre>TERR_Real("output <- input1/input2", [Mileage], [Fuel])</pre> <ul style="list-style-type: none"> [Mileage] corresponds to input1. [Fuel] corresponds to input2. <p>The calculation specifies that, for each row, the value in the column Mileage is divided by the value for the column Fuel.</p>
output	<p>The returned value of the calculation in TERR. It can be added to the Spotfire visualization as a column or a single aggregated value.</p>	<pre>TERR_Real("output <- input1/input2", [Mileage], [Fuel])</pre> <p>output represents the column of Real values returned containing the calculation for each row of the mileage divided by the fuel.</p>

Select one of the topics for the available built-in expression functions to learn more.

TERR_Binary

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression TERR_Binary from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `raw`, which is converted to a Spotfire column of the corresponding Spotfire data type `Binary`.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>raw</code> .	A column with the same number of rows as the input, and of the data type <code>Binary</code> .

TERR_Binary example

In this example, in Spotfire, create a one-column table called Measure containing the numbers between 0 and 5. Next, create a new column called Outliers, which displays the following, based on the number in the Measure column.

- If the number is below 3.5, display nothing.
- If the number is between 3.5 and 4.5, display a binary image of a small red question mark.
- If the number is over 4.5, display a binary image of a small red exclamation mark.

```
TERR_Binary("marks <- list(
  ok = NULL,
  # question mark
  hmm = as.raw(c(0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a,
  0x0a, 0x00,
  0x00, 0x00, 0x0d, 0x49, 0x48, 0x44, 0x52, 0x00, 0x00,
  0x00, 0x10,
  0x00, 0x00, 0x00, 0x10, 0x08, 0x03, 0x00, 0x00, 0x00,
  0x28, 0x2d,
  0x0f, 0x53, 0x00, 0x00, 0x27, 0x50, 0x4c, 0x54,
  0x45, 0xff,
  0x00, 0x00, 0xff, 0x00, 0x66, 0xff, 0x3a, 0x00, 0xff,
  0x3a, 0x90,
  0xff, 0x66, 0x00, 0xff, 0x66, 0xb6, 0xff, 0x90, 0x3a,
  0xff, 0x90,
  0xdb, 0xff, 0xb6, 0x66, 0xff, 0xb6, 0xff, 0xff, 0xff,
  0xb6, 0xff,
  0xff, 0xdb, 0xff, 0xff, 0xbb, 0xaf, 0xf5, 0x2c,
  0x00, 0x00,
  0x00, 0x3f, 0x49, 0x44, 0x41, 0x54, 0x18, 0x95, 0x63,
  0xe0, 0x41,
  0x03, 0x0c, 0x64, 0xa0, 0x70, 0x31, 0x30, 0x30, 0x30,
  0x22, 0x09,
  0x70, 0x33, 0xb1, 0xf2, 0xf0, 0xb0, 0x31, 0x22, 0x04,
  0x38, 0x18,
  0xc1, 0xa2, 0x9c, 0xa8, 0x66, 0x70, 0x31, 0xa0, 0xa,
  0x70, 0x31,
  0xb0, 0xa2, 0xd8, 0x02, 0xe7, 0xc3, 0x04, 0xd8, 0x98,
  0xd1, 0xdc,
  0xc1, 0xc2, 0x4e, 0xc8, 0xa5, 0x84, 0x55, 0x20, 0x00,
  0x00, 0xe8,
  0x14, 0x0b, 0x2c, 0x7d, 0xc8, 0x15, 0x53, 0x00, 0x00,
  0x00, 0x00,
  0x49, 0x45, 0x4e, 0x44, 0xae, 0x42, 0x60, 0x82)),
  # exclamation mark
  oops = as.raw(c(0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a,
  0x0a, 0x00,
  0x00, 0x00, 0x0d, 0x49, 0x48, 0x44, 0x52, 0x00, 0x00,
  0x00, 0x10,
  0x00, 0x00, 0x00, 0x10, 0x08, 0x03, 0x00, 0x00, 0x00,
  0x28, 0x2d,
  0x0f, 0x53, 0x00, 0x00, 0x21, 0x50, 0x4c, 0x54,
  0x45, 0xff,
  0x00, 0x00, 0xff, 0x00, 0x3a, 0xff, 0x00, 0x66, 0xff,
  0x3a, 0x66,
  0xff, 0xb6, 0x66, 0xff, 0xb6, 0xff, 0xdb, 0x90,
  0xff, 0xdb,
  0xff, 0xff, 0xb6, 0x66, 0xff, 0xff, 0xdb, 0xff,
  0xff, 0x10,
  0x12, 0xb4, 0x48, 0x00, 0x00, 0x28, 0x49, 0x44,
  0x41, 0x54,
  0x18, 0x95, 0x63, 0xe0, 0x42, 0x03, 0x0c, 0xe4, 0xa,
  0xb0, 0x30,
  0xb0, 0x12, 0x10, 0x60, 0xc3, 0x10, 0x60, 0x64, 0x27,
  0x20, 0xc0,
  0x81, 0x21, 0xc0, 0x84, 0x66, 0x2d, 0x27, 0x33, 0xc9,
  0xe7, 0x17, 0x00, 0x05, 0x3d, 0x09, 0x6f, 0xa9, 0xc3,
  0xf3, 0x36,
  0x00, 0x00, 0x00, 0x49, 0x45, 0x4e, 0x44, 0xae,
  0x42, 0x60,
```

```

    0x82)))
    # Use first item in input2 and input3 because they have been
    extended to length of input1
    whichMark <- findInterval(input1, c(-Inf, input2[1],
    input3[1]))
    # Wrap output list in I() so it remains one column in
    data.frame
    output <- I(marks[whichMark])", [Measure], 3.5, 4.5)

```

The resulting table in Spotfire shows the following.

Measure	Outliers
0	
1	
2	
3	
4	?
5	!

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_Boolean

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_Boolean` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `logical` (`TRUE` or `FALSE`), which is converted to a Spotfire column of the corresponding Spotfire data type `Boolean`.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	The TERR script contains the following. <ul style="list-style-type: none"> A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>logical</code> .	A column with the same number of rows as the input, and of the data type <code>Boolean</code> .

TERR_Boolean example

This example uses the Sales and Marketing visualization in the Spotfire example library. The column created by the example is used as the **Color by** control.

```
TERR_Boolean("output <- input1 > .10", [Class Change Yr 1 to Yr 2])
```

The resulting visualization in Spotfire shows the following.

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_DateTime

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_DateTime` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `POSIXct` or `POSIXlt`, which is converted to a Spotfire column of the corresponding Spotfire data type `DateTime`.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
<p>A vector or a single column data frame of data type <code>POSIXct</code> or <code>POSIXlt</code> with the time zone as UTC. Any data specified as NA in TERR maps to null in Spotfire.</p> <p>Do not use the <code>date</code> data type. (Spotfire converts <code>date</code> to data type <code>Real</code>.)</p>	A column with the same number of rows as the input, and of the data type <code>DateTime</code> .

TERR_DateTime

In this example, in Spotfire, create a column that has the current date and time, and then create a calculated column to truncate the seconds.

```
TERR_DateTime("output <- trunc(input1,'mins')", [DateTimeNow()])
```

The resulting table in Spotfire shows the following.

	DateNow()	Show no seconds
1	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM
	7/19/2017 3:22:20 PM	7/19/2017 3:22:00 PM

`DateTimeNow()` is a built-in Spotfire function.

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_Integer

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_Integer` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `integer`, which is converted to a Spotfire column of the corresponding Spotfire data type Integer.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>integer</code> .	A column with the same number of rows as the input, and of the data type Integer.

TERR_Integer example

This example data set gives information on the makes of cars taken from the April, 1990 issue of Consumer Reports (pages 235-255). This data set contains 6 columns for 61 cars (rows). You can find the sample data set in [Car data set for Spotfire examples](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

In the expression function, multiply the columns Disp. and Mileage to create a new column.

```
TERR_Integer("output <- as.integer(input1*input2)", [Disp.], [Mileage])
```


In the case where the output from the calculation might not be an integer, cast them as an integer by wrapping the expression in the TERR function `as.integer`.

The resulting table in Spotfire shows the following.

Column 1	Weight	Disp.	Mileage	Fuel	Disp times m...
Eagle Summit 4	2560	97	33	3.03	3201
Ford Escort 4	2345	114	33	3.03	3762
Ford Festiva 4	1845	81	37	2.70	2997
Honda Civic 4	2260	91	32	3.13	2912
Mazda Protege 4	2440	113	32	3.13	3616
Mercury Trace...	2285	97	26	3.85	2522
Nissan Sentra 4	2275	97	33	3.03	3201
Pontiac LeMan...	2350	98	28	3.57	2744
Subaru Loyale 4	2295	109	25	4.00	2725
Subaru Justy 3	1900	73	34	2.94	2482
Toyota Corolla 4	2390	97	29	3.45	2813
Toyota Tercel 4	2075	89	35	2.86	3115
Volkswagen J...	2330	109	26	3.85	2834
Chevrolet Ca...	3320	305	20	5.00	6100
Dodge Daytona	2885	153	27	3.70	4131

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_Real

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_Real` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `numeric`, which is converted to a Spotfire column of the corresponding Spotfire data type `Real`.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>numeric</code> .	A column with the same number of rows as the input, and of the data type <code>Real</code> .

TERR_Example

This example uses the TERR_PCA_Cars data sample from the Spotfire library. Select four columns (Name, Type, DealerCost, and DealerCost), and then add a column that calculates a minimum of 5% profit above dealer cost.

```
TERR_Real("output <- input1*1.05", [DealerCost]))
```

The resulting table in Spotfire shows the following.

Name	Type	DealerCost	RetailPrice	5% above dealer
Chevrolet Aveo 4dr	Sedan	10965	11690	11513.25
Chevrolet Aveo LS 4dr hatch	Sedan	11802	12585	12392.10
Chevrolet Cavalier 2dr	Sedan	13697	14610	14381.85
Chevrolet Cavalier 4dr	Sedan	13884	14810	14578.20
Chevrolet Cavalier LS 2dr	Sedan	15357	16385	16124.85
Dodge Neon SE 4dr	Sedan	12849	13670	13491.45
Dodge Neon SXT 4dr	Sedan	14086	15040	14790.30
Ford Focus ZX3 2dr hatch	Sedan	12482	13270	13106.10
Ford Focus LX 4dr	Sedan	12906	13730	13551.30
Ford Focus SE 4dr	Sedan	14496	15460	15220.80
Ford Focus ZX5 5dr	Sedan	14607	15580	15337.35
Honda Civic DX 2dr	Sedan	12175	13270	12783.75
Honda Civic HX 2dr	Sedan	12996	14170	13645.80
Honda Civic LX 4dr	Sedan	14531	15850	15257.55
Hyundai Accent 2dr hatch	Sedan	10107	10539	10612.35
Hyundai Accent GL 4dr	Sedan	11116	11839	11671.80
Hyundai Accent GT-2dr	Sedan	11209	11939	11769.45

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_String

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_String` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `character`, which is converted to a Spotfire column of the corresponding Spotfire data type `String` data type.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>character</code> . The returned output must be encoded as UTF-8.	A column with the same number of rows as the input, and of the data type <code>String</code> .

TERR_String example

This example data set gives information on the makes of cars taken from the April, 1990 issue of Consumer Reports (pages 235-255). This data set contains 6 columns for 61 cars (rows). You can find the sample data set in [Car data set for Spotfire examples](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

In the expression function, create a new column that adds the character string "ish" to the end of each entry from Type.

```
TERR_String("output <- paste(input1,'ish',sep=''),[Type])
```

The resulting table in Spotfire shows the following.

Column 1	Mileage	Type	New Type
Eagle Summit 4	33	Small	Smallish
Ford Escort 4	33	Small	Smallish
Ford Festiva 4	37	Small	Smallish
Honda Civic 4	32	Small	Smallish
Mazda Protege 4	32	Small	Smallish
Mercury Trace...	26	Small	Smallish
Nissan Sentra 4	33	Small	Smallish
Pontiac LeMan...	28	Small	Smallish
Subaru Loyale 4	25	Small	Smallish
Subaru Justy 3	34	Small	Smallish
Toyota Corolla 4	29	Small	Smallish
Toyota Tercel 4	35	Small	Smallish
Volkswagen J...	26	Small	Smallish
Chevrolet Ca...	20	Sporty	Sportyish
Dodge Daytona	27	Sporty	Sportyish
Ford Mustang V8	19	Sporty	Sportyish
Ford Probe	30	Sporty	Sportyish
Honda Civic C...	33	Sporty	Sportyish
Honda Prelude...	27	Sporty	Sportyish
Nissan 240SX 4	24	Sporty	Sportyish
Plymouth Laser	26	Sporty	Sportyish
Subaru XT 4	28	Sporty	Sportyish
Audi 80 4	27	Compact	Compactish
Buick Skylark 4	23	Compact	Compactish
Chevrolet Ber...	26	Compact	Compactish
Chrysler Le B...	25	Compact	Compactish
Ford Tempo 4	24	Compact	Compactish
Honda Accord 4	26	Compact	Compactish

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERR_TimeSpan

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERR_TimeSpan` from the **Function** list. This expression function invokes the TERR engine to return a vector or a single column data frame of the data type `diffTime`, which is converted to a Spotfire column of the corresponding Spotfire data type `TimeSpan`.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A vector or a single column data frame of data type <code>diffTime</code> .	A column with the same number of rows as the input, and of the data type <code>TimeSpan</code> .

TERR_TimeSpan example

In this example, in Spotfire, take thirty observations with a start time and an end time. You can find the sample data set in [Observation data set for Spotfire examples](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

Calculate the observation time for each entry.

```
TERR_TimeSpan("output <- difftime(input1, input2)",[End time], [Start time])
```

In the example, we named the resulting column `Elapsed time` and added the column to a table visualization. The resulting table in Spotfire shows the following.

Date	Start time	End time	Observation	Elapsed time
3/6/2017	1:57:21 PM	2:16:14 PM	Positive	18:53.000
3/7/2017	1:58:26 PM	2:18:22 PM	Positive	19:56.000
3/8/2017	2:02:37 PM	2:20:54 PM	Negative	18:17.000
3/9/2017	2:03:36 PM	2:15:42 PM	Negative	12:06.000
3/10/2017	1:58:45 PM	2:23:46 PM	Positive	25:01.000
3/11/2017	1:55:45 PM	2:21:39 PM	Negative	25:54.000
3/12/2017	1:58:42 PM	2:17:21 PM	Negative	18:39.000
3/13/2017	2:01:27 PM	2:25:33 PM	Negative	24:06.000
3/14/2017	2:02:48 PM	2:17:27 PM	Positive	14:39.000
3/15/2017	2:04:47 PM	2:22:26 PM	Negative	17:39.000
3/16/2017	2:00:32 PM	2:20:43 PM	Negative	20:11.000
3/17/2017	2:03:16 PM	2:16:25 PM	Positive	13:09.000
3/18/2017	2:06:18 PM	2:25:52 PM	Negative	19:34.000
3/19/2017	2:01:48 PM	2:21:46 PM	Positive	19:58.000
3/20/2017	1:54:37 PM	2:15:48 PM	Negative	21:11.000
3/21/2017	1:56:38 PM	2:25:12 PM	Negative	28:34.000
3/22/2017	1:57:52 PM	2:23:16 PM	Positive	25:24.000
3/23/2017	2:04:22 PM	2:23:53 PM	Positive	19:31.000
3/24/2017	2:02:37 PM	2:18:19 PM	Positive	15:42.000
3/25/2017	1:55:52 PM	2:21:24 PM	Negative	25:32.000
3/26/2017	1:58:37 PM	2:17:28 PM	Positive	18:51.000
3/27/2017	2:01:47 PM	2:25:16 PM	Negative	23:29.000
3/28/2017	2:02:45 PM	2:17:55 PM	Positive	15:10.000
3/29/2017	2:04:29 PM	2:22:58 PM	Negative	18:29.000
3/30/2017	1:55:01 PM	2:17:22 PM	Positive	22:21.000
3/31/2017	1:54:50 PM	2:19:45 PM	Positive	24:55.000

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERRAggregation_Binary

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_Binary` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `raw`, which Spotfire converts to the corresponding Spotfire data type `Binary`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	The TERR script contains the following. <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A single aggregated value of data type <code>raw</code> .	A single aggregated value of data type <code>Binary</code> .

TERRAggregation_Binary example

```
TERRAggregation_Binary("output <- input2[input1==max(input1)]",
[1])
```


Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERRAggregation_Boolean

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_Boolean` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `logical` (TRUE or FALSE), which Spotfire converts to the corresponding Spotfire data type `Boolean`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

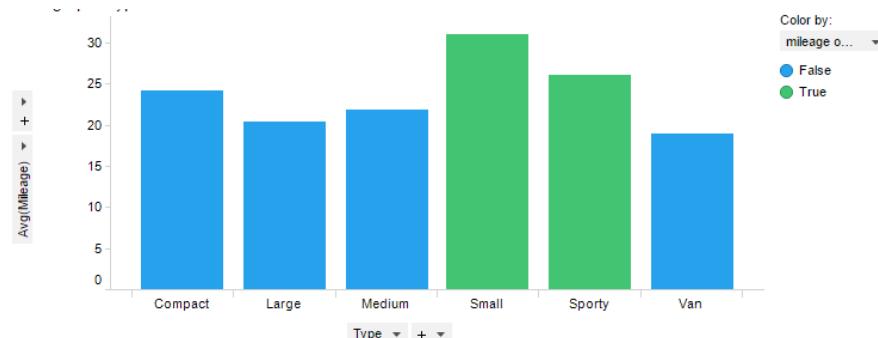
Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A single aggregated value of data type logical.	A single aggregated value of data type Boolean.

TERRAggregation_Boolean example

This example data set gives information on the makes of cars taken from the April, 1990 issue of Consumer Reports (pages 235-255). This data set contains 6 columns for 61 cars (rows). You can find the sample data set in [Car data set for Spotfire examples](#).



You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

In the expression function, determine which types of cars have an aggregated value of mileage over 30.

```
TERRAggregation_Boolean("output <- any(input1 > 30)", [Mileage])
OVER ([Type])
```

The resulting bar chart in Spotfire, with **Color by** set to the aggregation results, shows the following.

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERRAggregation_DateTime

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_DateTime` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `POSIXct` or `POSIXlt`, which Spotfire converts to the corresponding Spotfire data type `DateTime`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
<p>A single aggregated value of data type <code>POSIXct</code> or <code>POSIXlt</code> with the time zone as UTC. Any data specified as NA in TERR maps to null in Spotfire.</p> <p>Do not use the <code>date</code> data type. (Spotfire converts <code>date</code> to data type <code>Real</code>.)</p>	A single aggregated value of data type <code>DateTime</code> .

TERRAggregation_DateTime

```
TERRAggregation_DateTime("output <-max(input1, 'mins')", [x])
```


Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

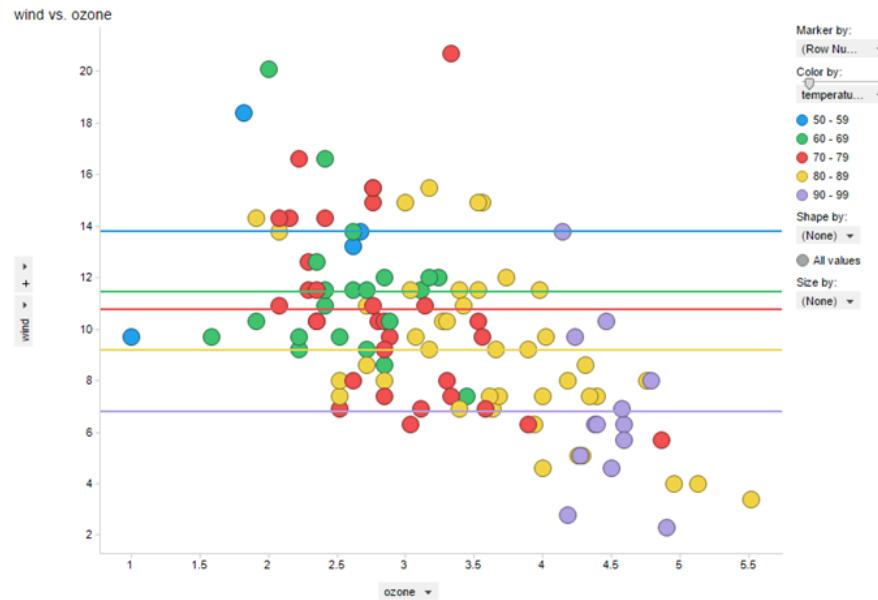
TERRAggregation_Integer

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_Integer` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `integer`, which Spotfire converts to the corresponding Spotfire data type `Integer`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.


Returned by TERR	Converted in Spotfire
A single aggregated value of data type <code>integer</code> .	A single aggregated value of data type Integer.

TERRAggregation_Integer example

You can work through the example in [Aggregating binned weather data using TERR in Spotfire](#), substituting TERRAggregation_Integer for TERRAggregation_Real. Make sure your inputs are integers, and that you wrap the expression in the TERR function as .integer to make sure the output data type is correct.

```
TERRAggregation_Integer("output <- as.integer(mean(input1))",
[Y])
```

The resulting table in Spotfire shows the following.

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

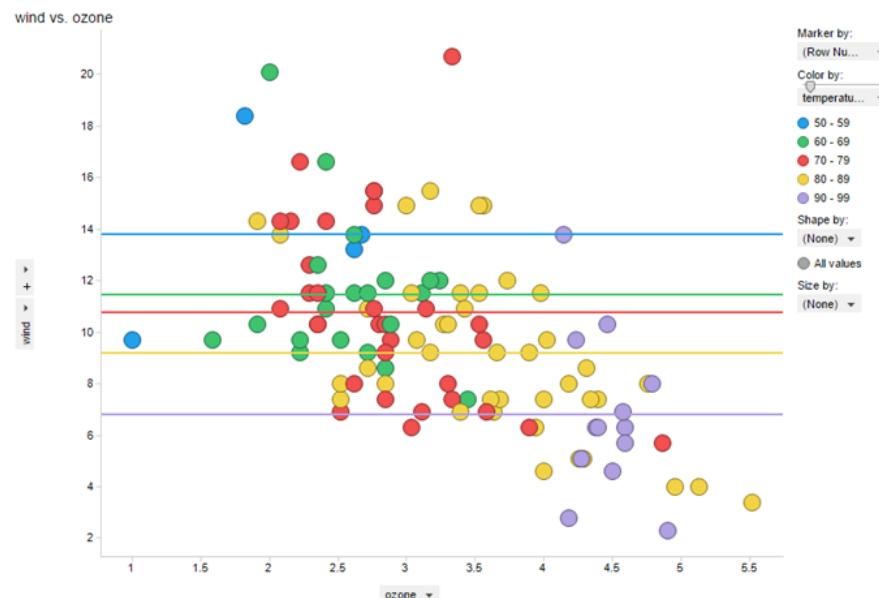
TERRAggregation_Real

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_Real` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `numeric`, which Spotfire converts to the corresponding Spotfire data type `Real`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.


Returned by TERR	Converted in Spotfire
A single aggregated value of data type numeric.	A single aggregated value of data type Real.

TERRAggregation_Real example

You can work through the example in [Aggregating binned weather data using TERR in Spotfire](#). That example adds a horizontal line on the Y axis for data provided in air data set for Spotfire examples.

```
TERRAggregation_Real("output <- mean(input1)", [Y])
```

The resulting table in Spotfire shows the following.

TERRAggregation_String

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_String` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `character`, which Spotfire converts to the corresponding Spotfire data type `String`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A single aggregated value of data type <code>character</code> . The returned output must be encoded as UTF-8.	A single aggregated value of data type <code>String</code> .

TERRAggregation_String example

```
TERRAggregation_String("output <- input2[input1==max(input1)]",
[1])
```


Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

TERRAggregation_TimeSpan

In the Spotfire Custom Expressions dialog box, you can select the pre-defined expression `TERRAggregation_TimeSpan` from the **Function** list. This expression function sets the variable `output` to a scalar value of the TERR data type `diffTime`, which Spotfire converts to the corresponding Spotfire data type `TimeSpan`. The TERR script is called once for each group of data to be aggregated. No special handling for aggregation is necessary in your TERR script.

The expression function has at least two arguments.

Argument	Argument description
A TERR script.	<p>The TERR script contains the following.</p> <ul style="list-style-type: none"> • A number of variables using the naming convention that Spotfire requires: <code>input1</code> to <code>inputN</code>, where <code>inputN</code> is the highest number of the specified inputs, numbered sequentially. • A TERR assignment operator (<code><-</code>) that assigns the results of the TERR evaluation to an object named <code>output</code> (also using the naming convention that Spotfire requires).

Argument	Argument description
Spotfire column names.	Passed as additional arguments, these are the data column names that <code>input1</code> to <code>inputN</code> represent. All columns must be the same length.

The output type is returned from TERR and converted by Spotfire.

Returned by TERR	Converted in Spotfire
A single aggregated value of data type <code>difftime</code> with units defined as seconds.	A single aggregated value of data type <code>TimeSpan</code> .

TERRAggregation_TimeSpan example

In this example, in Spotfire, take thirty observations with a start time and an end time. Calculate the observation time for each entry.

```
TERRAggregation_TimeSpan("output <- max(input2-input1)", [Start time], [End time])
```


Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

See [Embedding the contents of a script in an expression function](#) for a detailed procedure for creating an expression function.

Registering the TERR Script as an Expression Function

You can create write a TERR function, register it in Spotfire to call as an expression, and then use it in any analysis from the Custom Expression and Insert Calculated Column dialog boxes. You can also edit the saved expression function from the Spotfire user interface.

This task uses as its example a data set consisting of 30 consecutive dates and their temperatures in Fahrenheit. The expression function to write and save adds a column that converts the temperature to Celsius. To work through this example, you can copy the data set from [Temperature data set for Spotfire examples](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

Prerequisites

Copy the sample data set into Spotfire. (You can use any data set, and you can write any expression that works with your data type and visualization. This simple example expression is for demonstration only.)

Procedure

1. Create a visualization from the data. If you are using the data in this example, consider creating a line chart with the date on the X axis and the sum of the temperature on the Y axis.

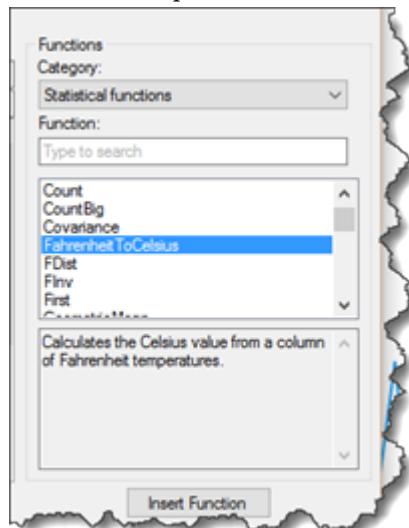
2. From the menu, click **Edit > Data Function Properties**, and in the Data Function Properties dialog box, click the tab **Expression Functions**.
3. In the Expression Functions tab, click **New** to open the Expression Function dialog box.
4. Provide the metadata for the expression function.

Field	Description
Name	Spotfire displays this name in the function list for both the Custom Expression and Insert Calculated Column dialog boxes. For the example, call it <code>FahrenheitToCelsius</code> .
Description	If you plan to reuse this expression function, providing a description of its purpose, design, or use is a good practice. This description is displayed in the both the Custom Expression and Insert Calculated Column dialog boxes.

In the example, consider adding the text from the code comments (denoted by a hash mark, #) from the example data. These comments provide information and guidance about the function body for other users.

Field	Description
Function type	Specify whether the function adds a column or a single, aggregated value. This example specifies a column. A column specifies the same number of rows as the input.
Return type	Specify the Spotfire data type the expression function returns. For this function, set the data type to Real . See Data type mapping for more information.
Category	Specify the function list to contain the expression function. The function list is displayed in the Custom Expression and Insert Calculated Column dialog boxes. Categorizing the functions makes it easier to find different types of functions in the Spotfire user interface. By default, expression functions are listed under Statistical functions .

See the help available from the Spotfire dialog box for more information about these fields.


5. In the **Script** text box, write the function script.

The script for the example data is written as follows.

```
# Define the FahrenheitToCelsius function.
FahrenheitToCelsius <- function(TempFahrenheit)
{
  TempCelsius <- (TempFahrenheit - 32) * (5/9)
  TempCelsius
}
# Create and run the function as an expression to produce the output
# input1 specifies the column of the data to use in the evaluation. (In this case, input1
# is TempFahrenheit)
# output is the column containing the values calculated by the function.
output <- FahrenheitToCelsius(TempFahrenheit = input1)
```

6. Click **OK** to save the expression function and add it to the list of functions in the Custom Expression and Insert Calculated Column dialog boxes.
7. Return to the Spotfire visualization, and from the menu, click **Insert > Calculated Column**.
8. In the Insert Calculated Column dialog box, click the **Category** drop-down, and from the list, select the category you set in **Statistical functions**.

The list displays the statistical functions in alphabetical order. For our example, the **FahrenheitToCelsius** is near the top of the list. Note that the description you provided when you created the expression function is displayed in the informational text.

9. Select the new expression function name, and then click **Insert Function**.

The function is inserted in the **Expression** text box. The example shows **FahrenheitToCelsius()**.

10. From the **Available columns** list, click the column to which to apply the function, and then click **Insert Columns**.
The example column is `Temp (F)`. This selection specifies that the calculation in the function is applied to each row of that column, and the new column contains the results of each calculation.
11. In **Column name**, provide a friendly name for the expression function.
For example, type `Temp (C)`.
If you do not perform this step, Spotfire uses the entire expression function as the column name.
12. Review the **Sample result**, and then click **OK** to run the expression function and return to the line chart visualization.
13. On the menu, click **Insert > Duplicate Visualization**.
A duplicate of the line chart is displayed.
14. In the data panel, select the new calculated column and drag it to the Y axis.
The Y axis shows the values as `Temp (C)`, or Celsius, instead of `Temp (F)`, or Fahrenheit.
15. Optional: Create a table visualization with all columns, including the new calculated column, and compare the values.

Result

The expression function you created is now registered in your installation of Spotfire Analyst. You can use the new expression function in other analyses with like data. Also, you can return to the Expression Functions dialog box and edit the expression function if you need to. (Any change you make to the expression function script is applied to any analysis that uses it.)

Embedding the Contents of a Script in an Expression Function

In the Insert Calculated Column or Custom Expression dialog box, you can use one of the Spotfire statistical functions, and embed a TERR script in the expression.

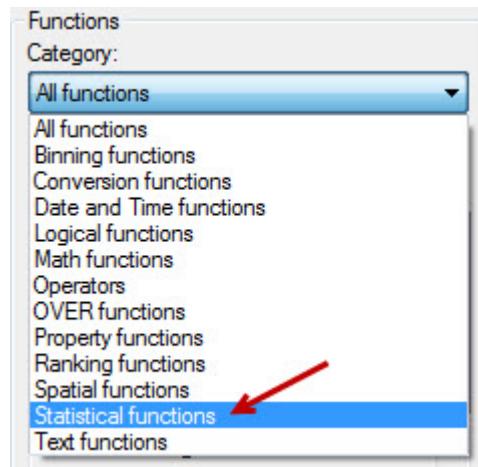
This task uses a sample data set Sales and Marketing, which is included in the Spotfire library, in the `Demo/Analysis Files/Sales and Marketing` folder. This simple example does not require statistical analysis. It is meant only to introduce concepts and workflow. This example demonstrates inserting a calculated column created from an expression function. You can try a similar technique using the Custom Expression dialog box, available by right-clicking the axis name.

Procedure

1. Open the Sales and Marketing example data set and add a page.

2. Create a scatter plot visualization, setting the X axis to Class Sales Yr 1 and the Y axis as Brand A Share Yr 1.

The resulting visualization appears as follows, with **Color by** set to Region.



3. From the menu, click **Insert > Calculated Column**.

The Insert Calculated Column dialog box is displayed.

4. From the **Functions** list box, under **Category**, click the drop-down arrow.

5. From the list, select **Statistical Functions**.

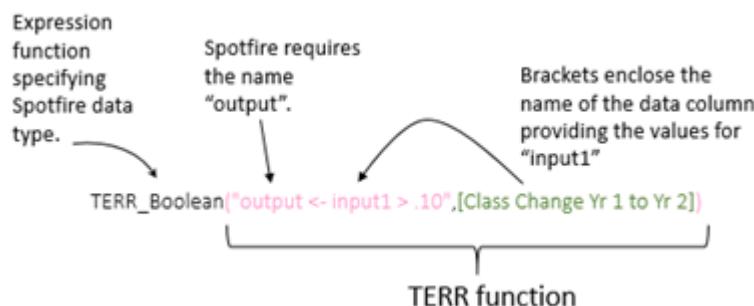
The **Function** list is filtered to show only the statistical functions.

6. In the list of statistical functions, find `TERR_Boolean`, and then double-click it.

By selecting `TERR_Boolean`, you specify that the values returned by the call to the TERR engine should be returned as logical, which Spotfire converts to Boolean.

The expression is inserted to the **Expression** text box, specifying the input name as `input1`, and the output name as `output`.

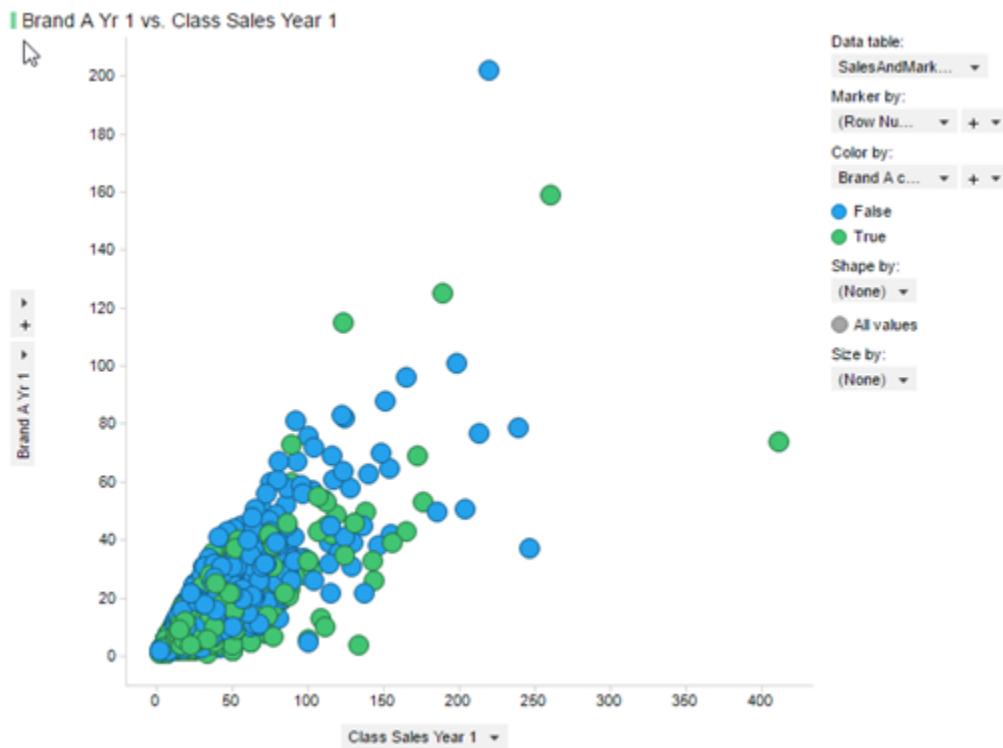
7. Place the cursor at the end of the expression, inside the closing parenthesis. This is where you add the column to which you apply the function.
8. From the **Available columns** list, double-click Class Change Yr 1 to Yr 2. The column [Class Change Yr 1 to Yr 2] is added to the expression.
9. Add the evaluation to perform in the expression.


For this example, specify the following: "output <- input1 > .10".

This evaluation determines which of the entries in the column specified by the column Class Change Yr 1 to Yr 2 grew by more than 10%.

Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.

The expression function is constructed, as follows.



The **Sample result** box displays a valid sample of the result, such as `False`, and the **Type** box displays `Boolean`.

10. In the **Column name** text box, rename the column to a friendly name. If you do not rename it, the column name is the entire expression function. For the example, you could change the name to `Brand A change greater than 10%`.
11. Click **OK** to run the expression. The new column created by the expression function is displayed in the Data panel under **Categories**.
12. Select the **Color by** drop-down, and from the list, select the expression function name.

Result

The visualization displays two colors to indicate which Brand A products increased by over 10% (`True`) and which did not (`False`).

Aggregating Binned Weather Data Using TERR in Spotfire

Using a TERR expression function to aggregate data, you can create a Spotfire visualization that provides greater insight. This simple, generic example adds a custom expression, demonstrating how you might use these functions, and others like them, in your own analyses.

Perform this task in Spotfire. This task uses the data set air, which you can find in [air data set for Spotfire examples](#).

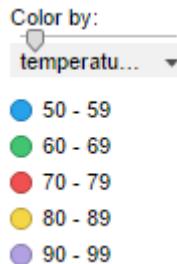
This data set is a data frame with observations (rows) on four variables (columns), taken from an environmental study that measured ozone, solar radiation, temperature, and wind speed for 5 months in 1973 in the New York City area.

Prerequisites

In Spotfire, load the air data. You can copy the table from the [air data set example](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

Procedure


1. Create a scatter plot, and set the axes as follows.

- Set the X-axis to ozone.
- Set the Y-axis to wind.

2. Click the **Color by** drop-down list, and in the resulting dialog box, select temperature, and select the **Auto-bin column** check box.

By default, the expression results in the expression `AutoBinNumeric([temperature], 5)`, which provides for 5 bins. You can change this value, but for the example, leave it at 5.

The scatter plot points are colored by temperature, binned into five ranges, appearing as follows.

3. Right-click the visualization, and from the menu, click **Properties**.

4. In the Properties dialog box, select **Lines & Curves**.

The Lines & Curves properties are displayed.

5. Click **Add > Horizontal Line > Straight Line**.

The Horizontal Line dialog box is displayed.

6. Click **Custom expression**, and then click **Edit**.

This location is just one of many ways you can access and create a custom expression in Spotfire.

7. In the Custom Expression dialog box, in the **Category** drop-down text box, select **Statistical functions**.

8. Scroll down the function list, and then from the list, double-click **TERRAggregation_Real**.

`TERRAggregation_Real` is specified because the column used in the expression (wind) is the data type Real. You must always use the expression reflecting the data type of the column to which it is applied.

The following expression, which specifies an aggregation of the data type Real, is displayed in the **Expression** text box.

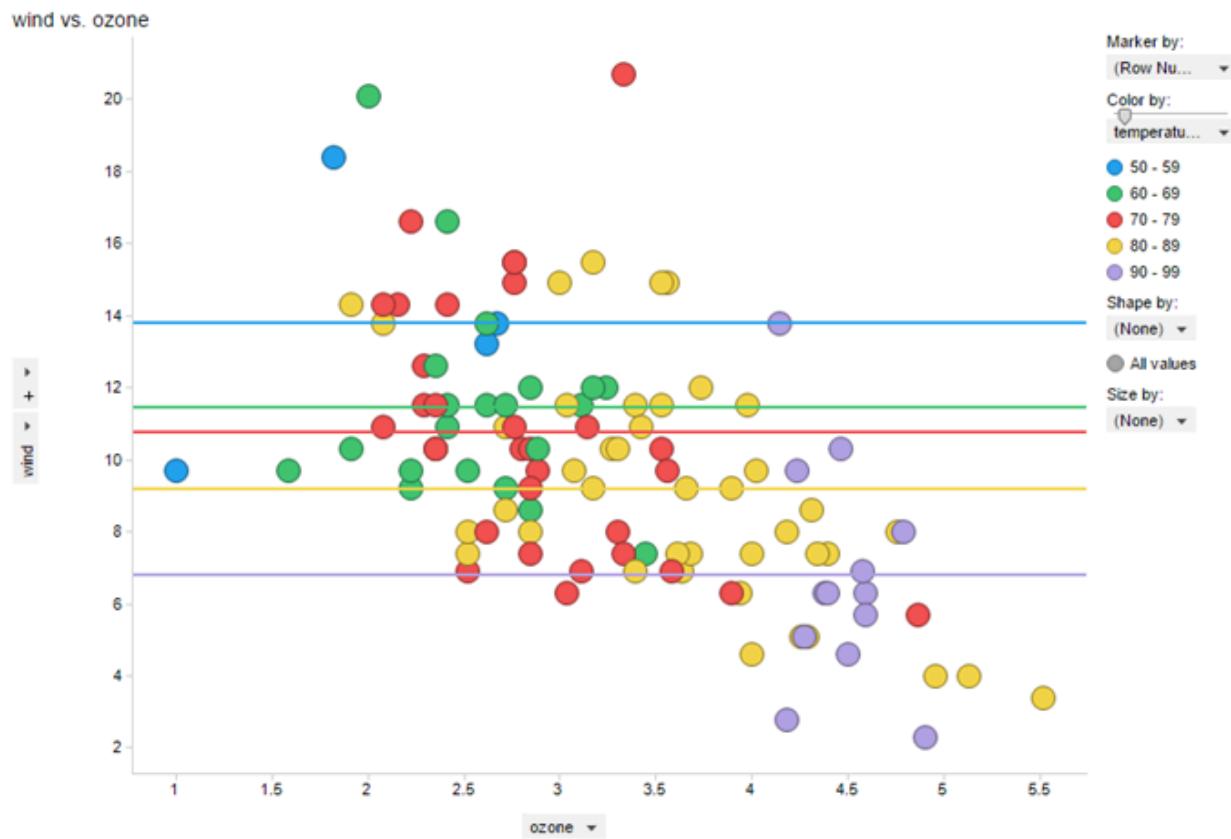
```
TERRAggregation_Real("output <- input1[1]",)
```

9. Edit the entry in the **Expression** text box to calculate the mean of the value of the Y axis (wind) for each of the bins.

The expression should read as follows.

```
TERRAggregation_Real("output <- mean(input1)", [Y])
```


Spotfire autocorrects the function case or name to that of built-in Spotfire function names. (For example, TERR contains the function `max`, and Spotfire contains the function `Max`.) You must overwrite this autocorrection manually to ensure that you use the TERR function case and name in your expression function.


10. After you have edited the expression, accept the changes to return to the Properties dialog box. The new entry, under **Visible lines and curves**, for the horizontal line based on the aggregation should be displayed, and its check box should be selected.

11. In the Properties dialog box, under **One per**, select the check box **Color**.

This selection specifies that one horizontal line should be displayed for each of the colors used for the **Color by** temperature binning.

Result

The resulting visualization is displayed, showing the horizontal colored lines (one for each of the five bins), indicating the mean of each bin for the column on the Y axis (wind).

Expression Function Editing

After creating and saving an expression function in Spotfire, you can edit it. You can edit an expression function that is saved and registered in the function list, or that is an ad-hoc expression.

Editing a Registered Expression Function

You can edit the script or other details of an expression function that you have saved and registered in Spotfire Analyst.

Edit a saved and registered expression function in the Spotfire Analyst user interface.

Prerequisites

You must have a registered expression function in Spotfire Analyst. See [Registering a TERR script as an expression function](#) for more information.

Procedure

1. From the menu, click **Edit > Data Function Properties**.
2. In the Data Function Properties dialog, click the **Expression Functions** tab.
3. In the **Expression functions** list, select the expression function to edit, and then click **Edit**. The Expression Function dialog containing the expression function definition is displayed.

4. Edit the **Script**, the **Function type**, the **Return type**, and the **Category**, as required. Be sure you specify the correct types, according to the script.
5. Click **OK**, and then click **Close** to save and rerun the data function. Review the results of the change in any visualization that uses the function.

Editing an Ad Hoc Expression Function

You can edit an ad hoc expression function that you have added as either a calculated column or custom expression.

You can change an expression function that you added as a calculated column. For information about editing an expression function that you added as a custom expression,

Prerequisites

You have added an ad hoc expression function and run it in your analysis. Spotfire Analyst is open, and the Data panel is displayed.

Procedure

1. In the Data panel, click the icon to expand the panel. The data table view is displayed.
2. From the data column list, select the expression function column name. The data panel displays the column view.
3. Click **Edit**. The Edit Calculated Column dialog is displayed.
4. Edit the **Expression** as required. Be sure you specify the correct types, according to the script.
5. Click **OK** to save and rerun the data function. Review the results of the change in any visualization that uses the function.

Data Functions

You can write data functions in R, S-PLUS, SAS, or MATLAB to perform statistical analyses and display the results in Spotfire.

Registering a Data Function in Spotfire

A data function is an embedded TERR script that you can save to the library and share with others. Spotfire Analyst includes several out-of-the-box data functions that you can study, edit and save, or run in example data sets. You can use this example task to learn to register a simple data function using a data set provided in the help.

Perform this task in Spotfire Analyst. Start by opening the data set contained in the help topic [Aggregation Data for Spotfire Examples](#) on page 81 and creating a table visualization of the three-column data set.

Prerequisites

You must have a license for advanced analytics in Spotfire Analyst. If you do not have access to the data function dialog box, see your Spotfire administrator.

Procedure

1. From the menu, click **Tools > Register Data Functions**.

2. In the Register Data Function dialog box, provide the data function basic information.

Option	Description
Name	Provide a name that is meaningful for the data function's intended functionality. For the example, name the data function aggregate.
Type	select the default, R script - TIBCO Enterprise Runtime for R . This selection specifies the type of statistical engine to use.
Packages	For this example, leave this text box blank. This exercise uses functionality in packages that are loaded at startup in TERR, so you do not need to install or load any additional packages.
Description	If you intend to share this data function for future use, you and other users can find additional information about the data function useful.
Allow caching	For the exercise, select the check box. (Clear this check box for a data function that evokes a random procedure, where you want the results to change each time it is run.)
Script	You can type the data function script directly in this text box, or you can copy and paste an R script you developed in RStudio or another development environment. See Step 3 for more detail about creating the script for the example. Alternatively, see one of the built-in data functions that ship with the TERR library examples of writing R code for a data function.

3. For the example, type the following script.

```
if (nrow(x) > 0) {
  y <- aggregate(x[, c("Group", "x1", "x2")], by=list(x[, "Group"]), FUN=median)
} else {
  y <- x
}
```

This example script body, including the output, the function, and the function arguments, includes the following.

if... else	Provided for error handling, the <code>if/else</code> statement ensures that if no rows are selected, the data function does not report an error.
y	The object containing the output of the function.
aggregate	The TERR function to run.
x	A <code>data.frame</code> (in TERR) that represents a data table in Spotfire Analyst. This object functions as the input parameter for the data function.
"Group", "x1", "x2"	The columns to aggregate.
by	An argument of the <code>aggregate</code> function that is specified as a list, which represents the vectors that we group by (in this case, the single vector, which is the <code>"Group"</code> column in the data set.)
FUN	An anonymous or in-line defined function, or a function available to use from one of the available packages in TERR, such as the <code>base</code> or <code>stats</code> package. This example specifies the <code>median</code> function from the <code>stats</code> package, which calculates the median of the input.

4. Click the **Input Parameter** tab, and then click **Add**.
The Input Parameters dialog box is displayed.

5. For the **Input parameter name**, assign `x`.

A data function can have any number of input parameters. This example has only one: the table named `x`.

6. In the **Type** drop-down list, select **Table**.

Remember in the script, you specified `x` as a data frame. The other choices are as follows.

Option	Corresponding type in TERR
Value	A vector of length 1.
Column	A vector.
Table	A data frame. (Select this option if you are working through the example.)

7. Select the **Allowed data types** for the script.

For the example, select **String** and all numeric data types: **Integer**, **Real**, **SingleReal**, and **Currency**.

Click **Numeric** to select all of the numeric data types.

8. Click **OK** to save the input parameter.

The Input Parameters tab displays the single parameter.

9. Click the tab **Output Parameter**, and then click **Add**.

The Output Parameter dialog box is displayed.

10. For the **Result parameter name**, designate `y`, and specify its **Type** as **Table**.

For anything you create in the script that you then pass into Spotfire, you must designate as an output parameter.

11. Click **OK** to save the output parameter.

The Output Parameters tab displays the single parameter.

What to do next

[Edit the parameters](#) for the data function.

Editing Data Function Parameters

After you have registered a data function in Spotfire Analyst, you can save it to the library to be used by others, or you can edit the parameters, and then embed it in your analysis.

Perform this task in Spotfire Analyst, from the Register Data Function dialog box.

Prerequisites

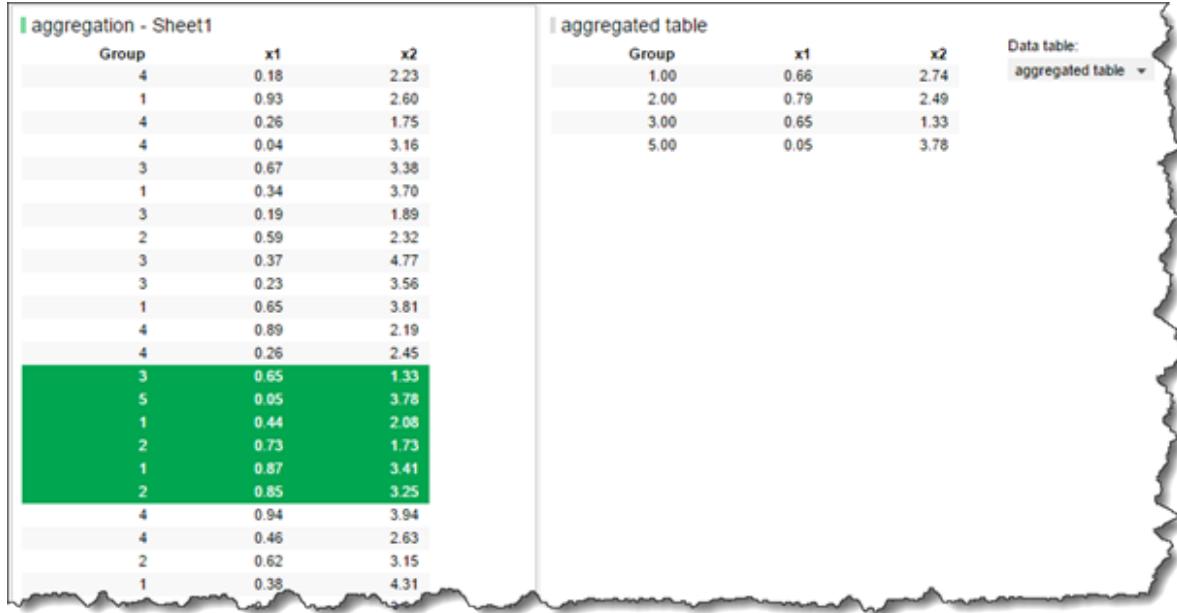
You must have completed the steps in [Registering a Data Function in Spotfire](#) on page 70.

Procedure

1. Click **Run** to save the data function and embed it into the analysis.

Optionally, you can click **Save As** to save the analysis to the library, but for the example, continue testing the data function by running it.

The Edit Parameters dialog box is displayed.


2. In the Edit Parameters dialog box, in the Input tab, provide the following settings.

Option	Description
Refresh function automatically	For the example, select the check box to update the results from the data function automatically each time the input settings are changed. If the check box is cleared, you must perform a manual refresh for any updates to take effect.

Option	Description
Input parameters	Lists the input parameters for the data function. For the example, this table displays the example's one parameter, <code>x</code> .
Input handler	<p>Lists all possible input handlers for the selected input parameter. The settings populating the dialog box depend on the selected input parameter. By default, the option None is selected. For the example, select Columns. In the resulting options, specify the following.</p> <ul style="list-style-type: none"> Click Select Columns, and then add all columns (<code>Group</code>, <code>x1</code>, and <code>x2</code>). Scroll down and under Limit by, select Marking.

- Click the Output tab and, for the example output parameter (`y`), set the **Output handler** to **Data table**.
- Accept the default **Create new data table**, provide a suitable table name, and then click **OK** to run the data function.
- In the Register Data Functions dialog box, click **Close**.
You are prompted to save the data function to the library. Click **Yes** to save it for reuse, or **No** to just continue running the example.
- On the Spotfire Analyst toolbar, click the **Table** visualization icon to add a second table.
- In the second table, from the **Data table** drop-down list box, select the table you created with the data function.
The table visualization is blank.
- In the first table, select a range of rows.

The second table is populated with an aggregation from the selection in the first table.

Importing TERR Data Sets Using a Data Function

Several sample data sets are included in this help as HTML tables that you can copy and paste into Spotfire, but you can also write a data function to import data sets available in the TERR library `Sdatasets`.

Perform this task in Spotfire if you need sample data to model. You can find descriptions of the data sets in the Sdataset package included with TERR, and embedded in Spotfire. See [Getting Help with TIBCO Enterprise Runtime for R](#).

Prerequisites

You must have a license for advanced analytics in Spotfire. If you do not have access to the data function dialog box, see your Spotfire administrator.

Procedure

1. From the menu, click **Tools > Register Data Functions**.
2. In the Register Data Functions dialog box, provide a name and a description. If you are working through the example, provide the following.

Option	Description
Name	air
Description	Observations (rows) on four variables (columns), taken from an environmental study that measured ozone, solar radiation, temperature, and wind speed for 5 months in 1973 in the New York City area.
3. In the Register Data Functions dialog box, in the Script tab, type the data function to import the data from the library. The name includes the name of the data object to create, the assignment operator, and the data set (including the library name) to import, in the form *library*::*data*. If you are working through the example, type the following.


```
airdata <- Sdatasets::air
```
4. Click the Output Parameters tab, and then click **Add**. The Output Parameter dialog box is displayed.
5. Provide the output name, and from the **Type** drop-down list box, select **Table**.
6. Click **OK**, and then in the Register Data Functions dialog box, click **Run** to run the data function. The Edit Parameters is displayed.
7. In the Edit Parameters dialog box, click the Output tab, and for the **Output handler**, select **Data table**.
8. Click **OK** to create the data table, and then in the Register Data Functions dialog box, click close. You are prompted to save the data function to the library. Click **Yes** to save it to the library, or click **No** to close without saving it.

Result

The data panel displays the column names, and the data is ready to use.

Testing Data Functions Inside and Outside of Spotfire

When you test a data function, to make sure you get consistent results in both the TERR engine in RStudio and the TERR engine in Spotfire, use the same data format and the same TERR engine in both environments.

When you read a .csv file containing your data, the TERR or open-source R function `read.table` performs a different data conversion than the conversion performed when you import the same data into Spotfire. The difference in these conversions can cause unwanted differences.

Perform this task in Spotfire Analyst.

Prerequisites

RStudio is installed on your computer.

Procedure

1. Import the file containing your data into Spotfire.
Typically, this file is in `.csv` or a similar format.
 - a) From the menu, click **File > Open**, and browse to the data file.
 - b) In the Import Settings dialog, confirm the column data types, and then click **OK**.
The data is imported, and a recommended visualization is displayed.
2. From the menu, click **File > Export > Data to File**.
The Export Data dialog is displayed.
3. Select **Export all rows**, and then click **OK**.
4. Browse to the location to store the exported data, and in the **Save as type** drop-down list box, select **TIBCO Spotfire Binary Data Format (*.sbdf)**.
5. From the menu, click **Tools > TERR Tools**, and then click **Launch RStudio IDE**.
RStudio opens, with the configuration to run the TERR engine that is included with Spotfire.
6. At the command prompt, read in the data using the following command.

```
myData <- SpotfireData::importDataFromSBDF("myData.sbdf")
```

where `myData` is the object name and `myData.sbdf` is the path and the name of the file you saved.

The path to the file should use forward slashes instead of backslashes.

The data file is imported into TERR in the same format as is used in Spotfire. This is the same process that is used when data is loaded in the data function.

7. In the RStudio IDE, create and test the function that you plan to use in Spotfire as your data function.

If the data function is given zero rows of data (for example, if the data function is configured to be given only marked data, and initially there is often no marked data), in TERR, you can test the function for that possibility by specifying the source of the data as `myData[0,]`. Then testing shows all of the columns of the original data but no rows.
8. Copy the function to use in your data function, and then close RStudio.
9. In Spotfire, register and run the new data function.
10. If you see unexpected results when you run the data function in Spotfire, try the following.
 - a) In Spotfire, at the top of the data function, add the following line of code, and then run it.
`save.image("/winfolder/DataFunction.RData")`
where `winfolder` is the Windows folder where to store the `.RData` file.
 - b) In RStudio, at the top of the TERR function, add the following line of code, and then run through each line.
`load("/winfolder/DataFunction.RData")`
where `winfolder` is the Windows folder where to store the `.RData` file.
(This loads the data that the data function got from Spotfire.)

Result

Identify differences; you should have the same results in both environments.

Enabling Debugging for Data Functions

In Spotfire Analyst, set the option to debug data function.

Perform this task in Spotfire Analyst.

Prerequisites

You must have the advanced analytics license to use the TERR toolset. If you do not have this license, see your Spotfire administrator.

Procedure

1. From the Spotfire Analyst menu, click **Tools > Options**.
2. From the list, click **Data Functions**.
3. In the Data Functions page, select **Enable Data function debugging**, and then click **OK** to accept the change.

Result

For any data function you run, Spotfire Analyst captures and displays the printed debugging output and any error that occurs. You can access the debugging output from the Details message displayed in the lower left corner of the Spotfire Analyst user interface.

Online Details (1) ...

 Remember that when you enable debugging, performance can be affected, and a great deal of debugging information can be written, depending on the size of the data set and the complexity of the analysis. You should enable debugging only when it is needed.

Building a Spotfire Control to Check the Debugging Option

You can create a data function that uses the Spotfire debugging flag to check if data function debugging is enabled, and then use a Spotfire control to report the status of the debugging option.

Being able to determine quickly if you have set the debugging option for your data functions is a useful developing technique. Perform this task in Spotfire Analyst.

Prerequisites

- You must have the Advanced Analytics license in Spotfire Analyst to use the data function feature. If you do not see the menu item, contact the Spotfire administrator.
- Load a data set or an existing visualization to use for testing the debugging flag. If you are starting with a blank Spotfire Analyst session, you can use one of the data sets provided as examples. Follow the instructions in [Importing TERR Data Sets Using a Data Function](#) on page 73.

Procedure

1. From the Spotfire Analyst menu, click **Tools > Register Data Functions**.

2. Register the new data function.

a) In the **Name** text box, provide a meaningful name, such as `DebugFlagTest`.

b) Clear the check box **Allow caching**.

You must ensure there is no caching so that the data function checks the option each time you send a request.

c) In the **Script** tab, write the following script.

```
#create an object to check if the data function debugging option is set.
debug <-getOption("debug.spotfireConnector", FALSE)

#create an object to hold the output text reporting if the option is set.
x<- "Debugging is not enabled."
if (debug) x <- "Debugging is enabled."
```

For more information about the `getOption` function, see the *TERR Language Reference*.

d) Click the **Output Parameters** tab, and then click **Add** to specify the output parameter.

e) For the **Result parameter name**, specify `x`, and for the **Type**, select **Value**.

f) Click **OK**, and then click **Run**.

The **Edit Parameters** dialog box is displayed.

g) Clear the **Refresh function automatically check box**, and then select the **Output** tab.

h) In the **Output parameters** list box, select the `x` output parameter, and for **Output handler**, select **Document property**.

i) Click **New**, and in the **New Property** dialog box, for **Name**, type `DebugFlag`.

j) Click **OK**, and then close the **Register Data Functions** dialog box.

You are prompted to save the data function to the library.

k) Click **Yes** to save the data function in the library so you can use it in all of your data-function-enabled visualizations.

3. Create a text area to provide the information returned from the data function.
 - a) Add a Text Area to the visualization, and in the Text Area title bar, click the **Edit Text Area** button.
 - b) Click the **Insert Property Control** button, and from the list, select **Label**.
The Property Control dialog box is displayed.
 - c) In the Document Properties tab, accept the default.
The new property should be selected, and the Value should be the value you provided in the data function.
 - d) Click OK to insert the label control.
 - e) In the Edit Text Area window, click the **Insert Action Control** button.
The Action Control dialog box is displayed.
 - f) In the Actions pane, select **Data Function**.
 - g) Provide **Display text**, such as Refresh.
 - h) From the **Control type** drop-down list box, select **Button**.
 - i) From the **Available data functions** list box, select the data function you created.
 - j) Click **OK** to accept the changes.
 - k) Move the button in the text area to an appropriate position in relation to the label control, and then close the Edit Text Area window, saving the changes.
 - l) Optional: Provide a descriptive title for the text area (or remove the title), and resize the text area to an appropriate size.
4. Test the new controls.
 - a) In the text box you created, click the button.
The label control text should reflect the state of the data function debugging option.
 - b) From the menu, click **Tools > Options**, and in the Options dialog box, scroll and select **Data Functions**, and then change the state of the **Enable Data Function debugging** check box, and save the change.
 - c) In the text area, click the button again. The status should change to reflect the current state of the data function debugging option.

Debug a Simple Data Function

When you write a TERR data function to add to your Spotfire analysis, you can use the built-in debugging feature in Spotfire Analyst to examine the output debugging log, and you can find and fix problems with the data function directly from within the Spotfire Analyst environment.

The three tasks in this section introduce the debugging output, introduces a technique for checking your code at different points in its execution, and exporting the results of the data function to analyze outside of Spotfire Analyst.

Debugging a Simple Data Function

Create a simple data function and then examine the debugging output in Spotfire Analyst.

Create this example using any sample data set in Spotfire Analyst. The example described in this topic uses the geyser data set from the Sdatasets package in TERR.

Prerequisites

- You must have the advanced analytics license to use the TERR toolset. If you do not have this license, see your Spotfire administrator.
- You must have [Enabling Debugging for Data Functions](#) on page 76.

Procedure

1. Open a data set in Spotfire Analyst.

This example uses the TERR dataset `sdatasets::geyser`. Follow the instructions in [Importing TERR Data Sets Using a Data Function](#) on page 73. Alternatively, you can use any data set.

2. Register a data function.

This example shows a simple data function that assigns one table to another table.

- a) In the **Name** text box, provide a meaningful name, such as `Debug Testing`.
- b) In the **Script** tab, write a simple script to assign the existing table to a new table.

```
# This data function assigns the table y to the object x to create a new table.
x <- y
```

- c) On the **Input Parameters** tab, add the input parameter (in the example above, `y`) as a table, and allow all data types.
- d) On the **Output Parameters** tab, add the output parameter (in the example above, `x`) as a table.
- e) Click **OK**, and then click **Run**.
The **Edit Parameters** dialog box is displayed.
- f) In the **Edit Parameters** dialog box, for the **Input parameter** `y`, specify the **Input handler** as an **Expression**.
- g) In the **Expression** text box, provide an expression.

The example uses the following Spotfire expression, which uses property calls to create the new visualization. (See the topic *Properties in Expressions* in the Spotfire Help for property calls if you want more information on the property calls `$map`, `$esc`, and `$csearch`.)

```
$map("[geyser].$esc($csearch([geyser], "*"))", "", "")
```

- h) Click **OK** to run the data function.
You should see the yellow notification triangle indicating that the data function ran and the results are in the debugger.
- i) Open the **Notifications** dialog box and review the debugging output.

 Data function Debug Testing debug output


```
Unmarshalling 1 input parameters.
Input 'y', sent by inline XML
data.frame w/ 299 obs. of 2 variables:
$waiting: num[1:299] 80 71 57 80 75 77 60 86 77 56..
.. - attr(*, "SpotfireColumnMetaData")= list:
```

- j) Clear the debugger, and then close the **Notifications** dialog box.

What to do next

Try writing a `cat` statement in the data function.

Adding a cat Statement to the Data Function

A `cat` or a `print` statement is useful for understanding your code's behavior. For example, you can use it to check the success of a condition, or to make a note in the output at a specific time when the code is running.

This example builds on the data function created in the example [Debugging a Simple Data Function](#) on page 78. You can add a `cat` statement to any data function.

Prerequisites

- You must have the advanced analytics license to use the TERR toolset. If you do not have this license, see your Spotfire administrator.
- You must have [Enabling Debugging for Data Functions](#) on page 76.
- You must have completed the example [Debugging a Simple Data Function](#) on page 78, or you must have your own data function that you want to debug.

Procedure

1. On the Spotfire Analyst menu, click **Edit > Data Function Properties**, and then in the Data Function Properties dialog box, click **Edit Script** to return to the data function script.
2. Add a `cat` statement to the script.

If you are working through the example, add the `for` loop, shown below, and then save and close the script.

```
# For the example, insert a script that simply prints an iteration.
for (i in 1:10) {
  cat("iteration", i, "\n")
}
# The existing data function example
x <- y
```

3. Click **Refresh**, and then close the dialog box.
4. Open the Notifications dialog box and review the debugging output. You should see the iteration in the debug output.
5. Close the Notifications dialog box.

What to do next

Try exporting the data function results to view in RStudio.

Exporting the Data Function Results

Being able to examine the data and the code outside of Spotfire Analyst is an important capability in developing robust data functions.

This example builds on the data function created in the example [Debugging a Simple Data Function](#) on page 78. You can export any data function using the code in this example.

Prerequisites

- You must have the advanced analytics license to use the TERR toolset. If you do not have this license, see your Spotfire administrator.
- You must have RStudio installed on your computer. for more information, see [Configure RStudio to use TIBCO Enterprise Runtime for R](#) on page 270.
- You must have [Enabling Debugging for Data Functions](#) on page 76.

- You must have completed the example [Debugging a Simple Data Function](#) on page 78, or you must have your own data function that you want to debug.

Procedure

1. On the Spotfire Analyst menu, click **Edit > Data Function Properties**, and then in the Data Function Properties dialog box, click **Edit Script** to return to the data function script.
2. Add the following code to the top of the data function.

```
z <-getOption("debug.spotfireConnector", FALSE)
if (z) save(list=ls(), file="C:/temp/debug.RData", RFormat=TRUE)
```

This function determines whether the debugging option for TERR is set, and if it is, the data function debugging results are written to an .RData file. You can specify any directory, as long as you have write access to the directory.

3. Save the data function, and then click **Refresh** to run it.
You can review the debugging results in the Notifications dialog box, if you want to.
4. From the **Tools > TERR Tools** menu, open TERR Tools, and then open RStudio.
RStudio development environment opens, running TERR.
5. Open the .RData file you created by running the data function, and then examine the results.

Sample Data Sets

For your convenience, this help reference includes sample data sets. You can copy the contents of these tables to Spotfire to use in tasks and exercises to learn how to call TERR expression functions.

Alternatively, you can write a TERR data function that imports one or more data sets into Spotfire from TERR. See [Importing TERR Data Sets Using a Data Function](#) on page 73 for more information.

Aggregation Data for Spotfire Examples

Use this data set for the task for learning to write TERR data functions in Spotfire. This data set has one column of groups (1-5) and two columns of numeric variables. You can use this sample create an aggregated table based on selections you make in this table.

Use this data set to build the example in [Registering a Data Function in Spotfire](#) on page 70.

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

groups data set

Group	X1	X2
3	0.59	2.54
5	0.93	1.11
4	0.78	4.10
1	0.52	2.86
5	0.92	2.00
5	0.65	3.25

Group	X1	X2
3	0.16	4.92
2	0.44	4.92
4	0.28	2.18
1	0.54	2.48
2	0.74	2.54
2	0.92	2.67
4	0.18	2.23
1	0.93	2.60
4	0.26	1.75
4	0.04	3.16
3	0.67	3.38
1	0.34	3.70
3	0.19	1.89
2	0.59	2.32
3	0.37	4.77
3	0.23	3.56
1	0.65	3.81
4	0.89	2.19
4	0.26	2.45
3	0.65	1.33
5	0.05	3.78
1	0.44	2.08
2	0.73	1.73
1	0.87	3.41
2	0.85	3.25
4	0.94	3.94
4	0.46	2.63
2	0.62	3.15

Group	X1	X2
1	0.38	4.31
5	0.42	3.31
3	0.69	3.17
1	0.53	0.69
5	0.28	5.38
4	0.97	3.35
4	0.97	1.57
3	0.65	3.26
1	0.79	3.80
2	0.71	4.63
2	0.2	1.33
1	1	1.83
2	0.1	0.79
5	0.49	3.62
3	0.86	2.70
4	0.08	3.14

Air Data Set for Spotfire Examples

Use this data set for the task for learning to write TERR expression functions in a custom expression in Spotfire. This data set has four columns taken from an environmental study that measured ozone, solar radiation, temperature, and wind speed for five months in 1973 in the New York City area.

Use this data set to build the example in [Aggregating Binned Weather Data Using TERR in Spotfire](#) on page 67.

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

air data set

ozone	radiation	temperature	wind
3.44821724038273	190	67	7.4
3.30192724889463	118	72	8
2.28942848510666	149	74	12.6
2.6207413942089	313	62	11.5

ozone	radiation	temperature	wind
2.84386697985157	299	65	8.6
2.66840164872194	99	59	13.8
2	19	61	20.1
2.51984209978975	256	69	9.7
2.22398009056931	290	66	9.2
2.41014226417523	274	68	10.9
2.6207413942089	65	58	13.2
2.41014226417523	334	64	11.5
3.23961180127748	307	66	12
1.81712059283214	78	57	18.4
3.10723250595386	322	68	11.5
2.22398009056931	44	62	9.7
1	8	59	9.7
2.22398009056931	320	73	16.6
1.5874010519682	25	61	9.7
3.1748021039364	92	61	12
2.84386697985157	13	67	12
3.55689330449006	252	81	14.9
4.86294413109428	223	79	5.7
3.33222185164595	72	12.6	7.4
3.07231682568585	127	82	9.7
4.14081774942285	291	90	13.8
3.39121144301417	323	87	11.5
2.84386697985157	148	82	8
2.75892417638112	191	77	14.9
3.33222185164595	284	72	20.7
2.71441761659491	37	65	9.2
2.28942848510666	120	73	11.5

ozone	radiation	temperature	wind
2.35133468772076	137	76	10.3
5.12992784003009	269	84	4
3.65930571002297	248	85	9.2
3.1748021039364	236	81	9.2
4	175	83	4.6
3.41995189335339	314	83	10.9
4.25432086511501	276	88	5.1
4.59470089220704	267	92	6.3
4.59470089220704	272	92	5.7
4.39682967215818	175	89	7.4
2.15443469003188	264	73	14.3
3	175	81	14.9
1.91293118277239	48	80	14.3
3.63424118566428	260	81	6.9
3.27106631018859	274	82	10.3
3.93649718310217	285	84	6.3
4.29084042702621	187	87	5.1
3.97905720789639	220	85	11.5
2.51984209978975	7	74	6.9
4.30886938006377	294	86	8.6
4.7622031559046	223	85	8
2.71441761659491	81	82	8.6
3.73251115681725	82	86	12
4.34448148576861	213	88	7.4
3.68403149864039	275	86	7.4
4	253	83	7.4
3.89299641587326	254	81	9.2
3.39121144301417	83	81	6.9

ozone	radiation	temperature	wind
2.0800838230519	24	81	13.8
2.51984209978975	77	82	7.4
4.9596756638423	255	89	4
4.46474509558454	229	90	10.3
4.79141985706278	207	90	8
3.53034833532606	192	86	11.5
3.03658897187566	273	82	11.5
4.02072575858906	157	80	9.7
2.80203933065539	71	77	10.3
3.89299641587326	51	79	6.3
2.84386697985157	115	76	7.4
3.14138065239139	244	78	10.9
3.53034833532606	190	78	10.3
2.75892417638112	259	77	15.5
2.0800838230519	36	72	14.3
3.55689330449006	212	79	9.7
5.51784835276224	238	81	3.4
4.17933919638123	215	86	8
4.23582358425489	203	97	9.7
4.90486813152402	225	94	2.3
4.37951913988789	237	96	6.3
4.39682967215818	188	94	6.3
4.57885697021333	167	91	6.9
4.27265868169792	197	92	5.1
4.17933919638123	183	93	2.8
4.49794144527541	189	93	4.6
3.60882608013869	95	87	7.4
3.1748021039364	92	84	15.5

ozone	radiation	temperature	wind
2.71441761659491	252	80	10.9
2.84386697985157	220	78	10.3
2.75892417638112	230	75	10.9
2.88449914061482	259	73	9.7
3.53034833532606	236	81	14.9
2.75892417638112	259	76	15.5
3.03658897187566	238	77	6.3
2.0800838230519	24	71	10.9
2.35133468772076	112	71	11.5
3.58304787101595	237	78	6.9
2.6207413942089	224	67	13.8
2.35133468772076	27	76	10.3
2.88449914061482	238	68	10.3
2.51984209978975	201	82	8
2.35133468772076	238	64	12.6
2.84386697985157	14	71	9.2
3.30192724889463	139	81	10.3
1.91293118277239	49	69	10.3
2.41014226417523	20	63	16.6
3.10723250595386	193	70	6.9
2.41014226417523	191	75	14.3
2.6207413942089	131	76	8
2.71441761659491	223	68	11.5

Car Data Set for Spotfire Examples

Use this data set for the task for learning to write TERR expression functions in a custom expression in Spotfire. This data set gives information on makes of cars taken from the April, 1990 issue of Consumer Reports (pages 235-255). This data set contains 6 columns for 61 cars (rows).

Use this data set to build the example in [TERR_Integer](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

car data set

Car	Weight	Disp	Mileage	Fuel	Type
Eagle Summit 4	2560	97	33	3.030303	Small
Ford Escort 4	2345	114	33	3.030303	Small
Ford Festiva 4	1845	81	37	2.702703	Small
Honda Civic 4	2260	91	32	3.125	Small
Mazda Protege 4	2440	113	32	3.125	Small
Mercury Tracer 4	2285	97	26	3.846154	Small
Nissan Sentra 4	2275	97	33	3.030303	Small
Pontiac LeMans 4	2350	98	28	3.571429	Small
Subaru Loyale 4	2295	109	25	4	Small
Subaru Justy 3	1900	73	34	2.941176	Small
Toyota Corolla 4	2390	97	29	3.448276	Small
Toyota Tercel 4	2075	89	35	2.857143	Small
Volkswagen Jetta 4	2330	109	26	3.846154	Small
Chevrolet Camaro V8	3320	305	20	5	Sporty
Dodge Daytona	2885	153	27	3.703704	Sporty
Ford Mustang V8	3310	302	19	5.263158	Sporty
Ford Probe	2695	133	30	3.333333	Sporty
Honda Civic CRX Si 4	2170	97	33	3.030303	Sporty
Honda Prelude Si 4WS 4	2710	125	27	3.703704	Sporty
Nissan 240SX 4	2775	146	24	4.166667	Sporty
Plymouth Laser	2840	107	26	3.846154	Sporty
Subaru XT 4	2485	109	28	3.571429	Sporty
Audi 80 4	2670	121	27	3.703704	Compact
Buick Skylark 4	2640	151	23	4.347826	Compact
Chevrolet Beretta 4	2655	133	26	3.846154	Compact

Car	Weight	Disp	Mileage	Fuel	Type
Chrysler Le Baron V6	3065	181	25	4	Compact
Ford Tempo 4	2750	141	24	4.166667	Compact
Honda Accord 4	2920	132	26	3.846154	Compact
Mazda 626 4	2780	133	24	4.166667	Compact
Mitsubishi Galant 4	2745	122	25	4	Compact
Mitsubishi Sigma V6	3110	181	21	4.761905	Compact
Nissan Stanza 4	2920	146	21	4.761905	Compact
Oldsmobile Calais 4	2645	151	23	4.347826	Compact
Peugeot 405 4	2575	116	24	4.166667	Compact
Subaru Legacy 4	2935	135	23	4.347826	Compact
Toyota Camry 4	2920	122	27	3.703704	Compact
Volvo 240 4	2985	141	23	4.347826	Compact
Acura Legend V6	3265	163	20	5	Medium
Buick Century 4	2880	151	21	4.761905	Medium
Chrysler Le Baron Coupe	2975	153	22	4.545455	Medium
Chrysler New Yorker V6	3450	202	22	4.545455	Medium
Eagle Premier V6	3145	180	22	4.545455	Medium
Ford Taurus V6	3190	182	22	4.545455	Medium
Ford Thunderbird V6	3610	232	23	4.347826	Medium
Hyundai Sonata 4	2885	143	23	4.347826	Medium
Mazda 929 V6	3480	180	21	4.761905	Medium
Nissan Maxima V6	3200	180	22	4.545455	Medium
Oldsmobile Cutlass Ciera 4	2765	151	21	4.761905	Medium

Car	Weight	Disp	Mileage	Fuel	Type
Oldsmobile Cutlass Supreme V6	3220	189	21	4.761905	Medium
Toyota Cressida 6	3480	180	23	4.347826	Medium
Buick Le Sabre V6	3325	231	23	4.347826	Large
Chevrolet Caprice V8	3855	305	18	5.555556	Large
Ford LTD Crown Victoria V8	3850	302	20	5	Large
Chevrolet Lumina APV V6	3195	151	18	5.555556	Van
Dodge Grand Caravan V6	3735	202	18	5.555556	Van
Ford Aerostar V6	3665	182	18	5.555556	Van
Mazda MPV V6	3735	181	19	5.263158	Van
Mitsubishi Wagon 4	3415	143	20	5	Van
Nissan Axxess 4	3185	146	20	5	Van
Nissan Van 4	3690	146	19	5.263158	Van

Observation Data Set for Spotfire Examples

Use this data set for the task for learning to write TERR expression functions in a custom expression in Spotfire. This data set has four columns for a fictional trial. Each row has a date, a start time, an end time, and the result of the observation, so it can be used with either a time span or a boolean expression.

Use this data set to build the example in [TERR_TimeSpan](#).

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.

Observation data set

Date	Start time	End time	Observation
1-Mar-17	14:00:12	14:15:25	Positive
2-Mar-17	13:55:26	14:20:30	Negative
3-Mar-17	14:10:54	14:15:12	Positive
4-Mar-17	14:03:34	14:17:54	Negative
5-Mar-17	14:02:56	14:20:15	Positive

Date	Start time	End time	Observation
6-Mar-17	13:57:21	14:16:14	Positive
7-Mar-17	13:58:26	14:18:22	Positive
8-Mar-17	14:02:37	14:20:54	Negative
9-Mar-17	14:03:36	14:15:42	Negative
10-Mar-17	13:58:45	14:23:46	Positive
11-Mar-17	13:55:45	14:21:39	Negative
12-Mar-17	13:58:42	14:17:21	Negative
13-Mar-17	14:01:27	14:25:33	Negative
14-Mar-17	14:02:48	14:17:27	Positive
15-Mar-17	14:04:47	14:22:26	Negative
16-Mar-17	14:00:32	14:20:43	Negative
17-Mar-17	14:03:16	14:16:25	Positive
18-Mar-17	14:06:18	14:25:52	Negative
19-Mar-17	14:01:48	14:21:46	Positive
20-Mar-17	13:54:37	14:15:48	Negative
21-Mar-17	13:56:38	14:25:12	Negative
22-Mar-17	13:57:52	14:23:16	Positive
23-Mar-17	14:04:22	14:23:53	Positive
24-Mar-17	14:02:37	14:18:19	Positive
25-Mar-17	13:55:52	14:21:24	Negative
26-Mar-17	13:58:37	14:17:28	Positive

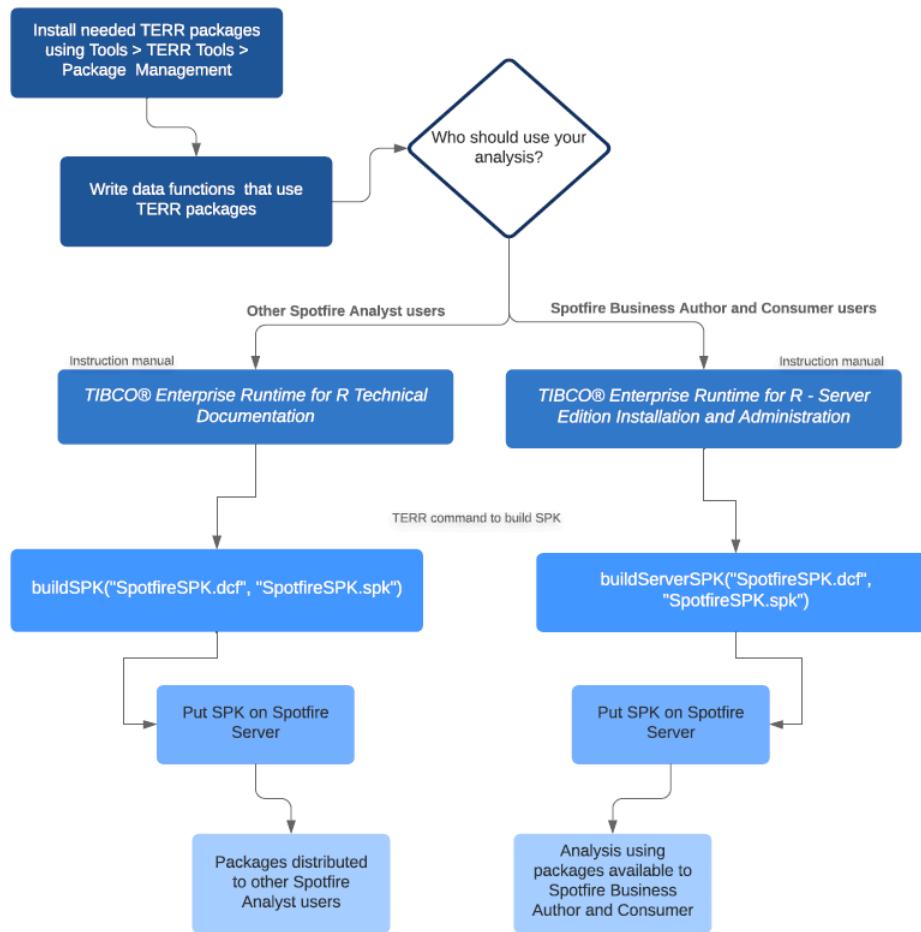
Date	Start time	End time	Observation
27-Mar-17	14:01:47	14:25:16	Negative
28-Mar-17	14:02:45	14:17:55	Positive
29-Mar-17	14:04:29	14:22:58	Negative
30-Mar-17	13:55:01	14:17:22	Positive
31-Mar-17	13:54:50	14:19:45	Positive

Temperature Data Set for Spotfire Examples

You can use this data set for the task for learning to write TERR expression functions in Spotfire. This data set is extracted from the a data frame with observations (rows) on five variables (columns), taken from an environmental study that measured ozone, solar radiation, temperature, and wind speed for 5 months in 1973 in the New York City area. (This sample set shows a date range between August and September that have no missing values.)

Use this data set to build the example in [Registering the TERR Script as an Expression Function](#) on page 61.

You can copy (CTRL+C) the contents of the sample data table and paste it (CTRL+V) into the Spotfire user interface.


Date	Ozone	Radiation	Wind	Temp (F)
8/28/73	76	203	9.7	97
8/29/73	118	225	2.3	94
8/30/73	84	237	6.3	96
8/31/73	85	188	6.3	94
9/1/73	95.999	167	6.9	91
9/2/73	78	197	5.1	92
9/3/73	73	183	2.8	93
9/4/73	91	189	4.6	93
9/5/73	47	95	7.4	87
9/6/73	32	92	15.5	84
9/7/73	20	252	10.9	80
9/8/73	23	220	10.3	78
9/9/73	21	230	10.9	75

Date	Ozone	Radiation	Wind	Temp (F)
9/10/73	24	259	9.7	73
9/11/73	44	236	14.9	81
9/12/73	21	259	15.5	76
9/13/73	28	238	6.3	77
9/14/73	9	24	10.9	71
9/15/73	13	112	11.5	71
9/16/73	46	237	6.9	78
9/17/73	18	224	13.8	67
9/18/73	13	27	10.3	76
9/19/73	24	238	10.3	68
9/20/73	16	2.3	96	82
9/21/73	13	238	12.6	64
9/22/73	23	14	9.2	71
9/23/73	36	139	10.3	81
9/24/73	7	49	10.3	69
9/25/73	14	20	16.6	63
9/26/73	30	193	6.9	70

Package Management for the TIBCO Spotfire® Environment

This Package Management guide provides information about working with two kinds of packages in the Spotfire ecosystem: the R package, which you use with TERR, and the Spotfire package, or SPK, which you deploy from the Spotfire Server to client users.

This guide provides an orientation for both kinds of packages, including creating them, deploying and installing them, managing them, and troubleshooting them.

Package Management Orientation

If you are an R package developer but have no experience with Spotfire, or if your organization is new to advanced data analysis using TERR with Spotfire Analyst, review the topics in this section.

Find Help

Spotfire® includes many avenues to help with packages, whether they are R language packages to use with TERR™ or Spotfire packages (SPKs).

Task	Help resource
Building packages for open-source R.	R documentation Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.
Building packages using TERR	TIBCO® Enterprise Runtime for R (TERR™) Technical Documentation at https://docs.tibco.com/products/tibco-enterprise-runtime-for-r
Creating a Spotfire SPK distribution.	TIBCO Spotfire® Server Server and Environment Installation and Administration at https://docs.tibco.com/products/tibco-spotfire-server
Learning about Spotfire Statistics Services architecture and server management, versus the TERR service management.	TIBCO Spotfire® Statistics Services Installation and Administration at https://docs.tibco.com/products/tibco-spotfire-statistics-services and TIBCO® Enterprise Runtime for R - Server Edition Installation and Administration at https://docs.tibco.com/products/tibco-enterprise-runtime-for-r-server-edition

R Language Primer

The R language has been developed into the open-source R engine and the TERR engine (among others), all developed from the legacy S-PLUS language.

Some differences exist between the open-source R engine and the TERR engine; however, they are highly compatible. Most scripts and functions that you write in open-source R run in the TERR engine.

For more information, see *Differences Between TIBCO Enterprise Runtime for R and Open-Source R* at <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

This documentation is not intended to teach programmers how to write scripts and functions or delve too deeply into creating R language packages. Rather, we address techniques for skilled package developers who must test and share their packages across an organization that has deployed Spotfire (and optionally Spotfire® Statistics Services), and that uses the TERR engine to run the package code.

See [Recommendations for Using R Securely](#) on page 23 for more guidelines for downloading R and packages.

Language Options

Whether you use TERR or open-source R, you can use the resources and tools in the Spotfire predictive analytics platform.

TIBCO Enterprise Runtime for R Packages

- Test your functions using the TERR engine and use TERR to build your packages. (See [R Package Anatomy](#) on page 105 for more information.)
- Use the SpotfireSPK package that is included in the TERR for Spotfire installation to create an SPK that you can put on a Spotfire® Server to distribute to other Spotfire Analyst users in your organization.

Open-source R packages

If you are an open-source R developer, you probably use either your own packages or those downloaded from a repository. You can test either by running them in a local TERR engine.

 TIBCO maintains a report of tests run in TERR of CRAN packages' help examples. The report details the success of every expression in every help example provided by the package developer. TIBCO is not responsible for developing, testing, or supporting packages published to CRAN.

For a list of the CRAN packages for which we have run these tests, see the report for your server platform at <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

- In rare cases, we have provided different versions of packages tested to work with TERR, or we have customized popular CRAN packages to work with TERR. These package versions are loaded from a special TIBCO repository by default when you install them by calling `install.packages()`.
- For more information about testing your open-source R packages, see [Testing Packages Locally](#) on page 109.
- Check the [list of known differences](#) between the open-source R engine and the TERR engine by package.

Reviewing the List of Known Differences

In the installation TERR, you can find a list of known differences in function behavior between open-source R and TERR in the documentation.

You can access the list of known differences from Spotfire Analyst.

Procedure

1. From the menu, click **Tools > TERR Tools**.
2. Click **Open TERR Language Reference**.

The language reference is included in the installation. The links to the technical guides and readme files open these documents on the TIBCO documentation website <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

A web browser launches and displays the landing page with links to the documentation for TERR.

3. In the resulting browser window, click the link titled *Differences Between TERR and Open-Source R*.

Result

The resulting web page provides detailed information of known differences in function behavior between TERR and open-source R, sorted by their packages. (This list is compiled from like sections in the individual function help files.)

Spotfire Packages and R Binary Packages

Spotfire has two different types of packages: the Spotfire package (SPK), and the R language binary package.

The SPK is specific to Spotfire add-in development and deployment. You can create a Spotfire SPK that contains TERR engine-compatible R binary packages, and then deploy the SPK to a Spotfire Server to be distributed to other users in your organization.

Spotfire Analyst includes a license option for the TERR local engine. Your R binary packages, deployed using the SPK mechanism, can be used to create Spotfire analyses that use data functions.

R binary packages can run faster in a local TERR engine than one running in the TERR engine installed remotely on a Spotfire Statistics Services installation. For more information see [Packages Running on a local TIBCO Enterprise Runtime for R engine in Spotfire](#).

Because you are creating or downloading a package to be distributed to Spotfire Analyst users, the package must be a Windows binary package. See [Limitations and considerations](#) for more information.

To create the SPK containing your R binary packages, you need the SpotfireSPK package. This package is provided with your TERR installation.

Manage Packages Through Roles

Working with packages in a deployment that includes Spotfire, Spotfire Server, and (optionally) Spotfire Statistics Services can add layers of complexity to management policies.

The job of synchronizing package versions among your development computers, your testing computers, and your servers is an important package management concern for an organization. You can reduce the risk of confusion and streamline your processes by defining roles in your organization for dealing with packages. Ensure processes and rules are established to manage packages.

Additionally, you can develop and use an in-house package repository from which all users install the same package versions. See [Package Repositories](#) on page 107 for additional guidance.

Developer Role

The developer is an R programmer or statistician who develops packages using TERR or open-source R. The package developer accomplishes the following tasks using the Spotfire tools.

- Develop and test packages locally using the local TERR engine available from Spotfire Analyst.
- Create a Spotfire SPK containing the R code packages using the SpotfireSPK package, and then give them to the administrator who manages Spotfire distributions on Spotfire Server nodes. Packages uploaded to Spotfire Server nodes are loaded and run by the TERR service for users accessing advanced analytics from Spotfire Business Author.
- Upload packages for others to use in your organization's in-house repository. See [Package Repositories](#) on page 107 for more information.
- If your Spotfire environment includes Spotfire Statistics Services, and if you have the administrative permissions, upload the packages to Spotfire Statistics Services for users accessing advanced analytics from Spotfire Business Author. (Alternatively, give the package to the Spotfire Statistics Services administrator to upload.)

Curator Role

The curator maintains the standards and lists of officially-sanctioned packages. The curator keeps all of the package versions synchronized. The curator might be the same person who fills the developer role.

The approval process for adding a packaging is up to your organization, and might vary from minimal to extensive, depending on your usual practices. Designate a developer familiar with open-source R and TERR packages to be the package curator. The package curator works with package developers and server administrators to perform the following management tasks.

- Maintains the list of tested and sanctioned package versions (the gold standard), which would be the set of packages available for general use under Spotfire applications.
- Ensures that the SPK containing the gold standard package versions are placed on the Spotfire Server, distributed to Spotfire analysts who develop visualizations that use them, and available to

Spotfire Business Author users running data functions through the TERR service on the Spotfire Server.

- Creates and manages the organization's in-house repository from where all users can install packages.
- Ensures that the gold standard package versions are uploaded to Spotfire Statistics Services for use by Spotfire Business Author users.

Package versions used by these services must be kept synchronized.

Administrator Role

The Spotfire administrator manages packages on the Spotfire Server and on Spotfire Statistics Services. The responsibilities for the administrator role include the following.

- Deploy the SPK containing CRAN packages to be called by TERR service or distributed to Spotfire Analyst users.
- Assign licenses for access to the Data Functions feature in Spotfire Analyst.
- Upload, maintain, and remove packages using the TERR console on Spotfire Statistics Services. (Might assign server permissions to the curator for this task.)

Package Installation Locations and Recommendations for Updating

You can use packages installed with TERR and with TERR in Spotfire Analyst, you can create and share your own packages, and you can download packages from a package repository. In all cases, you should know where they are installed and how they behave when you update your TERR or Spotfire installation.

Due to changes in open-source R version 3.5 and resulting compatibility changes in TERR 5.0, packages that are built with a version of TERR prior to 5.0 must be rebuilt.

- To install a binary package from a repository, always call `install.packages(pkgname)` from TERR. The `install.packages` function finds the correct binary version in the repository for your version of TERR. Manually downloading the binary package from CRAN can result in errors when you use it with TERR.
- To install a package from source, try installing it first with TERR (with `install.packages` in TERR or with `TERR CMD INSTALL` from a command line).
- To install a package from source that you cannot build with TERR, install the package with the version of open-source R tested with TERR.

This topic details where packages are installed by default with TERR, for those that you download and install from a package repository using the TERR console, those that you install using TERR Tools in Spotfire Analyst, and for those that you install from an SPK distributed by Spotfire Server.

From Spotfire Analyst TERR Tools, you can open the console and at the prompt, run the following commands to learn more about the location of installed packages.

- Run the function `.libPaths()` to discover where TERR finds packages. This is especially useful if you do not have write access to the `Program Files` directory on a Windows computer.
- Run the function `installed.packages()` to retrieve a list of all packages installed on the computer, and to discover other pertinent information, including where they are installed.

In Spotfire Analyst, you can use the TERR Tools Package Management tab to see a list of installed packages.

Installed by default with the TERR console application

Default Installation location	Description	Updating to a new version of TERR
<i>TERR_HOME/library</i>	Do not remove or change these packages. Doing so can cause unexpected behavior.	When you install a new version of TERR, the old <i>library</i> directory is removed and the packages are deleted. Updated versions of the packages are installed with the new version of TERR.

Installed by default with TERR in Spotfire Analyst

Default Installation location	Description	Updating to a new version of TERR
<i>SPOTFIRE_HOME/Modules/TERR_version/engine/library</i>	Do not remove or change these packages. Doing so can cause unexpected behavior.	When you install a new version of Spotfire Analyst, the old TERR <i>library</i> directory is removed and the packages are deleted. Updated versions of the TERR packages are installed with the new version of Spotfire Analyst.

Installed from a package repository using the console application

Default Installation location	Description	Updating to a new version of TERR
<i>TERR_HOME/site-library</i>	<p>Packages downloaded from a repository are placed in this directory. On Windows, you must have write access to <i>TERR_HOME</i> for them to be installed at this location.</p> <p>If you do not have write access, packages you download are installed in the user directory. On Windows, this directory is [<i>My Documents</i>]/TERR/x86_64-pc-windows-library/<i>version</i>.</p>	<p>When you install a new version of TERR, the path to the older installation <i>TERR_HOME/site-library</i> is retained. You can take one of the following two steps.</p> <ul style="list-style-type: none"> • Browse to the directory <i>site-library</i> for the older installation, and move the packages to the new installation directory <i>TERR_HOME/site-library</i>. (If you do not have write access, manage your packages by copying them from the older <i>version</i> to the new <i>version</i> in the user directory location.) • Download and reinstall the packages.

For more information, see [Manage your packages when you install a new version of TIBCO Enterprise Runtime for R](#).

Downloaded and installed using TERR Tools in Spotfire Analyst

Default Installation location	Description	Updating to a new version of Spotfire
[<i>My Documents</i>]/TERR/x86_64-pc-windows-library/ <i>version</i>	In all cases, packages downloaded from the repository using TERR Tools are placed in this directory.	<p>When you install a new version of Spotfire Analyst, the path to the user library is retained.</p> <ul style="list-style-type: none"> • Browse to the <i>version</i> directory for the older installation and move the packages to the new installation <i>version</i> directory. • Use TERR Tools to download and reinstall the packages.

For more information, see [Manage packages using TIBCO Spotfire and TIBCO Enterprise Runtime for R](#).

Installed by an SPK distributed in an update by Spotfire Server

Default Installation location	Description	Updating to a new version of Spotfire Analyst
<code>SPOTFIRE_HOME/</code> <code>Modules/TERR Packages/</code> <code>libraryversion</code>	Custom packages provided to you through an update when you connect to Spotfire Server are placed in this directory.	The packages provided to you through an update by Spotfire Server should be reinstalled by the Spotfire Server.

For more information, see [The Spotfire SPK](#).

Installed on Spotfire Statistics Services

Default Installation location	Description	Updating to a new version of Spotfire Analyst
<code>SPSERVER_HOME/data/</code> <code>appdata/library</code> for a single server, or <code>SPSERVER_SHARE/</code> <code>data/appdata/library</code> for a cluster.	Packages that are uploaded to Spotfire Statistics Services for use by any client connecting to the Spotfire Statistics Services server. Your server administrator is responsible for setting the package location property, if necessary.	Your server administrator should preserve the <code>data</code> directory during updating.

Setting JAVA_HOME

Some packages that you use with TERR require access to Java on your system. If you call the TERR function `Sys.getenv("JAVA_HOME")` and it returns an empty string, you must set `JAVA_HOME` so the packages can access Java.

Perform this task on your Windows Or Linux system.

Prerequisites

The following list describes a few of the packages that are either provided with TERR or that you can use with TERR, but they require a bit-matching 32-bit or 64-bit version of Java, version 6 or later. (You might find other packages that require Java. These instructions can help you prepare your TERR session for those packages, too.)

Package name	Provided in your TERR installation
parallel	yes
sjdbc	yes
terrJava	yes
rJava	no

 See [Installing the rJava package](#) for more information.

Procedure

1. Locate your Java installation and make a note of it.

Your system can have more than one version of Java. Generally, use the latest version. On Windows, you can find this path in the registry. On Linux, you can usually find a link to it in the `\user\bin` directory.

For example, on Windows, this path might be `C:/Program Files/jdk-11.0.1`.

2. Start a session of the TERR console.

3. At the TERR command prompt, type the command `Sys.setenv(JAVA_HOME="path_to_your_Java_installation")` where `path_to_your_Java_installation` is the path you noted in Step 1.

For example, on Windows, this call might look like the following.

```
> Sys.setenv(JAVA_HOME="C:/Program Files/jdk-11.0.1")
```

On Linux, this call might look like the following.

```
> Sys.setenv(JAVA_HOME="/usr/lib/jvm/java-11-sun/")
```

Your system environment `JAVA_HOME` is now set to the specified Java installation.

4. Optional: Check the setting for `JAVA_HOME` from TERR by typing `Sys.getenv("JAVA_HOME")`. For example, on Windows, it might look like the following.

```
> Sys.getenv("JAVA_HOME")
[1] "C/Program Files/jdk-11.0.1"
```

What to do next

Install the package that requires setting `JAVA_HOME`. For an example, see [Installing the rJava package](#).

Installing the rJava Package

The rJava package gives access to low-level R functions to the Java interface, but it is not provided with TERR. These instructions help you prepare your computer to use rJava.

Prerequisites

The rJava package requires the following.

- A bit-matching 32-bit or 64-bit version of Java, version 6 or later, is installed. (Tested with version 11.0.1.)
- The system variable `JAVA_HOME` is set. Follow the instructions for [Setting JAVA_HOME](#) if you are unsure.

These instructions are for installing the rJava package for use with TERR 4.2 or later. If you are using an earlier version, and you cannot update your version of TERR, see the release notes for more information for the version of TERR you are running.

- For TERR version 3.1 and earlier, the rJava package does not work. To use rJava, update your version of TERR.
- For TERR version 3.2, you must use a build of rJava from TRAN. See that version's release notes for more information.

Perform this task in the TERR console or in TERR running under RStudio.

Procedure

1. At the command prompt, type `install.packages("rJava")`.
The rJava package is installed from the package repository to the `site-library` directory.
2. At the command prompt, type `library(rJava)`.
For example:

```
> library(rJava)
The following object(s) are masked _from_ 'package:utils':
  head, str, tail
The following object(s) are masked _from_ 'package:methods':
  new, show
The following object(s) are masked _from_ 'base':
  anyDuplicated, duplicated, rev, sort, unique
```

The rJava package is now in your search path.

3. At the command prompt, type `searchpaths()`.
For example:

```
> searchpaths()
[1] ".GlobalEnv"
[2] "C:/Program
  Files/TIBCO/terr60/site-library/rJava"
[3] "C:/Program
  Files/TIBCO/terr60/library/stats"
[4] "C:/Program
  Files/TIBCO/terr60/library/graphics"
[5] "C:/Program
  Files/TIBCO/terr60/library/grDevices"
[6] "C:/Program
  Files/TIBCO/terr60/library/utils"
[7] "C:/Program
  Files/TIBCO/terr60/library/methods"
[8] "C:/Program
  Files/TIBCO/terr60/library/base"
```

The absolute file path is returned for each package in the current environment. Note that by default, the newly-loaded rJava is listed second in the search path.

Manage your Packages when You Install a New Version of TERR

When a new version of TERR is released, you might want to install it to take advantage of the changes. You can run older and newer versions of TERR on the same computer, or you can uninstall the older version(s). In either case, you probably want to make sure any custom-created packages or packages downloaded from a repository are kept available to the TERR version(s) you are running.

 Uninstalling TERR does not remove the packages you installed. However, we recommend that you check for updates to any packages you have downloaded from package repositories after you install a new version of TERR. You can check for updated versions by calling `update.packages()`. See the help topic for `update.packages()` in the TERR *Language Reference* for more information.

The TERR installation includes the directory `TERR_HOME/site-library`, which is used by default. If you want to use another directory, you can define the environment variable `TERR_LIBS_SITE` and set it to the directory of your choice.

Initially, the `site-library` directory is empty. If you have permission to write to the `TERR_HOME` directory, any packages you create or download are installed in `TERR_HOME/site-library`.

Installing packages to the `site-library` directory provides the following advantages.

- It provides you with the means to protect and manage the packages you installed and want to keep, separate from the new installation.
- It separates the packages shipped with TERR so they can be updated with new releases, and so you do not accidentally change or remove them.

You should avoid changing any entries in the `TERR_HOME/library` directory. Doing so can cause TERR to behave in unexpected ways.

The directory `TERR_HOME/site-library` is added to the head of the search path, which is returned by `.libPaths()`. For example, on a Windows computer where you have permission to write to the `TERR_HOME` directory, this function call would appear as follows.

```
> .libPaths()
[1] "C:/Program Files/TIBCO/terr60/site-library"
[2] "C:/Program Files/TIBCO/terr60/library"
```

After installing the new version of TERR, you can just copy the packages from the older `TERR_HOME/site-library` directory to the new `TERR_HOME/site-library` directory.

If you are downloading packages to a computer where you do not have permission to write to the directory `TERR_HOME/site-library`, then packages are stored in the user directory. For example, on Windows, this directory is `[My Documents]/TERR/x86_64-pc-windows-library/<version>`, and, calling `.libPaths()` would appear as follows.


```
> .libPaths()
[1] "C:/users/jdoe/Documents/TERR/x86_64-pc-windows-library/terr6.0"
[2] "C:/Program Files/TIBCO/terr60/site-library"
[3] "C:/Program Files/TIBCO/terr60/library"
```

In this case, you can ignore the `site-library` directory (which remains empty) and manage your packages by copying them from the older `<version>` to the new `<version>` in the user directory location.

Manage Packages Using Spotfire and TERR

Analysts and data scientists can download existing packages, or they can build and test their own packages. They can wrap them in a Spotfire SPK for distribution to analysts in their organization. Spotfire Server administrators can distribute the packages using Spotfire Server, and Spotfire web client users can view Spotfire analyses that use the packages.

Because this documentation specifically addresses using TERR in Spotfire Analyst, the instructions demonstrate using the TERR tools available from the Spotfire Analyst user interface. Experienced R or TERR programmers, or programmers using TERR from the stand-alone console can perform many of these tasks directly from the console or from within RStudio. See the *TERR Technical Guide* and *Language Reference* for more information.

For the following tasks, Spotfire products each play a role in building, distributing, using, and maintaining packages in the Spotfire predictive analytics platform.

Package management tasks and tools

I want to...	Available tools
Discover the packages available in TERR.	TERR in Spotfire Analyst and the TERR stand-alone console.
Review the differences between TERR and open-source R.	TERR in Spotfire Analyst and the TERR stand-alone console.
Review the packages on CRAN that have been tested with TERR.	TERR in Spotfire Analyst and the TERR stand-alone console.

I want to...	Available tools
Find and install a package from a repository.	TERR in Spotfire Analyst and the TERR stand-alone console.
Create an SPK so the package can be shared with other Spotfire analysts and data scientists in the organization.	TERR in Spotfire Analyst and the TERR stand-alone console.
Remove a package from a Spotfire installation.	TERR in Spotfire Analyst
Change the version number for a package distributed to Spotfire analysts and data scientists.	Spotfire Server
Distribute a package to all Spotfire analysts and data scientists in your organization.	Spotfire Server
Distribute a package to a small group of Spotfire analysts and data scientists for testing.	Spotfire Server
Provide access to a package for Spotfire web client users who want to view data visualizations that rely on that package.	Spotfire Statistics Services

Development Tools for Creating Packages

Spotfire Analyst provides both a console application and access to an installation of RStudio so experienced R developers can create and test packages to use in Spotfire analyses.

Both the TERR console application and RStudio access are available from the Spotfire menu **Tools > TERR Tools**. Also you can find links to all of the TERR documentation from the **TERR Tools** dialog.

Before you develop your package, review the limitations and considerations, the list of components that make up a package, and the guidance for testing the package

Limitations and Considerations

Before you begin developing packages to use with TERR, you should familiarize yourself with some basic limitations.

Platform considerations

You can develop or download open-source R packages to run on either LINUX® or Microsoft Windows® platforms. Therefore, when you write your code to run on the server, take into account the platform you expect it to run on.

- If you plan to run packages locally on a TERR engine in Spotfire Analyst, your package must be a Windows binary package.
- If you plan to deploy a package to run TERR in Spotfire Statistics Services, the package type must be binary, and it must match the platform of the Spotfire Statistics Services deployment.

Graphical limitations

The TERR engine provides no graphical functions itself. However, it can run as a statistical engine in Spotfire Analyst, which provides data visualizations. Alternatively, you can use some CRAN packages (such as `htmlwidgets`, `dygraph`, or `leaflet`) that are compatible with TERR and that provide graphical displays in the browser, or you can use the `RinR` package, provided with your TERR installation, to call open-source R functions for graphic displays. You should always test package functions to make sure they run as expected. See *Graphics in TIBCO Enterprise Runtime for R* for more information.

Licensing limitations

To make a data function available in an analysis published to a Spotfire library, you must have the appropriate licenses. If you are not sure of your licenses, or if you do not see the **Tools > Register Data Functions** menu in the Spotfire Analyst installation, see your Spotfire Administrator for more information.

R Package Anatomy

Open-source R Packages running in the TERR engine are binary, and they must follow the standard package component design and contain version information.

The TERR engine is designed to be highly compatible with the open-source R engine. To develop packages using open-source R, see its documentation, available on the Comprehensive R Archive Network (CRAN).

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

A typical package is available as a binary file or as source code. You can use TERR to install a package from source. If the package has C/C++ code, you must first install the package `rininclude` (`install.packages(rininclude)`) before calling `install.packages(packagename)`. TERR does not support installing packages that have Java source code. See [Installation Options for Packages](#) on page 18 for more information.

Package components

A source package can contain any number of directories, including `html` (for the help index), `libs`, `help`, and so on. The simplest package requires the following files and directories:

File or Directory	Description
<code>mypkg</code>	The top-level directory name, which is also the package name (in this case, <code>mypkg</code>).
<code>mypkg/NAMESPACE</code>	Required. You must specify the NAMESPACE.
<code>mypkg/DESCRIPTION</code>	The file containing a description, the title, the author, date, the dialect, and version information, along with other information.
<code>mypkg/R</code>	The directory containing <code>*.R</code> files with R language functions as ASCII files.
<code>mypkg/R/mycode.R</code>	The R language code.

Your source package can also contain the following optional folders:

- `data` directory containing data files in a dump format.
- `man` directory containing help files in the `.Rd` help file format.
- `inst` directory contains files and directories to be copied, recursively, into the main package directory when the package is compiled. Any informational files that the end user should see should be included in the `inst` directory. For example, if you have a PDF containing a vignette, you can include it in the `inst/doc` directory.
- `src` directory, containing C, C++, or FORTRAN code.

- `tests` directory can contain package-specific tests. This directory can contain test code (that is, `.S`, `.SSC`, `.Q`, and `.R`).

The TERR engine does not support the following:

- Packages using graphics devices or containing graphics functions. (However; we have implemented stub functions to allow the non-graphical portions of many packages to run without error.)
- Source packages with `src` directories that contain Java code.

Package versioning

Package version information is kept in the `DESCRIPTION` file. With every package revision, remember to revise the version number upward. This version number is an important part of your package management strategy.

Packages Running in a Local TIBCO Enterprise Runtime for R Engine in Spotfire

Running functions locally requires making the TERR engine available under Spotfire.

To run the functions in a package using the TERR engine that is installed with Spotfire Analyst, you must have the appropriate license enabled by your Spotfire administrator.

Remember that other people in your organization might be running analyses that depend on data functions stored in the library and that take advantage of the version of the package you are using.

In Spotfire, these scenarios are possible because Spotfire Analyst includes an embedded TERR engine. With enough resources, you can efficiently test and run analyses using data functions locally.

Although the package is in your Spotfire installation, it is not loaded into the engine. To use the package, you must load the library as part of your data function script or include it in the `Packages` field of your data function.

Opening the TIBCO Enterprise Runtime for R Console from Spotfire Analyst

TERR is provided in your installation of Spotfire Analyst so you can script and run data functions or create predictive models.

TERR Tools is provided to give you access to the TERR console to test scripts and functions, to launch the RStudio interactive development environment for script authoring, and to the TERR Language Reference for help with installed packages. TERR Tools also provides an interface to download and install packages from a package repository..

Perform this task from Spotfire Analyst.

Prerequisites

To work with TERR, you must have the appropriate license in Spotfire Analyst.

Procedure

1. From the menu, click **Tools > TERR Tools**.
2. Click **Launch TERR Console**.

The TERR engine console that is included in the Spotfire Analyst `Modules` folder is displayed in a separate window.

Checking Installed Packages

You can find a list of packages included in the installation of TERR.

Check the packages that are installed and available to the TERR engine from TERR Tools in Spotfire Analyst.

Procedure

1. From the menu, click **Tools > TERR Tools**.
2. Click **Open TERR Language Reference**.

The language reference is included in the installation. The links to the technical guides and readme files open these documents on the TIBCO documentation website <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

A web browser launches and displays the landing page with links to the documentation for TERR.

3. In the resulting browser window, under **References**, click **Included Packages**.

Packages for Use with Spotfire

TERR includes a set of packages specifically for working with Spotfire.

Package Name	Description
Spotfire	This package is deprecated. See SpotfireData.
SpotfireConnector	This package contains functions used between Spotfire and Spotfire Statistics Services. You functions directly.
SpotfireData	This package contains functions for managing datasets between Spotfire and TERR. (In part reading and writing files in the Spotfire Binary Data format (SBDF).) Advanced users might Spotfire data directly in the TERR engine for debugging purposes.
SpotfireSPK	<p>This package contains two functions:</p> <ul style="list-style-type: none"> • <code>buildSPK</code> • <code>buildServerSPK</code> <p>Use this package to create an SPK to contain your R language packages that you want distribute users or on Spotfire Server. (The packages in your SPK can be automatically distributed to users working with data functions with local TERR engines.)</p>
SpotfireStats	This package contains the helper functions used by Spotfire predictive analytics. You would functions directly.
SpotfireUtils	This package contains utility functions for interfacing between Spotfire and the TERR engine.

Package Repositories

You can find or store packages in a variety of repositories. You can create your own in-house repository using the `drat` package.

You can download a package from a public repository, such as MRAN, CRAN, or TERR Archive Network (TRAN) repository, or you could use the `drat` package to create and maintain an in-house repository that is managed by your organization's [package curator](#).

 TIBCO does not warrant, deliver, or support code or other material provided by the R Project for Statistical Computing, including but not limited to development tools and packages, and such code and other material does not constitute a part of TERR. Such material therefore is not within the scope of your license for TERR. Download and use of such material is solely at your own discretion and subject to the free open source license terms applicable to such material. TIBCO recommends that you consult a legal professional concerning compliance with any free open source license terms applicable to such material, particularly if you plan to engage in redistribution of TERR and/or such material. (Please note that TERR may be redistributed solely pursuant to a license that expressly grants such redistribution rights.)

Public repositories

You can download open-source packages from a repository, and then use the functions in the package in your data functions in Spotfire. Be sure to review the list of differences between the TERR engine, available from the TERR landing page. Also review the [limitations and considerations](#).

TRAN packages

A number of popular CRAN packages occasionally require customization to work with TERR. TIBCO hosts a package network, TRAN, where you can find these customized packages. Individual users can download these packages using the TERR console application by calling the function `install.packages()`. Optionally, these customized packages can be built into a Spotfire SPK and placed on a Spotfire Server to be available to Spotfire users throughout your organization.

 Some packages customized and placed on TRAN require other packages not available on TRAN. Some of these packages cannot be installed using the TERR function `install.packages`, so the TRAN package cannot be successfully installed. If you encounter this situation, try building and installing the package using open-source R.

Company repositories

One skilled package developer in your organization should have the role of package curator to oversee the package version integrity within the company's package repository, whether these are packages downloaded and tested from a public repository or developed internally and kept in a CRAN-like in-house repository.

One easy way to establish and maintain a company repository is with the drat package, which is available in the MRAN and CRAN repositories. Using the drat package, you can create an in-house repository (on either a web server or a network share), you can upload packages to the in-house repository, and you can install packages from the in-house repository. For more information on using drat, install it into your TERR or open-source R console application, and then refer to its language reference and vignettes.

For more information about installing existing packages, see [Installation options for packages](#).

Specifying an Older Package on TRAN

TERR and open-source R search for packages differently. By default, the repository search order for `options('repos')` is set to TRAN, MRAN, and then CRAN. If a package exists in all repositories, then TERR selects the version in TRAN, but open-source R selects the newest one based on the package version number.

This search-order difference is by design, because if a newer package on CRAN causes problems when tested with TERR, then TRAN contains an older version of a package that has been tested successfully with TERR. (The MRAN snapshot contains the version of the package available when this version of TERR was made available.)

In some cases, you must use open-source R to install a package to use with TERR. For example, under Linux, packages with source code for use in TERR often need to be installed using open-source R. If you encounter the search-difference issue with such a package, and an older version is available on TRAN, then you must take additional steps to make sure you get the working package version.

Procedure

1. From open-source R, run `install.packages(pkgname)`.
The newest version of the package specified by `pkgname` is installed, along with its dependencies.
2. Set `options('repos')` to `c("https://tran.tibco.com/terr##")`.
The repository search option is set to check only the TRAN site and the version of TERR specified by the version number `##`.
3. Reinstall the needed package.
The package is installed according to the TRAN site search option.

Testing Packages Locally

After you have either created a package or downloaded a package from a repository, you can test the package functions by running the example files in the TERR engine. Then you can write your own scripts using the package functions, and test them using Spotfire Analyst.

Prerequisites

Your Spotfire Analyst installation should be configured to use the local TERR engine. You can check this option from the Spotfire Analyst menu by clicking **Tools > Options**. In the Options dialog, click **Data Functions**, and make sure **Use locally-installed TIBCO Enterprise Runtime for R engine** is selected.

Perform this task from your Spotfire Analyst installation.

Procedure

1. From the menu, click **Tools > TERR Tools**.
2. Click **Launch TERR Console**.
The TERR engine console that is included in the Spotfire Analyst `modules` folder is displayed in a separate window.
3. At the prompt, type `library(packagename)` to load the package.
The package is loaded to the package directory.
4. Type or paste the script or example using the package functions that you want to run.

Testing a package example

```
#install the package
install.packages("survival")
#load the package
library(survival)
#run the example
Surv(heart$start, heart$stop, heart$event)
```

Getting Package Help

Each package you download or build should have help files. If you are writing data functions or developing analyses that use the functions in a package, you might want to see Help topics associated with them.

Procedure

1. In Spotfire, open a sample DXP file.
2. From the menu, click **Tools > TERR Tools**.
3. Click **Open TERR Language Reference**.

The language reference is included in the installation. The links to the technical guides and readme files open these documents on the TIBCO documentation website <https://docs.tibco.com/products/tibco-enterprise-runtime-for-r>.

A web browser launches and displays the landing page with links to the documentation for TERR.

4. Under **Reference**, click **Included Packages**.
5. In the resulting **Available Packages** page, note that your package is listed. Click its name.
6. From the resulting page, select the function for which you want help.

survival

Survival Analysis

[Package description](#)

Symbols

[.cox.zph	Test the Proportional Hazards Assumption of
[.coxph.penalty	Fit Proportional Hazards Regression Model
[.ratetable	Ratetable reference in formula
[.ratetable2	Ratetable reference in formula
[.Surv	Create a Survival Object
[.survfit	Compute a Survival Curve for Censored Data
[.tcut	Factors for person-year calculations

A

aareg	Aalen's additive regression model for censored survival data
agexact.fit	Internal survival functions
agreg.fit	Cox model fitting functions
aml	Acute Myelogenous Leukemia survival data
anova.coxph	Analysis of Deviance for a Cox model.
anova.coxphlist	Analysis of Deviance for a Cox model.
anova.survreg	Regression for a Parametric Survival Model
anova.survreglist	Regression for a Parametric Survival Model
as.character.Surv	Create a Survival Object
as.data.frame.Surv	Create a Survival Object
as.matrix.ratetable	Internal survival functions
as.matrix.Surv	Create a Survival Object
attrassign	Create new-style "assign" attribute
attr	

Removing a Package from a Spotfire Installation

You might decide that you no longer need a package in your Spotfire installation. Perform this task using Spotfire Analyst.

Take care to remove only packages that you have downloaded and installed. If you remove a package that is installed with TERR, you could cause serious problems with the installation. Likewise, if you remove a package that was distributed by the Spotfire Server, any scripts or data functions that use the package will cease to work, and you will not be prompted to download and install it by the Spotfire Server distribution mechanism. See [Troubleshooting TERR and Spotfire packages](#) for more information.

Procedure

1. From the menu, click **Tools > TERR Tools**.
2. In the TERR Tools dialog, click the tab **Package Management**.
If you are working through a proxy, select the check box **Use IE Proxy Settings**.
3. Review the list under **Installed Packages**.
4. Select the package to remove, and then click **Remove**.
The package is removed from the list and from your installation.

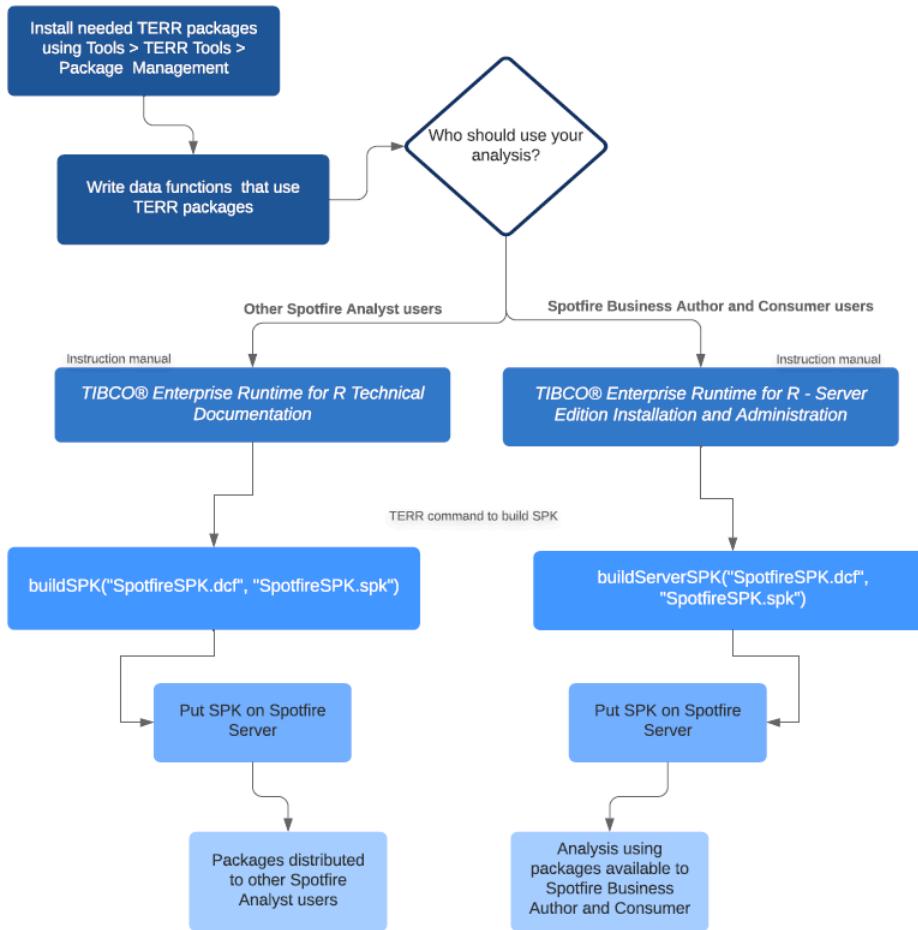
The Spotfire SPK

A Spotfire SPK is usually created and tested by developers to package and deploy third-party extensions to the Spotfire Server, which can then be distributed to Spotfire Analyst users, or distributed to the Spotfire Server node for use by another service.

Even though they are both called “packages”, the R package and the Spotfire package (SPK) are different.

- The R package (usually downloaded from a repository) contains specialized R functions.
- The SPK is a means to deploy extensions to the Spotfire Server, which either distributes its contents to Spotfire Analyst users, or installs for a service, such as the TERR service, to use from the Spotfire Server node.

To make it easy to create SPK files containing R functions, TERR contains an R package, `SpotfireSPK`, that has two functions:


- `buildSPK`, which creates an SPK containing packages suitable for distribution to other Spotfire Analyst clients to create analyses using data functions.

This use case applies only to TERR and not TERR service, so it is not covered in the TERR service documentation. For more information about creating packages to be distributed to your team members, see the “Package Management” section of the *TIBCO® Enterprise Runtime for R Technical Documentation*.

- `buildServerSPK`, which creates an SPK containing packages suitable for distribution to a Spotfire Server for use by the TERR service.

This documentation does not cover the Spotfire SPK in general, only those built using the `SpotfireSPK` package and containing R packages. For more general information about extending Spotfire using the SPK, see the Spotfire SDK documentation available at docs.tibco.com.

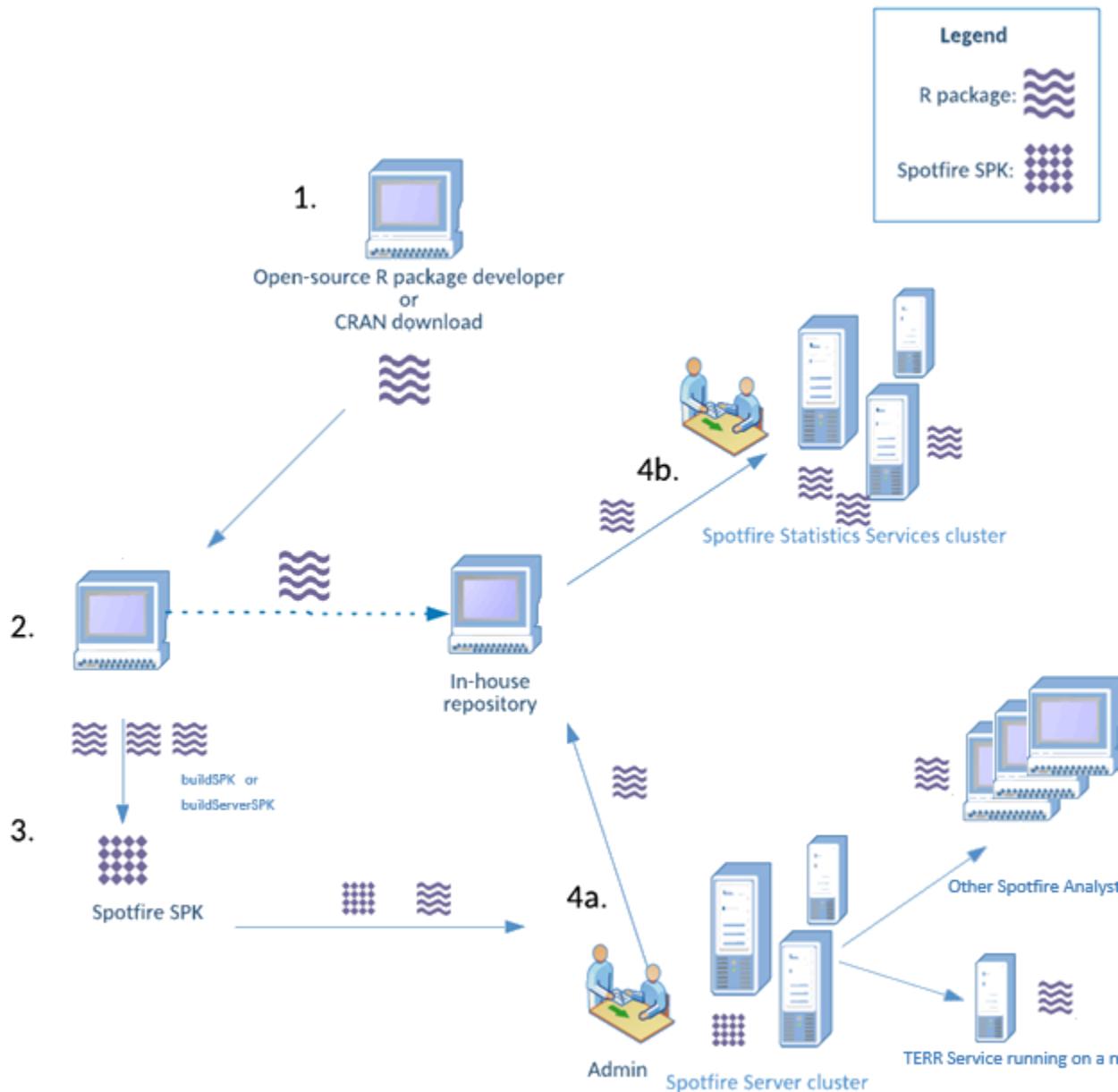
Package Workflow

Using packages with the TERR engine, Spotfire, and Spotfire Statistics Services is a two-part process.

1. [Stage the packages](#) (including developing or downloading, testing, and deploying).
2. [Distribute and use the packages](#).

Stage the Packages

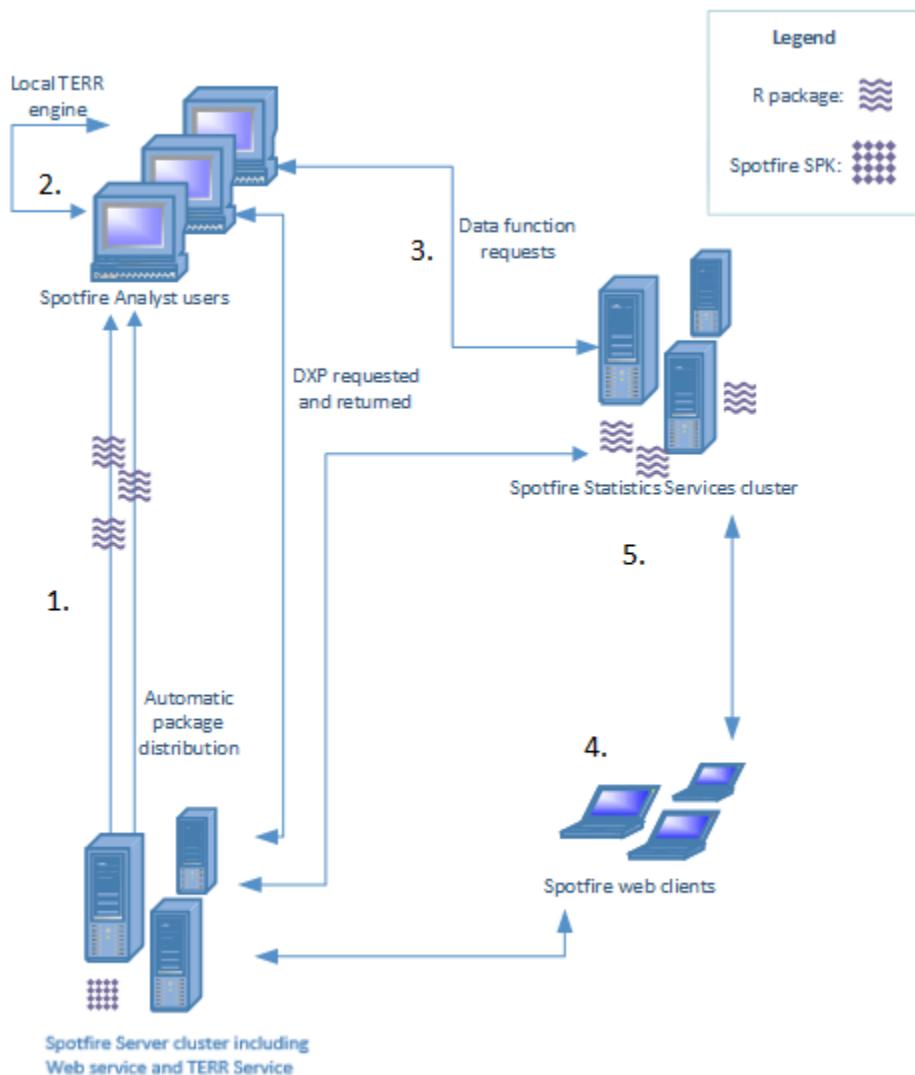
Displayed here is a high-level outline of the processes of staging packages, including deploying them to a Spotfire Server package repository and, optionally, to a Spotfire Statistics Services package repository.


To stage and deploy a package in the Spotfire Server cluster and optionally the Spotfire Statistics Services cluster, follow the pictured workflow. These steps describe the numbers in the image.

1. From your local TERR console, produce or download the R language packages to deploy and use. (Open the console from the Spotfire Analyst installation, from the **Tools > TERR Tools** menu.)
2. Using your local TERR engine, test the package.

3. From your local TERR engine, load the SpotfireSPK package, and then call the function to build the SPK (passing in the path to the Debian Control File (.dcf), the SPK package name, the SPK and any additional parameters you require).
 - To distribute packages to other Spotfire Analyst clients, call `buildSPK`.
 - To install packages on the Spotfire Server for TERR Service to use, call `buildServerSPK`.For more information, see the section [Creating the Spotfire SPK](#).
4. Hand off both the SPK and the R package to your Spotfire Server administrator. (Optionally, if you have the permissions, you can upload the R package to an in-house repository using the `drat` package.)
 - a. The administrator places the SPK on the Spotfire Server for either distribution to other Spotfire Analyst clients, or to a node running TERR Service. If required, using the TERR console, the administrator can copy the package to the in-house repository.
 - b. If you have Spotfire Statistics Services in your Spotfire Server deployment, then the administrator logs in to Spotfire Statistics Services and, using the TERR console, installs the R package from the in-house repository to Spotfire Statistics Services.

Optionally, the administrator can use the Eclipse plugin **TSSS Connector** to install the package to Spotfire Statistics Services. (For more information, see the section [Uploading a package using TSSS Connector](#).)


Distribute and Use the Packages

The following image provides a high-level picture of package distribution and use after it has been placed on TIBCO Spotfire® Server and TIBCO Spotfire® Statistics Services.

After the packages are placed on the Spotfire Server and, optionally, on TERR Service (or Spotfire Statistics Services), they are automatically distributed to Spotfire analysts for use in their advanced analytics, and they are available to Spotfire web client users who access Spotfire visualizations through a browser. These steps describe the numbers in the image.

1. When the Spotfire users launch Spotfire Analyst, they are notified by the server that a new distribution of the package is available. They accept the update.
2. If this Spotfire Analyst user has the Data Function license, he can run data functions using the packages and the local TERR engine.

3. Spotfire web client users can run TERR data functions remotely using the TERR engine through the TERR Service, or optionally, Spotfire Statistics Services.
4. Spotfire web client users access the Spotfire DXP (stored in the Spotfire Library) through the Spotfire Server.
5. If the Spotfire DXP includes data function(s), the Spotfire web client can access TERR Service or Spotfire Statistics Services to run the data function using the TERR engine, and then return the results to the Spotfire web client. The results are rendered in the Spotfire web client browser.

Obtaining the SpotfireSPK Toolset

Using the SpotfireSPK package, you can generate a Spotfire SPK containing your R or TERR packages, and then automatically distribute them to Spotfire Analyst installations in your organization.

You must have installed Spotfire Analyst. You must have a license to use TERR in your Spotfire Analyst installation.

Procedure

1. From the Spotfire Analyst menu, click **Tools > TERR Tools**.
2. On the **Engine** tab, click **Launch TERR Console**.
The TERR console in the Spotfire installation is displayed.

3. At the console prompt, type `library("SpotfireSPK")`.
The package is loaded in the TERR session, and you are now ready to build the SPK to contain the TERR-compatible binary packages.
4. Review the Help for the package functions, `buildSPK` and `buildServerSPK`, by typing the following in at the command-line in the TERR console:
`?buildSPK` or `?buildServerSPK`
 - `buildSPK` builds an SPK that is distributed to other Spotfire Analyst users.
 - `buildServerSPK` builds an SPK that is installed on the Spotfire Server for the TERR Service to use.

Creating the Spotfire SPK for Other Spotfire Analyst Users

Practice building an SPK that contains two useful packages: `boot` and `MASS`, which you can install from the repository.

Prerequisites

You must have access to the TERR engine, either through your Spotfire installation, or the stand-alone TERR console.

This example builds an SPK for distributing a package to other Spotfire Analyst users. For an example of building an SPK for distributing a package for use by the TIBCO® Enterprise Runtime for R - Server Edition Installation and Administration Guide on the [TIBCO Docsite](#).

The `survival` R package is compatible with TERR; however, note that some of its examples might use the `plot` function, which is not supported in version 6.1.

When you prepare an SPK to be deployed to the Spotfire Server, remember the following rules:

- The Spotfire SPK can contain as many R packages as you need.
- You can have as many SPK files in a deployment area as needed.
- You can have different SPK files in different deployment areas.
- To distribute an updated Spotfire SPK to the Spotfire Analyst installations using the server, the Spotfire SPK must have its `BuiltVersion` incremented.

This example walks you through installing a package, generating the list, installing your package, and making sure it works as expected.

Procedure

1. Load the Spotfire SPK package.

```
library(SpotfireSPK)
```

2. Install a package to be in your Spotfire SPK file.

```
install.packages(c("boot", "MASS"))
```

The package `survival` is downloaded from the repository.

If you want to install a package from a different repository, specify it using the `repos` argument. See [Installation Options for Packages](#) on page 18.

3. Generate the Debian Control File (DCF).

The DCF contains the package list to build into the Spotfire SPK.

```
writeLines("Packages: boot,MASS", "MySpotfireSPK1.dcf")
```


See [Spotfire SPK versioning](#) for information about creating the DCF and versioning the SPK.

4. Build the SPK.

In this example, you are building the SPK without passing any arguments for certificates or passwords, and the resulting output specifies that your resulting SPK is unsigned. If you do not include the arguments `certificate` and `password` in your `buildSPK` function, when the package is distributed, Spotfire Analyst users see a message warning of an unsigned file, and they are prompted to accept or reject the installation. This message appears for every update of the unsigned package. See your server administrator for a certificate and password to include.

```
buildSPK("MySpotfireSPK1.dcf", "MySpotfireSPK1.spk")
```

```
Note that "MySpotfireSPK1.spk" will not be signed.  
Status information  
Done.
```

5. Print the new list file.

```
cat(readLines("MySpotfireSPK1.dcf"), sep="\n")
```

```
Packages: boot,MASS
Built: TERR 6.0.0; (includes date and time)
BuiltFile: MySpotfireSPK1.spk
BuiltName: TIBCO Enterprise Runtime for R Packages
BuiltId: F13B9A7E-783A-432a-8676-42FCD3022D70
BuiltVersion: 1.0.0.0
BuiltPackages: MASS (>=7.3-51.5),boot (>=1.3-24)
```

(Your output will vary.)

6. Browse your computer for the SPK file and the DCF file.

By default, both of these files are written to the `your\user name` directory.

As of TERR 5.1.0, you can have multiple SPK packages deployed to your Spotfire Server. Use the SPK's DCF list to keep track of the packages in the SPK. We recommend you keep the lists where you can update them as necessary. See [Packages deployed for a small group](#) for more information.

Spotfire SPK Versioning

You create the SPK (.spk) file containing the packages you want to distribute to others using Spotfire Analyst, or to install on a service running on a Spotfire Server node. You might need to change or update the packages that you distribute, which requires changing the version of the Spotfire .spk file.

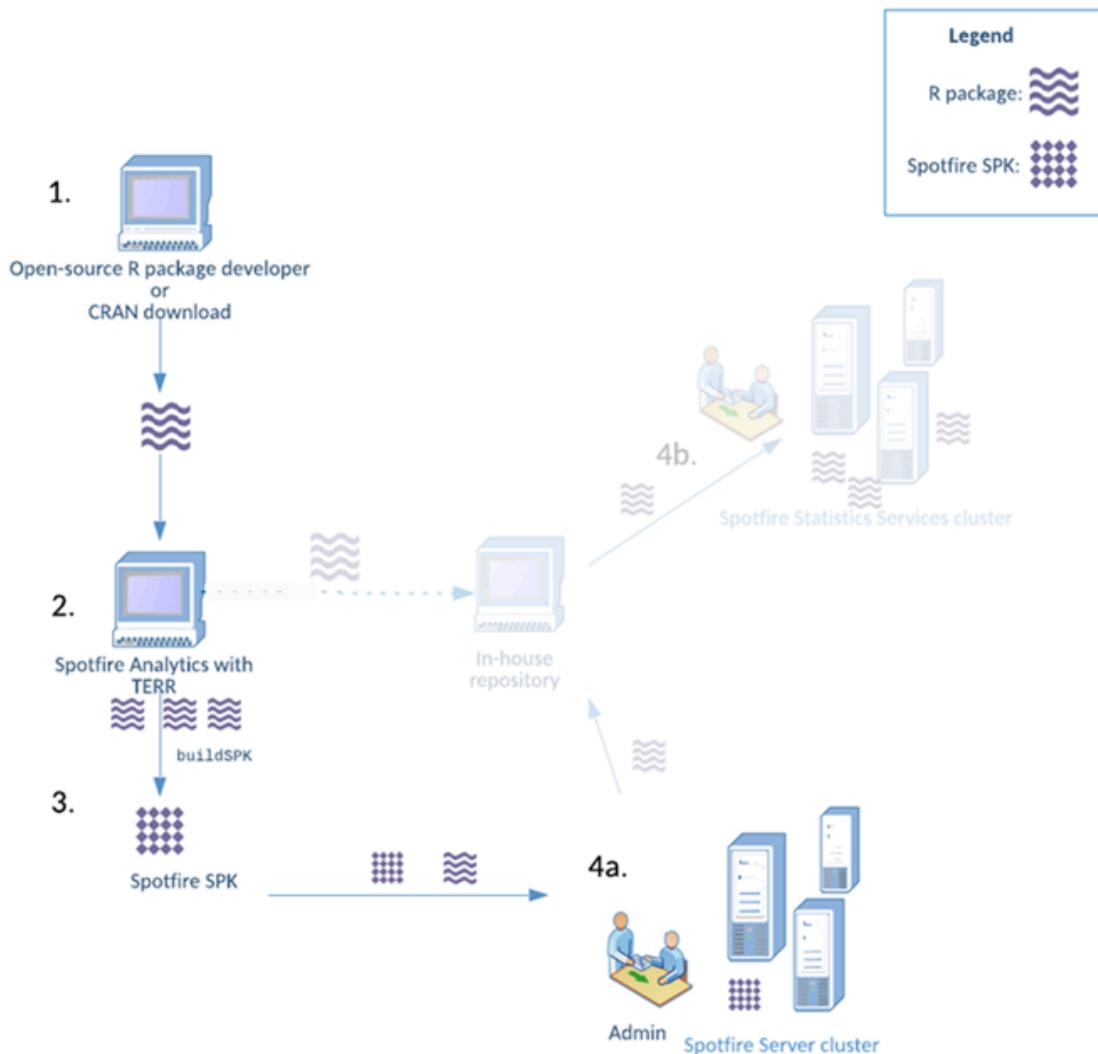
You can create or change a Spotfire .spk file using TERR or from a text editor. The TERR functions `buildSPK` and `buildServerSPK` create the Spotfire .spk file using the versioning rule details for the following tasks.

The SPK property `BuiltVersion` is NOT the same as the package version. That information is stored in the package `DESCRIPTION` file. `BuiltVersion` is always specified as four components (`n.n.n.n`).

You can learn more about the TERR functions `buildSPK` and `buildServerSPK` by reading their help files. See [Obtaining the SpotfireSPK toolset](#) for more information.

As of TERR version 5.1, the SPK you create by calling `buildSPK` or `buildServerSPK` also includes Imports and Depends packages.

Task	Example	Notes and Results
Create a new DCF for a new SPK containing packages to put on the Spotfire Server.	<p>From the TERR console, install the required packages, and then create the SPK.</p> <pre data-bbox="508 304 936 684">#load the library containing #the tools library(SpotfireSPK) #install the packages to go # into the SPK install.packages(c("plyr", "zoo")) #create the DCF containing # the package names writeLines("Packages: plyr,zoo", "ServerSPK.dcf") #create the SPK to upload to the # Spotfire Server buildServerSPK("ServerSPK.dcf", "ServerSPK.spk")</pre>	<p>A DCF with the name <code>ServerSPK.dcf</code> is created containing the package names listed in the <code>text</code> argument of <code>writeLines</code>, along with their required and dependent packages. The specified packages are included in the SPK.</p>
Add packages to an existing SPK to put on Spotfire Server.	<p>Using a text editor, open the existing DCF, and add to the package names to the list of the (installed) packages to put in the SPK. Do not edit any other part of the DCF.</p> <p><code>Packages: plyr,zoo,caret,forecast</code></p> <p>From the TERR console, create the SPK.</p>	<p>The DCF with the name <code>ServerSPK.dcf</code> is overwritten, and the packages you manually added to the DCF are added to the SPK.</p> <p>The SPK <code>BuiltVersion</code> is changed to the next minor version number and is listed in the DCF. For example:</p>
Remove a package from the existing SPK (and subsequently from Spotfire Server).	<p>Using a text editor, open the existing DCF, and remove the unwanted package names from the list the names of the packages to put in the SPK. Do not edit any other part of the DCF.</p> <p><code>Packages: plyr</code></p> <p>From the TERR console, create the SPK.</p>	<p>The DCF with the name <code>ServerSPK.dcf</code> is overwritten, and only the packages remaining in the DCF are included in the SPK.</p> <p>The SPK <code>BuiltVersion</code> is changed to the next major version number and listed in the DCF. For example:</p>


Task	Example	Notes and Results
Assign a specific <code>BuiltVersion</code> number to an SPK.	<p>From the TERR console, install the required packages, and then create the SPK.</p> <pre data-bbox="508 297 951 777"> #load the library containing # the tools library(SpotfireSPK) #install the required packages install.packages(c("plyr", "zoo")) #create the DCF containing # the packages writeLines("Packages: plyr,zoo", "ServerSPK.dcf") #create the SPK to upload to the # Spotfire Server, #passing in the version number. #This argument is a character string #or a #numeric_version object containing #four components buildServerSPK("ServerSPK.dcf", "ServerSPK.spk", version="1.2.3.4") </pre>	<p>The DCF with the name <code>ServerSPK.dcf</code> is created (or overwritten if it already existed), and the packages specified in the DCF are included in the SPK.</p> <p>The SPK <code>BuiltVersion</code> is set to the value passed in for the argument <code>version</code>. For example:</p>
		<code>"BuiltVersion: 1.2.3.4"</code>
Generate a new DCF with the same name.	<p>From the TERR console, install the required packages, and then create the SPK.</p> <pre data-bbox="508 910 951 1347"> #load the library containing # the tools library(SpotfireSPK) #install the packages to go into # the SPK install.packages(c("forecast", "caret")) #create the DCF containing the # names of the installed # packages writeLines("Packages: forecast,caret", "ServerSPK.dcf") #create the SPK to upload to the # Spotfire Server buildServerSPK("ServerSPK.dcf", "ServerSPK.spk") </pre>	<p>If you use this method to overwrite an existing DCF, the version number is still set to <code>1.0.0.0</code>; therefore, Spotfire Server does not register the package as a new one, so it does not distribute the new packages to the users.</p>
		<p>The DCF with the name <code>ServerSPK.dcf</code> is overwritten, and the package names listed in the <code>text</code> argument of <code>writeLines</code>, along with their required and dependent packages, are included. The packages specified are included in the SPK.</p> <p>The SPK <code>BuiltVersion</code> number is listed in the DCF as follows:</p>
		<code>"BuiltVersion: 1.0.0.0"</code>

Deploy the SPK to the Spotfire Server

The SPK file created by `buildSPK` or `buildServerSPK` is deployed to the Spotfire Server the same way any SPK is deployed.

Using the Administration Console tools, the Spotfire Server administrator places the SPK in the Spotfire Server distribution area (4a).

- For packages built with `buildSPK` (for distribution to other users), when Spotfire Analyst users start the application, they are informed that an upgrade is available. (Alternatively, the server can be configured to force an upgrade so the new SPK is distributed automatically.)
- For packages built with `buildServerSPK`, the new packages are made available to the service.

If you did not provide a certificate when you build the SPK, the users are asked to accept the unsigned file. See your server administrator for more information, or to get a copy of a certificate and its password.

Packages Deployed for a Small Group

The package curator can deploy packages to a small group, rather than to an entire organization.

As of TERR version 5.1, a Spotfire Server deployment area can contain multiple SPK files. However, when you update or add an SPK to the primary deployment area, then the packages in that SPK are distributed to all users connected to the deployment area on the server. The package curator might want to create a small, contained package or set of packages for testing. To distribute a set of packages to a specific set of users, you can place the SPK file on a separate Spotfire Server deployment area. Members of a group connected to that deployment area have the packages deployed only to their Spotfire Analyst installations.

To deploy a package, or a set of packages in an SPK to a limited group, Ask the Spotfire Server administrator to create a new deployment area on the Spotfire Server and grant access to this deployment area to the designated group.

When the designated users open Spotfire and connect to the test deployment area, their installation is updated to the version of Spotfire with the package, and then they can use it with the local engine.

Even when you test a new package, make sure to follow your organization's rules to keep official package versions synchronized.

Spotfire Package Maintenance

Package maintenance includes updating package versions, removing obsolete packages, or adding new packages to the SPK distribution. It also includes ensuring that everyone using a package is using the same version.

We recommend that you assign a person in your organization the task of maintaining the R packages and versions distributed using the Spotfire SPK deployment mechanism, as well as those uploaded to Spotfire Statistics Services. (See [Curator role](#) for additional guidance.)

If you need to add one or more binary packages to the SPK, or if you need to update an existing package, you can recreate the .spk file as described in [Creating the Spotfire SPK](#).

Redeploying an SPK of the same name overwrites the SPK currently in a deployment area. Spotfire Analyst users who start a session that connects to that deployment area are prompted to update.

If you have analysts running analyses using the local TERR in Spotfire Analyst, be sure to inform them of any changes to packages distributed to the team by Spotfire Server.

Install Packages on Spotfire Statistics Services

You can install packages onto the Spotfire Statistics Services server. If you want to use packages from a repository on the internet (such as MRAN or CRAN), you need a computer with a connection to the internet.

If you use this method in a cluster environment, you must upload the same package on each server in the cluster.

- If you have administrative privileges, then you can log on to the Spotfire Statistics Services server with administrative credentials, and then use the TERR function `install.packages` to upload packages from the repository. See [Uploading a Package to Spotfire Statistics Services From a Repository](#) on page 121 for more information.
- If you have administrative privileges, then you can copy a package from an in-house computer to the Spotfire Statistics Services server. See [Uploading a Package to Spotfire Statistics Services from Another Computer](#) on page 124 for more information.
- If you have Eclipse installed on your computer, and you can get access to the Spotfire Statistics Services server, then you can use the tool TSSS Connector to connect to Spotfire Statistics Services and install packages to either a single server deployment of Spotfire Statistics Services or a cluster. See [Uploading a Package Using TSSS Connector](#) on page 126 for more information.

After installing packages on Spotfire Statistics Services, you can [validate the upload](#).

If you are using TERR with Spotfire Statistics Services, be aware that by default, certain Spotfire Statistics Services capabilities are disabled. If you created or used functions in a previous release, or if you install packages that contain functions that TERR deems to be potentially malicious, you might find that they do not work as expected. Any expression that TERR determines to be potentially malicious is disabled. For more information, see the *Spotfire Statistics Services User's Guide* and talk to your server administrator.

Uploading a Package to Spotfire Statistics Services From a Repository

If you have access to the internet from your installation of Spotfire Statistics Services, you can log on to the server and install packages directly.

Perform this task on the computer where Spotfire Statistics Services is installed.

If your Spotfire Statistics Services installation is a cluster, you must perform this task on every computer in the cluster.

Prerequisites

You must be able to log on with administrative credentials to the server where Spotfire Statistics Services is installed.

You must have built the package archive or downloaded a compatible package from a trusted web site or package repository.

- The repositories contain binary packages (for Windows) and source packages (for Linux and Windows). You can easily install most binary and source packages in TERR. If you have problems building from source, then build the packages using open-source R before installing them into TERR. Note that TERR does not build binary packages from source packages that contain Java source code.

Platform	Package type	Notes
Linux, Windows	Binary	Call <code>install.packages(pkgname)</code> . TERR installs the binary package into your specified package directory.
Linux	Source; no Java code, no C/C++ or Fortran code	Call <code>install.packages(pkgname)</code> . TERR builds the source package into a binary package and installs it into your specified package directory.
Linux, Windows	Source; C/C++ or Fortran code (no Java code)	On Windows, first you must install the Rtools utilities package, which is maintained by Duncan Murdoch, and then update your PATH to specify the location of the utilities. <ol style="list-style-type: none"> 1. If you have not already done so, install the package <code>rinclude</code> by calling <code>install.packages('rinclude')</code> 2. Call <code>install.packages(pkgname)</code>. See Installation Options for Packages on page 18 for information on repositories accessed by <code>install.packages</code> . TERR builds the source package into a binary package and installs it into your specified package directory. If the package does not build and install, then try building it with open-source R, and then installing the binary as described here.
Linux	Source; Java code	<ol style="list-style-type: none"> 1. Build the package using open-source R tools for building packages from source. The tools compile the source code to create the binary package. 2. Call <code>install.packages(pkgname)</code>.

See the help for `install.packages(pkgname)` for more information.

Due to changes in open-source R version 3.5 and resulting compatibility changes in TERR 5.0, packages that are built with a version of TERR prior to 5.0 must be rebuilt.

- To install a binary package from a repository, always call `install.packages(pkgname)` from TERR. The `install.packages` function finds the correct binary version in the repository for

your version of TERR. Manually downloading the binary package from CRAN can result in errors when you use it with TERR.

- To install a package from source, try installing it first with TERR (with `install.packages` in TERR or with `TERR CMD INSTALL` from a command line).
- To install a package from source that you cannot build with TERR, install the package with the version of open-source R tested with TERR.

Spotfire Statistics Services accepts `.zip` archives (Microsoft Windows servers only) or `.tar.gz` archives (Linux servers only).

- If you plan to download an R package from CRAN to run on the TERR engine, we recommend that you check the package compatibility list for the version of TERR on your installation of Spotfire Statistics Services, and test the package with the version of TERR that is in your installation of Spotfire Statistics Services. See the [Documentation](#) page for TERR for more information.

Procedure

1. Log on with administrator credentials to the computer where Spotfire Statistics Services is installed. If you do not have administrative credentials, ask your server administrator to help you.
2. Open the `bin` directory of the server's engine. This path should look like `SPSERVER_HOME/engines/eng/bin` where `SPSERVER_HOME` is the installation and server context, and `eng` is the language engine, such as open-source R or TERR. Windows example: `C:\Program Files\TIBCO\statsvcs1010\TERRServer\engines\Terr\bin`
3. Right-click the language engine executable, and from the menu, click **Run as administrator**. A console for the language starts.
4. At the console command prompt, type the command `install.packages("pkgname")`, where `pkgname` is the package you want to install.

If your installation of Spotfire Statistics Services is configured to be able to install packages from the internet, then `install.packages()` installs from CRAN. If you want to install a package from another repository, such as an in-house package repository, provide the path using the `repos` argument.

By default, Spotfire Statistics Services is configured to restrict access to file I/O, downloading from the internet, and any other operation that can be considered a potential malicious action. If your installation of Spotfire Statistics Services is not configured to be able to install packages from the internet, then see your system administrator for guidance on how to get the packages you need.

Example: `install.packages("h2o")`

The current version of the package and all of the packages it requires to work are downloaded and installed into the directory `SPSERVER_HOME/engines/eng/library` from the specified repository.

What to do next

[Validate the package upload](#).

Uploading a Package to Spotfire Statistics Services from Another Computer

If your installation of Spotfire Statistics Services is not connected to the internet, but you have administrative privileges to log on to the server, you can still install packages on it.

You can upload two types of packages by copying them to Spotfire Statistics Services.

- You can upload packages that have been created and built for your Spotfire Statistics Services installation.

- You can use another computer that is running the same operating system, and that is connected to the internet to download a package from a repository.

Prerequisites

You must have either a built binary package or access to a computer on the internet.

Binary (built) packages are required. Source packages must be built before they can be uploaded to Spotfire Statistics Services.

Spotfire Statistics Services accepts `.zip` archives (Microsoft Windows servers only) or `.tar.gz` archives (Linux servers only).

You must have administrative credentials to log on to the server where Spotfire Statistics Services is installed (or you must give the package archive to a server administrator to upload them).

Procedure

1. From the internet-connected computer, make sure that TERR or open-source R (and optionally RStudio) is installed.

The computer you use to download packages must be running the same operating system as the Spotfire Statistics Services server. (That is, Windows or Linux. If Linux, it must be the same version of Linux.)
2. Start a console or, if available, an RStudio session.

If you are running the console from Microsoft Windows, from the **Start** menu, right-click the application, and then select **Run as administrator** so you can install the package into the engine's `site-library` directory. Otherwise, you are prompted to create a personal library. If you select that option, make a note of the location so you can find the package.
3. Open the directory where the package (and any dependent packages) downloaded, and using an archiving utility, create a `.zip` or a `.tar.gz` archive that contains all files and directories included with the download.
4. Copy the resulting archive to a medium (such as a flash drive) or a network location that your server can access.
5. If you have access, log on with administrator credentials to the server where Spotfire Statistics Services is installed.

If you do not have administrative credentials, ask your server administrator to help you.
6. Insert the flash drive into a port on the server, or from the server, map a network drive to the package archive location.
7. Browse to the installation of Spotfire Statistics Services and open the `library` directory for the appropriate language (TERR or R).

This path should look like `SPSERVER_HOME/engines/eng/library` where `SPSERVER_HOME` is the installation and server context, and `eng` is the language engine, such as R or TERR.

Windows example: `C:\Program Files\TIBCO\statsvcs1010\TERRServer\engines\Terr\library`
8. Copy the zipped archive of the package(s) from the medium or network drive to the `library` directory, and then unzip them there.

What to do next

[Validate the package.](#)

Uploading a Package Using TSSS Connector

To upload a package to Spotfire Statistics Services, if you have server administrative privileges and an Eclipse installation, you can establish a connection to Spotfire Statistics Services and upload TERR or R packages using the TSSS Connector.

Prerequisites

To complete this task, you must have completed the following steps.

1. Built the package archive or downloaded a compatible package from a trusted web site or a package repository, such as CRAN or an in-house repository.

Binary (built) packages are required. Source packages must be built before they can be uploaded to Spotfire Statistics Services.

Spotfire Statistics Services accepts .zip archives (Microsoft Windows servers only) or tar.gz archives (Linux servers only).

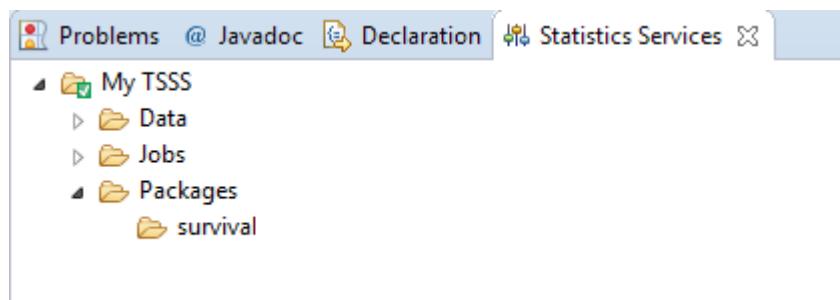
2. Installed the Eclipse integrated development environment.

We tested versions 3.6 to 4.2.2 (Juno) of Eclipse for the remote submission tools.

3. Downloaded the TSSS Connector Eclipse plug-in from the update page on Spotfire Statistics Services.

For detailed information about updating or installing this plugin, browse to the landing page for the Spotfire Statistics Services installation available to you, and then see the update page.

```
http://SName:P#/SC/update
```


SName is the server name, *P#* is the port number, and *SC* is the server context (for example, `http://CoTSSS:8080/TERRServer/update`).

If you are uploading a package that is also provided to Spotfire Analyst users from a Spotfire Server deployment, then the package version must match the version distributed in the SPK to the Spotfire Analyst users.

Perform this task using the **Statistics Services** plugin for Eclipse.

Procedure

1. Right-click the **Packages** folder.
2. From the menu, select **Upload Package**.
3. Supply the location of your package archive.

4. Add the archive. The package is now on Spotfire Statistics Services.

Although the package is on Spotfire Statistics Services, it is not loaded into the engine. With each call to Spotfire Statistics Services, the engine is started anew.

To use the package, you can either load the library as part of your function scripts, or you can include it in the `Packages` field of your Spotfire data function.

Maintaining a Package in TIBCO Spotfire Statistics Services

Keep the package versions in synch across your Spotfire Statistics Services deployments.

Prerequisites

You must have the Eclipse IDE and the TSSS Connector configured and installed.

After you add a package to the server, you can check its properties using the Statistics Services view in Eclipse.

Procedure

1. In the Statistics Services view, connect to the service if it is not already connected.
2. Expand the folder structure to see the packages listed in the `Packages` folder.
3. Right-click the package name, and from the menu, select **Package Properties**.

The Properties dialog box appears, and information on the package, drawn from its `DESCRIPTION` file, is displayed.

4. Update the package as needed.
5. Follow the steps to upload the updated package.

See [Uploading a package to TIBCO Spotfire Statistics Services](#).

What to do next

After the package has been uploaded, follow the steps in [Validating the package upload](#).

Validating the Package Upload

After you upload a package, run a quick validation to ensure that your package is on the server.

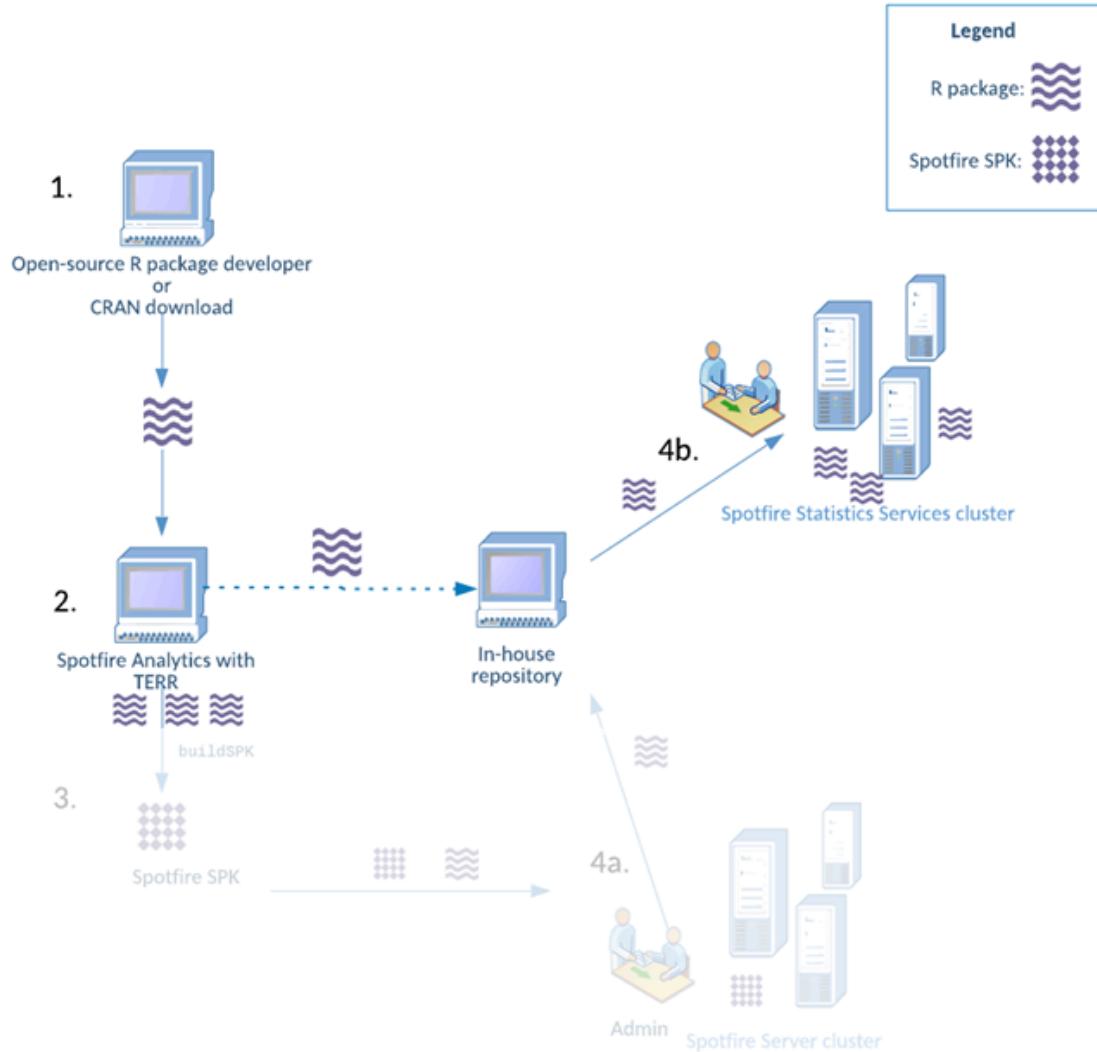
Prerequisites

You must have administrative privileges to perform this task.

Perform this task from the TERR console in your installation of Spotfire Statistics Services

Procedure

1. From the browser, type the following command.
`installed.packages()`
A list of installed packages is printed in the console.
2. Review the list (including the path) to ensure that the package you uploaded is installed.


Although the package is on Spotfire Statistics Services, it is not loaded into the engine. With each call to Spotfire Statistics Services, the engine is started anew.

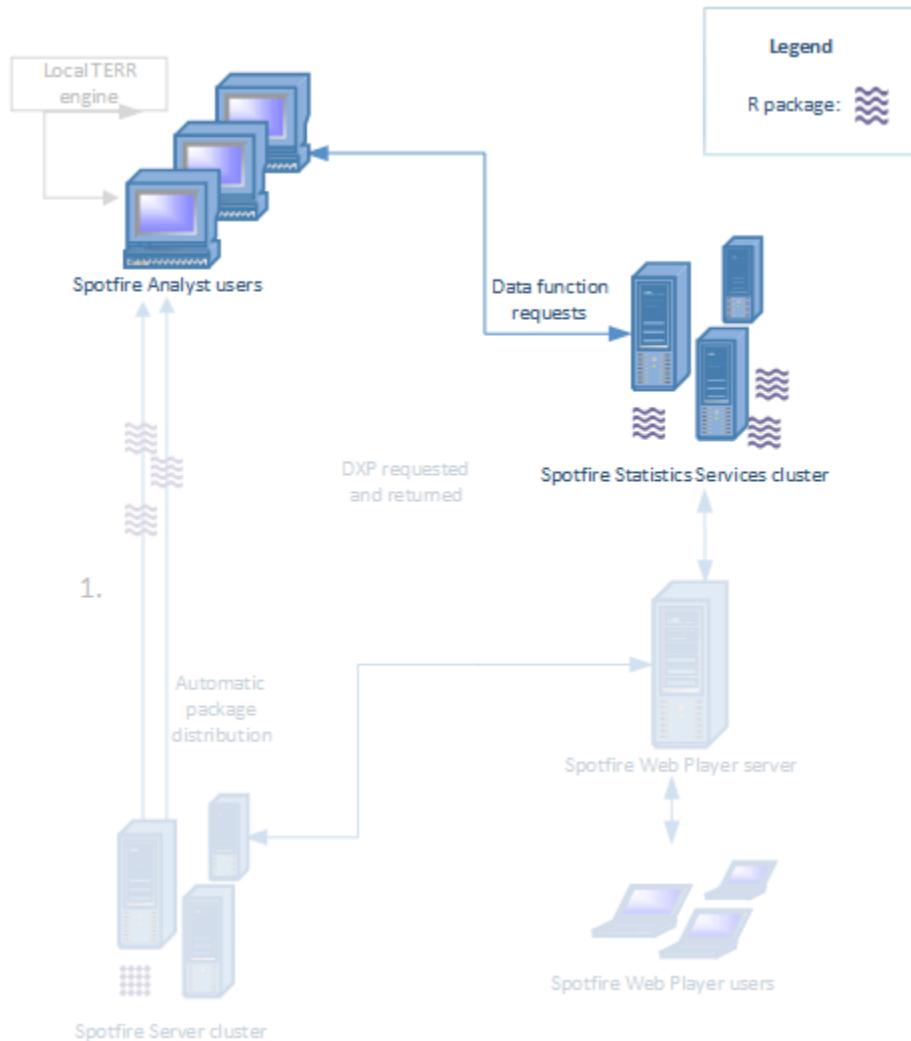
To use the package, you can either load the library as part of your function scripts, or you can include it in the `Packages` field of your data function.

Manage Packages Between Spotfire and Spotfire Statistics Services

You can share Spotfire visualizations that use R language packages. To share such visualizations widely in a web browser, your server configuration must include the Spotfire web client and Spotfire Statistics Services deployed and configured to work with Spotfire Server.

Spotfire Statistics Services includes a repository for the packages containing functions that can be used by Spotfire analyses. These packages must be identical to those packages distributed to the installations of Spotfire Analyst.

You can add packages to your Spotfire Statistics Services installation. For more information, see [Install Packages on Spotfire Statistics Services](#).


Changing the Local Engine Option

You can configure Spotfire Analyst to use the TERR engine that is installed in your organization's Spotfire Statistics Services deployment.

Prerequisites

Remember that you must have the same package version on your local installation and on the server. See your organization's package curator for help.

You can use Spotfire Statistics Services in deployments where web client users access Spotfire analyses. Changing from the local TERR engine to the one on Spotfire Statistics Services is useful for testing the analyses the Spotfire web client users access.

Procedure

1. In Spotfire Analyst, click **Tools > Options**.
2. In the left pane, scroll down and select **Data Functions**.
3. In the **Data Functions** pane, select **Custom URL**, and then provide the URL to the Spotfire Statistics Services (for example, `http://CoTSSS:8080/TERRServer`).
4. Clear the checkbox **Use locally installed TIBCO Enterprise Runtime for R**, and then click **OK** to accept.

The following advanced analytic tools available in the Spotfire Analyst installation always use the local engine, regardless of this setting.

- Classification modeling.
- Regression modeling (linear regression or regression tree).

Troubleshooting TERR and Spotfire Packages

If you remove a package accidentally, cannot install a package, get different results than you expect in your analysis, or cannot distribute an SPK, try these techniques to solve the problem.

I generated a new SPK using `writeLines` but it is not being distributed.

It is most likely that the SPK version number is not being properly revised. Review the rules for how the SPK version is determined in [SpotfireSPK versioning](#) for more information.

I have copied a package from CRAN but it is not working with TERR

Always make sure to use the version of open-source R that was tested with the version of TERR you are using.

Due to changes in open-source R version 3.5 and resulting compatibility changes in TERR 5.0, packages that are built with a version of TERR prior to 5.0 must be rebuilt.

- To install a binary package from a repository, always call `install.packages(pkgname)` from TERR. The `install.packages` function finds the correct binary version in the repository for your version of TERR. Manually downloading the binary package from CRAN can result in errors when you use it with TERR.
- To install a package from source, try installing it first with TERR (with `install.packages` in TERR or with `TERR CMD INSTALL` from a command line).
- To install a package from source that you cannot build with TERR, install the package with the version of open-source R tested with TERR.

I accidentally removed a package from my Spotfire installation that I need. How do I get it back?

We recommend never removing a package from Spotfire TERR Tools, unless you have downloaded and installed the package yourself from a repository. You must be very careful to not remove a package that is installed with TERR or distributed by the Spotfire Server using the SPK mechanism. However, should you accidentally remove a needed package, you can recover.

If you deleted a distributed package, follow these steps.

1. Open Windows Explorer and browse to `%SPOTFIRE_HOME%\Modules`.
For example, `C:\Program Files (x86)\TIBCO\Spotfire\<version#>\Modules`.
2. Delete the folder `TIBCO Enterprise Runtime for R Packages_<version#>`.
3. Restart Spotfire and accept the prompt to update your installation.

All of the TERR packages contained in the SPK on the Spotfire Server are redistributed.

If you deleted a package required by TERR to operate, follow these steps.

1. Open Windows Explorer and browse to `%SPOTFIRE_HOME%\Modules`.
For example, `C:\Program Files (x86)\TIBCO\Spotfire\<version#>\Modules`.
2. Delete the folder `TIBCO Enterprise Runtime for R_<version#>`.
3. Restart Spotfire and accept the prompt to update your installation.

The package containing TERR is redistributed.

I am generating a different result from those seen by others. What could cause this?

Check your package version numbers to make sure everyone is using the same package version. See your package curator for more information.

I am trying to use a package on Spotfire Statistics Services but it's not working.

Be aware that by default, certain functions are restricted by Spotfire Statistics Services. If you see the error "Error: restricted call to Native[tempfile]", and execution of the expression is terminated, then the default restrictions have not been changed by your server administrator. Restricted behavior includes the following non-exhaustive list of operations.

- Performing any I/O to the file system or the internet.
- Loading new packages, except for the libraries included with TERR (stats, terrUtils, and so on).
- Spawning new OS processes (calling `system`).
- Calling `.call`, which is used to call Rapi code in CRAN packages.
- Calling `.C` or `.Fortran`.
- Calling into Java using the `terrJava` package (which allows executing arbitrary Java methods).
- Calling any functions in the `parallel` package (which uses `terrJava`).
- Accessing any function environments in the stack above the call to `evalREX` using `sys.frame` or `parent.frame`. (This prevents malicious code from installing functions or expressions that could be executed after leaving restricted execution mode.)
- Changing the variable lookup path by setting `parent.env` of an environment, or reading or setting the environment of a closure.
- Defining S4 classes and methods using `setClass` or `setMethod`.

Be sure you are loading the package in your TERR script. Although the package is on Spotfire Statistics Services, it is not loaded into the engine. With each call to Spotfire Statistics Services, the engine is started anew. To use the package, you can either load the library as part of your function scripts, or you can include it in the `Packages` field of your data function.

I cannot install a package from TRAN on Linux because it requires another package that is not installing correctly.

Some packages customized and placed on TRAN require other packages not available on TRAN. Some of these packages cannot be installed using the TERR function `install.packages`, so the TRAN package cannot be successfully installed. If you encounter this situation, try building and installing the package using open-source R.

If you get a warning that the `rinclude` package is not installed, try installing that package from TRAN and trying again.

When you install a package using TERR, by default, TERR first checks for the package on TRAN, and then checks on MRAN, and then CRAN. TERR installs the first version it finds. This is different than open-source R, which installs packages according to the newest version number available on CRAN. This difference is by design, because occasionally a CRAN package update causes a break with TERR compatibility, so we make available a tested version of the package on TRAN. If you need to install one of these packages using open-source R, you can install the CRAN package from MRAN or CRAN, and then set `options()$repos` to install from only TRAN before reinstalling the package. See [Specifying an older package on TRAN](#) for more information.

Graphics in TIBCO Enterprise Runtime for R

This guide provides examples and suggestions for using TIBCO® Enterprise Runtime for R (TERR™) in Spotfire, with the `RinR` package, and with CRAN packages (such as `htmlwidgets`) that work with TERR™ to display graphics in a web browser.

TERR as a statistical programming language and runtime engine was developed to be compatible with open-source R, and to be integrated in other systems, such as KNIME, Hadoop, and RStudio. Historically, it was developed to be included with the analyst versions of Spotfire, so data visualizations using the statistical power of TERR could be created in Spotfire.

This graphical capability provided by Spotfire allowed TERR engineers to concentrate on open-source R language and package compatibility, power, and speed. However, the need to produce graphics exists, and you can take advantage of tools and packages to produce high-quality graphs with TERR.

Not all graphics functions from open-source R are supported in TERR; however, most have stub functions so calling them will not cause the program to fail. The `RGB` package produces an image, but because of unimplemented functions, using this package causes TERR to fail. When you try your own code from the examples using the packages described here, you might see warnings about unimplemented functions.

JavaScript-Enabled Packages

You can use the TERR-compatible CRAN packages that take advantage of JavaScript to generate graphs, plots, and map visualizations, and then display them in a browser and save them as graphic images.

In this section, create a variety of graphics by loading compatible packages and calling functions.

- If your data has location information, such as a latitude column and a longitude column, and you want to create an interactive map, you can use the `leaflet` package.
- If your data has location information, such as latitude and longitude from around the world, and you want to create three-dimensional, interactive map graphics, you can use the `threejs` package.
- If your data has time and date columns, and you want to create a line graph, you can use the `dygraphs` package.

Creating a Plot with TERR and dygraphs

If you have time and date data, you can create a line plot showing trends with the TERR-compatible, JavaScript-enabled `dygraphs` package.

Perform this task from the TERR console. This example walks you through creating a line plot with data available on the internet, and then displays the results in a browser.

For information about the packages used in this example task, see the following links.

Package link	Package short description
http://www.quantmod.com/	The <code>quantmod</code> package provides quantitative modeling functions.
http://dygraphs.com/	The <code>dygraphs</code> package provides fast, flexible JavaScript charting functions.

You can perform this task from RStudio using the TERR engine. If you use RStudio, the results are displayed in the RStudio Viewer pane.

Prerequisites

TERR, access to the internet, and a browser.

Procedure

1. From the TERR console, install the quantmod and dygraphs packages.

```
install.packages(c("quantmod", "dygraphs"))
```

TERR checks the repository for the packages to install, and then installs them along with any packages they require.

2. Load the quantmod package.

```
library("quantmod")
```

The package and its required packages are loaded, and messages about any object masking are displayed, along with any warnings regarding TERR differences.

3. Call the quantmod function `getSymbols` to load the data and specify the source.

```
getSymbols("ATLA013URN", src = "FRED", auto.assign=FALSE)
```

In this case, the data is the Unemployment Rate in Atlanta-Sandy Springs-Roswell, GA. The source is the Federal Reserve Economic Data.

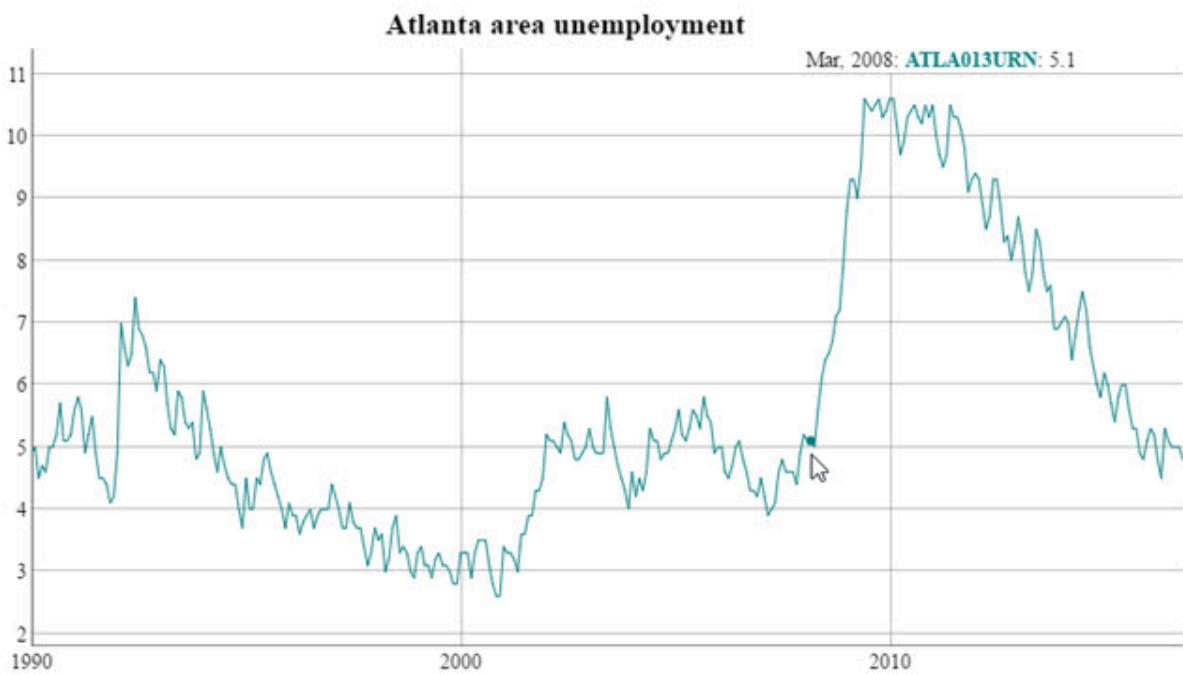
To see more information about `getSymbols` (for example, other supported data sources and other arguments), see its help file in the `quantmod` package help.

A message about the function is displayed and the data object is loaded.

4. Load the dygraphs package.

```
library("dygraphs")
```

The package and its required packages are loaded, and messages about any object masking are displayed, along with any warnings regarding TERR differences.


5. Call the `dygraph` function as follows to plot the data and display a plot title.

```
dygraph(ATLA013URN, main = "Atlanta area unemployment")
```

Result

The default browser is launched, and a line plot showing the Atlanta area unemployment rate from January 1990 through January 2016 is displayed.

- You can resize the image. The X-axis label detail adjusts to the window size.
- You can highlight individual points on the line by hovering over the line with your mouse or pointer device. The row value for the highlighted point (in this case, the month and year, data source, and Y-axis value) is shown in the upper left of the browser window.

Mapping data with TERR and leaflet

If your data has location columns (latitude and longitude), you can retrieve data using the `dplyr` package, and then create a map chart using the TERR-compatible, Javascript-enabled `leaflet` package.

You can use RStudio to create this map chart, or you can use the TERR console and display the results in a browser. This example walks you through creating a map chart in the TERR console with data available on the internet, and then displaying the results in a browser.

The `dplyr` package is used to filter the original data, and the pipe operator (`%>%`) is used to avoid creating intermediate data objects.

If you search the internet, you can find several informative articles and samples for the packages we use in this example.

Package link	Package short description
https://dplyr.tidyverse.org/	Work with data frame-like objects, both in memory and out of memory.
https://rstudio.github.io/leaflet/	Create and customize interactive maps using the Leaflet JavaScript library.

Prerequisites

TERR, access to the internet, and a browser.

Procedure

- From the TERR console, install the `dplyr` and `leaflet` packages.

```
install.packages(c("dplyr", "leaflet"))
```

TERR checks the repository for the packages to install, and then installs them along with any packages they require.

- Call the `library` function to load the required packages.

```
library("dplyr")
library("leaflet")
```

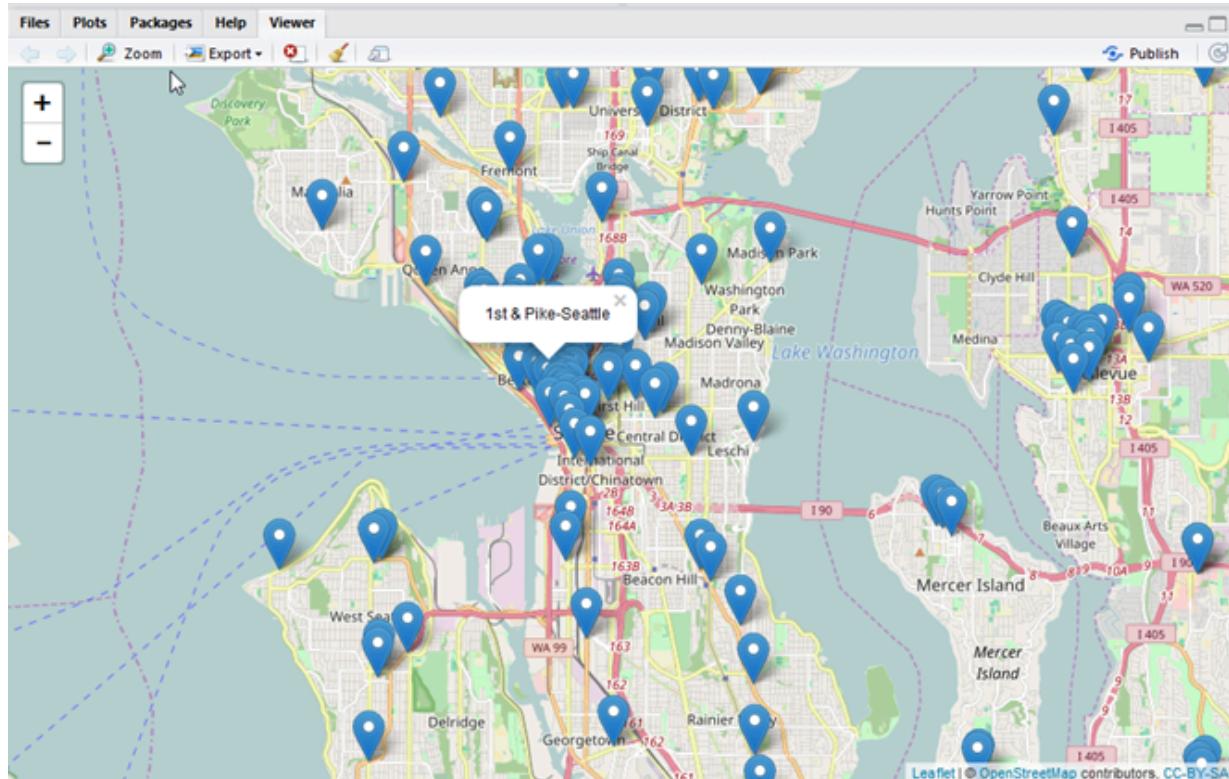
The packages and their required packages are loaded, and messages about any object masking are displayed, along with any warnings regarding TERR differences.

- Load the data, and then restrict the data to Starbucks stores located in Washington state only.

```
file <- "https://opendata.socrata.com/api/views/ddym-zvjk/rows.csv"
starbucks <- read.csv(file) %>%
  filter(State == "WA")
```

In this case, the data contains the location of Starbucks stores in the U.S. The source is the OpenData web site provided by Socrata. To see more information about `filter` (for example, filtering rows that match different conditions), see its help file in the `dplyr` package help.

- Use the `leaflet` package functions to draw a map, with the center in Seattle, and with the Starbucks store locations identified by markers.


```
leaflet() %>%
  addTiles() %>%
  setView(-122.32, 47.605, zoom = 12) %>%
  addMarkers(data = starbucks, lat = ~ Latitude, lng = ~ Longitude,
             popup = starbucks$Name)
```


The `addMarkers` function argument `popup` enables the `Name` column (containing the store name--usually named for its location) to be displayed when you select its marker.

Result

A browser opens, and a map with the center focused on the specified latitude and longitude is displayed. The `zoom` property of the map is set to the specified value. Each Starbucks store in the Seattle area is indicated by a blue marker. If you click a marker, the value of the `Name` column is displayed in a pop-up window.

What to do next

You can create [create a formatted HTML document with graphed data using the rmarkdown package](#).

Creating a 3D Interactive Map with TERR and threejs

If your data has location columns (latitude and longitude) from around the globe, and you want the user to be able to interact with the globe, you can create a graphic using the TERR-compatible threejs package.

You can use RStudio to create this interactive globe map, or you can use the TERR console and display the results in a browser. Perform this task from either RStudio or the TERR console.

You can find samples for the threejs package used in this example on the internet. For more information, see http://www.htmlwidgets.org/showcase_threejs.html.

Prerequisites

TERR, access to the internet, and a browser.

Procedure

- From the TERR console or RStudio prompt, install the threejs and maps packages.

```
install.packages(c("threejs", "maps"))
```

TERR checks the repository for the packages to install, and then installs them along with any packages they require.

- Call the `library` function to load the required packages.

```
library("threejs")
library("maps")
```

The packages and their required packages are loaded, and messages about any object masking are displayed, along with any warnings regarding TERR differences.

- Call the `utils` function, passing in the data set `world.cities` contained in the `maps` package.

```
data(world.cities, package="maps")
```

- Sort the top thousand entries of the `pop` (population) column from `world.cities` into decreasing order, and assign the result to the object `cities`.

```
cities <- world.cities[order(world.cities$pop,decreasing=TRUE)[1:1000],]
```

- Create the scale for mapping the cities by calculating the percentage of size for each entry in `cities`, and then assign it to the object `value`.

This step establishes a comparison among the largest to smallest values in the `cities` object that can be shown reasonably on the globe.

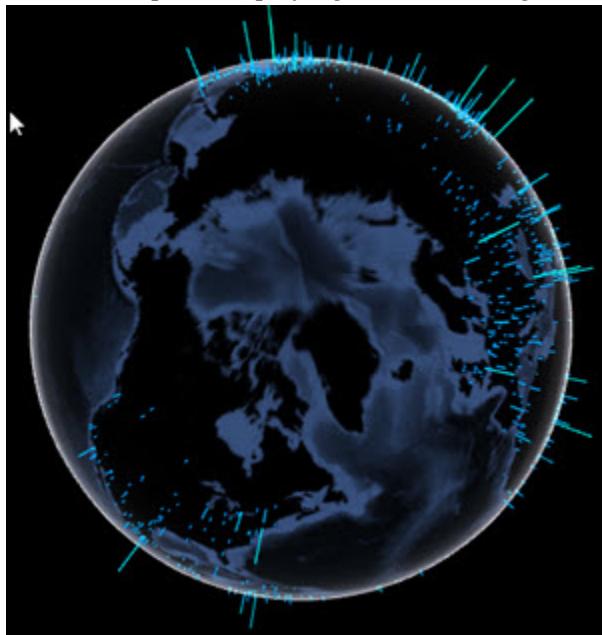
```
value <- 100 * cities$pop / max(cities$pop)
```

- Call the `grDevices` package function `rainbow`.

```
col <- rainbow(10,start=2.8/6,end=3.4/6)
col <- col[floor(length(col)*(100-value))/100] + 1]
```

This step sets the gradient of colors of the markers, and then calls the base package function `floor` to set the length.

7. Call the `threejs` function `globejs`, passing in the arguments.


```
globejs(lat=cities$lat, long=cities$long, value=value, color=col,
atmosphere=TRUE)
```

This step renders the globe and displays the markers for `cities`, as defined by `col`.

- `lat` is set to the `lat` column in the `cities` data.
- `long` is set to the `long` column of the `cities` data.
- `value` specifies using the percentage comparisons.
- `atmosphere` specifies to display the WebGL atmosphere effect.

Result

A browser opens, displaying an interactive globe, with markers showing cities by relative size.

Creating an Interactive Scatterplot Cloud with TERR and `threejs`

If you want to create an interactive scatterplot, you can use the `scatterplot3js` function from the `threejs` package from MRAN.

You can use RStudio to create this 100,000-point interactive scatter plot, or you can use the TERR console and display the results in a browser.

You can find samples for the `threejs` package used in this example on the internet. For more information, see http://www.htmlwidgets.org/showcase_threejs.html.

Prerequisites

TERR, access to the internet, and a browser.

Procedure

- From the TERR console or RStudio prompt, install the `threejs` package.

```
install.packages("threejs")
```

TERR checks the repository for the packages to install, and then installs them along with any packages they require.

- Call the `library` function to load the required packages.

```
library("threejs")
```

- Assign the value 10000 to `N1`, and the value 90000 to the name `N2`.

```
N1 <- 10000
N2 <- 90000
```

- Assign the point distribution to the `x` axis.

Set a random normal distribution for both `N1` and `N2`, with the standard deviation for `N1` of .05, and the standard deviation for `N2` of 2.

```
x <- c(rnorm(N1, sd=0.5), rnorm(N2, sd=2))
```

- Assign the point distribution to the `y` axis.

Set a random normal distribution for both `N1` and `N2`, with the standard deviation for `N1` set to .05, and the standard deviation for `N2` set to 2.

```
y <- c(rnorm(N1, sd=0.5), rnorm(N2, sd=2))
```

- Assign the point distribution to the `z` axis.

Set a random normal distribution for `N1`, with the standard deviation of .05, and a random Poisson distribution for `N2` with lambda of 20 to specify the means. Subtract 20 from the concatenation to center the points correctly on the `z` axis.

```
z <- c(rnorm(N1, sd=0.5), rpois(N2, lambda=20)-20)
```

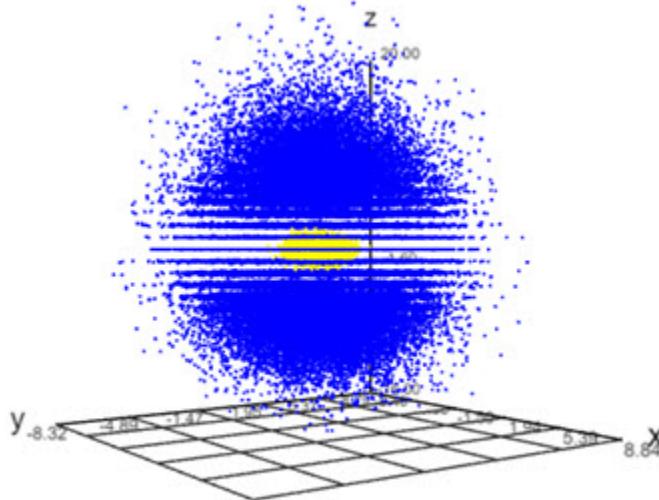
- Assign to `col` the color values for `N1` and `N2`.

Set `N1` points to be yellow (#fffff00) and set the `N2` points to be blue (#0000ff).

```
col <- c(rep("#fffff00",N1),rep("#0000ff",N2))
```

- Call the `threejs` function `scatterplot3js` to create the three-dimensional plot.

Plot the points for the coordinate values `x`, `y`, and `z` axes in the three-dimensional graph, setting the colors to `col`, and the point size to 0.25.


```
scatterplot3js(x,y,z, color=col, size=0.25)
```

Result

A browser opens and shows the three-dimensional scatterplot, which you can reposition to see the point distribution.

Dragging the visualization vertically reveals the `N1` points centered in the cloud of `N2` points.

Displaying a Linear Model on a Scatterplot with `ggvis`

If you want to create an interactive graph that is similar to one you can create in `ggplot2`, you can install the `ggvis` package.

Perform this task from either RStudio or the TERR console. This example walks you through creating a scatter plot with a linear model prediction using data available on the internet, and then displays the results it in a browser. The `ggvis` package does not use JavaScript.

For information about the packages used in this example task, see <http://ggvis.rstudio.com/>.

If you use RStudio, the results are displayed in the RStudio Viewer pane.

Prerequisites

TERR, access to the internet, and a browser.

Procedure

- From the TERR console or RStudio prompt, install the `ggvis` package.

```
install.packages("ggvis")
```

TERR checks the repository for the package to install, and then installs it along with any packages it requires.

- Download the data from the internet, and assign it to `file`.

The data in this example is in a `.csv` file on github.

```
file <- "https://github.com/smach/NICAR15data/raw/master/testscores.csv"
```

- Read in the `.csv` file using the `utils` package function `read.csv`, assigning it to the object `testdata`.

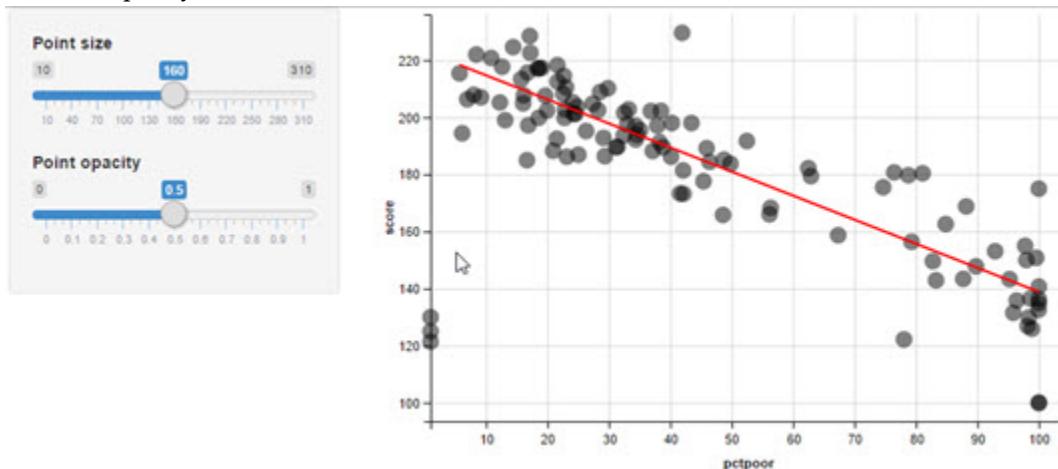
```
testdata <- read.csv(file, stringsAsFactors = FALSE)
```

4. Load the `ggvis` package.

```
library("ggvis")
```

The package and its required packages are loaded, and messages about any object masking are displayed, along with any warnings regarding TERR differences.

5. Call the `ggvis` package function `ggvis`, passing in the `testdata` object, and providing the property information and modeling for the graph.


In the example, these specify the following.

- The `x` and `y` values to graph (`pctpoor` and `score` columns).
- Point properties specifying size and opacity.
- Sliders for interaction with point size and opacity, and which show default labels and scales for each point property.
- A linear model prediction, specified as a red line.

```
ggvis(testdata, ~ pctpoor, ~ score) %>%
  layer_points(size := input_slider(10, 310, label = "Point size"),
                opacity := input_slider(0, 1, label = "Point opacity")) %>%
  layer_model_predictions(model = "lm", stroke := "red", fill := "red")
```

Result

The specified graph is opened in a browser window. You can manipulate the sliders to change point size and opacity.

Calling RGraph to Create an Image File with the TERR RinR Package

The RinR package provides functions that can start other versions of TERR or open-source R. Using the RinR function `RGraph`, you can create a graph in open-source R, and then just view the graph or save it as an image file to share with others.

Perform this task from the TERR console.

This example walks you through creating lattice graph, saved as an image (.png) file, using data available in the TERR library `Sdatasets`, and then displaying the results in a browser.

For information about RinR, load the package and then open the package help.

```
help(RinR)
```

Prerequisites

You must have open-source R and TERR installed on your computer. For this version of TERR, we tested with open-source R version 4.0.

Procedure

1. Load the RinR package in TERR.

```
library("RinR")
```

2. Optional: If necessary, run the RinR function `configureREvaluator`, passing in the full path to your open-source R installation.

This step might be required if you have installed open-source R in a non-standard location.

```
configureREvaluator(REvaluator, FullPath="C:/R-4.0.0/bin/R")
```

- a) Run the RinR function `REvaluate(version$version.string, REvaluator)` to check the results.

```
[1] "R version 4.0.0 (2020-04-24)"
```

3. Run the RinR function `RGraph`, passing in arguments to that create the graphic.

- An expression, that specifies the type of graphic you want to produce. In the example, the example is an open-source R latticed histogram.
- The data, that is specified in a character vector or in a list. In the example, the data, `singer`, is from TERR `Sdatasets` package and is specified in a list.
- The argument `display=TRUE`, which opens the graph in your default image viewer.

```
h <- RGraph(print(lattice::histogram(~height|voice.part,
data=s)), data=list(s=Sdatasets::singer), display=TRUE)
```

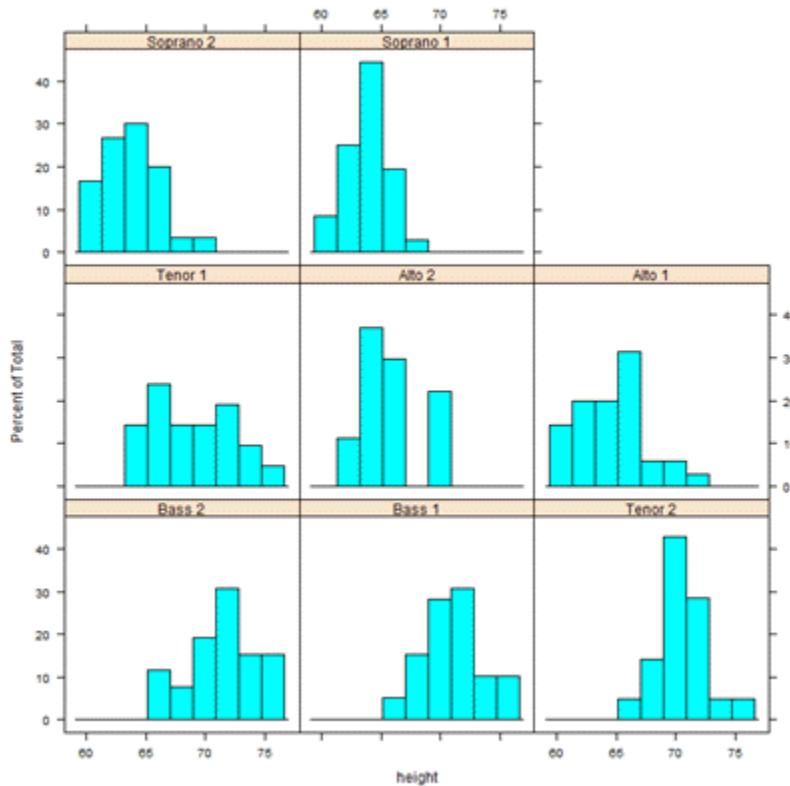
If you want to save the resulting image as a file and share it with others, complete the following steps.

4. Optional: To save the resulting image as a file and share it with others, call the TERR base package function `tempfile` to create an object to contain the file extension.

```
pngFile <- tempfile(fileext=".png")
```

5. Optional: Call the TERR base package function `writeBin`, passing in the two objects created in steps 3 and 4.

This step creates the binary file containing the image and specifying the file type.


```
writeBin(h, pngFile)
```

6. Call the TERR utils package function `browseURL`, passing in the image file.

```
browseURL(pngFile)
```

A default image viewer for the file type opens, displaying the image. In this example, the image shows a histogram of singer heights for each voice type in the choir.

Result

What to do next

From the TERR console, call the function `browseVignettes("RinR")` and review the additional examples for using RGraph with TERR.

Generating TERR Graphics in Spotfire Using Predictive Modeling

Spotfire supports using the TERR engine to create built-in predictive analytics, writing expression functions for ad hoc analysis, or writing more sophisticated scripts to call hand-crafted data functions. The type of prediction to undertake is determined by your data and the kind of an analysis you need to do.

 Spotfire provides a range of complex statistical solutions. We address working just with the TERR engine. For more information on working with other statistical engines, see the Spotfire help.

- Access Spotfire predictive modeling from the **Tools** menu in the Spotfire user interface. This feature delivers visualizations that require no scripting. They are applicable to certain kinds of data sets, generally for common types of predictive statistical analyses. These include the following predictive models.
 - Linear regression
 - Regression tree
 - Logistic regression
 - Classification tree

See [Predictive modeling](#) and the topic *What is Predictive Modeling?* in the Spotfire help for more information.

- Compute Holt-Winters forecasting in Spotfire from a line chart displaying time series. See the topic *Curve Fit Models* in the Spotfire help for more information.
- Access Spotfire expression functions that call the TERR engine from the **Insert > Calculated Column** menu or the Custom Expression dialog box. Use expression functions to call TERR scripts directly from the Spotfire expression language for ad hoc analysis. Alternatively, you can write and store an expression function for later use from the **Edit > Data Function Properties, Expression Functions** tab. See [Expression functions](#) for more information.
- You can access Spotfire data functions from several menus in Spotfire. Begin by finding it in the **Tools > Register Data Functions** menu in Spotfire. Using data functions, you can map input parameters to columns in your data table in Spotfire, and then use the data function output to create a data table to add to your visualization. You can develop data functions offline, edit an existing data function, or share a data function with others, and then use them in Spotfire to create visualizations. See the section [Data functions](#) for more information and example tasks. Also, in the Spotfire help, see the topic *How to Use Data Functions* for information about managing data functions in Spotfire.

Creating a Formatted HTML Document with Graphed Data with the rmarkdown Package

You can use the rmarkdown package with another Javascript-enabled package to create a formatted HTML document with graphed data.

This example uses the same data from the task described in the topic [Mapping data with TERR and leaflet](#) to create a map chart with data available on the internet. Additionally, we create a document with formatted text and an interactive map, and then display the results in a stand-alone HTML file.

- To install the required packages, call the `install.packages()` function from the TERR console.
- To run the script that creates and displays the results, call the functions from the command line.

Package link	Package short description
https://dplyr.tidyverse.org/	Work with data frame-like objects, both in memory and out of memory.
https://rstudio.github.io/leaflet/	Create and customize interactive maps using the 'Leaflet' JavaScript library and the 'htmlwidgets' package.
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf	Convert R Markdown documents into a variety of formats.

Prerequisites

TERR, access to the internet, and a web browser.

Procedure

1. From the TERR console, install the dplyr and leaflet packages.

```
install.packages(c("dplyr", "leaflet", "rmarkdown"))
```

TERR checks the repository for the packages to install, and then installs them along with any packages they require.

2. Copy the code below to a text editor, and then save the file using the file name `leaflet_starbucks.Rmd`.

```
---
title: "Starbucks in Seattle"
author: "TIBCO Software Inc."
date: "`r format(Sys.time(), '%d %B %Y')`"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

## Using TERR with Rmarkdown and leaflet

We are creating an html document in TERR using the `rmarkdown` package.
For graphics, we use the `leaflet` package to draw a map.

For this example we use data on the location of Starbucks stores in the U.S.
which is downloaded from the https://opendata.socrata.com website.

This document can be processed by TERR from the command line with the command:
```{r eval=FALSE}
TERR -e "rmarkdown::render('leaflet_starbucks.Rmd')"
```

This will create the file `leaflet_starbucks.html` which we can view in a browser.
```

```

## Setup
First we load the required packages.
```{r packages, message=FALSE, warning=FALSE}
library("dplyr")
library("leaflet")
```

## The Data

We restrict the data to stores in Washington state
(using `filter` from the `dplyr` package).

```{r data}
file <- "https://opendata.socrata.com/api/views/ddym-zvjk/rows.csv"
starbucks <- read.csv(file) %>%
 filter(State == "WA")
```

## Starbucks in Seattle

We use the `leaflet` package functions to draw a map center in Seattle with the
Starbucks store locations identified.

```{r leaflet}
leaflet() %>%
 addTiles() %>%
 setView(-122.32, 47.605, zoom = 12) %>%
 addMarkers(data = starbucks, lat = ~ Latitude, lng = ~ Longitude,
 popup = starbucks$name)
```

```

3. Open a command window, and navigate to the directory where you saved the file `leaflet_starbucks.Rmd`.
4. At the command prompt, type the following command.

```
TERR -e "rmarkdown::render('leaflet_starbucks.Rmd')"
```


You might have to supply the entire path to the `.Rmd` file, unless you run the command from the directory where the file is saved.

This command starts a TERR engine and calls the `rmarkdown` function `render`, passing in the file as the argument. This function renders the markdown text as HTML, and formats the code contained in the text, even as the code is run. (For information about the `render` function, see its help topic.)

- a. The packages are loaded.
- b. The `.csv` containing the data is loaded from the web site.
- c. The data is filtered to just those values in Washington state.
- d. The `leaflet` functions are called to do the following.
 - Add the map tile service.
 - Set the view to center and zoom on the city of Seattle.
 - Add latitude and longitude markers for each entry in the filtered data.
 - Add the ability to show the value in the Name column for the selected entry in a popup.

You might notice warning messages for functions that are not yet implemented in TERR. These warnings do not affect the output.

5. Open the directory where you saved the `.Rmd` file, and then locate the file that the command built: `leaflet_starbucks.html`.
6. Open the file and review the results in a browser.

Result

The resulting HTML file shows formatted text, containing a walkthrough for creating the map example.

Using TERR, the `terrJava` Package, and Java

The `terrJava` package is included in TIBCO® Enterprise Runtime for R (TERR™).

The `terrJava` package supports calls between Java code and TERR™ code in both directions:

- R code within TERR can call Java static methods using the `.JavaMethod` function.
- A Java application can start an embedded TERR engine and send expressions to be parsed and evaluated in TERR.
- A Java application can spawn a separate Java process with an embedded TERR engine, and control it just as if it were embedded in the same process.

Initially, we created this package for internal use only to support running TERR engines within the TIBCO Spotfire® Statistics Services server. However, others have expressed an interest to use `terrJava` to embed TERR in other Java applications. This document provides pointers so programmers can try this embedding using TERR and `terrJava`.

The `terrJava` package is subject to change. If the current package does not supply everything that programmers need, the TERR development group would like know, so we can improve and extend `terrJava`.

This document is divided into three main sections:

- Calling from TERR into Java.
- embedding TERR within Java.
- Spawning a separate Java process with an embedded TERR engine.

We suggest that a new user review these sections in order, testing that calling Java from TERR works correctly before trying the more complex task of embedding TERR within a Java process. This can be done by creating multiple Java processes with embedded TERR engines and managing communication between them. Alternatively, one can use the `TerrJavaRemote` class to spawn and control multiple processes with embedded TERR engines, as described in [Setting up environment variables for a Java application to use TIBCO Enterprise Runtime for R](#).

To Call into Java from TIBCO Enterprise Runtime for R

`terrJava` and TERR work with Java in the same process.

When the `terrJava` package is loaded in TERR, a Java engine starts in the same process, if one is not already running. Using the `.JavaMethod` function, you can call any static Java method loaded in the Java engine, which can then run any Java code including Java UI operations (such as creating windows). You can use the `.JavaAttachClassPath` function to add new Java code at runtime, which you can then call via `.JavaMethod`. The `.JavaMethod` and `.JavaAttachClassPath` functions are both documented in the help pages for the `terrJava` package.

To Load the `terrJava` Package

Prepare your system before you load the `terrJava` package. After your system is prepared, you can load the package by calling `library()`.

Before loading the `terrJava` package, you must set the `JAVA_HOME` environment variable to the base of the Java installation. This can be read within TERR with:

```
Sys.getenv("JAVA_HOME")
```

If this is the empty string, set it to the directory where Java is installed with a call such as:

```
Sys.setenv(JAVA_HOME="/usr/lib/jvm/java-7-sun/")
```

Alternatively, you can set the `JAVA_HOME` environment variable before starting TERR.

The `terrJava` package is included with the TERR built-in libraries. You can load it with:

```
library(terrJava)
```

If the library loads without errors, you can test calling into Java by executing the following expressions, both of which should return the number 8:

```
.JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
.JavaMethod("com/tibco/terr/TerrJava", "testPow", "(DD)D", 2, 3)
```

Example

The following example demonstrates setting the `JAVA_HOME` environment variable, starting TERR, loading the `terrJava` package, and running the tests on Linux:

```
testlab16406 ~% setenv JAVA_HOME /usr/lib/jvm/java-7-sun/
testlab16406 ~% TERR
Cannot read termcap database; using dumb terminal settings.
TIBCO Software Inc. Confidential Information
Copyright (C) 2011-2016 TIBCO Software Inc. ALL RIGHTS RESERVED
TIBCO Enterprise Runtime for R version 4.2.0 for Linux 64-bit
Type 'help()' for help.
Type 'q()' to quit.
> library(terrJava)
> .JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
[1] 8
> .JavaMethod("com/tibco/terr/TerrJava", "testPow", "(DD)D", 2, 3)
[1] 8
```

Troubleshooting Running Java and TIBCO Enterprise Runtime for R on a Mac

The `terrJava` package requires the Java Native Interface (JNI) capability, but this capability is not enabled by default in Oracle's JDK installation.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

When you call `.JavaMethod` (or another `terrJava` function) on the Mac, if you receive the following error message, you must add the missing capability to the `JDK Info.plist`.

```
Java installation at /Library/Java/JavaVirtualMachines/jdk1.8.0_73.jdk/Contents/Home does not
have required 'JNI' capability
```

Adding this missing capability to the Java configuration allows the JVM to start as expected.

Procedure

- Type the following one-line command to add the JNI capability to the `Info.plist`.

```
sudo /usr/libexec/PlistBuddy -c "Add :JavaVM:JVMCapabilities: string JNI" $JAVA_HOME/...
Info.plist
```

Other Useful Environment Variables

You can set other environment variables to affect the process of loading `terrJava`. After `terrJava` has been loaded, setting these variables does not affect it.

| Environment Variable | Description |
|----------------------|--|
| CLASSPATH | If this environment variable is set, it should contain one or more file names for Java .jar files or Java class directories. If there is more than one, they should be concatenated into a single string separated by ; (on Windows) or : (on Linux). These classes are added to Java's classpath when the Java engine is started. Setting this environment variable might be more convenient than calling <code>.JavaAttachClassPath</code> if you know the classes you want to load before starting Java. |
| JAVA_VERBOSE | If this environment variable is set to TRUE, status information is printed while the <code>terrJava</code> package is being loaded. This might print out useful information if errors occur when loading this package.

Setting this environment variable to TRUE also prints the arguments passed to the Java engine on startup (which can be affected by the following environment variable). |
| JAVA_OPTIONS | If this environment variable is specified, it should contain a string of options to use when starting the Java engine. For example, the value <code>-Xmx1000m</code> specifies a maximum Java memory size of 1GB.

One use for <code>JAVA_OPTIONS</code> is to start the Java engine so that it can be debugged remotely. For example, suppose you set <code>JAVA_OPTIONS</code> to <code>-Xdebug -Xrunjdwp:transport=dt_socket, address=4444,server=y,suspend=n</code>

When the Java engine is started, it creates a server listening for connections from a debugger on port 4444. A Java debugger (like Eclipse) could connect remotely to the Java engine and set breakpoints in the Java code. |

To Embed the TIBCO Enterprise Runtime for R Engine within a Java Application

The `terrJava` package supports starting a TERR engine from Java, and then sending expressions for TERR to evaluate.

Setting this up is more complicated than starting Java from TERR by executing `library(terrJava)`, but it has proven useful for Java applications that need to call TERR computations.

The TERR engine is single-threaded, so it is not possible to run more than one TERR engine at the same time within a given operating system process. If your Java application wants to create multiple TERR engines, the application must create the engines in multiple operating system processes. This can be done by creating multiple Java processes with embedded TERR engines, and managing communication between them. Alternatively, you can use the `TerrJavaRemote` class to spawn and control multiple processes with embedded TERR engines, as described in [Setting up environment variables for a Java application to use TIBCO Enterprise Runtime for R](#).

Setting Up Environment Variables for a Java Application to Use TIBCO Enterprise Runtime for R

For a Java application to use the embedded TERR engine, you must prepare the environment.

Procedure

1. Set the `JAVA_HOME` environment variable to the base of the Java installation.

This step is necessary because the embedded TERR engine automatically loads the `terrJava` package, which requires this environment variable.

2. Set the `TERR_HOME` environment variable to the base of the TERR installation (that is, the directory containing subdirectories `bin`, `library`, and so on).

3. Set the Java classpath to include the file `TERR_HOME/library/java/terrJava.jar`, which contains the Java code for starting and controlling an embedded TERR engine.
The Java classpath can be set by setting the `CLASSPATH` environment variable, or giving the `-classpath` argument when starting Java.
4. Set the appropriate environment variable so Java can access the TERR engine libraries.
 - On Windows, you must add `TERR_HOME/bin/x64` (if you are using 64-bit TERR and Java) or `TERR_HOME/bin/i386` (if you are using 32-bit TERR and Java) to the `PATH` environment variable.
 - On Linux, you should add `TERR_HOME/lib/x86_64-unknown-linux/` to the `LD_LIBRARY_PATH` environment variable.

What to do next

To test that these environment files are set correctly, the class `com.tibco.terr.TerrJava` (in `terrJava.jar`) contains a `main` method that implements a simple TERR console. See [Example for setting Windows environment variables](#) or [Example for setting Linux environment variables](#).

Example for Setting Linux Environment Variables

This code example demonstrates setting environment variables on Linux.[®]

This example would be run on Linux in the tcsh shell.

Example

```
seaql6406 ~% setenv JAVA_HOME /usr/lib/jvm/java-11-sun/
seaql6406 ~% setenv TERR_HOME /opt/sw/snext/daily/intel
seaql6406 ~% setenv CLASSPATH $TERR_HOME/library/terrJava/java/terrJava.jar
seaql6406 ~% setenv LD_LIBRARY_PATH $TERR_HOME/lib/x86_64-unknown-
linux:$LD_LIBRARY_PATH
seaql6406 ~% $JAVA_HOME/bin/java com.tibco.terr.TerrJava
**** starting engine ****
**** engine started ****
**** starting console loop ****
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> .JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
[1] 8
> .JavaMethod("com/tibco/terr/TerrJava", "testPow", "(DD)D", 2, 3)
[1] 8
> q()
**** finished console loop ****
seaql6406 ~%
```

Example for Setting Windows Environment Variables

This code example demonstrates setting environment variables on Microsoft Windows[®].

This example would be run in a Windows command prompt window, using 64-bit TERR and Java.

Example

```
D:\> set JAVA_HOME=C:\Program Files\Java\jdk-11.0.1
D:\> set TERR_HOME=D:\TERR
D:\> set CLASSPATH=%TERR_HOME%\library\terrJava\java\terrJava.jar
D:\> set PATH=%TERR_HOME%\bin\x64;%PATH%
D:\> %JAVA_HOME%\bin\java com.tibco.terr.TerrJava
**** starting engine ****
**** engine started ****
**** starting console loop ****
> 1:10
```

```
[1] 1 2 3 4 5 6 7 8 9 10
> .JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
[1] 8
> .JavaMethod("com/tibco/terr/TerrJava", "testPow", "(DD)D", 2, 3)
[1] 8
> q()
**** finished console loop ****
D:\>
```

Java API for Using an Embedded TIBCO Enterprise Runtime for R Engine

The class `com.tibco.terr.TerrJava` contains a set of static methods that a Java application can call to start an embedded TERR engine, send expressions to be evaluated, add hooks for text input and output, and interrupt a running computation.

You can find the class `com.tibco.terr.TerrJava` in `<TERR_HOME>/library/terrJava/java/terrJava.jar`. When you compile Java application code using these APIs, you must have the file `terrJava.jar` on the Java class path.

The reference for the static methods is in the javadoc documentation, available in the file `<TERR_HOME>/library/terrJava/doc/javadoc/index.html`.

To Pass Data Between Java and TIBCO Enterprise Runtime for R

`TerrJava` methods have limitations for evaluating expressions.

One such limitation is that the methods do not support sending data between Java and TERR, except for a single string value returned from `evaluateToString`. Simple values can be included in the expression string sent to TERR, and the string value returned from `evaluateToString` can include some data, but this is not reasonable for transferring large amounts of data.

The solution is to use methods for converting between TERR data objects and Java `TerrData` objects:

```
public static void setVariable(String name, TerrData value)
public static TerrData getVariable(String name)
public static TerrData getVariable(String name, TerrData reuse)
```

- The first method converts a `TerrData` object into a TERR data object, and assigns it to the specified global variable.
- The second method retrieves the value of a global variable, and converts it to a `TerrData` object.
- The third method retrieves a value, but also allows reusing the storage of an existing `TerrData` object, reducing Java object allocation.

`TerrData` is the superclass of several specific classes for representing particular types of TERR data objects, including `TerrDouble`, `TerrString`, `TerrFactor`, `TerrList`, and `TerrDataFrame`. Here is some example code showing how to start an embedded engine, construct a `TerrDataFrame` object in Java, send it to TERR, evaluate a linear model on the data and retrieve the coefficients of the model as another `TerrData` object.

```
TerrJava.startEngine();
TerrDataFrame df = new TerrDataFrame(new String[] { "x", "y" },
new TerrData[] {
    new TerrDouble(new double[] { 1,2,3,4,5,6 }),
    new TerrDouble(new double[] { 1,4,9,16,25,36 })
});
TerrJava.setVariable("df", df);
TerrJava.evaluateInteractive("df.mod <- lm(y~x, data=df)");
TerrJava.evaluateInteractive("df.coef <- df.mod$coefficients");
TerrData coef = TerrJava.getVariable("df.coef");
for (int i=0; i<coef.getLength(); i++) {
    System.out.println(coef.names[i]+" : "+((TerrDouble)coef).data[i]);
}
// this prints:
// (Intercept) : -9.333333333333345
// x : 7.000000000000002
```

Before the development of the `TerrData` object and these methods for reading and writing variables, the best way to transfer data between Java and TERR was to use the `.JavaMethod` function to call static Java methods that read or write values from static Java fields. However, this only supported reading and writing simple vectors of doubles, strings, and so on. Large and complex objects such as `data.frames` could be transferred by breaking them down into simple vectors that can be transferred via `.JavaMethod`.

This works, but the code is complex and unreliable and slow.

In one test, transferring a data frame with 40 columns of doubles as a `TerrDataFrame` was 100 times as fast as transferring the columns individually via `.JavaMethod`.

Implement a Console Using the TerrJava API

We have provided the example Java code in both Windows and Linux for a Java application that implements a simple TERR console using the TerrJava API. This is similar to the console application in `TerrJava.main`, except that it accesses the TerrJava methods from another class.

An interesting feature of this code is that the main read-eval loop detects when the current line cannot be evaluated because it is an incomplete expression or string, and it accumulates multiple lines until it does evaluate (or another type of error occurs). It also calls into TERR with `TerrJava.evaluateToString` to retrieve the appropriate prompt string for normal input, incomplete expression, or incomplete string, which can be changed in TERR at any time.

A Console Application

This is the Java code for a simple console application using the TerrJava API.

```
import java.io.BufferedReader;
import java.io.InputStreamReader;

import com.tibco.terr.TerrJava;

public class TerrConsoleExample {

    public static void main(String[] args) throws Throwable {
        System.out.println("TerrConsoleExample:");

        // set up output/input handlers
        TerrJava.OutputHandler out = new TerrJava.OutputHandler() {
            public void write(String data, boolean prompted) {
                System.out.print(data);
            }
        };
        TerrJava.InputHandler in = new TerrJava.InputHandler() {
            public String readLine() {
                try {
                    BufferedReader bin = new BufferedReader(
                        new InputStreamReader(System.in));
                    String cmd = bin.readLine();
                    return cmd;
                } catch (Exception ex) {
                    return "";
                }
            }
        };
        TerrJava.setOutputHandler(out);
        TerrJava.setInputHandler(in);

        // start TIBCO Enterprise Runtime for R engine
        TerrJava.startEngine();
        // repeatedly read input lines and evaluate them
        String resultCode = "";
        String prompt = "";
        StringBuffer expression = new StringBuffer();

        while (true) {
            // get prompt string from TIBCO Enterprise Runtime for R
            if (resultCode.equals("IncompleteString")) {
                prompt = TerrJava.evaluateToString("getOption('continueString')");
            }
        }
    }
}
```

Run the Console Application

After you create the console application, you can test it using example user input and text output on Linux.

```
seaql6406 ~% setenv JAVA_HOME /usr/lib/jvm/java-6-sun
seaql6406 ~% setenv TERR_HOME /opt/sw/snext/daily/intel
seaql6406 ~% setenv CLASSPATH
$TERR_HOME/library/terrJava/java/terrJava.jar:/homes/sannella/TerrConsoleExample
seaql6406 ~% setenv LD_LIBRARY_PATH
$TERR_HOME/lib/x86_64-unknown-linux:$LD_LIBRARY_PATH
seaql6406 ~% $JAVA_HOME/bin/java TerrConsoleExample
TerrConsoleExample:
> # simple comments do nothing
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
>
> # terrJava is automatically loaded,
> # so you can call .JavaMethod
> .JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
[1] 8
>
> # call readline, which calls input handler
> # to read a line
> x <- readline()
typing in a new line
> x
[1] "typing in a new line"
>
> # change prompt string, then change it back
> options(prompt="newprompt--> ")
newprompt--> 1+2
[1] 3
newprompt--> options(prompt="> ")
>
> # handle incomplete expression
```

```

> # by accumulating multiple lines
> 1+(2
+ +3)
[1] 6
>
> # handle incomplete string
> # by accumulating multiple lines
> nchar("abcd
Continue string: efg")
[1] 8
>
> # error is printed out
> stop("foo")
Error: foo
> # traceback() gives stack from last error
> traceback()
1: stop("foo")
>
> # quit from engine
> q()
seaqal6406 ~%

```

To Spawn TIBCO Enterprise Runtime for R Engines in a Separate Process

The `terrJava` package has been extended with the Java class `com.tibco.terr.TerrJavaRemote`, which can be used to spawn a TERR engine running in a separate process, send commands to this engine, and get or set data objects to this engine.

The `com.tibco.terr.TerrJavaRemote` class contains methods similar in name and behavior to the methods of the `TerrJava` class that creates an embedded TERR engine within the Java process. One important difference is that the `TerrJava` methods are static class methods instead of object methods, because they control the (single) TERR engine within the process. In contrast, it is possible to create multiple `TerrJavaRemote` objects, each connected to and controlling a separate spawned TERR engine process.

Following are some reasons to use `TerrJavaRemote` objects rather than `TerrJava`.

- You can access more than one TERR engine at a time.
- You can use TERR from a Java application, where it is inconvenient or impossible to set the appropriate environment variables needed to run TERR within the Java process.
- You can spawn TERR within a Java JVM separate from the one containing the `TerrJavaRemote` object. For example, you can spawn a 64-bit Java and TERR process from a 32-bit Java application.

Like the `TerrJava` class, the `TerrJavaRemote` class is defined in `TERR_HOME/library/terrJava/java/terrJava.jar`, and documentation is available in `TERR_HOME/library/terrJava/doc/javadoc/index.html`. `TerrJavaRemote` includes methods for sending expressions to be evaluated in TERR, adding hooks for capturing TERR text input and output, and interrupting a running computation. There are also methods for transferring `TerrData` objects going to or coming from the TERR engine.

`TerrJavaRemote` methods are thread-safe, so a Java application could create and access multiple `TerrJavaRemote` objects in separate Java threads. These methods (except for `interrupt`) use Java synchronization so only one thread can manipulate a given engine at a time. Separate `TerrJavaRemote` objects can access separate TERR engines at once without any interaction between these engines.

A Console Application Using `TerrJavaRemote`

This is sample Java code for a simple console application using the `TerrJavaRemote` API.

This is very similar to the code in [A console application](#), except that it uses `TerrJavaRemote` methods to create and control a spawned process with a TERR engine, rather than creating an embedded engine via `TerrJava`. Another difference is that the TERR and Java home paths are passed in as arguments, rather than being accessed via environment variables.

```
import java.io.BufferedReader;
```

```

import java.io.InputStreamReader;
import com.tibco.terr.TerrJava;
import com.tibco.terr.TerrJavaRemote;
public class TerrJavaRemoteConsoleExample {
    public static void main(String[] args) throws Throwable {
        System.out.println("TerrJavaRemoteConsoleExample:");
        // create TerrJavaRemote object
        TerrJavaRemote engine = new TerrJavaRemote();

        // set paths for spawned engine
        if (args.length<2) {
            throw new Exception("need two arguments: TERR home and Java home");
        }
        engine.setTerrHome(args[0]);
        engine.setJavaHome(args[1]);

        // set up output/input handlers
        TerrJava.OutputHandler out = new TerrJava.OutputHandler() {
            public void write(String data, boolean prompted) {
                System.out.print(data);
            }
        };
        TerrJava.InputHandler in = new TerrJava.InputHandler() {
            public String readLine() {
                try {
                    BufferedReader bin = new BufferedReader(
                        new InputStreamReader(System.in));
                    String cmd = bin.readLine();
                    return cmd;
                } catch (Exception ex) {
                    return "";
                }
            }
        };
        engine.setOutputHandler(out);
        engine.setInputHandler(in);
        // start TIBCO Enterprise Runtime for R engine
        engine.startEngine();
        // repeatedly read input lines and evaluate them
        String resultCode = "";
        String prompt = "";
        StringBuffer expression = new StringBuffer();
        while (true) {
            // get prompt string from TIBCO Enterprise Runtime for R
            if (resultCode.equals("IncompleteString")) {
                prompt = engine.evaluateToString("getOption('continueString')");
            } else if (resultCode.equals("IncompleteExpression")) {
                prompt = engine.evaluateToString("getOption('continue')");
            } else {
                prompt = engine.evaluateToString("getOption('prompt')");
                expression.setLength(0);
            }
            out.write(prompt, true);
            String line = in.readLine();
            // ignore empty input lines, except when we are reading a multi-line string
            if (line.isEmpty() && !resultCode.equals("IncompleteString")) {
                continue;
            }
            // accumulate multi-line expression, until we can parse it
            if (expression.length() > 0) {
                expression.append("\n");
            }
            expression.append(line);
            resultCode = engine.evaluateInteractive(expression.toString());
            // exit if engine just evaluated q()
            if (resultCode.equals("Quit")) {
                resultCode = "Success";
                break;
            }
            // print error message if any
            if (resultCode.equals("EvaluationError") ||
                resultCode.equals("ParserError")) {
                String error = engine.getLastErrorMessage();
                if (!error.isEmpty()) {
                    out.write(error + "\n", false);
                }
            }
        }
    }
}

```

}

Run the Console Application Using TerrJavaRemote

This topic shows example user input and text output when running the `TerrJavaRemoteConsoleExample` application on Linux.

This example includes the same input as the example from [Run the console application](#), demonstrating that it is possible to do everything in the spawned TERR engine that was possible using the embedded engine, including calling `readline` to read a line from the console (which is returned to the spawned TERR process).

```
seaql6406 TerrJavaRemoteConsoleExample% /opt2/users/sannella/jdk1.7.0_40/bin/
java -classpath .:/opt2/users/sannella/TERR.rev17575.lnx64.intel.release/library/
terrJava/java/terrJava.jar TerrJavaRemoteConsoleExample /opt2/users/sannella/
TERR.rev17575.lnx64.intel.release /opt2/users/sannella/jdk1.7.0_40
TerrJavaRemoteConsoleExample:
started engine node pid==24125 at Thu Jun 12 16:08:00 2014
> # simple comments do nothing
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
>
> # terrJava is automatically loaded,
> # so you can call .JavaMethod
> .JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
[1] 8
>
> # call readline, which calls input handler
> # to read a line
> x <- readline()
typing in a new line
> x
[1] "typing in a new line"
>
> # change prompt string, then change it back
> options(prompt="newprompt--> ")
newprompt--> 1+2
[1] 3
newprompt--> options(prompt="> ")
>
> # handle incomplete expression
> # by accumulating multiple lines
> 1+(2
+ 3)
[1] 6
>
> # handle incomplete string
> # by accumulating multiple lines
> nchar("abcd
Continue string: efg")
[1] 8
>
> # error is printed out
> stop("foo")
Error: foo
> # traceback() gives stack from last error
> traceback()
1: stop("foo")
>
> # quit from engine
> q()
seaql6406 TerrJavaRemoteConsoleExample%
```

Signal Handlers

TERR supports installing signal handlers to catch illegal operations that occur in foreign code called via the `.C()` or `.Call()` functions.

A signal handler can catch such illegal operations as referencing an illegal memory location. If an illegal operation is caught by a signal handler, it generates an error "Unhandled exception in foreign function"

rather than crashing the process. Currently, these signal handlers are disabled by default, because we found that they could possibly interfere with the signal handlers used by Java.

Sometimes when investigating unexpected failures, you might want to enable the signal handlers. You can enable signal handlers when starting the TIBCO Enterprise Runtime for R console application by specifying the option:

```
--enable-signal-handlers
```

Alternatively, you can enable them by starting the engine from Java with the following engine parameter:

```
TerrJava.startEngine("FFInterface.SignalHandlersEnabled=TRUE")
```

If you want to enable signal handling when using Java on Linux, it might be helpful to set the environment variable `LD_PRELOAD` so the signal handlers set up by TERR are "chained" after the Java signal handlers, as described in the URL <http://www.oracle.com/technetwork/java/javase/signals-139944.html#gbzcz>.

According to this URL, setting the environment variable `LD_PRELOAD` to `<libjvm.so-directory-in-java-tree>/libjsig.so` causes Java to link in the special `libjsig.so` library, which handles both Java signal handlers and native code with its own handlers. We have found several cases where this workaround solves the problem of embedding TERR within a complex Java application.

To Call Embedded TIBCO Enterprise Runtime for R from an IntelliJ Project

Using the IntelliJ IDE to debug your Java application could require a workaround.

In one case, a user had problems using embedded TERR when debugging a Java application within the IntelliJ IDE, even when the application worked when invoked from Java directly. Specifically, evaluating the following:

```
.JavaMethod("java/lang/Math", "pow", "(DD)D", 2, 3)
```

gave the correct answer, 8, whereas evaluating the following:

```
.JavaMethod("com/tibco/terr/TerrJava", "testPow", "(DD)D", 2, 3)
```

resulted in the following Java error:

```
java.lang.ClassNotFoundException: com.tibco.terr.TerrJava
```

Eventually, we discovered that IntelliJ uses a separate Java class loader when a project has a large classpath. This prevents `.JavaMethod` from finding the class `com/tibco/terr/TerrJava`. There is no clear way to work around this problem in TERR, because TERR cannot access IntelliJ's special class loader.

This problem is described in the article found at <http://youtrack.jetbrains.com/issue/IDEA-48090?query=8>, which also claims that this IntelliJ bug has been fixed.

In any case, this page also describes a workaround when using IntelliJ: remove the following line from the file `workspace.xml`:

```
<property name="dynamic.classpath" value="true" />
```

Available Functions in TIBCO Enterprise Runtime for R

TERR strives to be entirely compatible with open-source R, and so it contains thousands of functions that you can use to run R code.

The lists of available functions provides you with a quick view into those functions that have been implemented as of version 6.1.0, and each release we add more to increase compatibility and enhance the performance and usability of TERR.

This table provides information about the numbers of functions implemented in open-source R that are also available in TIBCO Enterprise Runtime for R.

Package	Open-source R functions	TERR functions	Percent of open-source R functions implemented in TERR (%)
base	1359	1201	88.4
datasets	104	104	100
graphics*	88	86	97.7
grDevices*	113	104	92
methods	371	103	27.8
stats	456	394	86.4
utils	219	140	63.9

Basics

These basic functions are available in TERR. For help with a function, see its listing in the Language Reference.

Basic System Variables

These are the available TERR basic system variables. See each function's help topic in the TERR Language Reference for more information.

Variable name	Title description
.Machine	Machine Arithmetic Constants
.Platform	Platform Specific Variables
.Random.seed	Control Random Number Generator
as.null	The Null Object
as.null.default	The Null Object
is.null	The Null Object
NULL	The Null Object

Variable name	Title description
R.version	Version Information
R.Version	Version Information
R.version.string	Version Information
RNG	Control Random Number Generator
RNGkind	Control Random Number Generator
RNGversion	Control Random Number Generator
set.seed	Control Random Number Generator
version	Version Information

Categorical Data

These are the available functions for manipulating categorical data. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
.bincode	Create Factor Object from Numeric Vector
aggregate	Compute Summary Statistics of Subsets of Data
aggregate.data.frame	Compute Column-by-Column Summaries of Groups of Observations
aggregate.default	Compute Summary Statistics of Subsets of Data
aggregate.formula	Compute Summary Statistics of Subsets of Data
aggregate.ts	Compute Summary Statistics of Subsets of Data
as.data.frame.ftable	Flat Contingency Tables
as.factor	Create Factor Object
as.ordered	Create an Ordered factor Object
as.table.ftable	Flat Contingency Tables
asplit	Split Array into List of Subarrays
by	Split a Data Frame and Apply a Function to the Parts
by.data.frame	Split a Data Frame and Apply a Function to the Parts
by.default	Split a Data Frame and Apply a Function to the Parts
cut	Create Factor Object from Numeric Vector
cut.default	Create Factor Object from Numeric Vector

Function name	Title description
factor	Create Factor Object
format.ftable	Flat Contingency Tables
ftable	Flat Contingency Tables
ftable.default	Flat Contingency Tables
ftable.formula	Flat Contingency Tables
gl	Generate Patterned Factor
is.factor	Create Factor Object
is.ordered	Create an Ordered factor Object
Math.factor	Math Group Method for Factor Objects
nlevels	Number of Levels of a factor Object
Ops.data.frame	Ops Group Method for Data Frame Objects
Ops.factor	Operations for Factors and Ordered Factors
Ops.ordered	Operations for Factors and Ordered Factors
ordered	Create an Ordered factor Object
print.ftable	Flat Contingency Tables
print.summary.table	Summary of a table Object
rapply	Apply a Function Recursively
rowsum	Group Row Sums of a Matrix
rowsum.default	Group Row Sums of a Matrix
split	Split Data by Groups
split.data.frame	Split Data by Groups
split.Date	Split Data by Groups
split.default	Split Data by Groups
split.POSIXct	Split Data by Groups
split<-	Split Data by Groups
split<-.data.frame	Split Data by Groups
split<-.default	Split Data by Groups
summary.table	Summary of a table Object

Function name	Title description
tabulate	Count Entries in Bins
tapply	Apply a Function to a Ragged Array
unsplit	Split Data by Groups
valid.factor	Create Factor Object
xtabs	Cross Tabulation

Character Data ("String") Operations

These are the available functions for string operations. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
agrep	Approximate String Matching (Fuzzy Matching)
agrep1	Approximate String Matching (Fuzzy Matching)
as.character	Character Objects
as.character.factor	Character Objects
basename	Manipulate File Paths
casefold	Convert Case of Character Strings
char.expand	Expand a String with Respect to a Target Table
character	Character Objects
charmatch	Partial Matching of Character Strings
dirname	Manipulate File Paths
Encoding	String Encodings of a Character Vector
Encoding<-	String Encodings of a Character Vector
endsWith	Match Patterns with Strings
format	Formatted Character Data
formatC	Formatting Using C-style Formats
format.data.frame	Formatted Character Data
format.default	Formatted Character Data
format.factor	Formatted Character Data
gettext	Translate Text Messages

Function name	Title description
gettextf	Generate C-Style Formatted Output
gregexpr	Match Patterns in Strings
grep	Search for a Pattern in Text
grepl	Search for a Pattern in Text
grepRaw	Search for Pattern in Text
gsub	Replace Part of a Character String
iconv	Convert Character Vector between Encodings
iconvlist	Convert Character Vector between Encodings
inverse.rle	Run Length Encoding and Decoding
is.character	Character Objects
make.unique	Make Character Strings Unique
match	Match Items against a Table
nchar	Lengths of Character Strings
ngettext	Translate Text Messages
nzchar	Lengths of Character Strings
paste	Concatenate Data to Make Character Data
pmatch	Partial Matching of Character Items in a Vector
prettyNum	Formatting Using C-style Formats
print.rle	Run Length Encoding and Decoding
regexec	Search for a Pattern in Text
regexpr	Match Patterns in Strings
regmatches	Extract or Replace Matched Substrings
regmatches<-	Extract or Replace Matched Substrings
rle	Run Length Encoding and Decoding
sort	Sort into Numeric or Alphabetic Order
sort.default	Sort into Numeric or Alphabetic Order
sort.int	Sort into Numeric or Alphabetic Order
sort.POSIXlt	Sort into Numeric or Alphabetic Order

Function name	Title description
sprintf	Generate C-Style Formatted Output
startsWith	Match Patterns with Strings
strrep	Replace Strings with Repeated Versions
strsplit	Split the Elements of a Character Vector
sub	Replace Part of a Character String
substr	Extract or Replace Portions of Character Strings
substr<-	Extract or Replace Portions of Character Strings
substring	Extract or Replace Portions of Character Strings
substring<-	Extract or Replace Portions of Character Strings
symnum	Symbolic Number Coding
tempdir	Create Unique Names for Files
tempfile	Create Unique Names for Files
tolower	Convert Case of Character Strings
toTitleCase	Convert Case of Character Strings
toupper	Convert Case of Character Strings
trimws	Remove leading or trailing white space

Complex Numbers

These are the available functions for complex numbers. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
%/%	Arithmetic Operators
%%	Arithmetic Operators
^	Arithmetic Operators
+	Arithmetic Operators
acos	Inverse Trigonometric Functions
acosh	Inverse Hyperbolic Trigonometric Functions
Arithmetric	Arithmetic Operators
as.complex	Complex Valued Objects

Function name	Title description
asin	Inverse Trigonometric Functions
asinh	Inverse Hyperbolic Trigonometric Functions
atan	Inverse Trigonometric Functions
atan2	Inverse Trigonometric Functions
atanh	Inverse Hyperbolic Trigonometric Functions
complex	Complex Valued Objects
cos	Trigonometric Functions
cosh	Hyperbolic Trigonometric Functions
cospi	Trigonometric Functions
digamma	Gamma Function (and Its Derivatives and Logarithm)
exp	Exponential and related Functions
expml	Exponential and related Functions
fft	Fast Fourier Transform
gamma	Gamma Function (and Its Derivatives and Logarithm)
is.complex	Complex Valued Objects
lgamma	Gamma Function (and Its Derivatives and Logarithm)
log	Exponential and related Functions
log10	Exponential and related Functions
log1p	Exponential and related Functions
log2	Exponential and related Functions
logb	Exponential and related Functions
mvfft	Fast Fourier Transform
polyroot	Find the Roots of a Polynomial
psigamma	Gamma Function (and Its Derivatives and Logarithm)
sin	Trigonometric Functions
sinh	Hyperbolic Trigonometric Functions
sinpi	Trigonometric Functions
sqrt	Exponential and related Functions

Function name	Title description
<code>tan</code>	Trigonometric Functions
<code>tanh</code>	Hyperbolic Trigonometric Functions
<code>tanpi</code>	Trigonometric Functions
<code>trig</code>	Trigonometric Functions
<code>trigamma</code>	Gamma Function (and Its Derivatives and Logarithm)

Data Attributes

These are the available functions for data attributes. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>.col</code>	Column and Row Identification in a Matrix
<code>.row</code>	Column and Row Identification in a Matrix
<code>as.name</code>	Names and Symbols
<code>as.null</code>	The Null Object
<code>as.null.default</code>	The Null Object
<code>as.symbol</code>	Names and Symbols
<code>attr</code>	Attribute of an Object
<code>attributes</code>	All Attributes of an Object
<code>col</code>	Column and Row Identification in a Matrix
<code>dim</code>	Dim Attribute of an Object
<code>dim<-</code>	Dim Attribute of an Object
<code>dimnames</code>	Dimnames Attribute of an Object
<code>dimnames.data.frame</code>	Dimnames Attribute of an Object
<code>is.name</code>	Names and Symbols
<code>is.null</code>	The Null Object
<code>is.symbol</code>	Names and Symbols
<code>length</code>	Length of a Vector or List
<code>length.POSIXlt</code>	Length of a Vector or List
<code>levels</code>	Get Or Set Levels Attribute

Function name	Title description
mode	Data Mode of the Values in a Vector
name	Names and Symbols
names	Names Attribute of an Object
names.POSIXlt	Names Attribute of an Object
names<-	Names Attribute of an Object
names<-.POSIXlt	Names Attribute of an Object
nlevels	Number of Levels of a factor Object
NULL	The Null Object
row	Column and Row Identification in a Matrix
storage.mode	Data Mode of the Values in a Vector
structure	An Object with Given Attributes
type	The Type of an Object
typeof	The Type of an Object

Data Manipulation

These are the available functions for data manipulation. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
->	Assign a Name to an Object
:	Generate a Sequence
@	Extract Slot from an S4 Object
<-	Assign a Name to an Object
<<-	Assign a Name to an Object
=	Assign a Name to an Object
.mapply	Apply a Function to Multiple List or Vector Arguments
.rowSums	Row and Column Summaries
.rowMeans	Row and Column Summaries
.colSums	Row and Column Summaries
.colMeans	Row and Column Summaries

Function name	Title description
abbreviate	Generate Abbreviations
addmargins	Puts Arbitrary Margins on Multidimensional Tables or Arrays
anyDuplicated	Determine Duplicate Elements
anyDuplicated.array	Determine Duplicate Elements
anyDuplicated.data.frame	Determine Duplicate Elements
anyDuplicated.default	Determine Duplicate Elements
anyDuplicated.matrix	Determine Duplicate Elements
append	Insert or Merge Data
arrayInd	Find TRUE Values
as.null	The Null Object
as.null.default	The Null Object
Assignment	Assign a Name to an Object
asplit	Split Array into List of Subarrays
c	Combine Values into a Vector or List
c.Date	Combine Values into a Vector or List
c.POSIXct	Combine Values into a Vector or List
c.POSIXlt	Combine Values into a Vector or List
casefold	Convert Case of Character Strings
cbind	Building a Matrix from Columns or Rows
charmatch	Partial Matching of Character Strings
colMeans	Row and Column Summaries
colnames	Column and Row Names
colnames<-	Column and Row Names
colSums	Row and Column Summaries
cut.Date	Create Factor by Cutting Date or POSIXt Object
cut.POSIXt	Create Factor by Cutting Date or POSIXt Object
duplicated	Determine Duplicate Elements
duplicated.array	Determine Duplicate Elements

Function name	Title description
duplicated.data.frame	Determine Duplicate Elements
duplicated.default	Determine Duplicate Elements
duplicated.matrix	Determine Duplicate Elements
duplicated.POSIXlt	Determine Duplicate Elements
gregexpr	Match Patterns in Strings
grep	Search for a Pattern in Text
grepl	Search for a Pattern in Text
grepRaw	Search for a Pattern in Text
grouping	Grouping Permutation
gsub	Replace Part of a Character String
head	Get the First or Last Part of an Object
ifelse	Conditional Data Selection
inverse.rle	Run Length Encoding and Decoding
is.na	Not Available / Missing Values
is.na.data.frame	Not Available / Missing Values
is.na.POSIXlt	Not Available / Missing Values
is.na<-	Not Available / Missing Values
is.na<.default	Not Available / Missing Values
is.na<.factor	Not Available / Missing Values
is.null	The Null Object
labels.dendrogram	ID Numbers or Labels of the Leaves in a Dendrogram
length	Length of a Vector or List
length.POSIXlt	Length of a Vector or List
list2DF	Quickly Make Data.frame From List of Vectors
mapply	Apply a Function to Multiple List or Vector Arguments
match	Match Items against a Table
merge	Merge Two Datasets and Match Columns
merge.data.frame	Merge Two Datasets and Match Columns

Function name	Title description
merge.default	Merge Two Datasets and Match Columns
mostattributes<-	All Attributes of an Object
NA	Not Available / Missing Values
NA_character_	Not Available / Missing Values
NA_complex_	Not Available / Missing Values
NA_integer_	Not Available / Missing Values
NA_real_	Not Available / Missing Values
na.action	Handle Missing Values in Objects
na.action.default	Handle Missing Values in Objects
na.exclude	Handle Missing Values in Objects
na.exclude.data.frame	Handle Missing Values in Objects
na.exclude.default	Handle Missing Values in Objects
na.fail	Handle Missing Values in Objects
na.fail.default	Handle Missing Values in Objects
na.omit	Handle Missing Values in Objects
na.omit.data.frame	Handle Missing Values in Objects
na.omit.default	Handle Missing Values in Objects
na.pass	Handle Missing Values in Objects
NaN	Not Available / Missing Values
napredict	Adjust for Missing Values
napredict.default	Adjust for Missing Values
napredict.exclude	Adjust for Missing Values
napredict.NULL	Adjust for Missing Values
naprint	Print Missing Value Information
naprint.default	Print Missing Value Information
naprint.exclude	Print Missing Value Information
naprint.omit	Print Missing Value Information
naresid	Adjust for Missing Values

Function name	Title description
naresid.default	Adjust for Missing Values
naresid.exclude	Adjust for Missing Values
naresid.NULL	Adjust for Missing Values
NLSstAsymptotic	Fit the Asymptotic Regression Model
NLSstAsymptotic.sortedXyData	Fit the Asymptotic Regression Model
NLSstClosestX	Inverse Interpolation
NLSstClosestX.sortedXyData	Inverse Interpolation
NLSstLfAsymptote	Horizontal Asymptote on the Left Side
NLSstLfAsymptote.sortedXyData	Horizontal Asymptote on the Left Side
NLSstRtAsymptote	Horizontal Asymptote on the Right Side
NLSstRtAsymptote.sortedXyData	Horizontal Asymptote on the Right Side
NULL	The Null Object
order	Vector of Indices That Sort Data
order.dendrogram	ID Numbers or Labels of the Leaves in a Dendrogram
paste	Concatenate Data to Make Character Data
pmatch	Partial Matching of Character Items in a Vector
print.rle	Run Length Encoding and Decoding
provideDimnames	Dimnames Attribute of an Object
rbind	Building a Matrix from Columns or Rows
regexec	Search for a Pattern in Text
regexp	Match Patterns in Strings
reorder.dendrogram	Reorder a Dendrogram
rep	Replicate Data Values
rep_len	Replicate Data Values
rep.Date	Replicate Data Values
rep.default	Replicate Data Values
rep.factor	Replicate Data Values
rep.int	Replicate Data Values

Function name	Title description
rep.POSIXct	Replicate Data Values
rep.POSIXlt	Replicate Data Values
replace	Insert or Merge Data
reshape	Reshape Grouped Data
rev	Reverse the Order of an Object
rev.default	Reverse the Order of an Object
rle	Run Length Encoding and Decoding
row.names	Row Names Attribute
row.names.data.frame	Row Names Attribute
row.names<-	Row Names Attribute
row.names<-.data.frame	Row Names Attribute
rowMeans	Row and Column Summaries
rownames	Column and Row Names
rownames<-	Column and Row Names
rowsum	Group Row Sums of a Matrix
rowsum.default	Group Row Sums of a Matrix
rowSums	Row and Column Summaries
seq	Generate a Sequence
seq_along	Generate a Sequence
seq_len	Generate a Sequence
seq.Date	Sequences of Date-Times
seq.default	Generate a Sequence
seq.int	Generate a Sequence
seq.POSIXt	Sequences of Date-Times
sequence	Create A Vector of Sequences
sort	Sort into Numeric or Alphabetic Order
sort.default	Sort into Numeric or Alphabetic Order
sort.int	Sort into Numeric or Alphabetic Order

Function name	Title description
sort.list	Vector of Indices That Sort Data
sort.POSIXlt	Sort into Numeric or Alphabetic Order
split	Split Data by Groups
split.data.frame	Split Data by Groups
split.Date	Split Data by Groups
split.default	Split Data by Groups
split.POSIXct	Split Data by Groups
split<-	Split Data by Groups
split<-.data.frame	Split Data by Groups
split<-.default	Split Data by Groups
strsplit	Split the Elements of a Character Vector
structure	An Object with Given Attributes
sub	Replace Part of a Character String
subset	Subsetting Vectors, Matrices and Data Frames
subset.data.frame	Subsetting Vectors, Matrices and Data Frames
subset.default	Subsetting Vectors, Matrices and Data Frames
subset.matrix	Subsetting Vectors, Matrices and Data Frames
tail	Get the First or Last Part of an Object
tolower	Convert Case of Character Strings
toupper	Convert Case of Character Strings
transform	Transform an Object to a Data Frame Object
transform.data.frame	Transform an Object to a Data Frame Object
transform.default	Transform an Object to a Data Frame Object
unique	Unique Values
unique.array	Unique Values
unique.data.frame	Unique Values
unique.default	Unique Values
unique.matrix	Unique Values

Function name	Title description
unique.POSIXlt	Unique Values
unlist	Simplify the Structure of a List
unname	Remove "names" or "dimnames"
unsplit	Split Data by Groups
Vectorize	Apply a Function to Multiple List or Vector Arguments
which	Find TRUE Values
zapsmall	Coerce Small Numbers to Zero for Printing

Data Types (not OO)

These are the available functions for (non object-oriented) data types. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
~	Model Formula Objects
array	Multi-Way Arrays
as.array	Multi-Way Arrays
as.array.default	Multi-Way Arrays
as.character	Character Objects
as.character.factor	Character Objects
as.complex	Complex Valued Objects
as.data.frame	Construct a Data Frame Object
as.double	Double Precision Objects
as.double.diffftime	Double Precision Objects
as.double.POSIXlt	Double Precision Objects
as.factor	Create Factor Object
as.function	Function Objects
as.integer	Integer Objects
as.list	List Objects
as.list.data.frame	List Objects
as.list.Date	List Objects

Function name	Title description
as.list.default	List Objects
as.list.environment	List Objects
as.list.factor	List Objects
as.list.function	List Objects
as.list.numeric_version	List Objects
as.list.POSIXct	List Objects
as.logical	Logical Objects
as.logical.factor	Logical Objects
as.matrix	Matrix Objects
as.matrix.data.frame	Matrix Objects
as.matrix.default	Matrix Objects
as.matrix.noquote	Matrix Objects
as.matrix.POSIXlt	Matrix Objects
as.numeric	Numeric Objects
as.raw	Create a Raw Vector
as.single	Single Precision Objects
as.single.default	Single Precision Objects
as.ts	Time Series Objects
as.vector	Vectors (Simple Objects)
binomial	Generate a Family Object
character	Character Objects
charToRaw	Convert to or from Raw Vectors
class	Class Attribute of an Object
complex	Complex Valued Objects
data.class	Class of an Object
data.frame	Construct a Data Frame Object
double	Double Precision Objects
factor	Create Factor Object

Function name	Title description
family	Generate a Family Object
family.object	Family of GLM Models
formula.object	Model Formula Objects
Gamma	Generate a Family Object
gaussian	Generate a Family Object
glm.object	Generalized Linear Model Object
inherits	Test Inheritance of an Object
integer	Integer Objects
intToBits	Convert to or from Raw Vectors
inverse.gaussian	Generate a Family Object
is.array	Multi-Way Arrays
is.atomic	Test for Atomic or Recursive Objects
is.character	Character Objects
is.complex	Complex Valued Objects
is.data.frame	Construct a Data Frame Object
is.double	Double Precision Objects
is.factor	Create Factor Object
is.function	Function Objects
is.integer	Integer Objects
is.language	Test for Atomic or Recursive Objects
is.list	List Objects
is.logical	Logical Objects
is.matrix	Matrix Objects
is.mts	Time Series Objects
is.numeric	Numeric Objects
is.numeric.Date	Numeric Objects
is.numeric.difftime	Numeric Objects
is.numeric.POSIXt	Numeric Objects

Function name	Title description
is.object	Test if an Object has a Class Attribute
is.raw	Create a Raw Vector
is.recursive	Test for Atomic or Recursive Objects
is.single	Single Precision Objects
is.ts	Time Series Objects
is.vector	Vectors (Simple Objects)
list	List Objects
lm.object	Linear Least Squares Model Object
loess.object	Loess Model Object
logical	Logical Objects
matrix	Matrix Objects
methods	List Methods of Old-Style (SV3) Generic Functions
m1m.object	Linear Least Squares Model Object
NextMethod	Methods Invoked from Functions
numeric	Numeric Objects
numToBits	Convert to or from Raw Vectors
numToInts	Convert to or from Raw Vectors
packBits	Convert to or from Raw Vectors
poisson	Generate a Family Object
quasi	Generate a Family Object
quasibinomial	Generate a Family Object
quasipoisson	Generate a Family Object
raw	Create a Raw Vector
rawShift	Convert to or from Raw Vectors
rawToBits	Convert to or from Raw Vectors
rawToChar	Convert to or from Raw Vectors
single	Single Precision Objects
terms.object	Class of Objects for Terms in a Model

Function name	Title description
ts	Time Series Objects
unclass	Class Attribute of an Object
UseMethod	Methods Invoked from Functions
vector	Vectors (Simple Objects)

Dates and Times

These are the available functions for dates and times. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
-.Date	Ops Group Method for Date/Time Objects
-.POSIXt	Ops Group Method for Date/Time Objects
.difftime	Time Intervals
.leap.seconds	Date-Time Classes
.POSIXct	Date-Time Classes
.POSIXlt	Date-Time Classes
[.Date	Date Class
[.difftime	Time Intervals
[.POSIXct	Date-Time Classes
[.POSIXlt	Date-Time Classes
[[.Date	Date Class
[[.POSIXct	Date-Time Classes
[<-.Date	Date Class
[<-.POSIXct	Date-Time Classes
[<-.POSIXlt	Date-Time Classes
*.difftime	Ops Group Method for Date/Time Objects
/ .difftime	Ops Group Method for Date/Time Objects
+ .Date	Ops Group Method for Date/Time Objects
+ .POSIXt	Ops Group Method for Date/Time Objects
as.character.Date	Date-Time Formatting

Function name	Title description
as.character.POSIXt	Date-Time Formatting
as.Date	Date-Time Parsing
as.Date.character	Date-Time Parsing
as.Date.date	Date-Time Parsing
as.Date.dates	Date-Time Parsing
as.Date.default	Date-Time Parsing
as.Date.factor	Date-Time Parsing
as.Date.numeric	Date-Time Parsing
as.Date.POSIXct	Date-Time Parsing
as.Date.POSIXlt	Date-Time Parsing
as.diffftime	Date-Time Parsing
as.POSIXct	Date-Time Parsing
as.POSIXct.date	Date-Time Parsing
as.POSIXct.Date	Date-Time Parsing
as.POSIXct.dates	Date-Time Parsing
as.POSIXct.default	Date-Time Parsing
as.POSIXct.numeric	Date-Time Parsing
as.POSIXct.POSIXlt	Date-Time Parsing
as.POSIXlt	Date-Time Parsing
as.POSIXlt.character	Date-Time Parsing
as.POSIXlt.date	Date-Time Parsing
as.POSIXlt.Date	Date-Time Parsing
as.POSIXlt.dates	Date-Time Parsing
as.POSIXlt.default	Date-Time Parsing
as.POSIXlt.factor	Date-Time Parsing
as.POSIXlt.numeric	Date-Time Parsing
as.POSIXlt.POSIXct	Date-Time Parsing
c.diffftime	Time Intervals

Function name	Title description
check_tzones	Get the Current Date, Time, or Time Zone
cut.Date	Create Factor by Cutting Date or POSIXt Object
cut.POSIXt	Create Factor by Cutting Date or POSIXt Object
date	Get the Current Date, Time, or Time Zone
Date	Date Class
difftime	Time Intervals
format.Date	Date-Time Formatting
format.difftime	Date-Time Formatting
format.POSIXct	Date-Time Formatting
format.POSIXlt	Date-Time Formatting
ISODate	Construct Date-time from Broken-down Time
ISODatetime	Construct Date-time from Broken-down Time
julian	Extract Parts of a Date or POSIXt Object
julian.Date	Extract Parts of a Date or POSIXt Object
julian.POSIXt	Extract Parts of a Date or POSIXt Object
Math.Date	Math Group Method for Date/Time Objects
Math.difftime	Math Group Method for Date/Time Objects
Math.POSIXt	Math Group Method for Date/Time Objects
months	Extract Parts of a Date or POSIXt Object
months.Date	Extract Parts of a Date or POSIXt Object
months.POSIXt	Extract Parts of a Date or POSIXt Object
OlsonNames	Time Zones
Ops.Date	Ops Group Method for Date/Time Objects
Ops.difftime	Ops Group Method for Date/Time Objects
Ops.POSIXt	Ops Group Method for Date/Time Objects
POSIXct	Date-Time Classes
POSIXlt	Date-Time Classes
POSIXt	Date-Time Classes

Function name	Title description
print.Date	Date Class
print.difftime	Time Intervals
print.POSIXct	Date-Time Classes
print.POSIXlt	Date-Time Classes
quarters	Extract Parts of a Date or POSIXt Object
quarters.Date	Extract Parts of a Date or POSIXt Object
quarters.POSIXt	Extract Parts of a Date or POSIXt Object
round.Date	Math Group Method for Date/Time Objects
round.POSIXt	Math Group Method for Date/Time Objects
seq.Date	Sequences of Date-Times
seq.POSIXt	Sequences of Date-Times
strftime	Date-Time Formatting
strptime	Date-Time Parsing
Summary.Date	Summary Group Method for Date/Time Objects
Summary.difftime	Summary Group Method for Date/Time Objects
Summary.POSIXct	Summary Group Method for Date/Time Objects
Summary.POSIXlt	Summary Group Method for Date/Time Objects
Sys.Date	Get the Current Date, Time, or Time Zone
Sys.time	Get the Current Date, Time, or Time Zone
Sys.timezone	Get the Current Date, Time, or Time Zone
trunc.Date	Math Group Method for Date/Time Objects
trunc.POSIXt	Math Group Method for Date/Time Objects
units	Units for Time Intervals
units.difftime	Units for Time Intervals
units<-	Units for Time Intervals
units<-.difftime	Units for Time Intervals
weekdays	Extract Parts of a Date or POSIXt Object
weekdays.Date	Extract Parts of a Date or POSIXt Object

Function name	Title description
<code>weekdays.POSIXt</code>	Extract Parts of a Date or POSIXt Object

Environments, Scoping, and Packages

These are the available functions for environments, scoping, and packages. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code><--</code>	Assign a Name to an Object
<code><-</code>	Assign a Name to an Object
<code>-></code>	Assign a Name to an Object
<code>.GlobalEnv</code>	Environment Access
<code>.Library</code>	Search Paths for Packages
<code>.Library.site</code>	Search Paths for Packages
<code>.dynLibs</code>	Loading DLLs from Packages
<code>.expand_R_libs_env_var</code>	Search Paths for Packages
<code>.getNamespace</code>	Get Namespace Environment Information
<code>.libPaths</code>	Search Paths for Packages
<code>.onAttach</code>	Load and List Packages
<code>.onLoad</code>	Load and List Packages
<code>.onUnload</code>	Load and List Packages
<code>=</code>	Assign a Name to an Object
<code>Assignment</code>	Assign a Name to an Object
<code>R_LIBS</code>	Search Paths for Packages
<code>R_LIBS_SITE</code>	Search Paths for Packages
<code>R_LIBS_USER</code>	Search Paths for Packages
<code>apropos</code>	Find Objects by (Partial) Name
<code>as.environment</code>	Coerce to an Environment Object
<code>assign</code>	Assign Object to Environment
<code>attach</code>	Attach a Set of Objects to the Search Path
<code>attachNamespace</code>	Loading and Unloading Namespaces

Function name	Title description
baseenv	Environment Access
cbind.data.frame	Build Data Frame from Columns
dependsOnPkgs	Find Reverse Dependencies
data	Data Sets
detach	Detach Data from the Search List
dget	Read or Write a Text Representation of an object
dput	Read or Write a Text Representation of an object
dump	Produce Text Representations of Objects
emptyenv	Environment Access
environment	Environment Access
environment<-	Environment Access
environmentName	Environment Access
evalOnLoad	Set Actions For Package Loading
evalqOnLoad	Set Actions For Package Loading
exists	Determine if an Object is Defined
extSoftVersion	Get Third Party Software Information
find	Find Packages that Contain an Object
get	Search for a Named Object
get0	Determine if an Object is Defined
getExportedValue	Get Namespace Environment Information
getLoadActions	Set Actions For Package Loading
getNamespace	Get Namespace Environment Information
getNamespaceExports	Get Namespace Environment Information
getNamespaceImports	Get Namespace Environment Information
getNamespaceInfo	Get Namespace Environment Information
getNamespaceName	Get Namespace Environment Information
getNamespaceUsers	Get Namespace Environment Information
getNamespaceVersion	Get Namespace Environment Information

Function name	Title description
globalenv	Environment Access
hasLoadAction	Set Actions For Package Loading
is.environment	Environment Access
isBaseNamespace	Check if an Environment is a (base) Namespace Environment
isNamespace	Check if an Environment is a (base) Namespace Environment
isNamespaceLoaded	Get Namespace Environment Information
library	Load and List Packages
library.dynam	Loading DLLs from Packages
library.dynam.unload	Loading DLLs from Packages
loadNamespace	Loading and Unloading Namespaces
loadedNamespaces	Loading and Unloading Namespaces
mget	Search for a Named Object
new.env	Environment Access
packageDate	Read a Package's DESCRIPTION File
parent.env	Environment Access
parent.env<-	Environment Access
print.packageIQR	Data Sets
rbind.data.frame	Create a Data Frame from Rows
require	Load and List Packages
requireNamespace	Loading and Unloading Namespaces
R_user_dir	R User Directories
search	Search List
searchpaths	Search List
setLoadAction	Set Actions For Package Loading
setLoadActions	Set Actions For Package Loading
topenv	Top-Level Environment
unloadNamespace	Loading and Unloading Namespaces

Lists

These are the available functions for lists. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
[Extract or Replace Parts of an Object
[.data.frame	Extract or Replace Parts of an Object
[.factor	Extract or Replace Parts of an Object
[[Extract or Replace Parts of an Object
[[.data.frame	Extract or Replace Parts of an Object
[[.factor	Extract or Replace Parts of an Object
[[<-	Extract or Replace Parts of an Object
[[<- .data.frame	Extract or Replace Parts of an Object
[<-	Extract or Replace Parts of an Object
[<- .data.frame	Extract or Replace Parts of an Object
[<- .factor	Extract or Replace Parts of an Object
\$	Extract or Replace Parts of an Object
\$ <-	Extract or Replace Parts of an Object
as.list	List Objects
as.list.data.frame	List Objects
as.list.Date	List Objects
as.list.default	List Objects
as.list.environment	List Objects
as.list.factor	List Objects
as.list.function	List Objects
as.list.numeric_version	List Objects
as.list.POSIXct	List Objects
as.null	The Null Object
as.null.default	The Null Object
asplit	Split Array into List of Subarrays
c	Combine Values into a Vector or List

Function name	Title description
c.Date	Combine Values into a Vector or List
c.POSIXct	Combine Values into a Vector or List
c.POSIXlt	Combine Values into a Vector or List
eapply	Apply a Function Over Values in an Environment
Extract	Extract or Replace Parts of an Object
hasName	Names Attribute of an Object
is.list	List Objects
is.null	The Null Object
lapply	Apply a Function to Components of a List or Vector
length	Length of a Vector or List
length.POSIXlt	Length of a Vector or List
list	List Objects
names	Names Attribute of an Object
names.POSIXlt	Names Attribute of an Object
names<-	Names Attribute of an Object
names<-.POSIXlt	Names Attribute of an Object
NULL	The Null Object
rev	Reverse the Order of an Object
rev.default	Reverse the Order of an Object
sapply	Apply a Function to Components of a List or Vector
setNames	Attach a names attribute to an object
simplify2array	Apply a Function to Components of a List or Vector
split	Split Data by Groups
split.data.frame	Split Data by Groups
split.Date	Split Data by Groups
split.default	Split Data by Groups
split.POSIXct	Split Data by Groups
split<-	Split Data by Groups

Function name	Title description
<code>split<- .data.frame</code>	Split Data by Groups
<code>split<- .default</code>	Split Data by Groups
<code>Subscript</code>	Extract or Replace Parts of an Object
<code>Subscript.data.frame</code>	Extract or Replace Parts of an Object
<code>Subscript.factor</code>	Extract or Replace Parts of an Object
<code>unlist</code>	Simplify the Structure of a List
<code>unsplit</code>	Split Data by Groups
<code>vapply</code>	Apply a Function to Components of a List or Vector

Graphics

These graphics functions are available in TERR. For help with a function, see its listing in the TERR Language Reference.

Color

These are the available functions for color. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>adjustcolor</code>	Alter a color specification
<code>col2rgb</code>	Interpret Color Names, Strings, and Numbers
<code>colorRamp</code>	Ramp/Interpolate Colors
<code>colorRampPalette</code>	Ramp/Interpolate Colors
<code>colors</code>	Get Color Names
<code>extendrange</code>	Get Color Names
<code>gray, grey</code>	Palette of Grays
<code>gray.colors, grey.colors</code>	Groups of Colors
<code>hcl</code>	Hue, Chroma, Luminance Color Model
<code>hsv</code>	Hue, Saturation, Value Color Specification
<code>palette</code>	Color Palette
<code>rainbow</code>	Rainbow Colors
<code>rgb</code>	Convert Numeric Color Values to Character Color Codes

Function name	Title description
rgb2hsv	Hue, Saturation, Value Color Model

Computations Related to Plotting (Graphics)

These are the available functions for computations related to plotting. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
acf	Auto- and Cross- Covariance or Correlation Estimation
approx	Interpolation Functions
approxfun	Interpolation Functions
ccf	Auto- and Cross- Covariance or Correlation Estimation
density	Kernel Estimate of Probability Density Function
density.default	Kernel Estimate of Probability Density Function
ecdf	Empirical Cumulative Distribution Function
extendedrange	Numbers a bit outside the range of a vector
pacf	Auto- and Cross- Covariance or Correlation Estimation
plot.ecdf	Empirical Cumulative Distribution Function
ppoints	Plotting Points for Quantile-Quantile Plots
print.ecdf	Empirical Cumulative Distribution Function
qqnorm	Normal Quantile-Quantile Plots
qqnorm.default	Normal Quantile-Quantile Plots
quantile.ecdf	Empirical Cumulative Distribution Function
range	Get the Range of Data
spline	Interpolating Splines
splinefun	Interpolating Splines
splinefunH	Interpolating Splines
summary.ecdf	Empirical Cumulative Distribution Function
xy.coords	X,Y Arguments
xyTable	Tabulate repeated x-y points

Devices

These are the available functions for interacting with devices. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>as.raster</code>	Manipulate raster objects.
<code>is.raster</code>	Manipulate raster objects.
<code>terrFakeDev</code>	Fake Graphics Device for TERR

High-Level Plots

These are the available functions for high-level plots. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>[[.dendrogram</code>	General Tree Structures
<code>as.dendrogram</code>	General Tree Structures
<code>as.dendrogram.dendrogram</code>	General Tree Structures
<code>as.dendrogram.hclust</code>	General Tree Structures
<code>cut.dendrogram</code>	General Tree Structures
<code>dendrogram</code>	General Tree Structures
<code>ecdf</code>	Empirical Cumulative Distribution Function
<code>is.leaf</code>	General Tree Structures
<code>plot.dendrogram</code>	General Tree Structures
<code>plot.ecdf</code>	Empirical Cumulative Distribution Function
<code>print.dendrogram</code>	General Tree Structures
<code>print.ecdf</code>	Empirical Cumulative Distribution Function
<code>qqnorm</code>	Normal Quantile-Quantile Plots
<code>qqnorm.default</code>	Normal Quantile-Quantile Plots
<code>quantile.ecdf</code>	Empirical Cumulative Distribution Function
<code>str.dendrogram</code>	General Tree Structures
<code>summary.ecdf</code>	Empirical Cumulative Distribution Function

Interacting with Plots

These are the available functions for interacting with plots. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
menu	Menu Interaction Function

Mathematics

These mathematic functions are available in TERR. For help with a function, see its listing in the Language Reference.

Basic Arithmetic and Sorting

These are the available functions for basic arithmetic. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
%*%	Matrix Multiplication
g1	Generate Patterned Factor
matmult	Matrix Multiplication
ppoints	Plotting Points for Quantile-Quantile Plots

Linear Algebra

These are the available functions for linear algebra. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
%c%	Matrix Cross Product
%o%	Generalized Outer Products
aperm	Array Permutations
aperm.default	Array Permutations
aperm.table	Array Permutations
apply	Apply a Function to Sections of an Array
backsolve	Backsolve Upper or Lower Triangular Equations
chol	Choleski Decomposition of Symmetric Matrix
chol.default	Choleski Decomposition of Symmetric Matrix
chol2inv	Invert a Matrix Given its Choleski Decomposition

Function name	Title description
colMeans	Row and Column Summaries
colSums	Row and Column Summaries
crossprod	Matrix Cross Product
det	Determinant of a Matrix
determinant	Determinant of a Matrix
diag	Diagonal Matrices
eigen	Eigenvalues and Eigenvectors of a Matrix
eigen.default	Eigenvalues and Eigenvectors of a Matrix
is.qr	QR Matrix Decomposition
La.svd	Singular Value Decomposition of a Matrix
outer	Generalized Outer Products
prcomp	Principal Components Analysis
prcomp.default	Principal Components Analysis
prcomp.formula	Principal Components Analysis
qr	QR Matrix Decomposition
qr.coef	Use a QR Matrix Decomposition
qr.default	QR Matrix Decomposition
qr.fitted	Use a QR Matrix Decomposition
qr.lm	QR Matrix Decomposition
qr.Q	Reconstruct the Q, R, or X Matrices from a QR Object
qr.qty	Use a QR Matrix Decomposition
qr.qy	Use a QR Matrix Decomposition
qr.R	Reconstruct the Q, R, or X Matrices from a QR Object
qr.resid	Use a QR Matrix Decomposition
qr.solve	Use a QR Matrix Decomposition
qr.X	Reconstruct the Q, R, or X Matrices from a QR Object
rowMeans	Row and Column Summaries
rowSums	Row and Column Summaries

Function name	Title description
scale	Scale Columns of a Matrix
scale.default	Scale Columns of a Matrix
solve	Solve Linear Equations and Invert Matrices
solve.default	Solve Linear Equations and Invert Matrices
solve.qr	Solve Linear Equations and Invert Matrices
svd	Singular Value Decomposition of a Matrix
t	Transpose a Matrix
t.default	Transpose a Matrix
tcrossprod	Matrix Cross Product

Logical Operators

These are the available functions for logical operators. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
!	Logical Operators
!=	Comparison Operators
&	Logical Operators
<	Comparison Operators
>	Comparison Operators
<=	Comparison Operators
>=	Comparison Operators
==	Comparison Operators
	Logical Operators
	Control Flow
all	Logical Sum and Product
all.equal	Test Two Objects for Full Equality
all.equal.factor	Test Two Objects for Full Equality
all.equal.numeric	Test Two Objects for Full Equality
all.equal.POSIXct	Test Two Objects for Full Equality

Function name	Title description
any	Logical Sum and Product
anyDuplicated	Determine Duplicate Elements
anyDuplicated.array	Determine Duplicate Elements
anyDuplicated.data.frame	Determine Duplicate Elements
anyDuplicated.default	Determine Duplicate Elements
anyDuplicated.matrix	Determine Duplicate Elements
anyNA	Quickly check for missing (NA) values
arrayInd	Find TRUE Values
as.logical	Logical Objects
as.logical.factor	Logical Objects
bitwAnd	Bitwise Logical Operations
bitwNot	Bitwise Logical Operations
bitwOr	Bitwise Logical Operations
bitwShiftL	Bitwise Logical Operations
bitwShiftR	Bitwise Logical Operations
bitwXor	Bitwise Logical Operations
break	Control Flow
Comparison	Comparison Operators
complete.cases	Find Complete Cases of Observations
Control	Control Flow
duplicated	Determine Duplicate Elements
duplicated.array	Determine Duplicate Elements
duplicated.data.frame	Determine Duplicate Elements
duplicated.default	Determine Duplicate Elements
duplicated.matrix	Determine Duplicate Elements
duplicated.POSIXlt	Determine Duplicate Elements
else	Control Flow
for	Control Flow

Function name	Title description
identical	Test for Complete Equality
if	Control Flow
ifelse	Conditional Data Selection
in	Control Flow
is.finite	Check IEEE Arithmetic Values
is.infinite	Check IEEE Arithmetic Values
is.logical	Logical Objects
is.na	Not Available / Missing Values
is.na.data.frame	Not Available / Missing Values
is.na.POSIXlt	Not Available / Missing Values
is.na<-	Not Available / Missing Values
is.na<-.default	Not Available / Missing Values
is.na<-.factor	Not Available / Missing Values
is.nan	Check IEEE Arithmetic Values
isTRUE	Test for the Value TRUE
Logic	Logical Operators
logical	Logical Objects
NA	Not Available / Missing Values
NA_character_	Not Available / Missing Values
NA_complex_	Not Available / Missing Values
NA_integer_	Not Available / Missing Values
NA_real_	Not Available / Missing Values
NaN	Not Available / Missing Values
next	Control Flow
repeat	Control Flow
sign	Signum Function
which	Find TRUE Values
which.max	Find the Index of the Minimum or Maximum Value

Function name	Title description
which.min	Find the Index of the Minimum or Maximum Value
while	Control Flow
xor	Logical Operators

Mathematical, Calculus, and Others

These are the available functions for math, calculus, and so on. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
!=	Comparison Operators
%/%	Arithmetic Operators
%%	Arithmetic Operators
^	Arithmetic Operators
+	Arithmetic Operators
<	Comparison Operators
<=	Comparison Operators
==	Comparison Operators
abs	Absolute Value
acos	Inverse Trigonometric Functions
acosh	Inverse Hyperbolic Trigonometric Functions
anyNA	Quickly check for missing (NA) values
approx	Interpolation Functions
approxfun	Interpolation Functions
Arithmetinc	Arithmetic Operators
asin	Inverse Trigonometric Functions
asinh	Inverse Hyperbolic Trigonometric Functions
atan	Inverse Trigonometric Functions
atan2	Inverse Trigonometric Functions
atanh	Inverse Hyperbolic Trigonometric Functions
besselI	Bessel functions

Function name	Title description
besselJ	Bessel functions
besselK	Bessel functions
besselY	Bessel functions
ceiling	Integer Values
choose	Factorial, Combinations, and Permutations
colMeans	Row and Column Summaries
colSums	Row and Column Summaries
combn	Generate combinations of m elements out of x
Comparison	Comparison Operators
cos	Trigonometric Functions
cosh	Hyperbolic Trigonometric Functions
cospi	Trigonometric Functions
cummax	Cumulative Maxima and Minima
cummin	Cumulative Maxima and Minima
cumprod	Cumulative Sums and Products
cumsum	Cumulative Sums and Products
diff	Create an Object of Differences
diff.Date	Create an Object of Differences
diff.default	Create an Object of Differences
diff.POSIXt	Create an Object of Differences
diff.ts	Create an Object of Differences
digamma	Gamma Function (and Its Derivatives and Logarithm)
exp	Exponential and related Functions
expml	Exponential and related Functions
factorial	Factorial, Combinations, and Permutations
floor	Integer Values
gamma	Gamma Function (and Its Derivatives and Logarithm)
is.finite	Check IEEE Arithmetic Values

Function name	Title description
is.infinite	Check IEEE Arithmetic Values
is.nan	Check IEEE Arithmetic Values
lchoose	Factorial, Combinations, and Permutations
lfactorial	Factorial, Combinations, and Permutations
lgamma	Gamma Function (and Its Derivatives and Logarithm)
log	Exponential and related Functions
log10	Exponential and related Functions
log1p	Exponential and related Functions
log2	Exponential and related Functions
logb	Exponential and related Functions
Math.data.frame	Math Group Method for Data Frame Objects
max	Extremes
mean	Mean Value (Arithmetic Average)
mean.data.frame	Mean Value (Arithmetic Average)
mean.Date	Mean Value (Arithmetic Average)
mean.default	Mean Value (Arithmetic Average)
mean.difftime	Mean Value (Arithmetic Average)
mean.POSIXct	Mean Value (Arithmetic Average)
mean.POSIXlt	Mean Value (Arithmetic Average)
median	Median
median.default	Median
min	Extremes
nextn	Highly Composite Numbers
optimHess	Numerically Estimate Hessian Matrix
pmax	Parallel Maximum or Minimum
pmax.int	Parallel Maximum or Minimum
pmin	Parallel Maximum or Minimum
pmin.int	Parallel Maximum or Minimum

Function name	Title description
<code>polyroot</code>	Find the Roots of a Polynomial
<code>prod</code>	Sums and Products
<code>psigamma</code>	Gamma Function (and Its Derivatives and Logarithm)
<code>quantile</code>	Empirical Quantiles
<code>range</code>	Get the Range of Data
<code>rank</code>	Ranks of Data
<code>round</code>	Rounding Functions
<code>rowMeans</code>	Row and Column Summaries
<code>rowSums</code>	Row and Column Summaries
<code>signif</code>	Rounding Functions
<code>sin</code>	Trigonometric Functions
<code>sinh</code>	Hyperbolic Trigonometric Functions
<code>sinpi</code>	Trigonometric Functions
<code>spline</code>	Interpolating Splines
<code>splinefun</code>	Interpolating Splines
<code>splinefunH</code>	Interpolating Splines
<code>sqrt</code>	Exponential and related Functions
<code>sum</code>	Sums and Products
<code>tan</code>	Trigonometric Functions
<code>tanh</code>	Hyperbolic Trigonometric Functions
<code>tanpi</code>	Trigonometric Functions
<code>trig</code>	Trigonometric Functions
<code>trigamma</code>	Gamma Function (and Its Derivatives and Logarithm)
<code>trunc</code>	Integer Values
<code>which.max</code>	Find the Index of the Minimum or Maximum Value
<code>which.min</code>	Find the Index of the Minimum or Maximum Value
<code>xtfrm</code>	Sorting and Ranking
<code>zapsmall</code>	Coerce Small Numbers to Zero for Printing

Matrices and Arrays

These are the available functions for matrices and arrays. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
[Extract or Replace Parts of an Object
[.data.frame	Extract or Replace Parts of an Object
[.factor	Extract or Replace Parts of an Object
[[Extract or Replace Parts of an Object
[[.data.frame	Extract or Replace Parts of an Object
[[.factor	Extract or Replace Parts of an Object
[[<-	Extract or Replace Parts of an Object
[[<- .data.frame	Extract or Replace Parts of an Object
[<-	Extract or Replace Parts of an Object
[<- .data.frame	Extract or Replace Parts of an Object
[<- .factor	Extract or Replace Parts of an Object
%*%	Matrix Multiplication
%c%	Matrix Cross Product
%x%	Generalized Kronecker Products
\$	Extract or Replace Parts of an Object
\$<-	Extract or Replace Parts of an Object
.col	Column and Row Identification in a Matrix
.row	Column and Row Identification in a Matrix
aggregate	Compute Summary Statistics of Subsets of Data
aggregate.data.frame	Compute Column-by-Column Summaries of Groups of Observations
aggregate.default	Compute Summary Statistics of Subsets of Data
aggregate.formula	Compute Summary Statistics of Subsets of Data
aggregate.ts	Compute Summary Statistics of Subsets of Data
aperm	Array Permutations
aperm.default	Array Permutations
aperm.table	Array Permutations

Function name	Title description
apply	Apply a Function to Sections of an Array
array	Multi-Way Arrays
as.array	Multi-Way Arrays
as.array.default	Multi-Way Arrays
as.matrix	Matrix Objects
as.matrix.data.frame	Matrix Objects
as.matrix.default	Matrix Objects
as.matrix.noquote	Matrix Objects
as.matrix.POSIXlt	Matrix Objects
backsolve	Backsolve Upper or Lower Triangular Equations
by	Split a Data Frame and Apply a Function to the Parts
by.data.frame	Split a Data Frame and Apply a Function to the Parts
by.default	Split a Data Frame and Apply a Function to the Parts
cbind	Building a Matrix from Columns or Rows
chol	Choleski Decomposition of Symmetric Matrix
chol.default	Choleski Decomposition of Symmetric Matrix
chol2inv	Invert a Matrix Given its Choleski Decomposition
col	Column and Row Identification in a Matrix
colMeans	Row and Column Summaries
colnames	Column and Row Names
colnames<-	Column and Row Names
colSums	Row and Column Summaries
cor	Correlation, Variance, and Covariance (Matrices)
cov	Correlation, Variance, and Covariance (Matrices)
cov2cor	Correlation, Variance, and Covariance (Matrices)
crossprod	Matrix Cross Product
data.matrix	Coerce Data Frame to Numeric Matrix
diag	Diagonal Matrices

Function name	Title description
dim	Dim Attribute of an Object
dim<-	Dim Attribute of an Object
dimnames	Dimnames Attribute of an Object
dimnames.data.frame	Dimnames Attribute of an Object
drop	Drop Length One Dimensions of an Array
eigen	Eigenvalues and Eigenvectors of a Matrix
eigen.default	Eigenvalues and Eigenvectors of a Matrix
Extract	Extract or Replace Parts of an Object
is.array	Multi-Way Arrays
is.matrix	Matrix Objects
isSymmetric	Test if an Object is Symmetric
isSymmetric.matrix	Test if an Object is Symmetric
kronecker	Generalized Kronecker Products
La.svd	Singular Value Decomposition of a Matrix
lower.tri	Logical Matrix of the Lower or Upper Triangle
margin.table	Compute Table Margin
mat.or.vec	Create a Matrix or a Vector
matmult	Matrix Multiplication
matrix	Matrix Objects
merge	Merge Two Datasets and Match Columns
merge.data.frame	Merge Two Datasets and Match Columns
merge.default	Merge Two Datasets and Match Columns
ncol	Get the Number of Rows or Columns of an Array or Matrix
NCOL	Get the Number of Rows or Columns of an Array or Matrix
nrow	Get the Number of Rows or Columns of an Array or Matrix
NROW	Get the Number of Rows or Columns of an Array or Matrix
prop.table	Express Table Entries as Fraction of Marginal Table
rapply	Apply a Function Recursively

Function name	Title description
rbind	Building a Matrix from Columns or Rows
row	Column and Row Identification in a Matrix
rowMeans	Row and Column Summaries
rownames	Column and Row Names
rownames<-	Column and Row Names
rowSums	Row and Column Summaries
scale	Scale Columns of a Matrix
scale.default	Scale Columns of a Matrix
solve	Solve Linear Equations and Invert Matrices
solve.default	Solve Linear Equations and Invert Matrices
solve.qr	Solve Linear Equations and Invert Matrices
Subscript	Extract or Replace Parts of an Object
Subscript.data.frame	Extract or Replace Parts of an Object
Subscript.factor	Extract or Replace Parts of an Object
svd	Singular Value Decomposition of a Matrix
sweep	Sweep Out Array Summaries
t	Transpose a Matrix
t.default	Transpose a Matrix
tapply	Apply a Function to a Ragged Array
tcrossprod	Matrix Cross Product
upper.tri	Logical Matrix of the Lower or Upper Triangle
var	Correlation, Variance, and Covariance (Matrices)

Optimization

These are the available functions for optimization. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
nlm	Nonlinear Minimization
nlminb	Nonlinear Minimization subject to Box Constraints

Function name	Title description
optim	General-purpose Optimization
optimHess	Numerically Estimate Hessian Matrix
optimise	Univariate Optimization of a Function
optimize	Univariate Optimization of a Function

Programming

These programming functions are available in TERR. For help with a function, see its listing in the TERR Language Reference.

Documentation

These are the available functions for documentation. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
?	Documentation Shortcuts
??	Search the Help System
apropos	Find Objects by (Partial) Name
args	Display the Argument List of a Function
browseVignettes	List Vignettes in an HTML Browser
demo	Demonstrations of Package Functionality
example	Run Examples Section from the Online Help
formals	Access and Manipulate the Formal Arguments
formals--	Access and Manipulate the Formal Arguments
help	Online Documentation
help.search	Search the Help System
help.start	Hypertext Documentation
history	Print History of Evaluated Expressions
loadhistory	Print History of Evaluated Expressions
print/browseVignettes	List Vignettes in an HTML Browser
prompt	Generate a Skeleton Documentation File for an Object
promptData	Generate a Skeleton Documentation File for an Object

Function name	Title description
<code>promptPackage</code>	Make a skeleton help file for a package
<code>Question</code>	Documentation Shortcuts
<code>savehistory</code>	Print History of Evaluated Expressions
<code>str</code>	Compactly Display the Structure of an Object
<code>str.data.frame</code>	Compactly Display the Structure of an Object
<code>str.default</code>	Compactly Display the Structure of an Object
<code>strOptions</code>	Compactly Display the Structure of an Object
<code>timestamp</code>	Print History of Evaluated Expressions
<code>vignetteInfo</code>	Extract Metadata from Vignette Source File

Error Handling

These are the available functions for error handling. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>.Deprecated</code>	Functions for Handling Unimplemented Functions and Arguments
<code>.Defunct</code>	Functions for Handling Unimplemented Functions and Arguments
<code>.doTrace</code>	Trace Calls to Functions
<code>.handleSimpleError</code>	Condition Handling and Recovery
<code>.NotYetImplemented</code>	Functions for Handling Unimplemented Functions and Arguments
<code>.signalSimpleWarning</code>	Condition Handling and Recovery
<code>allowInterrupts</code>	Disable or Enable User Interrupts
<code>as.character.condition</code>	Condition Handling and Recovery
<code>as.character.error</code>	Condition Handling and Recovery
<code>assertCondition</code>	Test Expected Errors and Warnings
<code>assertError</code>	Test Expected Errors and Warnings
<code>assertWarning</code>	Test Expected Errors and Warnings
<code>browser</code>	Browse Interactively in a Function's Frame
<code>computeRestarts</code>	Condition Handling and Recovery
<code>condition</code>	Condition Handling and Recovery

Function name	Title description
conditionCall	Condition Handling and Recovery
conditionCall.condition	Condition Handling and Recovery
conditionMessage	Condition Handling and Recovery
conditionMessage.condition	Condition Handling and Recovery
conditions	Condition Handling and Recovery
dump.frames	Save All Frames on Errors
findRestart	Condition Handling and Recovery
errorCondition	Condition Handling and Recovery
geterrmessage	Error and Warning Messages
getOption	Set or Return Options
globalCallingHandlers	Condition Handling and Recovery
invokeRestart	Condition Handling and Recovery
invokeRestartInteractively	Condition Handling and Recovery
isRestart	Condition Handling and Recovery
on.exit	Exit Expression For a Function
options	Set or Return Options
print.condition	Condition Handling and Recovery
print.restart	Condition Handling and Recovery
restartDescription	Condition Handling and Recovery
restartFormals	Condition Handling and Recovery
signalCondition	Condition Handling and Recovery
simpleCondition	Condition Handling and Recovery
simpleError	Condition Handling and Recovery
simpleMessage	Condition Handling and Recovery
simpleWarning	Condition Handling and Recovery
stop	Error and Warning Messages
stopifnot	Stop if Not All True
suppressWarnings	Error and Warning Messages

Function name	Title description
suspendInterrupts	Disable or Enable User Interrupts
trace	Trace Calls to Functions
traceback	Print Call Stack After Error
try	Continue after errors
tryCatch	Condition Handling and Recovery
tryInvokeRestart	Condition Handling and Recovery
unimplementedStop	Functions for Handling Unimplemented Functions and Arguments
unimplementedWarning	Functions for Handling Unimplemented Functions and Arguments
untrace	Trace Calls to Functions
warning	Error and Warning Messages
warningCondition	Condition Handling and Recovery
warnings	Saved Warning Messages
withCallingHandlers	Condition Handling and Recovery
withRestarts	Condition Handling and Recovery

Input and Output Connections

These are the available functions for input and output connections. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
bzfile	Functions to Manipulate Connections
clipboard	Functions to Manipulate Connections
close	Functions to Manipulate Connections
close.connection	Functions to Manipulate Connections
connection	Functions to Manipulate Connections
connections	Functions to Manipulate Connections
fifo	Functions to Manipulate Connections
file	Functions to Manipulate Connections
flush	Functions to Manipulate Connections
flush.connection	Functions to Manipulate Connections

Function name	Title description
gzfile	Functions to Manipulate Connections
isatty	Functions to Manipulate Connections
isIncomplete	Functions to Manipulate Connections
isOpen	Functions to Manipulate Connections
open	Functions to Manipulate Connections
open.connection	Functions to Manipulate Connections
nullfile	Name the Null File
pipe	Functions to Manipulate Connections
print.connection	Functions to Manipulate Connections
read.fwf	Read Fixed Width Format Files
readChar	Transfer Character Strings To and From Connections
readRDS	Serialization Interface for Single Objects
saveRDS	Serialization Interface for Single Objects
serialize	Simple Serialization Interface
socketConnection	Functions to Manipulate Connections
stderr	Functions to Manipulate Connections
stdin	Functions to Manipulate Connections
stdout	Functions to Manipulate Connections
summary.connection	Functions to Manipulate Connections
unserialize	Simple Serialization Interface
textConnection	Text Connections
textConnectionValue	Text Connections
unz	Functions to Manipulate Connections
url	Functions to Manipulate Connections
writeChar	Transfer Character Strings To and From Connections
xzfile	Functions to Manipulate Connections

Input and Output Files

These are the available functions for input and output files. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
basename	Manipulate File Paths
browseURL	Displays the contents of a URL in a Web Browser
bzfile	Functions to Manipulate Connections
cat	Print the Arguments
clipboard	Functions to Manipulate Connections
close	Functions to Manipulate Connections
close.connection	Functions to Manipulate Connections
connection	Functions to Manipulate Connections
connections	Functions to Manipulate Connections
count.fields	Count the Number of Fields per Line
dcf	Read and Write Data in DCF Format
dget	Read or Write a Text Representation of an object
dir	List the Files in a Directory
dir.create	File and Directory Manipulation
dirname	Manipulate File Paths
dput	Read or Write a Text Representation of an object
dump	Produce Text Representations of Objects
fifo	Functions to Manipulate Connections
file	Functions to Manipulate Connections
file.append	File and Directory Manipulation
file.copy	File and Directory Manipulation
file.create	File and Directory Manipulation
file.exists	File and Directory Manipulation
file.info	Extract File Information
file.link	File and Directory Manipulation
file.mode	Extract File Information
file.mtime	Extract File Information
file.path	Construct Path to File

Function name	Title description
file.remove	File and Directory Manipulation
file.rename	File and Directory Manipulation
file.size	Extract File Information
file.symlink	File and Directory Manipulation
file_test	Shell-style Tests of Files
flush	Functions to Manipulate Connections
flush.connection	Functions to Manipulate Connections
gzfile	Functions to Manipulate Connections
history	Print History of Evaluated Expressions
isatty	Functions to Manipulate Connections
isIncomplete	Functions to Manipulate Connections
isOpen	Functions to Manipulate Connections
list.dirs	List the Files in a Directory
list.files	List the Files in a Directory
load	Reload Saved Datasets
loadhistory	Print History of Evaluated Expressions
nullfile	Name the Null File
open	Functions to Manipulate Connections
open.connection	Functions to Manipulate Connections
package.skeleton	Create a Skeleton for a New Source Package
path.expand	Expand ~ in File Paths
pipe	Functions to Manipulate Connections
print.connection	Functions to Manipulate Connections
R.home	Paths to Files in the TIBCO Enterprise Runtime for R Installation
read.csv	Create a Data Frame by Reading a Table
read.csv2	Create a Data Frame by Reading a Table
read.dcf	Read and Write Data in DCF Format
read.delim	Create a Data Frame by Reading a Table

Function name	Title description
read.delim2	Create a Data Frame by Reading a Table
read.fwf	Read Fixed Width Format Files
read.table	Create a Data Frame by Reading a Table
readBin	Read and Write Binary Data
readChar	Transfer Character Strings To and From Connections
readline	Read a Line from the Terminal
readLines	Read or Write Multiple Lines from or to a Connection
readRDS	Serialization Interface for Single Objects
save	Save Objects
save.image	Save Objects
savehistory	Print History of Evaluated Expressions
saveRDS	Serialization Interface for Single Objects
scan	Input Data from a File or Connection
serialize	Simple Serialization Interface
shortPathName	Convert File Name to DOS 8.3 Format
sink	Send Output to a File
sink.number	Send Output to a File
socketConnection	Functions to Manipulate Connections
source	Read Expressions from a File or a Connection
stderr	Functions to Manipulate Connections
stdin	Functions to Manipulate Connections
stdout	Functions to Manipulate Connections
summary.connection	Functions to Manipulate Connections
Sys.getenv	Get Environment Variables
Sys.getlocale	Set or Get Locale-Specific Information
Sys.glob	File and Directory Manipulation
Sys.localeconv	Set or Get Locale-Specific Information
Sys.readlink	File and Directory Manipulation

Function name	Title description
Sys.setenv	Set or Unset Environment Variables
Sys.setlocale	Set or Get Locale-Specific Information
Sys.unsetenv	Set or Unset Environment Variables
textConnection	Text Connections
textConnectionValue	Text Connections
timestamp	Print History of Evaluated Expressions
unlink	Remove Files and Directories
unserialize	Simple Serialization Interface
unz	Functions to Manipulate Connections
url	Functions to Manipulate Connections
withAutoprint	Read Expressions from a File or a Connection
write	Write Data to ASCII File
write.csv	Write Matrix of Data to a File
write.csv2	Write Matrix of Data to a File
write.dcf	Read and Write Data in DCF Format
write.table	Write Matrix of Data to a File
writeBin	Read and Write Binary Data
writeChar	Transfer Character Strings To and From Connections
writeLines	Read or Write Multiple Lines from or to a Connection
xzfile	Functions to Manipulate Connections

Interfaces to Other Languages

These are the available functions for interfaces to other languages. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
.C	Call a Fortran or C Routine
.Call	Manipulate R objects from C code
.External	Manipulate R objects from C code
.External2	Manipulate R objects from C code

Function name	Title description
.Fortran	Call a Fortran or C Routine
as.double	Double Precision Objects
as.double.difftime	Double Precision Objects
as.double.POSIXlt	Double Precision Objects
as.single	Single Precision Objects
as.single.default	Single Precision Objects
double	Double Precision Objects
dyn.load	Foreign Function Interface
dyn.unload	Foreign Function Interface
getNativeSymbolInfo	Obtain a Description of one or more Native Symbols
is.double	Double Precision Objects
is.loaded	Foreign Function Interface
is.single	Single Precision Objects
NativeSymbol	Obtain a Description of one or more Native Symbols
NativeSymbolInfo	Obtain a Description of one or more Native Symbols
RegisteredNativeSymbol	Obtain a Description of one or more Native Symbols
single	Single Precision Objects
system	Invoke a System Command
system2	Invoke a System Command (Windows only at this time)

Looping and Iteration

These are the available functions for looping and iteration. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
(The Structure of Expressions
{	The Structure of Expressions
	Control Flow
aggregate	Compute Summary Statistics of Subsets of Data
aggregate.data.frame	Compute Column-by-Column Summaries of Groups of Observations

Function name	Title description
aggregate.default	Compute Summary Statistics of Subsets of Data
aggregate.formula	Compute Summary Statistics of Subsets of Data
aggregate.ts	Compute Summary Statistics of Subsets of Data
apply	Apply a Function to Sections of an Array
break	Control Flow
by	Split a Data Frame and Apply a Function to the Parts
by.data.frame	Split a Data Frame and Apply a Function to the Parts
by.default	Split a Data Frame and Apply a Function to the Parts
colMeans	Row and Column Summaries
colSums	Row and Column Summaries
Control	Control Flow
dendrapply	Apply a Function to All Nodes of a Dendrogram
eapply	Apply a Function Over Values in an Environment
else	Control Flow
for	Control Flow
function	The Structure of Expressions
if	Control Flow
in	Control Flow
lapply	Apply a Function to Components of a List or Vector
next	Control Flow
rapply	Apply a Function Recursively
repeat	Control Flow
return	The Structure of Expressions
rowMeans	Row and Column Summaries
rowsum	Group Row Sums of a Matrix
rowsum.default	Group Row Sums of a Matrix
rowSums	Row and Column Summaries
sapply	Apply a Function to Components of a List or Vector

Function name	Title description
<code>simplify2array</code>	Apply a Function to Components of a List or Vector
<code>sweep</code>	Sweep Out Array Summaries
<code>Syntax</code>	The Structure of Expressions
<code>tapply</code>	Apply a Function to a Ragged Array
<code>vapply</code>	Apply a Function to Components of a List or Vector
<code>while</code>	Control Flow

Methods and Generic Functions

These are the available methods and generic functions. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>!</code>	Logical Operators
<code>[</code>	Extract or Replace Parts of an Object
<code>[.data.frame</code>	Extract or Replace Parts of an Object
<code>[.factor</code>	Extract or Replace Parts of an Object
<code>[[</code>	Extract or Replace Parts of an Object
<code>[[.data.frame</code>	Extract or Replace Parts of an Object
<code>[[.factor</code>	Extract or Replace Parts of an Object
<code>[[<-</code>	Extract or Replace Parts of an Object
<code>[[<- .data.frame</code>	Extract or Replace Parts of an Object
<code>[<-</code>	Extract or Replace Parts of an Object
<code>[<- .data.frame</code>	Extract or Replace Parts of an Object
<code>[<- .factor</code>	Extract or Replace Parts of an Object
<code>&</code>	Logical Operators
<code> </code>	Logical Operators
<code>~</code>	Model Formula Objects
<code>\$</code>	Extract or Replace Parts of an Object
<code>\$<-</code>	Extract or Replace Parts of an Object
<code>anova.glm</code>	Analysis of Deviance for Generalized Linear Model Fits

Function name	Title description
anova.glmList	Analysis of Deviance for Generalized Linear Model Fits
anova.lm	Anova Table for Linear Model Objects
anova.lmList	Apply anova to a lmList Object
as	Generic Coercion Function
as.data.frame	Construct a Data Frame Object
as.formula	Define or Extract a Model Formula
data.frame	Construct a Data Frame Object
deviance	Deviance of a Fitted Model
deviance.default	Deviance of a Fitted Model
deviance.glm	Deviance of a Fitted Model
deviance.lm	Deviance of a Fitted Model
deviance.mlm	Deviance of a Fitted Model
deviance.nls	Deviance of a Fitted Model
DF2formula	Define or Extract a Model Formula
el	Extract or Replace Part of an Object
el<-	Extract or Replace Part of an Object
expand.model.frame	Add New Variables to a Model Frame
Extract	Extract or Replace Parts of an Object
family.object	Family of GLM Models
formula	Define or Extract a Model Formula
formula.call	Define or Extract a Model Formula
formula.character	Define or Extract a Model Formula
formula.data.frame	Define or Extract a Model Formula
formula.default	Define or Extract a Model Formula
formula.formula	Define or Extract a Model Formula
formula.lm	Define or Extract a Model Formula
formula.nls	Define or Extract a Model Formula
formula.object	Model Formula Objects

Function name	Title description
formula.terms	Define or Extract a Model Formula
get_all_vars	Construct or Extract a Model Frame
getS3method	Get An S3 Method
glm.object	Generalized Linear Model Object
hasArg	Check for Argument Names
is.data.frame	Construct a Data Frame Object
is.object	Test if an Object has a Class Attribute
isS3stdGeneric	Identify S3 Generic Function
lm.object	Linear Least Squares Model Object
loess.object	Loess Model Object
Logic	Logical Operators
methods	List Methods of Old-Style (SV3) Generic Functions
mlm.object	Linear Least Squares Model Object
model.frame	Construct or Extract a Model Frame
model.frame.aovlist	Construct or Extract a Model Frame
model.frame.default	Construct or Extract a Model Frame
model.frame.lm	Construct or Extract a Model Frame
na.action	Handle Missing Values in Objects
na.action.default	Handle Missing Values in Objects
na.exclude	Handle Missing Values in Objects
na.exclude.data.frame	Handle Missing Values in Objects
na.exclude.default	Handle Missing Values in Objects
na.fail	Handle Missing Values in Objects
na.fail.default	Handle Missing Values in Objects
na.omit	Handle Missing Values in Objects
na.omit.data.frame	Handle Missing Values in Objects
na.omit.default	Handle Missing Values in Objects
na.pass	Handle Missing Values in Objects

Function name	Title description
NextMethod	Methods Invoked from Functions
noquote	Remove Quotation Marks from a String
predict.glm	Predict Method for a Generalized Linear Model
predict.lm	Predict Method for a Linear Model
predict.mlm	Predict Method for a Linear Model
print.anova	Print an anova Object
print.family	Use print() on a family Object
print.formula	Use print() on a formula Object
print.lm	Use print() on an lm Object
print.summary.table	Summary of a table Object
registerS3method	Register S3 methods
registerS3methods	Register S3 methods
removeGeneric	Remove all the Methods for a Function
removeMethod	Remove all the Methods for a Function
removeMethods	Remove all the Methods for a Function
residuals.glm	Compute Residuals for glm Objects
rowsum.data.frame	Use rowsum() on a data frame object
setAs	Generic Coercion Function
Subscript	Extract or Replace Parts of an Object
Subscript.data.frame	Extract or Replace Parts of an Object
Subscript.factor	Extract or Replace Parts of an Object
summary	Summarize an Object - Generic Function
Summary	Summary Group Generic Function and Group Method
summary.data.frame	Summary of a Data Frame Object
Summary.data.frame	Summary Group Generic Function and Group Method
summary.Date	Summarize an Object - Generic Function
summary.factor	Use summary() on a factor Object
Summary.factor	Summary Group Generic Function and Group Method

Function name	Title description
summary.matrix	Summary of a Data Frame Object
summary.nls	Summary of an nls Model Object
summary.POSIXct	Summarize an Object - Generic Function
summary.POSIXlt	Summarize an Object - Generic Function
summary.table	Summary of a table Object
terms.object	Class of Objects for Terms in a Model
UseMethod	Methods Invoked from Functions
xor	Logical Operators

Miscellaneous

These are the miscellaneous functions. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
as.person	Person Names and Contact Information
as.personList	Person Names and Contact Information
intersect	Set Operations
is.element	Set Operations
person	Person Names and Contact Information
personList	Person Names and Contact Information
setdiff	Set Operations
setequal	Set Operations
toBibtex.person	Person Names and Contact Information
union	Set Operations

Printing

These are the printing functions. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
[.hexmode	Display Integers in Octal or Hexadecimal
[.octmode	Display Integers in Octal or Hexadecimal

Function name	Title description
<code>[.roman</code>	Display Integers As Roman Numerals
<code>as.character.hexmode</code>	Display Integers in Octal or Hexadecimal
<code>as.character.octmode</code>	Display Integers in Octal or Hexadecimal
<code>as.character.roman</code>	Display Integers As Roman Numerals
<code>as.hexmode</code>	Display Integers in Octal or Hexadecimal
<code>as.octmode</code>	Display Integers in Octal or Hexadecimal
<code>as.roman</code>	Display Integers As Roman Numerals
<code>cat</code>	Print the Arguments
<code>dcf</code>	Read and Write Data in DCF Format
<code>deparse</code>	Turn a Parsed Expression into Character Form
<code>deparse1</code>	Turn a Parsed Expression into Character Form
<code>dget</code>	Read or Write a Text Representation of an object
<code>dput</code>	Read or Write a Text Representation of an object
<code>format</code>	Formatted Character Data
<code>formatC</code>	Formatting Using C-style Formats
<code>format.data.frame</code>	Formatted Character Data
<code>format.default</code>	Formatted Character Data
<code>format.factor</code>	Formatted Character Data
<code>format.hexmode</code>	Display Integers in Octal or Hexadecimal
<code>format.octmode</code>	Display Integers in Octal or Hexadecimal
<code>format.roman</code>	Display Integers As Roman Numerals
<code>formatDL</code>	Format Description Lists
<code>formatOL</code>	Format Unordered and Ordered Lists for Printing
<code>formatUL</code>	Format Unordered and Ordered Lists for Printing
<code>gettextf</code>	Generate C-Style Formatted Output
<code>head</code>	Get the First or Last Part of an Object
<code>hexmode</code>	Display Integers in Octal or Hexadecimal
<code>labels</code>	Labels for Printing

Function name	Title description
labels.default	Labels for Printing
labels.dist	Labels for Printing
labels.glm	Labels for Printing
labels.lm	Labels for Printing
labels.terms	Labels for Printing
ls.str	List Objects and their Structure
lsf.str	List Objects and their Structure
noquote	Remove Quotation Marks from a String
octmode	Display Integers in Octal or Hexadecimal
prettyNum	Formatting Using C-style Formats
print	Print Data - Generic function
print.data.frame	Print a Data Frame Object
print.default	Print Data
print.factor	Use print on a factor Object
print.hexmode	Display Integers in Octal or Hexadecimal
print.listof	Print a listof Object
print.loadings	Print a Loadings Matrix
print.ls_str	List Objects and their Structure
print.octmode	Display Integers in Octal or Hexadecimal
print.prcomp	Print a Principal Components Object
print.princomp	Print a Principal Components Object
print.roman	Display Integers As Roman Numerals
print.summary.prcomp	Print a Principal Component Summary
print.summary.princomp	Print a Principal Component Summary
print.table	Print a table Object
print.ts	Print a Time Series
printCoefmat	Print Coefficient Matrices
read.dcf	Read and Write Data in DCF Format

Function name	Title description
roman	Display Integers As Roman Numerals
sprintf	Generate C-Style Formatted Output
str	Compactly Display the Structure of an Object
str.data.frame	Compactly Display the Structure of an Object
str.default	Compactly Display the Structure of an Object
strOptions	Compactly Display the Structure of an Object
summary.default	Default Summary Method
tail	Get the First or Last Part of an Object
write.csv	Write Matrix of Data to a File
write.csv2	Write Matrix of Data to a File
write.dcf	Read and Write Data in DCF Format
write.table	Write Matrix of Data to a File
zapsmall	Coerce Small Numbers to Zero for Printing

Programming functions

These are the programming functions. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
...elt	Manipulate Ellipsis Arguments
...length	Manipulate Ellipsis Arguments
...names	Manipulate Ellipsis Arguments
.doTrace	Trace Calls to Functions
.GlobalEnv	Environment Access
.handleSimpleError	Condition Handling and Recovery
.getNamespace	Get Namespace Environment Information
.Last.value	Value of Last Evaluated Expression
.makeMessage	Diagnostic Messages
.packageStartupMessage	Diagnostic Messages
.signalSimpleWarning	Condition Handling and Recovery

Function name	Title description
(The Structure of Expressions
[.terms	Modify Terms Objects
{	The Structure of Expressions
	Control Flow
addTaskCallback	Manage Top-Level Task Callbacks
all.names	Find All Names in an Expression
all.vars	Find All Names in an Expression
as	Generic Coercion Function
as.call	Calling Functions
as.character.condition	Condition Handling and Recovery
as.character.error	Condition Handling and Recovery
as.double	Double Precision Objects
as.double.difftime	Double Precision Objects
as.double.POSIXlt	Double Precision Objects
as.expression	Expression Objects
as.function	Function Objects
as.integer	Integer Objects
as.name	Names and Symbols
as.symbol	Names and Symbols
assign	Assign Object to Environment
attachNamespace	Loading and Unloading Namespaces
baseenv	Environment Access
bquote	Partial Substitution in Expressions
break	Control Flow
browser	Browse Interactively in a Function's Frame
call	Calling Functions
charmatch	Partial Matching of Character Strings
chkDots	Manipulate Ellipsis Arguments

Function name	Title description
computeRestarts	Condition Handling and Recovery
condition	Condition Handling and Recovery
conditionCall	Condition Handling and Recovery
conditionCall.condition	Condition Handling and Recovery
conditionMessage	Condition Handling and Recovery
conditionMessage.condition	Condition Handling and Recovery
conditions	Condition Handling and Recovery
Control	Control Flow
delete.response	Modify Terms Objects
deparse	Turn a Parsed Expression into Character Form
deparse1	Turn a Parsed Expression into Character Form
dir	List the Files in a Directory
do.call	Execute a Function Call
dontCheck	Return Argument Unaltered
double	Double Precision Objects
drop.terms	Modify Terms Objects
else	Control Flow
emptyenv	Environment Access
environment	Environment Access
environment<-	Environment Access
environmentName	Environment Access
errorCondition	Condition Handling and Recovery
eval	Evaluate an Expression
eval.parent	Evaluate an Expression
evalq	Evaluate an Expression
existsFunction	Get Function from Environment
expression	Expression Objects
Filter	Common Higher-Order Functions

Function name	Title description
Find	Common Higher-Order Functions
findRestart	Condition Handling and Recovery
for	Control Flow
forceAndCall	Call a Function with Some Arguments Forced
formals	Access and Manipulate the Formal Arguments
formals<-	Access and Manipulate the Formal Arguments
function	The Structure of Expressions
geterrmessage	Error and Warning Messages
getExportedValue	Get Namespace Environment Information
getFunction	Get Function from Environment
getNamespace	Get Namespace Environment Information
getNamespaceExports	Get Namespace Environment Information
getNamespaceImports	Get Namespace Environment Information
getNamespaceName	Get Namespace Environment Information
getNamespaceUsers	Get Namespace Environment Information
getNamespaceVersion	Get Namespace Environment Information
getTaskCallbackNames	Manage Top-Level Task Callbacks
globalenv	Environment Access
history	Print History of Evaluated Expressions
identity	Return Argument Unaltered
if	Control Flow
in	Control Flow
integer	Integer Objects
interactive	Test For Interactive Execution
invisible	Mark Function as Non-Printing
invokeRestart	Condition Handling and Recovery
invokeRestartInteractively	Condition Handling and Recovery
is.atomic	Test for Atomic or Recursive Objects

Function name	Title description
is.call	Calling Functions
is.double	Double Precision Objects
is.environment	Environment Access
is.expression	Expression Objects
is.function	Function Objects
is.integer	Integer Objects
is.language	Test for Atomic or Recursive Objects
is.name	Names and Symbols
is.R	Test If Running Under an R Compatible Engine
is.recursive	Test for Atomic or Recursive Objects
is.symbol	Names and Symbols
isBaseNamespace	Check if an Environment is a (base) Namespace Environment
isNamespace	Check if an Environment is a (base) Namespace Environment
isNamespaceLoaded	Get Namespace Environment Information
isRestart	Condition Handling and Recovery
languageEl	Extract or Replace Parts of Expressions
list.dirs	List the Files in a Directory
list.files	List the Files in a Directory
loadedNamespaces	Loading and Unloading Namespaces
loadhistory	Print History of Evaluated Expressions
loadNamespace	Loading and Unloading Namespaces
local	Evaluate an Expression
make.names	Make Character Strings into Legal Names
make.unique	Make Character Strings Unique
Map	Common Higher-Order Functions
match.arg	Verify an Argument Using Partial Matching
match.call	Argument Matching
match.fun	Function Verification for "Function Variables"

Function name	Title description
message	Diagnostic Messages
missing	Check for Missing Arguments
mode	Data Mode of the Values in a Vector
name	Names and Symbols
nargs	Number of Arguments to Function
Negate	Common Higher-Order Functions
new.env	Environment Access
next	Control Flow
NextMethod	Methods Invoked from Functions
on.exit	Exit Expression For a Function
packageStartupMessage	Diagnostic Messages
parent.env	Environment Access
parent.env<-	Environment Access
parent.frame	Get the System Evaluator State
parse	Parse Expressions
Position	Common Higher-Order Functions
print.condition	Condition Handling and Recovery
print.restart	Condition Handling and Recovery
R.version	Version Information
R.Version	Version Information
R.version.string	Version Information
readline	Read a Line from the Terminal
readLines	Read or Write Multiple Lines from or to a Connection
Recall	Recursive Call of the Current Function
Reduce	Common Higher-Order Functions
reformulate	Modify Terms Objects
reg.finalizer	Finalization of Objects
removeTaskCallback	Manage Top-Level Task Callbacks

Function name	Title description
repeat	Control Flow
requireNamespace	Loading and Unloading Namespaces
restartDescription	Condition Handling and Recovery
restartFormals	Condition Handling and Recovery
return	The Structure of Expressions
S3Part	S4 Classes that Contain S3 Classes
savehistory	Print History of Evaluated Expressions
setAs	Generic Coercion Function
setNamespaceInfo	Access Namespace Environment Information
signalCondition	Condition Handling and Recovery
simpleCondition	Condition Handling and Recovery
simpleError	Condition Handling and Recovery
simpleMessage	Condition Handling and Recovery
simpleWarning	Condition Handling and Recovery
sleep	Sleep for a Specified Period
slice.index	Slice Identification in an Array
stop	Error and Warning Messages
stopifnot	Stop if Not All True
storage.mode	Data Mode of the Values in a Vector
str2expression	Parse Expressions
str2lang	Parse Expressions
substitute	Substitute in an Expression
substituteDirect	Substitute in an Expression
suppressMessages	Diagnostic Messages
suppressPackageStartupMessages	Diagnostic Messages
suppressWarnings	Error and Warning Messages
switch	Evaluate One of Several Expressions
Syntax	The Structure of Expressions

Function name	Title description
sys.call	Get the System Evaluator State
sys.calls	Get the System Evaluator State
sys.frame	Get the System Evaluator State
sys.frames	Get the System Evaluator State
sys.function	Get the System Evaluator State
sys.nframe	Get the System Evaluator State
sys.on.exit	Get the System Evaluator State
sys.parent	Get the System Evaluator State
sys.parents	Get the System Evaluator State
Sys.sleep	Sleep for a Specified Period
sys.status	Get the System Evaluator State
system	Invoke a System Command
taskCallbackManager	Create an R-level Task Callback Manager
tempdir	Create Unique Names for Files
tempfile	Create Unique Names for Files
timestamp	Print History of Evaluated Expressions
topenv	Top-Level Environment
trace	Trace Calls to Functions
traceback	Print Call Stack After Error
try	Continue after errors
tryCatch	Condition Handling and Recovery
unimplementedStop	Functions for Handling Unimplemented Functions and Arguments
unimplementedWarning	Functions for Handling Unimplemented Functions and Arguments
unlink	Remove Files and Directories
unloadNamespace	Loading and Unloading Namespaces
untrace	Trace Calls to Functions
UseMethod	Methods Invoked from Functions
version	Version Information

Function name	Title description
warning	Error and Warning Messages
warningCondition	Condition Handling and Recovery
while	Control Flow
with	Evaluates an expression in a given context
with.default	Evaluates an expression in a given context
withCallingHandlers	Condition Handling and Recovery
within	Evaluates an expression in a given context
within.data.frame	Evaluates an expression in a given context
within.list	Evaluates an expression in a given context
withRestarts	Condition Handling and Recovery
writeLines	Read or Write Multiple Lines from or to a Connection

Session Environment

These are the session environment functions. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
.Platform	Platform Specific Variables
apropos	Find Objects by (Partial) Name
as.environment	Coerce to an Environment Object
eapply	Apply a Function Over Values in an Environment
file.path	Construct Path to File
gc	Garbage Collection
gcinfo	Garbage Collection
gctorture	Garbage Collection
gctorture2	Garbage Collection (stub function does nothing)
getOption	Set or Return Options
getwd	Get or Set Current Working Directory
ls	Retrieve a List of Objects
memory.limit	Memory Limit and Size

Function name	Title description
memory.size	Memory Limit and Size
object.size	Internal Size of an Object
objects	Retrive a List of Objects
options	Set or Return Options
parent.frame	Get the System Evaluator State
path.expand	Expand ~ in File Paths
proc.time	Running Time of TIBCO Enterprise Runtime for R
q	Quit From TIBCO Enterprise Runtime for R
quit	Quit From TIBCO Enterprise Runtime for R
R.home	Paths to Files in the TIBCO Enterprise Runtime for R Installation
R.version	Version Information
R.Version	Version Information
R.version.string	Version Information
reg.finalizer	Finalization of Objects
remove	Remove Objects from a Specified Environment
rm	Remove Objects from a Specified Environment
setwd	Get or Set Current Working Directory
sys.call	Get the System Evaluator State
sys.calls	Get the System Evaluator State
sys.frame	Get the System Evaluator State
sys.frames	Get the System Evaluator State
sys.function	Get the System Evaluator State
Sys.getenv	Get Environment Variables
sys.nframe	Get the System Evaluator State
sys.on.exit	Get the System Evaluator State
sys.parent	Get the System Evaluator State
sys.parents	Get the System Evaluator State
Sys.setenv	Set or Unset Environment Variables

Function name	Title description
sys.status	Get the System Evaluator State
Sys.unsetenv	Set or Unset Environment Variables
system	Invoke a System Command
version	Version Information

Utilities

These are the utility functions. See each function's help topic in the TERR Language Reference for more information.

summarize and replace errors in loops over	Function name	Title description
\$.package_version	Numeric Versions
*	.difftime	Ops Group Method for Date/Time Objects
+	.Date	Ops Group Method for Date/Time Objects
+	.POSIXt	Ops Group Method for Date/Time Objects
-	.Date	Ops Group Method for Date/Time Objects
-	.POSIXt	Ops Group Method for Date/Time Objects
.	.POSIXct	Date-Time Classes
.	.POSIXlt	Date-Time Classes
.	.decode_numeric_version	Numeric Versions
.	.difftime	Time Intervals
.	.encode_numeric_version	Numeric Versions
.	.leap.seconds	Date-Time Classes
.	.make_numeric_version	Numeric Versions
.	.mapply	Apply a Function to Multiple List or Vector Arguments
.	.userHooksEnv	Functions to Get and Set Hooks for Load, Attach, Detach and Unload
/	.difftime	Ops Group Method for Date/Time Objects
activeBindingFunction		Binding and Environment Adjustments
argsAnywhere		Search Packages, Namespaces, and S3 Methods
askYesNo		Ask a Yes/No Question
BATCH		Batch Execution of TIBCO Enterprise Runtime for R

summarize and replace errors in loops overFunction name	Title description
c.difftime	Time Intervals
className	Class Name and Package
Date	Date Class
Encoding	String Encodings of a Character Vector
Encoding<--	String Encodings of a Character Vector
getAnywhere	Search Packages, Namespaces, and S3 Methods
getParseData	Get Detailed Parse Information from Object
getParseText	Get Detailed Parse Information from Object
ISOdate	Construct Date-time from Broken-down Time
ISODatetime	Construct Date-time from Broken-down Time
Math.Date	Math Group Method for Date/Time Objects
Math.POSIXt	Math Group Method for Date/Time Objects
Math.difftime	Math Group Method for Date/Time Objects
OlsonNames	Time Zones
Ops.Date	Ops Group Method for Date/Time Objects
Ops.POSIXt	Ops Group Method for Date/Time Objects
Ops.difftime	Ops Group Method for Date/Time Objects
Ops.numeric_version	Numeric Versions
POSIXct	Date-Time Classes
POSIXlt	Date-Time Classes
POSIXt	Date-Time Classes
Rdiff	Compare Printed Output From TERR and R
R_system_version	Numeric Versions
Summary.Date	Summary Group Method for Date/Time Objects
Summary.POSIXct	Summary Group Method for Date/Time Objects
Summary.POSIXlt	Summary Group Method for Date/Time Objects
Summary.difftime	Summary Group Method for Date/Time Objects
Summary.numeric_version	Numeric Versions

summarize and replace errors in loops overFunction name	Title description
Sys.Date	Get the Current Date, Time, or Time Zone
Sys.time	Get the Current Date, Time, or Time Zone
Sys.timezone	Get the Current Date, Time, or Time Zone
Vectorize	Apply a Function to Multiple List or Vector Arguments
[<- .Date	Date Class
[<- .POSIXct	Date-Time Classes
[<- .POSIXlt	Date-Time Classes
[.Date	Date Class
[.POSIXct	Date-Time Classes
[.POSIXlt	Date-Time Classes
[.difftime	Time Intervals
[.numeric_version	Numeric Versions
[[<- .numeric_version	Numeric Versions
[[.Date	Date Class
[[.POSIXct	Date-Time Classes
[[.numeric_version	Numeric Versions
as.Date	Date-Time Parsing
as.Date.POSIXct	Date-Time Parsing
as.Date.POSIXlt	Date-Time Parsing
as.Date.character	Date-Time Parsing
as.Date.date	Date-Time Parsing
as.Date.dates	Date-Time Parsing
as.Date.default	Date-Time Parsing
as.Date.factor	Date-Time Parsing
as.Date.numeric	Date-Time Parsing
as.POSIXct	Date-Time Parsing
as.POSIXct.Date	Date-Time Parsing
as.POSIXct.POSIXlt	Date-Time Parsing

summarize and replace errors in loops overFunction name	Title description
as.POSIXct.date	Date-Time Parsing
as.POSIXct.dates	Date-Time Parsing
as.POSIXct.default	Date-Time Parsing
as.POSIXct.numeric	Date-Time Parsing
as.POSIXlt	Date-Time Parsing
as.POSIXlt.Date	Date-Time Parsing
as.POSIXlt.POSIXct	Date-Time Parsing
as.POSIXlt.character	Date-Time Parsing
as.POSIXlt.date	Date-Time Parsing
as.POSIXlt.dates	Date-Time Parsing
as.POSIXlt.default	Date-Time Parsing
as.POSIXlt.factor	Date-Time Parsing
as.POSIXlt.numeric	Date-Time Parsing
as.character.Date	Date-Time Formatting
as.character.POSIXt	Date-Time Formatting
as.character.numeric_version	Numeric Versions
as.data.frame.numeric_version	Numeric Versions
as.difftime	Date-Time Parsing
as.numeric_version	Numeric Versions
as.package_version	Numeric Versions
available.packages	List Available Packages at CRAN-like Repositories
base64decode	Decode a String
base64encode	Encode a String
bindenv	Binding and Environment Adjustments
bindingIsActive	Binding and Environment Adjustments
bindingIsLocked	Binding and Environment Adjustments
c.numeric_version	Numeric Versions
capabilities	Report Capabilities of This Engine

summarize and replace errors in loops overFunction name	Title description
capture.output	Send output to a character string or file
check_tzones	Get the Current Date, Time, or Time Zone
compareVersion	Compare Two Package Version Numbers
contrib.url	Find Appropriate Paths in CRAN-like Repositories
date	Get the Current Date, Time, or Time Zone
demo	Demonstrations of Package Functionality
difftime	Time Intervals
download.packages	Download Packages from a Repository
duplicated.numeric_version	Numeric Versions
encodeString	Encode Character Vector for Printing
environmentIsLocked	Binding and Environment Adjustments
evalREX	Restricted TERR Execution Mode
example	Run Examples Section from the Online Help
file_test	Shell-style Tests of Files
format.Date	Date-Time Formatting
format.POSIXct	Date-Time Formatting
format.POSIXlt	Date-Time Formatting
format.difftime	Date-Time Formatting
getCRANmirrors	Comprehensive R Archive Network
getFromNamespace	Utility functions for Developing Namespaces
getHook	Functions to Get and Set Hooks for Load, Attach, Detach and Unload
getREX	Restricted TERR Execution Mode
getRversion	Numeric Versions
getTERREdition	Determine the Edition of the TIBCO Enterprise Runtime for R Engine
iconv	Convert Character Vector between Encodings
iconvlist	Convert Character Vector between Encodings
infoRDS	RDS File Details
install.packages	Install Packages from CRAN-like Repositories

summarize and replace errors in loops overFunction name	Title description
installed.packages	Find Installed Packages
IntelMKLVersion	Find Library Version
is.numeric_version	Numeric Versions
is.package_version	Numeric Versions
isSymmetric	Test if an Object is Symmetric
isSymmetric.matrix	Test if an Object is Symmetric
l10n_info	Localization Information
localeToCharset	Localization Information
lockBinding	Binding and Environment Adjustments
lockEnvironment	Binding and Environment Adjustments
ls.str	List Objects and their Structure
lsf.str	List Objects and their Structure
makeActiveBinding	Binding and Environment Adjustments
mapply	Apply a Function to Multiple List or Vector Arguments
modifyList	Recursively Modify Elements of a List
new.packages	Compare Installed Packages with CRAN-like Repositories
noquote	Remove Quotation Marks from a String
normalizePath	Express File Paths in Canonical Form
numeric_version	Numeric Versions
old.packages	Compare Installed Packages with CRAN-like Repositories
package_native_routine_registration_skeleton	Register Native Routines
package.skeleton	Create a Skeleton for a New Source Package
packageEvent	Functions to Get and Set Hooks for Load, Attach, Detach and Unload
package_dependencies	Dependency Hierarchy
package_version	Numeric Versions
pos.to.env	Convert Positions in the Search Path to Environments
print.Date	Date Class

summarize and replace errors in loops overFunction name	Title description
print.POSIXct	Date-Time Classes
print.POSIXlt	Date-Time Classes
print.difftime	Time Intervals
print.ls_str	List Objects and their Structure
print.numeric_version	Numeric Versions
pskill	Kill a Process
psnice	Kill a Process
read.delim	Create a Data Frame by Reading a Table
read.delim2	Create a Data Frame by Reading a Table
regmatches	Extract or Replace Matched Substrings
regmatches<-	Extract or Replace Matched Substrings
relevel	Reorder Levels of Factor
relevel.default	Reorder Levels of Factor
relevel.factor	Reorder Levels of Factor
relevel.ordered	Reorder Levels of Factor
remove.packages	Remove Installed Packages
reorder	Reorder Levels of a Factor
reorder.default	Reorder Levels of a Factor
rep.numeric_version	Numeric Versions
round.Date	Math Group Method for Date/Time Objects
round.POSIXt	Math Group Method for Date/Time Objects
select.list	Select Items from a List
setHook	Functions to Get and Set Hooks for Load, Attach, Detach and Unload
setInternet2	Enable or Disable the Use of Internet Explorer Settings for Internet Access
setRepositories	Select Package Repositories
shQuote	Quote Strings for Use in OS Shells
shortPathName	Convert File Name to DOS 8.3 Format
SIG*	Kill a Process

summarize and replace errors in loops overFunction name	Title description
stopIfREX	Restricted TERR Execution Mode
str	Compactly Display the Structure of an Object
str.data.frame	Compactly Display the Structure of an Object
str.default	Compactly Display the Structure of an Object
strOptions	Compactly Display the Structure of an Object
strftime	Date-Time Formatting
strptime	Date-Time Parsing
suppressForeignCheck	Package Building from Source
symnum	Symbolic Number Coding
system.time	CPU Time Used
trunc.Date	Math Group Method for Date/Time Objects
trunc.POSIXt	Math Group Method for Date/Time Objects
unique.numeric_version	Numeric Versions
units	Units for Time Intervals
units<-	Units for Time Intervals
units<-difftime	Units for Time Intervals
units.difftime	Units for Time Intervals
unix.time	CPU Time Used
unlockBinding	Binding and Environment Adjustments
update.packages	Compare Installed Packages with CRAN-like Repositories
uploadSBDF	Upload an SBDF File
warnErrList	Summarize and Replace Errors in Loops over tryCatch
xtfrm.numeric_version	Numeric Versions

Statistics

These statistics functions are available in TERR. For help with a function, see its listing in the TERR Language Reference.

Clustering

These are the available functions for clustering. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
acf	Auto- and Cross- Covariance or Correlation Estimation
aggregate	Compute Summary Statistics of Subsets of Data
aggregate.default	Compute Summary Statistics of Subsets of Data
aggregate.formula	Compute Summary Statistics of Subsets of Data
aggregate.ts	Compute Summary Statistics of Subsets of Data
ar	Fit Autoregressive Models to Time Series
ar.yw	Fit Autoregressive Models to Time Series
arima	ARIMA modeling of Time Series
arima.sim	Simulate a Univariate ARIMA Series
as.ts	Time Series Objects
bartlett.test	Bartlett Test of Homogeneity of Variances
Box.test	Box-Pierce and Ljung-Box Tests
cbind.ts	Union and Intersection of Time Series
ccf	Auto- and Cross- Covariance or Correlation Estimation
coef.Arima2	ARIMA modeling of Time Series
cycle	Create Time Vector or Index of Frequency
cycle.default	Create Time Vector or Index of Frequency
decompose	Classical Seasonal Decomposition by Moving Averages
diff	Create an Object of Differences
diff.Date	Create an Object of Differences
diff.default	Create an Object of Differences
diff.POSIXt	Create an Object of Differences
diff.ts	Create an Object of Differences
diffinv	Discrete Integration: inverse of diff
diffinv.default	Discrete Integration: inverse of diff
diffinv.ts	Discrete Integration: inverse of diff

Function name	Title description
fft	Fast Fourier Transform
filter	Apply a Filter to a Time Series
HoltWinters	Holt-Winters Filtering
is.mts	Time Series Objects
is.ts	Time Series Objects
lag	Create a Lagged Time Series
mvfft	Fast Fourier Transform
na.contiguous	Find Longest Contiguous Stretch of non-NAs
na.contiguous.default	Find Longest Contiguous Stretch of non-NAs
na.contiguous.ts	Find Longest Contiguous Stretch of non-NAs
pacf	Auto- and Cross- Covariance or Correlation Estimation
predict.ar	Fit Autoregressive Models to Time Series
predict.HoltWinters	Holt-Winters Filtering
print.ar	Fit Autoregressive Models to Time Series
print.Arima2	ARIMA modeling of Time Series
print.HoltWinters	Holt-Winters Filtering
print.ts	Print a Time Series
residuals.HoltWinters	Holt-Winters Filtering
time	Create Time Vector or Index of Frequency
time.default	Create Time Vector or Index of Frequency
ts	Time Series Objects
ts.intersect	Union and Intersection of Time Series
ts.union	Union and Intersection of Time Series
vcov.Arima2	ARIMA modeling of Time Series
window	Window a Time Series
window.default	Window a Time Series
window.ts	Window a Time Series
window<-	Window a Time Series

Function name	Title description
window<- .ts	Window a Time Series

Computations Related to Plotting (Statistics)

These are the available functions for computations related to plotting. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
is.stepfun	Computing a Step Function

Curve (and Surface) Smoothing

These are the available functions for curve (and surface) smoothing. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
density	Kernel Estimate of Probability Density Function
density.default	Kernel Estimate of Probability Density Function
lowess	Scatter Plot Smoothing
predict.smooth.spline	Smoothing Spline at New Data
smooth	Nonlinear Smoothing Using Running Medians
smooth.spline	Fit a Smoothing Spline
supsmu	Scatter Plot Smoothing Using Super Smoother

Designed Experiments

These are the available functions for designed experiments. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
anova	Anova Tables
aov	Fit an Analysis of Variance Model
c	Assign Contrasts to a Factor
contr.helmert	Contrast or Dummy Variable Matrix
contr.poly	Contrast or Dummy Variable Matrix
contr.SAS	Contrast or Dummy Variable Matrix
contr.sum	Contrast or Dummy Variable Matrix

Function name	Title description
contr.treatment	Contrast or Dummy Variable Matrix
contrasts	Contrasts Attribute
contrasts<-	Contrasts Attribute
eff.aovlist	Compute Efficiency Factors for aovlist Model Terms
friedman.test	Friedman Rank Sum Test
friedman.test.default	Friedman Rank Sum Test
friedman.test.formula	Friedman Rank Sum Test
interaction	Compute the Interaction of Several Factors
kruskal.test	Kruskal-Wallis Rank Sum Test
kruskal.test.default	Kruskal-Wallis Rank Sum Test
kruskal.test.formula	Kruskal-Wallis Rank Sum Test
loess	Fit a Local Regression Model
model.tables	Compute Tables of Estimates for Model Object
model.tables.aov	Compute Tables of Estimates for Model Object
model.tables.aovlist	Compute Tables of Estimates for Model Object
print.aov	Fit an Analysis of Variance Model
print.aovlist	Fit an Analysis of Variance Model
print.mtable	Compute Tables of Estimates for Model Object
print.summary.aov	Summary of an Analysis of Variance Object
print.summary.aovlist	Summary of an Analysis of Variance Object
print.tables_aov	Compute Tables of Estimates for Model Object
proj	Projection Matrix
proj.aov	Projection Matrix
proj.aovlist	Projection Matrix
proj.default	Projection Matrix
proj.lm	Projection Matrix
replications	Number of Replications of Terms
se.aov	Standard Error of AOV Objects

Function name	Title description
se.aovlist	Standard Error of AOV Objects
se.contrast.aov	Standard Errors for Contrasts between Means
se.contrast.aovlist	Standard Errors for Contrasts between Means
summary.aov	Summary of an Analysis of Variance Object
summary.aovlist	Summary of an Analysis of Variance Object

Loess Objects

These are the available functions for loess objects. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
expand.grid	Create a Data Frame from All Combinations of Factors
loess	Fit a Local Regression Model
loess.control	Computational Options for Loess Fitting
loess.object	Loess Model Object
loess.smooth	Smooth Loess Curve
predict.loess	Evaluation of Local Regression Surfaces

Multivariate Techniques

These are the available functions for multivariate techniques. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
[[.dendrogram	General Tree Structures
as.dendrogram	General Tree Structures
as.dendrogram.dendrogram	General Tree Structures
as.dendrogram.hclust	General Tree Structures
as.dist	Distance Matrix Calculation
as.dist.default	Distance Matrix Calculation
as.hclust	Converts Objects to Class hclust
as.hclust.default	Converts Objects to Class hclust
as.hclust.dendrogram	Converts Objects to Class hclust

Function name	Title description
as.hclust.twins	Converts Objects to Class hclust
as.matrix.dist	Distance Matrix Calculation
bartlett.test	Bartlett Test of Homogeneity of Variances
cancor	Canonical Correlation Analysis
cmdscale	Classical Metric Multi-Dimensional Scaling
cophenetic	Cophenetic Distances for a Hierarchical Clustering
cophenetic.default	Cophenetic Distances for a Hierarchical Clustering
cophenetic.dendrogram	Cophenetic Distances for a Hierarchical Clustering
cor	Correlation, Variance, and Covariance (Matrices)
cov	Correlation, Variance, and Covariance (Matrices)
cov.wt	Weighted Covariance Estimation
cov2cor	Correlation, Variance, and Covariance (Matrices)
cut.dendrogram	General Tree Structures
cutree	Create Groups from Hierarchical Clustering
dendrogram	General Tree Structures
dist	Distance Matrix Calculation
estVar	SSD Matrix and Estimated Variance Matrix in Multivariate Models
estVar.mlm	SSD Matrix and Estimated Variance Matrix in Multivariate Models
estVar.SSD	SSD Matrix and Estimated Variance Matrix in Multivariate Models
factanal	Estimate a Factor Analysis Model
fft	Fast Fourier Transform
fitted.kmeans	K-Means Clustering
format.dist	Distance Matrix Calculation
hclust	Hierarchical Clustering
is.leaf	General Tree Structures
kmeans	K-Means Clustering
labels.dist	Distance Matrix Calculation
loadings	Extract Loadings from an Object

Function name	Title description
login	Contingency Table Analysis
mahalanobis	Mahalanobis Distance
mvfft	Fast Fourier Transform
plot.dendrogram	General Tree Structures
prcomp	Principal Components Analysis
prcomp.default	Principal Components Analysis
prcomp.formula	Principal Components Analysis
predict.prcomp	Principal Component Scores
predict.princomp	Principal Component Scores
princomp	Principal Components Analysis
princomp.default	Principal Components Analysis
princomp.formula	Principal Components Analysis
print.dendrogram	General Tree Structures
print.dist	Distance Matrix Calculation
print.factanal	Estimate a Factor Analysis Model
print.hclust	Hierarchical Clustering
print.kmeans	K-Means Clustering
print.loadings	Print a Loadings Matrix
print.prcomp	Print a Principal Components Object
print.princomp	Print a Principal Components Object
print.summary.prcomp	Print a Principal Component Summary
print.summary.princomp	Print a Principal Component Summary
SSD	SSD Matrix and Estimated Variance Matrix in Multivariate Models
SSD.mlm	SSD Matrix and Estimated Variance Matrix in Multivariate Models
str.dendrogram	General Tree Structures
summary.prcomp	Summary of a Principal Components Object
summary.princomp	Summary of a Principal Components Object
var	Correlation, Variance, and Covariance (Matrices)

Non-Linear Regression

These are the available functions for non-linear regression. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
integrate	Integral of a Real-valued Function
nlminb	Nonlinear Minimization subject to Box Constraints
nls.control	Control the Iteration in nls()
optim	General-purpose Optimization
optimHess	Numerically Estimate Hessian Matrix
optimise	Univariate Optimization of a Function
optimize	Univariate Optimization of a Function
predict.nls	Predicting from Nonlinear Least Squares Fits
uniroot	Find a Root of a Univariate Function

Nonparametric Statistics

These are the available functions for nonparametric statistics. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
cor.test	Test for Correlation Between Paired Samples
cor.test.default	Test for Correlation Between Paired Samples
cor.test.formula	Test for Correlation Between Paired Samples
dwilcox	The Distribution of the Wilcoxon Rank Sum Statistic
friedman.test	Friedman Rank Sum Test
friedman.test.default	Friedman Rank Sum Test
friedman.test.formula	Friedman Rank Sum Test
kruskal.test	Kruskal-Wallis Rank Sum Test
kruskal.test.default	Kruskal-Wallis Rank Sum Test
kruskal.test.formula	Kruskal-Wallis Rank Sum Test
predict.smooth.spline	Smoothing Spline at New Data
pwilcox	The Distribution of the Wilcoxon Rank Sum Statistic
qwilcox	The Distribution of the Wilcoxon Rank Sum Statistic

Function name	Title description
<code>rwilcox</code>	The Distribution of the Wilcoxon Rank Sum Statistic
<code>wilcox.test</code>	Wilcoxon Rank Sum and Signed Rank Tests
<code>wilcox.test.default</code>	Wilcoxon Rank Sum and Signed Rank Tests
<code>wilcox.test.formula</code>	Wilcoxon Rank Sum and Signed Rank Tests
<code>Wilcoxon</code>	The Distribution of the Wilcoxon Rank Sum Statistic

Probability Distributions and Random Numbers

These are the available functions for probability distributions and random numbers. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>.Random.seed</code>	Control Random Number Generator
<code>Beta</code>	The Beta Distribution
<code>Binomial</code>	The Binomial Distribution
<code>Cauchy</code>	The Cauchy Distribution
<code>Chisquare</code>	The Chi-square Distribution
<code>dbeta</code>	The Beta Distribution
<code>dbinom</code>	The Binomial Distribution
<code>dcauchy</code>	The Cauchy Distribution
<code>dchisq</code>	The Chi-square Distribution
<code>density</code>	Kernel Estimate of Probability Density Function
<code>density.default</code>	Kernel Estimate of Probability Density Function
<code>dexp</code>	The Exponential Distribution
<code>df</code>	The F Distribution
<code>dgamma</code>	The Gamma Distribution
<code>dgeom</code>	The Geometric Distribution
<code>dhyper</code>	The Hypergeometric Distribution
<code>dlnorm</code>	The Lognormal Distribution
<code>dlogis</code>	The Logistic Distribution
<code>dmultinom</code>	The Multinomial Distribution

Function name	Title description
dnbinom	The Negative Binomial Distribution
dnorm	The Normal Distribution
dpois	The Poisson Distribution
dsignrank	Distribution of the Wilcoxon Signed Rank Statistic
dt	The Student's t Distribution
dunif	The Uniform Distribution
dweibull	The Weibull Distribution
dwilcox	The Distribution of the Wilcoxon Rank Sum Statistic
Exponential	The Exponential Distribution
FDist	The F Distribution
fivenum	Tukey Five-Number Summaries
GammaDist	The Gamma Distribution
Geometric	The Geometric Distribution
Hypergeometric	The Hypergeometric Distribution
Logistic	The Logistic Distribution
Lognormal	The Lognormal Distribution
NegBinomial	The Negative Binomial Distribution
Normal	The Normal Distribution
pbeta	The Beta Distribution
pbinom	The Binomial Distribution
pcauchy	The Cauchy Distribution
pchisq	The Chi-square Distribution
pexp	The Exponential Distribution
pf	The F Distribution
pgamma	The Gamma Distribution
pgeom	The Geometric Distribution
phyper	The Hypergeometric Distribution
plnorm	The Lognormal Distribution

Function name	Title description
plogis	The Logistic Distribution
pnbinom	The Negative Binomial Distribution
pnorm	The Normal Distribution
Poisson	The Poisson Distribution
ppoints	Plotting Points for Quantile-Quantile Plots
ppois	The Poisson Distribution
psignrank	Distribution of the Wilcoxon Signed Rank Statistic
pt	The Student's t Distribution
ptukey	The Studentized Range Distribution
punif	The Uniform Distribution
pweibull	The Weibull Distribution
pwilcox	The Distribution of the Wilcoxon Rank Sum Statistic
qbeta	The Beta Distribution
qbinom	The Binomial Distribution
qcauchy	The Cauchy Distribution
qchisq	The Chi-square Distribution
qexp	The Exponential Distribution
qf	The F Distribution
qgamma	The Gamma Distribution
qgeom	The Geometric Distribution
qhyper	The Hypergeometric Distribution
qlnorm	The Lognormal Distribution
qlogis	The Logistic Distribution
qnbinom	The Negative Binomial Distribution
qnorm	The Normal Distribution
qpois	The Poisson Distribution
qqnorm	Normal Quantile-Quantile Plots
qqnorm.default	Normal Quantile-Quantile Plots

Function name	Title description
<code>qsignrank</code>	Distribution of the Wilcoxon Signed Rank Statistic
<code>qt</code>	The Student's t Distribution
<code>qtukey</code>	The Studentized Range Distribution
<code>quantile</code>	Empirical Quantiles
<code>qunif</code>	The Uniform Distribution
<code>qweibull</code>	The Weibull Distribution
<code>qwilcox</code>	The Distribution of the Wilcoxon Rank Sum Statistic
<code>r2dtable</code>	Random Two-way Tables with Given Marginals
<code>rbeta</code>	The Beta Distribution
<code>rbinom</code>	The Binomial Distribution
<code>rcauchy</code>	The Cauchy Distribution
<code>rchisq</code>	The Chi-square Distribution
<code>rexp</code>	The Exponential Distribution
<code>rf</code>	The F Distribution
<code>rgamma</code>	The Gamma Distribution
<code>rgeom</code>	The Geometric Distribution
<code>rhyper</code>	The Hypergeometric Distribution
<code>rlnorm</code>	The Lognormal Distribution
<code>rlogis</code>	The Logistic Distribution
<code>rmultinom</code>	The Multinomial Distribution
<code>rnbnom</code>	The Negative Binomial Distribution
<code>RNG</code>	Control Random Number Generator
<code>RNGkind</code>	Control Random Number Generator
<code>RNGversion</code>	Control Random Number Generator
<code>rnorm</code>	The Normal Distribution
<code>rpois</code>	The Poisson Distribution
<code>rsignrank</code>	Distribution of the Wilcoxon Signed Rank Statistic
<code>rt</code>	The Student's t Distribution

Function name	Title description
<code>runif</code>	The Uniform Distribution
<code>rweibull</code>	The Weibull Distribution
<code>rwilcox</code>	The Distribution of the Wilcoxon Rank Sum Statistic
<code>sample</code>	Generate Random Samples or Permutations of Data
<code>sample.int</code>	Generate Random Samples or Permutations of Data
<code>set.seed</code>	Control Random Number Generator
<code>SignRank</code>	Distribution of the Wilcoxon Signed Rank Statistic
<code>TDist</code>	The Student's t Distribution
<code>Tukey</code>	The Studentized Range Distribution
<code>Uniform</code>	The Uniform Distribution
<code>Weibull</code>	The Weibull Distribution
<code>Wilcoxon</code>	The Distribution of the Wilcoxon Rank Sum Statistic

Regression

These are the available functions for regression. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>.lm.fit</code>	General fitting for linear (regression) models
<code>.kappa_tri</code>	Compute the Exact or Estimated Condition Number
<code>add1.glm</code>	Add a Single Term to a Linear Model
<code>add1.lm</code>	Add a Single Term to a Linear Model
<code>anova.glm</code>	Analysis of Deviance for Generalized Linear Model Fits
<code>anova.glmList</code>	Analysis of Deviance for Generalized Linear Model Fits
<code>cooks.distance</code>	Regression Deletion Diagnostics
<code>cooks.distance.glm</code>	Regression Deletion Diagnostics
<code>cooks.distance.lm</code>	Regression Deletion Diagnostics
<code>covratio</code>	Regression Deletion Diagnostics
<code>dfbeta</code>	Regression Deletion Diagnostics
<code>dfbeta.lm</code>	Regression Deletion Diagnostics

Function name	Title description
dfbetas	Regression Deletion Diagnostics
dfbetas.lm	Regression Deletion Diagnostics
dffits	Regression Deletion Diagnostics
dummy.coef	Extract Original Coefficients from a Linear Model
dummy.coef.aovlist	Extract Original Coefficients from a Linear Model
dummy.coef.lm	Extract Original Coefficients from a Linear Model
effects	Single Degree-of-freedom Effects from a Fitted Model
effects.glm	Single Degree-of-freedom Effects from a Fitted Model
effects.lm	Single Degree-of-freedom Effects from a Fitted Model
glm	Fit a Generalized Linear Model
glm.control	Set Control Parameters for Generalized Linear Model
glm.fit	Fit a GLM without Computing the Model Matrix
glm.object	Generalized Linear Model Object
hat	Hat Diagonal Regression Diagnostic
hatvalues	Regression Deletion Diagnostics
hatvalues.lm	Regression Deletion Diagnostics
influence	Regression Diagnostics
influence.glm	Regression Diagnostics
influence.lm	Regression Diagnostics
influence.measures	Regression Deletion Diagnostics
isoreg	Isotonic / Monotone Regression
kappa	Compute the Exact or Estimated Condition Number
kappa.default	Compute the Exact or Estimated Condition Number
kappa.lm	Compute the Exact or Estimated Condition Number
kappa.qr	Compute the Exact or Estimated Condition Number
ksmooth	Scatter Plot Smoothing
lm	Fit Linear Regression Model
lm.fit	General fitting for linear (regression) models

Function name	Title description
lm.influence	Regression Diagnostics
lm.object	Linear Least Squares Model Object
lm.wfit	General fitting for linear (regression) models
lowess	Scatter Plot Smoothing
lsfit	Linear Least-Squares Fit
m1m.object	Linear Least Squares Model Object
poly	Compute Orthogonal Polynomials
polym	Compute Orthogonal Polynomials
predict.nls	Predicting from Nonlinear Least Squares Fits
predict.poly	Compute Orthogonal Polynomials
print.dummy_coef	Extract Original Coefficients from a Linear Model
print.dummy_coef_list	Extract Original Coefficients from a Linear Model
print.infl	Regression Deletion Diagnostics
print.summary.lm	Summary Method for Linear Models
print.summary.m1m	Summary Method for Linear Models
proj	Projection Matrix
proj.aov	Projection Matrix
proj.aovlist	Projection Matrix
proj.default	Projection Matrix
proj.lm	Projection Matrix
rstandard	Regression Deletion Diagnostics
rstandard.glm	Regression Deletion Diagnostics
rstandard.lm	Regression Deletion Diagnostics
rstudent	Regression Deletion Diagnostics
rstudent.glm	Regression Deletion Diagnostics
rstudent.lm	Regression Deletion Diagnostics
stat.anova	Add Statistics Columns to an Anova Table
summary.glm	Summary Method for Fitted Generalized Linear Models

Function name	Title description
summary.infl	Regression Deletion Diagnostics
summary.lm	Summary Method for Linear Models
summary.mlm	Summary Method for Linear Models

Regression and Classification Trees

These are the available functions for regression and classification trees . See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
[[.dendrogram	General Tree Structures
as.dendrogram	General Tree Structures
as.dendrogram.dendrogram	General Tree Structures
as.dendrogram.hclust	General Tree Structures
cut.dendrogram	General Tree Structures
dendrogram	General Tree Structures
is.leaf	General Tree Structures
plot.dendrogram	General Tree Structures
print.dendrogram	General Tree Structures
str.dendrogram	General Tree Structures

Robust and Resistant Techniques

These are the available functions for robust and resistant techniques. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
fivenum	Tukey Five-Number Summaries
ksmooth	Scatter Plot Smoothing
line	Robust Line Fitting
lowess	Scatter Plot Smoothing
mad	Robust Estimates of Scale
mean	Mean Value (Arithmetic Average)
mean.data.frame	Mean Value (Arithmetic Average)

Function name	Title description
mean.Date	Mean Value (Arithmetic Average)
mean.default	Mean Value (Arithmetic Average)
mean.difftime	Mean Value (Arithmetic Average)
mean.POSIXct	Mean Value (Arithmetic Average)
mean.POSIXlt	Mean Value (Arithmetic Average)
median	Median
median.default	Median
medpolish	Median Polish
smooth	Nonlinear Smoothing Using Running Medians

Simple Univariate Statistics

These are the available functions for simple univariate statistics. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
ave	Group Averages Over Level Combinations of Factors
cor	Correlation, Variance, and Covariance (Matrices)
cov	Correlation, Variance, and Covariance (Matrices)
cov2cor	Correlation, Variance, and Covariance (Matrices)
fivenum	Tukey Five-Number Summaries
sd	Compute Standard Deviation
var	Correlation, Variance, and Covariance (Matrices)
weighted.mean	Compute Weighted Mean
weighted.mean.Date	Compute Weighted Mean
weighted.mean.default	Compute Weighted Mean
weighted.mean.difftime	Compute Weighted Mean
weighted.mean.POSIXct	Compute Weighted Mean
weighted.mean.POSIXlt	Compute Weighted Mean

Statistical Inference

These are the available functions for statistical inference. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
binom.test	Exact Binomial Test
chisq.test	Pearson's Chi-square Test for Count Data
cor.test	Test for Correlation Between Paired Samples
cor.test.default	Test for Correlation Between Paired Samples
cor.test.formula	Test for Correlation Between Paired Samples
fisher.test	Fisher's Exact Test for Count Data
friedman.test	Friedman Rank Sum Test
friedman.test.default	Friedman Rank Sum Test
friedman.test.formula	Friedman Rank Sum Test
kruskal.test	Kruskal-Wallis Rank Sum Test
kruskal.test.default	Kruskal-Wallis Rank Sum Test
kruskal.test.formula	Kruskal-Wallis Rank Sum Test
ks.test	Kolmogorov-Smirnov Tests
mantelhaen.test	Mantel-Haenszel Chi-Square Test for Count Data
mcnemar.test	McNemar's Chi-Square Test for Count Data
oneway.test	Test for Equal Means in a One-Way Layout
p.adjust	Adjust P-values for Multiple Comparisons
p.adjust.methods	Adjust P-values for Multiple Comparisons
prop.test	Proportions Tests
shapiro.test	Shapiro-Wilk Test for Normality
t.test	Student's t-test
t.test.default	Student's t-test
t.test.formula	Student's t-test
var.test	F Test to Compare Two Variances
var.test.default	F Test to Compare Two Variances
var.test.formula	F Test to Compare Two Variances
wilcox.test	Wilcoxon Rank Sum and Signed Rank Tests
wilcox.test.default	Wilcoxon Rank Sum and Signed Rank Tests

Function name	Title description
wilcox.test.formula	Wilcoxon Rank Sum and Signed Rank Tests

Statistical Models

These are the available functions for statistical models. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
add.scope	Resolve Scopes for Formulas
add1	Compute Models by Adding One Term
add1.default	Compute Models by Adding One Term
AIC	Akaike's Information Criterion
anova	Anova Tables
anova.glm	Analysis of Deviance for Generalized Linear Model Fits
anova.glmList	Analysis of Deviance for Generalized Linear Model Fits
aov	Fit an Analysis of Variance Model
ar	Fit Autoregressive Models to Time Series
ar.yw	Fit Autoregressive Models to Time Series
as.data.frame.array	Construct a Data Frame Object from an S object
as.data.frame.character	Construct a Data Frame Object from an S object
as.data.frame.complex	Construct a Data Frame Object from an S object
as.data.frame.data.frame	Construct a Data Frame Object from an S object
as.data.frame.Date	Construct a Data Frame Object from an S object
as.data.frame.default	Construct a Data Frame Object from an S object
as.data.frame.difftime	Construct a Data Frame Object from an S object
as.data.frame.factor	Construct a Data Frame Object from an S object
as.data.frame.integer	Construct a Data Frame Object from an S object
as.data.frame.list	Construct a Data Frame Object from an S object
as.data.frame.logical	Construct a Data Frame Object from an S object
as.data.frame.matrix	Construct a Data Frame Object from an S object
as.data.frame.model.matrix	Construct a Data Frame Object from an S object

Function name	Title description
as.data.frame.numeric	Construct a Data Frame Object from an S object
as.data.frame.ordered	Construct a Data Frame Object from an S object
as.data.frame.POSIXct	Construct a Data Frame Object from an S object
as.data.frame.POSIXlt	Construct a Data Frame Object from an S object
as.data.frame.raw	Construct a Data Frame Object from an S object
as.data.frame.table	Construct a Data Frame Object from an S object
as.data.frame.ts	Construct a Data Frame Object from an S object
as.data.frame.vector	Construct a Data Frame Object from an S object
as.terms	Create or Extract a Terms Object
as.vector.factor	Coerce a Factor Object into a Vector of a Given Mode
AsIs	Inhibit Interpretation/Conversion of Objects
asOneSidedFormula	Convert to One-Sided Formula
BIC	Akaike's Information Criterion
cmdscale	Classical Metric Multi-Dimensional Scaling
coef	Extract Information from a Model
coef.default	Extract Information from a Model
coef.listof	Extract Information from a Model
coefficients	Extract Information from a Model
confint	Confidence Intervals for Model Parameters
confint.default	Confidence Intervals for Model Parameters
drop.scope	Resolve Scopes for Formulas
drop1	Investigate models by dropping single terms
drop1.default	Investigate models by dropping single terms
drop1.glm	Investigate models by dropping single terms
drop1.lm	Investigate models by dropping single terms
dummy.coef	Extract Original Coefficients from a Linear Model
dummy.coef.aovlist	Extract Original Coefficients from a Linear Model
dummy.coef.lm	Extract Original Coefficients from a Linear Model

Function name	Title description
<code>effects</code>	Single Degree-of-freedom Effects from a Fitted Model
<code>effects.glm</code>	Single Degree-of-freedom Effects from a Fitted Model
<code>effects.lm</code>	Single Degree-of-freedom Effects from a Fitted Model
<code>estVar</code>	SSD Matrix and Estimated Variance Matrix in Multivariate Models
<code>estVar.mlm</code>	SSD Matrix and Estimated Variance Matrix in Multivariate Models
<code>estVar.SSD</code>	SSD Matrix and Estimated Variance Matrix in Multivariate Models
<code>expand.model.frame</code>	Add New Variables to a Model Frame
<code>extractAIC</code>	Extract AIC from a Fitted Model
<code>extractAIC.glm</code>	Extract AIC from a Fitted Model
<code>extractAIC.lm</code>	Extract AIC from a Fitted Model
<code>factanal</code>	Estimate a Factor Analysis Model
<code>factor.scope</code>	Resolve Scopes for Formulas
<code>fitted</code>	Extract Information from a Model
<code>fitted.default</code>	Extract Information from a Model
<code>fitted.values</code>	Extract Information from a Model
<code>get_all_vars</code>	Construct or Extract a Model Frame
<code>getCall</code>	Update a Fitted Model Object
<code>glm</code>	Fit a Generalized Linear Model
<code>I</code>	Inhibit Interpretation/Conversion of Objects
<code>is.empty.model</code>	Does a Model Contain any Predictors
<code>lm</code>	Fit Linear Regression Model
<code>logLik</code>	Extract Log-Likelihood
<code>logLik.lm</code>	Extract Log-Likelihood
<code>logLik.nls</code>	Extract Log-Likelihood
<code>loglin</code>	Contingency Table Analysis
<code>lsfit</code>	Linear Least-Squares Fit
<code>make.link</code>	Create a Link for GLM Families
<code>makepredictcall</code>	Utility Function for Safe Prediction

Function name	Title description
makepredictcall.default	Utility Function for Safe Prediction
makepredictcall.matrix	Utility Function for Safe Prediction
makepredictcall.poly	Utility Function for Safe Prediction
model.extract	Extract Special Information from Model Frame
model.frame	Construct or Extract a Model Frame
model.frame.aovlist	Construct or Extract a Model Frame
model.frame.default	Construct or Extract a Model Frame
model.frame.lm	Construct or Extract a Model Frame
model.matrix	Matrix of Predictors
model.matrix.default	Matrix of Predictors
model.matrix.object	Matrix of Predictors
model.offset	Extract Special Information from Model Frame
model.response	Extract Special Information from Model Frame
model.weights	Extract Special Information from Model Frame
nobs	Extract the Number of Observations from a Fit
nobs.default	Extract the Number of Observations from a Fit
nobs.glm	Extract the Number of Observations from a Fit
nobs.lm	Extract the Number of Observations from a Fit
nobs.nls	Extract the Number of Observations from a Fit
numericDeriv	Evaluate derivatives numerically
offset	Set an Offset Value in a Modeling Formula
power	Generate a Power Link Object
predict	Make Predictions from a Fitted Model Object
predict.ar	Fit Autoregressive Models to Time Series
predict.glm	Predict Method for a Generalized Linear Model
predict.lm	Predict Method for a Linear Model
predict.mlm	Predict Method for a Linear Model
predict.nls	Predicting from Nonlinear Least Squares Fits

Function name	Title description
princomp	Principal Components Analysis
princomp.default	Principal Components Analysis
princomp.formula	Principal Components Analysis
print.aov	Fit an Analysis of Variance Model
print.aovlist	Fit an Analysis of Variance Model
print.ar	Fit Autoregressive Models to Time Series
print.dummy_coef	Extract Original Coefficients from a Linear Model
print.dummy_coef_list	Extract Original Coefficients from a Linear Model
print.factanal	Estimate a Factor Analysis Model
print.logLik	Extract Log-Likelihood
relevel	Reorder Levels of Factor
relevel.default	Reorder Levels of Factor
relevel.factor	Reorder Levels of Factor
relevel.ordered	Reorder Levels of Factor
resid	Extract Information from a Model
residuals	Extract Information from a Model
residuals.default	Extract Information from a Model
residuals.glm	Compute Residuals for glm Objects
selfStart	Construct Self-starting Nonlinear Models
selfStart.default	Construct Self-starting Nonlinear Models
selfStart.formula	Construct Self-starting Nonlinear Models
sigma	Extract Residual Standard Deviation
SSasymp	Asymptotic Regression Model
SSasympOff	Asymptotic Regression Model
SSasympOrig	Asymptotic Regression Model
SSbiexp	Biexponential Model: The Sum of Two Exponentials
SSD	SSD Matrix and Estimated Variance Matrix in Multivariate Models
SSD.mlm	SSD Matrix and Estimated Variance Matrix in Multivariate Models

Function name	Title description
SSfol	First-order Compartment Model
SSfp1	Four-parameter Logistic Model
SSgompertz	Self-Starting Nls Gompertz Growth Model
SSlogis	Fitting a Logistic Curve
SSmicmen	Michaelis-Menten Model
SSweibull	Self-Starting Nls Weibull Growth Curve Model
stat.anova	Add Statistics Columns to an Anova Table
str.logLik	Extract Log-Likelihood
terms	Create or Extract a Terms Object
terms.aovlist	Create or Extract a Terms Object
terms.default	Create or Extract a Terms Object
terms.formula	Create or Extract a Terms Object
terms.terms	Create or Extract a Terms Object
update	Update a Fitted Model Object
update.default	Update a Fitted Model Object
update.formula	Update a Fitted Model Object
vcov	Variance-Covariance Matrix of the Estimated Coefficients
vcov.glm	Variance-Covariance Matrix of the Estimated Coefficients
vcov.lm	Variance-Covariance Matrix of the Estimated Coefficients
vcov.mlm	Variance-Covariance Matrix of the Estimated Coefficients
vcov.nls	Variance-Covariance Matrix of the Estimated Coefficients
vcov.summary.glm	Variance-Covariance Matrix of the Estimated Coefficients
vcov.summary.lm	Variance-Covariance Matrix of the Estimated Coefficients

Time Series

These are the available functions for time series. See each function's help topic in the TERR Language Reference for more information.

Function name	Title description
acf	Auto- and Cross- Covariance or Correlation Estimation

Function name	Title description
aggregate	Compute Summary Statistics of Subsets of Data
aggregate.default	Compute Summary Statistics of Subsets of Data
aggregate.formula	Compute Summary Statistics of Subsets of Data
aggregate.ts	Compute Summary Statistics of Subsets of Data
ar	Fit Autoregressive Models to Time Series
ar.yw	Fit Autoregressive Models to Time Series
arima	ARIMA modeling of Time Series
arima.sim	Simulate a Univariate ARIMA Series
as.ts	Time Series Objects
Box.test	Box-Pierce and Ljung-Box Tests
cbind.ts	Union and Intersection of Time Series
ccf	Auto- and Cross- Covariance or Correlation Estimation
coef.Arima2	ARIMA modeling of Time Series
cycle	Create Time Vector or Index of Frequency
cycle.default	Create Time Vector or Index of Frequency
decompose	Classical Seasonal Decomposition by Moving Averages
diff	Create an Object of Differences
diff.Date	Create an Object of Differences
diff.default	Create an Object of Differences
diff.POSIXt	Create an Object of Differences
diff.ts	Create an Object of Differences
diffinv	Discrete Integration: inverse of diff
diffinv.default	Discrete Integration: inverse of diff
diffinv.ts	Discrete Integration: inverse of diff
fft	Fast Fourier Transform
filter	Apply a Filter to a Time Series
HoltWinters	Holt-Winters Filtering
is.mts	Time Series Objects

Function name	Title description
is.ts	Time Series Objects
lag	Create a Lagged Time Series
mvfft	Fast Fourier Transform
na.contiguous	Find Longest Contiguous Stretch of non-NAs
na.contiguous.default	Find Longest Contiguous Stretch of non-NAs
na.contiguous.ts	Find Longest Contiguous Stretch of non-NAs
pacf	Auto- and Cross- Covariance or Correlation Estimation
predict.ar	Fit Autoregressive Models to Time Series
predict.HoltWinters	Holt-Winters Filtering
print.ar	Fit Autoregressive Models to Time Series
print.Arima2	ARIMA modeling of Time Series
print.HoltWinters	Holt-Winters Filtering
print.ts	Print a Time Series
residuals.HoltWinters	Holt-Winters Filtering
time	Create Time Vector or Index of Frequency
time.default	Create Time Vector or Index of Frequency
ts	Time Series Objects
ts.intersect	Union and Intersection of Time Series
ts.union	Union and Intersection of Time Series
vcov.Arima2	ARIMA modeling of Time Series
window	Window a Time Series
window.default	Window a Time Series
window.ts	Window a Time Series
window<--	Window a Time Series
window<-.ts	Window a Time Series

TERR

These specialized TERR functions are available in TERR. For help with a function, see its listing in the TERR Language Reference.

Functions Using the cURL Library for Access to URLs

These are the available functions for using the cURL library. See the function's help topic in the TERR Language Reference for more information.

Function name	Title description
<code>download.file</code>	Download a File from the Internet

Functions Not Available in TIBCO Enterprise Runtime for R

With each release, TIBCO® Enterprise Runtime for R (TERR™) strives for compatibility with open-source R. In version 6.1, we tested functionality against open-source R version 4.0. At this time, the functions and methods listed in this document are available in open-source R, but are not currently available in TERR™.

The functions are listed alphabetically, according to their packages. The statistics package is further categorized by types of functions.

- [base](#)
- [utils](#)
- [methods](#)
- [statistics](#)

This table provides information about the numbers of functions implemented in open-source R that are also available in TIBCO Enterprise Runtime for R.

Package	Open-source R functions	TERR functions	Percent of open-source R functions implemented in TERR (%)
base	1359	1201	88.4
datasets	104	104	100
graphics*	88	86	97.7
grDevices*	113	104	92
methods	371	103	27.8
stats	456	394	86.4
utils	219	140	63.9

*Because TERR is included with TIBCO Spotfire®, most of the functions related to directly producing graphics are not supported; however, TERR contains placeholders for many graphics functions for package compatibility purposes.

 If you want to use the graphics functions available in R, you can use the `RGraph` function in the `RinR` package to generate graphics by passing an expression to open-source R and evaluating it there. You can also use a number of packages that use Javascript and `htmlwidgets` to create browser-based graphics. For more information, see [Graphics in TIBCO Enterprise Runtime for R](#).

- For a list of available functions, see [Available functions in TIBCO Enterprise Runtime for R](#).
- For more information about the differences between TERR, see the document *Differences Between TIBCO® Enterprise Runtime for R and Open-Source R*.

 You can reach these documents from the TERR Landing Page. From the TERR console, type `help.start()`, and then click the link on the page.

To see a list of the functions included in TERR, from the TERR console, or from TERR running in RStudio, run the following commands:

```
objects("package:base")
objects("package:methods")
objects("package:utils")
objects("package:stats")
```

Base Functions Not Available in TIBCO Enterprise Runtime for R

The following functions in the open-source R base package are not implemented in TERR version 6.1.

[.Dlist	conflictRules	lazyLoadDBexec	print.srcfile
[.DLLInfoList	conflicts	length<-.Date	print.summary.warnings
[.simple.list	contributors	length<-.difftime	pushBack
[.warnings	Cstack_info	length<-.POSIXct	pushBackLength
[[<- POSIXlt	debug	length<-.POSIXlt	retracemem
[<- numeric_version	debuggingState	licence	returnValue
all.equal.environment	debugonce	license	sequence.default
all.equal.envRefClass	duplicated.warnings	loadingNamespaceInfo	serverSocket
anyNA.data.frame	dynGet	mem.maxNSize	socketAccept
anyNA.numeric_version	env.profile	mem.maxVSize	socketSelect
anyNA.POSIXlt	file.link	memory.profile	socketTimeout
as.list.difftime	findPackageEnv	namespaceImport	srcfilealias
ass3	format.ASIS	namespaceImportClasses	srcref
autoload	format.libraryIQR	namespaceImportFrom	summary.srcfile
autoloader	format.packageInfo	namespaceImportMethods	summary.srcref
bindtextdomain	format.summaryDefault	open.srcfile	summary.warnings
bodyOK	gc.time	open.srcfilealias	sys.save.image
browserCondition	getCallingDLL	open.srcfilecopy	Sys.setTime
browserSetDebug	getCallingDLLe	packageHasNamespace	tracemem
browserText	icuGetCollate	packageNotFoundError	tracingState
builtins	icuSetCollate	parseNamespaceFile	truncate.connection
c.warnings	importIntoEnv	pcre_config	undebug
callCC	is.na<- numeric_version	print.Dlist	unique.warnings
clearPushBack	length<-.Date	pushBack	untracemem
close.srcfile	La_library	print.function	xpdrows.data.frame
close.srcfilealias	La_version	print.selfStart	xtfrm.ASIS

Methods Functions Not Available in TIBCO Enterprise Runtime for R

The following functions in the open-source R methods package are not implemented in TERR version 6.1.

addNextMethod	finalDefaultMethod	isXS3Class	promptClass
asMethodDefinition	findClass	linearizeMlist	promptMethods
assignMethodsMetaData	findMethod	listFromMethods	reconcilePropertiesAndPrototype

balanceMethodsList	findMethods	listFromMlist	registerImplicitGenerics
cacheGenericsMetaData	findMethodSignatures	loadMethod	rematchDefinition
cacheMetaData	findUnique	makeClassRepresentation	requireMethods
cacheMethod	fixPre1.8	makeExtends	resetGeneric
checkAtAssignment	generic.skeleton	makeGeneric	S3Class<-
checkSlotAssignment	getAllSuperClasses	makeMethodsList	sealClass
classesToAM	getGenerics	makePrototypeFromClassDef	setGroupGeneric
classMetaName	getGroup	makeStandardGeneric	setPrimitiveMethods
completeClassDefinition	getMethodsForDispatch	matchSignature	showDefault
completeExtends	getMethodsMetaData	mergeMethods	showExtends
completeSubclasses	getValidity	metaNameUndo	showMlist
conformMethod	hasMethods	method.skeleton	SignatureMethod
defaultDumpName	inheritedSlotNames	MethodAddCoerce	sigToEnv
defaultPrototype	initFieldArgs	methodSignatureMatrix	slotsFromS3
doPrimitiveMethod	insertClassMethods	MethodsList	substituteFunctionArgs
dumpMethod	insertMethod	MethodsListSelect	superClassDepth
dumpMethods	insertSource	multipleClasses	testInheritedMethods
elNamed	isClassDef	newBasic	testVirtual
elNamed<-	isGrammarSymbol	newClassRepresentation	tryNew
empty.dump	isGroup	newEmptyObject	unRematchDefinition
emptyMethodsList	linearizeMlist	reconcilePropertiesAndPrototypedSlotNames	
evalSource	isSealedClass	possibleExtends	
externalRefMethod	isSealedMethod	prohibitGeneric	

Utilities Functions Not Available in TIBCO Enterprise Runtime for R

The following functions in the open-source R utils package are not implemented in TERR version 6.1.

alarm	de.ncols	packageStatus	RweaveLatexFinish
aregexec	de.restore	page	RweaveLatexOptions
asDateBuilt	de.setup	process.events	RweaveLatexSetup
aspell	debugcall	promptImport	RweaveLatexWritedoc
aspell_package_C_files	debugger	read.DIF	RweaveTryStop
aspell_package_R_files	fileSnapshot	read.fortran	setBreakpoint
aspell_package_Rd_files	findLineNum	read.socket	Stangle
aspell_package_vignettes	fixInNamespace	recover	summaryRprof
aspell_write_personal_dict	removeIdle	removeSource	Sweave
browseEnv	hsearch_db_concepts	Rprofmem	SweaveHooks
changedFiles	hsearch_db_keywords	RShowDoc	SweaveSyntaxLatex
checkCRAN	isS3method	RSiteSearch	SweaveSyntaxNoweb
chooseBioCmirror	limitedLabels	rtags	SweaveSyntConv
cite	make.packages.html	Rtangle	udebugcall
citeNatbib	make.socket	RtangleSetup	upgrade

close.socket	makeRweaveLatexCodeRunner	RtangleWrittenDoc	url.show
create.post	mirror2html	RweaveChunkPrefix	vignette
data.entry	news	RweaveEvalWithOpt	write.socket
dataentry	ns1	RweaveLatex	
de	osVersion		

Statistics Functions Not Available in TIBCO Enterprise Runtime for R

The following statistics functionality is not available in TERR version 6.1. The complete listings are in the related topics.

- Certain functionality for statistical modeling, including the following.

Statistical modeling	Functionality not available in TERR
Clustering	plclust, a cluster plotting function.
Density estimation	kernel and related functions.
Hypothesis testing	Some lesser-used tests.
Time series models	spectrum, spec.pgram, and other frequency domain functions.
Miscellaneous statistics models	ppr.

- The [optimization](#) function constrOptim.
- A few infrequently encountered statistical [distribution-related functions](#).
- Most of the functions related to directly producing [graphics](#).

Clustering Functions

The following clustering functions found in open-source R are not available in TERR version 6.1.

plclust

Density Functions

The following density functions found in open-source R are not available in TERR version 6.1.

bandwidth.kernel	bw.ucv
bw.bcv	df.kernel
kernapply	kernel

Distribution Functions

The following distribution functions found in open-source R are not available in TERR version 6.1.

pbirthday	ptukey
qbirthday	rWishart

factor.analysis Functions

The following `factor.analysis` functions open-source R are not available in TERR version 6.1.

<code>promax</code>
<code>varimax</code>

Graphics Functions

The following statistics graphics functions found in open-source R are not available in TERR version 6.1.

<code>heatmap</code>	<code>lag.plot</code>
<code>plot.spec.coherency</code>	<code>plot.spec.phase</code>
<code>scatter.smooth</code>	

htest Functions

The following `htest` functions found in open-source R are not available in TERR version 6.1.

<code>fligner.test</code>	<code>power.anova.test</code>
<code>mauchly.test</code>	<code>power.prop.test</code>
<code>mood.test</code>	<code>power.t.test</code>
<code>pairwise.prop.test</code>	<code>PP.test</code>
<code>pairwise.t.test</code>	<code>prop.trend.test</code>
<code>pairwise.wilcox.test</code>	<code>quade.test</code>
<code>poisson.test</code>	

Miscellaneous Model Functions

The following miscellaneous model functions found in open-source R are not available in TERR version 6.1.

<code>ls.diag</code>
<code>manova</code>
<code>Pair</code>
<code>step</code>
<code>summary.manova</code>
<code>TukeyHSD</code>

Miscellaneous stats Functions

The following miscellaneous stats functions found in open-source R are not available in TERR version 6.1.

<code>ppr</code>

Optimization Functions

The following optimization functions found in open-source R are not available in TERR version 6.1.

```
constrOptim
```

Time Series Functions

The following time series functions found in open-source R are not available in TERR version 6.1.

acf2AR	ar.burg
ar.mle	ar.ols
arima0	arima0.diag
ARMAacf	cpgram
is.tskernel	KalmanForecast
KalmanLike	KalmanRun
KalmanSmooth	spec.ar
spec.pgram	spec.taper
spectrum	StructTS
tsdiag	tsSmooth

Configure RStudio to use TIBCO Enterprise Runtime for R

You can use the RStudio™ integrated development environment (IDE) to write TIBCO® Enterprise Runtime for R (TERR™) scripts, expressions, and data functions.

RStudio is a full-featured, open-source IDE for working with R code. It is provided independently of TIBCO Software Inc. You can learn more about RStudio, and you can download and use RStudio for your development at www.rstudio.com.

RStudio is available under separate open-source software license terms. TIBCO does not warrant, deliver, or support code or other material provided by RStudio, Inc., including but not limited to development tools and packages, and such code or other material does not constitute a part of the TERR engine.

TERR has been tested with RStudio 1.3.1093 release on the following platforms:

- Using the [Windows desktop](#) version of the RStudio IDE.
- Using the [Linux desktop](#) version of the RStudio IDE.
- Accessing the [RStudio IDE Server](#), and then executing code remotely via a web browser.

To download the version of RStudio that was tested with this release of TERR, see [Older Versions of RStudio](#).

Configuring RStudio Windows Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine

Configure the Windows desktop version of the RStudio IDE to work with TERR.

Perform this task from the Windows desktop.

Prerequisites

You must have installed RStudio version 0.99 or later for the Windows desktop. (See <http://support.spotfire.com/sr.asp> for tested versions.)

Due to a change in RStudio for Windows between versions 1.1.136 and 1.1.336, using TERR to `print` (for example, `print(1:1000)`) runs extremely slowly. If you experience this problem, then in your RStudio session, set `options(error=NULL)`.

Procedure

1. From the Windows **Start** menu, launch RStudio.
2. From within RStudio, on the menu, click **Tools > Global Options**.
3. In the **General** tab, set the R version to your installation of TERR.
For example, `C:\Program Files\TIBCO\terr60`.
4. Click **Apply**, and then restart RStudio.

Configuring RStudio Mac Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine

You can use TERR in your RStudio installation on your Mac.

As of TERR 6.0, support for TERR on the Mac is deprecated and is no longer tested.

Prerequisites

- You must be running a supported version of the Mac operating system.
- You must have installed a supported RStudio version for the Mac desktop.
- You must have installed TERR version 6.1 on your Mac. See [Installing and running TIBCO Enterprise Runtime for R on a Mac](#) on page 15 for more information.

Procedure

1. On your Mac, open a Terminal session.
2. At the command prompt, type `RStudio-TERR`.
RStudio launches with TERR as the language engine.

Configuring RStudio Linux Desktop Edition to Run the TIBCO Enterprise Runtime for R Engine

Configure the Linux desktop version of the RStudio IDE to work with TERR.

Perform this task from the Linux desktop.

Prerequisites

You must have installed RStudio version 0.99 or later for the Linux desktop. (See <http://support.spotfire.com/sr.asp> for tested versions.)

Procedure

- Linux RStudio desktop users should follow the instructions for specifying the R version for Linux in the RStudio documentation, found at <https://support.rstudio.com/hc/en-us/articles/200486138-Using-Different-Versions-of-R>.

Configuring RStudio Linux Server Edition to Run the TIBCO Enterprise Runtime for R Engine

Configure the Linux server version of the RStudio IDE to work with TERR.

Perform this task from the Linux server.

Prerequisites

You must have installed RStudio version 0.99 or later for the Linux server. (See <http://support.spotfire.com/sr.asp> for tested versions.)

Procedure

- Linux Server administrators should follow the instructions under *Specifying R Version* in the RStudio Server configuration documentation, found at <https://support.rstudio.com/hc/en-us/articles/200552316>.

Unsupported Features for Using TERR with RStudio

Some features available for open-source R in RStudio are not supported for using TERR.

- On Linux, you cannot save **Command History** to a file.
- Plots are not supported in TERR. The **Plots** tab produces no plot.

- Rcpp integration is currently not supported.
- The following file types, listed in the RStudio **File > New** menu, are not supported if you are using TERR as your engine.
 - C++ File
 - R SWeave
 - R HTML
 - Shiny Web App
 - R Presentation

Troubleshooting RStudio with TIBCO Enterprise Runtime for R

If you have problems configuring RStudio with TERR, check for advice in this topic.

When I configured RStudio on Windows to point to TERR instead of open-source R, I see a blank GUI.

You might see a blank user interface with a version of TERR older than version 4.2. This can occur if the version of RStudio you have installed is not compatible with TERR. Follow these steps to fix the problem.

1. In Windows Explorer, go to `C:\Users\currentUser\AppData\Roaming\RStudio`.
2. Delete the file `Desktop.ini`.

 This technique forces RStudio to refresh and default to open-source R as the engine.
3. Go to the requirements page for your version of TERR and note the version of RStudio for which it was tested. See <http://support.spotfire.com/sr.asp>, and in the **All product system requirements** drop-down list box, select TIBCO Enterprise Runtime for R (TERR).
4. Download and install that version of RStudio.
5. After you have the version of RStudio that is compatible with your version of TERR, follow the steps to point RStudio to your installation of TERR.

When I try to use an RStudio feature with TERR that requires the rmarkdown or shiny packages, RStudio tries to download the packages but fails.

If the rmarkdown or the shiny packages are not already installed, and if you try to use an RStudio feature that requires one or both of these packages, RStudio prompts to install them automatically. This process currently fails if RStudio is configured with the TERR engine. To work around this problem, at the command prompt, call `install.packages()` to install the rmarkdown and shiny packages.

When I click Help > Check for Updates, nothing happens.

When RStudio is configured with TERR, the menu item **Help > Check for Updates** does nothing. To check for updates to RStudio from this menu item, you must change the RStudio configuration to run open-source R.

 An easy way to select an engine for RStudio is to hold down Ctrl while you start RStudio. This action displays the dialog for choosing a different R engine. You can select TERR in this dialog.

Package Compatibility

As a standard part of each TERR release, we run all help examples provided in packages in the Comprehensive R Archive Network (CRAN) in the TERR engine from the Windows and Linux platforms.

Beginning with release 5.1, we also run all help examples provided in packages in the Bioconductor (BIOC) list.

Package loading improvements

- To see a list of issues fixed to improve package loading and performance, see [Closed Issues](#).
- To see a list of Rapi C API functions and TERR functions implemented in this release to improve package loading and performance, see [New features](#).
- To see a complete listing of the Rapi C API functions implemented in TERR so far, run the following code.

```
library(terrUtils)
implementedRapiEntries()
```

Package compatibility analysis in Spotfire

We report the results of these tests in visualizations that are available on TIBCO Cloud™ Spotfire® at the following links. You can browse and review the results for the packages you want to use and their Task Views. You can review the results run for every expression in every help file for every CRAN package or BioConductor package for the following platforms.

CRAN packages	BioConductor packages
Windows	Windows
Linux	Linux

The tests run against code examples in the help provide some guidance for determining rates of success. The accuracy of information collected depends on the number and quality of examples in the package reference topics. These analyses are not meant to be the definitive determination of exact compatibility.

For more information about CRAN packages, see <https://cran.r-project.org/web/packages/>

- For more information about BioConductor packages, see <https://www.bioconductor.org/packages/release/bioc/>

TIBCO does not warrant, deliver, or support code or other material provided by the R Project for Statistical Computing, including but not limited to development tools and packages, and such code and other material does not constitute a part of TERR. Such material therefore is not within the scope of your license for TERR. Download and use of such material is solely at your own discretion and subject to the free open source license terms applicable to such material. TIBCO recommends that you consult a legal professional concerning compliance with any free open source license terms applicable to such material, particularly if you plan to engage in redistribution of TERR and/or such material. (Please note that TERR may be redistributed solely pursuant to a license that expressly grants such redistribution rights.)

Package compatibility summary in TERR

Alternatively, we provide a summary of our testing results on the TIBCO documentation site in the following CSV-formatted files.

- CRANonTERR-Linux.csv
- CRANonTERR-Win.csv
- BIOConTERR-Linux.csv
- BIOConTERR-Win.csv

TERR console code example for CRAN

You can use the TERR console to quickly access a summary of the information. The following example returns the results for testing the help files for the CRAN package caret. You can change the example to match the platform and package of your choice.

1. Change the CSV file name to match the platform (Linux or Windows).
2. Remove the comment markers for the CSV file name.
3. Provide the name of the package you want to query.

```
# Example: CRAN tests compatibility with this version of TERR
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/CRANonTERR-Linux.csv",
#  stringsAsFactors=FALSE)
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/CRANonTERR-Win.csv",
#  stringsAsFactors=FALSE)
#
subset(packageCompat, Package.Name=="caret")
## (update)
```

The returned results resemble the following for the above example.

Package.Name	Version	Status	Percent.Successful	Total.Executed
1608	caret 6.0-86	Mostly successful	98.5%	205
		Passed Failed Graphics Random.Numbers		
1608	202	3 17	100	

This table shows how to read the results for this example. (Shows sample results for running the example on Linux. Results for Windows can vary slightly.)

Column name	Result
Package.Name	caret
Version	6.0-86
Status	Mostly successful
Percent.Successful	98.5%
Total.Executed	205
Passed	202
Failed	3
Graphics	17

Column name	Result
Random.Numbers	100

TERR console code example for BioConductor

You can use the TERR console to quickly access a summary of the information. The following example returns the results for testing the help files for the BioConductor package limma. You can change the example to match the platform and package of your choice.

1. Change the CSV file name to match the platform (Linux or Windows).
2. Remove the comment markers for the CSV file name.
3. Provide the name of the package you want to query.

```
# Example: BioConductor tests compatibility with this version of TERR
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/BioConTERR-Linux.csv",
#  stringsAsFactors=FALSE)
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/BioConTERR-Win.csv",
#  stringsAsFactors=FALSE)
#
subset(packageCompat, Package.Name=="limma")
## (update)
```

The returned results resemble the following for the above example.

Package.Name	Version	Status	Percent.Successful	Total.Executed
901	limma 3.44.3	Mostly successful	96.9	391
	Passed Failed	Graphics Random.Numbers		
901	379 12	49	75	

This table shows how to read the results for this example. (Shows sample results for running the example on Linux. Results for Windows can vary slightly.)

Column name	Result
Package.Name	limma
Version	3.44.3
Status	Mostly successful
Percent.Successful	96.9%
Total.Executed	391
Passed	379
Failed	12
Graphics	49
Random.Numbers	75

TIBCO Enterprise Runtime for R Release Notes

The Release Notes for this product version are provided to inform you of new features, known issues, and issues from previous releases that have been closed.

These release notes are for TIBCO® Enterprise Runtime for R (TERR™) version 6.1. They cover Linux® and Microsoft Windows® installations.

TERR™ is a high-performance statistical engine, which is compatible with open-source R. It can be embedded into a wide range of applications as an enterprise-grade alternative to open-source R, and can run a wide array of packages from CRAN.

This release of TERR focuses on improving compatibility with open-source R.

Open-source R is available under separate open source software license terms and is not part of TERR. As such, open-source R is not within the scope of your license for TERR. Open-source R is not supported, maintained, or warranted in any way by TIBCO Software Inc. Download and use of open-source R is solely at your own discretion and subject to the free open source license terms applicable to open-source R.

New Features

The following features have been added to version 6.1.0 of TERR.

TERR 6.1.0 has changed to accommodate the changes made to open-source R version 4.0.x.

New implementation for R 4.0.x compatibility

TERR has new functions and changes to existing functions and behavior to match new functions and changes in open-source R 4.0.x.

New functions in included packages

Package Name	Details

New R C API Entries

The following R C API entries are implemented to improve package loading and compatibility. For a complete listing of the Rapi C API entries implemented in TERR, run the following.

```
library(terrUtils)
implementedRapiEntries()
```

R C API entries	Description

Changes in Functionality, Features, and Compatibility

From release to release, we might change the functionality. In cases where product changes require migration procedures, we provide information for that purpose. The following changes have been made to TERR version 6.1.

Changes in functionality and compatibility

Version 6.1 of TERR was tested with open-source R version 4.0.2. The following changes to functions in TERR were made for compatibility with open-source R 4.0.2 or with Java 11.

Key	Description

Other version updates

Version updates and version compatibility testing include the following.

- OpenSSL updated to version 1.1.1g (Included with TERR).
- Tested with JAVA version 11; however, any compatible version of Java can be used.
- open-source R version 4.0.2.
- RStudio Desktop and Server version 1.3.1093. For more information, see *Configuring RStudio to use TIBCO® Enterprise Runtime for R* in the TERR [documentation](#).

TERR is no longer tested with Spark, KNIME, or Hadoop. See the TERR articles on the [TIBCO Community](#) site for more information about using these tools.

The following packages included with TERR require a bit-matching 32-bit or 64-bit version Java.

- parallel
- sjdbc
- terrJava

Additionally, if you want to use the rJava package, or any other CRAN package that requires access to JAVA_HOME, this information applies.

To use these packages, you must set the JAVA_HOME environment variable to a valid Java installation before you load the packages. You can set JAVA_HOME using TERR by calling the following in the console:

```
Sys.setenv(JAVA_HOME="path_to_your_JRE_installation")
```

To check if the environment variable is set, call the following in the console:

```
Sys.getenv("JAVA_HOME")
```


For Windows installations, if the JAVA_HOME environment variable is not set, TERR uses system info to identify and load the latest Java installed on the system.

Deprecated and Removed Features

The following features have been deprecated or removed in TERR version 6.1.

Deprecated on macOS

Removed features

As of version 6.1, support for TERR is removed on macOS.

Update or Reinstall a Version of TERR

When you update to a more recent version of TERR, remove the previous version, and follow the guidelines to protect your installed packages.

Installing TERR over a previous TERR installation without removing it can cause unexpected failures. To remove TERR, follow the instructions for your operating system.

For a list of operating systems that TERR is supported on, see the [TIBCO Enterprise Runtime for R system requirements](#).

When you update to a new version of TERR, follow the guidance in "Package installation locations and recommendations for updating" in the [Package Management](#) section of the *TIBCO® Enterprise Runtime for R Technical Documentation*.

On Linux

- From the command line, run the command `rm -rf <TER_HOME>`, where `TER_HOME` is the installation directory.

On Windows

- From the Settings app, click **Apps**, and then from the **Apps & features** list, double-click run the listing **TIBCO Enterprise Runtime for R <version#>**.

After uninstalling TERR, run the installer for the version of TERR you want to install.

Package Compatibility

As a standard part of each TERR release, we run all help examples provided in packages in the Comprehensive R Archive Network (CRAN) in the TERR engine from the Windows and Linux platforms.

Beginning with release 5.1, we also run all help examples provided in packages in the Bioconductor (BIOC) list.

Package loading improvements

- To see a list of issues fixed to improve package loading and performance, see [Closed Issues](#).
- To see a list of Rapi C API functions and TERR functions implemented in this release to improve package loading and performance, see [New features](#).
- To see a complete listing of the Rapi C API functions implemented in TERR so far, run the following code.

```
library(terrUtils)
implementedRapiEntries()
```

Package compatibility analysis in Spotfire

We report the results of these tests in visualizations that are available on TIBCO Cloud™ Spotfire® at the following links. You can browse and review the results for the packages you want to use and their Task Views. You can review the results run for every expression in every help file for every CRAN package or BioConductor package for the following platforms.

CRAN packages	BioConductor packages
Windows	Windows
Linux	Linux

The tests run against code examples in the help provide some guidance for determining rates of success. The accuracy of information collected depends on the number and quality of examples in the package reference topics. These analyses are not meant to be the definitive determination of exact compatibility.

For more information about CRAN packages, see <https://cran.r-project.org/web/packages/>

- For more information about BioConductor packages, see <https://www.bioconductor.org/packages/release/bioc/>

 TIBCO does not warrant, deliver, or support code or other material provided by the R Project for Statistical Computing, including but not limited to development tools and packages, and such code and other material does not constitute a part of TERR. Such material therefore is not within the scope of your license for TERR. Download and use of such material is solely at your own discretion and subject to the free open source license terms applicable to such material. TIBCO recommends that you consult a legal professional concerning compliance with any free open source license terms applicable to such material, particularly if you plan to engage in redistribution of TERR and/or such material. (Please note that TERR may be redistributed solely pursuant to a license that expressly grants such redistribution rights.)

Package compatibility summary in TERR

Alternatively, we provide a summary of our testing results on the TIBCO documentation site in the following CSV-formatted files.

- CRANonTERR-Linux.csv
- CRANonTERR-Win.csv
- BIOConTERR-Linux.csv
- BIOConTERR-Win.csv

TERR console code example for CRAN

You can use the TERR console to quickly access a summary of the information. The following example returns the results for testing the help files for the CRAN package caret. You can change the example to match the platform and package of your choice.

1. Change the CSV file name to match the platform (Linux or Windows).
2. Remove the comment markers for the CSV file name.
3. Provide the name of the package you want to query.

```
# Example: CRAN tests compatibility with this version of TERR
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/CRANonTERR-Linux.csv",
#  stringsAsFactors=FALSE)
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/CRANonTERR-Win.csv",
#  stringsAsFactors=FALSE)
#
#subset(packageCompat, Package.Name=="caret")
## (update)
```

The returned results resemble the following for the above example.

Package.Name	Version	Status	Percent.Successful	Total.Executed
1608	caret 6.0-86	Mostly successful	98.5%	205
	Passed Failed Graphics Random.Numbers			
1608	202 3 17		100	

This table shows how to read the results for this example. (Shows sample results for running the example on Linux. Results for Windows can vary slightly.)

Column name	Result
Package.Name	caret
Version	6.0-86
Status	Mostly successful
Percent.Successful	98.5%
Total.Executed	205
Passed	202
Failed	3
Graphics	17
Random.Numbers	100

TERR console code example for BioConductor

You can use the TERR console to quickly access a summary of the information. The following example returns the results for testing the help files for the BioConductor package limma. You can change the example to match the platform and package of your choice.

1. Change the CSV file name to match the platform (Linux or Windows).
2. Remove the comment markers for the CSV file name.
3. Provide the name of the package you want to query.

```
# Example: BioConductor tests compatibility with this version of TERR
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/BioConTERR-Linux.csv",
#  stringsAsFactors=FALSE)
#
#packageCompat <- read.csv("https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.0/doc/
#csv/BioConTERR-Win.csv",
#  stringsAsFactors=FALSE)
#
#subset(packageCompat, Package.Name=="limma")
## (update)
```

The returned results resemble the following for the above example.

Package.Name	Version	Status	Percent.Successful	Total.Executed
901	limma 3.44.3	Mostly successful	96.9	391
	Passed Failed Graphics Random.Numbers			
901	379 12 49		75	

This table shows how to read the results for this example. (Shows sample results for running the example on Linux. Results for Windows can vary slightly.)

Column name	Result
Package.Name	limma
Version	3.44.3
Status	Mostly successful
Percent.Successful	96.9%
Total.Executed	391
Passed	379
Failed	12
Graphics	49
Random.Numbers	75

Closed Issues

This table lists closed issues in version 6.1.0 of TERR. It reflects fixes for issues with package compatibility, open-source R compatibility, and general issues with TERR.

Key	Description
TERR-7929	The function <code>registerS3method</code> now registers the method in the generic function's environment, if possible. This change fixes problems with the <code>tibble</code> package (v3.0.4), which explicitly calls <code>registerS3method</code> to register functions like <code>format.tbl</code> .

Known Issues

This section lists known issues in version 6.1.0 of TERR.

In this release, some open-source R functionality is not available, including graphics devices, and some functions from the base and stats packages. Likewise, S4 is not entirely compatible. The following table lists additional known issues.

Issue	Description
TERR-4993	On Linux, you cannot save TERR Command History to a file.
TERR-5488	If you receive the message "SSL certificate problem: unable to get local issuer certificate" when accessing SSL protected URLs (for example, <code>https://</code>), make sure that your system has the latest version of the certificate authority database for your system. On RedHat 5, this should be <code>yum update openssl</code> . On RedHat 6, this should be <code>yum update ca-certificates</code> .
TERR-6422	Setting breakpoints in RStudio 0.99.903 with TERR on Windows can cause it to crash. When a script is sourced, and if it has breakpoints set, RStudio for Windows can crash. This crash does not occur when breakpoints are set inside a function and the function is called.
TERR-6576	If you try to use an RStudio feature that requires the <code>rmarkdown</code> package or the <code>shiny</code> package, and the required package is not already installed, then this process currently fails if RStudio is configured with the TERR engine. To work around this problem, at the command prompt, call <code>install.packages()</code> to install the <code>rmarkdown</code> and <code>shiny</code> packages.

Issue	Description
TERR-6812	<p>Due to changes in open-source R version 3.5 and resulting compatibility changes in TERR 5.0, packages that are built with a version of TERR prior to 5.0 must be rebuilt.</p> <ul style="list-style-type: none"> • To install a binary package from a repository, always call <code>install.packages(pkgname)</code> from TERR. The <code>install.packages</code> function finds the correct binary version in the repository for your version of TERR. Manually downloading the binary package from CRAN can result in errors when you use it with TERR. • To install a package from source, try installing it first with TERR (with <code>install.packages</code> in TERR or with TERR CMD <code>INSTALL</code> from a command line). • To install a package from source that you cannot build with TERR, install the package with the version of open-source R tested with TERR.
TERR-7077	<p>Certain packages, such as <code>rJava</code>, cannot be installed with TERR from source under Centos. If you encounter a package that does not install with TERR from source, then you can build the package using open-source R, and then install the binary package in TERR.</p>
TERR-7727	<p>When you view help files in Rstudio, some text in the help (for example, the Arguments and the Value sections) might not be visible if you are using an Rstudio Editor theme with a dark background.</p>
TERR-7728	<p>When you run TERR under Rstudio Server, if you end the session using File > Quit Session, the following message is displayed: <code>Session Error, The previous R session was abnormally terminated due to an unexpected crash.</code> This problem can also occur when you open a project using the File > New Project or File > Open Project menu commands.</p>

Package search order

When you install a package using TERR, by default, TERR first checks for the package on CRAN, and then checks on MRAN. TERR installs the first version it finds. This is different than open-source R, which installs packages according to the newest version number available on CRAN. This difference is by design, because occasionally a CRAN package update causes a break with TERR compatibility, so we make available a tested version of the package on CRAN.

If you need to install one of these packages using open-source R (for example, to get source code on Linux), you can install the CRAN package, and then set `options()$repos` to install from only CRAN before reinstalling the package.

See "Specifying an older package on CRAN" in the *TIBCO® Enterprise Runtime for R Technical Documentation* for more information.

When running on RedHat Linux, TIBCO Enterprise Runtime for R processes spawned by the parallel package may immediately crash

We have seen a problem when running TERR on RedHat Linux with versions of Java earlier than 1.7.0_40. If you call the `makeCluster` function in the `parallel` package to spawn new TERR processes, these processes may immediately crash with a fatal Java error. To test if this problem is occurring, try the following:

```
library(parallel)
cl <- makeCluster(1, outfile="")
# create cluster with one spawned process
# specifying outfile="" to print all output
cl <- makeCluster(1, outfile="")
clusterEvalQ(cl, 123)
```

If this problem is occurring, you see an error such as the following:

```
> library(parallel)
```

```

> # create cluster with one spawned process
> # specifying outfile="" to print all output from the process
> c1 <- makeCluster(1, outfile="")
Creating 1 TERR cluster nodes at Thu Aug 20 11:31:25 2020
> clusterEvalQ(c1, 123)
1: #
1: # A fatal error has been detected by the Java Runtime Environment:
1: #
1: # SIGSEGV (0xb) at pc=0x0000003ac2cbbfa5, pid=12649, tid=1075054912
1: # JRE version: 7.0_13-b20
1: # Java VM: Java HotSpot(TM) 64-Bit Server VM (23.7-b01 mixed mode linux-amd64
compressed oops)
1: # Problematic frame:
1: # C [libstdc++.so.6+0xbbfa5] __cxa_allocate_exception+0x55
1: #
1: # Failed to write core dump. Core dumps have been disabled. To enable core
dumping, try "ulimit -c unlimited" before starting Java again
1: #
1: # An error report file with more information is saved as:
1: # /a/seafiler01.na.tibco.com/vol/vol2/users/jdoe/hs_err_pid12649.log
1: #
1: # If you would like to submit a bug report, please visit:
1: # http://bugreport.sun.com/bugreport/crash.jsp
1: #
Error in waitForClusterReady(c1) : some cluster nodes have crashed or stopped: all crashed

```

The workaround for this problem is to set the LD_PRELOAD environment variable to libstdc++.so.6. This can be done before TERR is started, or within TERR, before the parallel library has been loaded:

```

> Sys.setenv("LD_PRELOAD"="libstdc++.so.6")
> library(parallel)
> c1 <- makeCluster(1, outfile="")
Creating 1 TERR cluster nodes at Thu Aug 20 11:32:56 2020
> # create cluster with one spawned process
> # specifying outfile="" to print all output
> c1 <- makeCluster(1, outfile="")
Creating 1 TERR cluster nodes at Thu Aug 20 11:33:51 2020
> clusterEvalQ(c1, 123)
1: TIBCO Software Inc. Confidential Information
1: Copyright (C) 2011-2020 TIBCO Software Inc. ALL RIGHTS RESERVED
1: TIBCO Enterprise Runtime for R version 6.0.0 for Microsoft Windows 64-bit
1:
1: Type 'help()' for help.
1: Type 'q()' to quit.
1: started engine node pid==15788 at Thu Aug 20 11:33:54 2020
[[1]]
[1] 123
>

```

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO Spotfire, TIBCO Spotfire Analyst, TIBCO Spotfire Automation Services, TIBCO Spotfire Server, TIBCO Spotfire Web Player, TIBCO Enterprise Runtime for R, TIBCO Enterprise Runtime for R - Server Edition, TERR, TERR Server Edition, and TIBCO Spotfire Statistics Services are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms for a specific software version are released at the same time. Please see the `readme.txt` file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to TIBCO's Virtual Patent Marking document (<https://www.tibco.com/patents>) for details.

Copyright © 2012-2020. TIBCO Software Inc. All rights reserved.

Index

Special Characters

--(with|without)-keep.parse.data 28
 --(with|without)-keep.source 28
 --args 25
 --binary 27
 --build 28
 --clean 28
 --color 25
 --configure-args 28
 --configure-vars 28
 --console-editor 25
 --console-editor. 25
 --console-encoding 31
 --console-encoding ENC 25
 --console-encoding=ENC, 25
 --debug 25, 28
 --disable-signal-handlers 25
 --enable-signal-handlers 25, 33
 --encoding=ENC 25
 --file=FILE 25
 --help 25, 27, 28, 28, 29
 --install-tests 28
 --interactive 25
 --internet2 25
 --ldebug 29
 --library 28
 --library=LIB_DIR 28
 --md5 27
 --no-configure 28
 --no-console-editor 25
 --no-data 28
 --no-demo 28
 --no-environ 13, 25
 --no-environ. 25
 --no-exec 28
 --no-help 28
 --no-init-file 14, 25
 --no-init-file, 25
 --no-inst 28
 --no-libs 28
 --no-R 28
 --no-readline 25
 --no-restore 25
 --no-inst 28
 --no-libs 28
 --no-R 28
 --no-readline 25
 --no-restore 25
 --no-save 25
 --no-save, 25
 --no-site-file 14, 25
 --no-site-file, 25
 --no-test-load 28
 --outdir 28
 --output 29
 --preclean 28
 --profile=TYPE 25
 --quiet 25
 --quiet. 25
 --restore 25
 --save 25
 --silent 25
 --slave 25
 --spotfire 25
 --type 29
 --vanilla 13, 14, 25
 --verbose 25
 --version 25, 28, 28, 29
 .Date 176, 229
 .POSIXt 176, 229
 -> 165, 180
 -d 28, 29
 -e EXPR 25
 -f FILE 25
 -h 25, 27, 28, 28, 29
 -l 28, 28
 -o 28, 29
 -q 25
 -t 29
 -v 28, 28, 29
 : 165
 ! 190, 212
 != 190, 193
 ? 201
 ?? 201
 ...elt 219
 ...length 219
 ...names 219
 .bincode 158
 .c functions 155
 .C() 33
 .Call 209
 .Call functions 155
 .Call() 33
 .col 164, 197
 .colMeans 165
 .colSums 165
 .decode_numeric_version 229
 .Defunct 202
 .Deprecated 202
 .difftime 176, 229
 .doTrace 202, 219
 .dynLibs 180
 .encode_numeric_version 229
 .expand_R_libs_env_var 180

.External 209
 .External2 209
 .First 15
 .Fortran 209
 .getNamespace 180, 219
 .GlobalEnv 180, 219
 .handleSimpleError 202, 219
 .JavaAttachClassPath 146
 .JavaMethod 146, 146, 156
 .kappa_tri 249
 .Last.value 219
 .leap.seconds 176, 229
 .libPaths 24, 102, 180
 .Library 180
 .Library.site 180
 .lm.fit 249
 .Machine 157
 .make_numeric_version 229
 .makeMessage 219
 .mapply 165, 229
 .NotYetImplemented 202
 .onAttach 180
 .onLoad 180
 .onUnload 180
 .packageStartupMessage 219
 .Platform 157, 227
 .POSIXct 176, 229
 .POSIXlt 176, 229
 .Random.seed 157, 245
 .row 164, 197
 .rowMeans 165
 .rowSums 165
 .signalSimpleWarning 202, 219
 .TERRData 15
 .userHooksEnv 229
 (210, 219
 [183, 197, 212
 [.data.frame 183, 197, 212
 [.Date 176, 229
 [.difftime 176, 229
 [.Dlist 265
 [.DLLInfoList 265
 [.factor 183, 197, 212
 [.hexmode 216
 [.numeric_version 229
 [.octmode 216
 [.POSIXct 176, 229
 [.POSIXlt 176, 229
 [.roman 216
 [.simple.list 265
 [.terms 219
 [.warnings 265
 [[183, 197, 212
 [[.data.frame 183, 197, 212
 [[.Date 176, 229
 [[.dendrogram 187, 241, 252
 [[.factor 183, 197, 212
 [[.numeric_version 229
 [[.POSIXct 176, 229
 [[< 183, 197, 212
 [[<.data.frame 183, 197, 212
 [[<.numeric_version 229
 [[<.POSIXlt 265
 [[< 183, 197, 212
 [[<.data.frame 183, 197, 212
 [[<.Date 176, 229
 [[<.factor 183, 197, 212
 [[<.numeric_version 265
 [[<.POSIXct 176, 229
 [[<.POSIXlt 176, 229
 [package installation 22, 101
 { 210, 219
 @ 165
 *.difftime 176, 229
 /.difftime 176, 229
 & 190
 %*% 188, 197
 %/% 162, 193
 %% 162, 193
 %c% 188, 197
 %o% 188
 %x% 197
 ^ 162, 193
 + 162, 193
 +.Date 176, 229
 +.POSIXt 176, 229
 < 190, 193
 <- 165, 180
 <<- 165, 180
 <= 190, 193
 = 165, 180
 == 190, 193
 > 190
 >= 190
 | 190, 212
 || 190, 210, 219
 ~ 172, 212
 \$ 183, 197, 212
 \$.package_version 229
 \$< 183, 197, 212

Numerics

3D map 136
 3D scatter plot 137

A

abbreviate 165
 abs 193
 absolute value 193
 access and manipulate the formal arguments 201, 219
 access namespace environment information 219
 acf 186, 237, 260

acf2AR 269
 acos 162, 193
 acosh 162, 193
 activeBindingFunction 229
 ad hoc expression 64
 add a single term to a linear model 249
 add new variables to a model frame 212, 255
 add statistics columns to an anova table 249, 255
 add.scope 255
 add1 255
 add1.default 255
 add1.glm 249
 add1.lm 249
 addmargins 165
 addNextMethod 265
 addTaskCallback 219
 adjust for missing values 165
 adjust p-values for multiple comparisons 253
 adjustcolor 185
 administering packages 98
 advanced analysis 70
 aggregate 158, 197, 210, 237, 260
 aggregate.data.frame 158, 197, 210
 aggregate.default 158, 197, 210, 237, 260
 aggregate.formula 158, 197, 210, 237, 260
 aggregate.ts 158, 197, 210, 237, 260
 aggregated values 53, 53, 55, 56, 58, 59, 60
 aggregation 70, 81
 aggregation example 72
 agrep 160
 agrepl 160
 AIC 255
 air 83
 akaike's information criterion 255
 alarm 266
 all 190
 all attributes of an object 164, 165
 all.equal 190
 all.equal.environment 265
 all.equal.envRefClass 265
 all.equal.factor 190
 all.equal.numeric 190
 all.equal.POSIXct 190
 all.names 219
 all.vars 219
 allowInterrupts 202
 alter a color specification 185
 an object with given attributes 164, 165
 analysis of deviance for generalized linear model fits 212, 216, 249, 255
 analytic model 39
 anova 239, 255
 anova table for linear model objects 212, 216
 anova tables 239, 255
 anova.glm 212, 249, 255
 anova.glmList 212, 249, 255
 anova.lm 212
 anova.lmList 212
 ansari.test 268
 any 190
 anyDuplicated 165, 190
 anyDuplicated.array 165, 190
 anyDuplicated.data.frame 165, 190
 anyDuplicated.default 165, 190
 anyDuplicated.matrix 165, 190
 anyNA 190, 193
 anyNA.data.frame 265
 anyNA.numeric_version 265
 anyNA.POSIXlt 265
 aov 239, 255
 aperm 188, 197
 aperm.default 188, 197
 aperm.table 188, 197
 append 165
 apply 188, 197, 210
 apply a filter to a time series 237, 260
 apply a function over values in an environment 183, 210, 227
 apply a function recursively 158, 197, 210
 apply a function to a ragged array 158, 197, 210
 apply a function to all nodes of a dendrogram 210
 apply a function to components of a list or vector 183, 210
 apply a function to multiple list or vector arguments 165, 165, 229, 229
 apply a function to sections of an array 188, 197, 210
 apply anova to a lmList object 212, 216
 approx 186, 193
 approxfun 186, 193
 approximate string matching (fuzzy matching) 160
 apropos 180, 201, 227
 ar 237, 255, 260
 ar.burg 269
 ar.mle 269
 ar.ols 269
 ar.yw 237, 255, 260
 aregexec 266
 args 201
 argsAnywhere 229
 argument matching 219
 arima 237, 260
 ARIMA modelling of time series 237, 260
 arima.sim 237, 260
 arima0 269
 arima0.diag 269
 Arithmetic 162, 193
 arithmetic operators 162, 193
 ARMAacf 269
 array 172, 197
 array permutations 188, 197
 arrayInd 165, 190
 as 212, 219
 as.array 172, 197
 as.array.default 172, 197
 as.call 219
 as.character 160, 172

as.character.condition 202, 219
 as.character.Date 176, 229
 as.character.error 202, 219
 as.character.factor 160, 172
 as.character.hexmode 216
 as.character.numeric_version 229
 as.character.octmode 216
 as.character.POSIXt 176, 229
 as.character.roman 216
 as.complex 162, 172
 as.data.frame 172, 212
 as.data.frame.array 255
 as.data.frame.character 255
 as.data.frame.complex 255
 as.data.frame.data.frame 255
 as.data.frame.Date 255
 as.data.frame.default 255
 as.data.frame.difftime 255
 as.data.frame.factor 255
 as.data.frame.ftable 158
 as.data.frame.integer 255
 as.data.frame.list 255
 as.data.frame.logical 255
 as.data.frame.matrix 255
 as.data.frame.model.matrix 255
 as.data.frame.numeric 255
 as.data.frame.numeric_version 229
 as.data.frame.ordered 255
 as.data.frame.POSIXct 255
 as.data.frame.POSIXlt 255
 as.data.frame.raw 255
 as.data.frame.table 255
 as.data.frame.ts 255
 as.data.frame.vector 255
 as.Date 176, 229
 as.Date.character 176, 229
 as.Date.date 176, 229
 as.Date.dates 176, 229
 as.Date.default 176, 229
 as.Date.factor 176, 229
 as.Date.numeric 176, 229
 as.Date.POSIXct 176, 229
 as.Date.POSIXlt 176, 229
 as.dendrogram 187, 241, 252
 as.dendrogram.dendrogram 187, 241, 252
 as.dendrogram.hclust 187, 241, 252
 as.difftime 176, 229
 as.dist 241
 as.dist.default 241
 as.double 172, 209, 219
 as.double.difftime 172, 209, 219
 as.double.POSIXlt 172, 209, 219
 as.environment 180, 227
 as.expression 219
 as.factor 158, 172
 as.formula 212
 as.function 172, 219
 as.hclust 241
 as.hclust.default 241
 as.hclust.dendrogram 241
 as.hclust.twins 241
 as.hexmode 216
 as.integer 172, 219
 as.list 172, 183
 as.list.data.frame 172, 183
 as.list.Date 172, 183
 as.list.default 172, 183
 as.list.difftime 265
 as.list.environment 172, 183
 as.list.factor 172, 183
 as.list.function 172, 183
 as.list.numeric_version 172, 183
 as.list.POSIXct 172, 183
 as.logical 172, 190
 as.logical.factor 172, 190
 as.matrix 172, 197
 as.matrix.data.frame 172, 197
 as.matrix.default 172, 197
 as.matrix.dist 241
 as.matrix.noquote 172, 197
 as.matrix.POSIXlt 172, 197
 as.name 164, 219
 as.null 157, 164, 165, 183
 as.null.default 157, 164, 165, 183
 as.numeric 172
 as.numeric_version 229
 as.octmode 216
 as.ordered 158
 as.package_version 229
 as.person 216
 as.personList 216
 as.POSIXct 176, 229
 as.POSIXct.date 176, 229
 as.POSIXct.Date 176, 229
 as.POSIXct.dates 176, 229
 as.POSIXct.default 176, 229
 as.POSIXct.numeric 176, 229
 as.POSIXct.POSIXlt 176, 229
 as.POSIXlt 176, 229
 as.POSIXlt.character 176, 229
 as.POSIXlt.date 176, 229
 as.POSIXlt.Date 176, 229
 as.POSIXlt.dates 176, 229
 as.POSIXlt.default 176, 229
 as.POSIXlt.factor 176, 229
 as.POSIXlt.numeric 176, 229
 as.POSIXlt.POSIXct 176, 229
 as.raster 187
 as.raw 172
 as.roman 216
 as.single 172, 209
 as.single.default 172, 209
 as.symbol 164, 219
 as.table.ftable 158

as.terms 255
 as.ts 172, 237, 260
 as.vector 172
 as.vector.factor 255
 ASCII 31
 asDateBuilt 266
 asin 162, 193
 asinh 162, 193
 AsIs 255
 askYesNo 229
 asMethodDefinition 265
 asOneSidedFormula 255
 aspell 266
 aspell_package_C_files 266
 aspell_package_R_files 266
 aspell_package_Rd_files 266
 aspell_package_vignettes 266
 aspell_write_personal_dictionary_file 266
 asplit 158
 asS3 265
 assertCondition 202
 assertError 202
 assertWarning 202
 assign 180, 219
 assign a name to an object 165, 180
 assign contrasts to a factor 239
 assign object to environment 180, 219
 Assignment 165, 180
 assignMethodsMetaData 265
 AsterDB 34
 asymptotic regression model 255
 atan 162, 193
 atan2 162, 193
 atanh 162, 193
 attach 180
 attach a names attribute to an object 183
 attach a set of objects to the search path 180
 attachNamespace 180, 219
 attr 164
 attribute of an object 164
 attributes 164
 auto- and cross- covariance or correlation estimation 186, 237, 237, 260
 autoload 265
 autoloader 265
 available.packages 229
 ave 253

base64decode 229
 base64encode 229
 baseenv 180, 219
 basename 160, 205
 batch 25, 25
 BATCH 229
 batch execution of TERR 229
 bessel functions 193
 besselI 193
 besselJ 193
 besselK 193
 besselY 193
 best practices 23
 Beta 245
 beta distribution 245
 BIC 255
 biexponential model: the sum of two exponentials 255
 bin 27
 binary 105, 271
 bindenv 229
 binding and environment adjustments 229
 bindingIsActive 229
 bindingIsLocked 229
 bindtextdomain 265
 binom.test 253
 binomial 172
 Binomial 245
 binomial distribution 245
 bitwAnd 190
 bitwise logical operations 190
 bitwNot 190
 bitwOr 190
 bitwShiftL 190
 bitwShiftR 190
 bitwXor 190
 blank GUI 272
 bodyOK 265
 box-pierce and Ljung-box tests 237
 Box-Pierce and Ljung-box tests 260
 Box.test 237, 260
 bquote 219
 break 190, 210, 219
 browse interactively in a function's frame 202, 219
 browseEnv 266
 browser 202, 219
 browserCondition 265
 browserSetDebug 265
 browserText 265
 browseURL 205
 browseVignettes 201
 build 27, 27
 build data frame from columns 180
 building a matrix from columns or rows 165, 197
 buildSPK 111
 builtins 265
 bw.bcv 267
 bw.ucv 267

B

backsolve 188, 197
 backsolve upper or lower triangular equations 188, 197
 balanceMethodsList 265
 bandwidth.kernel 267
 Bartlett test of homogeneity of variances 237, 241
 bartlett.test 237, 241
 base 264

by 158, 197, 210
 by.data.frame 158, 197, 210
 by.default 158, 197, 210
 bzfile 204, 205

C

c 165, 183
 C 209, 239
 C code 271
 c.Date 165, 183
 c.diffftime 176, 229
 c.numeric_version 229
 c.POSIXct 165, 183
 c.POSIXlt 165, 183
 c.warnings 265
 C++ 271
 cacheGenericsMetaData 265
 cacheMetaData 265
 cacheMethod 265
 call 219
 call a Fortran or C routine 209
 callCC 265
 calling functions 219
 cancer 241
 canonical correlation analysis 241
 capabilities 229
 capture.output 229
 cars 87
 casefold 160, 165
 cat 205, 216
 Cauchy 245
 cauchy distribution 245
 cbind 165, 197
 cbind.data.frame 180
 cbind.ts 237, 260
 ccf 186, 237, 260
 ceiling 193
 changedFiles 266
 changing expression function 69, 69
 char.expand 160
 character 49, 59, 160, 172
 character objects 160, 172
 charmatch 160, 165, 219
 charting 132
 charToRaw 172
 check 27, 28
 check for argument names 212, 216
 check for missing arguments 219
 Check for updates 272
 Check for Updates 272
 check ieee arithmetic values 193
 check IEEE arithmetic values 190
 check if an environment is a (base) namespace environment 180, 219
 check_tzones 176, 229
 checkAtAssignment 265
 checkCRAN 266
 checkSlotAssignment 265
 chi-square distribution 245
 chisq.test 253
 Chisquare 245
 chkDots 219
 chol 188, 197
 chol.default 188, 197
 chol2inv 188, 197
 choleski decomposition of symmetric matrix 188, 197
 choose 193
 chooseBioCmirror 266
 cite 266
 citeNatbib 266
 class 172
 class attribute of an object 172
 class of an object 172
 class of objects for terms in a model 172, 212
 classesToAM 265
 classical metric multi-dimensional scaling 241, 255
 classical seasonal decomposition by moving averages 237, 260
 classification tree 35, 37, 142
 classMetaName 265
 className 229
 CLASSPATH 147, 148
 clearPushBack 265
 clipboard 204, 205
 close 204, 205
 close.connection 204, 205
 close.socket 266
 close.srcfile 265
 close.srcfilealias 265
 cmdscale 241, 255
 coef 255
 coef.Arima2 237, 260
 coef.default 255
 coef.listof 255
 coefficients 255
 coerce a factor object into a vector of a given mode 255
 coerce data frame to numeric matrix 197
 coerce small numbers to zero for printing 165, 193, 216
 coerce to an environment object 180, 227
 col 164, 197
 col2rgb 185
 colMeans 165, 188, 193, 197, 210
 colnames 165, 197
 colnames<- 165, 197
 color palette 185
 colorRamp 185
 colorRampPalette 185
 colors 185
 colSums 165, 188, 193, 197, 210
 column and row identification in a matrix 164, 197
 column and row names 165, 197
 com.tibco.terr.TerrJava 150
 combine values into a vector or list 165, 183

combn 193
 command history 271
 common higher-order functions 219
 compactly display the structure of an object 201, 216, 229
 compare installed packages with CRAN-like repositories 229
 compare two package version numbers 229
 compareVersion 229
 Comparison 190, 193
 comparison operators 190, 193
 complete.cases 190
 completeClassDefinition 265
 completeExtends 265
 completeSubclasses 265
 complex 162, 172
 complex valued objects 162, 172
 computational options for loess fitting 241
 compute column-by-column summaries of groups of observations 158, 197, 210
 compute efficiency factors for aovlist model terms 239
 compute models by adding one term 255
 compute orthogonal polynomials 249
 compute residuals for glm objects 212, 216, 255
 compute standard deviation 253
 compute summary statistics of subsets of data 158, 197, 210, 237, 260
 compute table margin 197
 compute tables of estimates for model object 239
 compute the exact or estimated condition number 249
 compute the interaction of several factors 239
 compute weighted mean 253
 computeRestarts 202, 219
 computing a step function 239
 comprehensive r archive network 229
 concatenate data to make character data 160, 165
 condition 202, 219
 condition handling and recovery 202, 219
 conditional data selection 165, 190
 conditionCall 202, 219
 conditionCall.condition 202, 219
 conditionMessage 202, 219
 conditionMessage.condition 202, 219
 conditions 202, 219
 confidence intervals for model parameters 255
 confint 255
 confint.default 255
 conflictRules 265
 conflicts 265
 conformMethod 265
 connection 204, 205
 connections 204, 205
 console 12, 36, 106
 console application 153
 console example 151, 152
 constrOptim 268
 construct a data frame object 172, 212, 216
 construct a data frame object from an s object 255
 construct date-time from broken-down time 176, 229
 construct or extract a model frame 212, 216, 255
 construct path to file 205, 227
 construct self-starting nonlinear models 255
 contingency table analysis 241, 255
 continue after errors 202, 219
 contr.helmert 239
 contr.poly 239
 contr.SAS 239
 contr.sum 239
 contr.treatment 239
 contrast or dummy variable matrix 239
 contrasts 239
 contrasts attribute 239
 contrasts<- 239
 contrib.url 229
 contributors 265
 Control 190, 210, 219
 control flow 190, 210, 219
 control random number generator 157, 245
 control the iteration in nls() 244
 convert case of character strings 160, 165
 convert character vector between encodings 160, 229
 convert file name to DOS 8.3 format 205, 229
 convert positions in the search path to environments 229
 convert to one-sided formula 255
 convert to or from raw vectors 172
 converts objects to class hclust 241
 cooks.distance 249
 cooks.distance.glm 249
 cooks.distance.lm 249
 cophenetic 241
 cophenetic distances for a hierarchical clustering 241
 cophenetic.default 241
 cophenetic.dendrogram 241
 cor 197, 241, 253
 cor.test 244, 253
 cor.test.default 244, 253
 cor.test.formula 244, 253
 correlation, variance, and covariance (matrices) 197, 241, 253
 cos 162, 193
 cosh 162, 193
 cospi 162, 193
 count entries in bins 158
 count the number of fields per line 205
 count.fields 205
 cov 197, 241, 253
 cov.wt 241
 cov2cor 197, 241, 253
 covratio 249
 cpgram 269
 CPU time used 229
 CRAN 18, 23, 95, 103, 107, 108, 116, 117, 121, 130
 CRAN packages 18
 create a data frame by reading a table 205, 229
 create a data frame from all combinations of factors 241
 create a data frame from rows 180
 create a lagged time series 237, 260

create a link for glm families 255
 create a matrix or a vector 197
 create a raw vector 172
 create a skeleton for a new source package 205, 229
 create a vector of sequences 165
 create an object of differences 193, 237, 260
 create an ordered factor object 158
 create an R-level task callback manager 219
 create factor by cutting date or posixt object 165, 176
 create factor object 158, 172
 create factor object from numeric vector 158
 create groups from hierarchical clustering 241
 create or extract a terms object 255
 create time vector or index of frequency 237, 260
 create unique names for files 160, 219
 create.post 266
 cross tabulation 158
 crossprod 188, 197
 Cstack_info 265
 cummax 193
 cummin 193
 cumprod 193
 cumsum 193
 cumulative maxima and minima 193
 cumulative sums and products 193
 curating packages 97
 cut 158
 cut.Date 165, 176
 cut.default 158
 cut.dendrogram 187, 241, 252
 cut.POSIXt 165, 176
 cutree 241
 cycle 237, 260
 cycle.default 237, 260

D

data 180
 data function 70, 70, 72, 73, 76
 data mode of the values in a vector 164, 219
 data set 81, 81, 83, 87, 90, 92
 data sets 73, 180
 data.class 172
 data.entry 266
 data.frame 172, 212
 data.matrix 197
 dataentry 266
 datasets 264
 date 176, 229
 Date 176, 229
 date class 176, 229
 date-time classes 176, 229
 date-time formatting 176, 229
 date-time parsing 176, 229
 dbeta 245
 dbinom 245
 dcauchy 245
 dcf 205, 216
 DCF 116, 117
 dchisq 245
 de 266
 de.ncols 266
 de.restore 266
 de.setup 266
 debug 265
 debugcall 266
 debugger 266
 debugging 76, 156
 debuggingState 265
 debugonce 265
 decompose 237, 260
 default summary method 216
 defaultDumpName 265
 defaultPrototype 265
 define or extract a model formula 212, 216
 delete.response 219
 demo 201, 229
 demonstrations of package functionality 201, 229
 dendrapply 210
 dendrogram 187, 241, 252
 density 186, 239, 245
 density.default 186, 239, 245
 deparse 216, 219
 deparse1 216, 219
 dependsOnPkgs 180
 det 188
 detach 180
 detach data from the search list 180
 determinant 188
 determinant of a matrix 188
 determine duplicate elements 165, 190
 determine if an object is defined 180
 determine the edition of the TERR 229
 developer 97
 deviance 212
 deviance of a fitted model 212, 216
 deviance.default 212
 deviance.glm 212
 deviance.lm 212
 deviance.mlm 212
 deviance.nls 212
 dexp 245
 df 245
 df.kernel 267
 DF2formula 212, 268
 dfbeta 249
 dfbeta.lm 249
 dfbetas 249
 dfbetas.lm 249
 dffits 249
 dgamma 245
 dgeom 245
 dget 180, 205, 216
 dhyper 245

diag 188, 197
diagnostic messages 219
diagonal matrices 188, 197
diff 193, 237, 260
diff.Date 193, 237, 260
diff.default 193, 237, 260
diff.POSIXt 193, 237, 260
diff.ts 193, 237, 260
differences with R 96
differences, open-source R 95
diffinv 237, 260
diffinv.default 237, 260
diffinv.ts 237, 260
difftime 60, 176, 229
difftime 51
digamma 162, 193
dim 164, 197
dim attribute of an object 164, 197
dim<- 164, 197
dimnames 164, 197
dimnames attribute of an object 164, 165, 197
dimnames.data.frame 164, 197
dir 205, 219
dir.create 205
dirname 160, 205
discrete integration: inverse of diff 237, 260
display integers as roman numerals 216
display integers in octal or hexadecimal 216
display the argument list of a function 201
displays the contents of a URL in a web browser 205
dist 241
distance matrix calculation 241
distribution 267
distribution of the Wilcoxon rank sum statistic 245
distribution of the Wilcoxon signed rank statistic 245
dlnorm 245
dlogis 245
dmultinom 245
dnbinom 245
dnorm 245
do.call 219
documentation 94
documentation shortcuts 201
does a model contain any predictors 255
dontCheck 219
doPrimitiveMethod 265
double 172, 209, 219
double precision objects 172, 209, 219
download a file from the internet 263
download packages from a repository 229
download.file 263
download.packages 229
dplyr 134, 144
dpois 245
dput 180, 205, 216
drat 107
drop 197
drop length one dimensions of an array 197
drop.scope 255
drop.terms 219
drop1 255
drop1.default 255
drop1.glm 255
drop1.lm 255
dsignrank 245
dt 245
dummy.coef 249, 255
dummy.coef.aovlist 249, 255
dummy.coef.lm 249, 255
dump 180, 205
dump.frames 202
dump() 32
dumpMethod 265
dumpMethods 265
dunif 245
duplicated 165, 190
duplicated.array 165, 190
duplicated.data.frame 165, 190
duplicated.default 165, 190
duplicated.matrix 165, 190
duplicated.numeric_version 229
duplicated.POSIXlt 165, 190
duplicated.warnings 265
dweibull 245
dwilcox 244, 245
dygraphs 132
dyn.load 209
dyn.unload 209
dynGet 265

E

eapply 183, 210, 227
ecdf 186, 187
Eclipse 126, 127
Eclipse plugin 112
eff.aovlist 239
effects 249, 255
effects.glm 249, 255
effects.lm 249, 255
eigen 188, 197
eigen.default 188, 197
eigenvalues and eigenvectors of a matrix 188, 197
el 212, 212
El Capitan 9, 11
elNamed 265
elNamed<- 265
else 190, 210, 219
embedding 146, 148
empirical cumulative distribution function 186, 187
empirical quantiles 193, 245
empty.dump 265
emptyenv 180, 219
emptyMethodsList 265

enable or disable the use of internet explorer settings for internet access 229
 encode character vector for printing 229
 encodeString 229
 encoding 29, 31
 Encoding 160, 229
 Encoding<- 160, 229
 encodingbytes
 latin1 31
 unknown 31
 UTF-8 31
 endsWith 160
 env.profile 265
 environment 13, 180, 219
 environment access 180, 219
 environment options 12
 environment variable
 LD_PRELOAD 155
 environment variables 149, 149
 environment<- 180, 219
 environmentIsLocked 229
 environmentName 180, 219
 error and warning messages 202, 219
 error handlers 156
 --enable-signal-handlers 155
 errorCondition 219
 estimate a factor analysis model 241, 255
 estVar 241, 255
 estVar.mlm 241, 255
 estVar.SSD 241, 255
 eval 219
 eval.parent 219
 evalOnLoad 180
 evalq 219
 evalqOnLoad 180
 evalRex 229
 evalSource 265
 evaluate an expression 219
 evaluate an expression in a given context 219
 evaluate derivatives numerically 255
 evaluate one of several expressions 219
 evaluateToString 150, 151, 151
 evaluation of local regression surfaces 241
 Evaluation summary 39
 exact binomial test 253
 example 201, 229
 example code 151, 153
 executable 12
 execute a function call 219
 exists 180
 existsFunction 219
 exit expression for a function 202, 219
 exp 162, 193
 expand ~ in file paths 205, 227
 expand a string with respect to a target table 160
 expand.grid 241
 expand.model.frame 212, 255

expm1 162, 193
 Exponential 245
 exponential and related functions 162, 193
 exponential distribution 245
 express file paths in canonical form 229
 express table entries as fraction of marginal table 197
 expression 40, 69, 219
 expression function 40, 61, 67
 expression objects 219
 extendedrange 186
 extendrange 185
 externalRefMethod 265
 Extract 183, 197, 212
 extract AIC from a fitted model 255
 extract file information 205
 extract information from a model 255
 extract loadings from an object 241
 extract log-likelihood 255
 extract or replace matched substrings 160, 229
 extract or replace parts of an object 183, 197, 212, 216
 extract or replace parts of expressions 219
 extract or replace portions of character strings 160
 extract original coefficients from a linear model 249, 255
 extract parts of a date or posixt object 176
 extract slot from an s4 object 165
 extract special information from model frame 255
 extract the number of observations from a fit 255
 extractAIC 255
 extractAIC.glm 255
 extractAIC.lm 255
 extremes 193

F

f distribution 245
 f test to compare two variances 253
 factanal 241, 255
 factor 158, 172
 factor predictor 37
 factor.analysis 268
 factor.scope 255
 factorial 193
 factorial, combinations, and permutations 193
 fake graphics device for TIBCO Enterprise Runtime for R 187
 family 172
 family of glm models 172, 212, 216
 family.object 172, 212
 fast fourier transform 162, 241
 fast Fourier transform 260
 Fast Fourier transform 237
 FDist 245
 fft 162, 237, 241, 260
 fifo 204, 205
 file 204, 205
 file and directory manipulation 205
 file_test 205, 229
 file.append 205

file.copy 205
 file.create 205
 file.exists 205
 file.info 205
 file.link 205, 265
 file.mode 205
 file.mtime 205
 file.path 205, 227
 file.remove 205
 file.rename 205
 file.size 205
 file.symlink 205
 fileSnapshot 266
 filter 237, 260
 Filter 219
 finalDefaultMethod 265
 finalization of objects 219, 227
 find 180
 Find 219
 find a root of a univariate function 244
 find all names in an expression 219
 find appropriate paths in CRAN-like repositories 229
 find complete cases of observations 190
 find installed packages 229
 find longest contiguous stretch of non-nas 260
 find longest contiguous stretch of non-NAS 237
 find objects by (partial) name 180, 201, 227
 find packages that contain an object 180
 find reverse dependencies 180
 find the index of the minimum or maximum value 190, 193
 find the roots of a polynomial 162, 193
 find true values 165
 find TRUE values 190
 findClass 265
 findLineNum 266
 findMethod 265
 findMethods 265
 findMethodSignatures 265
 findPackageEnv 265
 findRestart 202, 219
 findUnique 265
 first-order compartment model 255
 fisher.test 253
 Fisher's exact test for count data 253
 fit a generalized linear model 249, 255
 fit a GLM without computing the model matrix 249
 fit a local regression model 239, 241
 fit a smoothing spline 239
 fit an analysis of variance model 239, 255
 fit autoregressive models to time series 237, 255, 260
 fit linear regression model 249, 255
 fit the asymptotic regression model 165
 fitted 255
 fitted.default 255
 fitted.kmeans 241
 fitted.values 255
 fitting a logistic curve 255
 fivenum 245, 252, 253
 fixInNamespace 266
 fixPre1.8 265
 flat contingency tables 158
 fligner.test 268
 floor 193
 flowchart 12
 flush 204, 205
 flush.connection 204, 205
 for 190, 210, 219
 forceAndCall 219
 foreign function interface 209
 formals 201, 219
 formals<- 201, 219
 format 160, 216
 format description lists 216
 format unordered and ordered lists for printing 216
 format.AsIs 265
 format.data.frame 160, 216
 format.Date 176, 229
 format.default 160, 216
 format.difftime 176, 229
 format.dist 241
 format.factor 160, 216
 format.ftable 158
 format.hexmode 216
 format.libraryIQR 265
 format.octmode 216
 format.packageInfo 265
 format.POSIXct 176, 229
 format.POSIXlt 176, 229
 format.roman 216
 format.summaryDefault 265
 formatC 160, 216
 formatDL 216
 formatOL 216
 formatted character data 160, 216
 formatting using c-style formats 160, 216
 formatUL 216
 formula 212
 formula.call 212
 formula.character 212
 formula.data.frame 212
 formula.default 212
 formula.formula 212
 formula.lm 212
 formula.nls 212
 formula.object 172, 212
 formula.terms 212
 Fortran 271
 four-parameter logistic model 255
 Friedman rank sum test 239, 244, 253
 friedman.test 239, 244, 253
 friedman.test.default 239, 244, 253
 friedman.test.formula 239, 244, 253
 ftable 158
 ftable.default 158

ftable.formula 158
 function 210, 219
 function objects 172, 219
 function verification for "function variables" 219
 functions for handling unimplemented functions and arguments 202, 219
 functions to get and set hooks for load, attach, detach and unload 229
 functions to manipulate connections 204, 205

G

gamma 162, 172, 193
 gamma distribution 245
 gamma function (and its derivatives and logarithm) 162, 193
 GammaDist 245
 garbage collection 227
 gaussian 172
 gc 227
 gc.time 265
 gcinfo 227
 gctorture 227
 gctorture2 227
 general fitting for linear (regression) models 249
 general tree structures 187, 241, 252
 general-purpose optimization 200, 244
 generalized kronecker products 197
 generalized linear model object 172, 212, 216, 249
 generalized outer products 188
 generate a family object 172
 generate a power link object 255
 generate a sequence 165
 generate a skeleton documentation file for an object 201
 generate abbreviations 165
 generate c-style formatted output 160, 216
 generate combinations of m elements out of x 193
 generate patterned factor 158
 generate random samples or permutations of data 245
 generic.skeleton 265
 Geometric 245
 geometric distribution 245
 get 180
 get an s3 method 212, 216
 get color names 185
 get environment variables 205, 227
 get function from environment 219
 get namespace environment information 180, 180, 219, 219
 get or set current working directory 227
 get or set levels attribute 164
 get the current date, time, or time zone 176, 229
 get the first or last part of an object 165, 216
 get the number of rows or columns of an array or matrix 197
 get the range of data 186, 193
 get the system evaluator state 219, 227
 get_all_vars 212, 255
 getAllSuperClasses 265
 getAnywhere 229

getCall 255
 getCallingDLL 265
 getCallingDLLe 265
 getCRANmirrors 229
 geterrmessage 202, 219
 getExportedValue 180, 219
 getFromNamespace 229
 getFunction 219
 getGenerics 265
 getGroup 265
 getHook 229
 getLoadActions 180
 getMethodsForDispatch 265
 getMethodsMetaData 265
 getNamespace 180, 219
 getNamespaceExports 180, 219
 getNamespaceImports 180, 219
 getNamespaceInfo 180
 getNamespaceName 180, 219
 getNamespaceUsers 180, 219
 getNamespaceVersion 180, 219
 getNativeSymbolInfo 209
 getOption 202, 227
 getParseData 229
 getParseText 229
 getREX 229
 getRversion 229
 getS3method 212
 getTaskCallbackNames 219
 getTERREdition 229
 gettext 160
 gettextf 160, 216
 getValidity 265
 getwd 227
 ggvis 139
 gl 158
 glGenerate 188
 glm 249, 255
 glm.control 249
 glm.fit 249
 glm.object 172, 212, 249
 globalCallingHandlers 202
 globalenv 180, 219
 graphics 104, 264, 268
 gray, grey 185
 gray.colors, grey.colors 185
 grDevice 264
 gregexpr 160, 165
 grep 160, 165
 grep 160, 165
 grepRaw 160, 165
 group averages over level combinations of factors 253
 group row sums of a matrix 158, 165, 210
 grouping 165
 groups of colors 185
 gsub 160, 165
 gzfile 204, 205

H

Hadoop 9, 11
 handle missing values in objects 165, 212, 216
 hard disk 9, 11
 hasArg 212
 hasLoadAction 180
 hasMethods 265
 hasName 183
 hat 249
 hat diagonal regression diagnostic 249
 hatvalues 249
 hatvalues.lm 249
 hcl 185
 hclust 241
 head 165, 216
 heap size 33
 heatmap 268
 help 94, 109, 201
 help.search 201
 help.start 201
 help.start() 17
 hexmode 216
 hierarchical clustering 241
 highly composite numbers 193
 history 201, 205, 219
 Holt-Winters filtering 237, 260
 HoltWinters 237, 260
 horizontal asymptote on the left side 165
 horizontal asymptote on the right side 165
 hsearch_db 266
 hsearch_db_concepts 266
 hsearch_db_keywords 266
 hsv 185
 htest 268
 htmlwidgets 132
 HTTPS 23
 hue, chroma, luminance color model 185
 hue, saturation, value color specification 185
 hyperbolic trigonometric functions 162, 193
 Hypergeometric 245
 hypergeometric distribution 245
 hypertext documentation 201

I

I 255
 iconv 160, 229
 iconvlist 160, 229
 icuGetCollate 265
 icuSetCollate 265
 id numbers or labels of the leaves in a dendrogram 165
 identical 190
 identity 219
 if 190, 210, 219
 ifelse 165, 190
 importing data 73

importIntoEnv 265
 in 190, 210, 219
 influence 249
 influence.glm 249
 influence.lm 249
 influence.measures 249
 infoRDS 229
 inheritedSlotNames 265
 inherits 172
 inhibit interpretation/conversion of objects 255
 initFieldArgs 265
 input data from a file or connection 205
 insert or merge data 165
 insertClassMethods 265
 insertMethod 265
 insertSource 265
 INSTALL 27, 28
 install packages from CRAN-like repositories 229
 install.packages 229
 installation 121
 installed packages 106
 installed.packages 229
 integer 46, 56, 172, 219
 integer objects 172, 219
 integer values 193
 integral of a real-valued function 244
 integrate 244
 IntelliJ 156
 IntelMKLVersion 229
 interaction 239
 interactive 219
 interactive mapping 134
 interactive scatter plot 139
 internal size of an object 227
 interpolating splines 186, 193
 interpolation functions 186, 193
 interpret color names, strings, and numbers 185
 intersect 216
 intToBits 172
 inverse hyperbolic trigonometric functions 162, 193
 inverse interpolation 165
 inverse trigonometric functions 162, 193
 inverse.gaussian 172
 inverse.rle 160, 165
 invert a matrix given its choleski decomposition 188, 197
 investigate models by dropping single terms 255
 invisible 219
 invoke a system command 209, 219, 227
 invoke a system command (Windows only at this time) 209
 invokeRestart 202, 219
 invokeRestartInteractively 202, 219
 is.array 172, 197
 is.atomic 172, 219
 is.call 219
 is.character 160, 172
 is.complex 162, 172
 is.data.frame 172, 212

is.double 172, 209, 219
 is.element 216
 is.empty.model 255
 is.environment 180, 219
 is.expression 219
 is.factor 158, 172
 is.finite 190, 193
 is.function 172, 219
 is.infinite 190, 193
 is.integer 172, 219
 is.language 172, 219
 is.leaf 187, 241, 252
 is.list 172, 183
 is.loaded 209
 is.logical 172, 190
 is.matrix 172, 197
 is.mts 172, 237, 260
 is.na 165, 190
 is.na.data.frame 165, 190
 is.na.POSIXlt 165, 190
 is.na<- 165, 190
 is.na<-.default 165, 190
 is.na<-factor 165, 190
 is.na<-numeric_version 265
 is.name 164, 219
 is.nan 190, 193
 is.null 157, 164, 165, 183
 is.numeric 172
 is.numeric_version 229
 is.numeric.Date 172
 is.numeric.difftime 172
 is.numeric.POSIXt 172
 is.object 172, 212
 is.ordered 158
 is.package_version 229
 is.qr 188
 is.R 219
 is.raster 187
 is.raw 172
 is.recursive 172, 219
 is.single 172, 209
 is.stepfun 239
 is.symbol 164, 219
 is.ts 172, 237, 260
 is.tskernel 269
 is.vector 172
 isatty 204, 205
 isatty(stdin()) 25
 isatty(stdout()) 25
 isBaseNamespace 180, 219
 isClassDef 265
 isdebugged 265
 isGrammarSymbol 265
 isGroup 265
 isIncomplete 204, 205
 isNamespace 180, 219
 isNamespaceLoaded 180, 219

ISOdate 176, 229
 ISOdatetime 176, 229
 isOpen 204, 205
 isoreg 249
 isotonic / monotone regression 249
 isRematched 265
 isRestart 202, 219
 isS3method 266
 isS3stdGeneric 212
 isSealedClass 265
 isSealedMethod 265
 isSymmetric 197, 229
 isSymmetric.matrix 197, 229
 isTRUE 190
 isXS3Class 265

J

java 21, 100
 Java 146
 Java JRE 9, 11
 JAVA_HOME 21, 34, 100, 146, 148
 JAVA_OPTIONS 147
 JAVA_VERBOSE 147
 JavaScript 132
 JDBC 33
 JNI 17, 147
 julian 176
 julian.Date 176
 julian.POSIXt 176
 JVM 17, 147

K

k-means clustering 241
 KalmanForecast 269
 KalmanLike 269
 KalmanRun 269
 KalmanSmooth 269
 kappa 249
 kappa.default 249
 kappa.lm 249
 kappa.qr 249
 kernapply 267
 kernel 267
 kernel estimate of probability density function 186, 239, 245
 kmeans 241
 KNIME 9, 11
 Kolmogorov-Smirnov tests 253
 kronecker 197
 Kruskal-wallis rank sum test 239
 Kruskal-Wallis rank sum test 244, 253
 kruskal.test 239, 244, 253
 kruskal.test.default 239, 244, 253
 kruskal.test.formula 239, 244, 253
 ks.test 253
 ksmooth 249, 252

L

l10n_info 229
 La_library 265
 La_version 265
 La.svd 188, 197
 labels 216
 labels for printing 216
 labels.default 216
 labels.dendrogram 165
 labels.dist 216, 241
 labels.glm 216
 labels.lm 216
 labels.terms 216
 lag 237, 260
 lag.plot 268
 languageEl 219
 languages 30
 lapply 183, 210
 lazyLoadDBexec 265
 lchoose 193
 leaflet 134, 144
 length 164, 165, 183
 length of a vector or list 164, 165, 183
 length.POSIXlt 164, 165, 183
 length<-Date 265
 length<-difftime 265
 length<-POSIXct 265
 length<-POSIXlt 265
 lengths of character strings 160
 levels 164
 lfactorial 193
 lgamma 162, 193
 libjsig.so 155
 library 180
 library.dynam 180
 library.dynam.unload 180
 licence 265
 license 265
 limited package deployment 120
 limitedLabels 266
 line 252
 linear least squares model object 172, 212, 216, 249
 linear least-squares fit 249, 255
 linear regression 35, 37, 37, 142
 linearizeMlist 265
 Linux 149
 Linux desktop 271
 Linux server 271
 Linux versions 9, 11
 list 172, 183
 list available packages at CRAN-like repositories 229
 list methods of old-style (sv3) generic functions 172, 212, 216
 list objects 172, 183
 list objects and their structure 216, 229
 list the files in a directory 205, 219
 list vignettes in an html browser 201
 list.dirs 205, 219
 list.files 205, 219
 list2DF 165
 listFromMethods 265
 listFromMlist 265
 lm 249, 255
 lm.fit 249
 lm.influence 249
 lm.object 172, 212, 249
 lm.wfit 249
 load 205
 load and list packages 180
 load() 32, 33
 loadedNamespaces 180, 219
 loadhistory 201, 205, 219
 loading and unloading namespaces 180, 219
 loading dlls from packages 180
 loadingNamespaceInfo 265
 loadings 241
 loadMethod 265
 loadNamespace 180, 219
 local 219
 local engine 106, 128
 locale
 Sys.setlocale 31
 locale-specific handling 32
 localeToCharset 229
 localization 30
 localization information 229
 lockBinding 229
 lockEnvironment 229
 loess 239, 241
 loess model object 172, 212, 216, 241
 loess.control 241
 loess.object 172, 212, 241
 loess.smooth 241
 log 162, 193
 log10 162, 193
 log1p 162, 193
 log2 162, 193
 logb 162, 193
 Logic 190, 212
 logical 43, 53, 172, 190
 logical matrix of the lower or upper triangle 197
 logical objects 172, 190
 logical operators 190, 212, 216
 logical sum and product 190
 Logistic 245
 logistic distribution 245
 logistic regression 35, 37, 142
 logLik 255
 logLik.lm 255
 logLik.nls 255
 loglin 241, 255
 Lognormal 245
 lognormal distribution 245
 lower.tri 197

lowess 239, 249, 252

ls 227

ls.diag 268

ls.str 216, 229

lsf.str 216, 229

lsfit 249, 255

M

Mac 16, 17, 147, 270

 uninstalling 16

Mac OS X 9, 11, 15

machine arithmetic constants 157

macOS

 installing 15

 multiple versions 16

 RStudio 15

mad 252

mahalanobis 241

Mahalanobis distance 241

make a skeleton help file for a package 201

make character strings into legal names 219

make character strings unique 160, 219

make predictions from a fitted model object 255

make.link 255

make.names 219

make.packages.html 266

make.socket 266

make.unique 160, 219

makeActiveBinding 229

makeClassRepresentation 265

makeExtends 265

makeGeneric 265

makeMethodsList 265

makepredictcall 255

makepredictcall.default 255

makepredictcall.matrix 255

makepredictcall.poly 255

makePrototypeFromClassDef 265

makeRweaveLatexCodeRunner 266

makeStandardGeneric 265

manage top-level task callbacks 219

manipulate ellipsis arguments 219

manipulate file paths 160, 205

manova 268

Mantel-Haenszel chi-square test for count data 253

mantelhaen.test 253

Map 219

mapply 165, 229

maps 136

margin.table 197

mark function as non-printing 219

mat.or.vec 197

match 160, 165

match items against a table 160, 165

match patterns in strings 160, 165

match.arg 219

match.call 219

match.fun 219

matchSignature 265

math 188

math group method for data frame objects 193

math group method for date/time objects 176, 229

math group method for factor objects 158

Math.data.frame 193

Math.Date 176, 229

Math.difftime 176, 229

Math.factor 158

Math.POSIXt 176, 229

MATLAB 70

matmult 188, 197

matrix 172, 197

matrix cross product 188, 197

matrix multiplication 188, 197

matrix objects 172, 197

matrix of predictors 255

mauchly.test 268

max 193

mcnemar.test 253

McNemar's chi-square test for count data 253

mean 193, 252

mean value (arithmetic average) 193, 252

mean.data.frame 193, 252

mean.Date 193, 252

mean.default 193, 252

mean.difftime 193, 252

mean.POSIXct 193, 252

mean.POSIXlt 193, 252

median 193, 252, 252

median.default 193, 252

medpolish 252

mem.maxNSize 265

mem.maxVSize 265

memory allocation 33

memory limit and size 227

memory.limit 227

memory.limit() 33

memory.profile 265

memory.size 227

menu 188

menu interaction function 188

merge 165, 197

merge two datasets and match columns 165, 197

merge.data.frame 165, 197

merge.default 165, 197

mergeMethods 265

message 219

metaNameUndo 265

method.skeleton 265

MethodAddCoerce 265

methods 172, 212, 264, 265

methods invoked from functions 172, 212, 216, 219

methodSignatureMatrix 265

MethodsList 265

MethodsListSelect 265
 mget 180
 Michaelis-Menten model 255
 min 193
 mirror2html 266
 missing 219
 mlm.object 172, 212, 249
 mode 164, 219
 model 39
 model formula objects 172, 212, 216
 model.extract 255
 model.frame 212, 255
 model.frame.aovlist 212, 255
 model.frame.default 212, 255
 model.frame.lm 212, 255
 model.matrix 255
 model.matrix.default 255
 model.matrix.object 255
 model.offset 255
 model.response 255
 model.tables 239
 model.tables.aov 239
 model.tables.aovlist 239
 model.weights 255
 modify terms objects 219
 modifyList 229
 months 176
 months.Date 176
 months.POSIXt 176
 mood.test 268
 mostattributes<- 165
 MRAN 103
 multi-way arrays 172, 197
 multinomial distribution 245
 multiple objects 153
 multipleClasses 265
 mvfft 162, 237, 241, 260

N

NA 165, 190
 NA_character_ 165, 190
 NA_complex_ 165, 190
 NA_integer_ 165, 190
 NA_real_ 165, 190
 na.action 165, 212
 na.action.default 165, 212
 na.contiguous 237, 260
 na.contiguous.default 237, 260
 na.contiguous.ts 237, 260
 na.exclude 165, 212
 na.exclude.data.frame 165, 212
 na.exclude.default 165, 212
 na.fail 165, 212
 na.fail.default 165, 212
 na.omit 165, 212
 na.omit.data.frame 165, 212

na.omit.default 165, 212
 na.pass 165, 212
 name 164, 219
 name the null file 204, 205
 names 164, 183
 names and symbols 164, 219
 names attribute of an object 164, 183
 names.POSIXlt 164, 183
 names<- 164, 183
 names<- POSIXlt 164, 183
 namespaceImport 265
 namespaceImportClasses 265
 namespaceImportFrom 265
 namespaceImportMethods 265
 NaN 165, 190
 napredict 165
 napredict.default 165
 napredict.exclude 165
 napredict.NULL 165
 naprint 165
 naprint.default 165
 naprint.exclude 165
 naprint.omit 165
 naresid 165
 naresid.default 165
 naresid.exclude 165
 naresid.NULL 165
 nargs 219
 NativeSymbol 209
 NativeSymbolInfo 209
 nchar 160
 ncol 197
 NCOL 197
 Negate 219
 negative binomial distribution 245
 NegBinomial 245
 new.env 180, 219
 new.packages 229
 newBasic 265
 newClassRepresentation 265
 newEmptyObject 265
 news 266
 next 190, 210, 219
 NextMethod 172, 212, 219
 nextn 193
 gettext 160
 nlevels 158, 164
 nlm 200
 nlmrb 200, 244
 nls.control 244
 NLSstAsymptotic 165
 NLSstAsymptotic.sortedXyData 165
 NLSstClosestX 165
 NLSstClosestX.sortedXyData 165
 NLSstLfAsymptote 165
 NLSstLfAsymptote.sortedXyData 165
 NLSstRtAsymptote 165

NLSstRtAsymptote.sortedXyData 165
 nobs 255
 nobs.default 255
 nobs.glm 255
 nobs.lm 255
 nobs.nls 255
 nonlinear minimization 200
 nonlinear minimization subject to box constraints 200, 244
 nonlinear smoothing using running medians 239, 252
 noquote 212, 216, 229
 Normal 245
 normal distribution 245
 normal quantile-quantile plots 186, 187, 245
 normalizePath 229
 not available / missing values 165, 190
 nrow 197
 NROW 197
 ns 266
 null 164
 NULL 157, 165, 183
 nullfile 204, 205
 number of arguments to function 219
 number of levels of a factor object 158, 164
 number of replications of terms 239
 numbers a bit outside the range of a vector 186
 numeric 47, 58, 172
 numeric objects 172
 numeric response 37
 numeric versions 229
 numeric_version 229
 numerically estimate hessian matrix 193, 200
 numerically estimate Hessian matrix 244
 numericDeriv 255
 numToBits 172
 nzchar 160

O

object.size 227
 objects 227
 observations 90
 obtain a description of one or more native symbols 209
 octmode 216
 offset 255
 old.packages 229
 OlsonNames 176, 229
 on.exit 202, 219
 oneway.test 253
 online documentation 201
 open 204, 205
 Open SSL 9
 open-source R 23, 70
 open.connection 204, 205
 open.srcfile 265
 open.srcfilealias 265
 open.srcfilecopy 265
 operations for factors and ordered factors 158

ops group method for data frame objects 158
 ops group method for date/time objects 176, 229
 Ops.data.frame 158
 Ops.Date 176, 229
 Ops.difftime 176, 229
 Ops.factor 158
 Ops.numeric_version 229
 Ops.ordered 158
 Ops.POSIXt 176, 229
 optim 200, 244
 optimHess 193, 200, 244
 optimise 200, 244
 optimize 200, 244
 options 202, 227
 order 165
 order.dendrogram 165
 ordered 158
 os 29
 osVersion 266
 outer 188

P

p.adjust 253
 p.adjust.methods 253
 pacf 186, 237, 260
 package 29, 127
 package compatibility 95
 package library 24, 102
 package location 98
 package overview 112
 package synchronizing 97
 package_dependencies 229
 package_native_routine_registration_skeleton 229
 package_version 229
 package.skeleton 205, 229
 packageDate 180
 packageEvent 229
 packageHasNamespace 265
 packageNotFoundError 265
 packages 21, 24, 100, 103, 128
 packages in Spotfire 18
 packageSlot<- 265
 packageStartupMessage 219
 packageStatus 266
 packBits 172
 page 266
 pairwise.prop.test 268
 pairwise.t.test 268
 pairwise.wilcox.test 268
 palette 185
 palette of grays 185
 parallel maximum or minimum 193
 parent.env 180, 219
 parent.env<- 180, 219
 parent.frame 219, 227
 parse 219

parse expressions 219
 parseNamespaceFile 265
 parser 31
 partial matching of character items in a vector 160, 165
 partial matching of character strings 160, 165, 219
 partial substitution in expressions 219
 paste 160, 165
 path.expand 205, 227
 paths to files in the TERR installation 205
 paths to files in the tibco enterprise runtime for r installation 227
 patterned factor 188
 pbeta 245
 pbinom 245
 pbirthday 267
 pcauchy 245
 pchisq 245
 pcre_config 265
 Pearson's chi-square test for count data 253
 person 216
 person names and contact information 216
 personList 216
 pexp 245
 pf 245
 pgamma 245
 pgeom 245
 phyper 245
 pipe 204, 205
 pipe operator 134
 pkgutils 16
 platform 104
 platform specific variables 157, 227
 plclust 267
 plnorm 245
 plogis 245
 plot.dendrogram 187, 241, 252
 plot.ecdf 186, 187
 plot.spec.coherency 268
 plot.spec.phase 268
 plots 271
 plotting points for quantile-quantile plots 186, 245
 plotting points for Quantile-Quantile plots 188
 pmatch 160, 165
 pmax 193
 pmax.int 193
 pmin 193
 pmin.int 193
 pnbinom 245
 pnorm 245
 poisson 172
 Poisson 245
 poisson distribution 245
 poisson.test 268
 poly 249
 polym 249
 polyroot 162, 193
 pos.to.env 229

Position 219
 POSIXct 44, 55, 176, 229
 POSIXlt 44, 55, 176, 229
 POSIXt 176, 229
 possibleExtends 265
 power 255
 power.anova.test 268
 power.prop.test 268
 power.t.test 268
 PP.test 268
 ppoints 186, 245
 Ppoints 188
 ppois 245
 ppr 268
 prcomp 188, 241
 prcomp.default 188, 241
 prcomp.formula 188, 241
 predict 255
 predict method for a generalized linear model 212, 216, 255
 predict method for a linear model 212, 216, 255
 predict.ar 237, 255, 260
 predict.glm 212, 255
 predict.HoltWinters 237, 260
 predict.lm 212, 255
 predict.loess 241
 predict.mlm 212, 255
 predict.nls 244, 249, 255
 predict.poly 249
 predict.prcomp 241
 predict.princomp 241
 predict.smooth.spline 239, 244
 predicting from nonlinear least squares fits 244, 249, 255
 predictive 39
 predictive models 35, 37, 142
 predictor 37, 37
 prettynum 160
 prettyNum 216
 principal component scores 241
 principal components analysis 188, 241, 255
 princomp 241, 255
 princomp.default 241, 255
 princomp.formula 241, 255
 print 216
 print a data frame object 216
 print a listof object 216
 print a loadings matrix 216, 241
 print a principal component summary 216, 241
 print a principal components object 216, 241
 print a table object 216
 print a time series 216, 237, 260
 print an anova object 212, 216
 print call stack after error 202, 219
 print coefficient matrices 216
 print data 216
 print data - generic function 216
 print history of evaluated expressions 201, 205, 219
 print missing value information 165

print the arguments 205, 216
 print.anova 212
 print.aov 239, 255
 print.avlist 239, 255
 print.ar 237, 255, 260
 print.Arima2 237, 260
 print.browseVignettes 201
 print.condition 202, 219
 print.connection 204, 205
 print.data.frame 216
 print.Date 176, 229
 print.default 216
 print.dendrogram 187, 241, 252
 print.difftime 176, 229
 print.dist 241
 print.Dlist 265
 print.dummy_coef 249, 255
 print.dummy_coef_list 249, 255
 print.ecdf 186, 187
 print.eigen 265
 print.factanal 241, 255
 print.factor 216
 print.family 212
 print.formula 212
 print.ftable 158
 print.function 265
 print.hclust 241
 print.hexmode 216
 print.HoltWinters 237, 260
 print.infl 249
 print.kmeans 241
 print.listof 216
 print.lm 212
 print.loadings 216, 241
 print.logLik 255
 print.ls_str 216, 229
 print.mtable 239
 print.numeric_version 229
 print.octmode 216
 print.packageIQR 180
 print.POSIXct 176, 229
 print.POSIXlt 176, 229
 print.prcomp 216, 241
 print.princomp 216, 241
 print.restart 202, 219
 print.rle 160, 165
 print.roman 216
 print.selfStart 265
 print.srcfile 265
 print.summary.aov 239
 print.summary.avlist 239
 print.summary.lm 249
 print.summary.mlm 249
 print.summary.prcomp 216, 241
 print.summary.princomp 216, 241
 print.summary.table 158, 212
 print.summary.warnings 265
 print.table 216
 print.tables_aov 239
 print.ts 216, 237, 260
 printCoefmat 216
 proc.time 227
 process.events 266
 prod 193
 produce text representations of objects 180, 205
 prohibitGeneric 265
 proj 239, 249
 proj.aov 239, 249
 proj.avlist 239, 249
 proj.default 239, 249
 proj.lm 239, 249
 projection matrix 239, 249
 promax 268
 prompt 201
 promptClass 265
 promptData 201
 promptImport 266
 promptMethods 265
 promptPackage 201
 prop.table 197
 prop.test 253
 prop.trend.test 268
 proportions tests 253
 provideDimnames 165
 psigamma 162, 193
 psigrank 245
 pskill 229
 psnice 229
 pt 245
 ptukey 245, 267
 punif 245
 pushBack 265
 pushBackLength 265
 puts arbitrary margins on multidimensional tables or arrays 165
 pweibull 245
 pwilcox 244, 245

Q

q 227
 qbeta 245
 qbinom 245
 qbirthday 267
 qcauchy 245
 qchisq 245
 qexp 245
 qf 245
 qgamma 245
 qgeom 245
 qhyper 245
 qlnorm 245
 qlogis 245
 qnbinom 245

qnorm 245
 qpois 245
 qqnorm 186, 187, 245
 qqnorm.default 186, 187, 245
 qr 188
 qr matrix decomposition 188
 qr.coef 188
 qr.default 188
 qr.fitted 188
 qr.lm 188
 qr.Q 188
 qr.qty 188
 qr.qy 188
 qr.R 188
 qr.resid 188
 qr.solve 188
 qr.X 188
 qsignrank 245
 qt 245
 qtukey 245
 quade.test 268
 quantile 193, 245
 quantile.ecdf 186, 187
 quantitave modelling 132
 quantmod 132
 quarters 176
 quarters.Date 176
 quarters.POSIXt 176
 quasi 172
 quasibinomial 172
 quasipoisson 172
 Question 201
 quickly check for missing (na) values 190, 193
 quit 227
 quit from tibco enterprise runtime for r 227
 qunif 245
 quote strings for use in OS shells 229
 qweibull 245
 qwilcox 244, 245

R

R embedding API 30
 R language 33
 R package 96, 105
 R Presentation 271
 R security recommendations 23
 R to TERR 32
 R_LIBS 180
 R_LIBS_SITE 180
 R_LIBS_USER 180
 R_system_version 229
 R.home 205, 227
 R.version 157, 219, 227
 R.Version 219, 227
 R.version.string 157, 219, 227
 r2dtable 245

rainbow 185
 rainbow colors 185
 ramp/interpolate colors 185
 random two-way tables with given marginals 245
 range 186, 193
 rank 193
 ranks of data 193
 rapply 158, 197, 210
 raster objects 187
 raw 41, 53, 172
 rawShift 172
 rawToBits 172
 rawToChar 172
 rbeta 245
 rbind 165, 197
 rbind.data.frame 180
 rbinom 245
 rcauchy 245
 rchisq 245
 Rcpp integration 271
 Rdconv 27, 29
 read a line from the terminal 205, 219
 read and write binary data 205
 read and write data in dcf format 216
 read and write data in DCF format 205
 read expressions from a file or a connection 205
 read fixed width format files 204, 205
 read or write a text representation of an object 180, 205, 216
 read or write multiple lines from or to a connection 205, 219
 read-eval 151
 read.csv 205
 read.csv2 205
 read.dcf 205, 216
 read.delim 205, 229
 read.delim2 205, 229
 read.DIF 266
 read.fortran 266
 read.fwf 204, 205
 read.socket 266
 read.table 205
 read.table() 32
 readBin 205
 readChar 204, 205
 readline 205, 219
 readLines 205, 219
 readRDS 204, 205
 Recall 219
 reconcilePropertiesAndPrototype 265
 reconstruct the q, r, or x matrices from a qr object 188
 recover 266
 recovering packages 130
 recursive call of the current function 219
 recursively modify elements of a list 229
 Red Hat 9, 11
 redeploying packages 121
 Reduce 219
 reformulate 219

reg.finalizer 219, 227
 regexec 160, 165
 regexpr 160, 165
 register s3 methods 212, 216
 RegisteredNativeSymbol 209
 registerImplicitGenerics 265
 registerS3method 212
 registerS3methods 212
 regmatches 160, 229
 regmatches<- 160, 229
 regression deletion diagnostics 249
 regression diagnostics 249
 regression model 37
 regression tree 35, 37, 142
 relevel 229, 255
 relevel.default 229, 255
 relevel.factor 229, 255
 relevel.ordered 229, 255
 reload saved datasets 205
 rematchDefinition 265
 remove 227
 remove "names" or "dimnames" 165
 remove files and directories 205, 219
 remove installed packages 229
 remove leading or trailing white space 160
 remove objects from a specified environment 227
 remove quotation marks from a string 212, 216, 229
 remove.packages 229
 removeGeneric 212
 removeMethod 212
 removeMethods 212
 removeSource 266
 removeTaskCallback 219
 removing packages 110
 reorder 229
 reorder a dendrogram 165
 reorder levels of a factor 229
 reorder levels of factor 229, 255
 reorder.default 229
 reorder.dendrogram 165
 rep 165
 rep_len 165
 rep.Date 165
 rep.default 165
 rep.factor 165
 rep.int 165
 rep.numeric_version 229
 rep.POSIXct 165
 rep.POSIXlt 165
 repeat 190, 210, 219
 replace 165
 replace part of a character string 160, 165
 replicate data values 165
 replications 239
 report capabilities of this engine 229
 repositories 18, 107, 108
 require 180
 requireMethods 265
 requireNamespace 180, 219
 resetGeneric 265
 reshape 165
 reshape grouped data 165
 resid 255
 residuals 39, 255
 residuals.default 255
 residuals.glm 212, 255
 residuals.HoltWinters 237, 260
 resolve scopes for formulas 255
 response 37
 restartDescription 202, 219
 restartFormals 202, 219
 retracemem 265
 retrive a list of objects 227
 return 210, 219
 return argument unaltered 219
 returnValue 265
 rev 165, 183
 rev.default 165, 183
 reverse the order of an object 165, 183
 rexp 245
 rf 245
 RFormat 33
 rgamma 245
 rgb 185
 rgb2 hsv 185
 rgeom 245
 RGraph 140
 rhyper 245
 RinR 132, 140
 rJava 22, 101
 rle 160, 165
 rlnorm 245
 rlogis 245
 rm 227
 rmarkdown 144
 rmultinom 245
 rnbinom 245
 RNG 157, 245
 RNGkind 157, 245
 RNGversion 157, 245
 rnorm 245
 robust estimates of scale 252
 robust line fitting 252
 roman 216
 round 193
 round.Date 176, 229
 round.POSIXt 176, 229
 rounding functions 193
 row 164, 197
 row and column summaries 165, 188, 193, 197, 210
 row names attribute 165
 row.names 165
 row.names.data.frame 165
 row.names<- 165

row.names<-data.frame 165
 rowMeans 165, 188, 193, 197, 210
 rownames 165, 197
 rownames<- 165, 197
 rowsum 158, 165, 210
 rowsum.data.frame 212
 rowsum.default 158, 165, 210
 rowSums 165, 188, 193, 197, 210
 rpois 245
 Rprofmem 266
 RShowDoc 266
 rsignrank 245
 RSiteSearch 266
 rstandard 249
 rstandard.glm 249
 rstandard.lm 249
 rstudent 249
 rstudent.glm 249
 rstudent.lm 249
 RStudio 9, 11, 36, 104
 rt 245
 rtags 266
 Rtangle 266
 RtangleSetup 266
 RtangleWritedoc 266
 run examples section from the online help 201, 229
 run length encoding and decoding 160, 165
 run_dontrun 29
 run_donttest 29
 runif 245
 running time of tibco enterprise runtime for r 227
 RweaveChunkPrefix 266
 RweaveEvalWithOpt 266
 RweaveLatex 266
 RweaveLatexFinish 266
 RweaveLatexOptions 266
 RweaveLatexSetup 266
 RweaveLatexWritedoc 266
 RweaveTryStop 266
 rweibull 245
 rwilcox 244, 245
 rWishart 267

S

S3Class<- 265
 S3Part 219
 sample 245
 sample.int 245
 sapply 183, 210
 SAS 70
 save 205
 save all frames on errors 202
 save objects 205
 save.image 205
 save.image() 15
 save() 32, 33

saved warning messages 202
 savehistory 201, 205, 219
 saveRDS 204, 205
 SBDF 107
 scale 188, 197
 scale columns of a matrix 188, 197
 scale.default 188, 197
 scan 205
 scan() 32
 scatter plot smoothing 239, 249, 252
 scatter plot smoothing using super smoother 239
 scatter.smooth 268
 scripting in Spotfire 40, 64
 sd 253
 se.aov 239
 se.aovlist 239
 se.contrast.aov 239
 se.contrast.aovlist 239
 sealClass 265
 search 180
 search for a named object 180
 search for a pattern in text 160, 165
 search list 180
 search paths for packages 180
 search the help system 201
 searchpaths 180
 select items from a list 229
 select package repositories 229
 select.list 229
 self-starting nls Gompertz growth model 255
 self-starting nls weibull growth curve model 255
 selfStart 255
 selfStart.default 255
 selfStart.formula 255
 send output to a character string or file 229
 send output to a file 205
 seq 165
 seq_along 165
 seq_len 165
 seq.Date 165, 176
 seq.default 165
 seq.int 165
 seq.POSIXt 165, 176
 sequence 165
 sequence.default 265
 sequences of date-times 165, 176
 serialization interface for single objects 204, 205
 serialize 204, 205
 server 119
 serverSocket 265
 set actions for package loading 180
 set an offset value in a modelling formula 255
 set control parameters for generalized linear model 249
 set operations 216
 set or get locale-specific information 205
 set or return options 202, 227
 set or unset environment variables 205, 227

set.seed 157, 245
 setAs 212
 setBreakpoint 266
 setdiff 216
 setequal 216
 setGroupGeneric 265
 setHook 229
 setInternet2 229
 setLoadAction 180
 setLoadActions 180
 setNames 183
 setNamespaceInfo 219
 setPrimitiveMethods 265
 setRepositories 229
 setwd 227
 Shapiro-Wilk test for normality 253
 shapiro.test 253
 shell-style tests of files 205, 229
 Shiny 271
 shortPathName 205, 229
 showDefault 265
 showExtends 265
 showMlist 265
 shQuote 229
 Sierra 9, 11
 SIG* 229
 sigma 255
 sign 190
 signal handlers 33
 signalCondition 202, 219
 SignatureMethod 265
 signif 193
 SignRank 245
 signum function 190
 sigToEnv 265
 simple serialization interface 204, 205
 simpleCondition 202, 219
 simpleError 202, 219
 simpleMessage 202, 219
 simpleWarning 202, 219
 simplify the structure of a list 165, 183
 simplify2array 183, 210
 simulate a univariate ARIMA series 237, 260
 sin 162, 193
 single 172, 209
 single degree-of-freedom effects from a fitted model 249, 255
 single precision objects 172, 209
 singular value decomposition of a matrix 188, 197
 sinh 162, 193
 sink 205
 sink.number 205
 sinpi 162, 193
 site-library 24, 102
 site.library 124
 sleep 219
 sleep for a specified period 219
 slice identification in an array 219
 slice.index 219
 slotsFromS3 265
 smooth 239, 252
 smooth loess curve 241
 smooth.spline 239
 smoothing spline at new data 239, 244
 socketAccept 265
 socketConnection 31, 204, 205
 socketSelect 265
 socketTimeout 265
 solve 188, 197
 solve linear equations and invert matrices 188, 197
 solve.default 188, 197
 solve.qr 188, 197
 sort 160, 165
 sort into numeric or alphabetic order 160, 165
 sort.default 160, 165
 sort.int 160, 165
 sort.list 165
 sort.POSIXlt 160, 165
 source 105, 205
 source() 32
 Spark 9, 11
 spec.ar 269
 spec.pgram 269
 spec.taper 269
 spectrum 269
 SPK 96, 97, 103, 107, 111, 115, 116, 117, 119, 120
 spline 186, 193
 splinefun 186, 193
 splinefunH 186, 193
 split 158, 165, 183
 split a data frame and apply a function to the parts 158, 197, 210
 split array into list of subarrays 158, 165, 183
 split data by groups 158, 165, 183
 split the elements of a character vector 160, 165
 split.data.frame 158, 165, 183
 split.Date 158, 165, 183
 split.default 158, 165, 183
 split.POSIXct 158, 165, 183
 split< 158, 165, 183
 split<.data.frame 158, 165, 183
 split<.default 158, 165, 183
 Spotfire 24, 107
 Spotfire configuration 128
 Spotfire license 106
 Spotfire licenses 104
 SpotfireConnector 107
 SpotfireData 107
 SpotfireSPK 107, 115, 116, 117
 SpotfireStats 107
 SpotfireUtils 107
 sprintf 160, 216
 sqrt 162, 193
 srcfilealias 265
 srcref 265

SSasym 255
SSasymOff 255
SSasymOrig 255
SSbiexp 255
SSD 241, 255
 SSD matrix and estimated variance matrix in multivariate models 241, 255
SSD.mlm 241, 255
SSfol 255
SSfp1 255
SSgompertz 255
SSlogis 255
SSmicmen 255
SSweibull 255
 standard error of AOV objects 239
 standard errors for contrasts between means 239
Stangle 266
startsWith 160
startup 12
stat.anova 249, 255
 Statistics Services 24, 39
stats 264
 stats package 267, 267, 267, 267, 268, 268, 268, 268, 269
stderr 204, 205
stdin 31, 204, 205
stdout 31, 204, 205
step 268
stop 202, 219
 stop if not all true 202, 219
stopifnot 202, 219
stopIfRex 229
storage.mode 164, 219
str 201, 216, 229
str.data.frame 201, 216, 229
str.default 201, 216, 229
str.dendrogram 187, 241, 252
str.logLik 255
str2expression 219
str2lang 219
Streambase 39
strptime 176, 229
 string encodings of a character vector 160, 229
 string manipulation
 charToRaw 31
 intToUtf8 31
 nchar 31
 rawToChar 31
 regexpr 31
 strsplit 31
 substring 31
 utf8ToInt 31
strOptions 201, 216, 229
strptime 176, 229
strsplit 160, 165
StructTS 269
structure 164, 165
 structure of expressions 210
 student's t distribution 245
 student's t-test 253
 studentized range distribution 245
sub 160, 165
Subscript 183, 197, 212
Subscript.data.frame 183, 197, 212
Subscript.factor 183, 197, 212
subset 165
subset.data.frame 165
subset.default 165
subset.matrix 165
 subsetting vectors, matrices and data frames 165
substitute 219
 substitute in an expression 219
substituteDirect 219
substituteFunctionArgs 265
substr 160
substr<- 160
substring 160
substring<- 160
sum 193
 summarize an object - generic function 212, 216
 summarize and replace errors in loops over tryCatch 229
summary 212
Summary 212
 summary group generic function and group method 212, 216
 summary group method for date/time objects 176, 229
 summary method for fitted generalized linear models 249
 summary method for linear models 249
 summary of a data frame object 212
 summary of a principal components objects 241
 summary of a table object 158, 212, 216
 summary of an analysis of variance object 239
 summary of an nls model object 212
summary.aov 239
summary.aovlist 239
summary.connection 204, 205
summary.data.frame 212
Summary.data.frame 212
summary.Date 212
Summary.Date 176, 229
summary.default 216
Summary.difftime 176, 229
summary.ecdf 186, 187
summary.factor 212
Summary.factor 212
summary.glm 249
summary.infl 249
summary.lm 249
summary.manova 268
summary.matrix 212
summary.mlm 249
summary.nls 212
Summary.numeric_version 229
summary.POSIXct 212
Summary.POSIXct 176, 229
summary.POSIXlt 212

Summary.POSIXlt 176, 229
summary.prcomp 241
summary.princomp 241
summary.srcfile 265
summary.srcref 265
summary.table 158, 212
summary.warnings 265
summaryRprof 266
sums and products 193
superClassDepth 265
suppressForeignCheck 229
suppressMessages 219
suppressPackageStartupMessages 219
suppressWarnings 202, 219
supsmu 239
SUSE 9, 11
suspendInterruptions 202
svd 188, 197
Sweave 266
SWeave 271
SweaveHooks 266
SweaveSyntaxLatex 266
SweaveSyntaxNoweb 266
SweaveSyntConv 266
sweep 197, 210
sweep out array summaries 197, 210
switch 219
symbolic number coding 160, 229
synnum 160, 229
synchronizing packages 97
Syntax 210, 219
sys.call 219, 227
sys.calls 219, 227
Sys.Date 176, 229
sys.frame 219, 227
sys.frames 219, 227
sys.function 219, 227
Sys.getenv 205, 227
Sys.getlocale 205
Sys.glob 205
Sys.localeconv 205
sys.nframe 219, 227
sys.on.exit 219, 227
sys.parent 219, 227
sys.parents 219, 227
Sys.readlink 205
sys.save.image 265
Sys.setenv 146, 205, 227
Sys.setFileTime 265
Sys.setlocale 205
Sys.sleep 219
sys.status 219, 227
Sys.time 176, 229
Sys.timezone 176, 229
Sys.unsetenv 205, 227
system 209, 219, 227
system.time 229

system2 209

T

t 188, 197
t.default 188, 197
t.test 253
t.test.default 253
t.test.formula 253
tabulate 158
tabulate repeated x-y points 186
tail 165, 216
tan 162, 193
tanh 162, 193
tanpi 162, 193
tapply 158, 197, 210
taskCallbackManager 219
tcrossprod 188, 197
TDist 245
tempdir 160, 219
tempfile 160, 219
terms 255
terms.aovlist 255
terms.default 255
terms.formula 255
terms.object 212
numToInts 172
terms.terms 255
TERR console 36
TERR data function 81
TERR expression 40, 41, 43, 44, 46, 47, 49, 51, 53, 53, 55, 56, 58, 59, 60, 61, 64, 67, 69, 81, 83, 87, 90, 92
TERR help 37
TERR to R 32
TERR Tools 106
TERR_Binary 41
TERR_Boolean 43
TERR_DateTime 44
TERR_ENVIRON_USER 13
TERR_HOME 148
TERR_Integer 46
TERR_PROFILE_USER 14
TERR_Real 47
TERR_String 49, 73
TERR_TimeSpan 51
TERRAggregation_Binary 53
TERRAggregation_Boolean 53
TERRAggregation_DateTime 55
TERRAggregation_Integer 56
TERRAggregation_Real 58
TERRAggregation_String 59
TERRAggregation_TimeSpan 60
TerrData 150
TerrDataFrame 150
TerrDouble 150
TERREnviron 12, 13
terrFakeDev 187

terrJava.jar 150
 TerrJava.main 151
 TerrJavaRemote 153, 153
 testing example 155
 TERRprofile 12, 14
 TerrString 150
 terrUtils::setConsoleEncoding 31
 test for atomic or recursive objects 172, 219
 test for complete equality 190
 test for correlation between paired samples 244, 253
 test for equal means in a one-way layout 253
 test for interactive execution 219
 test for the value true 190
 test if an object has a class attribute 172, 212, 216
 test if an object is symmetric 197, 229
 test if running under an r compatible engine 219
 test inheritance of an object 172
 test two objects for full equality 190
 testing 109
 testing example 152
 testInheritedMethods 265
 testVirtual 265
 text connections 204, 205
 textConnection 204, 205
 textConnectionValue 204, 205
 the distribution of the Wilcoxon rank sum statistic 244
 the null object 157, 164, 165, 183
 the structure of expressions 219
 the type of an object 164
 threejs 136, 137
 TIBCO Business Events 39
 time 237, 260
 time intervals 176, 229
 time series 269
 time series objects 172, 237, 260
 time zones 176, 229
 time.default 237, 260
 timestamp 201, 205, 219
 toBibtex.person 216
 tolower 160, 165
 Tomcat 9, 11
 top-level environment 180, 219
 topenv 180, 219
 toTitleCase 160
 toupper 160, 165
 trace 202, 219
 trace calls to functions 202, 219
 traceback 202, 219
 tracemem 265
 tracingState 265
 TRAN 18, 107, 108, 130
 transfer character strings to and from connections 204, 205
 transferring objects 32
 transform 165
 transform an object to a data frame object 165
 transform.data.frame 165
 transform.default 165
 translate text messages 160
 translation 30, 31
 transpose a matrix 188, 197
 trig 162, 193
 trigamma 162, 193
 trigonometric functions 162, 193
 trimws 160
 troubleshooting 130
 trunc 193
 trunc.Date 176, 229
 trunc.POSIXt 176, 229
 truncate.connection 265
 try 202, 219
 tryCatch 202, 219
 tryInvokeRestart 202
 tryNew 265
 ts 172, 237, 260
 ts.intersect 237, 260
 ts.union 237, 260
 tsdiag 269
 tsSmooth 269
 TSSS Connector 112, 126, 127
 Tukey 245
 Tukey five-number summaries 245, 252, 253
 TukeyHSD 268
 turn a parsed expression into character form 216, 219
 turquoise 35, 142
 type 164
 typeof 164

U

unclass 172
 undebug 265
 undebugcall 266
 Unhandled exception in foreign function error 33
 Unicode 30, 31
 Uniform 245
 uniform distribution 245
 unimplementedStop 202, 219
 unimplementedWarning 202, 219
 union 216
 union and intersection of time series 237, 260
 unique 165
 unique values 165
 unique.array 165
 unique.data.frame 165
 unique.default 165
 unique.matrix 165
 unique.numeric_version 229
 unique.POSIXt 165
 unique.warnings 265
 uniroot 244
 units 176, 229
 units for time intervals 176, 229
 units.difftime 176, 229
 units<- 176, 229

units<-difftime 176, 229
univariate optimization of a function 200, 244, 244
unix.time 229
unlink 205, 219
unlist 165, 183
unloadNamespace 180, 219
unlockBinding 229
unname 165
unRematchDefinition 265
unserialize 204, 205
unsplit 158, 165, 183
untrace 202, 219
untracemem 265
unz 204, 205
update 255
 update a fitted model object 255
update.default 255
update.formula 255
update.packages 229
 updating packages 98, 121, 121
 updating TERR 24, 102
upgrade 266
uploading 121
 uploading packages 98, 124
uploadSBDF 229
upper.tri 197
url 204, 205
url.show 266
 use a qr matrix decomposition 188
 use print on a factor object 216
 use print() on a family object 212, 216
 use print() on a formula object 212, 216
 use print() on an lm object 212, 216
 use rowsum() on a data frame object 212, 216
 use summary() on a factor object 212
UseMethod 172, 212, 219
UTF-8 31
 utility function for safe prediction 255
 utility functions for developing namespaces 229
utils 264
 utils package 266

V

valid.factor 158
validation 127
validSlotNames 265
 value of last evaluated expression 219
vapply 183, 210
var 197, 241, 253
var.test 253
var.test.default 253
var.test.formula 253
 variance-covariance matrix of the estimated coefficients 255
varimax 268
vcov 255
vcov.Arima2 237, 260

vcov.glm 255
vcov.lm 255
vcov.mlm 255
vcov.nls 255
vcov.summary.glm 255
vcov.summary.lm 255
vector 172
 vector of indices that sort data 165
Vectorize 165, 229
 vectors (simple objects) 172
 verify an argument using partial matching 219
version 157, 219, 227, 270
 version information 157, 219, 227
vignette 266
vignetteInfo 201, 201

W

warnErrList 229
warning 202, 219
warningCondition 219
warnings 202
weekdays 176
weekdays.Date 176
weekdays.POSIXt 176
Weibull 245
Weibull distribution 245
 weighted covariance estimation 241
weighted.mean 253
weighted.mean.Date 253
weighted.mean.default 253
weighted.mean.difftime 253
weighted.mean.POSIXct 253
weighted.mean.POSIXlt 253
which 165, 190
which.max 190, 193
which.min 190, 193
while 190, 210, 219
wilcox.test 244, 253
wilcox.test.default 244, 253
wilcox.test.formula 244, 253
Wilcoxon 244, 245
 Wilcoxon rank sum and signed rank tests 244, 253
window 237, 260
 window a time series 237, 260
window.default 237, 260
window.ts 237, 260
window<- 237, 260
window<.ts 237, 260
Windows 149, 270
Windows version 9, 11
with 219
with.default 219
withAutoprint 205
withCallingHandlers 202, 219
within 219
within.data.frame 219

within.list 219
withRestarts 202, 219
write 205
write data to ascii file 205
write matrix of data to a file 205, 216
write.csv 205, 216
write.csv2 205, 216
write.dcf 205, 216
write.socket 266
write.table 205, 216
writeBin 205
writeChar 204, 205
writeLines 130, 205, 219

X

x,y arguments 186
xor 190, 212
xpdrows.data.frame 265
xtabs 158
xtfrm 193
xtfrm.AsIs 265
xtfrm.numeric_version 229
xy.coords 186
xyTable 186
xzfile 204, 205

Y

Yosemite 9, 11

Z

zapsmall 165, 193, 216