extractAIC(fit, scale, k = 2, ...) ## S3 method for class 'glm': extractAIC(fit, scale = 0, k = 2, ...) ## S3 method for class 'lm': extractAIC(fit, scale = 0, k = 2, ...)
| fit | object inheriting from fitted model or class. |
| scale | a numeric number, indicates the scale of deviance for linear model. |
| k | a numeric number, the coefficient for residual degrees of freedom. |
| ... | additional arguments to be pass to future functions. |
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg <- glm(SF ~ sex*ldose, family = binomial)
extractAIC(budworm.lg)
lm.fit <- lm(y ~ ., data=Sdatasets::freeny)
extractAIC(lm.fit)
P <- ordered(rep(1:3, rep(3,3)))
N <- ordered(rep(1:3,3))
Plants <- c(449, 413, 326, 409, 358, 291, 341, 278, 312)
Plants <- Plants/12
fit.df <- data.frame(Plants, P, N)
fit.aov <- aov(Plants ~ N * P, data = fit.df,
weights = rep(12,9), qr = TRUE)
extractAIC(fit.aov)