TIBCO Enterprise Message Service™

User’s Guide

Software Release 8.0
June 2013

WiTIBCO

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIB, Information Bus , TIBCO Enterprise Message Service, TIBCO Rendezvous,
TIBCO Enterprise, TIBCO SmartSockets, TIBCO ActiveMatrix BusinessWorks, and TIBCO Hawk are either
registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

Enterprise Java Beans (EJB), Java 2 Platform Enterprise Edition (J2EE), and all Java-based trademarks and logos
are trademarks or registered trademarks of Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1997-2013 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents

T 1 = XiX
= 1o = xXi
= - T XXV
Changes from the Previous Release of thisGuide e XXVi
Feature Enhancements XXVi
Changesin Functionality XXVi
Related Documentation e Xxviii
TIBCO Enterprise Message Service Documentation. i XXViii
Other TIBCO Product Documentation e e e XXViii
Third Party Documentation. e XXiX
Typographical CoNVENtIONSot e e e e e XXX
Connecting with TIBCO RESOUICES v ottt ittt e et e e e e e e e e e e e XXXiii
How to Join TIBCOMMUNILY oot e e e e e e e e e e e XXXiii
How to Access TIBCO Documentation. i e e XXXiii
How to Contact TIBCO SUPPOItottt e e e e XXXiii
Chapter 1 OVerVIiEWttt it i it e et e et aam e aan s aansaaaaraannsnnnens 1
JMS OVEIVIBW . . ot e e e e 2
JMS Message MOEISo 3
Point-to-POiNt 3
Publish and Subscribe 4
MUIICaSTE . . . 6
EMS Destination Features. 8
Clent AP . .o 10
Sample Code e 10
TIBCO Rendezvous Java Applications.o e e e e 10
AdMINIStratioN e 11
Administering the Server 11
User and Group Managementottt e e e e 12
Using TIBCO HawK.o e e e e e e e e e e 12
S CUNY . oot 13
Fault TOlerance. o e 13
ROULING . .o 14

TIBCO Enterprise Message Service User's Guide

iv | Contents

Integrating With Third-Party Products. 14
Transaction SUPPOIT oo 14
Chapter 2 MeSSages.t v it iin it a s tn s e ta s e aanssannsasansannssnnnssnnnsss 15
EMS EXtensions 10 JMS MESSAQESo vttt ittt e e 16
JMS MESSaQEe SHIUCIUIE ottt e e e e e e e e e e e e 17
JMS Message Header Fields. 17
EMS Message Propertiesot 19
JMS Message Bodiesot 22
Maximum Message Size 23
MeSsage Priorityo 24
Message Delivery Modes 25
PERSISTENT . 25
NON _PERSISTENT e e e e e e 25
RELIABLE _DELIVERY ...ttt e e e e 26
How EMS Manages Persistent MeSSagesottt e e e e 27
Persistent Messages Sentto QUEUESttt e 27
Persistent Messages Published to TOPICSo e 27
Persistent Messages and Synchronous File Storage i 28
Store Messages in Multiple Stores 30
SO TYPES . o oot 30
Default Store Fileso 31
Configuring Multiple Stores 32
Understanding mstore Intervals. 33
Character Encoding in MeSSages oo oottt e e e 36
Supported Character ENCOAINGSottt e e e 37
SENAING MESSAGES . . . o i ittt it e 37
Message COMPIESSIONttt ettt et e e e e et e e e e e 38
About Message COmMPIesSION e e 38
Setting Message COMPIresSSIiONt e e e e 38
Message Acknowledgement 39
NO_ACKNOWLEDGEottt e e e e e e e e e e 40
EXPLICIT_CLIENT_ACKNOWLEDGEo e e e e 40
EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE. e 41
Message SeleCtors 42
Data Type CONVEISION.ottt et e e e e e e e e 45
Sending Messages Synchronously and Asynchronously 46
Sending SYNChrONOUSIY oo 46
Sending ASYNCNIONOUSIYot e e e e e e e 47
Receiving Messages Synchronously and Asynchronously. e 49

TIBCO Enterprise Message Service User’s Guide

Contents | v

Chapter3 Destinations it i et et na e aaanannnns 51
Destination OVerVIEW oo 52
Destination Names e 53
Static Destinations o 54
Dynamic Destinations.o e 54
Temporary Destinations e 54
Destination Bridgesot e 55
Destination Name Syntax 56
EXamMDIES o e e 57
Destination Properties e 58
Channel . . .o e 59
EXCIUSIVE . . o 59
EXPITANION L o 60
(222010 61
flOWC OOl . . . o o e 61
global . 62
1] 0T 62
AX DY S . . o oo e 63
MAXIMISTS . . ottt ittt ettt ettt e e e 64
MaXRedelVery . . o e 64
OVErflOWPOIICY o 65
PrefetC. o 68
redeliveryDelay 70
SBCUIE . . o o et ettt et e e e e e e e e 71
SENABI _NAME . . . ittt et e e e e e e e e 72
sender_name_eNnforCed i 72
SlO . . e 73
7= T = 74
Creating and Modifying Destinationso 75
Creating Secure Destinations. 76
WIldCards oo e 77
WildCards * and >o 77
Overlapping Wildcards and Disjoint Properties e 77
WildCards in TOPICS . . . oottt e e e 78
Wildcards in QUEBUES oottt et e e e e e e e e e e 78
Wildcards and Multicast 78
Wildcards and Dynamically Created Destinationsottt 79
INNErtANCE 80
Inheritance of Properties 80
Inheritance of Permissions 81
Destination Bridges oo 82
Creating @ Bridgeot 84
Access Control and Bridges oot 85

TIBCO Enterprise Message Service User's Guide

Vi | Contents

TrANSACH ONS. .« . .o 85
FIOW CONtrol . . oo 87
Enabling FIow Controlo 87
Enforcing FIow CONtrol.o 87
Multicast and FIow CONtrol.ot 88
Routes and FIow Control 88
Destination Bridges and Flow Controlo 89
Flow Control, Threads and Deadlock. e 89
Delivery Delayo 91
Chapter4 Getting Startedt i it it e s a i nennans 93
About the Sample Clients e 94
Compiling the Sample Java Clients. e e 95
Creating Users with the EMS Administration Tool. e 96
Start the EMS Server and EMS Administration Tool 96
Create USrS . . oo 97
Point-to-Point Messaging Example 98
Create @ QUEUEot 98
Start the Sender and Receiver Clients 98
Publish and Subscribe Messaging Example. 99
Create @ TOPIC .« o . vttt e e 99
Start the Subscriber Clients. 99
Start the Publisher Clientand Send Messages e 100
Create @ SECUIE TOPIC . .« o v et ettt et e e e e e e e e 101
Create a Durable Subscriber 103
Multicast Messaging Example. 104
Stop the EMS Server. . ..o 104
Enable the EMS Server for Multicast. 104
Create a Multicast Channel 104
Startthe EMS Server.o 105
Enable a Topic for Multicast. 105
Start the Multicast Daemono 105
Start the Subscriber Client. 105
Start the Publisher Clientand Send Messages oottt e 106
Chapter 5 Runningthe EMS Servercoiiiiiiiiii it iia i inarnnsnnnnnss 107
Starting and Stopping the EMS Server. 108
Starting the EMS Server Using the Default Configuration. 108
Starting the EMS Server Using JSON Configuration.t 108
Starting the EMS Server Using Oplions e 109
Stopping the EMS Servero 111
Running the EMS Server as a Windows Service e 112

TIBCO Enterprise Message Service User’s Guide

Contents | vii

BIMSNESIg. « .. e 112
Error Recovery POlICY 115
Security Considerations.o 116

Secure Environment 116

Destination SeCUNItYo 116

Authorization Parameter. e 116

AdMIN PassWOrdo 117

CONNECHION SECUILYttt e e e e e e e 117

CommuniCation SECUIIY. ottt e 118

Sources of Authentication Data 118

TS M . .o e 118

PaSSWOIaSo 119

AUt TraCe LOgS . . o ottt e 119
How EMS Manages Access to Shared Store Files e 120
Performance TUNINGot e 121

Setting Thread Affinity for Increased Throughput. e 121

Determining Core AllOCatioN.o 121

Network I/O CONNECHIONS oot e e e e e e 122

Other Considerationst 122
Chapter 6 Using the EMS AdministrationToolt iannnns 123
Starting the EMS Administration TOOI e 124

When You First Start tibemsadmin 126
Naming CONVENTIONS ottt et e e e e et e e e e e e e 127

Name Length Limitations 127
Command Listing.o 128

add MEMDEr . . 128

AddProp faCtory. . . . o 128

AAAPIOP QUEBUE . . . o ot ettt e e e e e e e 128

AAAPIOP FOULEo e 129

AAAPIOP T0PIC .« . et ot 129

AUTOCOMIMIE . . . 129

COMMIE Lo o e e e e e 129

COMIPACT .« . . e 130

COMNECT . . . e e e 130

create bridge. o 131

create durable. 131

Create faC Oy . . . o 131

CrBaAtE GrOUD . . .t 131

create NAINAMEo 131

Create QUEBUE.ottt e e e e 132

CreatE TOUL e 132

Create IVCMIIS ENer 132

TIBCO Enterprise Message Service User's Guide

viii | Contents

Lo (== 1 (= (o oo 133
CrATE US B oo i e e 133
delete all ... 133
delete bridgeo 133
delete CONNECHION. 134
delete durable 134
delete faCtory . . .o 134
delete GroUDo 134
delete Jndiname 134
delete MESSAgE ot 134
delete QUEUE . . .o 135
delete rOUTeo 135
delete rvemlistener.o 135
delete tOPICo 135
delete USBr. . o 135
AISCONNECT . . . o 136
BN . 136
1= 136
Orant QUEUIEo e 136
OraNt tOPIC .« o o et 137
grant admin 138
NI 138
T . L 138
JACH Gl . . o o 138
JACH rESEtStalS.o 138
JACH SNOWSTALS.o e 138
purge all QUEUES 139
PUrge all tOPICS. . . . o ot 139
purge durable. 139
PUIJE QUEUE. . . . ettt et e e e e e e e e e e ettt e ettt e e et e e e e 139
PUIGE tOPIC .« o o ettt e e e e e e e e 139
FEMOVE MM . . . o e e 139
FEMOVEPIOP faCtOrY . . . o e 140
(=] 0010V =T o7 {0 0 2o [[T 140
FEMOVEPIOP FOUL. oottt e 140
FEMOVEPIOP HOPIC .« o ettt et e e e e e e 140
FESUME FOULE oottt ettt e e e ettt ittt i 140
FEVOKE AOMiN . . o e 140
FEVOKE QUEBUE i ottt e ettt et e e e e e e e e e e 141
FEVOKE T0PIC . . o ot ot e e 141
0] =1 (= T 142
St PASSWOIA . . . ot 142
Sl GBIV . L o 143
SetPIOP faCOrY . . o 148
SEIPrOP QUEBUE o 148

TIBCO Enterprise Message Service User’s Guide

Contents | ix

SEIPIOP rOULE 149
St PIOP FOPIC . . . ottt 149
ShOW DrAge . . o 149
SNOW DHAgESo e 150
ShOW Channel e 150
ShOW Channels e 151
SNOW CONfIg. . . ot 152
SHOW CONSUMET. . . o o e e e e e e e e e e e e e e e e e e 152
SNOW CONSUMETS. . . o ot et e e e e e e e e e e e e e e e e e e e 152
ShOW CONNECHIONS e 156
SHOW Ab . .o e 159
Show durable e 159
ShOW dUrables. . . .o e 160
SNOW faC Oy . . 161
ShOW faCtOriES. e 161
ShOW JNAINAME e e 162
ShOW JNAINAMES e 162
SNOW GrOUD .« o ottt s 162
SNOW GrOUDS .« o ettt e e e 162
ShOW MEMDEIS . . . o e 162
SNOW MIESSAGE . . . o .ttt ittt e 163
SNOW MBS SAGES . . o ottt ittt e e 163
SNOW PaArENESo e 163
SNOW QUEUE . . . o e 164
SNOW QUEUES.ottt e e e 165
SNOW FOULE . . . e 166
SNOW FOULES e 167
Show rvemtransportledger 167
ShOW rVemIliSteNers e 168
SNOW SNV . . . e 168
SHOW Stal. . . o e 168
SNOW SIOrE . . . e 169
SHOW SIOTES.o e 171
SNOW BOPIC. . . oot 171
SNOW BOPICS . . o ot e 173
ShOW SUDSCIIDONS . . . oo 175
ShOW tranSaCtioN. e 176
ShOW tranSaCtioNSo e 178
SNOW NS POt . . . o 179
SNOW NS POIS . . o o e 179
SNOW US Bl . . o e 180
SROW USBIS . . i e e 180
showacl admin e 180
SNOWACT GrOUD. . . . ot e e 180
ShOWACI QUEUE . . . o o 180

TIBCO Enterprise Message Service User's Guide

X | Contents

SNOWACI IOPIC . . . oo 181
SNOWACT USEr . . . o e 181
SHULOWN . . e 181
SUSPENA FOUTE . . o ot e e e e 181
HMIE 182
HMEOUL . . o o 182
transaction ComMIt. 182
transaction rollback 182
800 =1 (=7 o 182
WH0aMI L 183
Chapter 7 Using the ConfigurationFilest i ianass 185
Location of Configuration Files 186
Mechanics of Configuration. 186
HDEmMS.CONT . . L 187
Global System Parameters 199
Storage File Parameters 206
Connection and Memory Parameterst 207
Detecting Network Connection Failure Parameters. e 211
Fault Tolerance Parameters.o 213
Message Tracking Parameters. 217
Multicast Parameters 217
TIBCO Rendezvous Parameters o 219
TIBCO SmartSockets Parameters. 219
Tracing and Log File Parameters. 220
Statistic Gathering Parameters 222
SSL Server Parameters.o 224
LDAP Parameters 228
Extensible Security Parameters. 235
JVM Parameters . .. 237
Using Other Configuration Files e e e 238
ACL CONT L L 239
DrAgES. CONT . L .o 240
Channels.CONT. . . . 241
AUFabIES.CONT . . . o e 244
fACIONIES. CONT . . o 245
OrOUPS. CONE o o e 249
JAAS. CONT. L 250
QUEBUES. CONT L o o e e e e e e 250
TOUTES.CONT . . . o ot e 251
SEOMES. CONT . L L 253
IV CM . CONT . L 257
TOPICS.CON & . o 257

TIBCO Enterprise Message Service User’s Guide

Contents | Xi

rANSPOMS.CONT . . . e 258
USEIS. CONT . L o e e 262
Chapter 8 Authentication and Permissions.cciiiiiiiiiii i iia e 265
EMS ACCeSS CONtrOlo e 266
Administrator PErmiSSIONSo e 267
Predefined Administrative User and Groupttt e e 267
Granting and Revoking Administration Permissions. e 268
Enforcement of Administrator Permissions. 269
Global Administrator Permissions.ttt 269
Destination-Level Permissions e 272
Protection Permissions. e 273
Enabling Access Control 275
Server CONtrOl 275
Destination Control. e 276
USEIS @NA GrOUPS . .« o ot e it et et et e e e e e e e e e e e e e e e e e e e 277
L T= £ 278
GOUPS .« o ittt e 279
Configuring an External DireCtory it 279
USEr PeIMISSIONS. . o . o ottt e e e e e e e e e e 283
Example of Setting User Permissions 284
Inheritance of User PermissioNns.ot e 284
Revoking User Permissions 285
When Permissions Are Checked 286
Example of Permission Checking. 287
Chapter 9 Extensible Securityttt i ettt i nnnanneanenns 289
Overview of Extensible Security 290
Extensible Authentication. 292
Enabling Extensible Authentication. 292
Writing an Authentication Module. 293
Extensible Permissions 295
Cached PermisSsioNS. 295
How Permissions are Granted i 296
Implications of Wildcards on Permissionst 298
Enabling Extensible Permissions 299
Writing a Permissions Module e 300
The JVM inthe EMS Server e e e 302
Enabling the JVM . .. 302

TIBCO Enterprise Message Service User's Guide

Xii | Contents

Chapter 10 Using Database Stores.oiiiiiiiiiii ittt nanness 303
Database Store OVEIVIEW oottt e e e e e e e e 304
Configuring Database Stores 305
Configuration in tibemsd.conf e 306
Configuration in StOres.CoNf. 307
Configuration for the Oracle RAC Database e 311
EMS Schema EXport TOOL.o 312
Chapter 11 Developing an EMS Client Application............... ... i, 317
JMS SpeCification o 318
JMS 2.0 Specification 318
JMS 1.1 Specification 319
JMS 1.0.2b Specification 319
Sample Clentso 320
Programmer Checklists. 321
Java Programmer’s Checklist. 321
C Programmer’s Checklist 322
C# Programmer’'s Checklist 328
Connection Factories 332
Looking up Connection FaCIONesttt e 332
Dynamically Creating Connection Factories e 332
Setting Connection Attempts, Timeout and Delay Parameters 333
Connectingto the EMS Server 335
Starting, Stopping and Closinga Connection 336
Creating @ SeSSIONot 337
Setting an Exception Listener 338
Dynamically Creating Topics and QUEUESttt ittt e e e e e 340
Creating a Message Producer 342
Configuring a Message Producer 343
Creating a Completion Listener for Asynchronous Sending 344
Creating a Message CONSUMETttt e e e e e e e e e e 346
Creating a Message Listener for Asynchronous Message Consumption 348
Working with Messages 352
Creating Messages 352
Setting and Getting Message Properties. 353
Sending MeSSagesot 354
Receiving Messageso 355
Chapter 12 Using the EMS Implementationof JNDIot 359
Creating and Modifying Administered Objects INnEMS 360

TIBCO Enterprise Message Service User’s Guide

Contents | xiii

Creating Connection Factories for Secure Connections.t 360
Creating Connection Factories for Fault-Tolerant Connections 361
Looking up Administered Objects Stored iN EMS 362
Looking Up Objects Using FUll URL Names. i e e e 364
Performing Secure LOOKUPDS oot e e 365
Performing Fault-Tolerant LOOKUPS oot e e e 366
Chapter 13 Using Multicast. ittt ittt ia et na s nnanrnnns 369
Overview of MUICAST. o e e 370
When to Use MUlticasto 371
ReqUIrEmMENtS . . o 373
Configuring Multicast 374
Configuring Multicast Dynamically 374
Configuring the Multicast Daemon 375
Controlling Access to Multicast-Enabled TOPICS oot 378
Running MUHtiCasto 379
Starting the Multicast Daemon 379
Creating a Multicast CoNSUMET e e e e e 379
Monitoring and STatisticso 380
MoONItOrINg. . . o 380
StAtiStCS . . . o o 380
Chapter 14 Multicast Deployment and Troubleshootingot 381
Deployment Considerations. 382
CONNECHIVItY . . e 382
Restricting Multicast Traffic. 384
Managing Bandwidth 384
Walking Through a Multicast Deployment e 388
Step 1: Design the Multicast Network Architecture i 388
Step 2:Install and Set Up EMS 390
Step 3: Determine Network and Application Capabilities. i 393
Troubleshooting EMS Multicast 397
Troubleshooting Tips.o oo 397
Application and Multicast Daemon Errors and Warningso 399
SOV ErTOrS . . .o e 400
Chapter 15 Working With TIBCO Rendezvouscciiiirinnnrrnnnrrnnnsrnnns 401
OVBIVIBW . . ettt e e 402
Message Translation. 402
CONfigUIALION . . .o 402
Configuring Transports for RENAEZVOUS.ot e 404

TIBCO Enterprise Message Service User's Guide

Xiv | Contents

Transport Definitions oo 405
o] o= 410
Import Only when Subscribers EXist 410
WldCards . . . 410
Certified MESSAgES v it it i 411
QUBUES .« - o ettt e e e e e 412
CONfIQUIALION . . . o 412
Import—Start and Stopot 412
IlACaraS . . . o 412
IMPOI [SSUES . . oo e e 414
Field Identifiers 414
JMSDEStiNAtioNo 414
JM S REPIYTO. .« et 414
JMI S EXDITatiON . . o e e e 414
JM S TIME S amMD . . o e e 415
Guaranteed DeliVeryo 415
EXPOIt ISSUBS . . . o 416
JM S REPIYTO. .« ettt 416
Certified MESSAGES . . - - v it ittt e e 416
Guaranteed DeliVery 416
Message Translation 417
JMS Header Fieldso 417
JMS Property Fields 418
Message Body 419
Data TYPES . . o ottt 421
Pure Java Rendezvous Programs.ottt 423
Chapter 16 Working With TIBCO SmartSocketsccciiiiiiiiiiiiiiiinan. 425
OVBIVIBW . . ettt e e e 426
Message Translation 426
Configuration 426
Starting the Servers. 427
Configuring Transports for SmartSockets 427
Transport Definitions 428
Destination Name—Syntax and Semantics. 432
O CS .« v ettt 433
Import Only when Subscribers EXist 433
WIlACaraS . . . o 434
QUBUES « - o ettt et e e e e 434
CoNfigUIAtiON . . . o 434
Import—Start and Stop 434
WIldCaraS . . . e 435

TIBCO Enterprise Message Service User’s Guide

Contents | XV

IOt ISSUBSo 436
Import Destination Names Mustbe Unique e 436
JM S REPIYTO . . o ettt 436
Guaranteed DeliVery. 436
EXPOIt I SSUBS e 437
JM S REPIYTO . et 437
Wildcard SUDSCHPHIONSot e e 437
Guaranteed DeliVery. 437
Message Translation e 438
JMS Header Fieldso e 438
JMS Property Fields oo 438
SmartSockets Message Properties 439
MeSSsage Body e 440
Daata TYPES . o ot e 442
Destination Names e 443
Chapter 17 Monitoring Server Activity. i e e a i an s 445
Log Files and TracCing.ot e 446
Configuringthe Log File 446
Tracing Onthe Server 447
MeSSage TraCingottt 452
Enabling Message Tracing for a Destination. 452
Enabling Message Tracing on @ MeSSagettt it e 453
Monitoring Server EVents. 454
System Monitor TOPICSot 454
Monitoring MeSSageso 454
Viewing Monitor TOPICSot 457
Performance Implications of Monitor TOPICS oot e 458
Working with Server Statistics oo 460
Overall Server Statistics 460
Enabling Statistic Gathering 461
Displaying StatisStics oo 463
Chapter 18 Usingthe SSLProtocolottt e i iiaran e 465
SSL Support in TIBCO Enterprise Message ServiCettt e 466
Digital Certificates 467
Digital Certificate File Formats 468
Private Key FOrmats e 468
File Names for Certificates and Keys. 469
Configuring SSL N the Server. 471
SO Parameterso 471
Command Line OptioNsttt 471

TIBCO Enterprise Message Service User's Guide

XVi | Contents

Configuring SSLIN EMS Clientsot e e 472
Client Digital Certificatest e 472
CoNfIQUIING SO L. . . o o 473

Specifying Cipher SUIES oo e 476
Syntax for Cipher SUItES 476
Supported Cipher SUITES 478

SSL Authentication Onlyo 482

Enabling FIPS ComplianCe oo 483
Enabling the EMS Server. 483
Enabling EMS Clientso 484

Chapter 19 Fault Toleranceiiiiiii ittt ina e ettt nnnnnnnnesrnnnnnnns 485

Fault Tolerance OVEIVIEW oo e e e e e e e e e e 486
Shared Stateo 486
Unshared State Failover 486
Configuration Files. o 487

Shared State Failover ProCess o 488
DeteCtiON . . oo 488
RESPONSo 488
Role ReVersal 489
Client Transfero 489
Message Redelivery 490
Heartbeat Parameters 491

Unshared State Failover ProCesso i 492
Dual State Failover. 493

Shared State 495
Implementing Shared State 495
Messages Stored in Shared State. 497
Storage Files 497
Storage Parameters. 498

Configuring Fault-Tolerant SErvers 499
Shared State o 499
Unshared State 501

Configuring Fault Tolerance in Central Administration e 502

Configuring Clients for Fault-Tolerant Connections. e 504
Specifying More Than TWo URLS. oo e e 504
Setting Reconnection Failure Parameters 505

Configuring Clients for Unshared State Connections e 507
Include the Unshared State Library 507
Create an Unshared State Connection Factory. e 507
SpecCify Server URLSo 508

TIBCO Enterprise Message Service User’s Guide

Contents | xvii

Chapter 20 Working With Routest i et e e aa s annnns 509
Overview Of ROULING.ot e e e e 510
ROULE . 511
BasiC Operation 511
Global Destinations 512
Unique Routing Path. 512
4o 1= Y 514
Basic Operation 514
Eliminating Redundant Paths witha One-Hop Zone i 514
OVErapPINg ZONES oottt 515
Active and Passive RoOUteS 517
Configuring ROUES @nd ZONES ottt 518
Routes to Fault-Tolerant Servers 519
RoUtiNg and SOo 519
Routed TOPIC MESSAgES.ttt e 523
Propagating Registered Interest. 523
Selectors for Routing Topic MESSageso vttt 525
Routed QUEBUES ottt e e e e e 528
Routing and Authorization 531
Appendix A Monitor MesSsagesuuiiuiirinnnrnnnsrnnersnnrennnrsnnnnsnns 533
Description of MoNItor TOPICS. oottt e e e 534
Description of Topic Message Properties 537
Appendix B Errorand Status Messagesoiiiiiirrnnennnennannanennn 547
Errorand Status Messages o 548
3 T 1= 613

TIBCO Enterprise Message Service User's Guide

xviii | Contents

TIBCO Enterprise Message Service User’s Guide

Figures | Xix

Figures

Figure 1 Message Delivery. 3
Figure 2 Point-to-point MesSSsages 4
Figure 3 Publish and subscribe messages. 5
Figure 4 MUlticast MeSSagES ot 7
Figure 5 Persistent Message Delivery 25
Figure 6 Non-Persistent Message Delivery 26
Figure 7 Reliable Message Delivery. e 26
Figure 8 Persistent Messages Sentto a Queue. 27
Figure 9 Persistent Messages Publishedtoa TopiCc e 28
Figure 10 Message Delivery and Acknowledgement e 39
Figure 11 Bridgingatopictoaqueue 83
Figure 12 Bridging a topic to multiple destinations. 83
Figure 13 Bridging a queue to multiple destinations 84
Figure 14 Flow Control Deadlock across TWo Threadsttt e 90
Figure 15 Users, groups, and PermiSSIONS. v vttt e e e e e e e e e 277
Figure 16 Methods for authenticating users and checking permissions. 291
Figure 17 The Permissions Decision Tree e 297
Figure 18 Multicast message consumer creation.t 370
Figure 19 The benefits of multicast e 372
Figure 20 Sample Multicast Deployment Architecture 389
Figure 21 Rendezvous Transports inthe EMS Server. 402
Figure 22 SmartSockets Transports inthe EMS Server. e 426
Figure 23 Primary and Backup Servers with Shared State i . 486
Figure 24 Current and Second Servers with Unshared State 487
Figure 25 Failed Primary Server 488
Figure 26 Recovered Server Becomes Backup 489
Figure 27 Unshared State Failover 492
Figure 28 Dual State Failover ProCess.ot e 494

TIBCO Enterprise Message Service User's Guide

XX | Figures

Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Routes: bidirectionality and corresponding destinations o L. 511
Routes: global destinations 512
Routes: Unique Path 513
Z0NeS: MUIIENOD . o e 514
ZONES: ONE-NOP . . . ot 515
ZONES: OV AP, .« o ottt 516
Routing: Propagating Subscribers. 523
Routing: Topic Selectors, example 525
Routing: QUEBUESo 528
Routing: Authorization 531

TIBCO Enterprise Message Service User’s Guide

Tables | xxi

Tables

Table 1 General Typographical Conventionst e XXX
Table 2 Syntax Typographical Conventions XXXi
Table 3 Summary of administration features. L 11
Table 4 JMS Message Headers oot 17
Table 5 Summary of message Propertiesot 19
Table 6 JMS MESSagE TYPES . o v ettt et 22
Table 7 Data Type CONVEISIONo ottt e e e e e e e e e e e 45
Table 8 Destination OVervIiEWo 52
Table 9 Characters with Special Meaning in Destination Names oo, 56
Table 10 Valid Destination Name Examples.o e 57
Table 11 Invalid Destination Name Examples. e 57
Table 12 Destination properties e 58
Table 13 PrefetCh . .. 68
Table 14 tibemsd OPtiONSo 110
Table 15 tibemsadmin OptioNs o 124
Table 16 Set Server — pParameters e 143
Table 17 show channel — description of outputfields 150
Table 18 show consumers — description of outputfields. L 153
Table 19 show connections —type parameter. e 156
Table 20 show connections — description of outputfields 157
Table 21 show durable —table Information 159
Table 22 show durables —table Information 161
Table 23 show queue —table Information 164
Table 24 show queues — table Information 165
Table 25 show routes — table Information 167
Table 26 show store — table Information 169
Table 27 show topic — table Information 171
Table 28 show topics — table information e 174

TIBCO Enterprise Message Service User's Guide

xxii | Tables

Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60

show subscriptions — table information 176
show transactions — table information 177
show transactions — table information 179
tibemsd.conf Parameters 187
Configuration Files 238
ACL Parameterso 239
Bridge Parameters 240
Channel Parameterst 241
Durable Subscriber Parameters 244
Connection Factory Parameters 245
Group Parameters. e 249
Route Parameters 251
Store File Parameters 253
RVCM Listener Parameters.o 257
Transport Parameters 258
USer Parameterso 262
Global administrator permissions 269
Destination-level administration permissions 272
Default configuration for popular LDAP servers 281
QUEUE PeIMISSION. . . o .ottt e e e e e 283
TOPIC PermiSSiON. 284
Database Store File Parameters. 308
EMS Schema Export Tool Options.ot e 313
Linker Flags for 32-Bit UNIX 324
Linker Flags for 64-Bit UNIX o e s 324
Dynamic Library Files for Microsoft Windows i 325
Static Library Files for Microsoft Windows. 326
Shareable Image Library Files for OpenVMS 327
Static Library Files for OpenVIMS 327
EMS Assembly DLL e 328
EMS Policy Fileso 329
NET Feature SUPPOMo 330

TIBCO Enterprise Message Service User’s Guide

Tables | xxiii

Table 61 tibemsmced OptioNSo 376
Table 62 Rendezvous: Transport Parameters 405
Table 63 Rendezvous: Mapping JMS Header Fields to RV Datatypes. 417
Table 64 Rendezvous Mapping Message Properties 418
Table 65 Rendezvous: Mapping Message Types (Import) 419
Table 66 Rendezvous: Mapping Message Types (EXport)o e 420
Table 67 Rendezvous: Mapping Data TYpesot 421
Table 68 SmartSockets: Transport Parameters 428
Table 69 SmartSockets Mapping Message Properties (Import & Export). 439
Table 70 SmartSockets: Mapping Message Types (Export). 441
Table 71 SmartSockets: Mapping Data Typesottt e 442
Table 72 Server Tracing Options 448
Table 73 Message monitoring qualifiers 455
Table 74 Bl tyPeS o 469
Table 75 ConnectionFactory SSL parameters 474
Table 76 Qualifiers for Cipher SuitesinJava Clients e 476
Table 77 OpenSSL Qualifiers for Cipher Suites 477
Table 78 Supported Cipher Suites in Java APl. e 478
Table 79 Shared Storage Criteria for Fault Tolerance i 495
Table 80 SSL Parameters for ROUtES oo 520
Table 81 MONItOr TOPICS oo 534
Table 82 Message Properies 537
Table 83 Event Action Property Values 542
Table 84 Event Reason Property Values 544

TIBCO Enterprise Message Service User's Guide

XXiv | Tables

TIBCO Enterprise Message Service User’s Guide

Topics

XXV

Preface

TIBCO is proud to announce the latest release of TIBCO Enterprise Message
Service™. This release is the latest in a long history of TIBCO products that
leverage the power of the Information Bus® to enable truly event-driven IT
environments. To find out more about how TIBCO Enterprise Message Service
and other TIBCO products are powered by TIB® technology, please visit us at
www.tibco.com.

TIBCO Enterprise Message Service software lets application programs send and
receive messages according to the Java Message Service (JMS) protocol. It also
integrates with TIBCO Rendezvous and TIBCO SmartSockets messaging
products.

¢ Changes from the Previous Release of this Guide, page xxvi
¢ Related Documentation, page xxviii
¢ Typographical Conventions, page xxx

* Connecting with TIBCO Resources, page xxxiii

TIBCO Enterprise Message Service User's Guide

http://www.tibco.com/

XXVi | Changes from the Previous Release of this Guide

Changes from the Previous Release of this Guide

This section itemizes the major changes from the previous release of this guide.

Feature Enhancements

The following enhancements are documented in the sections shown:

Logging Enhancement A new tibemsd parameter has been introduced that
allows you to specify the maximum number of log files you want to keep. See
the description for logfile max_count on page 221.

Support for JMS 2.0

This release adds support for the JMS 2.0 specification. Currently, this support is
offered only to Java clients. The features added with JMS 2.0 include:

Delivery Delay Message publishers can now specify a delivery time for
messages. The EMS server will only deliver the message after the time
delivery time specified when the message is published. For more information,
see Delivery Delay on page 91.

Asynchronous Sending Message producers can now send messages
asynchronously, offloading the notification of the success or failure to another
thread and thereby increasing performance in certain situations. For details,
see Sending Messages Synchronously and Asynchronously on page 46.

Shared Subscriptions An application can now share the work of message
consumption across multiple topic consumers. When message consumers
share a subscription to a topic, only one consumer will receive a published
message. For details, see Shared Subscriptions for Topics on page 5.

Simplified APl In addition to the API provided with the JMS 1.1 specification,
which is now called the Classic API, the JMS 2.0 specification offers a simpler
and less verbose API called the Simplified API. For details, see JMS 2.0
Specification on page 318.

Changes in Functionality

Administration Tool Commands and Topic Consumers With this release and
the introduction of shared subscriptions, the relationship between topic
subscriptions and topic consumers has changed. Most importantly, the
number of subscriptions to a topic is not always equal to the number of
consumers.

TIBCO Enterprise Message Service User’s Guide

Preface | XXVii

As a result, the output produced by some administration tool commands has
changed:

— show topics — now reports the number of subscriptions and durable
subscriptions, not the number of consumers.

— show topic —reports the number of subscriptions, durable subscriptions,
and consumers. The number of consumers represents the number of active
(that is non-closed) consumer objects created by applications. Offline or
closed durable consumers are not included in the count.

— show consumers and show stat [consumers] —no longer report offline
durable subscribers.

Refer to Chapter 6, Using the EMS Administration Tool for details on these
commands.

TIBCO Enterprise Message Service User's Guide

xxviii| Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Enterprise Message Service Documentation

The following documents form the TIBCO Enterprise Message Service
documentation set:

TIBCO Enterprise Message Service User’s Guide Read this manual to gain an
overall understanding of the product, its features, and configuration.

TIBCO Enterprise Message Service Central Administration Read this manual for
information on the central administration interface.

TIBCO Enterprise Message Service Installation Read the relevant sections of this
manual before installing this product.

TIBCO Enterprise Message Service C & COBOL Reference The C API reference is
available in HTML and PDF formats.

TIBCO Enterprise Message Service Java API Reference The Java API reference can
be accessed only through the HTML documentation interface.

TIBCO Enterprise Message Service NET API Reference The NET API reference
can be accessed only through the HTML documentation interface.

TIBCO Enterprise Message Service Release Notes Read the release notes for a list
of new and changed features. This document also contains lists of known
issues and closed issues for this release. This document is available only in
PDF format.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO
products:

TIBCO Rendezvous®

TIBCO SmartSockets®

TIBCO Hawk®

TIBCO EMS® Client for z/OS (CICS)
TIBCO EMS® Client for z/OS (MVS)
TIBCO EMS® Client for IBM i

TIBCO Enterprise Message Service User’s Guide

Preface | XXix

Third Party Documentation

* Java™ Message Service specification, available through
http:/ /www.oracle.com/technetwork/java/jms/index.html.

* Java™ Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Sebastopol, California, 2001.

e Java™ Authentication and Authorization Service (JAAS) LoginModule
Developer’s Guide and Reference Guide, available through
http:/ /www.oracle.com/technetwork/java/javase/jaas/index.html.

TIBCO Enterprise Message Service User's Guide

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/javase/jaas/index.html

XXX | Typographical Conventions

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME Many TIBCO products must be installed within the same home directory. This
directory is referenced in documentation as TIBCO_HOME. The value of
TIBCO_HOME depends on the operating system. For example, on Windows
EMS_HOME systems, the default value is C:\tibco.

ENV_HOME

Other TIBCO products are installed into an installation environment.
Incompatible products and multiple instances of the same product are installed
into different installation environments. The directory into which such products
are installed is referenced in documentation as ENV_HOME. The value of
ENV_HOME depends on the operating system. For example, on Windows
systems the default value is C:\tibco.

TIBCO Enterprise Message Service installs into a directory within TIBCO_HOME.
This directory is referenced in documentation as EMS_HOME. The value of
EMS_HOME depends on the operating system. For example on Windows
systems, the default value is C: \tibco\ems\8.0.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code Bold code font is used in the following ways:
font e In procedures, to indicate what a user types. For example: Type admin.
e Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

TIBCO Enterprise Message Service User’s Guide

Preface | XXXi

Table 1 General Typographical Conventions (Cont’d)

Convention Use
italic font Italic font is used in the following ways:

¢ Toindicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

¢ To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

* Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

Ve The tip icon indicates an idea that could be useful, for example, a way to apply

X 2 the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1] An optional item in a command or code syntax.

For example:

MyCommand [optional_ parameter] required_parameter

A logical OR that separates multiple items of which only one may be chosen.
For example, you can select only one of the following parameters:

MyCommand paral | param2 | param3

TIBCO Enterprise Message Service User's Guide

xxxii| Typographical Conventions

Table 2 Syntax Typographical Conventions

Convention Use

{17 A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair paraml and param?, or the pair param3 and param4.

MyCommand {paraml param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either paraml or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be paraml. You can optionally include param? as the
second parameter. And the last parameter is either param3 or param4.

MyCommand paraml [param2] {param3 | param4}

TIBCO Enterprise Message Service User’s Guide

Preface | XXXiii

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts. It is a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access TIBCO Documentation
You can access TIBCO documentation here:

http:/ /docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact
TIBCO Support as follows:

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO Enterprise Message Service User's Guide

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

xxxiv| Connecting with TIBCO Resources

TIBCO Enterprise Message Service User’s Guide

Chapter 1

Topics

Overview

This chapter contains a general overview of Java Message Service (JMS) and
TIBCO Enterprise Message Service concepts.

¢ JMS Overview, page 2

* JMS Message Models, page 3

® EMS Destination Features, page 8

¢ Client APIs, page 10

¢ Administration, page 11

* Security, page 13

¢ Fault Tolerance, page 13

* Routing, page 14

¢ Integrating With Third-Party Products, page 14

TIBCO Enterprise Message Service User's Guide

2 | Chapter 1 Overview

JMS Overview

Java Message Service (JMS) is a Java framework specification for messaging
between applications. This specification was developed to supply a uniform
messaging interface among enterprise applications.

Using a message service allows you to integrate the applications within an
enterprise. For example, you may have several applications: one for customer
relations, one for product inventory, and another for raw materials tracking. Each
application is crucial to the operation of the enterprise, but even more crucial is
communication between the applications to ensure the smooth flow of business
processes. Message-oriented-middleware (MOM) creates a common
communication protocol between these applications and allows you to easily
integrate new and existing applications in your enterprise computing
environment.

The JMS framework (an interface specification, not an implementation) is
designed to supply a basis for MOM development. TIBCO Enterprise Message
Service implements JMS and integrates support for connecting other message
services, such as TIBCO Rendezvous and TIBCO SmartSockets. This chapter
describes the concepts of J]MS and its implementation in TIBCO Enterprise
Message Service. For more information on JMS requirements and features, see the
following sources:

* Java Message Service specification, available through
http:/ /www.oracle.com/technetwork/java/jms/index.html.

* Java Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Sebastopol, California, 2001.

JMS Compliance

TIBCO Enterprise Message Service 8.0 has passed Oracle Technology
Compeatibility Kit (TCK) for Java Message Service 2.0 (JMS 2.0). Therefore, EMS
8.0 is compliant with the JMS 2.0 specification, assuming the following
requirements are met:

¢ Both the Java client and EMS server must be software release 8.0 or higher.

e All EMS software must be run on a supported operating system. Supported
systems are listed in the readme file.

* The EMS software must be properly installed to include correct versions of
software the EMS is dependent on.

* The EMS server configuration parameter jms_2_0_compliance must be set to
true.

TIBCO Enterprise Message Service User’s Guide

http://www.oracle.com/technetwork/java/jms/index.html

JMS Message Models | 3

JMS Message Models

JMS is based on creation and delivery of messages. Messages are structured data
that one application sends to another. The creator of the message is known as the
producer and the receiver of the message is known as the consumer. The TIBCO
EMS server acts as an intermediary for the message and manages its delivery to
the correct destination. The server also provides enterprise-class functionality
such as fault-tolerance, message routing, and communication with other
messaging systems, such as TIBCO Rendezvous® and TIBCO SmartSockets®.

Figure 1 illustrates an application producing a message, sending it by way of the
server, and a different application receiving the message.

Figure 1 Message Delivery

Message Message TIBCO EMS Message Message
Producer > Server »| Consumer
EMS Client EMS Client

JMS supports these messaging models:
¢ Point-to-Point (queues)

e Publish and Subscribe (topics)

* Multicast (topics)

Point-to-Point

Point-to-point messaging has one producer and one consumer per message. This
style of messaging uses a queue to store messages until they are received. The
message producer sends the message to the queue; the message consumer
retrieves messages from the queue and sends acknowledgement that the message
was received.

More than one producer can send messages to the same queue, and more than
one consumer can retrieve messages from the same queue. The queue can be
configured to be exclusive, if desired. If the queue is exclusive, then all queue
messages can only be retrieved by the first consumer specified for the queue.
Exclusive queues are useful when you want only one application to receive
messages for a specific queue. If the queue is not exclusive, any number of

TIBCO Enterprise Message Service User's Guide

4 | Chapter 1 Overview

receivers can retrieve messages from the queue. Non-exclusive queues are useful
for balancing the load of incoming messages across multiple receivers. Regardless
of whether the queue is exclusive or not, only one consumer can ever consume
each message that is placed on the queue.

Figure 2 illustrates point-to-point messaging using a non-exclusive queue. Each
message consumer receives a message from the queue and acknowledges receipt
of the message. The message is taken off the queue so that no other consumer can
receive it.

Figure 2 Point-to-point messages

TIBCO EMS
Server

Message Send Message Queue Receive Message
Producer

Message
P Consumers

\4

MLL

Acknowledge

EMS Client EMS Clients

Publish and Subscribe

In a publish and subscribe message system, producers address messages to a
topic. In this model, the producer is known as a publisher and the consumer is
known as a subscriber.

Many publishers can publish to the same topic, and a message from a single
publisher can be received by many subscribers. Subscribers subscribe to topics,
and all messages published to the topic are received by all subscribers to the topic.
This type of message protocol is also known as broadcast messaging because
messages are sent over the network and received by all interested subscribers,
similar to how radio or television signals are broadcast and received.

Figure 3 illustrates publish and subscribe messaging. Each message consumer
subscribes to a topic. When a message is published to that topic, all subscribed
consumers receive the message.

TIBCO Enterprise Message Service User’s Guide

JMS Message Models | 5

Figure 3 Publish and subscribe messages

TIBCO EMS

Server Subsecribe to
Topic

A

Message Send Message Message

Topic S EEEE—
Producer A p Deliver Message Consumers

Acknowledge
(if necessary)

EMS Client EMS Clients

Durable Subscribers for Topics

By default, subscribers only receive messages when they are active. If messages
arrive on the topic when the subscriber is not available, the subscriber does not
receive those messages.

The EMS APIs allow you to create durable subscribers to ensure that messages are
received, even if the message consumer is not currently running. Messages for
durable subscriptions are stored on the server as long as durable subscribers exist
for the topic, or until the message expiration time for the message has been
reached, or until the storage limit has been reached for the topic. Durable
subscribers can receive messages from a durable subscription even if the
subscriber was not available when the message was originally delivered.

When an application restarts and recreates a durable subscriber with the same ID,
all messages stored on the server for that topic are delivered to the durable
subscriber.

See Creating a Message Consumer on page 346 for details on how to create
durable subscribers.

Shared Subscriptions for Topics

% ‘ This feature is currently available only with EMS clients for Java.

Shared subscriptions allow an application to share the work of receiving
messages on a topic among multiple message consumers. When multiple
consumers share a subscription, only one consumer in the group receives each
new message. This is similar in function to a queue; however, there are no
restrictions placed on the type of consumers to the topic, meaning that a topic can
have a mix of shared and not shared, durable and non-durable consumers. When
a message is published to the topic, the same message goes to all the matching
subscriptions.

TIBCO Enterprise Message Service User's Guide

6 | Chapter 1 Overview

Multicast

Shared subscriptions are created with a specific name, and optionally a client ID.
Consumers sharing the subscription specify this name when subscribing to the
topic. If the shared subscription type is durable, it persists an continues to
accumulate messages until deleted. If the shared subscription type is
non-durable, it persists only so long as subscribers exist.

For example, the topic foo might have the following subscriptions:
* not shared, non-durable subscription
* not shared, durable subscription

® shared, non-durable subscription called mySharedSub with three shared
consumers

e shared, durable subscription called myDurableSharedSub with two shared
consumers

If a message is received on foo, each of the above four subscriptions receive that
same message. For the shared subscriptions mySharedsSub and
myDurableSharedSub, the message is delivered to only one if its respective
shared consumers.

If the shared consumers of the shared durable subscription myDurableSharedSub
are closed, then the shared durable subscription continues to exist and
accumulate messages until it is deleted, or until the application creates a new
durable shared consumer named myDurableSharedSub to resume this
subscription. If the shared consumers of mySharedSub are all closed, the
subscription is removed from topic foo.

Shared subscriptions cannot be used with multicast-enabled topics. That is, if a
topic has a channel property set, shared subsprictions are not supported.

See Creating a Message Consumer on page 346 for details on how to create shared
subscriptions.

Multicast messaging allows one message producer to send a message to multiple
subscribed consumers simultaneously. As in the publish and subscribe messaging
models, the message producer addresses the message to a topic. Instead of
delivering a copy of the message to each individual subscriber over TCP,
however, the EMS server broadcasts the message over Pragmatic General
Multicast (PGM). A daemon running on the machine with the subscribed EMS
client receives the multicast message and delivers it to the message consumer.

TIBCO Enterprise Message Service User’s Guide

JMS Message Models | 7

Multicast is highly scalable because of the reduction in bandwidth used to
broadcast messages, and because of reduced EMS server resources used.
However, multicast does not guarantee message delivery to all subscribers.

Figure 4 on page 7 illustrates the multicast messaging model. Each message
consumer subscribes to a multicast-enabled topic. When a message is sent to that
topic, the EMS server broadcasts the message. Listening multicast daemons
receive the message and deliver it to subscribed clients.

Figure 4 Multicast messages

local hosts —]

Multicast Daemon

.y| tibemsmcd

e

TIBCO EMS
Server Broadcast
Message
] Deliver
Message | send Message | .| Multicast |,.* Message
Producer Topic \
Subscribe to l
Topic
EMS Client P \\
Message
Consumer
EMS Client N

For more information about multicast, see Chapter 13, Using Multicast, on
page 369.

TIBCO Enterprise Message Service User's Guide

8 |Chapter1 Overview

EMS Destination Features

TIBCO Enterprise Message Service allows you to configure destinations to
enhance the functionality of each messaging model.

The EMS destination features allow you to:

Set a secure mode for access control at the queue or topic level, so that some
destinations may require permission and others may not. See Destination
Control on page 276.

Set threshold limits for the amount of memory used by the EMS server to store
messages for a topic or a queue and fine-tune the server’s response to when
the threshold is exceeded. See flowControl on page 61 and overflowPolicy
on page 65.

Route messages sent to destinations to other servers. See Working With
Routes on page 509.

Create bridges between destinations of the same or different types to create a
hybrid messaging model for your application. This can be useful if your
application requires that you send the same message to both a topic and a
queue. For more information on creating bridges between destinations and
situations where this may be useful, see Destination Bridges on page 82.

Control the flow of messages to a destination. This is useful when message
producers send messages much faster than message consumers can receive
them. For more information on flow control, see Flow Control on page 87.

Exchange messages with other message services. Queues can receive TIBCO
Rendezvous and TIBCO SmartSockets messages. Topics can either receive or
send Rendezvous and TIBCO SmartSockets messages. See Working With
TIBCO Rendezvous on page 401 and Working With TIBCO SmartSockets on
page 425.

Set queues to be exclusive or non-exclusive. Only one receiver can receive
messages from an exclusive queue. More than one receiver can receive
messages from non-exclusive queues. See exclusive on page 59.

Specify a redelivery policy for queues. When messages must be redelivered,
you can specify a property on the queue that determines the maximum
number of times a message should be redelivered. See maxRedelivery on
page 64.

Trace and log all messages passing through a destination. See trace on
page 74.

Include the user name of the message producer in the message. See
sender_name on page 72 and sender_name_enforced on page 72.

TIBCO Enterprise Message Service User’s Guide

EMS Destination Features | 9

Administrator operations can use wildcards in destination names. The
wildcard destination name is the parent, and any names that match the
wildcard destination name inherit the properties of the parent. See Wildcards
on page 77.

Use the store property to cause messages sent to a destination to be written
to a store file. Set the destination store to store=$sys.failsafe to direct the
server to write messages to the file synchronously and guarantee that
messages are not lost under any circumstances. See store on page 73 for more
information.

Specify that a consumer is to receive batches of messages in the background to
improve performance. Alternatively, you can specify that queue receivers are
to only receive one message at a time. See prefetch on page 68 for more
information.

TIBCO Enterprise Message Service User's Guide

10 | Chapter 1 Overview

Client APIs

Sample Code

Java applications use the javax. jms package to send or receive JMS messages.
This is a standard set of interfaces, specified by the JMS specification, for creating
the connection to the EMS server, specifying the type of message to send, and
creating the destination (topic or queue) on which to send or receive messages.
You can find a description of the javax. jms package in TIBCO Enterprise Message
Service Java API Reference included in the online documentation. Because EMS
implements the JMS standard, you can also view the documentation on these
interfaces along with the JMS specification at

http:/ /www.oracle.com/technetwork/java/jms/index.html.

TIBCO Enterprise Message Service includes parallel APIs for other development
environments. See the following for more information:

e TIBCO Enterprise Message Service C & COBOL API Reference
e TIBCO Enterprise Message Service NET API Reference (online documentation)

EMS includes several example programs. These examples illustrate various
features of EMS. You may wish to view these example programs when reading
about the corresponding features in this manual. The examples are included in
the samples subdirectory of the EMS installation directory.

For more information about running the examples, see Chapter 4, Getting Started,
on page 93.

TIBCO Rendezvous Java Applications

EMS includes a Java class that allows pure Java TIBCO Rendezvous applications
to connect directly with the EMS server; see Pure Java Rendezvous Programs on
page 423.

TIBCO Enterprise Message Service User’s Guide

http://www.oracle.com/technetwork/java/jms/index.html

Administration | 1

Administration

EMS provides mechanisms for administering server operations and creating
objects that are managed by the server, such as ConnectionFactories and
Destinations.

Administration functions can be issued either using the command-line
administration tool or by creating an application that uses the administration API
(either Java or .NET). The command-line administration tool is described in
Chapter 6, Using the EMS Administration Tool, on page 123. The administration
APIs are described in the online documentation.

The administration interfaces allow you to create and manage administered
objects such as ConnectionFactories, Topics, and Queues. EMS clients can retrieve
references to these administered objects by using Java Naming and Directory
Interface (JNDI). Creating static administered objects allows clients to use these
objects without having to implement the objects within the client.

Administering the Server

EMS has several administration features that allow you to monitor and manage
the server. The following table provides a summary of administration features
and details where in the documentation you can find more information.

Table 3 Summary of administration features (Sheet 1 of 2)

Configuration files allow you to specify Chapter 7, Using the
server characteristics. Configuration Files, on page 185

Administration tool provides a command Chapter 6, Using the EMS

line interface for managing the server. Administration Tool, on page 123
Authentication and permissions can Chapter 8, Authentication and
restrict access to the server and to Permissions, on page 265

destinations. You can also specify who
can perform administrative activities with
administrator permissions.

Configure log files to provide information =~ Chapter 17, Monitoring Server
about various server activity. Activity, on page 445

TIBCO Enterprise Message Service User's Guide

12 |Chapter1 Overview

Table 3 Summary of administration features (Sheet 2 of 2)

The server can publish messages when Chapter 17, Monitoring Server
various system events occur. This allows Activity, on page 445

you to create robust monitoring

applications that subscribe to these

system monitor topics.

The server can provide various statistics Chapter 17, Monitoring Server
at the desired level of detail. Activity, on page 445

User and Group Management

EMS provides facilities for creating and managing users and groups locally for
the server. The EMS server can also use an external system, such as an LDAP
server for authenticating users and storing group information. See Chapter 8,
Authentication and Permissions, on page 265 for more information about
configuring EMS to work with external systems for user and group management.

Using TIBCO Hawk

You can use TIBCO Hawk® for monitoring and managing the EMS server. See
TIBCO Hawk documentation for more information.

TIBCO Enterprise Message Service User’s Guide

Security | 13

Security

For communication security between servers and clients, and between servers
and other servers, you must explicitly configure SSL within EMS.

Secure Sockets Layer (SSL) is a protocol for transmitting encrypted data over the
Internet or an internal network. SSL works by using public and private keys to
encrypt data that is transferred over the SSL connection. Most web browsers
support SSL, and many Web sites and Java applications use the protocol to obtain
confidential user information, such as credit card numbers.

EMS supports SSL between the following components:

® between an EMS client and the EMS server

® between the administration tool and the EMS server
® between the administration APIs and the EMS server
® between routed servers

® between fault-tolerant servers

See Chapter 18, Using the SSL Protocol, on page 465 for more information about
SSL support in EMS.

Fault Tolerance

You can configure EMS servers as primary and backup servers to provide fault
tolerance for your environment. The primary and backup servers act as a pair,
with the primary server accepting client connections and performing the work of
handling messages, and the secondary server acting as a backup in case of failure.
When the active server fails, the backup server assumes operation and becomes
the primary active server.

See Chapter 19, Fault Tolerance, on page 485 for more information about the
fault-tolerance features of EMS.

TIBCO Enterprise Message Service User's Guide

14 | Chapter 1 Overview

Routing

EMS provides the ability for servers to route messages between each other. Topic
messages can be routed across multiple hops, provided there are no cycles (that is,
the message can not be routed to any server it has already visited). Queue
messages can travel at most one hop to any other server from the server that owns
the queue.

EMS stores and forwards messages in most situations to provide operation when
a route is not connected.

See Chapter 20, Working With Routes, on page 509 for more information about
the routing features of EMS.

Integrating With Third-Party Products

EMS allows you to work with third-party naming/directory service products or
with third-party application servers.

Transaction Support

TIBCO Enterprise Message Service can integrate with Java Transaction API (JTA)
compliant transaction managers. EMS implements all interfaces necessary to be
JTA compliant. The EMS C API is compliant with the X/Open XA specification.
The EMS .NET API supports Microsoft Distributed Transaction Coordinator (MS
DTC). Transactions created using MSDTC in a .NET client are seen as XA
transactions in C and Java clients.

TIBCO Enterprise Message Service User’s Guide

Chapter 2

Topics

|15

Messages

This chapter provides an overview of EMS messages.

¢ EMS Extensions to J]MS Messages, page 16

¢ JMS Message Structure, page 17

* Message Priority, page 24

® Message Delivery Modes, page 25

¢ How EMS Manages Persistent Messages, page 27

* Store Messages in Multiple Stores, page 30

® Character Encoding in Messages, page 36

* Message Compression, page 38

* Message Acknowledgement, page 39

* Sending Messages Synchronously and Asynchronously, page 46

TIBCO Enterprise Message Service User's Guide

16 |Chapter2 Messages

EMS Extensions to JMS Messages

The JMS specification details a standard format for the header and body of a
message. Properties are provider-specific and can include information on specific
implementations or enhancements to JMS functionality. See EMS Message
Properties on page 19 for the list of message properties that are specific to EMS.

In addition to the EMS message properties, EMS provides a select number of
extensions to JMS. These are:

The JMS standard specifies two delivery modes for messages, PERSISTENT
and NON_PERSISTENT. EMS also includes a RELIABLE_DELIVERY mode that
eliminates some of the overhead associated with the other delivery modes. See
RELIABLE_DELIVERY on page 26.

For consumer sessions, you can specify a NO_ACKNOWLEDGE mode so that
consumers do not need to acknowledge receipt of messages, if desired. EMS
also provides an EXPLICIT_CLIENT_ ACKNOWLEDGE and
EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE mode that restricts the
acknowledgement to single messages. See Message Acknowledgement on
page 39.

EMS extends the MapMessage and StreamMessage body types. These
extensions allow EMS to exchange messages with TIBCO Rendezvous and
ActiveEnterprise formats that have certain features not available within the
JMS MapMessage and StreamMessage.

TIBCO Enterprise Message Service adds these two extensions to the
MapMessage and StreamMessage body types:

— You can insert another MapMessage or StreamMessage instance as a
submessage into a MapMessage or StreamMessage, generating a series of
nested messages, instead of a flat message.

— You can use arrays as well as primitive types for the values.

These extensions add considerable flexibility to the MapMessage and
StreamMessage body types. However, they are extensions and therefore not
compliant with JMS specifications. Extended messages are tagged as
extensions with the vendor property tag JMS_TIBCO_MSG_EXT.

For more information on compatibility with Rendezvous messages, see
Message Body on page 419.

TIBCO Enterprise Message Service User’s Guide

JMS Message Structure | 17

JMS Message Structure

JMS messages have a standard structure. This structure includes the following
sections:

* Header (required)
* Properties (optional)

* Body (optional)

JMS Message Header Fields

The header contains 11 predefined fields that contain values used to route and
deliver messages. Table 4 describes the message header fields.

Table 4 JMS Message Headers

Header Field Set by Comments

JMSDestination send or publish Destination to which message is sent
method

JMSDeliveryMode sendor publish Persistent or non-persistent message. The default is
method persistent.

EMS extends the delivery mode to include a
RELIABLE_DELIVERY mode, as described in
RELIABLE_DELIVERY on page 26.

TIBCO Enterprise Message Service User's Guide

18 |Chapter2 Messages

Table 4 |MS Message Headers

Header Field Set by Comments
JMSExpiration sendorpublish Length of time that message will live before expiration.
method If set to 0, message does not expire. The time-to-live is

specified in milliseconds.

If the server expiration property is set for a
destination, it will override the JMSExpiration value
set by the message producer.

In EMS version 4.4 and later, clients automatically
synchronize their clocks with the server when a
connection is created. However, for long-lasting
connections, Network Time Protocol (NTP) is the most
reliable method for ensuring continuing
synchronization between server and client.
Additionally, if your EMS server or client application
are based on a version of EMS prior to 4.4, you must
ensure that clocks are synchronized among all the host
computers that send and receive messages, if your
client application uses non-zero values for message
expiration. Synchronize clocks to a tolerance that is a
very small fraction of the smallest message expiration

time.
JMSDeliveryTime send or publish Read-only field. If the message producer has a delivery
method delay set, then the time returned here after calling the

send method represents the earliest time when the EMS
server will deliver the message to consumers. Once the
message has been received, it carries that same value.
This value is calculated by adding the delivery delay
value held by the message producer to the time the
message was sent. For transactions, the delivery time is
calculated using the time the client sends the message,
not the time the transaction is committed.

For more information, see Delivery Delay on page 91.

JMSPriority sendorpublish Uses a numerical ranking, between 0 and 9, to define
method message priority as normal or expedited. Larger
numbers represent higher priority.

See Message Priority on page 24 for more information.

JMSMessagelID sendorpublish Value uniquely identifies each message sent by a
method provider.

TIBCO Enterprise Message Service User’s Guide

JMS Message Structure | 19

Table 4 |MS Message Headers

Header Field Set by Comments
JMSTimestamp sendorpublish Timestamp of time when message was handed off to a
method provider to be sent. Message may actually be sent later

than this timestamp.

JMSCorrelationID message client This ID can be used to link messages, such as linking a
response message to a request message. Entering a
value in this field is optional. The JMS Correlation ID
has a recommended maximum of 4 KB. Higher values
may result in the message being rejected.

JMSReplyTo message client A destination to which a message reply should be sent.
Entering a value for this field is optional.

JMSType message client Message type identifier.

JMSRedelivered JMS provider If this field is set, it is possible that the message was
delivered to the client earlier, but not acknowledged at
that time.

EMS Message Properties

In the properties area, applications, vendors, and administrators on JMS systems
can add optional properties. The properties area is optional, and can be left empty.
The JMS specification describes the JMS message properties. This section
describes the message properties that are specific to EMS.

TIBCO-specific property names begin with JMS_TIBCO. Client programs may use
the TIBCO-specific properties to access EMS features, but not for communicating
application-specific information among client programs.

The EMS properties are summarized in Table 5 and described in more detail in
subsequent sections in this chapter.

Table 5 Summary of message properties (Sheet 1 of 2)

Property Description mgge
JMS_TIBCO_CM_PUBLISHER Correspondent name of an 418
RVCM sender for messages
imported from TIBCO
Rendezvous.

TIBCO Enterprise Message Service User's Guide

20 |Chapter2 Messages

Table 5 Summary of message properties (Sheet 2 of 2)

Property Description mgge

JMS_TIBCO_CM_SEQUENCE Sequence number of an RVCM 418
message imported from
TIBCO Rendezvous.

JMS_TIBCO_COMPRESS Allows messages to be 38
compressed for more efficient
storage.

JMS_TIBCO_DISABLE_SENDER Specifies that the user name of 21
the message sender should not
be included in the message, if
possible.

JMS_TIBCO_IMPORTED Set by the server when the 418
message has been imported

438
from Rendezvous or
SmartSockets.

JMS_TIBCO_MSG_EXT Extends the functionality of 16

the MapMessage and

418
StreamMessage body types to
include submessages or 438
arrays.

JMS_TIBCO_MSG_TRACE Specifies the message should 452
be traced from producer to
consumer.

JMS_TIBCO_PRESERVE_UNDELIVERED Speciﬁes the message is to be 21
placed on the undelivered
message queue if the message
must be removed.

JMS_TIBCO_SENDER Contains the user name of the 21
message sender.

JMS_TTIBCO_SS_SENDER When the EMS server imports 438

a message from TIBCO
SmartSockets, it sets this
property to the SmartSockets
sender header field (in
SmartSockets syntax).

TIBCO Enterprise Message Service User’s Guide

JMS Message Structure | 21

Undelivered Message Queue

If a message expires or has exceeded the value specified by the maxRedelivery
property on a queue, the server checks the message’s
JMS_TIBCO_PRESERVE_UNDELIVERED property. If
JMS_TIBCO_PRESERVE_UNDELIVERED is set to true, the server moves the message
to the undelivered message queue, $sys.undelivered. This undelivered
message queue is a system queue that is always present and cannot be deleted. If
JMS_TIBCO_PRESERVE_UNDELIVERED is set to false, the message will be deleted
by the server.

To make use of the undelivered message queue, the application that sends or
publishes the message must set the boolean JMS_TIBCO_PRESERVE_UNDELIVERED
property to true before sending or publishing the message.

You can only set the undelivered property on individual messages, there is no
way to set the undelivered message queue as an option at the per-topic or
per-queue level.

You should create a queue receiver to receive and handle messages as they arrive
on the undelivered message queue. If you wish to remove messages from the
undelivered message queue without receiving them, you can purge the
$sys.undelivered queue with the administration tool, using the purge queue
command described under Command Listing on page 128. You can also remove
messages using the administrative API included with TIBCO Enterprise Message
Service.

Note that $sys.undelivered ignores the global destination property setting.
Messages in the undelivered message queue are not routed to other servers.

Including the Message Sender

Within a message, EMS can supply the user name given by the message producer
when a connection is created. The sender_name and sender_name_enforced
server properties on the destination determine whether the message producer’s
user name is included in the sent message.

When a user name is included in a message, a message consumer can retrieve that
user name by getting the string message property named JMS_TIBCO_SENDER.

When the sender_name property is enabled and the sender_name_enforced
property is not enabled on a destination, message producers can specify that the
user name is to be left out of the message. Message producers can specify the
JMS_TIBCO_DISABLE_SENDER boolean property for a particular message, and the
message producer’s user name will not be included in the message. However, if
the sender_name_enforced property is enabled, the
JMS_TIBCO_DISABLE_SENDER property is ignored and the user name is always
included in the message.

TIBCO Enterprise Message Service User's Guide

22 |Chapter2 Messages

JMS Message Bodies

A JMS message has one of several types of message bodies, or no message body at
all.

The types of messages are described in Table 6.

Table 6 JMS Message Types

Message Type Contents of Message Body

Message This message type has no body. This is useful for simple
event notification.

TextMessage A java.lang.String.

MapMessage A set of name/value pairs. The names are
java.lang.String objects, and the values are Java
primitive value types or their wrappers. The entries can be
accessed sequentially by enumeration or directly by name.
The order of entries is undefined.

When EMS is exchanging messages with Rendezvous or
ActiveEnterprise, you can generate a series of nested
MapMessages, as described in EMS Extensions to JMS
Messages on page 16.

BytesMessage A stream of uninterrupted bytes. The bytes are not typed;
that is, they are not assigned to a primitive data type.

StreamMessage A stream of primitive values in the Java programming
language. Each set of values belongs to a primitive data
type, and must be read sequentially.

When EMS is exchanging messages with Rendezvous or
ActiveEnterprise, you can generate a series of nested
StreamMessages, as described in EMS Extensions to JMS
Messages on page 16.

ObjectMessage A serializable object constructed in the Java programming
language.

TIBCO Enterprise Message Service User’s Guide

JMS Message Structure | 23

Maximum Message Size

EMS supports messages up to a maximum size of 512MB. However, we
recommend that application programs use smaller messages, since messages
approaching this maximum size will strain the performance limits of most current
hardware and operating system platforms.

TIBCO Enterprise Message Service User's Guide

24 |Chapter2 Messages

Message Priority

See Also

The JMS specification includes a JMSPriority message header field in which
senders can set the priority of a message, as a value in the range [0,9]. EMS does
support message priority (though it is optional, and other vendors might not
implement it).

When the EMS server has several messages ready to deliver to a consumer client,
and must select among them, then it delivers messages with higher priority
before those with lower priority.

However, priority ordering applies only when the server has a backlog of
deliverable messages for a consumer. In contrast, when the server has only one
message at a time to deliver to a consumer, then the priority ordering feature will
not be apparent.

You can set default message priority for the Message Producer, as described in
Configuring a Message Producer on page 343. The default priority can be
overridden by the client when sending a message, as described in Sending
Messages on page 354.

JMS Specification, chapter 3.4.10

TIBCO Enterprise Message Service User’s Guide

Message Delivery Modes | 25

Message Delivery Modes

The JMSDeliveryMode message header field defines the delivery mode for the
message. JMS supports PERSISTENT and NON_PERSISTENT delivery modes for
both topic and queue. EMS extends these delivery modes to include a
RELIABLE_DELIVERY mode.

You can set the default delivery mode for the Message Producer, as described in
Configuring a Message Producer on page 343. This default delivery mode can be
overridden by the client when sending a message, as described in Sending
Messages on page 354.

PERSISTENT

As shown in Figure 5, when a producer sends a PERSISTENT message, the
producer must wait for the server to reply with a confirmation. The message is
persisted on disk by the server. This delivery mode ensures delivery of messages
to the destination on the server in almost all circumstances. However, the cost is
that this delivery mode incurs two-way network traffic for each message or
committed transaction of a group of messages.

Figure 5 Persistent Message Delivery

Message

Message TIBCO EMS
Producer Confirmation Server

v

EMS Client

NON_PERSISTENT

Sending a NON_PERSISTENT message omits the overhead of persisting the
message on disk to improve performance.

If authorization is disabled on the server, the server does not send a
confirmation to the message producer.

If authorization is enabled on the server, the default condition is for the
producer to wait for the server to reply with a confirmation in the same manner as
when using PERSISTENT mode.

TIBCO Enterprise Message Service User's Guide

26 |Chapter2 Messages

Regardless of whether authorization is enabled or disabled, you can use the
npsend_check_mode parameter in the tibemsd. conf file to specify the conditions
under which the server is to send confirmation of NON_PERSISTENT messages to
the producer. See the description for npsend_check_mode on page 202 for details.

Figure 6 Non-Persistent Message Delivery

Message g
Message TIBCO EMS
Producer Depending on Server
"~ npsend_check_mode

EMS Client

RELIABLE_DELIVERY

EMS extends the JMS delivery modes to include reliable delivery. Sending a
RELIABLE_DELIVERY message omits the server confirmation to improve
performance regardless of the authorization setting.

Figure 7 Reliable Message Delivery

Message TIBCO EMS
Producer Message > Server
EMS Client

When using RELTABLE_DELIVERY mode, the server never sends the producer a
receipt confirmation or access denial and the producer does not wait for it.
Reliable mode decreases the volume of message traffic, allowing higher message
rates, which is useful for messages containing time-dependent data, such as stock
price quotations.

When you use the reliable delivery mode, the client application does not receive
any response from the server. Therefore, all publish calls will always succeed (not
throw an exception) unless the connection to the server has been terminated.

In some cases a message published in reliable mode may be disqualified and not
handled by the server because the destination is not valid or access has been
denied. In this case, the message is not sent to any message consumer. However,
unless the connection to the server has been terminated, the publishing
application will not receive any exceptions, despite the fact that no consumer
received the message.

TIBCO Enterprise Message Service User’s Guide

How EMS Manages Persistent Messages | 27

How EMS Manages Persistent Messages

As described in Message Delivery Modes on page 25. JMS defines two message
delivery modes, PERSISTENT and NON_PERSISTENT, and EMS defines a
RELIABLE_DELIVERY mode.

NON_PERSISTENT and RELIABLE_DELIVERY messages are never written to
persistent storage. PERSISTENT messages are written to persistent storage when
they are received by the EMS server.

Persistent Messages Sent to Queues

Persistent messages sent to a queue are always written to disk. Should the server
fail before sending persistent messages to subscribers, the server can be restarted
and the persistent messages will be sent to the subscribers when they reconnect to
the server.

Figure 8 Persistent Messages Sent to a Queue

TIBCO EMS
Server
Message Send Message Queue Receive Message Message
Producer —»> P Consumer
EMS Client EMS Client

o U

Persistent Messages Published to Topics

Persistent messages published to a topic are written to disk only if that topic has at
least one durable subscriber or one subscriber with a fault-tolerant connection to
the EMS server. In the absence of a durable subscriber or subscriber with a
fault-tolerant connection, there are no subscribers that need messages resent in
the event of a server failure. In this case, the server does not needlessly save
persistent messages. This improves performance by eliminating the unnecessary
disk I/O to persist the messages.

TIBCO Enterprise Message Service User's Guide

28 |Chapter2 Messages

Figure 9 Persistent Messages Published to a Topic

Other
Consumers

TIBCO EMS
Server
/ Subscribe
Message Publish R to Topic
Producer Message » | Topic =—+—— | | Durable
'\ Consumer
EMS Client Either type of
consumer must ...and/or...
subscribe to the topic
for messages to be Fault
saved to disk Tolerant
W Consumer

EMS Clients

This behavior is consistent with the JMS specification because durable subscribers
to a topic cause published messages to be saved. Additionally, subscribers to a
topic that have a fault-tolerant connection need to receive messages from the
secondary server after a failover. However, non-durable subscribers without a
fault-tolerant connection that re-connect after a server failure are considered
newly created subscribers and are not entitled to receive any messages created
prior to the time they are created (that is, messages published before the
subscriber re-connects are not resent).

Persistent Messages and Synchronous File Storage

When using file storage, persistent messages received by the EMS server are by
default written asynchronously to disk. This means that, when a producer sends a
persistent message, the server does not wait for the write-to-disk operation to
complete before returning control to the producer. Should the server fail before
completing the write-to-disk operation, the producer has no way of detecting the
failure to persist the message and taking corrective action.

You can set the mode parameter to sync for a given file storage in the

stores. conf file to specify that persistent messages for the topic or queue be
synchronously written to disk. When mode = sync, the persistent producer
remains blocked until the server has completed the write-to-disk operation.

TIBCO Enterprise Message Service User’s Guide

How EMS Manages Persistent Messages | 29

Each EMS server writes persistent messages to a store file. To prevent two servers
from using the same store file, each server restricts access to its store file for the
duration of the server process. For details on how EMS manages shared store
files, see How EMS Manages Access to Shared Store Files on page 120.

TIBCO Enterprise Message Service User's Guide

30 |Chapter2 Messages

Store Messages in Multiple Stores

Store Types

As described in Message Delivery Modes on page 25, the EMS server writes
PERSISTENT messages to disk while waiting for confirmation of receipt from the
subscriber. Messages are persisted to a store. The EMS server can write messages
to different types of stores: file-based stores, mstores, and database stores.

By default, the EMS server writes persistent messages to file-based stores. There
are three default store files, as described in Default Store Files on page 31. You can
configure the system to change the default store files and locations, and also to
store persistent messages to one or more store files, filtering them by destination.
Stores are defined in the stores. conf configuration file, and associated with a
destination using the store destination property.

Stores have properties that allow you to control how the server manages the store
files. For example:

* When using file-based stores:

— Preallocate disk space for the store file.

— Truncate the file periodically to relinquish disk space.

— Specify whether messages are written synchronously or asynchronously.
* Store messages in a database.

With the multiple stores feature, you can configure your messaging application to
store messages in different locations for each application, or to create separate
files for related destinations. For example, you can create one store for messages
supporting Marketing, and one for messages supporting Sales. Because stores are
configured in the server, they are transparent to clients.

The EMS Administration Tool allows administrators to review the system’s
configured stores and their settings by using the show stores and show store
commands.

TIBCO Enterprise Message Service allows you to configure several different types
of stores, described here.

File-Based Stores

The EMS server stores persistent messages in file-based stores. You can use the
default store files, or create your own file-based stores. You direct the EMS server
to write messages to these store files by associating a destination with a store.

TIBCO Enterprise Message Service User’s Guide

Store Messages in Multiple Stores | 31

File-based stores are enabled by default, and the server automatically defines
three default stores, described below. You do not need to do anything in order to
use the default stores.

The section Configuring Multiple Stores on page 32 describes how to change store
settings or create custom stores.

mstores

The mstore is designed to recover quickly after a failover. When mstores are in
use, the EMS server starts quickly, but may run more slowly until the mstore
cache is fully loaded. This is because the EMS server continually monitors the
store in the background. The server reads through the mstore incrementally and
discards stale data, such as purged and expired messages.

As a result, expired and purged messages are not immediately removed from the
mstore, and may remain in the store longer than they would in a file-based or
database store—although they are not delivered to the consumer. These messages
are discarded during the periodic scans of the store. The scanning behavior is
determined by parameter settings in the store configuration, and is further
described in Understanding mstore Intervals on page 33.

Because of this behavior, querying the server for a total pending message count
may return an inaccurate value. However, querying specific destinations returns
an accurate count.

The section Configuring Multiple Stores on page 32 describes the mstore
configuration process.

Database Stores

The EMS server can store messages in one or more database instances. Database
stores must be configured to use a supported database. See Chapter 10, Using
Database Stores for a full description of this feature.

Default Store Files

The EMS server defines these default store files, and writes persistent messages
and meta data to them:

* $sys.nonfailsafe—Persistent messages without a store property
designation are written to $sys.nonfailsafe by default. The server writes
messages to this store using asynchronous I/0 calls.

* $sys.failsafe—Associate a destination with this store to write messages
synchronously. The server writes messages to this store using synchronous
1/0 calls.

TIBCO Enterprise Message Service User's Guide

32 |Chapter2 Messages

& |

e $sys.meta—The server writes state information about durable subscribers,
fault-tolerant connections, and other metadata in this store.

The EMS server creates these file-based stores automatically, and no steps are
required to enable or deploy them. However, you can change the system
configuration to customize the default store file settings, or even override the
default store settings to either point to different file location, or write to an mstore
or database.

Note that the $sys.meta store may not be reconfigured to use the mstore type.

Configuring Multiple Stores

File-Based Stores

This section describes the basic steps required to configure file-based stores and
mstores. Database store configuration is detailed in Chapter 10, Using Database
Stores.

Settings for creating and configuring multiple stores are managed in the EMS
server, and are transparent to clients. To configure the multiple stores feature,
follow these steps:

1. Setup and configure stores in the stores. conf file.

Stores are created and configured in the stores. conf file. Each store must
have a unique name. The stores are configured through parameters.

— File-based stores have two required parameters, type and file, which
determine that the store is a file-based store, and set its location and
filename. Optional parameters allow you to determine other settings,
including how messages are written to the file, the minimum size of the file,
and whether the EMS server attempts to truncate the file.

— mstores also have two required parameters, type and file. Optional
parameters configure the scan interval, during which expired and purged
messages are removed. See Understanding mstore Intervals on page 33
below for information about interval settings.

2. Associate destinations with the configured stores.

Messages are sent to different stores according to their destinations.
Destinations are associated with specific stores with the store parameter in
the topics.conf and queues. conf files.

When using file-based stores, you can also change store associations
dynamically using the setprop topic or setprop queue command in the
EMS Administration Tool.

TIBCO Enterprise Message Service User’s Guide

Store Messages in Multiple Stores | 33

mstores When using mstores, you cannot dynamically change the mstore associations
after they have been set. In order to change a destination’s store property
from a store of the type mstore:

Stop the EMS server.
b. Empty the associated mstore of messages from the destination.

c. Change the store association by manually editing the destination’s store
property in the topics. conf or queues. conf file.

d. Restart the EMS server.

Once mstores are enabled for a destination, you cannot dynamically change
% the store property value using setprop or addprop. To change the store
property, you must stop the server, empty the mstore, manually make the
change, and restart.

The mstore stores data in multiple files. As a result, mstores cannot operate in
%é out of space conditions. In order to prevent an out of space situation
from arising, we recommend ensuring that there is at least twice as much disk
space available for the mstore as needed to hold the maximum amount of data
that might be stored in it.

Multiple destinations can be mapped to the same store, either explicitly or using
wildcards. Even if no stores are configured, the server sends persistent messages
that are not associated with a store to default stores. See Default Store Files for
more information.

For details about the store parameter, see store on page 73.

Understanding mstore Intervals

The mstore is designed to ensuring a quick EMS server start-up time. To enable
this functionality, the EMS server must continually monitor the store in the
background. The server reads through the mstore incrementally and discards
stale data, such as purged and expired messages.

In order to keep the background activity from degrading server performance, the
examination is performed in increments. The length of these increments and the
amount of data processed each increment are controlled by two parameter
settings. These stores. conf parameters can be configured for each mstore.

The default parameter settings are optimized for best performance in most
production environments (see mstore Parameters on page 256 for information
about the default values). However, if the amount of data in the mstore grows
significantly, the read rates associated with the background activity may begin to

TIBCO Enterprise Message Service User's Guide

34 |Chapter2 Messages

affect message transmission rates in the EMS server. If the EMS server
performance is negatively affected by the size of the mstore, you can tune the
mstore parameter values to spread mstore background activity over a longer
period of time, thereby decreasing the associated read rates.

® scan_target_interval — the maximum amount of time allowed before
each message in the store is examined.

For example, if the scan_target_interval is 24 hours, each section of the
mstore will be examined at least once every day. Because purged and expired
messages are not removed from the mstore until they are examined by this
background process, this means that it can take up to 24 hours before a
message is removed from the queue following a purge command (making
underlying storage space available for re-use).

® scan_iter_interval — the length of time between each increment of
background activity.

For example, if the scan_iter_interval is 10 seconds, the EMS server begins
examining a new section of the mstore every 10 seconds. The amount of data
read in each increment is dependent on the total size of the store and the
length of the scan_target_interval. The server must examine enough data
in each interval to fully traverse the store within the target interval.

Example

For example, assume that scan_iter_interval is 10 seconds,
scan_target_interval is 1 day (86,400 seconds), and the mstore contains 9 GBs
of data. Every 10 seconds, the EMS server will examine about 1 MB of data. This
produces an average read rate of about 100 KB/sec, which is unlikely to produce
performance degradation with most modern storage mediums.

If EMS server performance does slow, you may need to increase the
scan_target_interval value in order to spread the background activity over
longer period of time. You can monitor the settings for problems using the show
store command and checking the ratio of "Discard scan bytes" to "Discard scan
interval". For best results, this ratio should be kept below 20% of the disk
processing capacity for each mstore. Consider this ratio in relation to your storage
medium's overall data transfer capacity, so as to make sure that the background
activity does not occupy an excessive amount of the system's resources.

TIBCO Enterprise Message Service User’s Guide

Store Messages in Multiple Stores | 35

Implications for Statistics

The background monitoring and cleanup that occurs in the mstore also affect
some key server statistics. Before the first scan has been completed, some message
statistics may be underreported due to purged and expired messages that the
server has not yet removed. Until the first background scan is complete for some
or all mstores, the server may not have an accurate messages count.

For example, when the EMS server first starts, the "Pending Messages" and
"Pending Message Size" counts reported by the info command in the
administration tool can be understated, because the command only reports on
messages it has scanned before the command is issued. Similarly, the "Message
Count" and "Message Size" reported by the show store command may report a
smaller number than actually exist in the store.

Once the first scan is complete, these counts can be considered accurate. To check
the scan status on an mstore, use the show store command. The statistics
returned now include a "First scan finished" field, which reports the scan status
since the last EMS server start time. When the value of this field is true, the server
statistics can be considered accurate.

If it is important to acquire the correct values for these statistics sooner, you will
need to decrease the scan_target_interval.

TIBCO Enterprise Message Service User's Guide

36 |Chapter2 Messages

Character Encoding in Messages

Character encodings are named sets of numeric values for representing
characters. For example, ISO 8859-1, also known as Latin-1, is the character
encoding containing the letters and symbols used by most Western European
languages. If your applications are sending and receiving messages that use only
English language characters (that is, the ASCII character set), you do not need to
alter your programs to handle different character encodings. The EMS server and
application APIs automatically handle ASCII characters in messages.

Character sets become important when your application is handling messages
that use non-ASCII characters (such as the Japanese language). Also, clients
encode messages by default as UTF-8. Some character encodings use only one
byte to represent each character, but UTF-8 can potentially use two bytes to
represent the same character. For example, the Latin-1 is a single-byte character
encoding. If all strings in your messages contain only characters that appear in the
Latin-1 encoding, you can potentially improve performance by specifying Latin-1
as the encoding for strings in the message.

EMS clients can specify a variety of common character encodings for strings in
messages. The character encoding for a message applies to strings that appear in
any of the following places within a message:

¢ property names and property values
e MapMessage field names and values
* data within the message body

The EMS client APIs (Java, .NET and C) include mechanisms for handling strings
and specifying the character encoding used for all strings within a message. The
following sections describe the implications of string character encoding for EMS
clients.

Nearly all character sets include unprintable characters. EMS software does not
prevent programs from using unprintable characters. However, messages
containing unprintable characters (whether in headers or data) can cause
unpredictable results if you instruct EMS to print them. For example, if you
enable the message tracing feature, EMS prints messages to a trace log file.

TIBCO Enterprise Message Service User’s Guide

Character Encoding in Messages | 37

Supported Character Encodings

Each message contains the name of the character encoding used to encode strings
within the message. This character encoding name is one of the canonical names
for character encodings contained in the Java specification. You can obtain a list of
canonical character encoding names from the java.sun.com website.

Java and .NET clients use these canonical character encoding names when setting
or retrieving the character encoding names. C clients have a list of macros that
correspond to these canonical names. See the C API references for a list of
supported character encodings in these interfaces.

Sending Messages

When a client sends a message, the message stores the character encoding name
used for strings in that message. Java clients represent strings using Unicode. A
message created by a Java client that does not specify an encoding will use UTE-8
as the named encoding within the message. UTE-8 uses up to four bytes to
represent each character, so a Java client can improve performance by explicitly
using a single-byte character encoding, if possible.

Java clients can globally set the encoding to use with the setEncoding method or
the client can set the encoding for each message with the setMessageEncoding
method. For more information about these methods, see the TIBCO Enterprise
Message Service Java API Reference.

Typically, C clients manipulate strings using the character encoding of the
machine on which they are running.

TIBCO Enterprise Message Service User's Guide

http://java.sun.com

38 |Chapter2 Messages

Message Compression

S

TIBCO Enterprise Message Service allows a client to compress the body of a
message before sending the message to the server. EMS supports message
compression/decompression across client types (Java, C and C#). For example, a
Java producer may compress a message and a C consumer may decompress it.

Message compression is supported in .NET clients when using the install package
for Visual C++ 8 / .NET 2.0. .NET in the Visual C++ 7 / .NET 1.1 package does
not support compression.

About Message Compression

Message compression is especially useful when messages will be stored on the
server (persistent queue messages, or topics with durable subscribers). Setting
compression ensures that messages will take less memory space in storage. When
messages are compressed and then stored, they are handled by the server in the
compressed form. Compression assures that the messages will usually consume
less space on disk and will be handled faster by the EMS server.

The compression option only compresses the body of a message. Headers and
properties are never compressed. It is best to use compression when the message
bodies will be large and the messages will be stored on a server.

When messages will not be stored, compression is not as useful. Compression
normally takes time, and therefore the time to send or publish and receive
compressed messages is generally longer than the time to send the same messages
uncompressed. There is little purpose to message compression for small messages
that are not be stored by the server.

Setting Message Compression

Message compression is specified for individual messages. That is, message
compression, if desired, is set at the message level. TIBCO Enterprise Message
Service does not define a way to set message compression at the per-topic or
per-queue level.

To set message compression, the application that sends or publishes the message
must access the message properties and set the boolean property
JMS_TIBCO_COMPRESS to true before sending or publishing the message.

Compressed messages are handled transparently. The client code only sets the
JMS_TIBCO_COMPRESS property. The client does not need to take any other action.
The client automatically decompresses any compressed messages it receives.

TIBCO Enterprise Message Service User’s Guide

Message Acknowledgement | 39

Message Acknowledgement

The interface specification for JMS requires that message delivery be guaranteed
under many, but not all, circumstances. Figure 10 illustrates the basic structure of
message delivery and acknowledgement.

Figure 10 Message Delivery and Acknowledgement

@ Message

@ Message
Message TIBCO EMS @ Acknowledgement Message
Producer @ Confirmation Server Consumer
< Confirmation of
acknowledgement
EMS Client EMS Client

The following describes the steps in message delivery and acknowledgement:

1. A message is sent from the message producer to the machine on which the
EMS server resides.

2. For persistent messages, the EMS server sends a confirmation to the producer
that the message was received.

The server sends the message to the consumer.

4. The consumer sends an acknowledgement to the server that the message was
received. A session can be configured with a specific session mode that
specifies how the consumer-to-server acknowledgement is handled. These
session modes are described below.

5. In many cases, the server then sends a confirmation of the acknowledgement
to the consumer.

The JMS specification defines three levels of acknowledgement for non-transacted
sessions:

® CLIENT_ACKNOWLEDGE specifies that the consumer is to acknowledge all
messages that have been delivered so far by the session. When using this
mode, it is possible for a consumer to fall behind in its message processing
and build up a large number of unacknowledged messages.

® AUTO_ACKNOWLEDGE specifies that the session is to automatically acknowledge
consumer receipt of messages when message processing has finished.

* DUPS_OK_ACKNOWLEDGE specifies that the session is to "lazily" acknowledge
the delivery of messages to the consumer. "Lazy" means that the consumer can
delay acknowledgement of messages to the server until a convenient time;

TIBCO Enterprise Message Service User's Guide

40 |Chapter2 Messages

meanwhile the server might redeliver messages. This mode reduces session
overhead. Should JMS fail, the consumer may receive duplicate messages.

EMS extends the JMS session modes to include:

® NO_ACKNOWLEDGE

e EXPLICIT_CLIENT_ACKNOWLEDGE

¢ EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE

The Simplified JMS API introduced in JMS 2.0 supports the session modes
defined in the JMS specification: CLTIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE,

DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED. However, it does not support
the EMS extended session modes.

The session mode is set when creating a Session, as described in Creating a
Session on page 337.

NO_ACKNOWLEDGE

NO_ACKNOWLEDGE mode suppresses the acknowledgement of received messages.
After the server sends a message to the client, all information regarding that
message for that consumer is eliminated from the server. Therefore, there is no
need for the client application to send an acknowledgement to the server about
the received message. Not sending acknowledgements decreases the message
traffic and saves time for the receiver, therefore allowing better utilization of
system resources.

Sessions created in no-acknowledge receipt mode cannot be used to create
durable subscribers.

Also, queue receivers on a queue that is routed from another server are not
permitted to specify NO_ACKNOWLEDGE mode.

EXPLICIT_CLIENT_ACKNOWLEDGE

EXPLICIT_CLIENT_ACKNOWLEDGE is like CLTENT_ACKNOWLEDGE except it
acknowledges only the individual message, rather than all messages received so
far on the session.

TIBCO Enterprise Message Service User’s Guide

Message Acknowledgement | 11

One example of when EXPLICIT_CLIENT_ACKNOWLEDGE would be used is when
receiving messages and putting the information in a database. If the database
insert operation is slow, you may want to use multiple application threads all
doing simultaneous inserts. As each thread finishes its insert, it can use
EXPLICIT_CLIENT_ACKNOWLEDGE to acknowledge only the message that it is
currently working on.

EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE

EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE is like DUPS_OK_ACKNOWLEDGE except
it "lazily" acknowledges only the individual message, rather than all messages
received so far on the session.

TIBCO Enterprise Message Service User's Guide

42 |Chapter2 Messages

Message Selectors

Identifiers

Basic Syntax

lllegal

Value

Literals

String Literal

Exact Numeric
Literal

Approximate
Numeric Literal

A message selector is a string that lets a client program specify a set of messages,
based on the values of message headers and properties. A selector matches a
message if, after substituting header and property values from the message into
the selector string, the string evaluates to true. Consumers can request that the
server deliver only those messages that match a selector.

The syntax of selectors is based on a subset of the SQL92 conditional expression
syntax.

Identifiers can refer to the values of message headers and properties, but not to
the message body. Identifiers are case-sensitive.

An identifier is a sequence of letters and digits, of any length, that begins with a
letter. As in Java, the set of letters includes _ (underscore) and $ (dollar).

Certain names are exceptions, which cannot be used as identifiers. In particular,
NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, and ESCAPE are defined to
have special meaning in message selector syntax.

Identifiers refer either to message header names or property names. The type of
an identifier in a message selector corresponds to the type of the header or
property value. If an identifier refers to a header or property that does not exist in
a message, its value is NULL.

A string literal is enclosed in single quotes. To represent a single quote within a
literal, use two single quotes; for example, '1iteral’'s'. String literals use the
Unicode character encoding. String literals are case sensitive.

An exact numeric literal is a numeric value without a decimal point, such as 57,
-957, and +62; numbers in the range of long are supported.

An approximate numeric literal is a numeric value with a decimal point (such as
7.,-95.7,and +6.2), or a numeric value in scientific notation (such as 73 and
-57.9E2); numbers in the range of double are supported. Approximate literals
use the floating-point literal syntax of the Java programming language.

TIBCO Enterprise Message Service User’s Guide

Boolean Literal

Expressions
Selectors as
Expressions

Arithmetic

Expression

Conditional
Expression

Order of
Evaluation

Operators
Case Insensitivity
Logical Operators

Comparison
Operators

Arithmetic
Operators

Message Selectors | 43

The boolean literals are TRUE and FALSE (case insensitive).

Internal computations of expression values use a 3-value boolean logic similar to
SQL. However, the final value of an expression is always either TRUE or FALSE—
never UNKNOWN.

Every selector is a conditional expression. A selector that evaluates to true
matches the message; a selector that evaluates to false or unknown does not
match.

Arithmetic expressions are composed of numeric literals, identifiers (that evaluate
to numeric literals), arithmetic operations, and smaller arithmetic expressions.

Conditional expressions are composed of comparison operations, logical
operations, and smaller conditional expressions.

Order of evaluation is left-to-right, within precedence levels. Parentheses override
this order.

Operator names are case-insensitive.
Logical operators in precedence order: NOT, AND, OR.

Comparison operators: =, >, >=, <, <=, <> (not equal).

These operators can compare only values of comparable types. (Exact numeric
values and approximate numerical values are comparable types.) Attempting to
compare incomparable types yields false. If either value in a comparison
evaluates to NULL, then the result is unknown (in SQL 3-valued logic).

Comparison of string values is restricted to = and <>. Two strings are equal if and
only if they contain the same sequence of characters.

Comparison of boolean values is restricted to = and <>.
Arithmetic operators in precedence order:

* 4+, - (unary)

e *, / (multiplication and division)

® +, - (addition and subtraction)

TIBCO Enterprise Message Service User's Guide

44 |Chapter2 Messages

Between
Operator

String
Set Membership

Pattern Matching

Null Header or
Property

White Space

Arithmetic operations obey numeric promotion rules of the Java programming
language.

arithmetic-exprl [NOT] BETWEEN arithmetic-expr2 AND arithmetic-expr3

The BETWEEN comparison operator includes its endpoints. For example:

® age BETWEEN 5 AND 9 is equivalent to age >= 5 AND age <= 9

® age NOT BETWEEN 5 AND 9 isequivalentto age < 5 OR age > 9

identifier [NOT] IN (string-literall, string-literal2, ...)

The identifier must evaluate to either a string or NULL. If it is NULL, then the value of

this expression is unknown.

identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

The identifier must evaluate to a string.

The pattern-value is a string literal, in which some characters bear special meaning:

® _ (underscore) can match any single character.

* % (percent) can match any sequence of zero or more characters.

® escape-character preceding either of the special characters changes them into
ordinary characters (which match only themselves).

identifier IS NULL

This comparison operator tests whether a message header is null, or a message
property is absent.

identifier IS NOT NULL

This comparison operator tests whether a message header or message property is
non-null.

White space is any of the characters space, horizontal tab, form feed, or line
terminator—or any contiguous run of characters in this set.

TIBCO Enterprise Message Service User’s Guide

Data Type Conversion | 45

Data Type Conversion

Table 7 summarizes legal datatype conversions. The symbol X in Table 7 indicates
that a value written into a message as the row type can be extracted as the column
type. This table applies to all message values—including map pairs, headers and
properties—except as noted below.

Table 7 Data Type Conversion

bool byte short char int long float double string Dbytel[]

bool X X
byte X X X X X
short X X X X
char X X
int X X X
long X X
float X X X
double X X
string X X X X X X X X
bytel[] X

Notes ® Message properties cannot have byte array values.

® Values written as strings can be extracted as a numeric or boolean type only
when it is possible to parse the string as a number of that type.

TIBCO Enterprise Message Service User's Guide

46 |Chapter2 Messages

Sending Messages Synchronously and Asynchronously

TIBCO Enterprise Message Service supports two modes of sending messages:

&

Synchronous sending blocks the application thread until the entire send is
complete.

Asynchronous sending offloads the notification of the success or failure to

another thread, thereby increasing performance in certain situations.

Asynchronous sending is currently available only with the EMS client for
Java.

Each sending mode has certain benefits. The following sections describe the
benefits of the different modes.

Sending Synchronously

Because synchronous sending does not have the overhead involved in
asynchronous sending, it yields better performance in most cases. Synchronous
sending is also the best choice when sending the following types of messages:

Non-Persistent Messages When high performance is a concern, use
synchronous sending for non-persistent or reliable messages. Although
asynchronous sending of non-persistent messages is supported, it is generally
not recommended.

Transactions Typically, it makes sense for applications to use synchronous
sending when using transactions. Sending messages within a transaction does
not require a response from the server, so higher throughput can be obtained
sending synchronously within a transaction.

Synchronous sending simplifies a transaction; coordination of asynchronous
send notifications and committing or rolling back a transaction introduces
complexity to the application.

See Sending Messages on page 354 for details.

TIBCO Enterprise Message Service User’s Guide

Sending Messages Synchronously and Asynchronously | 47

Sending Asynchronously

% ‘ Asynchronous sending is currently available only with the EMS client for Java.

The message producer can send messages asynchronously by registering a
completion listener to monitor message send success or failure. Operating in a
thread separate from that of the message producer, the completion listener
manages the response to a successful or failed send, leaving the message producer
free to perform other operations. See Creating a Completion Listener for
Asynchronous Sending on page 344 for details.

Asynchronous sending can increase performance in certain circumstances. One of
the best uses for asynchronous sending is when sending persistent messages.
High level outgoing message throughput can be obtained when sending
non-transacted persistent messages.

There are other considerations for the application programmer when sending
messages asynchronously. These considerations are described below.

Concurrent Message Use

For simplicity, it is suggested that application programmers create a new message
for every asynchronous send call. If concurrent message use is acceptable in an
application, messages may be reused when sending asynchronously, but
generally it is not recommended due to the complexity it may add.

During asynchronous sends, the application programmer should be very aware of
A concurrent message usage between the application and the thread handling
completion listeners. The message passed to the completion listener is the same
message passed to the MessageProducer send method, which means modification
of that particular message is reflected in both the application thread and the
thread invoking the completion listener.

For example, if a TextMessage is asynchronously sent with the text of foo, and
then the same message object's text is subsequently set to bar, it is conceivable
that when the completion listener is invoked the message will contain bar even
though it contained foo at the time it was sent.

Memory Use

Application programmers should be aware that some additional memory is used
by the EMS server when asynchronously sending. Memory use increases if the
performance of completion listeners is slower than overall application send rates.

TIBCO Enterprise Message Service User's Guide

48 |Chapter2 Messages

Fault Tolerant Failovers

Because send notifcations are handled in a separate thread when messages are
sent asynchronously, it is possible to receive messages out of order after a fault
tolerant switch.

For example, consider an application that sends messages A, B, and C. Message
A succeeds, Message B fails, but message C succeeds immediately after reconnect
to the fault tolerant server. The application may not know message B failed before
message C was sent. Message consumers could conceivably receive messages in
the order of A, C, B; it is up to the application to appropriately handle this
situation.

TIBCO Enterprise Message Service User’s Guide

Receiving Messages Synchronously and Asynchronously | 49

Receiving Messages Synchronously and Asynchronously

The EMS APIs allow for both synchronous or asynchronous message
consumption. For synchronous consumption, the message consumer explicitly
invokes a receive call on the topic or queue. When synchronously receiving
messages, the consumer remains blocked until a message arrives. See Receiving
Messages on page 355 for details.

The consumer can receive messages asynchronously by registering a message
listener to receive the messages. When a message arrives at the destination, the
message listener delivers the message to the message consumer. The message
consumer is free to do other operations between messages. See Creating a
Message Listener for Asynchronous Message Consumption on page 348 for
details.

TIBCO Enterprise Message Service User's Guide

50 |Chapter2 Messages

TIBCO Enterprise Message Service User’s Guide

|51

Chapter 3 Destinations

This chapter describes destinations (topics and queues).

Topics

* Destination Overview, page 52

¢ Destination Properties, page 58

* Creating and Modifying Destinations, page 75
e Wildcards, page 77

* Inheritance, page 80

* Destination Bridges, page 82

¢ Flow Control, page 87

¢ Delivery Delay, page 91

TIBCO Enterprise Message Service User's Guide

52 |Chapter3 Destinations

Destination Overview

Table 8 Destination Overview (Sheet 1 of 2)

Destinations for messages can be either Topics or Queues. A destination can be
created statically in the server configuration files, or dynamically by a client

application.

Servers connected by routes exchange messages sent to temporary topics. As a
result, temporary topics are ideal destinations for reply messages in request/reply

interactions.

Table 8 summarizes the differences between static, dynamic, and temporary
destinations. The sections that follow provide more detail.

Aspect Static Dynamic Temporary
Purpose Static destinations let Dynamic destinations give =~ Temporary destinations
administrators configure client programs the are ideal for limited-scope
EMS behavior at the flexibility to define uses, such as reply
enterprise level. destinations as needed for subjects.
Administrators define short-term use.
these administered objects,
and client programs use
them—relieving program
developers and end users
of the responsibility for
correct configuration.
Scope of Static destinations support =~ Dynamic destinations Temporary destinations
Delivery concurrent use. That is, support concurrent use. support only local use.
several client processes That is, several client That is, only the client
(and in several threads processes (and in several connection that created a
within a process) can threads within a process) temporary destination can
create local objects can create local objects consume messages from it.
denoting the destination, denoting the destination, H
and consume messages and consume messages oweveléssrvers d
from it. from it. connected by routes do
exchange messages sent to
temporary topics.
Creation Administrators create Client programs create Client programs create

static destinations using
EMS server administration
tools or APL

dynamic destinations, if
permitted by the server
configuration.

temporary destinations.

TIBCO Enterprise Message Service User’s Guide

Destination Overview | 53

Table 8 Destination Overview (Sheet 2 of 2)

Aspect Static Dynamic Temporary

Lookup Client programs lookup Not applicable. Not applicable.
static destinations by
name. Successful lookup
returns a local object
representation of the

destination.

Duration A static destination A dynamic destination A temporary destination
remains in the server until ~ remains in the server as remains in the server either
an administrator explicitly ~ long as at least one client until the client that created
deletes it. actively uses it. The server it explicitly deletes it, or

automatically deletes it (at until the client disconnects
a convenient time) when from the server.

all applicable conditions

are true:

e Topic or Queue all
client programs that
access the destination
have disconnected

e Topic no offline
durable subscribers
exist for the topic

* Queue queue, no
messages are stored in
the queue

Destination Names

A destination name is a string divided into elements, each element separated by
the dot character (.). The dot character allows you to create multi-part destination
names that categorize destinations.

For example, you could have an accounting application that publishes messages
on several destinations. The application could prefix all messages with ACCT,
and each element of the name could specify a specific component of the
application. ACCT.GEN_LEDGER.CASH, ACCT.GEN_LEDGER.RECEIVABLE,
and ACCT.GEN_LEDGER.MISC could be subjects for the general ledger portion
of the application.

TIBCO Enterprise Message Service User's Guide

54 |Chapter3 Destinations

Separating the subject name into elements allows applications to use wildcards
for specifying more than one subject. See Wildcards on page 77 for more
information. The use of wildcards in destination names can also be used to define
"parent" and "child" destination relationships, where the child destinations inherit
the properties from its parents. See Inheritance of Properties on page 80.

Static Destinations

Configuration information for static destinations is stored in configuration files
for the EMS server. Changes to the configuration information can be made in a
variety of ways. To manage static destinations, you can edit the configuration files
using a text editor, you can use the administration tool, or you can use the
administration APIs.

Clients can obtain references to static destinations through a naming service such
as JNDI or LDAP. See Creating and Modifying Destinations on page 75 for more
information about how clients use static destinations.

Dynamic Destinations

Dynamic destinations are created on-the-fly by the EMS server, as required by
client applications. Dynamic destinations do not appear in the configuration files
and exist as long as there are messages or consumers on the destination. A client
cannot use JNDI to lookup dynamic queues and topics.

When you use the show queues or show topics command in the administration
tool, you see dynamic topics and queues have an asterisk (*) in front of their name
in the list of topics or queues. If a property of a queue or topic has an asterisk (*)
character in front of its name, it means that the property was inherited from the
parent queue or topic and cannot be changed.

See Dynamically Creating Topics and Queues on page 340 for details on topics
and queues can be dynamically created by the EMS server.

Temporary Destinations

TIBCO Enterprise Message Service supports temporary destinations as defined in
JMS specification and its APIL.

Servers connected by routes exchange messages sent to temporary topics. As a
result, temporary topics are ideal destinations for reply messages in request/reply
interactions.

For more information on temporary queues and topics, refer to the JMS
documentation described in Third Party Documentation on page xxix.

TIBCO Enterprise Message Service User’s Guide

Destination Overview | 55

Destination Bridges

You can create server-based bridges between destinations of the same or different
types to create a hybrid messaging model for your application. This allows all
messages delivered to one destination to also be delivered to the bridged
destination. You can bridge between different destination types, between the
same destination type, or to more than one destination. For example, you can
create a bridge between a topic and a queue or from a topic to another topic.

See Destination Bridges on page 82 for more information about destination

bridging.

TIBCO Enterprise Message Service User's Guide

56 |Chapter3 Destinations

Destination Name Syntax

Structure

Length

Destination Name
Performance
Considerations

Special
Characters in
Destination
Names

TIBCO Enterprise Message Service places few restrictions on the syntax and
interpretation of destination names. System designers and developers have the
freedom to establish their own conventions when creating destination names. The
best destination names reflect the structure of the data in the application itself.

A destination name is a string divided into elements, each element separated by
the dot character (.). The dot character allows you to create multi-part destination
names that categorize destinations.

Empty strings (" ") are not permitted destination names. Likewise, elements
cannot incorporate the dot character by using an escape sequence.

Although they are not prohibited, we recommend that you do not use tabs,
spaces, or any unprintable character in a destination name. You may, however,
use wildcards. See Wildcards on page 77 for more information.

Destinations are limited to a total length of 249 characters. However, some of that
length is reserved for internal use. The amount of space reserved for internal use
varies according to the number of elements in the destination; destinations that
include the maximum number of elements are limited to 196 characters.

A destination can have up to 64 elements. Elements cannot exceed 127 characters.
Dot separators are not included in element length.

When designing destination naming conventions, remember these performance
considerations:

¢ Shorter destination names perform better than long destination names.

¢ Destinations with several short elements perform better than one long
element.

* A set of destinations that differ early in their element lists perform better than
subjects that differ only in the last element.

These characters have special meanings when used in destination names:

Table 9 Characters with Special Meaning in Destination Names

Char Char Name Special Meaning

Dot Separates elements within a destination name.
> Greater-than ~ Wildcard character, matches one or more trailing
elements.

TIBCO Enterprise Message Service User’s Guide

Examples

Destination Name Syntax | 57

Table 9 Characters with Special Meaning in Destination Names

Char Char Name Special Meaning

* Asterisk Wildcard character, matches one element.

For more information on wildcard matching, see Wildcards * and > on page 77.

These examples illustrate the syntax for destination names.
Table 10 Valid Destination Name Examples

NEWS .LOCAL.POLITICS.CITY_ COUNCIL

NEWS .NATIONAL.ARTS.MOVIES.REVIEWS

CHAT .MRKTG.NEW_PRODUCTS

CHAT .DEVELOPMENT . BIG_PROJECT .DESIGN

News.Sports.Baseball

finance

This.long.subject_name.is.valid.even.though.quite.uninformative

Table 11 Invalid Destination Name Examples

News. .Natural Disasters.Flood (null element)

WRONG. (null element)

.TRIPLE.WRONG. . (three null elements)

News.Tennis.Stats.Roger\.Federer (backslash in the element Roger will
be included in the element name, and will not escape the dot)

TIBCO Enterprise Message Service User's Guide

58 |Chapter3 Destinations

Destination Properties

This section contains a description of properties for topics and queues.

You can set the properties directly in the topics. conf or queues. conf file or by
means of the setprop topic or setprop queue command in the EMS
Administration Tool.

Table 12 lists the properties that can be assigned to topics and queues. The
following sections describe each property.

Table 12 Destination properties (Sheet 1 of 2)

Property Described on Page Topic m
channel 59 Yes No
exclusive 59 No Yes
expiration 60 Yes Yes
export 61 Yes No
flowControl 61 Yes Yes
global 62 Yes Yes
import 62 Yes Yes
maxbytes 63 Yes Yes
maxmsgs 64 Yes Yes
maxRedelivery 64 No Yes
overflowPolicy 65 Yes Yes
prefetch 68 Yes Yes
redeliveryDelay 70 No Yes
secure 71 Yes Yes
sender_name 72 Yes Yes
sender_name_enforced 72 Yes Yes
store 73 Yes Yes

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 59

Table 12 Destination properties (Sheet 2 of 2)

Property Described on Page Topic m
trace 74 Yes Yes

channel

The channel property determines the multicast channel over which messages
sent to this topic are broadcast. By including the channel property, the associated
topic is enabled for multicast.

Set the channel property using this form:
channel=name
where name is the name of a channel, as defined in the channels. conf file.

For example, this will broadcast all messages sent to the topic topic.foo over the
channel named mycast:

topic.foo channel=mycast

Only one channel is allowed for each topic. For this reason, overlapping wildcard
topics are incompatible with channel properties. The creation of a wildcard topic
with a channel property that overlaps with another wildcard topic with a
channel property will fail. See Overlapping Wildcards and Disjoint Properties on
page 77 for more information.

This parameter cannot be used without first configuring multicast channels in the
%} channels. conf file and enabling this feature in the tibemsd. conf file.

For more information, see Chapter 13, Using Multicast, on page 369.

exclusive

The exclusive property is available for queues only (not for topics), and cannot
be used with global queues.

When exclusive is set for a queue, the server sends all messages on that queue to
one consumer. No other consumers can receive messages from the queue. Instead,
these additional consumers act in a standby role; if the primary consumer fails, the
server selects one of the standby consumers as the new primary, and begins
delivering messages to it.

You can set exclusive using the form:

exclusive

TIBCO Enterprise Message Service User's Guide

60 |Chapter3 Destinations

Non-Exclusive
Queues &
Round-Robin
Delivery

expiration

By default, exclusive is not set for queues and the server distributes messages in
a round-robin—one to each receiver that is ready. If any receivers are still ready to
accept additional messages, the server distributes another round of messages—
one to each receiver that is still ready. When none of the receivers are ready to
receive more messages, the server waits until a queue receiver reports that it can
accept a message.

This arrangement prevents a large buildup of messages at one receiver and
balances the load of incoming messages across a set of queue receivers.

If an expiration property is set for a destination, the server honors the
overridden expiration period and retains the message for the length of time
specified by the expiration property.

However, the server overrides the JMSExpiration value set by the producer in
the message header with the value 0 and therefore the consuming client does not
expire the message.

You can set the expiration property for any queue and any topic using the form:
expiration=time[msec|sec|min|hour|day]

where time is the number of seconds. Zero is a special value that indicates
messages to the destination never expire.

You can optionally include time units, such as msec, sec, min, hour or day to
describe the time value as being in milliseconds, seconds, minutes, hours, or days,
respectively. For example:

expiration=10min
Means 10 minutes.

When a message expires it is either destroyed or, if the
JMS_TIBCO_PRESERVE_UNDELIVERED property on the message is set to true, the
message is placed on the undelivered queue so it can be handled by a special
consumer. See Undelivered Message Queue on page 21 for details.

In EMS version 4.4 and later, clients automatically synchronize their clocks with
the server when a connection is created. However, for long-lasting connections,
Network Time Protocol (NTP) is the most reliable method for ensuring continuing
synchronization between server and client. Additionally, if your EMS server or
client application are based on a version of EMS prior to 4.4, you must ensure that
clocks are synchronized among all the host computers that send and receive
messages, if your pre-4.4 client application uses non-zero values for message
expiration. Synchronize clocks to a tolerance that is a very small fraction of the
smallest message expiration time.

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 61

export

The export property allows messages published by a client to a topic to be
exported to the external systems with configured transports.

You can set export using the form:
export="list"
where [ist is one or more transport names, as specified by the [transport_name] ids in

the transports. conf file. Multiple transport names in the list are separated by
commas.

For example:
export="RV1,RV2"

Currently you can configure transports for SmartSockets or Rendezvous reliable
and certified messaging protocols. You can specify the name of one or more
transports of the same type in the export property.

You must purchase, install, and configure the external system (for example,
Rendezvous) before configuring topics with the export property. Also, you must
configure the communication parameters to the external system by creating a
named transport in the transports. conf file.

For complete details about external message services, see these chapters:
* Chapter 15, Working With TIBCO Rendezvous, on page 401
* Chapter 16, Working With TIBCO SmartSockets, on page 425

flowControl

The flowControl property specifies the target maximum size the server can use
to store pending messages for the destination. Should the number of messages
exceed the maximum, the server will slow down the producers to the rate
required by the message consumers. This is useful when message producers send
messages much more quickly than message consumers can consume them. Unlike
the behavior established by the overflowPolicy property, flowControl never
discards messages or generates errors back to producer.

You can set flowControl using the form:
flowControl=size[KB |MB|GB]

where size is the maximum number of bytes of storage for pending messages of
the destination. If you specify the flowControl property without a value, the
target maximum is set to 256KB.

You can optionally include a KB, MB or GB after the number to specify kilobytes,
megabytes, or gigabytes, respectively. For example:

TIBCO Enterprise Message Service User's Guide

62 |Chapter3 Destinations

global

import

flowControl=1000KB
Means 1000 kilobytes.

The flow_control parameter in tibemsd. conf file must be set to enabled before
the value in this property is enforced by the server. See Flow Control on page 87
for more information about flow control.

Messages destined for a topic or queue with the global property set are routed to
the other servers that are participating in routing with this server.

You can set global using the form:
global

For further information on routing between servers, see Chapter 20, Working
With Routes, on page 509.

The import property allows messages published by an external system to be
received by a EMS destination (a topic or a queue), as long as the transport to the
external system is configured.

You can set import using the form:
import="1Ilist"

where list is one or more transport names, as specified by the [NAME] ids in the
transports.conf file. Multiple transport names in the list are separated by
commas. For example:

import="RV1,RV2"

Currently you can configure transports for TIBCO SmartSockets or TIBCO
Rendezvous reliable and certified messaging protocols. You can specify the name
of one or more transports of the same type in the import property.

You must purchase, install, and configure the external system (for example,
Rendezvous) before configuring topics with the import property. Also, you must
configure the communication parameters to the external system by creating a
named transport in the transports. conf file.

For complete details about external message services, see these chapters:
e Chapter 15, Working With TIBCO Rendezvous, on page 401
e Chapter 16, Working With TIBCO SmartSockets, on page 425

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 63

maxbytes
Topics and queues can specify the maxbytes property in the form:
maxbytes=value[KB |MB |GB]
where wvalue is the number of bytes. For example:
maxbytes=1000
Means 1000 bytes.

You can optionally include a KB, MB or GB after the number to specify kilobytes,
megabytes, or gigabytes, respectively. For example:

maxbytes=1000KB
Means 1000 kilobytes.

For queues, maxbytes defines the maximum size (in bytes) that the queue can
store, summed over all messages in the queue. Should this limit be exceeded,
messages will be rejected by the server and the message producer send calls will
return an error (see also overflowPolicy). For example, if a receiver is off-line for
a long time, then the queue size could reach this limit, which would prevent
further memory allocation for additional messages.

If maxbytes is zero, or is not set, the server does not limit the memory allocation
for the queue.

You can set both maxmsgs and maxbytes properties on the same queue. Exceeding
either limit causes the server to reject new messages until consumers reduce the
queue size to below these limits.

For topics, maxbytes limits the maximum size (in bytes) that the topic can store
for delivery to each durable or non-durable online subscriber on that topic. That
is, the limit applies separately to each subscriber on the topic. For example, if a
durable subscriber is off-line for a long time, pending messages accumulate until
they exceed maxbytes; when the subscriber consumes messages (freeing storage)
the topic can accept additional messages for the subscriber. For a non-durable
subscriber, maxbytes limits the number of pending messages that can accumulate
while the subscriber is online.

Under certain conditions, because of the pipelined nature of message processing
A or the requirements of transactional messaging, the maxbytes limit can be slightly

exceeded. You may see message totals that are marginally larger than the set limit.

When a destination inherits different values of this property from several parent
destinations, it inherits the smallest value.

You can further protect against consumers that receive messages without
% acknowledging them using the parameter disconnect_non_acking_consumers.

TIBCO Enterprise Message Service User's Guide

64 |Chapter3 Destinations

maxmsgs

A

S

maxRedelivery

Topics and queues can specify the maxmsgs property in the form:
maxms gs=value

where wvalue defines the maximum number of messages that can be waiting in a
queue. When adding a message would exceed this limit, the server does not
accept the message into storage, and the message producer’s send call returns an
error (but see also overflowPolicy).

If maxmsgs is zero, or is not set, the server does not limit the number of messages
in the queue.

You can set both maxmsgs and maxbytes properties on the same queue. Exceeding
either limit causes the server to reject new messages until consumers reduce the
queue size to below these limits.

Under certain conditions, because of the pipelined nature of message processing
or the requirements of transactional messaging, the maxmsgs limit can be slightly
exceeded. You may see message totals that are marginally larger than the set limit.

You can further protect against consumers that receive messages without
acknowledging them using the parameter disconnect_non_acking consumers.

The maxRedelivery property specifies the number of attempts the server should
make to deliver a message sent to a queue. Set maxRedelivery using the form:

maxRedelivery=count

where count is an integer between 2 and 255 that specifies the maximum number
of times a message can be delivered to receivers. A value of zero disables
maxRedelivery, so there is no maximum.

Once the server has attempted to deliver the message the specified number of
times, the message is either destroyed or, if the
JMS_TIBCO_PRESERVE_UNDELIVERED property on the message is set to true, the
message is placed on the undelivered queue so it can be handled by a special
consumer. See Undelivered Message Queue on page 21 for details.

For messages that have been redelivered, the JMSRedelivered header property is
set to true and the JMSXDeliveryCount property is set to the number of times the
message has been delivered to the queue. If the server restarts, the current

number of delivery attempts in the JMSXDeliveryCount property is not retained.

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 65

In the event of an abrupt exit by the client, the maxRedelivery count can be
%} mistakenly incremented. An abrupt exit prevents the client from communicating
with the server; for example, when the client exits without closing the connection
or when the client application crashes. If a client application exits abruptly, the
EMS server counts all messages sent to the client as delivered, even if they were
not presented to the application.

For more information, see Undelivered Message Queue on page 21.

overflowPolicy

Topics and queues can specify the overflowPolicy property to change the effect
of exceeding the message capacity established by either maxbytes or maxmsgs.

Set the overflowPolicy using the form:
overflowPolicy=default|discardOld|rejectIncoming
If overflowPolicy is not set, then the policy is default.

The effect of overflowPolicy differs depending on whether you set it on a topic
or a queue, so the impact of each overflowPolicy value is described separately
for topics and queues.

When overflowPolicy is set on multicast-enabled topics, it is honored in the
multicast daemon. That is, the multicast daemon will discard messages based on
the backlog in the daemon rather than the backlog in the server.

For topics and consumers that are not multicast-enabled, the response to the
overflowPolicy occurs in the EMS server.

If wildcards are used in the .conf file the inheritance of the overflowPolicy
policy from multiple parents works as follows:

e If a child destination has a non-default overflowPolicy policy set, then that
policy is used and it does not inherit any conflicting policy from a parent.

¢ If a parent has OVERFLOW_REJECT_INCOMING set, then it is inherited by the
child destination over any other policy.

¢ If no parent has OVERFLOW_REJECT_INCOMING set and a parent has
OVERFLOW_DISCARD_OLD policy set, then that policy is inherited by the child
destination.

e If no parent has the OVERFLOW_REJECT_INCOMING Or OVERFLOW_DISCARD_OLD
set, then the default policy is used by the child destination.

TIBCO Enterprise Message Service User's Guide

66 |Chapter3 Destinations

default

discardOld

rejectincoming

Examples

For topics, default specifies that messages are sent to each subscriber in turn. If
the maxbytes or maxmsgs setting has been reached for a subscriber, that subscriber
does not receive the message. No error is returned to the message producer.

For queues, default specifies that new messages are rejected by the server and an
error is returned to the producer if the established maxbytes or maxmsgs value has
been exceeded.

When delivery delay is enabled for a topic, the behavior of
overflowPolicy=default mimics that of a queue. That is, when maxbytes or
maxmsgs has been reached, new messages are rejected by the server and an error
is returned to the producer.

Note that this is the same default behavior for topics and queues as in EMS 4.3.

For topics, discard0ld specifies that, if any of the subscribers have an
outstanding number of undelivered messages on the server that are over the
message limit, the oldest messages are discarded before they are delivered to the
subscriber.

The discardold setting impacts subscribers individually. For example, you might
have three subscribers to a topic, but only one subscriber exceeds the message
limit. In this case, only the oldest messages for the one subscriber are discarded,
while the other two subscribers continue to receive all of their messages.

When messages for a topic or queue exceed the maxbytes or maxmsgs value, the
oldest messages are silently discarded. No error is returned to the producer.

For topics, rejectIncoming specifies that, if any of the subscribers have an
outstanding number of undelivered messages on the server that are over the
message limit, all new messages are rejected and an error is returned to the
producer.

For queues, rejectIncoming specifies that, if messages on the queue have
exceeded the maxbytes or maxmsgs value, all new messages are rejected and an
error is returned to the producer. (This is the same as the default behavior.)

To discard messages on myQueue when the number of queued messages exceeds
1000, enter:

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 67

setprop queue myQueue maxmsgs=1000,overflowPolicy=discardOld

To reject all new messages published to myTopic when the memory used by
undelivered messages for any of the topic subscribers exceeds 100KB, enter:

setprop topic myTopic maxbytes=100KB,overflowPolicy=rejectIncoming

TIBCO Enterprise Message Service User's Guide

68 |Chapter3 Destinations

prefetch

The message consumer portion of a client and the server cooperate to regulate
fetching according to the prefetch property. The prefetch property applies to
both topics and queues.

You can set prefetch using the form:
prefetch=value

where value is one of the values in Table 13.

Table 13 Prefetch

Value Description

2 or more The message consumer automatically fetches messages from the
server. The message consumer never fetches more than the
number of messages specified by value.

See Automatic Fetch Enabled on page 69 for details.

1 The message consumer automatically fetches messages from the
server—initiating fetch only when it does not currently hold a
message.

none Disables automatic fetch. That is, the message consumer initiates

fetch only when the client calls receive—either an explicit
synchronous call, or an implicit call (in an asynchronous
consumer).

This value cannot be used with topics or global queues.

See Automatic Fetch Disabled on page 70 for details.

0 The destination inherits the prefetch value from a parent
destination with a matching name. If it has no parent, or no
destination in the parent chain sets a value for prefetch, then
the default value is 5 queues and 64 for topics.

When a destination does not set any value for prefetch, then
the default value is 0 (zero; that is, inherit the prefetch value).

See Inheritance on page 70 for details.

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 69

If both prefetch and maxRedelivery are set to a non-zero value, then there is a
%} potential to lose prefetched messages if one of the messages exceeds the
maxRedelivery limit. For example, prefetch=5 and maxRedelivery=4. The first
message is redelivered 4 times, hits the maxRedelivery limit and is sent to the
undelivered queue (as expected). However, the other 4 pre-fetched messages are
also sent to the undelivered queue and are not processed by the receiving
application. The work around is to set prefetch=none, but this can have
performance implications on large volume interfaces.

Background

Delivering messages from the server destination to a message consumer involves
two independent phases—fetch and accept:

e The fetch phase is a two-step interaction between a message consumer and the
server.

— The message consumer initiates the fetch phase by signalling to the server
that it is ready for more messages.

— The server responds by transferring one or more messages to the client,
which stores them in the message consumer.

¢ In the accept phase, client code takes a message from the message consumer.

The receive call embraces both of these phases. It initiates fetch when needed
and it accepts a message from the message consumer.

To reduce waiting time for client programs, the message consumer can prefetch
messages—that is, fetch a batch of messages from the server, and hold them for
client code to accept, one by one.

Automatic Fetch Enabled

To enable automatic fetch, set prefetch to a positive integer. Automatic fetch
ensures that if a message is available, then it is waiting when client code is ready
to accept one. It can improve performance by decreasing or eliminating client idle
time while the server transfers a message.

However, when a queue consumer prefetches a group of messages, the server
does not deliver them to other queue consumers (unless the first queue
consumer’s connection to the server is broken).

‘ A positive prefetch must be configured in order to use receiveNoWait function
% calls.

TIBCO Enterprise Message Service User's Guide

70 |Chapter3 Destinations

Automatic Fetch Disabled

&

Inheritance

redeliveryDelay

& |

To disable automatic fetch, set prefetch=none.

Even when prefetch=none, a queue consumer can still hold a message. For
example, a receive call initiates fetch, but its timeout elapses before the server
finishes transferring the message. This situation leaves a fetched message waiting
in the message consumer. A second receive call does not fetch another message;
instead, it accepts the message that is already waiting. A third receive call
initiates another fetch.

Notice that a waiting message still belongs to the queue consumer, and the server
does not deliver it to another queue consumer (unless the first queue consumer’s
connection to the server is broken). To prevent messages from waiting in this state
for long periods of time, code programs either to call receive with no timeout, or
to call it (with timeout) repeatedly and shorten the interval between calls.

Automatic fetch cannot be disabled for global queues or for topics.

When a destination inherits the prefetch property from parent destination with
matching names, these behaviors are possible:

e When all parent destinations set the value none, then the child destination
inherits the value none.

e When any parent destination sets a non-zero numeric value, then the child
destination inherits the largest value from among the entire parent chain.

e When none of the parent destinations sets any non-zero numeric value, then
the child destination uses the default value (which is 5).

When redeliveryDelay is set, the EMS server waits the specified interval before
returning an unacknowledged message to the queue. When a previously
delivered message did not receive a successful acknowledgement, the EMS server
waits the specified redelivery delay before making the message available again in
the queue. This is most likely to occur in the event of a transaction rollback,
session or message recovery, session or connection close, or the abrupt exit of a
client application. However, note that the delay time is not exact, and in most
situations will exceed the specified redeliveryDelay.

The redelivery delay is not available for routed queues.

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 71

The value can be specified in seconds, minutes, or hours. The value may be in the
range of 15 seconds and 8 hours.

You can set redeliveryDelay using the form:
redeliveryDelay=time[sec |min|hour]

where time is the number of seconds. Zero is a special value that indicates no
redelivery delay.

You can optionally include time units, such as sec, min, or hour describe the time
value as being in seconds, minutes, or hours, respectively. For example:

redeliveryDelay=30min
specifies a redelivery delay of 30 minutes.

During the delay interval, messages are placed in the $sys.redelivery.delay
queue. This queue can be browsed, but it cannot be consumed from or purged.
However, purging the queue from which the delayed message came, or removing
the message using its message ID, immediately removes that message from
$sys.redelivery.delay.

While a message is on the $sys.redelivery.delay queue, it is not on the queue
%} from which it came and so it is not included in statistical message counts. This
includes maxmsgs, maxbytes, flowControl, and so on.

secure

When the secure property is enabled for a destination, it instructs the server to
check user permissions whenever a user attempts to perform an operation on that
destination.

You can set secure using the form:
secure

If the secure property is not set for a destination, the server does not check
permissions for that destination and any authenticated user can perform any
operation on that topic or queue.

The secure property is independent of SSL—it controls basic authentication and
%} permission verification within the server. To configure secure communication
between clients and server, see Using the SSL Protocol on page 465.

The server authorization property acts as a master switch for checking
permissions. That is, the server checks user permissions on secure destinations
only when the authorization property is enabled. To enforce permissions, you
must both enable the authorization configuration parameter, and set the secure
property on each affected destination.

TIBCO Enterprise Message Service User's Guide

72 |Chapter3 Destinations

sender_name

See Chapter 8, Authentication and Permissions, on page 265 for more information
on permissions and the secure property.

The sender_name property specifies that the server may include the sender’s
username for messages sent to this destination.

You can set sender_name using the form:
sender_name

When the sender_name property is enabled, the server takes the user name
supplied by the message producer when the connection is established and places
that user name into the JMS_TIBCO_SENDER property in the message.

The message producer can override this behavior by specifying a property on a
message. If a message producer sets the JMS_TIBCO_DISABLE_SENDER property
to true for a message, the server overrides the sender_name property and does
not add the sender name to the message.

If authentication for the server is turned off, the server places whatever user name
the message producer supplied when the message producer created a connection
to the server. If authentication for the server is enabled, the server authenticates
the user name supplied by the connection and the user name placed in the
message property will be an authenticated user. If SSL is used, the SSL connection
protocol guarantees the client is authenticated using the client’s digital certificate.

sender_name_enforced

The sender_name_enforced property specifies that messages sent to this
destination must include the sender’s user name. The server retrieves the user
name of the message producer using the same procedure described in the
sender_name property above. However, unlike, the sender_name property, there
is no way for message producers to override this property.

You can set sender_name_enforced using the form:

sender_name_enforced

TIBCO Enterprise Message Service User’s Guide

Destination Properties | 73

If the sender_name property is also set on the destination, this property overrides
the sender_name property.

In some business situations, clients may not be willing to disclose the username of
%} their message producers. If this is the case, these clients may wish to avoid
sending messages to destinations that have the sender_name or
sender_name_enforced properties enabled.

In these situations, the operator of the EMS server should develop a policy for
disclosing a list of destinations that have these properties enabled. This will allow
clients to avoid sending messages to destinations that would cause their message
producer usernames to be exposed.

store

The store property determines where messages sent to this destination are
stored. Messages may be stored in a file, or in a database. See Store Messages in
Multiple Stores on page 30 for more information on using and configuring
multiple stores.

When using the setprop or addprop commands to change the store settings for a

A topic or queue, note that existing messages are not migrated to the new store. As a
result, stopping the EMS server and deleting the original store may result in data
loss, if a destination still had messages in the original store.

Set the store property using this form:
store=name
where name is the name of a store, as defined in the stores. conf file.

For example, this will send all messages sent to the destination giants.games to
the store named baseball; messages sent to all other destinations will be stored
in everythingelse:

> store=everythingelse
giants.games store=baseball

Only one store is allowed for each destination. If there is a conflict, for example if
overlapping wildcards cause a topic to inherit multiple store properties, the topic
creation will fail.

This parameter cannot be used without first enabling this feature in the

% tibemsd. conf file. The stores. conf file must also exist, but can be left empty if
the only store names that are associated with destinations are the default store
files.

See Store Messages in Multiple Stores on page 30 for more information.

TIBCO Enterprise Message Service User's Guide

74 |Chapter3 Destinations

trace
The trace property specifies that tracing should be enabled for this destination.
You can set trace using the form:
trace = [body]

Specifying trace (without =body), generates trace messages that include the
message sequence, message ID, and message size. Specifying trace=body
generates trace messages that include the message body. See Message Tracing on
page 452 for more information about message tracing.

TIBCO Enterprise Message Service User’s Guide

Creating and Modifying Destinations | 75

Creating and Modifying Destinations

Destinations are typically "static" administered objects that can be stored in a
JNDI or LDAP server. Administered objects can also be stored in the EMS server
and looked up using the EMS implementation of JNDI. This section describes
how to use the EMS Administration Tool described in Chapter 6 to create and
modify destination objects in EMS.

You create a queue using the create queue command and a topic using the
create topic command. For example, to create a new queue named myQueue,
enter:

create queue myQueue
To create a topic named myTopic, enter:
create topic myTopic

The queue and topic data stored on the EMS server is located in the queues. conf
and topics. conf files, respectively. You can use the show queues and show
topics commands to list all of the queues and topics on your EMS server and the
show queue and show topic commands to show the configuration details of
specific queues and topics.

A queue or topic may include optional properties that define the specific
characteristics of the destination. These properties are described in Destination
Properties on page 58 and they can be specified when creating the queue or topic
or modified for an existing queue or topic using the addprop queue, addprop
topic, setprop queue, setprop topic, removeprop queue,and removeprop
topic commands.

For example, to discard messages on myQueue when the number of queued
messages exceeds 1000, you can set an overflowPolicy by entering:

addprop queue myQueue maxmsgs=1000,overflowPolicy=discardOld
To change the overflowPolicy from discard0ld to rejectIncoming, enter:
addprop queue myQueue overflowPolicy=rejectIncoming

The setprop queue and setprop topic commands remove properties that are
not explicitly set by the command. For example, to change maxmsgs to 100 and to
remove the overflowPolicy parameter, enter:

setprop queue myQueue maxmsgs=100

TIBCO Enterprise Message Service User's Guide

76 |Chapter3 Destinations

Creating Secure Destinations

By default, all authenticated EMS users have permissions to perform any action
on any topic or queue. You can set the secure property on a topic or queue and
then use the grant topic or grant queue command to specify which users
and/or groups are allowed to perform which actions on the destination.

The secure property requires that you enable the authorization property on
the EMS server.

For example, to create a secure queue, named myQueue, to which only users "joe"
and "eric" can send messages and "sally" can receive messages, in the EMS
Administration Tool, enter:

set server authorization=enabled

create queue myQueue secure

grant queue myQueue joe send

grant queue myQueue eric send
grant queue myQueue sally receive

See Chapter 8, Authentication and Permissions, on page 265 for more
information.

TIBCO Enterprise Message Service User’s Guide

Wildcards | 77

Wildcards

You can use wildcards when specifying statically created destinations in
queues.conf and topics.conf. The use of wildcards in destination names can
be used to define "parent” and "child" destination relationships, where the child
destinations inherit the properties and permissions from its parents. You must
first understand wildcards to understand the inheritance rules described in
Inheritance on page 80.

Wildcards * and >

To understand the rules for inheritance of properties, it is important to
understand the use of the two wildcards, * and >.

¢ The wildcard > by itself matches any destination name.

* When > is mixed with text, it matches one or more trailing elements. For
example:

foo.>
Matches foo.bar, foo.boo, foo.boo.bar, and foo.bar.boo.

¢ The wildcard * means that any token can be in the place of *. For example:
foo.*
Matches foo.bar and foo.boo, but not foo.bar.boo.

foo.*.bar

Matches foo.boo.bar, but not foo.bar.

Overlapping Wildcards and Disjoint Properties

Some destination properties are disjoint, and the server allows that property to be
set only once for each destination. If an existing destination includes a value for a
disjoint property and you attempt to assign a different value, the action will fail.

Overlapping wildcard destinations can cause conflicts with disjoint properties.
For example, consider the following configuration of the channel property:

topic.multicast.> channel=multicast_1
topic.multicast.quotes.* channel=multicast_?2

The topic topic.multicast.quotes.tibx would be assigned both channels,
multicast_1 and multicast_2. Therefore, the wildcard topics
topic.multicast.>and topic.multicast.quotes.* cannot coexist. Their
creation would fail.

TIBCO Enterprise Message Service User's Guide

78 |Chapter3 Destinations

The disjoint destination properties are:

channel

store

Wildcards in Topics

TIBCO Enterprise Message Service enables you to use wildcards in topic names in
some situations:

You can subscribe to wildcard topics.

If you subscribe to a topic containing a wildcard, you will receive any message
published to a matching topic. For example, if you subscribe to foo. * you will
receive messages published to a topic named foo.bar.

You can subscribe to a wildcard topic (for example foo.*), whether or not
there is a matching topic in the configuration file (for example, foo.*, foo.>,
or foo.bar). However, if there is no matching topic name in the configuration
file, no messages will be published on that topic.

You cannot publish to wildcard topics.

If foo.bar is not in the configuration file, then you can publish to foo.bar if
foo. * or foo.> exists in the configuration file.

On routed topic messages, subscribers must specify a topic that is a direct
subset (or equal) of the configured global topic. For more information, see
Wildcards on page 527.

Wildcards in Queues

TIBCO Enterprise Message Service enables you to use wildcards in queue names
in some situations. You can neither send to nor receive from wildcard queue
names. However, you can use wildcard queue names in the configuration files.

For example, if the queue configuration file includes a line:

foo.*

then users can dynamically create queues foo.bar, foo.bob, and so forth, but
not foo.bar.bob.

Wildcards and Multicast

Messages published to multicast-enabled topics are sent on the multicast channels
defined for those topics. A wildcard may cover multiple multicast-enabled topics,
each on a different multicast channel.

TIBCO Enterprise Message Service User’s Guide

Wildcards | 79

For example, consider the following configuration:

>

topic.info

topic.quotes

topic.multicast.info channel=channel-1
topic.multicast.quotes channel=channel-2

A message consumer subscribed to topic > will receive messages published to
topic.info and topic.quotes over TCP, will receive messages published to
topic.multicast.info over the multicast channel channel-1 and messages
published to topic.multicast.quotes over the multicast channel channel-2.
Note that this means a wildcard consumer may receive messages over both
multicast and TCP.

Wildcards and Dynamically Created Destinations

As described in Dynamically Creating Topics and Queues on page 340, the EMS
server may dynamically create destinations on behalf of its clients. The use of
wildcards in the . conf files can be used to control the allowable names of
dynamically created destinations.

The same basic wildcard rules apply to dynamically created destinations as
described above for static destinations.

Examples

e [f the queues. conf file contains:

>
The EMS server can dynamically create a queue with any name.

e [f the topics. conf file contains only:

foo.>

The EMS server can dynamically create topics with names like foo.bar,
foo.boo, foo.boo.bar, and foo.bar.boo.

e If the queues. conf file contains only:
foo.*

The EMS server can dynamically create queues with names like foo.bar and
foo.boo, but not foo.bar.boo.

¢ If the topics. conf file contains only:

foo. *.bar

The EMS server can dynamically create topics with names like foo.boo.bar,
but not foo.bar.

TIBCO Enterprise Message Service User's Guide

80 |Chapter3 Destinations

Inheritance

This section describes the inheritance of properties and permissions. For more
information on wildcards, refer to Wildcards on page 77. For more information on
destination properties, refer to Destination Properties on page 58. For more
information on permissions, refer to Chapter 8, Authentication and Permissions,
on page 265.

Inheritance of Properties

All destination properties are inheritable for both topics and queues. This means
that a property set for a "wildcarded" destination is inherited by all destinations
with matching names.

For example, if you have the following in your topics. conf file:
foo.* secure

foo.bar

foo.bob

Topics foo.bar and foo.bob are secure topics because they inherit secure from
their parent, foo. *. If your EMS server were to dynamically create a foo .new
topic, it too would have the secure property.

The properties inherited from a parent are in addition to the properties defined for
the child destination.

For example, if you have the following in your topics. conf file:
foo.* secure
foo.bar sender_ name

Then foo.bar has both the secure and sender_name properties.

In the above example, there is no way to make topic foo. * secure without
making foo.bar secure. In other words, EMS does not offer the ability to remove
inherited properties. However, for properties that are assigned values, you can
override the value established in a parent.

For example, if you have the following in your queues. conf file:
foo.* maxbytes=200
foo.bar maxbytes=2000

The foo.bar queue has a maxbytes value of 2000.

TIBCO Enterprise Message Service User’s Guide

Inheritance | 81

When there are multiple ancestors for a destination, the destination inherits the
properties from all of the parents. For example:

> sender_name

foo.* secure

foo.bar trace

The foo.bar topic has the sender_name, secure and trace properties.
When there are multiple parents for a destination that contain conflicting
property values, the destination inherits the smallest value. For example:
> maxbytes=2000

foo.* maxbytes=200

foo.bar

The foo.bar topic has a maxbytes value of 200.

Property inheritance is powerful, but can be complex to understand and
administer. You must plan before assigning properties to topics and queues.
Using wildcards to assign properties must be used carefully. For example, if you
enter the following line in the topics. conf file:

> store=mystore

you make every topic store messages, regardless of additional entries. This might
require a great deal of memory for storage and greatly decrease the system
performance.

Inheritance of Permissions

Inheritance of permissions is similar to inheritance of properties. If the parent has
a permission, then the child inherits that permission. For example, if Bob belongs
to GroupA, and GroupA has publish permission on a topic, then Bob has
publish permission on that topic.

Permissions for a single user are the union of the permissions set for that user, and
of all permissions set for every group in which the user is a member. These
permission sets are additive. Permissions have positive boolean inheritance. Once
a permission right has been granted through inheritance, it can not be removed.

All rules for wildcards apply to inheritance of permissions. For example, if a user
has permission to publish on topic foo.*, the user also has permission to publish
on foo.bar and foo.new.

For more information on wildcards, refer to Wildcards on page 77. For more
information on permissions, refer to User Permissions on page 283.

TIBCO Enterprise Message Service User's Guide

82 |Chapter3 Destinations

Destination Bridges

Some applications require the same message to be sent to more than one
destination, possibly of different types. For example, an application may send
messages to a queue for distributed load balancing. That same application,
however, may also need the messages to be published to several monitoring
applications. Another example is an application that publishes messages to
several topics. All messages however, must also be sent to a database for backup
and for data mining. A queue is used to collect all messages and send them to the
database.

An application can process messages so that they are sent multiple times to the
required destinations. However, such processing requires significant coding effort
in the application. EMS provides a server-based solution to this problem. You can
create bridges between destinations so that messages sent to one destination are
also delivered to all bridged destinations.

Bridges are created between one destination and one or more other destinations
of the same or of different types. That is, you can create a bridge from a topic to a
queue or from a queue to a topic. You can also create a bridge between one
destination and multiple destinations. For example, you can create a bridge from
topic a.b to queue q.b and topic a.c.

When specifying a bridge, you can specify a particular destination name, or you
can use wildcards. For example, if you specify a bridge on topic foo. * to queue
foo.queue, messages delivered to any topic matching foo. * are sent to
foo.queue.

Because global topics are routed between servers and global queues are limited to
% their neighbors, in most cases the best practice is to send messages to a topic and
then bridge the topic to a queue.

When multiple bridges exist, using wildcards to specify a destination name may
result in a message being delivered twice. For example, if the queues Q.1 and Q. >
are both bridged to QX. 1, the server will deliver two copies of sent messages to
QX. 1.

The following three figures illustrate example bridging scenarios.

TIBCO Enterprise Message Service User’s Guide

Figure 11 Bridging a topic to a queue

Destination Bridges | 83

TIBCO EMS Server / Subscriber
Publisher N Topic <
> A.B
] L[l | subscriber
Queue
queue.B Consumer
Figure 12 Bridging a topic to multiple destinations
TIBCO EMS Server
. | __——» Consumer
Topic
Publisher > P — |
A.B
i i / Subscriber
Queue Topic
queue.B C.B <
| \ :
l Subscriber

Consumer

TIBCO Enterprise Message Service User's Guide

84 |Chapter3 Destinations

Figure 13 Bridging a queue to multiple destinations
TIBCO EMS Server

| _—»{ Consumer
Publisher S Queue _—

queue.foo

—4] i i Subscriber

Queue Topic <

queue.bar topic.foo
/ AN

Consumer

Subscriber

When a bridge exists between two queues, the message is delivered to both
% queues. The queues operate independently; if the message is retrieved from one
queue, that has no effect on the status of the message in the second queue.

Bridges are not transitive. That is, messages sent to a destination with a bridge are
only delivered to the specified bridged destinations and are not delivered across
multiple bridges. For example, topic A.B has a bridge to queue Q.B. Queue Q.B
has a bridge to topic B. C. Messages delivered to A. B are also delivered to Q. B, but
not to B.C.

The bridge copies the source message to the target destination, which assigns the
copied message a new message identifier. Note that additional storage may be
required, depending on the target destination store parameters.

Creating a Bridge

Bridges are configured in the bridges . conf configuration file. You specify a
bridge using the following syntax:

[destinationType : destinationName]
destinationType=destinationToBridgeTo selector="messageSelector"

where destinationType is the type of the destination (either topic or queue),
destinationName is the name of the destination from which you wish to create a
bridge, destinationToBridgeTo is the name of the destination you wish to create a
bridge to, and selector="messsgeSelector" is an optional message selector to
specify the subset of messages the destination should receive.

TIBCO Enterprise Message Service User’s Guide

Destination Bridges | 85

Each destinationName can specify wildcards, and therefore any destination
matching the pattern will have the specified bridge. Each destinationName can
specify more than one destinationToBridgeTo.

For example, the bridge illustrated in Figure 11 and Figure 12 would be specified
as the following in bridges. conf:
[topic:A.B]

queue=queue.B

topic=C.B
Specifying a message selector on a bridged destination is described in the
following section.

Selecting the Messages to Bridge

By default, all messages sent to a destination with a bridge are sent to all bridged
destinations. This can cause unnecessary network traffic if each bridged
destination is only interested in a subset of the messages sent to the original
destination. You can optionally specify a message selector for each bridge to
determine which messages are sent over that bridge.

Message selectors for bridged destinations are specified as the selector property
on the bridge. The following is an example of specifying a selector on the bridges
defined in the previous section:
[topic:A.B]

queue=queue.B

topic=C.B selector="urgency in(’medium’, ’high’)"
For detailed information about message selector syntax, see the documentation
for the Message class in the relevant EMS API reference document.

Access Control and Bridges

Message producers must have access to a destination to send messages to that
destination. However, a bridge automatically has permission to send to its target
destination. Special configuration is not required.

Transactions

When a message producer sends a message within a transaction, all messages
sent across a bridge are part of the transaction. Therefore, if the transaction
succeeds, all messages are delivered to all bridged destinations. If the transaction
fails, no consumers for bridged destinations receive the messages.

TIBCO Enterprise Message Service User's Guide

86 |Chapter3 Destinations

If a message cannot be delivered to a bridged destination because the message
producer does not have the correct permissions for the bridged destination, the
transaction cannot complete, and therefore fails and is rolled back.

TIBCO Enterprise Message Service User’s Guide

Flow Control | 87

Flow Control

In some situations, message producers may send messages more rapidly than
message consumers can receive them. The pending messages for a destination are
stored by the server until they can be delivered, and the server can potentially
exhaust its storage capacity if the message consumers do not receive messages
quickly enough. To avoid this, EMS allows you to control the flow of messages to
a destination. Each destination can specify a target maximum size for storing
pending messages. When the target is reached, EMS blocks message producers
when new messages are sent. This effectively slows down message producers
until the message consumers can receive the pending messages.

Enabling Flow Control

The flow_control parameter in tibemsd. conf enables and disables flow control
globally for the EMS server. When flow_control is disabled (the default
setting), the server does not enforce any flow control on destinations. When
flow_control is enabled, the server enforces any flow control settings specified
for each destination. See Chapter 7, Using the Configuration Files, on page 185 for
more information about working with configuration parameters.

When you wish to control the flow of messages on a destination, set the
flowControl property on that destination. The flowControl property specifies
the target maximum size of stored pending messages for the destination. The size
specified is in bytes, unless you specify the units for the size. You can specify KB,
MB, or GB for the units. For example, flowControl = 60MB specifies the target
maximum storage for pending messages for a destination is 60 Megabytes.

Enforcing Flow Control

The value specified for the flowControl property on a destination is a target
maximum for pending message storage. When flow control is enabled, the server
may use slightly more or less storage before enforcing flow control, depending
upon message size, number of message producers, and other factors. Setting the
flowControl property on a destination but specifying no value causes the server
to use a default value of 256KB.

TIBCO Enterprise Message Service User's Guide

88 |Chapter3 Destinations

When the storage for pending messages is near the specified limit, the server
blocks all new calls to send a message from message producers. The calls do not
return until the storage has decreased below the specified limit, or the
flowControl limit is increased. Once message consumers have received
messages and the pending message storage goes below the specified limit, the
server allows the send message calls to return to the caller and the message
producers can continue processing.

If there are no message consumers for a destination, the server does not enforce
flow control for the destination. That is, if a queue has no started receivers, the
server cannot enforce flow control for that queue. Also, if a topic has inactive
durable subscriptions or no current subscribers, the server cannot enforce flow
control for that topic. For topics, if flow control is set on a specific topic (for
example, foo.bar), then flow control is enforced as long as there are subscribers
to that topic or any parent topic (for example, if there are subscribers to foo. *).

Multicast and Flow Control

&

If a multicast channel exceeds its maximum transmission rate, as determined by
the maxrate of the channel definition in the channels. conf configuration file,
the server may develop a backlog of messages. If f1ow_control parameter in the
tibemsd. conf file is disabled, these messages are buffered in the server until they
can be sent over multicast. The channel backlog can be determined using the show
channel command in the administration tool, or through the ChannelInfo object
in the administration API.

When the flow_control parameter is enabled, the EMS server checks for backlog
before sending a response to the message producers publishing to
multicast-enabled topics. If a message backlog exists, the server delays sending a
response to the message producer until the backlog has been cleared. This causes
the message producer to decrease the rate at which it sends messages to the topic.

The destination property flowControl is not used when determining whether
flow control is to be engaged or disengaged by a multicast channel.

Routes and Flow Control

For global topics where messages are routed between servers, flow control can be
specified for a topic on either the server where messages are produced or the
server where messages are received. Flow control is not relevant for queue
messages that are routed to another server.

TIBCO Enterprise Message Service User’s Guide

Flow Control | 89

If the flowControl property is set on the topic on the server receiving the
messages, when the pending message size limit is reached, messages are not
forwarded by way of the route until the topic subscriber receives enough
messages to lower the pending message size below the specified limit.

If the flowControl property is set on the topic on the server sending the
messages, the server may block any topic publishers when sending new messages
if messages cannot be sent quickly enough by way of the route. This could be due
to network latency between the routed servers or it could be because flow control
on the other server is preventing new messages from being sent.

Destination Bridges and Flow Control

Flow control can be specified on bridged destinations. If you wish the flow of
messages sent over the bridge to slow down when receivers on the bridged-to
destination cannot process the messages quickly enough, you must set the
flowControl property on both destinations on either side of the bridge.

Flow Control, Threads and Deadlock
When using flow control, you must be careful to avoid potential deadlock.

When flow control is in effect for a destination, producers to that destination can
block waiting for flow control signals from the destination’s consumers. If any of
those consumers are within the same thread of program control, a potential for
deadlock exists. Namely, the producer will not unblock until the destination
contains fewer messages, and the consumer in the blocked thread cannot reduce
the number of messages.

The simplest case to detect is when producer and consumer are in the same
session (sessions are limited to a single thread). But more complex cases can arise.
Deadlock can even occur across several threads, or even programs on different
hosts, if dependencies link them. For example, consider the situation in Figure 14:

e Producer P1 in thread T1 has a consumer C2 in thread T2.
e Producer P2 in T2 has a consumer C1 in T1.

* Because of the circular dependency, deadlock can occur if either producer
blocks its thread waiting for flow control signals.

The dependency analysis is analogous to mutex deadlock. You must analyze your
programs and distributed systems in a similar way to avoid potential deadlock.

TIBCO Enterprise Message Service User's Guide

90 |Chapter3 Destinations

Figure 14 Flow Control Deadlock across Two Threads

Send Msg

Dependency

Destinations with
Flow Control

Dest

Consume

~
~ Thread T2

~N
N

C2

Y

Consume

A

Send Msg
»i

D Thread T1 _ -~
e //
Z
p___*
/e P1
/ n
| d
\e
“n. Cl)«
=
y S~
~

TIBCO Enterprise Message Service User’s Guide

w
A

—~—— —_———

Dependency

Vi

¥

< OO QOSDOT ®Qg

’
\-—/

N

Delivery Delay | 91

Delivery Delay

% ‘ This feature is currently available only with EMS clients for Java.

The delivery delay feature allows the message producer to specify the earliest
time at which a message should be delivered to consumers. This is done by using
the setDeliveryDelay() method to set the minimum length of time that must
elapse after a message is sent before the EMS server may deliver the message to a
consumer.

Whenever a message is sent to destination dest with a non-zero delivery delay for
the first time, the server dynamically creates a queue named
$sys.delayed.q.dest when dest is a queue, or $sys.delayed. t.dest when dest is a
topic.

$sys.delayed queues support browsing and purging but do not support other
permissions such as receive or send. They inherit destination limits, security, and
storage selection properties from dest. However, note that a $sys.delayed.t
queue created for a topic that has the secure property cannot be browsed.

Note that the $sys.delayed queue corresponding to a destination takes any
maxmsgs property setting from the destination. That is, if dest has property
maxmsgs set to X, its $sys.delayed queue also has maxmsgs set to X. This doubles
the number of messages that can potentially be held for dest in the server.

If the maxmsgs limit has been reached and the destination has the property
overflowPolicy=rejectIncoming, when the delivery delay expires for a
message one of two things can happen. If the message has the
JMS_TIBCO_PRESERVE_UNDELIVERED set to true, it is put on the
$sys.undelivered queue. Otherwise, the message is discarded.

Note that, when delivery delay is enabled for a topic, the behavior of
overflowPolicy=default mimics that of a queue. That is, when maxbytes or
maxmsgs has been reached, new messages are rejected by the server and an error
is returned to the producer.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/javax/jms/JMSProducer.html#setDeliveryDelay(long)

92 |Chapter3 Destinations

TIBCO Enterprise Message Service User’s Guide

Chapter 4

Topics

|93

Getting Started

This chapter provides a quick introduction to setting up a simple EMS
configuration and running some sample client applications to publish and
subscribe users to a topic.

* About the Sample Clients, page 94

¢ Compiling the Sample Java Clients, page 95

* Creating Users with the EMS Administration Tool, page 96
* Point-to-Point Messaging Example, page 98

® Publish and Subscribe Messaging Example, page 99

* Multicast Messaging Example, page 104

TIBCO Enterprise Message Service User's Guide

94 | Chapter 4 Getting Started

About the Sample Clients

The EMS sample clients were designed to allow you to run TIBCO Enterprise
Message Service with minimum start-up time and coding.

The EMS_HOME/samples directory contains several subdirectories. The /emsca
subdirectory contains samples related to the Central Administration interface.
The /¢, /cs, and /java subdirectories contain the C,.NET and Java sample clients.

In this chapter, you will compile and run the Java sample clients. For information
on how to run the C, .NET, and Central Administration sample clients, see the
readme files in their respective directories.

The EMS_HOME/samples/java directory contains three sets of files:
¢ Sample clients for TIBCO Enterprise Message Service implementation.

e The INDI subdirectory contains sample clients that use the JNDI lookup
technique.

* The tibrv subdirectory contains sample clients that demonstrate the
interoperation of TIBCO Enterprise Message Service with TIBCO Rendezvous
applications.

In this chapter, you will use some of the sample clients in the
EMS_HOME/samples/java directory. For information on compiling and running
the other sample clients, see the Readme files in their respective folders.

TIBCO Enterprise Message Service User’s Guide

Compiling the Sample Java Clients | 95

Compiling the Sample Java Clients

To compile and run the sample Java clients you need to execute "setup" script,
which is located in the EMS_HOME/samples/java directory. On Windows
systems, the setup file is setup.bat. On Unix systems, the setup file is setup. sh.

To compile the sample client files:

1.

Make sure you have JDK 1.7 or greater installed and that you've added the bin
directory to your PATH variable.

Open a command line or console window, and navigate to the
EMS_HOME/samples/java directory.

Open the correct setup script file and verify that the TIBEMS_ROOT
environment variable identifies the correct pathname to your EMS_HOME
directory. For example, on a Windows system this might look like:

set TIBEMS_ROOT=C:\tibco\ems\8.0

Enter setup to set the environment and classpath:
> setup

Compile the samples:

> javac -d . *.java

This compiles all the samples in the directory, except for those samples in the
JNDI and tibrv subdirectories.

If the files compile successfully, the class files will appear in the
EMS_HOME/samples/java directory. If they do not compile correctly, an
error message appears.

TIBCO Enterprise Message Service User's Guide

96 | Chapter 4 Getting Started

Creating Users with the EMS Administration Tool

This section describes how to start the EMS server and use the administration tool
to create two new users.

All of the parameters you set using the administration tool in this chapter can also

% be set by editing the configuration files described in Using the Configuration Files
on page 185. You can also programmatically set parameters using the C, .NET, or
Java APIs. Parameters set programmatically by a client are only set for the length
of the session.

Start the EMS Server and EMS Administration Tool

In this example, you will create topics and users using the EMS administration
tool. You must first start the EMS server before starting the EMS administration
tool.

Start the EMS server
Start the EMS server as described in Running the EMS Server on page 107.

On a computer running Windows, you can also start the EMS server from the
%} Start menu, following the path Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS server.

Start the Administration Tool and Connect to the EMS Server

Start the EMS administration tool as described in Starting the EMS
Administration Tool on page 124.

On a computer running Windows, you can also start the administration tool from
% the Start menu, following the path Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS administration tool.

After starting the administration tool, connect it to the EMS server.

To connect the EMS administration tool to the EMS server, execute one of the
following commands:

e If you are using TIBCO Enterprise Message Service on a single computer, type
connect in the command line of the Administration tool:

> connect

TIBCO Enterprise Message Service User’s Guide

Create Users

Creating Users with the EMS Administration Tool | 97

You will be prompted for a login name. If this is the first time you’ve used the
EMS administration tool, follow the procedure described in When You First
Start tibemsadmin on page 126.

Once you have logged in, the screen will display:

connected to tcp://localhost:7222
tcp://localhost:7222>

e If you are using TIBCO Enterprise Message Service in a network, use the
connect server command as follows:

> connect [server URL] [user-name] [password]
For more information on this command, see connect on page 130.

For further information on the administration tool, see Starting the EMS
Administration Tool on page 124 and Command Listing on page 128.

Once you have connected the administration tool to the server, use the create
user command to create two users.

In the administration tool, enter:

tcp://localhost:7222> create user userl
tcp://localhost:7222> create user user?2

The tool will display messages confirming that userl and user2 have been
created.

You have now created two users. You can confirm this with the show users
command:

tcp://localhost:7222> show users

User Name Description

userl
user?2

For more information on the create user command, refer to create user on
page 133.

TIBCO Enterprise Message Service User's Guide

98 | Chapter 4 Getting Started

Point-to-Point Messaging Example

This section demonstrates how to use point-to-point messaging, as described in
Point-to-Point on page 3.

Create a Queue

In the point-to-point messaging model, client send messages to and receive
messages from a queue.

To create a new queue in the administration tool, use the create queue
command to create a new queue named myQueue:

tcp://localhost:7222> create queue myQueue
For more information on the create queue command, refer to create queue on

page 132. For more information on the commit command, see commit on page 129
and autocommit on page 129.

Start the Sender and Receiver Clients

1. Open two command line windows and in each window navigate to the
EMS_HOME/samples/java folder.

2. In each command line window, enter setup to set the environment and
classpath:
> setup
3. In the first command line window, execute the tibjmsMsgProducer
application to direct user1 to place some messages to the myQueue queue:
> java tibjmsMsgProducer -queue myQueue -user userl Hello User2
4. In the second command line window, execute the tibjmsMsgConsumer client
to direct user2 to read the messages from the message queue:

> java tibjmsMsgConsumer -queue myQueue -user user?2

The messages placed on the queue are displayed in the receiver’s window.

Messages placed on a queue by the sender are persistent until read by the
receiver, so you can start the sender and receiver clients in any order.

S

TIBCO Enterprise Message Service User’s Guide

Publish and Subscribe Messaging Example | 99

Publish and Subscribe Messaging Example

In this section, you will execute a message producer client and two message
consumer clients that demonstrate the publish/subscribe messaging model
described in Publish and Subscribe on page 4. This example is not intended to be
comprehensive or representative of a robust application.

To execute the client samples, you must give them commands from within the
sample directory that contains the compiled samples. For this exercise, open three
separate command line windows and navigate to the EMS_HOME/samples/java
directory in each window.

For more information on the samples, refer to the readme within the sample
directory. For more information on compiling the samples, refer to Compiling the
Sample Java Clients on page 95.

Create a Topic
In the publish/subscribe model, you publish and subscribe to topics.

To create a new topic in the administration tool, use the create topic command
to create a new topic named myTopic:

tcp://localhost:7222> create topic myTopic

For more information on the create topic command, refer to create topic on
page 133. For more information on the commit command, see commit on page 129
and autocommit on page 129.

Start the Subscriber Clients

You start the subscribers first because they enable you to observe the messages
being received when you start the publisher.

To start userl as a subscriber:
1. In the first command line window, navigate to EMS_HOME/samples/java.

2. Enter setup to set the environment and classpath:

> setup

3. Execute the tibjmsMsgConsumer client to assign user1 as a subscriber to the
myTopic topic:
> java tibjmsMsgConsumer -topic myTopic -user userl

The screen will display a message showing that user1 is subscribed to
myTopic.

TIBCO Enterprise Message Service User's Guide

100 | Chapter 4 Getting Started

‘-

To start user?2 as a subscriber:

1.

In the second command line window, navigate to the
EMS_HOME/samples/java folder.

Enter setup to set the environment and classpath:

> setup

Execute the tibjmsMsgConsumer application to assign user2 as a subscriber
to the myTopic topic:

> java tibjmsMsgConsumer -topic myTopic -user user?

The screen will display a message showing that user2 is subscribed to
myTopic.

The command windows do not return to the prompt when the subscribers are
running.

Start the Publisher Client and Send Messages

Setting up the publisher is very similar to setting up the subscriber. However,
while the subscriber requires the name of the topic and the user, the publisher also
requires messages.

To start the publisher:

1. In the third command line window, navigate to the
EMS_HOME/samples/java folder.

2. Enter setup to set the environment and classpath:
> setup

3. Execute the tibjmsMsgProducer client to direct user1 to publish some

messages to the myTopic topic:

> java tibjmsMsgProducer -topic myTopic -user userl hello user2

where 'hello’ and ’user2’ are separate messages.

In this example, user1 is both a publisher and subscriber.

The command line window will display a message stating that both messages
have been published:

Publishing on topic 'myTopic'

Published message: hello
Published message: user?2

TIBCO Enterprise Message Service User’s Guide

Publish and Subscribe Messaging Example | 101

After the messages are published, the command window for the publisher returns
to the prompt for further message publishing.

Ef Note that if you attempt to use the form:
java tibjmsMsgProducer -topic myTopic -user userl

without adding the messages, you will see an error message, reminding you that
you must have at least one message text.

The first and second command line windows containing the subscribers will
show that each subscriber received the two messages:

Subscribing to topic: myTopic

Received message: TextMessage={ Header={
JMSMessageID={ID:EMS-SERVER.97C44203CDF A:1}
JMSDestination={Topic[myTopic]} IMSReplyTo={null}
JMSDeliveryMode={PERSISTENT} JMSRedelivered={false}
JMSCorrelationID={null} IMSType={null} JIMSTimestamp={Tue Mar 21
12:04:56 PST 2006} JMSExpiration={0} JMSPriority={4} }
Properties={} Text={hello} }

Received message: TextMessage={ Header={
JMSMessageID={ID:EMS-SERVER.97C44203CDFA:2}
JMSDestination={Topic[myTopic]} IMSReplyTo={null}
JMSDeliveryMode={PERSISTENT} JMSRedelivered={false}
JMSCorrelationID={null} IMSType={null} JIMSTimestamp={Tue Mar 21
12:04:56 PST 2006} JMSExpiration={0} JMSPriority={4} }
Properties={} Text={user2} }

Create a Secure Topic

In this example, you make myTopic into a secure topic and grant user1
permission to publish to the myTopic and user2 permission to subscribe to
myTopic.

Add the secure Property to the Topic

When the secure property is added to a topic, only users who have been assigned
a certain permission can perform the actions allowed by that permission. For
example, only users with publish permission on the topic can publish, while other
users cannot publish.

If the secure property is not added to a topic, all authenticated users have all
permissions (publish, subscribe, create durable subscribers) on that topic.

For more information on the secure property, see the section about secure,
page 71. For more information on topic permissions, see Chapter 8,
Authentication and Permissions, on page 265.

TIBCO Enterprise Message Service User's Guide

102 | Chapter 4 Getting Started

To enable server authorization and add the secure property to a topic, do the
following steps:

1. In each subscriber window, enter Control-C to stop each subscriber.

2. In the administration tool, use the set server command to enable the
authorization property:

tcp://localhost:7222> set server authorization=enabled

The authorization property enables checking of permissions set on
destinations.

3. Enter the following command to add the secure property to a topic named
myTopic:
tcp://localhost:7222> addprop topic myTopic secure

For more information on the set server command, refer to set server on
page 143. For more information on the addprop topic command, refer to
addprop topic on page 129.

Grant Topic Access Permissions to Users

To see how permissions affect the ability to publish and receive messages, grant
publish permission to user1 and subscribe permission to the user2.

Use the grant topic command to grant permissions to users on the topic
myTopic.

In the administration tool, enter:

tcp://localhost:7222> grant topic myTopic userl publish
tcp://localhost:7222> grant topic myTopic user2 subscribe

For more information on the grant topic command, refer to grant topic on
page 137.

Start the Subscriber and Publisher Clients

Start the subscribers, as described in Start the Subscriber Clients on page 99. Note
that you cannot start user1 as a subscriber because user] has permission to
publish, but not to subscribe. As a result, you receive an exception message
including the statement:

Operation not permitted.
User2 should start as a subscriber in the same manner as before.

You can now start userl1 as the publisher and send messages to user?, as
described in Start the Publisher Client and Send Messages on page 100.

TIBCO Enterprise Message Service User’s Guide

Publish and Subscribe Messaging Example | 103

Create a Durable Subscriber

As described in Publish and Subscribe on page 4, subscribers, by default, only
receive messages when they are active. If messages are published when the
subscriber is not available, the subscriber does not receive those messages. You
can create durable subscriptions, where subscriptions are stored on the server and
subscribers can receive messages even if it was inactive when the message was
originally delivered.

In this example, you create a durable subscriber that stores messages published to
topic myTopic on the EMS server.

To start user?2 as a durable subscriber:

1. In the a command line window, navigate to the EMS_HOME/samples/java
folder.

2. Enter setup to set the environment and classpath:
> setup

3. Execute the tibjmsDurable application to assign user2 as a durable
subscriber to the myTopic topic:
> java tibjmsDurable -topic myTopic -user user?2

4. In the administration tool, use the show durables command to confirm that
user? is a durable subscriber to myTopic:

tcp://localhost:7222> show durables
Topic Name Durable User Msgs Size
* myTopic subscriber user?2 0 0.0 Kb

5. In the subscriber window;, enter Ctrl+C to stop the subscriber.

6. In another command line window, execute the tibjmsMsgProducer client, as
described in Start the Publisher Client and Send Messages on page 100:

> java tibjmsMsgProducer -topic myTopic -user userl hello user?

7. Restart the subscriber:

> java tibjmsDurable -topic myTopic -user user?2
The stored messages are displayed in the subscriber window.

8. Enter Ctrl+C to stop the subscriber and then unsubscribe the durable
subscription:

> java tibjmsDurable -unsubscribe

The subscriber is no longer durable and any additional messages published to
the myTopic topic are lost.

TIBCO Enterprise Message Service User's Guide

104 | Chapter 4 Getting Started

Multicast Messaging Example

This section demonstrates how to use multicast messaging, as described in
Multicast on page 6.

In this example, you will enable multicast in the EMS server and configure a
multicast channel, over which the server can broadcast multicast messages. You
will also create a multicast-enabled topic named multicastTopic and associate it
with the multicast channel, allowing subscribers to receive messages published to
multicastTopic over multicast.

Multicast channels can only be configured statically by modifying the
configuration files. There are no commands in the administration tool to
configure multicast channels.

Stop the EMS Server
Stop the server by using the shutdown command in the administration tool:
tcp://localhost:7222> shutdown

You will be asked to restart the server once it has been configured for multicast.

Enable the EMS Server for Multicast

To enable multicast in the server, set the multicast property to enabled in the
tibemsd. conf configuration file:

multicast = enabled

Create a Multicast Channel

The EMS server broadcasts messages to consumers over multicast channels. Each
channel has a defined multicast address and port. Messages published to a
multicast-enabled topic are sent by the server and received by the subscribers on
these multicast channels.

To create a multicast channel, add the following definition to the multicast
channels configuration file, channels. conf:

[multicast-1]
address=234.5.6.7:1

TIBCO Enterprise Message Service User’s Guide

Multicast Messaging Example | 105

Start the EMS Server
Start the EMS server as described in Running the EMS Server on page 107.
% On a computer running Windows, you can also start the EMS server from the

Start menu, following the path Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS server.

In the administration tool, use the show topics command to confirm that
multicastTopic is multicast-enabled as indicated by a ‘+” in the M column:

tcp://localhost:7222> show topics
Topic Name SNFGEIBCTM Subs Durs Msgs Size
multicastTopic = -—-------- + 0 0 0 0.0 Kb

Enable a Topic for Multicast

In order to make a topic multicast-enabled it must be associated with a multicast
channel through its channel property.

To create a multicast-enabled topic, use the administration tool to issue the
following command:

> create topic multicastTopic channel=multicast-1

Start the Multicast Daemon

Start the Multicast Daemon as described in Starting the Multicast Daemon on
page 379.

Start the Subscriber Client

Creating a multicast subscriber follows the same steps as creating a non-multicast
subscriber, except that a multicast subscriber requires a session acknowledgment
mode of com.tibco.tibjms.Tibjms .NO_ACKNOWLEDGE.

To start user1 as a multicast subscriber:

1. Inacommand line window, navigate to the EMS_HOME/samples/java
folder.

2. Enter setup to set the environment and classpath:

> setup

TIBCO Enterprise Message Service User's Guide

106 | Chapter 4 Getting Started

3.

Execute the tibjmsMsgConsumer client to assign user1 as a subscriber to the
multicastTopic topic with a Session acknowledgment mode of
NO_ACKNOWLEDGE:

> java tibjmsMsgConsumer -topic multicastTopic -user userl —-ackmode NO

4.

In the administration tool, use the show consumers command to confirm that
userl is a multicast subscriber to multicastTopic as indicated by a + in the
M column:

tcp://optimist:7222> show consumers topic=multicastTopic

Pend Pend
Id Conn User T Topic SASNM Msgs Size Uptime
2 4 userl T multicastTopic +N--+ 0 0 0:03:17

Start the Publisher Client and Send Messages

Setting up a client to publish multicast message is no different from setting up a
client to send publish and subscribe messages. Because the topic is enabled for
multicast in the EMS server, the message producer does not need to follow any
additional steps.

To create the message publisher:

1.

In a new command line window, navigate to the EMS_HOME/samples/java
folder.

Enter setup to set the environment and classpath:

> setup

Execute the tibjmsMsgProducer client to direct user1 to publish some
messages to the multicastTopic topic:

> java tibjmsMsgProducer -topic multicastTopic -user userl hello
multicast

where 'hello’ and 'multicast’ are separate messages.

In this example, user1 is both a publisher and subscriber.

The messages are displayed in the subscriber’s window.

TIBCO Enterprise Message Service User’s Guide

Chapter 5

Topics

|107

Running the EMS Server

To use TIBCO Enterprise Message Service with your applications, the TIBCO
Enterprise Message Service Server must be running. The server and the clients
work together to implement TIBCO Enterprise Message Service. The server
implements all types of message persistence and no messages are stored on the
client side.

e Starting and Stopping the EMS Server, page 108

¢ Running the EMS Server as a Windows Service, page 112
* Error Recovery Policy, page 115

® Security Considerations, page 116

* How EMS Manages Access to Shared Store Files, page 120

TIBCO Enterprise Message Service User's Guide

108 | Chapter 5 Running the EMS Server

Starting and Stopping the EMS Server

S
S

This section describes how to start and stop the EMS server.

On a computer running Microsoft Windows, you can start the EMS server from
the Start menu, following the path: Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS Server

On Windows systems the tibemsd.exe and tibemsmcd.exe files run as
administrator to enable multicast functionality and to let the tibemsd. exe
modify the configuration files.

Starting the EMS Server Using the Default Configuration

On UNIX

On Windows

To start the EMS server from the command line using the preconfigured setup,
navigate to EMS_HOME/bin and run the script:

tibemsd. sh

tibemsd.bat

Running the script starts the EMS server using the configuration files in the
default location, config-file-directory\ cfmgmt\ems\data directory, where the
config-file-directory corresponds to the Configuration Directory specified during
installation.

Starting the EMS Server Using JSON Configuration

S

Users using the Central Administration feature must start the EMS server in JSON
mode. This is done from the command line, using the -config option to specify
the JSON configuration file. For more information, see JSON Configuration Files
in the TIBCO Enterprise Message Service Central Administration guide.

Your JSON-configured tibemsd must be running before it can be added to the
Central Administration server list. To start the TIBCO Enterprise Message Service
server using the JSON configuration file:

1. From the command line, navigate to EMS_HOME /bin.

2. Enter the following command and option:
tibemsd -config json-file-path

where json-file-path is the path to your JSON configuration file. For example:

TIBCO Enterprise Message Service User’s Guide

Starting and Stopping the EMS Server | 109

tibemsd -config /tibemsconfig/tibemsd.json

When started using the JSON configuration, the tibemsd silently ignores any
unknown parameters. For example, no configuration errors are thrown if the
tibemsd. json file contains an obsolete parameter.

For information on converting . conf configuration files to JSON configuration
% files, see Converting Server Configuration Files to JSON in the TIBCO Enterprise
Message Service Central Administration guide.

Starting Fault Tolerant Server Pairs

In Central Administration, fault tolerant pairs share a single JSON configuration
file. Primary and secondary server roles are determined when the servers are
started.

Start the primary EMS server as usual. Start the secondary server using the
-secondary flag. For example, where the JSON configuration file is
tibemsd. json:

To start the primary server: tibemsd -config tibemsd.json
To start the secondary server: tibemsd -config tibemsd.json -secondary

For more information, see Configuring Fault Tolerance in Central Administration
on page 502.

Starting the EMS Server Using Options

To start the EMS server from the command line using options:

Task A Navigate to the data subdirectory.

The preconfigured EMS server files are located in the
config-file-directory\ cfmgmt \ems\data directory, where the config-file-directory
corresponds to the Configuration Directory specified during installation. For
more information, see Installing TIBCO Enterprise Message Service in TIBCO
Enterprise Message Service Installation.

Change the directory to the installed data directory:
On UNIX ./tibemsd -config "config-file-directory/cfmgmt/ems/data/tibemsd.conf”

On Windows .\tibemsd -config “config-file-directory\cfmgmt\ems\data\tibemsd.conf”

TIBCO Enterprise Message Service User's Guide

110 | Chapter 5 Running the EMS Server

Alternately, change to the EMS_HOME\samples\config directory and create a
datastore directory (or other directories as needed) to use the sample
configuration files there.

The EMS server dynamically loads the SSL and compression shared libraries,
rather than statically linking them. If the tibemsd executable is executed from the
data directory, it automatically locates these libraries. If the server is moved
elsewhere, the shared library directory must be moved as well.

Task B Start the tibemsd
Type tibemsd [options]

where options are described in Table 14. The command options to tibemsd are
similar to the parameters you specify in tibemsd.conf, and the command
options override any value specified in the parameters. See tibemsd.conf on
page 187 for more information about configuration parameters.

Table 14 tibemsd Options

Option Description

-config config file name config file name is the name of the main configuration file for tibemsd
server. Default is tibemsd. conf.

For example, to start an EMS server using the default JSON
configuration file, use:

tibemsd -config tibemsd.json

-trace items Specifies the trace items. These items are not stored in the
configuration file. The value has the same format as the value of
log_trace parameter specified with set server command of the
administration tool; see Tracing on the Server on page 447.

-secondary Specifies the secondary server in a fault tolerant pair. This option is
only valid for EMS servers started using JSON config

-ssl_password string Private key password.

-ssl_trace Print the certificates loaded by the server and do more detailed
tracing of SSL-related situation.

-ssl_debug trace Turns on tracing of SSL connections.

-ft_active active_url URL of the active server. If this server can connect to the active
server, it will act as a backup server. If this server cannot connect to
the active server, it will become the active server.

TIBCO Enterprise Message Service User’s Guide

Starting and Stopping the EMS Server | 111

Table 14 tibemsd Options (Cont’d)

Option Description

-ft_heartbeat seconds Heartbeat signal for the active server, in seconds. Default is 3.

-ft_activation seconds Activation interval (maximum length of time between heartbeat
signals) which indicates that active server has failed. Set in seconds:
default is 10. This interval should be set to at least twice the
heartbeat interval.

-forceStart Causes the sever to delete corrupted messages in the store files,
allowing the server to start even if it encounters errors.

Note that using this option causes data loss, and it is important to
backup store files before using -forceStart. See Error Recovery
Policy on page 115 for more information.

Stopping the EMS Server

You can stop the EMS server by means of the shutdown command from the EMS
Administration Tool.

TIBCO Enterprise Message Service User's Guide

112 | Chapter 5 Running the EMS Server

Running the EMS Server as a Windows Service

Some situations require the EMS server and multicast daemon processes to start
automatically. You can satisfy this requirement by registering these with the
Windows service manager. The emsntsrg utility facilitates registry.

emsntsrg
The emsntsrg utility registers or unregisters the EMS server daemon or the EMS

multicast daemon as a Windows service.

This utility applies only to Microsoft Windows (all supported versions, including
2003, XP, and Vista).

S

Syntax emsntsrg /i [/al service_name emsntsct_directory service_directory [arguments]
[suffix]

emsntsrg /r [service_name] [sufﬁx]

Remarks Some situations require the EMS server processes to start automatically. You can
satisfy this requirement by registering these with the Windows service manager.
This utility facilitates registry.

Restrictions You must have administrator privileges to change the Windows registry.

Location Locate this utility program as an executable file in the EMS bin directory.

/i Insert a new service in the registry (that is, register a new service).
/a Automatically start the new service. Optional with /1.

/? Display usage.

service_name Insert or remove a service with this base name.

When inserting a service, this parameter is required, and must be tibemsd or
tibemsmcd.

When removing a service, this parameter is optional. However, if it is present,
it must be tibemsd or tibemsmcd.

TIBCO Enterprise Message Service User’s Guide

Running the EMS Server as a Windows Service | 113

Parameter Description

emsntsct_directory Use this directory pathname to specify the location of the emsntsct.exe
executable. The emsntsrg utility registers the emsntsct.exe program as a
windows service. The emsntsct . exe program then invokes the associated
tibemsd or tibemsmcd.

By default, emsntsct.exe is located in EMS_HOME\bin.

This parameter is only required when installing a service.

service_directory Use this directory pathname to locate the service executable, either tibemsd or
tibemsmed. Required.

arguments Supply command line arguments. Optional with /1.

Enclose the entire arguments string in double quote characters.

suffix When registering more than one instance of a service, you can use this suffix to
distinguish between them in the Windows services applet. Optional.

/T Remove a service from the registry.

Register To register tibemsd as a Windows service, run the utility with this command line:

emsntsrg /i [/a] tibemsd emsntsct_directory tibemsd_directory [argquments]
[suffix]

To register tibemsmcd as a Windows service, run the utility with this command
line:

emsntsrg /i [/a] tibemsmcd emsntsct_directory tibemsmcd_directory [arguments]
[suffix]
Example 1 This simple example registers one tibemsd service:

emsntsrg /i tibemsd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin

Example 2 This example registers a service with command line arguments:
emsntsrg /i tibemsd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
"-trace DEFAULT"

Example 3 This pair of example commands registers two tibemsd services with different
configuration files. In this example, the numerical suffix and the configuration
directory both reflect the port number that the service uses.

emsntsrg /i tibemsd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
"-config C:\tibco\ems\8.0\7222\tibemsd.conf" 7222

emsntsrg /i tibemsd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
"-config C:\tibco\ems\8.0\7223\tibemsd.conf" 7223

TIBCO Enterprise Message Service User's Guide

114 | Chapter 5 Running the EMS Server

Example 4

Example 5

Example 6

Remove

Command
Summary

Windows
Services Applet

Notice these aspects of this example:

¢ When installing tibemsd, if you supply a -config argument, the service
process finds the directory containing the main configuration file
(tibemsd. conf), and creates all secondary configuration files in that directory.
In this example, each service uses a different configuration directory.

¢ When you register several EMS services, you must avoid configuration
conflicts. For example, two instances of tibemsd cannot listen on the same
port.

This example registers one multicast daemon service:

emsntsrg /i tibemsmcd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
This example registers a multicast daemon service with command line
arguments:

emsntsrg /i tibemsmcd C:\tibco\ems\8.0\bin C:\tibcol\ems\8.0\bin
"-logfile c:\tibemsmcd.log"

Note that specifying a log file can help identify conflicts that might prevent the
multicast daemon service from starting.

This pair of example commands registers two multicast daemon services with
different ports. In this example, the numerical suffix reflects the port number that
the service uses.

emsntsrg /i tibemsmcd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
"-listen 7345" 7345

emsntsrg /i tibemsmcd C:\tibco\ems\8.0\bin C:\tibco\ems\8.0\bin
"-listen 7346" 7346

To unregister a service, run the utility with this command line:
emsntsrg /r [service_name] [suffix]
Both parameters are optional. If the service_name is present, it must be tibemsd or
tibemsmed. To supply the suffix parameter, you must also supply the service_name.
When both parameters are absent, the utility removes the services named
tibemsd and tibemsmcd.
To view a command line summary, run the utility with this command line:
emsntsrg
The Windows services applet displays the name of each registered service. For
EMS services, it also displays this additional information:
¢ The suffix (if you supply one)

¢ The process ID (PID)—when the service is running

TIBCO Enterprise Message Service User’s Guide

Error Recovery Policy | 115

Error Recovery Policy

During startup the EMS server can encounter a number of errors while it recovers
information from the store files. Potential errors include:

* Low-level file errors. For example, corrupted disk records.

* Low-level object-specific errors. For example, a record that is missing an
expected field.

* Inter-object errors. For example, a session record with no corresponding
connection record.

When the EMS server encounters one of these errors during startup, the recovery
policy is:

* By default, the server exits startup completely when a corrupt disk record
error is detected. Because the state can not be safely restored, the server can
not proceed with the rest of the recovery. You can then examine your
configuration settings for errors. If necessary, you can then copy the store and
configuration files for examination by TIBCO Support.

* You can direct the server to delete bad records by including the -forceStart
command line option. This prevents corruption of the server runtime state.

* The server exits if it runs out of memory during startup.

It is important to backup the store files before restarting the server with the

-forceStart option, because data will be lost when the problematic records are
deleted.

Keep in mind that different type of records are stored in the store files. The most
obvious are the persistent JMS Messages that your applications have sent.
However, other internal records are also stored. If a consumer record used to
persist durable subscriber state information were to be corrupted and later
deleted with the -forceStart option, all JMS messages that were persisted (and
valid in the sense that they were not corrupted) would also be lost because the
durable subscription itself would not be recovered.

When running in this mode, the server still reports any errors found during the
recovery, but problematic records are deleted and the recovery proceeds. This
mode may report more issues than are reported without the -forceStart option,
because without that flag the server stops with the very first error.

We strongly recommended that you make a backup of all store files before

A restarting the server with the -forceStart option. The backup is useful when
doing a postmortem analysis to find out what records were deleted with the
-forceStart option.

TIBCO Enterprise Message Service User's Guide

116 | Chapter 5 Running the EMS Server

Security Considerations

&

This section highlights information relevant to secure deployment. We
recommend that all administrators read this section.

Secure Environment

To ensure secure deployment, EMS administration must meet the following
criteria:

Correct Installation EMS is correctly installed and configured.

Physical Controls The computers where EMS is installed are located in areas
where physical entry is controlled to prevent unauthorized access. Only
authorized administrators have access, and they cooperate in a benign
environment.

Domain Control The operating system, file system and network protocols
ensure domain separation for EMS, to prevent unauthorized access to the
server, its configuration files, LDAP servers, etc.

Benign Environment Only authorized administrators have physical access or
domain access, and those administrators cooperate in a benign environment.

Destination Security

Three interacting factors affect the security of destinations (that is, topics and
queues). In a secure deployment, you must properly configure all three of these
items:

The server’s authorization parameter (see Authorization Parameter, below)
The secure property of individual destinations (see secure on page 71)

The ACL permissions that apply to individual destinations (see
Authentication and Permissions on page 265)

Authorization Parameter

The server’s authorization parameter acts as a master switch for checking
permissions for connection requests and operations on secure destinations. The
default value of this parameter is disabled—the server does not check any
permissions, and allows all operations. For secure deployment, you must enable
this parameter.

TIBCO Enterprise Message Service User’s Guide

Security Considerations | 117

Admin Password

For ease in installation and initial testing, the default setting for the admin
password is no password at all. Until you set an actual password, the user admin
can connect without a password. Once the administrator password has been set,
the server always requires it.

To configure a secure deployment, the administrator must change the admin
password immediately after installation; see Assign a Password to the
Administrator on page 126.

Connection Security

When authorization is enabled, the server requires a name and password
before users can connect. Only authenticated users can connect to the server. The
form of authentication can be either an X.509 certificate or a username and
password (or both).

When authorization is disabled, the server does not check user authentication;
all user connections are allowed. However, even when authorization is
disabled, the user admin must still supply the correct password to connect to the
server.

Even when authorization is enabled, the administrator (admin) may explicitly
allow anonymous user connections, which do not require password
authorization. To allow these connections, create a user with the name anonymous
and no password.

Creating the user anonymous does not mean that anonymous has all permissions.
% Individual topics and queues can still be secure, and the ability to use these
destinations (either sending or receiving) is controlled by the access control list of
permissions for those destinations. The user anonymous can access only
non-secure destinations.

Nonetheless, this feature (anonymous user connections) is outside the tested
configuration of EMS security certification.

For more information on destination security, refer to the destination property
secure on page 71, and Create Users on page 97.

TIBCO Enterprise Message Service User's Guide

118 | Chapter 5 Running the EMS Server

Communication Security

For communication security between servers and clients, and between servers
and other servers, you must explicitly configure SSL within EMS; see Using the
SSL Protocol on page 465.

SSL communication requires software to implement SSL on both server and
client. The EMS server includes the OpenSSL implementation. Java client
programs must use either JSSE (part of the Java environment) or separately
purchased SSL software from Entrust; neither of these are part of the EMS
product. C client programs can use the OpenSSL library shipped with EMS.

Sources of Authentication Data

Timestamp

The server uses only one source of X.509 certificate authentication data, namely,
the server parameter ss1_server_trusted (its value is set in EMS an
configuration file). See ss1_server_trusted on page 227.

The server can use three sources of secure password authentication data:
¢ Local data from the EMS configuration files.

¢ External data from an LDAP.

¢ A user-supplied JAAS LoginModule.

You must safeguard the security of EMS configuration files and LDAP servers.

The administration tool can either include or omit a timestamp associated with
the output of each command. To ensure a secure deployment, you must explicitly
enable the timestamp feature. Use the following administration tool command:

time on

TIBCO Enterprise Message Service User’s Guide

Security Considerations | 119

Passwords

Passwords are a significant point of vulnerability for any enterprise. We
G A recommend enforcing strong standards for passwords.

For security equivalent to single DES (an industry minimum), security experts
recommend passwords that contain 8-14 characters, with at least one upper case
character, at least one numeric character, and at least one punctuation character.

EMS software does not automatically enforce such standards for passwords. You
must enforce such policies within your organization.

Audit Trace Logs

Audit information is output to log files (and stderr), and is configured by the
server parameters log_trace and console_trace (see Tracing and Log File
Parameters on page 220).

The DEFAULT setting includes +ADMIN, so all administrative operations produce
audit output. For further details, see Table 72, Server Tracing Options, on
page 448.

Audit information in log files is always timestamped.

Administrators can read and print the log files for audit review using tools (such
as text editors) commonly available within all IT environments. EMS software
does not include a special tool for audit review.

TIBCO Enterprise Message Service User's Guide

120 | Chapter 5 Running the EMS Server

How EMS Manages Access to Shared Store Files

To prevent two EMS servers from using the same store file, each server restricts
access to its store file for the duration of the server process. This section describes
how EMS manages locked store files.

Windows On Windows platforms, servers use the standard Windows CreateFile function,
supplying FILE_SHARE_READ as the dwShareMode (third parameter position) to
restrict access to other servers.

UNIX On UNIX platforms, servers use the standard fentl operating system call to
implement cooperative file locking:

struct flock f1;
int err;

fl.1_type = F_WRLCK;
fl.1_whence = 0

fl.1 start =
fl.1 1len = 0;

0;
err = fcntl(file, F_SETLK, &fl);

To ensure correct locking, we recommend checking the operating system
documentation for this call, since UNIX variants differ in their implementations.

TIBCO Enterprise Message Service User’s Guide

Performance Tuning | 121

Performance Tuning

By default, the TIBCO Enterprise Message Service server has the following
general thread architecture:

¢ Asingle thread to process network traffic.
¢ One thread for each store.

* Additional threads for various background tasks such as expiring messages,
connecting routes, and so on.

Setting Thread Affinity for Increased Throughput

If the default behavior of the EMS server cannot provide the required throughput
and the EMS server machine has multiple cores, you can assign specific cores to
the EMS threads that handle network traffic and stores.

For instance, with a 4-core machine, you can use the processor_ids parameter to
assign core 0 and core 1 to handle network traffic. You can also use the store
configuration processor_id parameter to assign core 2 to handle the
$sys.failsafe store. This configuration causes the EMS server to create two
threads that handle network traffic, and sets the affinity of them to core 0 and core
1 respectively. It also sets the affinity of the thread handling the store
$sys.failsafe to core 2. No affinity is set for other threads.

Determining Core Allocation

The phrase "less is more" summarizes the best practices for EMS performance
tuning.

1. If the default behavior provides sufficient throughput, do not change it.

When the EMS server does not set thread affinity, the operating system can
better schedule EMS server threads to react to changing workloads on the
machine. Also examine if the application is making efficient use of the API
before changing the default behavior. For example, when performing
persistent messaging operations, consider using multiple threads in the
applications (each with its own session) or consider using local transactions to
batch sends and acknowledgements.

2. Use the minimum number of cores to handle network traffic. Binding a single
core may yield sufficient performance improvements over the default
behavior, so start testing affinity there. Using excessive numbers of cores leads
to greater thread contention for global data structures, which can reduce
throughput and waste machine resources. Excessive numbers can also lead to

TIBCO Enterprise Message Service User's Guide

122 | Chapter 5 Running the EMS Server

more unbalanced connection assignments. TIBCO tests have shown that three
(or four under some workloads) is the maximum useful number for network
traffic.

When setting core assignment for network traffic for persistent messaging,
also set core assignment for stores in order to prevent contention between
threads handling those tasks.

Network I/0 Connections

When a client connects to the EMS server, the EMS server assigns it to one of the
threads handling network traffic based on which of those threads have the fewest
existing connections. This balances the total number of connections evenly across
those threads.

Note that if all the connections to one thread are closed, the EMS server does not
move existing connections from other threads in order to rebalance them.

Also note that the EMS server does not account for the traffic generated by those
connections. For instance, the EMS server could assign ten connections to one
thread and ten connections to another thread but still have an unbalanced state if
the first ten connections account for 90% of all network traffic to the EMS server.

Other Considerations

When assigning cores for EMS use, ensure that the Operating System does not
schedule those cores for other processes.

Assign cores on the same die if possible. This reduces cache sharing between
dies. High levels of cache sharing between dies reduces memory performance.

Hyper-threads are not real cores. Disable hyper-threading if possible. Do not
assign cores to the EMS server such that it sets affinity for two "cores" that are
actually sharing the same physical core by hyper-threading.

TIBCO Enterprise Message Service User’s Guide

|123

Chapter 6 Using the EMS Administration Tool

This chapter gives an overview of commands and use in the administration tool
for TIBCO Enterprise Message Service.

Topics

e Starting the EMS Administration Tool, page 124
¢ Naming Conventions, page 127

¢ Command Listing, page 128

TIBCO Enterprise Message Service User's Guide

124 | Chapter 6 Using the EMS Administration Tool

Starting the EMS Administration Tool

The EMS Administration Tool is located in your EMS_HOME /bin directory and is
a stand-alone executable named tibemsadmin on UNIX and tibemsadmin.exe
on Windows platforms.

On a computer running Windows, you can also start the administration tool from
the Start menu, following the path Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS administration tool.

The EMS server must be started as described in Chapter 5, Running the EMS
Server, on page 107 before you start the EMS Administration Tool.

When a system uses shared configuration files, then actions performed using the
%} administration tool take effect only when connected to the active server. If you
have configured fault-tolerant servers and connect to the standby server, the
administration tool will print a message notifying you of this. Additionally, if the
administration tool is connected to the backup server, it will be disconnected
when a switchover occurs.

Type tibemsadmin -help to display information about tibemsadmin startup
parameters. All tibemsadmin parameters are optional.

Table 15 lists options for tibemsadmin.

Table 15 tibemsadmin Options

Option Description

-helpor -h Print the help screen.

-script script-file Execute the specified text file containing
tibemsadmin commands then quit. Any valid
tibemsadmin command described in this chapter
can be executed.

Line breaks within the file delimit each command.
That is, every command must be contained on a
single line (no line breaks within the command),
and each command is separated by a line break.

-server server-url Connect to specified server.
-user user-name Use this user name to connect to server.
-password password Use this password to connect to server.

TIBCO Enterprise Message Service User’s Guide

Starting the EMS Administration Tool | 125

Table 15 tibemsadmin Options

Option Description

-ignore Ignore errors when executing script file. This
parameter only ignores errors in command
execution but not syntax errors in the script.

-mangle [password] Mangle the password and quit. Mangled string in
the output can be set as a value of one of these
passwords from the configuration files:

* server password

* server SSL password

¢ LDAP admin password
¢ database password

If the password is not entered it is prompted for.

-ssl_trusted filename File containing trusted certificate(s). This
parameter may be entered more than once if
required.

-ssl_identity filename File containing client certificate and (optionally)
extra issuer certificate(s), and the private key.

-ssl_issuer filename File containing extra issuer certificate(s) for
client-side identity.

-ssl_password password Private key or PKCS#12 password. If the
password is required, but has not been specified,

it will be prompted for.
-ssl_noverifyhostname Do not verify hostname against the name on the
certificate.
-ssl_hostname name Name expected in the certificate sent by the host.
-ssl_trace Show loaded certificates and certificates sent by
the host.
-ssl_debug_trace Show additional tracing, which is useful for
debugging.

TIBCO Enterprise Message Service User's Guide

126 | Chapter 6 Using the EMS Administration Tool

&

When a command specifies -user and -password, that information is not stored
for later use. It is only used to connect to the server specified in the same
command line. The user name and password entered on one command line are
not reused with subsequent connect commands entered in the script file or
interactively.

Examples

tibemsadmin -server "tcp://host:7222"
tibemsadmin -server "tcp://host:7222" -user admin -password secret

Some options are needed when you choose to make a SSL connection. For more
information on SSL connections, refer to Chapter 18, Using the SSL Protocol,
page 465.

When You First Start tibemsadmin

The administration tool has a default user with the name admin. This is the
default user for logging in to the administration tool.

To protect access to the server configuration, you must assign a password to the
user admin.

Assign a Password to the Administrator
1. Log in and connect to the administration tool, as described directly above.
2. Use the set password command to change the password:

set password admin password

When you restart the administration tool and type connect, the administration
tool now requires your password before connecting to the server.

For further information about setting and resetting passwords, refer to set
password on page 142.

TIBCO Enterprise Message Service User’s Guide

Naming Conventions | 127

Naming Conventions

These rules apply when naming users, groups, topics or queues:

e s isillegal at the beginning of the queue or topic names—but legal at the
beginning of user and group names.

non

e A user name cannot contain colon (":") character.

® Space characters are permitted in a description field—if the entire description
field is enclosed in double quotes (for example, "description field").

* Both * and > are wildcards, and cannot be used in names except as wildcards.
For more information about wildcards, see Wildcards on page 77.

* Dot separates elements within a destination name (foo.bar. *) and can be
used only for that purpose.

Name Length Limitations
The following length limitations apply for these parameter names:

¢ Destination name — cannot exceed 249 characters. For more information on
topic and queue naming conventions, see Destination Name Syntax on
page 56.

¢ Username — cannot exceed 127 characters. The username parameter is
described in users. conf on page 262.

¢ Group name — cannot exceed 127 characters. The group-name parameter is
described in groups. conf on page 249.

e C(lient ID — cannot exceed 255 characters. The clientID parameter is
described in factories.conf on page 245.

e Connection URL — cannot exceed 1000 characters. The url parameter is
described in factories.conf on page 245.

e Passwords — cannot exceed 4096 characters. This length limitation applies to
passwords used by the tibemsd to authenticate connecting clients or servers.

TIBCO Enterprise Message Service User's Guide

128 | Chapter 6 Using the EMS Administration Tool

Command Listing

The command line interface of the administration tool allows you to perform a
variety of functions. Note that when a system uses shared configuration files, the
actions performed using the administration tool take effect only when connected
to the active server.

Many of the commands listed below accept arguments that specify the names of
% users, groups, topics or queues. For information about the syntax and that apply
to these names, see Naming Conventions on page 127.

Note that SSL commands are not listed in this table. SSL. commands are listed in
% several tables in Chapter 18, Using the SSL Protocol, on page 465.

The following is an alphabetical listing of the commands including command
syntax and a description of each command.

add member

add member group_name user_name [,user2,user3,...]

Add one or more users to the group. User names that are not already defined are
added to the group as external users; see Administration Commands and
External Users and Groups on page 280.

addprop factory
addprop factory factory-name properties . . .
Adds properties to the factory. Property names are separated by spaces.

See factories.conf on page 245 for the list of factory properties.

An example is:

addprop factory MyTopicFactory ssl_trusted=certl.pem
ssl_trusted=cert2.pem ssl_verify host=disabled

addprop queue

addprop queue queue-name properties, . . .
Adds properties to the queue. Property names are separated by commas.

For information on properties that can be assigned to queues, see Destination
Properties on page 58.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 129

addprop route

addprop route route-name prop=valuel[prop-value...]
Adds properties to the route.

Destination (topic and queue) properties must be separated by commas but
properties of routes and factories are separated with spaces.

You can set the zone_name and zone_type parameters when creating a route, but
you cannot subsequently change them.

For route properties, see Configuring Routes and Zones on page 518.

For the configuration file routes. conf, see routes.conf on page 251.

addprop topic
addprop topic fopic_name properties, . . .
Adds properties to the topic. Property names are separated by commas.

For information on properties that can be assigned to topics, see Destination
Properties on page 58.

autocommit
autocommit [on|off]

When autocommit is set to on, the changes made to the configuration files are
automatically saved to disk after each command. When autocommit is set to of£,

you must manually use the commit command to save configuration changes to
the disk.

By default, autocommit is set to on when interactively issuing commands.

Entering autocommit without parameters displays the current setting of
autocommit (on or off).

Regardless of the autocommit setting, the EMS server acts on each admin
%} command immediately making it part of the configuration. The autocommit
feature only determines when the configuration is written to the files.

commit

commit

Commits all configuration changes into files on disk.

TIBCO Enterprise Message Service User's Guide

130 | Chapter 6 Using the EMS Administration Tool

compact

connect

compact store_name max_time

Compeacts the store files for the specified store. Compaction is not available for
stores of type mstore.

Since compaction can be a lengthy operation, and it blocks other database
operations, max_time specifies a time limit (in seconds) for the operation. Note that
max_time must be a number greater than zero.

If truncation is not enabled for the store file, the compact command will not
reduce the file size. Truncation is enabled using the file_truncate parameter in
the stores. conf file. See stores.conf on page 253 for more information.

We recommend compacting the store files only when the Used Space usage is
30% or less (see show store on page 169).

connect [server-url {admin |user_name} password]

Connects the administration tool to the server. Any administrator can connect. An
administrator is either the admin user, any user in the $admin group, or any user
that has administrator permissions enabled. See Administrator Permissions on
page 267 for more information about administrator permissions.

server-url is usually in the form:
protocol : / /host-name : port-number
for example:
tcp://myhost:7222

The protocol can be tcp or ssl.

If a user name or password are not provided, the user is prompted to enter a user
name and password, or only the password, if the user name was already specified
in the command.

You can enter connect with no other options and the administrative tool tries to
connect to the local server on the default port, which is 7222.

TIBCO Enterprise Message Service User’s Guide

create bridge

create durable

create factory

create group

Command Listing | 131

create bridge source=type:dest_name target=type:dest_name
[selector=selector]

Creates a bridge between destinations.
type is either topic or queue.

For further information, see bridges.conf on page 240.

create durable fopic-name durable-name [property, ... ,property]
Creates a static durable subscriber.

For descriptions of parameters and properties, and information about conflict
situations, see durables.conf on page 244.

create factory factory_name factory_parameters
Creates a new connection factory.

For descriptions of factory parameters, see factories. conf on page 245.

create group group_name "description"
Creates a new group of users.

Initially, the group is empty. You can use the add member command to add users
to the group.

create jndiname

create jndiname new_jndiname topic|queue|jndiname name

Creates a JNDI name for a topic or queue, or creates an alternate JNDI name for a
topic that already has a JNDI name.

For example:
create jndiname FOO jndiname BAR

will create new JNDI name F0O referring the same object referred by JNDI name
BAR

TIBCO Enterprise Message Service User's Guide

132 | Chapter 6 Using the EMS Administration Tool

create queue

create route

create queue queue_name [properties]

Creates a queue with the specified name and properties. The possible queue
properties are described in Destination Properties on page 58. Properties are listed
in a comma-separated list, as described in queues. conf on page 250.

create route name url=URL [properties ...]
Creates a route.
The name must be the name of the other server to which the route connects.

The local server connects to the destination server at the specified URL. If you
have configured fault-tolerant servers, you may specify the URL as a
comma-separated list of URLs.

The route properties are listed in routes. conf on page 251 and are specified as a
space-separated list of parameter name and value pairs.

You can set the zone_name and zone_type parameters when creating a route, but
you cannot subsequently change them.

If a passive route with the specified name already exists, this command promotes
it to an active-active route; see Active and Passive Routes on page 517.

For additional information on route parameters, see Configuring Routes and
Zones on page 518.

create rvemlistener

create rvcmlistener transport_name cm_name subject

Registers an RVCM listener with the server so that any messages exported to a
tibrvem transport (including the first message sent) are guaranteed for the
specified listener. This causes the server to perform the TIBCO Rendezvous call
tibrvemTransport_AddListener.

The parameters are:

® transport_name — the name of the transport to which this RVCM listener
applies.

* cm_name — the name of the RVCM listener to which topic messages are to be
exported.

® subject — the RVCM subject name that messages are published to. This should
be the same name as the topic names that specify the export property.

TIBCO Enterprise Message Service User’s Guide

create topic

create user

&

delete all

delete bridge

Command Listing | 133

For more information, see tibrvem. conf on page 257 and Rendezvous Certified
Messaging (RVCM) Parameters on page 406.

create topic topic_name [properties]

Creates a topic with specified name and properties. See Destination Properties on
page 58 for the list of properties. Properties are listed in a comma-separated list,
as described in topics. conf on page 257.

create user user_name ["user_description"] [password=password]

Creates a new user. Following the user name, you can add an optional description
of the user in quotes. The password is optional and can be added later using the
set password command.

User names cannot contain colon (:) characters.

delete all users|groups|topics|queues|durables
[topic-name-pattern | queue-name-pattern]

If used as delete all users|groups|topics|queues|durables without the
optional parameters, the command deletes all users, groups, topics, or queues (as
chosen).

If used with a topic or queue, and the optional parameters, such as:

delete all topics|queues topic-name-pattern | queue-name-pattern

the command deletes all topics and queues that match the topic or queue name
pattern.

delete bridge source=type:dest_name target=type:dest_name
Delete the bridge between the specified source and target destinations.
type is either topic or queue.

See Destination Bridges on page 82 for more information on bridges.

TIBCO Enterprise Message Service User's Guide

134 | Chapter 6 Using the EMS Administration Tool

delete connection

delete durable

delete factory

delete group

delete connection connection-id

Delete the named connection for the client. The connection ID is shown in the first
column of the connection description printed by show connection.

delete durable durable-name clientID
Delete the named durable subscriber.

When both the durable name and the client ID are specified, the EMS Server looks
for a durable named clientID : durable-name in the list of durables. If a matching
durable subscriber is not found, the administration tool prints an error message
including the fully qualified durable name.

See also, Conflicting Specifications on page 244.

delete factory factory-name

Delete the named connection factory.

delete group group-name

Delete the named group.

delete jndiname

delete message

delete jndiname jndiname

Delete the named JNDI name. Notice that deleting the last JNDI name of a
connection factory object will remove the connection factory object as well.

See Chapter 12, Using the EMS Implementation of JNDI, on page 359 for more
information.

delete message messagelD

Delete the message with the specified message ID.

TIBCO Enterprise Message Service User’s Guide

delete queue

delete route

Command Listing | 135

delete queue queue-name

Delete the named queue.

delete route route-name

Delete the named route.

delete rvemlistener

delete topic

delete user

delete rvcmlistener transport_name cm_name subject

Unregister an RVCM listener with the server so that any messages being held for
the specified listener in the RVCM ledger are released. This causes the server to
perform the TIBCO Rendezvous call tibrvemTransport_Removelistener.

The parameters are:

® transport_name — the name of the transport to which this RVCM listener
applies.

* cm_name — the name of the RVCM listener to which topic messages are
exported.

® subject — the RVCM subject name that messages are published to. This should
be the same name as the topic names that specify the export property.

For more information, see tibrvem. conf on page 257 and Rendezvous Certified
Messaging (RVCM) Parameters on page 406.

delete topic fopic-name

Delete the named topic.

delete user user-name

Delete the named user.

TIBCO Enterprise Message Service User's Guide

136 | Chapter 6 Using the EMS Administration Tool

disconnect

echo

exit

grant queue

disconnect

Disconnect the administrative tool from the server.

echo [on]|off]

Echo controls the reports that are printed into the standard output. When echo is
off the administrative tool only prints errors and the output of queries. When
echo is on, the administrative tool report also contains a record of successful
command execution.

Choosing the parameter on or off in this command controls echo. If echo is
entered in the command line without a parameter, it displays the current echo
setting (on or of£). This command is used primarily for scripts.

The default setting for echo is on.

exit (aliases: quit, g, bye, end)
Exit the administration tool.

The administrator may choose the exit command when there are changes in the
configuration have which have not been committed to disk. In this case, the
system will prompt the administrator to use the commit command before exiting.

grant queue quele-name user=name | group=name permissions

Grants specified permissions to specified user or group on specified queue. The
name following the queue name is first checked to be a group name, then a user
name.

Specified permissions are added to any existing permissions. Multiple
permissions are separated by commas. Enter all in the permissions string if you
choose to grant all possible user permissions.

User permissions are:
® Treceive
® send

® browse

TIBCO Enterprise Message Service User’s Guide

Command Listing | 137

For more information on queue permissions, see Table 48 in User Permissions on
page 283.

Destination-level administrator permissions can also be granted with this
command. The following are administrator permissions for queues.

® view

® create

® delete
® modify
® purge

For more information on destination permissions, see Destination-Level
Permissions on page 272.

grant topic
grant topic fopic-name user=name | group=name permissions

Grants specified permissions to specified user or group on specified topic. The
name following the topic name is first checked to be a group name, then a user
name.

Specified permissions are added to any existing permissions. Multiple
permissions are separated by commas. Enter all in the permissions string if you
choose to grant all possible permissions.

Topic permissions are:
® subscribe

® publish

® durable

e use_durable

For more information on topic permissions, see Table 49 in User Permissions on
page 283.

Destination-level administrator permissions can also be granted with this
command. The following are administrator permissions for topics.

® view
® create

® delete

TIBCO Enterprise Message Service User's Guide

138 | Chapter 6 Using the EMS Administration Tool

® modify
® purge

For more information on destination permissions, see Destination-Level
Permissions on page 272.

grant admin

grant admin user=name | group=name admin_permissions

Grant the named global administrator permissions to the named user or group.
For a complete listing of global administrator permissions, see Global
Administrator Permissions on page 269.

help
help (aliases: h, ?)
Display help information.
Enter help commands for a summary of all available commands.
Enter help command for help on a specific command.
info

info (alias: i)

Shows server name and information about the connected server.

jaci clear

jaci clear

Empties the JACI permission cache of all entries.

jaci resetstats

jaci resetstats

Resets all statistics counters for the JACI cache to zero.

jaci showstats

jaci showstats

Prints statistics about JACI cache performance.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 139

purge all queues

purge all topics

purge durable

purge queue

purge topic

purge all queues [pattern]
Purge all or selected queues.

When used without the optional pattern parameter, this command erases all
messages in all queues for all receivers.

When used with the pattern parameter, this command erases all messages in all
queues that fit the pattern (for example: foo. *).

purge all topics [pattern]
Purge all or selected topics.

When used without the optional pattern parameter, this command erases all
messages in all topics for all subscribers.

When used with the pattern parameter, this command erases all messages in all
topics that fit the pattern (for example: foo. *).

purge durable durable-name

Purge all messages in the topic for the named durable subscriber

purge queue qgueue-name

Purge all messages in the named queue.

purge topic topic-name

Purge all messages for all subscribers on the named topic.

remove member

remove member group-name user-namel[,user2,user3, .. .]

Remove one or more named users from the named group.

TIBCO Enterprise Message Service User's Guide

140 | Chapter 6 Using the EMS Administration Tool

removeprop factory
removeprop factory factory-name properties

Remove the named properties from the named factory. See Connection Factory
Parameters on page 245 for a list of properties.

removeprop queue
removeprop queue queue-name properties

Remove the named properties from the named queue.

removeprop route
removeprop route route-name properties
Remove the named properties from the named route.
You cannot remove the URL.

You can set the zone_name and zone_type parameters when creating a route, but
you cannot subsequently change them.

For route parameters, see Configuring Routes and Zones on page 518.

For the configuration file routes. conf, see routes.conf on page 251.

removeprop topic
removeprop topic topic-name properties

Remove the named properties from the named topic.

resume route

resume route route-name

Resumes sending messages to named route, if messages were previously
suspended using the suspend route command.

revoke admin
revoke admin user=name | group=name permissions

Revoke the specified global administrator permissions from the named user or
group. See Chapter 8, Authentication and Permissions, on page 265 for more
information about administrator permissions.

TIBCO Enterprise Message Service User’s Guide

revoke queue

revoke topic

Command Listing | 141

revoke queue queue-name user=name | group=name permissions
revoke queue queue-name * [user | admin | both]

Revoke the specified permissions from a user or group for the named queue.

User and group permissions for queues are receive, send, browse, and all.
Administrator permissions for queues are view, create, delete, modify, and
purge.

If you specify an asterisk (*), all user-level permissions on this queue are removed.
You can use the optional admin parameter to revoke all administrative
permissions, or the both parameter to revoke all user-level and administrative
permissions on the queue.

For more information, see Chapter 8, Authentication and Permissions, on
page 265.

revoke topic topic-name user=name | group=name permissions
revoke topic topic—name * [user | admin | both]

Revoke the specified permissions from a user or group for the named topic.
User and group permissions for topics are subscribe, publish, durable,

use_durable, and all. Administrator permissions for topics are view, create,
delete, modify, and purge.

If you specify an asterisk (*), all user-level permissions on this topic are removed.
You can use the optional admin parameter to revoke all administrative
permissions, or the both parameter to revoke all user-level and administrative
permissions on the topic.

For more information, see Chapter 8, Authentication and Permissions, on
page 265.

TIBCO Enterprise Message Service User's Guide

142 | Chapter 6 Using the EMS Administration Tool

rotatelog

set password

&/

rotatelog

Force the current log file to be backed up and truncated. The server starts writing
entries to the newly empty log file.

The backup file name is the same as the current log file name with a sequence
number appended to the filename. The server queries the current log file
directory and determines what the highest sequence number is, then chooses the
next highest sequence number for the new backup name. For example, if the log
file name is tibems.log and there is already a tibems.log.1 and tibems.log.2,
the server names the next backup tibems.log. 3.

set password user-name [password]
Set the password for the named user.
If you do not supply a password in the command, the server prompts you to type
one.
¢ Toreset a password, type:
set password user-name
Type a new password at the prompt.

e Toremove a password, use this command without supplying a password, and
press the Enter key at the prompt (without typing a password).

Passwords are a significant point of vulnerability for any enterprise. We
recommend enforcing strong standards for passwords.

For security equivalent to single DES (an industry minimum), security experts
recommend passwords that contain 8-14 characters, with at least one upper case
character, at least one numeric character, and at least one punctuation character.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 143

set server

set server parameter=value [parameter=value .. .]

The set server command can control many parameters. Multiple parameters
are separated by spaces. Table 16 describes the parameters you can set with this
command.

Table 16 set server — parameters (Sheet 1 of 6)

Parameter Description

password [= string] Sets server password used by the server to
connect to other routed servers. If the value is
omitted it is prompted for by the
administration tool. Entered value will be
stored in the main server configuration file in
mangled form (but not encrypted).

To reset this password, enter the empty string
twice at the prompt.

authorization=enabled|disabled Sets the authorization mode in the
tibemsd. conf file.

After a transition from disabled to enabled, the
server checks ACL permissions for all
subsequent requests. While the server requires
valid authentication for existing producers and
consumers, it does not retroactively
reauthenticate them; it denies access to users
without valid prior authentication.

TIBCO Enterprise Message Service User's Guide

144 | Chapter 6 Using the EMS Administration Tool

Table 16 set server — parameters (Sheet 2 of 6)

Parameter Description

log_traces=trace-items Sets the trace preference on the file defined by
the logfile parameter. If logfile is not set,
the values are stored but have no effect.

The value of this parameter is a
comma-separated list of trace options. For a list
of trace options and their meanings, see

Table 72, Server Tracing Options, on page 448.

You may specify trace options in three forms:

¢ plain A trace option without a prefix
character replaces any existing trace
options.

* + A trace option preceded by + adds the
option to the current set of trace options.

* - A trace option preceded by - removes
the option from the current set of trace
options.

Examples

The following example sets the trace log to
only show messages about access control
violations.

log trace=ACL

The next example sets the trace log to show all
default trace messages, in addition to SSL
messages, but ADMIN messages are not
shown.

log_trace=DEFAULT, -ADMIN, +SSL

TIBCO Enterprise Message Service User’s Guide

Command Listing | 145

Table 16 set server — parameters (Sheet 3 of 6)

Parameter Description

console_trace=console-trace-items Sets trace options for output to stderr. The
values are the same as for 1log_trace.
However, console tracing is independent of log
file tracing.

If logfile is defined, you can stop console
output by specifying:

console_trace=-DEFAULT

Note that important error messages (and some
other messages) are always output, overriding
the trace settings.

Examples

This example sends a trace message to the
console when a TIBCO Rendezvous advisory
message arrives.

console_trace=RVADV

client trace={enabled|disabled} Administrators can trace a connection or group
[target=location] [filter=oaluc] of connections. When this property is enabled,
the client generates trace output for opening or
closing a connection, message activity, and
transaction activity. This type of tracing does
not require restarting the client program.

The client sends trace output to location, which
may be either stderr (the default) or stdout.

You can specify a filter to selectively trace
specific connections. The filter can be user,
connid or clientid. The value can be a user
name or ID (as appropriate to the filter).

When the filter and value clause is absent, the
default behavior is to trace all connections.

Setting this parameter using the administration
tool does not change its value in the
configuration file tibemsd. conf.

TIBCO Enterprise Message Service User's Guide

146 | Chapter 6 Using the EMS Administration Tool

Table 16 set server — parameters (Sheet 4 of 6)

Parameter Description

max_msg_memory=uvalue

Maximum memory the server can use for
messages.

For a complete description, see
max_msg_memory in tibemsd.conf on

page 187.

Specify units as KB, MB or GB. The minimum
value is 8MB. Zero is a special value, indicating
no limit.

Lowering this value will not immediately free
memory occupied by messages.

msg_swapping=enabled|disabled

Enables or disables the ability to swap
messages to disk.

track message ids=enabled|disabled

Enables or disables tracking messages by
MessagelD.

track correlation_ids=enabled|disabled

Enables or disables tracking messages by
CorrelationID.

ssl_password[=string]

This sets a password for SSL use only.

Sets private key or PKCS#12 file password
used by the server to decrypt the content of the
server identity file. The password is stored in
mangled form.

ft_ssl_password[=string]

This sets a password for SSL use with Fault
Tolerance.

Sets private key or PKCS#12 file password
used by the server to decrypt the content of the
FT identity file. The password is stored in
mangled form.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 147

Table 16 set server — parameters (Sheet 5 of 6)

Parameter Description

server_rate interval=num Sets the interval (in seconds) over which
overall server statistics are averaged. This
parameter can be set to any positive integer
greater than zero.

Overall server statistics are always gathered, so
this parameter cannot be set to zero. By default,
this parameter is set to 1.

Setting this parameter allows you to average
message rates and message size over the
specified interval.

statistics=enabled|disabled Enables or disables statistic gathering for
producers, consumers, destinations, and

routes. By default this parameter is set to
disabled.

Disabling statistic gathering resets the total
statistics for each object to zero.

rate_interval=num Sets the interval (in seconds) over which
statistics for routes, destinations, producers,
and consumers are averaged. By default, this
parameter is set to 3 seconds. Setting this
parameter to zero disables the average
calculation.

detailed statistics=NONE | Specifies which objects should have detailed
PRODUCERS , CONSUMERS , ROUTES , CHANNELS statistic tracking. Detailed statistic tracking is
only appropriate for routes, channels,
producers that specify no destination, or
consumers that specify wildcard destinations.
When detailed tracking is enabled, statistics for
each destination are kept for the object.

Setting this parameter to NONE disables
detailed statistic tracking. You can specify any
combination of PRODUCERS, CONSUMERS,
ROUTES, or CHANNELS to enable tracking
for each object. If you specify more than one
type of detailed tracking, separate each item
with a comma.

TIBCO Enterprise Message Service User's Guide

148 | Chapter 6 Using the EMS Administration Tool

Table 16 set server — parameters (Sheet 6 of 6)

Parameter Description

statistics cleanup interval=num Specifies how long (in seconds) the server
should keep detailed statistics if the destination
has no activity. This is useful for controlling the
amount of memory used by detailed statistic
tracking. When the specified interval is
reached, statistics for destinations with no
activity are deleted.

max_stat_memory=nuim Specifies the maximum amount of memory to
use for detailed statistic gathering. If no units
are specified, the amount is in bytes, otherwise
you can specify the amount using KB, MB, or
GB as the units.

Once the maximum memory limit is reached,
the server stops collecting detailed statistics. If
statistics are deleted and memory becomes
available, the server resumes detailed statistic
gathering.

setprop factory
setprop factory factory-name properties . . .

Set the properties for a connection factory, overriding any existing properties.
Multiple properties are separated by spaces. See Connection Factory Parameters
on page 245 for the list of the properties that can be set for a connection factory.

setprop queue
setprop queue queue-name properties,

Set the properties for a queue, overriding any existing properties. Any properties
on a queue that are not explicitly specified by this command are removed.

Multiple properties are separated by commas. See Destination Properties on
page 58 for the list of the properties that can be set for a queue.

TIBCO Enterprise Message Service User’s Guide

setprop route

setprop topic

show bridge

Command Listing | 149

setprop route route-name properties . . .

Set the properties for a route, overriding any existing properties. Any properties
on a route that are not explicitly specified by this command are removed.

You can set the zone_name and zone_type parameters when creating a route, but
you cannot subsequently change them.

Multiple properties are separated by spaces. For route parameters, see
routes. conf on page 251 and Configuring Routes and Zones on page 518.

setprop topic topic-name properties

Set topic properties, overriding any existing properties. Any properties on a topic
that are not explicitly specified by this command are removed.

Multiple properties are separated by commas. See Destination Properties on
page 58 for the list of the properties that can be set for a topic.

show bridge topic|queue bridge_source

Display information about the configured bridges for the named topic or queue.
The bridge_source is the name of the topic or queue established as the source of the
bridge.

The following is example output for this command:

Target Name Type Selector

queue.dest Q

topic.dest.1 T "urgency in ('high', 'medium')"
topic.dest.?2 T

The names of the destinations to which the specified destination has configured
bridges are listed in the Target Name column. The type and the message selector
(if one is defined) for the bridge are listed in the Type and Selector column.

TIBCO Enterprise Message Service User's Guide

150 | Chapter 6 Using the EMS Administration Tool

show bridges

show channel

show bridges [type=topic|queue] [pattern]

Shows a summary of the destination bridges that are currently configured. The
type option specifies the type of destination established as the bridge source. For
example, show bridges topic shows asummary of configured bridges for all
topics that are established as a bridge source. The pattern specifies a pattern to
match for source destination names. For example show bridges foo.* returns a
summary of configured bridges for all source destinations that match the name
foo. *. The type and pattern are optional.

The following is example output for this command:

Source Name Queue Targets Topic Targets
Q queue.source 1 1
T topic.source 1 2

Destinations that match the specified pattern and/or type are listed in the Source
Name column. The number of bridges to queues for each destination is listed in
the Queue Targets column. The number of bridges to topics for each destination is
listed in the Topic Targets column.

show channel channel-name

Show the details of a specific multicast channel. The channel-name must be the exact
name of a specific channel. Wildcards and partial names are invalid.

This command prints a table of information described in Table 17.

Table 17 show channel — description of output fields

Heading Description

Channel Name of the multicast channel.

Address The multicast group IP address and port destination to
which messages are broadcast, in the form:

<multicast-group-IP-address> : <multicast-port>

TTL The maximum number of number of network hops
allowed for data on the channel.

Priority The transmission priority of messages on this channel
when the EMS server allocates bandwidth.

The highest priority is -5 and the lowest is 5.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 151

Table 17 show channel — description of output fields

Heading Description

Max Rate The maximum rate at which the server broadcasts
messages over the channel.

Max Time The maximum length of time, in seconds, that the
server holds sent messages for retransmission.

Interface The IP address over which the server sends multicast
traffic on this channel. A value of 0.0.0.0 indicates
that the default interfaces is being used.

Status The status of the channel, either active or inactive.

Server Backlog The number of messages and the total number of bytes
pending broadcast over the channel.

See Multicast and Flow Control on page 88 for more
information about controlling backlog.

Transmitted The total number of bytes sent on the channel. This
number does not include retransmissions.

Retransmitted The total number of bytes sent in retransmissions on
the channel.

Retransmission The total number of bytes that are currently buffered

Buffer for retransmission.

show channels

show channels

Print a summary of the server’s multicast channels, including each channel’s
multicast address and status.

TIBCO Enterprise Message Service User's Guide

152 | Chapter 6 Using the EMS Administration Tool

show config

show config

Shows the configuration parameters for the connected server. The output
includes:

e configuration files

* server database

e gerver JVM

e server JDBC database

e listen ports

e configuration settings

* message tracking

* server tracing parameters
* statistics settings

e fault-tolerant setup

* external transport setup

e server SSL setup

show consumer

show consumer consumerlD

Shows details about a specific consumer. The consumerID can be obtained from the
show consumers output.

show consumers

show consumers [topic=name | queue=name] [durable] [user=name]
[connection=id] [sort=conn|user|dest|msgs] [full]

Shows information about all consumers or only consumers matching specified
filters. Output of the command can be controlled by specifying the sort or full
parameter. If the topic or queue parameter is specified, then only consumers on
destinations matching specified queue or topic are shown. The user and/or
connection parameters show consumers only for the specified user or
connection. Note that while the queue browser is open, it appears as a consumer
in the EMS server.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 153

The durable parameter shows only durable topic subscribers and queue
receivers, but it does not prevent queue consumers to be shown. To see only
durable topic consumers, use:

show consumers topic=> durable

The sort parameter sorts the consumers by either connection ID, user name,
destination name, or number of pending messages. The full parameter shows all
columns listed below and can be as wide as 120-140 characters or wider. Both
topic and queue consumers are shown in separate tables, first the topic consumers
and then the queue consumers.

% When connected to an EMS 8.0 server, this command no longer displays offline

durable subscribers. In order to see offline durables, use the command show
durables Or show subscriptions.

Table 18 show consumers — description of output fields

Heading Description

Id Consumer ID.

Conn Consumer's connection ID.

If performed on an EMS 7.x or earlier server, this field displays '-' to indicate a
disconnected durable topic subscriber.

Sess Consumer's session ID.

If performed on an EMS 7.x or earlier server, this field displays '-' to indicate a
disconnected durable topic subscriber.

TIBCO Enterprise Message Service User's Guide

154 | Chapter 6 Using the EMS Administration Tool

Table 18 show consumers — description of output fields

Heading Description

T Consumer type character which can be one of:
For topic consumer:
* T -non-durable topic subscriber.
* D - durable topic subscriber.
* R-system-created durable for a routed topic.
* P - proxy subscriber on route's temporary topic.
For queue consumer:
* Q-regular queue receiver.
* (-inactive queue receiver.

* P -system-created receiver on global queue for user receiver created in one

of routes.
Topic/Queue Name of the subscription topic or queue.
Name (Topics Only.) Durable or shared subscription name. This column is shown for

topic consumers if at least one consumer is a durable or shared consumer.

TIBCO Enterprise Message Service User’s Guide

Table 18 show consumers — description of output fields

Heading Description

Command Listing | 155

SAS[NMBS] Description of columns:
e S-'+'if consumer's connection started, '-' otherwise.
e A -mode of consumer's session, values are:
— N -no acknowledge
— A - auto acknowledge
— D - dups_ok acknowledge
— C - client acknowledge
— T - session is transactional
— X -XA or MS DTC session
— Z - connection consumer
e S-'+'if consumer has a selector, '-' otherwise.
e N - (TOPICS ONLY) '+ if subscriber is "NoLocal."
* M- (TOPICS ONLY) '+' if subscriber is receiving multicast.
* B-(QUEUES ONLY) '+'if consumer is a queue browser.
e S-(TOPICS ONLY) '+'if this is a shared consumer.
Pre Prefetch value of the consumer's destination.
Pre Dlv Number of prefetch window messages delivered to consumer
Msgs Sent Current number of messages sent to consumer which are not yet acknowledged

by consumer's session.

Size Sent

Combined size of unacknowledged messages currently sent to consumer. Value
is rounded and shown in bytes, (K)ilobytes, (M)egabytes or (G)igabytes.

Pend Msgs

(Topics Only.) Total number of messages pending for the topic consumer.

Pend Size

(Topics Only.) Combined size of messages pending for the topic consumer.
Value is rounded and shown in bytes, (K)ilobytes, (M)egabytes or (G)igabytes.

Uptime

Uptime of the consumer.

Last Sent

Approximate time elapsed since last message was sent by the server to the
consumer. Value is approximate with precision of 1 second.

TIBCO Enterprise Message Service User's Guide

156 | Chapter 6 Using the EMS Administration Tool

Table 18 show consumers — description of output fields

Heading Description

Last Akcd Approximate time elapsed since last time a message sent to the consumer was
acknowledged by consumer's session. Value is approximate with precision of 1
second.

Total Sent Total number of messages sent to consumer since it was created. This includes

resends due to session recover or rollback.

Total Acked Total number of messages sent to the consumer and acknowledged by
consumer's session since consumer created.

show connections

show connections [type=q|t|s] [host=hostname] [user=username]
[version] [address] [counts] [full]

Show connections between clients and server. Table 20 on page 157 describes the
output.

The type parameter selects the subset of connections to display as shown in
Table 19. The host and user parameters can further narrow the output to only
those connections involving a specific host or user. When the version flag is
present, the display includes the client’s version number.

If the address parameter is specified, then the IP address is printed in the output
table. If the counts parameter is specified, then number of producers, consumers
and temporary destinations are printed. Specifying the full parameter prints all
of the available information.

Table 19 show connections — type parameter

Type Description

type=q Show queue connections only.

type=t Show topic connections only.

type=s Show system connections only.

absent Show queue and topic connections, but not system
connections.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 157

Table 20 show connections — description of output fields

Heading Description

L The type of client. Can be one of the following:
e J—Java client
o c—Cclient

e #— C#client

e - —unknown system connection
Version The EMS version of the client.
ID Unique connection ID. Each connection is assigned a unique,

numeric ID that can be used to delete the connection.

FSXT Connection type information.
The F column displays whether the connection is fault-tolerant.

e _ —not a fault-tolerant connection, that is, this connection
has no alternative URLs

e 1+ — fault-tolerant connection, that is, this connection has
alternative URLs

The s column displays whether the connection uses SSL.
® - — connection is not SSL
* +— connection is SSL

The X column displays whether the connection is an XA or MS
DTC transaction.

e - — connection is not XA or MS DTC

e +— connection is either an XA or MS DTC connection
The T column displays the connection type.

® C— generic user connection

e T — user TopicConnection

e Q— user QueueConnection

¢ A — administrative connection

* R — system connection to another route server

* F — system connection to the fault-tolerant server

TIBCO Enterprise Message Service User's Guide

158 | Chapter 6 Using the EMS Administration Tool

Table 20 show connections — description of output fields

Heading Description

S Connection started status, + if started, - if stopped.

IP Address Shows client IP address.

The address or full parameter must be specified to display
this field.

Host Connection's host name. (If the name is not available, this
column displays the host’s IP address.)

Address Connection's IP address.

If you supply the keyword address, then the table includes this

column.

User Connection user name. If a user name was not provided when
the connection was created, it is assigned the default user name
anonymous.

ClientID Client ID of the connection.

Sess Number of sessions on this connection.

Prod Number of producers on this connection.

The counts or full parameter must be specified to display this
field.

Cons Number of consumers on this connection.

The counts or full parameter must be specified to display this
field.

TmpT Number of temporary topics created by this connection. For
clients prior to 4.4 this is not known and shows "?."

The counts or full parameter must be specified to display this
field.

TmpQ Number of temporary queues created by this connection. For
clients prior to 4.4 this is not known and shows "?."

The counts or full parameter must be specified to display this
field.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 159

Table 20 show connections — description of output fields

Heading Description

Uncomm Number of messages in uncommitted transactions on the
connection.

The counts or full parameter must be specified to display this
field.

UncommSize The combined size, in bytes, of messages in uncommitted
transactions on the connection.

The counts or full parameter must be specified to display this
field.

Uptime Time that the connection has been in effect.

show db
show db

Print a summary of the server’s databases. Databases are also printed by show
stores, the preferred command.

See the show store on page 169 for details about a specific database.

show durable

show durable durable-name

Show information about a durable subscriber.

Table 21 show durable — table Information

Heading Description

Durable Fully qualified name of the durable subscriber. This name
Subscriber concatenates the client ID (if any) and the subscription name
(separated by a colon).

Subscription Full name of the durable subscriber.

name

Shared yes if this is a shared durable subscription, no otherwise.
Client ID Client ID of the subscriber’s connection.

TIBCO Enterprise Message Service User's Guide

160 | Chapter 6 Using the EMS Administration Tool

Table 21 show durable — table Information (Cont’d)

Heading Description

Topic The topic from which the durable subscription receives
messages.
Type dynamic—created by a client

static—configured by an administrator

Status online
offline

Username Username of the durable subscriber (that is, of the client’s
connection).

If the durable subscriber is currently offline, the value in this
column is offline.

Consumer ID This internal ID number is not otherwise available outside
the server.

No Local enabled—the subscriber does not receive messages sent
from its local connection (that is, the same connection as the
subscriber).

disabled—the subscriber receives messages from all
connections.

Selector The subscriber receives only those messages that match this
selector.

Pending Msgs ~ Number of all messages in the topic. (This count includes the
number of delivered messages.)

Delivered Number of messages in the topic that have been delivered to
Msgs the durable subscriber, but not yet acknowledged.

Pending Msgs Total size of all pending messages
Size

show durables
show durables [pattern]

If a pattern is not entered, this command shows a list of all durable subscribers on
all topics.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 161

If a pattern is entered (for example foo.*) this command shows a list of durable
subscribers on topics that match that pattern.

This command prints a table of information described in Table 22.

Table 22 show durables — table Information

Heading Description

Topic Name Name of the topic.

An asterisk preceding this name indicates a dynamic durable
subscriber. Otherwise the subscriber is static (configured by
an administrator).

Durable Full name of the durable subscriber.

Shared Y to indicate that this is a shared durable subscription, N
otherwise.

User Name of the user of this durable subscriber. If the durable

subscriber is currently offline, the value in this column is
offline. If this is a shared durable subscription, the value of
this column is shared.

For users defined externally, there is an asterisk in front of
the user name.

Msgs Number of pending messages

Size Total size of pending messages

For more information, see Destination Properties on page 58.

show factory
show factory factory-name

Shows properties of specified factory.

show factories
show factories [generic|topic|queue]

Shows all factories. You can refine the listed output by specifying only generic,
topic, or queue factories be listed.

TIBCO Enterprise Message Service User's Guide

162 | Chapter 6 Using the EMS Administration Tool

show jndiname
show jndiname jndi-name

Shows the object that the specified name is bound to by the JNDI server.

show jndinames
show jndinames [type]
The optional parameter type can be:

e destination

* topic
* queue
e factory

¢ topicConnectionFactory
¢ queueConnectionFactory

When type is specified only JNDI names bound to objects of the specified type are
shown. When type is not specified, all [INDI names are shown.

show group

show group group-name
Shows group name, description, and number of members in the group.

For groups defined externally, there is an asterisk in front of the group name.
Only external groups with at least one currently connected user are shown.

show groups

show groups
Shows all user groups.

For groups defined externally, there is an asterisk in front of the group name.

show members

show members group-name

Shows all user members of specified user group.

TIBCO Enterprise Message Service User’s Guide

show message

Command Listing | 163

show message messagelD
Shows the message for the specified message id.

This command requires that tracking by message ID be turned on using the
track _message_ids configuration parameter.

show messages

show parents

show messages correlationID

Shows the message IDs of all messages with the specified correlation ID set as
JMSCorrelationID message header field. You can display the message for each
ID returned by this command by using the show message message]D command.

This command requires that tracking by correlation ID be turned on using the
track_correlation_ids configuration parameter.

show parents user-name

Shows the user’s parent groups. This command can help you to understand the
user’s permissions.

TIBCO Enterprise Message Service User's Guide

164 | Chapter 6 Using the EMS Administration Tool

show queue
show queue queue-name

Shows the details for the specified queue.

If the queue is a routed queue, specify only the name of the queue (do not specify
the server using the queue-name@server form).

S

Table 23 show queue — table Information

Heading Description

Queue Full name of the queue.

Type dynamic—created by a client

static—configured by an administrator

Properties A list of property names that are set on the queue, and their
values. For an index list of property names, see Destination
Properties on page 58.

JNDI Names A list of explicitly assigned JNDI names that refer to this

queue.
Bridges A list of bridges from this queue to other destinations.
Receivers Number of consumers on this queue.

Pending Msgs ~ Number of all messages in the queue, followed by the
number of persistent messages in parenthesis.

These counts include the number of delivered messages.

Delivered Number of messages in the queue that have been delivered
Msgs to a consumer, but not yet acknowledged.

Pending Msgs Total size of all pending messages, followed by the size of all
Size persistent messages in parenthesis.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 165

show queues

show queues [pattern-name [notemp|static|dynamic]
[first=n|next=n|last=n]]

If a pattern-name is not entered, this command shows a list of all queues.

If a pattern-name is entered (for example foo.* or foo.>) this command shows a list
of queues that match that pattern. See Wildcards * and > on page 77 for more
information about using wildcards.

You can further refine the list of queues that match the pattern by using one of the
following parameters:

* notemp — do not show temporary queues
* static — show only static queues
® dynamic — show only dynamic queues

When a pattern-name is entered, you can also cursor through the list of queues
using one of the following commands, where n is whole number:

® first=n — show the first n queues
* next=n — show the next n queues
® last=n— show the next n queues and terminate the cursor

The cursor examines n queues and displays queues that match the pattern-name.
Because it does not traverse the full list of queues, the cursor may return zero or
fewer than n queues. To find all matching queues, continue to use next until you
receive a Cursor complete message.

The show queues command prints a table of information described in Table 24. A
* appearing before the queue name indicates a dynamic queue.

Table 24 show queues — table Information

Heading Description

Queue Name Name of the queue. If the name is prefixed with an asterisk (*),
then the queue is temporary or was created dynamically.
Properties of dynamic and temporary queues cannot be
changed.

TIBCO Enterprise Message Service User's Guide

166 | Chapter 6 Using the EMS Administration Tool

Table 24 show queues — table Information (Cont’d)
Heading Description
SNEGXIBCT Prints information on the topic properties in the order

(S)ecure (N)sender_name or sender_name_enforced (F)ailsafe
(G)lobal e(X)clusive (I)mport (B)ridge (C)flowControl (T)race

The characters in the value section show:

- Property not present

+ Property is present, and was set on the topic itself

* Property is present, and was inherited from another queue

Note that inherited properties cannot be removed.

Pre Prefetch value. If the value is followed by an asterisk (*), then
it is inherited from another queue or is the default value.

Revrs Number of currently active receivers
All Msgs
Msgs Number of pending messages
Size Total size of pending messages
Persistent Msgs
Msgs Number of pending persistent messages
Size Total size of pending persistent messages

For more information, see Destination Properties on page 58.

show route

show route route-name

Shows the properties (URL and SSL properties) of a route.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 167

show routes

show routes
Shows the properties (URL and SSL properties) of all created routes.

These commands print the information described in Table 25.

Table 25 show routes — table Information

Heading Description

Route Name of the route.

T Type of route:
¢ Aindicates an active route.

¢ Pindicates a passive route.

ConnlD Unique ID number of the connection from this server to the
server at the other end of the route.

A hyphen (-) in this column indicates that the other server is
not connected.

URL URL of the server at the other end of the route.
ZoneName Name of the zone for the route.
ZoneType Type of the zone:

* mindicates a multi-hop zone.

* 1 indicates a one-hop zone.

show rvemtransportledger

show rvemtransportledger transport_name [subject-or-wildcard]

Displays the TIBCO Rendezvous certified messaging (RVCM) ledger file entries
for the specified transport and the specified subject. You can specify a subject
name, use wildcards to retrieve all matching subjects, or omit the subject name to
retrieve all ledger file entries.

For more information about ledger files and the format of ledger file entries, see
TIBCO Rendezvous documentation.

TIBCO Enterprise Message Service User's Guide

168 | Chapter 6 Using the EMS Administration Tool

show rvcmlisteners

show server

show stat

&

show rvcmlisteners

Shows all RVCM listeners that have been created using the create
rvemlistener command or by editing the tibrvem. conf file.

show server (aliases: info, i)

Shows server name and information about the connected server.

show stat channel name [topic=name]

show stat consumers [topic=name|queue=name] [user=name]
[connection=id] [total]

show stat producers [topic=name|queue=name] [user=name]
[connection=id] [total]

show stat route name [topic=name|queue=name] [total] [wide]
show stat topic name [total] [wide]

show stat queue name [total] [wide]

Displays statistics for the specified item. You can display statistics for consumers,
producers, routes, destinations, or channels. Statistic gathering must be enabled
for statistics to be displayed. Also, detailed statistics for each item can be
displayed if detailed statistic tracking is enabled. Averages for
inbound/outbound messages and message size are available if an interval is
specified in the rate_interval configuration parameter.

The total keyword specifies that only total number of messages and total
message size for the item should be displayed. The wide keyword displays
inbound and outbound message statistics on the same line.

See Working with Server Statistics on page 460 for a complete description of
statistics and how to enable/disable statistic gathering options.

When connected to an EMS 8.0 server, this command does not return statistics for
offline durable subscribers.

TIBCO Enterprise Message Service User’s Guide

show store

Command Listing | 169

show store store-name

Show the details of a specific store. This command can be used to get details about
either a file-based store or a database store.

The store-name must be the exact name of a specific store.

This command prints a table of information described in Table 26.

Table 26 show store — table Information

Heading Description

Store Name of the store.

Type Type of store:
e file indicates a file-based store.
e dbstore indicates a database store.

* mstore indicates an mstore.

Message Count The number of messages that are stored in the file.

Swapped Count The number of messages that have been swapped from
process memory to store file.

Average Write Time Average time in seconds a write call takes. (Not
available for asynchronous file stores.)

Write Usage The ratio between time spent within write calls and the
time specified by the server_rate_interval. (Not
available for asynchronous file stores.)

Headings specific to file-based stores

File File name associated with this store file, as it is set by
the file parameter in the stores. conf file.

Access Mode asynchronous—the server stores messages in the file
using asynchronous I/0 calls.

synchronous—the server stores messages in the file
using synchronous 1/O calls.

Pre-allocation The amount of disk space, if any, that is preallocated to
Minimum this file.

TIBCO Enterprise Message Service User's Guide

170 | Chapter 6 Using the EMS Administration Tool

Table 26 show store — table Information

Heading Description

CRC enabled—the server uses CRC to validate checksum
data when reading the store file.

disabled—the server does not validate checksum data
when reading the store file.

Periodic Truncation =~ enabled—the EMS server occasionally truncates the
store file, relinquishing unused disk space.

disabled—the EMS server does not truncate the store
file to relinquish unused disk space.

Destination Defrag The size of the batch used by the destination defrag

Batch Size feature.

File Size The size of the store file, including unused allocated file
space.

Free Space The amount of unused allocated file space.

Fragmentation The level of fragmentation in the file.

Used Space The amount of used space in the file.

Message Size Total size of all messages in the file.

Swapped Size The total size of swapped messages in the file.

Disk Write Rate The number of bytes written per second.

Headings specific to mstores

Note that output for mstores includes many of the same fields available to
file-based stores.

Discard Scan The maximum length of time that the EMS server takes

Interval to examine all messages in the mstore. This interval is
controlled with the scan_iter_interval parameter in
the stores. conf file.

Discard Scan The bytes read and processed every Discard Scan
Interval Bytes Interval. This number is proportional to the mstore file
size, and must be kept within the limits of your storage
medium. See Understanding mstore Intervals on
page 33 for more information.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 171

Table 26 show store — table Information

Heading Description

First Scan Finished true—all the data in the store has been examined at
least once since the EMS server startup.

false—not all data has been examined since the EMS
server last started. When false, certain server statistics
(such as the Message Count field) may be
underreported as a result of expired or purged
messages still in the store. See Implications for Statistics
on page 35 for more information.

Disk Write Rate The number of bytes written per second.

Headings specific to database stores

JDBC Driver Name The name of the JDBC database server.

JDBC URL The location of the JDBC database server.

Username The username that the EMS server uses to access the
database.

Dialect The SQL dialect used to construct SQL commands.

show stores
show stores

Print a list of the server’s stores.

show topic

show topic topic-name

Table 27 show topic — table Information

Heading Description

Topic Full name of the topic.

Type dynamic—created by a client

static—configured by an administrator

TIBCO Enterprise Message Service User's Guide

172 | Chapter 6 Using the EMS Administration Tool

Table 27 show topic — table Information (Cont’d)

Heading Description

Properties A list of property names that are set on the topic, and
their values. For an index list of property names, see
Destination Properties on page 58.

JNDI Names A list of explicitly assigned JNDI names that refer to
this topic.

Bridges A list of bridges from this topic to other destinations.

Subscriptions Number of subscriptions on this topic. (This count also

includes durable subscriptions.)

Durable The number of durable subscriptions on the topic.
Subscriptions
Consumers Number of active consumers on this topic.

Note: When a durable consumer is offline, it is not
included in the count reported here.

However, if this command is performed on an EMS 7.x
or earlier server, the count also includes offline
durable consumers.

Durable Consumers ~ Number of active durable consumers on this topic.

Note: When a durable consumer is offline, it is not
included in the count reported here.

However, if this command is performed on an EMS 7.x
or earlier server, the count also includes offline
durable consumers.

Pending Msgs The total number of messages sent but not yet
acknowledged by the consumer, followed by the
number of persistent messages in parenthesis. These
counts include copies sent to multiple subscribers.

Pending Msgs Size Total size of all pending messages, followed by the
size of all persistent messages in parenthesis.

The server accumulates the following statistics only when the administrator
has enabled statistics. Otherwise these items are zero.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 173

Table 27 show topic — table Information (Cont’d)

Heading Description

Total Inbound Msgs ~ Cumulative count of all messages delivered to the
topic.

Total Inbound Bytes =~ Cumulative total of message size over all messages
delivered to the topic.

Total Outbound Msgs Cumulative count of messages consumed from the
topic by consumers. Each consumer of a message
increments this count independently of other
consumers, so one inbound message results in
outbound messages (one per consumer).

Total Outbound Bytes Cumulative total of message size over all messages
consumed from the topic by consumers. Each
consumer of a message contributes this total
independently of other consumers.

show topics

show topics [pattern-name [notemp|static|dynamic]
[first=n|next=n|last=n]]

If a pattern-name is not entered, this command shows a list of all topics.

If a pattern-name is entered (for example foo.* or foo.>) this command shows a list
of topics that match that pattern. See Wildcards * and > on page 77 for more
information about using wildcards.

You can further refine the list of topics that match the pattern by using one of the
following parameters:

® notemp — do not show temporary topics
* static — show only static topics
® dynamic — show only dynamic topics

When a pattern-name is entered, you can also cursor through the list of topics using
one of the following commands, where 7 is whole number:

® first=n — show the first n topics
® next=n — show the next n topics

® last=n— show the next n topics and terminate the cursor

TIBCO Enterprise Message Service User's Guide

174 | Chapter 6 Using the EMS Administration Tool

The cursor examines # topics and displays topics that match the pattern-name.
Because it does not traverse the full list of topics, the cursor may return zero or
fewer than # topics. To find all matching topics, continue to use next until you
receive a Cursor complete message.

The show topics command prints a table of information described in Table 28.

Table 28 show topics — table information (Sheet 1 of 2)

Heading Description

Topic Name Name of the topic. If the name is prefixed with an asterisk (*),
then the topic is temporary or was created dynamically.
Properties of dynamic and temporary topics cannot be
changed.

SNFGEIBCTM Prints information on the topic properties in the order:

(S)ecure (N)sender_name or sender_name_enforced
(F)ailsafe (G)lobal (E)xport (I)mport (B)ridge (C)flowControl
(T)race (M)ulticast

The characters in the value section show:

- Property not present

+ Property is present, and was set on the topic itself

* Property is present, and was inherited from another topic

Note that inherited properties cannot be removed.

Subs Number of current subscriptions on the topic, including
durable subscriptions.

If this command is performed on an EMS 7 .x or earlier server,
the count reflects the number of subscribers, not the number of
subscriptions.

Durs Number of durable subscriptions on the topic.

If this command is performed on an EMS 7.x or earlier server,
the count reflects the number of durable subscribers, not the
number of subscriptions.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 175

Table 28 show topics — table information (Sheet 2 of 2)

Heading Description

All Msgs
Msgs The total number of messages sent but not yet acknowledged
by the consumer. This count includes copies sent to multiple
subscribers.
To see the count of actual messages (not multiplied by the
number of topic subscribers) sent to all destinations, use the
show server command.
Size Total size of pending messages
Persistent Msgs
Msgs The total number of persistent messages sent but not yet
acknowledged by the consumer.
Size Total size of pending persistent messages

For more information, see Destination Properties on page 58.

show subscriptions

show subscriptions [topic=name] [name=sub-name] [shared=only|none]
[durable=only|none] [sort=msgs|topic|name|cons|id]

This command prints information about all topic subscriptions, or only
subscriptions matching specified filters. Command output is controlled using the
sort parameter.

If topic=name is specified, then only subscriptions on destinations matching
specified topic are shown. If name=sub-name is specified, then only subscriptions of
that name are shown.

If durable=only is specified, then only durable subscriptions are shown.

If durable=none is specified, then only non-durable subscriptions are shown.
If shared=only is specified, then only shared subscriptions are shown.

If shared=none is specified, then only unshared subscriptions are shown.

The parameter sort allows you to specify how the command output is sorted in
the output table. You can use to sort by by number of pending messages, topic
name, subscription name, number of consumers on that subscription, or the
subscription's identifier.

TIBCO Enterprise Message Service User's Guide

176 | Chapter 6 Using the EMS Administration Tool
The show subscriptions command prints a table of information described in
Table 29.

Table 29 show subscriptions — table information

Heading Description

Id The ID of the subscription.

T The subscription type:
e T —non-durable subscription

e D — durable subscription

Topic Name of the topic associated with the subscription.

Name Name of the subscription (durable or shared name).
If this is an unshared non-durable subscription, this value is
empty.

SS Description of columns:

e S-'+'if the subscription has a selector, '-' otherwise.

e S-'+'if the subscription is shared, '-' otherwise.

Cons Count The number of active consumers on this subscription.

For an unshared non-durable subscription, the value is
always 1.

For a durable subscription, the value can be 0, meaning that
there is no active consumer and the subscription is offline.

Pend Msgs Total number of messages pending for the subscription.

Pend Size Combined size of messages pending for the subscription.

Value is rounded and shown in bytes, (K)ilobytes,
(M)egabytes or (G)igabytes.

Uptime The length of time, in hours, minutes, and seconds, since the
subscription was created.

show transaction

show transaction XID

TIBCO Enterprise Message Service User’s Guide

Command Listing | 177

Shows a list of messages that were sent or received within the specified
transaction. This command returns information on transactions in prepared,
ended, and roll back states only. Transactions in a suspended or active state are
not included.

Table 30 describes the information shown in each column.

Table 30 show transactions — table information (Sheet 1 of 2)

Heading Description

State Transaction state:
e A active
e Eended

¢ Rrollback only
* P prepared
* Ssuspended

Suspended transactions can be rolled back, but cannot be
rolled forward (committed).

Remaining The seconds remaining before the TX timeout is reached. For
time before example, 3 sec.
timeout

This field is only applicable for transactions in State
ENDSUCCESS or ROLLBACKONLY.

Messages to be consumed

Message ID The message ID of the message. null indicates the message
ID could not be obtained or was disabled. If
track_message_ids is not enabled, this field displays
Disabled.

Type The destination type to which the message was sent:
* Qqueue

e Ttopic

Destination The destination name to which the message was sent. null
indicates that destination could not be found.

Consumer ID The consumer ID of the Consumer that is consuming the
message. Zero indicates that the consumer is offline.

TIBCO Enterprise Message Service User's Guide

178 | Chapter 6 Using the EMS Administration Tool

Table 30 show transactions — table information (Sheet 2 of 2)

Heading Description

Messages to be produced

Message ID The message ID of the message. null indicates the message
ID could not be obtained or was disabled. If
track_message_ids is not enabled, this field displays
Disabled.

Type The destination type to which the message was sent:
* Qqueue

e Ttopic

Destination The destination name to which the message was sent. null
indicates that destination could not be found.

JMSTimestamp The timestamp indicating the time at which the message was
created.

show transactions
show transactions

Shows the XID for all client transactions that were created using the XA or MS
DTC interfaces. Each row presents information about one transaction. The XID is
the concatenation of the Format ID, GTrid Len, Bqual Len, and Data fields for a
transaction. For example, if show transactions returns the row:

State Format ID GTrid Len Bqual Len Data
E 0 6 2 branchid

then the XID is 0 6 2 branchid. Note that the spaces
are required.

TIBCO Enterprise Message Service User’s Guide

Command Listing | 179

Table 31 describes the information shown in each column.

Table 31 show transactions — table information

Heading Description

State Transaction state:
e A active
e Eended

¢ Rrollback only
* P prepared
* Ssuspended

Suspended transactions can be rolled back, but cannot be rolled
forward (committed).

FormatID The XA transaction format identifier.
0 = OSI CCR naming is used
>0 = some other format is used

-1=NULL

GTrid Len The number of bytes that constitute the global transaction ID.

Bqual Len The number of bytes that constitute the branch qualifier.

Data The global transaction identifier (gtrid) and the branch qualifier
(bqual).

show transport
show transport transport

Displays the configuration for the specified transport defined in
transports.conf.

See Configuring Transports for Rendezvous on page 404 and Configuring
Transports for SmartSockets on page 427 for details.

show transports
show transports

Lists all configured transport names in transports.conf.

TIBCO Enterprise Message Service User's Guide

180 | Chapter 6 Using the EMS Administration Tool

show user

show users

showacl admin

showacl group

showacl queue

show user user-name

Shows user name and description. If no user name is specified, this command
displays the currently logged in user.

For users defined externally, there is an asterisk in front of the user name.

show users
Shows all users.

For users defined externally, there is an asterisk in front of the user name. Only
currently connected external users are shown.

showacl admin

Shows all administrative permissions for all users and groups, but does not
include administrative permissions on destinations.

showacl group group-name [admin]

Shows all permissions set for a given group. Shows the group and the set of
permissions. You can optionally specify admin to show only the administrative
permissions for destinations or principals. Specifying showacl admin shows all
administrative permissions for all users and groups (not including administrative
permissions on destinations).

showacl queue queue-name [admin]

Shows all permissions set for a queue. Lists all entries from the ac1 file. Each
entry shows the “grantee” (user or group) and the set of permissions. You can
optionally specify admin to show only the administrative permissions for
destinations or principals. Specifying showacl admin shows all administrative
permissions for all users and groups (not including administrative permissions
on destinations).

TIBCO Enterprise Message Service User’s Guide

Command Listing | 181

showacl topic
showacl topic topic-name [admin]

Shows all permissions set for a topic. Lists all entries from the ac1l file. Each entry
shows the “grantee” (user or group) and the set of permissions. You can
optionally specify admin to show only the administrative permissions for
destinations or principals. Specifying showacl admin shows all administrative
permissions for all users and groups (not including administrative permissions
on destinations).

showacl user
showacl user user-name [admin | all | admin-all]

Shows the user and the set of permissions granted to the user for destinations and
principals.

showacl user username — displays permissions granted directly to the user. (An
administrator can use this form of the command to view own permissions, even
without permissions to view any other user permissions.)

showacl user username admin — displays administrative permissions granted
directly to the user.

showacl user username all — displays direct and inherited (from groups to
which the user belongs) permissions.

showacl user username admin-all — displays all administrative permissions for
a given user (direct and inherited)

The output from this command displays inherited permissions prefixed with a '*'.
% Inherited permissions cannot be changed. An attempt to revoke an inherited
permission for the principal user will not change the permission.

shutdown

shutdown

Shuts down currently connected server.

suspend route

suspend route route-name
Suspends outgoing messages to the named route.

Message flow can be recovered later using the command resume route.

TIBCO Enterprise Message Service User's Guide

182 | Chapter 6 Using the EMS Administration Tool

time

timeout

time [on | off]

Specifying on places a timestamp before each command’s output. By default, the
timestamp is off.

timeout [seconds]

Show or change the current command timeout value. The timeout value is the
number of seconds the Administration Tool will wait for a response from the
server after sending a command.

By default, the timeout is 30 seconds. When timeout is entered with the optional
seconds parameter, the timeout value is reset to the specified number of seconds.
When entered without parameter, the current timeout value is returned.

transaction commit

transaction commit XID

Commits the transaction identified by the transaction ID. The transaction must be
in the ended or prepared state. To obtain a transaction ID, issue the show
transactions command, and cut and paste the XID into this command.

transaction rollback

&

updatecrl

transaction rollback XID

Rolls back the transaction identified by the transaction ID. The transaction must
be in the ended, rollback only, or the prepared state. To obtain a transaction ID,
issue the show transactions command, and cut and paste the XID into this
command.

Messages sent to a queue with prefetch=none and maxRedelivery=number
properties are not received number times by an EMS application that receives in a
loop and does an XA rollback after the XA prepare phase.

updatecrl

Immediately update the server’s certificate revocation list (CRL).

TIBCO Enterprise Message Service User’s Guide

Command Listing | 183
whoami

whoami

Alias for the show user command to display the currently logged in user.

TIBCO Enterprise Message Service User's Guide

184 | Chapter 6 Using the EMS Administration Tool

TIBCO Enterprise Message Service User’s Guide

|185

Chapter7 Using the Configuration Files

This chapter describes configuring TIBCO Enterprise Message Service.

Topics

* Location of Configuration Files, page 186
® Mechanics of Configuration, page 186

¢ tibemsd.conf, page 187

¢ Using Other Configuration Files, page 238

TIBCO Enterprise Message Service User's Guide

186 | Chapter 7 Using the Configuration Files

Location of Configuration Files

The installation process places configuration files in two directories:

* config-file-directory/cfmgmt/ems/data/ contains a subset of configuration files
suitable for quickly testing the installation. The config-file-directory is specified
during the Configuration Directory step installation process.

* EMS_HOME/samples/config/ contains the more complete set of sample
configuration files. For deployment, we recommend copying files from this
directory to a production configuration directory, and modifying those copies.

When selecting a production configuration directory, we recommend using a file
system with regular backup commensurate with your need for reliability and
disaster recovery. It is essential that the EMS server have both read and write
privileges in the configuration directory.

Mechanics of Configuration

Configuration
Files

Administrative
Requests

The EMS server reads configuration files only once, when the server starts. It
ignores subsequent changes to the configuration files. If you change a
configuration file, use the shutdown command from the EMS Administration Tool
to shutdown the server and then restart the server as described in Running the
EMS Server on page 107.

You can also change the server configuration with administrative requests, using
either tibemsadmin (a command line tool), the Java or INET administrative APIs,
or TIBCO Administrator™ (a separate TIBCO product).

When the server validates and accepts an administrative request, it writes the
change to the appropriate configuration file as well (overwriting any manual
changes to that file). This policy keeps configuration files current in case the
server restarts (for example, in a fault-tolerant situation, or after a hardware
failure).

Re-installing or updating EMS overwrites the files in the bin/ and
samples/config/ directories. Do not use these directories to configure your
deployment.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf

tibemsd.conf | 187

The main configuration file controls the characteristics of the EMS server. This file
is usually named tibemsd. conf, but you can specify another file name when
starting the server. You can find more information about starting the server in
Running the EMS Server on page 107.

An example of the tibemsd. conf file is included in the

config-file-directory/cfmgmt /ems /data/ directory, where config-file-directory is
specified during TIBCO Enterprise Message Service installation. You can edit this
configuration file with a text editor. There are a few configuration items in this file
that can be altered using the administration tool, but most configuration
parameters must be set by editing the file (that is, the server does not accept
changes to those parameters). See Chapter 6, Using the EMS Administration Tool,
on page 123 for more information about using the administration tool.

Several parameters accept boolean values. In the description of the parameter, one
specific set of values is given (for example, enable and disable), but all
parameters that accept booleans can have the following values:

® enable, enabled, true, yes, on
® disable,disabled, false, no, off

Parameters that take multiple elements cannot contain spaces between the
elements, unless the elements are enclosed in starting and ending double quotes.
Parameters are limited to line lengths no greater than 256,000 characters in length.

The following table summarizes the parameters in tibemsd.conf according to
category. The sections that follow provide more detail on each parameter.

Table 32 tibemsd.conf Parameters

Parameter Description See Page
Global System Parameters
authorization Enable or disable server authorization. 199
compliant_queue_ack Guarantees that a message will not be 199
redelivered after a client has successfully
acknowledged its receipt from a routed
queue.
disconnect_non_acking consumers Causes the server to review 199

unacknowledged pending messages size
and counts in consumers.

TIBCO Enterprise Message Service User's Guide

188 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page

flow_control Enable or disable flow control for 200
destinations.

listen Specifies the port on which the serveristo 201

listen for connections from clients.

max_msg_field print_size Limits the size of string fields in tracing 201
messages.
max_msg_print_size Limits the size of the printed message of 201

traced messages.

npsend_check_mode Specifies when the server is to provide 202
confirmation upon receiving a
NON_PERSISTENT message from a
producer.

password Password used to authenticate with other 202
routed servers that have authorization
enabled.

processor_ids Specifies the processors to be used for 203
network I/0O traffic.

routing Enable or disable routing functionality for 204
this server.

selector_logical_operator_ limit Limits the number of operators that the 204
server reviews during selector evaluation.

server Name of server. 204

startup_abort_list Specifies conditions under which the 205
server is to exit during its initialization
sequence.

user_auth Specifies the source of authentication 206

information used to authenticate users
attempting to access the EMS server.

xa_default_timeout Specifies the TX timeout for XA 206
transactions.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 189

Table 32 tibemsd.conf Parameters

Parameter Description See Page

Storage File Parameter

store Specifies the directory in which the server 206
stores data.

Connection and Memory Parameters

destination_backlog_ swapout Specifies the maximum number of 207
messages per destination that are stored in
the server before message swapping is
enabled.

handshake_timeout Specifies the amount of time that the EMS 207
server waits for an SSL connection to
complete.

max_client_msg_size Sets a maximum size for incoming 207
messages.

max_connections Specifies the maximum number of 207
simultaneous client connections to the
server.

max_msg_memory Specifies the maximum memory the server 208
can use for messages.

msg_pool_block_size Specifies the size of the pool to be 208
pre-allocated by the server to store
messages.
msg_swapping Enable or disable message swapping. 209
reserve_memory Specifies the amount of memory to reserve 209

for use in emergency situations.

socket_send_buffer_ size Sets the size of the send buffer used by 210
clients when connecting to the EMS server.

socket_receive_buffer_size Sets the size of the receive buffer used by 210
clients when connecting to the EMS server.

TIBCO Enterprise Message Service User's Guide

190 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page
Detecting Network Connection Failure Parameters
client_heartbeat_server Specifies the interval clients are to send 211
heartbeats to the server.
clock_sync_interval Periodically sends the EMS server’s UTC 211
time to clients.
server_timeout_client_connection Specifies the period of time server will 211
wait for a client heartbeat before
terminating the client connection.
server_heartbeat_server Specifies the interval this server is to send 212
heartbeats to another server.
server_timeout_server_connection Specifies the period of time this server will 212
wait for a heartbeat from another server
before terminating the connection to that
server.
server_heartbeat_client Specifies the interval this server is to send 212
heartbeats to all of its clients.
client_timeout_server_connection Specifies the period of time a client will 213
wait for a heartbeat from the server before
terminating the connection.
Fault Tolerance Parameters
ft_active Specifies the URL of the active server. 213
ft_heartbeat Specifies the interval the active serveristo 213
send a heartbeat signal to the backup
server to indicate that it is still operating.
ft_activation Specifies the maximum length of time 214

between heartbeat signals the backup
server is to wait before assuming the
active server has failed.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 191

Table 32 tibemsd.conf Parameters

Parameter Description See Page

ft_reconnect_timeout Specifies the maximum length of time the =~ 214
backup server is to wait for clients to
reconnect after assuming the role of
primary server in a failover situation.

ft_ssl_auth_only Specifies whether the server allows a fault 214
tolerant server to request the use of SSL
only for authentication.

ft_ssl_identity Specifies the server’s digital certificate. 214

ft_ssl_issuer Specifies the certificate chain member for 215
the server.

ft_ssl_private_key Specifies the server’s private key. 215

ft_ssl_password Specifies the password for private keys. 215

ft_ssl_trusted Specifies the list of trusted certificates. 215

ft_ssl_rand_egd Specifies the path for the installed entropy 216
gathering daemon (EGD).

ft_ssl_verify host Specifies whether the fault-tolerant server 216

should verify the other server’s certificate.

ft_ssl_verify_ hostname Specifies whether the fault-tolerant server 216
should verify the name in the CN field of
the other server’s certificate.

ft_ssl_expected_hostname Specifies the name the server is expected 216
to have in the CN field of the fault-tolerant
server’s certificate.

ft_ssl_ciphers Specifies the cipher suites used by the 217
server.

Message Tracking Parameters

track_message_ids Enable or disable message tracking by 217
message ID.

TIBCO Enterprise Message Service User's Guide

192 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page

track_correlation_ids Enable or disable message tracking by 217
correlation ID.

Multicast Parameters

multicast Enables or disables multicast in the EMS 217
server.
multicast_channels Specifies the configuration file where 218

multicast channels are defined.

multicast_daemon_default Specifies the default port on which the 218
multicast daemon listens for connections
from EMS clients.
multicast_statistics_interval Specifies how often, in seconds, multicast ~ 218

statistics are generated for each channel.

TIBCO Rendezvous Parameters

tibrv_transports Enable or disable the TIBCO Rendezvous 219
transports defined in transports.conf
file.

TIBCO SmartSockets Parameters

module_path Specify the directory containing the 219
TIBCO SmartSockets library files.

tibss_transports Enable or disable the TIBCO SmartSockets 219
transports defined in transports.conf
file.

tibss_config dir Specifies the directory for SmartSockets 220

configuration and message files.

Tracing and Log File Parameters

logfile Name and location of the server log file. 220

log trace Specifies the trace options on the file 220
defined by the logfile parameter.

TIBCO Enterprise Message Service User’s Guide

Table 32 tibemsd.conf Parameters

Parameter

logfile_max_count

Description

Specifies the maximum number of log files

to be kept.

tibemsd.conf | 193

See Page
221

logfile_max_size

Specifies the maximum log file size before
the log file is copied to a backup and then

emptied.

221

console_trace

Specifies the trace options for output to

stderr.

221

client_ trace

Enable or disable client generation of trace

output for opening or closing a
connection, message activity, and
transaction activity.

222

trace_client_host

Specifies whether the trace statements
related to connections identify the host by
its hostname, its IP address, or both.

222

Statistic Gathering Parameters

server_rate_interval

Specifies the interval at which overall

server statistics are averaged.

222

statistics

Enables or disables statistic gathering for
producers, consumers, destinations, and

routes.

223

rate_interval

Specifies the interval at which statistics for
routes, destinations, producers, and

consumers are averaged.

223

detailed_statistics

Specifies which objects should have

detailed statistic tracking.

223

statistics_cleanup_interval

Specifies how long the server should keep
detailed statistics if the destination has no

activity.

224

max_stat_memory

Specifies the maximum amount of

memory to use for detailed statistic

gathering.

224

TIBCO Enterprise Message Service User's Guide

194 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page

SSL Server Parameters

ssl_dh_size Specifies the size of the Diffie-Hellman 224
key.

ssl_server_ciphers Specifies the cipher suites used by the 224
server.

ssl_require_client_cert Specifies if the server is to only accept SSL 225
connections from clients that have digital
certificates.

ssl_use_cert_username Specifies if a client’s user name is to 225

always be extracted from the CN field of
the client’s digital certificate.

ssl_cert_user_specname Specifies a special username to identify 225
which clients are to have their usernames
taken from their digital certificates.

ssl_server_identity Specifies the server’s digital certificate. 226

ssl_server_key Specifies the server’s private key. 226

ssl_password Specifies the password for private keys. 226

ssl_server_issuer Specifies the certificate chain member for 227
the server.

ssl_server_trusted Specifies the list of CA root certificates the 227

server trusts as issuers of client certificates.

ssl_rand_egd Specifies the path for the installed entropy 227
gathering daemon (EGD).
ssl_crl_path Specifies the pathname to the certificate 228

revocation list (CRL) files.

ssl_crl_update_interval Specifies the interval at which the serveris 228
to update its CRLs.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 195

Table 32 tibemsd.conf Parameters

Parameter Description See Page
ssl_auth_only Specifies whether the server allows clients 228

to request the use of SSL only for

authentication.
fips140-2 Enables the server for FIPS compliance. 228

LDAP Parameters

ldap_url Specifies the URL of the external directory =~ 228
server.

ldap_principal Specifies the distinguished name (DN) of 229
the LDAP administrator.

ldap_credential Specifies the password associated with the =~ 229
user defined in the 1dap_principal
property.

ldap_cache_enabled Enables or disables caching of LDAP data. 229

ldap_cache_ttl Specifies the maximum time that cached 229
LDAP data is retained before it is
refreshed.

ldap_conn_type Specifies the type of connection that the 229

server uses to get LDAP information.

ldap_tls_cacert_file Specifies the file that contains the CA 230
certificate the EMS server trusts to sign the
LDARP server’s certificate.

ldap_tls_cacert_dir When there are two or more CA 230
certificates in the verify chain, use this
parameter to specify the directory
containing the CA certificates.

ldap_tls_cipher_suite Specifies the cipher suite to use for 230
encryption on secure LDAP connections.

ldap_tls_rand file Specifies the file containing random data 230
for encryption.

TIBCO Enterprise Message Service User's Guide

196 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page
ldap_tls_cert_file Specifies the file containing the certificate ~ 231

that identifies the EMS server to the LDAP

server.
ldap_tls_key_file Specifies the file containing the private 231

key required by the LDAP server to
authenticate the client.

ldap_user_class Specifies the name of the LDAP object 231
class that stores users.

ldap_user_attribute Specifies the name of the attribute on the =~ 231
user object class that holds the name of the
user.

ldap_user_base_dn Specifies the base distinguished name 231
(DN) of the LDAP tree that contains the
users.

ldap_user_scope Specifies how deeply under the base DN 232
to search for users.

ldap_user_filter Specifies the LDAP search filter for finding 232
a given user name.

ldap_all_users_filter Specifies the LDAP search filter for finding 232
all users beneath the user base DN.

ldap_group_base_dn Specifies the base distinguished name 232
(DN) of the LDAP tree that contains
groups.

ldap_group_scope Specifies how deeply under the base DN 232
to search for groups.

ldap_group_filter Specifies the LDAP search filter for finding 233
a group with a given group name.

ldap_all_groups_filter Specifies the LDAP search filter for finding 233
all groups beneath the group base DN.

ldap_static_group_class Specifies the name of the LDAP object 233
class that stores static groups.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 197

Table 32 tibemsd.conf Parameters

Parameter Description See Page

ldap_static_group_attribute Specifies the name of the attribute on the 233
static group object class that holds the
name of the group.

ldap_static_group_member filter Specifies the LDAP serch filter for finding 234
all static members of a group

ldap_static_member_attribute Specifies the attribute of an LDAP static 234
group object that specifies the
distinguished names (DNs) of the
members of the group.

ldap_dynamic_group_class Specifies the name of the LDAP object 234
class that stores dynamic groups.

ldap_dynamic_group_attribute Specifies the name of the attribute on the 234
dynamic group object class that holds the
name of the group.

ldap_dynamic_member url_attribute Specifies the attribute of the dynamic 235
LDAP group object that specifies the URLs
of the members of the dynamic group.

Extensible Security Parameters

jaas_classpath Includes the JAR files and dependent 235
classes used by the JAAS LoginModule.

jaas_config file Specifies the location of the JAAS 235
configuration file used to run a custom
authentication LoginModule.

jaas_login_timeout Specifies the length of time, in 235
milliseconds, that the server waits for the
JAAS authentication module to execute
and respond.

jaci_classpath Includes the JAR files and dependent 236
classes used by the JACI custom
permissions module.

TIBCO Enterprise Message Service User's Guide

198 | Chapter 7 Using the Configuration Files

Table 32 tibemsd.conf Parameters

Parameter Description See Page
jaci_class Specifies the name of the class that 236
implements the extensible permissions
interface.
jaci_timeout Specifies the length of time, in 236

milliseconds, that the server waits for the
JACI permissions module to execute and

respond.
JVM Parameters
jre_library Enables the JVM in the EMS server. 237
jre_option Passes command line options to the JVM 237
at start-up.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 199

Global System Parameters

authorization
authorization = enabled | disabled
Enable or disable server authorization.

Authorization is disabled by default. If you require that the server verify user
credentials and permissions on secure destinations, you must enable this
parameter.

See Enabling Access Control on page 275 for more information.

For example:
authorization = enabled

See Chapter 8, Authentication and Permissions, on page 265 for more information
about these parameters.

compliant_queue_ack
compliant_queue_ack = enable | disable

Guarantees that, once a client successfully acknowledges a message received from
a routed queue, the message will not be redelivered. This is accomplished by the
EMS server waiting until the message has been successfully acknowledged by the
queue’s home EMS server before sending the response to the client.

The compliant_queue_ack parameter is enabled by default. Because of the extra
overhead incurred with compliant queue acknowledgments, you can disable this
feature when performance is an issue. If compliant queue acknowledgement is
disabled and a message is redelivered, the message’s JMSRedelivered indicator
will be set.

disconnect_non_acking_consumers
disconnect_non_acking consumers = enabled | disabled

This parameter works in conjunction with the maxbytes and maxmsgs destination
properties. In situations where consumers consume messages but do not
acknowledge them, the messages are held in the server until they are confirmed.
This can push the server above the set limits.

TIBCO Enterprise Message Service User's Guide

200 | Chapter 7 Using the Configuration Files

flow_control

When enabled, disconnect_non_acking_consumers causes the server to check
the number and size of pending messages sent to a consumer. If the maxbytes or
maxmsgs limit is reached and the consumer has not acknowledged its messages,
the server discards the messages sent to the consumer and disconnects the
consumer’s connection. This protects the server against applications that
consume messages without ever acknowledging them.

Before enabling this property, ensure that the maxbytes and maxmsgs limits are set
with reference to the prefetch setting, the size of the transaction (if transacted
receive), or number of messages acknowledged when using client or explicit
client acknowledgment mode. Otherwise the server may disconnect the consumer
before it has a chance to acknowledge the messages.

When routes are deployed, all routed servers should use the same
disconnect_non_acking_consumers setting. Additionally, if maxbytes or
maxmsgs is set for a global destination, the same setting should be applied on all
servers. The server does not discard or disconnect a routed consumer, since
disconnecting the route may impact other well-behaved applications. Servers
discard and disconnect their local consumers, which other servers involved are
made aware of and discard messages for those remote consumers accordingly.

This parameter is disabled by default.

flow_control = enable | disable
Specifies whether flow control for destinations is enabled or disabled.

By default, flow control is disabled. When flow control is enabled, the
flowControl property on each destination specifies the target maximum storage
for pending messages on the destination.

See Flow Control on page 87 for more information about flow control.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 201

listen
listen=protocol : / /servername : port
Specifies the port on which the server is to listen for connections from clients.
For example:
listen=tcp://localhost:7222
If you are enabling SSL, for example:
listen=ssl://localhost:7222

You can use multiple 1isten entries if you have computers with multiple
interfaces. For example:

listen=tcp://localhost:7222
listen=tcp://localhost: 7224

If localhost is specified, or if the servername is not present, then the server uses
every available interface. For example:

listen=tcp://7222
listen=ssl://7243

You can use an IP address instead of a host name. For example:
listen=tcp://192.168.10.107:7222

When specifying an IPv6 address, use square brackets around the address
specification. For example:

listen=tcp://[2001:cafe::107]:7222

max_msg_field_print_size
max_msg_field print_size = size [KB|MB|GB]

Limits the size of string fields in tracing messages. If a string field is larger than
size, the field is truncated in the tracing message.

Specify signed 32-bit integer values as KB, MB or GB. The minimum permitted size
is 1 KB. By default, the field limit is 1 KB.

max_msg_print_size
max_msg_print_size = size [KB|MB|GB]

Limits the size of the printed message of traced messages. If the message is larger
than size, the message is truncated.

Specify signed 32-bit integer values as KB, MB or GB. The minimum permitted size
is 8 KB. By default, the field limit is 8 KB.

TIBCO Enterprise Message Service User's Guide

202 | Chapter 7 Using the Configuration Files

npsend_check_mode

password

npsend_check _mode = [always | never | temp_dest | auth | temp_auth]

Specifies when the server is to provide confirmation upon receiving a
NON_PERSISTENT message from a producer.

The npsend_check_mode parameter applies only to producers sending messages
using NON_PERSISTENT delivery mode and non-transactional sessions.

Message confirmation has a great deal of impact on performance and should only
be enabled when necessary. The circumstances in which a producer might want
the server to send confirmation a NON_PERSISTENT message are:

* When authorization is enabled, so the producer can take action if
permission to send the message is denied by the server.

* When sending to a temporary destination, so the producer can take action if
the message is sent to a temporary destination that has been destroyed.

* The message exceeded queue/topic limit (requires rejectIncoming policy
for topics).

* Bridging of the message has failed.
* The server is out of memory or has encountered some other severe error.
The possible npsend_check_mode parameter modes are:

® default (no mode specified) - same behavior as in EMS 4.3 and prior. This
means the server only provides confirmation of a NON_PERSISTENT message if
authorization is enabled.

* always - the server always provides confirmation of a NON_PERSISTENT
message.

® never - the server never provides confirmation of NON_PERSISTENT messages.

* temp_dest - the server provides confirmation of a NON_PERSISTENT message
only when sending to a temporary destination.

* auth - the server provides confirmation of a NON_PERSISTENT message only if
authorization was enabled when the connection was created.

* temp_auth - the server provides confirmation of a NON_PERSISTENT message
if sending to a temporary destination or if authorization was enabled when
the connection was created.

password = password

Password used to log in to other routed servers that have authorization
enabled. See Routing and Authorization on page 531 for details.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 203

processor_ids
processor_ids = processor-idl, processor-id2,

Setting this parameter causes the EMS Server to start as many network I/O
threads as there are processor IDs specified in the list. Each network I/O thread is
bound to the given processor ID, which means that the thread can execute only on
that processor.

% ‘ Do not use this parameter if the default behavior provides sufficient throughput.

Specify the processor-id as an integer, starting at 0 and continuing to the number of
processors available, minus 1. For example, if you have four processors, the valid
processor IDs are 0, 1, 2, and 3. Note that the IDs can be listed in any order.

On startup, the parameter is parsed and the server refuses to start (regardless of
the presence of the startup_abort_list parameter) if:

1. The list is malformed. That is, if it contains invalid values such as
non-numeric elements.

2. A processor ID specified is greater than the number of processors available on
the machine. For example, if the processor ID 4 is specified in a machine with
only 4 processors. (Valid IDs for a 4-processor machine are 0, 1, 2 and 3.)

3. The server is unable to bind a network I/O thread to a given processor ID.
This can happen when the processor ID has been disabled, or the tibemsd
process has been restricted by the system administrator to a set of processors
that does not contain this processor ID.

% Do not use hyper threading.

For instance, consider a machine with 24 processors, with 2 dies and processor
IDs ranging from 0 to 5 and 12 to 17 on the first die, and 6 to 11 and 18 to 23 on the
second die. In this example, you should specify processor IDs in either the 0 to 5
range, or the 6 to 11 range.

Specifying processor IDs 0 and 12 in the list would cause thrashing because two
network I/O threads would be bound to the same processor (or core). Also, for
optimal performance, processor IDs should be from the same die.

This parameter can be used in conjunction with the stores.conf parameter
processor_id. For more information, see Performance Tuning on page 121.

TIBCO Enterprise Message Service User's Guide

204 | Chapter 7 Using the Configuration Files

routing

routing = enabled | disable

Enables or disables routing functionality for this server.
For example:

routing = enabled

See Chapter 20, Working With Routes, on page 509 for more information about
routing.

selector_logical_operator_limit

server

selector_logical_operator_limit = number
Limit the number of operators that the server reviews during selector evaluation.

The server evaluates operators until reaching the specified number of false
conditions. The server then stops evaluating further to protect itself from too
many recursive evaluations. A very long selector clause, such as one including
many OR conditions, can cause recursive selector evaluation and lead to a stack
overflow in the EMS server.

number may be any positive integer. The default value is 5000. Zero is a special
value, indicating no limit.

For example, if selector_logical_operator_limit = 10 and the selector is:
a=1 or b=2 or c=3 or d=4 or e=5 or f=6 or g=7 or h=8 or i=9 or j=10
or k=11 or 1=12 or m=13 or n=14 or o=15 or p=16 or g=17 or r=18 or

s=19 or t=20 or u=21 or v=22 or w=23 or x=24 or y=25 or z=26

if the first 10 conditions are false, the server stops further evaluation.

server = serverName

Name of server.

Server names are limited to at most 64 characters, and may not include the dot
character (.).

TIBCO Enterprise Message Service User’s Guide

startup_abort_list

tibemsd.conf | 205

startup_abort_list=[SSL, TRANSPORTS, CONFIG_FILES,CONFIG_ERRORS,
DB_FILES,MULTICAST]

Specifies conditions that cause the server to exit during its initialization sequence.

You may specify any subset of the conditions in a comma-separated list. The list
cannot contain spaces between the elements, unless the elements are enclosed in
starting and ending double quotes. If a space is included but not enclosed in
quotation marks, the server ignores any conditions following the space.

Conditions that do not appear in the list are ignored by the server. The default is
an empty list.

The conditions are:
e ss1—If SSL initialization fails, then it exits.

® TRANSPORTS—If any of the transports cannot be created as specified in the
configuration files, then it exits.

® CONFIG_FILES—If any configuration file listed in tibemsd. conf does not
exist, then it exits.

* CONFIG_ERRORS—If the server detects any errors while reading the config
files, then it exits.

Note that the tibemsd silently ignores any unknown parameters when it is
started using the JSON configuration. For example, no configuration errors
are thrown if the tibemsd. json file contains an obsolete parameter.

e DB_FILES—If the server cannot find one or more of its stores, then it exits.
Stores include the default store files as well as any file or database stores
configured in the stores. conf configuration file.

Note that if DB_FILES is not included in the startup_abort_1list and the
server cannot find a store, the server will create the missing file or database.
For best results, do not include DB_FILES the first time a server is started,
allowing it to create the files. After after initial startup or a major store
configuration change (such as the addition of a new store), include DB_FILES
in the list so that on restart the server will only start if all the configured files
are present.

® MULTICAST—If the server detects that it cannot send multicast messages, then
it exits.

Note that if MULTICAST is not in the startup_abort_1list and multicast
initialization fails, applications creating consumers on multicast-enabled
topics will receive messages over TCP. This is important to consider if your
network cannot handle the bandwidth allocated for multicast when it is sent
over a TCP connection.

TIBCO Enterprise Message Service User's Guide

206 | Chapter 7 Using the Configuration Files

user_auth

S

user_auth = [local, ldap, jaas]
Specifies the source of user authentication information.

This parameter can have one or more of the following values (separated by
comma characters):

e Jocal—obtain user authentication information from the local EMS server
user configuration.

* ldap—obtain user authentication information from an LDAP directory server
(see the LDAP-specific configuration parameters).

® jaas—obtain user authentication information from a custom authentication
module (see Extensible Authentication on page 292).

Each time a user attempts to authenticate, the server seeks corresponding
authentication information from each of the specified locations in the order that
this parameter specifies. The EMS server accepts successful authentication using
any of the specified sources.

The user_auth setting does not affect authentication of the default administrator.
The server always authenticates the admin user from the local configuration file.
See Assign a Password to the Administrator on page 126 for more information.

xa_default_timeout

xa_default_timeout = seconds

Specifies the default TX timeout, in seconds, for XA transactions. The default is 0,
which specifies no timeout.

The default timeout setting cannot be changed dynamically. However, you can
specify a different transaction timeout for each individual XA resource using the
APL

Storage File Parameters

store

The parameter described here configures file-based and mstores. For information
about database stores, see Chapter 10, Using Database Stores.

store = directory
Directory in which the server stores data files. For example:

store = /usr/tmp

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 207

Connection and Memory Parameters

destination_backlog_swapout
destination_backlog_swapout = number

Specifies the number of messages that may be stored in the server's memory
before message swapping is enabled. The limit given is for each destination. For
example, if the limit is 10,000 and you have three queues, the server can store up
to 30,000 unswapped messages in memory.

The specified number may be any positive value. When
destination_backlog_swapout is 0, the server attempts to immediately swap
out the message.

By default, the limit for each destination is 1024 messages.

handshake_timeout
handshake_timeout = seconds

The amount of time (in seconds) that the EMS server waits for an SSL connection
to complete. seconds may be any positive integer. The default value is 3 seconds.

When the timeout is reached, the EMS server closes the SSL connection and
continues servicing other clients.

max_client_msg_size
max_client_msg _size = size [KB|MB|GB]
Maximum size allowed for an incoming message.

This parameter setting instructs the server to reject incoming messages that are
larger than the specified size limit.

Specify whole numbers as KB, MB or GB. The maximum value is 2 GB.

When omitted or zero, the EMS server accepts and attempts to process messages
of any size.

max_connections
max_connections = number
Maximum number of simultaneous client connections.

Set to 0 to allow unlimited simultaneous connections.

TIBCO Enterprise Message Service User's Guide

208 | Chapter 7 Using the Configuration Files

max_msg_memory
max_msg_memory = size [KB|MB|GB]
Maximum memory the server can use for messages.

This parameter lets you limit the memory that the server uses for messages, so
server memory usage cannot grow beyond the system’s memory capacity.

When msg_swapping is enabled, and messages overflow this limit, the server
begins to swap messages from process memory to disk. Swapping allows the
server to free process memory for incoming messages, and to process message
volume in excess of this limit.

When the server swaps a message to disk, a small record of the swapped message
remains in memory. If all messages are swapped out to disk, and their remains
still exceed this memory limit, then the server has no room for new incoming
messages. The server stops accepting new messages, and send calls in message
producers result in an error. (This situation probably indicates either a very low
value for this parameter, or a very high message volume.)

Specify units as KB, MB or GB. The minimum value is 8 MB. The default value of 0
(zero) indicates no limit.

For example:

max_msg_memory = 512MB

msg_pool_block_size

msg_pool_block_size size

% ‘ Consult with your TIBCO support representative before using this parameter.

To lessen the overhead costs associated with malloc and free, the server
pre-allocates pools of storage for messages. This parameter determines the
behavior of these pools. Performance varies depending on operating system
platform and usage patterns.

The size argument determines the approximate number of internal message
structs that a block or pool can accommodate (not the number of bytes).

msg_pool_block_size instructs the server to allocate an expandable pool. Each
time the server exhausts the pool, the server increases the pool by this size, as
long as additional storage is available. The value may be in the range 32 to 65536.

When this parameter is not present, the default is msg_pool_block_size 128.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 209

msg_swapping
msg_swapping = enable | disable

This parameter enables and disables the message swapping feature (described
above for max_msg_memory).

The default value is enabled, unless you explicitly set it to disabled.

reserve_memory
reserve_memory = Size

When reserve_memory is non-zero, the daemon allocates a block of memory for
use in emergency situations to prevent the EMS server from being unstable in low
memory situations. When the daemon process exhausts memory resources, it
disables clients and routes from producing new messages, and frees this block of
memory to allow consumers to continue operation (which tends to free memory).

The EMS server attempts to reallocate its reserve memory once the number of
pending messages in the server has dropped to 10% of the number of pending
messages that were in the server when it experienced the allocation error. If the
server successfully reallocates memory, it begins accepting new messages.

The reserve_memory parameter only triggers when the EMS server has run out
of memory and therefore is a reactive mechanism. The appropriate administrative
action when an EMS server has triggered release of reserve memory is to drain the
majority of the messages by consuming them and then to stop and restart the
EMS server. This allows the operating system to reclaim all the virtual memory
resources that have been consumed by the EMS server. A trace option, MEMORY, is
also available to help show what the server is doing during the period when it is
not accepting messages.

Specify size in units of MB. When non-zero, the minimum block is 16MB. When
absent, the default is zero.

There are a variety of limits that the user can set to prevent the EMS server from

%} storing excessive messages, which can lead to situations where the EMS server
runs out of memory. These include global parameters, such as max_msg_memory,
as well as destination properties such as maxbytes. These limits should be used to
prevent the reserve_memory mechanism from triggering.

TIBCO Enterprise Message Service User's Guide

210 | Chapter 7 Using the Configuration Files

socket_send_buffer_size

‘-

socket_send buffer size = size [KB|MB|GB]

Sets the size (in bytes) of the send buffer used by clients when connecting to the
EMS server.

The specified size may be:

* any number greater than 512

* 0 to use the default buffer size

e -1 to skip the call for the specified buffer

* Optionally, specify units of KB, MB, or GB for units. If no units are specified, the
file size is assumed to be in bytes.

When omitted or zero, the default buffer size is used.

On Linux platforms, omitting the parameter or specifying zero causes the EMS
server to skip the value. In this case, Linux auto-tuning controls buffering.

socket_receive_buffer_size

‘-

socket_receive_buffer_size = size [KB|MB|GB]

Sets the size (in bytes) of the receive buffer used by clients when connecting to the
EMS server.

The specified size may be:

® any number greater than 512

* 0 to use the default buffer size

e -1 to skip the call for the specified buffer

¢ Optionally, specify units of KB, MB, or GB for units. If no units are specified, the
file size is assumed to be in bytes.

When omitted or zero, the default buffer size is used.

On Linux platforms, omitting the parameter or specifying zero causes the EMS
server to skip the value. In this case, Linux auto-tuning controls buffering.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 211

Detecting Network Connection Failure Parameters

This feature lets servers and clients detect network connection failures quickly.
When these parameters are absent, or this feature is disabled, tibemsd closes a
connection only upon the operating system notification.

client_heartbeat_server
client _heartbeat_server = interval

In a server-to-client connection, clients send heartbeats to the server at this
interval (in seconds).

The client_heartbeat_server parameter must be specified when a
server_timeout_client_connection is set. The client_heartbeat_server
interval should be no greater than one third of the
server_timeout_client_connection limit.

This setting also ensures that garbage collection occurs on the connection.
Collection is triggered by incoming messages and heartbeats. If the size of
messages can vary widely or there is not a steady stream of message traffic, can
use this parameter to ensure that collection occurs.

When omitted or zero, client_heartbeat_server is disabled.

clock_sync_interval
clock_sync_interval = seconds

Periodically send the EMS server’s Coordinated Universal Time (UTC) time to
clients. This allows EMS clients to update their offset.

The time specified, in seconds, determines the interval at which clock sync
commands are sent from the server to its clients.

When omitted or zero, the EMS server sends the offset time only when the EMS
client connects to the server. If clock_sync_interval is -1, the offset is never
sent, not even on connect. Clients do not adjust their time values to match the
server time.

server_timeout_client_connection
server_timeout_client_connection = [imit

In a server-to-client connection, if the server does not receive a heartbeat for a
period exceeding this limit (in seconds), it closes the connection.

We recommend setting this value to approximately 3 times the heartbeat interval,

TIBCO Enterprise Message Service User's Guide

212 | Chapter 7 Using the Configuration Files

&

as it is specified in client_heartbeat_server.

If you do not set the client_heartbeat_server parameter when a
server_timeout_client_connection is specified, a configuration error is
generated during startup. If CONFIG_ERRORS is part of the startup_abort_list,
the server will not start. If not, the error is printed but the server starts, and clients
will be disconnected after server_timeout_client_connection seconds.

Zero is a special value, which disables heartbeat detection in the server (although
clients still send heartbeats).

server_heartbeat_server

server_heartbeat_server = interval

In a server-to-server connection, this server sends heartbeats at this interval (in
seconds). The two servers can be connected either by a route, or as a fault-tolerant
pair.

server_timeout_server_connection

S

server_ timeout_server_ connection = limit

In a server-to-server connection, if this server does not receive a heartbeat for a
period exceeding this limit (in seconds), it closes the connection. This parameter
applies to connections from other routes and to the backup server connection.

We recommend setting this value to approximately 3.5 times the heartbeat
interval of the other server. When the other server or the network are heavily
loaded, or when client programs send very large messages, we recommend a
larger multiple.

In a fault-tolerant configuration, the server_timeout_server_connection
parameter has no effect on the backup server following a switchover. The backup
server activates only after the timeout set by the ft_activation parameter.

server_heartbeat_client

& |

server_ heartbeat_client = interval

In a server-to-client connection, the server sends heartbeats to all clients at this
interval (in seconds).

When omitted or zero, the default is 5 seconds.

This parameter is new in release 4.4; it is disabled when either entity is from an
earlier release.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 213

client_timeout_server_connection
client timeout_server connection = limit

In a server-to-client connection, if a client does not receive a heartbeat for a period
exceeding this limit (in seconds), it closes the connection.

We recommend setting this value to approximately 3.5 times the heartbeat
interval.

Zero is a special value, which disables heartbeat detection in the client (although
the server still sends heartbeats).

This parameter is new in release 4.4; it is disabled when either entity is from an
% earlier release.

Fault Tolerance Parameters

See Chapter 19, Fault Tolerance, on page 485 for more information about these
parameters.

The fault tolerance parameters that begin with the prefix £t_ss1 are used to
secure communications between pairs of fault tolerant servers. See SSL on
page 500 for additional information about this process.

ft_active
ft_active = URL

Specifies the URL of the active server. If this server can connect to the active
server, it will act as a backup server. If this server cannot connect to the active
server, it will become the active server.

ft_heartbeat
ft_heartbeat = seconds

Specifies the interval (in seconds) the active server is to send a heartbeat signal to
the backup server to indicate that it is still operating. Default is 3 seconds.

TIBCO Enterprise Message Service User's Guide

214 | Chapter 7 Using the Configuration Files

ft_activation

&

ft_activation = seconds

Activation interval (maximum length of time between heartbeat signals) which
indicates that active server has failed. Set in seconds: default is 10. This interval
should be set to at least twice the heartbeat interval.

For example:

ft_activation = 60

The ft_activation parameter is only used by the backup server after a
fault-tolerant switchover. The active server uses the
server_timeout_server_ connection to detect a failed server.

ft_reconnect_timeout

ft_ssl_auth_only

ft_ssl_identity

ft_reconnect_timeout = seconds

The amount of time (in seconds) that a backup server waits for clients to reconnect
(after it assumes the role of primary server in a failover situation). If a client does
not reconnect within this time period, the server removes its state from the shared
state files. The ft_reconnect_timeout time starts once the server has fully
recovered the shared state, so this value does not account for the time it takes to
recover the store files.

The default value of this parameter is 60.

ft_ssl_auth only = enable | disable

When enabled, the server allows a fault tolerant server to request the use of SSL
only for authentication (to protect user passwords). For an overview of this
feature, see SSL Authentication Only on page 482.

When disabled, the server ignores requests for this feature. When absent, the
default value is disabled.

ft_ssl_identity = pathname

The path to a file that contains the certificate in one of the supported formats. The
supported formats are PEM, DER, or PKCS#12.

See File Names for Certificates and Keys on page 469 for more information on file
types for digital certificates.

TIBCO Enterprise Message Service User’s Guide

ft_ssl_issuer

ft_ssl_private_key

ft_ssl_password

ft_ssl_trusted

tibemsd.conf | 215

ft_ssl_issuer = chain_member

Certificate chain member for the server. Supply the entire chain, including the CA
root certificate. The server reads the certificates in the chain in the order they are
presented in this parameter.

The certificates must be in PEM, DER, PKCS#7, or PKCS#12 format. See File
Names for Certificates and Keys on page 469 for more information on file types
for digital certificates.

ft_ssl_private_key = key

The server’s private key. If it is included in the digital certificate in
ft_ssl_identity, then this parameter is not needed.

This parameter supports private keys in the following formats: PEM, DER,
PKCS#12.

You can specify the actual key in this parameter, or you can specify a path to a file
that contains the key. See File Names for Certificates and Keys on page 469 for
more information on file types for digital certificates.

ft_ssl_password = password
Private key or password for private keys.

You can set passwords by way of the tibemsadmin tool. When passwords are set
with this tool, the password is obfuscated in the configuration file. See Chapter 6,
Using the EMS Administration Tool, on page 123 for more information about
using tibemsadmin to set passwords.

ft_ssl_trusted = trusted_certificates

List of trusted certificates. This sets which Certificate Authority certificates should
be trusted as issuers of the client certificates.

The certificates must be in PEM, DER, or PKCS#7 format. You can either provide
the actual certificates, or you can specify a path to a file containing the certificate
chain.

See File Names for Certificates and Keys on page 469 for more information on file
types for digital certificates.

TIBCO Enterprise Message Service User's Guide

216 | Chapter 7 Using the Configuration Files

ft_ssl_rand_egd

ft_ssl_verify_host

ft_ssl_rand_egd = pathname

The path for the installed entropy gathering daemon (EGD), if one is installed.
This daemon is used to generate random numbers for the EMS server.

ft_ssl_verify host = enabled | disabled

Specifies whether the fault-tolerant server should verify the other server’s
certificate. The values for this parameter are enabled or disabled. By default,
this parameter is enabled, signifying the server should verify the other server’s
certificate.

When this parameter is set to disabled, the server establishes secure
communication with the other fault-tolerant server, but does not verify the
server’s identity.

ft_ssl_verify_hostname

ft_ssl_verify hostname = enabled | disabled

Specifies whether the fault-tolerant server should verify the name in the CN field
of the other server’s certificate. The values for this parameter are enabled and
disabled. By default, this parameter is enabled, signifying the fault-tolerant
server should verify the name of the connected host or the name specified in the
ft_ssl_expected_hostname parameter against the value in the server’s
certificate. If the names do not match, the connection is rejected.

When this parameter is set to disabled, the fault-tolerant server establishes
secure communication with the other server, but does not verify the server’s
name.

ft_ssl_expected_hosthame

ft_ssl_expected_hostname = serverName

Specifies the name the server is expected to have in the CN field of the
fault-tolerant server’s certificate. If this parameter is not set, the expected name is
the hostname of the server.

This parameter is used when the ft_ssl_verify hostname parameter is set to
enabled.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 217

ft_ssl_ciphers
ft_ssl_ciphers = cipherSuite

Specifies the cipher suites used by the server; each suite in the list is separated by
a colon (:). This parameter can use the OpenSSL name for cipher suites or the
longer, more descriptive names.

See Specifying Cipher Suites on page 476 for more information about the cipher
suites available in EMS and the OpenSSL names and longer names for the cipher
suites.

Message Tracking Parameters

track_message_ids
track message ids = enabled | disabled

Tracks messages by message ID. Default is disabled.

Enabling this parameter allows you to display messages using the show message
message]lD command in the administration tool.

track_correlation_ids

track correlation_ids = enabled | disabled
Tracks messages by correlation ID. Disabled by default.

Enabling this parameter allows you to display messages using the show
messages correlation]D command in the administration tool.

Multicast Parameters

See Chapter 13, Using Multicast, on page 369, for more information about
multicast.

multicast

multicast = enabled | disabled
Enables or disables multicast in the EMS server. For example:
multicast = enabled

By default this feature is disabled.

TIBCO Enterprise Message Service User's Guide

218 | Chapter 7 Using the Configuration Files

multicast_channels
multicast_channels = file
Specifies the configuration file where multicast channels are defined.
For example:
multicast_channels = mychannels.conf

When this parameter is not included, the EMS server looks for channel definitions
in the channels. conf file.

multicast_daemon_default
multicast_daemon_default = tcp-port

Specifies the TCP port on which the EMS client will attempt to connect to the
multicast daemon. For example:

multicast_daemon_default = 9999

This parameter determines the TCP port that EMS clients use to connect to the
multicast daemon, and is provided in the server to centrally configure all clients.
It determines the behavior of the EMS client but does not affect the multicast
daemon. The multicast daemon must listen for the client on the same port that the
client uses to connect. If the multicast daemon is not listening on the same port
that is specified by multicast_daemon_default, the client will be unable to
connect to the daemon and an error will occur.

To change the TCP port that the multicast daemon listens on, use the -1isten
command line argument in the daemon. See Command Line Options on page 376
for more information.

When this parameter is not included, the default port is 7444.

multicast_statistics_interval
multicast_statistics_interval = seconds

Specifies how often, in seconds, multicast statistics are published to the
monitoring topic $sys.monitor.multicast.stats for each channel. Intervals of
less than 5 seconds are not supported.

For example:
multicast_statistics_interval = 90

To disable multicast statistics, set the multicast_statistics_interval to 0
(zero).

When this parameter is not included, the default value is 0 (disabled).

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 219

TIBCO Rendezvous Parameters
See also, Chapter 15, Working With TIBCO Rendezvous, on page 401.

tibrv_transports
tibrv_transports = enabled | disabled

Specifies whether TIBCO Rendezvous transports defined in transports. conf
are enabled or disabled.

Unless you explicitly set this parameter to enabled, the default value is
disabled—that is, all transports are disabled and will neither send messages to
external systems nor receive message from them.

TIBCO SmartSockets Parameters
See also, Chapter 16, Working With TIBCO SmartSockets, on page 425.

module_path
module_path = SmartSockets-shared-library-directory

where SmartSockets-shared-library-directory is the absolute path to the directory
containing the SmartSockets library files. For example:

module_path = c:\tibco\ss\bin\i86_w32

Please see the SmartSockets documentation to locate the directory where the
appropriate shared libraries are installed.

The module_path parameter is also used on AIX platform installations to load the
%} IBM JVM. Specify the directory containing the 1ibjvm. so and its dependent
libraries.

You can specify multiple directories (for example, to load both SmartSockets and
JVM libraries). Separate paths using a colon (:) on UNIX platforms, or semicolon
(;) on Windows platforms.

tibss_transports
tibss_transports = enabled | disabled

Specifies whether TIBCO SmartSockets transports defined in transports. conf
are enabled or disabled.

Unless you explicitly set this parameter to enabled, the default value is
disabled—that is, all transports are disabled and will neither send messages to
external systems nor receive message from them.

TIBCO Enterprise Message Service User's Guide

220 | Chapter 7 Using the Configuration Files

tibss_config_dir

tibss_config dir = pathname
Specifies the directory for SmartSockets configuration files and message files:

® tal_ss.cat is arequired file of messages. If it is missing, tibemsd outputs a
warning message.

* tibems_ss.cmis an optional file of SmartSockets RIclient configuration
options.

When this parameter is absent, tibemsd searches for these files in its current
working directory.

For more information about these files, see TIBCO SmartSockets User’s Guide.

Tracing and Log File Parameters

logfile

log_trace

See Chapter 17, Monitoring Server Activity, on page 445 for more information
about these parameters.

logfile = pathname
Name and location of the server log file.

If the pathname contains spaces, it must be enclosed in double quotes.

log_trace = traceOptions

Sets the trace preference on the file defined by the logfile parameter. If logfile
is not set, the values have no effect.

The value of this parameter is a comma-separated list of trace options. For a list of
trace options and their meanings, see Table 72, Server Tracing Options, on
page 448.

You may specify trace options in three forms:

¢ plain A trace option without a prefix character replaces any existing trace

options.

* + A trace option preceded by + adds the option to the current set of trace
options.

* - A trace option preceded by - removes the option from the current set of

trace options.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 221

The following example sets the trace log to only show messages about access
control violations.

log_trace=ACL

The next example sets the trace log to show all default trace messages, in addition
to SSL messages, but ADMIN messages are not shown.

log_trace=DEFAULT, -ADMIN, +SSL

logfile_max_count
logfile_max_count = integer

Specifies the maximum number of log files to be kept. Specify any number greater
than 2.

When 0 or not specified, there is no limit to the number of log files kept.

logfile_max_size
logfile max_size = size [KB|MB|GB]

Specifies the recommended maximum log file size before the log file is rotated. Set
to 0 to specify no limit. Use KB, MB, or GB for units (if no units are specified, the
file size is assumed to be in bytes).

The server periodically checks the size of the current log file. If it is greater than
the specified size, the file is copied to a backup and then emptied. The server then
begins writing to the empty log file until it reaches the specified size again.

Backup log files are named sequentially and stored in the same directory as the
current log.

console_trace
console_trace = traceOptions

Sets trace options for output to stderr. The possible values are the same as for
log_trace. However, console tracing is independent of log file tracing.

If logfile is defined, you can stop console output by specifying:
console_trace=-DEFAULT

Note that important error messages (and some other messages) are always
output, overriding the trace settings.

This example sends a trace message to the console when a TIBCO Rendezvous
advisory message arrives.

console_trace=RVADV

TIBCO Enterprise Message Service User's Guide

222 | Chapter 7 Using the Configuration Files

client_trace

trace_client_host

client_trace = {enabled|disabled} [target=Ilocation]
[user|connid|clientid=value]

Administrators can trace a connection or group of connections. When this
property is enabled, the server instructs each client to generate trace output for
opening or closing a connection, message activity, and transaction activity. This
type of tracing does not require restarting the client program.

Each client sends trace output to location, which may be either stderr (the default)
or stdout.

You can also direct client tracing output to a file, using the
tibems_SetTraceFile, Tibjms.setTraceFile and Tibems.SetTraceFile in
the C, Java and .NET libraries, respectively.

The default behavior is to trace all connections. You can specify either user,
connid or clientid to selectively trace specific connections. The value can be a
user name or ID (as appropriate).

Setting this parameter using the administration tool does not change its value in
the configuration file tibemsd. conf; that is, the value does not persist across
server restarts unless you set it in the configuration file.

trace_client_host = [hostname|address|both|both _with port]

Trace statements related to connections can identify the host by its hostname, its
IP address, or both. When absent, the default is hostname. The both_with_port
option displays the ephemeral port used on the host as well as the IP address and
hostname.

Statistic Gathering Parameters

See Chapter 17, Monitoring Server Activity, on page 445 for more information
about these parameters.

server_rate_interval

server_rate_interval = seconds

Sets the interval (in seconds) over which overall server statistics are averaged.
This parameter can be set to any positive integer greater than zero.

Overall server statistics are always gathered, so this parameter cannot be set to
zero. By default, this parameter is set to 1.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/Tibjms.html#setTraceFile(java.lang.String)
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Tibems_SetTraceFile_1_bb3a7a4f.htm

tibemsd.conf | 223

Setting this parameter allows you to average message rates and message size over
the specified interval.

statistics
statistics = enabled | disabled

Enables or disables statistic gathering for producers, consumers, destinations, and
routes. By default this parameter is set to disabled.

Disabling statistic gathering resets the total statistics for each object to zero.

rate_interval
rate_interval = seconds

Sets the interval (in seconds) over which statistics for routes, destinations,
producers, and consumers are averaged. By default, this parameter is set to 3
seconds. Setting this parameter to zero disables the average calculation.

detailed_statistics
detailed_statistics = NONE | [PRODUCERS,CONSUMERS,ROUTES,CHANNELS]

Specifies which objects should have detailed statistic tracking. Detailed statistic
tracking is only appropriate for routes, channels, producers that specify no
destination, or consumers that specify wildcard destinations. When detailed
tracking is enabled, statistics for each destination are kept for the object.

Setting this parameter to NONE disabled detailed statistic tracking. You can
specify any combination of PRODUCERS, CONSUMERS, ROUTES, or
CHANNELS to enable tracking for each object. If you specify more than one type
of detailed tracking, separate each item with a comma.

For example:

detailed_statistics = NONE

Turns off detailed statistic tracking.
detailed_statistics = PRODUCERS,ROUTES

Specifies detailed statistics should be gathered for producers and routes.

TIBCO Enterprise Message Service User's Guide

224 | Chapter 7 Using the Configuration Files

statistics_cleanup_interval

max_stat_memory

statistics_cleanup_interval = seconds

Specifies how long (in seconds) the server should keep detailed statistics if the
destination has no activity. This is useful for controlling the amount of memory
used by detailed statistic tracking. When the specified interval is reached,
statistics for destinations with no activity are deleted.

max_stat_memory = size [KB|MB|GB]

Specifies the maximum amount of memory to use for detailed statistic gathering.
If no units are specified, the amount is in bytes, otherwise you can specify the
amount using KB, MB, or GB as the units.

Once the maximum memory limit is reached, the server stops collecting detailed
statistics. If statistics are deleted and memory becomes available, the server
resumes detailed statistic gathering.

SSL Server Parameters

ssl_dh_size

See Chapter 18, Using the SSL Protocol, on page 465 for more information about
these parameters.

ssl_dh _size = [512 | 768 | 1024 | 2048]

Size of the Diffie-Hellman key. Can be 512, 768, 1024, or 2048 bits. The default
value is 1024.

This key is not used for cipher suites available for export.

ssl_server_ciphers

ssl_server_ciphers = cipherSuites

Specifies the cipher suites used by the server; each suite in the list is separated by
a colon (:). This parameter must follow the OpenSSL cipher string syntax.

For example, you can enable two cipher suites with the following setting:
ssl_server_ciphers = RC4-MD5:RC4-SHA

See Specifying Cipher Suites on page 476 for more information about the cipher
suites available in EMS and the syntax for specifying them in this parameter.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 225

ssl_require_client_cert
ssl_require_client_cert = enable | disable

If this parameter is set to enable, the server only accepts SSL connections from
clients that have digital certificates. Connections from clients without certificates
are denied.

If this parameter is set to disable, then connections are accepted from clients that
do not have a digital certificate.

Whether this parameter is set to enable or disable, clients that do have digital
certificates are always authenticated against the certificates supplied to the
ssl_server_trusted parameter.

ssl_use_cert_username
ssl use_cert_username = enable | disable

If this parameter is set to enable, a client’s user name is always extracted from the
CN field of the client’s digital certificate, if the digital certificate is specified. If a
different username is provided through the connection factory or API calls, then
that username is discarded. Only the username from the CN is used.

The CN field is either a username, an email address, or a web address.

When ss1_use_cert_username is enabled, the username given by the CN
%} becomes the only valid username. Any permissions associated with a different
username, for example one assigned with an API call, are ignored.

ssl_cert_user_specname
ssl_cert_user_specname = username

This parameter is useful if clients are required to supply a username, but you
wish to designate a special username to use when the client’s username should be
taken from the client’s digital certificate.

For example, you may wish all clients to specify their username when logging in.
This means the ss1_use_cert_username parameter would be set to disable.
The username is supplied by the user, and not taken from the digital certificate.
However, you may wish one username to signify that the client logging in with
that name should have the name taken from the certificate. A good example of
this username would be anonymous. All clients logging in as anonymous will have
their user names taken from their digital certificates.

The value specified by this parameter is the username that clients will use to log
in when the username should be taken from their digital certificate. A good
example of the value of this parameter would be anonymous.

TIBCO Enterprise Message Service User's Guide

226 | Chapter 7 Using the Configuration Files

Also, the value of this parameter is ignored if ss1_use_cert_username is set to
enable, in which case all client usernames are taken from their certificates. This
parameter has no effect for users that have no certificate.

ssl_server_identity

ssl_server_key

ssl_password

ssl_server_identity = certificate

The server’s digital certificate in PEM, DER, or PKCS#12 format. You can specify
the path to a file that contains the certificate in one of the supported formats.

This parameter must be specified if any SSL ports are listed in the 1isten
parameter.

PEM and PKCS#12 formats allow the digital certificate to include the private key.
If these formats are used and the private key is part of the digital certificate, then
setting ss1_server_key is optional.

For example:

ssl_server_identity = certs/server.cert.pem

ssl_server_key = private_key

The server’s private key. If it is included in the digital certificate in
ssl_server_identity, then this parameter is not needed.

This parameter supports private keys in the following formats: PEM, DER,
PKCS#12.

You must specify a path to a file that contains the key.

ssl_password = password
Private key or password for private keys.

This password can optionally be specified on the command line when tibemsd is
started.

If SSL is enabled, and the password is not specified with this parameter or on the
command line, tibemsd will ask for the password upon startup.

You can set passwords by way of the tibemsadmin tool. When passwords are set
with this tool, the password is obfuscated in the configuration file. See Chapter 6,
Using the EMS Administration Tool, on page 123 for more information about
using tibemsadmin to set passwords.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 227

Because connection factories do not contain the ss1_password (for security

% reasons), the EMS server uses the password that is provided in the "create
connection” call for user authentication. If the create connection password is
different from the ss1_password, the connection creation will fail.

ssl_server_issuer
ssl_server_issuer = chain_member

Certificate chain member for the server. The server reads the certificates in the
chain in the order they are presented in this parameter.

The same certificate can appear in multiple places in the certificate chain.
The certificates must be in PEM, DER, PKCS#7, or PKCS#12 format.

See File Names for Certificates and Keys on page 469 for more information on file
types for digital certificates.

ssl_server_trusted
ssl_server_trusted = certificates
List of CA root certificates the server trusts as issuers of client certificates.
Specify only CA root certificates. Do not include intermediate CA certificates.

The certificates must be in PEM, DER, or PKCS#7 format. You can either provide
the actual certificates, or you can specify a path to a file containing the certificate
chain.

For example:

ssl_server_trusted = certs\CAl_root.pem
ssl_server_trusted = certs\CA2_root.pem

See File Names for Certificates and Keys on page 469 for more information on file
types for digital certificates.

ssl_rand_egd
ssl_rand_egd = pathname

The path for the installed entropy gathering daemon (EGD), if one is installed.
This daemon is used to generate random numbers for C clients and the EMS
server. Java clients do not use this parameter.

TIBCO Enterprise Message Service User's Guide

228 | Chapter 7 Using the Configuration Files

ssl_crl_path

ssl_crl_path = pathname

A non-null value for this parameter activates the server’s certificate revocation list
(CRL) feature.

The server reads CRL files from this directory. The directory should contain only
CRL files. If other files are located in the pathname directory, SSL initialization will
fail.

ssl_crl_update_interval

ssl_auth_only

fips140-2

ssl_crl_update_interval = hours
The server automatically updates its CRLs at this interval (in hours).

When this parameter is absent, the default is 24 hours.

ssl_auth_only = enable | disable

When enabled, the server allows clients to request the use of SSL only for
authentication (to protect user passwords). For an overview of this feature, see
SSL Authentication Only on page 482.

When disabled, the server ignores client requests for this feature. When absent,
the default value is disabled.

fips140-2 = true | false

When true, the EMS server is enabled to run in FIPS 140-2 compliant mode.
When false or excluded, the server is not FIPS compliant. For more information,
see Enabling FIPS Compliance on page 483.

LDAP Parameters

Idap_url

See Chapter 8, Authentication and Permissions, on page 265 for more information
about these parameters.

URL of the external directory server. This can take the following forms:
LDAP: / /host : tep_port

or

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 229

LDAPS: / /host : ssl_port
For example:

LDAP://myLdapServer:1855

Idap_principal
ldap_principal = DN

The distinguished name (DN) of the LDAP user that the EMS sever uses to bind
to the LDAP server. This user must have privileges that allow it to bind and
browse group users, but does not necessarily need to have administrative
privileges.

For example:

ldap_principal = "cn=Manager"

Idap_credential
ldap_credential = password

The password associated with the user defined in the 1dap_principal property.
This value must be specified and cannot be an empty string.

Idap_cache_enabled
ldap_cache_enabled = enable | disable
Enables caching of LDAP data.

Idap_cache_ttl
ldap_cache_ttl = seconds

Specifies the maximum time (in seconds) that cached LDAP data is retained
before it is refreshed.

Idap_conn_type
ldap_conn_type = [ldaps | startTLS]
Specifies the type of connection that the server uses to get LDAP information.

e When this parameter is absent, LDAP connections use TCP (non-secure). For
backward compatibility, this is the default setting.

e 1daps—Use SSL on the LDAP connection (secure).

e startTLS—Use the startTLS extension to the LDAP version 3 protocol
(secure).

TIBCO Enterprise Message Service User's Guide

230 | Chapter 7 Using the Configuration Files

Idap_tls_cacert_file

ldap_tls_cacert_file = pathname

This file contains the CA certificate that the EMS server trusts to sign the LDAP
server’s certificate.

You must provide ldap_tls_cacert_file in order to create secure connections.
Optionally, 1dap_t1ls_cacert_dir can be used in addition to
ldap_tls_cacert_file in order to specify a directory with additional individual
CA certificates.

Idap_tls_cacert_dir

ldap_tls_cacert_dir = pathname

When there are two or more CA certificates in the verify chain, the server scans
this directory for CA certificates.

You must also provide ldap_tls_cacert_file in order to create secure connections.
ldap_tls_cacert_dir is an optional parameter that can be used in addition to
ldap_tls_cacert_file in order to specify a directory with additional individual
CA certificates.

Idap_tls_cipher_suite

Idap_tls_rand_file

ldap_tls_cipher_suite = cipher_suite

Optional. You can specify the cipher suite to use for encryption on secure LDAP
connections.

This parameter must follow the OpenSSL cipher string syntax; see Specifying
Cipher Suites on page 476. You must use short names when specifying the suite.
For example, use DES-CBC-SHA rather than SSL_RSA_WITH_DES_CBC_SHA. Using
long names results in an authorization error when connecting to a client.

In addition to the actual cipher names, you may specify cipher quality; for
example:

. HIGH

+ HIGH:MEDIUM

ldap_tls_rand_file = pathname

When the operating system does not include a random data feature, this file is the
source of random data for encryption.

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 231

Idap_tls_cert_file
ldap_tls_cert_file = pathname

When the LDAP server requires client authentication, use the certificate in this file
to identify the EMS server.

Idap_tls_key_file
ldap_tls_key_file = pathname

When the LDAP server requires client authentication, use the private key in this
file.

When you plan to start the server remotely, we recommend that you do not
password-encrypt the key file.

See Chapter 8, Authentication and Permissions, on page 265 for more information
about these parameters.

Idap_user_class

ldap_user_class = class_name
Name of the LDAP object class that stores users.

For example:

ldap_user_class = person

Idap_user_attribute
ldap_user_attribute = attribute
Name of the attribute on the user object class that holds the name of the user.
For example:

ldap_user_attribute = uid

Idap_user_base_dn
ldap_user_base_dn = DN
Base distinguished name (DN) of the LDAP tree that contains the users.
For example:

ldap_user_base_dn = "ou=People,dc=Corp"

TIBCO Enterprise Message Service User's Guide

232 | Chapter 7 Using the Configuration Files

Idap_user_scope

Idap_user_filter

ldap_user_scope = onelevel | subtree

Specifies how deeply under the base DN to search for users. You can specify
onelevel and subtree for this parameter. onelevel specifies to search only one
level below the DN, subtree specifies to search all sub-trees.

For example:

ldap_user_scope = subtree

ldap_user_filter = filter

Optional LDAP search filter for finding a given user name. Use %s as the
placeholder for the user name in the filter. For example:

uid=%s
The full LDAP search grammar is specified in RFC 2254 and RFC 2251.

If unspecified, then a default search filter is generated based on the user object
class and user name attribute.

Idap_all_users_filter

ldap_all_users_filter = filter
An optional LDAP search filter for finding all users beneath the user base DN.

If not specified, then a default search filter is generated based on the user object
class and user name attribute.

See Chapter 8, Authentication and Permissions, on page 265 for more information
about these parameters.

Idap_group_base_dn

Idap_group_scope

ldap_group_base_dn = DN
Base distinguished name (DN) of the LDAP tree that contains groups.
For example:

ldap_group_base_dn = "ou=Groups,dc=Corp"

ldap_group_scope = onelevel | subtree

Specifies how deeply under the base DN to search for groups. You can specify
onelevel and subtree for this parameter. onelevel specifies to search only one

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 233

level below the DN, subtree specifies to search all sub-trees.

For example:

ldap_group_scope = subtree

Idap_group_filter
ldap_group_filter = filter

Optional LDAP search filter for finding a group with a given group name. Use %s
as the placeholder for the group name in the filter.

The full LDAP search grammar is specified in RFC 2254 and RFC 2251.

If unspecified, then a default search filter is generated based on the group object
class and group attribute.

For example:

ldap_group_filter =
"(| (&(cn=%s) (objectClass=groupofUniqueNames)) (&(cn=%s)
(objectClass=groupOfURLs)))"

Idap_all_groups_filter
ldap_all_ groups_filter = filter
Optional LDAP search filter for finding all groups beneath the group base DN.

If unspecified, then a default search filter is generated based on the group object
class and group attribute.

Idap_static_group_class
ldap_static_group_class = name
Name of the LDAP object class that stores static groups.
For example:

ldap_static_group_class = groupofuniquenames

Idap_static_group_attribute
ldap_static_group_attribute = class
Name of the attribute on the static group object class that holds the name of the
group.
For example:

ldap_static_group_attribute = cn

TIBCO Enterprise Message Service User's Guide

234 | Chapter 7 Using the Configuration Files

Idap_static_group_member_filter
ldap_static_group_member_filter = filter

Optional LDAP search filter for finding all static members of a group. Use %s as
the placeholder for the group name in the filter.

The full LDAP search grammar is specified in RFC 2254 and RFC 2251.

If unspecified, then the following default search filter is generated based on the
group object class and group attribute:

ldap_static_group_member_filter =
"(&(<ldap_static_member_attribute>=<user
DN>) (objectClass=<ldap_static_group_class))"

Idap_static_member_attribute
ldap_static_member_attribute = attribute

Attribute of an LDAP static group object that specifies the distinguished names
(DNs) of the members of the group.

For example:

ldap_static_member_attribute = uniquemember

Idap_dynamic_group_class
ldap_dynamic_group_class = class
Name of the LDAP object class that stores dynamic groups.
For example:

ldap_dynamic_group_class = groupofURLs

Idap_dynamic_group_attribute
ldap_dynamic_group_attribute = attribute

Name of the attribute on the dynamic group object class that holds the name of
the group. For example:

ldap_dynamic_group_attribute = cn

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 235

Idap_dynamic_member_url_attribute

ldap_dynamic_member_url_attribute = attribute

Attribute of the dynamic LDAP group object that specifies the URLs of the
members of the dynamic group.

For example:

ldap_dynamic_member_url_attribute = memberURL

Extensible Security Parameters

The extensible security feature allows you to write your own authentication and
permissions modules for the server. For more information on this feature, see
Chapter 9, Extensible Security, on page 289.

jaas_classpath
jaas_classpath = classpath

Includes the JAR files and dependent classes used by the JAAS LoginModule.
This parameter is required to enable the extensible security feature for
authentication.

For example:

jaas_classpath = .:/usr/local/custom/user_jaas_plugin.jar

jaas_config_file
jaas_config file = file-name

Specifies the location of the JAAS configuration file used by the EMS server to run
a custom authentication LoginModule. For more information, see Loading the
LoginModule in the EMS Server on page 294.

This parameter is required to enable the extensible security feature for
authentication.

For example:

jaas_config file = jaas.conf

jaas_login_timeout
jaas_login_timeout = milliseconds

Specifies the length of time, in milliseconds, that the EMS server will wait for the
JAAS authentication module to execute and respond. This timeout is used each
time the server passes a username and password to the LoginModule. If the
module does not return a response, the server denies authentication.

TIBCO Enterprise Message Service User's Guide

236 | Chapter 7 Using the Configuration Files

jaci_classpath

jaci_class

jaci_timeout

This parameter is optional. If it is not included, the default timeout is 500
milliseconds.

For example:

jaas_login_timeout = 250

jaci_classpath = classpath

Includes the JAR files and dependent classes used by the JACI custom
permissions module. This parameter is required to enable the extensible security
feature for granting permissions.

For example:

jaci_classpath = .:/usr/local/custom/user_jaci_plugin.jar

jaci_class = class-name

Specifies the name of the class that implements the extensible permissions
interface. The class must be written using the Java Access Control Interface
(JACI). For more information about writing a custom application using JACI to
grant permissions, see Writing a Permissions Module on page 300.

For example:

jaci_class = com.userco.auth.CustomAuthorizer

jaci_timeout = milliseconds

Specifies the length of time, in milliseconds, that the EMS server will wait for the
JACI permissions module to execute and respond. This timeout is used each time
the server passes a destination, username, and action to the permissions module.
If the module does not return a response, the server denies authorization.

This parameter is optional. If it is not included, the default timeout is 500
milliseconds.

For example:

jaci_timeout = 250

TIBCO Enterprise Message Service User’s Guide

tibemsd.conf | 237

JVM Parameters

These parameters enable and configure the Java virtual machine (JVM) in the
EMS server. For more information on how JVM work in EMS, see Enabling the
JVM on page 302.

jre_library
jre_library = path

Enables the JVM in the EMS server, where path is the absolute path to the JRE
shared library file that is installed with the JRE. Depending on your platform, this
could be jvm.d11, 1ibjvm. so, JavaVvM, and so forth. Note that a 32-bit tibemsd
must point to a 32-bit JVM, and a 64-bit tibemsd must to point to a 64-bit JVM.

If this parameter is not included, the JVM is disabled by default.
If the path contains any spaces, the path must be enclosed in quotation marks.

For example:

jre_library = "C:\Program Files\Java\jdkl.6.0_04\jre\bin\server\jvm.dl1l"

jre_option
jre_option = [VMoption

Passes command line options to the JVM at start-up. The jre_option parameter
can be used to define Java system properties, which are used by applications
running in the JVM, such as extensible security modules.

You can use multiple jre_option entries in order to pass more than one options to
the JVM. Permitted values for [VMoption include most JVM options that are
defined by Sun Microsystems.

For example, this restricts the maximum heap size of the JVM to 256 megabytes:

jre_option = -Xmx256m

TIBCO Enterprise Message Service User's Guide

238 | Chapter 7 Using the Configuration Files

Using Other Configuration Files

In addition to the main configuration file, there are several other configuration
files used for various purposes:

Table 33 Configuration Files

Configuration

File Description
acl.conf Defines EMS access control lists. 239
bridges.conf Defines bridges between destinations. 240
channels.conf Defines the multicast channels over which multicast 241
messages are broadcast.
durables.conf Defines static durable subscribers. 244
factories.conf Defines the connection factories stored as JNDI 245
names on the EMS server.
groups.conf Defines EMS groups. 249
jaas.conf Locates and loads the LoginModule. 250
queues.conf Defines EMS Queues. 250
routes.conf Defines routes between this and other EMS servers 251
stores.conf Defines the locations, either store files or a database, 253
where the EMS server will store messages.
tibrvem.conf Defines the TIBCO Rendezvous certified messaging 257
(RVCM) listeners for use by topics that export
messages to a tibrvem transport.
topics.conf Defines EMS Topics. 257
transports.conf Defines transports used by EMS to import messages 258
from or export messages to external message
service, such as Rendezvous and SmartSockets.
users.conf Defines EMS users. 262

These configuration files can be edited by hand, but you can also use the

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 239

administration tool or the administration APIs to modify some of these files. See
Chapter 6, Using the EMS Administration Tool, on page 123 for more information
about using the administration tool.

The following sections describe the configuration files.

acl.conf

This file defines all permissions on topics and queues for all users and groups.
The format of the file is:

TOPIC=topic USER=user PERM=permissions
TOPIC=topic GROUP=group PERM=permissions
QUEUE=queue USER=user PERM=permissions
QUEUE=queue GROUP=group PERM=permissions
ADMIN USER=user PERM=permissions

ADMIN GROUP=group PERM=permissions

Table 34 ACL Parameters

Parameter Name Description

TOPIC Name of the topic to which you wish to add permissions.
QUEUE Name of the queue to which you wish to add permissions.
ADMIN Specifies that you wish to add administrator permissions.
USER Name of the user to whom you wish to add permissions.
GROUP Name of the group to which you wish to add permissions.

The designation all specifies a predefined group that
contains all users.

PERM Permissions to add.

The permissions which can be assigned to queues are
send, receive and browse. The permissions which can be
assigned to topics are publish, subscribe and durable
and use_durable. The designation all specifies all
possible permissions. For information about these
permissions, refer to When Permissions Are Checked on
page 286 and Inheritance of Permissions on page 81.

Administration permissions are granted to users to
perform administration activities. See Administrator
Permissions on page 267 for more information about
administration permissions.

TIBCO Enterprise Message Service User's Guide

240 | Chapter 7 Using the Configuration Files

bridges.conf

Example

ADMIN USER=sys-admins PERM=all
TOPIC=foo USER=user2 PERM=publish, subscribe
TOPIC=foo GROUP=groupl PERM=subscribe

This file defines bridges between destinations. See Destination Bridges on page 82
for more information about destination bridges.

The format of the file is:
[destinationType:destinationName] # mandatory -- include brackets

destinationType=destinationToBridgeTol [selector="msg-selector"]
destinationType=destinationToBridgeTo2 [selector="msg-selector"]

The destination-name can be any specific destination or a wildcard pattern to
match multiple destinations.

Table 35 Bridge Parameters

Parameter Name Description

destinationType The type of the destination. That is, topic or
queue.

destinationName The name of the destination.

destinationToBridgeTo One or more names of destinations to which to

create a bridge.

selector This optional property specifies a message
selector to limit the messages received by the
bridged destination.

For detailed information about message selector
syntax, see the ‘Message Selectors’ section in
description for the Message class in TIBCO
Enterprise Message Service Java API Reference.

Example

[topic:myTopicl]
topic=myTopic2
queue=myQueuel

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Message.html

Using Other Configuration Files | 241

channels.conf

This file defines the multicast channels over which messages published to
multicast-enabled topics are broadcast. Each channel defined in this file has a
unique name, and can have a different multicast address, multicast port, and
property values.

The format of the file is:

[multicast-channel-name]
address = multicast-group-address : multicast-port

[ttl = hops]
[priority = priority]
[maxrate size [KB|MB|GB]]

[maxtime = seconds]
[interface = ip-address]

Table 36 Channel Parameters

Parameter Name Description

[multicast-channel-name] [multicast-channel-name] is the name that identifies this
multicast channel.

Note that the square brackets [] DO NOT indicate
that the multicast-channel-name is an option; they must
be included around the name.

address Determines where messages will be sent, where:

* multicast-group-address is the multicast group IP
address to which messages will be sent. The
address must be between 224.0.0.0 and
239.255.255.255.

* multicast-port is the multicast port destination to
which messages will be sent. The multicast port
must be between 1 and 65535.

For example, this will cause messages sent over the
channel to be directed to the IP address 234.5.6.7
and multicast port 99:

address = 234.5.6.7:99

TIBCO Enterprise Message Service User's Guide

242 | Chapter 7 Using the Configuration Files

Table 36 Channel Parameters

Parameter Name Description

ttl Specifies the maximum number of hops that
messages can make between the server and the
multicast daemon.

The number of hops between the server and
multicast daemon is one plus the number of routers
between them. For example, if the server and
multicast daemon are in the same subnet, then there
is one hop between them. If the server and multicast
daemon are separated by a router, then there are two
hops between them. Therefore, a tt1 value of 1
means that the multicast data will remain on the local
subnet while a tt1 value of 2 will allow the messages
to travel through one router into the next subnet.

When this parameter is absent, the default maximum
network hops allowed is 16.

priority Specifies the channel's transmission priority when
bandwidth is allocated. priority is given as a
numerical ranking, where the highest priority is -5
and the lowest is 5.

When this parameter is absent, the default priority is
0 (zero).

maxrate Specifies the maximum rate at which messages can
be transmitted over the channel. You can specify
units of KB or MB.

When this parameter is absent, the default value is
12.5MB.

Note that a large number of retransmissions due to
consumer loss can result in the publisher's allotted
bandwidth being exceeded, even though the
publisher is publishing below the configured
maxrate.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 243

Table 36 Channel Parameters

Parameter Name Description

maxtime Specifies the maximum length of time, in seconds,
that the server will retain sent messages for
retransmission. Messages are retransmitted when a
multicast daemon detects a lost message and sends a
negative acknowledgement to the EMS server.

Note that a long maxtime will increase the amount of
memory used by the server. The maximum amount
of memory used by a channel will be maxrate *
maxtime. For example, specifying a maxrate of 10MB
and a maxtime of 10 seconds may require the server
to buffer 100 megabytes of data for retransmissions.

When this parameter is absent, messages are kept for
35 seconds.

interface Specifies the IP address over which the server will
send multicast traffic on this channel.

The IP address must be a multicast capable interface.
On UNIX systems, you can determine whether an IP
interface is multicast capable by running the
ifconfig UNIX command.

When this parameter is not included, the default
valueis 0.0.0.0, which causes the EMS server to use
the system’s default interface.

Example

[channel-1]
address=234.5.6.7:99
maxrate=10MB
maxtime=10
ttl=4

[channel-2]
address=234.5.3.9:99
maxrate=15MB
maxtime=10
ttl=3

TIBCO Enterprise Message Service User's Guide

244 | Chapter 7 Using the Configuration Files

durables.conf

Conflicting
Specifications

This file defines static durable subscribers.

The file consists of lines with either of these formats:

topic-name durable-name
[route]
[clientid=id]
[nolocal]
[selector="msg-selector"]

Table 37 Durable Subscriber Parameters

topic-name The topic of the durable subscription.
durable-name The name of the durable subscriber.
route When present, the subscriber is another server, and

the durable-name is the name of that server.

When this property is present, no other properties
are permitted.

clientid=id The client ID of the subscriber’s connection.

nolocal When present, the subscriber does not receive
messages published from its own connection.

selector="string" When present, this selector narrows the set of
messages that the durable subscriber receives.

For detailed information about message selector
syntax, see the "Message Selectors’ section in
description for the Message class in TIBCO Enterprise
Message Service Java API Reference.

Example

topicl dNamel

topic2 dName?2 clientid=myId,nolocal

topic3 dName3 selector="urgency in (’high’, 'medium’)"
topic4 Paris route

When the server detects an conflict between durable subscribers, it maintains the
earliest specification, and outputs a warning. Consider these examples:

* A static specification in this file takes precedence over a new durable
dynamically created by a client.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Message.html

Using Other Configuration Files | 245

* An existing durable dynamically created by a client takes precedence over a
new static durable defined by an administrator.

* A static durable subscription takes precedence over a client attempting to
dynamically unsubscribe (from the same topic and durable name).

Contflict can also arise because of wildcards. For example, if a client dynamically
creates a durable subscriber for topic foo. *, and an administrator later attempts
to define a static durable for topic foo. 1, then the server detects this conflict and
warns the administrator.

Configuration ~ To configure durable subscriptions in this file, we recommend using the create
durable command in the tibemsadmin tool; see create durable on page 131.

If the create durable command detects an existing dynamic durable
subscription with the same topic and name, it promotes it to a static subscription,
and writes a specification to the file durables. conf.

factories.conf
This file defines the connection factories for the internal JNDI names.

The file consists of factory definitions with this format:

[factory-name] # mandatory -- square brackets included
type = generic|xageneric|topic|queue|xatopic|xaqueue |
url = url-string
metric = connections | byte_rate

clientID = client-id
[connect_attempt_count|connect_attempt_delay|
connect_attempt_timeout|reconnect_attempt_count |
reconnect_attempt_delay|reconnect_attempt_timeout = value]
[ssl-prop = value]*

Table 38 Connection Factory Parameters

Parameter Name Description

Mandatory Parameters

These parameters are required. Values given to these parameters cannot be overridden using API
calls.

[factory-name] [factory-name] is the name of the connection factory.

Note that the square brackets [] DO NOT indicate that the
factory-name is optional; they must be included around the name.

TIBCO Enterprise Message Service User's Guide

246 | Chapter 7 Using the Configuration Files

Table 38 Connection Factory Parameters

Parameter Name Description

type Type of the connection factory. The value can be:

generic: Generic connection
xageneric: Generic XA connection
topic: Topic connection

queue: Queue connection

xatopic: XA topic connection

xaqueue: XA queue connection

url This string specifies the servers to which this factory creates
connections:

A single URL specifies a unique server. For example:
tcp://hostl:8222

A pair of URLs separated by a comma specifies a pair of
fault-tolerant servers. For example:

tcp://hostl1:8222,tcp://backupl: 8222

A set of URLs separated by vertical bars specifies a load
balancing among those servers. For example:

tcp://a:8222|tcp://b:8222|tcp://c:8222

You can combine load balancing with fault tolerance. For
example:
tcp://al:8222,tcp://a2:8222|tcp://b1:8222,tcp://b2
18222

This example defines two servers (a and b), each of which has
a fault-tolerant backup. The client program checks the load on
the primary a server and the primary b server, and connects to
the one that has the smaller load. If it cannot connect to one of
the primary servers, the client attempts to connect to the
secondary server. For example, if it cannot connect to b1, it
connects to b2.

The connection URL cannot exceed 1000 characters.

For cautionary information, see Load Balancing on page 249.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 247

Table 38 Connection Factory Parameters

Parameter Name Description

Optional Parameters

These parameters are optional. The values of these parameters can be overridden using API calls.

metric The factory uses this metric to balance the load among a group of
servers:

® connections—Connect to the server with the fewest client
connections.

* byte_rate—Connect to the server with the lowest byte rate.
Byte rate is a statistic that includes both inbound and
outbound data.

When this parameter is absent, the default metric is
connections.

For cautionary information, see Load Balancing on page 249.

clientID The factory associates this client ID string with the connections
that it creates. The client ID cannot exceed 255 characters in
length.

connect_attempt count A client program attempts to connect to its server (or in

fault-tolerant configurations, it iterates through its URL list) until
it establishes its first connection to an EMS server. This property
determines the maximum number of iterations. When absent, the
default is 2.

connect_attempt delay When attempting a first connection, the client sleeps for this
interval (in milliseconds) between attempts to connect to its
server (or in fault-tolerant configurations, iterations through its
URL list). When absent, the default is 500 milliseconds.

connect_attempt_timeout When attempting to connect to the EMS server, you can set this
connection timeout period to abort the connection attempt after a
specified period of time (in milliseconds).

reconnect_attempt_count After losing its server connection, a client program configured
with more than one server URL attempts to reconnect, iterating
through its URL list until it re-establishes a connection with an
EMS server. This property determines the maximum number of
iterations. When absent, the default is 4.

TIBCO Enterprise Message Service User's Guide

248 | Chapter 7 Using the Configuration Files

Table 38 Connection Factory Parameters

Parameter Name Description

reconnect attempt delay When attempting to reconnect, the client sleeps for this interval
(in milliseconds) between iterations through its URL list. When
absent, the default is 500 milliseconds.

reconnect_attempt_timeout When attempting to reconnect to the EMS server, you can set this
connection timeout period to abort the connection attempt after a
specified period of time (in milliseconds).

multicast daemon Use the parameter to specify the TCP port that the client will use
when establishing a connection to the multicast daemon.

This parameter determines the behavior of the EMS client but
does not affect the multicast daemon. The multicast daemon must
listen for the client on the same port that the client uses to
connect. To change the TCP port that the multicast daemon listens
on, use the -1isten command line argument in the daemon. See
Command Line Options on page 376 for more information.

See Chapter 13, Using Multicast for information on multicast.

multicast _enabled Use this property to disable multicast in the connection factory.

By default, a connection factory is always multicast-enabled if the
EMS server to which it is connecting is enabled for multicast. If a
client does not wish to receive messages over multicast from a
multicast-enabled server, then this property can be set to
disabled:

* enabled—multicast is enabled in the factory.
* disabled—multicast is disabled in the factory

See Chapter 13, Using Multicast, on page 369 for more
information on multicast.

ssl-prop SSL properties for connections that this factory creates.

For further information on SSL, refer to Chapter 18, Using the SSL
Protocol, page 465.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 249

Example

[north_americal
type = topic
url = tcp://localhost:7222,tcp://server2:7222
clientID = "Sample Client ID"
ssl_verify host = disabled

Configuration To configure connection factories in this file, we recommend using the
tibemsadmin tool; see create factory on page 131.

Load Balancing

f Do not specify load balancing in situations with durable subscribers.

If a client program that a creates durable subscriber connects to server A using a
load-balanced connection factory, then server A creates and supports the durable
subscription. If the client program exits and restarts, and this time connects to
server B, then server B creates and supports a new durable subscription—
however, pending messages on server A remain there until the client reconnects
to server A.

Do not specify load balancing when your application requires strict
A message ordering.

Load balancing chooses from among multiple servers, which inherently violates
strict ordering.

groups.conf
This file defines all groups. The format of the file is:

group-namel : " description™
user-namel
user-name?2
group-name?2 : " description™
user-namel
user-name?2

Table 39 Group Parameters

Parameter Name Description

group-name The name of the group. The group name cannot
exceed 127 characters in length.

description A string describing the group.

user-name One or more users that belong to the group.

TIBCO Enterprise Message Service User's Guide

250 | Chapter 7 Using the Configuration Files

jaas.conf

queues.conf

S

Example

administrators: "TIBCO Enterprise Message Service administrators"
admin
Bob

This file directs the TIBCO Enterprise Message Service server to the JAAS
LoginModule. See Loading the LoginModule in the EMS Server on page 294 for
more information about the jaas. conf file.

This file defines all queues. The format of the file is:

[jndi-namel, jndi-name2, . ..lqueue-name propertyl, property2,

Note that, while including JNDI names is optional, the square brackets [1 must
be included around JNDI names if they are included. For more information about
setting JNDI names, see create jndiname on page 131.

For example, you might enter:
test store=mystore,secure,prefetch=2

Only queues listed in this file or queues with names that match the queues listed
in this file can be created by the applications (unless otherwise permitted by an
entry in acl.conf). For example, if queue foo. * is listed in this file, queues
foo.bar and foo.baz can be created by the application.

Properties of the queue are inherited by all static and dynamic queues with
matching names. For example, if test. * has the property secure, then test.1
and test.foo are also secure. For information on properties that can be assigned
to queues, see Destination Properties on page 58.

For further information on the inheritance of queue properties, refer to Wildcards
* and > on page 77 and Inheritance of Properties on page 80.

In the sample file, a > wildcard at the beginning of the file allows the applications
to create valid queues with any name. A > at the beginning of the queue
configuration file means that name-matching is not required for creation of
queues.

Restrictions and rules on queue names are described in Destination Name Syntax
on page 56.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 251

routes.conf
This file defines routes between this TIBCO Enterprise Message Service server
and other TIBCO Enterprise Message Service servers.
Routes may only be configured administratively, using the administration tool
%} (see Chapter 6 on page 123), or the administration APIs (see

com. tibco.tibjms.admin.RouteInfo in the online documentation). Directly
editing the routes. conf file causes errors.

The format of the file is:

[route-name] # mandatory -- square brackets included.
url=url-string
zone_name=zone_nare
zone_type=zone_type
[selector]”
[ssl-prop = wvaluel”

Table 40 Route Parameters

Parameter Name Description

[route-name]] [route-name] is the name of the passive server (at the
other end of the route); it also becomes the name of
the route. Note that the square brackets [] DO NOT
indicate that the route-name is an option; they must be
included around the name.

url The URL of the server to and from which messages
are routed.
zone_name The route belongs to the routing zone with this

name. When absent, the default value is
default_mhop_zone (this default yields backward
compatibility with configurations from releases
earlier than 4.0).

You can set this parameter when creating a route,
but you cannot subsequently change it.

For further information, see these sections:
® Zone on page 514

¢ Configuring Routes and Zones on page 518

TIBCO Enterprise Message Service User's Guide

252 | Chapter 7 Using the Configuration Files

Table 40 Route Parameters

Parameter Name Description

zone_type The zone type is either 1hop or mhop. When omitted,
the default value is mhop.

You can set this parameter when creating a route,
but you cannot subsequently change it.

The EMS server will refuse to start up if the zone
type in the routes. conf file does not match the
zone type already created in the $sys.meta file that
holds the shared state for the primary and backup
server.

selector Topic selectors (for incoming_topic and
outgoing topic parameters) control the flow of
topics along the route.

For syntax and semantics, see Selectors for Routing
Topic Messages on page 525.

ssl-prop SSL properties for this route.

For further information on SSL, refer to Chapter 18,
Using the SSL Protocol, page 465.

Example

[test_route_2]
url = tcp://server2:7222
ssl_verify host = disabled

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 253

stores.conf

This file defines the locations, either store files, mstore, or a database, where the
EMS server will store messages or metadata (if the default $sys.meta definition
is overridden). You can configure one or many stores in the stores.conf file.

Each store configured is either a file-based store, mstore, or a database store.
File-based store and mstore parameters are described here. Database store
parameters are described in Chapter 10, Using Database Stores.

The format of the file is:

[store_name] # mandatory -- square brackets included
type=~file
file=name
file_destination_defrag=size
[file_crc=true|false]
[file_minimum=value]
[file_truncate=value]
[mode=async|sync]
[processor_id = processor id]

[store_name]
type=mstore
file=name
[processor_id = processor-id]
[scan_iter interval=time msec|sec|min|hour|day]
[scan_target_interval=timemsec|sec|min|hour|day]

Table 41 Store File Parameters

Parameter Name Description

[store_name] [store_name] is the name that identifies this store file configuration.

Note that the square brackets [] DO NOT indicate that the
store_name is an option; they must be included around the name.

type Identifies the store type. This parameter is required for all store
types. The type can be:

e file — for file-based stores.
® mstore — for mstores.
e dbstore — for database stores.

For information about the parameters used to configure database
stores, see Configuration in stores.conf on page 307.

TIBCO Enterprise Message Service User's Guide

254 | Chapter 7 Using the Configuration Files

Table 41 Store File Parameters

Parameter Name Description

file The filename that will be used when creating this store file. This
parameter is required for both file and mstore types. For
example, mystore.db.

The location for this file can be specified using absolute or relative
path names. If no path separators are present, the file will be saved
in the location specified by the store parameter in the

tibemsd. conf file, if any is specified there.

processor_id When specified, the EMS Server binds the storage thread of this
store to the specified processor.

Do not use this parameter if the default behavior provides
sufficient throughput. If no processor ID is specified for a store, the
store is not bound to a specific processor.

Specify the processor-id as an integer. The processor ID is numbered
starting at 0 and continuing to the number of processors available,
minus 1. For example, if you have four processors, the available
processor IDs are 0, 1, 2, and 3.

This parameter has similar requirements, limitations, and benefits
as the processor_ids parameter in tibemsd.conf. For use
guidelines, see Performance Tuning on page 121.

File-Based Store Parameters

file destination defrag This parameter specifies a maximum batch size used by the
destination defrag feature.

Destination defrag improves store file performance by maintaining
contiguous space for new messages, while improving server read
performance. When persistent pending messages begin to
accumulate in a queue, messages are grouped into a batch that is
re-written to disk. Messages are written close together, allowing
the server to read them more efficiently when later delivering the
messages to consumers.

Specify size in bytes, KB, MB or GB.

The size should be set to a size that is known to be acceptable for
the disk where the store points to. For instance, if it is set to 2MB,
your disk must be able to write a 2MB batch efficiently.

If file_destination_defrag is zero or absent, the destination
defrag feature is disabled.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 255

Table 41 Store File Parameters

Parameter Name Description

file crc This parameter specifies whether the EMS server uses CRC to
validate data integrity when reading the store files.

When this parameter is absent, the default is true.

file minimum This parameter preallocates disk space for the store file.
Preallocation occurs when the server first creates the store file.

You can specify units of MB or GB. Zero is a special value, which
specifies no minimum preallocation. Otherwise, the value
specified must be greater than 4MB.

For example:
file_minimum = 32MB

If file_ truncate is set to true, the file_minimum parameter
prevents the EMS server from truncating the file below the set size.

When this parameter is absent, there is no default minimum
preallocation.

file truncate Determines whether the EMS server will occasionally attempt to
truncate the store file, relinquishing unused disk space.

When file_truncate is true, the store file may be truncated, but
not below the size set in file_minimum.

When this parameter is absent, the default is true, and the server
will periodically attempt to truncate the store file.

mode The mode determines whether messages will be written to the store
file synchronously or asynchronously. Mode is either:

* async — the server stores messages in this file using
asynchronous I/0O calls.

* sync — the server stores messages in this file using
synchronous I/0O calls.

When absent, the default is async.

TIBCO Enterprise Message Service User's Guide

256 | Chapter 7 Using the Configuration Files

Table 41 Store File Parameters

Parameter Name Description

mstore Parameters

scan_iter_interval Determines the length of time between each interval of the store
scan. The EMS server begins scanning a new section of the mstore
at the time interval specified here.

Specify time in units of msec, sec, min, hour or day to describe the
time value as being in milliseconds, seconds, minutes, hours, or
days, respectively. For example:

scan_iter interval=100msec
By default, the mstore examines stores every 10 seconds.

For more information, see Understanding mstore Intervals on
page 33.

scan_target_interval Controls the approximate length of time taken to complete a full
scan of the mstore.

Specify time in units of msec, sec, min, hour or day to describe the
time value as being in milliseconds, seconds, minutes, hours, or
days, respectively. For example:

scan_target_interval=12hour
By default, the scan interval is 24 hours.

For more information, see Understanding mstore Intervals.

Example

[my_sync]
type = file
file = /var/local/tibems/my_sync.db
file_destination_defrag=2MB
file _crc = true
file_minimum = 10MB
file_truncate = true
mode = sync

Example

[mstorel]
type = mstore
file = /var/local/tibems/mstorel.db
scan_iter_interval=100msec
scan_target_interval=12hour

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 257

tibrvem.conf

This file defines the TIBCO Rendezvous certified messaging (RVCM) listeners for
use by topics that export messages to a tibrvem transport. The server preregisters
these listeners when the server starts up so that all messages (including the first
message published) sent by way of the tibrvem transport are guaranteed. If the
server does not preregister the RVCM listeners before exporting messages, the
listeners are created when the first message is published, but the first message is
not guaranteed.

The format of this file is

transport listenerName subjectName

Table 42 RV CM Listener Parameters

Parameter Name Description

transport The name of the transport for this RVCM listener.

listenerName The name of the RVCM listener to which topic
messages are to be exported.

subjectName The RVCM subject name that messages are
published to. This should be the same name as the
topic names that specify the export property.

Example

RVCMO1 listenerl foo.bar
RVCMO1 listener2 foo.bar.bar

topics.conf
This file defines all topics. The format of the file is:
[jndi-namel, jndi-name2, ... ltopic-name propertyl, property2,
% Note that, while including JNDI names is optional, the square brackets [1 must

be included around JNDI names if they are included. For more information about
setting JNDI names, see create jndiname on page 131.

For example, you might enter:

business.inventory global, import="RV01l,RV02", export="RV03",
maxbytes=1MB

TIBCO Enterprise Message Service User's Guide

258 | Chapter 7 Using the Configuration Files

Only topics listed in this file or topics with names that match the topics listed in
this file can be created by the applications (unless otherwise permitted by an
entry in acl.conf). For example, if topic foo. * is listed in this file, topics
foo.bar and foo.baz can be created by the application.

Properties of the topic are inherited by all static and dynamic topics with
matching names. For example, if test. * has the property secure, then test.1
and test.foo are also secure. For information on properties that can be assigned
to topics, see Destination Properties on page 58.

For further information on the inheritance of topic properties, refer to Wildcards *
and > on page 77 and Inheritance of Properties on page 80.

Restrictions and rules on topic names are described in Destination Name Syntax
on page 56.

transports.conf

This file defines transports for importing messages from or exporting messages to
external message services, such as TIBCO Rendezvous and TIBCO SmartSockets.

The format of the file is:
[transport_name] # mandatory -- square brackets included
type = tibrv | tibrvcm | tibss # mandatory

[topic_import_dm = TIBEMS_PERSISTENT |
TIBEMS_NON_PERSISTENT |
TIBEMS_RELIABLE]
[queue_import_dm = TIBEMS_PERSISTENT |
TIBEMS_NON_PERSISTENT |
TIBEMS_RELIABLE]
[export_headers = true | false]
[export_properties = true | false]
transport-specific-parameters

Table 43 Transport Parameters

Parameter Name Description

[transport_name] The name of the transport. Note that the square
brackets [] DO NOT indicate that the transport_name
is an option; they must be included around the
name.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 259

Table 43 Transport Parameters

Parameter Name Description

type Transport type.
* tibrv identifies TIBCO Rendezvous transport

* tibrvemidentifies TIBCO Rendezvous Certified
Messaging transport

* tibss identifies TIBCO SmartSockets transport

Each transport includes additional
transport-specific-parameters:

topic_import_dm EMS sending clients can set the JMSDeliveryMode

queue_import_dm header field for each message. However,
Rendezvous clients cannot set this header. Instead,
these two parameters determine the delivery modes
for all topic messages and queue messages that
tibemsd imports on this transport.

TIBEMS_PERSISTENT | TIBEMS_NON_PERSISTENT |
TIBEMS_RELIABLE

When absent, the default is
TIBEMS_NON_PERSISTENT.

export_headers When true, tibemsd includes JMS header fields in
exported messages.

When false, tibemsd suppresses JMS header fields
in exported messages.

When absent, the default value is true.

export_properties When true, tibemsd includes JMS properties in
exported messages.

When false, tibemsd suppresses JMS properties in
exported messages.

When absent, the default value is true.

transport-specific- See Transport-specific Parameters.
parameters

TIBCO Enterprise Message Service User's Guide

260 | Chapter 7 Using the Configuration Files

If you have multiple TIBCO Rendezvous transports configured in your

% transports.conf file, and if the EMS server fails to create a transport based on
the last entry, the server will continue to traverse through the entries and attempt
to create further transports.

Transport-specific Parameters

If type = tibrv, the extended syntax is:

[service = service]

[network = network]

[daemon = daemon]

[temp_destination_timeout = seconds]

[rv_gueue_policy = [TIBRVQUEUE_DISCARD_NONE |
TIBRVQUEUE_DISCARD_FIRST |
TIBRVQUEUE_DISCARD_LAST] : max_msgs : qty_discard]

See Rendezvous Parameters on page 405 for descriptions.

If type = tibrvcm, the extended syntax is:

rv_tport = name # mandatory

[cm_name = name]

[ledger_file = file-name]

[sync_ledger = true | false]

[request_old = true | false]

[explicit_config only = true | false]

[default_ttl = seconds]

[rv_gueue_policy = [TIBRVQUEUE_DISCARD_NONE |
TIBRVQUEUE_DISCARD_FIRST |
TIBRVQUEUE_DISCARD_LAST] : max_msgs: gty_discard]

See Rendezvous Certified Messaging (RVCM) Parameters on page 406 for
descriptions.

If type = tibss, the extended syntax is:

[username = name]

[password = password]

[server_names = single_or_list_of_ servers]

[project = name]

[delivery mode = best_effort | gmd _all | gmd_some | ordered]
[1b_mode = none | round robin | weighted | sorted]
[override_1lb_mode = enable | disable]

[gmd_file delete = enable | disable]

[import_ss_headers = none |type_num| all]

[preserve_gmd = always | receivers | never]

See SmartSockets Parameters on page 428 for descriptions.

Example
[RVO1]

TIBCO Enterprise Message Service User’s Guide

type = tibrv
topic_import_dm
queue_import_dm
service = 7780
network = lan0O
daemon = tcp:host5:7885

TIBEMS_RELIABLE
TIBEMS_PERSISTENT

Using Other Configuration Files | 261

TIBCO Enterprise Message Service User's Guide

262 | Chapter 7 Using the Configuration Files

[RVCMO1]
type = tibrvcm
export_headers = true
export_properties = true

rv_tport = RV0O2

cm_name = RVCMTransl
ledger_file = ledgerFile.store
sync_ledger true
request_old = true

default_ttl 600

[SS01]
type = tibss

server_names = tcp:rtHost2A:5555, ssl:rtHost2B:5571

username = emsServer6
password = myPasswd

project = mfg_process_control
override_1lb_mode = enable
delivery_mode = gmd_some

[RVO02]
type = tibrv
topic_import_dm = TIBEMS_PERSISTENT
queue_import_dm TIBEMS_PERSISTENT
service = 7780
network = lan0O
daemon = tcp:host5:7885

rv_queue_policy = TIBRVQUEUE_DISCARD_LAST:10000:100

users.conf
This file defines all users. The format of the file is:

username : password : " description”

Table 44 User Parameters

Parameter Name Description

username The name of the user. The username cannot exceed 127

characters in length.

TIBCO Enterprise Message Service User’s Guide

Using Other Configuration Files | 263

Table 44 User Parameters

Parameter Name Description

password Leave this item blank when creating a new user. For
example:

bob::"Bob Smith"
There is one predefined user, the administrator.

User passwords are not entered in this configuration file,
and remain empty (and therefore not secure) until you set
them using the administration tool; see Assign a Password
to the Administrator on page 126. You can also create
users and assign passwords using API calls; see the API
reference for the language you are working with.

description A string describing the user.

Example

admin: : "Administrator"”
Bob::"Bob Smith"
Bill::"Bill Jones"

After the server has started and passwords have been assigned, the file will look
like this:
admin: 1urmkKvVgqg78:"Administrator"

Bob:2sldfkj;lsafd:"Bob Smith"
Bill:3tyavmwg92:"Bill Jones"

TIBCO Enterprise Message Service User's Guide

264 | Chapter 7 Using the Configuration Files

TIBCO Enterprise Message Service User’s Guide

Chapter 8

Topics

| 265

Authentication and Permissions

You can create users and assign passwords to the users to control access to the
EMS server. EMS can also be configured to use an external directory (such as an
LDAP server) to control access to the server.

You can also assign permissions to users and groups to control actions that can be
performed on destinations.

This chapter describes authentication and permissions in EMS.

e EMS Access Control, page 266

* Administrator Permissions, page 267
* Enabling Access Control, page 275

¢ Users and Groups, page 277

¢ User Permissions, page 283

* When Permissions Are Checked, page 286

TIBCO Enterprise Message Service User's Guide

266 | Chapter 8 Authentication and Permissions

EMS Access Control

EMS supports two basic access levels: administrative and user.

Administrator permissions control the ability of a user to login as an
administrator to create, delete, or view the status of users, destinations,
connections, factories, and so on. Administrators with the correct permissions can
control user access to the EMS server by creating users, assigning passwords, and
setting permissions.

The following procedure describes the general process for administrators to
configure users, groups, and permissions and where to find more information on
performing each step.

1. Enable access control for the system. See Enabling Access Control on
page 275.

2. Determine which destinations require access control, and enable access
control for those destinations. See Destination Control on page 276.

3. Determine which users need administration permissions, and decide whether
administrators can perform actions globally or be restricted to a subset of
actions. See Administrator Permissions on page 267 for more information.

4. Determine the names of the authorized users of the system and create
usernames and passwords for these users. See Users and Groups on page 277.

5. Optionally, set up groups and assign users to groups. See Users and Groups
on page 277.

6. Optionally enable an external directory for storing users and group
information. See Configuring an External Directory on page 279.

7. Create the access control list by granting specific permissions to users (or
groups) for destinations that need to be secure. See User Permissions on
page 283.

TIBCO Enterprise Message Service User’s Guide

Administrator Permissions | 267

Administrator Permissions

Administrators are a special class of users that can manage the EMS server.
Administrators create, modify, and delete users, destinations, routes, factories,
and other items. In general, administrators must be granted permission to
perform administration activities when using the administration tool or API.
Administrators can be granted global permissions (for example, permission to
create users or to view all queues), and administrators can be granted permissions
to perform operations on specific destinations (for example, purging a queue, or
viewing properties for a particular topic).

Administrator permissions control what administrators can view and change in
A the server only when using the administration tool or API. Administrator
commands create entries in each of the configuration files (for example,
tibemsd.conf, acl.conf, routes.conf, and so on).

You should control access to the configuration files so that only certain system
administrators can view or modify the configuration files. If a user can view or
modify the configuration files, setting permissions to control which destination
that user can manage would not be enforced when the user manually edits the
files.

Use the facilities provided by your Operating System to control access to the
server’s configuration files.

Administrators must be created using the administration tool, the administration
APIs, or in the configuration files.

Predefined Administrative User and Group

There is a special, predefined user named admin that can perform any
administrative action. You cannot grant or revoke any permissions to admin. You
must assign a password for admin immediately after installation. For more
information about changing the admin password, see When You First Start
tibemsadmin on page 126.

There is also a special group named $admin for system administrator users. When
a user becomes a member of this group, that user receives the same permissions
as the admin user. You cannot grant or revoke administrator permissions from any
user that is a member of the $admin group. You should only assign the overall
system administrator(s) to the $admin group.

TIBCO Enterprise Message Service User's Guide

268 | Chapter 8 Authentication and Permissions

Granting and Revoking Administration Permissions

You grant and revoke administrator permissions to users using the grant and
revoke commands in tibemsadmin, or by means of the Java or NET admin APL
You can either grant global administrator permissions or permissions on specific
destinations. See Global Administrator Permissions on page 269 for a complete
list of global administrator permissions. See Destination-Level Permissions on
page 272 for a description of administrator permissions for destinations.

Global and destination-level permissions are granted and revoked separately
using different administrator commands. See Command Listing on page 128 for
the syntax of the grant and revoke commands.

If a user has both global and destination-level administrator permissions, the
actions that user can perform are determined by combining all global and
destination-level administrator permissions granted to the user. For example, if
an administrator is granted the view-destination permission, that
administrator can view information about all destinations, even if the view
permission is not granted to the administrator for specific destinations.

The admin user or all users in the $admin group can grant or revoke any
administrator permission to any user. All other users must be granted the
change-admin-acl permission and the view-user and/or the view-group
permissions before they can grant or revoke administrator permissions to other
users.

If a user has the change-admin-acl permission, that user can only grant or
revoke permissions that have been granted to the user. For example, if user BOB is
not part of the $admin group and he has only been granted the
change-admin-acl and view-user permissions, BOB cannot grant any
administrator permissions except the view-user or change-admin-acl
permissions to other users.

Users have all administrator permissions that are granted to any group to which
they belong. You can create administrator groups, grant administrator
permissions to those groups, and then add users to each administrator group. The
users will be able to perform any administrative action that is allowed by the
permissions granted to the group to which the user belongs.

Any destination-level permission granted to a user or group for a wildcard
destination is inherited for all child destinations that match the parent
destination.

If protection permissions are set up, administrators can only grant or revoke
permissions to other users that have the same protection permission as the
administrator. See Protection Permissions on page 273 for more information about
protection permissions.

TIBCO Enterprise Message Service User’s Guide

Administrator Permissions | 269

Enforcement of Administrator Permissions

An administrator can only perform actions for which the administrator has been
granted permission. Any action that an administrator performs may be limited by
the set of permissions granted to that administrator.

For example, an administrator has been granted the view permission on the
foo. * destination. This administrator has not been granted the global
view-destination permission. The administrator is only able to view
destinations that match the foo. * parent destination. If this administrator is
granted the global view-acl permission, the administrator is only able to view
the access control list for destinations that match the foo. * parent. Any access
control lists for other destinations are not displayed when the administrator
performs the showacl topic or showacl queue commands.

If the administrative user attempts to execute a command without permission, the
user may either receive an error or simply see no output. For example, if the
administrator issues the showacl queue bar.foo command, the administrator
receives a “Not authorized to execute command” error because the administrator
is not authorized to view any destination except those that match foo. *.

An administrator can always change his/her own password, even if the
%} administrator is not granted the change-user permission.
An administrator can always view his/her own permissions by issuing the:

showacl username

command, even if the administrator is not granted the view-acl permission.

Global Administrator Permissions

Certain permissions allow administrators to perform global actions, such as
creating users or viewing all queues.

Table 45 describes the global administrator permissions.

Table 45 Global administrator permissions (Sheet 1 of 3)

Permission Allows Administrator To...

all Perform all administrative commands.

view-all View any item that can be administered
(for example, users, groups, topics, and
SO on).

TIBCO Enterprise Message Service User's Guide

270 | Chapter 8 Authentication and Permissions

Table 45 Global administrator permissions (Sheet 2 of 3)

Permission Allows Administrator To...
change-acl Grant and revoke user-level
permissions.
change-admin-acl Grant and revoke administrative
permissions.
change-bridge Create and delete destination bridges.
change-connection Delete connections.
create-destination Create any destination.
modify-destination Modify any destination.
delete-destination Delete any destination.
change-durable Delete durable subscribers.
change-factory Create, delete, and modify factories.
change-group Create, delete, and modify groups.
change-message Delete messages stored in the server.
change-route Create, delete, and modify routes
change-server Modify server parameters.
change-user Create, delete, and modify users.
purge-destination Purge destinations.
purge-durable Purge durable subscribers.
shutdown Shutdown the server.
view-acl View user-level permissions.
view-admin-acl View administrative permissions.
view-connection View connections, producers and
consumers.
view-bridge View destination bridges.

TIBCO Enterprise Message Service User’s Guide

Administrator Permissions | 271

Table 45 Global administrator permissions (Sheet 3 of 3)

Permission Allows Administrator To...

view-destination View destination properties and
information.

view-durable View durable subscribers.

To view a durable subscriber, you must
also have view-destination
permission (because information about
a durable subscriber includes
information about the destination to
which it subscribes.)

view-factory View factories.

view-group View all groups.

Granting this permission implicitly
grants view-user as well.

view-message View messages stored in the server.

view-route View routes.

view-server View server configuration and
information.

view-user View any user.

Any type of modification to an item requires that the user can view that item.
Therefore, granting any create, modify, delete, change, or purge permission
implicitly grants the permission to view the associated item.

Granting the view permissions is useful when you want specific users to only be
able to view items. It is not necessary to grant the view permission if a user
already has a permission that allows the user to modify the item.

Global permissions are stored in the acl.conf file, along with all other
permissions. Global permissions in this file have the following syntax:

ADMIN USER=<username> PERM=<permission>
or

ADMIN GROUP=<groupname> PERM=<permission>

TIBCO Enterprise Message Service User's Guide

272 | Chapter 8 Authentication and Permissions

For example, if a user named BOB is granted the view-user global administration
permission and the group sys-admins is granted the change-acl permission, the
following entries are added to the acl. conf file:

ADMIN USER=BOB PERM=view-user
ADMIN GROUP=sys-admins PERM=change-acl

Destination-Level Permissions

Administrators can be granted permissions on each destination. Destination-level
permissions control the administration functions a user can perform on a specific
destination. Global permissions granted to a user override any destination-level
permissions.

The typical use of destination-level administration permissions is to specify
permissions on wildcard destinations for different groups of users. This allows
you to specify particular destinations over which a group of users has
administrative control. For example, you may allow one group to control all
ACCOUNTING. * topics, and another group to control all PAYROLL. * queues.

Table 46 describes the destination-level administration permissions.

Table 46 Destination-level administration permissions

Permission Allows Administrator To...
view View information for this destination.
create Create the specified destination. This permission is useful

when used with wildcard destination names. This allows the
user to create any destination that matches the specified

parent.
delete Delete this destination.
modify Change the properties for this destination.
purge Either purge this queue, if the destination is a queue, or

purge the durable subscribers, if the destination is a topic
with durable subscriptions.

TIBCO Enterprise Message Service User’s Guide

Administrator Permissions | 273

Any type of modification to an item requires that the user can view that item.
%} Therefore, granting create, modify, delete, change, or purge implicitly grants the
permission to view the associated item.

Granting the view permissions is useful when you want specific users to only be
able to view items. It is not necessary to grant the view permission if a user
already has a permission that allows the user to modify the item.

Administration permissions for a destination are stored alongside all other
permissions for the destination in the acl. conf file. For example, if user BOB has
publish and subscribe permissions on topic foo, and then BOB is granted view
permission, the acl listing would look like the following:

TOPIC=foo USER=BOB PERM=publish, subscribe,view

Both user and administrator permissions for a destination are stored in the same
% entry in the acl. conf file. This is for convenience rather than for clarity. User
permissions specify the actions a client application can perform on a destination
(publish, subscribe, send, receive, and so on). Administrator permissions specify
what administrative commands the user can perform on the destination when
using the administration tool or APL

Protection Permissions

Protection permissions allow you to group users into administrative domains so
that administrators can only perform actions within their domain. An
administrator can only perform administrative operations on a user that has the
same protection permission as the user. There are four protection permissions
(protectl, protect?, protect3, and protect4) that allow you to create four
groups of administrators. Protection permissions do not apply to the admin user
or users in the $admin group — these users can perform any action on any user
regardless of protection permissions.

To use protection permissions, grant one of the protection permissions to a set of
users (either individually, or to a defined group(s)). Then, grant the same
protection permission to the administrator that can perform actions on those
users.

For example, there are four departments in a company: sales, finance,
manufacturing, and system administrators. Each of these departments has a
defined group and a set of users assigned to the group. Within the system
administrators, there is one manager and three other administrators, each

TIBCO Enterprise Message Service User's Guide

274 | Chapter 8 Authentication and Permissions

responsible for administering the resources of the other departments. The
manager of the system administrators can perform any administrator action. Each
of the other system administrators can only perform actions on members of the
groups for which they are responsible.

The user name of the manager is mgr, the user names of the other system
administrators are adminl, admin2, and admin3. The following commands
illustrate the grants necessary for creating the example administration structure.

add member $admin mgr

grant admin sales protectl

grant admin adminl protectl,all
grant admin manufacturing protect?2
grant admin admin2 protect2,all
grant admin finance protect3

grant admin admin3 protect3,all

You can grant a protection permission, in addition to the all permission. This

%} signifies that the user has all administrator privileges for anyone who also has the
same protection permission. However, if you revoke the all permission from a
user, all permissions, including any protection permissions are removed from the
access control list for the user.

An administrator is able to view users that have a different protection permission
set, but the administrator can only perform actions on users with the same
protection permission.

For example, admin1 can perform any action on any user in the sales group, and
can view any users in the manufacturing or finance groups. However, admini
is not able to grant permissions, change passwords, delete users from, or perform
any other administrative action on users of the manufacturing or finance
groups. The mgr user is able to perform any action on any user, regardless of their
protection permission because mgr is a member of the $admin group.

TIBCO Enterprise Message Service User’s Guide

Enabling Access Control | 275

Enabling Access Control

Administrators can enable or disable access control for the server. Administrators
can also enable and disable permission checking for specific destinations.

Server Control

The property in the main configuration file enables or disables the checking of
permissions for all destinations managed by the server. The authorization
property also enables or disables verification of user names and passwords.

The default setting is disabled. For secure deployments, the administrator must
explicitly set authorization to enabled.

&/

When authorizationis disabled, the server grants any connection request, and
does not check permissions when a client accesses a destination (for example,
publishing a message to a topic).

When authorization is enabled, the server grants connections only from valid
authenticated users. The server checks permissions for client operations involving
secure destinations.

To enable authorization, either edit tibemsd.conf (set the authorization
property to enabled, and restart the server). Or you can use the tibemsadmin tool
to dynamically enable authorization with the following set server command:

set server authorization=enabled

Authorization does affect connections between fault-tolerant server pairs; see
Authorization and Fault-Tolerant Servers on page 499.

Administrators must always log in with the correct administration username and
password to perform any administrative function—even when authorizationis
disabled.

TIBCO Enterprise Message Service User's Guide

276 | Chapter 8 Authentication and Permissions

Destination Control

When server authorization is enabled, the server checks user names and
password of all connections without exceptions. However, operations on
destinations, such as sending a message or receiving a message, are not verified
unless the destination has enabled the secure property on the destination. All
operations by applications on the destination with secure enabled are verified by
the server according to the permissions listed in acl. conf. Destinations with
secure disabled continue to operate without any restrictions.

The secure property is independent of SSL-level security. The secure property
%} controls only basic authentication and permission verification. It does not affect
the security of communication between clients and server.

When a destination does not have the secure property set, any authenticated
user can perform any actions on that topic or queue.

See Destination Properties on page 58 for more information about destination
properties.

TIBCO Enterprise Message Service User’s Guide

Users and Groups | 277

Users and Groups

User permissions apply to the activities a user can perform on each destination
(topic and queue). Using permissions you can control which users have
permission to send, receive, or browse messages for queues. You can also control
who can publish or subscribe to topics, or who can create durable subscriptions to
topics. Permissions are stored in the access control list for the server.

Groups allow you to create classes of users and control permissions on a more
global level. Rather than granting and revoking permissions on destinations to
individual users, you can control destination access at the group level. Users
inherit any permissions from each of the groups they belong to, in addition to any
permissions that are granted to them directly.

Figure 15 illustrates the relationships between users, groups and permissions.

Figure 15 Users, groups, and permissions

Groups Access Control List
accounting: topic=check.request
chris user=chris
pat perm=publish,subscribe
ryan
topic=purchase.order Destinations
group=accounting]
Users perm=publish,subscribe < Topics:
check.request
chris topic=all.news purchase.order
pat group=employees
ryan perm=subscribe

External Directory

~_

Users Groups
gale Employees:
jean gale
perry jean
perry

~

TIBCO Enterprise Message Service User's Guide

278 | Chapter 8 Authentication and Permissions

Users

Externally-configured users and groups are defined and managed using the
external directory. Locally-configured users and groups, as well as the access
control list, are configured using any of the administration interfaces (editing
configuration files, using the administration tool, or the administration APIs).

Access control and Secure Sockets Layer (SSL) have some similar characteristics.
SSL allows for servers to require user authentication by way of the user’s digital
certificate. SSL does not, however, specify any access control at the destination
level. SSL and the access control features described in this chapter can be used
together or separately to ensure secure access to your system. See Chapter 18,
Using the SSL Protocol, on page 465 for more information about SSL.

The following sections describe users and groups in EMS.

Users are specific, named IDs that allow you to identify yourself to the server.
When a client logs in, the connect request should be accompanied by a username
and the password associated with the username.

In special cases, you may wish to allow anonymous access to the server. In this
case, a connect request does not have to supply a username or password. To
configure the server to allow anonymous logins, you must create a user named
anonymous and specify no password. Anonymous logins are not permitted unless
the anonymous user exists.

Clients logging in anonymously are only able to perform the actions that the
anonymous user has permission to perform.

There is one predefined user, admin, that performs administrative tasks, such as
creating other users.

You can create and remove users and change passwords by specifying the users in
the users. conf configuration file, using the tibemsadmin tool, or by using the
administration APIs. For more information about specifying users in the
configuration file, see users. conf on page 262. For more information about
specifying users using the tibemsadmin tool, see Chapter 6, Using the EMS
Administration Tool, on page 123. For more information on the administration
APIs, see the online documentation.

TIBCO Enterprise Message Service User’s Guide

Users and Groups | 279

Groups

Groups allow you to create classes of users. Groups make access control
administration significantly simpler because you can grant and revoke
permissions to large numbers of users with a single operation on the group. Each
user can belong to as many groups as necessary. A user’s permissions are the
union of the permissions of the groups the user belongs to, in addition to any
permissions granted to the user directly.

You can create, remove, or add users to groups by specifying the groups in
groups. conf, using the tibemsadmin tool, or by using the administration APlIs.
For more information about specifying groups in the configuration file, see
groups. conf on page 249. For more information about specifying groups using
the tibemsadmin tool, see Chapter 6, Using the EMS Administration Tool, on
page 123. For more information on the administration APIs, see the online
documentation.

Configuring an External Directory

You can define user authentication and group information either in EMS server
configuration files, or in an external directory (such as an LDAP server).

External User Authentication

EMS can be configured to authenticate users stored in an external directory
server, such as an LDAP server.

The parameter user_auth in tibemsd.conf guides the EMS server when
authenticating users. When a user attempts to authenticate to the EMS server, this
parameter specifies the source of authentication information. This parameter can
have one or more of the following values (separated by comma characters):

e Jocal—obtain user authentication information from the local EMS server
user configuration.

* ldap—obtain user authentication information from an LDAP directory server
(see the LDAP-specific configuration parameters).

® jaas—obtain user authentication information from a custom authentication
module (see Extensible Authentication on page 292).

Each time a user attempts to authenticate, the server seeks corresponding
authentication information from each of the specified locations in the order that
this parameter specifies. The EMS server accepts successful authentication using
any of the specified sources.

TIBCO Enterprise Message Service User's Guide

280 | Chapter 8 Authentication and Permissions

Group Information

Group information stored in an external directory can also be retrieved by the
EMS server. Static and dynamic groups are supported and you can configure the
EMS server to retrieve either or both.

Administration Commands and External Users and Groups

You can perform administrative commands on users and groups defined either
locally (in the EMS server’s local configuration files) or in an external LDAP.
Furthermore, you can combine users and groups that are defined in different
locations (for example, you can grant and revoke permissions for users and
groups defined in an LDAP, or add LDAP-defined users to locally-defined

groups).

Combining authentication sources requires that the configuration parameter
user_auth includes both 1dap and local.

When you attempt to view users and groups using the show user/s or show
group/s commands, any users and groups that exist in external directories have
an asterisk next to their names. Users and groups from external directories will
only appear in the output of these commands in the following situations:

¢ an externally-defined user successfully authenticates
* auser belonging to an externally-defined group successfully authenticates
* an externally-defined user has been added to a locally-defined group

® permissions on a topic or queue have been granted to an externally-defined
user or group

Therefore, not all users and groups defined in the external directory may appear
when the show user/s or show group/s commands are executed. Only the users
and groups that meet the above criteria at the time the command is issued will

appear.

You can create users and groups with the same names as externally-defined users
and groups. If a user or group exists in the server’s configuration and is also
defined externally, the local definition of the user takes precedence.
Locally-defined users and groups will not have an asterisk by their names in the
show user/s or show group/s commands.

You can also issue the delete user or delete group command to delete users
and groups from the local server’s configuration. The permissions assigned to the
user or group are also deleted when the user or group is deleted. If you delete a
user or group that is defined externally, this deletes the user or group from the
server’s memory and deletes any permissions assigned in the access control list,

TIBCO Enterprise Message Service User’s Guide

Users and Groups | 281

but it has no effect on the external directory. The externally-defined user can once
again log in, and the user is created in the server’s memory and any groups to
which the user belongs are also created. However, any permissions for the user or
group have been deleted and therefore must be re-granted.

Using LDAP Directory Servers
EMS has been tested with the following external directory servers:
¢ Netscape/SunOne iPlanet Directory Server version 5.1
* Microsoft Active Directory shipped as part of the Windows 2000 Server

However, you should be able to use any external directory server that is
compliant with LDAP V2.

The description for tibemsd.conf on page 187 provides the complete list of
configuration parameters for configuring an external directory server. Table 47
describes parameter settings for default configurations of popular LDAP servers.

Table 47 Default configuration for popular LDAP servers (Sheet 1 of 2)

External : ;

Directory Server Parameter Configuration

iPlanet ldap_principal = cn=Directory Manager
ldap_user_class = Person

ldap_user_attribute = uid
ldap_user_base_dn = ou=people,
o=<your_organization>
ldap_user_filter =

(&(uid=%s) (objectclass=person))

ldap_group_base_dn = "ou=groups,
o=<your_organization>

ldap_group_filter =

(]| (&(cn=%s) (objectclass=groupofUniqueNames)) (&
(cn=%s) (objectclass=groupOfURLs)))
ldap_static_group_class = groupofuniquenames
ldap_static_group_attribute = cn
ldap_static_member_attribute = uniquemember
ldap_dynamic_group_class = groupofURLs
ldap_static_group_member_filter =
(&(uniquemember=%s) (objectclass=groupofuniquen
ames))

ldap_dynamic_group_class = groupofURLs
ldap_dynamic_group_attribute = cn
ldap_dynamic_member_url_attribute = memberURL

TIBCO Enterprise Message Service User's Guide

282 | Chapter 8 Authentication and Permissions

Table 47 Default configuration for popular LDAP servers (Sheet 2 of 2)

External

Directory Server Parameter Configuration

AcﬁveI)HecKmy ldap_principal = CN=Administrator, CN=Users,
DC=<your_domain>

ldap_user_class = user
ldap_user_attribute = cn
ldap_user_filter = (&(cn=%s)(objectclass=user))

ldap_group_filter =

(&(cn=%s) (objectclass=group))
ldap_static_group_class = group
ldap_static_group_attribute = cn
ldap_static_member_attribute = member
ldap_static_group_member_filter =
(&(member=%s) (objectclass=group))

()penIJ)AP ldap_user_class = person
ldap_user_attribute = cn
ldap_user_base_dn = ou=people,
dc=<your_domain_component>, dc=<your_domain_component>
ldap_user_filter = (&(cn=%s)(objectclass=user))

ldap_group_base_dn = ou=groups,
dc=<your_domain_component>, dc=<your_domain_component>
ldap_group_filter =

(&(cn=%s) (objectclass=groupofnames))
ldap_static_group_class = groupofnames
ldap_static_group_attribute = cn
ldap_static_member_attribute = member
ldap_static_group_member_filter =
(&(member=%s) (objectclass=groupofnames))

Novell ldap_user_class = person
ldap_user_attribute = cn
ldap_user_base_dn = ou=people,
o=<your_organization>
ldap_user_filter =
(&(cn=%s) (objectclass=person))
ldap_group_base_dn = ou=groups,
o=<your_organization>
ldap_group_filter =
(&(cn=%s) (objectclass=groupofnames))
ldap_static_group_class = grouponames
ldap_static_group_attribute = cn
ldap_static_member_attribute = uniquemember
ldap_static_group_member_filter =
(&(uniquemember=%s) (objectclass=groupofnames))

TIBCO Enterprise Message Service User’s Guide

User Permissions | 283

User Permissions

User permissions are stored in the access control list and determine the actions a
user can perform on a destination. A user’s permissions are the union of the
permissions granted explicitly to that user along with any permissions the user
receives by belonging to a group.

When granting user permissions, you specify the user or group to whom you
wish to grant the permission, the name of the destination, and the permission(s)
to grant. Granting permissions is an action that is independent from both the
authorization server parameter, and the secure property of the relevant
destinations. The currently granted permissions are stored in the access control
file, however, the server enforces them only if the authorization is enabled, and
only for secure destinations.

When setting permissions for users and groups defined externally, user and
%} group names are case-sensitive. Make sure you use the correct case for the name
when setting the permissions.

User permissions can only be granted by an administrator with the appropriate
permissions described in Administrator Permissions on page 267.

You assign permissions either by specifying them in the acl. conf file, using the
tibemsadmin tool, or by using the administration APIs. When setting user
permissions, you can specify either explicit destination names or wildcard
destination names. See Inheritance of User Permissions on page 284 for more
information on wildcard destination names and permissions.

The permissions that can be granted to users to access queues are listed in
Table 48; the permissions to access topics are listed in Table 49 on page 284.

Table 48 Queue Permission

Name Description

receive permission to create queue receivers
send permission to create queue senders
browse permission to create queue browsers

TIBCO Enterprise Message Service User's Guide

284 | Chapter 8 Authentication and Permissions

Table 49 Topic Permission

Name Description

subscribe permission to create non-durable subscribers on the topic
publish permission to publish on the topic
durable permission to create, delete, or modify durable subscribers

on the topic

use_durable permission to use an existing durable subscriber on the topic,
but not to create, delete, or modify the durable subscriber

Example of Setting User Permissions
The user bob has the following permission recorded in the acl. conf file:
USER=bob TOPIC=foo PERM=subscribe,publish

This set of permissions means that bob can subscribe to topic foo and publish
messages to it, but bob cannot create durable subscribers to foo.

If bob is a member of group engineering and the group has the following entry
in the acl file:

GROUP=engineering TOPIC=bar PERM=subscribe,publish
then bob can publish and subscribe to topics foo and bar.

If both the user bob and the group engineering have entries in the acl. conf file,
then bob has permissions that are a union of all permissions set for bob directly
and the permissions of the group engineering.

Inheritance of User Permissions

When you grant permissions to users for topics or queues with wildcard
specifications, all created topics and queues that match the specification will have
the same granted permissions as the permissions on the parent topic. If there are
multiple parent topics, the user receives the union of all parent topic permissions
for any child topic. You can add permissions to a user for topics or queues that
match a wildcard specification, but you cannot remove permissions.

For example, you can grant user Bob the browse permission on queue foo. *. The
user Bob receives the browse permission on the foo.bar queue, and you can also
grant Bob the send permission on the foo.bar queue. However, you cannot take
away the inherited browse permission from Bob on the foo.bar queue.

TIBCO Enterprise Message Service User’s Guide

User Permissions | 285

See Wildcards on page 77 for more information about wildcards in destination
names.

Revoking User Permissions

Administrators can revoke permissions for users to create consumers on a
destination. Without permission, the user cannot create new consumers for a
destination—however, existing consumers of the destination continue to receive
messages.

You can only revoke a permission that is granted directly. That is, you cannot
revoke a permission from a user that the user receives from a group. Also, you
cannot revoke a permission that is inherited from a parent topic. The revoke
command in tibemsadmin can only remove items from specific entries in the
acl.conf file. The revoke command cannot remove items that are inherited from
other entries.

You can revoke permissions in several ways:
e Remove or edit entries in the acl. conf file.
® Use the revoke commands in tibemsadmin; see page 140.

e Use the administration APIs.

TIBCO Enterprise Message Service User's Guide

286 | Chapter 8 Authentication and Permissions

When Permissions Are Checked

If permissions are enforced (that is, the authorization configuration property is
set, and the secure property is set for the destination), the server checks them
when a user attempts to perform an operation on a destination. For example,
create a subscription to a topic, send a message to a queue, and so on. Since
permissions can be granted or revoked dynamically, the server checks them each
time an operation is performed on a destination (and each time a consumer or
producer is created).

For specific (non-wildcard) destination names, permissions are checked when a
user performs one of the following actions:

® creates a subscription to a topic

* attempts to become a consumer for a queue

® publishes or sends a message to a topic or queue
* attempts to create queue browser

A user cannot create or send a message to a destination for which he or she has
not explicitly been granted the appropriate permission. So, before creating or
sending messages to the destination, a user must be granted permissions on the
destination.

However, for wildcard topic names (queue consumers cannot specify wildcards),
permissions are not checked when users create non-durable subscriptions.
Therefore, a user can create a subscription to topic foo. * without having explicit
permission to create subscriptions to foo. * or any child topics. This allows
administrators to grant users the desired permissions after the user’s application
creates the subscriptions. You may wish to allow users to subscribe to unspecific
wildcard topics, then grant permission to specific topics at a later time. Users are
not able to receive messages based on their wildcard subscriptions until
permissions for the wildcard topic or one or more child topics are granted.

When creating a durable subscriber, users must have the durable permission
%} explicitly set for the topic they are subscribing to. For example, to create a durable
subscriber to topic foo. *, the user must have been granted the durable
permission to create durable subscriptions for topic foo. *. To subscribe an
existing durable subscriber to a topic, you must have either durable or
use_durable permission set on that topic.

TIBCO Enterprise Message Service User’s Guide

When Permissions Are Checked | 287

Example of Permission Checking

This example walks through a scenario for granting and revoking permissions to
a user, and describes what happens as various operations are performed.

1. User bob is working with a EMS application that subscribes to topics and
displays any messages sent to those topics.

2. User bob creates a subscription to user. *. This topic is the parent topic of
each user. Messages are periodically sent to each user (for example, messages
are sent to the topic user.bob). Because the same application is used by many
users, the application creates a subscription to the parent topic.

3. User bob creates a subscription to topic corp.news. This operation fails
because bob has not been granted access to that topic yet.

4. A message is sent to the topic user.bob, but the application does not receive
the message because bob has not been granted access to the topic yet.

5. The administrator, as part of the daily maintenance for the application, grants
access to topics for new users. The administrator grants the subscribe
permission to topic user.bob and corp. * to user bob. These grants occur
dynamically, and user bob is now able to receive messages sent to topic
user.bob and can subscribe to topic corp. news.

6. The administrator sends a message on the topic user.bob to notify bob that
access has been granted to all corp. * topics.

7. The application receives the new message on topic user.bob and displays the
message.

8. User bob attempts to create a subscription for topic corp.news and succeeds.

9. A message is sent to topic corp.news. User bob’s application receives this
message and displays it.

10. The administrator notices that bob is a contractor and not an employee, so the
administrator revokes the subscribe permission on topic corp. * to user bob.

The subscription to corp.news still exists for user bob’s application, but bob
cannot create any new subscriptions to children of the corp. * topic.

TIBCO Enterprise Message Service User's Guide

288 | Chapter 8 Authentication and Permissions

TIBCO Enterprise Message Service User’s Guide

| 289

Chapter9 Extensible Security

This chapter outlines how to develop and implement custom authentication and
permissions modules.

Topics

* Overview of Extensible Security, page 290
e Extensible Authentication, page 292
* Extensible Permissions, page 295

* The JVM in the EMS Server, page 302

TIBCO Enterprise Message Service User's Guide

290 | Chapter 9 Extensible Security

Overview of Extensible Security

How Extensible
Security Works

The extensible security feature allows you to use your own authentication and
permissions systems, in addition to the default LDAP server included in EMS, to
authenticate users and authorize them to perform actions such as publish and
subscribe operations. Developing custom applications to grant authentication and
permissions gives you more flexibility in architecting your system.

Extensible security works by allowing you to write your own authentication and
permissions modules, which run in a Java virtual machine (JVM) in the EMS
server. The modules connect to the server using the Java Authentication and
Authorization Service (JAAS) for authentication modules, and the Java Access
Control Interface (JACI) for permissions modules.

If the extensible security features are enabled when the EMS server starts, the
server checks each user as it connects for authentication, and checks user
permissions when they attempt to perform actions that require authorization.

Permission results are cached in the server for specified timeouts, and the
permissions module is re-invoked when a cached permission expires. The server
then replaces the old permission data with new data.

Extensible authentication and extensible permissions are enabled in the
tibemsd. conf configuration file. Extensible security modules can connect to
external security services, such as single sign on (SSO) servers or LDAP
directories, which operate outside of the TIBCO Enterprise Message Service
framework. Extensible security modules can work in tandem with other
authorization and permissions methods, such as LDAP or the EMS acl. conf
configuration file. Figure 16 on page 291 shows the different security methods
available in the server.

TIBCO Enterprise Message Service User’s Guide

Overview of Extensible Security | 291

Figure 16 Methods for authenticating users and checking permissions

LDAP

<&
<

EMS Server

Local Configuration Files

users.conf

acl.conf

External Security
Services

[

External User Authentication
from an LDAP directory server

JVM

JAAS

JACI

LoginModule Authorization

Module

External Security
Services

RES:

TIBCO Enterprise Message Service User's Guide

292 | Chapter 9 Extensible Security

Extensible Authentication

The extensible authentication feature uses the Java virtual machine (JVM) and the
Java Authentication and Authorization Service (JAAS) to allow you to run your
own Java-based authentication module in the EMS server.

Your authentication module, or LoginModule, runs in the JVM within the EMS
server, and is accessed by tibemsd using the JAAS interface. This is a flexible way
to extend the security of your EMS application. The LoginModule can be used to
augment existing authentication processes, or can be the sole method of
authentication used by the EMS server. The user_auth parameter in the main
configuration file determines when the LoginModule is used.

Each time an EMS client attempts to create a connection to the server, the server
will authenticate the client before accepting the connection. When extensible
authentication is enabled, tibemsd passes the username and password to the
LoginModule, which returns an allow or deny response.

If more than one authentication mechanism is enabled, it’s important to note the
order that the authentication processes are employed, as determined by their
order in the user_auth parameter. The server will search each authentication
source in order, and if the user does not exist there, tibemsd passes the username
and password to the next source.

For example, if local authentication appears before JAAS authentication, the
server will search for the provided username and password first in the

users. conf file. If the user does not exist there, tibemsd passes the username
and password to the LoginModule, which allows or denies the connection
attempt.

Consider a connection request from a client with the username avogus. If avogus
exists in the users. conf, the EMS server will either authenticate or deny access to
avogus based on the username and password located there. Only if avogus does
not exist in the users. conf does the server pass the username and password to
the LoginModule.

Enabling Extensible Authentication

Extensible authentication is enabled in the EMS server, through parameters in the
tibemsd. conf configuration file. The required parameters are:

® authorization—directs the server to verify user credentials and permissions
on secure destinations.

* user_auth—directs the EMS server to use the LoginModule for
authentication.

TIBCO Enterprise Message Service User’s Guide

Extensible Authentication | 293

* jaas_classpath—specifies the JAR files and dependent classes used by the
LoginModule.

* jaas_config_file—specifies the configuration file, usually jaas.conf, that
loads the LoginModule. For more information, see the Example jaas.conf
Configuration File on page 294.

Because the LoginModule runs in the Java virtual machine, you must also enable
the JVM in the EMS server. See Enabling the JVM on page 302 for more
information.

Writing an Authentication Module

The LoginModule is a custom module that runs inside the EMS server within a
JVM. The LoginModule is written using JAAS, a set of APIs provided by Sun
Microsystems, and used to create plugable Java applications. JAAS provides the
interface between your code and the EMS server. JAAS is a standard part of JRE,
and is installed with EMS.

LoginModule In order to implement extensible authentication, you must write a LoginModule
Requirements implementing the JAAS interface. There are some requirements for a
LoginModule that will run in the EMS server:

* The LoginModule must accept the username and password from the EMS
server by way of the NameCallback and PasswordCallback callbacks. The
EMS server passes the username and password to the LoginModule using
these callbacks, ignoring the prompt argument.

e [f the username and password combination is invalid, the LoginModule must
throw a FailedLoginException. The EMS server then rejects the
corresponding connection attempt.

¢ The LoginModule must be thread-safe. That is, the LoginModule must be able
to function both in a multi-threaded environment and in a single-threaded
environment.

¢ The LoginModule should perform authentication only, by determining
whether a username and password combination is valid. For information
about custom permissions, see Extensible Permissions on page 295.

* The LoginModule, like the Permissions Module, should not perform long
operations, and should return values quickly. As these modules become part
of the EMS server’s message handling process, slow operations can have a
severe effect on performance.

¢ The LoginModule must be named EMSUserAuthentication.

More information about JAAS, including documentation of JAAS classes and
interfaces, is available through http:/ /java.sun.com/products/jaas/.

TIBCO Enterprise Message Service User's Guide

http://java.sun.com/products/jaas/

294 | Chapter 9 Extensible Security

Loading the
LoginModule in
the EMS Server

The EMS server locates and loads the LoginModule based on the contents of the
configuration file specified by the jaas_config_file parameter in the

tibemsd. conf file. Usually, the JAAS configuration file is named jaas.conf. This
file contains the configuration information used to invoke the LoginModule.

The contents of the jaas. conf file should follow the JAAS configuration syntax,
as documented at:

http:/ /java.sun.com/j2se/1.5.0/docs/api/javax/security /auth/login/Configuration.html

S

The LoginModule in the JAAS configuration file must have the name
EMSUserAuthentication.

Example jaas.conf Configuration File

EMSUserAuthentication {
com.tibco.tibems.tibemsd.security.example.FlatFileUserAuthLoginMod
ule required debug=true filename=jaas_users.txt;

};

TIBCO Enterprise Message Service User’s Guide

http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/login/Configuration.html

Extensible Permissions | 295

Extensible Permissions

The extensible permissions feature uses the Java virtual machine (JVM) and the
Java Access Control Interface (JACI) to allow you to run your own Java-based
permissions module in the EMS server.

Your Permissions Module runs in the JVM within the EMS server, and connects to
tibemsd using the JACl interface. Like the LoginModule, the Permissions Module
provides an extra layer of security to your EMS application. It does not supersede
standard EMS procedures for granting permissions. Instead, the module
augments the existing process.

When a user attempts to perform an action, such as subscribing to a topic or
publishing a message, the EMS server checks the acl. conf file, the Permissions
Module, and cached results from previous Permissions Module queries, for
authorization. This process is described in detail in How Permissions are Granted
on page 296.

Cached Permissions

In order to speed the authorization process, the EMS server caches responses
received from the Permissions Module in two pools, the allow cache and the deny
cache. Before invoking the Permissions Module, the server first checks these
caches for a cache entry matching the user’s request.

What is Cached Each cache entry consists of a username and action, and the authorization result
response from the Permissions Module:

* The username is specific; the cached permission applies only to this user.

¢ The action is also specific. Only one action is included in each cache entry.
Actions that require authorization are the same as those listed in the acl.conf
file.

* The destination can include wildcards. That is, a single cache entry can
determine the user’s authorization to perform the action on multiple
destinations.

If the response from the Permissions Module authorized the action, the
permission is cached in the allow cache. If the action was denied, it is cached in
the deny cache.

TIBCO Enterprise Message Service User's Guide

296 | Chapter 9 Extensible Security

How Long
Permissions are
Cached

A

Administering the
Cache

Permissions Module results also include timeouts, which determine how long the
cache entry is kept in the cache before it expires. When a timeout has expired, the
entry is removed from the cache. Because these timeouts are assigned by the
Permissions Module, you can control how often the Permissions Module is called,
and therefore how much load it puts on the EMS server.

Long timeouts on permissions cache entries can increase performance, but they
also lower the system’s responsiveness to changes in permissions. Consider
timeout lengths carefully when writing your Permissions Module.

You can view and reset cache statistics, as well as clear all cache entries. These
commands are available in the administration tool:

jaci showstats on page 138
jaci resetstats on page 138

jaci clear on page 138

How Permissions are Granted

When an EMS client attempts to perform an action that requires permissions, the
EMS server looks in each of the following locations in turn:

1.

First, the server checks the acl. conf for authorization. This is the standard
EMS mechanism for granting permissions, as is documented in Chapter 8,
Authentication and Permissions, on page 265.

Next, the server checks the Permissions Module allow cache for authorization.
If an entry matching the username, action, and destination exists in the cache,
the request is allowed.

Because destinations with wildcards can exist in the cache, an entry can have a
wildcard destination that contains the requested destination. If that entry
specifies the same username and action, the request is allowed. For more
information on this topic, see Implications of Wildcards on Permissions below.

The server then checks the deny cache for a matching entry. If an entry exists
in the deny cache, the request is denied.

As in the allow cache, wildcards used in destinations can result in a cache
entry with a destination that contains the requested destination. If that entry
matches the username and action, the request is denied. For more information
on this topic, see Implications of Wildcards on Permissions below.

Finally, if there are no matching entries in either cache, the server passes the
username, action type, and destination to the Permissions Module, which
returns an allow or deny authorization response. The response is also saved to
the cache for the timeout specified in the response.

TIBCO Enterprise Message Service User’s Guide

Extensible Permissions | 297

If the Permissions Module does not respond to the request within the timeout
specified by the jaci_timeout parameter in the tibemsd.conf file, the server
denies authorization by default.

Actions that require permissions are the same as those listed in the acl. conf file,
and include operations such as subscribe to a topic and publishing to a queue.
Permissions are described in acl.conf on page 239. Figure 17 shows the decision
tree the server follows when granting or denying permissions.

Figure 17 The Permissions Decision Tree

<«— Yes —1 Authorized in the acl.conf file?
No
i ?
Yes —| Matched in the allow cache?
No
Matched in the deny cache? — Yes —
l
No
«— Allow — Ask the AuthorizationModule L Deny —»
v v
Allow L Timeout —» Deny

reached

In general, permissions are checked when a client initiates an operation. In the
case of a browsing request, it’s useful to note that the server reviews permissions
only at certain points during the browsing operation.

The server checks for browsing permission when a client starts to browse a queue
and whenever the client needs to refresh its list of browse-able messages. The
client receives the list of messages from the server when it first begins browsing.
The server refreshes the list and rechecks permissions whenever the client
browses to the end of the current list.

TIBCO Enterprise Message Service User's Guide

298 | Chapter 9 Extensible Security

Durable
Subscribers

Special
Circumstances

When a durable subscriber is disconnected from the EMS server, the server
continues to accumulate messages for the client. However, while the client is
disconnected, there is no user associated with the durable subscriber. Because of
this, the server cannot immediately check permissions for a message that is
received when the client is not connected.

When a user later reconnects to the server and resubscribes to the durable
subscription, the server checks permissions for the subscribe operation itself, but
all messages in the backlog are delivered to the consumer without additional
permission checks.

There are some special circumstances under which the request, although it is not
exactly matched in the acl. conf file, will be denied without reference to either
the permissions cache or the Permissions Module. Any request will be denied if,
in the acl.conf

* The username exists but is not associated with any destinations.

e The username exists and is associated with destinations, but not with the
specific destination in the request.

* The username is part of a group, but the group is not associated with any
destinations.

* The username is part of a group and the group is associated with destinations,
but not with the specific destination in the request.

In general entries in the acl. conf file supersede entries in the Permissions
Module, allowing you to optimize permission checks in well-defined static cases.
When the acl.conf does not mention the user, the Permissions Module is fully
responsible for permissions.

Implications of Wildcards on Permissions

A permission result from the Permissions Module can allow or deny the user
authorization to perform the action on a range of destinations by including
wildcards in the destination name. For example, even though the application
attempts to have user mwalton publish on topic foo.bar.1, the Permissions
Module can grant permission to user mwalton to publish messages to the topic
foo.bar. *. For as long as this authorization is cached, mwalton can also publish
to the topics foo.bar.baz and foo.bar.boo, because foo.bar. * contains both
those topics.

As long as a permission to perform an action on a destination is cached in the
allow cache, the user will be authorized to perform that action, even if the
permission is revoked in the external system used by the Permissions Module.
This permission also extends to any destination contained by the authorized
destination through the use of wildcards. The EMS server checks the allow cache

TIBCO Enterprise Message Service User’s Guide

Extensible Permissions | 299

for permissions before checking the deny cache and before sending an uncached
permission request to the Permissions Module. In other words, the authorization
status cannot be changed until the timeout on the cache entry expires and it is
removed from the cache.

Similarly, an entry in the deny cache remains there until the timeout has expired
and the entry is removed. Only then does the EMS server send the request to the
Permissions Module, so that a change in status can take effect.

Overlapping wildcards can make this situation even more complex. For example,
consider these three destinations:
foo.*.baz

foo.bar.*
foo.>

It might seem that, if foo. *.baz were in a cache, then foo.bar. * would match it
and permissions for that destination would come from the cache. In fact, however,
permissions could not be determined by the cache entry, because foo.bar. *
intersects but is not a subset of foo. *.baz. That is, not every destination that
matches foo.bar. * will also match foo. *.baz. The destination foo.bar.boo, for
example, would be granted permissions by foo.bar. *, but not by foo. *.baz.

Since not all destinations that foo.bar. * matches will also match foo. *.baz, we
say that foo. *.baz intersects foo.bar. *. The cache entry can determine a
permission if the requested destination is a subset of the cache entry, but not if it is
merely an intersection. In this case, permissions cannot be determined by the
cache.

The destination foo.>, on the other hand, contains as subsets both foo.bar. *
and foo. *.baz, because any destination name that matches either foo.bar. * or
foo. *.baz will also match foo.>. If foo.> is in the cache, permissions will be
determined by the cache.

Enabling Extensible Permissions

Extensible permissions are enabled in the EMS server, through parameters in the
tibemsd. conf configuration file. The required parameters are:

® authorization—enables authorization.
® jaci_class—specifies the class that implements the Permissions Module.

* jaci_classpath—specifies the JAR files and dependent classes used by the
Permissions Module.

TIBCO Enterprise Message Service User's Guide

300 | Chapter 9 Extensible Security

The Permissions Module will be used to grant permissions only to those
destinations that are defined as secure in the topics.conf and queues.conf
configuration files. If there are no topics or queues that include the secure
property, then the Permissions Module will never be called because the server
does not check permissions at all.

Because the Permissions Module runs in the Java virtual machine, you must also
enable the JVM in the EMS server. See Enabling the JVM on page 302 for more
information.

Writing a Permissions Module

Requirements

The Permissions Module is a custom module that runs inside the EMS server
within a JVM. The Permissions Module is written using JACI, a set of APIs
developed by TIBCO Software Inc. that you can use to create a Java module that
will authorize EMS client requests. JACI provides the interface between your code
and the EMS server. JACl is a standard component of EMS, and JACI classes and
interfaces are documented in com.tibco.tibems.tibemsd. security.

In order to implement extensible permissions, you must write a Permissions
Module implementing the JACI interface. There are some requirements for a
Permissions Module that will run in the EMS server:

¢ The Permissions Module must implement the JACI Authorizer interface,
which accepts information about the operation to be authorized.

® The Permissions Module must return a permission result, by way of the
AuthorizationResult class. Permission results contain:

— An allowed parameter, where true means that the request is allowed and
false means the request is denied.

— A timeout, which determines how long the permission result will be
cached. Results can be cached for a time of up to 24 hours, or not at all.

— The destination on which the user is authorized to perform the action. The
destination returned can be more inclusive than the request. For example,
if the user requested to subscribe to the topic foo.bar, the permission
result can allow the user to subscribe to foo. *. If a destination is not
included in the permission result, then the allow or deny response is
limited to the originally requested destination.

— The action type that the permission result replies to. For example,
authorization to publish to the destination, or authorization to receive
messages from a queue. Permissions can be granted to multiple action
types, for example permission to publish and subscribe on foo . >. Note that
the EMS server creates one cache entry for each action specified in the
result.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibems/tibemsd/security/package-summary.html

Extensible Permissions | 301

e The Permissions Module must be thread-safe. That is, the Permissions Module
must be able to function both in a multi-threaded environment and in a
single-threaded environment.

¢ The Permissions Module, like the LoginModule, should not employ long
operations, and should return values quickly. As these modules become part
of the EMS server’s message handling process, slow operations can have a
severe effect on performance.

Documentation of JACI classes and interfaces is available through
com.tibco.tibems.tibemsd.security.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibems/tibemsd/security/package-summary.html

302 | Chapter 9 Extensible Security

The JVM in the EMS Server

The Java virtual machine (JVM) is a virtual machine on the Java platform, capable
of running inside the EMS server. Select independent Java modules can operate in
the JVM and plug into the EMS server. The JVM is required to use the following
TIBCO Enterprise Message Service features:

* Extensible Security—see Chapter 9, Extensible Security, on page 289.
¢ Database Stores—see Chapter 10, Using Database Stores, page 303.

Enabling the JVM

The Java virtual machine is enabled in the EMS server, through parameters in the

tibemsd. conf configuration file. The parameters that enable and configure the
JVM are:

® jre_library—enables the JVM.

* jre_option—allows you to pass standard JVM options, defined by Sun
Microsystems, to the JVM at start-up.

For more information about these parameters, see JVM Parameters on page 237.

On Mac OS X platforms, you must use the 64-bit EMS server. Because Java 1.7
% does not support 32-bit libraries on Mac OS X, the 32-bit EMS server cannot load
the JVM.

TIBCO Enterprise Message Service User’s Guide

| 303

Chapter 10 Using Database Stores

This chapter describes how to configure the TIBCO Enterprise Message Service
server to store messages in a database. This chapter discusses only database
stores. For more information about file-based stores, see Store Messages in
Multiple Stores on page 30.

e The optional database store feature requires the installation and use of Hibernate
K 2 Core for Java and associated jar files.

Topics

¢ Database Store Overview, page 304
¢ Configuring Database Stores, page 305
* EMS Schema Export Tool, page 312

TIBCO Enterprise Message Service User's Guide

304 | Chapter 10 Using Database Stores

Database Store Overview

The EMS server can connect to a database, and store messages in one or more
database instances. The server connects to the database using Hibernate Core for
Java to interface between the database and the EMS server.

Requirements To create database stores, you must have:

¢ Hibernate Core for Java and related JAR files.

Refer to the TIBCO Enterprise Message Service Installation manual for
instructions on how to obtain and install Hibernate Core for Java.

* A database server that is supported by Hibernate, the corresponding dialect,
and the appropriate JDBC driver.

The database server must be running, and the databases that the EMS server
will connect to must have already been created by the database administrator.

* A username with read-write permissions and a password to the database
server.

TIBCO Enterprise Message Service User’s Guide

Configuring Database Stores | 305

Configuring Database Stores

This section describes the steps required to configure and deploy database stores.
For general conceptual information about the multiple store feature, see Store
Messages in Multiple Stores on page 30.

Settings for creating and configuring database stores are managed in the EMS
server, and are transparent to clients. To configure the database stores feature,
follow these steps:

1. Enable the database store feature in the tibemsd. conf by setting the
parameters:
— dbstore_classpath
— dbstore_driver_name

— dbstore_driver_dialect
— Jjre_library

For detailed information about the dbstore parameters, see Configuration
in tibemsd.conf. The jre_library parameter, which enables the JVM in
the EMS server, is described in JVM Parameters on page 237.

2. Setup and configure stores in the stores. conf file.

You can create multiple database stores, or a combination of database and
file-based stores. Each store must have a unique name. Parameters determine
whether the store is a database store, provide the location of the database
server, and specify the username and password that the EMS server uses to
access the database.

For a list of database store parameters, see Configuration in stores.conf
below.

3. Associate destinations with the configured stores.

Messages are sent to different stores according to their destinations. You
associate a destination with a specific store using the store parameter in the
topics.conf and queues. conf files. You can also change store associations
using the setprop topic or setprop queue command in the EMS
Administration Tool.

Multiple destinations can be mapped to the same store, either explicitly or
using wildcards. Even if no stores are configured, the server sends persistent
messages that are not associated with a store to default stores. See Default
Store Files for more information.

For details about the store parameter, see store on page 73.

TIBCO Enterprise Message Service User's Guide

306 | Chapter 10 Using Database Stores

4. Export database tables.

When the EMS server is configured to store messages in a database, the
database schema must be exported before the server is started. Use the EMS
Schema Export Tool to create, drop, and update the database tables.

For details, see EMS Schema Export Tool on page 312.

Configuration in tibemsd.conf

These parameters are set in the tibemsd. conf configuration file.

dbstore_classpath
dbstore_classpath = pathname

Includes all the JAR files required by the EMS server when employing the
database store feature. This parameter must be set when a store of type dbstore
has been created in the stores.conf file.

Required JAR files are determined by the installed Hibernate release, and are
documented in the _README. txt file that is located in the 1ib/ directory of the
Hibernate distribution. Many of these JAR files are version-specific, and the
required versions may change with new Hibernate releases. You should verify the
required version and modify the dbstore_classpath variable accordingly.

If you are using Hibernate release 3.2.5, for example, the dbstore_classpath
should include paths to the following JAR files:

® hibernate3.jar

® dom4j-1.6.1.jar

® commons-collections-2.1.1.jar
® commons-logging-1.0.4.jar
® ehcache-1.2.3.jar

® jta.jar

® cglib-2.1.3.jar

® antlr-2.7.6.jar

® c3p0-0.9.1.jar

® asm.jar

® asm-attrs.jar

e Database-specific driver JAR file. Supported jar files are listed in Database
Servers and Drivers in TIBCO Enterprise Message Service Installation.

TIBCO Enterprise Message Service User’s Guide

Configuring Database Stores | 307

For an example, see EMS_HOME/samples/config/tibemsd-db.conf

dbstore_driver_name
dbstore_driver_name = name
Specifies the name of the JDBC driver used by Hibernate.
For example:
e If you are using the MySQL InnoDB database server:
dbstore_driver_name=com.mysql.jdbc.Driver

e If you are using the Microsoft SQL Server:

dbstore_driver_ name=
com.microsoft.sglserver. jdbc.SQLServerDriver

e If you are using Oracle 10g:
dbstore_driver_ name=oracle.jdbc.driver.OracleDriver

¢ If you are using IBM DB2 Server:

dbstore_driver_name=com.ibm.db?2.jcc.DB2Driver

dbstore_driver_dialect
dbstore_driver_dialect = dialect
Specifies the Hibernate SQL dialect used to construct SQL commands.
For example, if you are using the MySQL with InnoDB database server:
dbstore_driver_dialect = org.hibernate.dialect.MySQL5InnoDBDialect

The SQL dialect is defined by Hibernate. For a list of databases and the associated
dialects, see the readme.txt file located in the Hibernate install directory archive.

Configuration in stores.conf

This section describes parameters configured for each database store in the
stores. conf file. The stores. conf includes definitions for both database and
file-based stores. For information about configuring file-based stores, see
stores.conf on page 253.

The format of the file is:

[store_name] # mandatory -- square brackets included.
type = dbstore
dbstore_driver_url = JDBCURL
dbstore_driver_username = usernane
dbstore_driver_password = password
[processor_id = processor-id]

TIBCO Enterprise Message Service User's Guide

308 | Chapter 10 Using Database Stores

Table 50 Database Store File Parameters

Parameter Name Description

[store_name] [store_name] is the name that identifies this store
configuration.

Note that the square brackets [] DO NOT
indicate that the store_name is an option; they
must be included around the name.

type=dbstore Identifies the store type. This parameter is
required for all store types. The type can be:

e file — for file-based stores.
® mstore — for mstores.
e dbstore — for database stores.

For information about the parameters used to
configure file-based stores, see stores. conf on
page 253.

dbstore driver url Provides the location of the database server. The
URL entered uses the syntax specified by the
JDBC driver for your database.

Please see documentation specific to your JDBC
driver for more information. If you are using an
Oracle RAC database, also see Using a TAF
Configured URL on page 311.

dbstore_driver_username The username that the EMS server uses to
access the database.

Note that this user must have read and write
permissions to the database.

TIBCO Enterprise Message Service User’s Guide

Configuring Database Stores | 309

Table 50 Database Store File Parameters

Parameter Name Description

dbstore_driver password The password that the server uses, in
conjunction with the username provided in
dbstore_driver_username, to access the
database.

You can mangle this and other passwords by
way of the tibemsadmin tool. See Table 15,
tibemsadmin Options, on page 124 for more
information about using tibemsadmin to
mangle passwords.

processor_id When specified, the EMS Server binds the
storage thread of this store to the specified
processor.

Do not use this parameter if the default
behavior provides sufficient throughput. If no
processor 1D is specified for a store, the store is
not bound to a specific processor.

Specify the processor-id as an integer. The
processor ID is numbered starting at 0 and
continuing to the number of processors
available, minus 1. For example, if you have
four processors, the available processor IDs are
0,1, 2,and 3.

This parameter has similar requirements,
limitations, and benefits as the processor_ids
parameter in tibemsd. conf. For use
guidelines, see Performance Tuning on

page 121.

Example Using MySQL Server

[$sys.failsafe]
type=dbstore
dbstore_driver_url=jdbc:mysqgl://mysqglsrv_1:3306/sysfs
dbstore_driver_username=admin
dbstore_driver_password=adminl23

[$sys.meta]
type=dbstore
dbstore_driver_url=jdbc:mysqgl://mysqglsrv_1:3306/sysmeta
dbstore_driver_username=admin
dbstore_driver_password=adminl23

TIBCO Enterprise Message Service User's Guide

310 | Chapter 10 Using Database Stores

Example Using Microsoft SQL Server

[$sys.meta]
type=dbstore
dbstore_driver_url=jdbc:sqglserver://sqlsrv_1:3415;databaseName=sysmeta
dbstore_driver_username=admin
dbstore_driver_password=adminl23

[$sys.failsafe]
type=dbstore
dbstore_driver_url=jdbc:sqglserver://sqlsrv_1:3415;databaseName=sysfs
dbstore_driver_username=admin
dbstore_driver_password=adminl23

Example Using Oracle 10g

[$sys.meta]
type=dbstore
dbstore_driver_url=jdbc:oracle:thin:adminmeta/adminl23@osrv_1:1521:0orclperf
dbstore_driver_username=adminmeta
dbstore_driver_password=adminl23

[$sys.failsafe]
type=dbstore
dbstore_driver_url=jdbc:oracle:thin:adminfs/adminl23@osrv_1:1521:orclperf
dbstore_driver_username=adminfs
dbstore_driver_password=adminl23

Example Using Oracle RAC 10g

[$sys.failsafe]
type=dbstore
dbstore_driver_url=jdbc:oracle:oci:<user>/<passwd>@(DESCRIPTION=
(ADDRESS=(PROTOCOL=TCP) (HOST=<host1>) (PORT=1521)) (ADDRESS=(PROTOCO
L=TCP) (HOST=<host2>) (PORT=1521)) (CONNECT_DATA=(SERVICE_NAME=orcl) (
FATILOVER_MODE=(TYPE=SELECT) (METHOD=BASIC) (RETRIES=180) (DELAY=5))))
dbstore_driver_username=admin
dbstore_driver_password=adminl23

For more information, see Configuration for the Oracle RAC Database below.

Example Using IBM DB2 Server

[$sys.meta]
type=dbstore
dbstore_driver_url=jdbc:db2://db2srv_1:50000/SYSMETA
dbstore_driver_username=admin
dbstore_driver_password=adminl23

[$sys.failsafe]
type=dbstore
dbstore_driver_url=jdbc:db2://db2srv_1:50000/SYSFS
dbstore_driver_username=admin
dbstore_driver_ password=adminl23

TIBCO Enterprise Message Service User’s Guide

Configuring Database Stores | 311

Configuration for the Oracle RAC Database

The TIBCO Enterprise Message Service server must connect to the Oracle RAC
10g or 11g database using the Oracle JDBC OCI driver and TAF configuration.

Installing the OCI Driver

We recommend using the Oracle Instant Client, which is an optimized
light-weight OCI driver package available from Oracle:

http:/ /www.oracle.com/technology/tech/oci/instantclient/index.html

Follow the instructions provided to install the Oracle Instant Client.

Using a TAF Configured URL

To ensure that the EMS server does not lose its connection to the database during
a database failover, the server should connect to the database using a Transparent
Application Failover (TAF) configured URL. For example:

jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP) (HOST=host1) (
PORT=1521)) (ADDRESS=(PROTOCOL=TCP) (HOST=host2) (PORT=1521)) (CONNECT

_DATA=(SERVICE_NAME=orcl) (FAILOVER_MODE=(TYPE=SELECT) (METHOD=BASIC
) (RETRIES=180) (DELAY=5))))

True Transparent Application Failover is not supported. If a database failover

% occurs while the EMS server is performing a transactional activity, the EMS server
does not replay or restart the failed transaction. However, a TAF connection
allows the EMS server to recover fully as long as no transaction was taking place
at the time of the failover.

TIBCO Enterprise Message Service User's Guide

http://www.oracle.com/technology/tech/oci/instantclient/index.html

312 | Chapter 10 Using Database Stores

EMS Schema Export Tool

How the Schema
Export Tool
Works

Each database store that is configured for an EMS server includes a configuration
parameter pointing to a database. The EMS Schema Export Tool creates and
exports database tables for the database stores. Database administrators can use
the Schema Export Tool to selectively export and tune schemas to suit your
database and messaging system.

The EMS Schema Export Tool must be used to export database tables when one or
more database stores are configured. That is, if any stores of type dbstore are
configured, you must export the database schema before starting the EMS server.

The Schema Export Tool is a JAR file, tibemsd_util. jar, located in the same
directory as tibemsd. Command line options, described in Table 51 on page 313,
determine whether database tables are created or dropped, and whether they are
printed to the console, saved to a file, or exported to the database.

Before invoking the Schema Export Tool, you must:

¢ Configure the global database store parameters for the EMS server. The
parameters that configure the global database store settings begin with
dbstore_. See Configuration in tibemsd.conf on page 306 for details about
these parameters.

¢ Configure at least one store of type dbstore. See Configuration in stores.conf
on page 307 for more information about configuring database stores.

When it is invoked, the Schema Export Tool accepts the tibemsd. conf or
tibemsd. json file and reviews the database store parameters, then parses the
stores configured, either in the stores. conf file or in the JSON configuration file.
Depending on the options specified when it was invoked, the Schema Export Tool
will create, drop, or update the database tables for the stores of type dbstore that
are configured.

The tool can perform the selected actions on all database stores, or only on specific
stores. The Schema Export Tool can also print the database tables it creates to the
console, or export them either to the database or to a specified file.

TIBCO Enterprise Message Service User’s Guide

EMS Schema Export Tool | 313

Runningthe The Schema Export Tool is invoked from the command line. The tool can be
Schema Export invoked from its directory, or by giving the absolute path to the
Tool tibems_util.jar file. For example:

On Windows
> java -jar EMS_HOME\bin\tibemsd_util.jar options
Or

> java -jar c:\tibco\ems\8.0\bin\tibemsd_util.jar options

On Unix
> java -jar EMS_HOME/bin/tibemsd_util.jar options
Or

$ java -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar qﬂmns
This table shows the options that are used with the Schema Export Tool:

Table 51 EMS Schema Export Tool options

Option Description

-tibemsdconf pathname The absolute path to the tibemsd.conf or
tibemsd. json file. For example, on a UNIX system:

/opt/tibco/ems/8.0/samples/config/tibemsd.conf

This tool supports JSON configuration files only when
run on those platforms for which Central Administraion
is supported. For a list of supported platforms, see the
supported platforms list for Central Administration in
the TIBCO Enterprise Message Service Installation guide.

Text-based tibemsd. conf files are supported on all
platforms.

-exporttofile Export the schema to a file named store-name.ddl.1log,
where store-name is the name of the database store. If
multiple database stores are configured, then one file is
created for each database store.

If neither exporttofile nor export option is included,
the schema export tool prints the schema to the console.

If both -eporttofile and -export are included, the
Schema Export Tool exports the database schema to
both locations.

TIBCO Enterprise Message Service User's Guide

314 | Chapter 10 Using Database Stores

Table 51 EMS Schema Export Tool options

Option Description

-export Export the schema to the database configured for the
store.

If neither export nor exporttofile option is included,
the schema export tool prints the schema to the console.

If both -eport and -exporttofile are included, the
Schema Export Tool exports the database schema to
both locations.

-store storename=create |update|drop Create, update, or drop the schema for one or more

specific stores that are named in the stores configuration
file.

If you choose the create option for a schema that
already exists, the Schema Export Tool recreates the
schema.

Note that create prints the schema to screen but does
not deploy it. You must use export or exporttofile in
order to implement the schema.

-createall Create all the stores found in the stores configuration
file. Note that this option drops any existing
configurations when creating the new stores.

-dropall Drop all the stores found in the stores configuration file.

-updateall Update the schema for all stores configured in the found
in stores configuration file.

-help Print information about the schema export tool and its
options, and exit the tool.

Examples

The following examples show how the Schema Export Tool can be used to create
database schemas in various configurations.

Example 1 This example shows how the Schema Export Tool can be invoked from any
directory by giving the absolute path to the tibemsd_util. jar:

$ java -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar -help

TIBCO Enterprise Message Service User’s Guide

Example 2

Example 3

Example 3

Example 4

EMS Schema Export Tool | 315

In this example, the Schema Export Tool creates and exports database schemas for
all the stores found in the stores. conf that is set in the specified
tibemsd-mssqglserver.conf file

java -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar -tibemsdconf
/opt/tibco/ems/8.0/samples/config/tibemsd.conf -createall -export

In this example, the Schema Export Tool exports the database schema for the
$sys.failsafe store to the database:
jar -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar -tibemsdconf

/opt/tibco/ems/8.0/samples/config/tibemsd.conf -export -store
\$sys.failsafe=create

In this example, the Schema Export Tool writes the database schema for the
$sys.failsafe store to the file $sys.failsafe.ddl.log
$ jaav -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar -tibemsdconf

/opt/tibco/ems/8.0/samples/config/tibemsd.conf -exporttofile
-store \$sys.failsafe=create

In this example the Schema Export Tool creates and exports the database schema
for the store mystorel, but drops the schema associated with mystore2 and
exports the change:

java -jar /opt/tibco/ems/8.0/bin/tibemsd_util.jar -tibemsdconf

/opt/tibco/ems/8.0/samples/config/tibemsd.conf -store
mystorel=create -store mystore2=drop -export

TIBCO Enterprise Message Service User's Guide

316 | Chapter 10 Using Database Stores

TIBCO Enterprise Message Service User’s Guide

|317

Chapter 11 Developing an EMS Client Application

This chapter outlines how to develop EMS client applications in Java, C and C#.

Topics

* JMS Specification, page 318

* Sample Clients, page 320

* Programmer Checklists, page 321

¢ Connection Factories, page 332

* Connecting to the EMS Server, page 335

¢ Creating a Session, page 337

* Setting an Exception Listener, page 338

¢ Dynamically Creating Topics and Queues, page 340
¢ Creating a Message Producer, page 342

¢ Creating a Message Consumer, page 346

¢ Working with Messages, page 352

TIBCO Enterprise Message Service User's Guide

318 | Chapter 11 Developing an EMS Client Application

JMS Specification

EMS implements the JMS 2.0 specification, which is backward compatible with
earlier versions of the specification.

While the old JMS 1.0.2b interfaces are still supported, newly developed
applications should use the J]MS 2.0 or 1.1 interfaces instead. It is recommended to
avoid using 1.0.2b interfaces, in particular due to their lack of flexibility. With
these, an application initially written to work with topics has to be reworked if it
needs to use queues, whereas an application based on the 1.1 or 2.0 APISs relies on
a generic destination infrastructure that would not need to be altered
significantly.

To get a better understanding and illustration of how the various JMS objects
relate to each other, refer to the JMS Specification and to the samples client
applications provided with EMS.

The code examples in this chapter illustrate the use of the JMS 2.0 interface.

JMS 2.0 Specification

% ‘ Note that software release 8.0.0 implements the JMS 2.0 specification in Java only.

The JMS 2.0 specification introduces several new features, including delivery
delay, shared subscriptions, asynchronous sending and the Simplified APL

The Simplified APl is offered in addition to the API originally provided with JMS
1.1, which is now called the Classic APIL. The Simplified API is less verbose than
the Classic API, and introduces several important new objects:

* JMSContext is used to create messages, as well as JMS consumers and JMS
producers. Each JMS context uses one session and one connection, but does
not expose those. Additionally, multiple JMS context objects can share the
same connection.

* JMSConsumer is a message consumer that has the ability to receive a message
body without the need to use a Message object.

* JMSProducer is similar to an anonymous message producer, and provides a
convenient API for configuring delivery options, message properties, and
message headers.

TIBCO Enterprise Message Service User’s Guide

http://www.oracle.com/technetwork/java/jms/index.html

JMS Specification | 319

Methods in the Simplified API throw unchecked exceptions rather than checked
exceptions. For a sample showing the Simplified API in use, see the new Java
sample file called tibjmsIMSContextSendRecv.java. This sample file
demonstrates the Simplified API in the simplest possible way; for greater detail,
refer to the Java API Reference Pages.

JMS 1.1 Specification

In the JMS 1.1 specification, applications using the point to point (queues) or
publish and subscribe (topics) models use the same interfaces to create objects.
The JMS specification refers to these interfaces as common facilities because these
interfaces create objects that can be used for either topics or queues.

JMS 1.0.2b Specification

The JMS 1.0.2b specification defined specific interfaces for topics and for queues.

The JMS 1.0.2b interfaces have the same structure as the JMS 1.1 common
facilities, but the interfaces are specific to topics or queues.

TIBCO Enterprise Message Service User's Guide

320 | Chapter 11 Developing an EMS Client Application

Sample Clients

TIBCO Enterprise Message Service includes several sample client applications
that illustrate various features of EMS. You may wish to view these sample clients
when reading about the corresponding features in this manual.

The samples are included in the EMS_HOME/samples/java,

EMS_HOME /samples/c, and EMS_HOME/samples/cs subdirectories of the EMS
installation directory. Each subdirectory includes a README file that describes
how to compile and run the sample clients.

Chapter 4, Getting Started, on page 93 walks through the procedures for setting
up your EMS environment and running some of the sample clients.

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 321

Programmer Checklists

This section provides a checklist that outlines the steps for creating an EMS
application in each language:

¢ Java Programmer’s Checklist on page 321
¢ CProgrammer’s Checklist on page 322
e C# Programmer’s Checklist on page 328

Java Programmer’s Checklist

4

Install

¢ Install the EMS software release, which automatically includes the EMS jar
files in the EMS_HOME/11ib subdirectory.

e Add the full pathnames for the following jar files to your CLASSPATH:
jms.jar
tibjms. jar

e [f SSL is used for communication, add the following file to the CLASSPATH:
tibcrypt. jar

¢ Programs that use the unshared state failover API must add the following file
to the CLASSPATH:

tibjmsufo. jar

All jar files listed in this section are located in the 1ib subdirectory of the TIBCO
Enterprise Message Service installation directory.

To use Entrust with an EMS client, you must separately purchase and install the
Entrust libraries. If you use the Entrust libraries, you must include them in the
CLASSPATH before the JSSE JAR files. To use Entrust with JDK, you must
download the unlimited strength policy JAR files from Sun's website and install
them in your local installation of JDK. For installation and configuration details,
see Entrust documentation.

See Security Considerations on page 116 for a complete discussion of what is
needed for a secure deployment.

TIBCO Enterprise Message Service User's Guide

322 | Chapter 11 Developing an EMS Client Application

Code
Import the following packages into your EMS application:

import javax.jms.*;

import javax.naming.*;
Compile
Compile your EMS application with the javac compiler to generate a . class file.
For example:

javac MyApp.java

generates a MyApp . class file.

Run
Use the java command to execute your EMS . class file.

For example:

java MyApp

C Programmer’s Checklist

Developers of EMS C programs can use this checklist during the five phases of the
development cycle.

Install

¢ Install the EMS software release, which automatically includes the EMS client
libraries, binaries, and header files in the EMS_HOME/1ib subdirectory.

Code
Application programs must:

* Add EMS_HOME/include to the include path. (OpenVMS environments do
not require an include path; skip this item.)

e Include the tibems.h header file:

#include <tibems/tibems.h>

e Programs that use the C administration API must also include the
emsadmin.h header file:

#include <tibems/emsadmin.h>

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 323

Programs that use the unshared state failover API must also include the
tibufo.h header file:

#include <tibems/tibufo.h>

Call tibems_Open() to initialize the EMS C API and tibems_Close() to
deallocate the memory used by EMS when complete.

Compile and Link

Compile programs with an ANSI-compliant C compiler.

Link with the appropriate EMS C library files; see Link These Library Files on
page 323.

See the samples/c/readme file for details.

Run

UNIX If you use dynamic EMS libraries on a UNIX platform, the environment
variable $LD_LIBARY_PATH must include the EMS_HOME/1ib directory
(which contains the shared library files). (On some UNIX platforms, this
variable is called $SHLIB_PATH or $SYLIB_LIBRARY_ PATH).

Windows The PATH must include the ems\8.0\bin directory.

OpenVMS The installation procedure automatically installs the shareable
images required for using EMS dynamic libraries.

All Platforms The application must be able to connect to a EMS server process
(tibemsd).

Link These Library Files

EMS C programs must link the appropriate library files. The following sections
describe which files to link for your operating system platform:

32-Bit UNIX on page 324

64-Bit UNIX on page 324
Microsoft Windows on page 325
OpenVMS on page 327

TIBCO Enterprise Message Service User's Guide

324 | Chapter 11 Developing an EMS Client Application

32-Bit UNIX

In 32-bit UNIX environments, both shared and static libraries are available. We
recommend shared libraries to ease forward migration.

Table 52 Linker Flags for 32-Bit UNIX

Linker Flag Description

-ltibems All programs must link using this library flag.

-1ssl Programs that use SSL must link using these library

-lcrypto ﬂag&

-1z Programs that use compression must link using this
library flag.

_iiibemSlOOkup Programs that use EMS LDAP lookup must link using

“1ldap .

Ixm1z these library flags.

-llber

-ltibemsadmin Programs that use the C administration library must

link using this library flag.

-ltibemsufo Programs that use the unshared state failover library
must link using this library flag.

64-Bit UNIX

In 64-bit UNIX environments, both shared and static libraries are available. We
recommend shared libraries to ease forward migration. In this release, 64-bit
libraries are available on HP-UX, Solaris, AIX and Linux (2.4 glibc 2.3) platforms.

To use 64-bit libraries, you must include TIBCO_HOME/ems/8.0/1ib/64 in your
library path, and it must precede any other EMS directory in the library path.

Table 53 Linker Flags for 64-Bit UNIX (Sheet 1 of 2)

Linker Flag Description

-ltibems64 All programs must link using this library flag.

-1lssl Programs that use SSL must link using these library

-lcrypto flags.

-1z Programs that use compression must link using this
library flag.

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 325

Table 53 Linker Flags for 64-Bit UNIX (Sheet 2 of 2)

Linker Flag Description

-ltibemslookup64 Programs that use EMS LDAP lookup must link

-11dap : :

xmio using these library flags.

-1llber

-ltibemsadmin64 Programs that use the C administration library must
link using this library flag.

-ltibemsufo64 Programs that use the unshared state failover library

must link using this library flag.

Microsoft Windows

For a list of Windows platforms that Release 8.0 supports, see the file readme . txt
in the installation directory. Both DLLs and static libraries are available. We
recommend DLLs to ease forward migration.

Table 54 Dynamic Library Files for Microsoft Windows

Library File Description

With dynamic libraries (DLLs), use the /MT compiler option.

tibems.1lib All programs must link these libraries.
ws2_32.1ib
tibemslookup.lib Programs that use EMS LDAP lookup must link

1ibxml2.1ib these libraries.

liboldap32.1ib In addition, programs that use EMS lookup must

olber32.1ib : . . .
libldap32 d.1lib link one of these pairs of libraries.

liblber32_d.1lib

tibemsadmin.lib Programs that use the C administration library must
link using this library.
tibemsufo.lib Programs that use the C unshared state failover

library must link using this library.

TIBCO Enterprise Message Service User's Guide

326 | Chapter 11 Developing an EMS Client Application

Table 55 Static Library Files for Microsoft Windows

Library File Description

With static libraries (DLLs), use the /MD compiler option.

libtibems.1lib All programs must link these libraries.
ws2_32.1ib

ssleay32mt.lib

libeay32mt.1lib

zlib.1lib

libtibemslookup.lib Programs that use EMS LDAP lookup must link this
libxml2.1ib library‘

liboldap32.1ib In addition, programs that use EMS lookup must

olber32.1ib : . . .
libldap32 d.1ib link one of these pairs of libraries.

liblber32_d.1lib

libtibemsadmin.lib Programs that use the C administration library must
link using this library.
libtibemsufo.1lib Programs that use the C unshared state failover

library must link using this library.

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 327

OpenVMS

In OpenVMS environments, both shared and static libraries are available. We
recommend shared libraries to ease forward migration.

When upgrading from EMS 4.3 to 4.4 or later versions, EMS client executables
that were linked with the EMS 4.3 dynamic libraries (shareable images) must be
relinked to the new libraries after EMS 4.4 has been installed with its associated
third party libraries. The third party libraries are part of the full installation of
EMS.

Table 56 Shareable Image Library Files for OpenVMS

Library File Description

LIBTIBEMSSHR. EXE All programs must link this library.

LIBCRYPTOSHR. EXE Programs that use SSL must link these libraries.

LIBSSLSHR.EXE

LIBZSHR.EXE Programs that use data compression must link
this library.

LIBTIBEMSADMINSHR.EXE Programs that use the C administration library
must link this library.

Table 57 Static Library Files for OpenVMS

Library File Description

LIBTIBEMS.OLB All programs must link this library.

LIBCRYPTO.OLB Programs that use SSL must link these libraries.

LIBSSL.OLB

LIBZ.OLB Programs that use data compression must link this
library.

LIBTIBEMSADMIN.OLB Programs that use the C administration library must
link this library.

TIBCO Enterprise Message Service User's Guide

328 | Chapter 11 Developing an EMS Client Application

C# Programmer’s Checklist

Developers of EMS C# programs can use this checklist during the four phases of
the development cycle.

Install

¢ Install the EMS software release, which automatically includes the EMS
assembly DLLs in the EMS_HOME\bin subdirectory.

Code
¢ Import the correct EMS assembly (see Table 58).

Table 58 EMS Assembly DLL

Version DLL

NET API TIBCO.EMS.dll

.NET Administration API TIBCO.EMS.ADMIN.d11l

.NET Unshared State API TIBCO.EMS.UFO.d11l
Compile

¢ Compile with any .NET compiler.

Run

* The EMS assembly must be in the global assembly cache (this location is
preferred), or in the system path, or in the same directory as your program
executable.

e To automatically upgrade to the latest NET assemblies, include the
appropriate policy file in the global cache. See Automatic Upgrades Between
Versions for more information.

¢ The application must be able to connect to a EMS daemon process (tibemsd).

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 329

Assembly Versioning

TIBCO Enterprise Message Service assembly DLLs are versioned using the format
1.0.release . version, where release is the EMS release number and version is an
arbitrary value. For example, the assembly version number for software release
8.0.0 is similar to 1.0.800.8.

Applications that use a release of EMS earlier than 6.0 do not use standard .NET
% versioning. Prior to TIBCO Enterprise Message Service release 6.0.0, all EMS .NET

assemblies showed an assembly version number 1.0.0.0, which allowed client

applications to upgrade to the latest version of EMS without rebuilding.

This functionality is now available through the policy DLL files.

Automatic Upgrades Between Versions

In order to allow for seamless upgrades between releases, the TIBCO Enterprise
Message Service installation includes policy and configuration files that redirect
existing applications from an older assembly to the newest assembly. There is a
policy and configuration file for each EMS library:

e Apolicy.1.0.assembly file. For example, policy.1.0.TIBCO.EMS.d11. The
policy file must be included in the global cache to enable automatic upgrades.

® Anassembly.config file. For example, TIBCO.EMS.d11l.config. The
configuration file must be present when the related policy file is added to the
global cache.

Table 59 shows the policy and configuration files for each EMS assembly.

Table 59 EMS Policy Files

Version Files

NET API policy.1.0.TIBCO.EMS.d1l1l
TIBCO.EMS.dll.config

NET Administration API policy.1.0.TIBCO.EMS.ADMIN.d11
TIBCO.EMS.ADMIN.d1ll.config

NET Unshared State API policy.1.0.TIBCO.EMS.UFO.d11l
TIBCO.EMS.UFO.dll.config

Enabling Updates ~ To enable automatic updates for a library, add the appropriate policy file to the
global cache. Note that the related configuration file must be located in the
directory with the policy file in order to add the policy file to the global cache.

TIBCO Enterprise Message Service User's Guide

330 | Chapter 11 Developing an EMS Client Application

Disabling Automatic Upgrades

If you do not want your older applications to automatically move to the newer
version, do not include the policy DLL in the global cache. When the
policy.1.0.assembly file is absent, the client application is not upgraded.

Running Multiple Clients from Different EMS Releases

To deploy two or more applications that are built with different TIBCO Enterprise
Message Service releases:

1. Build clients using the different .NET client assemblies.
2. Include all desired versions of the .NET client assemblies in the global cache.

3. Do not include the policy DLL in the global cache.

Excluded Features and Restrictions
This section summarizes features that are not available in the .NET library.

Note that compression, SSL, and the LDAP lookup of administered objects
features are available only with Microsoft .NET Framework 2.0.

Table 60 .NET Feature Support
Feature .NET

XA protocols for external transaction managers —

ConnectionConsumer, ServerSession, ServerSessionPool —_

Compression Yes
SSL Yes
Modify socket buffer sizes (see Yes

Tibems.SetSocketReceiveBufferSize and
Tibems.SetSocketSendBufferSize in the HTML reference)

Daemon threads (see Tibems.SetSessionDispatcherDaemon in Yes
the HTML reference)

TIBCO Enterprise Message Service User’s Guide

Programmer Checklists | 331

Character Encoding

NET programs represent strings within messages as byte arrays. Before sending
an outbound message, EMS programs translate strings to their byte
representation using an encoding, which the program specifies. Conversely, when
EMS programs receive inbound messages, they reconstruct strings from byte
arrays using the same encoding.

When a program specifies an encoding, it applies to all strings in message bodies
(names and values), and properties (names and values). It does not apply to
header names nor values. The method BytesMessage.WriteUTF always uses
UTF-8 as its encoding.

Outbound Programs can determine the encoding of strings in outbound messages in three
Messages ways:
¢ Use the default global encoding, UTF-8.

¢ Set a non-default global encoding (for all outbound messages) using
Tibems.SetEncoding.

* Set the encoding for an individual message using
Tibems.SetMessageEncoding.
Inbound An inbound message from another EMS client explicitly announces its encoding.

Messages A receiving client decodes the message using the proper encoding.

For more information about character encoding, see Character Encoding in
Messages on page 36.

TIBCO Enterprise Message Service User's Guide

332 | Chapter 11 Developing an EMS Client Application

Connection Factories

A client must connect to a running instance of the EMS server to perform any JMS
operations. A connection factory is an object that encapsulates the data used to
define a client connection to an EMS server. The minimum factory parameters are
the type of connection and the URL for the client connection to the EMS server.

A connection factory is either dynamically created by the application or obtained
from a data store by means of a naming service, such as a Java Naming and
Directory Interface (JNDI) server or a Lightweight Directory Access Protocol
(LDAP) server.

Looking up Connection Factories

EMS provides a JNDI implementation that can be used to store connection
factories. Java, C, and C# clients can use the EMS JNDI implementation to lookup
connection factories.

You can also store connection factories in any JNDI-compliant naming service or
in an LDAP server. Java clients can lookup connection factories in any
JNDI-compliant naming service. C and C# clients use LDAP servers.

Looking up Administered Objects Stored in EMS on page 362 describes how to
lookup a connection factory from an EMS server. How to create connection
factories in a EMS server is described in Creating and Modifying Administered
Objects in EMS on page 360.

Dynamically Creating Connection Factories

Normally client applications use JNDI to look up a Connection Factory object.
However, some situations require clients to connect to the server directly. To
connect to the EMS server directly, the application must dynamically create a
connection factory.

The following examples show how to create a connection factory in each
supported language for JMS connections. Each API also supports connection
factories for JMS XA connections.

In each example, the serverUrl parameter in these expressions is a string
defining the protocol and the address of the running instance of the EMS Server.
The serverUrl parameter has the form:

serverUrl = protocol: / /host : port

The supported protocols are tcp and ss1. For example:

serverUrl = tcp://server0:7222

TIBCO Enterprise Message Service User’s Guide

Connection Factories | 333

For a fault-tolerant connection, you can specify two or more URLs. For example:
serverUrl = tcp://server0:7222,tcp://serverl: 7344

See Configuring Clients for Fault-Tolerant Connections on page 504 for more
information. For details on using SSL for creating secure connections to the server,
see Configuring SSL in EMS Clients on page 472 and Creating Connection
Factories for Secure Connections on page 360.

Java
To dynamically create a TibjmsConnectionFactory object in a Java client:

ConnectionFactory factory = new
com.tibco.tibjms.TibjmsConnectionFactory(serverUrl);

See the tibjmsMsgProducer. java sample client for a working example.

Cc

To dynamically create a tibemsConnectionFactory type in a C client:

factory = tibemsConnectionFactory_Create();
status = tibemsConnectionFactory_SetServerURL(
factory, serverUrl);

See the tibemsMsgProducer.c sample client for a working example.

Ci#

To dynamically create a ConnectionFactory object in a C# client:

ConnectionFactory factory = new
TIBCO.EMS.ConnectionFactory(serverUrl);

See the csMsgProducer.cs sample client for a working example.

Setting Connection Attempts, Timeout and Delay Parameters

By default, a client will attempt to connect to the server two times with a 500 ms
delay between each attempt. A client can modify this behavior by setting new
connection attempt count and delay values. There are also a number of factors
that may cause a client to hang while attempting to create a connection to the EMS
server, so you can set a connection timeout value to abort a connection attempt
after a specified period of time. For best results, timeouts should be at least 500
milliseconds. EMS also allows you to establish separate count, delay and timeout
settings for reconnections after a fault-tolerant switchover, as described in Setting
Reconnection Failure Parameters on page 505.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_ConnectionFactory.htm

334 | Chapter 11 Developing an EMS Client Application

The following examples establish a connection count of 10, a delay of 1000 ms and
a timeout of 1000 ms.

Java

Use the TibjmsConnectionFactory object’s setConnAttemptCount(),
setConnAttemptDelay(), and setConnAttemptTimeout () methods to establish
new connection failure parameters:

factory.setConnAttemptCount(10);

factory.setConnAttemptDelay(1000);
factory.setConnAttemptTimeout(1000);

Cc

Use the tibemsConnectionFactory_SetConnectAttemptCount and
tibemsConnectionFactory_SetConnectAttemptDelay functions to establish
new connection failure parameters:

status = tibemsConnectionFactory_SetConnectAttemptCount(
factory, 10);

status = tibemsConnectionFactory_SetConnectAttemptDelay(
factory, 1000);

status = tibemsConnectionFactory_SetConnectAttemptTimeout (
factory, 1000);

C#

Use the ConnectionFactory.SetConnAttemptCount,
ConnectionFactory.SetConnAttemptDelay, and
ConnectionFactory.SetConnAttemptTimeout methods to establish new
connection failure parameters:

factory.setConnAttemptCount(10);

factory.setConnAttemptDelay(1000);
factory.setConnAttemptTimeout(1000);

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setConnAttemptCount(int)
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setConnAttemptDelay(int)
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setConnAttemptTimeout(int)
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetConnAttemptCount_1_e1836fc4.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetConnAttemptDelay_1_e1836fc4.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetConnAttemptTimeout_1_e1836fc4.htm

Connecting to the EMS Server | 335

Connecting to the EMS Server

A connection with the EMS server is defined by the Connection object obtained
from a Connection Factory, as described in Connection Factories on page 332.

A connection is a fairly heavyweight object, so most clients will create a
connection once and keep it open until the client exits. Your application can create
multiple connections, if necessary.

The following examples show how to create a Connection object.

Java

Use the TibjmsConnectionFactory object’s createConnection() method to
create a Connection object:

Connection connection =
factory.createConnection(userName, password) ;

See the tibjmsMsgProducer. java sample client for a working example.

C
Use the tibemsConnectionFactory_CreateConnection function to create a
connection of type tibemsConnection:

tibemsConnection connection = NULL;

status = tibemsConnectionFactory_CreateConnection(factory,
&connection, userName, password);

If there is no connection factory, a C client can use the
tibemsConnection_Create function to dynamically create a tibemsConnection
type:

status = tibemsConnection_Create(&connection,
serverUrl,NULL,userName,password) ;

The tibemsConnection_Create function exists for backward compatibility, but
the recommended procedure is that you create tibemsConnection objects from
factories.

See the tibemsMsgProducer.c sample client for a working example.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#createConnection(java.lang.String,%20java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html

336 | Chapter 11 Developing an EMS Client Application

C#

Use the ConnectionFactory.CreateConnection method to create a Connection
object:

Connection connection =
factory.CreateConnection(userName, password);

See the csMsgProducer. cs sample client for a working example.

Starting, Stopping and Closing a Connection

Before consuming messages, the Message Consumer client must "start" the
connection. See Creating a Message Consumer on page 346 for more details about
Message Consumers.

If you wish to temporarily suspend message delivery, you can "stop" the
connection.

When a client application exits, all open connections must be "closed." Unused
open connections are eventually closed, but they do consume resources that could
be used for other applications. Closing a connection also closes any sessions
created by the connection.

See the "start," "stop" and "close" methods for the Java Connection object, the C
tibemsConnection type, and the C# Connection object.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_CreateConnection_2_f3570541.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Connection.htm
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Connection.htm

Creating a Session | 337

Creating a Session

A Session is a single-threaded context for producing or consuming messages. You
create Message Producers or Message Consumers using Session objects. A Session
can be transactional to enable a group of messages to be sent and received in a
single transaction. A non-transactional Session can define the acknowledge mode
of message objects received by the session. See Message Acknowledgement on
page 39 for details.

Java

Use the Connection object’s createSession() method to create a Session
object.

For example, to create a Session that uses the default AUTO_ACKNOWLEDGE session
mode:

Session session = connection.createSession();

The EMS extended session modes, such as NO_ACKNOWLEDGE, require that you
include the com. tibco. tibjms.Tibjms constant when you specify the EMS
session mode. For example, to create a Session that uses the NO_ACKNOWLEDGE
session mode:

Session session = connection.createSession(
com.tibco.tibjms.Tibjms.NO_ACKNOWLEDGE) ;

See the tibjmsMsgProducer. java sample client for a working example.

o

Use the tibemsConnection_CreateSession function to create a session of type
tibemsSession:

tibemsSession session = NULL;

status = tibemsConnection_CreateSession(connection,
&session, TIBEMS_FALSE, TIBEMS_AUTO_ACKNOWLEDGE) ;

See the tibemsMsgProducer.c sample client for a working example.

C#

Use the Connection.CreateSession method to create a Session object:

Session session = connection.CreateSession(false,
Session.AUTO_ACKNOWLEDGE) ;

See the csMsgProducer. cs sample client for a working example.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html#createSession(boolean,%20int)
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/Tibjms.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Connection_CreateSession_2_e3c4ec9f.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Session.htm

338 | Chapter 11 Developing an EMS Client Application

Setting an Exception Listener

All the APIs support the ability to set an exception listener on the connection that
gets invoked when a connection breaks or experiences a fault-tolerant switchover.

When the event is a disconnect, the exception handler can call various EMS
methods without any problem. However, when the event is a fault-tolerant
switchover, the exception handler is not allowed to call any EMS method. To do so
risks a deadlock. You can call the setExceptionOnFTSwitch method to receive an
exception that contains the new server URL after a fault-tolerant switchover has
occurred.

The following examples demonstrate how to establish an exception listener for a
connection.

Java

Implement an ExceptionListener.onException method, use the Connection
object’s setExceptionListener method to register the exception listener, and
call Tibjms. setExceptionOnFTSwitch to call the exception handler after a
fault-tolerant switchover:

public class tibjmsMsgConsumer
implements ExceptionListener

{
public void onException(JMSException e)
{
/* Handle exception */
}

connection.setExceptionListener(this);

com.tibco.tibjms.Tibjms.setExceptionOnFTSwitch(true);

See the tibjmsMsgConsumer. java sample client for a working example (without
the setExceptionOnFTSwitch call).

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/ExceptionListener.html#onException(javax.jms.JMSException)
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html#setExceptionListener(javax.jms.ExceptionListener)
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/Tibjms.html#setExceptionOnFTSwitch(boolean)

Setting an Exception Listener | 339

o

Define an onException function to handle exceptions, use the
tibemsConnection_SetExceptionListener function to call onException when
an error is encountered, and call tibems_setExceptionOnFTSwitch to call the
exception handler after a fault-tolerant switchover:

void onException(

tibemsConnection conn,
tibems_status reason,
void* closure)
{
/* Handle exception */
¥
status = tibemsConnection_SetExceptionListener(
connection,
onException,
NULL) ;

tibems_setExceptionOnFTSwitch(TIBEMS_TRUE) ;

See the tibemsMsgConsumer.c sample client for a working example (without the
setExceptionOnFTSwitch call).

C#

Implement an IExceptionListener.OnException method, set the Connection
object’s ExceptionListener property to register the exception listener, and call
Tibems.SetExceptionOnFTSwitch to call the exception handler after a
fault-tolerant switchover:

public class csMsgConsumer : IExceptionlListener
{
public void OnException(EMSException e)
{
/* Handle exception */
}

connection.ExceptionListener = this;

TIBCO.EMS.Tibems.SetExceptionOnFTSwitch(true);

See the csMsgConsumer. cs sample client for a working example (without the
setExceptionOnFTSwitch call).

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_IExceptionListener_OnException_1_0a969955.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Connection.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Tibems_SetExceptionOnFTSwitch_1_ea7b1ae4.htm

340 | Chapter 11 Developing an EMS Client Application

Dynamically Creating Topics and Queues

¢

EMS provides a JNDI implementation that can be used to store topics and queues.
Java, C, and C# clients can use the EMS JNDI implementation to lookup topics
and queues.

You can also store topics and queues in any JNDI-compliant naming service or in
an LDAP server. Java clients can lookup topics and queues in any JNDI-compliant
naming service. C and C# clients use LDAP servers.

Looking up Administered Objects Stored in EMS on page 362 describes how to
lookup topics and queues from an EMS server.

Clients can also create destinations as needed. If a client requests the creation of a
destination that already exists, the existing destination is used. If the destination
does not exist, and the specification of the topics.conf, queues.conf, or
acl.conf files allow the destination, the server dynamically creates the new
destination. The new destination inherits properties and permissions from its
ancestors as described in Wildcards and Dynamically Created Destinations on
page 79. The destination is managed by the server as long as clients that use the
destination are running.

Because dynamic destinations do not appear in the configuration files, a client
cannot use JNDI to lookup dynamically created queues and topics.

The following examples show how to create destinations dynamically:

Java

Use the Session object’s createTopic () method to create a topic as a
Destination object:

Destination topic = session.createTopic(topicName);

Use the Session object’s createQueue () method to create a queue as a
Destination object:

Destination queue = session.createQueue(queueName) ;

See the tibjmsMsgProducer. java sample client for a working example.

o

Use the tibemsTopic_Create function to create a topic of type
tibemsDestination:

tibemsDestination topic = NULL;
status = tibemsTopic_Create(&topic, topicName);

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createTopic(java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/Destination.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createQueue(java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/Destination.html

Dynamically Creating Topics and Queues | 341

Use the tibemsQueue_Create function to create a queue of type
tibemsDestination:

tibemsDestination queue = NULL;
status = tibemsQueue_Create(&queue, queueName) ;

See the tibemsMsgProducer. c sample client for a working example.

C#

Use the Session.CreateTopic method to create a Topic object:
Destination topic = session.CreateTopic(topicName);

Use the Session.CreateQueue method to create a Queue Object:
Destination queue = session.CreateQueue(queueName) ;

See the csMsgProducer. cs sample client for a working example.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Session_CreateTopic_1_bb3a7a4f.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Topic.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Session_CreateQueue_1_bb3a7a4f.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_Queue.htm

342 | Chapter 11 Developing an EMS Client Application

Creating a Message Producer

As described in J]MS Message Models on page 3, a Message Producer is an EMS
client that either publishes messages to a topic or sends messages to a queue.
When working with topics, a Message Producer is commonly referred to as a
Publisher. Optionally, when creating a Message Producer, you can set the
destination to NULL and specify the destination when you send or publish a
message, as described in Sending Messages on page 354.

You must have send permission on a queue to create a message producer that
sends messages to that queue. You must have durable permission on the topic to
create a new durable subscriber for that topic, and have at least use_durable
permission on the topic to attach to an existing durable subscriber for the topic.
See User Permissions on page 283 for details.

The following examples create a message producer that sends messages to the
queue that was dynamically created in Dynamically Creating Topics and Queues
on page 340.

Java

Use the Session object’s createProducer () method to create a
MessageProducer object:

MessageProducer QueueSender = session.createProducer(queue);

See the tibjmsMsgProducer. java sample client for a working example.

o

Use the tibemsSession_CreateProducer function to create a message producer
of type tibemsMsgProducer:

tibemsMsgProducer QueueSender = NULL;
status = tibemsSession_CreateProducer(session,
&QueueSender, queue) ;

See the tibemsMsgProducer. c sample client for a working example.

C#

Use the Session.CreateProducer method to create a MessageProducer object:
MessageProducer QueueSender = session.CreateProducer(queue);

See the csMsgProducer. cs sample client for a working example.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createProducer(javax.jms.Destination)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Session_CreateProducer_1_0627d861.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_MessageProducer.htm

Creating a Message Producer | 343

Configuring a Message Producer

A message producer can be configured to generate messages with default headers
and properties that define how those messages are to be routed and delivered.
Specifically, you can:

¢ Set the producer's default delivery mode.

* Set whether message IDs are disabled.

* Set whether message timestamps are disabled.
¢ Set the producer's default priority.

* Set the default length of time that a produced message should be retained by
the message system.

For example, as described in the Message Delivery Modes on page 25, you can set
the message deliver mode to either PERSISTENT, NON_PERSISTENT, Or
RELIABLE_DELIVERY.

Java
Use the MessageProducer object’s setDeliveryMode () method to configure
your Message Producer with a default delivery mode of RELIABLE_DELIVERY:

QueueSender.setDeliveryMode (
com.tibco.tibjms.Tibjms.RELIABLE_DELIVERY) ;

To configure the Message Producer with a default delivery mode of
NON_PERSISTENT

QueueSender.setDeliveryMode (
javax.jms.DeliveryMode .NON_PERSISTENT) ;

See the tibjmsMsgProducerPerf. java sample client for a working example.

Delivery mode cannot be set by using the Message . setJMSDeliveryMode ()
% method. According to the JMS specification, the publisher ignores the value of the
JMSDeliveryMode header field when a message is being published.

Cc

Use the tibemsMsgProducer_SetDeliveryMode function to configure your
Message Producer to set a default delivery mode for each message it produces to
RELIABLE_DELIVERY:

tibems_int deliveryMode = TIBEMS_RELIABLE;
status tibemsMsgProducer_SetDeliveryMode(QueueSender,
deliveryMode);

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html#setDeliveryMode(int)

344 | Chapter 11 Developing an EMS Client Application

C#

Set the DeliveryMode on the MessageProducer object to RELIABLE_DELIVERY:
QueueSender.DeliveryMode = DeliveryMode.RELIABLE_DELIVERY;

See the csMsgProducerPerf.cs sample client for a working example.

Creating a Completion Listener for Asynchronous Sending

TIBCO Enterprise Message Service provides APIs for a Message Producer to send
messages either synchronously or asynchronously. For asynchronous sending,
you need to implement a CompletionListener that serves as an asynchronous
event handler for message send result notification.

A completion listener implementation has two methods: onCompletion() is
invoked after a message has successfully been sent, and onException() is
invoked if the send failed. These methods are invoked in a different thread from
that in which the message was sent. You implement the methods to perform the
desired actions when the application is notified of send success or failure. Your
implementation should handle all exceptions, and it should not throw any
exceptions.

Once you create a completion listener, you pass it as an argument into the
MessageProducer send method, or into the JMSProducer setAsync() method. If
passed into the JMSProducer setAsync method, the JMSProducer will always
send asynchronously.

Java

Create an implementation of the CompletionListener interface, create a
CompletionListener and pass that into the appropriate send method:

/* create connection, session, producer, message */

TibjmsCompletionListener completionlistener = new
TibjmsCompletionListener();

msgProducer.send(destination, msg, completionlListener);

Create a CompletionListener class and Implement the onCompletion() and

onException() method to perform the desired actions when a message arrives:
class TibjmsCompletionlListener implements Completionlistener

{
public void onCompletion(Message msg)
{
/* Handle the send success case for the message */
¥

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/P_TIBCO_EMS_MessageProducer_DeliveryMode.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_MessageProducer.htm
../tib_ems_api_reference/api/javadoc/javax/jms/CompletionListener.html#onCompletion(javax.jms.Message)
../tib_ems_api_reference/api/javadoc/javax/jms/CompletionListener.html#onException(javax.jms.Message, java.lang.Exception)
../tib_ems_api_reference/api/javadoc/javax/jms/CompletionListener.html#onCompletion(javax.jms.Message)
../tib_ems_api_reference/api/javadoc/javax/jms/CompletionListener.html#onException(javax.jms.Message, java.lang.Exception)
../tib_ems_api_reference/api/javadoc/javax/jms/JMSProducer.html#setAsync(javax.jms.CompletionListener)

Creating a Message Producer | 345

public void onException(Message msg, Exception ex)

{

}
}

See the tibjmsMsgProducer. java sample client for a working example.

/* Handle the send failure case for the message */

TIBCO Enterprise Message Service User's Guide

346 | Chapter 11 Developing an EMS Client Application

Creating a Message Consumer

Message consumers are clients that receive messages published to a topic or sent
to a queue. When working with topics, a Message Consumer is commonly
referred to as a Subscriber.

A Message Consumer can be created with a "message selector" that restricts the
consumption of message to those with specific properties. When creating a
Message Consumer for topics, you can set a noLocal attribute that prohibits the
consumption of messages that are published over the same connection from
which they are consumed.

Carefully consider the message selectors that are used with queue consumers.
Because messages that do not match a queue consumer’s message selectors
remains in the queue until it is retrieved by another consumer, a non-matching
message can experience many failed selectors. This is especially so when queue
consumers connect, consume a message, and immediately disconnect.

As described in Durable Subscribers for Topics on page 5, messages published to
topics are only consumed by active subscribers to the topic; otherwise the
messages are not consumed and cannot be retrieved later. You can create a
durable subscriber that ensures messages published to a topic are received by the
subscriber, even if it is not currently running. For queues, messages remain on the
queue until they are either consumed by a Message Consumer, the message
expiration time has been reached, or the maximum size of the queue is reached.

The following examples create a Message Consumer that consumes messages
from the queue and a durable subscriber that consumes messages from a topic.
The queue and topic are those that were dynamically created in Dynamically
Creating Topics and Queues on page 340.

The createDurableSubscriber method either creates a new durable subscriber
% for a topic or attaches the client to a previously created durable subscriber. A user
must have durable permission on the topic to create a new durable subscriber for
that topic. A user must have at least use_durable permission on the topic to
attach to an existing durable subscriber for the topic. See User Permissions on
page 283 for details.

Java

Use the Session object’s createConsumer () method to create a
MessageConsumer object:

MessageConsumer QueueReceiver = session.createConsumer(queue);

See the tibjmsMsgConsumer. java sample client for a working example.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createConsumer(javax.jms.Destination)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html

Creating a Message Consumer | 347

The following Session.createDurableSubscriber() method creates a durable
subscriber, named "MyDurable":

TopicSubscriber subscriber =
session.createDurableSubscriber(topic, "myDurable");

See the tibjmsDurable. java sample client for a working example.

Shared Use the Session object's createSharedConsumer () method to create or add to a
Subscriptions shared subscription:
MessageConsumer consl = session.createSharedConsumer(topic,
"mySharedSub") ;

MessageConsumer cons2 = session.createSharedConsumer(topic,
"mySharedSub") ;

consl and cons2 are two shared consumers on the same subscription called
mySharedSub. If a message is published to the topic, then one of those two
consumers will receive it. Note that shared consumers on a given subscription do
not have to use the same session/connection.

Use the Session object's createSharedDurableConsumer () method to create or
add to a shared durable subscription:

MessageConsumer consl = session.createSharedDurableConsumer(topic,
"myDurableSharedSub") ;
MessageConsumer cons2 = session.createSharedDurableConsumer(topic,
"myDurableSharedSub") ;

cons1 and cons?2 are two shared durable consumers on the same durable
subscription called myDurableSharedSub. If a message is published to the topic,
then one of those two consumers will receive it. Note that shared durable
consumers on a given subscription do not have to use the same
session/connection.

Cc

Use the tibemsSession_CreateConsumer function to create a message consumer
of type tibemsMsgConsumer

tibemsMsgConsumer QueueReceiver = NULL;
status = tibemsSession_CreateConsumer(session,
&QueueReceiver, queue, NULL, TIBEMS_FALSE);

See the tibemsMsgConsumer.c sample client for a working example.

The following tibemsSession_CreateDurableSubscriber function creates a
durable subscriber, named "myDurable," of type tibemsMsgConsumer:
tibemsMsgConsumer msgConsumer = NULL;
status = tibemsSession_CreateDurableSubscriber(session,

&msgConsumer, topic, "myDurable",
NULL, TIBEMS_FALSE);

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createSharedConsumer(javax.jms.Topic, java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createSharedDurableConsumer(javax.jms.Topic, java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createDurableSubscriber(javax.jms.Topic,%20java.lang.String)

348 | Chapter 11 Developing an EMS Client Application

See the tibemsDurable.c sample client for a working example.

C#

Use the Session.CreateConsumer method to create a MessageConsumer object:
MessageConsumer QueueReceiver = session.createConsumer(queue);

See the csMsgConsumer.cs sample client for a working example.

The following Session.CreateDurableSubscriber method creates a durable
subscriber, named "MyDurable":

TopicSubscriber subscriber =
session.CreateDurableSubscriber(topic, "myDurable");

See the csDurable.cs sample client for a working example.

Creating a Message Listener for Asynchronous Message Consumption

EMS allows a Message Consumer to consume messages either synchronously or
asynchronously. For synchronous consumption, the Message Consumer explicitly
calls a receive method on the topic or queue. For asynchronous consumption, you
can implement a Message Listener that serves as an asynchronous event handler
for messages.

A Message Listener implementation has one method, onMessage, that is called by
the EMS server when a message arrives on a destination. You implement the
onMessage method to perform the desired actions when a message arrives. Your
implementation should handle all exceptions, and it should not throw any
exceptions.

Once you create a Message Listener, you must register it with a specific Message
Consumer before calling the connection’s start method to begin receiving
messages.

A Message Listener is not specific to the type of the destination. The same listener
can obtain messages from a queue or a topic, depending upon the destination set
for the Message Consumer with which the listener is registered.

The J2EE 1.3 platform introduced message-driven beans (MDBs) that are a special
% kind of Message Listener. See the J2EE documentation for more information about
MDBs.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_Session_CreateConsumer.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_MessageConsumer.htm
../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_Session_CreateDurableSubscriber.htm

Creating a Message Consumer | 349

Java

Create an implementation of the MessageListener interface, create a
MessageConsumer, and use the MessageConsumer object’s
setMessageListener() method to register the Message Listener with the
Message Consumer:

public class tibjmsAsyncMsgConsumer implements Messagelistener

{

/* Create a connection, session and consumer */

MessageConsumer QueueReceiver =
session.createConsumer(queue);

QueueReceiver.setMessagelistener(this);

connection.start();

Do not use the Session.setMessageListener() method, which is used by
application servers, rather than by applications.

Implement the onMessage () method to perform the desired actions when a
message arrives:

public void onMessage(Message message)

{

/* Process message and handle exceptions */
¥

See the tibjmsAsyncMsgConsumer. java sample client for a working example.

Cc

Implement an onMessage () function to perform the desired actions when a
message arrives:
void onMessage(tibemsMsgConsumer QueueReceiver,
tibemsMsg message, void* closure)

{

/* Process message and handle exceptions */

}

In another function, that creates a tibemsMsgConsumer and uses the
tibemsMsgConsumer_SetMsgListener function to create a message listener for
the Message Consumer, specifying onMessage () as the callback function:

void run()

{

tibemsMsgConsumer QueueReceiver = NULL;

/* Create a connection, session and consumer */

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#setMessageListener(javax.jms.MessageListener)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageListener.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html#setMessageListener(javax.jms.MessageListener)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageListener.html#onMessage(javax.jms.Message)

350 | Chapter 11 Developing an EMS Client Application

status = tibemsSession_CreateConsumer(session,
&QueueReceiver, queue, NULL, TIBEMS_FALSE);

status = tibemsMsgConsumer_SetMsglistener(QueueReceiver,
onMessage, NULL);

status = tibemsConnection_Start(connection);

}

See the tibemsAsyncMsgConsumer.c sample client for a working example.

Ci#

Create an implementation of the IMessageListener interface, use
Session.CreateConsumer to create a MessageConsumer, and set the
MessageListener property on the MessageConsumer object to register the
Message Listener with the Message Consumer:

public class csAsyncMsgConsumer : IMessagelistener

{
/* Create a connection, session and consumer */
MessageConsumer QueueReceiver =
session.CreateConsumer(queue) ;
QueueReceiver.Messagelistener = this;
connection.Start();
¥

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_IMessageListener.htm
../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_Session_CreateConsumer.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_MessageConsumer.htm

Creating a Message Consumer | 351

Implement the IMessageListener.OnMessage method to perform the desired
actions when a message arrives:

public void OnMessage(Message message) {
try
{

3

%

/* Process message and handle exceptions */

}

See the csAsyncMsgConsumer. cs and csAsyncMsgConsumerUsingDelegate.cs
sample clients for working examples.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_IMessageListener_OnMessage_1_8e4a7c22.htm

352 | Chapter 11 Developing an EMS Client Application

Working with Messages

Messages are a self-contained units of information used by JMS applications to
exchange data or request operations.

Creating Messages

As described in JMS Message Bodies on page 22, EMS works with the following
types of messages:

® Messages with no body

¢ Text Messages

* Map Messages

* Bytes Messages

e Stream Messages

¢ Object Messages

There is a separate create method for each type of message.

The following examples show how to create a simple text message containing the
string "Hello."

Java

Use the Session object’s createTextMessage () method to create a
TextMessage:

TextMessage message = session.createTextMessage("Hello");

See the tibjmsMsgProducer. java sample client for a working example.

o

Use the tibemsTextMsg_Create function to create a text message of type
tibemsTextMsg:

tibemsTextMsg message = "Hello";
status = tibemsTextMsg_ Create(&message);

See the tibemsMsgProducer.c sample client for a working example.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Session.html
../tib_ems_api_reference/api/javadoc/javax/jms/Session.html#createTextMessage(java.lang.String)
../tib_ems_api_reference/api/javadoc/javax/jms/TextMessage.html

Working with Messages | 353

C#
Use the Session.CreateTextMessage method to create text message of type
TextMessage:

TextMessage message = session.CreateTextMessage("Hello");

See the csMsgProducer. cs sample client for a working example.

Setting and Getting Message Properties

Before a client sends a message, it can use a "set property” method to set the
message properties described in EMS Message Properties on page 19. The client
can check the message properties with a "get property” method.

Java

Use the Message object’s setBooleanProperty() method to set the
JMS?TIBCO?PRESERVE?UNDELIVEREDFmopeﬂytotrue:

message.setBooleanProperty("JMS_TIBCO_PRESERVE_UNDELIVERED",
true);

Use the getStringProperty() method to get the user ID of the
JMS_TIBCO_SENDER:

userID = message.getStringProperty("IJMS_TIBCO_SENDER") ;

Cc

Use the tibemsMsg_SetBooleanProperty function to set the
JMS?TIBCO?PRESERVE?UNDELIVEREDFmoper@lu)true:

status = tibemsMsg_SetBooleanProperty(message,
"JMS_TIBCO_PRESERVE_UNDELIVERED", true);

Use the tibemsMsg_GetStringProperty function to get the user ID of the
JMS_TIBCO_SENDER:

char* userID = NULL;

status = tibemsMsg_GetStringProperty(message,
"JMS_TIBCO_SENDER", &userID);

Ci#

Use the Message.SetBooleanProperty method to set the
JMS?TIBCO?PRESERVE?UNDELIVEREDFmoper@lu)true:

message.SetBooleanProperty("JMS_TIBCO_PRESERVE_UNDELIVERED",
true);

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_Session_CreateTextMessage.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_TextMessage.htm
../tib_ems_api_reference/api/javadoc/javax/jms/Message.html
../tib_ems_api_reference/api/javadoc/javax/jms/Message.html#setBooleanProperty(java.lang.String,%20boolean)
../tib_ems_api_reference/api/javadoc/javax/jms/Message.html#getStringProperty(java.lang.String)
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Message_SetBooleanProperty_2_7ffb34cc.htm

354 | Chapter 11 Developing an EMS Client Application

Use the Message.GetStringProperty method to get the user ID of the
JMS_TIBCO_SENDER:

string userID = message.GetStringProperty("IJMS_TIBCO_SENDER");

Sending Messages

You can use the Message Producer client, described in Creating a Message
Producer on page 342, to send messages to a destination. You can either send a
message to the destination specified by the Message Producer or, if the Message
Producer specifies NULL as the destination, you can send a message to a specific
destination. In either case, you can optionally set the JMSDeliveryMode,
JMSExpiration, and JMSPriority message header fields described in JMS
Message Header Fields on page 17 when sending each message.

The following examples show different ways to send a text message in each

language:

* Send the message to the Message Producer, QueueSender, created in Creating
a Message Producer on page 342.

* Use a Message Producer with a NULL destination that sends the message to
the topic created in Dynamically Creating Topics and Queues on page 340.

® Use a Completion Listener, created in Creating a Message Listener for
Asynchronous Message Consumption on page 348, to send the message
asynchronously.

Asynchronous sending is currently available only with the EMS client for
Java.

See Chapter 2, Messages for more information about creating messages.

Java

Use the MessageProducer object’s send () method to send a message to the
destination specified by the MessageProducer object:

QueueSender.send(message) ;

Use the following form of the send () method to send a message to a specific
destination:

MessageProducer NULLsender = session.createProducer(null);
NULLsender.send(topic, message);

Use the form of the send () method with a completion listener argument to send a
message asynchronously:

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Message_GetStringProperty_1_bb3a7a4f.htm
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html#send(javax.jms.Message)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html#send(javax.jms.Destination, javax.jms.Message)
../tib_ems_api_reference/api/javadoc/javax/jms/MessageProducer.html#send(javax.jms.Message, javax.jms.CompletionListener)

Working with Messages | 355

QueueSender.send(message, completionListener);

See the tibjmsMsgProducer. java sample client for a working example.

Cc

Use the tibemsMsgProducer_Send function to send a message to the destination
specified by the tibemsMsgProducer:

status = tibemsMsgProducer_Send(QueueSender, message);

Use the tibemsMsgProducer_SendToDestination function to send the message
to a specific destination:

status = tibemsMsgProducer_SendToDestination(NULLsender,
topic, message);

See the tibemsMsgProducer. c sample client for a working example.

Unlike the Java and C# APIs, in the C API, you can use the
%§> tibemsMsgProducer_SendToDestination function to specify the destination
regardless of whether a destination is in the tibemsMsgProducer.

Ci#

Use the MessageProducer. Send method to send a message to the destination
specified by the MessageProducer

QueueSender.Send(message) ;

Use the following form of the MessageProducer. Send method to send a message
to a specific destination:

MessageProducer NULLsender = session.CreateProducer(NULL);
NULLsender.Send(topic, message);

See the csMsgProducer. cs sample client for a working example.

Receiving Messages

The Message Consumer created in Creating a Message Consumer on page 346
receives messages from a destination and acknowledges the receipt of messages
using the mode established for the session, as described in Creating a Session on
page 337.

Before receiving messages, the Message Consumer must start the connection to
the EMS server. Before exiting, the Message Consumer must close the connection.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_MessageProducer_Send.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_MessageProducer.htm

356 | Chapter 11 Developing an EMS Client Application

The following examples start the connection created in Connecting to the EMS
Server on page 335; synchronously receive messages from the queue created in
Dynamically Creating Topics and Queues on page 340, and then close the
connection.

You can also implement a Message Listener for your Message Consumer to
%} asynchronously receive messages, as described in Creating a Message Listener for
Asynchronous Message Consumption on page 348.

Java
Use the Connection object’s start() method to start the connection:
connection.start();

Use the MessageConsumer object’s receive () method to receive a message. This
is typically used in a loop for the duration the client wishes to receive messages:

Message message = QueueReceiver.receive();

When the client has finished receiving messages, it uses the Close () method to
close the connection:

connection.close();

See the tibjmsMsgConsumer. java sample client for a working example.

Cc

Use the tibemsConnection_Start function to start the connection:
status = tibemsConnection_Start(connection);

Use the tibemsMsgConsumer_Receive function to receive a message. This is
typically used in a loop for the duration the client wishes to receive messages:

tibemsMsg message = NULL;
status = tibemsMsgConsumer_Receive(QueueReceiver,&message) ;

When the client has finished receiving messages, use the
tibemsConnection_Close function to close the connection:

status = tibemsConnection_Close(connection);

See the tibemsMsgConsumer. c sample client for a working example.

C#

Use the Connection.Start function to start the connection:

connection.Start();

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html#start()
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html
../tib_ems_api_reference/api/javadoc/javax/jms/MessageConsumer.html#receive()
../tib_ems_api_reference/api/javadoc/javax/jms/Connection.html#close()
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Connection_Start.htm

Working with Messages | 357

Use the MessageConsumer.Receive function to receive a message. This is
typically used in a loop for the duration the client wishes to receive messages:

Message message = QueueReceiver.receive();

When the client has finished receiving messages, use the Connection.Close
function to close the connection:

connection.Close();

See the csMsgConsumer. cs sample client for a working example.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/O_T_TIBCO_EMS_MessageConsumer_Receive.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_Connection_Close.htm

358 | Chapter 11 Developing an EMS Client Application

TIBCO Enterprise Message Service User’s Guide

Chapter 12

Topics

| 359

Using the EMS Implementation of JNDI

The EMS server provides a implementation of JNDI that enables you to lookup
connection factories, topics and queues, which are collectively referred to as
administered objects. Java clients can look up administered objects stored in EMS
using standard JNDI calls. The C and C# APIs provide similar calls to look up
object data in the EMS server.

How to create topics and queues is described in Creating and Modifying
Destinations on page 75.

* Creating and Modifying Administered Objects in EMS, page 360
* Looking up Administered Objects Stored in EMS, page 362

TIBCO Enterprise Message Service User's Guide

360 | Chapter 12 Using the EMS Implementation of JNDI

Creating and Modifying Administered Objects in EMS

You can create administered objects for storage in EMS using either the
administration tool or the administration APIs, or directly in the configuration
files. This section describes how to create administered objects using the
administration tool.

To create a connection factory, use the create factory command in the EMS
Administration Tool. For example, to create a generic connection factory, named
myFactory, that establishes a TCP connection to port 7344 on serverl, start the EMS
Administration Tool and enter:

create factory myFactory generic URL=tcp://serverl:7344

The connection factory data stored on the EMS server is located in the
factories.conf file. You can use the show factories command to list all of the
connection factories on your EMS server and the show factory command to
show the configuration details of a specific connection factory.

A connection factory may include optional properties for balancing server load
and establishing thresholds for attempted connections, as described in
Connection Factory Parameters on page 245. These properties can be specified
when creating the factory or modified for an existing factory using the addprop
factory, setprop factory, and removeprop factory commands.

For example, to set the maximum number of connection attempts for the
connection factory, myFactory, from the default value of 2 to 5, start the EMS
Administration Tool and enter:

addprop factory myFactory connect_attempt_count=5
And to reset the value back to 2, enter:

setprop factory myFactory connect_attempt_ count=2

Creating Connection Factories for Secure Connections

This section describes how to create a static connection factory for establishing an
SSL connection. Similar SSL parameters must be used when looking up the
connection factory, as described in Performing Secure Lookups.

Connections that are to be secured using SSL identify the transport protocol as
’ssl” and may include any number of the SSL configuration parameters listed in
SSL Server Parameters on page 224.

For example, to create a generic connection factory, named mySecureFactory, that
establishes a SSL connection to port 7243 on serverl, start the EMS Administration
Tool and enter:

TIBCO Enterprise Message Service User’s Guide

Creating and Modifying Administered Objects in EMS | 361

create factory mySecureFactory generic URL=ssl://serverl:7243

To create a factory to set up a generic connection and check the server's certificate
to confirm the name of the server is myServer, enter (all one line):
create factory MySSLFactory generic url=ssl://7243

ssl_verify_ host=enabled ssl_expected_hostname=myServer
ssl_trusted=certs/server_root.cert.pem

To create a factory to set up a topic connection, check the server's certificate (but
not the name inside the certificate), and to set the ss1_auth_only parameter so
that SSL is only used by the client when creating the connection, enter (all one
line):

create factory AnotherSSLFactory topic url=ssl://7243

ssl_verify host=enabled ssl_verify_hostname=disabled
ssl_trusted=certs/server_root.cert.pem ssl_auth_only=enabled

These samples assume that the certificate server_root.cert.pemis located in
"certs" subdirectory of the directory where the server is running.

S

See Chapter 18, Using the SSL Protocol, on page 465 for details.

Creating Connection Factories for Fault-Tolerant Connections

When connecting a fault-tolerant client to EMS, you must specify two or more
EMS servers in your connection factory. When creating a connection factory for a
fault-tolerant client, specify multiple server URLs in the url argument of the
create factory command.

For example, to create a generic connection factory, named myFtFactory, that
establishes TCP connections to port 7545 on the primary server, server0, and port
7344 on the backup server, serverl, start the EMS Administration Tool and enter
(on one line):

create factory myFtFactory generic url=tcp://server(:7545,
tcp://serverl: 7344

Should server0 become unavailable, the client will connect to serverl. See
Chapter 19, Fault Tolerance, on page 485 for details.

TIBCO Enterprise Message Service User's Guide

362 | Chapter 12 Using the EMS Implementation of JNDI

Looking up Administered Objects Stored in EMS

This section describes how to lookup objects from an EMS server by name.

All clients can lookup objects in the EMS naming service. Alternatively, Java
applications can lookup objects in a third-party JNDI server, and C and C# clients
can lookup objects in a third-party LDAP server.

To lookup administered objects stored in EMS, you need to create the initial
context that identifies the URL of the naming service provider and any other
properties, such as the username and password to authenticate the client to the
service. The naming service provider URL has form:

tibjmsnaming: //host : port

The following examples demonstrate how to access JMS administered objects
when using TIBCO Enterprise Message Service. Each of these examples assume
that a connection factory, named ConFac, exists in the factories. conf file, a
topic.sample topic exists in topics.conf, and a queue. sample queue exists in
queues.conf.

Java

Create an InitialContext object for the initial context, which consists of the
provider context factory and JNDI provider URL, as well as the username and
password to authenticate the client to the EMS server:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_ FACTORY,
"com.tibco.tibjms.naming.TibjmsInitialContextFactory");
env.put(Context.PROVIDER_URL, "tibjmsnaming://localhost:7222");
env.put(Context.SECURITY_ PRINCIPAL, "userName");
env.put(Context.SECURITY_CREDENTIALS, "password");
InitialContext jndiContext = new InitialContext(env);

Look up a connection factory, named ConFac, and destinations, named
topic.sample and queue.sample, from the initial context:

ConnectionFactory factory =
(javax.jms.ConnectionFactory)
jndiContext.lookup("ConFac");

javax.jms.Topic sampleTopic =
(javax.jms.Topic)jndiContext.lookup("topic.sample");

javax.jms.Queue sampleQueue =
(javax.jms.Queue)jndiContext.lookup("queue.sample");

See the tibjmsJINDI. java sample client located in the
EMS_HOME/samples/java/JINDI directory.

TIBCO Enterprise Message Service User’s Guide

Looking up Administered Objects Stored in EMS | 363

o

Create a tibemsLookupContext object for the initial context, which consists of the
JNDI provider URL and the username and password to authenticate the client to
the EMS server:

tibemsLookupContext* contextstatus = NULL;

status = tibemsLookupContext_Create(
&context,
"tibjmsnaming://localhost:7222",
"userName",
"password");

Use the tibemsLookupContext_LookupConnectionFactory function to look up
a connection factory, named ConFac, and use the
tibemsLookupContext_LookupDestination function to look up the
destinations, named topic.sample and queue.sample, from the initial context:

tibemsConnectionFactory factory = NULL;
tibemsDestination sampleTopic = NULL;
tibemsDestination sampleQueue = NULL;

status = tibemsLookupContext_Lookup(context,
"ConFac",
(void**)&factory);

status = tibemsLookupContext_Lookup(context,
"sample.queue",
(void**)&sampleQueue) ;

status = tibemsLookupContext_Lookup(context,
"topic.sample,
(void**)&sampleTopic);

C#

Create a ILookupContext object for the initial context, which consists of the JNDI
provider URL and the username and password to authenticate the client to the
EMS server:

Hashtable env = new Hashtable();
env.Add(LookupContext.PROVIDER_URL,
"tibjmsnaming://localhost:7222");
env.Add(LookupContext.SECURITY_PRINCIPAL", "myUserName");
env.Add(LookupContext.SECURITY_CREDENTIALS", "myPassword");

LookupContextFactory factory = new LookupContextFactory();

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_ILookupContext.htm

364 | Chapter 12 Using the EMS Implementation of JNDI

ILookupContext searcher = factory.CreateContext(
LookupContextFactory.TIBIJMS_NAMING_CONT
EXT,
env) ;

Use the ILookupContext.Lookup method to look up a connection factory, named
ConFac, and destinations, named topic.sample and queue.sample, from the
initial context:

ConnectionFactory factory =
(ConnectionFactory) searcher.Lookup("ConFac");

Topic sampleTopic =
(Topic)searcher.Lookup("topic.sample");

TIBCO.EMS.Queue sampleQueue =
(TIBCO.EMS.Queue)searcher.Lookup("queue.sample");

Looking Up Objects Using Full URL Names

Java clients can look up administered objects using full URL names. In this case,
the Context .URL_PKG_PREFIXES property is used in place of the
Context.PROVIDER_URL property. For example:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "com.tibco.tibjms.naming");
env.put(Context.PROVIDER_URL, "tibjmsnaming://localhost:7222");
env.put(Context.SECURITY_PRINCIPAL, "userName");
env.put(Context.SECURITY_CREDENTIALS, "password");

jndiContext = new InitialContext(env);

When using full URL names, you can look up objects like the following example:

Topic sampleTopic = (javax.jms.Topic)jndiContext.lookup(
"tibjmsnaming://jmshost:7222/topic.sample");

Queue sampleQueue = (javax.jms.Queue)jndiContext.lookup(
"tibjmsnaming://jmshost:7222/queue.sample");

For further information on how to use full URL names, refer to the
tibjmsJINDIRead. java example located in the EMS_HOME/samples/java/JNDI
directory.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ILookupContext_Lookup_1_bb3a7a4f.htm

Looking up Administered Objects Stored in EMS | 365

Performing Secure Lookups

TIBCO Enterprise Message Service client programs can perform secure JNDI
lookups using the Secure Sockets Layer (SSL) protocol. To accomplish this, the
client program must set SSL properties in the environment when the
InitialContext is created. The SSL properties are similar to the SSL properties
for the TIBCO Enterprise Message Service server. See Chapter 18, Using the SSL
Protocol for more information about using SSL in the TIBCO Enterprise Message
Service server.

The following examples illustrate how to create an InitialContext that can be
used to perform JNDI lookups using the SSL protocol.

Java

In this example, the port number specified for the Context.PROVIDER_URL is set
to the SSL listen port that was specified in the server configuration file
tibjsmd.conf. The value for TibjmsContext .SECURITY_PROTOCOL is set to ss1.
Finally, the value of TibjmsContext.SSL_ENABLE_VERIFY_ HOST is set to "false" to
turn off server authentication. Because of this, no trusted certificates need to be
provided and the client will then not verify the server it is using for the JNDI
lookup against the server’s certificate.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_ FACTORY,
"com.tibco.tibjms.naming.TibjmsInitialContextFactory");
env.put(Context.PROVIDER_URL, tibjmsnaming://jmshost:7223);
env.put(Context.URL_PKG_PREFIXES, "com.tibco.tibjms.naming")
env.put(TibjmsContext.SECURITY_PROTOCOL, "ssl1l");
env.put(TibjmsContext.SSL_ENABLE_VERIFY_HOST,
new Boolean("false"));
Context context = new InitialContext(env);

Cc

Create a tibemsSSLParams object and use the
tibemsSSLParams_SetIdentityFile function to establish the client identity by
means of a pkcs12 file. Use the tibemsLookupContext_CreateSSL function to
create a tibemsLookupContext object that uses an SSL connection for the initial

context.

tibemsLookupContext* context = NULL;
tibemsConnection_Factory factory = NULL;
tibemsSSLParams sslParams = NULL;
tibems_status status = TIBEMS_OK;

sslParams = tibemsSSLParams_Create();

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/naming/TibjmsContext.html#SECURITY_PROTOCOL
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/naming/TibjmsContext.html#SSL_ENABLE_VERIFY_HOST

366 | Chapter 12 Using the EMS Implementation of JNDI

status = tibemsSSLParams_SetIdentityFile(
ssl_params,
"client_identity.pl2",
TIBEMS_SSIL_ENCODING_AUTO) ;

status = tibemsLookupContext_CreateSSL(
&context,
"tibjmsnaming://localhost:7222",
"userName",
"password",
sslParams,
"pk_password");

C#

Create a ILookupContext object for the initial context over an SSL connection.
The SSL Store Info consists of a pkes12 file that identifies the client and the client’s
password, which are stored in an EMSSSLFileStoreInfo object.

string ssl_identity = client_identity.pl?2;
string ssl_target_hostname = "server";
string ssl_password = "password";

EMSSSLFileStoreInfo StoreInfo = new EMSSSLFileStoreInfo();
info.SetSSLClientIdentity(ssl_identity);
info.SetSSLPassword(ssl_password.ToCharArray());

Hashtable env = new Hashtable();
env.Add(LookupContext.PROVIDER_URL, "adcl.na.tibco.com:10636");
env.Add(LookupContext.SECURITY_PRINCIPAL", "myUserName");
env.Add(LookupContext.SECURITY_CREDENTIALS", "myPassword");
env.Add(LookupContext.SECURITY_PROTOCOL, "ssl1l");
env.Add(LookupContext.SSL_TARGET_HOST_NAME,

ssl_target_hostname);
env.Add(LookupContext.SSL_STORE_TYPE,

EMSSSLStoreType.EMSSSIL._STORE_TYPE_FILE);
env.Add(LookupContext.SSL_STORE_INFO, StoreInfo);

Performing Fault-Tolerant Lookups

TIBCO Enterprise Message Service can perform fault-tolerant JNDI lookups. If the
primary server fails and the backup server becomes the primary, the JNDI
provider automatically uses the new primary server for JNDI lookups. You
accomplish this by providing multiple URLs in the Context . PROVIDER_URL
property when creating the InitialContext. Specify more than one URL
separated by commas (,) in the property.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_ILookupContext.htm
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_EMSSSLFileStoreInfo.htm

Looking up Administered Objects Stored in EMS | 367

Example

The following illustrates setting up the Context.PROVIDER_URL property with
the URLSs of a primary EMS server on the machine named emshost and a backup
EMS server on the machine named backuphost.

env.put(Context.PROVIDER_URL, "tibjmsnaming://jmshost:7222,
tibjmsnaming: //backuphost:7222");

If at any time the first EMS server fails, the JNDI provider will automatically
switch to the EMS server on the host backuphost for JNDI lookups. If emshost is
repaired and restarted, it then becomes the backup EMS server.

Limitations of Fault-Tolerant JNDI Lookups
Fault-tolerant JNDI lookups do not occur in the following scenarios:
* When using full URL names in argument to the lookup method.

* When looking up an object that has been bound into a foreign
naming/directory service such as LDAP.

TIBCO Enterprise Message Service User's Guide

368 | Chapter 12 Using the EMS Implementation of JNDI

TIBCO Enterprise Message Service User’s Guide

| 369

Chapter 13 Using Multicast

Multicast is a messaging model that allows the EMS server to send messages to
multiple consumers simultaneously by broadcasting them over an existing
network. This chapter describes how to use and configure multicast in TIBCO
Enterprise Message Service.

Topics

¢ Overview of Multicast, page 370

¢ Configuring Multicast, page 374

* Running Multicast, page 379

* Monitoring and Statistics, page 380

TIBCO Enterprise Message Service User's Guide

370 | Chapter 13 Using Multicast

Overview of Multicast

Multicast is a messaging model that broadcasts messages to many consumers at
once, as opposed to sending copies of a message to each subscribing consumer
individually. TIBCO Enterprise Message Service uses Pragmatic General
Multicast (PGM) to broadcast messages published to multicast-enabled topics
over an existing network. Messages sent to topics that are not multicast-enabled
are delivered to the message consumer using TCP.

The server sends multicast messages over a multicast channel. Each
multicast-enabled topic is associated with a channel. The channel determines the
multicast port and multicast group address to which the server sends messages.

The multicast message is received by a multicast daemon running on the same
computer with the message consumer. When an EMS client subscribes to a
multicast-enabled topic, it automatically connects to the multicast daemon. The
multicast daemon begins listening on the channel associated with that topic,
receives any broadcast messages, and delivers them to subscribed clients.

Figure 18 shows the communication flow between a multicast message consumer,

EMS server, and multicast daemon.

Figure 18 Multicast message consumer creation

(1)

v

EMS Client

Message | ()
Consumer [*

—®—> Multicast

Daemon

TIBCO EMS
Server

tibemsmed | €**** -- .

Legend

—>» TCP Connection

=== Multicast Broadcast

_.1‘
Multicast Messages

TIBCO Enterprise Message Service User’s Guide

Overview of Multicast | 371

The following describes the multicast message consumer creation process:

1. The EMS client connects to the EMS server and subscribes to one or more
multicast-enabled topics.

2. The EMS server sends a reply to the client, including instructions and
configuration information for the multicast daemon.

3. The client connects to the multicast daemon and passes the configuration
information from the server. The multicast daemon then begins listening for
multicast messages from the server.

4. The server begins broadcasting messages, which the multicast daemon
receives.

5. The multicast daemon delivers the messages to the client.

The client will continue to receive non-multicast messages directly from the
server.

When to Use Multicast

Because multicast reduces the number of operations performed by the server and
reduces the amount of bandwidth used in the publish and subscribe model,
multicast is highly scalable.

Figure 19 on page 372 shows how using multicast can reduce the amount of
bandwidth used to send a message. Where publish and subscribe messaging
creates a copy of a published message for each message consumer, multicast
broadcasts the message only once. Multiple multicast daemons listening on the
channel receive the same broadcast.

TIBCO Enterprise Message Service User's Guide

372 | Chapter 13 Using Multicast

Figure 19 The benefits of multicast

Point-to-Point Messaging Multicast Messaging
Message Producer Message Producer
EMS Server EMS Server

Y,

C

Client A Eg?c tibemsmcd
\.-) Clients A, B, C
Client B
Network Resources Network Resources
. . . All Clients
Client A | ClientB | ClientC A B.C 70% unused
30% 30% 30% 30%

~

Although multicast can reduce the network resources used by the server, it is not
the best messaging model for every system. Multicast offers last-hop delivery
only; it cannot be used to send messages between servers. However, messages
sent to multicast-enabled topics are still delivered to other subscribed servers
using the standard TCP connection.

10% unused

Multicast does not guarantee message delivery. Messages requiring a high degree
%} of reliability should not use multicast.

TIBCO Enterprise Message Service User’s Guide

Overview of Multicast | 373

The multicast daemon and message consumer always reside on the same

G A machine, and PGM is used to deliver the broadcast message from EMS server to
the daemon. Because there is no security on PGM, multicast should not be used in
applications where security is a priority.

Requirements

In order to use multicast in your EMS messaging application, the following
requirements must be met:

* The EMS server must be configured for multicast:
— The server must be enabled for multicast.
— Multicast channels must be configured.

— The desired topics must be multicast-enabled by associating them with a
multicast channel. Multicast is not compatible with queues.

See Configuring Multicast on page 374 for more information about
configuring multicast.

* The multicast-enabled message consumer must be created using the
NO_ACKNOWLEDGE mode. See Message Acknowledgement on page 39 for more
information.

* The multicast daemon must be running on the same computer as the
subscriber. See Starting the Multicast Daemon on page 379 for more
information.

Backwards Compatibility

Multicast is backwards compatible, and can be used in applications where not all
EMS clients are using the same version of TIBCO Enterprise Message Service. The
EMS sever and any clients that wish to receive messages over multicast must be
Software Release 5.0 or later.

Multicast is configured primarily in the EMS server, and is largely invisible to
EMS clients. Message producers do not need to be enabled for multicast in order
to send multicast messages, because topics are multicast-enabled in the server.
However, clients are multicast-enabled by default.

Clients that are not multicast-enabled, either because multicast has been disabled
or because the client uses a release of EMS earlier than 5.0, will receive messages
from the server over the TCP connection, even if the message topic is
multicast-enabled.

TIBCO Enterprise Message Service User's Guide

374 | Chapter 13 Using Multicast

Configuring Multicast

Multicast is configured in the EMS server configuration files. Configuration is a
simple three-step process:

1.

Enable multicast in the EMS server.

Enable the multicast parameter in the tibemsd. conf file. Optional multicast
parameters allow you to control other settings, such as the default multicast
daemon port and the maximum amount of multicast traffic allowed. See
Multicast Parameters on page 217 for more information.

Create multicast channels.

Create named channels in the channels. conf file. See channels. conf on
page 241 for more information about the channels configuration file.

Associate topics with channels.

In the topics. conf configuration file, add the channel property to the
definitions of those topics you wish to be multicast. See channel on page 59
for more information about the channel property. Note that a topic can be
associated with only one multicast channel.

Configuring Multicast Dynamically

For the most part, multicast is configured statically. Only limited changes can be
made to multicast settings during runtime. Once the EMS server has been started,
the only multicast configuration change you can make is to the channel property
of a topic. With the administration tool, you can assign to or remove an assigned
multicast channel from a topic. You cannot change the channel configuration or
the channels. conf file. To do that, you must stop the server.

These commands can be used to change a topic’s channel property:

addprop topic adds the channel property to a topic. For example, this sets
the channel property for the topic foo.bar to mychannel:

addprop topic foo.bar channel=mychannel

However, although this enables the topic foo.bar for multicast, current
subscribers to the topic will continue to receive messages over TCP. An
existing message consumer will not receive messages sent to foo.bar over
multicast until the consumer has been stopped and restarted.

setprop topic offers the same functionality as addprop topic, with one
important difference: when setprop topics is used, it resets all other
properties to their default values.

TIBCO Enterprise Message Service User’s Guide

Configuring Multicast | 375

This command also enables the topic for multicast, but does not cause existing
topic subscribers to receive messages over multicast. Only messages
consumers that are created after the channel property is set will receive
multicast messages.

®* removeprop topic removes the channel property from the topic. Current
multicast subscribers will begin to receive messages sent to the topic over
TCP.

If a backlog of messages exists in the server or multicast daemon, the EMS
client may receive some messages out of order, and some message loss is
possible. The multicast daemon will continue to deliver queued messages
until the backlog is gone, while the EMS server will deliver later messages
immediately.

A current topic subscriber will stop receiving messages if the multicast channel is
A changed from one channel to a different channel. This can happen when:

¢ The channel is changed explicitly using addprop topic or setprop topic.

* The channel is removed using removeprop topic, and the topic inherits a
different channel from a parent.

If the channel assigned to a topic changes, current subscribers to the topic will not
receive messages until they have resubscribed to the topic. The server will not
send messages to the client over TCP if there is another channel assigned to the
topic.

In general, we recommend changing channels only when subscribers are stopped.

Configuring the Multicast Daemon

The multicast daemon, or tibemsmcd, is the process that receives multicast
messages from EMS servers and delivers them to individual clients. The multicast
daemon runs on the local host computer with the client. One daemon can receive
messages from multiple servers, and can deliver messages to multiple clients.

Configuration for the multicast daemon is set in the EMS server, and passed to the
daemon when the EMS client creates a multicast message consumer and connects
to the multicast daemon. In some cases, you may wish to make configuration
changes to the daemon directly. You can do this using command line options.

For example, if your configuration requires more than one network interface on a
single computer, you can run multiple multicast daemons on the local host. Use
the -ifc command line option to change the interface for a daemon. See
Command Line Options below for more information.

TIBCO Enterprise Message Service User's Guide

376 | Chapter 13 Using Multicast

Command Line Options

The multicast daemon accepts a few command-line options. When starting
tibemsmed, you can specify the following options:

Table 61 tibemsmcd Options

Option Description

-ifc interface Select the IP address that identifies the network interface
used by the multicast daemon to receive multicast data.

If this option is not included, the multicast daemon uses
the default interface, determined by the IP address
INADDR_ANY.

If your configuration requires multiple interfaces, you
will need one multicast daemon instance for each
interface. It may be helpful to use the commands
ipconfig on Windows or ifconfig on UNIX systems to
determine what interfaces are available and support

multicast.
-helpor -h Print the help screen.
-logfile file Specify a logfile where trace messages will be written.
-logfile-max-size size[KB|MB|GB] Specify the maximum size that the trace message log file

may reach before rotation. By default, log files have no
size limit and so do not rotate.

Zero is a special value, which specifies no maximum size.
Otherwise, the value you specify must be greater than or
equal to 64KB.

TIBCO Enterprise Message Service User’s Guide

Configuring Multicast | 377

Table 61 tibemsmcd Options

Option Description

-listen [ip-address: Jtcp-port Change the IP address and TCP port on which the
daemon listens for connections from EMS clients, where:

® ip-address is an optional parameter that, when
provided, restricts the interface on which the multicast
daemon will accept client connections to a specific IP
address. If an ip-address is not provided, the multicast
daemon listens for EMS clients on all interfaces.

* icp-port is the TCP port on which the daemon listens
for connections from EMS clients. The default port is
7444.

For example:
-listen 127.0.0.1:7444.

Note that if the default TCP port that the daemon listens
on is changed, then the client must be directed to attempt
a connection to the daemon on the same TCP port. To
change the port that the client uses, set the
multicast_daemon_default parameter in the

tibemsd. conf file.

-trace Enable tracing in the multicast daemon. If this option is
included, trace information for events such as client
connections to the daemon and channel creation is written
to file.

-max-msg-memory size[MB|KB] Specify the maximum amount of memory allowed for all
messages waiting to be sent to consumers. Once the
specified memory limit is reached, new messages are
discarded. Specify the size in units of MB or GB. The
minimum permitted size is 8MB.

-max-loss-rate percentage Specify the maximum percentage (between 1 and 100) of
acceptable loss rate. When the rate rises above the given
percentage, the multicast daemon stops sending NAKs.

By default, the maximum loss rate is 10%.

-no-console-trace Prevent the multicast daemon from sending tracing
messages to the console.

TIBCO Enterprise Message Service User's Guide

378 | Chapter 13 Using Multicast

Controlling Access to Multicast-Enabled Topics

Publish and subscribe permissions for multicast-enabled topics are controlled the
same way that they are controlled for topics that are not multicast-enabled. See
Destination Control on page 276 for more information about controlling access to
destinations.

TIBCO Enterprise Message Service User’s Guide

Running Multicast | 379

Running Multicast

For an example of multicast messaging, see Multicast Messaging Example on
page 104

Starting the Multicast Daemon

S

The multicast daemon is located in your installation_path /bin directory and is a
stand-alone executable named tibemsmcd on UNIX and tibemsmcd.exe on
Windows platforms.

On a computer running Windows, you can also start the multicast daemon from
the Start menu, following the path Programs > TIBCO > TIBCO EMS 8.0 > Start
EMS Multicast Daemon.

Creating a Multicast Consumer

The EMS client is enabled for multicast by default, and no special configuration is
required. To receive multicast data, the client need only create a multicast
consumer by subscribing to a multicast-enabled topic using the NO_ACKNOWLEDGE
mode, as described in Message Acknowledgement on page 39.

You can also disable multicast in a client, using API calls. For more information,
see the API documentation for your language.

TIBCO Enterprise Message Service User's Guide

380 | Chapter 13 Using Multicast

Monitoring and Statistics

Monitoring

Statistics

There are a number of aspects of a multicast deployment that can be analyzed to
determine the deployment’s health and status and to aid in troubleshooting.

The server publishes messages to two monitoring topics specifically related to
multicast. These topics are $sys.monitor.multicast.status and
$sys.monitor.multicast.stats.

The server publishes monitoring messages to the topic
$sys.monitor.multicast.status. These messages contain information about
the status of a multicast consumer and the multicast daemon to which it is
connected. This information includes when a consumer has successfully joined a
multicast group and when a consumer experiences an error, such as
unrecoverable loss in its multicast daemon. By monitoring multicast errors you
can detect which consumers are experiencing problems, allowing you to take
corrective action.

Low-level multicast statistics are published in a monitoring message to the topic
$sys.monitor.multicast.stats. The statistics include information such as the
number of bytes sent to a multicast group and the number of NAKSs sent by a
multicast daemon. These multicast statistics can aid in troubleshooting a
multicast deployment when provided to TIBCO technical support. Generally
these statistics won’t have much meaning to a typical user. Multicast statistics are
only published when the server’smulticast_statistics_interval issettoa
non-zero value. By default the multicast_statistics_interval is set to zero.

See Chapter 17, Monitoring Server Activity for more information on monitoring.

The server’s multicast channel statistics can be viewed using the administration
API or the administration command line tool. Multicast channel statistics include:

¢ The average number of messages sent per second.
¢ The average number of bytes sent per second.

¢ The total number of messages sent.

¢ The total number of bytes sent.

* Detailed statistics for each topic using the channel.

See Working with Server Statistics on page 460 for more information on statistics.

TIBCO Enterprise Message Service User’s Guide

Chapter 14

Topics

| 381

Multicast Deployment and Troubleshooting

This chapter reviews important multicast deployment considerations, and
provides hints and suggestions for countering some common problems
associated with multicast deployments.

* Deployment Considerations, page 382
e Walking Through a Multicast Deployment, page 388
* Troubleshooting EMS Multicast, page 397

TIBCO Enterprise Message Service User's Guide

382 | Chapter 14 Multicast Deployment and Troubleshooting

Deployment Considerations

Connectivity

Ensuring a proper multicast deployment takes some forethought, more than a
traditional unicast deployment. This section discusses some subjects to consider
before deploying TIBCO Enterprise Message Service with multicast.

Issues in multicast deployment can be separated into three areas: ensuring
multicast connectivity, restricting multicast traffic, and managing bandwidth.
These can be represented with three basic questions:

1. Can multicast traffic go to all hosts where it is wanted? See Connectivity on
page 382.

2. Will multicast traffic go to any hosts where it is unwanted? See Restricting
Multicast Traffic on page 384.

3. How will unicast and multicast traffic share the available network
bandwidth? See Managing Bandwidth on page 384.

Like unicast applications, multicast applications require that the network layer
provide a path for multicast data to flow from senders to receivers. However,
routers and switches may require additional configuration for multicast use and
tuning. The first step in ensuring and limiting connectivity is defining channels,
and assigning multicast group addresses these channels.

Multicast Addresses

Each multicast channel, defined in the channels.conf configuration file, is
assigned a multicast address. TIBCO Enterprise Message Service allows you to
assign any valid multicast address, in the class D address range, 224.0.0.0 through
239.255.255.255. However, in order to avoid a conflict, please refer to the Internet
Assigned Numbers Authority (IANA) list of reserved addresses to avoid a
conflict:

http:/ /www.iana.org/assignments/multicast-addresses
When assigning addresses to your channels, keep these additional considerations
in mind:

® Multicast addresses 224.0.1.78 and 224.0.1.79 are reserved by TIBCO EMS for
internal use. These addresses should not be used, as TIBCO multicast traffic
may be encountered there.

e Ideally, you should select multicast addresses from 239.0.0.0 to
239.255.255.255. These have been set aside as an administratively scoped

TIBCO Enterprise Message Service User’s Guide

http://www.iana.org/assignments/multicast-addresses

Deployment Considerations | 383

block, and IANA will never reserve these. They can be freely used within your
enterprise without worry of any external conflict.

* There is not a one-to-one mapping of MAC addresses to IP addresses; because
of this you should not pick x.0.0.x addresses, as they may map to reserved
addresses and so may not work. The class D IP address range assigned to
multicasting is 28 bits wide, but the range of MAC addresses assigned to
multicast is only 23 bits wide. Since only the 23 lower order bits of the IP
address are assigned to make the MAC address, an overlap results. For
example, if one chooses a multicast address 239.0.0.1, it may incorrectly
overlap to the reserved 224.0.0.1.

Defining Channels

TIBCO Enterprise Message Service does not restrict the number of channels that
you can configure and use in the EMS server or the multicast daemon. However,
the number of IP multicast group addresses that can be joined by any one host at
one time may be constrained by outside factors. Often, the number is limited by
the NIC, and typically this limitation is not specified in the NIC documentation.

Experimentation is often the only way to determine what the limit is for a specific
NIC and OS. With some NICs, joining too many groups will set the card to
"promiscuous mode" which will adversely affect performance.

It is also important to note that, because a channel represents both an IP multicast
group address and a destination port, there is not necessarily a one-to-one
correlation between a channel and multicast group.

A group is joined when a multicast daemon listens to an IP multicast group
address. Because a channel represents both an IP multicast group address and a
destination port, there is not necessarily a one-to-one correlation between a
channel and multicast group. For example, if you have 10 multicast channels all
using the same multicast group address but different ports, then a multicast
daemon will join at most one group. However, if the 10 multicast channels are all
using different multicast group addresses, then a multicast daemon may join up
to 10 groups.

The multicast IP address and port combinations that you choose should only be
used with TIBCO EMS. While the TIBCO Multicast Daemon can filter out corrupt
network data, receiving data packets that are not specific to EMS can yield
unpredictable results, which could destabilize your network.

TIBCO Enterprise Message Service User's Guide

384 | Chapter 14 Multicast Deployment and Troubleshooting

Ensuring Multicast connectivity

As stated earlier, multicast applications require that the network layer provide a
path for multicast data to flow from senders to receivers. By default, most routers
and switches have multicast routing disabled and require additional
configuration to enable it. If you experience connectivity problems, this is the first
place to check.

For example, with CISCO routers you must use the ip multicast-routing
command to enable multicast routing. Multicast hardware configuration falls
outside the scope of this document; please consult your network administrator or
the TIBCO Professional Services Group for configuration specific to your network
and enterprise.

Restricting Multicast Traffic

Multicast deployment often also involves making sure that multicast streams do
not go where they are unwanted, especially when high-bandwidth streams are
present on a network that also includes some low-bandwidth links, or where
access must be controlled at the network layer for security reasons.

Within a LAN, Ethernet switches can direct unicast traffic only to ports where it is
wanted. Typically, because routers and switches do not enable multicast packet
forwarding by default, restricting multicast traffic is not an issue. However, one
must be cognizant of this issue when planning a multicast deployment.

Managing Bandwidth

This section discusses bandwidth considerations that are specific to multicast
deployments. There are three main aspects to bandwidth:

¢ Determining Available Bandwidth, page 385 — determine your available
bandwidth, and setting bandwidth limitations to maximize performance.

¢ Dividing Bandwidth Among Channels, page 386 — create channels to make
the best use of available bandwidth.

¢ Handling Slow Applications, page 387 — managing small numbers of slow
applications so that they do not slow the entire multicast network.

TIBCO Enterprise Message Service User’s Guide

Deployment Considerations | 385

Determining Available Bandwidth

Reliable unicast transports, such as TCP, automatically share available network
bandwidth among all sessions contending for it. Administrators play no role in
this process; the available bandwidth is dynamically determined by the protocol
stacks as they measure the round-trip time and packet loss rates. This process is
called congestion control. It assumes that all streams have equal priority and it
automatically divides bandwidth accordingly.

In contrast, multicast relies on the administrator to ensure that the amount of
bandwidth the network delivers is reserved or available. In TIBCO Enterprise
Message Service, the administrator allocates network bandwidth for each
multicast channel using the maxrate configuration parameter (see
channels.conf on page 241). Correctly allocating bandwidth prevents the
application from experiencing congestion.

Congestion can cause packet loss, which can in turn cause erratic behavior or
even application failure. This is another significant difference between multicast
and unicast; with unicast, congestion causes applications to run more slowly, but
will not cause them to fail.

You must carefully consider and limit how fast you send, because TIBCO
Enterprise Message Service does not impose bandwidth limitations. If you try to
send faster than the network can actually deliver the data, you will see
substantially lower throughput than had you asked for slightly less bandwidth
than the network can actually deliver.

It is somewhat paradoxical, but if you ask the EMS server to deliver 900 Mbps
over a network layer that can deliver 1 Gbps, it will. If you ask it to deliver more
than 1 Gbps over a 1 Gbps network layer, you could get as little as 400 Mbps.
What will most likely occur is chaotic behavior based on loss rates and other
factors.

This leads to an unusual rule: if throughput is too low, try asking for less—there is a
chance you may get more. It is important to perform this test even if your
throughput is still well below "wire speed." That is because loss due to congestion
can come from many sources other than the wire speed limit, such as TCP data on
the same network. It is a simple test and if the results show that actual throughput
goes up as the amount of bandwidth requested goes down, it is a very strong sign
that there is loss due to congestion somewhere in your network, between the
sender and receivers.

Restrict multicast traffic to a rate a little below the maximum capacity of your
K 2 network. If your throughput rate is slower than expected, restrict the rate further.
You may find that throughput actually increases.

To set the rate for multicast traffic on a channel, see the maxrate parameter, in
channels.conf on page 241.

TIBCO Enterprise Message Service User's Guide

386 | Chapter 14 Multicast Deployment and Troubleshooting

You can think of the bandwidth rate specified for a channel as a delivery promise
that the network layer makes to EMS. If the network layer breaks that promise,
EMS multicast throughput falls to a rate substantially below what the network
can actually deliver.

Dividing Bandwidth Among Channels

Ideally, a deployment within a set of routed subnets, or VLAN, should have hosts
with heterogeneous interfaces of homogeneous speed. Deployments that do not
adhere to this are not recommended, because loss can be introduced if the
receiving interfaces are slower than the link and sending interface. This happens
because the slower interfaces cannot handle bursts of data on a faster network.
Also, we do not recommend that you use EMS multicast over WAN links.

Following these recommendations will help minimize data loss due to bandwidth
inconsistencies:

¢ Multicast publishers and subscribers should have network interfaces of the
same speed.

¢ The ideal multicast deployment is over a LAN or VLAN.

For example, if you have a number of clients with 100Mb NIC cards and others
with 1Gb NIC cards, the recommended architecture is to send from a 100Mb NIC
to the slower receivers and a 1Gb NIC to the faster receivers. You can accomplish
this by configuring two multicast channels, one for the faster-speed senders and
receivers, and one for the slower senders and receivers.

Alternatively, you can configure one channel and limit the bandwidth to the
slowest receiver, or 100Mb. However, the best solution is to use a multi-homed
machine, separate the applications by defining different channels for two
interfaces, then allowing each channel to operate at its optimum speed.

For example, these two channel configurations are optimized for 100Mb NIC card
and a 1Gb NIC card:

--- channels.conf ----
[channel 100mb]
address = 239.1.1.1:10
maxrate = 7MB
interface=10.99.99.99

[channel_ 1Gb]
Address = 239.1.1.2:10
maxrate = 95MB
interface=10.99.99.100

TIBCO Enterprise Message Service User’s Guide

Deployment Considerations | 387

Applications running on 100Mb machines would use topics with channel_100Mb
assigned to them, and applications on machines with 1 Gb NIC cards would use

topics with channel_1Gb assigned. Also note that some bandwidth has been left

for other TCP data, as suggested in Determining Available Bandwidth on

page 385.

Handling Slow Applications

If you have a small number of applications or hosts that are known to be "slow" or
are on a WAN, but need to subscribe to the data on a multicast enabled topic, we
recommend disabling EMS multicast at the application. You can disable multicast
in a client through API calls; see the API documentation for your language.

The slow application will receive messages from the server over TCP, effectively
removing them from the multicast stream and avoiding congesting and slowing
down other multicast receivers. It is very important to account for the TCP
bandwidth used by application(s) that do this in your multicast bandwidth
calculations.

If an EMS client with multicast disabled subscribes to a topic that is

N multicast-enabled, messages will be delivered to the client over TCP. Take this
TCP traffic into consideration when setting your bandwidth limitations, as
described in Determining Available Bandwidth on page 385.

TIBCO Enterprise Message Service User's Guide

388 | Chapter 14 Multicast Deployment and Troubleshooting

Walking Through a Multicast Deployment

This section describes the steps needed to set up a simple example TIBCO
Enterprise Message Service multicast deployment:

® Step 1: Design the Multicast Network Architecture, page 388
e Step 2: Install and Set Up EMS, page 390
e Step 3: Determine Network and Application Capabilities, page 393

This example assumes that multicast connectivity exists and available bandwidth
on the network is known. While not every aspect of a multicast deployment is
covered in this example, it does illustrate the general thought process applied to
multicast deployment.

Step 1: Design the Multicast Network Architecture

The location of the EMS server and clients are very important to a multicast
deployment. You must ensure that multicast packets can get to all network nodes
intended to receive multicast data, and you must account for all bandwidth across
the network and network segments that the multicast data traverses. While
TIBCO Enterprise Message Service detects and reports general connectivity
problems, it is generally much easier to determine if there is connectivity before
testing an EMS deployment. Your network administrator should be able to help
with this.

For this example, let us assume that we are multicasting two streams of data: a
fast data feed to some high performance processes on a 1 Gb network, and on a
separate 100 Mb network a slower stream to a number of desktop applications.
This leads us to the architecture shown in Figure 20:

TIBCO Enterprise Message Service User’s Guide

Walking Through a Multicast Deployment | 389

Figure 20 Sample Multicast Deployment Architecture

High Speed
Publisher

=
Low Speed
Publisher

High Speed Channel

[mcast-1Gb]
address=234.5.6.7:10
interface=10.99.99.100
maxrate=95MB

TIBCO EMS Server

Low Speed Channel

[mcast-100Mb]
address=234.5.6.8:10
interface=10.99.100.100
maxrate=7MB

0
0
»
-

PGM 1Gb

-
Q
Q

High Speed Clients
(1 GB nic)

Note that two separate channels using different interfaces are to be configured at
the server, allowing the server to simultaneously multicast on a high speed

-
.
.
-

PGM 100Mb

.
.

Low Speed Clients
(100 MB nic)

Gigabit network and a slower 100Mb network.

TIBCO Enterprise Message Service User's Guide

390 | Chapter 14 Multicast Deployment and Troubleshooting

Step 2: Install and Set Up EMS

Installation is straightforward, as described in the TIBCO Enterprise Message
Service Installation. The only requirement above a regular EMS installation is that
the multicast daemon must be running on any machine that receives multicast
data.

On Windows systems, you can register the multicast daemon as a service using
the emsntsrg utility. See emsntsrg on page 112 for more information.

Setup the EMS Server

Before sending multicast data, first the EMS server needs to be configured.
Configuring the EMS server requires you to change some global settings in the
tibemsd. conf file, and to configure multicast channels in the channels.conf
file. After channels are configured, you enable topics for multicast by setting their
channel properties in the topics. conf file.

Enable the Server for Multicast

To begin, some general settings must be configured in the EMS server's main
configuration file, tibemsd. conf:

¢ Enable multicast in the server by setting multicast=enabled.
¢ Enable multicast in the console trace by setting console_trace=+MULTICAST.

While enabling this trace is not required, it is very useful during the initial
deployment, providing multicast-related warnings and errors.

¢ Enable flow control by setting flow_control=enabled.

Under heavy load, it is possible for publishers to feed data into the server
faster than the server can multicast the data out. Enabling flow control causes
the server to push back on the publishers, slowing them down if the server
falls behind. This is not required, but highly suggested because it gives the
server some room to minimize loss if this happens.

You should have added the following lines to the tibemsd. conf:

multicast=enabled
console_trace= DEFAULT, +MULTICAST
flow_control=enabled

You may also want to add MULTICAST to the server's startup_abort_list, if
multicast is required in your architecture.

TIBCO Enterprise Message Service User’s Guide

Sample
channels.conf
Settings

Walking Through a Multicast Deployment | 391

Configure Multicast Channels

The next step configures the multicast channels. In this example there are two
multicast channels, mcast-1Gb and mcast-100Mb. The section Sample
channels.conf Settings below shows specific settings for these steps:

1.

Create the channels. conf file.
This file is described in channels. conf on page 241.

Create two channels in the channels. conf file, [mcast-1Gb] and
[mcast-100Mb].

Set the address and destination port for each channel, using the address
parameter.

Set the interface for each channel, using the interface parameter.

For this example, the server is on a multi-homed machine so we must
explicitly specify interfaces for each channel. If an interface is not specified,
the EMS server uses the default interface. Note that this is also true for the
multicast daemon. Use the -ifc command line parameter when running
multicast daemons on multi-homed machines, described in Command Line
Options on page 376.

Set a maxrate for each channel.

The maxrate parameter restricts the rate at which the server sends messages
over the channel. See Estimating the Maxrate below for a discussion of how
the maxrate was determined.

When you have completed your channel configuration, the channels. conf file
should contain the following lines:

[mcast-1Gb]

address=239.1.1.1:10
interface=10.99.99.99
maxrate=112MB

[mcast-100Mb]

address=239.1.1.2:10
interface=10.99.99.100
maxrate=8MB

TIBCO Enterprise Message Service User's Guide

392 | Chapter 14 Multicast Deployment and Troubleshooting

Estimating the
Maxrate

Sample
topics.conf

In this example, we have set the maxrate properties using arbitrary network
usage numbers to arrive at an estimate of network capacity. The process used to
estimate the maxrate can be described as follows:

First find your average network usage, not including expected multicast data.
This assumes metric data rate measurement.

* For the 1Gb network, let us assume about 10% usage, so 900Mb is available.
* On the 100Mb network, let us assume 30% usage, so 70Mb is available.
From here, calculate the available bytes per second for your network:

* 900 Mb * 1byte/8bits ~= 112 MB (rounded down)

e 70Mb *1byte/8bits ~= 8MB (rounded down)

These initial rates are for testing purposes, and these will be modified later to
maximize performance. Remember the cardinal rule with multicast performance
is that sometimes you have to slow down to speed up. A rate that is too high will
induce loss, which in turn causes messages to be resent, slowing the actual rate to
something far below what your network is capable of.

This example uses only one channel per network. If your architecture has
multiple multicast groups (channels with different address properties), remember
to include all channels on the network in your maximum bandwidth calculations.
This may require some balancing of data rates across channels.

Configure Multicast Topics

After the channels are defined, you must set the channel properties for topics so
the server will send messages using multicast to multicast-enabled consumers
subscribed to the topics. The channel property is set in the topics.conf
configuration file.

In this example, we use two topics, feed-1Gb and feed-100Mb. These topic names

are arbitrary; the key is assigning the correct channels to the topics.

feed-1Gb channel=mcast-1Gb
feed-100Mb channel=mcast-100Mb

TIBCO Enterprise Message Service User’s Guide

Walking Through a Multicast Deployment | 393

EMS Client Setup
There are two main requirements for EMS clients to receive multicast data:

* The client must use a session mode of NO_ACKNOWLEDGE when subscribing to
the multicast topic. See Creating a Multicast Consumer on page 379 for more
information.

¢ A multicast daemon must be running on the same computer as the client. See
Starting the Multicast Daemon on page 379.

TIBCO Software also highly suggests that applications take advantage of the
multicast exception listener to be notified of multicast related events, errors, and
warnings. This is accomplished in two simple steps, illustrated in java code
below:

1. First, create a class that implements TibjmsMulticastExceptionListener.

class MulticastExceptionHandler implements
com.tibco.tibjms.TibjmsMulticastExceptionListener

{
public void onMulticastException(Connection connection,
Session session,
MessageConsumer consumer,
JMSException e)
{
System.out.println(e.getMessage());
¥
¥

2. Next, set the multicast exception listener. Ideally, this will be done before you
create a consumer of a multicast enabled topic.

com.tibco.tibjms.Tibjms.setMulticastExceptionListener (new
MulticastExceptionHandler());

To set up a multicast exception listener using the C API, see the TIBCO Enterprise
Message Service C & COBOL API Reference.

To set up a multicast exception listener using the .NET AP], see the TIBCO
Enterprise Message Service NET API Reference, available through the HTML
documentation interface.

Step 3: Determine Network and Application Capabilities

It is valuable to know what EMS data rates the network can accommodate. If your
application can handle data at least as fast as your network can, you will
encounter the unusual situation where the network is your throughput
bottleneck, which is ideal—as long as those data rates meet your requirements.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/Tibjms.html#setMulticastExceptionListener(TibjmsMulticastExceptionListener)

394 | Chapter 14 Multicast Deployment and Troubleshooting

Determine Network Capabilities

Now that the server is enabled, you can test and fine tune the maxrate specified
for the channels. This section describes one method for testing your settings.

This example assumes that the messages multicast on the network are small, on
average 100 bytes per message.

These steps describe how to test the network bandwidth settings:

1.

Start the EMS server using the -trace FLOW option, as described in Starting
the EMS Server Using Options on page 109.

From the command line, start the multicast daemon, using the tibemsmcd
-trace command.

Using the -trace option is not required, but may assist in detecting any
problems. See Starting the Multicast Daemon on page 379 for more
information.

On each node receiving multicast data, open a command line window and
navigate to the TIBCO_HOME/ems/8.0/samples/java folder:

Launch the tibjmsPerfSlave sample program included with EMS:
> java tibjmsPerfSlave -server serverURL

It is very important to run the jmsPerfSlave application on every node that
will receive multicast data. EMS Multicast must be tuned to perform at the
level of the slowest receiver, or congestion and loss can occur.

On each node publishing multicast data, launch:

> java tibjmsPerfMaster -topic feed-1Gb -channel mcast-1Gb
-ackmode NO -time 30 -size 100

or

> java tibjmsPerfMaster -topic feed-100Mb -channel mcast-100Mb
-ackmode NO -time 30 -size 100

These performance applications should be run on each node the publisher
will run.

Review the server and multicast daemon output for any warnings or errors. If
you see any trace messages indicating loss, or if drastic rate fluctuations occur,
this usually means you may be exceeding the maximum rate selected.

For example, a multicast error might look like:

channel="mcast-1Gb', Loss Detected, status=I0 failed

On the server it is typical to see the following:

2008-11-13 17:11:57.300 Multicast channel 'mcast-100Mb' has
exceeded its allotted bandwidth

TIBCO Enterprise Message Service User’s Guide

Walking Through a Multicast Deployment | 395

If flow control is and FLOW tracing are enabled, you should see the following
as well:

2008-11-13 17:11:57.781 Flow control engaged on topic
'feed-100Mb'

When flow control is enabled, this simply means that the server is pushing
back on the publisher to slow down to the rate defined by the multicast
channel.

When the trace messages indicate that multicast channels have exceeded their
bandwidth, this indicates that the channel maxrate is too low—your publisher is
publishing faster than the channel’s maxrate allows. On the other hand, when the
maxrate is too high, you will see errors indicating that loss is detected.

Depending on what the trace messages show, try adjusting the maximum rate of
the channel (the maxrate property) up or down, and repeat this test.

Evaluate Multicast Receiver Applications

One key to a successful multicast deployment is ensuring that the EMS server
does not overrun your applications with data. This frequently this means setting
the delivery rates (the channel's maxrate property) to a rate below what your
network and EMS alone can handle.

The channel’s maximum delivery rate, or maxrate, should not exceed the rate at
- . . .
X) which the slowest message consumer can consume incoming messages.

Determining the maximum message rate that your slowest application can handle
reduces the time spent during trial and error testing. If your applications can
process data faster than the network can deliver it, you will have already
determined the maximum rate from determining your network capabilities.

Largely, determining the maximum speed at which the slowest application can
process incoming data is a trial and error process. It is often useful to
programmatically determine an application's maximum rate of consumption. The
multicast daemon buffers messages for slower applications, but this increases the
latency of data and memory usage of the multicast daemon, and is not considered
a sustainable condition.

If a multicast-enabled consumer is expected to fall behind at times and can sustain
loss, you can account for this using the maxbytes and maxmsgs properties for
topics. See Destination Properties on page 58 for details about these properties.

TIBCO Enterprise Message Service User's Guide

396 | Chapter 14 Multicast Deployment and Troubleshooting

Tune Channel Parameters

Once you have determined network capabilities and multicast receiver rates, you
can experiment with increasing (or sometimes decreasing) channel maxrate
properties to achieve maximum throughput. Finding the maximum multicast rate
your environment can handle often requires more experimentation than anything
else. Always remember that once the network has been saturated, throughput
will drastically drop.

Tuning the Operating System

Unfortunately, operating systems are not normally tuned for high performance
with raw sockets. There are a number of performance changes you can make;
typically, these changes involve socket buffering and can yield significant
increases in throughput.

For example, on Linux one can modify window sizes in the /etc/sysctl.conf
file:

net.core.wmem_max=1073741824
net.core.rmem_max=1073741824
net.core.wmem_default=1073741824
net.core.rmem_default=1073741824

However, operating system tuning for multicast falls outside of the scope of this
document. The TIBCO Professional Services Group can provide assistance with
advanced tuning specific for TIBCO Enterprise Message Service, and there are
many resources on the internet for general tuning of operating systems
concerning network performance.

Development and Production Environments

Configuring multicast is specific to a particular network, and your configuration
must account for traffic patterns and characteristics of nodes that are unique to
your network. Consequently, the tuning parameters applied to a development
environment may not be optimum in a production environment, and the reverse
is also true. When migrating from one environment to another, it is important to
remember that although the application and EMS architecture pattern may be
identical, the network and application capabilities will need to be reevaluated
through the repetition of the steps described in this section. Topic and channel
definition names should remain the same, but rate, interface, and timeout
parameters for multicast must be reevaluated.

The channel properties that should be reevaluated upon deployment include:
* maxrate on page 242
* ttlon page 242

® interface on page 243

TIBCO Enterprise Message Service User’s Guide

Troubleshooting EMS Multicast | 397

Troubleshooting EMS Multicast

Multicast deployment issues are often more difficult to resolve than similar
unicast issues. Reasons for the additional difficulty include:

Older networking equipment that was not designed with multicast
deployment in mind. For example, switches that can only flood multicast or
routers that do not have modern multicast routing protocols.

Different equipment may solve the same problem in different ways. For
example, some switches use IGMP snooping while others use CGMP.

Multicast diagnostic tools are not readily available.

Network administrators may not be as experienced in multicast deployment
issues as they are with unicast deployment.

Bandwidth is automatically shared equitably among competing unicast
streams, but administrator intervention may be required to achieve desired
multicast bandwidth sharing.

Troubleshooting Tips

This section give some troubleshooting tips to help you respond to difficulties
you may experience with your multicast deployment.

General Tips

If you are experiencing problems with your deployment, begin with these
practices:

The "bottom-up" approach generally seems best. That is, get the lowest layers
of the network stack working first.

Begin with the EMS server and trace your way through each switch and
router to all receivers. Try moving your receiving application to the same hub
as the server (not a switch or a router), and confirm that you have multicast
connectivity. Once that works, move on to more complicated multicast
networks.

TIBCO Enterprise Message Service User's Guide

398 | Chapter 14 Multicast Deployment and Troubleshooting

Connectivity

EMS will detect multicast connectivity issues; it may take up to 64 seconds to
detect a connectivity problem. These suggestions can help resolve issues with
connectivity:

Data Loss

Verify that the network has good unicast connectivity between the sender and
all receivers before tackling multicast connectivity problems.

Verify that IP Multicast is supported and enabled on your routers or switches
and all networks interfaces that are being used.

Verify that address scoping at the router is not preventing multicast packets
from being forwarded.

Test your multicast application without enabling multicast in the EMS server
to determine if a more general topic or application configuration issue is
preventing message reception. For example, a consumer that is consuming on
the wrong topic.

Enable multicast and topic tracing in the server to ensure proper
configuration, and to verify that messages are being multicast by the server.

Enable multicast daemon trace messages to check for any configuration
issues, warnings, or errors.

Ensure that you are using the proper interface(s) in the server and the
multicast daemon. On a multi-homed host, it is possible that the default
interface cannot receive multicast data from the server.

Ensure that the channel's tt1 is large enough for data to cross all of your
switches and routers.

These suggestions can help if you are experiencing data loss:

Enable and check statistics to see if data is being delivered and whether
excessive loss is encountered. If loss is detected, decreasing the multicast
channel's maxrate property may alleviate the situation.

Make sure that multicast streams are being generated with a time to live that
is long enough for messages to reach their destination using the
longest-possible path through the network.

If you see increased loss as multicast rates go up, look for routers or switches
that might be configured to limit the broadcast rate. These generally limit the
multicast rate too. For example, Cisco Catalyst 5000 series switches can be
configured to limit the packet per second or percentage of
broadcast/multicast traffic with the set port broadcast command.

TIBCO Enterprise Message Service User’s Guide

Troubleshooting EMS Multicast | 399

Application and Multicast Daemon Errors and Warnings

You may find these tips useful if you are experiencing errors in the multicast
daemon or client application:

¢ Register a multicast exception listener in the receiving application. This
provides the application with a way to detect, log, and handle multicast
warnings and errors.

Note that multicast events are also logged at the client if client trace is enabled
on the server, but that comes at a performance price and can cause other
problems. For this reason, we do not recommend using client trace outside of
debugging basic connectivity issues or as directed by TIBCO support.

¢ Typically, when consumer creation fails for a consumer on a multicast-enabled
topic, a message is written to the multicast daemon's log (or console) as well
as to the server log. An appropriate exception or return code is generated from
the call on the client as well. After eliminating the other non-multicast related
reasons (security, general configuration) you may want to check:

— Is the multicast daemon running?
— Is the multicast daemon running on the correct port?

— Did channel creation in the multicast daemon fail? (This indicates a
protocol level multicast problem.)

¢ When the multicast daemon detects excessive loss, the multicast connection
exception I0 Failed is generated in the application. Usually, this means that
the server is sending too fast, and maxrate for the channel needs to be
decreased. The multicast daemon will report an error, similar to the following:

2007-10-02 16:45:09.551 Multicast error: channel='mcast', Loss
Detected, status=I0 failed

You will also notice in the multicast statistics that the particular channel's
rcv_losses are growing.

* If a consumer receives a multicast exception of TIBEMS_TIMEOUT with a
message similar to Timeout reached which may indicate a
configuration or hardware problem, this indicates a lack of multicast
connectivity. While unicast connectivity exists between the client and server
and the multicast channel was set up, multicast data cannot get from the
server to the local multicast daemon. Note that this may take more than a
minute to detect.

¢ Start a subscriber listening to $sys.monitor.multicast.stats monitoring
messages to receive multicast-related statistics.

TIBCO Enterprise Message Service User's Guide

400 | Chapter 14 Multicast Deployment and Troubleshooting

Server Errors

In General, server errors are self-descriptive. It is important to note that client
errors may be returned to the server to be logged, providing a centralized place to
look for multicast errors. However, these errors do not include minor loss on a
particular client, or loss of messages from a client failover.

TIBCO Enterprise Message Service User’s Guide

Chapter 15

Topics

| 401

Working With TIBCO Rendezvous

This chapter describes the interoperation of EMS and TIBCO Rendezvous.

e Overview, page 402

¢ Configuring Transports for Rendezvous, page 404
¢ Topics, page 410

* Queues, page 412

e Import Issues, page 414

e Export Issues, page 416

¢ Message Translation, page 417

® Pure Java Rendezvous Programs, page 423

TIBCO Enterprise Message Service User's Guide

402 | Chapter 15 Working With TIBCO Rendezvous

Overview

TIBCO Enterprise Message Service (release 4 and later) can exchange messages
with TIBCO Rendezvous (release 6.9 and later).

Scope ® EMS can import and export messages to an external system through an EMS
topic.

e EMS can import messages from an external system to an EMS gueue (but
queues cannot export).

Figure 21 Rendezvous Transports in the EMS Server

Y
EMS Server
. . Export »
EMS Topic Translation tibrv > 2
Transport >
)
©
=
()
o4
o
Import @
EMS Destination | Translation tibrv mpor =
(Topic or Queue) [Transport
r
N~—

Message Translation

EMS and Rendezvous use different formats for messages and their data. When
tibemsd imports or exports a messages, it translates the message and its data to
the appropriate format; for details, see Message Translation on page 438.

Configuration

tibemsd uses definitions and parameters in four configuration files to guide the
exchange of messages with Rendezvous.

Enabling The parameter tibrv_transports (in the configuration file tibemsd. conf)
globally enables or disables message exchange with Rendezvous. The default
value is disabled. To use these transports, you must explicitly set this parameter
to enabled.

TIBCO Enterprise Message Service User’s Guide

Transports

Destinations

RVCM Listeners

Overview | 403

Transport definitions (in the configuration file transports. conf) specify the
communication protocol between EMS and the external system; for details, see
Configuring Transports for Rendezvous on page 404.

Destination definitions (in the configuration files topics.conf and
queues. conf) can set the import and export properties to specify one or more
transports:

® import instructs tibemsd to import messages that arrive on those transports
from Rendezvous, and deliver them to the EMS destination.

® export instructs tibemsd to take messages that arrive on the EMS destination,
and export them to Rendezvous via those transports.

For details, see Topics on page 433, and Queues on page 434.

When exporting messages on a transport configured for certified message
delivery, you can pre-register RVCM listeners in the file tibrvem. conf.

For details, see tibrvem. conf on page 257, and Certified Messages on page 416

TIBCO Enterprise Message Service User's Guide

404 | Chapter 15 Working With TIBCO Rendezvous

Configuring Transports for Rendezvous

How Rendezvous
Messages are
Imported

Queue Limit
Policies

Transports mediate the flow of messages between EMS and TIBCO Rendezvous.

timemsd connects to Rendezvous daemons in the same way as any other
Rendezvous client would. Transport definitions (in the file transports. conf)
configure the behavior of these connections. You must properly configure these
transports.

The EMS server connects to the Rendezvous daemon as any other Rendezvous
client would. Messages received from the Rendezvous daemon are stored in
Rendezvous queues, then are dispatched to callbacks. The EMS server creates JMS
message copies of the Rendezvous messages, and begins processing them as EMS
messages. Transports determine how messages are imported.

Rendezvous messages that are imported through a transport are held in queues
specific to that transport. Each transports is associated with a different
Rendezvous queue, which holds as many Rendezvous messages as necessary. The
number of pending messages in the queue will grow if the rate of incoming
Rendezvous messages is greater than the rate at which the EMS server is able to
process the corresponding EMS messages.

Depending on the import delivery mode defined for the transport, the EMS
messages will be persisted on disk, which increases the likelihood of backlog in
the Rendezvous queues, and which in turn results in a EMS process memory
growth. This memory growth is not accounted for in any of the EMS server
statistics.

In order to limit the number of pending messages in Rendezvous queues, a
transport property allows you to set a queue limit policy, as you would for TIBCO
Rendezvous client applications. When the queue limit for the transport is
reached, the Rendezvous library discards a set number of messages. The default
policy is TTIBRVQUEUE_DISCARD_NONE, which means that no message is ever
discarded. Setting TTBRVQUEUE_DISCARD_FIRST or TIBRVQUEUE_DISCARD_LAST
allows you to specify the maximum number of Rendezvous messages that can be
pending in the queue before the discard policy that you have selected is applied.
When the limit is reached, the number of messages discarded is based on the
discard amount value.

When the limit is reached, Rendezvous messages are discarded, and so are not
imported as EMS messages, regardless of the EMS import delivery mode. As
stated above, a Rendezvous message becomes a EMS message only after it has
been dispatched from the Rendezvous queue. If a queue limit is exceeded, reliable
Rendezvous messages are lost.

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for Rendezvous | 405

Rendezvous certified messages are not lost, but the message flow is interrupted.
The redelivery of the missed messages is handled automatically by the
Rendezvous libraries, and can not be controlled by the EMS server.

Reaching a queue limit also generates a Rendezvous advisory that is logged (see
RVADV log and console trace in the TIBCO Rendezvous documentation),
indicating which transport reached its queue limit. This advisory goes into an
independent, non limited, Rendezvous queue. If lots of advisories are generated,
this internal queue may also grow, signalling that the limit policy is not
appropriate for your environment.

Take care when setting a queue limit policy. In a controlled environment where
the risk of Rendezvous producers overwhelming the EMS server is low, there is
no need to set a queue limit policy.

Transport Definitions

transports.conf contains zero or more transport definitions. Each definition
begins with the name of a transport, surrounded by square brackets. Subsequent
lines set the parameters of the transport.

Table 62 Rendezvous: Transport Parameters (Sheet 1 of 4)

Parameter Description

type Required. For Rendezvous transports, the value must be either
tibrv Or tibrvcm.

Rendezvous Parameters
Use these properties for either tibrv or tibrvem transports.

The syntax and semantics of these parameters are identical to the corresponding parameters in
Rendezvous clients. For full details, see the Rendezvous documentation set.

service When absent, the default value is 7500.
network When absent, the default value is the host computer’s primary
network.

TIBCO Enterprise Message Service User's Guide

406 | Chapter 15 Working With TIBCO Rendezvous

Table 62 Rendezvous: Transport Parameters (Sheet 2 of 4)

Parameter Description

daemon

When absent, the default value is an rvd process on the local
host computer. When transporting messages between EMS and
Rendezvous, the rvd process must be configured to run on the
same host as the EMS daemon (tibemsd).

To connect to a non-default daemon, supply

hostname : protocol : port. You may omit any of the three parts. The
default hostname is the local host computer. The default
protocol is tcp. The default port is 7500.

Rendezvous Certified Messaging (RVCM) Parameters

Use these properties only for tibrvem transports.

The syntax and semantics of these parameters are identical to the corresponding parameters in
Rendezvous CM clients. For full details, see the Rendezvous documentation set.

cm_name

The name of the correspondent RVCM listener transport.

rv_tport

Required. Each RVCM transport depends in turn upon an
ordinary Rendezvous transport. Set this parameter to the name
of a Rendezvous transport (type tibrv) defined in the EMS
configuration file transports.conf

ledger_file

Name for file-based ledger.

sync_ledger

true or false. If true, operations that update the ledger do
not return until changes are written to the storage medium.

request_old

true or false. If true, this transport server requests
unacknowledged messages sent from other RVCM senders
while this transport was unavailable.

default_ttl

This parameter sets default CM time limit (in seconds) for all
CM messages exported on this transport.

explicit_config only

true or false. If true, tibemsd allows RVCM listeners to
register for certified delivery only if they are configured in
advance with the EMS server (either in tibrvem. conf or using
the create rvcmlistener command). Thatis, tibemsd
ignores registration requests from non-configured listeners.

If false (the default), tibemsd allows any RVCM listener to
register.

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for Rendezvous | 407

Table 62 Rendezvous: Transport Parameters (Sheet 3 of 4)

Parameter Description

EMS Parameters

Use these properties for either tibrv or tibrvem transports.

topic_import_dm EMS sending clients can set the JMSDeliveryMode header field

queue_import_dm for each message. However, Rendezvous clients cannot set this
header. Instead, these two parameters determine the delivery
modes for all topic messages and queue messages that
tibemsd imports on this transport.

TIBEMS_PERSISTENT | TIBEMS_NON_PERSISTENT |
TIBEMS_RELIABLE

When absent, the default is TTBEMS_NON_PERSISTENT.

export_headers When true, tibemsd includes JMS header fields in exported
messages.

When false, tibemsd suppresses JMS header fields in
exported messages.

When absent, the default value is true.

export_properties When true, tibemsd includes JMS properties in exported
messages.

When false, tibemsd suppresses JMS properties in exported
messages.

When absent, the default value is true.

TIBCO Enterprise Message Service User's Guide

408 | Chapter 15 Working With TIBCO Rendezvous

Table 62 Rendezvous: Transport Parameters (Sheet 4 of 4)

Parameter Description

rv_queue_policy Set the queue limit policy for the Rendezvous queue used by
the transport to hold incoming Rendezvous messages. This
parameter has three parts:

policy:max_msgs:qty_discard

where policy is one of the queue limit policies described below,
max_msgs is the maximum number of messages permitted in the
queue before discard, and gty_discard is the number of messages
that the EMS server discards when max_msgs is reached.

The queue limit policies are:

® TIBRVQUEUE_DISCARD_NONE — do not discard messages.
Use this policy when the queue has no limit on the number
of messages it can contain.

® TIBRVQUEUE_DISCARD_FIRST — discard the first message
in the queue. The first message in the queue is the oldest
message, which if not discarded would be the next message
dispatched from the queue.

® TIBRVQUEUE_DISCARD_LAST — discard the last message in
the queue. The last message is the most recent message
received into the queue.

For example, the following would cause the Rendezvous
library to discard the 100 oldest messages in the queue when
the total number of messages in the queue reached 10,000:

rv_queue_policy=TIBRVQUEUE_DISCARD_FIRST:10000:100

If the rv_queue_policy is not present, the default queue limit
policy is TTIBRVQUEUE_DISCARD_NONE.

temp_destination_timeout Specifies the amount of time the server is to keep the
temporary destination (created for the RV inbox) after its last
use of the destination. This is useful for a multi-server
configuration. For example, in a configuration in which
rv-requester -> serverA -> serverB -> rv-responder, setting
temp_destination_timeout=60 on serverB specifies that
serverB is to hold the temporary destination for 60 seconds.

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for Rendezvous | 409

Example

These examples from transports. conf illustrate the syntax of transport
definitions.

[RVO1]
type = tibrv
topic_import_dm
queue_import_dm
service = 7780
network = lanO
daemon = tcp:host5:7885

TIBEMS_RELTIABLE
TIBEMS_PERSISTENT

[RVO02]
type = tibrv
service = 7890

network = lan0O
daemon = tcp:host5:7995

temp_destination_timeout = 60
[RVCMO1]

type = tibrvcm

export_headers = true

export_properties = true
rv_tport = RV0O2

cm_name = RVCMTransl
ledger_file = ledgerFile.store
sync_ledger true

request_old = true

default_ttl = 600

In the following two examples, RVCM03 is an RVCM transport which does not
define a queue limit policy, but references the RV transport Rv03, which does have
a queue limit policy. If Rendezvous messages are published to a subject that in
EMS has the destination property import=RVCM03, no Rendezvous message will
ever be discarded because each transport uses its own queue. Only messages that
are imported directly through the Rv03 transport will potentially be discarded,
should the queue limit of 10000 messages be reached.

[RVO03]
type = tibrv
service = 7890

network = lan0O
daemon = tcp:host5:7995
rv_queue_policy = TIBRVQUEUE_DISCARD_LAST:10000:100

[RVCMO3]
type = tibrvcm
rv_tport = RV0O3
cm_name = RVCMTrans?2
ledger_file = ledgerFile2.store
sync_ledger true
request_old = true
default_ttl = 600

TIBCO Enterprise Message Service User's Guide

410 | Chapter 15 Working With TIBCO Rendezvous

Topics

import

export

&

Example

Topics can both export and import messages. Accordingly, you can configure
topic definitions (in the configuration file topics. conf) with import and export
properties that specify one or more external transports:

® import instructs tibemsd to import messages that arrive on those transports
from Rendezvous, and deliver them to the EMS destination.

® export instructs tibemsd to take messages that arrive on the EMS destination,
and export them to Rendezvous via those transports.

The EMS server never re-exports an imported message on the same topic.

(For general information about topics. conf syntax and semantics, see
topics.conf on page 257. You can also configure topics using the administration
tool command addprop topic.)

For example, the following tibemsadmin commands configure the topic
myTopics.news to import messages on the transports RVO1 and RV02, and to
export messages on the transport RvV02.

addprop topic myTopics.news import="RV01l,RV02"

addprop topic myTopics.news export="RV02"

Rendezvous messages with subject myTopics.news arrive at tibemsd over the
transports Rvo1 and Rv02. EMS clients can receive those messages by subscribing
to myTopics.news.

EMS messages sent to myTopics.news are exported to Rendezvous over transport
RvV02. Rendezvous clients of the corresponding daemons can receive those
messages by subscribing to myTopics.news.

Import Only when Subscribers Exist

Wildcards

When a topic specifies import on a connected transport, tibemsd imports
messages only when the topic has registered subscribers.

Wildcards in the import and export properties obey EMS syntax and semantics
(which is identical to Rendezvous syntax and semantics); see Destination Name—
Syntax and Semantics on page 432.

TIBCO Enterprise Message Service User’s Guide

Topics | 411

Certified Messages

You can import and export TIBCO Rendezvous certified messages (tibrvem
transport) to EMS topics. Rendezvous certified transports guarantee message
delivery.

RVCM Ledger tibrvem transports can store information about subjects in a ledger file. You can
review the ledger file using an administration tool command; see show
rvemtransportledger on page 167).

For more information about ledger files, see TIBCO Rendezvous documentation.
Subject Collisions Subscribers to destinations that import from RVCM transports are subject to the

same restrictions that direct RVCM listeners. These restrictions are described in
the TIBCO Rendezvous documentation, and include subject collisions.

When importing messages from RV, the EMS server creates RVCM listeners using
a single name for each transport. This can result in subject collisions if the
corresponding EMS subscribers have overlapping topics.

TIBCO Enterprise Message Service User's Guide

412 | Chapter 15 Working With TIBCO Rendezvous

Queues

Configuration

Example

Queues can import messages, but cannot export them.

You can configure queue definitions (in the configuration file queues. conf) with
the import property that specify one or more external transports.

® import instructs tibemsd to import messages that arrive on those transports
from Rendezvous, and deliver them to the EMS destination.

(For general information about queues . conf syntax and semantics, see
queues . conf on page 250. You can also configure queues using the
administration tool command addprop queue.)

For example, the following tibemsadmin command configures the queue
myQueue.in to import messages on the transports Rv01 and RV02.

addprop queue myQueue.in import="RV01l,RV02"

Rendezvous messages with subject myQueue . in arrive at tibemsd over the
transports Rv01 and Rv02. EMS clients can receive those messages by subscribing
to myQueue.in.

Import—Start and Stop

Wildcards

When a queue specifies import on a connected transport, tibemsd immediately
begins importing messages to the queue, even when no receivers exist for the
queue.

For static queues (configured by an administrator) tibemsd continues importing
until you explicitly delete the queue.

Wildcards in the import property obey EMS syntax and semantics (not
Rendezvous syntax and semantics); see Destination Name—Syntax and
Semantics on page 432.

EMS clients cannot subscribe to wildcard queues—however, you can define
wildcards queues in the EMS server for the purpose of property inheritance. That
is, you can configure a static queue named foo. * and set properties on it, so that
child queues named foo.bar and foo.baz will both inherit those properties.

TIBCO Enterprise Message Service User’s Guide

Queues | 413

If you define a queue that imports foo. *, tibemsd begins importing all matching
messages from Rendezvous. As messages arrive, tibemsd creates dynamic child
queues (for example, foo.bar and foo.baz) and delivers the messages to them.
Notices that tibemsd delivers messages to these dynamic child queues even
when no consumers exist to drain them.

TIBCO Enterprise Message Service User's Guide

414 | Chapter 15 Working With TIBCO Rendezvous

Import Issues

Field Identifiers

This section presents issues associated with importing messages to EMS from
Rendezvous—whether on a topic or a queue.

When importing and translating Rendezvous messages, tibemsd is only able to
process standard message field types that are identified by name in the
Rendezvous program application. Custom fields and fields identified using a
field identifier cannot be imported to EMS.

JMSDestination

JMSReplyTo

JMSEXxpiration

When tibemsd imports and translates a Rendezvous message, it sets the
JMSDestination field of the EMS message to the value of the Rendezvous
subject. Therefore, imported destination names must be unique. When a topic and
a queue share the same name, at most one of them may set the import property.
For example, if a topic foo.bar and a queue foo.bar are both defined, only one
may specify the import property.

When tibemsd imports and translates a Rendezvous message, it sets the
JMSReplyTo field of the EMS message to the value of the Rendezvous reply
subject, so that EMS clients can reply to the message.

Usually this value represents a Rendezvous subject. You must explicitly configure
tibemsd to create a topic with a corresponding name, which exports messages to
Rendezvous.

When tibemsd imports and translates a Rendezvous certified message, it sets the
JMSExpiration field of the EMS message to the time limit of the certified
message.

If the message time limited is exceeded, the sender program no longer certifies
delivery.

Note that if the expiration property is set for a destination, it will override the
JMSExpiration value set by the message producer.

TIBCO Enterprise Message Service User’s Guide

JMSTimestamp

Import Issues | 415

When tibemsd imports and translates a Rendezvous message, it uses the
JMSTimestamp header field to determine when the message was created. If the
JMSTimestamp field is not set, the tibemsd ignores the expiration field, because
expiration is based on an unknown creation time.

The Rendezvous sender must create a field called IJMSTimestamp in order to
enable message expiration.

Guaranteed Delivery

S

For full end-to-end certified delivery from Rendezvous to EMS, all three of these
conditions must be true:

* Rendezvous senders must send labeled messages on RVCM transports. See
the TIBCO Rendezvous Concepts manual for more information.

e The transport definition must set topic_import_dm Oor queue_import_dm (as
appropriate) to TTIBEMS_PERSISTENT.

e Either a durable queue or a subscriber for the EMS topic must exist.

TIBCO Enterprise Message Service User's Guide

416 | Chapter 15 Working With TIBCO Rendezvous

Export Issues

JMSReplyTo

Topics

Temporary Topics

This section presents issues associated with exporting messages from EMS to
Rendezvous.

Consider an EMS message in which the field JMSReplyTo contains a topic. When
exporting such a message to Rendezvous, you must explicitly configure tibemsd
to import replies from Rendezvous to that reply topic.

Consider an EMS message in which the field IMSReplyTo contains a temporary
topic. When tibemsd exports such a message to Rendezvous, it automatically
arranges to import replies to that temporary topic from Rendezvous; you do not
need to configure it explicitly.

Certified Messages

RVCM
Registration

When an RVCM listener receives its first labeled message, it registers to receive
subsequent messages as certified messages. Until the registration is complete, it
receives labeled messages as reliable messages. When exporting messages on a
tibrvem transport, we recommend either of two actions to ensure certified
delivery for all exported messages:

* Create the RVCM listener before sending any messages from EMS clients.

¢ Pre-register an RVCM listener, either with the administration tool (see create
rvecmlistener on page 132), or in the configuration file tibrvem. conf (see
tibrvem. conf on page 257).

Guaranteed Delivery

&

For full end-to-end certified delivery to Rendezvous from EMS, the following
condition must be true:

* EMS senders must send persistent messages.

TIBCO Enterprise Message Service User’s Guide

Message Translation | 417

Message Translation

JMS Header Fields

Special Cases

Import

Export

EMS supports the 11 predefined JMS header fields; see JMS Message Header
Fields on page 17.

These header fields are special cases:

® JMS header JMSDestination corresponds to Rendezvous subject.

* JMS header JMSReplyTo corresponds to Rendezvous reply subject.

® JMS header JMSExpiration corresponds to the time limit of the Rendezvous

certified message.

When importing a Rendezvous message to an EMS message, tibemsd does not
set any JMS header fields, except for the special cases noted above.

When exporting an EMS message to a Rendezvous message, tibemsd groups all
the JMS header fields (except for the special cases noted above) into a single
submessage within the Rendezvous message. The field JMSHeaders contains that
submessage. Fields of the submessage map the names of JMS header fields to
their values.

tibemsd ignores any JMS header fields that are null or absent—it omits them
from the exported message.

You can instruct tibemsd to suppress the entire header submessage in all
exported messages by setting the transport property export_headers = false.

Table 63 presents the mapping of JMS header fields to Rendezvous data types
(that is, the type of the corresponding field in the exported message).

Table 63 Rendezvous: Mapping [MS Header Fields to RV Datatypes (Sheet 1 of 2)

JMSDeliveryMode TIBRVMSG_US8
JMSDeliveryTime TIBRVMSG_U64
JMSPriority TIBRVMSG_US8
JMSTimestamp TIBRVMSG_U64
JMSExpiration TIBRVMSG_U64
JMSType TIBRVMSG_STRING

TIBCO Enterprise Message Service User's Guide

418 | Chapter 15 Working With TIBCO Rendezvous

Table 63 Rendezvous: Mapping [MS Header Fields to RV Datatypes (Sheet 2 of 2)

JMS Header Name Rendezvous Type

JMSMessageID TIBRVMSG_STRING
JMSCorrelationID TIBRVMSG_STRING

JMSRedelivered TIBRVMSG_BOOL

JMSDestination send subject in TIBCO Rendezvous
JMSReplyTo reply subject in TIBCO Rendezvous

JMS Property Fields

Import ~ When importing a Rendezvous message to an EMS message, tibemsd sets these
JMS properties:

® JMS_TIBCO_IMPORTED gets the value true, to indicate that the message did
not originate from an EMS client.

* JMS_TIBCO_MSG_EXT gets the value true, to indicate that the message might
contain submessage fields or array fields.

Import RVCM In addition to the two fields described above, when tibemsd imports a certified
message on a tibrvem transport, it can also set these properties (if the
corresponding information is set in the Rendezvous message):

Table 64 Rendezvous Mapping Message Properties

Property Description

JMS_TIBCO_CM_PUBLISHER A string value indicating the correspondent
name of the TIBCO Rendezvous CM transport
that sent the message (that is, the sender
name).

JMS_TIBCO_CM_SEQUENCE A long value indicating the CM sequence
number of an RVCM message imported from
TIBCO Rendezvous.

Export ~ When exporting an EMS message to a Rendezvous message, tibemsd groups all
the JMS property fields into a single submessage within the Rendezvous message.
The field JMSProperties contains that submessage. Fields of the submessage
map the names of JMS property fields to their values.

TIBCO Enterprise Message Service User’s Guide

Message Translation | 419

The tibemsd daemon ignores any JMS property fields that are not set, or are set to
null—it omits them from the exported message.

You can instruct tibemsd to suppress the entire properties submessage in the
exported message by setting the transport property
export_properties = false.

Message Body

tibemsd can export messages with any JMS message body type to TIBCO
Rendezvous. Conversely, tibemsd can import messages with any message type
from TIBCO Rendezvous.

For information about JMS body types, see JMS Message Bodies on page 22.
For information about the structure of messages, see J]MS Message Structure on

page 17.

Import ~ When importing a Rendezvous message, tibemsd translates it to an EMS message
body type based on the presence of the field in Table 65.

Table 65 Rendezvous: Mapping Message Types (Import)

Rendezvous Field EMS Body Type

JMSBytes JMSBytesMessage
JMSObject JMSObjectMessage
JMSStream JMSStreamMessage
JMSText JMSTextMessage
None of these fields are present. JMSMapMessage
The field names DATA and _data_ are reserved. We strongly discourage you from
% using these field names in either EMS and Rendezvous applications, and

especially when these two message transport mechanisms interoperate.

Only standard Rendezvous fields identified by name can be imported into EMS.
% Custom fields and fields identified in the Rendezvous application by field
identifiers cannot be imported.

Export ~ When exporting an EMS message, tibemsd translates it to a Rendezvous message
with the following structure:

* The field JMSHeaders contains a submessage; see JMS Header Fields on
page 417. When the transport parameter export_headers is false, this field
is omitted.

TIBCO Enterprise Message Service User's Guide

420 | Chapter 15 Working With TIBCO Rendezvous

® The field JMSProperties contains a submessage; see JMS Property Fields on
page 418. When the transport parameter export_properties is false, this
field is omitted.

* When translating the data fields of an EMS message, the results depend on the
JMS body type. Table 66 specifies the mapping.

Table 66 Rendezvous: Mapping Message Types (Export)

JMS Body Type Export Translation

BytesMessage The message data translates to a byte array that contains
the bytes of the original EMS message.

The field JMSBytes receives this data. It has type
TIBRVMSG_OPAQUE.

ObjectMessage The message data translates to a byte array containing
the serialized Java object.

The field JMSObject receives this data. It has type
TIBRVMSG_OPAQUE.

StreamMessage The message data translates to a byte array that encodes
the objects in the original EMS message.

The field JMSStream receives this data. It has type
TIBRVMSG_OPAQUE.

TextMessage The message data translates to a UTF-8 string
corresponding to the text of the original EMS message.

The field JMSText receives this data. It has type
TIBRVMSG_STRING.

MapMessage The message data fields map directly to top-level fields in
the Rendezvous message. The fields retain the same
names as in the original EMS message.

See also, EMS Extensions to JMS Messages on page 16.

TIBCO Enterprise Message Service User’s Guide

Data Types

Message Translation | 421

Table 67 presents the mapping between EMS datatypes and Rendezvous
datatypes. The mapping is bidirectional, except for the Rendezvous types that
have no corresponding EMS type (for these types the mapping is marked as
unidirectional in the middle column of Table 67).

Table 67 Rendezvous: Mapping Data Types (Sheet 1 of 2)

EMS Map Rendezvous
Boolean TIBRVMSG_BOOL
Byte TIBRVMSG_IS8

Short < TIBRVMSG_US8

Short TIBRVMSG_I16
Integer <— TIBRVMSG_U16
Integer TIBRVMSG_I32

Long <— TIBRVMSG_U32

Long TIBRVMSG_I64

Long < TIBRVMSG_U64
Float TIBRVMSG_F32
Double TIBRVMSG_F64
Short <— TIBRVMSG_TIPPORT16
Integer <— TIBRVMSG_IPADDR32
MapMessage TIBRVMSG_MSG

Long <— TIBRVMSG_DATETIME
bytel[] TIBRVMSG_OPAQUE
java.lang.String TIBRVMSG_STRING
bytel[] <— TIBRVMSG_XML
bytel[] <— TIBRVMSG_I8ARRAY

TIBCO Enterprise Message Service User's Guide

422 | Chapter 15 Working With TIBCO Rendezvous

Table 67 Rendezvous: Mapping Data Types (Sheet 2 of 2)

EMS Map Rendezvous
short[] <« TIBRVMSG_USARRAY
short[] TIBRVMSG_I16ARRAY
int[] <« TIBRVMSG_U16ARRAY
int[] TIBRVMSG_T32ARRAY
longl] <« TIBRVMSG_U32ARRAY
longl[] TIBRVMSG_I64ARRAY
long[] <« TIBRVMSG_U64ARRAY
float[] TIBRVMSG_F32ARRAY
doublel] TIBRVMSG_F64ARRAY

TIBCO Enterprise Message Service User’s Guide

Pure Java Rendezvous Programs | 423

Pure Java Rendezvous Programs

TIBCO Enterprise Message Service is shipped with the tibrvjms. jar file that
you can include in your TIBCO Rendezvous applications. This JAR file includes
the implementation of the com. tibco. tibrv.TibrvIMSTransport class. This
class extends the com. tibco. tibrv.TibrvNetTransport class and allows your
pure Java Rendezvous programs to communicate directly with the EMS server
instead of through rva.

the application must include tibrvjms.jar and EITHER tibrvjweb.jar OR tibrvj jar,
but CANNOT include tibrvnative.jar

To use the TibrviMSTransport class, your application must include
tibrvjms. jar (included with EMS) and either tibrvjweb. jar or tibrv. jar
(included with TIBCO Rendezvous). Your application cannot include
tibrvnative. jar.

You can use TibrvIMSTransport only in Rendezvous applications. This class is
% not intended for use in your EMS Java clients.

Both TIBCO Rendezvous and EMS must be purchased, installed, and configured
before creating pure Java Rendezvous applications that use the
TibrvIMSTransport class.

The TibrvIMSTransport class provides Rendezvous reliable communication
only. Other types of communication, such as certified messaging, are not
supported by this transport.

Applications using this transport can send messages to a topic on an EMS server
that has the same topic name as the subject of the message. EMS topics receiving
Rendezvous messages sent by way of the TibrvIMSTransport do not need to
specify the import property. This transport cannot be used to send messages to
JMS queues.

For more information about TibrvNetTransport and how to create use
transports in TIBCO Rendezvous Java programs, see TIBCO Rendezvous
documentation. For more information about the additional methods of
TibrvIMSTransport, see the TIBCO Enterprise Message Service Java API Reference.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibrv/TibrvJMSTransport.html

424 | Chapter 15 Working With TIBCO Rendezvous

TIBCO Enterprise Message Service User’s Guide

| 425

Chapter 16 ~ Working With TIBCO SmartSockets

This chapter describes the interoperation of TIBCO Enterprise Message Service
and TIBCO SmartSockets.

Topics

e Overview, page 426

¢ Configuring Transports for SmartSockets, page 427
¢ Topics, page 433

* Queues, page 434

¢ Import Issues, page 436

* Export Issues, page 437

® Message Translation, page 438

TIBCO Enterprise Message Service User's Guide

426 | Chapter 16 Working With TIBCO SmartSockets

Overview

TIBCO Enterprise Message Service can exchange messages with TIBCO
SmartSockets.

Scope ® EMS can import and export messages to an external system through an EMS
topic.

e EMS can import messages from an external system to an EMS gueue (but
queues cannot export).

Figure 22 SmartSockets Transports in the EMS Server

)

EMS Server
A ; Export 15
EMS Topic Translation > tibss)T
Transport S
@
3
£
n
S
EMS Destination | Translation tibss Import @
(Topic or Queue) [Transport F
r
~———

Message Translation

EMS and SmartSockets use different formats for messages and their data. When
tibemsd imports or exports a messages, it translates the message and its data to
the appropriate format; for details, see Message Translation on page 438.

Configuration

tibemsd uses definitions and parameters in three configuration files to guide the
exchange of messages with SmartSockets.

Enabling The parameter tibss_transports (in the configuration file tibemsd. conf)
globally enables or disables message exchange with SmartSockets. The default
value is disabled. To use these transports, you must explicitly set this parameter
to enabled.

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for SmartSockets | 427

The parameter tibss_config_dir (in the configuration file tibemsd. conf)
specifies the location of SmartSockets files needed by the SmartSockets client
within tibemsd.

Transports Transport definitions (in the configuration file transports. conf) specify the
communication protocol between EMS and the external system; for details, see
Configuring Transports for SmartSockets on page 427.

Destinations Destination definitions (in the configuration files topics.conf and
queues. conf) can set the import and export properties to specify one or more
transports:

® import instructs tibemsd to import messages that arrive on those transports
from SmartSockets, and deliver them to the EMS destination.

® export instructs tibemsd to take messages that arrive on the EMS destination,
and export them to SmartSockets via those transports.

For details, see Topics on page 433, and Queues on page 434.

Starting the Servers

We recommend starting the SmartSockets RTserver before starting tibemsd.

Configuring Transports for SmartSockets

Transports mediate the flow of messages between TIBCO Enterprise Message
Service and TIBCO SmartSockets.

timemsd connects to SmartSockets RTservers in the same way as any other
SmartSockets client. Transport definitions (in the file transports. conf)
configure the behavior of these connections. You must properly configure these
transports.

TIBCO Enterprise Message Service User's Guide

428 | Chapter 16 Working With TIBCO SmartSockets

Transport Definitions

transports.conf contains zero or more transport definitions. Each definition
begins with the name of a transport, surrounded by square brackets. Subsequent
lines set the parameters of the transport.

Table 68 SmartSockets: Transport Parameters (Sheet 1 of 4)

Parameter

Description

type

Required. For SmartSockets transports, the value must be tibss.

SmartSockets Parameters

The syntax and semantics of these parameters are identical to the corresponding parameters in
SmartSockets clients. For full details, see the SmartSockets documentation set.

server_names

The value is a comma-separated list specifying connections to one or more
SmartSockets RTservers.

Each item in the list has the form protocol : hostname : port. You may omit any of
the three parts. The default hostname is the local host computer. The default
protocols and ports vary with hardware and operating system platforms;
on Windows platforms, the default protocol is tcp and the default port is
5101.

A list of several servers specifies fault tolerance—timemsd attempts to
connect to them in the order listed.

When this parameter is absent, the default instructs the EMS server to
attempt to connect to an RTserver on the local host computer (the same
computer as the EMS server), using default protocols and ports.

username timemsd uses these two parameters to authenticate itself to the
password SmartSockets servers.
project SmartSockets uses projects to maintain orthogonal subject name-spaces.

When absent, the default project is rtworks.

delivery_mode

This parameter determines the quality of service with which delivers
messages to the SmartSockets server over this transport:

best_effort | gmd_all | gmd_some | ordered

When absent, the default is best_effort.

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for SmartSockets | 429

Table 68 SmartSockets: Transport Parameters (Sheet 2 of 4)

Parameter Description

1b_mode SmartSockets servers balance the message load by distributing messages
among several clients. This parameter determines the load balancing
regimen for messages that this transport exports to the SmartSockets server.

none | round_robin | weighted | sorted

When absent, the default is none.

override_lb_mode enable instructs the RTserver to deliver all messages on this client
connection—even if other clients participate in load balancing. For
example, even though many order-processing clients might share the load
of order messages, a message logging facility would require all order
messages, rather than a subset.

disable informs the RTserver that this client (that is, the EMS server)
participates in load balancing (for example, sharing the load with other
EMS servers).

When absent, the default is enable.

gmd_file delete SmartSockets clients keep data for guaranteed message delivery (GMD) in a
store file.

disable instructs tibemsd to open the existing GMD store file.

enable instructs tibemsd to delete the GMD store file and create a new one
when creating this transport.

When absent, the default is disable.

import_ss_headers This parameter governs the import of SmartSockets message headers to
EMS properties.

The value can be none, type_num, or all. For complete details, see
SmartSockets Message Properties on page 439.

When absent, the default value is none.

TIBCO Enterprise Message Service User's Guide

430 | Chapter 16 Working With TIBCO SmartSockets

Table 68 SmartSockets: Transport Parameters (Sheet 3 of 4)

Parameter Description

preserve_gmd This parameter determines the behavior of the EMS server when it has
exported a GMD message to SmartSockets, and SmartSockets cannot
deliver that message. When SmartSockets returns the undelivered message,
EMS can either preserve it in the EMS undelivered message queue, or
discard it.

* always instructs EMS to preserve all undelivered GMD messages in the
EMS undelivered message queue.

* receivers instructs EMS to preserve only those undelivered GMD
messages that SmartSockets could not deliver despite the existence of
one or more GMD receivers. That is, if SmartSockets cannot deliver a
message because no GMD receivers exist, then EMS does not preserve
the undelivered message.

e never instructs EMS to discard all undelivered SmartSockets GMD
messages.

When absent, the default value is never.

This parameter applies only when the transport’s delivery_mode
parameter is either gmd_all or gmd_some.

When the EMS server preserves a GMD message, it follows these rules to
convert the returned SmartSockets message to an EMS message:

* Follow all general rules for importing messages; see Message
Translation on page 438.

* Disregard the value of the import_ss_headers parameter, and instead
import all SmartSockets headers (as if the value of import_ss_headers
were all). For a list of headers, see SmartSockets Message Properties on
page 439.

e Set the value of IMS_TIBCO_SS_EXPIRATION to the current time—thatis,
the time at which the SmartSockets server returned the undelivered
message to EMS. (Notice that the this header would otherwise remain
unused, since GMD messages do not expire.)

TIBCO Enterprise Message Service User’s Guide

Configuring Transports for SmartSockets | 431

Table 68 SmartSockets: Transport Parameters (Sheet 4 of 4)

Parameter

EMS Parameters

Description

topic_import_dm

queue_import_dm

EMS sending clients can set the JMSDeliveryMode header field for each
message. However, SmartSockets clients cannot set this header. Instead,
these two parameters determine the delivery modes for all topic messages
and queue messages that tibemsd imports on this transport.

TIBEMS_PERSISTENT | TIBEMS_NON_PERSISTENT | TIBEMS_RELIABLE
When absent, the default is TTIBEMS_NON_PERSISTENT.

export_headers

When true, tibemsd includes JMS header fields in exported messages.
When false, tibemsd suppresses JMS header fields in exported messages.

When absent, the default value is true.

export_properties

When true, tibemsd includes JMS properties in exported messages.
When false, tibemsd suppresses JMS properties in exported messages.

When absent, the default value is true.

Example
These examples from transports. conf illustrate the syntax of transport
definitions.
[SS01]
type = tibss
server names = rtHostl
username = emsServer6
password = myPasswd
project = sales_order_entry
[SS02]

type = tibss

server_names = tcp:rtHost2A:5555, ssl:rtHost2B:5571
username = emsServer6

password = myPasswd

project = mfg_process_control

override_lb_mode = enable

delivery_mode = gmd_some

TIBCO Enterprise Message Service User's Guide

432 | Chapter 16 Working With TIBCO SmartSockets

Destination Name—Syntax and Semantics

Slash & Dot
Separators

Wildcard Star

Trailing Wildcard

This aspect of the mapping between EMS destination names and SmartSockets
subjects is straightforward, one-to-one, and bidirectional.

EMS destination names consist of tokens separated by the dot (.) character.
SmartSockets subjects consists of tokens preceded by the slash (/) character (like
UNIX directory pathnames).

For example, the EMS name foo.bar.baz corresponds to the SmartSockets name
/foo/bar/baz. (Remember that SmartSockets names must begin with a leading
slash, but EMS names need not begin with a leading dot. A leading dot indicates
an empty element preceding it.)

The slash and dot characters have complementary roles in EMS and
SmartSockets. In EMS slash is an ordinary character, while dot is a separator. In
SmartSockets slash is a separator, while dot is an ordinary character. To translate
names between EMS and SmartSockets, substitute these characters one for
another. For example, the EMS name foo/bar.baz corresponds to the
SmartSockets name /foo.bar/baz. However, to avoid confusion, we discourage
using either slash or dot as ordinary characters.

Although both EMS and SmartSockets both interpret the star (*) character as a
wildcard, they differ in its semantics. In this aspect, the mapping is not
one-to-one.

In EMS, star can match any whole token of a name, but not part of a token. In
SmartSockets, star can match part of an token—for example, /foo/b* /baz
matches /foo/bar/baz and /foo/box/baz.

If you are familiar with SmartSockets wildcards but not EMS wildcards, see
Wildcards on page 77.

In EMS the greater-than (>) character is a wildcard that matches any number of
trailing tokens. In SmartSockets a string of three dots (. . .) signifies identical
semantics.

TIBCO Enterprise Message Service User’s Guide

Topics | 433

Topics

Topics can both export and import messages. Accordingly, you can configure
topic definitions (in the configuration file topics. conf) with import and export
properties that specify one or more external transports:

import ® import instructs tibemsd to import messages that arrive on those transports
from SmartSockets, and deliver them to the EMS destination.

export ® export instructs tibemsd to take messages that arrive on the EMS destination,
and export them to SmartSockets via those transports.

Ef ‘ The EMS server never re-exports an imported message on the same topic.

(For general information about topics. conf syntax and semantics, see
topics.conf on page 257. You can also configure topics using the administration
tool command addprop topic.)

Example

For example, the following tibemsadmin commands configure the topic
myTopics.news to import and export messages on three transports.

addprop topic myTopics.news import="SS01,SS02"
addprop topic myTopics.news export="SS01,SS02,SS03"

SmartSockets messages with subject /myTopics/news arrive at tibemsd over the
transports SS01 and SS02. EMS clients can receive those messages by subscribing
to myTopics.news.

EMS messages sent to myTopics.news are exported to SmartSockets over all three
transports—Ss01, SS02 and Ss03. SmartSockets clients of the corresponding
RTservers can receive those messages by subscribing to /myTopics/news.

Import Only when Subscribers Exist

When a topic specifies import on a connected transport, tibemsd imports
messages only when the topic has registered subscribers.

TIBCO Enterprise Message Service User's Guide

434 | Chapter 16 Working With TIBCO SmartSockets

Wildcards

Queues

Wildcards in the import and export properties obey EMS syntax and semantics
(not SmartSockets syntax and semantics); see Destination Name—Syntax and
Semantics on page 432.

Configuration

Example

Queues can import messages, but cannot export them.

You can configure queue definitions (in the configuration file queues. conf) with
the import property that specify one or more external transports.

® import instructs tibemsd to import messages that arrive on those transports
from SmartSockets, and deliver them to the EMS destination.

(For general information about queues . conf syntax and semantics, see
queues . conf on page 250. You can also configure queues using the
administration tool command addprop queue.)

For example, the following tibemsadmin command configures the queue
myTopics.news to import messages on the transports SS01 and sso2.

addprop queue myQueue.in import="SS01,SS02"

SmartSockets messages with subject /myQueue/in arrive at tibemsd over the
transports SS01 and SS02. EMS clients can receive those messages by subscribing
to myQueue.in.

Import—Start and Stop

When a queue specifies import on a connected transport, tibemsd immediately
begins importing messages to the queue, even when no receivers exist for the
queue.

For static queues (configured by an administrator) tibemsd continues importing
until you explicitly delete the queue.

TIBCO Enterprise Message Service User’s Guide

Wildcards

Queues | 435

Wildcards in the import property obey EMS syntax and semantics (not
SmartSockets syntax and semantics); see Destination Name—Syntax and
Semantics on page 432.

EMS clients cannot subscribe to wildcard queues—however, you can define
wildcards queues in the EMS server for the purpose of property inheritance. That
is, you can configure a static queue named foo. * and set properties on it, so that
child queues named foo.bar and foo.baz will both inherit those properties.

If you define a queue that imports foo. *, tibemsd begins importing all matching
messages from SmartSockets. As messages arrive, tibemsd creates dynamic child
queues (for example, foo.bar and foo.baz) and delivers the messages to them.
Notices that tibemsd delivers messages to these dynamic child queues even
when no subscribers exist to drain them.

TIBCO Enterprise Message Service User's Guide

436 | Chapter 16 Working With TIBCO SmartSockets

Import Issues

This section presents issues associated with importing messages to EMS from
SmartSockets—whether on a topic or a queue.

Import Destination Names Must be Unique

A

JMSReplyTo

When a topic and a queue share the same name, at most one of them may set the
import property. For example, if a topic foo.bar and a queue foo.bar are both
defined, only one may specify the import property.

When tibemsd imports and translates a SmartSockets message, it sets the
JMSReplyTo field of the EMS message to the value of the SmartSockets reply_to
header, so that EMS clients can reply to the message.

Usually this value represents a SmartSockets subject. You must explicitly
configure tibemsd to create a topic with a corresponding name, which exports
messages to SmartSockets.

Guaranteed Delivery

S

For full end-to-end guaranteed delivery from SmartSockets to EMS, all three of
these conditions must be true:

* SmartSockets senders must send messages with guaranteed message delivery
(GMD).

* The transport definition must set topic_import_dm or queue_import_dm (as
appropriate) to TTBEMS_PERSISTENT.

® A durable subscription for the EMS topic or queue must exist.

For export guarantees, see Guaranteed Delivery on page 437.

TIBCO Enterprise Message Service User’s Guide

Export Issues | 437

Export Issues

JMSReplyTo

Topics

Temporary Topics

This section presents issues associated with exporting messages from EMS to
SmartSockets.

Consider an EMS message in which the field JMSReplyTo contains a topic. When
exporting such a message to SmartSockets, you must explicitly configure tibemsd
to import replies from SmartSockets to that reply topic.

Consider an EMS message in which the field IMSReplyTo contains a temporary
topic. When tibemsd exports such a message to SmartSockets, it automatically
arranges to import replies to that temporary topic from SmartSockets; you do not
need to configure it explicitly.

Wildcard Subscriptions

Star Wildcard

Both EMS and SmartSockets interpret the star character (*) as a wildcard—but
with different semantics. EMS accepts star only as a whole element, which
matches a whole element. In contrast, SmartSockets accepts star as part of an
element, matching a substring within the element.

When a SmartSockets client subscribes to foo.bar*, then configure tibemsd to
export the superset foo. *; RTserver narrows the set by delivering only messages
that match subscribers. For a full discussion of the differences between EMS and
SmartSockets wildcards, see Destination Name—Syntax and Semantics on

page 432.

Guaranteed Delivery

&

For full end-to-end guaranteed delivery to SmartSockets from EMS, both of these
conditions must be true:

* EMS senders must send persistent messages.
e The transport definition must set delivery_mode to gmd_some or gmd_all (as

appropriate).

To preserve undelivered GMD messages in the EMS undelivered queue, see
preserve_gmd on page 430. For import guarantees, see Guaranteed Delivery on
page 436.

TIBCO Enterprise Message Service User's Guide

438 | Chapter 16 Working With TIBCO SmartSockets

Message Translation

JMS Header Fields

Two Special
Cases

Import

Export

EMS supports the 11 predefined JMS header fields; see]MS Message Header
Fields on page 17.

These two header fields are special cases:
* JMS header JMSDestination corresponds to SmartSockets dest.
® JMS header JMSReplyTo corresponds to SmartSockets reply._to.

When importing a SmartSockets message to an EMS message, tibemsd does not
set any JMS header fields, except for the special cases noted above.

When exporting an EMS message to a SmartSockets message, tibemsd groups all
the JMS header fields (except for the special cases noted above) into a single
submessage within the SmartSockets message. The field JMSHeaders contains
that submessage. Fields of the submessage map the names of JMS header fields to
their values.

tibemsd ignores any JMS header fields that are null or absent—it omits them
from the exported message.

You can instruct tibemsd to suppress the entire header submessage in all
exported messages by setting the transport property export_headers = false.

JMS Property Fields

Import

When importing a SmartSockets message to an EMS message, tibemsd sets these
JMS properties:

® JMS_TIBCO_IMPORTED gets the value true, indicating that the message did
not originate from an EMS client.

® JMS_TIBCO_MSG_EXT gets the value true, indicating that the message might
contain submessage fields or array fields.

® JMS_TIBCO_SS_SENDER gets the value of the SmartSockets sender header
field (in SmartSockets syntax).

In addition, tibemsd maps SmartSockets message properties to EMS properties;
for details see SmartSockets Message Properties on page 439.

TIBCO Enterprise Message Service User’s Guide

Message Translation | 439

Export ~ When exporting an EMS message to a SmartSockets message, tibemsd groups all
the JMS property fields into a single submessage within the SmartSockets
message. The field IMSProperties contains that submessage. Fields of the
submessage map the names of JMS property fields to their values.

tibemsd ignores any JMS property fields that are not set, or are set to null—it
omits them from the exported message.

You can instruct tibemsd to suppress the entire properties submessage in the
exported message by setting the transport property
export_properties = false.

SmartSockets Message Properties

In release 4.1.0 (and later), tibemsd maps SmartSockets message headers to EMS
message properties on import. Table 69 summarizes the mapping. The first
column indicates the EMS property, and the second column indicates the
SmartSockets method that gets the corresponding header.

Import The transport parameter import_ss_headers governs the import behavior. The
third column of Table 69 lists the values of that parameter for which tibemsd
imports the message property in that row. See import_ss_headers on page 429.

Export ~ EMS client programs may modify the values of these properties within imported
messages for re-export to SmartSockets. (However, exporting a native EMS
message does not carry these properties to SmartSockets.)

Export of these properties depends on the value of the transport parameter
export_properties on page 431.

When exporting an EMS message to SmartSockets, tibemsd maps these
properties in reverse. In most cases, the mapping is symmetric—export maps
them back to the same SmartSockets header. However, three exceptions
(JMS_TIBCO_SS_SENDER, JMS_TIBCO_SS_MESSAGE_ID and
JMS_TIBCO_SS_SEQ_NUM) are asymmetric—export maps them to subfields of the
field JMSProperties within the SmartSockets message. The fourth column of
Table 69 indicates this asymmetry.

Table 69 SmartSockets Mapping Message Properties (Import & Export) (Sheet 1 of 2)

Export
EMS Property SmartSockets Method Import Asymmetr.
JMS_TIBCO_SS_SENDER TipcMsgGetSender none Asymmetr.
type_num
all

TIBCO Enterprise Message Service User's Guide

440 | Chapter 16 Working With TIBCO SmartSockets

Table 69 SmartSockets Mapping Message Properties (Import & Export) (Sheet 2 of 2)

EMS Property SmartSockets Method Import E\)s(gg:% oI
JMS_TIBCO_SS_TYPE_NUM TipcMsgGetType type_num

all
JMS_TIBCO_SS_DELIVERY_MODE TipcMsgGetDeliveryMode all
JMS_TIBCO_SS_LB_MODE TipcMsgGetLbMode all
JMS_TIBCO_SS_EXPIRATION TipcMsgGetExpiration all
JMS_TIBCO_SS_PRIORITY TipcMsgGetPriority all
JMS_TIBCO_SS_SENDER_TIMESTAMP TipcMsgGetSenderTimestamp all
JMS_TIBCO_SS_CORRELATION_ID TipcMsgGetCorrelationId all
JMS_TIBCO_SS_USER_PROP TipcMsgGetUserProp all
JMS_TIBCO_SS_MESSAGE_ID TipcMsgGetMessageId all AAsynuneh:
JMS_TIBCO_SS_SEQ_NUM TipcMsgGetSegNum all AAsynunehz

Message Body

tibemsd can export messages with any JMS message body type to TIBCO
SmartSockets. Conversely, tibemsd can import messages with any message type
from TIBCO SmartSockets.

For information about JMS body types, see JMS Message Bodies on page 22.

For information about the structure of messages, see JMS Message Structure on

page 17.

Import ~ When importing a SmartSockets message, tibemsd translates it to one of two
EMS message body types:

* If the SmartSockets message contains only unnamed fields, then it translates
into a JMSStreamMessage. The stream contains the values of the unnamed
fields in the same order as they appear in the SmartSockets message.

e If the SmartSockets message contains one or more named fields, then it
translates into a JMSMapMessage. The map message contains the named fields;
the order of the fields is indeterminate.

TIBCO Enterprise Message Service User’s Guide

Message Translation | 411

Export ~ When exporting an EMS message, tibemsd translates it to one of six SmartSockets
message types (see Table 70) with the following structure:

* The named field JMSHeaders is the first field (omitted when the transport
parameter export_headers is false). It contains a submessage; see J]MS
Header Fields on page 438.

* The named field JMSProperties is the next field (omitted when the transport
parameter export_properties is false). It contains a submessage; see JMS
Property Fields on page 438.

* The data fields follow the JMS headers and properties (when present). For
details about field names and types, see the third column of Table 70.

Table 70 SmartSockets: Mapping Message Types (Export)

SmartSockets

JMS Message Type Message Type Data Fields

JMSBytesMessage T_MT_JMS_BYTES One unnamed field of type
T_MSG_FT_BINARY

JMSMapMessage T_MT_JMS_MAP Named fields; indeterminate

order

JMSObjectMessage T_MT_JMS_OBJECT One unnamed field of type
T_MSG_FT_BINARY

JMSStreamMessage T_MT_JMS_STREAM Unnamed fields in order

JMSTextMessage T_MT_JMS_TEXT One unnamed field of type
T_MSG_FT_STR

All other JMS T_MT_INFO No data fields
message types

TIBCO Enterprise Message Service User's Guide

442 | Chapter 16 Working With TIBCO SmartSockets

Data Types

Table 71 presents the mapping between EMS datatypes and SmartSockets
datatypes. The mapping is bidirectional, except for a few SmartSockets types that
have no corresponding EMS type (for these types the mapping is marked as
unidirectional in the middle column of Table 71).

Table 71 SmartSockets: Mapping Data Types (Sheet 1 of 2)

EMS Map SmartSockets

Boolean T MSG_FT BOOL

Byte T_MSG_FT_BYTE
Character T_MSG_FT_CHAR

Short T_MSG_FT_INT2
Integer T_MSG_FT_INT4

Long T_MSG_FT_TINTS8

Float T_MSG_FT_REAL4
Double T_MSG_FT_REALS
Double <— T_MSG_FT_TIMESTAMP
String T_MSG_FT_STR

String < T_MSG_FT_XML

String <— T_MSG_FT_UTFES8

Byte Array T_MSG_FT_BINARY
Short Array < T_MSG_FT_BOOL_ARRAY
Short Array T_MSG_FT_INT2_ARRAY
Integer Array T_MSG_FT_INT4_ARRAY
Long Array T_MSG_FT_TINT8_ARRAY
Float Array T_MSG_FT_REAL4_ARRAY
Double Array T MSG_FT REAL8_ARRAY

TIBCO Enterprise Message Service User’s Guide

Message Translation | 443

Table 71 SmartSockets: Mapping Data Types (Sheet 2 of 2)

EMS Map SmartSockets
Double Array < T_MSG_FT_TIMESTAMP_ARRAY
Stream Message T_MSG_FT_MSG

(See Import on page 440.)

Map Message

Destination Names

tibemsd automatically translates destination names when importing or exporting
a message; see Slash & Dot Separators on page 432.

When importing, it translates names in the SmartSockets subject and reply_to
fields. When exporting, it translates names in the EMS JMSDestination and
JMSReplyTo fields.

TIBCO Enterprise Message Service User's Guide

444 | Chapter 16 Working With TIBCO SmartSockets

TIBCO Enterprise Message Service User’s Guide

Chapter 17

Topics

| 445

Monitoring Server Activity

System administrators must monitor and manage the TIBCO Enterprise Message
Service server. The logging, monitoring, and statistics facilities provided by the
server allow system administrators to effectively view system activity and track
system performance.

* Log Files and Tracing, page 446

* Message Tracing, page 452

* Monitoring Server Events, page 454

¢ Working with Server Statistics, page 460

TIBCO Enterprise Message Service User's Guide

446 | Chapter 17 Monitoring Server Activity

Log Files and Tracing

You can configure the TIBCO Enterprise Message Service server to write a variety
of information to the log. Several parameters and commands control where the
log is located as well as what information is written to the log. The log can be
written to a file, to the system console, or to both.

Configuring the Log File

The 1logfile configuration parameter in tibemsd.conf controls the location and
the name of the log file.

You can specify that the log file should be backed up and emptied after it reaches
a maximum size. This allows you to rotate the log file and ensure that the log file
does not grow boundlessly. The 1logfile_max_size configuration parameter
allows you to specify the maximum size of the current log file. Set the parameter
to 0 to specify no limit. Use KB, MB, or GB units.

Once the log file reaches its maximum size, it is copied to a file with the same
name as the current log file except a sequence number is appended to the name of
the backup file. On startup—and only on startup—the server queries the
directory and determines the first available sequence number. It then uses the
next sequence number when it needs to back up the current log file. By doing so,
you can keep a continuous sequencing, as long as you retain the most recent log
file (highest sequence number) between server restarts. Conversely, if you move
or remove all log files before a server restart, then the sequencing will restart at 1.

For example, if the current log file is named tibems. log, the first copy is named
tibems.log.1, the second is named tibems.log.2, and so on. Similarly, if the
highest sequence number in use when the server starts is 19, or tibemsd.log.19,
then the next backup file created will be named tibemsd.log.20. This is true
even if you removed tibemsd.log.19 and all other log files after the server
started.

If logfile_max_count is specified, the server keeps at most the number of log
files specified by that parameter, including the current log file. When the
maximun number of log files has been reached and the server needs to back up
the current log file, it deletes the oldest log file (the ones with smallest number). If
you change the parameter setting, after the server is restarted, the next time it
needs to rotate the log file it deletes however many of the lowest sequence
numberd files required to reach the logfile_max_count maximum.

You can also dynamically force the log file to be backed up and truncated using
the rotatelog command in tibemsadmin. See Command Listing on page 128 for
more information about the rotatelog command.

TIBCO Enterprise Message Service User’s Guide

Log Files and Tracing | 447

For other configuration parameters that affect the log file, see Tracing and Log File
Parameters on page 220.

Tracing on the Server

The TIBCO Enterprise Message Service server can be configured to produce
tracing messages. These messages can describe actions performed for various
areas of functionality (for example, Access Control, Administration, or Routing).
These messages can also provide information about activities performed on or by
the server, or the messages can provide warnings in the event of failures or illegal
actions.

Trace messages can be sent to a log file, the console, or both. You configure tracing
in the following ways:

* By configuring the log_trace and/or console_trace parameters in the
tibemsd. conf file; see Table 16 on page 143.

¢ By specifying the -trace option when starting the server
* By using the set server command when the server is running.
log_trace and console_trace can be used to configure what types of messages

are to go to the log file and to the console.

When you want trace messages to be sent to a log file, you must also configure the

% logfile configuration parameter. If you specify 1log_trace, and the logfile
configuration parameter is not set to a valid file, the tracing options are stored,
but they are not used until the server is started with a valid log file.

When configuring log or console tracing, you have a variety of options for the

types of trace messages that can be generated. Table 72 on page 448 describes the
available tracing options.

TIBCO Enterprise Message Service User's Guide

448 | Chapter 17 Monitoring Server Activity

Table 72 Server Tracing Options

Trace Option Description

DEFAULT Sets the trace options to the default set. This includes:

¢ INFO

¢ WARNING

* ACL

¢ LIMITS

® ROUTE

¢ ADMIN

¢ RVADV

¢ CONNECT_ERROR

® CONFIG
® MSG
ACL Prints a message when a user attempts to perform an

unauthorized action. For example, if the user attempts to
publish a message to a secure topic for which the user has
not been granted the publish permission.

ADMIN Prints a message whenever an administration function is
performed.
AUTH Prints a message when the server authenticates a user

using an external LDAP system.

CONFIG Prints information about configuration files and their
contents as the EMS server is starting up.

CONNECT Prints a message when a user attempts to connect to the
server.

CONNECT_ERROR Prints a message when an error occurs on a connection.

DBSTORE Prints a message when a database store is created, along

with general database store information and errors.

DEST Prints a message when a dynamic destination is created.

TIBCO Enterprise Message Service User’s Guide

Log Files and Tracing | 449

Table 72 Server Tracing Options

Trace Option Description

FLOW Prints a message when the server enforces flow control or
stops enforcing flow control on a destination.

INFO Prints messages as the server performs various internal
housekeeping functions, such as creating a configuration
file, opening the persistent database files, and purging
messages. Also prints a message when tracking by
message ID is enabled or disabled.

JAAS Prints messages related to any extensible security
modules.

Messages are printed when a username and password are
passed to the LoginModule for authentication, and when
a user and action are passed to the Permissions Modules
for authorization.

JVM Prints startup information about the JVM configuration,
as well as any output from custom modules running in
the JVM that uses System.out.

JVMERR Prints output from custom modules running in the JVM
that uses System. err.

LDAP_DEBUG Prints messages when LDAP is used for authentication or
to obtain group information.

LIMITS Prints a message when a limit is exceeded, such as the
maximum size for a destination.

LOAD Prints the paths of any dynamically loaded libraries. For
example, the tibemsd can load Zlib, SmartSockets, and
SSL libraries.

MEMORY Prints a server trace information when reserve memory is

triggered because of low server memory conditions.

TIBCO Enterprise Message Service User's Guide

450 | Chapter 17 Monitoring Server Activity

Table 72 Server Tracing Options

Trace Option Description

MSG Specifies that message trace messages should be printed.
Message tracing is enabled/disabled on a destination or
on an individual message. If message tracing is not
enabled for any messages or destinations, no trace
messages are printed when this option is specified for log
or console tracing. See Message Tracing on page 452 for
more information about message tracing.

MULTICAST Prints a message when a message consumer subscribes or
attempts to subscribe to a multicast-enabled topic, along
with general multicast information and errors.

PRODCONS Prints a message when a client creates or closes a
producer or consumer.

ROUTE Prints a message when routes are created or when a route
connection is established.

ROUTE_DEBUG Prints status and error messages related to the route.

RVADV Prints TIBCO Rendezvous advisory messages whenever
they are received.

SS Prints trace messages related to SmartSockets bridges.

SSL Prints detailed messages of the SSL process, including
certificate content.

SSL_DEBUG Prints messages that trace the establishment of SSL
connections.

= Prints a message when a client performs a transaction.

WARNING Prints a message when a failure of some sort occurs,

usually because the user attempts to do something illegal.
For example, a message is printed when a user attempts
to publish to a wildcard destination name.

Specify tracing with a comma-separated list of trace options. You may specify
trace options in three forms:

e plain A trace option without a prefix character replaces any existing trace
options.

TIBCO Enterprise Message Service User’s Guide

Log Files and Tracing | 451

* + A trace option preceded by + adds the option to the current set of trace
options.

® - A trace option preceded by - removes the option from the current set of
trace options.

Examples

The following example sets the trace log to only show messages about access
control violations.

log_trace=ACL

The next example sets the trace log to show all default trace messages, in addition
to SSL messages, but ADMIN messages are not shown.

log_trace=DEFAULT, -ADMIN, +SSL

The next example sends a trace message to the console when a TIBCO
Rendezvous advisory message arrives.

console_trace=RVADV

TIBCO Enterprise Message Service User's Guide

452 | Chapter 17 Monitoring Server Activity

Message Tracing

S

In addition to other server activity, you can trace messages as they are processed.
Trace entries for messages are only generated for destinations or messages that
specify tracing should be performed. For destinations, you specify the trace
property to enable the generation of trace messages. For individual messages, the
JMS_TIBCO_MSG_TRACE property specifies that tracing should be performed for
this message, regardless of the destination settings. The sections below describe
the tracing properties for destinations and messages.

Message trace entries can be output to either the console or the log. The MSG trace
option specifies that message trace entries should be displayed, and the DEFAULT
trace option includes the MSG option. See Tracing on the Server on page 447 for
more information about specifying trace options.

You must set the tracing property on either destinations or messages and also set
the MSG or DEFAULT trace option on the console or the log before you can view
trace entries for messages.

EMS tracing features do not filter unprintable characters from trace output. If
your application uses unprintable characters within messages (whether in data or
headers), the results of message tracing are unpredictable.

Enabling Message Tracing for a Destination

The trace property on a destination specifies that trace entries are generated for
that destination.

The trace property can optionally be specified as trace=body. Setting
trace=body includes the message body in trace messages. The EMS server prints
up to one kilobyte of a message string field, and up to a total message size of 8 KB.
The trace message indicates if the full message is not printed.

Setting trace without the body option specifies that only the message sequence
and message ID are included in the trace message.

When message tracing is enabled for a destination, a trace entry is output for each
of the following events that occur in message processing;:

* messages are received into a destination

® messages are sent to consumers

* messages are imported or exported to/from an external system
* messages are acknowledged

* messages are sent across a destination bridge

TIBCO Enterprise Message Service User’s Guide

Message Tracing | 453

* messages are routed

Replies to request messages are traced only when the reply destination has the
trace property. Similarly, replies to exported messages are only traced when the
trace property is set.

Enabling Message Tracing on a Message

You can enable tracing on individual messages by setting the
JMS_TIBCO_MSG_TRACE property on the message. The value of the property can be
either null (Java/.NET null or NULL in C) or the string "body". Setting the
property to null specifies only the message ID and message sequence will be
included in the trace entries for the message. Setting the property to "body"
specifies the message body will be included in the trace entries for the message.

When the JMS_TIBCO_MSG_TRACE property is set for a message, trace entries are
generated for the message as it is processed, regardless of whether the trace
property is set for any destinations the message passes through. Trace messages
are generated for the message when it is sent by the producer and when it is
received by the consumer.

TIBCO Enterprise Message Service User's Guide

454 | Chapter 17 Monitoring Server Activity

Monitoring Server Events

The TIBCO Enterprise Message Service server can publish topic messages for
internal system events. For example, the server can publish a message when users
connect or disconnect. System event messages contain detail about the event
stored in properties of the message. This section gives an overview of the
monitoring facilities provided by the server. For a list of monitor topics and a
description of the message properties for each topic, see Appendix A, Monitor
Messages, on page 533.

System Monitor Topics

The TIBCO Enterprise Message Service server can publish messages to various
topics when certain events occur. There are several types of event classes, each
class groups a set of related events. For example, some event classes are
connection, admin, and route. Each event class is further subdivided into the
events for each class. For example, the connection class has two events: connect
and disconnect. These event classes are used to group the system events into
meaningful categories.

All system event topic names begin with $sys.monitor. The remainder of the
name is the event class followed by the event. For example, the server publishes a
message to the topic $sys.monitor.connection.disconnect whenever a client
disconnects from the server. The naming scheme for system event topics allows
you to create wildcard subscriptions for all events of a certain class. For example,
to receive messages whenever clients connect or disconnect, you would create a
topic subscriber for the topic $sys.monitor.connection. *.

Monitor topics are created and maintained by the server. Monitor topics are not
listed in the topics. conf file. Users can subscribe to monitor topics but cannot
create them.

Monitoring Messages

You can monitor messages processed by a destination as they are sent, received,
or acknowledged. You can also monitor messages that have prematurely exited
due to expiration, being discarded, or a maxRedelivery failure.

The $sys.monitor topic for monitoring messages has the following format:

$sys.monitor.D.E.destinationName

TIBCO Enterprise Message Service User’s Guide

Monitoring Server Events | 455

Where D is the type of destination, E is the event you wish to monitor, and
destinationName is the name of the destination whose messages you wish to
monitor. Table 73 describes the possible values of D and E in message monitoring
topics.

Table 73 Message monitoring qualifiers (Sheet 1 of 2)

Qualifier Value Description

D T Destination to monitor is a topic. Include the message
body in the monitor message as a byte array. Use the
createFromBytes () method when viewing the monitor
message to recreate the message body, if desired.

t Destination to monitor is a topic. Do not include the
message body in the monitor message.

Q Destination to monitor is a queue. Include the message
body in the monitor message as a byte array. Use the
createFromBytes () method when viewing the monitor
message to recreate the message body;, if desired.

q Destination to monitor is a queue. Do not include the
message body in the monitor message.

TIBCO Enterprise Message Service User's Guide

456 | Chapter 17 Monitoring Server Activity

Table 73 Message monitoring qualifiers (Sheet 2 of 2)

Qualifier Value Description

E s Monitor message is generated when a message is sent by
the server to:

® aconsumer
® aroute

* an external system by way of a transport

T Monitor message is generated when a message is
received by the specified destination. This occurs when
the message is:

* Sent by a producer
¢ Sent by a route

¢ Forwarded from another destination by way of a
bridge

e Imported from transport to an external system

a Monitor message is generated when a message is
acknowledged.
p Monitor message is generated when a message

prematurely exits due to expiration, being discarded, or a
maxRedelivery failure.

* Monitor message is generated when a message is sent,
received, or acknowledged for the specified destination.

For example, $sys.monitor.T.r.corp.News is the topic for monitoring any
received messages to the topic named corp.News. The message body of any
received message is included in monitor messages on this topic. The topic
$sys.monitor.q.*.corp.* monitors all message events (send, receive,
acknowledge) for all queues matching the name corp. *. The message body is not
included in this topic’s messages.

The messages sent to this type of monitor topic include a description of the event,
information about where the message came from (a producer, route, external
system, and so on), and optionally the message body, depending upon the value
of D. See Appendix A, Monitor Messages, on page 533 for a complete description
of the properties available in monitoring messages.

TIBCO Enterprise Message Service User’s Guide

Monitoring Server Events | 457

You must explicitly subscribe to a message monitoring topic. That is, subscribing
to $sys.monitor.> will subscribe to all topics beginning with $sys.monitor, but
it does not subscribe you to any specific message monitoring topic such as
$sys.monitor.T.*.foo.bar. However, if another subscriber generates interest
in the message monitor topics, this subscriber will also receive those messages.

You can specify wildcards in the destinationName portion of the message monitoring
topic to subscribe to the message monitoring topic for all matching destinations.
For example, you can subscribe to $sys.monitor.T.r.> to monitor all messages
received by all topics. For performance reasons, you may want to avoid
subscribing to too many message monitoring topics. See Performance
Implications of Monitor Topics on page 458 for more information.

Viewing Monitor Topics

Monitor topics are similar to other topics. To view these topics, create a client
application that subscribes to the desired topics.

Because monitor topics contain potentially sensitive system information,
authentication and permissions are always checked when clients access a monitor
topic. That is, even if authentication for the server is disabled, clients are not able
to access monitor topics unless they have logged in with a valid username and
password and the user has permission to view the desired topic.

The admin user and members of the $admin group have permission to perform
any server action, including subscribing to monitor topics. All other users must be
explicitly granted permission to view monitor topics before the user can
successfully create subscribers for monitor topics. For example, if user BOB is not
a member of the $admin group, and you wish to allow user BOB to monitor all
connection events, you can grant BOB the required permission with the following
command using the administration tool:

grant topic $sys.monitor.connection.* BOB subscribe

Bob’s application can then create a topic subscriber for $sys.monitor.connect. *
and view any connect or disconnect events.

Topics starting with $sys.monitor do not participate in any permission
%} inheritance from parent topics other than those starting with $sys.monitor (that
is, *.* or *.> is not a parent of $sys.monitor).

Therefore, granting permission to a user to subscribe to > does not allow that user
to subscribe to $sys.monitor topics. You must explicitly grant users permission
to $sys.monitor topics (or parent topics, such as $sys.monitor.admin. *) for a
user to be able to subscribe to that topic.

TIBCO Enterprise Message Service User's Guide

458 | Chapter 17 Monitoring Server Activity

Monitor topics publish messages of type MapMessage. Information about the
event is stored within properties in the message. Each system event has different
properties. Appendix A, Monitor Messages, on page 533 describes each of the
monitor topics and the message properties for the messages published on that
topic. Your application can receive and display all or part of a monitor message,
just as it would handle any message sent to a topic. However, there are some ways
in which monitor messages are handled differently from standard messages:

* Monitor messages cannot be routed to other servers.
¢ Monitor messages are not stored persistently on disk.
* Monitor messages are not swapped from process memory to disk.

You can have any number of applications that subscribe to monitor messages. You
can create different applications that subscribe to different monitor topics, or you
can create one application that subscribes to all desired monitor topics. Your topic
subscribers can also use message selectors to filter the monitor messages so your

application receives only the messages it is interested in.

Performance Implications of Monitor Topics

The TIBCO Enterprise Message Service server only generates messages for
monitor topics that currently have subscribers. So, if no applications subscribe to
monitor topics, no monitor messages are generated. Generating a monitor
message does consume system resources, and therefore you should consider what
kinds of monitoring your environment requires. System performance is affected
by the number of subscribers for monitor topics as well as the frequency of
messages for those topics.

For development and testing systems, monitoring all system events is probably
desirable. Usually, development and testing systems do not have large message
volumes, and monitoring can give you information about system problems.

For production systems, monitoring all events may have an adverse effect on
system performance. Therefore, you should not create topic subscribers for
$sys.monitor.> in your production system. Also, monitor events are likely to be
added in future releases, so the number of monitor topics may grow.
Subscriptions to monitor topics in production systems should always be limited
to specific monitor topics or wildcard subscriptions to specific classes of monitor
topics that are required.

Also, consider the frequency of messages to each monitor topic. System
administration events, such as creating topics, routes, and changing permissions,
do not occur frequently, so creating subscriptions for these types of events will
most likely not have a significant effect on performance.

TIBCO Enterprise Message Service User’s Guide

Monitoring Server Events | 459

Also, using message selectors to limit monitor messages can improve
performance slightly. The server does not send any messages that do not match a
subscriber’s message selector. Even though the message is not sent, the message is
still generated. Therefore there is still system overhead for subscribers to a
monitor topic, even if all messages for that topic do not match any subscriber’s
message selector filter.

TIBCO Enterprise Message Service User's Guide

460 | Chapter 17 Monitoring Server Activity

Working with Server Statistics

The TIBCO Enterprise Message Service server allows you to track incoming and
outgoing message volume, message size, and message statistics for the server
overall as well as for each producer, consumer, or route. You can configure the
type of statistics collected, the interval for computing averages, and amount of
detail for each type.

Statistic tracking can be set in the server’s configuration file, or you can change
the configuration dynamically using commands in the administration tool or by
creating your own application with the administration APIs.

Statistics can be viewed using the administration tool, or you can create your own
application that performs more advanced analysis of statistics using the
administration APIs.

This section details how to configure and view statistics using the configuration
files and administration tool commands. For more information about the
administration APIs, see the description of com.tibco. tibjms.admin in the
online documentation.

The TIBCO Enterprise Message Service server tracks the number of incoming or
% outgoing messages, but only messages sent or received by a producer, consumer,
or route are tracked. The server also sends system messages, but these are not
included in the number of messages.

However, the server can add a small amount of data to a message for internal use
by the server. This overhead is counted in the total message size, and you may
notice that some messages have a greater message size than expected.

Overall Server Statistics

The server always collects certain overall server statistics. This includes the rate of
inbound and outbound messages (expressed as number of messages per second),
message memory usage, disk storage usage, and the number of destinations,
connections, and durable subscriptions. Gathering this information consumes
virtually no system resources, therefore these statistics are always available. You
can view overall server statistics by executing the show server command.

The default interval for collecting overall server statistics is 1 second. You may
wish to view average system usage statistics over a larger interval. The
server_rate_interval configuration parameter controls the collection interval
for server statistics. The parameter can be set in the configuration file or
dynamically using the set server command. This parameter can only be set to
positive integers greater than zero.

TIBCO Enterprise Message Service User’s Guide

Working with Server Statistics | 461

Enabling Statistic Gathering

Detailed Statistics

Each producer, consumer, destination, and route can gather overall statistics and
statistics for each of its destinations. To enable statistic gathering, you must set the
statistics parameter to enabled. This parameter can be specified in the
configuration file, and it can be changed dynamically using the set server
command.

The statistics parameter allows you to globally enable and disable statistic
gathering. Statistics are kept in server memory for the life of each object. If you
wish to reset the total statistics for all objects to zero, disable statistic gathering,
then re-enable it. Server statistics are also reset when the server shuts down and
restarts, or in the event of a fault-tolerant failover.

For each producer, consumer, destination, and route the total number of
sent/received messages and total size of messages is maintained. Also, producers
and consumers keep these statistics for each destination that they use to send or
receive messages.

The rate of incoming/outgoing messages and message size is calculated over an
interval. By default, the average is calculated every 3 seconds. You can increase or
decrease this value by altering the rate_interval parameter. This parameter can
be set in the configuration file or dynamically using the set server command.
Setting this parameter to 0 disables the tracking of statistics over an interval—
only the total statistics for the destination, route, producer, or consumer are kept.

Gathering total statistics for producers, consumers, destinations, and routes
consumes few system resources. Under most circumstances, enabling statistic
gathering and average calculations should not affect system performance.

In some situations, the default statistic gathering may not be sufficient. For
example, if a topic subscriber subscribes to wildcard topics, the total statistics for
all topics that match the wildcard are kept. You may wish to get further detail in
this case and track the statistics for each actual topic the subscriber receives.

The following situations may require detailed statistic gathering:
¢ Topic subscribers that subscribe to wildcard topics

* Message producers that do not specify a destination when they are created.
These message producers can produce messages for any destination, and the
destination name is specified when a message is sent.

¢ Routes can have incoming and outgoing messages on many different topics.

¢ Channels can also have outgoing messages on many different topics.

TIBCO Enterprise Message Service User's Guide

462 | Chapter 17 Monitoring Server Activity

To enable detailed statistics, set the detailed_statistics parameter to the type
of statistics you wish to receive. The parameter can have the following values:

* NONE — disables detailed statistic gathering.

® CONSUMERS — enables detailed statistics for topic subscribers with wildcard
topic names.

® PRODUCERS — enables detailed statistics for producers that do not specify a
destination when they are created.

e ROUTES — enables detailed statistics for routes.
e (CHANNELS — enables detailed statistics for channels.

You can set the detailed_statistics parameter to NONE or any combination of
CONSUMERS, PRODUCERS, ROUTES, or CHANNELS. To specify more than one type of
detailed statistic gathering, provide a comma-separated list of values. You can set
the detailed_statistics parameter in the configuration file or dynamically by
using the set server command. For example, the following set server
command enables detailed statistic tracking for producers and routes.

set server detailed_statistics = PRODUCERS, ROUTES

Collecting detailed statistics does consume memory, and can adversely affect
performance when gathering a high volume of statistics. There are two
parameters that allow you to control resource consumption when collecting
detailed statistics. First, you can control the amount of time statistics are kept, and
second you can set a maximum amount of memory for detailed statistic
gathering. When application programs create many dynamic destinations, we
recommend against gathering detailed statistics.

The statistics_cleanup_interval parameter controls how long detailed
statistics are kept. This parameter can be set either in the configuration file or
dynamically with the set server command. By default, statistics are kept for 15
seconds. For example, if there is a topic subscriber for the topic foo. *, and the
subscriber receives a message on topic foo . bar, if no new messages arrive for
topic foo.bar within 15 seconds, statistics for topic foo.bar are deleted for that
consumer. You can set this parameter to 0 to signify that all detailed statistics are
to be kept indefinitely. Of course, statistics for an object only exist as long as the
object itself exists. That is, if a message consumer terminates, all detailed statistics
for that consumer are deleted from memory.

The max_stat_memory parameter controls the amount of memory used by
detailed statistics. This parameter can be set either in the configuration file or
dynamically with the set server command. By default, this parameter is set to 0
which signifies that detailed statistics have no memory limit. If no units are
specified, the value of this parameter is in bytes. Optionally, you can specify units

TIBCO Enterprise Message Service User’s Guide

Working with Server Statistics | 463

as KB, MB, or GB. When the specified limit is reached, the server stops collecting
new statistics. The server will only resume collecting statistics if the amount of
memory used decreases (for example, if the statistics_cleanup_interval is
set and old statistics are removed).

Displaying Statistics

When statistic collecting is enabled, you can view statistics for producers,
consumers, routes, and destinations using the show stat command in the
administration tool.

The show stat command allows you to filter the statistics based on destination
name, user name, connection ID, or any combination of criteria. You can
optionally specify the total keyword to retrieve only the total statistics (this
suppresses the detailed output). You can also optionally specify the "wide"
keyword when displaying statistics for destinations or routes. This specifies that
inbound and outbound message statistics should be displayed on the same line
(the line can be 100 characters or more).

The following illustrates displaying statistics for a route where detailed statistic
tracking is enabled.

tcp://serverl:7322> show stat route B
Inbound statistics for route 'B':

Total Count Rate/Second
Destination Msgs Size Msgs Size
<total> 189 37.9 Kb 10 2.0 Kb
Topic: dynamic.O 38 7.6 Kb 2 0.4 Kb
Topic: dynamic.1 38 7.6 Kb 2 0.4 Kb
Topic: dynamic.2 38 7.6 Kb 2 0.4 Kb
Topic: dynamic.3 38 7.6 Kb 2 0.4 Kb
Topic: dynamic.4 37 7.4 Kb 2 0.4 Kb

Outbound statistics for route 'B':

Total Count Rate/Second
Destination Msgs Size Msgs Size
<total> 9538 1.9 MB 10 2.1 Kb
Topic: dynamic.O 1909 394.9 Kb 2 0.4 Kb
Topic: dynamic.1 1908 394.7 Kb 2 0.4 Kb
Topic: dynamic.2 1907 394.5 Kb 2 0.4 Kb
Topic: dynamic.3 1907 394.5 Kb 2 0.4 Kb
Topic: dynamic.4 1907 394.5 Kb 2 0.5 Kb

See show stat on page 168 for more information and detailed syntax of the show
stat command.

TIBCO Enterprise Message Service User's Guide

464 | Chapter 17 Monitoring Server Activity

TIBCO Enterprise Message Service User’s Guide

Chapter 18

Topics

| 465

Using the SSL Protocol

Secure Sockets Layer (SSL) is a protocol that provides secure authentication and
transmits encrypted data over the Internet or an internal network. Most web
browsers support SSL, and many Web sites and Java applications use it to obtain
confidential user information, such as credit card numbers.

The SSL protocol is complex, and this chapter is not a complete description of
SSL. Instead, this chapter describes how to configure SSL in the TIBCO Enterprise
Message Service server and in client applications that communicate with the
server. For a more complete description of SSL, see the SSL specification at

http:/ /www.mozilla.org/projects/security /pki/nss/ssl/.

* SSL Support in TIBCO Enterprise Message Service, page 466
¢ Digital Certificates, page 467

¢ File Names for Certificates and Keys, page 469

¢ Configuring SSL in the Server, page 471

¢ Configuring SSL in EMS Clients, page 472

* Specifying Cipher Suites, page 476

® SSL Authentication Only, page 482

¢ Enabling FIPS Compliance, page 483

TIBCO Enterprise Message Service User's Guide

http://www.mozilla.org/projects/security/pki/nss/ssl/

466 | Chapter 18 Using the SSL Protocol

SSL Support in TIBCO Enterprise Message Service

Implementations

TIBCO Enterprise Message Service supports the Secure Sockets Layer (SSL)
protocol. SSL uses public and private keys to encrypt data over a network
connection to secure communication between pairs of components:

e between an EMS client and the tibemsd server

e between the tibemsadmin tool and the tibemsd server
® between two routed servers

e between two fault-tolerant servers

SSL provides secure communication that works with other mechanisms for
authentication available in the EMS server. When authorization is enabled in
the server, the connection undergoes a two-phase authentication process. First, an
SSL hand-shake between client and server initializes a secure connection. Second,
the EMS server checks the credentials of the client using the supplied username
and password. If the connecting client does not supply a valid username and
password combination, the connection fails, even if the SSL 67 succeeded.

When authorization is enabled, usernames and passwords are always checked,
even on SSL secured connections.

The TIBCO Enterprise Message Service server and the C client libraries use
OpenSSL for SSL support. For more information, see www.openssl.org.

EMS Java clients can use either JSSE (from Sun JavaSoft) or the SSL
implementation from Entrust. The EMS Java installation includes JSSE; if you
prefer to use Entrust, you must purchase and install the Entrust SSL
implementation separately.

EMS .NET 2.0 clients use the Microsoft implementation of SSL. The Microsoft
implementation of SSL is compatible with OpenSSL. Certificates required by the
client can either be stored in files or the Microsoft certificate store. However,
Microsoft requires that the root certificate be installed in the Microsoft Certificate
Store, even when certificate files are in use.

EMS distributions usually build and include the latest versions of OpenSSL and
OpenLDAP publicly available at the time of release. For exact version numbers
see the Third Party Software License Agreements documented in the TIBCO
Software Inc. End User License Agreement for TIBCO Enterprise Message
Service.

TIBCO Enterprise Message Service User’s Guide

http://www.openssl.org/

Digital Certificates | 467

Digital Certificates

Digital certificates are data structures that represent identities. EMS uses
certificates to verify the identities of servers and clients. Though it is not necessary
to validate either the server or the client for them to exchange data over SSL,
certificates provide an additional level of security.

A digital certificate is issued either by a trusted third-party certificate authority, or
by a security officer within your enterprise. Usually, each user and server on the
network requires a unique digital certificate, to ensure that data is sent from and
received by the correct party.

In order to support SSL, the EMS server must have a digital certificate. Optionally,
EMS clients may also be issued certificates. If the server is configured to verify
client certificates, a client must have a certificate and have it verified by the server.
Similarly, an EMS client can be configured to verify the server’s certificate. Once
the identity of the server and/or client has been verified, encrypted data can be
transferred over SSL between the clients and server.

A digital certificate has two parts—a public part, which identifies its owner (a
user or server); and a private key, which the owner keeps confidential.

The public part of a digital certificate includes a variety of information, such as
the following:

* The name of the owner, and other information required to confirm the unique
identity of the subject. This information can include the URL of the web server
using the digital certificate, or an email address.

* The subject’s public key.
* The name of the certificate authority (CA) that issued the digital certificate.
* A serial number.

¢ The length of time the certificate will remain valid—defined by a start date
and an end date.

The most widely-used standard for digital certificates is ITU-T X.509. TIBCO
Enterprise Message Service supports digital certificates that comply with X.509
version 3 (X.509v3); most certificate authorities, such as Verisign and Entrust,
comply with this standard.

TIBCO Enterprise Message Service User's Guide

468 | Chapter 18 Using the SSL Protocol

Digital Certificate File Formats

TIBCO Enterprise Message Service supports the following file formats for digital
certificates:

e PEM (Privacy Enhanced Mail)

¢ DER (Distinguished Encoding Rules)

e PKCS#7

e PKCS#12

* Java KeyStore (for client digital certificates)

* Entrust Store (for client digital certificates)

Private Key Formats

TIBCO Enterprise Message Service supports the following file formats for private
keys:

e PEM (Privacy Enhanced Mail)

¢ DER (Distinguished Encoding Rules)
e PKCS#8

e PKCS#12

The EMS server uses OpenSSL to read private keys. It supports PEM, DER,
PKCS8 and PKCS12 formats; it does not read Java KeyStore or Entrust Store files.

TIBCO Enterprise Message Service User’s Guide

File Names for Certificates and Keys | 469

File Names for Certificates and Keys

For all parameters that specify the identity (digital certificate), private key, issuer
(certificate chain), or trusted list of certificate authorities, valid files must be
specified. Not all types of files are supported for clients and servers. The
description of each parameter details which formats it supports.

Table 74 lists the valid types of files.

Table 74 File types

Extension Description

-pem PEM encoded certificates and keys (allows the certificate and
private key to be stored together in the same file)

-der DER encoded certificates

-p8 PKCS#8 file

-p7b PKCS#7 file

-p12 PKCS12 file (allows the certificate and private key to be
stored together in the same file)

-Jks Java KeyStore file

.epf Entrust store file

Certificates are located in the EMS_install_dir/certs directory. EMS is installed
with some sample certificates and private keys that are used by the sample
configuration files.

The sample certificates include:

* A root, self-signed certificate and corresponding private keys in encrypted
PEM and PKCS8 formats:

server_root.cert.pem
server_root.key.pem
server_root.key.p8

* A server certificate and corresponding private keys in encrypted PEM and
PKCS8 formats. This certificate is issued by server_root.cert.pemand is
used by the server:

server.cert.pem
server.key.pem
server.key.p8

TIBCO Enterprise Message Service User's Guide

470 | Chapter 18 Using the SSL Protocol

A root, self-signed certificate and corresponding private key in encrypted
PEM and PKCS8 formats.

client_root.cert.pem
client_root.key.pem
client_root.key.p8

A client certificate and corresponding private key in encrypted PEM and
PKCS8 formats. This certificate is issued by client_root.cert.pem and is
used by the clients:

client.cert.pem

client.key.pem

client.key.p8
A PKCS12 file that includes the client.cert.pem client certificate, the
client.key.pem client private key, and the client_root.cert.pemissuer
certificate:

client_identity.pl2

TIBCO Enterprise Message Service User’s Guide

Configuring SSL in the Server | 471

Configuring SSL in the Server

To use SSL, each instance of tibemsd must have a digital certificate and a private
key. The server can optionally require a certificate chain or trusted certificates.

Set the server to listen for SSL connections from clients by using the 1isten
parameter in tibemsd. conf. To specify that a port accept SSL connections,
specify the SSL protocol in the 1isten parameter as follows:

listen = ssl://localhost:7243

SSL Parameters

Several SSL parameters can be set in tibemsd. conf. The minimum configuration
is only one required parameter—ssl_server_identity. However, if the server’s
certificate file does not contain its private key, then you must specify it in
ssl_server_key.

SSL Server Parameters on page 224 provides a complete description of the SSL
parameters that can be set in tibemsd. conf.

Command Line Options
The server accepts a few command-line options for SSL.
When starting tibemsd, you can specify the following options:

® -ssl_trace—enables tracing of loaded certificates. This prints a message to
the console during startup of the server that describes each loaded certificate.

® -ssl_debug_trace—enables more detailed SSL tracing for debugging only; it
is not for use in production systems.

® -ssl password—specifies the private key password. Alternatively, you can
specify this password in the ss1_server_password parameter in
tibemsd. conf. If you do not supply a password using either of these
methods, tibemsd will prompt for the password when it starts. For more
information, see the description of the ss1_password configuration
parameter.

TIBCO Enterprise Message Service User's Guide

472 | Chapter 18 Using the SSL Protocol

Configuring SSL in EMS Clients

Entrust

To use an SSL connection to the EMS server, a client must include these JAR files
in the CLASSPATH.

¢ tibcrypt.jar

o slf4j-api-1.4.2.jar

¢ slf4j-simple-1.4.2.jar

These JARs are included with the TIBCO Enterprise Message Service installation,
and are located in the EMS_HOME\1ib directory.

To use Entrust with an EMS client, you must separately purchase and install the
Entrust libraries. If you use the Entrust libraries, you must include them in the
CLASSPATH before the tiberypt JAR file. To use Entrust with JDK, you must
download the unlimited strength policy JAR files from Sun's website and install
them in your local installation of JDK. For installation and configuration details,
see Entrust documentation.

Client Digital Certificates

When client authentication with a digital certificate is required by the EMS server
(see the description of the ss1_require_client_cert parameter in

tibemsd. conf), the client may combine its client certificate and private key in a
single file in one of the following formats:

e PKCS#12
e Java KeyStore
e Entrust Store

You can also store the private key file separately from the client certificate file. If
this is the case, the certificate and private key must be stored in one of the
following formats:

e PEM
e PKCS#8

The format of the client digital certificate and private key file depends on the SSL
vendor used by the client. JSSE and Entrust support different formats and
combinations of formats. For more information about formats, see your SSL
vendor’s documentation.

TIBCO Enterprise Message Service User’s Guide

Configuring SSL in EMS Clients | 473

Configuring SSL

A client connecting to an EMS server can configure SSL characteristics in the
following ways:

* Create a connection factory that specifies the appropriate SSL parameters and
use JNDI to lookup the connection factory. The server URL in the connection
factory must specify the SSL protocol, and the factory must specify
appropriate SSL parameters.

A preconfigured connection factory is the preferred mechanism in many
situations. See Creating Connection Factories for Secure Connections and
Performing Secure Lookups for details on how to create a connection factory
with SSL parameters in EMS.

* Dynamically create a connection factory, as described in Dynamically
Creating Connection Factories and set the global SSL parameters locally using
the TibjmsSSL class (Java), tibemsSSLParams type (C), or EMSSSL class (C#).

Specifying any SSL parameters within a connection factory causes all global SSL
parameters set with the TibjmsSSL class to be ignored.

Configuring a Connection Factory

You can configure a connection factory using the administration tool or the EMS
Administration APIs. See Chapter 6, Using the EMS Administration Tool.

When configuring a connection factory, you can specify several SSL parameters,
similar to the server parameters that you can configure in tibemsd. conf.

When configuring a connection factory, EMS does not verify any file names
%} specified in the SSL parameters. At the time the factory is retrieved using JNDI,
the EMS server attempts to resolve any file references. If the files do not match the
supported types or the files are not found, the JNDI lookup fails with a
ConfigurationException.

Because connection factories do not contain the ss1_password (for security
% reasons), the EMS server uses the password that is provided in the "create
connection” call for user authentication. If the create connection password is
different from the ss1_password, the connection creation will fail.

Table 75 briefly describes the parameters you can set in a connection factory, and
refers to additional information about each parameter. For more information
about each parameter, see the description of the equivalent parameter in
tibemsd.conf on page 187.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsSSL.html
../tib_ems_api_reference/api/dotNET/html/T_TIBCO_EMS_EMSSSL.htm

474 | Chapter 18 Using the SSL Protocol

Table 75 ConnectionFactory SSL parameters (Sheet 1 of 2)

Parameter Description

ssl_vendor The vendor name of the SSL implementation that the client uses.

ssl_identity The client’s digital certificate.

For more information on file types for digital certificates, see File
Names for Certificates and Keys on page 469.

ssl_issuer Issuer’s certificate chain for the client’s certificate. Supply the entire
chain, including the CA root certificate. The client reads the
certificates in the chain in the order they are presented in this
parameter.

Example

ssl_issuer
ssl_issuer
ssl_issuer

certs\CA_root.pem
certs\CA_childl.pem
certs\CA_child?2.pem

For more information on file types for digital certificates, see File
Names for Certificates and Keys on page 469.

ssl_private key The client’s private key. If the key is included in the digital certificate
in ss1_identity, then you may omit this parameter.

For more information on file types for digital certificates, see File
Names for Certificates and Keys on page 469.

ssl_trusted List of CA certificates to trust as issuers of server certificates. Supply
only CA root certificates.

For more information on file types for digital certificates, see File
Names for Certificates and Keys on page 469.

ssl_verify host Specifies whether the client should verify the server’s certificate. The
values for this parameter are enabled or disabled. By default, this
parameter is enabled, signifying the client should verify the server’s
certificate.

When disabled, the client establishes secure communication with
the server, but does not verify the server’s identity.

TIBCO Enterprise Message Service User’s Guide

Configuring SSL in EMS Clients | 475

Table 75 ConnectionFactory SSL parameters (Sheet 2 of 2)

Parameter Description

ssl_verify hostname Specifies whether the client should verify the name in the CN field of
the server’s certificate. The values for this parameter are enabled and
disabled. By default, this parameter is enabled, signifying the client
should verify the name of the connected host or the name specified in
the ss1_expected_hostname parameter against the value in the
server’s certificate. If the names do not match, the client rejects the
connection.

When disabled, the client establishes secure communication with
the server, but does not verify the server’s name.

ssl_expected hostname The name the client expects in the CN field of the server’s certificate.
If this parameter is not set, the expected name is the hostname of the
server.

The value of this parameter is used when the ss1_verify hostname
parameter is enabled.

ssl_ciphers Specifies the cipher suites that the client can use.

Supply a colon-separated list of cipher names. Names may be either
OpenSSL names, or longer descriptive names.

For more information, see Specifying Cipher Suites on page 476.

ssl_auth _only Specifies whether SSL should be used to encrypt all server-client
communications, or only client authentication.

When enabled, the client requests SSL be used only for
authentication. The server then uses TCP communications for further
data exchange. When disabled or absent, all communication
between the client and server must be SSL encrypted.

For an overview of this feature, see SSL Authentication Only on
page 482.

ssl_rand egd The path for the entropy gathering daemon (EGD), if one is installed.
This daemon generates random data for the client.

TIBCO Enterprise Message Service User's Guide

476 | Chapter 18 Using the SSL Protocol

Specifying Cipher Suites

On the EMS server, specify cipher suites using the ss1_server_ciphers
configuration parameter in tibemsd. conf. For more information about server
configuration files, see Chapter 7, Using the Configuration Files, on page 185.

For clients connecting with a connection factory, specify cipher suites using the
ssl_ciphers connection factory parameter. For more information, see
Configuring SSL in EMS Clients on page 472.

Syntax for Cipher Suites

Java Client Syntax

EMS uses OpenSSL for SSL support. Therefore, the cipher suite names can be
specified as the OpenSSL name for the cipher suite.

When specifying cipher suites, the usual way to specify more than one cipher
suite is to separate each suite name with a colon (:) character. Alternatively, you
can use spaces and commas to separate names.

The syntax for specifying the list of cipher suites is different for Java clients than
for any other location where cipher suites can be specified. For Java clients, you
specify a qualifier (for example, + to add the suite) followed by the cipher suite
name. Cipher suite names are case-sensitive. Table 76 describes the qualifiers you
can use when specifying cipher suite names in a ConnectionFactory for Java
clients.

Table 76 Qualifiers for Cipher Suites in Java Clients

Qualifier

Description

+

Add the cipher to the list of ciphers.

Remove the cipher from the list of ciphers.

Move the cipher to the end of the list.

Move the cipher to the beginning of the list.

ALL

All ciphers from the list (except null ciphers). You can use this keyword to add or
remove all ciphers.

At least one cipher suite must be present, otherwise the SSL connection fails to
initialize. So, if you use -ALL, you must subsequently add the desired ciphers to the list.

TIBCO Enterprise Message Service User’s Guide

Specifying Cipher Suites | 477

This example specifies cipher suites in the ss1_ciphers connection factory
parameter in a Java client:

-ALL:+RC4-MD5: +DES-CBC-SHA: <DES-CBC3-SHA
This example specifies cipher suites using full names:

-ALL:+SSL_RSA_WITH_RC4_128_MD5:+SSL_RSA_WITH_DES_CBC_SHA:<SSL_RSA_
WITH_3DES_EDE_CBC_SHA

Syntax for All Other Cipher Suite Specifications

For any cipher suite list that is not specified in a connection factory of a Java
client, use the OpenSSL syntax. In particular, C clients and the
ssl_server_ciphers configuration parameter require OpenSSL syntax.

In OpenSSL syntax, specifying a cipher suite name adds that cipher suite to the
list. Each cipher suite name can be preceded by a qualifier. Cipher suite names are
case-sensitive. Table 77 describes the qualifiers available using OpenSSL syntax.

Table 77 OpenSSL Qualifiers for Cipher Suites (Sheet 1 of 2)

[zl IC== o

/ When entered as the first item in the list, this option causes EMS
to begin with an empty list, and add the ciphers that follow the
slash.

If the / does not prefix the cipher list, then EMS prefixes the
cipher list with the OpenSSL cipher string DEFAULT.

This modifier can only be used at the beginning of the list. If the
/ appears elsewhere, the syntax of the cipher suite list will be
incorrect and cause an error.

+ Moves the cipher to the end of the list.

This qualifier is used to move an existing cipher. It can not be
used to add a new cipher to the list.

- Remove the cipher from the list of ciphers. When this option is
used, the cipher can be added later on in the list of ciphers.

! Permanently disable the cipher within the list of ciphers. Use
this option if you wish to remove a cipher and you do not want
later items in the list to add the cipher to the list. This qualifier
takes precedence over all other qualifiers.

TIBCO Enterprise Message Service User's Guide

478 | Chapter 18 Using the SSL Protocol

Table 77 OpenSSL Qualifiers for Cipher Suites (Sheet 2 of 2)

[Qualifier | Doscription |

ALL All ciphers from the list (except null ciphers). You can use this
keyword to add or remove all ciphers.

At least one cipher suite must be present or the SSL connection
fails to initialize. So, after using -ALL, you should add at least
one cipher to the list.

@STRENGTH Sort the cipher list by key length.

This example specifies cipher suites in the ss1_server_ciphers configuration
parameter.

ssl_server_ciphers = -ALL:RC4-MD5:DES-CBC-SHA:DES-CBC3-SHA
This example illustrates disables RC4-MD5, then adds all other ciphers:
ssl_server_ciphers = !RC4-MD5:ALL

Default Cipher The EMS server and C client library hard-code a default cipher list, which is
List equivalent to ALL: ! ADH:RC4+RSA:+SSLv2:@STRENGTH.

Supported Cipher Suites

In general, the EMS server and C client library support all cipher suites that
OpenSSL supports, except IDEA, RC-5 and CAST. For a complete list, see current
OpenSSL documentation.

Supported Cipher Suites for Java Clients

Java clients support only the cipher suites listed in Table 78. For convenience, the
table lists both the standard name and the OpenSSL name for each cipher suite.

Table 78 Supported Cipher Suites in Java API (Sheet 1 of 4)

Suite Name Export Eﬁgh Auth Encrypt Key MAC

(OpenSSL Name) Size

SSL_RSA_WITH_RC4_128_MD5
(RC4-MD5)

RSA RSA RC4 128 MD5

TIBCO Enterprise Message Service User’s Guide

Specifying Cipher Suites | 479

Table 78 Supported Cipher Suites in Java API (Sheet 2 of 4)

Suite Name
(OpenSSL Name) Encrypt
SSL_RSA_WITH_RC4_128 SHA
(RC4-SHA)

RSA RSA RC4 128 SHA1
SSL_RSA_WITH _DES CBC_SHA
(DES-CBC-SHA)

RSA RSA DES 56 SHA1
SSL_RSA_WITH_3DES_EDE_CBC_SHA
(DES-CBC3-SHA)

RSA RSA 3-DES 168 SHA1
SSL_RSA_EXPORT_WITH_RC4_40_MD5
(EXP-RC4-MD5)

Yes RSA(512) RSA RC4 40 MD5
SSL_RSA_EXPORT WITH_DES 40 CBC_SHA
(EXP-DES-CBC-SHA)
Yes RSA(512) RSA DES 40 SHA1

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
(EDH-DSS-DES-CBC3-SHA)

DH DSS 3-DES 168 SHA1
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
(EDH-RSA-DES-CBC3-SHA)

DH RSA 3-DES 168 SHA1
SSL_DHE _DSS WITH DES _CBC_SHA
(EDH-DSS-DES-CBC-SHA)

DH DSS DES 56 SHA1

TIBCO Enterprise Message Service User's Guide

480 | Chapter 18 Using the SSL Protocol

Table 78 Supported Cipher Suites in Java API (Sheet 3 of 4)

Suite Name

Encrypt

(OpenSSL Name)

SSL_DHE_RSA_WITH_DES_CBC_SHA
(EDH-RSA-DES-CBC-SHA)

DH RSA DES 56 SHAI
SSL_DHE_DSS_EXPORT_WITH_DES_40_CBC_SHA
(EXP-EDH-DSS-DES-CBC-SHA)

Yes DH(12) DSS DES 40 SHAI
SSL_DHE_RSA_EXPORT_WITH_DES_40_CBC_SHA
(EXP-EDH-RSA-DES-CBC-SHA)
Yes DH(12) RSA DES 40 SHAI

TLS_RSA_WITH_AES_128_CBC_SHA
(AES128-SHA)

RSA RSA AES 128 SHAL1
TLS_RSA_WITH_AES_256_CBC_SHA
(AES256-SHA)

RSA RSA AES 256 SHAL
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
(DHE-DSS-AES128-SHA)

DH DSS AES 128 SHAL
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
(DHE-DSS-AES256-SHA)

DH DSS AES 256 SHAL
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
(DHE-RSA-AES128-SHA)

DH RSA AES 128 SHAL

TIBCO Enterprise Message Service User’s Guide

Specifying Cipher Suites | 481

Table 78 Supported Cipher Suites in Java API (Sheet 4 of 4)

Sl b Export Eﬁgh Auth Encrypt Key MAC

(OpenSSL Name) Size

TLS_DHE_RSA_WITH_AES_256_CBC_SHA
(DHE-RSA-AES256-SHA)

DH RSA AES 256 SHAI1

% Enterprise Message Service does not support these cipher suites:
e SSL_RSA_WITH_NULL_SHA
e SSL_RSA_WITH_NULL_MD5

Although they are not supported, they are included in the interface definition
only to allow old programs to compile correctly. Use the SSL authentication only
feature in place of these cipher suites. See SSL Authentication Only below for
more information.

Supported Cipher Suites for .NET Clients
NET client support only the following cipher suites:
e RC4-MD5
¢ RC4-SHA
e DES-CBC3-SHA
* DES-CBC-SHA
e EXP-RC2-CBC-MD5
e EDH-DSS-DES-CBC3-SHA
¢ EDH-DSS-DES-SHA
e EXP-RC4-MD5
e AES128-SHA

Some newer Windows platforms, such as Windows Server 2008 and Windows 7,

% don't support weaker ciphers (like EXP-RC4-MD?5). These platforms support the
stronger ciphers (like AES128-SHA). Refer to your MSDN documentation or
contact Microsoft support for complete details on supported ciphers on specific
Windows platforms.

TIBCO Enterprise Message Service User's Guide

482 | Chapter 18 Using the SSL Protocol

SSL Authentication Only

Motivation

Preconditions

See Also

EMS servers can use SSL for secure data exchange (standard usage), or only for
client authentication. This section describes the use of SSL for client
authentication.

Some applications require strong or encrypted authentication, but do not require
message encryption.

In this situation, application architects could configure SSL with a null cipher.
However, this solution incurs internal overhead costs of SSL calls, decreasing
message speed and throughput.

For optimal performance, the preferred solution is to use SSL only to authenticate
clients, and then avoid SSL calls thereafter, using ordinary TCP communications
for subsequent data exchange. Message performance remains unaffected.

All three of these preconditions must be satisfied to use SSL only for
authentication:

e The server and clients must both be release 4.2 or later. (If not, EMS behavior
reverts to using SSL for all communications throughout the life of the
connection.)

* The server must explicitly enable the parameter ss1_auth_only in the
tibemsd. conf configuration file.

¢ The client program must request a connection that uses SSL for authentication
only. Clients can specify this request in factories by enabling the
ssl_auth_only parameter, or by calling:

— Java: TibjmsSSL. setAuthOnly
— C: tibemsSSLParams_SetAuthOnly

— C#: EMSSSL. SetAuthOnly

Server parameter ss1_auth_only on page 228

Client parameter ss1_auth_only on page 475

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsSSL.html#setAuthOnly(boolean)
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_EMSSSL_SetAuthOnly_1_ea7b1ae4.htm

Enabling FIPS Compliance | 483

Enabling FIPS Compliance

You can enable TIBCO Enterprise Message Service to run in compliance with
Federal Information Processing Standard (FIPS), Publication 140-2.

Enabling the EMS Server

The EMS server supports FIPS compliance only on Windows, Linux, and Solaris
% 10 (x86) platforms. On UNIX, only tibemsdé4, the 64-bit version of the server, is

supported. No 32-bit support is provided.

To enable FIPS 140-2 operations in the EMS server:

* Set the fips140-2 parameter in the main configuration file to true.

* Ensure that incompatible parameters, listed below, are not included in the
server configuration files.

When fips140-2 is enabled, on start-up the EMS server initializes in compliance
with FIPS 140-2. If the initialization is successful, the EMS server prints a message
indicating that it is operating in this mode. If the initialization fails, the server
exits (regardless of the startup_abort_list setting).

Incompatible Parameters

In order to operate in FIPS compliant mode, you must not include these
parameters in the tibemsd. conf file:

® ssl dh size

® ssl_server_ciphers

® Jdap_tls_rand_file

® Jldap_tls_cipher_suite

e ft ssl_ciphers

These parameters cannot be included in the routes. conf file:

® ssl_ciphers

TIBCO Enterprise Message Service User's Guide

484 | Chapter 18 Using the SSL Protocol

Enabling EMS Clients

Java and C client applications can operate in FIPS compliance:

Java Clients Java clients that use the Entrust implementation of SSL, rather
than the JSSE that is included with EMS, can operate in FIPS 140-2 complaint
mode.

To enable FIPS 140-2 operations in the Java client:

— Set the com.tibco.security.FIPS property to true before calling any
EMS methods.

— Download and install the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files for your JDK installation. These files are
available on the Sun Microsystems website.

For more information about using Entrust, see Configuring SSL in EMS
Clients on page 472.

C Clients C clients that link to the dynamic EMS libraries can operate in FIPS
140-2 compliant mode. FIPS compliance is not available with static libraries.

To enable FIPS 140-2 operations in the C client, use compliant OpenSSL
libraries, and initialize the libraries to enable FIPS 140-2 operations before
calling any EMS functions.

C libraries support FIPS compliance only on Windows, Linux, and Solaris 10 (x86)
% platforms. On UNIX, only the 64-bit C libraries are supported. No 32-bit support
is provided.

TIBCO Enterprise Message Service User’s Guide

Chapter 19

Topics

| 485

Fault Tolerance

This chapter describes the fault tolerance features of TIBCO Enterprise Message
Service.

e Fault Tolerance Overview, page 486

® Shared State Failover Process, page 488

¢ Unshared State Failover Process, page 492

® Shared State, page 495

¢ Configuring Fault-Tolerant Servers, page 499

¢ Configuring Fault Tolerance in Central Administration, page 502
¢ Configuring Clients for Fault-Tolerant Connections, page 504

¢ Configuring Clients for Unshared State Connections, page 507

TIBCO Enterprise Message Service User's Guide

486 |Chapter 19 Fault Tolerance

Fault Tolerance Overview

Shared State

Locking

You can arrange TIBCO Enterprise Message Service servers for fault-tolerant
operation by configuring a pair of servers—one primary and one backup. The
primary server accepts client connections, and interacts with clients to deliver
messages. If the primary server fails, the backup server resumes operation in its
place. (We do not support more than two servers in a fault-tolerant configuration.)

A pair of fault-tolerant servers can have access to shared state, which consists of
information about client connections and persistent messages. This information
enables the backup server to properly assume responsibility for those connections
and messages. Figure 23 illustrates a fault-tolerant configuration of EMS.

Figure 23 Primary and Backup Servers with Shared State

Primary
Server

Fault-Tolerant
Clients

Shared
State

To prevent the backup server from assuming the role of the primary server, the
primary server locks the shared state during normal operation. If the primary
server fails, the lock is released, and the backup server can obtain the lock.

Unshared State Failover

You can also include backup servers that do not share state. As with shared state,
a second server assumes responsibility for connections and messages after the
failure of the current server. However, unlike shared state, unshared state is
controlled by the EMS client, and unshared state failover is not as fault-tolerant as
shared state failover. Because the state is not shared among servers, messages can
be lost, duplicated, or delivered out-of-order across the failover process.

Figure 24 illustrates an unshared state fault-tolerant configuration of EMS.

TIBCO Enterprise Message Service User’s Guide

Fault Tolerance Overview | 487

Figure 24 Current and Second Servers with Unshared State

Current

Clients Server

Second
Server

Configuration Files

When a primary server fails, its backup server assumes the status of the primary
server and resumes operation. Before becoming the new primary server, the
backup server re-reads all of its configuration files. If the two servers share
configuration files, then administrative changes to the old primary carry over to
the new primary.

When fault-tolerant servers share configuration files, you must limit configuration

%} changes to the current primary server only. Separately reconfiguring the backup
server can cause it to overwrite the shared configuration files; unintended
misconfiguration can result.

TIBCO Enterprise Message Service User's Guide

488 |Chapter 19 Fault Tolerance

Shared State Failover Process

This section presents details of the shared state failover sequence.

Detection
A backup server detects a failure of the primary in either of two ways:

® Heartbeat Failure—The primary server sends heartbeat messages to the backup
server to indicate that it is still operating. When a network failure stops the
servers from communicating with each other, the backup server detects the
interruption in the steady stream of heartbeats. For details, see Heartbeat
Parameters on page 491.

e Connection Failure—The backup server can detect the failure of its TCP
connection with the primary server. When the primary process terminates
unexpectedly, the backup server detects the broken connection.

Response

When a backup server (B) detects the failure of the primary server (A), then B
attempts to assume the role of primary server. First, B obtains the lock on the

current shared state. When B can access this information, it becomes the new

primary server.

Figure 25 Failed Primary Server

Failed

AL_d41 Server

Fault-Tolerant
Clients

Primary
Server

Lock Unavailable

If B cannot obtain the lock immediately, it alternates between attempting to obtain
the lock (and become the primary server), and attempting to reconnect to A (and
resume as a backup server)—until one of these attempts succeeds.

TIBCO Enterprise Message Service User’s Guide

Shared State Failover Process | 489

Role Reversal

When B becomes the new primary server, A can restart as a backup server, so that
the two servers exchange roles.

Figure 26 Recovered Server Becomes Backup

Backup
Server

Fault-Tolerant

Clients

I:I Shared
= State
)

Primary
Server

Client Transfer

Clients of A that are configured to failover to backup server B automatically
transfer to B when it becomes the new primary server. B reads the client’s current
state from the shared storage to deliver any persistent messages to the client.

Client Notification

Client applications can receive notification when shared state failover occurs.

Java

To receive notification, Java client programs set the system property
tibco.tibjms. ft.switch.exception to any value, and define an
ExceptionListener to handle failover notification; see the class
com.tibco.tibjms.Tibjms in TIBCO Enterprise Message Service Java API
Reference.

Cc

To receive notification, C client programs call
tibems_setExceptionOnFTSwitch(TIBEMS_TRUE) and register the exception
callback in order to receive the notification that the reconnection was successful.

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/Tibjms.html

490 |Chapter 19 Fault Tolerance

C#

To receive notification, .NET client programs call
Tibems.SetExceptionOnFTSwitch(true), and define an exception listener to
handle failover notification; see the method Tibems.SetExceptionOnFTSwitch
on page 294 in TIBCO Enterprise Message Service NET API Reference.

Message Redelivery

Persistent

Synchronous
Mode

Delivery
Succeeded

Topics

Transactions

Queues

When a failure occurs, messages with delivery mode PERSISTENT, that were not
successfully acknowledged before the failure, are redelivered.

When using durable subscribers, EMS guarantees that a message with
PERSISTENT delivery mode and written to a store with the property mode=sync,
will not be lost during a failure.

Any messages that have been successfully acknowledged or committed are not
redelivered, in compliance with the JMS specification.

All topic subscribers continue normal operation after a failover.

A transaction is considered active when at least one message has been sent or
received by the session, and the transaction has not been successfully committed.

After a failover, attempting to commit the active transaction results in a
javax.jms.TransactionRolledBackException. Clients that use transactions
must handle this exception, and resend any messages sent during the transaction.
The backup server automatically redelivers any messages that were delivered to
the session during the transaction that rolled back.

For queue receivers, any messages that have been sent to receivers, but have not
been acknowledged before the failover, may be sent to other receivers
immediately after the failover.

A receiver trying to acknowledge a message after a failover may receive the
javax.jms.IllegalStateException. This exception signifies that the attempted
acknowledgement is for a message that has already been sent to another queue
receiver. This exception only occurs in this scenario, or when the session or
connection have been closed. This exception cannot occur if there is only one
receiver at the time of a failover, but it may occur for exclusive queues if more
than one receiver was started for that queue.

TIBCO Enterprise Message Service User’s Guide

Shared State Failover Process | 491

When a queue receiver catches a javax.jms.IllegalStateException, the best
course of action is to call the Session.recover() method. Your application
program should also be prepared to handle redelivery of messages in this
situation. All queue messages that can be redelivered to another queue receiver
after a failover always have the header field JMSRedelivered set to true;
application programs must check this header to avoid duplicate processing of the
same message in the case of redelivery.

Acknowledged messages are never redelivered (in compliance with the JMS
%} specification). The case described above occurs when the application cannot
acknowledge a message because of a failover.

Heartbeat Parameters

When the primary server heartbeat stops, the backup server waits for its
activation interval (elapsed time since it detected the most recent heartbeat); then
the backup server retrieves information from shared storage and assumes the role
of primary server.

The default heartbeat interval is 3 seconds, and the default activation interval is
10 seconds. The activation interval must be at least twice the heartbeat interval.
Both intervals are specified in seconds. You can set these intervals in the server

configuration files. See Fault Tolerance Parameters on page 213 for details.

TIBCO Enterprise Message Service User's Guide

492 |Chapter 19 Fault Tolerance

Unshared State Failover Process

Detection

Response

Message Loss

Unsupported
Features

This section presents details of the unshared state failover sequence. Detailed
configuration information is provided in Configuring Clients for Unshared State
Connections on page 507.

Unshared state failover is initiated by the EMS client. When a client setup for
unshared state detects a lost connection to server (A), it attempts to connect to

server (B), as defined in the connection factory.

Figure 27 Unshared State Failover

Failed

Clients Server

=
I:I Current
= Server

Clients with unshared state connections automatically connect to B after losing
the connection to A.

When clients setup for unshared state detect lost connections to server A, they
create new connections to server, B. All runtime objects from the client's
connection are recreated, including sessions, destinations, message producers,
and message consumers.

Because unshared state is defined in the connection factory, B remains the current
server as long as the connection is active. If the connection to B is lost, clients
attempt to connect to another server defined in the connection factory

Because B does not have access to persistent messages that were not delivered or
acknowledged prior to the failover, some messages may be lost or delivered out of
order across the failover process. To prevent message loss, use shared state
failover.

These features and Java classes are not supported with unshared state
connections:
¢ XA transactions

e Multicast

TIBCO Enterprise Message Service User’s Guide

Unshared State Failover Process | 493

* Durable topic subscribers
¢ ConnectionConsumer

e ServerSession

e ServerSessionPool

* QueueRequestor

¢ TopicRequestor

Dual State Failover

An unshared state connection factory can include shared-state server pairs in its
list of backup servers. When both shared state and unshared state servers are
included, the failover process is a combination of both types of failover.

Figure 28 illustrates the dual state failover process.

TIBCO Enterprise Message Service User's Guide

494 |Chapter 19 Fault Tolerance

Figure 28 Dual State Failover Process

Legend
I EMS Server
@ Shared State Storage B2
Device

EMS Client

«—> Current Server Connection

LERE 4 Failed Server Connection

In this example, servers Al and A2 share state. Servers B1 and B2 also share state.
However, A1 and A2 do not share state with B1 and B2.

The EMS clients created connections using unshared state connection factories.
The initial server connections were with server A1. When the connection to Al
failed, the failover process proceeded as described in Shared State Failover
Process on page 488, and the clients connect to A2.

A2 then failed, before A1 restarted. The clients next created connections to B1,
recreating all runtime objects from the connection (as described above in
Unshared State Failover Process). B1 is now the current server. Because B1 and B2
share state, If B1 fails, B2 becomes the current server.

TIBCO Enterprise Message Service User’s Guide

Shared State | 495

Shared State

For the most robust failover protection, the primary server and backup server
must share the same state. Server state includes three categories of information:

® persistent message data (for queues and topics)
® client connections of the primary server
* metadata about message delivery

During a failover, the backup server re-reads all shared state information.

Implementing Shared State

We recommend that you implement shared state using shared storage devices.
The shared state must be accessible to both the primary and backup servers.

Support Criteria

Several options are available for implementing shared storage using a
combination of hardware and software. EMS requires that your storage solution
guarantees all four criteria in Table 79.

Always consult your shared storage vendor and your operating system vendor to
ascertain that the storage solution you select satisfies all four criteria.

A

Table 79 Shared Storage Criteria for Fault Tolerance

Criterion Description

Write Order The storage solution must write data blocks to shared storage
in the same order as they occur in the data buffer.

(Solutions that write data blocks in any other order (for
example, to enhance disk efficiency) do not satisfy this
requirement.)

Synchronous Write Persistence Upon return from a synchronous write call, the storage
solution guarantees that all the data have been written to
durable, persistent storage.

TIBCO Enterprise Message Service User's Guide

496 |Chapter 19 Fault Tolerance

Table 79 Shared Storage Criteria for Fault Tolerance

Criterion Description

Distributed File Locking The EMS servers must be able to request and obtain an

exclusive lock on the shared storage. The storage solution must
not assign the locks to two servers simultaneously. (See
Software Options on page 497.)

EMS servers use this lock to determine the primary server.

Unique Write Ownership The EMS server process that has the file lock must be the only

server process that can write to the file. Once the system
transfers the lock to another server, pending writes queued by
the previous owner must fail.

Hardware Options

SCSl and SAN

NAS

NAS with NFS

Consider these examples of commonly-sold hardware options for shared storage:
¢ Dual-Port SCSI device

e Storage Area Network (SAN)

e Network Attached Storage (NAS)

Dual-port SCSI and SAN solutions generally satisfy the Write Order and
Synchronous Write Persistence criteria. (The clustering software must satisfy the
remaining two criteria.) As always, you must confirm all four requirements with
your vendors.

NAS solutions require a CS (rather than a CFS) to satisfy the Distributed File
Locking criterion (see below).

Some NAS solutions satisfy the criteria, and some do not; you must confirm all
four requirements with your vendors.

When NAS hardware uses NFS as its file system, it is particularly difficult to
determine whether the solution meets the criteria. Our research indicates the
following conclusions:

* NFSv2 and NFS v3 definitely do not satisfy the criteria.

¢ NFS v4 with TCP might satisfy the criteria. Consult with the NAS vendor to
verify that the NFS server (in the NAS) satisfies the criteria. Consult with the
operating system vendor to verify that the NFS client (in the OS on the server
host computer) satisfies the criteria. When both vendors certify that their
components cooperate to guarantee the criteria, then the shared storage
solution supports EMS.

TIBCO Enterprise Message Service User’s Guide

Shared State | 497

For more information on how the EMS locks shared store files, see How EMS
Manages Access to Shared Store Files on page 120.

Software Options

Consider these examples of commonly-sold software options:
e (luster Server (CS)

A cluster server monitors the EMS server processes and their host computers,
and ensures that exactly one server process is running at all times. If the
primary server fails, the CS restarts it; if it fails to restart the primary, it starts
the backup server instead.

* Clustered File System (CFS)

A clustered file system lets the two EMS server processes run simultaneously.
It even lets both servers mount the shared file system simultaneously.
However, the CFS assigns the lock to only one server process at a time. The
CFS also manages operating system caching of file data, so the backup server
has an up-to-date view of the file system (instead of a stale cache).

With dual-port SCSI or SAN hardware, either a CS or a CFS might satisfy the
Distributed File Locking criterion. With NAS hardware, only a CS can satisfy this
criterion (CFS software generally does not). Of course, you must confirm all four
requirements with your vendors.

Messages Stored in Shared State

Messages with PERSISTENT delivery mode are stored, and are available in the
event of primary server failure. Messages with NON_PERSISTENT delivery mode
are not available if the primary server fails.

For more information about recovery of messages during failover, see Message
Redelivery on page 490.

Storage Files
By default, the tibemsd server creates three file-based stores to store shared state:

® $sys.failsafe—This store holds persistent messages using synchronous
1/0 calls.

* $sys.nonfailsafe—This file stores messages using asynchronous I/O calls.

* $sys.meta—This store holds state information about durable subscribers,
fault-tolerant connections, and other metadata.

TIBCO Enterprise Message Service User's Guide

498 |Chapter 19 Fault Tolerance

These stores are fully customizable through parameters in the stores
configuration file. More information about these files and the default
configuration settings are fully described in stores. conf on page 253.

To prevent two servers from using the same store file, each server restricts access
to its store file for the duration of the server process. For more information on
how the EMS manages shared store files, see How EMS Manages Access to
Shared Store Files on page 120.

These default files can be changed or modified. See Default Store Files on page 31
% for more information.

Storage Parameters

Several configuration parameters apply to EMS storage files (even when
fault-tolerant operation is not configured); see Storage File Parameters on
page 206.

TIBCO Enterprise Message Service User’s Guide

Configuring Fault-Tolerant Servers | 499

Configuring Fault-Tolerant Servers

Shared State

To configure an EMS server as a fault-tolerant backup, set these parameters in its
main configuration file (or on the server command line):

® server Set this parameter to the same server name in the configuration
files of both the primary server and the backup server.

e ft_active In the configuration file of the primary server, set this
parameter to the URL of the backup server. In the configuration file of the
backup server, set this parameter to the URL of the primary server.

When the backup server starts, it attempts to connect to the primary server. If it
establishes a connection to the primary, then the backup server enters standby
mode. If it cannot establish a connection to the primary, then the backup server
assumes the role of the primary server (in active mode).

While the backup server is in standby mode, it does not accept connections from
clients. To administer the backup server, the admin user can connect to it using the
administration tool.

Authorization and Fault-Tolerant Servers

EMS authorization interacts with fault tolerance. If authorization is enabled
and the two EMS Servers are configured for fault tolerance, then both servers in a
fault-tolerant pair must be configured as follows:

e The tibemsd. conf file for each server must have the same server name and
password (the server and password parameters must be the same on each
server).

¢ The user name and password in the users. conf file for each server must
match the values of the server and password parameters in the
tibemsd. conf file.

If the two EMS Servers are not sharing a users. conf file, make sure that you
% create a user with the same name as the EMS Server, and set the user's password
with the value of the "server" password.

For example, you have two EMS Servers (Server 1 and Server 2) that are named
"EMS-SERVER" and are to use a password of "mySecret", but which do not share a
users. conf file. To set the user names and passwords, start the EMS
Administration Tool on each server, as described in Using the EMS
Administration Tool on page 123, and do the following.

TIBCO Enterprise Message Service User's Guide

500 |Chapter 19 Fault Tolerance

SSL

See Also

From the active (Server 1), enter:

set server password=mySecret
create user EMS-SERVER password=mySecret

From the backup (Server 2), enter:

set server password=mySecret
create user EMS-SERVER password=mySecret

From the active (Server 1), enter:
set server authorization=enabled
From the backup (Server 2), enter:

set server authorization=enabled

You can use SSL to secure communication between a pair of fault-tolerant servers.

Parameters in the main configuration file (tibemsd . conf) affect this behavior.
The relevant parameters all begin with the prefix ft_ss1.

The server initializing a secure connection to another server uses the ft_ssl1
parameters to determine the properties of its secure connection to the other
server. The receiving server validates the incoming connection against its own
ss1_ parameters. For more information about £ft_ss1 parameters, see Fault
Tolerance Parameters on page 213. For more information about ss1_ parameters,
see SSL Server Parameters on page 224.

Chapter 18, Using the SSL Protocol, on page 465

Reconnect Timeout

When a backup server assumes the role of the primary server during failover,
clients attempt to reconnect to the backup server (that is, the new primary) and
continue processing their current message state. Before accepting reconnects from
the clients, the backup server reads its message state from the shared state files.

You can instruct the server to clean up state information for clients that do not
reconnect before the time limit specified by the ft_reconnect_timeout
configuration parameter. The ft_reconnect_timeout time starts once the server
has fully recovered the shared state, so this value does not account for the time it
takes to recover the store files. See ft_reconnect_timeout on page 214 for
details.

TIBCO Enterprise Message Service User’s Guide

Configuring Fault-Tolerant Servers | 501

Unshared State

When configuring a fault tolerant pair that does not share state, you must ensure
that both servers use identical configurations. This is especially important for
these configuration settings:

* Destinations Both servers must support the same destinations.

* Routes Messages must be able to arrive at the endpoints, using equivalent or
identical routes across servers.

* Access Control Access control must be setup identically in both servers, so
that the users. conf, groups. conf, and acl. conf file settings match.

* SSL When SSL is deployed, both servers must use the same certificate(s).

TIBCO Enterprise Message Service User's Guide

502 |Chapter 19 Fault Tolerance

Configuring Fault Tolerance in Central Administration

Central Administration uses the same JSON configuration file to manage both
servers in a fault tolerant pair. Primary and secondary server roles are determined
when the servers are started.

All but two configuration settings are shared by both EMS servers: the 1isten
and ft_active parameters are configured separately.

The primary server listens for client connection on ports defined in the main
Server Properties page, in the Primary Listens section. After a failover, it
listens for the secondary server on the Secondary Listens URL that is flagged
using the FT Active radio button on the Fault Tolerance properties page.

The secondary server listens for the primary server using the Primary Listens
URL that is flagged with the FT Active radio button on the main Server
Properties page. If the secondary server becomes active, it listens for client
connections using the Secondary Listen URLs defined on the Fault Tolerance

page.

For more information on Central Administration, see TIBCO Enterprise Message
Service Central Administration.

Procedure To configure a fault tolerant server pair using Central Administration:

1.
2.

Configure the primary server as usual.

On the Server Properties page, designate the URL on which the secondary
server listens for the primary server by clicking the FT Active radio button
next to the desired Listens URL.

On the Fault Tolerance properties page, configure the Secondary Listens URLs
that the backup server uses to listen for client connections in the event that it
becomes the primary server.

Designate the URL on which the primary server listens for the secondary
server, should a failure occur and the secondary server becomes active. Click
the FT Active radio button next to the desired Secondary Listens URL

Configure the remaining fault tolerance properties on the Fault Tolerance
page.
Deploy the configuration changes.

Start the primary and secondary EMS servers using the method described in
Starting Fault Tolerant Server Pairs on page 109.

TIBCO Enterprise Message Service User’s Guide

Configuring Fault Tolerance in Central Administration | 503

Configuration =~ When an EMS server is started, the fault tolerance mechanism is triggered by the
Errors presence of a URL in the Secondary Listens list of a primary tibemsd, or by that of
a URL in the Primary Listens list of a secondary tibemsd.

Once fault tolerance is triggered, the EMS server generates an error if it finds that
the "FT Active" switch was not assigned to any URL in its peer’s list. If
CONFIG_ERRORS is present in the startup_abort_list parameter, the tibemsd
aborts startup. Otherwise, the tibemsd cancels fault tolerance and starts without
checking its peer. This results in a file lock error for the EMS server that is started
second.

TIBCO Enterprise Message Service User's Guide

504 |Chapter 19 Fault Tolerance

Configuring Clients for Fault-Tolerant Connections

When a backup server assumes the role of the primary server during failover,
clients attempt to reconnect to the backup server (that is, the new primary). To
enable a client to reconnect, you must specify the URLs of both servers when
creating a connection.

Specify multiple servers as a comma-separated list of URLs. Both URLs must use
the same protocol (either tcp or ss1). For example, to identify the first server as
tcp://server0:7222, and the second server as tcp://serverl: 7344 (if first
server is not available), you can specify:

serverUrl=tcp://server0:7222, tcp://serverl:7344

The client attempts to connect to each URL in the order listed. If a connection to
one URL fails, the client tries the next URL in the list. The client tries the URLs in
sequence until all URLs have been tried. If the first failed connection was not the
first URL in the list, the attempts wrap to the start of the list (so each URL is tried).
If none of the attempts succeed, the connection fails.

For information on how to lookup a fault-tolerance URL in the EMS naming
service, see Performing Fault-Tolerant Lookups on page 366.

The reconnection logic in the client is triggered by the specifying multiple URLs
% when connecting to a server. If no backup server is present, the client must still
provide at least two URLs (typically pointing to the same server) in order for it to
automatically reconnect to the server when it becomes available after a failure.

When messages are sent in non-persistent or reliable modes, the consumer does
% not normally wait for a server reply to its acknowledgements. However, a fault
tolerant consumer does wait for a server reply (when using an session mode other
than DUPS_OK_ACKNOWLEDGE or EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE). This
is true for shared state configurations. Unshared state configurations, which
tolerate lost, duplicated, and out-of-order messages during a failover, do not wait
for server acknowledgements.

Specifying More Than Two URLs

Even though there are only two servers (the primary and backup servers), clients
can specify more than two URLs for the connection. For example, if each server
has more than one listen address, a client can reconnect to the same server at a
different address (that is, at a different network interface).

TIBCO Enterprise Message Service User’s Guide

Configuring Clients for Fault-Tolerant Connections | 505

Setting Reconnection Failure Parameters

EMS allows you to establish separate parameters for initial connection attempts
and reconnection attempts. How to set the initial connection attempt parameters
is described in Setting Connection Attempts, Timeout and Delay Parameters on
page 333. This section describes the parameters you can establish for reconnection
attempts following a fault-tolerant switchover.

The reason for having separate connect and reconnect attempt parameters is that
there is a limit imposed by the operating system to the number of connection
attempts the EMS server can handle at any particular time. (For example, in Unix,
this limit is adjusted by the ulimit setting.) Under normal circumstances, each
connect attempt is distributed so it is less likely for the server to exceed its
maximum accept queue. However, during a fault-tolerant switchover, all of the
clients automatically try to reconnect to the backup server at approximately the
same time. When the number of connections is large, it may require more time for
each client to reconnect than for the initial connect.

By default, a client will attempt reconnection 4 times with a 500 ms delay between
each attempt. You can modify these settings in the factories. conf file or by
means of your client connection factory API, as demonstrated by the examples in
this section.

The following examples establish a reconnection count of 10, a delay of 1000 ms
and a timeout of 1000 ms.

Java

USetheIibjmsConnectionFactory(ﬂﬂecfssetReconnAttemptCount(),

setReconnAttemptDelay(), and setReconnAttemptTimeout () methods to

establish new reconnection failure parameters:
factory.setReconnAttemptCount(10);

factory.setReconnAttemptDelay(1000);
factory.setReconnAttemptTimeout(1000);

o

Use the tibemsConnectionFactory_SetReconnectAttemptCount,
tibemsConnectionFactory_SetReconnectAttemptDelay, and
tibemsConnectionFactory_SetReconnectAttemptTimeout functions to
establish new reconnection failure parameters:

status = tibemsConnectionFactory_SetReconnectAttemptCount (
factory, 10);

status = tibemsConnectionFactory_SetReconnectAttemptDelay(
factory, 1000);

status = tibemsConnectionFactory_SetReconnectAttemptTimeout(

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setReconnAttemptCount(int)
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setReconnAttemptDelay(int)
../tib_ems_api_reference/api/javadoc/com/tibco/tibjms/TibjmsConnectionFactory.html#setReconnAttemptTimeout(int)

506 |Chapter 19 Fault Tolerance

factory, 1000);

Ci#

Use the ConnectionFactory. SetReconnAttemptCount,
ConnectionFactory.SetReconnAttemptDelay, and
ConnectionFactory.SetReconnAttemptTimeout methods to establish new
reconnection failure parameters:

factory.setReconnAttemptCount(10);

factory.setReconnAttemptDelay(1000);
factory.setReconnAttemptTimeout(1000);

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetReconnAttemptCount_1_e1836fc4.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetReconnAttemptDelay_1_e1836fc4.htm
../tib_ems_api_reference/api/dotNET/html/M_TIBCO_EMS_ConnectionFactory_SetReconnAttemptTimeout_1_e1836fc4.htm

Configuring Clients for Unshared State Connections | 507

Configuring Clients for Unshared State Connections

Unshared state failover is an extension of the JMS specification. Because state is
A not shared among servers, messages can be lost, duplicated, or delivered
out-of-order across the failover process.

Unshared state connections are created differently from shared state connections
in several important ways:

e For Java applications, a JAR file must be present in the environment
CLASSPATH of the client.

e For C applications, a header file must be included and clients must link using
the unshared state library.

* The connection must be created using an unshared state connection factory.

* The server URLs must be specified using unshared state syntax.

Include the Unshared State Library

Java Applications ~ Before creating the connection factory, ensure that the CLASSPATH includes the
JAR file:

tibjmsufo.jar

C Applications Include the tibemsufo.h header file.

Create an Unshared State Connection Factory

To create unshared state connections, use the relevant methods:
Java Applications java com.tibco.tibems.ufo package.

C Applications tibemsufo library and functions.

Connection Recovery

When an unshared state connection fails, the connection’s ExceptionListener
callback is invoked. To recover the connection—repair it so that it is connected to
an active server—the client application calls the connection factory’s
recoverConnection method or
tibemsUFOConnectionFactory_RecoverConnection function. This must be

TIBCO Enterprise Message Service User's Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibems/ufo/package-frame.html
../tib_ems_api_reference/api/javadoc/com/tibco/tibems/ufo/TibjmsUFOConnection.html#recoverConnection()

508 |Chapter 19 Fault Tolerance

performed in the ExceptionListener callback. The recover connection method
blocks until the connection (and its related objects, including sessions, producers,
and consumers) are fully recreated, or until it has failed in all its attempts to
recreate these objects.

As long as the unshared state client has a valid connection, the API behaves the
same as the standard EMS client. However, when the unshared state client’s
connection is broken, the API performs as follows:

1. Methods called inside a MessageListener callback immediately return a Java
exception ConnectionFailureException or C status of
TIBEMS_SERVER_NOT_CONNECTED.

2. Methods called elsewhere block until the connection is valid again.

Note that the connection is considered broken from the point where the
underlying TCP/SSL connection fails, and until recoverConnection or
tibemsConnectionFactory_RecoverConnection successfully returns.

Specify Server URLs

&

When a server connection is lost during an unshared state failover, clients attempt
to reconnect to the second server. To enable a client to reconnect, you must specify
the URLSs of both servers when creating a connection.

* Unshared State Specify multiple servers as a list of URLs separated by plus
(+) signs. For example, to identify the first server as tcp://server0:7222,
and the second server as tcp://serverl: 7344, you can specify:

serverUrl=tcp://server0:7222+tcp://serverl: 7344

* Dual State To combine shared state server pairs with unshared state servers,
use commas to separate the servers that share state, and plus (+) signs to
separate servers that do not share state. For example, this line specifies server
al and a2 as a fault-tolerant pair that share state, and servers b1 and b2 as a
second pair with shared state:

serverUrl=tcp://al:8222,tcp://a2:8222+tcp://b1l:8222,tcp://b2:8222
Note that a1 and a2 do not share state with b1 and b2.

The client attempts to connect to each URL in the order listed. If a connection to
one URL fails, the client tries the next URL in the list. The client tries the URLs in
sequence until all URLs have been tried. If the first failed connection was not the
first URL in the list, the attempts wrap to the start of the list (so each URL is tried).
If none of the attempts succeed, the connection fails.

Server lookup functions do not permit unshared state syntax. That is, you cannot
separate server URLs using the plus (+) symbol during a server lookup.

TIBCO Enterprise Message Service User’s Guide

../tib_ems_api_reference/api/javadoc/com/tibco/tibems/ufo/TibjmsUFOConnectionFailureException.html

| 509

Chapter20 Working With Routes

This chapter describes routing of messages among TIBCO Enterprise Message
Service servers.

Topics

* Overview of Routing, page 510

¢ Route, page 511

e Zone, page 514

* Active and Passive Routes, page 517

¢ Configuring Routes and Zones, page 518
* Routed Topic Messages, page 523

* Routed Queues, page 528

* Routing and Authorization, page 531

TIBCO Enterprise Message Service User's Guide

510 | Chapter 20 Working With Routes

Overview of Routing

TIBCO Enterprise Message Service servers can route messages to other servers.
¢ Topic messages can travel one hop or multiple hops (from the first server).

* Queue messages can travel only one hop to the home queue, and one hop from
the home queue.

You can define routes using an administrative interface (that is, configuration
files, tibemsadmin, or administration APIs).

TIBCO Enterprise Message Service User’s Guide

Route | 511

Route

Basic Operation
® Each route connects two TIBCO Enterprise Message Service servers.

* Each route forwards messages between corresponding destinations (that is,
global topics with the same name, or explicitly routed queues) on its two
servers.

* Routes are bidirectional; that is, each server in the pair forwards messages
along the route to the other server.

For example, the compact view at the top of Figure 29 denotes a route between
two servers, A and B. The exploded view beneath it illustrates the behavior of the
route. Each server has a global topic named T1, and a routed queue Q1; these
destinations correspond, so the route forwards messages between them. In
addition, server A has a global topic T2, which does not correspond to any topic
on server B. The route does not forward messages from T2.

Figure 29 Routes: bidirectionality and corresponding destinations

Server:A| e Route ® | Server: B
Server: A Server: B
. . Queue:
Queue: Q1 |« @ > Q1@A
Topic: T1 |« @ » Topic: T1

Topic: T2

TIBCO Enterprise Message Service User's Guide

512 | Chapter 20 Working With Routes

Global Destinations

Routes forward messages only between global destinations—that is, for topics the
global property must be set on both servers (for queues, see Routed Queues on
page 528). (For more information about destination properties, See Destination
Properties on page 58.)

Figure 30 illustrates a route between two servers, C and D, with corresponding
destinations T1 and T2. Notice that T1 is global on both C and D, so both servers
forward messages across the route to the corresponding destination. However, T2
is not global on C, neither C nor D forward T2 messages to one another.

Figure 30 Routes: global destinations

Server: C Server: D
T1 L, _ T1
global=true [~ ~| global=true
T2
T2 global=true

Unique Routing Path

& |

Itisillegal to define a set of routes that permit a message to reach a server by more
than one path. TIBCO Enterprise Message Service servers detect illegal duplicate
routes and report them as configuration errors.

Figure 31 on page 513 depicts two sets of routes. On the left, the routes connecting
servers A, B, C, D and E form an acyclic graph, with only one route connecting
any pair of servers; this configuration is legal (in any zone).

In contrast, the routing configuration on the right is illegal in a multi-hop zone.
The graph contains redundant routing paths between servers Q and S (one direct,
and one through R and T).

Note that the configuration on the right is illegal only in a multi-hop zone; it is
legal in a one-hop zone. For further information, see Zone on page 514.

TIBCO Enterprise Message Service User’s Guide

Route | 513

Figure 31 Routes: Unique Path
Legal lllegal (in a multi-hop zone)
A P Q R

TIBCO Enterprise Message Service User's Guide

514 | Chapter 20 Working With Routes

Zone

Zones restrict the behavior of routes, so you can configure complex routing paths.
Zones affect topic messages, but not queue messages.

Basic Operation

A zone is a named set of routes. Every route belongs to a zone. A zone affects the
forwarding behavior of its routes:

¢ In a multi-hop (mhop) zone, topic messages travel along all applicable routes
to all servers connected by routes within the zone.

® In a one-hop (1hop) zone, topic messages travel only one hop (from the first
server).

* Queue messages travel only one hop, even within multi-hop zones.

For example, Figure 32 depicts a set of servers connected by routes within a
multi-hop zone, Z1. If a client sends a message to a global topic on server B, the
servers forward the message to A, C, D and E (assuming there are subscribers at
each of those servers). In contrast, if Z1 were a one-hop zone, B would forward
the message to A, C and D—but D would nof forward it E.

Figure 32 Zones: multi-hop

[
m

/

Eliminating Redundant Paths with a One-Hop Zone
Figure 33 illustrates an enterprise with four servers:
¢ Bl and B2 serve producers at branch offices of an enterprise.

* M serves consumers at the main office, which process the messages from the
branches.

* Rserves consumers that record messages for archiving, auditing, and backup.

TIBCO Enterprise Message Service User’s Guide

Zone | 515

The goal is to forward messages from B1 and B2 to both M and R. The routing
graph seems to contain a cycle—the path from B1 to M to B2 to R duplicates the
route from B1 to R. However, since these routes belong to the one-hop zone 72, it
is impossible for messages to travel the longer path. Instead, this limitation results
in the desired result—forwarding from B1 to M and R, and from B2 to M and R.

Figure 33 Zones: one-hop

Bl B2
II\ /l
Zone: Z2
1lhop
0/ []
M R

Overlapping Zones

A server can have routes that belong to several zones. When zones overlap at a
server, the routing behavior within each zone does not limit routing in other
zones. That is, when a forwarded message reaches a server with routes in several
zones, the message crosses zone boundaries, and its hop count is reset to zero.

Figure 34 on page 516 illustrates an enterprise with one-hop zones connecting all
the servers in each of several cities in a fully-connected graph. Zone TK connects
all the servers in Tokyo; zone NY connects all the servers in New York; zone PA
connects all the servers in Paris. In addition, the multi-hop zone WO connects one
server in each city.

When a client of server TK3 produces a message, it travels one hop to each of the
other Tokyo servers. When the message reaches TK1, it crosses into zone WO. TK1
forwards the message to NY1, which in turn forwards it to PA1. When the
message reaches NY1, it crosses into zone NY (with hop count reset to zero); NY1
forwards it one hop to each of the other New York servers. Similarly, when the
message reaches PA1, it crosses into zone PA (with hop count reset to zero); PA1
forwards it one hop to each of the other Paris servers.

TIBCO Enterprise Message Service User's Guide

516 | Chapter 20 Working With Routes

Figure 34 Zones: overlap

TK3 TK2 PA2 PA3
Zone: TK . Zone: PA
TK4 “1nop \TKl Zn?ﬁgbwo PAL lhop PA4
NY1 NY2
Zone: NY
NY4 1pop NY3

TIBCO Enterprise Message Service User’s Guide

Active and Passive Routes | 517

Active and Passive Routes

A route connects two servers. You may configure a route at either or both of the
servers.

Active-Passive ~ When you configure a route at only one server, this asymmetry results in two
Routes perspectives on the route:

* A route is active from the perspective of the server where it is configured. This
server actively initiates the connection to the other server, so we refer to it as
the active server, or initiating server.

* A route is passive from the perspective of the other server. This server
passively accepts connection requests from the active server, so we refer to it
as the passive server.

A server can have both active and passive routes. That is, you can configure
server S to initiate routes, and also configure other servers to initiate routes to S.

You can specify and modify the properties of an active route, but not those of a
passive route. That is, properties of routes are associated with the server where
the route is configured, and which initiates the connection.

Note that defining a route specifies a zone as well (either implicitly or explicitly).
%} The first route in the zone defines the type of the route; subsequent routes in the
same zone must have the same zone type (otherwise, the server reports an error).

Active-Active Two servers can both configure an active route one to the other. This arrangement
Routes s called an active-active configuration. For example, server A specifies a route to
server B, and B specifies a route to A. Either server can attempt to initiate the
connection. This configuration results in only one connection; it does not result in
redundant routes.

You can promote an active-passive route to an active-active route. To promote a
route, use this command on the passive server:

create route name url=url

The url argument is required, so that the server (where the route is being
promoted) can connect to the other server if the route becomes disconnected.
See also create route on page 132.

The promoted route behaves as a statically configured route—that is, it persists
messages for durable subscribers, and stores its configuration in routes. conf,
and administrators can modify its properties.

TIBCO Enterprise Message Service User's Guide

518 | Chapter 20 Working With Routes

Configuring Routes and Zones

You can create routes using the administration tool (see Chapter 6 on page 123), or
the administration APIs (see com.tibco.tibjms.admin.RouteInfo in the online
documentation).

Syntax To create a route using the administration tool, first connect to one of the servers,
then use the create route command with the following syntax:

create route name url=URL zone_name=zone_name zone_type=1hop|mhop properties

name is the name of the server at the other end of the route; it also becomes the
name of the route.

URL specifies the other server by its URL—including protocol and port.

If your environment is configured for fault tolerance, the URL can be a
comma-separated list of URLs denoting fault-tolerant servers. For more
information about fault tolerance, see Chapter 19, Fault Tolerance, on
page 485.

zone_name specifies that the route belongs to the routing zone with this name.
When absent, the default value is default_mhop_zone (this default yields
backward compatibility with configurations from releases earlier than 4.0).

The zone type is either 1hop or mhop. When omitted, the default value is mhop.

properties is a space-separated list of properties for the route. Each property has
the syntax:

prop_name=value

For gating properties that control the flow of topics along the route, see
Selectors for Routing Topic Messages on page 525.

For properties that configure the Secure Sockets Layer (SSL) protocol for the
route, see Routing and SSL on page 519.

Example For example, these commands on server A would create routes to servers B and C.
The route to B belongs to the one-hop zone z1. The route to C belongs to the
multi-hop zone zM.

create route B url=tcp://B:7454 zone_name=Z1 zone_type=1lhop
create route C url=tcp://C:7455 zone_name=ZM zone_type=mhop

TIBCO Enterprise Message Service User’s Guide

Configuring Routes and Zones | 519

Show Routes You can display these routes using the show routes command in the
administration tool:

show routes

Route T ConnID URL Zone T
B A 3 tcp://B:7454 Z1 1
C A - tcp://C:7455 M m

® The Route column lists the name of the passive server.

* The T column indicates whether the route is active (A) or passive (P), from the
perspective of server A.

® The ConnID column contains either an integer connection ID (if the route is
currently connected, or a dash (-) if the route is not connected.

Routes to Fault-Tolerant Servers

You can configure servers for fault tolerance. Client applications can specify the
primary and backup servers; if the client’s connection to the primary server fails,
the client can connect to the backup server and resume operation. Similarly, a
route specification can specify primary and secondary passive servers, so that if
the route to the primary server fails, the active server can connect to the backup
server and resume routing.

Failover behavior for route connections is similar to that for client connections;
see Configuring Clients for Fault-Tolerant Connections on page 504.

Example

create route B url=tcp://B:7454,tcp://BBackup:7454 zone_name=Z1 zone_type=lhop

Routing and SSL

When configuring a route, you can specify SSL parameters for the connection.
Although both participants in an SSL connection must specify a similar set of
parameters, each server specifies this information in a different place:

* The passive server must specify SSL parameters in its main configuration file,
tibemsd.conf.

* When a server initiates an SSL connection, it sends the route’s SSL parameters
to identify and authenticate itself to the passive server. You can specify these
parameters when creating the route, or you can specify them in the route
configuration file, routes. conf.

TIBCO Enterprise Message Service User's Guide

520 | Chapter 20 Working With Routes

Table 80 lists the parameters that you can specify in the routes.conf
configuration file, or on the command line when creating a route. The parameters
for configuring SSL between routed servers are similar to the parameters used to
configure SSL between server and clients; see Chapter 18, Using the SSL Protocol,
on page 465.

Table 80 SSL Parameters for Routes (Sheet 1 of 3)

Parameter Description

ssl_identity The server’s digital certificate in PEM, DER, or
PKCS#12 format. You can copy the digital
certificate into the specification for this parameter,
or you can specify the path to a file that contains
the certificate in one of the supported formats.

For more information, see File Names for
Certificates and Keys on page 469.

ssl_issuer Certificate chain member for the server. Supply
the entire chain, including the CA root certificate.
The server reads the certificates in the chain in the
order they are presented in this parameter.

The certificates must be in PEM, DER, PKCS#7 or
PKCS#12 format.

Example

ssl_issuer
ssl_issuer
ssl_issuer

certs\CA_root.pem
certs\CA_childl.pem
certs\CA_child2.pem

For more information, see File Names for
Certificates and Keys on page 469.

ssl_private key The local server’s private key. If the digital
certificate in ss1_identity already includes this
information, then you may omit this parameter.

This parameter accepts private keys in PEM, DER
and PKCS#12 formats.

You can specify the actual key in this parameter,
or you can specify a path to a file that contains the
key.

For more information, see File Names for
Certificates and Keys on page 469.

TIBCO Enterprise Message Service User’s Guide

Configuring Routes and Zones | 521

Table 80 SSL Parameters for Routes (Sheet 2 of 3)

Parameter Description

ssl_password Private key or password for private keys.

You can set passwords using the tibemsadmin
tool. When passwords are set with this tool, the
password is obfuscated in the configuration file.
For more information, see Chapter 6, Using the
EMS Administration Tool, on page 123.

ssl_trusted List of certificates that identify trusted certificate
authorities.

The certificates must be in PEM, DER or PKCS#7
format. You can either provide the actual
certificates, or you can specify a path to a file
containing the certificate chain.

For more information, see File Names for
Certificates and Keys on page 469.

ssl_verify host Specifies whether the server must verify the other
server’s certificate. The values for this parameter
are enabled and disabled.

When omitted, the default is enabled, signifying
the server must verify the other server’s
certificate.

When this parameter is disabled, the server
establishes secure communication with the other
server, but does not verify the server’s identity.

TIBCO Enterprise Message Service User's Guide

522 | Chapter 20 Working With Routes

Table 80 SSL Parameters for Routes (Sheet 3 of 3)

Parameter Description

ssl_verify hostname Specifies whether the server must verify the name
in the CN field of the other server’s certificate.
The values for this parameter are enabled and
disabled.

When omitted, the default is enabled, signifying
the server must verify the name of the connected
host or the name specified in the
ssl_expected_hostname parameter against the
value in the server’s certificate. If the names do
not match, the connection is rejected.

When this parameter is disabled, the server
establishes secure communication with the other
server, but does not verify the server’s name.

ssl_expected hostname Specifies the name expected in the CN field of the
other server’s certificate. If this parameter is not
set, the default is the hostname of the other server.

This parameter is relevant only when the
ssl_verify_hostname parameter is enabled.

ssl_ciphers Specifies a list of cipher suites, separated by
colons (:).

This parameter accepts both the OpenSSL name
for cipher suites, or the longer descriptive names.

For information about available cipher suites and
their names, see Specifying Cipher Suites on
page 476.

ssl_rand egd The path for the installed entropy gathering
daemon (EGD), if one is installed. This daemon
generates random numbers.

TIBCO Enterprise Message Service User’s Guide

Routed Topic Messages | 523

Routed Topic Messages

A server forwards topic messages along routes only when the global property is
defined for the topic; see addprop topic on page 129 and create topic on
page 133.

Topic messages can traverse multiple hops.

When a route becomes disconnected (for example, because of network problems),
the forwarding server stores topic messages. When the route reconnects, the
server forwards the stored messages.

Servers connected by routes do exchange messages sent to temporary topics.

Propagating Registered Interest

To ensure forwarding of messages along routes, servers propagate their topic
subscriptions to other servers. For example, the top of Figure 35 depicts an
enterprise with three servers—A, M and B—connected by routes in a multi-hop
zone. The bottom of Figure 35 illustrates the mechanism at work within the
servers to route messages from a producer client of server A, through server M, to
server B and its subscriber client. Consider this sequence of events.

Figure 35 Routing: Propagating Subscribers

Zone: Z
A mhop M B
‘0‘ .0‘ ‘t --
L. ot K K % . te,
Server: A Server: M Server: B
Topic: T1 Topic: T1 Topic: T1

global / global / global
Subscriber Subscriber Subscriber
T1 T1 T1

A

Client Client

Producer Subscriber
T1 T1

TIBCO Enterprise Message Service User's Guide

524 | Chapter 20 Working With Routes

Subscriber Client
Exit

Server Failure

1. All three servers configure a global topic T1.
2. Atbottom right of Figure 35, a client of server B creates a subscriber to T1.

3. Server B, registers interest in T1 on behalf of the client by creating an internal
subscriber object.

4. Because a route connects servers M and B, server B propagates its interest in
T1 to server M. In response, M creates an internal subscriber to T1 on behalf of
server B. This subscriber ensures that M forwards (that is, delivers) messages
from topic T1 to B. Server B behaves as a client of server M.

5. Similarly, because a route connects servers A and M, server M propagates its
interest in T1 to server A. In response, A creates an internal subscriber to T1 on
behalf of server M. This subscriber ensures that A forwards messages from
topic T1 to M. Server M behaves as a client of server A.

6. When a producer client of server A sends a message to topic T1, A forwards it
to M. M accepts the message on its topic T1, and forwards it to B. B accepts the
message on its topic T1, and passes it to the client.

If the client of server B creates a non-durable subscriber to T1, then if the client
process exits, the servers delete the entire sequence of internal subscribers. When
the client restarts, it generates a new sequence of subscribers; meanwhile, the
client might have missed messages.

If the client of server B creates a durable subscriber to T1, then if the client process
exits, the entire sequence of internal subscribers remains intact; messages
continue to flow through the servers in store-and-forward fashion. When the
client restarts, it can consume all the messages that B has stored in the interim.

In an active-active route between servers B and M, if B fails, then M retains its
internal subscriber and continues to store messages for clients of B. When B
reconnects, M forwards the stored messages.

In an active-passive route configured on B, if B fails, then M removes its internal
subscriber and does not store messages for clients of B—potentially resulting in a
gap in the message stream. When B reconnects, M creates a new internal
subscriber and resumes forwarding messages.

In an active-passive route configured on A, if either server fails, then M retains its
internal subscriber in the same way as an active-active route. However, B does not
retain its internal state which it uses to suppress duplicate messages from A and
can deliver messages to its consumers after they have consumed them. Therefore,
if it is desirable to not lose messages and to not have duplicate messages, the route
should be active-active.

TIBCO Enterprise Message Service User’s Guide

Routed Topic Messages | 525

Network Failure If an active-passive connection between B and M is disrupted, M displays the
same behavior as during a server failure.

maxbytes Combining durable subscribers with routes creates a potential demand for
storage—especially in failure situations. For example, if server B fails, then server
M stores messages until B resumes. We recommend that you set the maxbytes or
maxmsgs property of the topic (T1) on each server, to prevent unlimited storage
growth (which could further disrupt operation).

Selectors for Routing Topic Messages

Motivation A server forwards a global topic message along routes to all servers with
subscribers for that topic. When each of those other servers requires only a small
subset of the messages, this policy could potentially result in a high volume of
unwanted network traffic. You can specify message selectors on routes to narrow
the subset of topic messages that traverse each route.

Message selectors on routes are different from message selectors on individual
%} subscribers, which narrow the subset of messages that the server delivers to the
subscriber client.

Example Figure 36 on page 525 illustrates an enterprise with a central server for processing
customer orders, and separate regional servers for billing those orders. For
optimal use of network capacity, we configure topic selectors so that each regional
server gets only those orders related to customers within its region.

TIBCO Enterprise Message Service User's Guide

526 | Chapter 20 Working With Routes

Specifying
Selectors

Syntax

Figure 36 Routing: Topic Selectors, example

=l

Incoming Orders

/

Central Order Server

<] >4 >

USA Orders Canada Orders Mexico Orders
USA Canada Mexico
Order Processing Order Processing Order Processing

Specify message selectors for global topics as properties of routes. You can define
these properties in two ways:

¢ Define selectors when creating the route (either in routes.conf, or with the
administrator command create route).

* Manipulate selectors on an existing route (using the addprop, setprop, or
removeprop administrator commands).

If you change the message selectors on a route, only incoming messages are
evaluated against the new selectors. Messages pending in the server are
re-evaluated only if the server is restarted.

The message selector properties have the same syntax whether they appear in a
command or in a configuration file:

incoming_topic=topicName selector="msg-selector"
outgoing_topic=topicName selector="msg-selector"

The terms incoming and outgoing refer to the perspective of the active server—
where the route is defined.

topicName is the name of a global topic.

msg-selector is a message selector string. For detailed information about message
selector syntax, see the documentation for class Message in TIBCO Enterprise
Message Service Java API Reference.

TIBCO Enterprise Message Service User’s Guide

Routed Topic Messages | 527

Example Syntax In the example of Figure 36, an administrator might configure these routes on the
central order server:

setprop route Canada outgoing topic="orders" selector="country='Canada
setprop route Mexico outgoing_ topic="orders" selector "country=’'Mexico
setprop route USA outgoing_ topic="orders" selector="country='USA’"

Those commands would create these entries in routes. conf:

[Canada]
url=ssl://canada:7222
outgoing topic=orders selector="country=’'Canada’"

[Mexico]
url=ssl://mexico:7222
outgoing_ topic=orders selector="country=’'Mexico

[USA]
url=ssl://usa:7222
outgoing_topic=orders selector="country='USA’"

Symmetry outgoing_topic and incoming_topic are symmetric. Whether A specifies a
route to B with incoming_topic selectors, or B specifies a route to A with
outgoing_topic selectors, the effect is the same. That is, B sends only those
messages that match the selector over the route.

Active-Active In an active-active configuration, you may specify selectors on either or both

Configuration servers. If you specify outgoing_topic selector S1 for topic T on server A, and
incoming_topic selector S2 for T on server B, then the effective selector for T on
the route from A to Bis (S1 AND S2).

See also Active and Passive Routes on page 517.

Wildcards ~ You can specify wildcards in topic names. For each actual topic, the server uses
logical AND to combine all the selectors that match the topic.

However, routing of topic messages is only reliably supported when the
% subscriber's topic is a subset (or equal) of the configured global topic. Similarly,
intersections are not supported. For example, if topics. conf contains foo. * and
foo.a*, the following subscriptions are correct:
foo.*
foo.1
bar.a.b

The following subscriptions are not correct:

foo.>
bar.*.b

TIBCO Enterprise Message Service User's Guide

528 | Chapter 20 Working With Routes

Routed Queues

With respect to routing, queues differ from topics in several respects:
* Servers route queue messages between the queue owner and adjacent servers.

* The concept of zones and hops does not apply to queue messages (only to
topic messages).

The left side of Figure 37 depicts an enterprise with three servers—P, R and S—
connected by routes. The remainder of Figure 37 illustrates the mechanisms that
routes queue messages among servers (center) and their clients (right side).

Figure 37 Routing: Queues

.

/\ . | Server: P J /Producer
. ot / Q1

P Ql@R o
o - store and fwd to R

K
- Proxy revr g . Consumer
Q1
L.t | Server:R \ L /Producer
v ‘-‘,; /_ Ql
r'q

Q1 global

7 UREEO - home queue Y—| M /Consumer
tea, |
/ Q1

/

| Server: S /
3 Q1@R L
- proxy revr - N /Consumer
"'.... —— Q1

Owner & Home Server R defines a global queue named Q1. R is the owner of Q1.

Servers P and S define routed queues Q1@R. This designation indicates that these
queues depend upon and reflect their home queue (that is, Q1 on server R). Notice
that the designation Q1@R is only for the purpose of configuration; clients of P
refer to the routed queue as Q1.

TIBCO Enterprise Message Service User’s Guide

Example

Producers

Consumers

S

Configuration

A

Routed Queues | 529

When] sends a message to Q1, server P forwards the message to the home
queue—Q1 on server R.

Now the message is available to receivers on all three servers, P, R and S—
although only one client can consume the message. Either Q1 on P receives it on
behalf of K; or Q1 on S receives it on behalf of N; or M receives it directly from the
home queue.

From the perspective of producer clients, a routed queue stores messages and
forwards them to the home queue. For example, when] sends a message to Q1 on
server P, P forwards it to the queue owner, R, which delivers it to Q1 (the home
queue).

The message is not available for consumers until it reaches the home queue. That
is, client K cannot consume the message directly from server P.

If server R fails, or the route connection from P to R fails, P continues to store
messages from K in its queue. When P and R resume communication, P delivers
the stored messages to Q1 on R.

Similarly, routed queues do not generate an exception when the maxbytes and
maxmsgs limits are exceeded in the routed server. Clients can continue to send
messages to the queue after the limit is reached, and the messages will be stored
in the routed server until the error condition is cleared.

From the perspective of consumer clients, a routed queue acts as a proxy receiver.
For example, when L sends a message to Q1 on server R, Q1 on P can receive it
from R on behalf of K, and immediately gives it to K.

If server P fails, or the route connection from P to R fails, K cannot receive
messages from Q1 until the servers resume communication. Meanwhile, M and N
continue to receive messages from Q1. When P and R resume communication, K
can again receive messages through Q1 on P.

Receiving messages from a routed queue using either a small timeout (less than
one second) or no wait can cause unexpected behavior. A small timeout value
increases the chances that protocol messages may not be processed correctly
between the routed servers. For example, queue receivers may not be correctly
destroyed.

You must explicitly configure each routed queue in queues . conf—clients cannot
create routed queues dynamically.

Dynamic routed queues are not supported. In a future release, the server will
consider a routed queue with a wildcard as a misconfiguration and will fail to
start when startup_abort_list includes CONFIG_ERRORS.

TIBCO Enterprise Message Service User's Guide

530 | Chapter 20 Working With Routes

S

Browsing

Transactions

You may use the administration tool or API to configure routed queues; see
addprop queue on page 128 and create queue on page 132.

To configure a routed queue, specify the queue name and the server name of the
queue owner; for example, on server P, configure:

Ql@R

It is legal to use this notation even for the home queue. The queue owner
recognizes its own name, and ignores the location designation (@R).

It is illegal to configure a routed queue as exclusive.

Queue browsers cannot examine routed queues. That is, you can create a browser
only on the server that owns the home queue.

TIBCO Enterprise Message Service does not support transactional consumers on
routed queues (through the use of XA or local transacted sessions).

TIBCO Enterprise Message Service User’s Guide

Routing and Authorization | 531

Routing and Authorization

User & Password

When a server’s authorization parameter is enabled, other servers that actively
connect to it must authenticate themselves by name and password, or by X.509
certificate.

Figure 38 Routing: Authorization

A B
authorization=enabled authorization=disabled
Q2@B Q2

In Figure 38, servers A and B both configure active routes to one another.
* Because A enables authorization, A must configure a user named B.

¢ However, because B disables authorization, A need not identify itself to B, and
B need not configure a user named A.

ACL

When routing a secure topic or queue, servers consult the ACL specification
before forwarding each message. The servers must grant one another appropriate
permissions to send, receive, publish or subscribe.

For example, in Figure 38, you don’t need an ACL for messages to flow from A
(where a producer is sending to) to B (where a consumer is consuming from)
because B has authorization turned off and messages are being sent to and
consumed from queues. However, if messages were to flow from B to A (producer
connects to B and consumer connects to A), then server A's ACL should grant
user B send permission on the queue Q2.

If we were to use topics in this example, then for messages to flow from A to B,
you would need A to grant B the subscribe and durable permission on the topic
(global on both servers). And for messages to flow from B to A, you would have
to grant topic B publish permission on the topic.

See Also Chapter 8, Authentication and Permissions, on page 265

TIBCO Enterprise Message Service User's Guide

532 | Chapter 20 Working With Routes

TIBCO Enterprise Message Service User’s Guide

| 533

Appendix A Monitor Messages

This appendix lists all topics on which the server publishes messages for system
events. The message properties for messages published on each topic are also
described. See Monitoring Server Events on page 454 for more information about
monitor topics and messages.

Topics

* Description of Monitor Topics, page 534
® Description of Topic Message Properties, page 537

TIBCO Enterprise Message Service User's Guide

534 | Appendix A Monitor Messages

Description of Monitor Topics

Table 81 describes each monitor topic.

Table 81 Monitor topics

Message Is Published When...

$sys.monitor.admin.change The administrator has made a change to the
configuration.
$sys.monitor.connection.connect A user attempts to connect to the server.

$sys.monitor.connection.disconnect A yser connection is disconnected.

$sys.monitor.connection.error An error occurs on a user connection.
$sys.monitor.consumer.create A consumer is created.
$sys.monitor.consumer.destroy A consumer is destroyed,
$sys.monitor.flow.engaged Stored messages rise above a destination’s limit,

engaging the flow control feature.

$sys.monitor.flow.disengaged Stored messages fall below a destination’s limit,
disengaging the flow control feature.

$sys.monitor.limits.connection Maximum number of hosts or connections is reached.
$sys.monitor.limits.queue Maximum bytes for queue storage is reached.
$sys.monitor.limits.server Server memory limit is reached.
$sys.monitor.limits.topic Maximum bytes for durable subscriptions is reached.
$sys.monitor.multicast.stats The message published contains low-level PGM

statistics from the server and multicast daemons.

$sys.monitor.multicast.status A message consumer subscribes or attempts to
subscribe to a multicast-enabled topic.

$sys.monitor.producer.create A producer is created.
$sys.monitor.producer.destroy A producer is destroyed_
$sys.monitor.queue.create A dynamic queue is created.

TIBCO Enterprise Message Service User’s Guide

Table 81 Monitor topics

Description of Monitor Topics | 535

Message Is Published When...

$sys.monitor.route.connect A route connection is attempted.
$sys.monitor.route.disconnect A route connection is disconnected.
$sys.monitor.route.error An error occurs on a route connection.
$sys.monitor.route.interest A change in registered interest occurs on the route.
$sys.monitor.server.info The server sends information about an event; for
example, a log file is rotated.
$sys.monitor.server.warning The primary server detects a disconnection from the
backup server.
$sys.monitor.topic.create A dynamic topic is created.
$sys.monitor.tx.action A local transaction commits or rolls back.
$sys.monitor.xa.action An XA transaction commits or rolls back.

TIBCO Enterprise Message Service User's Guide

536 | Appendix A Monitor Messages

Table 81 Monitor topics

Message Is Published When...

$sys.monitor.D.E.destination

A message is handled by a destination. The name of
this monitor topic includes two qualifiers (D and E)
and the name of the destination you wish to monitor.

D signifies the type of destination and whether to
include the entire message:

* T — topic, include full message (as a byte array)
into each event

¢ t — topic, do not include full message into each
event

* Q— queue, include full message (as a byte array)
into each event

* g— queue, do not include full message into each
event

E signifies the type of event:

* r for receive

* sforsend

* afor acknowledge

¢ p for premature exit of message
e = for all event types

For example, $sys.monitor.T.r.corp.News is the
topic for monitoring any received messages to the topic
named corp.News. The message body of any received
messages is included in monitor messages on this
topic. The topic $sys.monitor.q. *.corp. * monitors
all message events (send, receive, acknowledge) for all
queues matching the name corp. *. The message body
is not included in this topic’s messages.

The messages sent to this type of monitor topic include
a description of the event, information about where the
message came from (a producer, route, external
system, and so on), and optionally the message body,
depending upon the value of D.

See Monitoring Messages on page 454 for more
information about message monitoring.

TIBCO Enterprise Message Service User’s Guide

Description of Topic Message Properties | 537

Description of Topic Message Properties

Table 82 describes the properties that monitor topic messages can contain. Each
monitor message can have a different set of these properties.

Table 82 Message properties

Property Contents

conn_connid Connection ID of the connection that generated the event.

conn_ft Whether the client connection is a connection to a fault-tolerant
server.

conn_hostname Hostname of the connection that generated the event.

conn_ssl Whether the connection uses the SSL protocol.

conn_type Type of connection that generated the event. This property can

have the following values:

® Admin
® Topic
® Queue

® Generic
® Route
e FT (connection to fault-tolerant server)

® Unknown

conn_username User name of the connection that generated the event.
conn_xa Whether the client connection is an XA connection.
event action The action that caused the event. This property can have the values

listed in Table 83 on page 542.

event_class The type of monitoring event (that is, the last part of the topic
name without the $sys.monitor).

For message monitoring, the value of this property is always set to
message.

event_description A text description of the event that has occurred.

TIBCO Enterprise Message Service User's Guide

538 | Appendix A Monitor Messages

Table 82 Message properties

Property Contents

event_reason The reason the event occurred (usually an error). The values this
property can have are described in Table 84 on page 544.

event_route For routing, the route that the event occurred on.

message bytes When the full message is to be included for message monitoring,
this field contains the message as a byte array. You can use the
createFromBytes method (in the various client APIs) to recover
the message.

mode Message delivery mode. This values of this property can be the
following:

® persistent
® non_persistent

® reliable

msg_id Message ID.

msg_seq Message sequence number.
msg_size Message size, in bytes.
msg_timestamp Message timestamp.
msg_expiration Message expiration.
replyTo Message JMSReplyTo.
rv_reply Message RV reply subject.
source_id ID of the source object.

TIBCO Enterprise Message Service User’s Guide

Description of Topic Message Properties | 539

Table 82 Message properties

Property Contents

source_name Name of the source object involved with the event. This property
can have the following values:

* XID (global transaction ID)

® message_id

® connections (number of connections)
¢ unknown (unknown name)

* Any server property name

e the name of the user, or anonymous

source_object Source object that was involved with the event. This property can
have the following values:

® producer

® consumer

® topic

® queue

® permissions
® durable

® server

® +transaction
® user

® group

® connection
® message

® jndiname

e factory

o file

* limits (alimit, such as a memory limit)
® route

® transport

TIBCO Enterprise Message Service User's Guide

540 | Appendix A Monitor Messages

Table 82 Message properties

source_value Value of source object.

stat_msgs Message count statistic for producer or consumer.

stat_size Message size statistic for producer or consumer.

target_admin Whether the target object is the admin connection.

target_created Time that the consumer was created (in milliseconds since the
epoch).

target_dest_name Name of the target destination

target dest_type Type of the target destination.

target_durable Name of durable subscriber when target is durable subscriber.

target_group Group name that was target of the event

target_hostname Hostname of the target object.

target_id ID of the target object.

target channel Name of the multicast channel.

target_name Name of the object that was the target of the event. This property

can have the following values:

* XID (global transaction ID)

® message_id

® connections (number of connections)
¢ unknown (unknown name)

* Any server property name

¢ the name of the user, or anonymous

e channel (multicast channel)

target nolocal NoLocal flag when target is durable subscriber.

TIBCO Enterprise Message Service User’s Guide

Table 82 Message properties

Description of Topic Message Properties | 541

Property Contents

The general object that was the target of the event. This property
can have the following values:

target_object

producer
consumer
topic
queue
durable
server
transaction
user

group
connection
message
jndiname
factory

file

limits (a limit, such as a memory limit)

route

transport

target_selector

Selector when the target is a consumer.

target_subscription

Subscription of the target object when target is durable subscriber.

target_url

URL of the target object.

target_username

Username of the target object.

target_value

Value of the object that was the target of the event, such as the
name of a topic, queue, and so on.

TIBCO Enterprise Message Service User's Guide

542 | Appendix A Monitor Messages

Table 83 Event Action Property Values

Event Action Value Description

accept connection accepted
acknowledge message is acknowledged
add

user added to a group

admin_commit

administrator manually committed an XA
transaction

admin_rollback

administrator manually rolled back an XA
transaction

commit transaction committed
connect connection attempted
create something created
delete something deleted
disconnect connection disconnected

flow_engaged

stored messages rise above a destination’s limit,
engaging the flow control feature

flow_disengaged

stored messages fall below a destination’s limit,
disengaging the flow control feature

interest registered interest for a route
modify something changed
grant permission granted

premature_exit

message prematurely exited

purge topic, queue, or durable subscriber purged
receive message posted into destination

remove user removed from a group

resume administrator resumed a route

TIBCO Enterprise Message Service User’s Guide

Description of Topic Message Properties | 543

Table 83 Event Action Property Values

Event Action Value

revoke

Description

permission revoked

rollback

transaction rolled back

rotate_log

log file rotated

send message sent by server to another party

subscribe subscription request

suspend administrator suspended a route

txcommit administrator manually committed a local
transaction

txrollback administrator manually rolled back a local
transaction

xacommit

an application committed an XA transaction
(2-phase)

xacommit_1lphase

an application committed an XA transaction
(1-phase)

xastart

an application started a new XA transaction

xastart_join

an application has joined (that is, added) a resource
to an existing transaction

xastart_resume

an application resumed a suspended XA
transaction

xaend_fail

an application ended an XA transaction, indicating
failure

xaend_success

an application ended an XA transaction, indicating
success

xaend_suspend

an application suspended an XA transaction

xaprepare

an application prepared an XA transaction

xXarecover

an application called recover (to get a list of XA
transactions)

TIBCO Enterprise Message Service User's Guide

544 | Appendix A Monitor Messages

Table 83 Event Action Property Values

Event Action Value Description

xarollback an application rolled back an XA transaction

Table 84 Event Reason Property Values

Event Reason Value Description

backup_connected The fault-tolerant backup server has connected.

backup_disconnected The fault-tolerant backup server has
disconnected.

bridge Message posted to destination as result of
bridging.

closed Connection was closed.

consumer For message monitoring, this value signifies a

message was sent or acknowledged by a
consumer. For all other cases, this value signifies
a dynamic topic or queue created for a

consumer.
cycle Cyclic route created.
disabled Feature not enabled.
discarded The oldest message on the destination has been

discarded to make room for a new message. This
occurs when overflowPolicy=discard0ld is
set on the destination and either the maxmsgs
and/or maxbytes limit set for the destination
has been exceeded.

duplicate Duplicate, such as route, global queue or topic.
error Connection disconnected due to error.
exceeded Limit exceeded.

expired Message has been expired by the server.
export Message exported to a transport.

TIBCO Enterprise Message Service User’s Guide

Description of Topic Message Properties | 545

Table 84 Event Reason Property Values

import Message imported from a transport.
invalid_name Name not valid, such as route name.
invalid password Invalid password provided.

maxredelivery exceeded Message has exceeded the maxRedelivery
count for the queue.

new_connection A new connection was established to the server.
not_authorized Not authorized to perform action.
not_connected Could not establish connection.

not_found Something was expected, but not found.
producer For message monitoring, this value signifies a

message was posted by a producer. For all other
cases, this value signifies a dynamic topic or
queue created for a producer.

reconnect_active Connection active.

reconnected_connection The connection to the server has been

reestablished.
reconnect_unknown Connection unknown.
rotatelog Log file rotated.
route For message monitoring, this value signifies a

message was sent or received from a route. For
all other cases, this value signifies a dynamic
topic or queue created for a route.

shutdown Server was shut down.
standby Server in standby mode.
subscribed Successful subscription request.
terminated Connection was terminated.

TIBCO Enterprise Message Service User's Guide

546 | Appendix A Monitor Messages

TIBCO Enterprise Message Service User’s Guide

| 547

Appendix B Error and Status Messages

This appendix lists all possible error messages that the server can output,
alphabetized by category.

Key to this Appendix

Category The category indicates the general class of error.

This appendix is alphabetized by category.
Description ~ The description explains the error category in more detail.

Resolution The resolution indicates possible recovery actions that administrators should
consider.

Errors These strings represent all instances of the error, as they appear in EMS server
code. Some categories have many error instances; others have only one. These
strings can include formatting characters.

TIBCO Enterprise Message Service User's Guide

548 | Appendix B Error and Status Messages

Error and Status Messages

Category

Description

Resolution

Errors

Category

Description

Resolution

Errors

Category

Description

A durable consumer was found in the store file for a route that does not exist

On server startup a durable consumer was found in the store file for a route that is
not listed in the routes.conf file. This happens if the routes.conf file is manually
edited.

Make routing changes via administration tools.

Discarding durable '%s' for route '%s' because the route does not exist.

Admin command failed

An admin tool or program using the admin API attempted an operation that
failed for the given reason.

The admin tool or admin API provides the failure reason. The user of the tool or
API should examine the error and correct the syntax, parameter or configuration
that is causing the failure.

%s: create %s failed: conflicting zone: existing consumer has a different zone
%s: create %s failed: detected duplicate durable subscription [%s] for topic [%s].
%s: create %s failed: illegal to use wildcard %s [%s].

%s: create %s failed: invalid %s [%s].

%s: create %s failed: invalid session id=%d.

%s: create %s failed: invalid syntax of %s [%s].

%s: create %s failed: invalid temporary %s [%s].

%s: create %s failed: not allowed to create dynamic %s [%s].

Invalid consumer in recover one msg request.

Invalid sequence number in recover one msg request.

Authentication error

The EMS server failed to authenticate the user or password.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 549

Resolution Ensure the user is defined to EMS by one of the methods allowed by the
user_auth parameter in the main configuration file. The user is either specified by
the application or in the SSL certificate. If the user is defined, reset the password
and try again.

Errors Unable to initialize connection, SSL username error.

LDAP authentication failed for user '%s', status = %d

LDAP authentication failed for user '%s', no password provided

Category Backup server '%s' disconnected
Description ~ Lost connection with the backup fault-tolerant server.

Resolution ~ Determine if the backup server is running. If it is running, check for a network
partition.

Errors Backup server '%s' disconnected.

Category Bad or missing value for command line parameter
Description An invalid value was supplied for a command line parameter.

Resolution ~ Change the value of the named parameter to an acceptable value; for information
about tibemsd command line parameters, see EMS documentation.
Errors '%s' requires an integer argument.
'%s' requires a positive integer argument.

"%s' requires a string argument.

Category Banners and debug traces
Description ~ Banner and debug traces
Resolution ~ Not applicable

Errors %s: %s has been changed
%s: %s has been changed to %s

%s: %s has been changed to %d

TIBCO Enterprise Message Service User's Guide

550 | Appendix B Error and Status Messages

%s: %s has been changed to % PRINTF_LLFMT d
Invalid session for route configuration.

Invalid routed queue information message.

Expired % PRINTF_LLEMT d message%s.

Discarded % PRINTF_LLFMT d message%s.

[Yos@%s]: rejected connect from route: invalid password
%s: purged durable '%s'

%s: %s %s '%s' permissions on %s '%s': %s

%s: create %s failed: durable creation access denied for %s [%s].
Async Recs: max=%d avg="%.2f min=%d

Process Id: %d

Server activating on failure of '%s'".
ldap_search_ext_s(%x, %s, %s, %s)

Flow Stall Recovery Timer: to recover stall of %s on route from %s, recovery count
= %d

Error, filter '%s' contains an illegal type substitution character, only %%s is
allowed

Rendezvous Certified Advisory: %s

LDAP response resulting from checking if an entry is a member of a dynamic
group:'

ignoring route '%s' at '%s', route user does not exist.

Created %s transport '%s'

Send recover request for routed queue flow stall for queue %s
Removing routed topic consumer '%s'

License has been activated.

Hostname: %s

Evaluation Software Notice: remaining uptime is %d hours %d minutes.
[Y%s@%s]: rejected connect from route: implicit route already exists
LDAP response resulting from getting attributes for group '%s":
ldap_parse_reference: %s

Storage Location: '%s'.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 551

Search reference: %s

Route Recover Interval is %u seconds.

Route Recover Minimum Message Count is %u.
Route connect error: route has no zone setting
SS: Deleting existing GMD file.

LDAP error: %s

Clean all flow stalls for route to server %s: %s
%s: shutdown server

Reading configuration from '%s'.

Configuration warning: file=%s, line=%d: illegal to specify both '%s' and '%s’,
ignoring '%s'

Recovered flow stalled consumer for destination: %s:%s
%s: revoked all %s permissions on %s '%s'

Error sending routing information to '%s'.

Send recover request

Skipping recover request, message count % PRINTF_LLFMT d greater than
recover count

Lazy Dels: max=%d avg="%.2f min=%d

Release Holds: max=%d avg="%.2f min=%d

%s: created rvcmlistener transport '%s' name '%s' dest '%s'
ERROR: file=%s, line=%d: %s is too long.

Route '%s' connecting to url '%s'".

Route '%s' connected to url '%s' with zone '%s:%s'".

Detected tie during route creation '%s'. Resolution, keep existing route
(connID=% PRINTF_LLFMT d).

Detected tie during route creation '%s'. Resolution, destroy existing route
(connID=% PRINTF_LLFMT d).

Found connID=%PRINTF_LLFMTd for existing route '%s', but no connection.

[Yos@%0s]: rejected connect from route: %s

TIBCO Enterprise Message Service User's Guide

552 | Appendix B Error and Status Messages

Configuration warning: file=%s, line=%d: Use of Rendezvous Bridge via tibrv_...
parameters has been deprecated. This feature is subject to removal in the next
release of this product. Please convert your configuration to utilize transports
defined in transports.conf configuration file.

Rendezvous %s %s enabled (RV %s).

Error in ldap_search_ext_s: %s

Server is re-entering standby mode.

Statistics database memory now below limit

SS: Destroying SmartSockets transport %s

Created file '%s'

Restored routed topic consumer for '%s'

Adding routed topic consumer for '%os'

Subscriber %s for topic '%s' exceeded topic limit.

Refrained from removing configured durable '%s'

Sync Recs: max=%d avg=%.2f min=%d

SS: Unsubscribe from '%s' tport = %s

Recovered %d pending connection%s.

SS: Imported message on tport='%s', subject='%s', reply='%s'".
Clean flow stall for consumers of destination %s:%s
ldap_search_s(%x, %s, %s, %s, [NULL])

%s:%s queue browser failed: illegal to use wildcard queue [%s]
There should be only one consumer reaching %s, but %d found
%s:%s queue browser failed: cannot browse [%s] because it is a routed queue.
Clear (Non-IO) flow stalled on dest %s:%s from route of %s
Error sending routing information to %s, send failed

%s: %s updated: '%s'

%s: consumed_msg_hold_time updated: '%d'

Authorization is disabled.

SSL connect: using certificate username '%s'.

SSL reset to TCP for connID=% PRINTF_LLFMT d, user="'%s'

Configuration warning: file=%s, line=%d: invalid trace option '%s' is ignored

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 553

Server is now active.

(NON-IO) Flow stalled on dest %s from route of %s

Dump of user cache:

Administrator group not found, created with default member.
Received exception on route '%s':'%s'

ldap_search_s(%x, %s, %s, %s, [%s,%s,%s,%s,%s,NULL])
EXPIRE: msgs=%d

Clean flow stall for routed consumer of queue %s

EXPIRE: total=% PRINTF_LLFMT d expire=0

EXITING

Configuration error: file=%s, line=%d: ignoring invalid selector specifications in
route parameters

%s: created group '%s'

set %s:% PRINTF_LLFMT d in flow stall recover request

Error: unable to bind to LDAP server as: '%s', %s

DISK 1O stats for %s:

Authorization exception creating routed topic consumer for '%s'

Fault tolerant reconnect timeout is set to a negative or 0 value of %d seconds,
Licensed server is waiting for license activation.

LDAP message resulting from checking existence:

Memory limit of %d MB exceeded.

%8 %s to Y%s: connID=% PRINTF_LLFMT d consID=% PRINTF_LLEMT d
msgID:'%s' %5="'%S5'%8%5%5%5%Ss%s

User '%s' is authenticated via LDAP

User '%s' is authenticated via JAAS

Route '%s' accepted from host '%s' with zone '%s:%s'.
%s:%s queue browser failed: queue does not exist: [%s]

%s acknowledged by %s: connID=% PRINTF_LLFMT d consID=%
PRINTF_LLEMT d msgID="%s" %s="%s'

%s premature exit: %s : connID=% PRINTF_LLFMT d prodID=%
PRINTF_LLEMT d msgID="%s" %s="%s'

TIBCO Enterprise Message Service User's Guide

554 | Appendix B Error and Status Messages

%s: removed user '%s' from group '%s'

Reading SS configuration from '%s'".

Ignoring inbound routed topic '%s', illegal topic.

%s: Compacting %s with no time limit.

STARTING POP WAITING

Flow stall recover ack received Post 10

RVCM name not specified for transport '%s', using RVCM name '%s'
Purged % PRINTF_LLFMT d queue message%os.

Purged % PRINTF_LLFMT d topic consumer messageos.

No memory to process incoming data from connection id=% PRINTF_LLFMT d.
Connection terminated.

%s: Disconnected, connection id=% PRINTF_LLFMT d, reason: %s%s

%s: connection id=% PRINTF_LLFMT d purged after FT timeout

Error, missing %s parameter

Bytes: max=%d avg=%.2f min=%d

Server is active.

%s: %s bridge: source=[%s:%s] target=[%s:%s]

Error, filter '%s' contains too many occurrences of %%s, max allowed is: %d
%s: created JNDI name '%s' for %s '%s'

Server is in standby mode.

%s: create %s failed: durable access denied for %s [%s].

%s: Destroyed producer (connid=% PRINTF_LLFMT d, sessid=%
PRINTF_LLEMT d, prodid=% PRINTF_LLEMT d) %s

ldap_simple_bind_s(, *******)

[Yos] Yos

Active server '%s' not found.

Backup server '%s' has connected.

Error in ldap_set_option: %s

%s:%s queue browser failed: access denied for queue [%s]
Ignoring inbound routed topic '%s', no corresponding topic.

%s: created user '%s'

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 555

Unable to initialize route: expected route name '%s', received '%s'.

Evaluation Software Notice: remaining uptime is %d minutes.

%s: created topic '%s'%s%s

Connected to LDAP server %s

Processed %d msgs

Error, LDAP is disabled

Configuration warning: file=%s, line=%d: illegal to use '.' in server name, replaced
with '_,

%s: %8s %0s '%s' administrative permissions: %s

Warning: statistics database memory exceeded limit

[%s@%s]: rejected connect from route: this shouldn't happen: route exists with no
zone setting

Rejected connect from route '%s' at %s, routing disabled.
Missing heartbeats from primary server '%s'.

Flow stall recovery request received, send to IO

Unable to initialize route '%s'": route server returned: '%s'
RUNNING SWAPPER %d %d needed = %u!

Restoring consumer warning: zone of id %d does not exist in zone mapping
entries

Ignoring inbound routed queue '%s', no corresponding queue.
%s:%s queue browser failed: illegal to use reserved queue [%s]
%s: committed transaction %s

Trying to send flow stall recovery request for destination: %s
%s: destroyed connection % PRINTF_LLFMT d
ldap_search_s(%x, %s, %s, %s, [%s,%s,%s,NULLY])

Allocating storage to minimum %s for store '%s', please wait.
%s:%s queue browser failed: invalid name of queue [%s]

%s: updated group '%s'

SS: Created subscriber to '%s' LB override=%d. tport='%s'

%s: destroyed message '%s'

TIBCO Enterprise Message Service User's Guide

556 | Appendix B Error and Status Messages

Configuration warning: file=%s, line=%d: Use of Rendezvous import/export
settings via tibrv_... parameters has been deprecated. This feature is subject to
removal in the next release of this product. Please convert your configuration to
utilize 'import' and 'export’ properties and using transports defined in
transports.conf configuration file.

Route '%s' disconnected, connection id=% PRINTF_LLFMT d
Routed Queue '%s' is not a home Queue

Logging into file '%s'

Y%s: create %s failed: access denied for %s [%s].

Unable to obtain message type number for imported SS message
Route Warning: host of this name does not exist: %s

%s: created queue '%s'%s%s

now timer fired

Clock sync timer created with interval %d seconds

Clock sync timer fired

Clock sync timer error: %s

Breaking from remove thread for wantsLock!

%s: created JNDI name '%s' = '%s'

Metadata storage: '%s'.

Flow stall recover ack received for destination %s

Server rereading configuration.

Route '%s' sent resume request

Refrained from deleting configured durable '%s' even though application's
attributes differ from configuration

EXPIRE: msgs=% PRINTF_LLFMT d exp=% PRINTF_LLEMT d expd=%
PRINTF_LLFMT d int=% PRINTF_LLFMT d tm=% PRINTF_LLFMT d

Server of version %d.%d does not support flow stall recovery, do nothing.
%s: rotated log file.

Asynchronous storage: '%s'.

Created Routed Dynamic Queue '%s' from '%s'

Results of searching for dynamic groups:

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 557

Transaction for non-existent consumer: % PRINTF_LLFMT d connID=%
PRINTF_LLEMT d sessID=% PRINTF_LLFMT d %s

Error in ldap_unbind: %s

Rendezvous %s %s enabled.

[Yos@%s]: route connect failed: invalid password

%s: updated topic '%s'": %s

ldap_search_s(%x, %s, %s, %s, [%s, NULL])

Configuration warning: file=%s, line=%d: invalid option '%s' is ignored
Server is in standby mode for '%s'.

Error, references not supported

Acknowledging the flow stall recover request for destination %s:%s and resume
the flow

Failed to rename file, original file %s saved as file %s. Please rename the file
Route connect error: can not connect to route '%s' at '%s', error=%s.
Recovered %d messageos.

%s: deleted group '%os'

Start opening sync db

Start opening async db

Removed Routed Dynamic Queue '%os'

%s: %os bridge: source=[%s:%s] target=[%s:%s] selector="%s'

Error, zero entries returned from getting attributes for group '%s":

Warning: configuration file 'tibjmsd.conf' should be renamed to 'tibemsd.conf'".
Warning: [queue: %s]: dynamic routed queues are not supported.

Transaction for non-existent message: % PRINTF_LLFMT d connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Route recovery of destination %s on route from %s failed, will try again: %s
[%s@%s]: route connect failed: route server not authorized.

Implicit route to [%s] already exists

%s: %s route '%s', URL=[%s]

Results of searching for static groups:

%s: Queue limit exceeded for queue '%s'.

TIBCO Enterprise Message Service User's Guide

558 | Appendix B Error and Status Messages

%s: Topic limit exceeded for topic '%s'.

Implicit route to '%s' already exists.

%s: deleted rvemlistener transport '%s' name '%s' dest "%s'
Evaluation Software Notice: remaining uptime is %d hours.
Secure Socket Layer is enabled, using %s

Using cryptographic module %s

Reserve memory reestablished, all client requests accepted. Pending msg count =
% PRINTF_LLEMT d

Msg recs processed = %d

ldap_search_s(%x, %s, %s, %s, [%os,%s,NULL])
(IO) Flow stalled on dest %s:%s from route of %s
Invalid specifications for route '%s' topic '%s'

%s: Created producer (connid=% PRINTF_LLFMT d, sessid=% PRINTF_LLEMT
d, prodid=% PRINTF_LLFMT d) %s

SS: Consumer subscribe to '%s' LB override=%d. tport='%s'
Routing is enabled.

Recovering state, please wait.

Files opened.

Starting msgPass.

Finished msgPass.

Administrator user not found, created with default password.
Route '%s' sent suspend request

%d batches, %.2f batches/sec

%s: purged queue '%s'

Error in ldap_search_s: %s

%s: created durable '%s' Selector: %s

Accepted license with limits: conns=%d hosts=%d hours=%d
USING %d memory

Continuing as active server.

VALIDATING STORE %s

[%s@%s]: rejected connect from route: route already connected

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 559

%s: purged topic '%s'
ldap_search_ext: %s

Flow control %s on %s "%s'
Accepting connections on %s.

Configuration warning: ignoring tibrvem_import property set on %s '%s' because
it collides with tibrvem_import property on %s '"%s'

Warning: configuration file '%s' not found and has been created. All configuration
settings have been reset to defaults.

EXPIRE ERROR: oldCount=% PRINTF_LLFMT d found=% PRINTF_LLFMT d
walked=% PRINTF_LLFMT d

Shutdown complete.
Restarting now.

%s: Created %s%sconsumer%s%s%s%s (connid=% PRINTF_LLFMT d, sessid=%
PRINTF_LLEMT d, consid=% PRINTF_LLEMT d) on %s '%s'%s%s%s%s

Created shared %ssubscription '%s' (id=% PRINTF_LLFMT d) on topic
[O/OS](VOSO/OSO/OSO/OS

Search completed successfully. Entries found: %d

Created routed dynamic queue "%s' for '%s'

%s: deleted durable '%s'

Part of the DN that matches an existing entry: %s

Purged %d connection%s.

Ignoring inbound routed topic '%s', local topic is not global.
%s: deleted user '%os'

%s: create %s failed: access denied for monitoring %s [%s].
Administrator group found with no members, added default member.
%s: updated user '%s'

SmartSockets transports are enabled.

Running in Temporary Destination Compliance mode.
ldap_search_s(%x, %s, %d, %s, [%s,NULL])

%s: %screated dynamic %s '%os'

Using %d threads for LDAP processing.

Routing is disabled.

TIBCO Enterprise Message Service User's Guide

560 | Appendix B Error and Status Messages

%s: %s factory '%os'

INIT-EXPIRE: exp=%d mexp=% PRINTF_LLFMT d oldt=% PRINTF_LLFMT d
interval=%d

Error in ldap_initialize(%s)

Created dynamic %s '%s'

%s: Compacting %s with time limit %PRINTF_LLFMTd seconds
Error sending route query to '%s'.

%s: updated queue '%s'": %s

Server name: '%s'.

Route configuration error: global queue '%s' from route '%s' collides, global
queues must be unique.

Route configuration error: routed queue '%s' from route '%s' is not global in '%s'.
Server shutting down.
Server preparing to restart.

Route configuration warning: global queue '%s' from route '%s' not configured on
local server

Flow stall recovery request received, recover consumer of id % PRINTF_LLFMT d
Flow Control is enabled.

%s: deleted INDI name '%s'

Clear (IO) flow stalled on dest %s:%s from route of %s

Removing route '%s', URL="%s'": this route is duplicate, creates a loop or has
configuration errors

EXPIRE: giving up amid lock

Done opening async db

Error, invalid search scope: %s

Error in ldap_url_parse, returned: %d

%s: create %s failed: durable recreation access denied for %s [%s].
Ignoring inbound routed queue '%s', illegal queue.

key: '%s' value: '%s'

Connection to primary server '%s' has been lost.

Route connect error: failed connect to server '%s' at '%s'

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 561

%s: rolled back transaction %s

LDAP response resulting from checking existence:
ldap_parse_result: %s

Hostname IP address: %s

Flow stall recovery request received, after 1O

%s: Connected, connection id=% PRINTF_LLFMT d, type: %s%s
%s: Reconnected, connection id=% PRINTF_LLEMT d, type: %s%s

Unable to initialize one hop route: One-hop routing is not supported for server
version %d.%d

Error, must provide static and/or dynamic group name attribute
Unable to initialize route, expected route name not received.
Stat: rate=%d cleanup=%d memory=%d

%s: Destroyed %sconsumer?%s%s%s%s (connid=% PRINTF_LLFMT d, sessid=%
PRINTF_LLFMT d, consid=% PRINTF_LLEMT d) on %s '%s'

Destroyed shared %ssubscription '%s' (id=% PRINTF_LLFMT d) on topic [%s]

%s: Unsubscribed durable consumer '%s' due to administrator deleting durable
(consid=% PRINTF_LLEMT d) on topic '%s'

%s: Unsubscribed shared durable subscription '%s' due to administrator deleting
durable (id=% PRINTF_LLFMT d) on topic '%s'

%s: Unsubscribed durable consumer '%s' due to user calling unsubscribe
(connid=% PRINTF_LLFMT d, consid=% PRINTF_LLFMT d) on topic '%s'

%s: Unsubscribed shared durable subscription '%s' due to user calling
unsubscribe (connid=% PRINTF_LLEFMT d, id=% PRINTF_LLFMT d) on topic
"Yos'

%s %s from %s: connlD=% PRINTF_LLFMT d prodID=% PRINTF_LLFMT d
msglID="%s' %s mode=%s size=%d %s="%0s'%s %s

ldap_search_s(%x, %s, %s, %s, [%0s,%s,%s,%s,NULL])
ldap_search_s: %s

Error, filter '%s' too long, max length is %d characters
%s: deleted %s 'Y%os'

Disallowing Rendezvous Certified Message listener '%s'

SS: Exporting EMS message: tport='%s', dest='%s', reply='%s' SSDelivery=%d,
LB=%d

TIBCO Enterprise Message Service User's Guide

562 | Appendix B Error and Status Messages

Refrained from removing configured route durable '%s'

Authorization is enabled.

Rendezvous Advisory: %s

Refrained from removing durable for route '%s' due to configured durable

Configuration error: file=%s, line=%d: invalid value of option '%s'. Unable to
start.

%s: Y%sconnect failed: %s%s

unable to create connection with existing ID % PRINTF_LLFMT d
Synchronous storage: '%s'.

Clean all flow stalls for destination %s

Done opening sync db

%s: added user '%s' to group '%s'

ldap_search_s(%x, %s, %s, %s, [%0s,%s,%s,%s,%s,%s,NULL])

Configuration warning: file=%s, line=%d: can not specify 'NONE' with other
options

%s: %s failed: access denied for %s [%s].
Process started from '%s'.

Clean flow stall for routed consumer of queue %s: no other remote consumers,
remove the stall

[Y%s@%s]: connect failed: reached maximum number of %s %d

Refrained from removing durable for route '%s' due to configured durable
LDAP Cache: User '%s' is a member of group(s):

LDAP Cache: Deleting cached record of user: '%s'

Client ID is too long.

Durable name is too long.

Durable name must be specified (connID=% PRINTF_LLFMT d)
Consumed Msg Hold Time is %d seconds.

A duplicate durable instance (conn=%s durable=%s dest=%s) was detected,
discarding old one

The shared subscription [%s] (id=% PRINTF_LLEMT d) already exists on topic
[%8]%s%s%s%0s, rejecting the new one on [%s]%s%s %s%s

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 563

%s: create durable subscription failed: detected an existing shared durable
subscription [%s] (id=% PRINTF_LLFMT d) for topic [%s]

%s: create shared durable subscription failed: detected an existing unshared
durable subscription [%s] (consid=% PRINTF_LLFMT d) for topic [%s]

%s: create shared durable subscription [%s] on topic [%s] failed: detected an
existing shared durable subscription (id=% PRINTF_LLFMT d) for topic [%s]
with different attributes and active consumers

%s: create shared durable subscription [%s] on topic [%s] failed: %d - %s

A duplicate connection with same client id (clientid=%s) detected, destroying old
conn (conn-id=% PRINTF_LLEMT d)

Warning, deleting and recreating durable '%s' due to change in client attributes:
Y%08%8%s

Unable to build monitor message. Error code: %d - %s

Multicast is enabled.

%s: Multicast consumers require NO_ACKNOWLEDGE sessions: %s

%s: Multicast consumers require non-transacted sessions: %s

%s: Multicast consumer status: %s (consid=% PRINTF_LLFMT d)

%s: Multicast consumer status: %s (consid=% PRINTF_LLFMT d channel="'%s')

[%s]: tx=% PRINTF_LLEFMT d bytes, rtx=% PRINTF_LLFMT d bytes, buf=%
PRINTF_LLFMT d bytes

[%5@%s %s]: rcv="% PRINTF_LLFMT d bytes, lost=% PRINTF_LLFMT d, naks=%
PRINTF_LLEMT d, failed=% PRINTF_LLFMT d

Yos

%s: JMX stats for store '%s' updated: %s

Route configuration: Adding topic '%s' for server %s

Route configuration: Sending %d topics to server %s at %s - %s
Route configuration: Sending topics to server %s at %s - %s
Route configuration: Sending queue '%s' to server %s at %s - %s
Route configuration: Sending queues to server %s at %s - %s
Route configuration: Processing topics from server %s at %s.
Route configuration: Processing queue '%s' from server %s at %s.
Route '%s' acknowledgment timer destroyed.

Route '%s' acknowledgment timer unknown event type.

TIBCO Enterprise Message Service User's Guide

564 | Appendix B Error and Status Messages

Route '%s' acknowledgment timer send failed: %s
Route '%s' acknowledgment timer connection % PRINTF_LLFMT d not found.
Route configuration: Processing queues from server %s at %s.

Discarded incoming client message exceeding size limit: connlD=%
PRINTF_LLFMT d, %s="%s', size=%d.

%s%s selector exceeded selector_logical_operator_limit of %d.
Configuration update failure: %s

Rolling back to configuration on disk.

Rollback failed: %s

Rollback succeeded.

%s property [%os].

%s configuration item:

“%os status: %s

Illegal property get in _emsdConfigurationObjectProperty_GetStringValue.
Attempting to generate a search key for an unsearchable object (%s).
More than one result found searching route selectors route=%s topic=%s.
More than one result found searching alias %s=%s jndiName="%s.

Fault tolerant configurations should have a primary listens marked as ft_active -
FT will be disabled.

Fault tolerant configurations should have a secondary listens marked as ft_active
- FT will be disabled.

Configured as fault tolerant secondary.

Configured as fault tolerant primary.

Unable to find group %s.

Detected Mixed mode configuration: Ignoring property %s file=%s, line=%d
Missing field %s from server object %s near line %d.

Invalid field detected in server object (%s), field (%s), at line %d.

%s will not complete until the server is restarted.

Detected unsupported password hash for user \q%s\q. The user's password may
need to be reset.

Ignoring request to remove an administrative user.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 565

Ignoring request to remove the administrative group.

%s will not occur until fault tolerant failover or restart.
Ignoring unknown property %s.

Configuration error: file=%s, line=%d: ignoring rvcmlistener
Illegal configuration namespace set, %s=%s Expecting %s.
Failed to write file %s: (%s)

Error loading configuration: %s

Applying configuration changes.

Configuration update status: %s

Rollback unable to load file %s.

Initialized queue browser on '%s'%s%s %s

Closed queue browser on '%s'

Creating store '%s' file '%s' ...

Converting %s format from %s to %s

First scan on '%s' is finished

Destination cursor id % PRINTF_LLEMT d %s slot %d

Client browsing mstore-based queue %s needs to be upgraded for optimum
performance.

Warning: file=%s, line=%d: multicast_udp_encapsulation is no longer a
supported parameter.

Network IO thread: %d bound to Processor id: %d
Storage thread for store '%s' bound to Processor id: %d

Disconnecting connection connlD=% PRINTF_LLFMT d, because %s (consid=%
PRINTF_LLEFMT d) has reached the limit of non-acknowledged messages

Category Basic initialization failed
Description tibemsd was unable to start.
Resolution ~ Correct the configuration or startup parameters and restart.

Errors Unable to add admin user into admin group: error=(%d) %s

Fault tolerant activation has to be greater than 2x heartbeat

TIBCO Enterprise Message Service User's Guide

566 | Appendix B Error and Status Messages

Server heartbeat client should be non-zero and no more than a third of the client
timeout server connection

Server heartbeat server should be non-zero and no more than a third of the server
timeout server connection

Client heartbeat server should be non-zero and no more than a third of the server
timeout client connection

Fault Tolerant configuration error, can't create loop.

Fault tolerant connection failed, fault tolerant mode not supported on '%s'.
Fault tolerant heartbeat has to be greater than 0

Initialization failed due to errors in configuration.

Initialization failed due to errors in SSL.

Initialization failed due to errors with transports.

Initialization failed. Exiting.

Initialization has failed. Exiting.

Initialization of thread pool failed (%s). Exiting.

Startup aborted.

Server failed to read configuration.

Initialization failed: storage for '%s' not found.

Failure initializing storage thread: %s.

Initialization failed due to errors with multicast.

Configuration error: dbstore_driver_name for store [%s] cannot be empty
Configuration error: dbstore_driver_url for store [%s] cannot be empty
Configuration error: dbstore_driver_dialect for store [%s] cannot be empty
Configuration error: dbstore_driver_username for store [%s] must be specified
Configuration error: dbstore_driver_password for store [%s] must be specified
Error Loading JVM: %s

Unknown Error Loading JVM

Trying JVM location: %s

Error Loading JVM: %s

Unknown Error Loading JVM

$sys.meta store's type must be 'file' or 'dbstore'.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 567

Configuration error: file=%s, line=%d: The parameter '%s' is not supported on
this platform

Configuration error: file=%s, line=%d: The processor ID '%d' is greater than '%d’,
which is the maximum processor ID for this machine

Unable to bind network IO thread: %d to Processor Id: %d. Exiting!

Unable to bind storage thread for store '%s' to Processor Id: %d. Exiting!

Category Commit failed due to prior failure or after fault-tolerant switch
Description A warning message indicating that the commit of a client application's transaction
failed either because there were earlier errors when processing this transaction or
because the transaction was started on the primary server prior to a fault-tolerant
failover.

Resolution The client application should retry the transaction.

Errors ~ Commit failed due to prior failure or after fault-tolerant switch.

Category Compaction failed
Description ~ Compaction of the store file failed.

Resolution ~ The most likely cause of this error is running out of memory. Shut down tibemsd
and see remedies for Out of memory.
Errors Compaction failed on file '%s": %d (%s). Please shutdown and restart tibemsd.
Compaction failed on file '%s": %d (%s).

Initialization of file_destination_defrag feature failed for queue '%s' (store '%s")
due to an out of memory condition. Feature is disabled.

file_destination_defrag of queue '%s' (store '%s') failed: %d (%s).

Category Configured durable differs from stored one
Description ~ The durables configuration file specifies a durable with a given name and client
identifier with attributes that are different from the identically named durable

found in the meta.db file.

Resolution Correct the durables configuration file to match the durable defined in the
meta.db file or administratively delete the durable and re-define it.

TIBCO Enterprise Message Service User's Guide

568 | Appendix B Error and Status Messages

Errors

Category

Description

Resolution

Errors

Category

Description

Resolution

Errors

Category
Description
Resolution

Errors

Category

Description

Resolution

Errors

Configured durable '%s' differs from durable in storage, storage version used.

Create of global routed topic failed: not allowed to create dynamic topic

A server received an interest notification from another server that does not match
the allowed topics in its configuration.

This only is printed when the trace includes ROUTE_DEBUG. If the server's topic
definitions are as expected, this statement can be ignored or remove the
ROUTE_DEBUG trace specification to prevent printing.

Create of global routed topic failed: not allowed to create dynamic topic [%s].

Create of routed queue failed: not allowed to create dynamic queue

A warning indicating that a tibemsd with a route to this daemon has a queue
configured to be global but this daemon does not permit the creation of that
queue dynamically.

Add the specified queue or a pattern that includes it to this daemon if you want
the queue to be accessible from this daemon, otherwise the warning can be

ignored.

Create of routed queue failed: not allowed to create dynamic queue [%s].

Database record damaged
An error occurred reading one of the tibemsd store files.
Send details of the error and the situation in which it occurred to TIBCO Support.

Server failed to recover state.

Duplicate message detected

Warning generated when tibemsd receives a message with a message id that
matches another message's message id.

Only seen when message id tracking is enabled.

Detected duplicate %s message, messagelD='%s'

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 569

Category ~ Dynamic Module Loading Errors
Description An error occurred when loading or using a shared library module.

Resolution ~ Module loading is affected by the presence of shared libraries in the module path.
Use the +load tracing flag to get more information about how the server is
loading modules. See the section on Starting the EMS Server for more details.

Errors Problem loading %s: %s
Unknown problem loading %s.
Loaded %s
Problem binding %s: %s
Unknown problem binding %s.
Unable to locate %s
Fatal error: Returned from exec(), errno = %d

OpenSSL library version mismatch

Category Error in configuration file

Description ~ The server encountered an invalid configuration statement in the specified
configuration file on the specified line.

Resolution ~ Examine the appropriate configuration file and correct the syntax error.
Errors Configuration warning: file=%s, line=%d: route '%s' does not have a user

configured for authorization.

SSL Configuration error: file=%s, line=%d: invalid certificate file name, unknown
extension or invalid encoding specification

Configuration error: file=%s, line=%d: illegal to specify %s for routed queue
Configuration error: file=%s, line=%d: bad destination specification: %s

Configuration warning: file=%s, line=%d: illegal to specify prefetch=none for
global or routed queue. Prefetch reset to default.

Configuration warning: file=%s, line=%d: illegal to specify prefetch=none for
topic. Prefetch reset to default.

Configuration error: file=%s, line=%d: ignored alias '%s' for %s '%s' because such
alias already exists

TIBCO Enterprise Message Service User's Guide

570 | Appendix B Error and Status Messages

Configuration error: The specified file '%s' is empty or does not exist

Configuration error: file=%s, line=%d: both tibrv_export and tibrvem_export are
specified, ignoring tibrv_export

Configuration error: file=%s, line=%d: ignoring transport '%s' in %s list, transport
not found

Configuration error: file=%s, line=%d: multiple bridge entries for the same
destination '%s' are not allowed.

Configuration error: file=%s, line=%d: Ignoring durable, name cannot start with
$sys.route, use route property instead.

Configuration error: file=%s, line=%d: Rendezvous transport not specified for
Rendezvous CM transport '%s'

Configuration error: file=%s, line=%d: ignoring invalid max connections in the
line, reset to unlimited

Configuration error: file=%s, line=%d: ignoring invalid max_client_msg_size in
the line, reset to unlimited

Configuration error: file=%s, line=%d: value of %s out of range, reset to default

Configuration error: max_msg_field_print_size >= max_msg_print_size, resetting
both to default

Configuration error: file=%s, line=%d: unable to create %s '%s": invalid
destination name, invalid parameters or out of memory

Configuration error: file=%s, line=%d: value of db_pool_size too big or less than
allowed minimum, reset to default value of %d bytes

Configuration error: file=%s, line=%d: Ignoring durable, route does not allow
clientid, selector or nolocal.

Configuration error: file=%s, line=%d: Route '%s' does not exist for configured
durable.

Configuration error: file=%s, line=%d: unable to process selector in route
parameters, error=%s

Configuration error: file=%s, line=%d: both tibrv_import and tibrvem_import are
specified, ignoring tibrv_import

Configuration error: file=%s, line=%d: ignored route '%s' because route represents
route to this server.

Configuration error: file=%s, line=%d: ignoring invalid topic selector
specifications in route parameters

Configuration error: file=%s, line=%d: value of max_msg_memory less than
allowed, reset to %dMB

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 571

Configuration error: file=%s, line=%d: ignored alias '%s' for factory because such
alias already exists

Configuration error: file=%s, line=%d: invalid certificate file name, unknown
extension or invalid encoding specification

Configuration error: file=%s, line=%d: ignored route '%s' because route has
invalid zone information.

Configuration error: file=%s, line=%d: ignored route '%s' because route with such
name or URL already exists.

Configuration error: file=%s, line=%d: value of msg_pool_size invalid or too big
or less than allowed minimum of %d, reset to default value of %d

SSL Configuration error: file=%s, line=%d: invalid private key file name,
unknown extension or invalid encoding specification

Configuration conflict: file=%s, line=%d: value of msg_pool_block_size already
set at line=%d. Ignoring msg_pool_size.

Configuration error: file=%s, line=%d: bridge has no targets, unable to process

Configuration error: file=%s, line=%d: Illegal to specify routed queue as a bridge
source

Configuration error: file=%s, line=%d: client_trace error: %s

Configuration error: file=%s, line=%d: %s

Configuration error: file=%s, line=%d: duplicate specification of transport type
Configuration error: file=%s, line=%d: duplicate value

Configuration error: file=%s, line=%d: Ignoring durable, duplicate of earlier
entry.

Configuration error: file=%s, line=%d: Ignoring durable, name is invalid.

Configuration error: file=%s, line=%d: Ignoring durable, name is missing or
invalid.

Configuration error: file=%s, line=%d: Ignoring durable, topic is invalid.

Configuration error: file=%s, line=%d: Ignoring durable, topic is missing or
invalid.

Configuration error: file=%s, line=%d: error in the bridge description, unable to
proceed.

Configuration error: file=%s, line=%d: error in permissions

Configuration error: file=%s, line=%d: error in the transport description, unable
to proceed.

TIBCO Enterprise Message Service User's Guide

572 | Appendix B Error and Status Messages

Configuration error: file=%s, line=%d: errors in line, some options may have been
ignored

Error: unable to add bridge specified in file=%s, line=%d. Error=%s

Configuration error: file=%s, line=%d: Unable to create destination defined by the
bridge source

Unable to create Rendezvous Certified transport '%s' because it references
undefined Rendezvous transport '%s'

Configuration error: file=%s, line=%d: failed to create ACL entry, reason="%s
Unable to export message to SmartSockets. error=%s.

Use fsync error: file=%s, line=%d: invalid property value

Use fsync (min disk) error: file=%s, line=%d: invalid property value

exit_on_nonretryable_disk_error: file=%s, line=%d: invalid boolean property
value

consumed_msg_hold_time: file=%s, line=%d: invalid property value
active_route_connect_time: file=%s, line=%d: invalid property value

Fault tolerant reread error: file=%s, line=%d: invalid property value

Fault standby lock check error: file=%s, line=%d: invalid property value
Configuration error: file=%s, line=%d: ignored unknown permission '%s'
Configuration error: file=%s, line=%d: ignoring duplicate %s '%s' specified earlier

Configuration error: file=%s, line=%d: ignoring duplicate transport name '%s' in
Y%s list

Configuration error: file=%s, line=%d: ignoring duplicate user

Configuration error: file=%s, line=%d: ignoring errors in permission line
Configuration error: file=%s, line=%d: ignoring invalid connect attempt count
Configuration error: file=%s, line=%d: ignoring invalid connect attempt delay
Configuration error: file=%s, line=%d: ignoring invalid connect attempt timeout
Configuration error: file=%s, line=%d: ignoring invalid disk statistic period
Configuration error: file=%s, line=%d: ignoring invalid entry syntax

Configuration error: file=%s, line=%d: ignoring invalid factory load balancing
metric

Configuration error: file=%s, line=%d: ignoring invalid ft activation in the line

Configuration error: file=%s, line=%d: ignoring invalid ft heartbeat in the line

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 573

Configuration error: file=%s, line=%d: ignoring invalid ft reconnect timeout in the

line

Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

line

Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

timeout

Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

"%s'

Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

default of %d bytes

Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

unlimited

Configuration error: file=%s, line=%d:

to unlimited

Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:
Configuration error: file=%s, line=%d:

Configuration error: file=%s, line=%d:

zero

Configuration error: file=%s, line=%d:

reset to default %d

ignoring invalid line
ignoring invalid line in factory parameters
ignoring invalid line in route parameters

ignoring invalid line: invalid syntax in the

ignoring invalid reconnect attempt count
ignoring invalid reconnect attempt delay

ignoring invalid reconnect attempt

ignoring invalid value of %s

ignoring invalid value '%s' for property

ignoring unknown property '%s'
ignoring unrecognized property '%s'
ignoring user out of group context
illegal to use predefined name %s
Invalid clientid value

invalid value of db_pool_size, reset to

invalid line syntax or line out of order

invalid value of max memory, reset to
invalid value of max_msg_memory, reset

invalid property value
invalid property value, reset to default.
invalid password

invalid value of reserve_memory, reset to

invalid value of route_recover_interval,

TIBCO Enterprise Message Service User's Guide

574 | Appendix B Error and Status Messages

Configuration error: file=%s, line=%d: invalid value of route_recover_count, line
ignored

Configuration error: file=%s, line=%d: Invalid selector value

Configuration error: file=%s, line=%d: invalid syntax of %s, unable to continue.
Configuration error: file=%s, line=%d: invalid transport parameter '%s'
Configuration error: file=%s, line=%d: invalid transport type '%s'
Configuration error: file=%s, line=%d: invalid trace_client_host value
Configuration error: file=%s, line=%d: invalid trace_millisecond value
Configuration error: file=%s, line=%d: invalid value of %s, reset to unlimited
Configuration error: file=%s, line=%d: invalid value '%s'

Configuration error: file=%s, line=%d: invalid value '%s' for parameter '%s'
Configuration error: file=%s, line=%d: invalid value of '%s'

Configuration error: file=%s, line=%d: invalid value of %s

Configuration error: file=%s, line=%d: invalid value of %s, reset to 256MB
Configuration error: file=%s, line=%d: invalid value of %s, reset to default
Configuration error: file=%s, line=%d: line too long, ignoring it

Configuration error: file=%s, line=%d: maximum number of listen interfaces
reached.

Configuration error: file=%s, line=%d: multiple principals specified, line ignored
Configuration error: file=%s, line=%d: multiple targets specified, line ignored

Configuration error: file=%s, line=%d: out of memory, unable to create
Rendezvous transport

Configuration error: file=%s, line=%d: no permissions found in acl entry
Configuration error: file=%s, line=%d: no target found in acl entry
Configuration error: file=%s, line=%d: %s '%s' not found

Configuration error: No topic exists for configured durable '%s%s%s'.

failed to create durable '%s', exception: %s.

Configuration error: file=%s, line=%d: no valid user or group found in acl entry

Configuration conflict: file=%s, line=%d: Overriding value of msg_pool_size
already set at line=%d.

Configuration warning: file=%s, line=%d: parameter '%s' is deprecated
g g p P

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 575

Configuration error: file=%s, line=%d: value of reserve_memory too small, reset
to 16MB

Configuration error: file=%s, line=%d: ignoring invalid line in route parameters:
invalid zone type, too long

Configuration error: file=%s, line=%d: ignoring invalid line in route parameters:
zone name exceeding %d bytes

Routing Configuration error: file=%s, line=%d: invalid property value
Configuration warning: file=%s, line=%d: ignoring rvcmlistener, duplicate
Configuration error: file=%s, line=%d: ignoring rvcmlistener, first token is invalid
Configuration error: file=%s, line=%d: ignoring rvcmlistener, invalid destination

Configuration error: file=%s, line=%d: ignoring rvcmlistener, second token is
invalid

Configuration error: file=%s, line=%d: ignoring rvcmlistener, third token is
invalid

Configuration error: file=%s, line=%d: ignoring rvcemlistener, wildcards are not
permitted

SmartSockets configuration directory name is too long. error=%s.
SmartSockets file '%s' not found.

SSL Configuration error: file=%s, line=%d: duplicate value

SSL Configuration error: file=%s, line=%d: invalid value of DH key size.
SSL Configuration error: file=%s, line=%d: invalid property value
Configuration error: file=%s, line=%d: syntax error in the line, ignoring
Configuration error: file=%s, line=%d: syntax errors in line, line ignored
Topic '%s' not valid in configured durable '%s'.

%s%sNo client ID for%s unshared durable '%s'".

Configuration error: file=%s, line=%d: Unrecognized attribute
Configuration error: file=%s, line=%d: user '%s' not found, ignoring

Configuration error: file=%s, line=%d: value is invalid or less than minimum %d,
reset to 0

Configuration error: file=%s, line=%d: value less than allowed minimum, reset to
0

Configuration error: file=%s, line=%d: value of %s less than allowed minimum of
%dKB, reset to unlimited

TIBCO Enterprise Message Service User's Guide

576 | Appendix B Error and Status Messages

Configuration error: file=%s, line=%d: Invalid value or value does not fall
between %d and %d

Configuration error: Invalid line: file=%s, line=%d

Configuration error: Missing store header: file=%s, line=%d
Configuration error: Mixed mode configuration: file=%s, line=%d
Configuration error: Invalid store parameter: file=%s, line=%d
Configuration error: Store definition failed

Configuration error: Unrecognized store type requested.
Configuration error: Filename for store '%s' cannot be empty.
Error occurred writing store definition into file.

Configuration error: file=%s, line=%d: ignoring channel '%s' on topic '%s',
channel does not exist

Configuration error: file=%s, line=%d: ignoring channel '%s' on topic '%s',
overlaps with channel '%s' on topic '%s'

Configuration error: file=%s, line=%d: ignoring channel '%s', duplicate name

Configuration error: file=%s, line=%d: ignoring channel '%s', address of '%s:%d'
already defined

Configuration error: file=%s, line=%d: channel '%s', %s
Configuration error: file=%s, line=%d: channel '%s', no address specified.

Configuration error: file=%s, line=%d: channel '%s', invalid address syntax: port
not specified.

Configuration error: file=%s, line=%d: channel '%s', invalid address: group must
be in the range 224.0.0.0 to 239.255.255.255

Configuration error: file=%s, line=%d: channel '%s', interface must address a
valid multicast-capable network interface.

Configuration error: file=%s, line=%d: channel '%s', invalid address: port must be
in the range 1 to 65535

Configuration error: file=%s, line=%d: channel '%s’, ttl must be in the range 1 to
255

Configuration error: file=%s, line=%d: channel '%s', priority must be in the range
-5tob

Configuration error: file=%s, line=%d: channel '%s', maxrate must be less than
512MB

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 577

Configuration error: file=%s, line=%d: channel '%s', maxtime must be greater
than 0

Configuration error: file=%s, line=%d: cannot store messages in: %s
Configuration error: file=%s, line=%d: cannot find store: %s
Required store param 'type' not specified for store '%s'

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'file' type%s.

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'dbstore' type%s.

Configuration error: file=%s, line=%d: parameter does not match another
parameter that defined store '%s' as 'mstore’ type%s.

Store '%s' already defined

Configuration error: Store with similar dbstore_driver_url exists, file=%s,
line=%d

Configuration error: duplicate file name %s for stores %s and %s

Configuration warning: file=%s, line=%d: the discard Amount is too small for the
selected RV Queue Limit Policy. It is recommended to have at least 10%% of the
maxEvents

Configuration error: file=%s, line=%d: the discard Amount is too big compared to
the maxEvents value. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration error: file=%s, line=%d: maxEvents and discard Amount values
must be strictly positive for an RV Queue Limit Policy other than
TIBRVQUEUE_DISCARD_NONE. Defaulting to
TIBRVQUEUE_DISCARD_NONE policy

Configuration error: file=%s, line=%d: RV Queue Limit Policy '%s' unknown or
not supported. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration error: file=%s, line=%d: Error parsing the RV Queue Limit Policy
value '%s'. Defaulting to TIBRVQUEUE_DISCARD_NONE policy

Configuration warning: file=%s, line=%d: The bridge's source destination '%s" is
dynamic but has no parent. The bridge should either be removed or a static parent
destination added

Category Error writing commit request, errors already occurred in this transaction

Description A client application's attempt to commit a transaction failed because the server
encountered an error during an operation associated with the transaction.

TIBCO Enterprise Message Service User's Guide

578 | Appendix B Error and Status Messages

Resolution Examine previous error statements to determine the cause of the operation failure
and correct that before attempting the transaction again.

Errors Error writing commit request, errors already occurred in this transaction.

Category Error writing configuration file

Description tibemsd was unable to update one of its configuration files following a
configuration change.

Resolution ~ Check that the user that started the tibemsd has permission to change the
configuration files and that there is sufficient disk space on the device.
Errors Error occurred saving acl information
Error occurred saving bridges information
Error occurred saving durables information
Error occurred saving factories information
Error occurred saving file '%s'
Error occurred saving group information
Error occurred saving %s information
Error occurred saving main configuration file '%s'
Error occurred saving routes information
Error occurred saving tibrvem information

Error occurred while updating main configuration file '%s'. Configuration has not
been saved.

Error occurred writing bridges into file.

Error occurred writing destination '%s' into file
Error occurred writing factory into file.

Error occurred writing group '%s' into file
Error occurred writing into the file '%s".

Error occurred writing route into file.

I/0O error occurred saving bridge information
I/0 error occurred saving group information

I/0O error occurred saving route information

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 579

I/0 error occurred writing into file '%s'

Category Error writing to store file
Description tibemsd was unable to write data to one of its store files.

Resolution Ensure that the directory containing the store files is mounted and accessible to

the tibemsd, and that there is free space available on the device
Errors Failed writing block data to '%s": %s

Failed writing message to '%s': /O error or out of disk space.
Failed writing purge state for queue '%s": 1/O error or out of disk space.
Failed writing purge state for topic consumer: I/O error or out of disk space.
Exception trying to create confirm record, %s.
Exception trying to create message from store: %s
Exception trying to create transaction record.
Exception trying to create valid messages record, %s.
Exception trying to export message to RV.
Failed writing message to '%s": %s.
Exception writing transaction commit record: %s.
Exception writing transaction rollback record: %s.
Exception writing transaction prepare record: %s.
Failure deleting old version of transaction record: %s.

Failed deleting '%s' record from %s: %s

Category Errors in Database Stores Setup
Description In a database stores setup, errors occuring at runtime

Resolution Check your database server vendor and database administrator for failures
occuring during writes,deletes,reads of different records, for failures occuring
during database store open check with the database administrator for
permissions and the existence of the database. For failures occuring during a FT
setup where all the stores are database stores, please check with the database
server vendor or database administrator. In the case where both are active, we
recommend shutting down both the servers and investigating the problem.

TIBCO Enterprise Message Service User's Guide

580 | Appendix B Error and Status Messages

Errors Unable to open store [%s]: [ESTATUS = %d, ERRSTR = %s]
Failed to store message record in store [%s]: [ESTATUS = %d, ERRSTR = %s]
Failed to write ack record in store [%s]: [ESTATUS = %d, ERRSTR = %s]
Failed to write txn record in store [%s]: [ESTATUS = %d, ERRSTR = %s]
Failed to update txn record in store [%s]: [ESTATUS = %d, ERRSTR = %s]
No memory to create no hold list for valid msgs record
No memory to create hold list for valid msgs record
No memory to create held list for valid msgs record
Failed to write valid msg record in store [%s]: [ESTATUS = %d, ERRSTR = %s]

Failed to update msg record with record id [% PRINTF_LLFMT d] in store [%s]: [
ESTATUS = %d, ERRSTR = %s]

Failed to delete %s record id = % PRINTF_LLFMT d : [ESTATUS = %d, ERRSTR =
Y%s]

Failed to read message with store id = % PRINTF_LLEMT d: [ESTATUS = %d,
ERRSTR = %s]

Failed to initialize dbstore [%s]: [ERRSTR = %s]

Failed to open store [%s], error = %s

Unable to restore %s records from store [%s]: [ESTATUS = %d, ERRSTR = %s]
Failed to delete meta record: [ESTATUS = %d, ERRSTR = %s]

Failed to beginTransaction: [ESTATUS = %d, ERRSTR = %s]

Failed to read message with store id = % PRINTF_LLEMT d: [ESTATUS = %d,
ERRSTR = %s]

Store [%s] locked by server %s
Store [%s] cannot be locked by server %s
Failed to store txn record: [txn id = % PRINTF_LLEMT d, ESTATUS = %d |

Failed to update txn record: [txn record id = % PRINTF_LLEMT d, ESTATUS =
%d]

Exception while processing msg from database store [%s], error = %d
Failed to write meta record: [ESTATUS = %d, ERRSTR = %s]

Failed to update meta record: [ESTATUS = %d, ERRSTR = %s]
Failed to write connection record: error = %d

Failed to write session record: error = %d

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 581

Failed to write consumer record: error = %d

Failed to write producer record: error = %d

Failed to write zone record: error = %d

Failed to update connection record: error = %d

Failed to update consumer record: error = %d

Failed to write purge record: [ESTATUS = %d, ERRSTR = %s]

Commit Transaction Failed [ESTATUS = %d, ERRSTR = %s]

No Memory to create lock manager: Store [%s] cannot be locked by server %s

Could not find system record for store [%s]

Category Exceeded system resources.
Description ~ The system resources are inadequate for timely processing of server activities.
Resolution Increase the specified resource or reduce the workload on this server.

Errors Slow clock tick %d, delayed messaging and timeouts may occur.

Category Failed to open TCP port
Description tibemsd was unable to open the tcp port.

Resolution Shutdown process that is using the port or change the value of the 'listen’
parameter in the server's tibemsd.conf file to a port that is not in use.

Errors Binding connection to TCP port %d failed:%d (%s).

Category File access error
Description tibemsd was unable to properly access the specified file.
Resolution Check that the path name is correct and the directory exists, the user that started
tibemsd has permission to read the specified directory and path, the file exists if it
isn't one that the tibemsd can create, the file is not being used by another tibemsd

or some other process.

Errors Configuration file '%s' not found.

TIBCO Enterprise Message Service User's Guide

582 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Category

Failed to create file '%s'

failed to open file '%s'.

failed to open log file '%s'.

Failed to read message from store.

Failed to rename file %s into %s: %s

Unable to open metadata file '%s', error '%s'".
Unable to open metadata file '%s', file may be locked.
Unable to open store file '%s', error '%s'.

Unable to open store file '%s/, file may be locked.
Unable to preallocate storage file "%s'.

I/0O error occurred reading from the file '%s'.
Exiting on non-retryable disk error: %d
Exception trying to read message from store.

Error during file close of '%s' - %d.

FIPS 140-2 Mode Errors

An error occurred while starting or running the server in FIPS 140-2 compliant
mode.

Check the configuration of SSL related parameters to make sure that no
incompatible ciphers or operations are requested.

Cannot specify ldap_tls_cipher_suite in FIPS 140-2 mode.

Cannot specify ldap_tls_rand_file in FIPS 140-2 mode.

Cannot specify SSL cipher list in FIPS 140-2 mode.

Cannot specify random data source file in FIPS 140-2 mode.

Cannot specify ssl_dh_size in FIPS 140-2 mode.

Cannot specify ssl_server_ciphers in FIPS 140-2 mode.

Cannot specify ssl_rand_file in FIPS 140-2 mode.

General Multicast Status Codes and Errors

TIBCO Enterprise Message Service User’s Guide

Description

Resolution

Errors

Category
Description
Resolution

Errors

Error and Status Messages | 583

General multicast errors that can occur in the Server and Multicast Daemon.

Check the configuration of the Multicast Daemon and Server, as well as the health
of the network.

PGM ERROR: %s - %s (%d)

PGM ERROR: channel=\q%s\q - %s (%d)

Error setting PGM parameter %s=%u: %s (%d)
Error setting PGM parameter %s=\q%s\q: %s (%d)
Error getting PGM parameter \q%s\q: %s (%d)
Error getting PGM statistic \q%s\q: %s (%d)
Received an invalid EMS Message.

Received a message spanning mulitple fragments.

PGM Session was reset for channel \q%s\q, PGM seqno=%PRINTF_LLFMTd,
code=%c

Stopped receiving on channel \q%s\q
Started receiving on channel \q%s\q
Error receiving on channel \q%s\q
Stopped sending on channel \q%s\q
Started sending on channel \q%s\q

Error creating sender on channel \q%s\q: %s

Internal error that should be status-driven
The server detected an internal inconsistency.
Send the error statement and a description of the environment to TIBCO Support.

Error unable to process message, error = %s

Admin user not found during initialization

Error bridging transacted data message, '%s'.

Error processing xa commit request, %s. connID=% PRINTF_LLFMT d %s

Error processing xa end - transaction marked ROLLBACKONLY, %s. connID=%
PRINTF_LLEMT d sessID=% PRINTF_LLFMT d %s

TIBCO Enterprise Message Service User's Guide

584 | Appendix B Error and Status Messages

Error processing xa prepare request, %s. connlD=% PRINTF_LLEMT d %s
Error processing xa rollback request, %s. connlD=% PRINTF_LLFMT d %s

Error decoding sequence data in xa rollback request. connID=% PRINTF_LLFMT
d %s

Error decoding sequence data in route ack response.

Unable to create internal session

Problem setting flow stall recover message on route queue:%s: %s
Failed to handle connection initialization: %s.

Problem trying to recover routed consumer for queue %s: setting recover
message. Error: %s

Failed to send the flow stall recover request: %s.

Unable to handle transacted data message, '%s'".

Unable to handoff connection init message: %s.

Unable to initialize fault tolerant connection, remote server returned '%s'
Unable to process producer message, failed to add sender name, error=%s.
Unable to process sequence for message.

Unable to send recover ack on flow stall: %s

Handling of route flow stall recovery request from %s failed: unable to get
message property %s: %s

Handling of route flow stall recovery request failed: Unable to get message
properties:%s

Failed to send acknowledge to the stall recover request of server %s, will try later.
Error: %s

failed to send recover ack on stalled flow: invalid consumer
unable to create recovered connection, status: %s

Exception creating purge record.

Exception creating zone.

Exception creating zone: adding zone to state.

Exception in startup, exiting.

Exception preparing message for client send (%s): %s
Exception sending flow recover acknowledge

Exception sending routing information to %s - %s

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 585

Exception sending session init response

Exception sending queue acknowledge response to %s: %s
Exception trying to initialize connection.

Exception trying to initialize connection, can't send response: %s
Exception trying to initialize route.

Exception trying to initialize route '%s' configured durables: %s
Exception trying to process message, '%s'".

Exception trying to process message from store.

Failure queuing incoming message for processing: %s.
Failure queuing message for removal from system: %s.
Failure queuing message to add to dead queue: %s.
Failure discarding topic overflow: %s.

Failure processing system request.

Failure processing transaction message.

Failure bridging incoming message: %s.

Failure verifying uniqueness of routed message: %s.
Failure scheduling message hold release: %s.

Exception adding message write context: %s.

%s: Failure processing multicast request: %s

%s: Failure sending multicast request response: %s

%s: Failure processing multicast status: %s

%s: Failure sending multicast status response: %s

%s: Failure sending multicast configuration: %s

Failure sending multicast message on channel '%s'": %s
Failure enqueuing multicast message on channel '%s": %s
Failure starting multicast engine: %s

Failure starting multicast channel '%s": %s

Failure posting multicast channel '%s' wake event: %s
Failed preparing message for writing: %s

Failed discarding local transaction: %s

TIBCO Enterprise Message Service User's Guide

586 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Category
Description
Resolution

Errors

Category

Abandoning transaction record due to IO failure.

Error sending acknowledgment to route '%s': %s

Error processing acknowledgments from route '%s': %s

Failure starting delivery of delayed message seq = % PRINTF_LLFMTd: %s

Failure moving failed delivery delayed message seq = % PRINTF_LLFMTd to
dead queue: %s

Invalid connection

Warning indicating that tibemsd was attempting to reestablish delivery of
messages across a route to another tibemsd but was unable to find the connection
for that route.

Either reduce the tibemsd's memory requirement by consuming messages or
removing messages from its queues, or increase the amount of memory available
to the tibemsd by shutting down other processes on the machine or increasing the
machine's memory.

Recovery flow stall for destination %s failed: invalid route connection

Invalid destination
An application is attempting to use a destination name that is not valid.
Alter application code to use an acceptable destination name.

%s: create %s failed: Not permitted to use reserved queue [%s].
%s: %s failed: illegal to use wildcard %s [%s].
%s: %os failed: %s [%s] not configured.

At least one bridge is referencing %s [%s] as a target. This destination does not
exist and there is no parent that would allow its dynamic creation. The
destination has been forcefully created. To avoid this, the bridge(s) referencing
this target should be destroyed.

Use of '$' destination prefix is not supported [%s %s].

Invalid listen specification

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 587

Description ~ The server could not parse the listen parameter in the tibemsd.conf file

Resolution ~ Correct the listen parameter to match the form [protocol]:/ /[url] as specified in
the manual.

Errors Invalid listen specification: '%s'".

Invalid request to create temporary destination.

Category Invalid session
Description tibemsd received a request that referred to a session that doesn't currently exist.
Resolution Send details of the error and the situation in which it occurred to TIBCO Support.

Errors Cannot find session for ack
Cannot find session for ack range
%s: destroy %s failed: invalid session id=%d.
Unable to destroy session, invalid session.
Invalid session in commit request.
Invalid commit request.
Invalid session trying to update(%d) tx record.
Invalid session in commit transaction record.
Invalid session in recover request.
Invalid session in rollback request.
Invalid session in xa end request. connID=% PRINTF_LLFMT d
Invalid session in xa start request. connID=% PRINTF_LLFMT d

Category LDAP error - should always display LDAP error

Description ~ An attempt to authenticate a client's userid and password using the external
LDAP server failed.

Resolution ~ Examine the error code printed by the messaging server and consult the manual
for the external LDAP server.

Errors Filter '%s' contains an illegal type substitution character, only %%s is allowed

TIBCO Enterprise Message Service User's Guide

588 | Appendix B Error and Status Messages

Category
Description

Resolution

Errors

Category
Description
Resolution

Errors

Category

Filter '%s' contains too many occurrences of %%s, max allowed is: %d
Filter '%s' too long, max length is %d characters

Invalid search scope: %s

LDAP Configuration error: file=%s, line=%d: invalid property value
LDAP is not present

LDAP search resulted %d hits.

ldap_url_parse failed, returned: %d

Lookup of group '%s' produced incorrect or no results

Missing LDAP URL

Missing %s parameter

Zero entries returned from getting attributes for group '"%s":

Failed adding user '%s' into LDAP user cache

LICENSE WARNING

The server detected a violation of its license.

This error only occurs with the evaluation version of the server or in an
embedded form. To correct this error either replace your evaluation version with

a production version or contact the vendor who supplied the embedded version.

License violation: %s.

Missing configuration
An essential attribute has not been configured.
Change the tibemsd.conf file so that a value for the attribute is provided.

Configuration error with metadata database.

Configuration error with storage databases.

Missing transaction

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 589

Description A client application attempted to change the state of a transaction that the
tibemsd does not have in its list of current transactions.

Resolution ~ Check tibemsd trace logs to see if the transaction had been committed or rolled
back by an administrator, if not then check the client code to see if it or its
transaction manager are calling the transaction operations in the correct order.

Errors Cannot find transaction referred to transaction record update(%d) request.
connID=% PRINTF_LLFMT d %s

Cannot find transaction referred to in xa commit request. connID=%
PRINTF_LLFMT d %s

Cannot find transaction referred to in xa prepare request. connID=%
PRINTF_LLFMT d %s

Cannot find transaction referred to in xa rollback request. connID=%
PRINTF_LLEMT d %s

Received prepare request for transaction already prepared. connID=%
PRINTF_LLFMT d %s

Cannot find transaction referred to in xa start (resume) request. connlD=%
PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Cannot find transaction referred to in xa start (join) request. connID=%
PRINTF_LLFMT d sessID=% PRINTF_LLEMT d %s

Cannot find transaction referred to in xa end request. connlD=% PRINTF_LLFMT
d sessID=% PRINTF_LLFMT d %s

Category Mstore errrors
Description An error occurred using an Mstore database file.

Errors Unable to open store %s: %s: %d (%s).
Wrong schema version. Found %d, expected %d.
Schema creation failed: '%s' error: %d %s
Unable to reset a statement (%s): %s.
Unable to step a statement (%s): %s: %d.
Store %s: %s: bind fail: %d.
Store %s: Fail retrieving consumer interest: %d.

Store %s: Fail retrieving msg interest info: %s.

TIBCO Enterprise Message Service User's Guide

590 | Appendix B Error and Status Messages

Store %s: Fail writing transaction record: %s.

Store %s: Fail reading data: %s.

Store %s: Fail reading topic message: %s.

Store %s: Fail marking topic message non-pending: %s.
Store %s: Fail reading next topic message: %s.

Store %s: Fail reading queue message: %s.

Store %s: Fail getting next queue message: %s.

Store %s: Fail marking queue message non-pending: %s.
Store %s: Fail writing transaction info: %s.

Store %s: Fail deleting transaction acks: %s.

Store %s: Fail recording transaction msg: %s.

Store %s: Fail recording transaction acks: %s.

Store %s: Fail deleting ack: %s.

Store %s: Fail completing transaction: %s.

Store %s: Too many entries in memory message interest.
Store %s: Invalid message interest for destination % PRINTF_LLFMT d.
Store %s: Invalid destination read.

Store %s: Failure restoring transaction: %s.

Store %s: Failure restoring transaction msg: %s.

Store %s: Failure restoring transaction ack: %s.

Store %s: Failure resetting topic: %s.

Store %s: Correct functioning cannot be guaranteed due to mstore failure.
Exiting.

Failed writing to mstore: I/O error or out of disk space.

Category Multicast channel allotted bandwith exceeded.
Description Indicates that a multicast channel's allotted bandwidth has been exceeded.
Resolution Either slow down the publisher(s), enable flow control, or increase the multicast

channel's allotted bandwidth by increasing the channel's maxrate property or
increasing the server's multicast_reserved_rate property.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 591

Errors Multicast channel \q%s\q has exceeded its allotted bandwidth

Category Multicast Daemon Status Codes and Errors
Description Errors occuring in the Multicast Daemon.

Resolution Check the configuration of the Multicast Daemon and Server, as well as the health
of the network.
Errors Interface IP address: %s
[%s] Connection created, connid=% PRINTF_LLFMT d
Error: Unable to set channel property \q%s\q=% PRINTF_LLFEMT d

[%s] Created consumer consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd
topic=\q%s\q

Multicast Daemon Id=%s

Statistics enabled on a %d second interval.

Statistics disabled.

Rotating log from %s to %s

Memory allocation error, possible data loss.
Unrecoverable PGM error rc=%d, reason=%s

Could not parse configuration file \q%s\q

Interface IP address: %s

Tracing enabled.

Tracing disabled.

refused new connection with existing ID % PRINTF_LLEMT d
[%s] Connection destroyed, connid=%PRINTF_LLFMTd

Error sending to consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd from
channel \q%s\q: %s

%s, status=%s

Attached channel \q%s\q to consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

Error attaching channel \q%s\q to consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

TIBCO Enterprise Message Service User's Guide

592 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Detaching channel \q%s\q from consumer consid=%PRINTF_LLFMTd
connid=%PRINTF_LLFMTd

Destroying consumer consid=%PRINTF_LLFMTd connid=%PRINTF_LLFMTd
Channel configuration from server does not match existing channel \q%s\q

Ignoring additional PGM receiver created on group \q%s\q, dport=%d,
sport=%d, channel=%s

Created channel: \q%s\q

Error: %s is not a valid multicast-capable IP address. Use the -ifc command line
parameter to specify a valid interface.

Out of memory

The server failed to allocate memory as it was attempting to perform an
operation.

Check how much memory the server process is using according to the operating
system. Compare this with how much memory and swap space the host actually
has. If there are sufficient memory and swap space, check the operating system
limits on the server process to determine if this is the cause. If the limits are set to
their maximum and this error occurs, reduce the load on this server by moving
some topics and queues to another server.

Y%os trying to recreate persistent message.

Error during routed queue configuration, can not create routed queue consumer
Could not initialize monitor

Error: out of memory processing admin request

Error during route configuration, can not create routed queue consumer, err=%s
Configuration error - duplicate group: file=%s, line=%d: ignoring line

Unable to create admin group: out of memory during initialization

Error: unable to create alias for %s '%s": no memory

Error: unable to create alias: out of memory

Unable to create import event for %s '%s' on transport '%s'

Unable to create internal connection, error=(%d) %s

Unable to create internal connection: out of memory during initialization

Error: unable to create %s '%s": no memory

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 593

Error: unable to create route while parsing file=%s, line=%d.

Unable to create SmartSockets subscriber on transport '%s', %s '%s': out of
memory

Unable to create temporary destination, out of memory
Failed to create reserve memory. Exiting.

Failed writing message to '%s": No memory for operation.
Unable to process message imported on transport '%s'.

Fault Tolerant configuration, no memory!

Fault Tolerant error, no memory.

LDAP initialization failed.

No memory.

No memory authenticating user '%s'

No memory authenticating via LDAP

Out of memory while building admin response message

Out of memory while building JNDI response message

Out of memory creating global import event on transport '%s'
Out of memory creating import event for %s '%s' on transport '%s'
Out of memory creating SS transport %s

No memory creating stalled flows in destination

Out of memory during initialization

Could not set replyto destination exporting SS message.
Could not set destination exporting SS message.

Could not get destination exporting SS message.

Failed to initialize SS message fields exporting SS message.
Out of memory exporting SS message.

Out of memory: unable to process SS message type on export
No memory for creating connection.

No memory generating dynamic route durable.

Out of memory importing SS message. error=9%s.

No memory in IO thread to create pool.

TIBCO Enterprise Message Service User's Guide

594 | Appendix B Error and Status Messages

Out of memory while parsing bridges file

Out of memory while parsing factories file

Out of memory while parsing routes file

No memory performing routing operation.

Out of memory processing %s on %s '%s'

Out of memory processing administrative request
Out of memory processing message tracing

No memory processing purge record.

No memory while processing route interest

Out of memory processing transports

Out of memory processing transports configuration
Out of memory reading configuration.

Out of memory restoring routed consumer

Out of memory sending monitor message.

No memory sending topic routing information.

%s trying to add message to %s queue.

No memory trying to add message to system.

No memory trying to cleanup route.

No memory to create ack record.

No memory to create client connection

No memory to create configured durable '%s%s%s'.
No memory to create configured durables

No memory to create confirm record.

No memory to create connection.

No memory to create consumer.

No memory trying to create destination.

No memory to create destination for consumer or browser.
No memory trying to create global topic destination.
No memory to create message from store.

No memory trying to create message producer.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 595

No memory to create producer.

No memory trying to create queue browser.

No memory trying to create response message.

No memory to create routed consumer

No memory to create routed queue consumers

No memory trying to create routed queue destination.
No memory trying to create routed tmp queue destination.
No memory to create session.

No memory trying to create tmp destination for consumer.
No memory trying to create transaction.

No memory to create valid messages record.

No memory restoring valid sequence number info.

No memory to create zone.

No memory trying to export message to RV.

No memory trying to export message to SS.

No memory trying to import message from RV %s.

No memory trying to import message from RVCM.

No memory trying to import message from SS. error=%s.
No memory trying to initialize connection.

No memory trying to initialize route connection.

No memory trying to parse configured durable.

No memory trying to process data message.

No memory trying to process queue message.

No memory to process route interest

No memory trying to process system request.

No memory trying to process topic consumer.

No memory trying to process topic message.

No memory trying to process xa end. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLEMT d %s

No memory trying to read message from store.

TIBCO Enterprise Message Service User's Guide

596 | Appendix B Error and Status Messages

Route down while trying to recover routed consumer.

No memory trying to recover routed consumer.

No memory trying to recover one msg for routed consumer.
No memory trying to recover route stall.

No memory trying to recover route stall, will try again.

No memory to restore messages.

No memory to restore prepared transactions.

No memory trying to retrieve for queue browser.

No memory trying to send recover/rollback response.

out of memory trying to send topic interest to routes

No memory to set clientID for connection.

No memory trying to setup queue route configuration

No memory trying to setup route configuration

No memory trying to setup topic route configuration

Route recovery of destination %s on route from %s will fail: No memory

Route recovery of destination %s on route from %s will fail: No memory to create
timer

Route recovery of destination %s on route from %s will fail: %s
Failed to initialize OpenSSL environment: out of memory

Out of memory queuing imported message for processing.
Out of memory gathering consumers for incoming message.
Out of memory scheduling message delete.

Out of memory preparing to write message.

Out of memory assembling list of message to store.

Out of memory processing route consumer.

Out of memory preparing message for writing.

Out of memory creating connection thread list.

Out of memory creating RV gateway thread list.

Out of memory creating SmartSockets gateway thread list. error=%s.

Out of memory delaying bridged flow control response.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 597

Out of memory preparing to delay flow control response.

Out of memory delaying one flow control response.

Out of memory delaying set of flow control responses.

Out of memory trying to clear message hold.

Out of memory trying to delete held message.

Unable to update the valid messages record. Error code: %d - %s.
No memory scheduling message delete completion, Error code: %d.
No memory to build msg properties.

No memory to create prop.

No memory to set prop.

No memory getting the list of delivered messages. The JMSXDeliveryCount
property of some messages may no longer be accurate.

No memory getting the list of delivered messages from session %
PRINTF_LLFMT d. The JMSXDeliveryCount property of messages that were sent
to this session may no longer be accurate.

No memory getting the list of delivered messages during rollback of transaction
with xid: %s. The JMSXDeliveryCount property of messages that were rolled-back
may no longer be accurate.

Out of memory discarding message.

Out of memory advancing queue pending.

Out of memory adding message to pending list.

Out of memory returning message to pending list.

Out of memory trying to re-queue after xa rollback.

Out of memory finalizing restored queue: %s.

Out of memory restoring queue flush state.

Out of memory detaching message during queue purge.
Out of memory removing message from queue.

Out of memory retrieving message by correlation id.
Out of memory scheduling cleanup of transaction ack: %s.
Out of memory setting message all acked: %s.

Out of memory cleaning up transaction: %s.

Out of memory updating sent state on ack.

TIBCO Enterprise Message Service User's Guide

598 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Category

Description

Resolution

Errors

Out of memory updating in-doubt state on ack.
Out of memory removing message from system.
Out of memory associating ack with data.

Out of memory associating ack with transaction.
Out of memory resetting mstore discard scan: %s.
Out of memory recording modified topic.

Out of memory re-queuing sent messages.

No memory trying to resend delivered messages following an xa end NOTA.
connlD=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

No memory to create consumer on %s [%s]
Failed to set delivery count in%smessage: status=%s

Failure to create per-mstore delayed delivery state: %s.

Protocol error, incorrect XID in XA request

The tibemsd received an XA End instruction from the third party Transaction
Manager which referred to a different transaction from the one currently in use by
the session.

Report this to the your Transaction Manager vendor.

Incorrect xid in xa end (0x%x) request. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLEMT d %s

Protocol error, transaction in incorrect state

A client application's attempt to start an XA transaction failed because the
transaction already exists and is not in the correct state.

This error is most likely caused by an external transaction manager that allowed
two separate client applications to use the same XA transaction identifier (XID).
Consult the manual for the transaction manager or report this to the transaction
manager vendor.

Cannot process xa start for a session when another transaction is already active on
that session. connID=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

TIBCO Enterprise Message Service User’s Guide

Category
Description
Resolution

Errors

Error and Status Messages | 599

Cannot process xa start with TMNOFLAGS when the transaction is already
active. connID=% PRINTF_LLFMT d sessID=% PRINTF_LLEMT d %s

All clients participating in the same global transaction must use the same
protocol, connlD=% PRINTF_LLFMT d

Invalid xa start (resume) request: the session was not previously suspended.
connlD=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Error processing xa start - transaction marked ROLLBACKONLY. connID=%
PRINTF_LLEMT d sessID=% PRINTF_LLEMT d %s

Error processing xa start request, %s. connlD=% PRINTF_LLFMT d sessID=%
PRINTF_LLEMT d %s

Invalid xa end (suspend) request: session already suspended or not started.
connlD=% PRINTF_LLFMT d sessID=% PRINTF_LLFMT d %s

Invalid xa end request: the session was neither associated with a transaction nor
suspended. connID=% PRINTF_LLEMT d sessID=% PRINTF_LLEMT d %s

Error processing xa prepare - transaction marked ROLLBACKONLY, %s.
connlD=% PRINTF_LLEMT d %s

Protocol message format error
tibemsd received a message with either missing or incomplete data.
Send details of the error and the situation in which it occurred to TIBCO Support.

Unable to confirm session, invalid request.

Unable to create consumer, invalid destination.

Unable to init session, invalid request.

Unable to process msg for export. error=%s.

Unable to recover consumer, invalid request.

Unable to recover consumer, invalid session.

Unable to recover one msg for consumer, invalid request.

Unable to recover one msg for consumer, invalid sequence number.
Unable to recover one msg for consumer, invalid session.

Unable to serve the flow stall recover request from server %s, invalid request.
Unable to start consumer, invalid consumer

Unable to server the flow stall recover request from server %s, invalid consumer.

TIBCO Enterprise Message Service User's Guide

600 | Appendix B Error and Status Messages

Unable to unsubscribe consumer, invalid client request.
%s: %os failed: illegal to use %s [%s] in standby mode.

Invalid flag in xa end request. connlD=% PRINTF_LLFMT d sessID=%
PRINTF_LLEMT d %s

Invalid flag in xa start request. connlD=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d %s

Invalid request to delete temporary destination: %s. connlD=% PRINTF_LLFMT
d

Invalid request to delete temporary destination: not owner connection.
Invalid xid in commit request.

Invalid xid in commit transaction record.

Invalid xid trying to update(%d) transaction record.

Invalid xid in rollback request.

Invalid xid in rollback transaction record.

Invalid xid in xa commit request. connlD=% PRINTF_LLFMT d

Invalid xid in xa end request. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d

Invalid xid in xa prepare request. connID=% PRINTF_LLFMT d
Invalid xid in xa rollback request. connID=% PRINTF_LLFMT d

Invalid xid in xa start request. connID=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d

Malformed routed message
Problem decoding sequence data in confirm: %s.
Problem decoding sequence data in rollback.

Problem decoding sequence data in xa end. connlD=% PRINTF_LLFMT d
sessID=% PRINTF_LLEMT d %s

%s:%s queue browser failed: queue name is missing in request message
Received admin request with replyTo not set

Received JNDI request with replyTo not set.

Received unexpected message type %d

No destination in incoming data message.

Invalid %s message

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 601

Category Protocol sequence error

Description A non-embedded java client is attempting to connect to a tibemsd that is part of
an embedded JMS environment.

Resolution Reconfigure the client to connect to a fully licensed tibemsd.

Errors Invalid client connect detected.

No closure.

Category Recovery errors
Description ~ An error occurred during the recovery process.

Resolution If you are not able to fix the problem and need to restart the system, make a
backup of the store files and restart the server with the '-forceStart' command line
parameter. The server will then attempt to start regardless of errors (expect
out-of-memory errors). In this mode, application messages and/or internal
records causing problems (due to file corruption or other) will be deleted.
Therefore, dataloss is likely to occur, so this command line parameter should be
used with extreme caution and only after understanding the consequences. A
copy of the store files can be sent to TIBCO Support for post-mortem analysis.

Errors The recovery process stopped while processing a '%s' record (id=%
PRINTF_LLEMT d), error: %d - %s. Check the section 'Error Recovery Policy'
from chapter 'Running the EMS Server' in the User's Guide before attempting to
restart the server

The recovery process stopped while processing a '%s' record (id=%
PRINTF_LLEMT d) due to an out-of-memory condition. Ensure that the system
can allocate sufficient memory to the EMS Server process before restarting it

Unable to get the session's context handle for %s record: %d - %s
Unable to get the list iterator for %s record

Unable to get next element from list for %s record

Unable to create %s object, no memory

Error occured while processing %s record id=% PRINTF_LLEMT d (%s) - Unable
to reconstruct message: %d - %s

Unable to recreate zone '%s": %d - %s

Unable to add zone '%s' to the system: %d - %s

TIBCO Enterprise Message Service User's Guide

602 | Appendix B Error and Status Messages

Zone '%s' is defined as type '%s' in configuration but also is defined as type '%s'in
meta.db

Unable to recreate connection id=% PRINTF_LLFMT d: %d - %s

Discarding session id=% PRINTF_LLFMT d because the connection id=%
PRINTF_LLEMT d was not recovered. Recovery continues

Unable to recreate session id=% PRINTF_LLFMT d with connection id=%
PRINTF_LLEFMT d: %d - %s

Unable to recreate consumer id=% PRINTF_LLFMT d with connection id=%
PRINTF_LLFMT d and session id=% PRINTF_LLFMT d: invalid destination: %s

No memory to create destination for consumer id=% PRINTF_LLEMT d

Discarding consumer id=% PRINTF_LLFMT d on destination '%s' because
connection id=% PRINTF_LLFMT d was not restored. Recovery continues

Discarding consumer id=% PRINTF_LLFMT d on destination '%s' and connection
id=% PRINTF_LLFMT d because session id=% PRINTF_LLFMT d was not
restored. Recovery continues

No memory to recreate consumer id=% PRINTF_LLFMT d
Failed to build import selectors for consumer id=% PRINTF_LLFMT d: %d - %s

Failed to read import selectors for routed consumer id=% PRINTF_LLFMT d: %d
- %s

Discarding durable id=% PRINTF_LLFMT d (connection id=% PRINTF_LLFMT
d) on destination '%s' because the durable name is not specified. Recovery
continues

Unable to recreate producer id=% PRINTF_LLFMT d with connection id=%
PRINTF_LLFMT d and session id=% PRINTF_LLFMT d: invalid destination: %s

No memory to create destination for producer id=% PRINTF_LLFMT d

Discarding producer id=% PRINTF_LLFMT d on destination '%s' because
connection id=% PRINTF_LLFMT d was not restored. Recovery continues

Discarding producer id=% PRINTF_LLFMT d on destination '%s' with connection
id=% PRINTF_LLFMT d because session id=% PRINTF_LLFMT d was not
restored. Recovery continues

Unable to recreate purge record: invalid destination: %s

Unable to recreate purge record for destination %s: %d - %s

Error creating message for transaction record: %d - %s

Error creating message's store structure for transaction record: %d - %s

Unable to recover transaction record: transaction id missing: %d - %s

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 603

Unable to recover transaction id=% PRINTF_LLFMT d: %d - %s

Unable to recover ack record (txid=% PRINTF_LLFMT d, consid=%
PRINTF_LLEMT d, seqid=% PRINTF_LLFMT d, location=%s): %d - %s

Unable to recover ack record, cannot create message: %d - %s

Unable to recover sequence numbers from valid record: %s

Unable to recover message, can not create lock: %d - %s

Unable to restore held message from store, (location=%s) no memory

Unable to restore message sequence=% PRINTF_LLFMT d: (location=%s) %d - %s
No memory to create destination for message

Inconsistency restoring routed message sequence=% PRINTF_LLFMT d

No memory to restore routed message sequence=% PRINTF_LLFMT d

Persisted message possibly corrupted: %s

Error creating message's store structure: %d - %s

Category Rejected attempt to connect via SSL to TCP port

Description A client application attempted to connect to the server's TCP port using the SSL
protocol.

Resolution Change the client application's URL from ssl to tcp or change the server's listen
parameter from tcp to ssl. To activate a change of the server listen parameter

requires a restart of the server.

Errors Rejected attempt to connect via SSL to TCP port

Category Rejected attempt to connect via TCP to SSL port

Description A client application attempted to connect to the server's SSL port using the TCP
protocol.

Resolution ~ Change the client application's URL from tcp to ssl or change the server's listen
parameter from ssl to tcp. To activate a change of the server listen parameter

requires a restart of the server.

Errors Rejected attempt to connect via TCP to SSL port

TIBCO Enterprise Message Service User's Guide

604 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Category
Description

Resolution

Errors

rejected connect from route: invalid cycle in route

The multi-hop route support of the server does not support configuring a cycle.
However, it detected a configuration that would create a cycle.

Remove one of the routes that creates the cycle.

[Y%s@%s]: rejected connect from route: invalid cycle in route: %s
Illegal, route to '%s' creates a cycle. Terminate the connection

Illegal, route to '%s' creates a cycle.

Rendezvous transport error
tibemsd encountered a Rendezvous error.

See Rendezvous documentation for details of what the error means and how to
remedy it.

Unable to create dispatcher for import event for %s '%s' on transport '%s', error is
Y%os

Unable to create inbox for import event for %s '%s' on transport '%s'

Unable to create Rendezvous Certified transport '%s": %s

Unable to create Rendezvous Certified transport '%s' because unable to create
Rendezvous transport '%s'

Unable to create Rendezvous transport '%s': %s

Unable to create TIBCO Rendezvous Certified Listener for %s '%s' on transport
"Y%s'": Yos

Failed to confirm RVCM message: %d (%s)

Failed to confirm RVCM message sequence % PRINTF_LLEMT u from cm sender
'%s'. Error: %d (%s)

Unable to store trackld % PRINTF_LLEMT d for RVCM message sequence %
PRINTF_LLFMTu from cm sender '%s'. Error: %d (%s)

Unable to retrieve trackld % PRINTF_LLFMT d. Error: %d (%s)

A problem occurred while importing RVCM message sequence %
PRINTF_LLEMT u from cm sender '%s'. Expecting a redelivery

Unable to queue the request type: %d. Transport '%s', destination '%s', CM Sender
"%s', CM Sequence % PRINTF_LLEMT u . Error: %d (%s)

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 605

Unable to queue the request type: %d. Transport '%s', destination '%s'". Error: %d
(%s)

Failed to disallow Rendezvous Certified Message listener '%s": %s
Unable to export topic message, error=%s.

Unable to pre-register certified listener '%s' on transport '%s': %s
Rendezvous send failed on transport '%s', error='%s'

Unable to restart the CM Listener for %s '%s' (RVCM Transport '%s'). Error code:
%d '%s'

Unable to create the timer for the restart of the CM Listener for %s '%s' (RVCM
Transport '%s'). Error code: %d '%s'

Unable to stop the CM Listener for %s "%s' (RVCM Transport '%s'). Error code: %d
"Yos'

Category Restoring consumer failed

Description ~ Seen when tibemsd starts up and detects that the zone for a route as specified in
routes.conf has been changed.

Resolution Either delete the route or change its zone back and restart the tibemsd.
Errors Restoring consumer failed: Conflicting zone for route to [%s]: The route was

initially zone %s type %s, but now %s type %s. Zone change not allowed while
there are durable subscribers. Please delete the route first and create new one.

Category Running on reserve memory

Description ~ Warnings indicating that the tibemsd has run out of memory and is now using its
reserve memory

Resolution Either reduce the tibemsd's memory requirement by consuming messages or
removing messages from its queues, or increase the amount of memory available
to the tibemsd by shutting down other processes on the machine or increasing the
machine's memory.

Errors Running on reserve memory, ignoring new message.

Running on reserve memory, no more send requests accepted. Pending msg count
= % PRINTF_LLFMT d

Pending msg count = % PRINTF_LLFMT d

TIBCO Enterprise Message Service User's Guide

606 | Appendix B Error and Status Messages

Category
Description

Resolution

Errors

Category
Description

Resolution

Errors

Runtime Error in Fault-Tolerant Setup
In a fault-tolerant setup, error occurs at runtime.

Check the status of the both server (primary, standby). In case of both active, the
file store data may be corrupted already and we recommend shutting down both
servers and investigate the situation.

Fault-tolerance error: Dual-Active server detected at: '%s'

The primary EMS server does not hold the lock on meta store

The standby EMS server could not find the specified meta store.

The primary EMS server name is %s while the standby EMS server name is %s.
The names must be the same

A backup EMS server (%s) is already connected to the primary EMS server

Fault Tolerant error (%s), can't create connection to '%s'.

SmartSockets transport error
tibemsd encountered a SmartSockets error.

See SmartSockets documentation for details of what the error means and how to
remedy it.

Unable to create SmartSockets subscriber on transport '%s": failed to convert %s
'%s', error=%s

Unable to import SmartSockets message on transport %s: failed to convert subject
'%s', error=%s

Unable to import SmartSockets message on transport %s: failed to tokenize
subject '%s'

Unable to import SmartSockets message on transport %s: failed to convert reply
subject '%s', error=%s

Unable to import SmartSockets message on transport %s: no destination found
"%os'

Unable to export EMS message into SmartSockets on transport '%s'. Failed to
convert subject '%s', error=%s.

Unable to export EMS message into SmartSockets on transport '%s'. Failed to
convert reply subject '%s', error=%s.

TIBCO Enterprise Message Service User’s Guide

Error and Status Messages | 607

Error translating EMS message body into SS message. Status=%s

Error translating EMS message headers into SS message. Status=%s
Error translating EMS message properties into SS message. Status=%s
Unable to confirm SS message. %s

Unable to connect to SmartSockets RTserver via transport: '%s": %d - %s
Unable to register GMD failure callback: '%s": %d - %s

Unable to create open callback on transport: '%s'": %d - %s

Unable to create default callback on transport: '%s': %d - %s

Unable to create SS callback for %s '%s' on transport '%s' SS error: %s
Unable to create SS message type on export

Unable to create SmartSockets subscriber for %s '%s' on transport '%s', error: %s
Unable to create SmartSockets transport '%s': %d - %s

Failed to confirm SS message. error=%s.

Failed to create SmartSockets transport %s

Unable to handoff confirm SS message: %s.

Unable to import SS message. Error=%d, %s.

Unable to import SS message data fields. Error=%d, %s.

Unable to import SS message headers. Error=%d, %s.

Unable to import SS message, failed to create message destination.
Unable to import SS message, failed to create reply destination.

Unable to import SS message, error retrieving delivery mode.

Unable to import SS message, error setting imported property. error=%s.

Unable to import SS message, error setting message extentions property.
error="%s.

Unable to import SS message, failed to create message wire. error="%s.
Unable to import SS message, error retrieving number of fields.
Unable to initialize SmartSockets transport '%s'": error=%d: %s

Unable to set SmartSockets Dispatcher for transport: '%s'": %d - %s
Unable to set SS message type on export

Unable to set Username/Password for SmartSockets transport '%s'": %d - %s

TIBCO Enterprise Message Service User's Guide

608 | Appendix B Error and Status Messages

Category
Description

Resolution

Errors

Unable to import SmartSockets message on transport %s: failed to retrieve SS
subject.

SS Subject CB destroy Failed: for '%s' on transport '%s' SS error: %s
SS Subject CB lookup Failed: for '%s' on transport '%s' SS error: %s
SmartSockets TipcMsgSetDeliveryMode failed, '%s'

SmartSockets TipcMsgSetLbMode failed, '%s'

SmartSockets TipcSrvConnFlush failed, '%s'

SmartSockets TipcSrvConnMsgSend failed, '%s'

SS Unsubscribe failed: for '%s' on transport '%s' SS error: %s

GMD delivery failed on transport '%s', SS message seq=%d, reason='%s' for
process '%s'

Unable to process undelivered SS GMD message, can not register EMS message,
error='%s', tport='%s', GMD seq=%d

Unable to process undelivered SS GMD message, can not add to undelivered EMS
queue, error='%s', tport='%s', GMD seq=%d

Unable to process undelivered SS GMD message, failed to build EMS message,
error='%s', tport='%s', GMD seq=%d

Unable to convert undelivered SS GMD message into EMS message, error='%s',
tport='%s', GMD seq="%d

SSL initialization failed
The server failed attempting to initialize the OpenSSL library.

Examine the OpenSSL error and the EMS User's Guide chapter describing the use
of SSL.

Failed to process ft ssl password

Failed to process ssl password

Ignoring SSL listen port %s

Failed to initialize SSL: can not load certificates and/or private key and/or CRL
file(s) and/or ciphers.

Failed to initialize OpenSSL environment: error=%d, message="%s.
Failed to initialize SSL. Error=%s

Failed to initialize SSL: unable to obtain password

TIBCO Enterprise Message Service User’s Guide

Category

Description

Resolution

Errors

Category
Description

Resolution

Errors

Error and Status Messages | 609

Failed to initialize SSL: server certificate not specified.

Failed to initialize SSL: server private key not specified.

Store file format mismatch

The store files specified were created from a different version of EMS that is not
supported by this version.

Revert to use the version of EMS that created the store file or locate the store file
conversion tool and use it to convert the store file to this version.

Unsupported store format: %s (%d)

System call error, should be errno-driven
A low-level system function has failed.

Report the error to your system administrator and ask them to remedy the
problem.

Accept() failed: too many open files. Please check per-process and system-wide
limits on the number of open files.

Accept() failed: %d (%s)

Select() failed: Y%d (%s)

Epoll_wait() failed: %d (%s)

Epoll_ctl() %s on fd %d failed: %d (%s)

ioctl() on /dev/poll failed: %d (%s)

write() %s update /dev/poll on fd %d failed: %d (%s)
Cannot retrieve user name of the current process.
Client connection not created, %s.

Could not obtain hostname

Could not resolve hostname '%s'". Possibly default hostname is not configured
properly while multiple network interfaces are present.

Unable to listen for connections: %d (%s).

Unable to open socket for listening: %d (%s).

TIBCO Enterprise Message Service User's Guide

610 | Appendix B Error and Status Messages

Category

Description

Resolution

Errors

Category
Description

Resolution

Errors

Category
Description

Resolution

Closing SSL connection from %s due to timeout, exceeded handshake_timeout of
%d.

Could not %s sequential file optimization: %d.

Transaction action while previous action is incomplete.

State-modifying action is requested on a transaction for which another such
action is being processed.

Send details of the error and the situation in which it occurred to TIBCO Support.
Cannot request second state change for transaction while the first request is in
progress (%d, %d) %s.

Unexpected request to roll xa txn forward with previous operation (%d)
incomplete: %s.

Unexpected request to roll xa txn back with previous operation (%d) incomplete:
Yos.

Unexpected request to prepare xa txn with previous operation (%d) incomplete:
Yos.

Unexpected request to commit xa txn with previous operation (%d) incomplete:
Yos.

Unexpected request to commit session with previous operation (%d) incomplete.

Transaction timeout.
Transaction not completed before timeout. Offending transaction is discarded.

Most likely, transaction manager error prevented it from advancing this
transaction in a timely manner. Verify correct operation of the transaction manner.

Rollback due to timeout on unprepared transaction. connlD=% PRINTF_LLFMT
d %s

Unnecessary or duplicate message
tibemsd received a message with either missing or incomplete data.

Send details of the error and the situation in which it occurred to TIBCO Support.

TIBCO Enterprise Message Service User’s Guide

Errors

Category
Description

Resolution

Errors

Error and Status Messages | 611

Error processing xa start request, %s. connlD=% PRINTF_LLFMT d sessID=%
PRINTF_LLFMT d

Error trying to enter standby for '%s', %s.

Unrecognized option
The server's command line contains an unrecognized option.

Run the server with the -help option and compare it with the command line
containing the unrecognized option.

Unrecognized option: '%s'.

TIBCO Enterprise Message Service User's Guide

612 | Appendix B Error and Status Messages

TIBCO Enterprise Message Service User’s Guide

Index

Symbols

NET
assembly version 329
programmer’s checklist 328
$sys.redelivery.delay 70

A

acknowledgement 39
acl.conf file 239
add member command 128
addprop factory command 128
addprop queue command 128
addprop route command 129
addprop topic command 129
admin

connect 130

password 117

user 126
admin user 117
administrator

assign password 126
anonymous

user and security 117
architecture

multicast 388
authorization parameter 199
AUTO_ACKNOWLEDGE mode 39, 337
autocommit command 129

bandwidth
managing multicast 384

bridges 82
bridges.conf file 240

Cc

programmer’s checklist 322
c#

assembly version 329

programmer’s checklist 328
certificates

file names 469
changes from the previous release xxvi
channel property 59
channels

detailed statistics 461
channels.conf file 241
cipher suites

NET clients 481

Java clients 478
client tracing 222
CLIENT_ACKNOWLEDGE mode 39, 40
client_heartbeat_server parameter 211

client_timeout_server_connection parameter 213

client_trace parameter 222
clock_sync_interval parameter 211
cm_name parameter 406
command line options

multicast 376
commit command 129
compact command 130
compiling samples 95
compliant_queue_ack parameter 199
compression, message 38
Configuration 108

| 613

TIBCO Enterprise Message Service User's Guide

614 | Index

configuring dbstore_driver_dialect parameter 307
external directory for authentication 279 dbstore_driver_name parameter 307
LDAP 279 deadlock

connect flow control 89
admin 130 default_ttl parameter 406

connect command 130 definitions of properties 58

connection factories 332 defrag destinations 254
parameters 245 delete all command 133

connections delete bridge command 133
network I/O 122 delete connection command 134

connectivity delete durable command 134
multicast 382 delete factory command 134

console_trace parameter 221 delete group command 134

consumers delete jndiname command 134
detailed statistics 461 delete message command 134

conventions delete queue command 135
naming 127 delete route command 135

conversion, data type 45 delete rvcemlistener command 135

cores delete subscriber 134
allocation 121 delete topic command 135

create bridge command 131 delete user command 135

create durable command 131 deployment considerations

create factory command 131 multicast 382

create group command 131 destination

create jndiname command 131 bridges 82

create queue command 132 destination bridges

create route command 132 flow control 89

create rvemlistener command 132 destination defrag feature

create topic command 133 file_destination_defrag 254

create user command 133 destination properties 58

customer support xxxiii destination_backlog_swapout parameter 207

detailed statistics 461
detailed_statistics parameter 223
disabled security 116

D disconnect command 136
disconnect_non_acking_consumers parameter 199

daemon parameter 406 distributed transactions 14
data type conversion 45 DTC 14
database store files dual-state failover 493

Schema Export Tool 312 DUPS_OK_ACKNOWLEDGE mode 39, 41
database stores 304 durable subscriber 5, 139, 139

configuring 305 extensible security 298

in stores.conf 307 durables.conf file 244

in tibemsd.conf 306 dynamic destinations 54
dbstore_classpath parameter 306 creating 340

TIBCO Enterprise Message Service User’s Guide

dynamically creating destinations
wildcards 79

E

echo command 136
EMS server

starting 108

stopping 111
emsntsrg 112
error recovery policy 115
exception listener 338
exclusive property 59
exit command 136
expiration property 60
EXPLICIT_CLIENT_ACKNOWLEDGE mode 40, 40,

41,41
EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE
mode 41, 41

explicit_config_only parameter 406
export

topic property 61
export property 61
export_headers parameter 407
export_properties parameter 407
extensible security

parameters 235

F

factories.conf file 245
failover
dual state 493
non-shared state 486
shared state 495
shared state overview 486
unshared state 492
fault tolerance 13, 485
fault-tolerant switchover 28, 505, 519
fault-tolerant URL 246

Index |615

file names

certificates and keys 469
file-based stores 30
files, sample 94
FIPS

fips140-2 parameter 228
FIPS 140-2 483
flow control 87

enforcing 87, 87

threads and deadlock 89

with destination bridges 89

with multicast 88

with routes 88
flow_control parameter 200
flowControl property 61, 87
ft_activation parameter 214
ft_active parameter 213
ft_heartbeat parameter 213
ft_reconnect_timeout parameter 214
ft_ssl_auth_only parameter 214
ft_ssl_ciphers parameter 217
ft_ssl_expected_hostname parameter 216
ft_ssl_identity parameter 214
ft_ssl_issuer parameter 215
ft_ssl_password parameter 215
ft_ssl_private_key parameter 215
ft_ssl_rand_egd parameter 216
ft_ssl_trusted parameter 215
ft_ssl_verify_host parameter 216
ft_ssl_verify_hostname parameter 216

G

global property 62

grant admin command 138
grant queue command 136
grant topic command 137
group 279

groups.conf file 249

TIBCO Enterprise Message Service User's Guide

616 | Index

H JMS_TIBCO_SS_SEQ_NUM property 440

JMS_TIBCO_SS_TYPE_NUM property 440
handshake_timeout parameter 207 JMS_TIBCO_SS_USER_PROP property 440
help command 138 jre_library parameter 237

jre_option parameter 237
JSON configuration 108

JVM
| parameters 237
ibrvem.conf file 257
import
queue property 62 K
topic property 62
import property 62 key
info command 138 file names 469
inheritance 80
property 80
inheritance of property 54
intervals L
mstore 33
LDAP 279
ldap_all_groups_filter parameter 233
ldap_all_users_filter parameter 232
J ldap_cache_enabled parameter 229
ldap_cache_ttl parameter 229
jaas_classpath parameter 235 ldap_conn_type parameter 229
jaas_config_file parameter 235 ldap_credential parameter 229
jaas_login_timeout parameter 235 ldap_dynamic_group_attribute parameter 234
jaas.conf file 250 ldap_dynamic_group_class parameter 234
jaci_class parameter 236 ldap_dynamic_member_url_attribute parameter 235
jaci_classpath parameter 236 ldap_group_base_dn parameter 232
jaci_timeout parameter 236 ldap_group_filter parameter 233
Java ldap_group_scope parameter 232
programmer’s checklist 321 ldap_principal parameter 229
JMS specification ldap_static_group_attribute parameter 233
1.1 319 ldap_static_group_class parameter 233
2.0 318 ldap_static_group_member_filter parameter 234
JMS_TIBCO_SS_CORRELATION_ID property 440 ldap_static_member_attribute parameter 234
JMS_TIBCO_SS_DELIVERY_MODE property 440 ldap_tls_cacert_dir parameter 230
JMS_TIBCO_SS_EXPIRATION property 440 ldap_tls_cacert_file parameter 230
JMS_TIBCO_SS_LB_MODE property 440 ldap_tls_cert_file parameter 231
JMS_TIBCO_SS_MESSAGE_ID property 440 ldap_tls_cipher_suite parameter 230
JMS_TIBCO_SS_PRIORITY property 440 ldap_tls_key_file parameter 231
JMS_TIBCO_SS_SENDER property 439 ldap_tls_rand_file parameter 230

JMS_TIBCO_SS_SENDER_TIMESTAMP property 440 ldap_url parameter 228

TIBCO Enterprise Message Service User’s Guide

ldap_user_attribute parameter 231
ldap_user_base_dn parameter 231
ldap_user_class parameter 231
ldap_user_filter parameter 232
ldap_user_scope parameter 232
ledger_file parameter 406
length limitations

naming conventions 127
library files 323
linking 323
load balancing 4, 60, 82, 249, 360, 429
load balancing URL 246
log_trace parameter 220
logfile parameter 220
logfile_max_size parameter 221,221

MapMessage 22, 352

definition 22, 352
max_client_msg_size parameter 207
max_connections parameter 207
max_msg_field_print_size parameter 201
max_msg_memory parameter 208
max_msg_print_size parameter 201
max_stat_memory parameter 224
maxbytes property 63
maxmsgs property 64
maxRedelivery property 64
message

acknowledgement 39

compression 38

maximum size 23

selectors 42

tracing 452
message listener 49
message pool 208
messaging model

multicast 6

point-to-point 3

publish and subscribe 4
MS DTC 14
msg_pool_block_size parameter 208

Index |617

msg_swapping parameter 209
mstore 31

intervals 33
multicast

architecture 388

backwards compatibility 373

command line options 376

connectivity 382

daemon 375

daemon errors 399

deployment considerations 382

determining network capacity 393

example 104

example deployment 388

flow control 88

managing bandwidth 384

messaging model 6

restricting traffic 384

server errors 400

wildcards 78
multicast daemon

errors 399
multicast parameter 217
multicast troubleshooting 397

connectivity 398

data loss 398

general tips 397
multicast_channels parameter 218
multicast_daemon_default parameter 218
multicast_statistics_interval parameter 218
multiple stores 30

N

name length limitations 127
naming conventions 127
network I/O connections

tuning 122
network parameter 405
NO_ACKNOWLEDGE mode 40, 40, 40
No-Acknowledgement Receipt Mode 40
non-shared state 486

implementing 507

TIBCO Enterprise Message Service User's Guide

618 | Index

npsend_check_mode parameter 202

(o)

options
tibemsadmin 124
overflowPolicy property 65

P

password

admin 117

setting 126, 142
password parameter 202
performance tuning 121
permission

protection 273

secure property and 71
persistent messages 27

in queues 27

in topics 27

synchronous fle storage 28
PGM 6
point-to-point

example 98

messaging model 3
policy.1.0 329
prefetch property 68
processor_ids parameter 203
producers

detailed statistics 461
programmer checklists 321

C 322

C# 328

Java 321

TIBCO Enterprise Message Service User’s Guide

properties

channel 59

definitions 58

exclusive 59

expiration 60

export 61

flowControl 61

global 62

import 62

maxbytes 63

maxmsgs 64

maxRedelivery 64

overflowPolicy 65

prefetch 68

queue 58

redeliveryDelay 70

secure 71

sender_name 72

sender_name_enforced 72

store 73

topic 58

trace 74
property 16, 16, 16, 16

export 61

import 62

inheritance 54, 80
protection permissions 273
publish and subscribe

example 99

messaging model 4
purge all queues command 139
purge all topics command 139
purge durable command 139
purge queue command 139
purge topic command 139

Q

queue import property 62
queue limit policy 404
queue properties 58
queue property list 58

queue_import_dm parameter 407

queues

delayed message redelivery 70

dynamic 54

routed 528

static 54

temporary 54

undelivered messages 21
queues.conf file 250

R

rate_interval parameter 223
redeliveryDelay property 70
remove member command 139
removeprop factory command 140
removeprop queue command 140
removeprop route command 140
removeprop topic command 140
request_old parameter 406
reserve memory 209
reserve_memory parameter 209
restricting multicast traffic 384
resume route command 140
revoke admin command 140
revoke queue command 141
revoke topic command 141
rotatelog command 142
round-robin queue (non-exclusive) 60
routes

detailed statistics 461

flow control 88

zone 514
routes.conf file 251
rv_tport parameter 406
RVCM parameters 406

S

sample files 94
samples
compiling 95

Index | 619

Schema Export Tool 312
secure property 71
secure property and permission 71
security

and anonymous user 117

disabled 116

main configuration file 275
selector_logical_operator_limit parameter 204
selectors, message 42
sender_name property 72
sender_name_enforced property 72
server

starting 108

stopping 111
server parameter 204
server_heartbeat_client parameter 212
server_heartbeat_server parameter 212
server_rate_interval parameter 222
server_timeout_client_connection parameter 211
server_timeout_server_connection parameter 212
service parameter 405
set password command 142
set server command 143
setprop factory command 148
setprop queue command 148
setprop route command 149
setprop topic command 149
shared state 495

process 488
shared subscriptions 5
show bridge command 149
show bridges command 150
show config command 152
show connections command 156
show db command 159
show durable command 159
show durables command 160
show factories command 161
show factory command 161
show group command 162
show groups command 162
show jndiname command 162
show jndinames command 162
show members command 162
show message command 163

TIBCO Enterprise Message Service User's Guide

620 | Index

show messages command 163 starting the EMS server 108
show parents command 163 startup_abort_list parameter 205
show queue command 164 static queues 54
show queues command 165 static topics 54
show route command 166 statistics 460
show routes command 167 statistics parameter 223
show rvemlisteners command 168 statistics_cleanup_interval parameter 224
show rvemtransportledger command 167 stopping the EMS server 111
show server command 168 store files
show stat command 168 configuring database stores 305
show store command 169 configuring multiple stores 32
show stores command 171 database stores 304
show subscriptions command 175 defaults 31
show topic command 171 destination defrag 254
show topics command 173 file-based stores 30
show transaction command 176 mstore intervals 33
show transactions command 178 show store command 169
show transport command 179 show stores command 171
show transports command 179 store parameter 206
show user command 180 store property 73
show users command 180 stores
showacl admin command 180 multiple stores 30
showacl group command 180 stores.conf
showacl queue command 180 database store configuration 307
showacl topic command 181 stores.conf file 253
showacl user command 181 subject collisions 411
shutdown command 181 subscriber 284, 284
socket_receive_buffer_size parameter 210 delete 134
socket_send_buffer_size parameter 210 durable 139, 139
SSL support, contacting xxxiii

server parameters 224 suspende route command 181
ssl_auth_only parameter 228 swapping
ssl_cert_user_specname parameter 225 msg_swapping parameter 209
ssl_crl_path parameter 228 sync_ledger parameter 406

ssl_crl_update_interval parameter 228
ssl_dh_size parameter 224
ssl_password parameter 226

ssl_rand_egd parameter 227 T

ssl_require_client_cert parameter 225

ssl_server_ciphers parameter 224 tecp 97,130, 332

ssl_server_identity parameter 226 technical support xxxiii

ssl_server_issuer parameter 227 temp_destination_timeout parameter 408
ssl_server_key parameter 226 temporary queues 54

ssl_server_trusted parameter 227 temporary topics 54

ssl_use_cert_username parameter 225

TIBCO Enterprise Message Service User’s Guide

threads 121

flow control 89

processor_ids parameter 203
throughput 121
TIBCO_HOME xxx
tibemsadmin

options 124
tibemsd 323, 328
tibemsd.conf

database store configuration 306
tibemsd.conf file 187
tibemsmed 375
tibemsMsg_GetStringProperty 353, 353
tibemsMsg_SetBooleanProperty 353, 353
tibrv_transports parameter 219
tibss_config_dir parameter 220
tibss_transports parameter 219
time command 182
topic export property 61
topic import property 62
topic properties 58
topic property list 58
topic_import_dm parameter 407
topics

dynamic 54

routed 523

static 54

temporary 54
topics.conf file 257
trace property 74
trace_client_host parameter 222
tracing 452

client 222

trace options 448
track_correlation_ids parameter 217
track_message_id parameter 217
transaction commit command 182
transaction rollback command 182
transactions 14
transports.conf file 258
tuning

performance 121
type conversion 45
type parameter 405

U

undelivered message queue 21
UNIX system
using for user authentication 279
unshared state
configuring clients 507
configuring servers 501
process 492
specifying URLs 508
updatecrl command 182
url formats 246
user 278
admin 117
externally authenticated 279
user admin 126
user_auth parameter 206
users.conf file 262

w

whoami command 183

wildcards 77
in dynamically created destinations 79
in queues 78
in topics 78

X

xa_default_timeout parameter 206

z

zones 514

Index | 621

TIBCO Enterprise Message Service User's Guide

	TIBCO Enterprise Message Service™
	Contents
	Figures
	Tables
	Preface
	Changes from the Previous Release of this Guide
	Feature Enhancements
	Changes in Functionality

	Related Documentation
	TIBCO Enterprise Message Service Documentation
	Other TIBCO Product Documentation
	Third Party Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Overview
	JMS Overview
	JMS Message Models
	Point-to-Point
	Publish and Subscribe
	Multicast

	EMS Destination Features
	Client APIs
	Sample Code
	TIBCO Rendezvous Java Applications

	Administration
	Administering the Server
	User and Group Management
	Using TIBCO Hawk

	Security
	Fault Tolerance
	Routing
	Integrating With Third-Party Products
	Transaction Support

	Chapter 2 Messages
	EMS Extensions to JMS Messages
	JMS Message Structure
	JMS Message Header Fields
	EMS Message Properties
	JMS Message Bodies
	Maximum Message Size

	Message Priority
	Message Delivery Modes
	PERSISTENT
	NON_PERSISTENT
	RELIABLE_DELIVERY

	How EMS Manages Persistent Messages
	Persistent Messages Sent to Queues
	Persistent Messages Published to Topics
	Persistent Messages and Synchronous File Storage

	Store Messages in Multiple Stores
	Store Types
	Default Store Files
	Configuring Multiple Stores
	Understanding mstore Intervals

	Character Encoding in Messages
	Supported Character Encodings
	Sending Messages

	Message Compression
	About Message Compression
	Setting Message Compression

	Message Acknowledgement
	NO_ACKNOWLEDGE
	EXPLICIT_CLIENT_ACKNOWLEDGE
	EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE

	Message Selectors
	Data Type Conversion
	Sending Messages Synchronously and Asynchronously
	Sending Synchronously
	Sending Asynchronously

	Receiving Messages Synchronously and Asynchronously

	Chapter 3 Destinations
	Destination Overview
	Destination Names
	Static Destinations
	Dynamic Destinations
	Temporary Destinations
	Destination Bridges

	Destination Name Syntax
	Examples

	Destination Properties
	channel
	exclusive
	expiration
	export
	flowControl
	global
	import
	maxbytes
	maxmsgs
	maxRedelivery
	overflowPolicy
	prefetch
	redeliveryDelay
	secure
	sender_name
	sender_name_enforced
	store
	trace

	Creating and Modifying Destinations
	Creating Secure Destinations

	Wildcards
	Wildcards * and >
	Overlapping Wildcards and Disjoint Properties
	Wildcards in Topics
	Wildcards in Queues
	Wildcards and Multicast
	Wildcards and Dynamically Created Destinations

	Inheritance
	Inheritance of Properties
	Inheritance of Permissions

	Destination Bridges
	Creating a Bridge
	Access Control and Bridges
	Transactions

	Flow Control
	Enabling Flow Control
	Enforcing Flow Control
	Multicast and Flow Control
	Routes and Flow Control
	Destination Bridges and Flow Control
	Flow Control, Threads and Deadlock

	Delivery Delay

	Chapter 4 Getting Started
	About the Sample Clients
	Compiling the Sample Java Clients
	Creating Users with the EMS Administration Tool
	Start the EMS Server and EMS Administration Tool
	Create Users

	Point-to-Point Messaging Example
	Create a Queue
	Start the Sender and Receiver Clients

	Publish and Subscribe Messaging Example
	Create a Topic
	Start the Subscriber Clients
	Start the Publisher Client and Send Messages
	Create a Secure Topic
	Create a Durable Subscriber

	Multicast Messaging Example
	Stop the EMS Server
	Enable the EMS Server for Multicast
	Create a Multicast Channel
	Start the EMS Server
	Enable a Topic for Multicast
	Start the Multicast Daemon
	Start the Subscriber Client
	Start the Publisher Client and Send Messages

	Chapter 5 Running the EMS Server
	Starting and Stopping the EMS Server
	Starting the EMS Server Using the Default Configuration
	Starting the EMS Server Using JSON Configuration
	Starting the EMS Server Using Options
	Stopping the EMS Server

	Running the EMS Server as a Windows Service
	emsntsrg

	Error Recovery Policy
	Security Considerations
	Secure Environment
	Destination Security
	Authorization Parameter
	Admin Password
	Connection Security
	Communication Security
	Sources of Authentication Data
	Timestamp
	Passwords
	Audit Trace Logs

	How EMS Manages Access to Shared Store Files
	Performance Tuning
	Setting Thread Affinity for Increased Throughput
	Determining Core Allocation
	Network I/O Connections
	Other Considerations

	Chapter 6 Using the EMS Administration Tool
	Starting the EMS Administration Tool
	When You First Start tibemsadmin

	Naming Conventions
	Name Length Limitations

	Command Listing
	add member
	addprop factory
	addprop queue
	addprop route
	addprop topic
	autocommit
	commit
	compact
	connect
	create bridge
	create durable
	create factory
	create group
	create jndiname
	create queue
	create route
	create rvcmlistener
	create topic
	create user
	delete all
	delete bridge
	delete connection
	delete durable
	delete factory
	delete group
	delete jndiname
	delete message
	delete queue
	delete route
	delete rvcmlistener
	delete topic
	delete user
	disconnect
	echo
	exit
	grant queue
	grant topic
	grant admin
	help
	info
	jaci clear
	jaci resetstats
	jaci showstats
	purge all queues
	purge all topics
	purge durable
	purge queue
	purge topic
	remove member
	removeprop factory
	removeprop queue
	removeprop route
	removeprop topic
	resume route
	revoke admin
	revoke queue
	revoke topic
	rotatelog
	set password
	set server
	setprop factory
	setprop queue
	setprop route
	setprop topic
	show bridge
	show bridges
	show channel
	show channels
	show config
	show consumer
	show consumers
	show connections
	show db
	show durable
	show durables
	show factory
	show factories
	show jndiname
	show jndinames
	show group
	show groups
	show members
	show message
	show messages
	show parents
	show queue
	show queues
	show route
	show routes
	show rvcmtransportledger
	show rvcmlisteners
	show server
	show stat
	show store
	show stores
	show topic
	show topics
	show subscriptions
	show transaction
	show transactions
	show transport
	show transports
	show user
	show users
	showacl admin
	showacl group
	showacl queue
	showacl topic
	showacl user
	shutdown
	suspend route
	time
	timeout
	transaction commit
	transaction rollback
	updatecrl
	whoami

	Chapter 7 Using the Configuration Files
	Location of Configuration Files
	Mechanics of Configuration
	tibemsd.conf
	Global System Parameters
	Storage File Parameters
	Connection and Memory Parameters
	Detecting Network Connection Failure Parameters
	Fault Tolerance Parameters
	Message Tracking Parameters
	Multicast Parameters
	TIBCO Rendezvous Parameters
	TIBCO SmartSockets Parameters
	Tracing and Log File Parameters
	Statistic Gathering Parameters
	SSL Server Parameters
	LDAP Parameters
	Extensible Security Parameters
	JVM Parameters

	Using Other Configuration Files
	acl.conf
	bridges.conf
	channels.conf
	durables.conf
	factories.conf
	groups.conf
	jaas.conf
	queues.conf
	routes.conf
	stores.conf
	tibrvcm.conf
	topics.conf
	transports.conf
	users.conf

	Chapter 8 Authentication and Permissions
	EMS Access Control
	Administrator Permissions
	Predefined Administrative User and Group
	Granting and Revoking Administration Permissions
	Enforcement of Administrator Permissions
	Global Administrator Permissions
	Destination-Level Permissions
	Protection Permissions

	Enabling Access Control
	Server Control
	Destination Control

	Users and Groups
	Users
	Groups
	Configuring an External Directory

	User Permissions
	Example of Setting User Permissions
	Inheritance of User Permissions
	Revoking User Permissions

	When Permissions Are Checked
	Example of Permission Checking

	Chapter 9 Extensible Security
	Overview of Extensible Security
	Extensible Authentication
	Enabling Extensible Authentication
	Writing an Authentication Module

	Extensible Permissions
	Cached Permissions
	How Permissions are Granted
	Implications of Wildcards on Permissions
	Enabling Extensible Permissions
	Writing a Permissions Module

	The JVM in the EMS Server
	Enabling the JVM

	Chapter 10 Using Database Stores
	Database Store Overview
	Configuring Database Stores
	Configuration in tibemsd.conf
	Configuration in stores.conf
	Configuration for the Oracle RAC Database

	EMS Schema Export Tool

	Chapter 11 Developing an EMS Client Application
	JMS Specification
	JMS 2.0 Specification
	JMS 1.1 Specification
	JMS 1.0.2b Specification

	Sample Clients
	Programmer Checklists
	Java Programmer’s Checklist
	C Programmer’s Checklist
	C# Programmer’s Checklist

	Connection Factories
	Looking up Connection Factories
	Dynamically Creating Connection Factories
	Setting Connection Attempts, Timeout and Delay Parameters

	Connecting to the EMS Server
	Starting, Stopping and Closing a Connection

	Creating a Session
	Setting an Exception Listener
	Dynamically Creating Topics and Queues
	Creating a Message Producer
	Configuring a Message Producer
	Creating a Completion Listener for Asynchronous Sending

	Creating a Message Consumer
	Creating a Message Listener for Asynchronous Message Consumption

	Working with Messages
	Creating Messages
	Setting and Getting Message Properties
	Sending Messages
	Receiving Messages

	Chapter 12 Using the EMS Implementation of JNDI
	Creating and Modifying Administered Objects in EMS
	Creating Connection Factories for Secure Connections
	Creating Connection Factories for Fault-Tolerant Connections

	Looking up Administered Objects Stored in EMS
	Looking Up Objects Using Full URL Names
	Performing Secure Lookups
	Performing Fault-Tolerant Lookups

	Chapter 13 Using Multicast
	Overview of Multicast
	When to Use Multicast
	Requirements

	Configuring Multicast
	Configuring Multicast Dynamically
	Configuring the Multicast Daemon
	Controlling Access to Multicast-Enabled Topics

	Running Multicast
	Starting the Multicast Daemon
	Creating a Multicast Consumer

	Monitoring and Statistics
	Monitoring
	Statistics

	Chapter 14 Multicast Deployment and Troubleshooting
	Deployment Considerations
	Connectivity
	Restricting Multicast Traffic
	Managing Bandwidth

	Walking Through a Multicast Deployment
	Step 1: Design the Multicast Network Architecture
	Step 2: Install and Set Up EMS
	Step 3: Determine Network and Application Capabilities

	Troubleshooting EMS Multicast
	Troubleshooting Tips
	Application and Multicast Daemon Errors and Warnings
	Server Errors

	Chapter 15 Working With TIBCO Rendezvous
	Overview
	Message Translation
	Configuration

	Configuring Transports for Rendezvous
	Transport Definitions

	Topics
	Import Only when Subscribers Exist
	Wildcards
	Certified Messages

	Queues
	Configuration
	Import—Start and Stop
	Wildcards

	Import Issues
	Field Identifiers
	JMSDestination
	JMSReplyTo
	JMSExpiration
	JMSTimestamp
	Guaranteed Delivery

	Export Issues
	JMSReplyTo
	Certified Messages
	Guaranteed Delivery

	Message Translation
	JMS Header Fields
	JMS Property Fields
	Message Body
	Data Types

	Pure Java Rendezvous Programs

	Chapter 16 Working With TIBCO SmartSockets
	Overview
	Message Translation
	Configuration
	Starting the Servers

	Configuring Transports for SmartSockets
	Transport Definitions
	Destination Name—Syntax and Semantics

	Topics
	Import Only when Subscribers Exist
	Wildcards

	Queues
	Configuration
	Import—Start and Stop
	Wildcards

	Import Issues
	Import Destination Names Must be Unique
	JMSReplyTo
	Guaranteed Delivery

	Export Issues
	JMSReplyTo
	Wildcard Subscriptions
	Guaranteed Delivery

	Message Translation
	JMS Header Fields
	JMS Property Fields
	SmartSockets Message Properties
	Message Body
	Data Types
	Destination Names

	Chapter 17 Monitoring Server Activity
	Log Files and Tracing
	Configuring the Log File
	Tracing on the Server

	Message Tracing
	Enabling Message Tracing for a Destination
	Enabling Message Tracing on a Message

	Monitoring Server Events
	System Monitor Topics
	Monitoring Messages
	Viewing Monitor Topics
	Performance Implications of Monitor Topics

	Working with Server Statistics
	Overall Server Statistics
	Enabling Statistic Gathering
	Displaying Statistics

	Chapter 18 Using the SSL Protocol
	SSL Support in TIBCO Enterprise Message Service
	Digital Certificates
	Digital Certificate File Formats
	Private Key Formats

	File Names for Certificates and Keys
	Configuring SSL in the Server
	SSL Parameters
	Command Line Options

	Configuring SSL in EMS Clients
	Client Digital Certificates
	Configuring SSL

	Specifying Cipher Suites
	Syntax for Cipher Suites
	Supported Cipher Suites

	SSL Authentication Only
	Enabling FIPS Compliance
	Enabling the EMS Server
	Enabling EMS Clients

	Chapter 19 Fault Tolerance
	Fault Tolerance Overview
	Shared State
	Unshared State Failover
	Configuration Files

	Shared State Failover Process
	Detection
	Response
	Role Reversal
	Client Transfer
	Message Redelivery
	Heartbeat Parameters

	Unshared State Failover Process
	Dual State Failover

	Shared State
	Implementing Shared State
	Messages Stored in Shared State
	Storage Files
	Storage Parameters

	Configuring Fault-Tolerant Servers
	Shared State
	Unshared State

	Configuring Fault Tolerance in Central Administration
	Configuring Clients for Fault-Tolerant Connections
	Specifying More Than Two URLs
	Setting Reconnection Failure Parameters

	Configuring Clients for Unshared State Connections
	Include the Unshared State Library
	Create an Unshared State Connection Factory
	Specify Server URLs

	Chapter 20 Working With Routes
	Overview of Routing
	Route
	Basic Operation
	Global Destinations
	Unique Routing Path

	Zone
	Basic Operation
	Eliminating Redundant Paths with a One-Hop Zone
	Overlapping Zones

	Active and Passive Routes
	Configuring Routes and Zones
	Routes to Fault-Tolerant Servers
	Routing and SSL

	Routed Topic Messages
	Propagating Registered Interest
	Selectors for Routing Topic Messages

	Routed Queues
	Routing and Authorization

	Appendix A Monitor Messages
	Description of Monitor Topics
	Description of Topic Message Properties

	Appendix B Error and Status Messages
	Error and Status Messages

	Index

