
Copyright © 2023-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Flogo® Extension for Visual Studio
Code
User Guide
Version 1.1.1 | January 2025

TIBCO Flogo® Extension for Visual Studio Code User Guide

2 | Contents

Contents
Contents 2

App Development 6
Creating and Managing a Flogo App 6

Creating a Flogo App 6

Validating your App Flow 7

Editing an App 8

Renaming an App 8

Editing the Version of an App 9

Using Notes 10

Deleting an App 11

Creating Flows and Triggers 12
Flows 12

Triggers 45

Playing a Test Case Once 45

Synchronizing a Schema Between Trigger and Flow 48

Data Mappings 49
Data Mappings Interface 49

Mapping Data from the Data Mappings Interface 52

Scopes in Data Mappings 55

Data Types 57

Reserved Keywords to be Avoided in Schemas 58

Mapping Different Types of Data 60

Mapping Data by Using if/else Conditions 91

Using Functions 95

Using Expressions 96

Combining Schemas Using Keywords 98

Supported Operators 99

TIBCO Flogo® Extension for Visual Studio Code User Guide

3 | Contents

General Category Triggers, Activities, and Connections 100
Triggers 100

Activities 119

Connections 156

File Category Trigger and Activities 159
File Poller Trigger 159

Create File 161

Read File 162

List Files 163

Write File 165

Copy File 166

Rename File 168

Remove File 169

Archive Files 170

Unarchive Files 171

Developing APIs 172
Using an OpenAPI Specification 172

Using GraphQL Schema 176

Using App Properties and Schemas 177
App Properties 177

App Schemas 192

Using Connectors 197
Supported Flogo Connectors 197

Prerequisites for Connectors 198

Creating Connections 211

Editing Connections 212

Deleting Connections 212

Developing for Lambda 213
Creating a Connection with the AWS Connector 213

Creating a Flow with Receive Lambda Invocation Trigger 216

Receive Lambda Invocation 219

InvokeLambdaFunction 221

TIBCO Flogo® Extension for Visual Studio Code User Guide

4 | Contents

Using Extensions 223
Configuring Extensions 223

Deleting Extensions 225

Unit Testing 225
Creating and Running a Test Case 226

Creating and Running a Test Suite 234

Unit Testing for the CI/CD 235

App Configuration Management 237
Consul 238

Using Consul 238

Consul Connection Parameters 239

Setting the Consul Connection Parameters 241

AWS Systems Manager Parameter Store 243
Using the Parameter Store 243

Parameter Store Connection Parameters 244

Setting the Parameter Store Connection Parameters 246

Overriding an App Property at Runtime 249
Overriding Properties without Restarting or Redeploying the App 249

Overriding Values by Specifying New Values 250

Overriding Values by Specifying New Values in the API Directly 250

Running Apps Locally 252
Configuring the Runtime 252

Environment Variables 256

Building and Running your App Locally 261
Building the App Locally 261

Running the App Locally 262

Exporting App JSON from an Executable 264

Editing a Runtime 264

Deleting a Runtime 265

Generating an Application Docker Image Locally 265

TIBCO Flogo® Extension for Visual Studio Code User Guide

5 | Contents

Deployment and Configuration 267
Deploying Flogo Apps from Visual Studio Code 267

View Flogo App List in Runtime Explorer 267

Developing for Lambda 268
Creating a Connection with the AWS Connector 268

Creating a Flow with Receive Lambda Invocation Trigger 271

Receive Lambda Invocation 274

InvokeLambdaFunction 276

TIBCO Documentation and Support Services 278

Legal and Third-Party Notices 280

TIBCO Flogo® Extension for Visual Studio Code User Guide

6 | App Development

App Development
Flogo Extension for Visual Studio Code offers a wizard-driven approach to app
development. You can create apps using only a browser. It is powered by Project Flogo®, a
lightweight integration engine.

The following features from TIBCO Cloud Integration Flogo Web UI are not supported.

l Creating from trigger

l Creating an app from API spec or GraphQL Schema

For more information about Project Flogo®, see http://www.flogo.io/.

Creating and Managing a Flogo App
This section describes how to create and manage Flogo® apps.

Creating a Flogo App
Creating a Flogo app only creates a .flogo file. You can create a Flogo app from the Explorer
view using Ctrl+Shift+E.

Before you begin
Ensure you meet the following prerequisites:

l Create a workspace in Visual Studio Code.

l Enable the Auto-save option from the File Menu in Visual Studio Code.

Note: Use the path of a local directory instead of a shared location path.
Entering a shared location might not work.

Procedure

http://www.flogo.io/

TIBCO Flogo® Extension for Visual Studio Code User Guide

7 | App Development

1. Open the Explorer view (Ctrl+Shift+E) from the Activity Bar of Visual Studio Code.

2. Navigate to the workspace where you want to create a Flogo app and click the
dropdown icon next to that workspace folder.

3. Click Create a New Flogo App, using the Flogo icon available right next to the
workspace folder.

4. Add the name of your app in the top-most text bar that pops up.

Note: The app name must not contain any spaces. It must start with a
letter or underscore. The app name can contain letters, digits, periods,
dashes, and underscores. When deploying an app on TIBCO Control
Center, you can only use lowercase and alphanumeric characters. Hyphens
(-) can be added in the middle of the app name.

5. Press enter to create your Flogo app.

Result
The app is created and the App Details page is displayed for the new app. A flow with the
same name as the app is automatically created. You can now create one or more flows for
the app.

Note: If you copy a Flogo app that has a password property from one workspace
to another and then open that app in the Flogo editor view, the password type
values persist. As a workaround, remove the password type values manually
before sharing the app.

Validating your App Flow
After creating the flows in your app, you must validate them before you finish building the
app.
To validate your flow, click Validate on the flow details page. This validates each flow and
activity. Based on the validation output, the following error or warning icons are displayed:

l If an activity has an error or a warning, it displays the or icon on its lower-right
corner.

l If a flow has an error or a warning, it displays the or

TIBCO Flogo® Extension for Visual Studio Code User Guide

8 | App Development

icon next to the flow name.

Important Considerations
l When you open any flow for the first time or switch to a flow for the first time, the

validation is auto-triggered for that instance only. After that, for any change in the
canvas, you must do a manual validation check by clicking Validate.

l After a flow's validation is completed, the validation details are cached and remains
present until you move out of the flow to the Flow List page or you refresh the page.

l If you add or change triggers and activities in a flow or any change in the canvas, no
validation is triggered. To observe the latest validation, click Validate.

l If a subflow is appended, validation is triggered when the subflow is clicked.
However, validation is not triggered if you call a subflow already present on the
Flows tab.

For more information, see Viewing Errors and Warnings.

Editing an App
You can edit your app from the File Explorer tab of Visual Studio Code. Click any app to
edit flows, triggers, and so on.

Renaming an App
To rename an existing app:

Procedure
1. Click any app in the File Explorer tab of Visual Studio Code.

2. Click inside the app name field to edit the name.

TIBCO Flogo® Extension for Visual Studio Code User Guide

9 | App Development

Note: When deploying an app on TIBCO Control Center, you can only use
lowercase and alphanumeric characters. Hyphens (-) can be added in the
middle of the app name.

3. Click outside the app name field to save your changes.

Editing the Version of an App
When you create an app, the default version of the app is 1.0.0. You can edit the version of
an app.

The format of a valid app version is:

xxx.xxx.xxx

Note: Alphabets or special characters are not allowed in an app version.

Some examples of valid app versions are:

1.1.1
11.22.13
111.222.333

Procedure
1. Open the app details page.

Besides the name of the app, the version of the app is displayed as follows:

New_Flogo_App_<sequential_number> v: 1.0.0

TIBCO Flogo® Extension for Visual Studio Code User Guide

10 | App Development

For a newly created app, the version is 1.0.0.

2. To edit the version of the app, click the version number and edit the new version.

The new version of the app is reflected everywhere. For example, in runtime logs.

Using Notes
You can use Notes to keep a track of information about any flow, activity, or trigger. It
helps you in keeping updates and important references, especially when the flow is very
large and complex. In addition, this feature is available in the Error Handler tab.

Let us take an example of a Flogo app that invokes a REST service. You use the
ReceiveHTTPMessage Trigger, and InvokeRESTService, LogMessage and Return Activities
to create the app.

Here, you can add notes in the following manner:

l Flow Note: This note gives information about the flow. In the above case, the Flow
Note can be - "This app invokes a Rest service and generates a log message that
shows the status of the invoked Rest service".

l Trigger Note: This note is used to add information about the trigger. For the above
example, add the Trigger Note that says - "This trigger listens to incoming REST
requests".

l Activity Note: This note displays information about the activity. For the above
example, the note for InvokeRESTService Activity can be - "This Activity invokes an
external service".

To view all the notes, click the icon on the right-hand sidebar.

TIBCO Flogo® Extension for Visual Studio Code User Guide

11 | App Development

Note:
l Use the icon on the Activities and Triggers to add notes.

l Use the icon next to the Error Handler tab to add a Flow Note.

l In all cases, icon implies notes are not added and icon indicates
that notes are added.

l The Save option on any note is enabled only after some content is added
in it.

l If you are a read-only user, you cannot add, delete, or edit a note.

Deleting an App
You can delete an app by removing its .flogo file from the workspace or alternatively, you
can delete the app from the File Explorer.

To delete an app from the File Explorer:

Procedure
1. Right-click the app to be deleted from the File Explorer tab.

2. Select Delete from the options.

3. On the confirmation dialog, click Move to Recycle Bin.

Result
The selected app is deleted.

TIBCO Flogo® Extension for Visual Studio Code User Guide

12 | App Development

Creating Flows and Triggers
An app can have one or more flows and a flow could be attached to one or more triggers.
Similarly, a trigger can have multiple flows attached to it.

Flows

Each flow represents a specific business logic in an app. A flow contains one or more
activities. The flow execution is started by a trigger. A new flow can be created only from
the app details page. A flow can be attached to one or more triggers. You can attach the
flow to a trigger at the time of flow creation by selecting the Start with a trigger option or
selecting one of the options under Start with in the Add triggers and flows dialog.
Optionally, you can create a blank flow without a trigger by selecting Configure flow
inputs and outputs to begin with, then attach it to one or more triggers at any time after
the flow has been created.

Activities, Triggers and Panel

You can add a trigger or an activity in a flow from Activities or Triggers palettes available
in this panel.

Flows
This section contains information about creating and managing flows in your app.

Creating a Flow
Every app consists of at least one flow. Each flow can be attached to one or more triggers.
You have the option to first create a blank flow (a flow without a trigger) and then attach
the flow to one or more triggers. On the App Details page, click Create to create the first
flow in an app.

Before creating a flow that uses connectors, ensure that you create the required
connections. For more information, see created the necessary connections.

TIBCO Flogo® Extension for Visual Studio Code User Guide

13 | App Development

Warning: In an app with multiple triggers, the port number must be unique for
all the triggers that require a port number. For example, REST and/or GraphQL
triggers. Two triggers in the same app cannot run on the same port.

For flows that are attached to multiple triggers, you cannot disable a trigger. Specify a
particular trigger to run. Or, specify the order in which the triggers run. When a flow runs,
all triggers get initialized in the order that they appear within the flow.

The output of a trigger provides the input to the flow. Hence, it must be mapped to the
flow input. When creating a flow without a trigger, there must be a well-defined contract
within the flow that specifies the input to the flow and the output expected after the flow
completes execution. You define this contract in the Flow Inputs & Outputs dialog. The
Flow Inputs & Outputs contract works as a bridge between the flow and the trigger,
hence every trigger has to be configured to map its output to the Input parameters defined
in Flow Inputs & Outputs. You do this on the Map to Flow Inputs tab of the trigger.

Likewise, for triggers (such as the ReceiveHTTPMessage REST trigger) that send back a
reply to the caller, the trigger reply must be mapped to the flow outputs (parameters
configured on the Output tab of the Flow Inputs & Outputs tab). You do this mapping on
the Map from Flow Outputs tab of the trigger.

A Return Activity is not added by default. Depending on your requirements, you must add
and configure the Return Activity manually. For example, if any trigger needs to send a
response back to a server, its output must be mapped to the output of the Return Activity
in the flow.

The Map Outputs tab of the Return Activity displays the flow output schema that you
configured on the Output tab of the Flow Inputs & Outputs tab. The Map from Flow
Output tab of the trigger constitutes the trigger reply. This tab also displays the flow
output schema that you configured on the Output tab of the Flow Inputs & Outputs tab.

Perform the following steps when using a ReceiveHTTPMessage REST trigger:

l Add a Return Activity at the end of the flow.

l On the Map Outputs tab of the Return Activity, map the elements in the schema to
the data coming from the upstream activities.

l On the Map from Flow Output tab of the trigger, map the trigger reply elements to
the flow output elements.

TIBCO Flogo® Extension for Visual Studio Code User Guide

14 | App Development

Follow these steps to create a flow:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. Under the Flows page, click Create. This opens the Add triggers and flows dialog.

3. Enter a name for the flow in the Name text box. Flow names within an app must be
unique. An app cannot contain two flows with the same name.

4. Optionally, enter a brief description of what the flow does in the Description text
box. The Flow option is selected by default. To create a flow from a specification,
select the specification under Start with and refer to the appropriate section under
Building APIs.

5. Click Create. The Flow is created.

Note: When you click a flow name under Flows in the Flogo App panel, it
opens the flow. The currently open flow also reflects in the Flogo App
panel.

6. After the Flow has been created, you can start with either of the following actions:

l Start with a trigger - If you know the trigger with which you want to activate
the flow, select this option. Select a trigger from the Triggers palette. For more
details on the type of trigger that you want to create, see the relevant section
in the Starting with a Trigger topic. If there are existing flows attached to
triggers, you are prompted to either use an existing trigger or use a new trigger
that has not been used in an existing flow within the app.

l Configure flow inputs and outputs - Select this option if you know the
algorithm for the flow, but do not yet know the circumstances that cause the
flow to run. It creates a blank flow that is not attached to any trigger. Flow
inputs and outputs create a contract between the trigger and the flow. When
you create a trigger, you must map the output of the trigger to the input of the
flow. This contract serves as a bridge between the trigger and the flow. You
have the option to attach your flow to one or more triggers at any later time
after the flow has been created.

TIBCO Flogo® Extension for Visual Studio Code User Guide

15 | App Development

If you select Start with a trigger, the flow is attached to the trigger you selected. If
you select Configure flow inputs and outputs, a blank flow without a trigger gets
created.

Note: StartActivity is a special activity that is always added to the newly
created flows.

Creating a Flow Starting with a Trigger
When creating a flow, if you know the circumstances in which you want the flow to
activate, select the Start with a trigger option and select an available trigger that
activates the flow.

Warning: If an app has multiple triggers that require a port to be specified,
make sure that the port number is unique for each trigger. For example, REST or
GraphQL trigger. Two triggers in the same app cannot run on the same port.

If you are unsure of the circumstances under which the flow should be activated, or if you
want the flow to be activated under more than one situation, use the Configure flow
inputs and outputs option and attach the flow to one or more triggers later as needed.
For more information, see Creating a Flow without a Trigger.

Creating a Flow Attached to a REST Trigger
When creating a flow with a REST (ReceiveHTTPMessage) trigger, you can enter the schema
in the Configure trigger dialog during trigger creation.

TIBCO Flogo® Extension for Visual Studio Code User Guide

16 | App Development

Note: An app cannot have two REST flows implementing the same operation on
the same resource. For example, you cannot create two REST flows
implementing a GET operation with /data as the resource path. So, the
combination of the operation and its resource path must be unique within an
app.

Note: If you want to have two flows using the same operation on the same
resource, while creating the flows on the Settings tab of the
ReceiveHTTPMessage trigger, ensure that you configure different ports for each
flow.

You can create a REST flow by entering a JSON schema.

Warning: If you modify the Reply Settings tab of a ReceiveHTTPMessage
trigger, the corresponding ConfigureHTTPResponse activities within that flow
do not change appropriately. This happens when you remove fields from the
Reply Settings tab. Redo the mappings for the ConfigureHTTPResponse
Activity.

To create a REST flow by entering the schema:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. Click Create to create an empty flow.

3. Edit the name for the flow. Flow names within an app must be unique.

4. Optionally, enter a brief description of the flow in the Add description text box.

5. Now, click the Triggers palette. The triggers palette opens with all the available
triggers listed.

6. Drag Receive HTTP Message to the Triggers area on the left. The trigger
configuration dialog opens.

7. Select the REST operation under the Method that you want to implement by clicking
it.

TIBCO Flogo® Extension for Visual Studio Code User Guide

17 | App Development

Note: Two REST triggers cannot have an identical port, path, and method
combination. Each REST trigger needs to differ from the other for the same
flow with either a unique port, path, or operation.

8. Enter a resource path in the Resource Path text box.

9. Enter the JSON schema or JSON sample data for the operation in the Response
Schema text box. This is the schema for both input and output.

10. Click Continue.

11. Select one of the following options:

If you select Copy Schema, the schema that you entered in step 10 automatically
gets copied or displayed in a tree format to the following locations when the trigger
gets added:

l Trigger output, on the Map to Flow Inputs tab of the trigger.

l Flow input, on the Input Settings tab of the Flow Inputs & Outputs tab.

l Trigger reply (if the trigger has a reply), in Reply Settings of the trigger.

For details on configuration parameters, see the REST Trigger section.

If you select Just add the trigger, a REST trigger is added to the flow without any
configuration. You can configure this REST trigger later by clicking the trigger from
the app details page. Any changes made to the trigger must be saved by clicking
Save.

The flow page opens.

TIBCO Flogo® Extension for Visual Studio Code User Guide

18 | App Development

12. Map the trigger output to the flow input.

a. Open the trigger configuration dialog by clicking the trigger.

b. Open the Map to Flow Inputs tab.

c. Map the elements under Flow inputs to their corresponding elements under
Available data one at a time.

13. Map the flow output to the trigger reply as follows:

a. In the trigger configuration dialog, click the Map from Flow Outputs tab.

b. Map the elements under Trigger reply to their corresponding elements under
Available data.

c. Close the dialog.

14. Click Save.

Creating a Flow Attached to Other Triggers
This section applies to triggers that are not REST, or GraphQL triggers.

To create a flow with such a trigger:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. Click Create to create an empty flow.

3. Edit the name for the flow. Flow names within an app must be unique.

4. Optionally, enter a brief description of the flow in the Add description text box.

5. From the Triggers palette, select the desired trigger and drag it to the trigger's area.

6. Click the trigger to display its properties.

7. Configure the properties for the trigger.

Creating a Blank Flow (Flow without a Trigger)
You can create a flow in Flogo app without attaching it to a trigger. This method of
creating a blank flow is useful when the logic for the flow is available, but you do not know
the condition under which the flow should activate. You can start by creating a flow with
the logic and attach it to one or more triggers later.

TIBCO Flogo® Extension for Visual Studio Code User Guide

19 | App Development

Follow these steps to create a flow without a trigger:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. Click Create to create an empty flow.

3. Edit the name for the flow. Flow names within an app must be unique.

4. Optionally, enter a brief description of the flow in the Add description text box.

5. Click Flow Inputs & Outputs to configure the inputs and/or outputs to the flow on
the Input or Output tab respectively. For more information, see Flow Inputs &
Outputs Tab.

Mapping trigger outputs to flow inputs and flow outputs to trigger reply creates a
contract between the trigger and the flow. Hence, when you attach the flow to a
trigger, you must map the output of the trigger to the flow input. You have the
option to attach your flow to one or more triggers later after the flow has been
created. For more details, see Attaching a Flow to One or More Triggers.

6. Enter a JSON schema containing the input fields to the flow on the Input Settings
tab and click Save.

7. Enter the JSON schema containing the flow output fields on the Output Settings tab
and click Save.

8. When you are ready to add a trigger, refer to Adding Triggers to a Flow to add one or
more triggers to the flow. For triggers that need to send back a response to the
server, you must map the flow output to the reply of the trigger.

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are
particularly useful when you create blank flows that are not attached to any triggers.

Note: The schemas for input and output to a flow can be entered or modified
only on this Flow Inputs & Outputs tab. You cannot coerce the flow input or
output from outside this accordion tab.

Both the tabs (Input tab and Output tab) have two views:

l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to

TIBCO Flogo® Extension for Visual Studio Code User Guide

20 | App Development

save your changes or Discard to revert the changes. If you have entered JSON data,
the data is converted to a JSON schema automatically when you click Save.

l List view:

This view allows you to view the data that you entered in the JSON schema view in a
list format. In this view, you can:

o Enter your data directly by adding parameters one at a time.

o Mark parameters as required by selecting its checkbox.

o When creating a parameter, if you select its data type like an array or an object,
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide
a schema for the object or array.

o Click Save to save the changes or Discard to discard your changes.

Attaching a Flow to One or More Triggers
If you have created a blank flow without attaching it to a trigger, you can now attach it to
an existing trigger that is being used by another flow in the same app.

A flow that was created without being attached to a trigger has its input and output
parameters defined on the Flow Inputs & Outputs tab. You can access it by clicking the
blue bar with the same label. The output from the trigger is the input to the flow. So, you
must map the input parameters defined on the Input tab of this dialog to the trigger
output parameters. This mapping must be done in the trigger. The mapping creates a
contract between the trigger and the flow and is mandatory for the flow and the trigger to
interact with each other.

You can use one of these methods to attach a flow to a trigger:

1. From the flow details page:

a. Open the flow details page by clicking the flow name on the app details page.

b. From the Triggers palette, drag a desired trigger to the trigger's area.

For REST, you are prompted to enter additional handler setting details.

Click the trigger icon to configure the trigger as needed. For REST triggers, be sure to map
the trigger outputs to flow inputs and the flow outputs to the trigger reply.

TIBCO Flogo® Extension for Visual Studio Code User Guide

21 | App Development

Catching Errors
You can configure a flow to catch errors at two levels:

l At the flow level, by configuring the Error Handler in the flow. For more information
on configuring the error handler in the flow, see Creating an Error Handler Flow.

l At the Activity level, by creating an error branch from an Activity. For details on how
to create an error branch from an Activity, see Types of Branch Conditions.

Creating an Error Handler Flow
Use Error Handler to catch exceptions that occur while running a flow. The error handler
is designed to catch exceptions in the activities within a flow. If there are multiple flows in
an app, the error handler must be configured for each flow separately. Branching is
supported for error handler flows, similar to the other flows.

To configure the error handler:

1. Click an existing activity in a flow.

2. Click the Error handler tab.

The error handler opens with the error Activity displayed.

Clicking the error activity exposes the fields that you can configure for an error that
is generated by the activity.

The Map to Flow Inputs tab of the error Activity has three elements; Activity,
message, and data. The activity element is used to output the name of the activity

TIBCO Flogo® Extension for Visual Studio Code User Guide

22 | App Development

that is generating the error, the message element is used to output the error
message string, and the data element can be configured to output any data related
to the error. The message element on the Input tab of any activity in the Error
Handler flow can be configured to output one or all of these three elements.

3. From the Activities palette, add an activity for which you want to configure the error
message. Add a branch to connect the error with the activity that you have added.

The Input tab of that Activity displays a message in its input schema. This is a
required element that you must map.

Note: A Return Activity is not added by default. Depending on your
requirements, you must add the Return Activity manually.

4. Click the message in the input schema to open its mapper.

5. Expand $error to expose the Activity, message, and data elements that you can
configure for the error message.

To map the message element under Activity inputs, you can either manually type in
the error string enclosed in double-quotes or use the concat function under string in
the mapper to output the Activity name along with a message. For more information,
see Using Functions.

6. Continue configuring the error message for each activity in the flow.

If there is an error for the activity in any flow of the app, it shows as output in the log
for the app when the app is pushed to the cloud.

TIBCO Flogo® Extension for Visual Studio Code User Guide

23 | App Development

Here is an example of how an error handler flow looks after it is configured:

Viewing Errors and Warnings
Flogo uses distinct icons to display errors and warnings within an app.

The following icons are used:

- error icon. Resolve the errors before building the app. Errors should not be ignored.

- warning icon. Warnings are generated to alert you of something that might need to
change in the entity where the warning icon is displayed. You have the option to ignore the
warning and move on.

- missing extension icon. Check and correct missing extensions before building an app.
Missing extensions must be fixed before proceeding.

Here is the hierarchy of errors and warnings reported in Flogo:

App level reporting - When you open an app, the app details page displays the list of
flows. If there are errors or warnings in a flow, appropriate icons are displayed next to the
flow name along with a number, where the number indicates an aggregate number of
errors or warnings in the flow. If there are no errors or warnings, these icons are not
displayed.

Activity and Trigger level reporting - when you click a flow name, the flow details page
opens displaying the implementation of the flow. This page displays errors if any at the

TIBCO Flogo® Extension for Visual Studio Code User Guide

24 | App Development

activity level. For instance, a LogMessage activity may display an error symbol within the
activity configuration. Resolve the error before proceeding.

Activity and Trigger configuration tab level reporting - when you click an activity or a
trigger in the flow, its configuration page opens, displaying the various tabs. Click a tab to
see the errors or warnings in the configuration within that tab.

Using Subflows
Flogo provides the ability to call any flow from another flow in the same app. The flow
being called becomes the subflow of the caller flow. This helps in separating the common
app logic by extracting reusable components in the app and creating standalone flows for
them within the app. Any flow in the app can become a subflow for another flow within the
same app. Also, there are no restrictions on how many subflows a flow can have or how
many times the same subflow can be called or iterated in another flow. Hence, subflows
are useful when you want to iterate a piece of app logic more than once or have the same
piece of logic repeated in multiple locations within the app.

Here are a few points to keep in mind when creating and using subflows:

l The subflow and its calling flow must both reside within the same app. You cannot
call a flow from another app as a subflow in your app.

l You can now open a subflow from the main flow. In addition, you can navigate to the

TIBCO Flogo® Extension for Visual Studio Code User Guide

25 | App Development

main flow from an open subflow.

l Since you can call any flow from any other flow within the app, you must be careful
not to create cyclical dependency where a flow calls a subflow and the subflow, in
turn, calls its calling flow. This results in an infinite calling cycle and the "Cyclic
dependency detected in the subflow" error is displayed.

l You can configure the iteration details on the Loop tab of the Start a SubFlow
Activity. The Start a SubFlow Activity iterates multiple times, resulting in the subflow
being called multiple times.

Important: You can delete any flow in an app even though the flow might
be in use as a subflow within another flow. You do not receive any error
messages at the time of deletion, but when you run the app, its execution
fails with an error.

Creating Subflows
You can create a subflow exactly like you would create any other blank flow.

To create a subflow:

1. Identify the piece of logic in your app that you want to reuse elsewhere in the app or
iterate multiple times.

2. Create a flow without a trigger for that logic. For more information on how to create
such a flow, see Creating a flow without a trigger.

3. To use this flow as a subflow within another flow, you must add a Start a SubFlow
Activity at the location in the calling flow from where you want to call the subflow.
For example, if you want to call a subflow after the third Activity in your calling flow,
insert a Start a SubFlow Activity as the fourth Activity in the calling flow. To do so:

a. Open calling flow.

b. On the flow details page, click the Activities palette.

c. Under the Default category, select the Start a SubFlow activity and drag it to
the activities area.

d. Add the branches to connect the SubFlow activity with the activity that you
want to call a subflow from and to the activity where the subflow must end.
Also set the branch conditions for each connection line wherever required.

TIBCO Flogo® Extension for Visual Studio Code User Guide

26 | App Development

e. Click the StartaSubFlow activity to open the configuration dialog. To call the
required subflow, select the subflow from the Select flow dropdown in the
Settings tab and save the changes. If you want to see the flow in detail, use
the Open Subflow option in the Settings tab or click the icon on the
StartaSubflow Activity. This appends the active flow in a breadcrumb trail and
highlights it. A breadcrumb trail starts with the app name and includes the
flows and subflows.

Note:

l If a subflow is already selected on the StartaSubflow activity,
then you can directly open it in a breadcrumb trail by clicking
the icon on the activity tile.

l If icon is present on the StartaSubflow activity, it means
that a subflow is selected in the StartaSubflow Activity.

l Several flows can open in a breadcrumb trail. If you click one
flow, the child hierarchy disappears and only the parent
hierarchy remains.

The schemas that you had configured in the Input Settings and Output
Settings of the Flow Inputs&Outputs tab in the selected subflow appear on
the Input and Output tabs of the StartaSubFlow Activity.

TIBCO Flogo® Extension for Visual Studio Code User Guide

27 | App Development

You can now configure the input and output for the subflow in the
StartaSubFlow Activity. If you add additional input and/or output parameters
on the Flow Inputs & Outputs tab of your subflow, they become available to
configure from the Input and/or Output tabs of the StartaSubFlow Activity.
The output from the StartaSubFlow Activity is available for use as input in all
activities that appear after it.

At app runtime, the StartaSubFlow Activity in the calling flow calls the
selected subflow.

f. If you want your subflow to iterate multiple times, configure the iteration
details on the Loop tab of the StartaSubFlow activity. For more information on
how to configure the Loop tab, see Using the Loop.

g. If you want to execute certain events in the main flow without waiting for the
subflow to complete its execution, you can do this using the Detached
Invocation toggle on the Settings tab of the StartaSubFlow activity. When you
set this Detached Invocation toggle to true, the Output option is not available
in the StartaSubFlow activity window, and without waiting for the subflow
output, the main flow is executed.

Creating a Flow Execution Branch
Activities in a flow can have one or more branches. If you specify a condition for a branch,
the branch runs only when the condition is met. You also have the option to create an
error branch from an activity. The purpose of the error branch is to catch any errors that
might occur while running an activity. Branching is also supported for Error Handler flows,
to catch all errors at the flow level.

Note:
l You cannot create a branch from a trigger or a Return Activity.

l All activities that come after a branch are run irrespective of how the
branch condition evaluates.

A Return activity ends the flow execution. Regardless of where the Return activity is
placed in the flow, the flow execution exits the process as soon as it encounters a Return
activity anywhere in the flow.

TIBCO Flogo® Extension for Visual Studio Code User Guide

28 | App Development

Note: A Return Activity is not added by default. Depending on your
requirements, you must add the Return Activity manually. For example, if any
trigger needs to send a response back to a server, its output must be mapped to
the output of the Return Activity in the flow.

To create a flow execution branch:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. For a start branch, drag a connection line from the blue arrow on the StartActivity
icon to the desired activity that you want to start the execution with.

3. A branch gets created.

Each branch has a label associated with it. The label has the following format:

When branching to a specific activity:

<Name of activity in main flow>to<Name of activity in branch>
For example, LogMessagetoReturn.

TIBCO Flogo® Extension for Visual Studio Code User Guide

29 | App Development

4. You can add a branch between the two activities. Hover over the activity that you
want to start with and drag a connection line to the activity you want to connect to.

5. Clicking the branch opens the Branch Mapping Settings dialog.

6. Select either of the branch conditions: Success, Success with condition, Success
with no matching condition, or Error. For more information about the conditions,
see Types of Branch Conditions.

7. Click Save.

8. Add a condition to a branch as required. For more information, see Setting Branch
Conditions.

9. If you want the flow execution to end after this branch is run successfully, add and

TIBCO Flogo® Extension for Visual Studio Code User Guide

30 | App Development

configure the Return activity at the end of the branch. If you do not want the flow
execution to end, do not add a Return activity at the end of the branch.

Joining or merging branches
You can now connect multiple activities to a single activity. In this case, an activity is
executed only after all connected activities are either executed or skipped due to
conditional branch.

Types of Branch Conditions
TIBCO Flogo® Enterprise supports multiple types of branch conditions.

Select one of the following conditions during branch creation:

l Success

A success branch is run whenever an activity is run successfully. If there is an error in
the activity completion, this branch does not run. The branch has no conditions set
in it.

l Success with condition

Select this condition if you want a branch to run only when a particular condition is
met. If you select this condition and do not provide the condition, the branch never
runs.

You can form an expression using anything available under upstream activity outputs
and available functions, which should evaluate to a boolean result value.

TIBCO Flogo® Extension for Visual Studio Code User Guide

31 | App Development

l Success with no matching condition

This branch condition is displayed only when you already have an existing Success
with condition branch.

l Error

A branch with this condition runs if there are errors in completion of the activity. An
activity can have only one Error branch.

Details of the error, such as the Activity and the type of the error message, are
returned in $error. For example:

The Error branch flow differs from the error handler flow. In the error branch, the
error branch is designed to catch exceptions at the activity level from which the error
branch originates. Whereas the error handler flow is designed to catch exceptions
that occur in any activity within the flow. So, if you handle the errors by creating an
error branch at the activity level, the flow execution control never transfers to the
error handler flow.

Order in which Branches are Run
When an Activity has multiple branches, regardless of the number of branches or the order
in which the branches appear in the UI, the branch execution follows a pre-defined order.

Note: The flow execution ends if it encounters a Return activity at any branch.
In such situations, the activities that are placed after the return activity are not
run.

TIBCO Flogo® Extension for Visual Studio Code User Guide

32 | App Development

The order in which the branches are run is as follows.

1. Success with condition branch

This branch runs only if its branch condition is met.

2. Success with no matching condition branch

This branch condition is displayed only when there is at least one existing Success
with condition branch for the Activity. The Success with no matching condition
branch is typically used when you want a specific outcome if none of the Success
with condition branches meet their condition.

l This branch runs only if none of the Success with condition branches run. If
the Success with condition branch runs and it does not have a Return Activity
at the end of the branch, the flow execution control is passed to the success
branch. If the Success with condition has a Return activity, the flow execution
is ended after the Success with condition branch runs.

l If you delete all Success with condition branches without deleting the Success
with no matching condition branch, you receive a warning informing you that
the Success with no matching condition branch is orphaned.

3. Success branch

When an Activity has both Success and Success with condition branches, always the
Success with condition branch runs first and if there are multiple success branches,
the order of execution depends on the reverse order in which each branch was
created, that is, the success branch that was created at last is executed first.

4. The Error branch is run as soon as the flow execution encounters an error.

Setting Branch Conditions
You can set conditions on a branch such that only if the condition is met the branch runs.

To set conditions on a branch:

1. Click the branch that you want to set the conditions for. The Branch Mapping
Settings dialog opens.

TIBCO Flogo® Extension for Visual Studio Code User Guide

33 | App Development

2. Select a branch condition: Success, Success with condition, or Error. If you already
have a Success with condition branch present, you see Success with no matching
condition.

For more information on the three conditions, see Types of Branch Conditions.

3. Click Save.

4. If you select Success with condition, the mapper opens for you to set the condition.
Click condition.

The mapper is exposed to the right of the dialog. The functions that you can use to
form the condition are shown under Functions.

5. Enter an expression with the condition or click a field from the output of a preceding
Activity to use it. The output from preceding activities appears under the left
Upstream Output in a tree format.

Key Considerations When Setting Branch Conditions

l The condition must resolve to a boolean type. The following image shows how the
branches appear based on the branch condition:

TIBCO Flogo® Extension for Visual Studio Code User Guide

34 | App Development

l When you hover over the branch lines or the branch labels, they appear in different
colors according to the condition that is set.

o Green - Success

o Orange - Success with condition

o Purple - Success with no matching condition

o Red - Error.

These lines indicate the exact start and end points of the connection between any
two activities. This is helpful in large and complex flows where the exact flow seems
unclear and jumbled. The branch labels indicate the names of the activities that are
connected. You can rename the labels as per requirement. For the success with
condition label, when it is empty or when there is a wrong condition, the icon

appears on it.

TIBCO Flogo® Extension for Visual Studio Code User Guide

35 | App Development

Deleting a Branch
You can delete a branch at any time after creating it.

To delete a branch:

1. Hover over the branch that you want to delete. A branch label appears.

TIBCO Flogo® Extension for Visual Studio Code User Guide

36 | App Development

2. On the label, click the icon that appears.

3. On the confirmation dialog, click Delete. The selected flow is deleted.

Editing a Flow
You can edit the flow name or its description after creating the flow. You can also add
more activities. Rearrange existing activities by dragging them to the desired location or
delete activities from the flow.

To edit a flow:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

2. Click the flow name that opens the flow page. Revalidate the app after making the
required changes.

To edit the flow name, click anywhere in the flow name and edit the name. To add
an activity between two existing activities, you can make a space by dragging the
activities to anywhere you want in the activities area.

Deleting a Flow
You can delete a flow from the app details page.

To delete a flow:

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page.

TIBCO Flogo® Extension for Visual Studio Code User Guide

37 | App Development

2. Hover over to the extreme right of the flow name until the Delete flow icon

displays.

3. Click the Delete flow icon.

4. On the confirmation dialog, click Delete. The selected flow is deleted.

Note: If multiple flows are attached to a trigger only the specific flow gets
deleted. If there is only one flow attached to the trigger, the trigger also gets
deleted.

Adding an Activity
After a flow is created, you must add activities to the flow.

1. Click the app in the File Explorer tab of Visual Studio Code to open app details page,
then click the flow name to open the flow details page.

2. Click the Activities palette available on the right side. The categories of the activities
are displayed.

3. Click the category from which you want to add an activity. For example, to add a
general activity such as Log Message, click the General category.

4. Drag the required activity to the activities area.

5. To change the order in which the activities appear in the flow, you can drag the
activity anywhere in the activities area.

6. Click the activity to open its configuration dialog and configure it.

Tip: If you want to add an activity in between two activities, you can directly
drop the activity on the branch label in between the two activities. You need not
delete the incoming and outgoing connections and reconnect them. Adding an
activity between two activities is only possible when an activity is dragged and
dropped from the Activities panel, not for the activities already present on the
flow canvas.

TIBCO Flogo® Extension for Visual Studio Code User Guide

38 | App Development

Searching for a Category or Activity
You can search an activity or category by entering the activity or category name in the
Search box of the Activity palette.

You can enter either the full or partial name (a string of characters appearing in the name)
of the activity or category in the Search box.

l All categories whose names either wholly match the search string or contain the
partial search string in their name get displayed.

l Only those activities in the category whose names contain the search string are
displayed in the search results. The activities in the category whose names do not
match or contain the search string are not displayed in the search results.

l For any activity whose name wholly or partially matches the search string, the
category that contains that activity is displayed. For example, if you enter "delete" in
the search box, since there are activities whose name contains the string "delete" in
Marketo, Salesforce, Zoho-CRM, all these categories are displayed, even though the
category names themselves do not contain the string "delete".

Configuring an Activity
After adding an activity, you must configure it with the required input data. Also configure
the output schema for activities that generate an output.

There are three ways to configure data for an activity:

l Configuring static data where you manually type the data in the mapper for the field.
For example, type in a string that you want to output. Strings must be enclosed in
double quotes. Numbers must be typed in without quotes.

l Mapping an Activity input to the output from one of the activities preceding it in the
flow, provided that the previous activities have some output.

l Using functions. For example, the concat function to concatenate two strings.

After configuring or modifying the configurations in any activity, you must explicitly Save
or Discard the changes.

To configure an activity:

1. On the flow details page, click an activity. The configuration box opens under the

TIBCO Flogo® Extension for Visual Studio Code User Guide

39 | App Development

activity.

2. Click each tab in the configuration box under the activity name and either manually
enter the required value, use a function, or on the Input tab, map the output from
the trigger or a preceding activity using the mapper. For more information on details
of mapping, see Mapper.

If one or more activities are not configured properly in a flow, the error or warning
icon is displayed in its upper-right corner. Click the activity whose tab contains the
error or warning. For more information, see Errors and Warnings.

Duplicating an Activity
You can duplicate an activity within the same flow. The activity along with the existing
configuration is duplicated into a new activity. The duplicate of the original activity is
created with a default name beginning with CopyOf. You can rename the activity by clicking
the activity name. Duplicating an activity saves you time and effort in situations when you
want to create an activity with similar or the same configurations as an existing activity in
the flow. After you duplicate the activity, you can change the configuration, move it around
in the flow by dragging it to the required location or delete it from the flow.

Note: A trigger within a flow cannot be duplicated.

TIBCO Flogo® Extension for Visual Studio Code User Guide

40 | App Development

To duplicate an activity:

1. From the Apps page, click the app name and then click the flow name to open the
flow details page.

2. Hover over the activity that you want to copy and click .

For example, in the following screenshot, the Return activity is duplicated and added
to the flow. The duplicate activity is CopyofReturn.

3. Configure the duplicated activity as required.

Using the Loop Feature in an Activity
When creating a flow, you may want to iterate a certain piece of logic multiple times. For
example, you want to send an email about an output of a certain activity activity1 in your
flow to multiple recipients. To do so, you can add a SendMail activity following activity1 in
your flow. Then configuring the SendMail activity to iterate multiple times when activity1
outputs the desired result. Each iteration of the SendMail activity is used to send an email
to one recipient.

Keep the following in mind when using the Loop feature:

l Iteration is supported for an activity only. You configure the iteration details on the
Loop tab of the activity.

l The Loop tab is unavailable for certain activities that do not require iteration. For

TIBCO Flogo® Extension for Visual Studio Code User Guide

41 | App Development

example, the Return activity. Its purpose is to exit the flow execution and return data
to the trigger.

l You cannot iterate through a trigger.

To configure multiple iterations of an Activity:

1. Click the Activity in the flow to expose its configuration tabs.

2. Click the Loop tab.

3. Select a type of iteration from the Type menu.

The default type is None, which means the Activity does not iterate.

Iterate

This type allows you to enter a number that represents the number of times you
would like the Activity to iterate without considering any condition for iterating.

Click iterator to open the mapper to its right. You can either enter a number
(integer) to specify the number of times the activity must iterate or you can set an
expression for the loop by either entering the expression manually or mapping the
output from the preceding activities or triggers. You can also use the available
functions along with the output from previous activities and/or manually entered
values to form the loop expression. The loop expression determines the number of
times the activity iterates.

Warning: The loop expression must either return a number or an array.
The array can be of any data type. If your loop expression returns a
number, for example 3, your activity iterates three times. If your loop
expression returns an array, the activity iterates as many times as the
length of the array. You can hover over the expression after entering the
expression to make sure that the expression is valid. If the expression is
not valid, a validation error is displayed.

If you select this type, the Input tab of the Activity displays the $iteration scope in the
output area of the mapper. $iteration contains three properties, key, index, and value.
index is used to hold the index of the current iteration. The value holds the value
that exists at the index location of the current iteration if the loop expression
evaluates to an array. If the loop expression evaluates an array of objects, value also
displays the schema of the object. If the loop expression evaluates to a number, the
value contains the same integer as the index for each iteration. To examine the

TIBCO Flogo® Extension for Visual Studio Code User Guide

42 | App Development

results of each iteration of the Activity, you can map the index and value to the
message input property in the LogMessage Activity and print them. The key is used
to hold the element name when configuring a condition if the value evaluates to an
object. However, you can map only to the output of the last iteration if you did not
set the Accumulate Output checkbox to Yes. For more information, see
Accumulating the Activity Output for All Iterations.

Repeat while true

For more information, see sample for an example of how to use this feature.

Select this type if you want to set up a condition for the iteration. This acts like the
do-while loop where the first iteration is run without checking the condition and the
subsequent iterations exit the loop or continue after checking the condition. You set
the condition under which you want the activity to iterate by setting the condition
element. The condition gets evaluated before the next iteration of the activity. The
activity iterates only if the condition evaluates to true. It stops iterating once the
condition evaluates to false. Click condition, and manually enter an expression for
the condition. For example, $iteration[index] < 5.

Keep in mind that the index for the Repeat while true iteration begins at zero and
iterates n+1 times. If you enter 4 as the iterator value, it runs as the following
iterations: 0,1,2,3,4.

By default, the results of only the final iteration are saved and available. All previous
iteration results are ignored. If you would like the results of all iterations to be stored
and available, set Accumulate to Yes.

You have the option to set a time interval (in ms) between each iteration, which can
help you manage the throughput of your machine. To spread the iterations out, set
the Delay element. The default delay time is 0 ms, which results in no delay.

Result
After you enter the loop expression, the loop icon appears on the top-right corner of the
activity.

Accumulating the Activity Output for All Iterations
When using the Loop tab to iterate over an Activity, you have the option to specify if you
want the Loop to output the cumulative data from all iterations. You can do so by setting
the Accumulate checkbox to Yes.

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts/loops.sample

TIBCO Flogo® Extension for Visual Studio Code User Guide

43 | App Development

When the Accumulate checkbox is set to Yes, the activity accumulates the data from each
iteration and outputs that collective data as an array of objects. Here, each object contains
the output from the corresponding iteration. The accumulated results are displayed as an
array in the downstream activities in the mapper and are available for mapping.

When mapping to an element within an object in the output array of the activity, you must
provide the index of the element to which you want to map. For instance, when you click a
property within the object under responseBody, the expression displayed in the mapper is
$activity [<activity-name>] [<<index>>].responseBody.<property-name>. Replace <<index>> with the
actual index of the object to whose property that you want to map.

When the Accumulate checkbox is not selected, the output of the Loop displays an object
that contains only the data from the last iteration. Data from all previous iterations is
ignored. When mapping to an element in the output object of the activity, when you click a
property within the object under responseBody, the expression displayed in the mapper is
$activity [<activity-name>].responseBody.<property-name>.

The Output tab of the activity changes based on your selection of the Accumulate
checkbox. The parent element (the name of the activity and the data type of the iteration
output) is displayed regardless of your selection. If you set the Accumulate checkbox to
Yes, the data type of the parent element is an array of objects. If you did not select the
checkbox, the data type of the parent element is an object. The Output tab contents are
also available in the mapper allowing for the downstream activities to map to them.

Accessing the Activity Outputs in Repeat While True Loop
This feature is useful when an activity needs to use the loop feature to do batch processing
or fetch multiple records by running the activity multiple times. With each iteration of the
activity, the output is available for mapping to the activity input.

This feature is available in all activities that generate an output (have an Output tab).

To use this feature:

1. On the Loop tab, set the Type to Repeat while true.

2. Set the Access output in input mappings to Yes.

This makes the output of the activity iteration available in the Upstream Output for
mapping. Now you can map your output as a next input parameter.

3. Enter a condition in its text box. The activity evaluates this condition before each
run. If the condition evaluates a true value, the activity runs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

44 | App Development

Note: The output is only available in subsequent iterations after the first
iteration. Since the activity output is not available for the first iteration, your
condition must perform a check to see if it is the first iteration of the activity.

For example, use $iteration[index]> 0 && isdefined($activity[SFQuery].output.locator) to
begin your condition. The $iteration[index]> 0 checks to make sure that it is not the
first run of the activity. The isdefined($activity[SFQuery].output.locator) function checks
whether the output field exists.

Using the Retry On Error Feature in an Activity
Using the Retry on Error tab, you can set the number of times the flow tries to run the
activity on encountering an error that can be fixed on retrial. The errors such as waiting for
a server to start, intermittent connection failures, or connection timeout can be fixed on
retrial.

You can set the count and the interval in one of the following ways:

l Manually type the value in the mapper

l Map the value from the previous Activity

l Select a function from the list of functions

l Map app property to override the values

Field Description

Count The number of times the flow should attempt to run the activity. This value
must be an integer.

Interval

(in
millisecond)

The time to wait in between each attempt to run the activity. This value
must be an integer.

Note: The Count and Interval fields are mandatory. By default, the values are
set to 0.

TIBCO Flogo® Extension for Visual Studio Code User Guide

45 | App Development

Deleting an Activity
You can delete an activity in a flow from the flow details page.

To delete an activity:

1. On the Apps page, click the app name then click the flow name to open the flow details
page.

2. Hover over the activity that you want to delete and click the icon.

Triggers
Triggers are used to activate flows. This section contains information on creating and
managing triggers in your app.

Deleting a Trigger
You can delete a trigger from the app details page by hovering over the trigger and clicking
Delete.

Playing a Test Case Once
After you design a flow, you can test it by playing it once.

When designing a flow, runtime errors can go undetected until you build the app to
execute the flow. It can be cumbersome to test flows that start with a trigger as the
triggers activate based on an external event. So, before you can test the flow, you must
configure the external app to send a message to the trigger to activate it and consequently
execute the flow. The play a test case once feature eliminates the need to activate the
trigger to execute the flow.

You provide the input to the flow in playing a test case once. It executes the flow on
demand without using a trigger. Each activity executes independently and displays its logs.
It can help detect errors in the flow upfront without actually building the app. You can use
several modes, such as Mock Output and Skip Execution. For more information on
modes, see Creating and Running a Test Case.

TIBCO Flogo® Extension for Visual Studio Code User Guide

46 | App Development

After creating a test case, it is ready to run in a local runtime environment. You can play a
test case once to test against a particular set of flow inputs.

Procedure
1. Create a test case. For more information, see Creating and Running a Test Case.

2. To run a test case, click the icon on the .flogotest file.

3. View the execution logs of the flow in the terminal. The execution path is highlighted
in blue and other activities appear grayed out. You see a new or updated test results
file with additional input, output, or error data captured during activity execution.

4. Click the executed tasks to see the inputs, outputs, or errors of the activity in read-
only mode. If an activity is executed and does not have any configuration or output,
you cannot click it after execution.

TIBCO Flogo® Extension for Visual Studio Code User Guide

47 | App Development

When a test case is running, the Main Flow tab, the Error Handler tab Stop Testcase, Go
Back, and Zoom in/out buttons are enabled. All inactive test cases, search and addition of
new test cases, Flow input, and Flow output are unavailable.

Tip:
l You must stop the testing mode to configure the test case.

l When a test is running, the icon changes to the icon. You must stop
an ongoing test case to run a different one.

Handling Errors
If an activity encounters errors, it is highlighted with a red border.

You can perform the following steps:

TIBCO Flogo® Extension for Visual Studio Code User Guide

48 | App Development

1. Click the activity to see a detailed error message.

2. Go to Error Handler if the main flow activity has an error handler flow.

Using App Executable
Using this feature, you can test a case with the app executable.

1. To enable this feature, use the app executable.

2. Use the --test-preserve-io flag in test commands for running a unit test. For more
information, see Unit Testing for the CI/CD.
Or, set the environment variable FLOGO_UT_PRESERVE_IO to true.

If Step 2 is not done, the system defaults to the previous behavior. After the execution is
complete, you can see the executed activity logs in the terminal and the test results file is
updated.

Synchronizing a Schema Between Trigger and Flow
If you make any changes to the schema that you entered when creating the trigger, you
must explicitly save any changes you make, then propagate the changes to the flow input
and flow output. This is done by synchronizing the schemas.

To synchronize the schema between the trigger and the flow:

Procedure
1. Click the trigger to open its configuration details.

2. Make your changes and click Save. If you do not click Save, a warning message is
displayed asking you to first save your changes before the schema can be
synchronized.

3. Click Sync on the top-right corner.

The trigger output schema is copied to flow inputs and the trigger reply schema is
copied to flow outputs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

49 | App Development

Data Mappings
Use the graphical data mapper to map data between:

l Activities within a flow

l Trigger and the flows attached to the trigger

Enter the flow or activity input values manually or map the input schema elements to
output data of the same data type from preceding activities, triggers, or the flow
itself.

Data Mappings Interface
An activity has access to the output data from the trigger to which the flow is attached. It
also has access to the output from any of the activities that precede it in the same flow
provided that the trigger or activity has an output. This data is displayed in a tree structure
under Available data in the mapper. The input schema for the activity is displayed in the
Activity inputs pane to the right of the Available data pane. You can map data coming
from the upstream output to the input fields of the activity. Also, each activity has access
to the input fields of the flow to which the activity belongs. You can enter the flow input
schema on the Input Settings tab of the Flow Inputs and Outputs tab.

When you click an activity or trigger on the flow details page, the configuration page for
that activity or trigger opens. The following image is an example of the configuration page
that opens when you click the InvokeRESTService activity.

The left-most pane displays the tabs for the configuration fields for that activity or trigger.
Each activity or trigger has one or more of the following tabs:

TIBCO Flogo® Extension for Visual Studio Code User Guide

50 | App Development

l Settings

For triggers, this tab is displayed as Trigger Settings. This tab shows the activity
settings, trigger settings, or handler settings.

o Activity settings are specific to the activity.

o Trigger settings are specific to the particular trigger.

o Handler settings apply to a specific flow attached to the trigger. Each flow
attached to the trigger can have its own handler settings.

l Input Settings

On this tab, you can enter the schema for the flow or activity input.

l Input

This tab is displayed for activities and shows the schema that you entered on the
Input Settings tab in a tree format. You can manually enter values for any elements
in the input schema or map any input element to the output from previous activities
or triggers on this tab.

l Output Settings

On this tab, you can enter the schema for the flow or activity output.

l Output

This tab displays the schema that you entered on the Output Settings tab in a tree
format. The schema displayed on this tab is set to read-only mode as it is for
informational purposes only.

l Map to Flow Inputs

The settings on this tab must be configured only if your trigger has an output, for
example, in the REST or GraphQL triggers. You can manually enter or map the
elements from the trigger output (schema set on the Output Settings tab) to the
flow input elements (schema entered on the Input Settings tab of the Flow Inputs &
Outputs tab). This allows the output from the trigger to become the input to the
flow.

l Reply Settings

This tab is applicable only to triggers that send replies to the caller, such as the REST
or GraphQL triggers. You enter the trigger reply schema on this tab.

l Map from Flow Outputs

TIBCO Flogo® Extension for Visual Studio Code User Guide

51 | App Development

This tab is specific to triggers that need to send a reply to the caller, such as the
REST or GraphQL triggers. You manually enter or map the elements from the output
of the flow (schema set on Reply Settings tab) to the flow output elements (schema
entered on the Output Settings tab of the Flow Inputs & Outputs). This allows the
output of the flow to become the reply that the trigger sends back to the request
that it receives.

l Loop

On this tab, enter the iteration details for activities that you want to iterate.

When mapping, you can use data from the following sources:

l Literal values - literal values can be strings or numeric values. These values can be
either manually typed in or mapped to a value from the output of the trigger or a
preceding activity in the same flow. To specify a string, enclose the string in double
quotes. To specify a number, type the number in the text box for the field. Constants
and literal values can also be used as inputs to functions and expressions.

l An input element that is directly mapped to an element of the same type in
Available data.

l Mapping using functions - the mapper provides commonly used functions that you
can use with the data to be mapped. The functions are categorized into groups. Click
a function to use its output in your input data. When you use a function, placeholders
are displayed for the function arguments. Click a placeholder argument within the
function and drag an element from Available data to replace the placeholder.
Functions are grouped into logical categories. For more details, see Using Functions.

l Expressions - You can enter an expression whose evaluated value is mapped to the
input field. For more details, see Using Expressions.

The error and warning icons are displayed on the Activity inputs pane, on the
configuration fields in the left-most pane, and on the activity tile. In case of errors in
mapping (such as empty mandatory fields and incorrect mapping at activity or trigger
level), an error icon is displayed. A warning icon is displayed if your changes are not
saved or discarded, input and output are not mapped in triggers, or mappings are removed
for mandatory fields.

TIBCO Flogo® Extension for Visual Studio Code User Guide

52 | App Development

Mapping Data from the Data Mappings Interface
In the following example, in the Activity inputs pane, clicking the arrow expands the

object pathParams. You can select the input (in this case, id) that you want to map. A
section with a text editor opens on the right side in the mapper.

To map data coming from the upstream output to the input fields of the Activity:

In the Available data pane, click the arrow to view the fields. You can map an element

from the Activity inputs pane to an element in the Available data pane using one of the
following methods:

l Drag the element from Available data and drop it on the input in the Activity inputs
pane. The mapping is displayed in the text editor.

l Click the element from the Activity inputs pane. The text editor opens on the right
side of the mapper. Drag the element from the Available data pane and drop it in
the text editor.

l Click the element from the Activity inputs pane and double-click the element in the
Available data pane to map it to the input.

A connection line appears to show the mapping between the Available data and the
Activity inputs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

53 | App Development

To add functions in the mapper, see Using Functions.

Connection Lines

Connection lines show the mapping between the data and the input. These lines appear
when you map an element from the Available data with an element from the Activity
inputs. The lines also appear for mapped arguments. When the mapped element is
selected in the Activity inputs pane, the connection line is blue. Otherwise, it is gray. The
numbers at the ends of a connection line indicate the total number of mapped elements
for a particular element.

The following screenshot shows the connection lines and the total count of mappings for
each element.

Errors in Mapping

In the mapper, you can see the total count of errors and warnings each in the mapping
next to the parent object in the Activity inputs pane.

TIBCO Flogo® Extension for Visual Studio Code User Guide

54 | App Development

In the following example, the parent object input has a total of two errors in mapping.

Expanding the input object shows that the array cakes is mapped incorrectly. Notice that
cakes contains one element with incorrect mapping.

Expanding the array cakes shows that the array batter under the object batters has an
error in mapping.

TIBCO Flogo® Extension for Visual Studio Code User Guide

55 | App Development

Note: The errors in mappings are also observed when the property in the app
properties dialog is edited, moved from a group to another or from a group to
top level as a standalone property. A warning message about the same, pops up
on the screen when you edit any properties.

Scopes in Data Mappings
The Available data pane in the mapper displays the output data from preceding activities,
triggers, and flow inputs. This area groups the output elements based on a scope. A scope
represents a boundary in the Available data within which an input element can be
mapped. For example, when mapping an input element to an element from the output of a
trigger, the scope of the input element is represented in Available data as $trigger. The
following scopes are currently supported by the mapper.

Scope
Name

Used to... Available in...

$trigger Map flow input to
trigger output.

Trigger (Map to Flow Inputs tab) to map flow inputs
to trigger outputs.

$flow Map flow output to
trigger reply.

l Trigger (Map to Flow Outputs tab) to map
flow output to trigger reply.

l Activities (Input tab) to map Activity input to
flow input.

l Return Activity (Map Output tab) to map flow
output to flow input.

TIBCO Flogo® Extension for Visual Studio Code User Guide

56 | App Development

Scope
Name

Used to... Available in...

$Activity.
[Activity-
name]

Map input elements of
the Activity to
elements from the
output of previous
activities.

$activity represents the scope of an activity.
[activity-name] indicates the activity whose scope
that you are defining. Each preceding activity has its
own scope in the mapper.

$iteration This keeps a record of
the current iteration
and is available only
when the iterator is
enabled for an activity
on the Loop tab.

Input tab of an Activity that has Loop enabled. This
tab is displayed only when the Loop for the Activity is
enabled. The following elements are displayed under
$iteration:

l key - This element represents the iteration
index. Thus, it is always of type number. For
example, if the Loop expression is set to an
array, the key element represents the array
index of the current iteration.

l value - The value can be of any type depending
on what is being iterated. For example, if you
are iterating through an array of strings, the
value is of type string.

$property
[property-
name]

Map to app properties
that are defined in the
app.

For any app that has app properties defined, this
scope is available for mapping from any activity that
allows mapping. Even the app properties from the
connection are available for mapping under this
scope.

All the mapped configurations can be pre-checked
using a flow tester or by creating a pre-check flow.

$loop Map elements within
an array.

$loop is prefixed to the element name when mapping
an element that is within an array. The scope of
$loop is the current array that you are iterating
through.

$flowctx Map the flow context Input tab of every activity. The scope provides flow

TIBCO Flogo® Extension for Visual Studio Code User Guide

57 | App Development

Scope
Name

Used to... Available in...

details to the current
flow.

context details that can be mapped to any activity
that allows mapping. Using this scope, the unique
parameters like FlowId, Flowname, ParentFlowId,
ParentFlowName, SpanId, TraceId can be accessed
in the flow and subflow.

Here:

l The ParentFlowId and ParentFlowName is the ID
and name of the flow that is invoking the
current flow.

l The TraceId is the unique ID of a single request,
job, or an action initiated by the user.

l The SpanId is the unique ID of the activity

Note: This scope is only available for the flow
configuration and not for the trigger configuration.

Data Types

Supported data types
The following data types are supported:

l BIT

l CHAR

l DECIMAL

l INTEGER

l TEXT

l NUMERIC

l REAL

TIBCO Flogo® Extension for Visual Studio Code User Guide

58 | App Development

l SMALLINT

l DATE

l TIMESTAMP

l MONEY

l ENUM

l JSON

l XML

l TINYINT

l VARCHAR

l SMALL MONEY

Unsupported data types
The following data types are not supported:

l BIGINT

l BINARY

Reserved Keywords to be Avoided in Schemas
Flogo uses some words as keywords or reserved names. Do not use such words in your
schema. When you copy an app to the workspace, if the schema entered on the Input or
Output tab of an Activity or trigger contains reserved keywords, such attributes are now
treated as special characters and might cause runtime errors.

Avoid using the keywords listed below in your schema:

l break

l case

l catch

l class

TIBCO Flogo® Extension for Visual Studio Code User Guide

59 | App Development

l const

l continue

l debugger

l default

l delete

l do

l else

l enum

l export

l extends

l false

l finally

l for

l function

l get

l if

l import

l in

l index

l instanceof

l new

l null

l return

l set

l super

l switch

TIBCO Flogo® Extension for Visual Studio Code User Guide

60 | App Development

l this

l Generate

l true

l try

l typeof

l var

l void

l while

l with

Mapping Different Types of Data
The mapper opens when you click any element in the input schema tree on an activity
configuration tab.

You can map the following elements:

l A single element from the input to another single element in the output.

Note: If the single element comes from an array in the output, then you
must manually add the array index to use. For example,
$flow.body.Account.Address[0] city.

l A standalone object (an object that is not in an array).

l An array of primitive data type to another array of primitive data type.

l An array of non-primitive data types (object data type or a nested array) to another
array of the same non-primitive data type.

Keep the following in mind when using the mapper:

l Make sure that you map all elements that are marked as required (have a red asterisk
against them), whether they are standalone primitive types, within an object, or
within an array. When mapping identical objects or arrays, such elements get
automatically mapped, but if you are mapping non-identical objects or arrays, be

TIBCO Flogo® Extension for Visual Studio Code User Guide

61 | App Development

sure to map the elements marked as required individually.

l The in and new attributes are treated as special characters if you use them in the
schema that you enter in the REST Activity or trigger. For example, mappings such as
$flow.body ["in"] and $flow.body ["new"] are not supported. If an app copied to workspace
contains these attributes, it results in runtime errors.

l Use of the anonymous array is not supported on the Flow Input & Output tab and
the Return Activity configurations. To map to an anonymous array, you must create
a top-level object or a root element and render that.

l You cannot use a scope (identified with a beginning $ sign) in an expression, for
example, renderJSON($flow, true). You can use an object or element under it, for
example renderJSON($flow.input, true).

l You can only map one element at a time.

TIBCO Flogo® Extension for Visual Studio Code User Guide

62 | App Development

Note: If the output element names contain special characters other than an
underscore (_), they appear in bracket notation in the mapping text box.

In the following example, name under Available data does not contain any
special characters. Hence, it is displayed in dot notation.

In the following example, name 1 contains a space. Hence it appears in the
bracket notation.

Mapping an Enum value
You can map values of the Enum data type to the Activity Inputs element directly by
selecting the values from the Use available values dropdown.

This feature is available for all activities and triggers that have a schema option.

TIBCO Flogo® Extension for Visual Studio Code User Guide

63 | App Development

Tip: Always use the enum keyword to identify the constant values.

Mapping a Single Element of Primitive Data Type
You can map a single element of a primitive data type to a single element of the same type
in the output schema under Available data.

Drag the element from Available data and drop it on the destination element that you
want to map in the Activity inputs pane.

In the following example, drag and drop FlowName (source) on message (destination) to
map it. Alternatively, click message. Drag and drop FlowName in the text editor, or
double-click FlowName.

TIBCO Flogo® Extension for Visual Studio Code User Guide

64 | App Development

Mapping an Object
Standalone objects (objects not within an array) whose property data types match can be
mapped at the root level. If the destination object is identical to the source object under
Available data (both the names of the properties as well as their data types match
exactly), you need not match the elements in the object individually. If the property names
are not identical, then you must map each property individually within the object.

For example, in the image below the Person objects are identical. So, you can map Person
to Person. You do not need to map the name and age individually.

In the following image, the data types match but the property names do not match. In
such a case, you must map each property individually in addition to mapping the object
root.

TIBCO Flogo® Extension for Visual Studio Code User Guide

65 | App Development

Mapping Arrays
When mapping arrays, you must first map their array root before you can map their child
elements.

The following mappings are supported when mapping arrays.

l Mapping arrays of primitive data types

l Mapping an array of objects

l Mapping nested arrays

Mapping an Array of Primitive Data Types
To map arrays of the same primitive data type, you only need to map the array root. You
need not map the array elements.

Here is an example of mapping arrays of primitive data types:

The array names need not to match, but their data types must match. In Available data,
$flow points to numArray which is the scope for numArray in the input.

When you do not have a matching data type array in your output

If you want to map an array of primitive data types, but you do not have an array of the
same data type in Available data, you can create an array using the array.create(item)
function.

TIBCO Flogo® Extension for Visual Studio Code User Guide

66 | App Development

Note: array.create(item) can only be used to create an array of primitive data
types. You cannot use it to create an array of objects.

To do so:

1. Click the array for which you want to do the mapping in the input schema. The
mapper opens to its right.

2. Click Functions and click array to expand it.

3. Click create(item). It appears in the text editor.

4. Replace item with the output element to create the array.

In the following image, to map strArray, you would need to create an array since
there is no array of strings under Available data. So, you map strArray by creating
an array. The array.create() function accepts any of the following: a hardcoded string,
an element from Available data, an expression, or a function as shown below as long
as they all evaluate to the appropriate data type.

Mapping Complex Arrays
Complex arrays are arrays of objects that can optionally contain nested arrays. You can
map these arrays using the three available options - Configure with Items, Configure
with Source and Configure with JSON.

For examples, see https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-
dev/Mapping-Arrays/array.forEach.sample.

When you use the Configure with Items option, you define an implicit scope consisting of
everything available in Available data. It is equivalent to creating an implicit array with a

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample

TIBCO Flogo® Extension for Visual Studio Code User Guide

67 | App Development

single object element consisting of everything in Available data. Hence, the resulting
length of the array is always one element.

To create a confined scope within Available data, use the Configure with Source option.
When using this option, you must map three fields - Source, Loop name and the Filter by.
Here, Loop name gets auto populated. When mapping identical arrays, the source name
gets inserted in the Select Source field by default.

The Source defines the scope within Available data. Simply put, the input object or array
can only be mapped to elements in Available data that fall within the boundary indicated
by its scope.

The Loop name is a scoping variable given to the scope that you have defined in the first
argument. By default, the scoping variable name is the same as the input element name
for which you are defining the scope. By doing so, the mapper associates the input object
to its scope by the scoping variable. Once there is a scoping variable for the scope, the
mapper uses that scoping variable to refer to the scope in future mappings. You can edit
the scoping variable to any string that might be more meaningful to you. The scoping
variable is particularly useful when mapping the child elements in nested arrays.

The Filter by field is optional. When iterating through an upstream output array, you can
enter a filter to specify a particular condition for mapping as the Filter by field. When using
this field, you must enter the scoping variable in the loop name field. Only array elements
that match the filter get mapped. For instance, if you are iterating through an array (array1)
in the upstream output with a filter $loop.name=="Jane" mapped in the Filter by field, if
array1 has 10 elements and only four out of them match the condition of the filter, only
those four elements are mapped to the input array and the remaining six are skipped. This
results in the size of the input array being only four elements, even though array1 has 10
elements. See Filtering Array Elements to Map Based On a Condition for more details.

Note: If you have used the array.forEach() in a legacy app, to update your app
with the current changes, delete the old mapping and remap the elements. A
scoping variable is now included in the Loop name field. For example, if the old
mapping is: array.forEach($flow.body.Book), after remapping, $flow.body.Book is added
to the Source field, where "Book" is added in the Loop name field, which is also
the scoping variable.

TIBCO Flogo® Extension for Visual Studio Code User Guide

68 | App Development

Note: If you use a function as a source array in the source field, the array
element schema cannot be determined and a design-time validation error is
returned. It is recommended that you use the mapper to define the function
output schema and then use it in the source field.

Mapping of unmapped arrays
With the support of first class for.each() in the Mapper activity, you can map elements to an
unmapped array in three different ways.

l Using the Configure with Source option

For mapping, double-click the element from the Available data array. You can also
drag the element of the Available data array to the element of the Activity inputs
array.

Note: To change the element that is already mapped, either drag another
element or select the element from the source array.

TIBCO Flogo® Extension for Visual Studio Code User Guide

69 | App Development

l Using the Configure with Items option

You can add the elements to your array manually.

l Using the Configure with JSON option

You can map the empty array by literal value mapping or type in the required
expression.

Note:
o Reset option allows you to delete all the items from the array and

set the array to the default form.

o Clear mappings can be used to remove all the mappings on the
item level.

o For an empty for.each() array, you can clear the mappings for child
items only.

Add Items to Array
Now, when there is a need to map more than one array object in the same array, you can
add items to the array. Each item can be mapped with different values.

TIBCO Flogo® Extension for Visual Studio Code User Guide

70 | App Development

For example, if one item is mapped with the flow input, the other can be mapped with
literal values.

You can add an item to the array:

1. For an unmapped array

You can add an item in an unmapped array.

Note: Use the Configure with Items option for adding a single item.

2. For empty for.each() array

You can also add an item to an empty For.each() array.

TIBCO Flogo® Extension for Visual Studio Code User Guide

71 | App Development

Note:
l For all pre-existing array mappings with empty array.foreach() the

properties are displayed as an array item and the array level
mapping is not editable.

l On adding empty array.foreach(), the input mapper at array level
turns to non-editable.

l Elements under an existing array mapping that has array.foreach()
without source are wrapped in an item object.

3. Primitive data type array

An item can even be added to an empty primitive data type array.

Note:
l Add item option is not available for an array of type 'any'.

l On copying an app to a workspace, which has inline array mapping, array
elements are wrapped in an item object.

l On adding items under an array, mapping cannot be done at the item-level

TIBCO Flogo® Extension for Visual Studio Code User Guide

72 | App Development

Mapping Identical Arrays of Objects
When mapping an array of objects in the input to an identical array of objects (matching
property names and data types) in Available data, keep the following in mind:

l Map the array at the root level by either dragging or double-clicking the Available
Source array. The Configure with Source screen displays the array scope and the
scoping variable. You need not map the array object properties individually if you
want all properties to be mapped and if the object property names are identical. The
properties are automatically mapped.

l If you do not want all the properties within the object to be mapped or if the names
of object properties do not match, you must map the object properties individually
too after mapping the root. If you do not do the child mapping individually, the
mismatched properties in the objects remain unmapped if the properties are not
marked as required (marked with a red asterisk). If such a property is marked as
required, then you see a warning.

l The size of the input array is determined by the size of the array in Available data to
which you are mapping.

To map identical arrays of objects:

l Drag the array that you want to map from Available data (objArray in the image
below) and drop it on the array in the Flow outputs pane (objArray1 in the image
below). The Configure with Source screen appears in the text box. If the names of
all the child elements match, the child elements get mapped automatically. You need
not match each child element individually. In this example, none of the child names
match, so you would need to do the individual mapping otherwise none of the
elements get mapped.

The "objArray1" in the Loop name is the scoping variable that constitutes the scope

TIBCO Flogo® Extension for Visual Studio Code User Guide

73 | App Development

of the current input array. Basically, this means that you can map any element in
objArray1 with an element of the same data type in flow.objArray in Available
data. So, you are defining the scope of objArray1 to be all the elements within
objArray.

Mapping Array Child Elements to Non-Array Elements or to an
Element in a Non-Matching Array
There may be situations when you want to map an element within an array of objects to
an output element that is not in an array or belongs to a non-matching array in the
Available data pane. In such a situation, you must create an array with a single element.
You do this by using the Configure with JSON option. When you use this option, it creates
an array with an item having a single object element. The single object element treats
everything in Available data as the children of the newly created array object element.
This allows you to map to any of the Available data elements as they are now treated as if
they were within an array.

Important: When using the Configure with Items option be sure to map the
child elements individually. Otherwise, no child elements get mapped. Only
elements that you have specifically mapped acquire the mapped values.

Note: Keep in mind that in this scenario, the resulting length of the array is
always one element.

Mapping an array child element to a non-array element is a two-step process:

1. Click the input array root (objArray in the example below) and select the Configure
with Items option.

This creates an array of objects with a single element in it. The element contains
everything under Available data, hence allowing you to map to any element in the
Available data pane. The element you are mapping to can be a non-array element or
reside within a nested array.

TIBCO Flogo® Extension for Visual Studio Code User Guide

74 | App Development

2. Map each element in the input array individually to any element of the same data
type under Available data.

To map an element inside an array, provide the index of the array. To map an
element in a nested array, provide the index for both the parent and the nested array
as shown.

Mapping Nested Arrays
Before you map a nested array, you must map its parent root. The scoping variable is
particularly useful when mapping the child elements in nested arrays.

The example below is that of a nested array, where Address is a nested array whose parent
is Customer:

TIBCO Flogo® Extension for Visual Studio Code User Guide

75 | App Development

To map Address:

1. Map its parent, Customer. When you map Customer, you automatically set the scope
of Customer.

In the image, Customer is mapped to MyCustomer. In the Select Source field, the
$flow.MyCustomer is the source array (from which Customer gets the data) that you are
mapping to. This defines the scope (boundary) in Available data within which you
can map Customer. So, this is the scope of Customer.

The Loop name field, "Customer", is the scoping variable given to this scope - the
loop here refers to the iteration of Customer. By default, the scoping variable has the
same name as the loop for which the scope is being defined (in this case Customer).
You can edit the scoping variable to any string that might be more meaningful to
you. This is equivalent to saying that mapping of a child element of Customer can
happen only to children of MyCustomer in Available data.

2. Map Address. Now the scope of Address gets defined.

TIBCO Flogo® Extension for Visual Studio Code User Guide

76 | App Development

Notice the mapping for Address:

l contains the parent scope as well. The parent scope is referred to by its
scoping variable, "Customer". Remember that the scope of Customer is already
set when you are mapping Customer to MyCustomer in the first step, so we
can now simply refer to the parent scope by its scoping variable, "Customer".

l $loop[Customer] refers to the iteration of the MyCustomer array. $loop represents
the memory address of the MyCustomer (the scope for Customer) in Available
data.

l $loop[Customer].MyAddress1 is the scope of Address. This scope is denoted by the
scoping variable "Address", which is the second variable in this mapping. Since
Address is a nested array of Customer, when you map to Address or its child
elements, its mapping includes the scope of Customer as well.

Mapping Child Elements within a Nested Array Scope
A child element in the input array can be directly mapped to a child element of the same
data type within the array scope. As mapping is done within the nested array scope, you
need not explicitly state the scoping variable for the nested array scope. The mapping
appears as $loop.<element>.

To map a nested array child element:

1. Map the parent of the nested array.

2. Map the nested array itself.

3. Map the nested array child elements if the names are not identical or if you do not
want to map all elements in the nested array.

In the following example, since street is within the scope of address1, street1 is

TIBCO Flogo® Extension for Visual Studio Code User Guide

77 | App Development

directly mapped to street. $loop implicitly points to address which is the scope for
address1 in the input schema.

Mapping a Nested Array Child Element Outside the Nested Array
Scope
To map a nested array child element outside the nested array scope but within its parent
array, you must use the scoping variable of the parent array.

1. Map the parent array root.

2. Map the nested array root.

3. Map the nested array child element.

In the image below, $loop implicitly points to address. In addition, the mapping also

TIBCO Flogo® Extension for Visual Studio Code User Guide

78 | App Development

explicitly specifies the scope of the parent, "objArray1. This is because zip1 is mapped
to code which is outside the scope of address1, but within the scope of its parent
array (objArray1).

Mapping an Element from a Parent Array to a Child Element in a
Nested Array within the Parent
When mapping a primitive data type child element of the parent array to a child element of
its nested array, the scope in the mapping is implicitly set to the scope of the parent array.
In addition, you must provide the index of the nested array element whose variable you
want to map to.

1. Map the parent array root.

2. Map the nested array root.

3. Map the parent array element.

In this example, $loop is implicitly set to the scope of Customer, which is

TIBCO Flogo® Extension for Visual Studio Code User Guide

79 | App Development

MyCustomer. Notice that you must provide the index of the object in the MyAddress
array whose MyCountry element you want to map to.

Filtering Array Elements to Map Based On a Condition
When mapping arrays of objects, you can filter the objects that are mapped by specifying a
filter in the Filter by field when the Configure with Source option is selected.

Specify the filter in the Filter by field. The Select Source value is the scope of the element
that is mapped and the Loop name is the scoping variable.

To add the filter in the Filter by field, the Source and the Loop name must be specified.

Here is an example that contains a filter in the Filter by field:

The above example indicates the following:

l objArray1 is being mapped to objArray in Available data

l When iterating through objArray in Available data, only the array elements in

TIBCO Flogo® Extension for Visual Studio Code User Guide

80 | App Development

objArray whose child element user is "Jane" get mapped. If user is not equal to
"Jane" the iteration for that object is skipped and objArray1 does not acquire that
object.

l $loop here specifies the scope of the current loop that is being iterated, in this case
objArray, whose scope is objArray1 in Available data.

Mapping JSON Data with the json.path() Function
Use the json.path() function to query an element within JSON data. The JSON data being
queried can come from the output of an Activity or trigger. In the mapper, you can use the
json.path() function by itself when providing a value to an input parameter or use it within
expressions to refer to data within a JSON structure.

This function takes two arguments:

l the search path to the element within the JSON data

l the JSON object that contains the JSON data you are searching
You can specify a filter to be used by the json.path() function to narrow down the results
returned by the json.path() function.

To reach the desired node or a specific field in the node in the JSON data, you must follow
a specific notation defined in the JsonPath specification. For more information on the
notation to be used and specific examples of using the notation, see
https://github.com/oliveagle/jsonpath.

Consider the example below which is available for you to experiment with at
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-
dev/json.path.sample.

Examples

The following is an example of how to use the function:

json.path("$.store.book[?(@.price > 10)].title", $flow.body)

In this example, $.store.book[?(@.price > 10)].title is the query path. [?(@.price > 10)] is a filter
used to narrow down the query results. $flow.body is the JSON object against which the
query is run (in this case the JSON object comes from the flow input, hence $flow). So, this
query searches the books array within the $flow.body JSON object and returns the title of
the books whose price is more than $10.

https://github.com/OLIVEAGLE/JSONPATH
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample

TIBCO Flogo® Extension for Visual Studio Code User Guide

81 | App Development

Consider the following sample JSON data:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

{
"store": {
"book": [
{
"category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"Availability": [
{
"Country": "India",
"Quantity": 4000,
"Address": [
{
"city": "houston"
}
]
}
],
"price": 8.95
},
{
"category": "fiction2",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"Availability": [
{
"Country": "USA",
"Quantity": 5000,
"Address": [
{
"city": "sugarland"
}
]
}
],
"price": 12.99
},
{
"category": "fiction3",

TIBCO Flogo® Extension for Visual Studio Code User Guide

82 | App Development

"author": "Herman Melville",
"title": "Moby Dick",
"isbn": "0-553-21311-3",
"Availability": [
{
"Country": "UK",
"Quantity": 7000,
"Address": [
{
"city": "stafford"
}
]
}
],
"price": 8.99
},
{
"category": "fiction4",
"author": "J. R. R. Tolkien",
"title": "The Lord of the Rings",
"isbn": "0-395-19395-8",
"Availability": [
{
"Country": "Australia",
"Quantity": 2000,
"Address": [
{
"city": "aaaaa"
}
]
}
],
"price": 22.99
}
],
"bicycle": {
"color": "red",
"price": 19.95
}
},
"expensive": 10
}

The following are examples of some JSON query paths that search the JSON data above
and return the category of the book. In the examples below, the second input parameter for
this function (data) is the name of the file that contains the above JSON code.

TIBCO Flogo® Extension for Visual Studio Code User Guide

83 | App Development

l json.path("$.store.book[?(@.Availability[?(@.Quantity >= 6000)])].category", $flow.data)

In the example above, the query scope is the entire book array. The filter used to
query this array is the condition - [?(@.Availability[?(@.Quantity >= 6000)])]. Only the
category values for the book elements that have Quantity >= 6000 is returned. So, this
query returns fiction3.

l json.path("$.store.book[?(@.author == 'Nigel Rees')].category", $flow.data)

returns reference since it uses the filter [?(@.author == 'Nigel Rees')] and the only book
authored by Nigel Rees in this array of books has its category as reference.

l json.path("$.store.book[?(@.Availability[?(@.Address[?(@.city == 'sugarland')])])].category",
$flow.data)

This query is an example of a nested filter where [?(@.Availability[?(@.Address[?(@.city ==
'sugarland')])])] is the outer filter and the nested filter within it is [?(@.city == 'sugarland')].
It returns reference.

l json.path("$.store.book[0].category", $flow.data)

This query does not use a filter. It returns reference, since your query scope is limited
to the book[0] element only within the store object and your request is to return the
value of category.

Constructing any, param, or object Data Type in Mapper
When mapping values for data type any or object, you must manually enter the values in the
mapper text box.
Below are some examples of how to construct the data type any:

Assigning a literal value to a data type any

To assign literal values to the any data type, you click the element of type any, then simply
enter the values you want to assign to it in the mapper text box. For example, to assign the
string Hello! enter:

"Hello!"

TIBCO Flogo® Extension for Visual Studio Code User Guide

84 | App Development

Assigning an object value to an object or element of a data type and

Here is an example of how to assign literal values to an object:

{
"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

}

Here, "Author", "ISBN", and "Price" are the object properties. You can use a function
instead of a literal value when assigning values for each element. See the "Using a
function" section for details on how to use a function.

Assigning an array value to an object or data type any

Here is an example of how to assign an array value to an array of objects or to an element
of the data type any:

[
{
"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

}
]

You can use a function instead of a literal value when assigning values for each element.
See the "Using a function" section for details on how to use a function.

Assigning a value from the upstream output

When mapping to an element from the upstream output, the data type of the source
element whose value you are assigning determines the data type of the destination
element. For example, if you assign the value of an array, then the target element (the
element of the data type any) is treated as an array, likewise for a string, number, boolean,
or object. For example, if you are mapping $flow.Author which is an array, then the Author
object in the input (destination object) would also be an array. That is, there is a direct
assignment from the source to the destination.

l Single Element of Primitive Data Type: To assign the value of a single element of a

TIBCO Flogo® Extension for Visual Studio Code User Guide

85 | App Development

primitive data type that belongs to the output of the trigger, a preceding Activity, or
the flow input, you must enter the expression for it. For example, to assign the value
of isbn which comes from the flow input, enter the expression:

"=$flow.isbn"

Here, $flow is the scope within which isbn falls.

l An object: When assigning an object, you must create a mapping node within the
object. The mapping node is used to define how the object should be constructed and
the various fields within the object mapped. For example, to assign the bookDetails
object, enter:

{
"mapping": {
"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": 20,
"BestSeller": true
}
}

You can use a function instead of a literal value when assigning values for each
element. See the "Using a function" section for details on how to use a function.

l An array of objects: The following two examples show you how to assign values to
arrays:

o Building a new array

To provide values for an array that has a fixed size (where the number of
elements is declared), you must provide the values for each array element. For
example, if the array has two elements, you must provide the values for each
property of the object for both objects. Here is an example of how to do that:

{
"mapping": {
"books": [
{
"author": "=$loop.author",
"title": "=$loop.title",

TIBCO Flogo® Extension for Visual Studio Code User Guide

86 | App Development

"price": "=$loop.price"
},
{
"author": "Author2",
"title": "BookTitle",
"price": 19.8
}
]
}
}

In the example above books is an array of two elements. The values for each
property for both elements are provided.

You can use a function instead of a literal value when assigning values for each
element. For details, see Using Functions.

o Building an Array from an upstream output array

In the following example, books is an array of books coming from the upstream
output. To iterate over the array, $flow.store.books in upstream output, and
assign its values to the input array, you would enter the following in the
mapper text box:

{
"mapping": {
"@foreach($flow.store.books)": {
"author": "=$loop.author",
"title": "=$loop.title",
"price": "=$loop.price"
}
}
}

The "@foreach($flow.store.books)" indicates that you are iterating an array of
objects where the $flow.store.books is the array. $flow is the scope within which
store.books falls and $loop represents the scope for each property within the
object.

l Using a function: The following example uses the output of a REST Invoke Activity to
get a pet from the public petstore service. The mapper uses the string.concat() function
and assigns the function return value to the description field in the data structure:

TIBCO Flogo® Extension for Visual Studio Code User Guide

87 | App Development

{
"mapping": {
"data.description": "=string.concat(\"The pet category name is: \",$Activity[rest_

3].result.category.name)"
}
}

Assigning Values to the param Data Type
When you copy an app to a workspace, that was originally created in TIBCO Flogo®
Enterprise or TIBCO Cloud™ Integration, the app could contain elements that are of data
type param. The param data type is similar to the object data type in that it consists of key-
value pairs. The difference between an object and a param is that the object can contain
values of any data type whereas the values for elements in the param data type must be of
data type string only.

Here is an example of assigning values to a param data type element:

{
"mapping": {
"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": "$20"

}
}

Coercing of Activity Input, Output, and Trigger Reply
Fields
In the OSS marked Activity input, output, or trigger reply configuration, if you have defined
a parameter, but have not defined or cannot define a schema for the parameter, you can
coerce the parameter to take the value from a schema that you dynamically define during
design time. This feature is particularly useful for apps, which have activities for which
input parameters or output are not defined with a schema.

Currently, coercion of parameters is supported only for the following data types:

l array

l object

TIBCO Flogo® Extension for Visual Studio Code User Guide

88 | App Development

l param

l any

After you enter the schema, it is displayed in a tree format under Activity inputs, Output
tab, or Trigger reply in the mapper. All subsequent activities also display the elements of
the schema under the Activity in the Upstream Output. The schema elements are now
available for you to map.

Important Considerations
l Coercion is supported only in the Default category activities that are the activities

marked as OSS, except for the Return and Start a SubFlow activities. These two
activities display flow-level data. The flow-level inputs and outputs can be entered or
modified only on the Flow Inputs & Outputs tab, hence they cannot be coerced
from the Input tab of the activity itself.

l Currently, coercion is supported only for top-level parameters. Nested coercion (for
example, an object within an object) is not supported.

l Currently, coercing a schema for trigger input is not supported. The coercing option
is not available on the Map to Flow Inputs tab in the trigger configuration. This is
because the parameters you see on this tab are flow input parameters and are not
related to the trigger. You have the option to coerce these parameters on the Input
tab of the Flow Inputs & Outputs tab.

l After you have mapped a child element within a parameter, if you change the name
of the parent or the child, your mapping is lost. However, if you change the data type
of the element, the mapping is preserved, but you see an error related to the
mismatch in data type.

l The schema you enter is preserved when you export and import the app.

l If you edit the schema later, as long as you click Apply after editing, your edits are
displayed in the mapper. You must then click Save in the mapper to persist your
schema changes.

l You cannot coerce a parameter or edit its schema in any activity appearing in a
subflow. For example, if the OracleDatabaseQuery activity appears in both the main
flow and the subflow, you cannot edit the schema of any of its parameters in the
subflow. But you can edit the schema of the OracleDatabaseQuery activity in the
main flow. This is because the subflow activity input and output schemas are

TIBCO Flogo® Extension for Visual Studio Code User Guide

89 | App Development

inherited from the main flow. There is a possibility that the same subflow could be
used in multiple main flows, so if you edit an activity in the subflow it could break
another main flow that uses the subflow.

To provide the schema for coercion:

Procedure

1. On the flow details page, click the activity or trigger to open its configuration.

2. Click any of the following tabs that you want to configure:

l Input: To configure a parameter in the activity input

l Output: To configure the schema for the activity output

l Map from Flow Outputs: To configure the trigger reply

3. To configure a schema:

l For a parameter in activity input, hover your mouse cursor over the parameter
name for which you want to configure the schema under Activity inputs.

l For the Activity output, hover your mouse cursor over the parameter name for
which you want to configure the schema.

l For a parameter in the trigger reply, hover your mouse cursor over the
parameter name.

Click the ellipsis icon () that appears next to it. Clear mappings and Coerce with
schema options are displayed.

4. Click the Coerce with schema option.

Note: The Coerce with schema icon appears against the parameter name
for only those parameters that do not have a schema defined on the Input
Settings tab (or a schema cannot be defined because the Activity does not
have an Input Settings tab, for example, the OSS-marked activities) and
whose data type is one of the following: array, param, object, or any.

5. Enter the schema for the parameter or activity output and click Apply. The mapper
validates that the data type of the schema you entered matches the data type of the
parameter being coerced. If the data types do not match, Apply remains disabled
and you see an error. For activity input and trigger reply, the schema you enter
displays in a tree format under the parameter name in the mapper.

TIBCO Flogo® Extension for Visual Studio Code User Guide

90 | App Development

l For the activity output, the schema is displayed in a tree format on the Output
tab of the activity. Available data displays the output of the preceding
activities.

6. Click Save to persist the schema into the database or Discard to discard the schema.
Now you can map the child elements within the parameter. In the case of the activity
Output tab, the output tree does not display in the current activity but is displayed
in the mapper for subsequent activities only. Once persisted in the database, these
schema trees get displayed in the Available data area of the mapper for subsequent
activities. This allows you to map to them in subsequent activities.

Clear Mapping of Child Elements in Objects and Arrays
After mapping an array or an object, you can clear the mapping of all the child elements
within that array or object with one click. The mapping is cleared at the root level and the
mapping for everything under that root gets cleared, even the nested arrays and objects,
should there be any. To clear the mapping for individual elements in an array or object
selectively, click that element and delete the mapping for it.

To clear the mappings for all child elements of an array or object:

1. In the mapper, hover your mouse cursor to the right end of the root name until the
ellipsis icon () appears and click it.

2. Click Clear mappings.

TIBCO Flogo® Extension for Visual Studio Code User Guide

91 | App Development

Ignoring Missing Object Properties when Mapping
Objects
There may be instances when you map objects where one or more object properties might
be missing in the source or target object. The mapper can be set to ignore such cases.

If you want the mapper to ignore such cases, you must set the FLOGO_MAPPING_SKIP_
MISSING engine variable under the Environment Controls tab to true. The mapper ignores
the missing mapping as long as the element is optional (not marked as mandatory with a
red asterisk against it). Elements marked as mandatory must be mapped.

Mapping Data by Using if/else Conditions
The if/else statements are used to execute blocks of code based on the specified conditions.

if (condition1)
{
// execute this block of code
}
else if (condition2)
{
// execute this block of code if the previous condition fails
}
else
{
// execute this block of code if all conditions fail
}

You can add conditions in your data mappings to get outputs based on those conditions.
You can add conditions to primitive objects, nested arrays, nested objects, and any other
type of input. if/else conditions are available in activities and triggers in the main flow and
error handler.

To Map Data Using Conditions

1. Click the ellipsis icon to open the menu of the element to which you want to add
the conditions. Select Add Condition. An If condition is added to the element.

TIBCO Flogo® Extension for Visual Studio Code User Guide

92 | App Development

2. In the text editor of the If condition, enter an expression whose result evaluates to a
Boolean value. You can enter the expression manually or map data from the
Available data pane. If children elements exist, you can enter values for them.

TIBCO Flogo® Extension for Visual Studio Code User Guide

93 | App Development

3. To add an Else-if or an Else condition, click the ellipsis icon to open the menu of
the element with the If condition. Click Add Else-If or Add Else.

Considerations when using conditions:
l For one If condition, you can add multiple Else-if conditions and one Else condition.

l You can add an Else condition only from an element with an If condition.

l You can add an Else-if condition from an If condition and from an Else-if condition.

Note: In case the option to add conditions is not visible for the last element in
the Activity inputs pane, scroll further down to view the options.

Deleting a Condition

Click the ellipsis icon to open the menu of the conditions that you want to delete. Click
Delete.

TIBCO Flogo® Extension for Visual Studio Code User Guide

94 | App Development

To delete an If condition that has Else-if and Else
conditions:
You cannot directly delete the If condition that has Else-if and Else conditions. You must first
delete the Else-if and Else conditions to delete the parent If condition.

In the following example, to delete the If condition on Character, you must delete the Else-
if and Else conditions.

TIBCO Flogo® Extension for Visual Studio Code User Guide

95 | App Development

Note: For OSS activities having the Coerce with schema option, you can
maintain only one schema for the input that you coerce. If you add conditions to
the coerced inputs, you cannot change the schema specific to a condition. When
you update the schema, it is updated for all the blocks.

Using Functions
You can use a function from the list of functions available under Functions in the mapper.
Input parameters to the function can either be mapped from an element under Available
data, a literal value, or an expression that evaluates to the appropriate data type or any
combination of them.

The procedure below illustrates an example that concatenates two strings and assigns the
concatenated value to the message. We manually enter a value for the first string (str1)
and map the second string to id under $flow. The value for id comes from the flow input.

1. Click the message to open the text editor to the right.

2. Click Functions. Expand the string function group and click concat(str1, str2).

3. Select str1 in the function and type "Received: " (be sure to include the double quotes
as shown below) to replace str1 with it.

TIBCO Flogo® Extension for Visual Studio Code User Guide

96 | App Development

4. Drag id from $flow and drop it in place of str2.

At run time, the output from the concat function is mapped to the message.

Using Expressions
You can use two categories of data-mapping expressions in Flogo.

Basic Expression

Basic expressions can be written using any combination of the following by using
operators:

l literal values

l functions

l previous Activity or trigger output

See Supported Operators for details on the operators that can be used within a basic
expression.

Here are some examples of basic expressions:

string.concat("Rest Invoke response status code:",$activity[InvokeRESTService].statusCode)

The above example combines the string and the statusCode from the InvokeRestService
activity.

TIBCO Flogo® Extension for Visual Studio Code User Guide

97 | App Development

string.length($activity[InvokeRESTService].responseBody.data) >=7

The above example checks whether the length of data of the responseBody is greater than
or equal to 7.

$activity[InvokeRESTService].statusCode == 200 && $activity
[InvokeRESTService].responseBody.data == "Success"

The above example checks whether the statusCode is 200 and the data of responseBody has
the value as "Success".

Ternary Expression

Ternary expressions are assembled as follows:

condition ? statement1 : statement2

The condition is to be evaluated first. If it evaluates to true, then statement1 is executed. If the
condition evaluates to false, then statement2 is executed.

Here is an example of a basic ternary expression:

$Activity[InvokeRESTService].statusCode == 200 ? "Response successfully":"Response failed,
status code not 200"

In the above example $Activity[InvokeRESTService].statusCode == 200 is the condition to be
evaluated.

l If the condition evaluates to true (meaning statusCode equals 200), it returns
Response successfully.

l If the condition evaluates to false (meaning statusCode does not equal 200), it
returns Response failed, status code not 200.

Here is an example of a nested ternary expression:

$Activity[InvokeRESTService].statusCode == 200 ? $Activity
[InvokeRESTService].responseBody.data == "Success" ? "Response with correct data" : "Status ok
but data unexpected" : "Response failed, status code not 200"

The example above checks first to see if statusCode equals 200.

TIBCO Flogo® Extension for Visual Studio Code User Guide

98 | App Development

l If the statusCode does not equal 200, it returns Response failed, status code not 200.

l If the statusCode equals 200, only then it checks to see if the responseBody.data is equal
to "Success".

o If the responseBody.data is equal to "Success", it returns Response with correct data.

o If the responseBody.data is not equal to "Success", it returns Status ok but data
unexpected.

Combining Schemas Using Keywords
You can use the allOf and oneOf keywords to combine schemas.

l oneOf keyword: This keyword can be used to validate the given data against one of
the specified schemas.

l allOf keyword: This keyword helps the user ensure that the given data is valid against
all the specific schemas.

Using the oneOf Keyword
1. On the schema object in the activity/trigger input, click .

For an object with a oneOf keyword, the Select OneOf Schema option is displayed.

2. Click Select OneOf Schema.

The schema selector dialog displays all available schemas with a oneOf array.

TIBCO Flogo® Extension for Visual Studio Code User Guide

99 | App Development

3. Select one schema from the schema selector dialog.

The mapping tree is rendered with the selected oneOf schema nodes.

Supported Operators
Flogo supports the operators that are listed below.

l ==

l ||

l &&

l !=

l >

l <

l >=

l <=

l +

TIBCO Flogo® Extension for Visual Studio Code User Guide

100 | App Development

l -

l /

l %

l Ternary operators - nested ternary operators are supported.

For example, $activity[InvokeRESTService].statusCode==200?($activity
[InvokeRESTService].statusCode==200?true:false):false

General Category Triggers, Activities, and
Connections
The General category is available by default in all flows. It consists of activities, triggers,
and connections that may be commonly used by any flow in the app. A trigger initiates the
flow in which it appears. Activity is used to perform a task. A connection is used to connect
an app to various services.

Triggers
In addition to the triggers available for general use, triggers that were originally created in
Project Flogo® are supported. Such triggers are marked with an OSS tag on them.

It is preferable to use the general-purpose triggers (the triggers that do not have an OSS
tag on them) as they have richer functionality.

For more information on the triggers that are marked with an OSS tag, see
https://github.com/project-flogo/contrib.

Trigger configuration fields are grouped into Trigger Settings and Handler Settings. A
single trigger can be associated with multiple handlers.

l Trigger Settings - these settings are common to the trigger across all flows that use
that trigger. When Trigger Settings are changed, the change applies to all flows that
are attached to the trigger. A warning message is displayed asking you to confirm the
changes before they are committed.

l Handler Settings - these settings apply to a specific flow attached to the trigger.
Hence, each flow can set its values for the Handler Settings fields in the trigger. To

https://github.com/PROJECT-FLOGO/CONTRIB

TIBCO Flogo® Extension for Visual Studio Code User Guide

101 | App Development

do so, open the flow and click the trigger to open its configuration dialog. Click the
Settings tab and edit the fields in the Handler Settings section.

Note:
l You cannot create a flow branch from a trigger.

l You can create the trigger at the time of flow creation or create a blank
flow to begin with and attach the flow to one or more triggers later after
the flow has been created. If you anticipate that you might need to attach
the flow to multiple triggers, be sure to create a blank flow and attach it to
the triggers as needed.

For triggers that have an output, the output from the trigger becomes the input to the
flow. Likewise, the output from the flow becomes the reply from the trigger.

When using the Lambda, S3, or Gateway triggers, keep the following in mind:

l You can only have one trigger. The Lambda trigger supports only one handler per
trigger, it can have only one flow attached to it. The S3 and Gateway triggers support
multiple handlers (flows), so you can have multiple flows in the app that are attached
to the same S3 or Gateway trigger.

l An app that has one of these triggers cannot contain any other trigger.

l You can also have blank flows in the app, which can serve as subflows for the flows
that are attached to one of these triggers.

Timer Trigger
Use Timer Trigger as a process starter when creating flows designed to be activated
without external input. It is useful when you want your flow to run at certain time intervals.
You can also configure the Timer Trigger to activate the flow multiple times at a specified
interval or to set a Cron Job.

TIBCO Flogo® Extension for Visual Studio Code User Guide

102 | App Development

Trigger Settings

Field Description

Handler Settings

Scheduler
Options

l Timer: Runs the flow at the specified time or interval

l Cron Job: Provides more customization options for scheduling the
runs

Additional information about fields is available when you select the scheduler option as Timer

Start Time Use the calendar to set a start date and time. When configuring an app
property for the Start Time, use the RFC 3339 date and time formats.

Format with UTC offset:

YYYY-MM-DDTHH:MM:SS+00:00

OR

Format without UTC offset:

YYYY-MM-DDTHH:MM:SSZ

Here,

T is used as a separator between date (YYYY-MM-DD) and time (HH:MM:SS).
Replace it with a space, if needed.

l 2021-04-12T23:20:50.52+00:00

l 2021-11-22T09:16:47Z

l 1996-12-19T16:39:57-08:00

l 1990-12-31 23:59:60+05:00

Note: Start Time by Default is Blank. If there is no date and time
mentioned, the flow runs as soon as you push the changes or app
binary.

Use these fields in combination to define the schedule for recurring runs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

103 | App Development

Field Description

Repeating When Repeating is enabled, the flow is triggered at the same time as the
first run at the specified time interval. (Default: False)

Delayed Start Delayed Start delays only the first execution. The successive runs are
triggered at the specified time interval. (Default: False)

Time Interval This is a period between two successive runs.

Interval Unit This is a unit specified for Time Interval.

Additional information about fields is available when you select the scheduler option as Cron
Job

Cron Expression You can enter any Cron Expression manually in this field.

The standard cron expression should be CRON_TZ=IANA TimeZone * * *
* *

Here,

CRON_TZ=IANA TimeZone is used to set the specific time zone in which
the cron job is run.

* * * * *

Minutes Hours Day of Month Months Day of Week

Here are some examples for you.

Cron
expression

Schedule

* * * * * Every minute

0 * * * * Every hour

0 0 * * * Every day at 12:00 AM

0 0 * * 4 At 12:00 AM, only on Friday

Here, number 0-6 stands for the days of the week
starting with Sunday as 0.

0 0 1 * * At 12:00 AM, on day 1 of the month

TIBCO Flogo® Extension for Visual Studio Code User Guide

104 | App Development

Field Description

Cron Expression
Builder

If you use the Cron Expression Builder, this field is auto-populated as you
build the expression.

Simple cron expressions can be built using the Cron Expression Builder.
You can use the different tabs to define the frequency: Minutes, Hours, Day
of Week, Day of Month, Months.

Note:
l Expressions built using Cron Expression Builder can be modified

manually.

l If there is no time zone mentioned while building a cron
expression through the app property, by default the time zone of
the system is considered and there might be no logs generated
for the executed flow.

l UI validation for the built cron expression is not supported.

Map to Flow Inputs

This tab allows you to map the trigger output to flow input.

REST Trigger - ReceiveHTTPMessage
Use the ReceiveHTTPMessage REST trigger when creating flows that are going to be
invoked by an external REST call. The ReceiveHTTPMessage trigger exposes your flow as
an API, making it accessible to other apps running on TIBCO Cloud™ or elsewhere. This
trigger must be configured to set up the fields for a request that the server receives from a
REST client.

Note:

l If you add or delete path or query parameters in the trigger, you must click
Sync for the changes to be propagated to the flow input schema

l REST trigger does not support authentication and authorization headers.

TIBCO Flogo® Extension for Visual Studio Code User Guide

105 | App Development

Trigger Settings

Field Description

Trigger Settings

Port By default, the trigger listens on port 9999. You can change this to use another
open port. Do not use ports 8080 or 7777, as these ports are reserved for
internal use.

Important: If the app has multiple triggers that require a port to be
specified, specify a unique port number for each trigger. Two triggers in the
same app cannot run on the same port.

Configure
Using API
Specs

While creating a REST trigger, you can configure it by uploading an API
specification file.

To do this, click True (by default, it is set to False) and specify the following:

API Spec: Click Browse and then select the specification file to be used for
configuring the trigger. Supported specifications are Swagger Specification 2.0
and OpenAPI Specification 3.0.

Handler Settings

Path The resource path for the operation.

If you upload an API specification file, select a path from the dropdown list.
The path parameters are parsed from the API spec file and the data types
displayed are string, integer, or boolean as specified in the file.

For manual configuration, the data type for the resource path is string.

By default, the path displayed here is the resource path you had entered when
you created the flow. The Path field is editable if you have not uploaded an
API specification file. For example, if you want to add a path parameter for a
GET operation, you can do so by editing the resource path in the GET flow. If
you edit the path in the Path field for a particular REST operation flow, the
edited resource path applies only to the flow in which it was edited.

Two resource paths with the same base path should not contain the path

TIBCO Flogo® Extension for Visual Studio Code User Guide

106 | App Development

Field Description

parameters at the same location. For example, you cannot have the following
paths in the same app:

l /books/{ISBN}/Author/{releaseDate} and /books/{ISBN}/Author/releaseDate is
considered the same from a routing perspective.

In these two paths, since the ISBN value is dynamic, it causes a conflict
during path resolution.

l /books/{ISBN}/{releaseDate} and /books/{ISBN}/Author in the same app is not
supported.

Although the two paths appear to be different, when a message comes
in, the router mechanism cannot know which path to call (the one with
the parameter or the one without) since the actual value has been
substituted for the parameter.

l Resource path with two different path parameters at the same URL
subsection. For example, /0.6/api/account/{account}/orderhistory/
{orderhistory}/branch/{branch} and /0.6/api/account/
{AccountKey}/Price?ProductList={ProductList}

In these paths, even though the paths differ from the base path
(/0.6/api/account/), there is a conflict when resolving the {account} and
{AccountKey} values.

l Multiple REST resources with the same base path and the same number
of path parameters. For example, /resource/{id} and /resource/{id1}

l /messages/{messageid}/comments/{commentid} and /messages/{messageid}/likes/
{likeid

Where the paths differ after {messageid}.

Method The REST operation which the flow implements. Supported HTTP methods
are: GET, PUT, POST, DELETE, and PATCH.

Request
Type

This field appears only when Method is POST, PUT, or PATCH. Select one of
the following types from the dropdown list:

l application/json

l application/x-www-form-urlencoded

TIBCO Flogo® Extension for Visual Studio Code User Guide

107 | App Development

Field Description

l multipart/form-data

Default: application/json

Note: If you create a Flogo app using an API specification file having
Request Type as application/x-www-form-urlencoded or multipart/form-data, then
you must click Sync to update the request parameters with the Flow Input.

Output
Validation

When set to True, the incoming data (body, headers, and query parameters) is
validated against the configured JSON schema.

Default: False

Output Settings

Field Description

Query
Parameters

Query parameters to be appended to the path. To add the query parameters,
click and press Enter to save your changes.

l parameterName: Name of the query parameter.

l type: The data type of the query parameter. Supported types are string,
number, and boolean.

l repeating: Set to True if more than one value is expected for the
query parameter.

l required: Set to True if the query parameter is a required
configuration. The trigger reports an error if no values are provided to
the required query parameter.

Path
Parameters

Path parameters that are appended to the path.

Headers Header values for the trigger. To add the header parameters, click and

press Enter to save your changes.

TIBCO Flogo® Extension for Visual Studio Code User Guide

108 | App Development

Field Description

l parameterName: Name of the header parameter.

l type: The data type of the header parameter. Supported types are
string, number, and boolean.

l repeating: Set to True if more than one value is expected for the HTTP
header.

l required: Set to True if the header parameter is a required
configuration. The trigger reports an error if no values are provided to
the required header parameter.

Request
Schema

Enter a request schema here. This field is visible only if you selected the
POST, PUT, PATCH, or DELETE method on the Settings tab.

Note:
l For the DELETE method, specifying the request schema here is

supported for manual configuration only and not when configured
with TIBCOTIBCO Cloud™ Mesh and API specification.

l If you selected application/x-www-form-urlencoded as the Request Type
on the Settings tab, the default schema is set here. You can edit the
default schema or specify your schema. If you specify your schema,
it must be a name-value string pair.

Multipart
Data

This field is displayed in place of the Request Schema field if you select
multipart/form-data as the Request Type in the Trigger Settings. Click to add

the parameters.

l Name: Parameter name.

l Type: Supported types are string, object, and filecontent.

l Required: Check the box if the parameter is a required configuration.

l Schema: Enter the JSON schema in this field if the Type is an object.

Note: The file content received by the trigger is converted into a byte
array. This is passed to the Activity as a Base64-encoded value in an array.
If you want to fetch the content of the file, coerce the first element of the
array to string.

TIBCO Flogo® Extension for Visual Studio Code User Guide

109 | App Development

Map to Flow Inputs

This tab allows you to map the trigger output to the flow input.

Reply Settings

Field Description

Configure
Response
Codes

Allows you to configure response codes.

Default: False (See "Reply Data Schema" in this table.)

To specify a response code, select True and click . Enter the following

details:

l Code: Enter the response code.

l Type: Select the type of response expected for the Code. Supported
types are String and Object.

l Response Body: If the Object is selected as the Type, enter the JSON
schema in the Response Body column. For String, you need not enter
anything in the Response Body column.

l Response Headers: The header parameters for the reply are in JSON
data format.

l Actions: The actions displayed change based on the type of the response
code.

o Edit, Delete: For an Object type of response, you can edit the
details or cancel it.

o Save, Cancel: For each String type of response, you can save or
cancel the changes.

The response codes appear on the Map from Flow Outputs tab.

Note: The REST reply data type is by default set to data type any.

For multiple response codes, use the ConfigureHTTPResponse Activity in the
flow to map Response Body and Response Headers from the REST trigger
with the Input in the Activity. To configure the ConfigureHTTPResponse
Activity, see ConfigureHTTPResponse.

TIBCO Flogo® Extension for Visual Studio Code User Guide

110 | App Development

Field Description

The image shows the Reply Settings with multiple response codes.

Caution: If you modify the response code schema in the table, the
corresponding ConfigureHTTPResponse activities within that flow do not
change appropriately. This happens specifically when removing fields from
the Reply Settings tab. Redo the mappings for the
ConfigureHTTPResponse activities.

Reply Data
Schema

Note: This field appears only when Configure Response Codes is set to
False.

The schema is used for the reply data of the trigger. Be sure to use straight
quotes for element names and values in the schema.

Map from Flow Outputs

Map the flow output to the trigger reply on this tab.

TIBCO Flogo® Extension for Visual Studio Code User Guide

111 | App Development

Note:
l To update these settings for a trigger configured from the Swagger 2.0 or

OpenAPI 3.0 specification, update the API specification file and upload it to
the Trigger Settings. Do not update the settings as manual updates are
removed.

l If you are using a REST trigger in your app:
The endpoint URL contains the app name only if the app has one trigger.
The endpoint URL contains the app name and trigger name for more than
one trigger.

If you add a REST trigger to an existing app, you must reconfigure the
client app.

GraphQL Trigger
The GraphQL Trigger lets a Flogo app act as the GraphQL server. To use this trigger, you
simply upload your GraphQL schema and TIBCO Flogo® Enterprise automatically creates
the flows corresponding to each query or mutation field in your schema.

Trigger Settings

Field Description

Trigger Settings

Port The port on which the trigger listens to requests. By default, it is set to
7879. You can change this to use any other open port. Do not use ports
8080 or 7777, as these ports are reserved for internal use. This field can
also be set using an app property.

Important: If the app has multiple triggers that require a port to be
specified, ensure that the port number is unique for each trigger. Two
triggers in the same app cannot run on the same port.

Path The HTTP resource path for the operation. By default, it is set to /graphql,

TIBCO Flogo® Extension for Visual Studio Code User Guide

112 | App Development

Field Description

but you can change it to any string that is meaningful to you. It is the single
endpoint that GraphQL queries and mutations use to access data from the
multiple resources on the server. This field can also be set using an app
property.

GraphQL
Schema File

The file that contains the GraphQL schema is used to create the flow. The
file has a .gql or .graphql extension.

Note: If you have changed the GraphQL schema file that you uploaded
when creating the flow or trigger, you must propagate the changes to
the flow input and flow output. To do this, after you select the updated
schema file in this field, click Sync on the upper-right corner.

Schema
Introspection

By default, it is set to True. You can use it to get the schema details for
GraphQL. If you set it to False, it disables introspection and you cannot
fetch the schema field details.

Secure
Connection

By default, it is set to False. If you set this field to True, you can create a
secure endpoint by providing Server Key and CA or Server Certificate.

Server Key - A PEM encoded private key file

CA or Server Certificate - A PEM encoded CA or self-signed server
certificate file

Handler Settings

GraphQL
Operation

The type of GraphQL operation the flow should represent. You can select
either Query or Mutation

Resolver for This field is populated based on the type of GraphQL Operation that you
selected. If you selected Query, the Resolver For lists the field names
under the query type in the schema. If you select Mutation, the dropdown
menu lists the field names under the mutation type in the schema.

Map to Flow Inputs

You can map the trigger output to flow input on this tab. The tab contains an element
arguments, which contains a field or objects list that matches the input arguments of the

TIBCO Flogo® Extension for Visual Studio Code User Guide

113 | App Development

Resolver For field in the GraphQL schema. Fields and Headers are available to map inside
Map to Flow Inputs. Fields contains the fieldName string and the field array passed for
the given Query or Mutation. The following structure is an example of Fields:

{"fieldName":"employee","fields":[{"fieldName":"id"},{"fieldName":"name"}]}

Map from Flow Outputs

You can map the flow output to the trigger reply on this tab. The tab contains a child
element data, which contains either a simple type or an object that matches the output
type of the Resolver For field in the GraphQL schema. If the output type of the field is an
interface type, the data contains a single field of type any. You can use the Error field to map
the trigger reply setting for any error in the flow. Its value is parsed as a string.

To avoid any runtime exception, you can define your data and error mapping using the
following formats:

Note: To avoid any runtime exception, you can define your data and error
mapping using the following formats:

l Data: isDefined($flow.data) ? $flow.data : coerce.toObject('{}')

l Error: isDefined($flow.error) ? $flow.error : ''

gRPC Trigger
The gRPC trigger acts as a server to gRPC clients.

Note: You must run the preinstall script before running the gRPC trigger or
activity binary.

TIBCO Flogo® Extension for Visual Studio Code User Guide

114 | App Development

Trigger Settings

Field Description

Trigger Settings

Port The port on which the trigger listens to
requests. You can use any open port. This
field can also be set using an app property.

Proto File A file with the .proto extension that contains
the definitions of methods and services,
which Flogo Extension for Visual Studio
Code uses to create the flows. Currently,
importing a .proto file into another .proto file
is not supported.

Note: The gRPC trigger and gRPC
Activity do not support options in the
.proto file. For more information, see the

limitations when creating a .proto file in
gRPC Activity.

Secure Connection By default, it is set to False. If you set this
field to True, you can create a secure
endpoint by providing CA Certificate,
Server Certificate, and Server Key.

Note: If the secure connection is True,
you have the option for mutual TLS.
This field is optional.

Use Mutual TLS Set it to True to enable mutual
authentication for a secure connection to
the server. The default value is False.

CA Certificate A PEM-encoded CA certificate.

TIBCO Flogo® Extension for Visual Studio Code User Guide

115 | App Development

Field Description

Browse and select a Certificate Authority
(CA) certificate that validates either the
client's certificate or the server's certificate
to establish a secure connection during the
TLS handshake.

Alternatively, you can configure the app
property using the Bind an Application
Property toggle. Set the Base64-encoded
value of the CA certificate to the
corresponding app property.

Server Certificate A PEM-encoded server certificate.

This certificate is used to authenticate the
server to the client over TLS. Browse to
select the server certificate.

Alternatively, you can configure the app
property using the Bind an Application
Property toggle. Set the Base64-encoded
value of the server certificate to the
corresponding app property.

Server Key A PEM-encoded private key file. Browse
and select the server key.

Alternatively, you can configure the app
property using the Bind an Application
Property toggle. Set the Base64-encoded
value of the server key to the
corresponding app property.

Handler Settings

Service Name Name of the service defined in the .proto
file. You must create one gRPC trigger for
any specific .proto file. Any subsequent
gRPC triggers using the same .proto file can

TIBCO Flogo® Extension for Visual Studio Code User Guide

116 | App Development

Field Description

select the service and method they need
from the dropdown list.

Method Name of the RPC method in the .proto file.
Each method in the .proto file is
represented by a separate flow and
attached to the same gRPC trigger.

Map to Flow Inputs

You can map the trigger output to flow input on this tab. This tab displays fields from your
selected method.

Map from Flow Outputs

You can map the flow output to the trigger reply on this tab.

Receive Lambda Invocation
Use the Receive Lambda Invocation trigger for AWS to start your flow as a Lambda
function. The Receive Lambda Invocation trigger can be configured only in blank flows. It
must not be used with flows that are created with another trigger.

Trigger Settings

Note:
An app can contain only one Lambda trigger. An app that has a Lambda trigger
cannot contain any other triggers including another Lambda trigger. Also, as the
Lambda trigger supports only one handler per trigger, it can have only one flow
attached to it. However, the apps that contain a Lambda trigger can contain
blank flows that can serve as subflows for the flow attached to the Lambda
trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

117 | App Development

Field Description

AWS
Connection
Name

Name of the AWS connector connection you want to use for the flow.

Execution
Role Name

(optional) ARN of the role to be used to execute the function on your behalf.
The role must be assumable by Lambda and must have CloudWatch logs
permission execution role.

Output Settings

Enter the payload schema for the request received on the Lambda function invocation on
AWS.

Map to Flow Inputs

This tab allows you to map the trigger output to flow input.

Field Description

Function Information about the Lambda function

Context Envelope information about this invocation

Identity Identity for the invoking users

ClientApp Metadata about the calling app

API Gateway
Request

Displays the elements in the payload schema that you entered on the Output
Settings tab. The elements are displayed in a tree format.

Reply Settings

Enter a schema for the trigger reply in the Reply Data text box.

TIBCO Flogo® Extension for Visual Studio Code User Guide

118 | App Development

Map from Flow Outputs

Map the flow output to the trigger reply on this tab.

App Startup Trigger
This trigger allows you to execute flows before other triggers in the app are started. It can
be used to specify initialization logic that is specific to an app. For example, this trigger can
be used for:

l Setting data or cache for later use in other flows

l Initialization of a database (insertion or extraction of data from tables)

Design considerations
l You can add one or more App Startup triggers to an app.

l You can add the App Startup trigger along with the Receive Lambda trigger, AWS API
Gateway trigger, and S3 bucket Lambda trigger. You cannot add any other trigger
along with the Receive Lambda trigger, AWS API Gateway trigger, and S3 bucket
Lambda trigger.

l The trigger supports multiple handlers. So, you can configure more than one flow in
a trigger.

l The flows are executed in the order in which they are configured in the trigger.

l The trigger is executed for all instances of the app. For example, if you scale up to
multiple instances of the app, the trigger is executed on each scale-up.

l If a startup flow fails, the engine is terminated.

l In container deployments, the collective execution time of all flows configured to this
type of trigger must not exceed the startup time set for the app.

App Shutdown Trigger
This trigger allows you to execute flows after all other triggers in the app are successfully
stopped. It can be used to specify shutdown logic that is specific to an app. For example,
this trigger can be used for:

TIBCO Flogo® Extension for Visual Studio Code User Guide

119 | App Development

l Cleaning up data or cache

l Deleting tables from a database

Design considerations
l You can add one or more App Shutdown triggers to an app.

l You can add the App Shutdown trigger along with the Receive Lambda trigger, AWS
API Gateway trigger, and S3 bucket Lambda trigger. You cannot add any other trigger
along with the Receive Lambda trigger, AWS API Gateway trigger, and S3 bucket
Lambda trigger.

l The trigger supports multiple handlers. So, you can configure more than one flow in
the trigger.

l The flows are executed in the order in which they are configured in the trigger.

l The trigger is executed for all instances of the app. For example, if you scale down
multiple instances of the app, the trigger is executed on each scale down.

l If an app is forcefully shut down, the trigger and subsequent flows are not executed.
This trigger is executed only when an app is gracefully shut down.

l In container deployments, the collective execution time of all flows configured to this
type of trigger must not exceed the graceful-stop time set for the app.

l You must exercise caution while defining a flow in the App Shutdown trigger. For
example, when an app is scaled to more than one instance, cleanup is done while
shutting down one instance may impact other running instances.

Activities
In addition to the activities available for general use, activities that were originally created
in Project Flogo® are supported. Such activities are marked with an OSS tag on them. The
Project Flogo® activities are placed under the Default category.

It is preferable to use the general-purpose activities (the activities that do not have an OSS
tag on them), as they have richer functionality.

For more information on the activities that are marked with an OSS tag, see
https://github.com/TIBCOSoftware/flogo-contrib.

https://github.com/TIBCOSoftware/flogo-contrib

TIBCO Flogo® Extension for Visual Studio Code User Guide

120 | App Development

The available activities are placed under the following categories:

l Default

l General

Important: After configuring any activity or modifying the activity configuration,
you must explicitly click Save for your configuration changes to be saved or click
Discard to discard your changes.

You can create a flow branch from any Activity except the Return Activity.

For quick access to activities specific to user and browser, you can use the following tabs:

l Recently Used: This tab has activities used recently for the flow configuration. Eight
of the last-used activities can be accessed from this tab.

l Recently Installed: This tab has custom extension activities installed recently for
flow configuration.

ConfigureHTTPResponse
This activity is used to ConfigureHTTPResponse codes that you want to use in your REST
reply.

When using this activity, keep the following considerations in mind:

l The flow in which you want to add the ConfigureHTTPResponse activity must have a
ReceiveHTTPMessage trigger.

l Do not use this activity with subflows.

Settings

Field Description

Trigger
Name

The list of triggers to which this flow is attached. This field is displayed only when
the flow is attached to multiple REST triggers. Select a trigger in which the code
that you want to use is configure.

TIBCO Flogo® Extension for Visual Studio Code User Guide

121 | App Development

Field Description

Code List of response codes that you have configured in the selected trigger. Select a
response code that you want to use.

Input

Displays the schema for the code that you selected on the Settings tab. Map the elements
in the schema in the mapper or manually enter the values that you want to send as a
response.

Note: For multiple response codes in the REST Trigger - ReceiveHTTPMessage,
map the Response Body and Response Headers from the trigger with the Input
in this Activity. The image shows the Input with headers and body mapped
from the REST trigger response codes.

Output

Displays the schema for the code in a read-only tree format.

TIBCO Flogo® Extension for Visual Studio Code User Guide

122 | App Development

Run JavaScript
This activity runs a JavaScript code using the specified input parameters and returns the
result in the output.

You can use this activity to write complex logic in JavaScript, which may not be
straightforward to achieve using the mapper. For example, you can easily filter arrays
based on some conditions or looping through arrays using forEach and other useful
JavaScript functions.

This activity supports both ECMAScript 5-compatible and ECMAScript 6-compatible
functions. For more information, see ECMAScript 5-compatible functions or ECMAScript 6-
compatible functions.

Important Considerations
l You may see some code suggestions in the editor that are not valid for ECMAScript 5-

compatible or ECMAScript 6-compatible functions. We recommend that you do not
implement the suggestions. If you implement them, the Activity may return some
errors.

l For ECMAScript 6-compatible functions, the following are not supported.

o Classes

o Promises

o Default parameters

o Function REST parameter

o Arrow functions

Settings

Field Description

Javascript
Code

Specify the JavaScript code to be run in the following format:

var result, parameters
<JavaScript code>

https://www.w3schools.com/js/js_es5.asp
https://www.w3schools.com/js/js_es6.asp
https://www.w3schools.com/js/js_es6.asp

TIBCO Flogo® Extension for Visual Studio Code User Guide

123 | App Development

Field Description

Where:

l The result variable must be defined for the output of the JavaScript.

l The parameters variable must be defined for the input of the JavaScript.
Set the input parameters on the Input Settings tab. Set the output
parameters on the Output Settings tab.

Input Settings

Field Description

Script Input
Parameters

Configure a schema for one or more input parameters to the JavaScript.
The elements of this schema are available for mapping on the Input
tab.

Use app-level schema: Click Use app-level schema and select a
schema that you might have defined earlier.

Change: To change the schema, click Change.

Syntax to access the input parameter value defined in the Javascript
code:

parameters.<parameter_name>

For example, if you have defined the input parameter as foo in the
JavaScript code, use the following syntax to access the value:

parameters.foo

Input

The Input tab displays the schema that you entered in the Input Settings tab in a tree
format. Map the elements in the schema using the mapper or manually enter the value for
the element in the mapper.

TIBCO Flogo® Extension for Visual Studio Code User Guide

124 | App Development

Output Settings

Field Description

Script Output Configure a schema for one or more output parameters of the JavaScript.

Use app-level schema: Click Use app-level schema and select a schema
that you might have defined earlier.

Change: To change the schema, click Change.

Syntax for setting the value of the output parameter in the Javascript
code:

result.<parameter_name>

Example:

result.foo = bar

Output

The Output tab displays the output parameters from the schema that you entered in the
Output Settings tab. The output parameters are displayed in the result object in a tree
format.

Field Description

error Flag indicating whether an error occurred while running the
JavaScript.

errorMessage The error message.

result The output of the JavaScript code indicates successful execution of
the JavaScript.

TIBCO Flogo® Extension for Visual Studio Code User Guide

125 | App Development

gRPC Invoke
The gRPC Invoke Activity is an implementation of a gRPC client. Use this activity to make
outbound gRPC calls.

Note: You must run the preinstall script before running the gRPC trigger or
activity binary.

Settings

Field Description

Host URL The URL used to connect to the gRPC
server. The name or IP address of the
host on which your .proto file resides. Be
sure to append the port number on
which the service is running.

Secure Connection By default, it is set to False. If you set
this field to True, you can create a
secure endpoint by providing CA
Certificate.

Note: If secure connection is True,
you have an option for mutual TLS.
After enabling mutual TLS, you must
add client certificate and key.

Use Mutual TLS Set it to True to enable mutual
authentication for a secure connection to
the server. The default value is False.

CA Certificate A PEM-encoded CA certificate.

Browse and select a Certificate Authority
(CA) certificate that validates either the
client's certificate or the server's
certificate to establish a secure

TIBCO Flogo® Extension for Visual Studio Code User Guide

126 | App Development

Field Description

connection during the TLS handshake.

Alternatively, you can configure the app
property using the Bind an Application
Property toggle. Set the Base64-encoded
value of the CA certificate to the
corresponding app property.

Client Certificate A PEM-encoded client certificate.

This field is displayed only if Mutual TLS
is set to True. This certificate is used to
identify the client by the servers over
TLS.

Browse and select the client certificate.
Alternatively, you can configure the app
property by using the Bind an
Application Property toggle. Set the
Base64-encoded value of the client
certificate to the corresponding app
property.

Client Key A PEM-encoded private key file.

This field is displayed only if Mutual TLS
is set to True.

Browse and select the client key. The key
file must be PEM-encoded. Alternatively,
you can configure the app property by
using the Bind an Application Property
toggle. Set the Base64-encoded value of
the client key to the corresponding app
property.

Proto File A file with the .proto extension that
contains the methods and services
definition, which Flogo Extension for VS

TIBCO Flogo® Extension for Visual Studio Code User Guide

127 | App Development

Field Description

Code uses to create the flows. Each flow
corresponds to one method in the .proto
file. Currently, importing a .proto file into
another .proto file is not supported.

Note:
l The gRPC activity does not

support options in the .proto file.
If your .proto file contains any
options, be sure to remove the
options in the .proto file before
using it.

l You must not use the same
gRPC .proto file for the gRPC
activities in the same app. The
package names for the gRPC
activities must be unique.

Service Name Name of the service you want to invoke.
The service is defined in the .proto file
that you have selected.

Method Name of RPC method in the selected
.proto file. Each method in the .proto file is

a gRPC request, which is represented by
a separate flow.

Input

Field Description

Activity
Input

The Input tab lists the parameters for the method that you chose on the Settings
tab so that you can either enter or map their values in the mapper.

TIBCO Flogo® Extension for Visual Studio Code User Guide

128 | App Development

Output

The Output tab displays a read-only schema of the Activity output (the response that is
configured for the selected method).

Iterator

For details on using the iterator, see the "Using the Iterator in an Activity" section.

Limitations When Creating a .proto File

When creating a .proto file, you must adhere to the following limitations:

• Currently, importing a .proto file into another .proto file is not supported. Therefore,
you cannot use import statements.

• As import statements are not supported, you cannot use data types, such as
google.protobuf.Timestamp and google.protobuf .Any, which need to be imported from
other .proto files.

• Streaming is not supported in the request or the response.

• Cyclic dependency in request or response messages is not supported.

• Setting a default value to a blank field within a message is not supported.

• Maps for data definition are not supported.

• Oneof: gRPC mandates that you enter a value for one field only. All fields are
optional, allowing the user to select any field and enter a value. If the user enters
multiple values, then the value entered in the last field is considered and the
remaining values above that field are ignored.

InvokeLambdaFunction
Use this Activity to invoke a specific Lambda function.

TIBCO Flogo® Extension for Visual Studio Code User Guide

129 | App Development

Settings

Field Description

AWS
Connection
Name

Select an AWS connection.

ARN
(Optional)

Amazon Resource Name.

Note:

l You can also specify the ARN on the Input tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab; otherwise, the Activity
returns an error at runtime.

Input Settings

Field Description

Payload
Schema

Enter a JSON request schema for your payload that is used to invoke the
Lambda function.

Input

The payload schema that you entered on the Input Settings tab is displayed in a tree
format on the Input tab. Map the elements in the schema using the mapper or enter values
for the element by manually typing the value in the mapper.

Field Description

LambdaARN Amazon Resource Name.

TIBCO Flogo® Extension for Visual Studio Code User Guide

130 | App Development

Field Description

Note:

l You can also specify the ARN on the Settings tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab; otherwise, the
Activity returns an error at runtime.

Output Settings

Field Description

Result
Schema

The schema for the result that is expected from the Lambda function invokes
the request.

Output

The Output tab displays the result schema you entered on the Output Settings tab in a
tree format.

InvokeRESTService
This Activity is used to request a REST service. It also accepts the reply returned by the
service.

Settings

Field Description

API Spec (Optional) Click Browse and browse to the file location on the machine.
Select a JSON file.

Supported specifications are Swagger Specification 2.0 and OpenAPI
Specification 3.0.

TIBCO Flogo® Extension for Visual Studio Code User Guide

131 | App Development

Field Description

Resource Path Note: This field is only displayed if you upload a JSON file in the API
Spec field.

All resource paths available in the JSON file (that is, the Swagger 2.0 or
OpenAPI 3.0 specification file you uploaded) are listed in the dropdown.
Depending on the resource path you select, the supported operations are
listed in the Method field.

Enable
Authentication

Select True if you want to enable authentication and authorization for
your apps using the HTTP Client Authorization Configuration connection.

Default: False

Authentication
Connection

Note: This field is displayed only if the Enable Authentication field is
set to True.

Select a connection that you have set up from the dropdown list.

For information on setting up a connection, refer to HTTP Client
Authorization Configuration.

Method Select an operation for the request. For example: GET, POST, PUT,
DELETE, or PATCH.

URL An absolute path to the REST service that you want to invoke. For
example: http://acme.com or https://acme.com.

Note: If you upload an OpenAPI 3.0 JSON specification file in the API
Spec field, the URL is a dropdown list. This lists the server URLs
mentioned in the JSON file. Select a server URL from the list.

TIBCO Flogo® Extension for Visual Studio Code User Guide

132 | App Development

Field Description

Tip: To dynamically override the path provided in the URL, you can
enter the URL as:
http://<host-url>:port/{path}
Here, {path} is the parameter that can be modified. You can map this
parameter in the Input section and assign values to it from the
previous activities or the app properties.

Use certificate
for verification

This field is displayed if you enter an absolute path beginning with https://
in the URL field. Set this to True to use a certificate for a secure
connection to the server.

Default: False

Use mTLS Set to True to enable mutual authentication for a secure connection to
the server.

Default: False

Client Certificate This field is displayed only if Use mTLS is set to True.

This certificate is used to identify the client by the servers over TLS. The
certificate must be PEM encoded. Click Browse and select the client
certificate.

Alternatively, you can configure the app property by using the Bind an
Application Property toggle . Set the Base64-encoded value of the

client certificate to the corresponding app property or pass file path as
file://path/to/cert/file.

Client Key This field is displayed only if Use mTLS is set to True.

Click Browse and select the client key. The key file must be PEM encoded.

Alternatively, you can configure the app property by using the Bind an
Application Property toggle . Set the Base64-encoded value of the

client key to the corresponding app propertyor pass the file path as
file://path/to/key/file.

CA/Server Click Browse and select a certificate authority (CA) certificate that verifies

TIBCO Flogo® Extension for Visual Studio Code User Guide

133 | App Development

Field Description

Certificate the client's certificate or the server certificate to establish a secure
connection during the TLS handshake. The certificate must be PEM
encoded.

Alternatively, you can configure the app property by using the Bind an
Application Property toggle . Set the Base64-encoded value of the

CA/Server certificate to the corresponding app property or pass file path
as file://path/to/cert/file.

Close Connection Select True if you want to terminate the connection to the server after the
response is processed. This affects the performance as the connection is
no longer cached.
Default: False

Timeout Specify the timeout period (in milliseconds) for invoking a service. If a
timeout value is specified, the Activity waits for the specified time. If the
response is not received by the specified time, the request expires with an
error.

Default: 0 milliseconds (that is, there is no timeout for invoking a service)

Request Type Note: This field is displayed only for the POST, PUT, and PATCH
methods.

The Request content type of the REST service. The following content-type
are supported:

l text/plain

l application/json

l application/x-www-form-urlencoded

l multipart/form-data

TIBCO Flogo® Extension for Visual Studio Code User Guide

134 | App Development

Field Description

Note:

l If you select application/x-www-form-urlencoded, the default schema
is set in the Request Schema field of the Input Settings tab.
You can edit the default schema or specify your schema. If you
specify your schema, it must be a name-value string pair.

l For the application/x-www-form-urlencoded request type, use the
url.queryEscape function to get the expected input at the server.

l If you select the multipart or form-data as a request type, then
you can pass the content-type for the file and files options in the
Input.

l If you do not set the content-type, then the application/octet-
stream is set as the default content-type for file and files input.

Proxy Specify the URL to the HTTP proxy server. If a proxy URL is specified, the
request to the REST service (specified in the URL field) is routed via this
proxy URL.

Note: A secure connection to the proxy server is not supported.

Default: Proxy URL is disabled.

TIBCO Flogo® Extension for Visual Studio Code User Guide

135 | App Development

Input Settings

Note:

l If you upload a JSON file in the API Spec field, the fields in Input Settings
are automatically populated according to the Resource Path you select.

l The InvokeRESTService supports gzip and deflate encoding.

Field Description

Query
Params

Query parameters to be appended to the path. To add the query parameters,
click and press Enter to save your changes.

l parameterName: Name of the query parameter.

l type: The data type of the query parameter. Supported types are string,
number, boolean, and object.

Note: Only a simple JSON object type is supported.

l required: Set to True if the query parameter is a required configuration.
The trigger reports an error if no values are provided to the required
query parameter.

Path
Params

Path parameters that are appended to the path. This is a non-editable field.

l parameterName: Name of the path parameter. This is the parameter
specified in between { } in the Resource Path field or the URL field in
Settings.

l type: The data type of the path parameter. The Supported type is string.

Request
Headers

Header values for the InvokeRESTService Activity. To add the header
parameters, click and press Enter to save your changes.

l parameterName: Name of the header parameter.

l type: The data type of the header parameter. Supported types are string,
number, and boolean.

TIBCO Flogo® Extension for Visual Studio Code User Guide

136 | App Development

Field Description

l required: Set to True if the header parameter is a required configuration.
The trigger reports an error if no values are provided to the required
header parameter.

Request
Schema

Enter a request schema here. This field is visible only if you selected the POST,
PUT, PATCH, or DELETE method on the Settings tab.

Note:
l For the DELETE method, specifying the request schema here is

supported for manual configuration only and not when configured
with API specification.

l If you selected application/x-www-form-urlencoded as the Request Type on
the Settings tab, the default schema is set here. You can edit the
default schema or specify your schema. If you specify your schema, it
must be a name-value string pair.

Multipart
Data

This field is displayed in place of the Request Schema field if you select
multipart/form-data as the Request Type on the Settings tab. Click to add the

parameters.

l Name: Name of the parameter.

l Type: The supported types are string, object, and filecontent, file, and files.

o For file types such as images and PDF files, convert your file to
Base64 format and enter the encoded value as the Input.

o To send the file name and the file content in the same request, use
file or files types. With file type, you can send one file and a file
name. With the type files, you can send multiple file content for one
file name.

l Required: Check the box if the parameter is a required configuration.

l Schema: Enter the JSON schema in this field if the Type is an object.

Note: If you want to pass dynamic data to a multipartFormData field,
no data must be defined in the MultipartData table. Otherwise, the
dynamic data is not honored and only table field values are
considered.

TIBCO Flogo® Extension for Visual Studio Code User Guide

137 | App Development

Input

Note: If you upload a JSON file in the API Spec field, the Input fields are
automatically populated according to the Resource Path and Method you
select.

Field Description

host Specify the value that must override the hostname:port value specified
in the URL at runtime with the value specified in this configuration.
Enter a value in the form hostname[:port] where [:port] is optional.

queryParams Provide a value to the query parameters configured in the Input
Settings section.

pathParams Provide a value to the path parameters defined as part of the URL on
the Settings tab.

headers Header values for the Activity. These values can be manually entered
or mapped to the output of the trigger or any preceding Activity.

body Request Schema values for the Activity. These values can be manually
entered or mapped to the output of the trigger or any preceding
Activity. This field is visible only if you selected the POST, PUT,
PATCH, or DELETE method on the Settings tab.

Note: For the DELETE method, specifying the request schema here
is supported for manual configuration only and not when
configured with API specification.

multipartFormData This field is visible if you select file or files type in the Multipart Data
field on the Input Settings tab.

Each file that you enter in the Multipart Data table appears here.
content, filename and content-type fields are displayed for each file.

TIBCO Flogo® Extension for Visual Studio Code User Guide

138 | App Development

Field Description

Output Settings

Note: If you upload a JSON file in the API Spec field, the fields in Output
Settings are automatically populated according to the Resource Path you
select.

Field Description

Configure
Response
Codes

This allows you to configure response codes.

Default: False (See "Response Schema" and "Response Type" in this table.)

To specify a response code, select True and click . Enter the following

details:

l Code: Enter a specific response code or configure a single schema for a
category of response codes. For example, if all the status codes are
similar (such as 501, 502, 503), you can define a single schema (as 5xx)
for them. Defining a single schema saves you time and effort as you do
not need to configure each status code separately in the Activity.

Note: If the status code is provided as a range (5xx in the above
example) and also in an absolute format (501 in the above example),
the status code in the absolute format is given priority. In the above
example, status code 501 is given priority over 5xx at runtime.

TIBCO Flogo® Extension for Visual Studio Code User Guide

139 | App Development

Field Description

l Type: Select the type of response expected for the Code. Supported
types are String and Object.

l Response Body: If the Object is selected as the Type, enter the JSON
schema in the Response Body column. For String, you need not enter
anything in the Response Body column.

l Response Headers: Specify the response header corresponding to the
response code.

l Actions: The actions displayed change based on the type of the response
code.

o Edit, Delete: For an Object type of response, you can edit the
details or cancel it.

o Save, Cancel: For a String type of response, you can save or
cancel the changes.

The response codes appear on the Output tab.

Response
Schema

Note: This field is displayed only when Configure Response Codes is set to
False.

The schema for the reply that the server sends.

Response
Type

Note: This field is displayed only when Configure Response Codes is set to
False.

The content type of the REST service. The following content types are
supported:

l application/json

l application/xml

l text/plain

l other

Default: application/json

JSON to XML conversion is not supported by the REST Activity. Any service that

TIBCO Flogo® Extension for Visual Studio Code User Guide

140 | App Development

Field Description

requires data in XML format cannot be invoked after providing data in the
JSON format using REST Activity.

If the content type is other than the types application/json, application/xml, or
text/plain, it is converted into Base64 encoded values. You can use the
utils.decodeBase64 function to get the actual values. This is applicable when
Configure Response Codes is set to True or False.

Output
Format

Note: This field appears only when the Response Type is set as
application/xml.

The format of the requested content for the application/xml response type. The
following formats are supported:

l JSON Object

l XML String

Response
Schema

Sample JSON schema for the response that the REST service returns.

The JSON schema in this field is editable for the following settings only:

l When the Response Type is set as application/json

l When the Response Type is set as application/xml and the Output Format
is set as JSON Object

Response
Headers

The header parameters for the reply.

Tip: If you want to fetch a cookie coming with a response, add a new row
with Set-Cookie as the parameter. You can also map this parameter to
subsequent activities in the flow.

Output

The Output tab displays the headers and responsebody configured for the response in a
tree format. The responseTimeInMilliSec parameter specifies the time taken to receive the
response in miliseconds.

TIBCO Flogo® Extension for Visual Studio Code User Guide

141 | App Development

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

Retry on Error

See Using the Retry On Error Feature in an Activity

Note: To update all these settings for an Activity configured from Swagger 2.0 or
OpenAPI 3.0 specification, make changes in the API specification file and upload
it to Settings. Do not update the Activity settings as manual updates are
removed.

Using SSL
If you choose to set up SSL authentication for the InvokeRESTService Activity, you must
have a self-signed server certificate that you must upload when setting up the Activity.

Note: Use a self-signed PEM certificate for a secure connection.

To set up SSL authentication:

Before you begin
You must have the self-signed server certificate handy on your machine.

Procedure
1. On the flow page, click the Invoke REST Service tile to open its properties.

2. On the Settings tab, under Use certificate for verification, select True.

This displays Browse. The SSL verification is turned off when Use certificate for
verification is set to False.

3. Use Browse to navigate to the location of the server certificate.

Once the server certificate is uploaded successfully, the connection uses the
certificate to authenticate.

TIBCO Flogo® Extension for Visual Studio Code User Guide

142 | App Development

LogMessage
LogMessage is an activity that writes a message to the log. For each app, there is a log file.
You can view the logs in the Log tab. The log messages generated are independent of the
engine log level. It is also independent of the log level set by the PAPI logger or overridden
using the environment variables.

Settings

The Settings tab has the following fields.

Field Description

Log Level Select one of the following log levels:

l Info: logs informational messages highlighting the app progress.

l Warning: is the warning message of an unexpected error when
running the flow.

l Error: logs error conditions and messages.

l Debug: can be used for debug-level messages.

Add Flow
Details

Appends Flow Instance ID, Flow Name, and Activity Name to the Log
Message.

By default, this field is set to False.

Input

Provide the following input for this Activity.

Input Item Description

message The message to be displayed in the log.

logLevel The logLevel to be set for an Activity.

Valid Values: INFO, DEBUG, ERROR, WARN

TIBCO Flogo® Extension for Visual Studio Code User Guide

143 | App Development

Input Item Description

While mapping,

l You can bind the log level from the App Properties or the App level
schema.

l If you enter any value other than the values that are available in the
settings level, you get an error as 'Invalid Log Level'.

l The log level value set in mapper level takes precedence over the log level
value set in settings level.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

Mapper
Use this Activity to define a schema to get the desired data. This Activity is particularly
useful to define a schema for an object of this type any. In the flow, you place the Mapper
Activity preceding an Activity whose input requires an object of data type any. This allows
you to map the object of type any to the output from the Mapper Activity. An advantage of
using this Activity is that you can construct the data for any data type within the flow
instead of fetching it from outside.

Input Settings

Field Description

Input
Schema

Enter the JSON schema that is used as the input for this Activity. The elements
of this schema are available for mapping on the Input tab and are mappable to
the output from any preceding Activity, trigger, or flow input.

The Mapper Activity outputs the elements from this schema, so they are also
displayed on the Output tab in a tree format. This makes them available for
mapping in the following activities.

TIBCO Flogo® Extension for Visual Studio Code User Guide

144 | App Development

Input

The Input tab displays the schema that you entered on the Input Settings tab in a tree
format. You can map these elements to the output from any preceding Activity, trigger, or
flow input.

Output

The Output tab displays the elements from the schema that you entered on the Input
Settings tab.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

ParseJSON
This Activity takes stringified JSON data as input and converts it into a JSON object, which
can then be accessed by the downstream activities that follow. You provide the input to
the Activity either by entering the stringified JSON data manually on the Input tab or
saving it in a file and entering the file path on the Input tab. The Activity supports output
validation if you opt to validate the input JSON data against the output schema that you
configure on the Output Settings tab.

Settings

Field Description

Output
Validation

True: Select True to validate that the JSON data in your input string matches
the schema that you configure on the Output Settings tab of the Activity.

False: Select False to skip the validation of the JSON data in your input string
against the schema you configured.

This field can be configured with an app property.

TIBCO Flogo® Extension for Visual Studio Code User Guide

145 | App Development

Input

Field Description

jsonString The string containing the JSON data that you want to parse. This Activity
creates a JSON object with the parsed JSON data. Enter the string manually or
map it to an element from the output of the trigger, flow input, or one of the
preceding activities.

You have the option of saving the string in a file and pointing to the file. If you
use a file as an input, you must provide the file path here. The path must be
prefixed with file:// for example, if the path to your file is
/users/<yourname>/myfile.json, you would enter file:///users/<yourname>/myfile.json

Output Settings

Field Description

Schema The schema that you want to use to create the JSON object. You have the option
to validate the stringified JSON (input to the Activity) against this schema.

Output

The output schema is displayed in a read-only tree format.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

ReplyToTrigger
This activity is placed under the General category. Use this Activity to map output values
and to send the reply to the trigger. The flow execution continues after the reply is sent to
the trigger, unlike the Return Activity.

When using this Activity, keep the following considerations in mind:

TIBCO Flogo® Extension for Visual Studio Code User Guide

146 | App Development

l The flow in which you want to add the ReplyToTrigger Activity must have a trigger.

l The input of the Activity must be consistent with the flow output schema.

l Do not use this Activity with subflows. To send a reply from subflows, use the Return
Activity.

l If the flow output schema is updated, you must open the Activity once so that the
update reflects in the Activity.

l You can add multiple ReplyToTrigger activities in one flow but only the first Activity
sends the reply to the trigger.

ProtobufToJSON
This Activity is placed under the General category. Use the ProtobufToJSON Activity to
convert protocol buffer messages to JSON format.

For information about the .proto files, see the proto3 Language Guide.

Settings

Field Description

Proto File Click Browse and select a .proto file. The file must contain only the proto3
syntax.

Message
Type
Name

All the message types from the .proto file are provided as list options. Select the
message type from the list whose corresponding proto3 message you want to
convert.

Include
Default
Values

The protocol buffer message fields that have null values are excluded when
converting to another format. Set this field to True to include the message fields
with their default values in the JSON format output.

Default: False

Input

Enter the protoMessage as the Activity input. The protoMessage must be a Base64-
encoded string.

https://developers.google.com/protocol-buffers/docs/proto3

TIBCO Flogo® Extension for Visual Studio Code User Guide

147 | App Development

Output

The Output tab displays the names of the fields for the selected message type from the
.proto file.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

No-Op
This Activity is placed under the Default category. You can use the No-Op Activity to
implement branching of activities in the Main flow and the Error handler. The No-Op
Activity has no input or output fields. It does not affect the values of the previous Activity.
You can insert this Activity at any position in the flow and also use it with subflows.

SendMail
Use the SendMail Activity to send emails using an SMTP server.

Note:

l To securely configure the SendMail Activity using the smtp.gmail.com server,
use TLS on port 587 or SSL on port 465.

l The SendMail activity allows you to use the password of third-party apps
as mandated by popular mailboxes such as Gmail, Yahoo, Outlook, and
AOL. You cannot use your regular mailbox username and password with
this activity.

Settings

The Settings tab has the following fields.

TIBCO Flogo® Extension for Visual Studio Code User Guide

148 | App Development

Field Description

Server The hostname or IP address for the mail server.

Port The port used to connect to the server.

Username The username to use when authenticating to the mail server.

Password The password to use when authenticating to the mail server.

Connection
Type

The type of connection to be used to communicate with the mail server.
Select TLS or SSL depending on the security configuration of the mail server.
In case no security is enabled on the mail server, select NONE.

Server
Certificate

(Available only when Connection Type is set to SSL)

The server or CA certificate to be used for the secure connection.

The certificate must be PEM encoded.

Input

This tab displays the fields that are used as input for the Activity.

Input Item Description

message_
content_type

The type of message content. Valid types are "text/plain" or "text/html".

sender The email address of the sender.

recipients The recipient list for the email.

You can send the mail to multiple recipients. Provide a list of recipients in a
single string by using a comma as the delimiter.

cc_recipients The CC recipient list for the email.

You can send the mail to multiple recipients. Provide a list of recipients in a
single string by using a comma as the delimiter.

TIBCO Flogo® Extension for Visual Studio Code User Guide

149 | App Development

Input Item Description

bcc_recipients The BCC recipient list for the email.

You can send the mail to multiple recipients. Provide a list of recipients in a
single string by using a comma as the delimiter.

reply_to Email address to which the reply message is to be sent.

subject The subject of the email.

message The content of the email message.

attachments File attachments to be sent along with the email message.

To map the child elements, add array.forEach() to the attachments field and
then specify the child elements as follows:

l file: Specify the path of the file to be attached using file://<path> or
specify the content of the file by enclosing it in double-quotes.

file: In Flogo, if the file is local to your container, specify the path of
the file to be attached using file://<path>. For example, if you have
downloaded a file using the Box or Dropbox Activity, you can use
file://<path> to attach the file. Alternatively, enclose the contents of the
file in double quotes and specify them in the file field.

Note: In Flow Tester, file://<path> cannot be specified.

l filename: Specify the name of the file to be attached.

l base64EncodedContents: If the file is a Base64 encoded file, set this field
to true. The default is blank (or false).

To send multiple attachments, use the Loop feature.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

TIBCO Flogo® Extension for Visual Studio Code User Guide

150 | App Development

SharedData
The SharedData Activity enables sharing of runtime data within a flow or across flows in
an app. This Activity simplifies your flow designs. The advantage of using this feature is
that you can set data anywhere in the main flow, subflow, or error handler and the data
can be shared across the entire flow or app.

This Activity involves the following operations:

l Get: Retrieves data from the selected scope (either flow or app) based on a key.

l Set: Sets data for the selected scope based on a key.

l Delete: Deletes data from the app data.

For example, you can set the values in a parent flow. In a subflow, you can add the
SharedData Activity and use the Get operation to access the values set in the parent flow.

Settings

The Settings tab has the following fields.

Field Description

Scope Options are:

l Flow: Data can be shared within the flow instance and its subflow
instances only.

l Application: Data can be shared across flow instances within an app.

Default: Flow

Operation The operation that needs to be performed. Options are:

l Get: Retrieve the data from the selected scope by key.

l Set: Set the data for the selected scope by key.

l Delete: (Available only if Scope is selected as Application)
Optionally, you can delete app data based on the input key. For
example, if you need data for one-time use only, you can delete the data
to avoid storing it in memory unnecessarily. Otherwise, the data is
deleted when you scale down or stop the app.

TIBCO Flogo® Extension for Visual Studio Code User Guide

151 | App Development

Field Description

Default: Get

Data Type The data type of the shared data. Supported types are string, integer, number,
and object.

Object
Schema

(Only if you select Data Type as object) Specify the object's JSON data or
schema in Object Schema. You can also specify an app-level schema by using
the Use app-level schema option.

Input

This tab displays the fields that are used as input for the Activity.

Input Item Description

key Available operations are:

l Set: Specify any value that you want to use while setting the data.

l Get: If you want to retrieve data using the Get operation, you must use
the same value that was specified while using the Set operation for
setting the data for a scope.

App properties can also be used to set or get the key.

input/data (Set operation only) You can provide values of the Data Type selected on the
Settings tab.

Output

This tab displays the output of the Activity. Note that the Set operation does not have any
output.

Input Item Description

exist Indicates whether the data for the key specified on the Input tab exists.

TIBCO Flogo® Extension for Visual Studio Code User Guide

152 | App Development

Input Item Description

data Output data based on the input specified on the Inputtab.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

Sleep
The Sleep Activity is an asynchronous Activity that suspends the execution of a flow for a
specified time.

Settings

Field Description

Interval
Type

The unit of the time interval for which the execution of the flow must be
suspended. Supported types are Millisecond, Second, and Minute.

Default: Millisecond

Interval The time interval for which the execution of the flow must be suspended.

Default: 0

Input

Note: The fields on the Input tab are required only if you need to pass values
from the output of a previous Activity or trigger. Otherwise, you can directly
specify the values on the Settings tab. Values specified on the Input tab take
precedence over values specified on the Settings tab, if values are configured in
both the tabs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

153 | App Development

Field Description

Interval
Type

The unit of the time interval for which the execution of the flow must be
suspended. Supported types are Millisecond, Second, and Minute.

Default: Millisecond

Interval The time interval for which the execution of the flow must be suspended.

Default: 0

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

Throw Error
Throw Error is an Activity that throws an error when executing a flow. Depending on your
business logic, you can also use this Activity along with the error handler and branching
conditions.

Input

The Input tab has the following fields.

Field Description

message The message element is used to specify the error message string to be output.

data The data element is used to configure any data related to the error.

Loop

For information on the Loop tab, see Using the Loop Feature in an Activity.

TIBCO Flogo® Extension for Visual Studio Code User Guide

154 | App Development

JSONToXML
This Activity takes stringified JSON as input and converts it into a XML String, which can
then be accessed by the downstream activities that follow.

JSONtoXML Conversion limitation

The difference between XML and JSON impose the following limitation.

l JSON is a maplike structure with key-value pairs and XML stores date in a tree
structure with namespaces for different data categories. So the input JSON not
having any a tree structure will not result in a valid XML.

Input

Field Description

jsonString This field takes stringified JSON data. We can directly pass stringified JSON
data manually or map the textContent coming from previous activity (e.g. GET
JSON file from S3).

Output

Display output as read-only jsonObject.

XMLToJSON
This Activity takes stringified XML data as input and converts it into a JSON object, which
can then be accessed by the downstream activities that follow.

XMLtoJSON Conversion limitations

The differences between XML and JSON impose some of the below limitations.

l The XML element and attribute names should not contain any delimiter used in JSON

l XML comments (<!-- comment -->) are ignored in the JSON document

TIBCO Flogo® Extension for Visual Studio Code User Guide

155 | App Development

l DTD declarations are ignored.

l XML processing instructions are ignored.

l All XML element/attribute values are transformed to a JSON string as the conversion
is not schema (xsd) aware. Set typecast to true to convert string data starting with
number to integer and string data starting with true/false to boolean. Set ordered
field as true to set the key in alphabetical order in JSON.

l Entity references are ignored.

l XML attribute then while converting to json, hyphen (-) used as a prefix in json to
indicate attribute and # indicate key.

Input

Field Description

xmlString This field takes stringified XML data. We can directly pass stringified xml data
manually or map the textContent coming from previous activity (e.g. GET XML
file from S3).

Ordered This field takes boolean value. When set ordered to true, set key in JSON in
alphabetical order.

typeCast This flag controls the conversion of string data. When enabled (True): String
data starting with a number is converted to an integer. String data starting
with "true" or "false" is converted to a boolean.

Output Settings

Field Description

Schema Configure expected object structure using JSON schema or JSON sample.

Output

Display output as read-only xmlString.

TIBCO Flogo® Extension for Visual Studio Code User Guide

156 | App Development

Connections
Along with the activities and triggers, some connections are also available for general use.
Connections contain the parameters that are needed for a client connection to an external
data provider or interface. These details are then used by activities or triggers to connect
at runtime.

HTTP Client Authorization Configuration
You can set up the HTTP Client Authorization Configuration connection from the
Connections tab to add authentication and authorization to your Flogo apps. To enable
the connection you have set up, refer to the InvokeRESTService Activity.

The connection has the following fields:

Field Description

Name Enter a name for the connection.

Description
(optional)

Enter a description for the connection.

Authorization Type Select an authentication type.

The connection supports two types of authorization:

l Basic

l OAuth2

If you select Basic as the Authorization Type, the following fields are displayed:

User Name Enter a username for the connection.

Password (optional) Enter a password for the connection.

Some services can send authentication data with username only. In
such cases, you need not provide any password.

If you select OAuth2 as the Authorization Type, the following fields are displayed:

TIBCO Flogo® Extension for Visual Studio Code User Guide

157 | App Development

Field Description

Grant Type Indicates the method by which an app can obtain an access token.

Select one of the following supported types:

l Authorization Code

l Client Credentials

Callback URL The connection is redirected to this URL after authorization. Your
app's Callback URL must match this URL.

This is a read-only field.

Auth URL Authorization server API endpoint. For example, the Google
authorization URL is: https://accounts.google.com/o/oauth2/v2/auth

This field is an app-property enabled field.

Additional Auth
URL Query
Parameters
(optional)

Additional query parameters to get the refresh token based on the
service you request for. For example:

access_type=offline&prompt=consent

token_access_type=offline

Access Token URL The token API endpoint is used to get access tokens. For example:

l Google:
https://oauth2.googleapis.com/token

l Salesforce: https://login.salesforce.com/services/oauth2/token

This field is an app-property enabled field.

Client Id The client id of the OAuth2 app. You can change this value at
runtime.

This field is an app-property enabled field.

Client Secret The client secret of the OAuth2 app. You can change this value at
runtime.

This field is an app-property enabled field.

TIBCO Flogo® Extension for Visual Studio Code User Guide

158 | App Development

Field Description

Scope Specifies the level of access that the app is requesting. You can
specify multiple space-delimited values. For example:

Salesforce - chatter_api refresh_token

You can also set the value of this field from an application property at
runtime.

Note: If Authorization Code is selected as Grant Type for the
connection, you cannot override the scope value.

Audience The unique identifier of the audience for an issued token.

The audience value is an app client ID for an ID token or the API that
is being called for an access token.

This field is an app-property enabled field.

Client
Authentication

The method by which authentication parameters are sent. Based on
the service request, you can send authentication parameters in
Header, Body, or Query.

l Header - Indicates sending authentication parameter through
headers.

l Body - Indicates sending authentication parameters through
the body with application/x-www-form-urlencoded.

l Query - Indicates sending authentication parameters through
query parameters.

Token Indicates the token, which is a Base64 encoded value with app
property enabled.

This is a read-only field.

TIBCO Flogo® Extension for Visual Studio Code User Guide

159 | App Development

Note: For refresh tokens:
Only the standard OAuth2 workflow is supported.

The OAuth 2.0 service provider must also return refresh tokens when you obtain
an access token from the OAuth flow. For information on obtaining refresh
tokens, refer to your OAuth 2.0 provider. You can then add this information in
the Additional Auth URL Query Parameters field or the Scope field. This is
necessary for long-running apps where the access tokens may expire.

The refresh token operation only happens when the server returns HTTP status
code 401.

File Category Trigger and Activities
You can use these activities to perform create, read, write, copy, remove, rename, and list
files operation. It also provides activities to archive and unarchive files. You can use the
trigger File Poller to watch the directory to poll the file events, such as Create, Write,
Rename, Remove, and Move.

File Poller Trigger
The File Poller Trigger polls for files or directories when a change (Create, Write, Rename,
Remove, Move file event) is detected in the specified directory. To use this trigger, you
simply configure your File Poller TrIgger settings and add it to the trigger pane and create
a flow.

Trigger Settings

Field Description

Handler Settings

Polling
Directory

The path and name of the directory to watch for the file events.

TIBCO Flogo® Extension for Visual Studio Code User Guide

160 | App Development

Field Description

Include Sub-
Directories

When this field is set to true, the trigger includes all sub-directories in the
Polling Directory to watch for the file events.

File Filter Files that match the regular expression will be watched. For example, enter
^abc[a-zA-Z0-9]*.xml$ to poll the xml files starting with abc

Polling Interval
(in
milliseconds)

Name of the service defined in the .proto file. You must create one gRPC
trigger for any specific .proto file. Any subsequent gRPC triggers using the
same .proto file can select the service and method they need from the
dropdown list.

Mode The type of listing you want to retrieve. You can select from the following
options:

l Only Files

l Only Directories

l Files and Directories (Default)

Poll File Events The file poller trigger polls for following events.

l Create

l Write

l Rename

l Remove

l Move

Select the checkbox next to these event you want to poll inside the
specified directory.

For example: If the Create event is not selected, the newly created files or
directories are ignored while polling for any change.

Map to Flow Inputs
You can go to this tab to map the trigger output to flow input. The output for the activity is
described in the following table.

TIBCO Flogo® Extension for Visual Studio Code User Guide

161 | App Development

Output Item Description

action The occurred event to trigger the File Poller activity. The possible values are:
Create, Write, Rename, Remove, or Move.

fileMetadata This object contains the fullPath, name, oldPath, size, mode, modTime and
isDir.

Create File
The Create File activity creates a new file or directory with the specified name at specified
location.

Settings

Field Description

Is a Directory When this field is set to true, the activity creates a directory instead
of a file.

Create Non-Existing
Directories

When this field is set to true, the activity creates all directories in the
specified path, if they do not already exist. If this field is set to false
with non-existing one or more directories in the specified path, it
throws an error.

Input

The Input tab displays the following fields.

Field Description

fileName The path and name of the file to create. Set the Is a Directory field to true on
the Settings tab to specify that it is a directory you want to create.

overwrite Set this field to true to overwrite the existing file with the same name if it exists.

TIBCO Flogo® Extension for Visual Studio Code User Guide

162 | App Development

Field Description

In case of directory, overwrite happens only if existing directory is empty.

If the specified file or directory exists and this field is set to false, then the
activity throws an error.

Output

The output schema displays all the metadata fields of a new file/directory in a read-only
format. The metadata object contains fullPath, name, size, mode, modTime and isDir fields.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Read File
The Read File activity is used to read a file and place its contents into the output of the
activity.

Settings

Field Description

Read as Representation type of content in the file you want to read. You can
select from the following options:

l Text

l Binary

With 'Text', output 'textContent' will hold the plain string. With
'Binary', output 'binaryContent' will hold the base64 encoded string.

TIBCO Flogo® Extension for Visual Studio Code User Guide

163 | App Development

Field Description

Uncompress This field specifies whether to uncompress the file using GUnZip
format. Select GUnzip to unzip the file. Choose None for no
decompression.

Input

The Input tab displays the following fields.

Field Description

fileName The name and path of the file to read.

For example: /opt/flogo/filename

Output

The output schema displays the metadata fields and the file content of the file in a read-
only format. This object contains fileContent in either text or binary and metadata fields,
such as fullPath, name, size, mode, modTime, and isDir.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

List Files
The List Files activity returns information about files or directories, or a listing of all the
files in the specified directory.

TIBCO Flogo® Extension for Visual Studio Code User Guide

164 | App Development

Settings

Field Description

Mode The type of listing you want to retrieve. You can select from the
following options:

l Only Files

l Only Directories

l Files and Directories (Default)

Input

The Input tab displays the following fields.

Field Description

fileName The path and name of the file or directory to monitor. You can also use
wildcard characters to monitor a directory for files that match the provided
specification.

For example, flogo/files/*.log

It lists the files directory that have a .log extension

Output

The output schema displays all the metadata fields of a file/directory in a read-only array
format. The metadata object contains fullPath, name, size, mode, modTime, and isDir fields.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

TIBCO Flogo® Extension for Visual Studio Code User Guide

165 | App Development

Write File
The Write File activity writes content to the specified file.

Settings

Field Description

Write as Representation type of content in the file you want to write. You can
select from the following options:

l Text

l Binary

With 'Text', input textContent will hold the plain string. With
'Binary', input binaryContent will hold the base64 encoded string.

Create Non-Existing
Directories

When this field is set to true, the activity creates all directories in the
specified path, if they do not already exist. If this field is set to false
with non-existing one or more directories in the specified path, it
throws an error.

Compress This field specifies whether to compress the file using GZip format.
Specify None for no compression, and GZip for a compressed output
file.

Note: When you specify GZip for this field, rename the file to use
the .gz suffix and use gunzip to decompress the file.

Input

The Input tab displays the following fields.

Field Description

fileName The name and path of the file or directory.

For example: /opt/flogo/filename

TIBCO Flogo® Extension for Visual Studio Code User Guide

166 | App Development

Field Description

overwrite Set this field to true to overwrite the existing file with the same name.

If the specified file exists and this field is set to false, then the activity
appends the content to an existing file.

textContent The contents of the file (text files). This field is present when Write as is
set to Text.

binaryContent The base64 encoded content of the file (binary files). This field is present
when Write as is set to Binary.

Output

The output schema displays all the metadata fields of a file in a read-only format. The
metadata object contains fullPath, name, size, mode, modTime, and isDir fields.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Copy File
The Copy File activity copies files and directories to a new location.

Settings

Field Description

Create Non-Existing
Directories

When this field is set to true, the activity creates all directories in the
specified path, if they do not already exist. If this boolean is set to
false with non-existing one or more directories in the specified path,

TIBCO Flogo® Extension for Visual Studio Code User Guide

167 | App Development

Field Description

it throws an error.

Include Sub-Directories When this field is set to true, the activity includes all sub-directories
in the source directory, when the source to copy is a directory.

Input

The Input tab displays the following fields.

Field Description

fromFileName The path and name of the file or directory
to copy.

For example, to copy a directory, specify
/opt/flogo/myDirectory.

To copy all text files in a directory, specify
/opt/flogo/myDirectory/*.txt.

toFileName The destination for the copy operation.
For example: /opt/flogo/copyfilename

overwrite Set this field to true to overwrite the
existing file with the same name, if it
exists. In case of directory, overwrite
happens only if existing directory is
empty.

If the specified file or directory exists and
this field is set to false, then the activity
throws an error.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

TIBCO Flogo® Extension for Visual Studio Code User Guide

168 | App Development

Rename File
The Rename File activity is used to rename file or directory.

Settings

Field Description

Create Non-Existing
Directories

When this field is set to true, the activity creates all directories in the
specified path, if they do not already exist. If this field is set to false
with non-existing one or more directories in the specified path, it
throws an error.

Input

The Input tab displays the following fields.

Field Description

fromFileName The path and name of the file or directory
to rename.

For example, to rename a directory,
specify /opt/flogo/myDirectory

toFileName The new name and path of the file or
directory. For example, /opt/flogo/newfilename

overwrite Set this field to true to overwrite the
existing file with the same name when
renaming.

If the specified file or directory exists and
this field is set to false, then the activity
throws an error.

Note: Overwrite feature is only
applicable for files.

TIBCO Flogo® Extension for Visual Studio Code User Guide

169 | App Development

Output

The output schema displays the metadata fields of a new file/directory in a read-only
format. The metadata object contains fullPath, name, size, mode, modTime, and isDir fields.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Remove File
The Remove File activity removes the specified file or directory.

Settings

Field Description

Remove Directory
Recursively

When this field is set to true, this activity will delete the entire
directory and all its subfolders and files recursively.

Input

The Input tab displays the following fields.

Field Description

fileName The path and name of the file or directory
to remove.

For example: /opt/flogo/filename

Output

The output schema displays the metadata fields of a new file/directory in a read-only
format. The metadata object contains fullPath, name, size, mode, modTime, and isDir fields.

TIBCO Flogo® Extension for Visual Studio Code User Guide

170 | App Development

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Archive Files
The Archive Files activity archives files/directory to the specified file destination.

Settings

Field Description

Archive Type This field specifies the type of archive file format that supported by
this activity. As of now only ZIP archive file format is supported.

Input

The Input tab displays the following fields.

Field Description

sourceFilePath The path and name of the file or directory
to archive.

You must specify an absolute path.

For example: /opt/flogo/myDirectory.

destinationPath The name and location of the archive file
where you want the compressed file.

For example: /optflogo/filename.zip

Output

The output schema displays the destination path of the new archive file in a read-only
string format.

TIBCO Flogo® Extension for Visual Studio Code User Guide

171 | App Development

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Unarchive Files
The Archive Files activity is a synchronous activity that archives content to the specified file
destination.

Settings

Field Description

Archive Type This field specifies the type of archive file format that supported by
this activity. As of now only ZIP archive file format is supported.

Input

The Input tab displays the following fields.

Field Description

sourceFilePath The path and name of the file or directory
to archive.

For directories, you must specify an
absolute path.

For example: /opt/flogo/myDirectory

destinationPath The name and location of the archive file
or directory where you want the
compressed file.

For example: /opt/flogo/filename

TIBCO Flogo® Extension for Visual Studio Code User Guide

172 | App Development

Output

The output schema displays the destination path of the new archive file in a read-only
string format.

Loop

For information on Loop, see the "Using the Loop Feature in an Activity" section in the
TIBCO Flogo® Extension for Visual Studio Code User Guide.

Developing APIs
You can take an API-first development approach to implement APIs from a Swagger
Specification 2.0, OpenAPI Specification 3.0, or GraphQL schema. You can upload an API
specification file to a ReceiveHTTPMessage trigger or a GraphQL schema to a GraphQL
trigger.

Using an OpenAPI Specification
To configure a Flow with an API specification file, you can add a ReceiveHTTPMessage
trigger to the flow and upload an API specification file.

TIBCO Flogo® Extension for Visual Studio Code User Guide

173 | App Development

When you create an app from an API specification file, you must add the
ConfigureHTTPResponse and Return activities in the flow. The mappings from trigger
output to flow inputs get configured based on the definitions in the specification. Configure
and map the input of the ConfigureHTTPResponse activity. The output of the
ConfigureHTTPResponse activity can be mapped with the input of the Return activity. If
you have multiple response codes configured in the REST trigger, the first response code is
configured in the ConfigureHTTPResponse activity by default. The only exception to this is
if you have a response code of 200 configured. In that case, the 200 response code is
configured in the ConfigureHTTPResponse activity by default.

Considerations when using an API specification file to create a flow:

l Swagger Specification 2.0 and OpenAPI Specification 3.0 are supported.

l Currently, only the JSON format is supported.

l Cyclic dependency is not supported when creating flows from specifications. For
example, if you have a type Book that contains an object element of the type, Author.
The type Author in turn contains an element of the type Book, that represents the
books written by the author. To retrieve the Author, it creates a cyclic dependency
where the Author object contains the Book object and the Book type, in turn, contains
the Author object.

l String, integer, and boolean are the supported data types. A data type that appears
in your specification but is not supported results in an error being displayed.

l Schema references within schemas are not supported.

l If the specification has a response code other than 200 (OK) or 500 (Error), the
method that contains the unsupported response code is not created.

l You can enter a schema for the response code 200, but the 500 response code must
be a string.

l Basepath element in the schema is not supported.

Note: The REST reply data type is by default set to any data type. To configure
the reply to an explicit data type, see Configuring the REST Reply section.

To create an app using an API specification and upload the specification file:

Procedure

TIBCO Flogo® Extension for Visual Studio Code User Guide

174 | App Development

1. Create a New Flogo app.

2. Open the created flow and drag the ReceiveHTTPMessage trigger to it.

3. Set the Configure Using API Specs radio button to True.

4. Browse for the API spec file. If the API spec file is valid, then the supported path and
associated methods populate the dropdown menu.

5. In the dropdown menu, select the path and method and finish the trigger
configuration.

You have added the ReceiveHTTPMessage trigger with parameter values, Request
body, and Response body from the selected API specification file.

Note: Available data and flow inputs are auto-mapped in Map to Flow Inputs.
Available data and trigger reply are auto-mapped in Map from Flow Outputs.

The supported Swagger 2.0 and OpenAPI Specification 3.0 features are given in the
following list:

l Path Templating

l Media Type

o Request Types: application/json, multipart/formdata, x-www-form-urlencoded

o Response Types: text/plain, application/json

l Multiple Status Codes

l Path Item Object

l Parameter Object

l Request Body Object

l Reference Object

l Header Object

l Security Scheme Object

l allOf, oneOf, and anyOf keywords

For more information, refer to OpenAPI Specification.

https://swagger.io/specification/

TIBCO Flogo® Extension for Visual Studio Code User Guide

175 | App Development

Configuring the REST Reply
When creating a REST app from a Swagger 2.0 or OpenAPI 3.0 API specification, the
ReceiveHTTPMessage reply data type is set to any by default. You must explicitly configure
the reply type.

To explicitly configure the reply type, add a ConfigureHTTPResponse Activity in the flow.
This Activity must immediately precede the Return Activity in the flow.

You can configure custom codes that you want to use in the HTTP reply on the Reply
Settings tab of the ReceiveHTTPMessage trigger.

To configure your HTTP reply, perform the following steps:

Procedure
1. Open the REST trigger configuration pane.

2. On the Reply Settings tab of the ReceiveHTTPMessage REST trigger, configure the
custom codes that you want to use. Refer to the section, "REST Trigger" in the TIBCO
Flogo® Extension for Visual Studio Code User Guide.

3. Add a ConfigureHTTPResponse Activity immediately preceding the Return Activity in
the flow.

4. Open the ConfigureHTTPResponse Activity by clicking it and configure it as follows:

a. On the Settings tab:

i. If your flow is attached to multiple REST triggers, select the trigger in
which you have configured the code you want to use from the Trigger

TIBCO Flogo® Extension for Visual Studio Code User Guide

176 | App Development

Name drop-down menu. The Trigger Name field does not display if your
flow is attached to only one REST trigger.

ii. Select a response code from the Code field menu. Only the codes
configured in the selected trigger are displayed in the menu.

b. The Input tab displays the schema for the response code. Map the elements or
manually enter a value for the elements.

c. Click Save.

5. Configure the Return Activity by mapping the code and body (which is currently of
data type any).

6. Click Save.

7. On the Map from Flow Outputs tab in the ReceiveHTTPMessage trigger, map the
code and body to the corresponding elements from the flow output.

8. Click Save.

Using GraphQL Schema
GraphQL provides a powerful query language for your APIs enabling clients to get the exact
data that they need. It can get data from multiple resources in a single request by

TIBCO Flogo® Extension for Visual Studio Code User Guide

177 | App Development

aggregating the requested data to form one result set. GraphQL provides a single endpoint
for accessing data in terms of types and fields.

The GraphQL trigger turns your app into a GraphQL server implementation. Each flow in
the app acts like a GraphQL field resolver. So, the output of the flow must match the return
type of the field in the schema.

You can create a flow, choose the GraphQL trigger, and drop it to the trigger panel. You
must then select the type of GraphQL operation (query or mutation) and resolver. Save and
sync your trigger input and output.

Note: This section assumes that you are familiar with GraphQL. To learn about
GraphQL, refer to the GraphQL documentation.

GraphQL server implementation

To obtain samples of GraphQL schemas and app JSON files, go to
https://github.com/project-flogo/graphql.

The GraphQL schema must have either .gql or .graphql extension.

For more information, see GraphQL Trigger.

Using App Properties and Schemas
This section discusses how to create app properties, which you can use when populating
field values. It also describes how to create a schema that can be reused in your app.

App Properties
App properties provide a way to override property values after an app has been deployed
to Data Plane. You can configure some supported fields with app properties when
configuring triggers and activities. Connection-related app properties cannot be used for
configuration anywhere within an app. Their only purpose is to allow you to change a
connection value if there is a need during runtime. Configuration fields in your flow that
require their values to be changed when the app goes from a testing stage to production
are best configured using app properties instead of hard coding their values. App

https://github.com/project-flogo/graphql

TIBCO Flogo® Extension for Visual Studio Code User Guide

178 | App Development

properties for triggers and activities reside within the app. App properties for connections
are not modifiable from the App Properties dialog in the app.

The URL field in an Activity is a good example of a field for which you would want different
values, for instance, an internal URL when testing the app and an external URL when the
app goes into production. You may want the URL used in the Activity to change when the
app goes from a test environment to production. In such a case, it is best to configure the
URL field in the Activity with an app property instead of hard-coding the URL. This way, you
can change the URL by changing the value of the app property used to configure the URL
field.

Before deploying the app, you can change the default value of an app property from the
App Properties dialog. Once you have deployed your app, you can change the default
values of the Environment Controls tab.

An app property value can have one of the following data types:

l string

l boolean

l number

l password

Values for the password data type are encrypted and are not visible by default. But when
configuring the password value, you can click the Show/Hide password property value
icon () to see the value temporarily to verify that it has been entered correctly.

When you deploy an app configured with app properties, the properties appear under the
Environment controls tab in Data Plane. You can change the values for any property from
this tab, but doing so requires a redeploying the app for the new values to take effect.
Similarly, any property that is added, deleted, or updated from the App Properties dialog
within an app, is reflected in the Environment controls tab only after redeploying the app.

Creating App Properties
You can create an app property as a standalone property or as a part of a group. Use a
group to organize app properties under a parent. A parent acts as an umbrella to hold
related app properties and is labeled with a meaningful name. A parent does not have a
data type associated with it. For instance, if you want to group all app properties

TIBCO Flogo® Extension for Visual Studio Code User Guide

179 | App Development

associated with a particular Activity, you can create a group with a parent that has the
Activity name and create all that Activity-related app properties under that parent.

As an example, you can create LOG_LEVEL as a standalone app property without a parent.
Or you can create it as a part of a hierarchy such as LOG.LOG_LEVEL with the parent of the
hierarchy being LOG and LOG_LEVEL being the app property under LOG. Keep in mind that
if you group properties, you must refer to them using the dot notation starting from the
parent. For example, the LOG_LEVEL property must be referred to as LOG.LOG_LEVEL. You
can nest a group within a group.

After you have created an app property, you must redeploy the app for the property to be
available from the Environment Controls tab in the UI. The same is true if you modify an
existing app property. You can modify app properties from the Environment Controls tab,
but you need to redeploy the app for the modifications to take effect.

App Properties Dialog Box Views
You can view existing app properties for an app in the App Properties dialog. By clicking
the +Group or +Property, the app properties dialog lets you add a group or a property and
rename it. An empty app properties' dialog looks like this:

Nested groups and properties can also be created from the app properties dialog by
clicking the +group or +property of each group.

TIBCO Flogo® Extension for Visual Studio Code User Guide

180 | App Development

The name of the property added can be changed from default to anything you want. Even
the type of property value can be changed by selecting it from the dropdown. You can drag
a property with unique names from one group to another but not within the same group.

Creating a Standalone App Property
To create a standalone app property for your app, follow the steps below.

To create a group, see Creating a Group.

Note: The standalone properties (properties that are not in a group) or the
properties within the same group must have unique names.

TIBCO Flogo® Extension for Visual Studio Code User Guide

181 | App Development

Procedure
1. If your app does not exist, create a new app, and click the Property button shown on

the screen below.

If your app exists, then open the app details page and click Property.
The App Properties dialog opens.

If you already have existing properties, they are displayed. Click +Property to add
another property.

TIBCO Flogo® Extension for Visual Studio Code User Guide

182 | App Development

2. Click the newly created property to make it editable and rename it. The property gets
created.

Note: The property name must not contain any spaces or special
characters other than a dash (-) or an underscore (_).

3. Select the data type for the new property from its dropdown list.

4. Enter a default value for the property in the text box next to the property.

Note: Only for certificates, the value must be of the format: <encoded_
value>. To get the encoded value of the contents, you can use
https://www.base64encode.org/ or any other base64 encoding tool.

For example, for an SSL certificate, you can specify the app property as follows:

Note: You can secure an application running on Kubernetes by creating a
secret that contains a Transport Layer Security (TLS) private key and
certificate. This secret can used by the client or service deployment at
runtime.

5. Save your changes for the edited or newly added fields.

Note: There are two methods to save your changes in Visual Studio.
You can hit Ctrl + S to save changes. Enable the Auto Save from File
menu and click outside the field to save your changes.

https://www.base64encode.org/

TIBCO Flogo® Extension for Visual Studio Code User Guide

183 | App Development

Note: TIBCO Flogo® Enterprise runs validation in the background as you
create a property. The validation considers the property type and default
value of the property that you entered. The field is highlighted in red for
user input until validation is successful for the entered value. Ensure you
do not skip this step of saving your newly created property or group.

6. Deploy (or redeploy) the app to the Data Plane for the property to be available from
the Environment Controls tab in the UI.

Creating a Group
You can create one or more standalone app properties or group app properties such that
they show up in a hierarchy. A group (or hierarchy) consists of a parent node, which is just
a label and does not have a data type associated with it. You must create properties within
the parent. You can do so in the Application Properties dialog. When creating a group,
you must add the parent first and then create the app properties under the parent.

Note:

l With the drag option, a standalone property can be rearranged to another
location or a property under the group can be moved to another group.

l A group with its nested groups and properties can be dragged to move
from one location to another. Also a nested group can be moved up in the
hierarchy or to the root level. However, no two groups can have the same
name on the same level.

l Group names within an app must be unique. Also, property names within a
group must be unique.

l You cannot create a group and an app property with the same name in the
same hierarchy.

Procedure
1. Open the app details page and click App Properties.

2. Click +Group on the upper-right corner to add the group.

3. Click the newly created group name to make it editable and enter a meaningful
name for the group.

TIBCO Flogo® Extension for Visual Studio Code User Guide

184 | App Development

The group gets created. The group is simply a label and cannot be used by itself. So,
you must add a group or a property within the group.

4. To add a property within the group, hover your mouse cursor to the extreme right of
the group until the +Property button appears in the group row.

5. Click the +Property button to add the property and rename it.

6. Select a data type for the property and enter a value. Entering a value and selecting a
data type is mandatory.

7. Save your changes for the newly created property after populating them with the
correct value.

The property gets created under the parent.

Note: You can even add a nested group under the parent group by clicking
+Group in the group row.

8. Deploy (or redeploy) the app to Data Plane for the group to be available from the
Environment Controls tab in the UI.

Deleting a Group or Property
An existing group or a property can be deleted in the following ways.

To delete a property:

1. Open the App Properties dialog from the app details page.

2. Hover your mouse cursor to the extreme right end of the property and click Delete.

To delete a group or a nested group:

TIBCO Flogo® Extension for Visual Studio Code User Guide

185 | App Development

1. Open the App Properties dialog from the app details page.

2. Hover your mouse cursor to the extreme right end of the group and click Delete. A
confirmation window appears.

Here,

l Delete all child properties and groups deletes all the standalone properties
and nested groups and properties under the group.

l Fold all children into Group_2 > Group_1 deletes the nested group but the
properties under the nested group will be shifted into the parent group.

l Move all children to top level deletes the parent or a nested group and shift
all the properties to the top level as a standalone property.

3. Select the desired delete option on the confirmation window and click Confirm.

Caution: The property path mappings may update on editing the property or on
moving a property from a nested group to a parent group or if the property is
shifted out of the group to the top level as a standalone property.

Using App Properties in a Flow
Configuring a field with an app property is recommended for fields that require their values
to be overridden when the app goes into production. Hence, the decision as to which fields
in an Activity should support app properties (which fields can be configured using an app
property) must be decided at the time when the extension for the category is being
developed. The fields that can be configured using an app property display a slider button
against their names in the UI.

Connection-specific app properties are visible in the App Properties dialog after you select
a connection when configuring the Activity or trigger, but they appear in read-only mode.
This is because connections are reusable across apps and connection-related app
properties are managed (refreshed) automatically. Connection-related app properties
cannot be used for configuration anywhere within an app. Their only purpose is to allow
you to change a connection value if required during runtime. For more details on how the
connection properties get created and used, see Using App Properties in Connections.

To configure a field with an app property:

Procedure

TIBCO Flogo® Extension for Visual Studio Code User Guide

186 | App Development

1. Open the flow details page.

2. Click the Activity whose field you want to configure with an app property.

This opens the configuration pane for the Activity.

3. Click the slider () against the name of the field that you want to configure with

an app property. If the field does not display a slider, the field cannot be configured
with an app property.

4. The App Properties dialog opens. Only those app properties whose data type
matches the data type of the field are displayed. You can also create a new group or
a property in this view. Here, you can add a single property or a group at a time.

5. Select the property that you want to configure for the field.

The property name appears in the text box for the field and the default value of the
property gets implicitly assigned to the field.

After configuring the property, if you want to change a field to use a different

TIBCO Flogo® Extension for Visual Studio Code User Guide

187 | App Development

property, hover your mouse cursor over the end of the text box for the field until the
Select another property value icon appears. Click the Select another property
value icon.

For a field that has been configured with an app property, you can unlink the
property from the field. For more information, see Unlinking an App Property from a
Field.

Using App Properties in the Mapper
You can use app properties when mapping an input field. The app properties available for
mapping are grouped under the $property domain-specific scope in the mapper. All
mapper rules and conditions apply to the use of app properties as well. For example, the
data type of the app property value must match with the input field data type when
mapping. Connection-related app properties that are used by any connection field in an
Activity do not appear under $property since they cannot be accessed. Connection-related
app properties cannot be used for configuration anywhere within an app. Their only
purpose is to allow you to change a connection value if required during runtime. Hence,
they cannot be used to map input fields.

For more information on how to use the mapper, see Data Mappings.

Unlinking an App Property from a Field Value
For a field that has been configured with an app property, if you decide later not to use the
app property, you can click and slide its slider ball () to the left. This removes the app
property from the field (unlink it from the field) but leaves the field configured with the
default value of the app property. The field retains the default value of the app property,
but it gets disassociated from the app property and appears as a manually entered value.

TIBCO Flogo® Extension for Visual Studio Code User Guide

188 | App Development

Hence, if you change the default value of the app property beyond this point, it does not
affect the value of the field.

Using App Properties in Connections
Connection-related app properties can be used to modify or configure app properties
anywhere within an app. If needed, the connection-related app properties also allow you to
change the connection values during runtime. Before you deploy your app, their values can
only be edited in the connection details dialog, the dialog where you provided the
credentials for the connection. You can open this dialog by editing the connection from the
Connections page in the UI. Connection-related properties are useful when you want to
change the value for one of the connection fields, for example, a URL, when an app goes
from the testing stage to production.

How the connection-related app properties get created

You cannot explicitly create connection-related properties. When you select a connection in
the Connection field of an Activity, the supported properties associated with that
connection automatically get created and populated in the App Properties dialog.

One property gets created for both Connection URL and Authentication Key fields in the
connection details dialog. The values you enter for the above two fields in the connection
details dialog become the default values for the connection properties. The properties take
their name from the connection field that they represent in the connection details dialog.

You begin by creating a connection. In the example below, only the Connection URL and
Authentication Key fields support app properties.

TIBCO Flogo® Extension for Visual Studio Code User Guide

189 | App Development

Once the connection is created, you can use it to configure the Connection field in an
Activity. In the example below, the connection created above is being used to configure the
Connection field of the TIBCO Cloud Messaging eFTL Connection Activity.

After configuring the Connection field with the connection, if you open the App Properties
dialog, the connection properties for the field (enclosed in the red box in the image below)
is displayed. Notice that only the supported properties (Connection URL and Authentication
Key) are displayed in a read-only mode.

The properties that are displayed in the App Properties dialog change dynamically based
on your selection of the connection to use. You can only view the connection properties.
You cannot edit or delete them from the App Properties dialog. Deleting the Activity that
uses the connection automatically removes the associated connection properties that the
Activity used from the App Properties dialog.

TIBCO Flogo® Extension for Visual Studio Code User Guide

190 | App Development

Using connection-related app properties

Connection-related app properties are available for use from the mapper. You can use
these properties to change a connection value (for example, a URL or password) just before
an app goes from a testing stage to production. All the mapped configurations can be pre-
checked using a flow tester or by creating a pre-check flow. Their values cannot be
changed from the App Properties dialog. Change their values in the connection details
dialog before pushing the app. You can change their values after an app has been deployed
from the Environment Controls tab. For more information, see Changing the Default Value
of a Property in the Environment Controls Tab.

Editing an App Property
You can change the default value or data type of an app property at any time.

After the app has been deployed to Data Plane, the app properties display in the
Environment Controls tab of the UI. You can change their values in this tab, but you need
to redeploy the app for your edits to take effect. For more information, see Changing the
Default Value of a Property in the Environment Controls Tab.

Changing the Default Value of a Property from the App
Properties Dialog Box
You can change the default value of an existing app property at any time after creating the
property. You must redeploy the app for the updated value to take effect and be visible in
the Environment controls tab. Before you deploy the app to the cloud, you can change
the default value in the App Properties dialog.

To change the default value of an existing app property:

Procedure
1. Open the App Properties dialog by clicking Properties on the app details page.

2. Click inside the text box for the property value that you want to change.

3. Edit the value.

4. Save your changes for the edited property.

5. Deploy (or redeploy) the app for your changes to take effect.

TIBCO Flogo® Extension for Visual Studio Code User Guide

191 | App Development

Changing the Default Value of a Property in the Environment
Controls Tab
The app properties that you created in the App Properties dialog become available in the
Environment Controls tab in the UI after you deploy (or redeploy) your app to Data Plane.
You can modify the values of the properties in the Environment Controls tab. The value
for the data type password remains encrypted in the Environment Controls tab. You can
modify the password values, but you cannot view the default password that was set in the
App Properties dialog for the property.
To change the value of a property in the Environment Controls tab:

Before you begin
You must have deployed (or redeployed) the app to Data Plane after adding or modifying a
property in the App Properties dialog.

Procedure
1. Click the Value column for the property to put it in edit mode.

2. Edit the property value as desired, then click outside the text box to save changes.
Optionally, do so for all properties whose values you want to change.

3. Click Push Updates for your changes to take effect.

Changing the Name or Data Type of an App Property after
Using It
If you change either the name of an app property or its data type after you have used the
property to configure a field in an Activity or trigger, the field displays an error message.
You must explicitly reconfigure the field to use the modified property by deleting the
property from the text box for the field and adding the modified property.

Exporting App Properties to a File
You can export the app properties to a .flogo file or a .properties file. The exported FLOGO file
can be used to override app property values. The .properties file can be used to create a
ConfigMap in Kubernetes. When using the exported properties file, the values in the
properties file get validated by the app during runtime. If a property value in the file is

TIBCO Flogo® Extension for Visual Studio Code User Guide

192 | App Development

invalid, you get an error saying so and the app proceeds to use the default value for that
property instead.

Overriding an App Property Locally
When running an app, you can override an app property by performing the following steps:

Procedure
1. Select the app that you want to run in Explorer View.

2. Navigate to Explorer View > Flogo App Workspace and click the dropdown icon.

3. Click the Run icon and select the Configure and Run icon.

4. Set the following environment variable FLOGO_APP_PROPS_ENV=auto and add the
app properties as comma-separated key-value pairs.

App Schemas
You can define a JSON schema that is available for reuse across an app. Creating an app-
level schema saves you the time and effort of entering the same schema multiple times. An
app-level schema can be used in any flow, Activity, or trigger configuration where a schema
editor is provided. You can simply pick an existing schema from a list. For example, app-
level schemas are available from the following locations:

l Inputs or Outputs tab of a flow (including Error Handler flows and subflows)

l Input or Output Settings tab of an Activity

l Output or Reply Settings tab of a trigger

App-level schemas are filtered based on the type of Activity or trigger. For example, only
JSON schemas are displayed in a REST trigger or Activity configuration.

Currently, Flogo Extension for Visual Studio Code only supports JSON type of schema.

Defining an App-Level Schema

Procedure

TIBCO Flogo® Extension for Visual Studio Code User Guide

193 | App Development

1. On the App Details page, click the SCHEMAS tab.

The SCHEMAS tab opens.

2. Click Create Schema.

Note: If your app has a schema already, click +Create to create a schema.

3. In Schema Name, enter a schema name.

4. JSON Schema is the only available schema type.

5. Enter the schema in the schema editor.

Note: If you enter JSON data in the editor, it is automatically converted to
JSON schema.

6. To save the schema, switch tabs and return to the SCHEMAS tab.

Result
After the schema is defined, it can be used in any Activity or trigger configuration by using
the Use an app-level schema button in the schema editor of the Activity or trigger.

Editing an App-Level Schema
When you make changes to an app-level schema, the changes are automatically reflected
everywhere the schema is used.

To edit an app-level schema:

Procedure
1. On the App Details page, click the SCHEMAS tab.

2. Click on the schema to be edited.

The schema page opens up.

3. Edit the schema name or the schema in the editor, as required.

If the app-level schema is used in any flow, Activity, or trigger, a warning is displayed.

TIBCO Flogo® Extension for Visual Studio Code User Guide

194 | App Development

Deleting an App-Level Schema

Warning: Deleting a schema removes its reference from all the places where it is
used, but it retains a copy of the schema in the fields that use the schema.

Procedure
1. On the App Details page, click the SCHEMAS tab.

2. Click the Delete icon beside the schema to be deleted.

Result
After confirmation, the selected schema is deleted.

Using an App-Level Schema
You can use an app-level schema from a flow, trigger, or Activity from the following tabs:

l Inputs or Outputs tab of a flow

l Input or Output Settings tab of an Activity

l Output or Reply Settings tab of a trigger

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are
particularly useful when you create blank flows that are not attached to any triggers.

Note: The schemas for input and output to a flow can be entered or modified
only on this Flow Inputs & Outputs tab. You cannot coerce the flow input or
output from outside this accordion tab.

Both these tabs (the Input tab and the Output tab) have two views:

l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to

TIBCO Flogo® Extension for Visual Studio Code User Guide

195 | App Development

save your changes or Discard to revert the changes. If you entered JSON data, the
data is converted to a JSON schema automatically when you click Save.

l List view:

This view allows you to view the data that you entered in the JSON schema view in a
list format. In this view, you can:

o Enter your data directly by adding parameters one at a time

o Mark parameters as required by selecting its checkbox.

o When creating a parameter, if you select its data type like an array or an object,
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide
a schema for the object or array.

o Use an app-level schema by selecting the Use an app-level schema button. On
the Schemas page that appears, click Select beside the schema that you want
to use. The name of the schema is displayed beside the Use an app-level
schema button and the schema is displayed in a read-only mode.

Note: You cannot edit an app-level schema in the List view if the
Use an app-level schema button is selected. To edit an app-level
schema, follow the instructions in the section Editing an App-level
Schema. You can, however, switch to another app-level schema by
clicking Change and selecting another app-level schema. You can
also unbind the app-level schema (by deselecting the Use an app-
level schema button) from a trigger, activity, or the input and
output of a flow. After you unbind the app-level schema, you can
make changes to it using the schema editor in the List view.

o Click Save to save the changes or Discard to discard your changes.

Input or Output Settings Tab of an Activity
When configuring an Activity, you can select an app-level schema on its Input or Output
Settings tab. For example, the following screenshot shows an app-level schema selected in
the Response Schema field of the Output Settings tab of an InvokeRESTService Activity.

#GUID-07B62C46-E02B-4EB5-82C0-C7C16223EA34
#GUID-07B62C46-E02B-4EB5-82C0-C7C16223EA34

TIBCO Flogo® Extension for Visual Studio Code User Guide

196 | App Development

Output or Reply Settings Tab of a Trigger
When configuring a trigger, you can select an app-level schema on its Output or Reply
Settings Tab. For example, the following screenshot shows an app-level schema selected
in the Reply Data Schema field of the Reply Settings tab of a ReceiveHTTPMessage
trigger.

Note: If there is a change in the schema attached to a trigger, click Sync to
synchronize it with the input and/or output of the flow.

TIBCO Flogo® Extension for Visual Studio Code User Guide

197 | App Development

Using Connectors
To use the Flogo connectors:

1. Create one or more connections.

2. If you do not already have an app, create an app.

3. Create a flow.

4. Add the activities to the connector that you use as needed.

5. Build and test the app locally using the appropriate runtime. For more information,
see Running Apps Locally

6. Deploy the app to the desired runtime environment.

Supported Flogo Connectors
The following Flogo Connectors are supported:

l TIBCO Flogo® Connector for SFTP

l TIBCO Flogo® Connector for OData

l TIBCO Flogo® Connector for Google Pub/Sub

l TIBCO Flogo® Connector for TIBCO® Data Virtualization

l TIBCO Flogo® Connector for Snowflake

l TIBCO Flogo® Connector for MongoDB

l TIBCO Flogo® Connector for Docusign

l TIBCO Flogo® Connector for Amazon Kinesis

l TIBCO Flogo® Connector for Microsoft Azure Data Factory

l TIBCO Flogo® Connector for Microsoft Azure Storage

l TIBCO Flogo® Connection for Microsoft Azure

l TIBCO Flogo® Connector for WebSockets

l TIBCO Flogo® Connector for Oracle Database

l TIBCO Flogo® Connector for Salesforce.com

https://docs.tibco.com/products/tibco-flogo-connector-for-sftp
https://docs.tibco.com/products/tibco-flogo-connector-for-odata
https://docs.tibco.com/products/tibco-flogo-connector-for-google-cloud-pub-sub
https://docs.tibco.com/products/tibco-flogo-connector-for-tibco-data-virtualization
https://docs.tibco.com/products/tibco-flogo-connector-for-snowflake
https://docs.tibco.com/products/tibco-flogo-connector-for-mongodb
https://docs.tibco.com/products/tibco-flogo-connector-for-docusign
https://docs.tibco.com/products/tibco-flogo-connector-for-amazon-kinesis
https://docs.tibco.com/products/tibco-flogo-connector-for-microsoft-azure-data-factory
https://docs.tibco.com/products/tibco-flogo-connector-for-microsoft-azure-storage
https://docs.tibco.com/products/tibco-flogo-connection-for-microsoft-azure
https://docs.tibco.com/products/tibco-flogo-connector-for-websockets
https://docs.tibco.com/products/tibco-flogo-connector-for-oracle-database
https://docs.tibco.com/products/tibco-flogo-connector-for-salesforce-com

TIBCO Flogo® Extension for Visual Studio Code User Guide

198 | App Development

l TIBCO Flogo® Connector for EMS

l TIBCO Flogo® Connector for HTTP

l TIBCO Flogo® Connector for Apache Kafka

l TIBCO Flogo® Connector for Apache Pulsar

l TIBCO Flogo® Connector for Amazon SNS

l TIBCO Flogo® Connector for Amazon SQS

l TIBCO Flogo® Connector for TIBCO Cloud™ Messaging

l TIBCO Flogo® Connector for Microsoft Azure Service Bus

l TIBCO Flogo® Connector for MQTT

l TIBCO Flogo® Connector for Amazon S3

l TIBCO Flogo® Connector for Redis

l TIBCO Flogo® Connector for PostgreSQL

l TIBCO Flogo® Connector for Microsoft SQL Server

l TIBCO Flogo® Connector for MySQL

Prerequisites for Connectors
The following topics cover the prerequisites for connectors.

OAuth Connections
For the Flogo Connectors that support OAuth 2.0 connection type, set the Callback or
redirect URL to https://vscode.dev/redirect.

https://docs.tibco.com/products/tibco-flogo-connector-for-tibco-enterprise-message-service
https://docs.tibco.com/products/tibco-flogo-connector-for-http
https://docs.tibco.com/products/tibco-flogo-connector-for-apache-kafka
https://docs.tibco.com/products/tibco-flogo-connector-for-apache-pulsar
https://docs.tibco.com/products/tibco-flogo-connector-for-amazon-sns
https://docs.tibco.com/products/tibco-flogo-connector-for-amazon-sqs
https://docs.tibco.com/products/tibco-flogo-connector-for-tibco-cloud-messaging
https://docs.tibco.com/products/tibco-flogo-connector-for-microsoft-azure-service-bus
https://docs.tibco.com/products/tibco-flogo-connector-for-mqtt
https://docs.tibco.com/products/tibco-flogo-connector-for-amazon-s3
https://docs.tibco.com/products/tibco-flogo-connector-for-redis
https://docs.tibco.com/products/tibco-flogo-connector-for-postgresql
https://docs.tibco.com/products/tibco-flogo-connector-for-microsoft-sql-server
https://docs.tibco.com/products/tibco-flogo-connector-for-oracle-mysql

TIBCO Flogo® Extension for Visual Studio Code User Guide

199 | App Development

Installing Driver from Visual Studio Code UI

Note:
l On Windows, you need Admin privileges to run Install Prerequisites for
Flogo Connectors. Uninstall the existing Chocolatey package manager.

l On Linux and macOS, you need Admin privileges to install the packages
that enable Install Prerequisites for Flogo Connectors.

To install the prerequisites for connectors, perform the following steps:

1. Go to the Flogo icon on the left side of the menu.

2. Click HELP AND FEEDBACK and select Install Prerequisites for Flogo Connectors.

3. Now, you can select the available connectors from the list for driver installation.

4. Install the driver for the selected connector.

Note: Installing Driver from Visual Studio Code UI Script includes installing ODBC
Driver Manager and the selected Connector Driver.

Installing ODBC Driver Manager
Before creating a database server connection, you must install ODBC Driver Manager and
Database drivers. Install ODBC Driver Manager by running one of the following platform-
specific commands.

Platform Command

Windows The ODBC Driver Manager is prepackaged with Windows as ODBC
Data Source Administrator.

macOS To install the ODBC Driver Manager, run the following command:

brew install unixodbc

The above command creates the configuration file odbcinst.ini at the

TIBCO Flogo® Extension for Visual Studio Code User Guide

200 | App Development

Platform Command

default location: /usr/local/etc/odbcinst.ini

If brew is not installed on your system, you can install it by running
the following command:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Note: If the odbcinst.ini configuration file is not created
automatically, then you must create it by running the following
command:

touch $(brew --prefix)/etc/odbcinst.ini

Note: TIBCO Flogo® Connector for Snowflake requires an iODBC
driver manager. You can download the iODBC from here. After
downloading the iODBC driver manager, double-click the
downloaded .dmg file. Double-click the installer file iODBC-SDK.pkg
and follow the instructions.

Ubuntu To install the unixODBC Driver Manager, run the following command:

apt install unixodbc

For TIBCO Data Virtualization Flogo Connector, run the following
command:

apt-get install unixodbc unixodbc-dev

The above command creates the odbcinst.ini configuration file at the
default location: /etc/odbcinst.in

http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/Downloads

TIBCO Flogo® Extension for Visual Studio Code User Guide

201 | App Development

Platform Command

Note: If the odbcinst.ini configuration file is not created
automatically, then you must create it by running the following
command:

touch /etc/odbcinst.ini

Installing Oracle Database ODBC Drivers

Note: Due to dependency on the platform-specific Oracle client library, app
executable for apps using Oracle connector cannot be built for Windows and
macOS platforms on TIBCO Cloud™ Integration and TIBCO Control Plane.

To install Oracle ODBC drivers on specific platforms:

On Windows

1. Download and unzip the Instant Client Basic package from the Oracle website.

2. Download the Instant Client ODBC package. Unzip it in the same directory as your
basic package.

3. Execute odbc_install.exe from the Instant Client directory as administrator.

Result
After installation, Oracle ODBC Driver in the ODBC Data Source Administrator (x64)
program is now visible on the Drivers tab.

For more information, see:
https://www.oracle.com/in/database/technologies/releasenote-odbc-ic.html

Windows Prerequisite script for Oracle Driver installation fails for chocolatey installation.
Perform the following steps for driver installation:

https://www.oracle.com/in/database/technologies/releasenote-odbc-ic.html

TIBCO Flogo® Extension for Visual Studio Code User Guide

202 | App Development

1. Copy the following command: powershell.exe -ExecutionPolicy Bypass -File ".\vscode-
preinstall.ps1" oracle -Verb RunAs

2. Open new Powershell window as administrator.

3. Go to the script path in Powershell or update the command with the appropriate
path to script.

4. Paste and run the command in the new Powershell window.

On macOS

1. To install Oracle ODBC driver, run the following commands,

brew tap InstantClientTap/instantclient

brew install instantclient-basic

brew install instantclient-odbc

The driver is installed at the default location.

For example: /usr/local/Cellar/instantclient-odbc/<driver-version>dbru/lib/libsqora.dylib.<version>

2. Edit the odbcinst.ini file with the following text with driver file path and name as per
your system.

[Oracle ODBC Driver

Description=Oracle 19 ODBC driver

Driver=<default driver location>

On Ubuntu

Oracle ODBC driver requires the libaio package to be installed as a prerequisite, run the
following command to install the package:

apt install libaio1

1. Download and unzip the Instant Client Basic package from the Oracle website.

2. Download the Instant Client ODBC package. Unzip it in the same directory as your

TIBCO Flogo® Extension for Visual Studio Code User Guide

203 | App Development

basic package.

3. Execute odbc_update_ini.sh from the Instant Client directory.

Result
After installation, the Oracle ODBC Driver in the odbcinst.ini file is now visible with the
driver path.

To know more about installation steps, see:
https://www.oracle.com/in/database/technologies/releasenote-odbc-ic.html

Installing TIBCO Data Virtualization ODBC Driver

On Windows:

Procedure
1. From TIBCO eDelivery, download the TIBCO Data Virtualization ODBC Driver package.

2. Extract the contents of the package to a local directory.

3. Run the installer file.

4. Confirm that the installation of the driver is successful.

a. Click Start > All apps > Windows Tools > ODBC Data Sources (64-bit).

b. Go to the Drivers tab, and verify an entry for TIBCO Data Virtualization ODBC
Driver.

On Ubuntu:

Procedure
1. From TIBCO eDelivery, download the TIBCO Data Virtualization ODBC Driver package.

2. Extract the contents of the package to a local directory.

3. Set the environment variables ODBCINI and ODBCINSTINI to locations of odbc.ini and

https://www.oracle.com/in/database/technologies/releasenote-odbc-ic.html
https://edelivery.tibco.com/
https://edelivery.tibco.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

204 | App Development

odbcinst.ini files, respectively.

4. From the local directory, run the /bin/driverConfig utility. When the utility prompts for
the driver path, provide the driver path from the lib/libcomposite.so file.

5. Confirm that the installation of the driver is successful. In the odbcinst.ini file, verify an
entry for the TIBCO Data Virtualization ODBC Driver with the driver path.

Installing Oracle MySQL ODBC Driver
To install the database driver:

On Windows

1. Download the MSI installer from the Oracle MySQL website.

2. Run the executable installer.

Oracle MySQL ODBC Driver in the ODBC Data Source Administrator (x64) program is now
visible on the Drivers tab.

On Ubuntu

1. Download the debian installer file from the Oracle MySQL website.

2. Run the executable installer.

Oracle MySQL ODBC Driver is now visible in the odbcinst.ini file with the driver path.

For prior versions of Ubuntu 22.04:

1. Download and extract the driver compressed .tar file from the MySQL website to the
required location.

2. Use the installer utility from the bin folder of the extracted driver folder, run the
following command:

./myodbc-installer -d -a -n "MySQL ODBC Unicode Driver" -t
“DRIVER=/path/to/driver/libmyodbc8w.so;"

https://dev.mysql.com/downloads/connector/odbc/5.1.html
https://dev.mysql.com/downloads/connector/odbc/5.1.html

TIBCO Flogo® Extension for Visual Studio Code User Guide

205 | App Development

Installing Microsoft SQL Server ODBC Driver
To install the database driver:

On Windows

1. Download the Microsoft SQL Server ODBC Driver MSI installer file from the Microsoft
website.

2. Run the executable installer.

Microsoft SQL Server ODBC Driver in the ODBC Data Source Administrator (x64) program is
now visible on the Drivers tab.

On macOS and Ubuntu

To install the Microsoft ODBC Driver for SQL Server:

l Microsoft ODBC driver for SQL Server - macOS

l Microsoft ODBC driver for SQL Server - Ubuntu

Microsoft SQL Server ODBC Driver is now visible in the odbcinst.ini file with the driver path.

Installing PostgreSQL and Greenplum ODBC Drivers
To install the PostgreSQL and Greenplum ODBC drivers on specific platforms:

On Windows

1. Download the PostgreSQL ODBC Driver MSI Installer file from
https://odbc.postgresql.org/.

2. Run the executable installer.

Result
After installation, the PostgreSQL ODBC Driver in the ODBC Data Source
Administrator (x64) program is now visible on the Drivers tab.

https://learn.microsoft.com/en-us/sql/connect/odbc/windows/microsoft-odbc-driver-for-sql-server-on-windows?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server
https://odbc.postgresql.org/

TIBCO Flogo® Extension for Visual Studio Code User Guide

206 | App Development

On macOS

1. Run the following command:

brew install psqlodbc

The driver is installed at the default location.

For example: /usr/local/Cellar/psqlodbc/16.00.0000/lib/psqlodbcw.so or
/opt/homebrew/Cellar/psqlodbc/16.00.0000/lib/psqlodbcw.so

2. Edit the odbcinst.ini file with the following text with driver file path and name as per
your system.

[PostgreSQL]
Description=PostgreSQL ODBC Driver
Driver=<default driver location>

On Ubuntu
l Run the following command:

apt install odbc-postgresql

Result
After installation, the PostgreSQL ODBC driver in the odbcinst.ini file is now visible with
the driver path.

Installing Amazon Redshift Database Drivers
To install the Amazon Redshift database drivers on specific platforms:

TIBCO Flogo® Extension for Visual Studio Code User Guide

207 | App Development

On Windows

1. Download the Amazon Redshift ODBC Driver MSI installer file from the Amazon
Redshift website.

2. Run the executable installer.

Result
After Installation, the Amazon Redshift ODBC driver in the ODBC Data Source
Administrator (x64) program is now visible on the Drivers tab.

On macOS

1. Download the Redshift ODBC Driver installer from the Amazon Redshift website.

2. Extract and install the package.

The driver is installed at the default location.

For example: /opt/amazon/redshift/lib/libamazonredshiftodbc.dylib

3. Edit the odbcinst.ini file with the following text with driver file path and name as per
your system.

[Amazon Redshift]
Description=Amazon Redshift ODBC Driver
Driver=<default driver location>

On Ubuntu

1. Download the driver file provided by Amazon.

2. Run the executable installer.

Result
After installation, the Amazon Redshift ODBC driver in odbcinst.ini file is now visible with the
driver path.

TIBCO Flogo® Extension for Visual Studio Code User Guide

208 | App Development

For more information, see, https://docs.aws.amazon.com/redshift/latest/mgmt/odbc20-
install-config-linux.html

Installing Snowflake ODBC Drivers
To install the Snowflake ODBC drivers on specific platforms:

On Windows

1. Download and install the MSI Installer file from the Snowflake ODBC installation page.

2. Configure the ODBC Driver. Ensure that you see an entry for SnowflakeDSIIDriver in the
ODBC Data Source Administrator(x64) program under the Drivers tab.

a. Launch the Windows Data Source Administration tool.

b. Verify if the Snowflake ODBC driver is installed.

c. Create a new data source name (DSN).

Result
After installation, the SnowflakeDSIIDriver in the ODBC Data Source Administrator(x64)
program is now visible on the Drivers tab. For more information, see Snowflake Developer
Guide.

On macOS

1. Download the Snowflake ODBC driver installer from the Snowflake website.

2. Mount and install the package as mentioned here.

If you choose the default directory when prompted, the installer installs the ODBC driver
files in the /opt/snowflake/snowflakeodbc/Library/ODBC directory.

To create a DSN, edit the appropriate odbc.ini file.

https://docs.aws.amazon.com/redshift/latest/mgmt/odbc20-install-config-linux.html
https://docs.aws.amazon.com/redshift/latest/mgmt/odbc20-install-config-linux.html
https://docs.snowflake.com/en/developer-guide/odbc/odbc-windows
https://docs.snowflake.com/en/developer-guide/odbc/odbc-windows
https://docs.snowflake.com/en/developer-guide/odbc/odbc-mac

TIBCO Flogo® Extension for Visual Studio Code User Guide

209 | App Development

Result
You can use the iodbctest command line utility provided with iODBC to test the DSNs you
create.

On Ubuntu
l Download and extract the TGZ file. Install and setup the ODBC driver as described in

the Snowflake documentation.

l Configure the environment with unixODBC.

In a terminal window, change to the snowflake_odbc directory, and run the ./unixodbc_setup.sh
command to install the Snowflake ODBC.

This script completes the following:

l Adds a Snowflake connection to your system-level /etc/odbc.ini file.

l Adds the Snowflake driver information to your system-level /etc/odbcinst.ini file.

l Adds all the certificate authority (CA) certificates required by the Snowflake ODBC
driver to your system-level simba.snowflake.ini file.

l By running the unixodbc_setup.sh command, you don't need to set any environment
variables.

Result
Test the DSNs you created using the isql command line utility provided with unixODBC. On
the command line, specify the DSN name, user login name and password.

Setting up EMS for Local Runtime

Note: Due to dependency on platform specific EMS client library, app executable
for apps using EMS connector cannot be build for Windows and MacOS
platforms on TIBCO Cloud Integration and TIBCO Control Plane.

https://docs.snowflake.com/en/developer-guide/odbc/odbc

TIBCO Flogo® Extension for Visual Studio Code User Guide

210 | App Development

l For Windows

1. Download the TIBCO Enterprise Message Service™ (EMS) Client package from
TIBCO eDelivery and extract to TIB_ems_<version>_win_x86_64/TIB_ems_<version>.

2. Set the EMS_HOME environment variable.

3. Set the EMS_HOME=<EMS installation path>.

4. For running the binary, add the following to the system path:

<EMS installation path>\<version>\bin

5. Install PowerShell on Windows and then run Get-ExecutionPolicy.

6. If it returns the status as "restricted", then run Set-ExecutionPolicy AllSigned.

7. If it is not restricted, then directly run the following command in PowerShell:

Set-ExecutionPolicy Bypass -Scope Process -Force;
[System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object
System.Net.WebClient).DownloadString
('https://community.chocolatey.org/install.ps1'))

8. Run the following command:

choco install mingw -y

9. Run the following command:

choco install pkgconfiglite

l For macOS

1. Download the TIBCO Enterprise Message Service™ (EMS) Client package from
TIBCO eDelivery and extract to TIB_ems_<version>_macosx_x86_64/TIB_ems_
<version>.

2. Set the EMS_HOME environment variable.

export EMS_HOME=<EMS installation path>

3. Install Xcode IDE.

Xcode-select –install

4. To run the binary, export DYLD_LIBRARY_PATH.

https://edelivery.tibco.com/
https://edelivery.tibco.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

211 | App Development

export DYLD_LIBRARY_PATH=<EMS installation path>/lib

l For Linux

1. Download the TIBCO Enterprise Message Service™ (EMS) Client package from
TIBCO eDelivery and extract to TIB_ems_<version>_linux_x86_64/TIB_ems_<version>.

2. Run the following commands:

o sudo su

o for f in tar/*; do tar -C / -xvf $f;

3. Set the following variables in the ./bashrc directory:

o Export LD_LIBRARY_PATH=<EMS installation path>/<version>/lib

o Export EMS_HOME=<EMS installation path>/<version>

Note: EMS installation for ARM-based machines is not supported.
Therefore, EMS binary generation, Docker image generation, and unit
testing is not supported in ARM-based machines.

Creating Connections
You must create connections before using the connectors in a flow. TIBCO Flogo®
Enterprise uses the configuration provided in these connections to connect to the
respective app, data sources, systems, or SaaS.

Before you begin
You must have valid accounts for the SaaS apps to which you want to connect.
To create a connection, click the Connections tab on the TIBCO Flogo® Enterprise page.

To create a connection using a connector tile:

1. If this is the first connection you are creating, click the Create connection link. For
subsequent connections, click the Create button on the Connections page.

2. Click the connector tile for which you want to create a connection.

3. Follow the instructions to configure the connection when prompted. For details on
the connection dialog, refer to the specific connector documentation. You can do so
by clicking the specific connector on the Supported Flogo Connectors page

https://edelivery.tibco.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

212 | App Development

Note:
l You cannot use the same connection for multiple apps in Visual Studio

Code. A connection is specific to a single app.

l You can have a maximum of four active Salesforce connections for one
user at any time. If you create more than four connections for the same
user, the first connection that you created gets deactivated. This limit is
enforced by Salesforce.

l Make sure that the pop-up blocker in your browser is configured to always
allow pop-ups from an app site. On macOS, clicking the link to the site
results in the connection details page being unresponsive, so make sure to
select the radio button for "Always allow pop-ups from <site>".

l Ensure that your app does not have unused connection(s). All connections
within the app(used or unused) are initialized and started at runtime
during app startup.

Editing Connections
You can edit the name and other settings of your connection.
To edit an existing connection:

Procedure
1. Click the Connections tab to open its page.

2. In the list of existing connections, click the connection that you want to edit. Edit the
connection details in the connection details dialog that opens.

3. Click Save.

Deleting Connections
You can delete an existing connection.

Procedure
1. In TIBCO Flogo® Enterprise, click the Connections tab to open its page.

TIBCO Flogo® Extension for Visual Studio Code User Guide

213 | App Development

2. In the list of existing connections, hover over the connection name that you want to
delete until you see that the Delete connection icon () appears at the end of the

row.

3. Click the Delete connection icon.

4. On the confirmation dialog, click Delete connection.

Result
The selected connection is deleted.

Developing for Lambda
AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS).
Lambda functions automatically run pieces of code in response to specific events while
also managing the resources that the code requires to run. Refer to the AWS
documentation for more details on AWS Lambda.

Creating a Connection with the AWS Connector
You must create AWS connections before you use the Lambda trigger or Activity in a flow.

Note: AWS Lambda is supported on the Linux platform only.

To create an AWS connection:

Procedure
1. In TIBCO Flogo® Extension for Visual Studio Code, click Connections to open its page.

2. Click the AWS Connector card.

3. Enter the connection details. Refer to the section AWS Connection Details for details
on the connection parameters.

TIBCO Flogo® Extension for Visual Studio Code User Guide

214 | App Development

Field Description

Name A meaningful string identifying the AWS connection you are creating.
The dropdown menu from which you select a connection when
creating a Lambda Activity displays this string.

Description A brief description of this connection

Region Select a geographic area where your resources are located

Access key ID Access ID to your AWS account

Secret Access
key

Secret access key to your AWS account

Use Assume
Role

AWS Assume role that allows you to assume a role from another AWS
account. By default, it is set to False indicating that you cannot
assume a role from another AWS account. When set to True, provide
the following:

Role ARN - Amazon Resource Name of the role to be assumed

Role Session Name - Any string used to identify the assumed role
session

External ID - A unique identifier that might be required when you
assume a role in another account

Expiration Duration - The duration in seconds of the role session. The
value can range from 900 seconds (15 minutes) to the maximum
session duration setting that you specify for the role

Refer to the AWS documentation for more details on these fields.

4. Click Save.

Your connection gets created and is available for you to select in the dropdown menu
when adding a Lambda Activity or trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

215 | App Development

AWS Connection Details
To establish the connection to the AWS connector, you must specify the following
configurations in the AWS Connector dialog.

Field Description

Name Specify a unique name for the connection that you are creating. This is
displayed in the Connection Name dropdown list for all the AWS activities.

Description A short description of the connection.

Custom
Endpoint

(Optional) To enable the AWS connection to an AWS or AWS compatible
service running at the URL specified in the Endpoint field, set this field to
True.

Endpoint This field is available only when Custom Endpoint is set to True.

Enter the service endpoint URL in the following format:
<protocol>://<host>:<port>. For example, you can configure a MinIO cloud
storage server endpoint.

Region Region for the Amazon connection.

Access key ID Access key ID of the AWS account (from the Security Credentials field of IAM
Management Console). For details, see the AWS documentation.

Secret access
key

Enter the secret access key. This is the access key ID that is associated with
your AWS account. For details, see the AWS documentation.

Session token (Optional) Enter a session token if you are using temporary security
credentials. Temporary credentials expire after a specified interval. For more
information, see the AWS documentation.

Use Assume
Role

This enables you to assume a role from another AWS account. By default, it is
set to False (indicating that you cannot assume a role from another AWS
account).

When set to True, provide the following information:

The AWS Connector dialog contains the following fields:

TIBCO Flogo® Extension for Visual Studio Code User Guide

216 | App Development

Field Description

l Role ARN - Amazon Resource Name of the role to be assumed

l Role Session Name - Any string used to identify the assumed role
session

l External ID - A unique identifier that might be required when you
assume a role in another account

l Expiration Duration - The duration in seconds of the role session. The
value can range from 900 seconds (15 minutes) to the maximum
session duration setting that you specify for the role.

For details, see the AWS documentation.

Creating a Flow with Receive Lambda Invocation
Trigger
The Receive Lambda Invocation trigger allows you to create a Flogo flow to create and
deploy as a Lambda function on AWS.

Refer to the Receive Lambda Invocation for details on the trigger.

To create a flow with the Receive Lambda Invocation trigger:

Procedure
1. Create a Flogo app.

2. Open the flow page.

3. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

4. To configure a trigger, enter the JSON schema or JSON sample data for the
operation. This is the schema for the request payload.

5. Click Continue.

A flow beginning with the ReceiveLambdaInvocation trigger gets created.

6. Click the ReceiveLambdaInvocation trigger tile and configure its properties.

Refer to the Receive Lambda Invocation for details on the trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

217 | App Development

Deploying a Flow as a Lambda Function on AWS
After you have created the flow, you can deploy it as a Lambda function on AWS.

Before you begin
Note the following points:

l The flow must be configured with the ReceiveLambdaInvocation trigger.

l Run and Deploy actions do not deploy Lambda function on the AWS Lambda directly.
You must deploy the Lambda function by following the steps in this section.

l Deploying an app having a ReceiveLambdaInvocation trigger on the TIBCO Platform
does not deploy the app as a Lambda function on AWS Lambda. You must create a
Linux/amd64 binary and deploy the binary by following the steps in this section.

l If the execution role name is not provided in the ReceiveLambdaInvocation trigger,
then the Lambda function is created with the default
AWSLambdaBasicExecutionRole role. It has the following Amazon CloudWatch
permissions:

o Allow: logs:CreateLogGroup

o Allow: logs:CreateLogStream

o Allow: logs:PutLogEvents

If a non-existing execution role is provided, then the user whose AWS credentials are
used in the AWS connection should have the following permissions:

o iam:CreateRole

o sts:AssumeRole

To deploy a Flogo app as a Lambda function, user role can have access to following
AWSLambda_FullAccess policy which has all the required access.

To deploy a flow as a Lambda function on AWS:

Procedure
1. Build your Flogo app(<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function.

2. Add execution permission to the native Linux/amd64 executable file that you built. Run

TIBCO Flogo® Extension for Visual Studio Code User Guide

218 | App Development

chmod +x <myApp>-linux_amd64

3. You can deploy the <myApp>-linux_amd64 in one of two ways:

l If you are using a Linux environment to design, build, and deploy your apps, you
can directly run the following command:

<LambdaTriggerBinary> --deploy lambda --aws-access-key <secret_key>

For example, myApp-Linux64 --deploy lambda --aws-access-key xxxxxxxxx

Note: Ensure that the aws-access-key is identical to the one configured
in the Flogo UI for the selected AWS connection. This is used for
validation with the aws-access-key configured as part of the AWS
Connection within the UI and the value provided here does not
overwrite the aws-access-key used while designing the app.

This approach of deploying to AWS Lambda works only on Linux platforms.

l .JSON file is passed to Lambda as environment variables.

If you are using a non-Linux environment to design, build, and deploy apps, then perform
the following steps:

Procedure
1. Build your Flogo app (<myApp>) with the Linux/amd64 target.

2. Rename the Flogo executable file to bootstrap. This is mandatory per new
provided.al2 and provided.al2023 runtimes.

3. Compress the executable file and rename it to <myFunctionName>.zip.

4. From the AWS Lambda UI, create a Lambda function with Amazon Linux 2023
runtime.

5. Create a role or attach an existing role in the Execution role.

6. Click Create function.

7. Go to Code source, click Upload from and upload the compressed file.

After successful deployment, the Lambda function is created in the AWS Lambda console.

TIBCO Flogo® Extension for Visual Studio Code User Guide

219 | App Development

Deploying a Flow as a Lambda Function on AWS using AWS
CLI

Procedure
1. Build your Flogo app (<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function.

2. Rename the Flogo executable to bootstrap (this is mandatory as per new provided.al2
and provided.al2023 runtimes).

3. Zip the executable.

4. Zip myFunction.zip bootstrap.

5. Run the AWS CLI:

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--architectures x86_64 \
--role arn:aws:iam::111122223333:role/lambda-ex \
--region us-west-2 \
--zip-file fileb://myFunction.zip

Receive Lambda Invocation
Use the Receive Lambda Invocation trigger for AWS to start your flow as a Lambda
function. The Receive Lambda Invocation trigger can be configured only in blank flows. It
must not be used with flows that are created with another trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

220 | App Development

Trigger Settings

Note:
An app can contain only one Lambda trigger. An app that has a Lambda trigger
cannot contain any other triggers including another Lambda trigger. Also, as the
Lambda trigger supports only one handler per trigger, it can have only one flow
attached to it. However, the apps that contain a Lambda trigger can contain
blank flows that can serve as subflows for the flow attached to the Lambda
trigger.

Field Description

AWS
Connection
Name

Name of the AWS connector connection you want to use for the flow.

Execution
Role Name

(optional) ARN of the role to be used to execute the function on your behalf.
The role must be assumable by Lambda and must have CloudWatch logs
permission execution role.

Output Settings

Enter the payload schema for the request received on the Lambda function invocation on
AWS.

Map to Flow Inputs

This tab allows you to map the trigger output to flow input.

Field Description

Function Information about the Lambda function

Context Envelope information about this invocation

Identity Identity for the invoking users

TIBCO Flogo® Extension for Visual Studio Code User Guide

221 | App Development

Field Description

ClientApp Metadata about the calling app

API Gateway
Request

Displays the elements in the payload schema that you entered on the Output
Settings tab. The elements are displayed in a tree format.

Reply Settings

Enter a schema for the trigger reply in the Reply Data text box.

Map from Flow Outputs

Map the flow output to the trigger reply on this tab.

InvokeLambdaFunction
Use this Activity to invoke a specific Lambda function.

Settings

Field Description

AWS
Connection
Name

Select an AWS connection.

ARN
(Optional)

Amazon Resource Name.

Note:

l You can also specify the ARN on the Input tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab. Otherwise, the
Activity returns an error at runtime.

TIBCO Flogo® Extension for Visual Studio Code User Guide

222 | App Development

Input Settings

Field Description

Payload
Schema

Enter a JSON request schema for your payload that is used to invoke the
Lambda function.

Input

The payload schema that you entered on the Input Settings tab is displayed in a tree
format on the Input tab. Map the elements in the schema using the mapper or enter values
for the element by manually typing the value in the mapper.

Field Description

LambdaARN Amazon Resource Name.

Note:

l You can also specify the ARN on the Settings tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab. Otherwise, the
Activity returns an error at runtime.

Output Settings

Field Description

Result
Schema

The schema for the result that is expected from the Lambda function invokes
the request.

Output

The Output tab displays the result schema that you entered on the Output Settings tab in
a tree format.

TIBCO Flogo® Extension for Visual Studio Code User Guide

223 | App Development

Using Extensions
You can create extensions for Flogo or you can upload a Project Flogo extension on Flogo®
Extension for Visual Studio Code (VS Code).

Configuring Extensions
To configure an extension:

Note: This procedure assumes that you have the unzipped folder of the .zip
extension file available.

Note: Ensure that the go.mod file is present in the unzipped folder or else it
generates an error.

Procedure
1. In File Explorer, create a folder under your workspace directory.

2. Add the unzipped version of your extensions file to the newly created folder.

3. In Visual Studio Code, navigate to View > Command Palette, search Open Users
Settings, expand Extensions, and select Flogo.

4. Specify the path of your extensions folder in the Extension:Local field.

5. Refresh Visual Studio Code for the changes to be reflected.

Note: Use the path of a local directory instead of a shared location path.
Entering a shared location might not work.

Result
The extension is now available for you to use.
Activity extensions are available in the default category, functional extensions are available
in the mapper functions, and trigger extensions are available in the trigger list.

TIBCO Flogo® Extension for Visual Studio Code User Guide

224 | App Development

Go Mod Compatibility

For custom extensions to run on Visual Studio Code, extension must be go mod compatible
to generate app binary and run successfully.

Procedure
1. Add the unzipped version of your extensions file to go/src.

2. Navigate to go/src/{extension} and open Visual Studio Code .

3. Run the below commands on the terminal:

a. go mod init {ref}
exa. go mod init github.com/TIBCOSoftware/tci-
flogo/samples/extensions/AWSSQS/activity/sqssendmessage

b. go mod tidy

Result
After the commands are executed successfully, go.mod and go.sum files are generated.

Download Extensions from Runtime

To download extensions from the TIBCO Cloud™ Integration environment:

Procedure
1. Select the Flogo icon in Activity Bar.

2. In the Runtime Explorer, select the desired TIBCO Cloud Integration runtime to
download its extensions.

3. Ensure that you are connected to the runtime.

4. Right-click and select Download Extensions.

Result
The extensions are downloaded to your extensions folder as specified in the
Extension:Local field.

Note: Only extensions promoted to org are downloaded to the specified folder.

TIBCO Flogo® Extension for Visual Studio Code User Guide

225 | App Development

Deleting Extensions
You can delete custom extensions by:

l Selectively removing the specific extension folder

l Removing the root extensions folder

Result
The extensions used in the Flogo app are not available after deletion.

Unit Testing
With unit testing, you can monitor the health of your application and detect errors in
individual flows or activity levels.

While designing an application with multiple flows and activities, it becomes cumbersome
to detect runtime errors at the flow and activity levels. Using unit testing, the errors at the
micro level are easily handled. You can run unit testing at any phase of the development
cycle to verify whether activities in the process are working as expected. Using testing
processes in the development stage (before you push the app to the production
environment) helps detect errors and identify issues at an early stage.

Terminologies in Unit Testing
l Test case: A test case is the individual unit for testing a flow. For a given set of

inputs, the test case checks for a specific output for an activity or the flow output.
The expected versus actual output is compared by adding assertions to the test case.
A test case can have multiple assertions added on activities and flow output. The test
case is considered as passed when all the assertions in that test case pass.

l Assertion: An assertion is a logical expression that evaluates to a Boolean value. The
expected versus actual output is compared by using an assertion expression. For the
passed assertion, the expression evaluates to true. A non-Boolean expression always
evaluates to false.

l Flow Input: Flow input is a set of input data used to run the test on the given flow.
Each test case has its own set of inputs.

TIBCO Flogo® Extension for Visual Studio Code User Guide

226 | App Development

l Flow Output: Flow output is the output generated for the given flow for the given set
of inputs. Flow output can have one or more assertions.

l Test Suite: A group of test cases make a test suite. An app can have multiple test
suites. The test suite is considered as passed when all the tests in the test suite are
successfully run.

l Test Suite file: A test suite file is an exported file that contains all the test suites for
a given Flogo app. The file has .flogotest as its extension and can be exported from the
studio as well as the platform API. The test suite file along with the Flogo app binary
can be used to run the test cases in a standalone environment.

Creating and Running a Test Case
Unit testing tests smaller chunks of work in a process.

A test case is a basic building block of unit testing. A test case can have one or more
assertions on the activities in the main flow, activities in the error handler, or on the flow
output. One flow can have multiple test cases.

To enable the unit testing mode, click the .flogotest file in the Explorer view. To exit the unit
testing mode, click the .flogo file in the Explorer view.

Configuring Unit Test Data
To design a unit test case, you need to configure the flow inputs, activities, and flow
outputs with the appropriate data. When you click any of these components, a
configuration dialog opens where you can configure the data. You can configure activities
using any of the modes listed in Unit Testing Modes.

Unit Testing Modes
The following tables provide a detailed explanation of the various testing modes available
for configuring the unit test cases.

Option Description

TIBCO Flogo® Extension for Visual Studio Code User Guide

227 | App Development

Execute (Default) This is the default mode for all activities. When an activity is
set to this mode, it runs as per the definition and
configuration and does not affect the unit test execution.
You can use this option to reset your unit test
configurations on the activity.

Assert on Outputs Adds an assertion for flow output.

Assert on Error Asserts if an activity generates an expected exception. It is
applicable for a given input of the flow. Users should add
proper error handlers through an error branch or by
defining the error handler flow.

Mock Outputs Use mock data for the activities that have an output.

For more information, see Using Mock Data.

Mock Error Simulates an exception with an optional message instead of
executing the activity during a test run. It helps test the
error handler design of the flow.

Skip Execution Skip an activity in unit testing if the activity does not have
any output. For example, you can skip activities, such as
Sleep, eFTL Publish message, or StartaSubFlow.

Note: To skip an activity with an output, you can mock it
without any configuration data. For activities that do not
have an output, you can select Skip Execution.

For more information, see Skipping an Activity with No
Output.

Note: In the Assert on Output or Asset on Exception modes, you cannot delete
all the assertions and save the configuration. You can set the Execute
(Default) mode to reset or remove all the assertions.

Creating a Test Case for an Existing App
Before you start unit testing, you must create a test case.

TIBCO Flogo® Extension for Visual Studio Code User Guide

228 | App Development

Procedure
1. In the Explorer view, right-click the app for which you want to create a unit test and

select Create Unit Tests for Flogo App.

2. Alternatively, when you click (Open Unit Test) at the upper-right corner and the

.flogotest file for the app is not found, you are prompted to create a unit test file as
follows:
Could not find a Unit Test file for this App. (Searched for "<app name>.flogotest"). Do you want to
create it?
Click Create Unit Test File.

Creating a Test Case Along with a New App
Before you start unit testing, you must create a test case.

Procedure
1. Open the Explorer view.

2. Navigate to the workspace where you want to create a Flogo app and click the
dropdown icon next to that workspace folder.

3. Click (Create a New Flogo App) to create a new Flogo app.

4. Add the name of the app in the top-most text bar that pops up and press Enter.

Note: The app name must not contain any spaces. It must start with a
letter or underscore. The app name can contain letters, digits, periods,
dashes, and underscores.

5. Click Create App and Unit Tests.

Result
The app is created. A flow called New_flow is automatically created. You can now create one
or more flows for the app. Two files are created in the workspace - <app name>.flogo and
<app name>.flogotest. The <app name>.flogo file is the app's JSON file and the <app
name>.flogotest is the app's unit test file.

TIBCO Flogo® Extension for Visual Studio Code User Guide

229 | App Development

Note: If you copy a Flogo app that has a password property from one workspace
to another and then open that app in the Flogo editor view, the password type
values persist. As a workaround, remove the password type values manually
before sharing the app.

Defining Flow Input
For a particular activity that has a flow input configured in the actual process, you must
assign the flow input parameters before you run a test case. You can add separate test
cases for each flow input.

Note:

l If the flow input is configured for the activity, then you must define the
flow input value when running a test case, otherwise the test case fails.
However, if the flow input is not configured for the activity, then you need
not define the flow input value when running a test case.

l For inputs containing single objects, you must enter the input values at the
root level.

l For mapping an array of objects, you must provide inputs at the array root
level. Click the root of the array to input values for all objects. You cannot
configure the input at the array element level.

To define the flow input parameter:

Procedure
1. In the Explorer view, click the <app name>.flogotest file.

2. Under the Main Flow tab, provide the required flow input details and save the app.

Creating Assertions
To compare the actual and expected output, you can add multiple assertions on an
activity, a flow output, or an error handler . The assertion expression always evaluates to a
boolean value.

TIBCO Flogo® Extension for Visual Studio Code User Guide

230 | App Development

Note: You cannot create assertions for the activities that do not return output.
Similarly, you cannot create assertions for the flow output when it has no
outputs.

To add unit test assertions for a test case, perform the following steps:

Procedure
1. On the Unit Test page, select one of the flows to add an assertion:

l Error Handler: On the Error Handler tab, click <Activity Name>.

l Main Flow: On the Main Flow tab, click <Activity Name> or Flow Output.

The Unit Test Data Configuration dialog opens.

2. On the I want to dropdown menu, select one of the following assertions:

l Assert on Outputs

l Assert on Error

Note: The assertion types in the dropdown menu are based on the
configuration of the selected activity.

3. Click New Assertion to create one with a default name.

4. Map the Available Data from assertions dialog with the appropriate values and click
Save.

Note:

l When asserting an object, it is a best practice to assert each property
individually instead of the entire object.

l You cannot save changes if you delete all assertions. To remove all existing
assertions, select a different mode on the I want to dropdown menu.

TIBCO Flogo® Extension for Visual Studio Code User Guide

231 | App Development

Creating Assertions for Flow Output

Note: You cannot create assertions for the flow output when it has no outputs.

You can add assertions to the flow output to verify that the flow generates the correct data
by comparing the actual output against predefined assertions.

To create assertions for flow output, see Creating Assertions.

Creating Assertions for the Error Handler
You can also add test cases for the flow designed in the error handler. A unit test case
designed for the error handler flow is run to detect any runtime exceptions or errors in the
flow implementation.

To create assertions for the error handler, see creating assertions.

Skipping an Activity with No Output
You can skip a particular activity such as Sleep, eFTL Publish message, StartaSubFlow
and others in unit testing if that activity does not have any outputs.

To skip an activity with no output:

Procedure
1. In the Explorer View, click <app name>.flogotest.

2. On the Main Flow/Error Handler tab, select the activity you want to skip.

3. On the selected activity dialog, click Yes, Skip.

Note: When you run the Unit Tester, the activities you skipped are displayed as
"Activity Mocked".

You can later enable the activity you have skipped using the same steps.

TIBCO Flogo® Extension for Visual Studio Code User Guide

232 | App Development

Test Case Validation
Before you run a test case, Flogo auto validates the test cases when you land on the unit
testing mode.

If there are any errors in mapping expressions, an error sign pops up on the activity level
assertions, or on the mock data. If there are any errors in the mapping expressions, the
error sign also pops up on the flow inputs and flow outputs.

To validate a test case:

Procedure
1. Click (Open Unit Test) at the upper-right corner to switch to the unit testing

mode and check for any validation errors. Alternatively, in the Explorer View, click
<app name>.flogotest.
An error sign is displayed on the assertion level of the activity, flow input, and flow
output. An error sign is also displayed on the test case level of the particular activity
that has the errors.

2. Fix the validation errors.

Running a Test Case
After creating a test case, it is ready to run.

Procedure

1. Go to the activity bar and click the Testing action item .

2. Ensure the .flogotest file is open.

3. Click the Run Test icon () next to the test case.

After the test case run is complete, the result is generated.

The test results are displayed on the terminal with the total number of test cases, including
the number of passed and failed test cases. It also displays the total number of assertions
and the number of passed and failed assertions on activities in the flow, activities in the
error handler, and in the flow output. The result for assertions on the flow output is
displayed only if the assertion is added to the flow output.

TIBCO Flogo® Extension for Visual Studio Code User Guide

233 | App Development

Note: When running a binary, the test suites or test cases are run by default
irrespective of whether they are hidden or unhidden.

Tip:
l Do not close the result terminal to modify your test case. You can

minimize the window, make the changes, and retest the case.

l You can edit, delete, or copy a test case or a test assertion at any point.

l For an active unit test case, if you change app-level schemas or app
properties, close the session and rerun the test case.

Hiding Test Cases
Hidden test cases are not run when you run the <app name>.flogotest file.

l To hide a test case, right-click on the test case and select Hide Test.

l To unhide all the tests, select the <app name>.flogotest file, click the Filter icon ()
and then click Unhide All Tests.

l To always show hidden tests, select the <app name>.flogotest file, click the Filter icon (
) and then click Show Hidden Tests.

Using Mock Data
In unit testing, you can mock the data for the unit that is being tested. This is useful during
unit testing so that the external dependencies are no longer a constraint to the unit under
test. Using mock data, the dependencies are replaced by closely controlled replacements
that simulate the behavior of the real ones.

You can use the mock data for the activities that have an output. Expressions and functions
are not evaluated in the values given to mock outputs, the input provided is passed as is.

In unit testing, you can either use assertions or mock data to test the activities.

Running a Test Case Using a Runtime Environment
You can run a test case using a runtime environment.

TIBCO Flogo® Extension for Visual Studio Code User Guide

234 | App Development

Procedure
1. Go to the activity bar and click the Testing action item ().

2. Make sure the .flogotest file is open.

3. To select a runtime environment, click the dropdown icon next to the Run Tests icon
(). You can select either Local Runtime, TIBCO Platform, or TIBCO Cloud™
Integration (TCI).
The default profile is Local Runtime. To change the default profile, select Select
Default Profile from the dropdown menu and select the profile that needs to be
made the default.
For more information on configuring these profiles, see Configuring the Runtime.

4. Click the Run Tests icon () to run the test with the selected environment.

After the test case run is completed, the result is generated.

The test results are displayed on the terminal with the total number of test cases, which
include the number of passed and failed test cases. It also displays the total number of
assertions and the number of passed and failed assertions on activities in the flow,
activities in the error handler, and in the flow output. The result for assertions on the flow
output is displayed only if the assertion is added to the flow output.

Creating and Running a Test Suite
You can use the Test Suite feature to combine different test cases and run them at once.

Creating a Test Suite
To create a test suite, perform the following steps:

Procedure
1. In the Explorer View, click <app name>.flogotest and then click Test Suites. The

Configure Test Suites dialog opens.

2. In the Configure Test Suites dialog, click New Test Suite. A test suite with a default
name gets created.

TIBCO Flogo® Extension for Visual Studio Code User Guide

235 | App Development

3. To add test cases to the test suite for the first time, click Add test cases. Select the
test cases to be added to the suite and click Save.

4. To remove test cases or add more test cases to the test suite, click Add/Remove
Tests. Select or deselect the test cases to be included in the test suite and click
Save.

Running a Test Suite
After you create a test suite, the test suite is ready to run.

To run a test suite:

Procedure
1. Navigate to the activity bar and click the testing action item.

2. Click (Run Test icon) next to the respective test suite.

After the test suite run is completed, the result is generated.

A result terminal displays the total number of test suites and test cases with the number of
passed and failed test suites and test cases.

Note:
l You can hide the test suites by right-clicking on the test suite to exclude it

from Run all Test Suites.

l When the engine is running in unit test mode, it does not fail fast and
continues on connection errors. The connections have a retry mechanism,
then the start-up time increases considerably. If any activity that uses
connections is not mocked, the test case generates an error.

Unit Testing for the CI/CD
This feature allows you to unit test your Flogo app using the app executable. Once you
have built the executable for a Flogo app, you can run a unit test using the test command.
This feature is also useful to automate the testing process for activities in development in
the CI/CD pipeline.

TIBCO Flogo® Extension for Visual Studio Code User Guide

236 | App Development

Before you begin
The app executable must be readily accessible on the machine from which you plan to test
it.

Follow these steps to get help on the test command:

Procedure
1. Open a command prompt or terminal window depending on your platform.

2. Navigate to the folder where you stored the app executable.

3. Run the following command to get the online help on the test command:

l On Windows: <app-executable> --test --test-file

l On Macintosh: ./<app-executable> -test --test-file

l On Linux: ./<app-executable> -test --test-file

This command outputs the usage for the test command along with some examples.

4. Run the command with the appropriate option to test your app.

The output of the command generates the .testresult file for the unit test suites or test cases
that are run.

TIBCO Flogo® Extension for Visual Studio Code User Guide

237 | App Configuration Management

App Configuration Management
Flogo allows you to externalize app configuration using app properties so that you can run
the same app binary in different environments without modifying your app. It integrates
with configuration management systems such as Consul and AWS Systems Manager
Parameter Store to get the values of app properties at runtime.

You can switch between configuration management systems without modifying your app.
You can do this by running the command to set the configuration-management-system-
specific environment variable from the command line. Since the environment variables are
set for the specific configuration management system, at runtime, the app connects to that
specific configuration management system to pull the values for the app properties.

TIBCO Flogo® Extension for Visual Studio Code User Guide

238 |

Consul
The Consul provides a key/value store for managing app configuration externally. TIBCO
Flogo® allows you to fetch values for app properties from Consul and override them at
runtime.

Note: This section assumes that you have set up Consul and know-how Consul is
used to store service configuration. Refer to the Consul documentation for
consul-specific information.

A Flogo app connects to the Consul server as its client by setting the FLOGO_APPS_PROPS_
CONSUL environment variable. At runtime, you must provide the Consul server endpoint for
your app to connect to a Consul server. You have the option to enter the values for the
Consul connection parameters. You can create a file that contains the values and use the
file as an input.

Consul can be started with or without acl_token. If using an ACL token, make sure to have
the ACL configured in Consul.

Using Consul

Note: The information in this section is applicable for an app executable only.

Below is a high-level workflow for using Consul with your Flogo app.

Before you begin
You must have access to Consul.

Set up Consul and understand how Consul is used to store service configuration. For
information on Consul, refer to the Consul documentation.
To use Consul to override app properties in your app (properties that were set in the Flogo
app):

Procedure

TIBCO Flogo® Extension for Visual Studio Code User Guide

239 |

1. Export your app binary.

2. Configure key/value pairs in Consul for the app properties whose values that you
want to override. At runtime, the app fetches these values from the Consul and uses
them to replace the default values that were set in the app.

3.
Important: When setting up the Key in Consul, make sure that the Key
name matches exactly with the corresponding app property name in the
Application Properties dialog in Flogo. If the property name does not
match exactly, a warning message is displayed, and the app uses the
default value for the property that you configured in Flogo.

4. Set the FLOGO_APP_PROPS_CONSUL environment variable to set the Consul server
connection parameters. See Setting the Consul Connection Parameters for details.

Consul Connection Parameters
Provide the following configuration information during runtime to connect to the Consul
server.

Property
Name

Require
d

Description

server_
address

Yes Address of the Consul server, which could be run locally or elsewhere
in the cloud.

key_
prefix

No Prefix to be prepended to the lookup key. This is essentially the
hierarchy that your app follows to get to the Key location in the
Consul. This is helpful in case the key hierarchy is not fixed and may
change based on the environment during runtime. It is also helpful in
case that you want to switch to a different configuration service such
as the AWS param store. Although it is a good idea to include the app
name in the key_prefix, it is not required. key_prefix can be any
hierarchy that is meaningful to you.

As an example of a key_prefix, if you have an app property (for
example, Message) that has two different values depending on the
environment from which it is being accessed (for example, dev or test

TIBCO Flogo® Extension for Visual Studio Code User Guide

240 |

Property
Name

Require
d

Description

environment), your <key_prefix> for the two values can be
/dev/<APPNAME>/ and /test/<APPNAME>/. At run time, the right value for
Message is picked up depending on which <key_prefix> you specify in
the FLOGO_APP_PROPS_CONSUL environment variable. Hence, setting
a <key_prefix> allows you to change the values of the app properties at
runtime without modifying your app.

acl_token No Use this parameter if you have key access protected by ACL. Tokens
specify which keys can be accessed from the Consul. You create the
token on the ACL tab in Consul.

During runtime, if you use the acl_token parameter, Key access to your
app is based on the token you specify.

To protect the token, encrypt the token for the key_prefix where your
Key resides and provides the encrypted value of that token by
prefixing the acl_token parameter with SECRET. For example, "acl_
token":
"SECRET:QZLOrtN3gOEpXgUuud6jprgo/WzLR7j+Twv28/4KCp7573snZWo+hGu
QauuR2o/7TJ+ZLQ==". Note that the encrypted value follows the key_
prefix format.
Provide the encrypted value of the token as the SECRET. SECRETS get
decrypted at runtime. To encrypt the token, you obtain the token
from the Consul. Then, encrypt it using the app binaryexecutable by
running the following command from the directory in which your app
binaryexecutable is located:

./<app_binary> --encryptsecret <token_copied_from_Consul>

The command outputs the encrypted token that you can use as the
SECRET.

Note: Since special characters (such as `! | < > & `) are shell
command directives, if they appear in the token string when
encrypting the token, you must use a backslash (\) to escape such
characters.

TIBCO Flogo® Extension for Visual Studio Code User Guide

241 |

Property
Name

Require
d

Description

insecure_
connectio
n

No Set to True if you want to connect to a secure Consul server without
specifying client certificates. This should only be used in test
environments.

Default: False

Setting the Consul Connection Parameters
You set the values for app properties that you want to override by creating a Key/Value
pair for each property in Consul. You can create a standalone property or a hierarchy that
groups multiple related properties.

Before you begin
This section assumes that you have access to Consul and are familiar with its use.
To create a standalone property (without hierarchy), you simply enter the property name
as the name of the Key when creating the Key in Consul. When you create a property
within a hierarchy, enter the hierarchy in the following format in the Create Key field in
Consul: <key_prefix>/<key_name> where <key_prefix> is a meaningful string or hierarchy that
serves as a path to the key in Consul and <key_name> is the name of the app property
whose value you want to override.
For example, in dev/Timer/Message and test/Timer/Message, dev/Timer and test/Timer are the
<key_prefix> which could stand for the dev and test environments and Message is the key
name. During runtime, you provide the <key_prefix> value that tells your app the location in
Consul from where to access the property values.

Warning: The Key name in Consul must be identical to its counterpart in the
Application Properties dialog in Flogo. If the key name does not match exactly,
a warning message is displayed, and the app uses the default value that you
configured for the property in Flogo.

TIBCO Flogo® Extension for Visual Studio Code User Guide

242 |

Warning: A single app property, for example, Message, is looked up by your app
as either Message or <key_prefix>/Message in Consul. An app property within a
hierarchy such as x.y.z is looked up as x/y/z or <key_prefix>/x/y/z in Consul. Note
that the dot in the hierarchy is represented by a forward slash (/) in Consul.

After you have configured the app properties in Consul, you need to set the environment
variable, FLOGO_APP_PROPS_CONSUL, with the Consul connection parameters for your app
to connect to the Consul. When you set the environment variable, it triggers the app to run,
which connects to the Consul using the Consul connection parameters you provided and
pulls the app property values from the key_prefix location you set by matching the app
property name with the key_name. Hence, the Key names must be identical to the app
property names defined in the Application Properties dialog in Flogo.

You can set the FLOGO_APP_PROPS_CONSUL environment variable by placing the
properties in a file and using the file as input to the FLOGO_APP_PROPS_CONSUL
environment variable.

Setting the Consul Parameter Values Using a File

To set the parameter values in a file, create a .json file, for example, consul_config.json
containing the parameter values in key/value pairs. Here is an example:

{
"server_address": "http://127.0.0.1:32819",
"key_prefix": "/dev/<APPNAME>/",
"acl_token": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"

}

Place the consul_config.json file in the same directory that contains your app binary.

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_CONSUL environment variable. For example, to use the consul_config.json file from
the example above, run:

FLOGO_APP_PROPS_CONSUL=consul_config.json ./<app_binary_name>

The command extracts the Consul server connection parameters from the file and connects
to the Consul to pull the app properties values from the Consul and runs your app with
those values.

TIBCO Flogo® Extension for Visual Studio Code User Guide

243 |

Consul properties can also be run using Docker by passing the same arguments for the
docker image of a binary app.

AWS Systems Manager Parameter Store
AWS Systems Manager Parameter Store is a capability provided by AWS Systems Manager
for managing configuration data. You can use the Parameter Store to store configuration
parameters centrally for your apps.

Your Flogo app connects to the AWS Systems Manager Parameter Store server as its client.
At runtime, you are required to provide the Parameter Store server connection details by
setting the FLOGO_APP_PROPS_AWS environment variable for your app to connect to the
Parameter Store server. You have the option to enter the values for the Parameter Store
connection parameters by creating a file that contains the values and using the file as
input.

Using the Parameter Store
The following section gives a high-level workflow for using AWS Systems Manager
Parameter Store with TIBCO Flogo®.

Before you begin
This section assumes that you have an AWS account, have access to the AWS Systems
Manager, and know how to use the AWS Systems Manager Parameter Store. Refer to the
AWS documentation for information on the AWS Systems Manager Parameter Store.

Overview

To use the Parameter Store to override app properties set in Flogo:

1. Build an app binary that has the app properties already configured in Flogo.

2. Configure the app properties that you want to override in the Parameter Store. At
runtime, the app fetches these values from the Parameter Store and uses them to
replace the default values that were set in the app.

3. Set the FLOGO_APP_PROPS_AWS environment variable to set the Parameter Store

TIBCO Flogo® Extension for Visual Studio Code User Guide

244 |

connection parameters from the command line.

When you run the command for setting the FLOGO_APP_PROPS_AWS environment
variable, it runs your app, connects to the Parameter Store, and fetches the
overridden values for the app properties from the Parameter Store. Only the values
for properties that were configured in the Parameter Store are overridden. The
remaining app properties get their values from the Application Properties dialog.

See the Setting the Parameter Store Connection Parameters and Parameter Store
Connection Parameters sections for details.

Parameter Store Connection Parameters
To connect to the AWS Systems Manager Parameter Store, provide the configuration below
at runtime.

Property
Name

Required Data Type Description

access_
key_id

Yes String Access ID for your AWS account. To protect the
access key, an encrypted value can be provided in
this configuration.

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

This configuration is optional if use_iam_role is set
to true.

secret_
access_key

Yes String Secret access key for your AWS account. This
account must have access to the Parameter Store.
To protect the secret access key, an encrypted
value can be provided in this configuration.

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

This configuration is optional if use_iam_role is set
to true.

TIBCO Flogo® Extension for Visual Studio Code User Guide

245 |

Property
Name

Required Data Type Description

region Yes String Select a geographic area where your Parameter
Store is located. This configuration is optional if
use_iam_role is set to true and your Parameter Store
is configured in the same region as the running
service. When running in AWS services (for
example, EC2, ECS, EKS), this configuration is
optional if the Parameter Store is in the same
region as these services.

param_
prefix

No String This is essentially the hierarchy that your app
follows to get to the app property location in the
Parameter Store. It is the prefix to be prepended
to the lookup parameter. This is helpful in case the
parameter hierarchy is not fixed and may change
based on the environment during runtime.

This is also helpful in case that you want to switch
to a different configuration service such as the
Consul KV store.
As an example of a param_prefix, if you have an app
property (for example, Message) that has two
different values depending on the environment
from which it is being accessed (for example, dev
or test environment), your param_prefix for the two
values can be /dev/<APPNAME/ and /test/<APPNAME/.
At run time, the right value for Message is picked
up depending on which param_prefix you specify
in the FLOGO_APP_PROPS_AWS environment
variable. Hence, setting a param_prefix allows you
to change the values of the app properties at
runtime without modifying your app.

use_iam_
role

No Boolean Set to true if the Flogo app is running in the AWS
services (such as EC2, ECS, and EKS) and you want
to use the IAM role (such as instance role or task
role) to fetch parameters from the Parameter

TIBCO Flogo® Extension for Visual Studio Code User Guide

246 |

Property
Name

Required Data Type Description

Store. In that case, access_key_id and secret_access_
key are not required.

session_
token

No String Enter session token if you are using temporary
security credentials. Temporary credentials expire
after a specified interval. For more information,
see the AWS documentation.

Setting the Parameter Store Connection Parameters
You can use the AWS Systems Manager Parameter Store to override the property value set
in your Flogo app. You do so by creating the property in the Parameter Store and assigning
it the value with which to override the default value set in the app. You can create a
standalone property or a hierarchy (group) in which your property resides.

Before you begin
This section assumes that you have an AWS account and the Parameter Store and are
familiar with its use. Refer to the AWS documentation for more information on the
Parameter Store.
To create a standalone property (without hierarchy), you simply enter the property name
when creating it. To create a property within a hierarchy, enter the hierarchy in the
following format when creating the property: <param_prefix>/<property_name>, where <param_
prefix> is a meaningful string or hierarchy that serves as a path to the property name in
Parameter Store and <property_name> is the name of the app property whose value you
want to override.
For example, in dev/Timer/Message and test/Timer/Message/dev/Timer and test/Timer are the
<param_prefix> which could stand for the dev and test environments respectively, and
Message is the key name. During runtime, you provide the <param_prefix> value, which tells
your app the location in the Parameter Store from where to access the property values.

TIBCO Flogo® Extension for Visual Studio Code User Guide

247 |

Warning:
l A single app property, for example, Message, is looked up by your app as

either Message or <param_prefix>/Message in the Parameter Store. An app
property within a hierarchy such as x.y.z is looked up as x/y/z or <param_
prefix>/x/y/z in the Parameter Store. Note that the dot in the hierarchy is
represented by a forward slash (/) in the Parameter Store.

l The parameter name in the Parameter Store must be identical to its
counterpart (app property) in the Application Properties dialog in Flogo.
If the parameter names do not match exactly, a warning message is
displayed, and the app uses the default value that you configured for the
property in Flogo.

After you have configured the app properties in the Parameter Store, you need to set the
environment variable, FLOGO_APP_PROPS_AWS, with the Parameter Store connection
parameters for your app to connect to the Parameter Store. When you set the environment
variable, it triggers your app to run, which connects to the Parameter Store using the
Parameter Store connection parameters you provided and pulls the app property values
from the param_prefix location you set by matching the app property name with the param_
name. Hence, the property names must be identical to the app property names defined in
the Application Properties dialog in Flogo.

You can set the FLOGO_APP_PROPS_AWS environment variable by manually placing the
properties in a file and using the file as input to the FLOGO_APP_PROPS_AWS environment
variable.

If your Container is Not running on ECS or EKS

If the container in which your app resides is running external to ECS, you must enter the
values for access_key_id and secret_access_key parameters when setting the FLOGO_APP_
PROPS_AWS environment variable.

Setting the Parameter Store values using a file

To set the parameter values in a file, create a .json file, for example, aws_config.json
containing the parameter values. Here is an example:

{
"access_key_id": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"param_prefix": "/MyFlogoApp/dev/",
"secret_access_key": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"region": "us-west-2",

TIBCO Flogo® Extension for Visual Studio Code User Guide

248 |

"session_
token":"SECRET:1UBrEIezye8W1mmx7NLAiQzopmp58kUa02XdpmxYqVvkGKUrdN+wgCeH3mx
Z"
}

Place the aws_config.json file in the same directory, which contains your app binary.

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_AWS environment variable. For example, to use the aws_config.json file from the
example above, run:

FLOGO_APP_PROPS_AWS=aws_config.json ./<app_binary_name>

This connects to the Parameter Store, pulls the overridden app properties values from the
Parameter Store, and runs your app with those values.

If your Container is running on ECS or EKS

In case your Flogo apps are running in ECS and intend to use the EC2 instance credentials,
set use_iam_role to true. The values for access_key_id and secret_access_key are gathered from
the running container. Ensure that the ECS task has permission to access the param store.

The IAM role that you use must have permissions to access the parameters from the AWS
Systems Manager Parameter Store. The following policy must be configured for the IAM
role:

{
"Version":"2012-10-17",
"Statement":[
{
"Action":[
"ssm:GetParamaters",
"ssm:GetParamatersByPath",

],
"Effect":"Allow",
"Resource":"*"

}
]

}

The following is an example of how to set the FLOGO_APP_PROPS_AWS environment
variable when your container is running on ECS. Notice that the values for access_key_id
and secret_access_key are omitted:

TIBCO Flogo® Extension for Visual Studio Code User Guide

249 |

FLOGO_APP_PROPS_AWS="{\"use_iam_role\":true, \"region\":\"us-west-2\"}" ./Timer-darwin-
amd64

Overriding an App Property at Runtime
The following section discusses how to override an app property at runtime in the
following scenarios:

l Without restarting or redeploying the app

l With new values

l With new values in the API

Overriding Properties without Restarting or
Redeploying the App
When using config management services, such as Consul or AWS Params store, you can
update or override an app property at runtime without restarting or redeploying the app.

Note: Currently, this functionality is only available for app properties mapped in
activities. It is not available for app properties in triggers and connections.

Before you begin
Set the following environment variables:

Environment Variable Description

FLOGO_APP_PROP_
RECONFIGURE=true

Specifies that app properties can be updated or
overridden at runtime.

FLOGO_APP_PROP_
SNAPSHOTS=true

Used along with FLOGO_APP_PROP_RECONFIGURE. If
you do not want your application to pick the updated
app properties dynamically for a running flow, set this

TIBCO Flogo® Extension for Visual Studio Code User Guide

250 |

variable to true. The updated values are effective only
for new flows and not existing ones.

FLOGO_HTTP_SERVICE_PORT=<port
number>

Specifies the service port. For apps running in TCI, you
do not need to specify the port. The default is 7777.

FLOGO_APP_PROPS_CONSUL="
{"server_
address":"http://127.0.0.1:8500"}"

Specifies the Consul server address.

Overriding Values by Specifying New Values
1. In the Flogo app, create an app property and map it to the activities as required.

2. Create the same key as the app property and add some value.

3. Run the app with the environment variables in the "Before you begin" section.
The app takes all the configured values.

4. Update the values.

5. To reconfigure the app property values, use the API as follows:

curl -X PUT localhost:7777/app/config/refresh

A successful response is returned from the API.

6. Open the app property update logs to verify that the new app property values are
used by the activities.

Overriding Values by Specifying New Values in the
API Directly
You can specify the new values of app properties directly through the body of the
reconfigure API. This method takes priority over any other resolver specified.

For example:

TIBCO Flogo® Extension for Visual Studio Code User Guide

251 |

curl -X PUT -H "Content-Type: application/json" -d '{"Property_1":"Value"}'
localhost:7777/app/config/refresh

Important Considerations
l If the same property exists, the property from the body of the reconfigure API is used.

l Any new request on the API does not save property values provided on a previous
request.

l Properties mentioned in an earlier request and not mentioned in the new request
take values if present from other resolvers mentioned or the last saved value.

l Properties that are not mentioned in any resolver take the default values.

TIBCO Flogo® Extension for Visual Studio Code User Guide

252 | Running Apps Locally

Running Apps Locally

Configuring the Runtime
 To run Flogo apps, you must first add a runtime environment.

Procedure
1. Select the Flogo icon in Activity Bar.

2. In the Runtime Explorer, click Add a New Runtime or if a runtime exists click +.

3. In the input field on the top, select the runtime type:

l Local Runtime

l TIBCO Platform

l TIBCO Cloud™ Integration (TCI)

Creating Local Runtime

In the New runtime dialog, specify the following details:

l Name: name for the runtime

l Runtime type is Local Runtime by default.

l EMS Home: path to EMS Installation Home.

Creating a Runtime for TIBCO Platform

In the New runtime dialog, specify the following details:

l Name: name for the runtime

l Platform URL: URL of the Control Plane

TIBCO Flogo® Extension for Visual Studio Code User Guide

253 | Running Apps Locally

After entering the Platform URL, click Authenticate. This redirects to the TIBCO Platform
URL where you need to sign in. After a successful sign-in, you will be redirected to Visual
Studio Code.

l Data Plane: Select the desired data plane from the dropdown to which you want to
connect.

l Capability Base URL: This is the Capability Public Base URL, which is present in the
Flogo Capability that is provisioned in a data plane.

l TIBCO Developer Hub URL (Optional): Enter the URL of the TIBCO Developer Hub
which you want to connect. Developer Hub URL is auto-populated if you have
provisioned Developer Hub in the Data Plane.

l Template tags (Optional): Enter the tags to filter the TIBCO Developer Hub
templates.

l Documentation URL (Optional): URL for platform documentation.

If you use custom certificates for the TIBCO Control Plane setup, you must perform one of
the following procedures:

l Configuring the root CA certificate

l Disabling certificate validation

Configuring the Root CA Certificate

If you have access to root CA certificate, perform the following steps:

1. Install the following extension:
https://marketplace.visualstudio.com/items?itemName=pharndt.node-extra-ca-certs-vscode

2. Set the NODE_EXTRA_CA_CERTS environment variable to point to the root CA file. For
example, NODE_EXTRA_CA_
CERTS=C:\Users\flogouser\Documents\projects\test\mkcerts\rootCA.pem

3. Restart Flogo Extension for Visual Studio Code

Disabling Certificate Validation

This is not a best practice. However, if you do not have access to root CA certificate,
perform the following steps:

1. Set the value of the NODE_TLS_REJECT_UNAUTHORIZED environment variable to 0.

2. Restart Flogo Extension for Visual Studio Code

TIBCO Flogo® Extension for Visual Studio Code User Guide

254 | Running Apps Locally

Creating a Runtime for TIBCO Cloud Integration (TCI)

To access TIBCO Cloud Integration apps, you must enable platform APIs from the Cloud
APIs for the organization.

Note: To connect to TIBCO Cloud Integration, ensure platform API access is
enabled by the organization administrator.

In the New runtime dialog, specify the following details:

l Region

l Name

l OAUTH Token. For more information, see How to generate an OAUTH Token?

The following Advanced fields are populated by default:

l Homepage URL: https://cloud.tibco.com/

l Documentation URL: https://integration.cloud.tibco.com/docs/index.html

l Designtime URL: https://integration.cloud.tibco.com/applications/details/flows/@
{APPID}?applicationType=flogo

l Default App Export File: The default name with which you want to export an app

After connection to TIBCO Cloud Integration runtime is established, you can see the list of
all the apps present in your org by opening the tree dropdown. You can take the following
actions for these apps present in your Visual Studio Code org by hovering over the apps:

l Add app to favorites: Click to set an app as your favorite app that shows under the
Favorite Remote Apps section.

l Export and open JSON: Click to export the app.flogo file of the app and download it
in your workspace.

l Open in Browser: Click to open the app details page, you need to log in to TCI to
view this page.

l Export Binary: Click to create a binary of the app and download it in your
workspace.

l Export and Run Binary: Click to create, download, and run the binary of the app.

TIBCO Flogo® Extension for Visual Studio Code User Guide

255 | Running Apps Locally

How to generate an OAUTH Token?

To create a runtime configuration, you need to first generate an OAUTH token.

Procedure
1. Navigate to Settings under your user account icon on TIBCO Cloud Integration.

2. On the left pane, click OAUTH Access Tokens

3. Click Generate token to enter the Generate OAuth 2 token dialog.

4. Specify the following details:

a. Name: name of your token

b. Valid for duration: number of days

c. Can be used by these domains:

l Integration

l Connected Intelligence Cloud

5. Click Generate to create the access token that can be copied from the subsequent
window.

https://integration.cloud.tibco.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

256 | Running Apps Locally

Environment Variables
This topic lists the environment variables associated with the Flogo Extension for VS Code
runtime environment.

Environment Variable
Name

Default Values Description

FLOGO_RUNNER_
QUEUE_SIZE

50 The maximum number of events
from all triggers that can be
queued by the app engine.

FLOGO_RUNNER_
WORKERS

5 The maximum number of
concurrent events that can be
executed by the app engine
from the queue.

FLOGO_LOG_LEVEL INFO Used to set a log level for the
Flogo app. Supported values are:

l INFO

l DEBUG

l WARN

l ERROR

This variable is supported for
Remote Apps managed with the
TIBCO Cloud Integration Hybrid
Agent.

FLOGO_LOGACTIVITY_
LOG_LEVEL

INFO Used to control logging in the Log
activity. Values supported, in order
of precedence, are:

l DEBUG

l INFO

l WARN

TIBCO Flogo® Extension for Visual Studio Code User Guide

257 | Running Apps Locally

l ERROR

For example:

l If the Log level is set to
WARN, WARN and
ERROR logs are filtered and
displayed.

l If the Log Level is set to
DEBUG, then DEBUG, INFO,
WARN, and ERROR logs are
displayed.

FLOGO_MAPPING_
SKIP_MISSING

FALSE When mapping objects if one or
more elements are missing in
either the source or target object,
the mapper generates an error
when FLOGO_MAPPING_SKIP_
MISSING is set to FALSE.

Set this environment variable to
true if you want to return a null
instead of receiving an error.

FLOGO_APP_MEM_
ALERT_THRESHOLD

70 The threshold for memory
utilization of the app. When the
memory utilization by an app
running in a container exceeds
the threshold that you have
specified, you get a warning log

FLOGO_APP_CPU_
ALERT_THRESHOLD

70 The threshold for CPU utilization
of the app. When the CPU
utilization by an app running in a
container exceeds the threshold
that you have specified, you get a
warning log.

FLOGO_APP_DELAYED_ 10 seconds When you scale down an instance,

TIBCO Flogo® Extension for Visual Studio Code User Guide

258 | Running Apps Locally

STOP_INTERVAL all inflight jobs are lost because
the engine is stopped
immediately. To avoid losing the
jobs, delay the stopping of the
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable
to a value less than 60 seconds.
Here, when you scale down the
instance, if there are no inflight
jobs running, then the engine
stops immediately without any
delay. In case of inflight jobs:

If there are any inflight jobs
running, then the engine stops
immediately after the inflight job
is completed.

If the inflight job is not completed
within a specified time interval,
then the job gets killed and the
engine stops.

GOGC 100 Sets the initial garbage collection
target percentage. Setting it to a
higher value delays the start of a
garbage collection cycle until the
live heap has grown to the
specified percentage of the
previous size. Setting it to a lower
value causes the garbage collector
to be triggered more often as less
new data can be allocated to the
heap before triggering a
collection.

This section lists the user-defined environment variables that are associated with the Flogo
Extension for VS Code runtime environment.

TIBCO Flogo® Extension for Visual Studio Code User Guide

259 | Running Apps Locally

Environment Variable Default Values Description

FLOGO_MAPPING_
OMIT_NULLS

TRUE Used to omit all the keys in the activity
input evaluating to null.

FLOGO_FLOW_
CONTROL_EVENTS

N/A If you set FLOGO_FLOW_CONTROL_
EVENTS as true, the Flow limit
functionality is enabled, whenever the
incoming requests to trigger reach
FLOGO_ RUNNER_QUEUE_SIZE limit
the trigger is paused. When all the
requests currently under processing
are finished, the trigger is resumed
again. All the connectors supporting
the flow limit functionality are
mentioned in their respective user
guides.

FLOGO_HTTP_
SERVICE_PORT

N/A Used to set the port number to enable
runtime HTTP service, which provides
APIs for health check and statistics.

FLOGO_LOG_FORMAT TEXT Used to switch the logging format
between text and JSON. For example,
to use the JSON format, set FLOGO_
LOG_FORMAT=JSON ./<app-name>

FLOGO_MAX_STEP_
COUNT

N/A The application stops processing
requests after the FLOGO_MAX_STEP_
COUNT limit is reached. The default
limit is set to 10 million even when
you do not add this variable.

FLOGO_EXPOSE_
SWAGGER_EP

FALSE If you set this property to TRUE, the
Swagger endpoint is exposed. The
Swagger of the Rest trigger app can be
accessed by hitting the Swagger
endpoint at http://<service-
url>/api/v2/swagger.json.

TIBCO Flogo® Extension for Visual Studio Code User Guide

260 | Running Apps Locally

FLOGO_SWAGGER_EP NA To customize the URI for the Swagger
endpoint, set this environment
variables to the desired endpoint.

For example, FLOGO_SWAGGER_
EP=/custom/swagger/endpoint

This makes the Swagger endpoint
available at /custom/swagger/endpoint
instead of the default
/api/v2/swagger.json location.

FLOGO_APPS_PROPS_
CONSUL

NA Specifies the Consul server address.
For example <server_
address>:<http://127.0.0.1:8500>

FLOGO_APP_PROP_
RECONFIGURE

FALSE Specifies that app properties can be
updated or overridden at runtime.

FLOGO_APP_PROP_
SNAPSHOTS

FALSE Used along with FLOGO_APP_PROP_
RECONFIGURE. If this variable is set to
true, the app keeps the app properties
the same for the entire flow. Even if
you change the app properties while
the flow is running, the new properties
are effective only for new flows and
not existing ones.

FLOGO_HTTP_
SERVICE_PORT

7777 Specifies the service port. For apps
running in TCI, you do not need to
specify the port.

FLOGO_OTEL_SPAN_
KIND

INTERNAL Used to specify the type of span to be
used in OpenTelemetry. The supported
values are INTERNAL, SERVER, CLIENT,
PRODUCER, and CONSUMER.

Note: If no value or an invalid value
is provided, the default value will
be set to INTERNAL.

TIBCO Flogo® Extension for Visual Studio Code User Guide

261 | Running Apps Locally

FLOGO_LOG_
CONSOLE_STREAM

stderr Used to specify the logging output
stream for Flogo engine and app logs.
The supported values are stdout and
stderr.

Building and Running your App Locally
This section has instructions about building and running your apps locally.

Building the App Locally
After you have created an app, you can build it anytime. When you build the app, the app
binary gets created in the bin folder under your Workspace.

Before you begin
l The app for which an app executable needs to be created must have a trigger and a

flow in it. If the app does not have a trigger and flow, the app executable is not
created.

l You have associated a runtime with your app that you can see under the Explorer
View > Flogo App Workspace > Actions tab.

l You need go version=go1.20.12 or above, to be installed on your machine.
For information about go installation on Windows, Mac, or Linux, see
https://go.dev/doc/install.

Procedure
1. Select the app that you want to build in Explorer View.

2. Navigate to Explorer View > Flogo App Workspace and click the dropdown icon.

3. Click the Build icon.

https://go.dev/doc/install

TIBCO Flogo® Extension for Visual Studio Code User Guide

262 | Running Apps Locally

Note: Make sure that the build configuration is set according to your
Operating System and Architecture. If not, click the Configure and Run
icon next to the Build icon to configure the correct settings.

Result
When the build is finished, the app binary is downloaded to the bin folder in your
workspace.

Running the App Locally

Selecting a Runtime for Your App

 To select and set a runtime environment for your app:

Procedure
1. Select the app from Explorer for which a runtime needs to be selected.

2. Under FLOGO APP, select Select a runtime to see available actions.
A list of existing runtimes is displayed at the top. If you do not want to use an
existing one, you can create a runtime by clicking Create new runtime.

3. Select the desired runtime environment from the list at the top.

Note: Ensure that the selected runtime has [Current] as a suffix.

For information on how to create a local runtime environment, see Creating Local
Runtime

Running the App

Procedure
1. Select the app that you want to run in Explorer View.

2. Navigate to Explorer View > Flogo App Workspace and click the dropdown icon.

3. Click the Run icon. When you click the Configure and Run icon, you see the

TIBCO Flogo® Extension for Visual Studio Code User Guide

263 | Running Apps Locally

following options:

l Environment variables: To add environment variables when running an app.
For more information, see Overriding an App Property at Runtime and
Environment Variables.

l Configure Run mode: To choose between Docker App and Executable modes.
To run an app in a docker container, see Generating an Application Docker
Image Locally. Select Executable if you want to run the application binary
locally.

l Save and Run: To save and run the same configuration for all the apps.

l Run: To add a particular app with a selected configuration, without saving it for
the next run.

For a list of the environment variables, see Environment Variables.

Result
When it runs successfully, you can see the logs in the terminal window of the Visual Studio
Code.

Testing the App on the OS terminal

On the Macintosh and Linux

Procedure
1. Open a terminal.

2. Run:
chmod +x <app-file-name>

Note: Make sure that you run the app binary file and not the .FLOGO file.

3. Run:

./<app-file-name>

On Microsoft Windows

At the command prompt, run:

TIBCO Flogo® Extension for Visual Studio Code User Guide

264 | Running Apps Locally

<app-file-name>.exe

Exporting App JSON from an Executable
To export the app JSON from an app executable, run the following command:

<app_exec> export -o <app-name>.flogo app

Where:

l <app_exec> is the executable of your Flogo application.

l <app-name> is the name of the exported file.

This command extracts the application's configuration and workflow details and saves it as
a JSON file.

Editing a Runtime
 To edit an existing runtime configuration:

Procedure
1. Select the Flogo icon in Activity Bar.

2. In the Runtime Explorer, select the runtime to be edited and click the Edit runtime
icon.

3. In the Edit runtime dialog, edit the details that you want to modify.

4. Click Save.

TIBCO Flogo® Extension for Visual Studio Code User Guide

265 | Running Apps Locally

Deleting a Runtime
 To delete a runtime environment:

Procedure
1. Select the Flogo icon in Activity Bar.

2. In the Runtime Explorer, select the runtime environment to be deleted.

3. Right-click and select Delete.

Generating an Application Docker Image
Locally

Before you begin
Install Docker and ensure it is running properly.

To generate an application Docker image, perform the following steps:

1. Choose an app for which you want to build an application Docker image and run as
an application Docker container.

2. Select Runtime: local and choose the Configure and Run Action mode.

Note: The application Docker image generation is only supported for local
runtime.

3. In the dropdown list, choose Configure Run mode.

Note: To override the app property at runtime, see Overriding Using
Configure and Run Locally in Overriding an App Property at Runtime.

4. To generate an application Docker image, select Run as Docker App.

TIBCO Flogo® Extension for Visual Studio Code User Guide

266 | Running Apps Locally

Note: Once you click on Run as Docker App, a container instance of the
app Docker image is started. The container instance is terminated after
you close the application.

5. Rename the application Docker image in the next prompt. By default, it takes the
name of the current app and version.

6. Click Run to run it once or choose Save and Run to save and then generate the
application Docker image.

Note: By default, the Dockerfile used to generate the application Docker image
uses amazonlinux as the base image. You can use alpine:3.14 and other
compatible base images as well.

Note: The application Docker images use the Linux binary. Therefore, you
cannot generate the application Docker image of apps that use native drivers,
such as EMS and OracleDB, on Mac or Windows.

TIBCO Flogo® Extension for Visual Studio Code User Guide

267 | Deployment and Configuration

Deployment and Configuration
After you have created and validated your app, you can build an app executable to deploy
and run it.

Deploying Flogo Apps from Visual Studio Code

Procedure
1. Open the Explorer view in Visual Studio Code.

2. Select the Flogo App to be deployed.

3. Navigate to FLOGO APPS, click beside Actions to select any runtime, which has
TIBCO Platform as its type.

4. Click the Deploy option under Actions to deploy the app to Platform.

Note: Deploy option only appears for a runtime, which has the type as
TIBCO Platform.

Result
The Flogo App is deployed on TIBCO Control Plane. You can view the progress on the
bottom right of the screen and also navigate to the newly deployed app.

View Flogo App List in Runtime Explorer
For a connected runtime of type TCI or TIBCO Platform, Visual Studio Code displays a list of
the Flogo apps and available actions.
The runtime explorer for TIBCO Platform lists all the available apps in the runtime. When
you right-click a Flogo app, you can see the following action icons:

For TCI and TIBCO Platform

TIBCO Flogo® Extension for Visual Studio Code User Guide

268 | Deployment and Configuration

l Add to favorites

l Open in browser

TIBCO Platform Only

l Start an app

l Stop an app

TCI Only

l Export and open JSON in Visual Studio Code

l Export binary

l Export and run binary

Developing for Lambda
AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS).
Lambda functions automatically run pieces of code in response to specific events while
also managing the resources that the code requires to run. Refer to the AWS
documentation for more details on AWS Lambda.

Creating a Connection with the AWS Connector
You must create AWS connections before you use the Lambda trigger or Activity in a flow.

Note: AWS Lambda is supported on the Linux platform only.

To create an AWS connection:

Procedure
1. In TIBCO Flogo® Extension for Visual Studio Code, click Connections to open its page.

2. Click the AWS Connector card.

TIBCO Flogo® Extension for Visual Studio Code User Guide

269 | Deployment and Configuration

3. Enter the connection details. Refer to the section AWS Connection Details for details
on the connection parameters.

Field Description

Name A meaningful string identifying the AWS connection you are creating.
The dropdown menu from which you select a connection when
creating a Lambda Activity displays this string.

Description A brief description of this connection

Region Select a geographic area where your resources are located

Access key ID Access ID to your AWS account

Secret Access
key

Secret access key to your AWS account

Use Assume
Role

AWS Assume role that allows you to assume a role from another AWS
account. By default, it is set to False indicating that you cannot
assume a role from another AWS account. When set to True, provide
the following:

Role ARN - Amazon Resource Name of the role to be assumed

Role Session Name - Any string used to identify the assumed role
session

External ID - A unique identifier that might be required when you
assume a role in another account

Expiration Duration - The duration in seconds of the role session. The
value can range from 900 seconds (15 minutes) to the maximum
session duration setting that you specify for the role

Refer to the AWS documentation for more details on these fields.

4. Click Save.

Your connection gets created and is available for you to select in the dropdown menu
when adding a Lambda Activity or trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

270 | Deployment and Configuration

AWS Connection Details
To establish the connection to the AWS connector, you must specify the following
configurations in the AWS Connector dialog.

Field Description

Name Specify a unique name for the connection that you are creating. This is
displayed in the Connection Name dropdown list for all the AWS activities.

Description A short description of the connection.

Custom
Endpoint

(Optional) To enable the AWS connection to an AWS or AWS compatible
service running at the URL specified in the Endpoint field, set this field to
True.

Endpoint This field is available only when Custom Endpoint is set to True.

Enter the service endpoint URL in the following format:
<protocol>://<host>:<port>. For example, you can configure a MinIO cloud
storage server endpoint.

Region Region for the Amazon connection.

Access key ID Access key ID of the AWS account (from the Security Credentials field of IAM
Management Console). For details, see the AWS documentation.

Secret access
key

Enter the secret access key. This is the access key ID that is associated with
your AWS account. For details, see the AWS documentation.

Session token (Optional) Enter a session token if you are using temporary security
credentials. Temporary credentials expire after a specified interval. For more
information, see the AWS documentation.

Use Assume
Role

This enables you to assume a role from another AWS account. By default, it is
set to False (indicating that you cannot assume a role from another AWS
account).

When set to True, provide the following information:

The AWS Connector dialog contains the following fields:

TIBCO Flogo® Extension for Visual Studio Code User Guide

271 | Deployment and Configuration

Field Description

l Role ARN - Amazon Resource Name of the role to be assumed

l Role Session Name - Any string used to identify the assumed role
session

l External ID - A unique identifier that might be required when you
assume a role in another account

l Expiration Duration - The duration in seconds of the role session. The
value can range from 900 seconds (15 minutes) to the maximum
session duration setting that you specify for the role.

For details, see the AWS documentation.

Creating a Flow with Receive Lambda Invocation
Trigger
The Receive Lambda Invocation trigger allows you to create a Flogo flow to create and
deploy as a Lambda function on AWS.

Refer to the Receive Lambda Invocation for details on the trigger.

To create a flow with the Receive Lambda Invocation trigger:

Procedure
1. Create a Flogo app.

2. Open the flow page.

3. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

4. To configure a trigger, enter the JSON schema or JSON sample data for the
operation. This is the schema for the request payload.

5. Click Continue.

A flow beginning with the ReceiveLambdaInvocation trigger gets created.

6. Click the ReceiveLambdaInvocation trigger tile and configure its properties.

Refer to the Receive Lambda Invocation for details on the trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

272 | Deployment and Configuration

Deploying a Flow as a Lambda Function on AWS
After you have created the flow, you can deploy it as a Lambda function on AWS.

Before you begin
Note the following points:

l The flow must be configured with the ReceiveLambdaInvocation trigger.

l Run and Deploy actions do not deploy Lambda function on the AWS Lambda directly.
You must deploy the Lambda function by following the steps in this section.

l Deploying an app having a ReceiveLambdaInvocation trigger on the TIBCO Platform
does not deploy the app as a Lambda function on AWS Lambda. You must create a
Linux/amd64 binary and deploy the binary by following the steps in this section.

l If the execution role name is not provided in the ReceiveLambdaInvocation trigger,
then the Lambda function is created with the default
AWSLambdaBasicExecutionRole role. It has the following Amazon CloudWatch
permissions:

o Allow: logs:CreateLogGroup

o Allow: logs:CreateLogStream

o Allow: logs:PutLogEvents

If a non-existing execution role is provided, then the user whose AWS credentials are
used in the AWS connection should have the following permissions:

o iam:CreateRole

o sts:AssumeRole

To deploy a Flogo app as a Lambda function, user role can have access to following
AWSLambda_FullAccess policy which has all the required access.

To deploy a flow as a Lambda function on AWS:

Procedure
1. Build your Flogo app(<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function.

2. Add execution permission to the native Linux/amd64 executable file that you built. Run

TIBCO Flogo® Extension for Visual Studio Code User Guide

273 | Deployment and Configuration

chmod +x <myApp>-linux_amd64

3. You can deploy the <myApp>-linux_amd64 in one of two ways:

l If you are using a Linux environment to design, build, and deploy your apps, you
can directly run the following command:

<LambdaTriggerBinary> --deploy lambda --aws-access-key <secret_key>

For example, myApp-Linux64 --deploy lambda --aws-access-key xxxxxxxxx

Note: Ensure that the aws-access-key is identical to the one configured
in the Flogo UI for the selected AWS connection. This is used for
validation with the aws-access-key configured as part of the AWS
Connection within the UI and the value provided here does not
overwrite the aws-access-key used while designing the app.

This approach of deploying to AWS Lambda works only on Linux platforms.

l .JSON file is passed to Lambda as environment variables.

If you are using a non-Linux environment to design, build, and deploy apps, then perform
the following steps:

Procedure
1. Build your Flogo app (<myApp>) with the Linux/amd64 target.

2. Rename the Flogo executable file to bootstrap. This is mandatory per new
provided.al2 and provided.al2023 runtimes.

3. Compress the executable file and rename it to <myFunctionName>.zip.

4. From the AWS Lambda UI, create a Lambda function with Amazon Linux 2023
runtime.

5. Create a role or attach an existing role in the Execution role.

6. Click Create function.

7. Go to Code source, click Upload from and upload the compressed file.

After successful deployment, the Lambda function is created in the AWS Lambda console.

TIBCO Flogo® Extension for Visual Studio Code User Guide

274 | Deployment and Configuration

Deploying a Flow as a Lambda Function on AWS using AWS
CLI

Procedure
1. Build your Flogo app (<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function.

2. Rename the Flogo executable to bootstrap (this is mandatory as per new provided.al2
and provided.al2023 runtimes).

3. Zip the executable.

4. Zip myFunction.zip bootstrap.

5. Run the AWS CLI:

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--architectures x86_64 \
--role arn:aws:iam::111122223333:role/lambda-ex \
--region us-west-2 \
--zip-file fileb://myFunction.zip

Receive Lambda Invocation
Use the Receive Lambda Invocation trigger for AWS to start your flow as a Lambda
function. The Receive Lambda Invocation trigger can be configured only in blank flows. It
must not be used with flows that are created with another trigger.

TIBCO Flogo® Extension for Visual Studio Code User Guide

275 | Deployment and Configuration

Trigger Settings

Note:
An app can contain only one Lambda trigger. An app that has a Lambda trigger
cannot contain any other triggers including another Lambda trigger. Also, as the
Lambda trigger supports only one handler per trigger, it can have only one flow
attached to it. However, the apps that contain a Lambda trigger can contain
blank flows that can serve as subflows for the flow attached to the Lambda
trigger.

Field Description

AWS
Connection
Name

Name of the AWS connector connection you want to use for the flow.

Execution
Role Name

(optional) ARN of the role to be used to execute the function on your behalf.
The role must be assumable by Lambda and must have CloudWatch logs
permission execution role.

Output Settings

Enter the payload schema for the request received on the Lambda function invocation on
AWS.

Map to Flow Inputs

This tab allows you to map the trigger output to flow input.

Field Description

Function Information about the Lambda function

Context Envelope information about this invocation

Identity Identity for the invoking users

TIBCO Flogo® Extension for Visual Studio Code User Guide

276 | Deployment and Configuration

Field Description

ClientApp Metadata about the calling app

API Gateway
Request

Displays the elements in the payload schema that you entered on the Output
Settings tab. The elements are displayed in a tree format.

Reply Settings

Enter a schema for the trigger reply in the Reply Data text box.

Map from Flow Outputs

Map the flow output to the trigger reply on this tab.

InvokeLambdaFunction
Use this Activity to invoke a specific Lambda function.

Settings

Field Description

AWS
Connection
Name

Select an AWS connection.

ARN
(Optional)

Amazon Resource Name.

Note:

l You can also specify the ARN on the Input tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab. Otherwise, the
Activity returns an error at runtime.

TIBCO Flogo® Extension for Visual Studio Code User Guide

277 | Deployment and Configuration

Input Settings

Field Description

Payload
Schema

Enter a JSON request schema for your payload that is used to invoke the
Lambda function.

Input

The payload schema that you entered on the Input Settings tab is displayed in a tree
format on the Input tab. Map the elements in the schema using the mapper or enter values
for the element by manually typing the value in the mapper.

Field Description

LambdaARN Amazon Resource Name.

Note:

l You can also specify the ARN on the Settings tab. If you specify the
ARN on both the tabs, the ARN on the Input tab is used.

l You must specify the ARN on at least one tab. Otherwise, the
Activity returns an error at runtime.

Output Settings

Field Description

Result
Schema

The schema for the result that is expected from the Lambda function invokes
the request.

Output

The Output tab displays the result schema that you entered on the Output Settings tab in
a tree format.

TIBCO Flogo® Extension for Visual Studio Code User Guide

278 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Flogo® Extension
for Visual Studio Code Product Documentation page:

l TIBCO Flogo® Extension for Visual Studio Code Release Notes

l TIBCO Flogo® Extension for Visual Studio Code User Guide

l TIBCO Flogo® Extension for Visual Studio Code Mapper Functions Guide

Other TIBCO Product Documentation

When working with TIBCO Flogo® Extension for Visual Studio Code, you may find it useful
to read the documentation of the following TIBCO products:

l TIBCO® Control Plane

l TIBCO Flogo® Enterprise

l TIBCO Cloud™ Integration

How to Access Related Third-Party Documentation

When working with TIBCO Flogo® Extension for Visual Studio Code, you may find it useful
to read the documentation of Visual Studio Code: https://code.visualstudio.com/.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/emp/platform-flogo-vscode-preview/0.9.0/doc/html/Default.htm
https://docs.tibco.com/emp/platform-flogo-vscode-preview/0.9.0/doc/html/Default.htm
https://docs.tibco.com/products/tibco-control-plane
https://docs.tibco.com/products/tibco-flogo-enterprise
https://integration.cloud.tibco.com/docs/
https://code.visualstudio.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

279 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO Flogo® Extension for Visual Studio Code User Guide

280 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Flogo Enterprise, TIBCO Cloud Integration, and TIBCO
Control Plane are either registered trademarks or trademarks of Cloud Software Group, Inc. in the
United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO Flogo® Extension for Visual Studio Code User Guide

281 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2023-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	App Development
	Creating and Managing a Flogo App
	Creating a Flogo App
	Validating your App Flow
	Important Considerations

	Editing an App
	Renaming an App
	Editing the Version of an App
	Using Notes
	Deleting an App

	Creating Flows and Triggers
	Flows
	Creating a Flow
	Creating a Flow Starting with a Trigger
	Creating a Flow Attached to a REST Trigger
	Creating a Flow Attached to Other Triggers

	Creating a Blank Flow (Flow without a Trigger)
	Flow Input & Output Tab
	Attaching a Flow to One or More Triggers

	Catching Errors
	Creating an Error Handler Flow
	Viewing Errors and Warnings

	Using Subflows
	Creating Subflows

	Creating a Flow Execution Branch
	Joining or merging branches
	Types of Branch Conditions
	Order in which Branches are Run
	Setting Branch Conditions
	Key Considerations When Setting Branch Conditions

	Deleting a Branch

	Editing a Flow
	Deleting a Flow
	Adding an Activity
	Searching for a Category or Activity
	Configuring an Activity
	Duplicating an Activity
	Using the Loop Feature in an Activity
	Accumulating the Activity Output for All Iterations
	Accessing the Activity Outputs in Repeat While True Loop

	Using the Retry On Error Feature in an Activity
	Deleting an Activity

	Triggers
	Deleting a Trigger

	Playing a Test Case Once
	Handling Errors
	Using App Executable

	Synchronizing a Schema Between Trigger and Flow

	Data Mappings
	Data Mappings Interface
	Mapping Data from the Data Mappings Interface
	Scopes in Data Mappings
	Data Types
	Supported data types
	Unsupported data types

	Reserved Keywords to be Avoided in Schemas
	Mapping Different Types of Data
	Mapping an Enum value
	Mapping a Single Element of Primitive Data Type
	Mapping an Object
	Mapping Arrays
	Mapping an Array of Primitive Data Types
	Mapping Complex Arrays
	Mapping of unmapped arrays
	Add Items to Array
	Mapping Identical Arrays of Objects
	Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-...
	Mapping Nested Arrays
	Mapping Child Elements within a Nested Array Scope
	Mapping a Nested Array Child Element Outside the Nested Array Scope
	Mapping an Element from a Parent Array to a Child Element in a Nested Array w...
	Filtering Array Elements to Map Based On a Condition

	Mapping JSON Data with the json.path() Function
	Constructing any, param, or object Data Type in Mapper
	Coercing of Activity Input, Output, and Trigger Reply Fields
	Important Considerations

	Clear Mapping of Child Elements in Objects and Arrays
	Ignoring Missing Object Properties when Mapping Objects

	Mapping Data by Using if/else Conditions
	Considerations when using conditions:
	To delete an If condition that has Else-if and Else conditions:

	Using Functions
	Using Expressions
	Combining Schemas Using Keywords
	Using the oneOf Keyword

	Supported Operators

	General Category Triggers, Activities, and Connections
	Triggers
	Timer Trigger
	REST Trigger - ReceiveHTTPMessage
	GraphQL Trigger
	gRPC Trigger
	Receive Lambda Invocation
	App Startup Trigger
	Design considerations

	App Shutdown Trigger
	Design considerations

	Activities
	ConfigureHTTPResponse
	Run JavaScript
	Important Considerations

	gRPC Invoke
	InvokeLambdaFunction
	InvokeRESTService
	Using SSL

	LogMessage
	Mapper
	ParseJSON
	ReplyToTrigger
	ProtobufToJSON
	No-Op
	SendMail
	SharedData
	Sleep
	Throw Error
	JSONToXML
	XMLToJSON

	Connections
	HTTP Client Authorization Configuration

	File Category Trigger and Activities
	File Poller Trigger
	Map to Flow Inputs

	Create File
	Read File
	List Files
	Write File
	Copy File
	Rename File
	Remove File
	Archive Files
	Unarchive Files

	Developing APIs
	Using an OpenAPI Specification
	Configuring the REST Reply

	Using GraphQL Schema

	Using App Properties and Schemas
	App Properties
	Creating App Properties
	App Properties Dialog Box Views
	Creating a Standalone App Property
	Creating a Group

	Deleting a Group or Property
	Using App Properties in a Flow
	Using App Properties in the Mapper
	Unlinking an App Property from a Field Value

	Using App Properties in Connections
	Editing an App Property
	Changing the Default Value of a Property from the App Properties Dialog Box
	Changing the Default Value of a Property in the Environment Controls Tab
	Changing the Name or Data Type of an App Property after Using It

	Exporting App Properties to a File
	Overriding an App Property Locally

	App Schemas
	Defining an App-Level Schema
	Editing an App-Level Schema
	Deleting an App-Level Schema
	Using an App-Level Schema
	Flow Input & Output Tab
	Input or Output Settings Tab of an Activity
	Output or Reply Settings Tab of a Trigger

	Using Connectors
	Supported Flogo Connectors
	Prerequisites for Connectors
	OAuth Connections
	Installing Driver from Visual Studio Code UI
	Installing ODBC Driver Manager
	Installing Oracle Database ODBC Drivers
	Installing TIBCO Data Virtualization ODBC Driver
	Installing Oracle MySQL ODBC Driver
	Installing Microsoft SQL Server ODBC Driver
	Installing PostgreSQL and Greenplum ODBC Drivers
	Installing Amazon Redshift Database Drivers
	Installing Snowflake ODBC Drivers
	Setting up EMS for Local Runtime

	Creating Connections
	Editing Connections
	Deleting Connections

	Developing for Lambda
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Creating a Flow with Receive Lambda Invocation Trigger
	Deploying a Flow as a Lambda Function on AWS
	Deploying a Flow as a Lambda Function on AWS using AWS CLI

	Receive Lambda Invocation
	InvokeLambdaFunction

	Using Extensions
	Configuring Extensions
	Deleting Extensions

	Unit Testing
	Terminologies in Unit Testing
	Creating and Running a Test Case
	Configuring Unit Test Data
	Unit Testing Modes

	Creating a Test Case for an Existing App
	Creating a Test Case Along with a New App
	Defining Flow Input
	Creating Assertions
	Creating Assertions for Flow Output
	Creating Assertions for the Error Handler

	Skipping an Activity with No Output

	Test Case Validation
	Running a Test Case
	Hiding Test Cases
	Using Mock Data
	Running a Test Case Using a Runtime Environment

	Creating and Running a Test Suite
	Creating a Test Suite
	Running a Test Suite

	Unit Testing for the CI/CD

	App Configuration Management
	Consul
	Using Consul
	Consul Connection Parameters
	Setting the Consul Connection Parameters

	AWS Systems Manager Parameter Store
	Using the Parameter Store
	Parameter Store Connection Parameters
	Setting the Parameter Store Connection Parameters

	Overriding an App Property at Runtime
	Overriding Properties without Restarting or Redeploying the App
	Overriding Values by Specifying New Values
	Overriding Values by Specifying New Values in the API Directly
	Important Considerations

	Running Apps Locally
	Configuring the Runtime
	Environment Variables
	Building and Running your App Locally
	Building the App Locally
	Running the App Locally
	Exporting App JSON from an Executable

	Editing a Runtime
	Deleting a Runtime
	Generating an Application Docker Image Locally

	Deployment and Configuration
	Deploying Flogo Apps from Visual Studio Code
	View Flogo App List in Runtime Explorer
	Developing for Lambda
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Creating a Flow with Receive Lambda Invocation Trigger
	Deploying a Flow as a Lambda Function on AWS
	Deploying a Flow as a Lambda Function on AWS using AWS CLI

	Receive Lambda Invocation
	InvokeLambdaFunction

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

