
Copyright © 2016-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Flogo® Enterprise
User Guide
Version 2.25.2 | January 2025



TIBCO Flogo® Enterprise User Guide

2 | Contents

Contents
Contents 2

Introduction 6
Concepts 6

Creating Your First REST API 8
Procedure 9

App Development 28
Creating and Managing a Flogo App Using the UI 28

Creating an App 28

Validating your App 33

Editing an App 34

Auto-Upgrade of Activities, Triggers, and Connections 34

Renaming an App 35

Editing the Version of an App 35

Using App Tags 36

Using Notes 39

Switching Between Display Views On the App Page 41

Deleting an App 43

Exporting and Importing an App 43

App File Persistence 52

Creating Flows and Triggers 55
Flows 55

Triggers 94

Synchronizing a Schema Between Trigger and Flow 95

Data Mappings 95
Data Mappings Interface 95

Mapping Data from the Data Mappings Interface 98



TIBCO Flogo® Enterprise User Guide

3 | Contents

Scopes in Data Mappings 101

Data Types 103

Reserved Keywords to be Avoided in Schemas 104

Mapping Different Types of Data 106

Mapping Data by Using if/else Conditions 138

Using Functions 142

Using Expressions 144

Supported Operators 145

Combining Schemas Using Keywords 146

Developing APIs 148
Using an OpenAPI Specification 149

Using GraphQL Schema 155

Using App Properties and Schemas 159
App Properties 159

App Schemas 177

Using Connectors 181
Creating Connections 182

Editing Connections 182

Deleting Connections 183

Using Extensions 183
Important Considerations 184

Creating Extensions 185

Uploading Extensions 192

Pulling Extensions from an Open Source Public Git Repository 196

Deleting Extensions or Extension Categories 198

Flow Tester 198
Testing Flows from the UI 199

Testing Flows from the CLI 215

Using the    test command to test your flow from the CLI 216

Unit Testing 219
Creating and Running a Test Case 220

Creating and Running a Test Suite 229



TIBCO Flogo® Enterprise User Guide

4 | Contents

Exporting and Importing a Unit Test 231

Enabling On-premises Services in Unit Testing 232

Unit Testing for the CI/CD 232

Deployment and Configuration 235
Building an App Executable 235

Building the App 235

App Configuration Management 240
Consul 240

AWS Systems Manager Parameter Store 248

AWS AppConfig 254

Environment Variables 259

Overriding Security Certificate Values 262

Encrypting Password Values 264

Container Deployments 265
Kubernetes 265

Amazon Elastic Container Service (ECS) and Fargate 272

Pivotal Cloud Foundry 273

Microsoft Azure Container Instances 279

Google Cloud Run 283

Red Hat OpenShift 286

Serverless Deployments 291
Developing for Lambda 291

Deploying a Flogo App to Microsoft Azure Functions 302

Deploying a Flogo App in Knative 308

Monitoring 313
About the TIBCO Flogo Enterprise Monitoring App 313

About TIBCO Flogo® Flow State Manager 327

Viewing Statistics by Using Flogo Enterprise Monitoring app 335

App Metrics 344

Distributed Tracing 358

Using APIs 373



TIBCO Flogo® Enterprise User Guide

5 | Contents

CPU and Memory Profiling 376

Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration 378

Environment Variables 378

Pushing Apps to TIBCO Cloud 384

Best Practices 387

Performance Tuning 392
Tuning Environment Variables 392

FLOGO_RUNNER_TYPE 393

FLOGO_LOG_LEVEL 398

GOGC 400

Flow Limit 402

CPU and Memory Monitoring 403
Top Command 403

Docker Stats Command 404

Runtime Statistics and Profiling 404

Samples 406

TIBCO Documentation and Support Services 407

Legal and Third-Party Notices 409



TIBCO Flogo® Enterprise User Guide

6 | Introduction

Introduction
TIBCO Flogo® Enterprise is an open-core product based on  Project Flogo™, an open-source 
ecosystem for event-driven apps. Its ultra-light app engine offers you the flexibility to 
deploy your Flogo apps in containers, as serverless functions, or as static binaries on IoT 
edge devices. You can quickly implement microservices, serverless functions, event-driven 
apps, integrations, and APIs.

Flogo apps are created in  TIBCO Cloud™ Integration, which provides a wizard-driven web-
based tool to create integration apps without having to leave your browser.  For more 
information on creating and using Flogo apps, see TIBCO Cloud Integration documentation. 

To migrate an existing app (created using release 2.14.0 or a prior release) from Flogo 
Enterprise to TIBCO Cloud™ Integration, see TIBCO Flogo® Enterprise Transition Guide.

If you are entitled to TIBCO Flogo Enterprise and you would like to get access to TIBCO 
Cloud Integration to design your TIBCO Flogo apps, you can send a Support Request on 
https://supportapps.tibco.com/ to provide the required Cloud contact details for us to 
provision Cloud access.

Concepts
This section describes the main concepts used in the Flogo Enterprise environment.    

Apps     

Flogo apps are developed as event-driven apps using triggers and actions and contain the 
logic to process incoming events. A Flogo app consists of one or more triggers and one or 
more flows. 

Trigger     

Triggers receive events from external sources such as Apache Kafka®, Salesforce, GraphQL. 
Handlers residing in the triggers, dispatch events to flows.     Flogo Enterprise provides a set 
of out-of-the-box triggers. Also provides a range of connectors for receiving events from a 
variety of external systems. 

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/introduction2.html
https://supportapps.tibco.com/


TIBCO Flogo® Enterprise User Guide

7 | Introduction

Flow

The Flogo provides a set of actions for processing events in a manner suitable to your 
implementation logic.     The flow allows you to implement the business logic as a process. 
You can visually design and test the flows using the UI. A flow consists of one or more 
activities that perform a specific task. Activities are linked to facilitate the flow of data 
between them and contain conditional logic for branching. Each flow is also connected to a 
default error handler. A Flogo app can have one or more flows. A flow can be activated by 
one or more triggers within the app. 

Activity    

Activities perform specific tasks within the flow. A flow typically contains multiple activities.

How     Flogo Works

The trigger consists of one or more handlers that serve as the means of communication 
between the trigger and the flow. When the trigger receives an event, it uses the respective 
flow handlers to pass the data from the event to the flow in the form of flow input. The 
business logic in the flow then can use the event data coming in through the flow input. 
When the trigger expects a reply from the flow, the data from the flow is passed on to the 
trigger in the form of flow output. A flow can contain one or more conditional branches. 

Summary:    

 1. Create an app.      



TIBCO Flogo® Enterprise User Guide

8 | Introduction

 2. Create a flow in your app.      

 3. Add one or more activities to the flow and configure them.      

 4. Optionally,      add a trigger to your flow. You can add one or more triggers to a flow as 
and when you need them.      

 5. Build your app.      

Creating Your First REST API
This tutorial walks you through the steps to build a simple app with a REST service in Flogo 
Enterprise. It shows how to create a basic app that returns the booking details of a specific 
customer based on a query sent to the app. In this tutorial, the query sent to the app 
checks whether the passenger's family name is "Jones". The app then returns the booking 
details. 

For the sake of this tutorial, the sample data used are: A passenger whose family name is 
"Jones" and travels by the "Business" class. All other customers travel by "Economy" 
class.

Overall Structure of the App

This app contains:

 l ReceiveHTTPMessage trigger: This trigger listens for an HTTP GET request containing 
the family name of the passenger requesting flight booking details. After it receives a 
request, it triggers the flow attached to the trigger.

 l FlightBookings flow: This flow is attached to the ReceiveHTTPMessage trigger.  This 
flow handles the business logic of the app. In this flow, you must configure a 
LogMessage activity to log a custom message when a request is received 
successfully. The LogMessage activity has two success branches: 

 o The first branch accepts requests with any family name and uses a condition to 
check if the family name in the request is "Jones". It runs a Return activity to 
return the information of a flight booked in "Business" class for Jones.

 o The second branch  runs when the first branch runs as false (that is, the family 
name is not "Jones"). It runs a Return1 activity to return the information of a 
flight booked in "Economy" class if the family name is not "Jones".



TIBCO Flogo® Enterprise User Guide

9 | Introduction

Note: Each branch must have its Return activity as the last activity in the 
branch.

Procedure
The high-level steps for creating and configuring the app in this tutorial are as follows:   

Procedure
 1. Create a new app.

 2. Create a JSON schema to reuse it across your app. The JSON schema describes the 
format of the JSON data used in the tutorial.  In this tutorial, we use a simple JSON 
schema for the request that the REST service receives and the response that the 
service sends back. You can specify the JSON schema directly or specify JSON data, 
which is converted to JSON schema automatically. 

 3. Create a flow and add a REST trigger (Receive HTTP Message).

 4. Map trigger output to flow input. This is the bridge between the trigger and the flow 
where the trigger passes on the request data to the flow input.      

 5. Map flow output to trigger reply. This is the bridge between the flow output and the 
response that the trigger sends back to the HTTP request it received. After the flow 
has finished running, the output of the flow execution is passed back to the trigger 
by the Return activity. Hence, we map the flow output to the trigger reply. This 
mapping is done in the trigger configuration.      

 6. Add a LogMessage Activity to the flow and configure a message that the activity must 
log in to the logs for the app as soon as it receives a request. 

 7. Add the first branch to check whether the passenger’s last name is Jones to return 
the information of a flight booked in "Business" class for Jones. 

 8. Add a second branch to process any other passengers and return the information of 
a flight booked in "Economy" class if the family name is not Jones.

 9. Validate the app to make sure that there are no errors or warnings in any flows or 
activities. 

 10. Build the App.



TIBCO Flogo® Enterprise User Guide

10 | Introduction

 11. Test the app.

Step 1: Create an app   

To create a Flogo app:      

Procedure
 1. Click Apps.       

 2. Click      Create/Import. The What do you want to build? dialog opens. 

 3. To create a Flogo app: 

 l Under      Quickstart > All app types;Apps, click Create a Flogo app. 

 l In the block that displays below your selection, click Create Flogo app. 

A Flogo app is created with the default name in the New_Flogo_App_<sequential_
app_number> format.   

 4. Click the default app name to make it editable. Change the app name to FlightApp 
and click anywhere outside the name to save the changes made to the name. 

Step 2: Create a JSON schema

Procedure
 1. Copy the following JSON sample to use in your app: 

{
"Class" : "string",



TIBCO Flogo® Enterprise User Guide

11 | Introduction

"Cost" : 0,
"DepartureDate" : "2017-05-27",
"DeparturePoint" : "string",
"Destination" : "string",
"FirstName" : "string",
"Id" : 0,
"LastName" : "string"
}

Note: Ensure that you use straight quotes when entering the schema 
elements and values.

 2. On the Apps  page, in the Flows  section, click Schemas. 

 3. In the  Schemas dialog that opens, click Schema to add a JSON schema.

 4. Name your schema as FlightResponse and paste the copied schema into the text 
editor. Alternatively, if you enter JSON data in the editor, the JSON data is 
automatically converted to JSON schema.



TIBCO Flogo® Enterprise User Guide

12 | Introduction

 5. Click Save. 

Step 3: Create a flow and add a REST trigger

Every app must have at least one flow and, in most cases, a trigger that initiates the flow. 
Create a flow with the REST trigger. The ReceiveHTTPMessage REST trigger listens for an 
incoming REST request that contains the details of a passenger who wants to book a flight. 
Specify the fields for the request in the REST trigger in JSON schema format.   

To create a flow:

Procedure
 1. On the Flows  page, click Create.

The Add triggers and flows dialog is displayed. The      Flow option is selected by 
default.

 2. In the Flow details section, provide the following details and click Create:
Name: FlightBookings.
Description: Optional description of the flow.

 3. On the FlightBookings flow page, click the Triggers icon. The trigger palette opens.     

 4. From the Triggers palette, drag the Receive HTTP Message trigger to the Triggers 
area on the left. The Configure trigger: ReceiveHTTPMessage dialog opens.        



TIBCO Flogo® Enterprise User Guide

13 | Introduction

 a. Select        GET as the        Method.      

 b. Enter        /flightbookings in the        Resource path box. 

 c. Enable the Use App Level Schema toggle next to Response Schema to open 
the Schemas dialog and select the FlightResponse schema you defined earlier.  

The selected schema is automatically displayed in the Response Schema box.

 d. Click        Continue.      

 5. Next, select Copy Schema when prompted.      

The schema that you entered when creating the trigger is automatically copied to the 
Flow Inputs & Outputs tab to match the input and output of the trigger. 

A new flow is created and attached to a REST trigger.      

Your flow must look similar to the following image:      



TIBCO Flogo® Enterprise User Guide

14 | Introduction

 6. Lastly, close the      Flow Inputs & Outputs tab.     

Step 4: Map trigger output to flow input

When REST trigger receives a  request from a passenger (a REST request), the data from the 
request is produced by the ReceiveHTTPMessage REST trigger. For the request to be 
processed, this output must be used by the flow in the form of flow input. Hence, you must 
map the trigger output to the flow input.   

To do this:    

Procedure
 1. Click the REST Trigger icon to open its configuration dialog.

In the Configuration dialog, multiple tabs are displayed in a column on the left. 
Trigger Settings is selected by default.

 2. Click Output Settings to add the query parameter.

 3. Click Add row to add a query parameter.

 4. In the new row in the Query Parameters table, enter the value of ParameterName 
as lastname and click Save in the same row (in the Actions column). 

 5. To start the mapping, click the Map to Flow Inputs tab and configure the mapping 
of the trigger output. On the Map to Flow Inputs tab, the Available data and Flow 
inputs panes are displayed. Flow inputs is the list of flow inputs that can be mapped 
to the trigger outputs in the Available data pane. Only headers are displayed in the 
flow inputs. The new query parameter is not visible yet.

 6. Save the trigger configuration and click Sync to display the new values. Now, 



TIBCO Flogo® Enterprise User Guide

15 | Introduction

queryParams must open in the Flow inputs column.

 7. In the Flow inputs column, click headers.  

The headers text editor on the right of Flow inputs is initially empty.

 8. To map the trigger output headers to the flow input header:

 a. Expand $trigger to see all the trigger outputs available. This displays the 
headers and body.

 b. Drag headers from the Available data pane to headers in the Flow inputs 
pane. Alternatively, click headers from the Flow inputs pane, drag headers 
from the Available data pane into the text editor.
The text editor must now display $trigger.headers and a connection line 
between the two panes. This indicates that you have successfully mapped the 
trigger output headers to the flow input header. The numbers at the end of the 
connection line indicate the total number of mappings for the selected 
element.



TIBCO Flogo® Enterprise User Guide

16 | Introduction

 9. To map the flow input, in the Flow inputs column, click queryParams. The data 
mapper view is the same as the one while mapping headers. The queryParams text 
editor is initially empty. Drag queryParams from the Available data pane and drop 
it on queryParams in the Flow inputs pane. The text editor must now display 
$trigger.queryParams. This indicates that you have successfully mapped the trigger 
output queryParams to the flow input queryParams.

 10. To save your progress, click Save.

This completes the mapping of flow inputs.

Step 5: Map the flow output to trigger reply

When the execution of the flow is completed, the output must be sent back to the trigger 
for the trigger to send a reply to the REST request initiator. Hence, the flow output data 
must be mapped to the trigger reply, which then returns the result of the flow execution to 
the REST request initiator.

To map the flow output to the trigger reply:

Procedure
 1. In the left pane, click the Map from Flow Outputs tab to configure the mapping of 

the trigger reply. The Available data and Trigger reply panes are displayed. You can 
map the following trigger replies to the flow outputs - code and data.



TIBCO Flogo® Enterprise User Guide

17 | Introduction

 2. In the Map from Flow Outputs section: 

 a. The Available data pane displays the data available for the mapping. $flow is 
displayed in this pane. To see all the flow outputs available for the mapping, 
expand $flow. This displays code and data.

 b. Drag code from Available data and drop it on code in the Trigger reply pane. 
$flow.code is displayed in the code text editor. You have successfully mapped 
the code in Trigger reply to the code in Available data.

 c. Repeat the same steps to map data from Trigger reply with data from 
Available data.

Note: You can expand data in both the Trigger reply pane and the 
Available data pane to see the tree structure of the data you have 
defined in the schema.

 3. Click Save and close the trigger dialog. 

Step 6: Add a Log Message Activity to the flow

The flow uses the LogMessage activity to log an entry in the app logs when the trigger 
receives a request from the passenger that reaches the trigger in the form of a REST 
request. 

To add a LogMessage activity:



TIBCO Flogo® Enterprise User Guide

18 | Introduction

Procedure
 1. On the FlightBookings flow page, click Activities, the activities palette opens.

 2. In the Activities palette, under General tab, select Log Message and drag it to the 
activities area.

 3. Drag a connection line from StartActivity to the LogMessage activity that you have 
created.

 4. Now, to configure the LogMessage activity with a message to log when it receives an 
incoming request from the ReceiveHTTPMessage trigger:         

 a. Click the LogMessage activity to open the configurations dialog.

 b. Click the Input tab. The Available data and Activity inputs columns are 
displayed on the right side of the LogMessage activity tabs. 

 c. Click the message to open the mapper to the right. Configure a message to be 
logged by the LogMessage activity when the input from the request that the 
trigger received is passed on to and received by the flow. 

 d. To configure the message, click Functions, and expand the string. Click concat
(str, str2) to add the function to the message box.



TIBCO Flogo® Enterprise User Guide

19 | Introduction

 e. Select str in the box and replace it by entering "Request received for: " 
(include the quotes too): string.concat(Request received for: ", str2).

 5. Replace str2 with the family name of the passenger who booked the flight. 
(The family name of the passenger is passed on from the trigger to the flow. We had 
mapped this trigger output to flow input previously. Hence it is now available for 
mapping under $flow in Available data.)

 a. In the Available data pane, expand $flow and expand queryParams.

 b. Drag lastname and drop it in place of str2. 

 c. Click Save. 

 6. Close the        LogMessage dialog.                

Your flow must now look like this:                 



TIBCO Flogo® Enterprise User Guide

20 | Introduction

Step 7: Add the first Return Activity branch

To add a Return activity and the branch to configure its condition to look for the family 
name "Jones":

Procedure
 1. From the Activities palette, drag Return activity available under Default category to 

the activity area.      

 2. Now, to configure a connection line between a LogMessage activity to the Return 
activity. Configure the branch with a condition to read the family name of the 
passenger.

 3. Drag a highlighted arrow from the LogMessage activity to the Return activity.                

 4. Hover over and click the branch label on the connection line you just created. The 
configuration window for branch condition opens.

 5. In the Branch Mapping Settings dialog that opens, select the      Success with 
condition branch condition.  

 a. Click Functions. Select the string>>contains(str1, str2). The selected function 
is added to the condition text editor.

 b. Configure str1 in the expression to take the value of the family name that the 
user enters. In the Available data, expand $flow > queryParams. Drag 
lastname to str1. This family name is the name entered by the user in the 
search query.

 c. Replace str2 in the condition by manually typing "Jones".                         



TIBCO Flogo® Enterprise User Guide

21 | Introduction

 d. Click Save. This branch runs when the name entered as a query parameter is 
Jones. 

 6. Now, Configure the Return activity for the branch to produce the flow results if this 
branch runs (when the passenger's family name is anything but Jones): 

 a. Click the return activity to open the configuration dialog.

 b. Click code under Flow outputs to open the mapper and type  200 in the code 
box, which is the HTTP success code.

 c. Expand the next flow output data. All the different elements under data that 
are returned by this activity are displayed. Assign a value to each field under 
data. 

 d. Start by clicking Class under data and type  "Business" as Jones is traveling by 
"Business" class.

 e. Click Cost to type a number of your choice. You can also use a function to 
randomize the value. To do so, in the Functions section, expand the number 
category and click random(). Enter 5000 as an input parameter to the random
() function.

 f. Click DepartureDate to enter the departure date in any format of your choice. 
Use quotation marks as the date needs to be specified as a string. For example, 
“01/01/21” or "January 1, 2021" are valid values.

 g. Click DeparturePoint to enter the departure airport name of your choice. Use 
quotation marks as the departure point needs to be specified as a string. For 



TIBCO Flogo® Enterprise User Guide

22 | Introduction

example, “LAX” or “LHR” are valid values.

 h. Click Destination to enter a string for this field. For example, "Paris" or “JFK” 
are valid values.

 i. Click FirstName to enter the first name associated with the family name Jones. 
For example, "Brian" or "Paul" are valid values.

 j. Click Id to enter a number of your choice. You can also use a function to 
randomize the value. To do so, in the Functions section, expand the number 
category and click random(). Enter 999999 as an input parameter to the 
random() function.

 k. Click LastName to map this field to the query parameter lastname. Before 
doing so, we can use a string function to capitalize the family name that is 
returned by our app. To do so, under Functions, expand the string and click 
toTitleCase(str). Once string.toTitleCase(str) is added to your box, select str 
to replace it with the query parameter. Expand $flow and then queryParams 
under Available data. Drag lastname and drop it in place of str. The text 
editor must look like this:

 l. Click Save and then close the Return Activity Configuration dialog.

Your flow must look like this:

Step 8: Add a second Return Activity branch

The second branch that you add from the LogMessage activity runs when the success 
condition of the first branch is not matched. If the passenger's family name is not "Jones", 
the passenger's seat is in "Economy" class.



TIBCO Flogo® Enterprise User Guide

23 | Introduction

To add a second branch from the LogMessage activity:

Procedure
 1. Duplicate the Return activity from the first branch instead of manually adding 

another Return activity. You can copy the activity by  clicking . The copied activity 

is displayed next to your original Return activity:         

 2. Click the CopyOfReturn activity to configure the response this branch return.

 3. First, to create a connection between the LogMessage activity and the Return1 
activity, hover over to the LogMessage activity, you see that an arrow highlighted. 
Drag the arrow to the Return activity.

 4. Select the Success with no matching condition branch condition. If the conditions 
of all the other Success with condition branches are not true, this branch is run. 
This means, if the family name entered as a query parameter is not Jones, this 
second branch is run.

 5. Now, in the configuration window click the name of the activity to make it editable 
and rename the activity.

 6. In the Flow outputs section, expand data, select Class, and type "Economy” as this 
branch must return "Economy" class bookings.

 7. Click Save and close the dialog.

Your flow must look like this:



TIBCO Flogo® Enterprise User Guide

24 | Introduction

Step 9: Validate the app

Your app is now ready. Before you push the app to the Cloud,  validate all the flows for any 
errors or warnings. To do so, click Validate. Flogo validates each flow and activity within 
the flow. For any errors or warnings, you see the respective icons next to the flow name or 
activity tab, which contains the error or warning.

On successful validation, you get the following message:              

Step 10: Build the App

Your app is now ready to be built. You can build a Flogo app using a  s an executable file.         

Procedure
 1. Click the left arrow next to the flow name to open the FlightApp page.      

 2. Click      Build.      

 3. Select your target platform from the Build  drop-down list. Select Windows/amd64 
on Windows, Darwin/amd64 on Macintosh or Linux/amd64, or Linux/86 on Linux 
from the list.     



TIBCO Flogo® Enterprise User Guide

25 | Introduction

You see a build log with the progress of the build command. When the build 
completes, you see an executable file called FlightApp-darwin_<processor> in your 
/Downloads  directory.     

Step 11: Test the app 

Now that the app has been built successfully, you run the app. Once it runs successfully, 
you can test your API in a REST client.    

On Macintosh and Linux platforms:

To test the app:    

Procedure
 1. Open a terminal and change the directory to the location of      FlightApp-darwin_

amd64,      FlightApp-linux_amd64, or      FlightApp-linux_86 file depending on your 
platform.      

 2. Run the following commands:      

 l chmod +x <FlightApp-darwin_amd64>

 l ./FlightApp-darwin_amd64

Note: In the commands, use the file name specific to your platform -      
FlightApp-linux_amd64 or      FlightApp-linux_86 in the case of Linux.      

 3. Click      Allow in the following dialog:      

The following messages are displayed in the console:      



TIBCO Flogo® Enterprise User Guide

26 | Introduction

 4. Make a note of the port number 9999 and path /flightbookings in the logs. 

 5. You can test your API in a REST client such as Postman by entering the port number 
9999, path /flightbookings, and query parameter lastname. For example, 
http://localhost:9999/flightbookings?lastname=jones.      

In the above example, note that since the query parameter sent has the family name 
as "Jones", the Class in the response has been automatically set to "Business" 
class.

 6. Go back to your terminal. You must see the logs you configured with the Log activity.



TIBCO Flogo® Enterprise User Guide

27 | Introduction



TIBCO Flogo® Enterprise User Guide

28 | App Development

App Development
Flogo Enterprise offers a wizard-driven approach to app development. You can create apps 
in Flogo Enterprise using only a browser. It is powered by Project Flogo™, a lightweight 
integration engine.    

For more information about Project Flogo™, navigate to the  Project Flogo website. 

Creating and Managing a Flogo App Using the 
UI
This section describes how to create and manage Flogo® apps.    

Creating an App
You can create a Flogo® app from the    Apps page.   

Procedure
 1. Log in to TIBCO Cloud™ Integration. 

 2. On the Apps page, click      Create/Import.      

The      What do you want to build? dialog is displayed. 

http://www.flogo.io/


TIBCO Flogo® Enterprise User Guide

29 | App Development

 3. To create a Flogo app: 

 l Under      Quickstart > All app types > Apps, click Create a Flogo app. 

 l On the left, select a category that identifies the type of integration you need. 
On the right, click Create a Flogo app. In the block that displays below your 
selection, click Create Flogo app. 

The app is created and the App Details Page is displayed for the new app. By 
default, the app is named in sequential order in the format      New_Flogo_App_
<sequential_number>. For example, if you created three apps without renaming 
them, then the first one has a default name of      New_Flogo_App_1, the second one is 
called      New_Flogo_App_2 and, the third one is called      New_Flogo_App_3. The version of 
a newly created app is 1.0.0 and is displayed as v: 1.0.0 beside the name of the 
app. You can edit the version of the app. For more information, refer to Editing the 
Version of an App. 

 4. Edit the app name to a meaningful string. To do so, click anywhere within the app 
name and edit it, then click anywhere outside the text box to persist your change.      



TIBCO Flogo® Enterprise User Guide

30 | App Development

Note: The app name must not contain any spaces. It must start with a 
letter or underscore. The app name can contain letters, digits, periods, 
dashes, and underscores.      

 5. Click Create. 

Result
The Add triggers and flows dialog is displayed. You can now create one or more flows for 
the app. See the      Creating a Flow topic and its subtopics for details on creating a flow.  
When the app is created, the following files are generated in the <FLOGO_
HOME>/apps/<app>/ directory:

 l flogo.json: contains the app itself.

 l manifest.json: contains the manifest details such as the endpoints, memory 
resource details. The manifest.json file is automatically updated whenever you 
modify the app. 

Creating an App from a Saved Specification
If you have an existing specification saved in either the TIBCO Cloud™ Integration - API 
Modeler or on your local machine, you can use the specification to create a Flogo app. 
Currently, Flogo Enterprise supports app creation using a Swagger Specification 2.0, 
OpenAPI Specification 3.0,    and    GraphQL Schema.    

The specification must exist before creating the Flogo app. 

For more information on creating an app using a specification, see the following topics:  

 l Creating a New App Using an OpenAPI Specification 

 l Creating a New App Using GraphQL Schema 

Also, see the appropriate topics under the      Building APIs section for information on how to 
create a      Flogo app using the specification. 

Creating a New App Using an OpenAPI Specification
You can create a Flogo app by uploading an API specification file or importing an existing 
file stored in the API Modeler. You can simply drag the specification file to the     UI or 



TIBCO Flogo® Enterprise User Guide

31 | App Development

navigate to it.

Before you begin
For requirements and considerations, see Using an OpenAPI Specification. For details about 
the OpenAPI specification, see OpenAPI Specification.

Procedure
 1. Log in to TIBCO Cloud™ Integration. 

 2. On the Apps page, select Create/Import. The What do you want to build? dialog is 
displayed. 

 3. In the block that displays below your selection, select one of the following options:    

 l Create a flow using an API specification that exists in the TIBCO Cloud™ 
Integration-API Modeler. To do this, on the      API Specs tab, select the 
specification that you want to use.      

 l Use an API specification saved locally on your computer by uploading it to Flogo 
Enterprise. To do this, click the      Upload file tab. Browse to the saved API 
specification on your local machine or drag your saved API specification into the 
dialog.      

 4. Click Import OpenAPI spec. 

https://swagger.io/specification/


TIBCO Flogo® Enterprise User Guide

32 | App Development

The app is created and the App Details Page is displayed for the new app. Your app is 
running but has zero instances. To start and scale your app, see Starting, Stopping, and 
Scaling apps. 

Note: While creating an app with a REST Trigger - ReceiveHTTPMessage, If the 
API specification changes, you can merge the changes into an existing app by 
either uploading the updated specification file again. Or, click Refresh beside 
the Browse tab under API Spec in the REST trigger configuration window.

To Refresh the API spec file, you must make the API spec editable by clicking  
in the trigger configuration window.

For any flows that are already implemented, adding, or deleting any method in 
TCAM does not impact the flows in the app.

If there are any changes made in the Spec file in TCAM UI while your trigger 
configuration window is also open in Flogo, Refresh does not appear in the 
trigger configuration window. Close and reopen the trigger configuration 
window.

Creating a New App Using GraphQL Schema
You can create GraphQL triggers by dragging and dropping your GraphQL schema file into 
the UI or by navigating to the file. 

Before you begin
For requirements and considerations, see Using GraphQL Schema. 

Procedure
 1. Log in to TIBCO Cloud™ Integration. 

 2. On the Apps page, select Create/Import. The What do you want to build? dialog is 
displayed. 



TIBCO Flogo® Enterprise User Guide

33 | App Development

 3. In the block that displays below your selection, browse to the GraphQL schema file or 
drag the file to the dialog.    

 4. Click Import GraphQL file. 

What to do next
The app is created and the App Details Page is displayed for the new app. Your app is 
running but has zero instances.

Validating your App
After you have created the flows in your app, you must validate the app before you push it 
to the cloud.    
To validate your app, click    Validate on the app details page. This validates each flow and 
activity. If a flow or activity has an error, it displays an error or warning icon on the top-
right corner of the flow or activity. 

Important Considerations 
 l When you open any flow for the first time or switch to a flow for the first time, the 



TIBCO Flogo® Enterprise User Guide

34 | App Development

validation is auto-triggered for that instance only. After that, for any change in the 
canvas,  you must do a manual validation check by clicking Validate. 

 l If a flow is already a part of open tabs and no unsaved changes exist for that flow, 
while switching to that flow from any other flow, validation is not triggered.

 l After a flow's validation is completed, the validation details are cached and remains 
present till you move out of the flow to the Flow List page or you refresh the page. 

 l If you add or change triggers and activities in a flow or any change in canvas, no 
validation is triggered. To observe the latest validation, click Validate.

 l If a new tab is opened, validation is triggered. 

If a sub-flow is appended, validation is triggered when the subflow is clicked. If you 
call a subflow already present on the Flows tab, validation is not triggered. 

For more information, see    Viewing Errors and Warnings.    

Editing an App
You can edit your Flogo app from the Apps page. Click any app to edit flows, triggers, and 
so on. 

Warning: Editing the same app in two browser tabs is not supported. 

When you modify the app, the flogo.json and manifest.json files in <FLOGO_
HOME>/apps/<app>/ are updated automatically. For example, if you add a flow and add a 
trigger to it, the flogo.json and manifest.json files are updated automatically to include 
the details of the flow and the trigger. 

Auto-Upgrade of Activities, Triggers, and 
Connections
Flogo supports the automatic upgrade of activities, triggers, and connections. Thus, you 
can view the newly added fields without exporting and reimporting apps.  In case of 
updates to the activities and triggers, open the app to upgrade it automatically. To view 
updates for connections, you must open the connection from the Connections page.



TIBCO Flogo® Enterprise User Guide

35 | App Development

Considerations for Auto-Upgrade
 l Contributions from activities, triggers, and connections are auto-upgraded only if the 

contribution version is also updated.

 l Field values that you enter previously are auto-populated after the upgrade. The new 
fields have default values, if the field is mandatory. You need not reconfigure the app.

 l When you open the connection from the Connections page and cancel or close the 
dialog, the newly added connection properties appear in the Properties dialog. The 
same happens on the Environment Control tab of the app along with the existing 
connection properties. If you save or log in to the connector (wherever applicable), 
then only the connection properties  used in the connection appear in the Properties 
dialog and on the Environment Control tab of the app.

 l New connection-related fields at the Activity or trigger level are populated only when 
you save or log in to the existing connection.

Renaming an App   
To rename an existing app:    

Procedure
 1. Open the app details page by clicking the app name.      

 2. Click anywhere in the app name and edit the name.

 3. Click away from the app name to see your changes. 

Editing the Version of an App
When you create an app, the default version of the app is 1.0.0. You can edit the version of 
an app.    

The format of a valid app version is:    



TIBCO Flogo® Enterprise User Guide

36 | App Development

xxx.xxx.xxx

Note: Alphabets or special characters are not allowed in an app version.   

Some examples of valid app versions are:      

1.1.1
 11.22.13
 111.222.333

Procedure
 1. Open the app details page.      

Besides the name of the app, the version of the app is displayed as follows:      
New_Flogo_App_<sequential_number> v: 1.0.0

For a newly created app, the version is 1.0.0.     

 2. To edit the version of the app, click the version number and specify the new version.      

The new version of the app is reflected everywhere. For example, in runtime logs.      

Using App Tags
You can use app tags to provide additional information and organize your apps. For 
example, you use it to specify whether it is a REST app, or whether it is running in 
Kubernetes. One or more tags can be added to an app. You can view and filter the tags 
from the list of apps on the Apps page. The tags are preserved after exporting a Flogo app.

Adding Tags

To add or change tags in an app:

Procedure
 1. Click the Apps tab.

 2. Click the app that you want to modify. The App Details page opens.



TIBCO Flogo® Enterprise User Guide

37 | App Development

 3. Click Tags or +Tags (if the app has no tags). Tags that have already been applied to 
this app are shown.

For example, the following screenshot shows that the app FE has no tags. Click 
+Tags to view the tags in the organization.

 l To add a tag, enter a name in the search control, then click Create New. Tags 
are case-sensitive.

 l If you enter text in the search box, all matching tags in your organization are 
shown. This search is case-insensitive. Click a tag to add it.

 l Click close (×) next to a tag to remove it from the app.

 4. Click outside the dialog to save the changes.

The same set of tags is used across your organization. A tag is deleted from your 
organization when it is removed from the last app using it.

Filtering Tags

To filter the apps list on the Apps page:

Procedure
 1. In the filters shown on the left side of the apps list, the Tags filter shows the total 

number of tags and search control. Enter text in the search filter to show buttons for 
each tag containing the text. This search is case-insensitive.

For example, the following screenshot shows the tags starting with the letters "Che".



TIBCO Flogo® Enterprise User Guide

38 | App Development

 2. Click a tag to limit the list of displayed apps to only apps with that tag. Click a 
selected tag to clear it. You can select multiple tags.

A tag icon  is next to each name in the Name column on the Apps page. Hover over the 

tag icon to see a list of all the tags in that app. The following screenshot displays the tags 
for the app FE.



TIBCO Flogo® Enterprise User Guide

39 | App Development

Note: 
 l When you export a Flogo app, its app tags are not retained in the Flogo 

JSON app archive file.

 l When you create tags, they are case-sensitive, but the tag filter search is 
case-insensitive. For example, you can create unique app tags for abc and 
ABC, but when you search for an a in the search control, both are shown.

Role Requirements
 l Admins can edit tags for any app in their organization.

 l Users can only edit tags on apps they own.

 l Read-only users cannot change tags on any app.

Using Notes
You can use Notes to keep a track of information about any flow, activity, or trigger. It 
helps you in keeping updates and important references, especially when the flow is very 
large and complex. This feature is available in the Error Handler tab also. 

Understanding Notes with an Example 

Let us take an example of a Flogo app that invokes a REST service. You use the 
ReceiveHTTPMessage Trigger and InvokeRESTService, LogMessage and Return Activities 
to create the app. 

Here, you can add Notes in the following manner: 



TIBCO Flogo® Enterprise User Guide

40 | App Development

 1. Flow Note 
This note gives information about the flow. 
In the above case, the Flow Note can be - "This app invokes a Rest service and 
generates a log message that shows the status of the invoked Rest service".

 2. Trigger Note 
This note is used to add information about a respective Trigger. 
For the above example, add the Trigger Note that says - "This trigger listens to 
incoming REST requests."

 3. Activity Note 
This Note displays information about a respective Activity. 
For the above example, the note for InvokeRESTService Activity can be - "This 
Activity invokes an external service".

 4. To view all the Notes, click the  icon on the right-hand sidebar.  

Note: 
 l Use the  icon on the Activities and Triggers to add the respective Notes. 

 l Use the  icon next to the Error Handler tab to add Flow notes. 

 l In all cases, 
 - Notes are not added,

 - Notes are added. 

 l The Save option on any note is enabled only after some content is added 
in it. 

 l If you are a Read-Only user, you cannot add, delete, or edit a note. 
 



TIBCO Flogo® Enterprise User Guide

41 | App Development

Switching Between Display Views On the App Page
On clicking an app name on the    Apps page, the app details page opens. The flows in the 
app are listed on the app details page. You have the option to view this page in the    Trigger 
View or    Flow View. By default, it opens in the    Trigger View. Click    Trigger View dropdown 
and select    Flow View from the menu to switch to the flow view. When you are in the flow 
view, click    Flow View and select    Trigger View from the dropdown menu to go back to the 
trigger view.    

Trigger View

In this view, the flows are displayed attached to one or more triggers that they use. If a 
flow is attached to multiple triggers, it is attached to each trigger separately. You can see a 
single flow multiple times on the page but attached to different triggers. Flow that is not 
attached to any triggers display      No trigger in place of the trigger name.    

The following image shows the Trigger View:

In the image above,      MyRESTFlow2 is attached to both      TimerTrigger and      
ReceiveHTTPMessage trigger, hence it appears twice. The      MyTimerFlow was created with 
a new timer trigger hence it is not attached to the first timer trigger and the       TimerTrigger 
appears twice on the page.    

Hovering on a trigger displays the      New flow option. Click the      New flow option to create a 
flow to attach the newly created flow to that trigger.    



TIBCO Flogo® Enterprise User Guide

42 | App Development

Hovering over      No trigger displays the      Add trigger option, which takes you to the triggers 
catalog.    

Flow View

In this view, each flow is shown separately with a trigger attached to it on the extreme left 
side. Shown below is a      Flow View representation of the      Trigger View image above:    

The following image shows the Flow View:

Notice that      MyRESTFlow2 shows two triggers. That is because this flow is attached to two 
triggers as you can see in the      Trigger View. A blank flow shows 0 triggers against it as it is 
not attached to any triggers.    



TIBCO Flogo® Enterprise User Guide

43 | App Development

Deleting an App
You can delete an app using the    Delete app icon, which appears when you hover your 
mouse cursor at the end of the app row.    

To delete an app:    

Procedure
 1. On the      Apps page, hover your mouse cursor to the end of the app row until the      

Delete app icon ( ) appears.      

 2. Click the      Delete app icon.      

 3. On the confirmation dialog, click      Delete app.     

Result
The selected app is deleted. The <FLOGO_HOME>/apps/<app>/manifest.json file is also 
deleted.    

Exporting and Importing an App
You can export and import apps and use them as templates for development. Or, simply 
put them in a version control system such as GitHub. 

Tip: When an app is created,  the flogo.json file and  manifest.json file are 
automatically created in the <FLOGO_HOME>/apps/<app>/ directory.  Instead of 
using the Export  option, you can use the files from the <FLOGO_
HOME>/apps/<app>/ directory to push the app directly using the TIBCO Cloud™ 
CLI. For more information see, Creating an App and Editing an App. 

Exporting an App
Here are a few things to keep in mind before you export an app:    

 l When you export an app, all the flows in your app get exported. You cannot choose 
the flows to export.      



TIBCO Flogo® Enterprise User Guide

44 | App Development

 l Passwords  that are configured in any activities within any flow or connection in the 
app to be exported are removed in the exported app. Manually configure the 
credentials  in the flows after importing such apps.      

 l Some apps created in Project Flogo™ use the   any data type. The    any data type is not 
supported in Flogo Enterprise. Such apps get imported successfully, but the element 
of type   any gets converted into an empty object. Explicitly use the mapper to 
populate the empty object with member elements.      

Warning: When exporting an app, if the app contains open configurations to 
hold its test data, the open configurations are not exported with the app. Open 
Configurations in an app must be exported independently of the app export.

To export an app:    

Procedure
 1. On the      Apps page, click the app to open the app details page.      

 2. Click the shortcut menu ( ).      

 3. Click      Export.      

Using the      Export option dropdown menu, download the following:      

 l App - exports a single        <appname>.json file. You can use this option to 
download an app that you plan to import into TIBCO Cloud Integration using 
the drag-and-drop method.      

 l TIBCO Cloud Integration artifacts - downloads two files,        manifest.json, and        
flogo.json. The        manifest.json contains the manifest details such as the 
endpoints, memory resource details. The        flogo.json contains the app itself. 
These artifacts are needed to push the app directly using the TIBCO Cloud™ 
CLI. You must have the TIBCO Cloud™ CLI installed on your local machine to do 
so. Use this option to push a Flogo app to TIBCO Cloud Integration without 
having to import it into TIBCO Cloud Integration. See the section        Pushing Apps 
to TIBCO Cloud for details on how to do this. 

Exporting an App's JSON File
When an app's binary is built, the    .json file is embedded within the binary file. To export 
the    .json file from the binary file to the disk, use the following command:   



TIBCO Flogo® Enterprise User Guide

45 | App Development

./<app-binary-name> --export app

The      .json is exported as      <app-binary-name>.json.    

Tip: To provide a different file name to the exported       .json, use the following 
command:      

./<app-binary-name> --export -o <new-app-binary-name>.json app

Importing an App
Importing the .json file of an app, makes it easy to use flows and triggers from another 
Flogo app. You can import the .json file to a new app, which does not have flows. You can 
also import it to an existing app that contains flows.

Important Considerations
Consider the following points before you import an app:     

 l Flogo apps that are exported from Flogo Enterprise 2.5.0 and later cannot be 
imported into previous versions of      Flogo Enterprise.  

 l A flow in the app can have the community-developed extensions. You can import 
such apps  without the extension. You can import the extension later by clicking the 
missing extension.     

 l Some apps created in Project Flogo use the     any data type. The   any data type is not 
supported in       Flogo Enterprise. Such apps get imported successfully, but the element 
of type      any gets converted into an empty object. Explicitly use the mapper to 
populate the empty object with member elements. 

 l The passwords and secrets for any connections configured in the app do not get 
imported. Reconfigure any password or secret for the connection after the app has 
been imported.      

 l When you import an app that does not have a       Return Activity in any flow (main or 
branched flow), the       Return Activity is not added automatically by default. However, if 
an existing app already has       Return activities in main or branched flows, the app is 
imported as expected.      



TIBCO Flogo® Enterprise User Guide

46 | App Development

 l When importing an app,  the     long and double data types get converted to the      number 
data type.

 l When importing an app into an existing app, if the existing app has entities with the 
same name as the ones you are importing, a warning is displayed. You can opt not to 
import those flows, activities, or triggers. You can go back and rename them using 
the UI, export the app again, and reimport it.

 l When importing apps that were exported from     Project Flogo, be aware of the 
following:     

 o If the apps being imported use an Activity that is not supported in       Flogo 
Enterprise, a validation error is displayed.      

 o You can only import apps that were created in       Project Flogo version 0.5.2 or 
above. 

Importing Your App to a New App

Procedure
 1. On the Apps page, click      Create/Import.      

 2. In the block that displays below, upload the JSON file of the app to be imported. You 
can browse and select the file or drag it to upload the file. 

 3. Click the Import Flogo app.

Result
The app is created. After the import is complete, the App Details Page is displayed 
for the new app. 
If your app uses a connection and that connection name and type exist in the org, 
your Flogo app uses the same connection by default. Otherwise, a new connection is 
created based on the imported app. 

Note: If you are reusing the same connection name and type, make sure 
that the credentials are correct or match with the intended usage.

For example, if you import an app that uses the SalesForce connection SFTest and a 



TIBCO Flogo® Enterprise User Guide

47 | App Development

SalesForce connection with the name SFTest exists in your org, then the app being 
imported uses SFTest by default.

Importing Your App to an Existing App

Procedure
 1. Log in to TIBCO Cloud™ Integration. 

 2. On the Apps page, open the existing app by clicking its name. The Apps Details Page 
is displayed. 

 3.  Click the shortcut menu ( ) and select        Import. 

 4. In the Import app dialog, upload the JSON file of the app that you want to import. 
You can select the file or drag the file to upload. Click Upload.      

 5. In the dialog that opens, check the Errors and Warnings section for generic 
messages as well as any specific errors or warnings about the app you are importing.  
Flogo Enterprise validates whether all the activities and triggers used in the app are 
available on the        Extensions tab.     

Note: The suffixes used in the mapper have undergone some changes. Due 
to this, you may receive a mapper-related warning in the dialog when 
importing an existing app. See Changes in Suffixes Used in the Mapper.



TIBCO Flogo® Enterprise User Guide

48 | App Development

 6. Select the entities that you want to import from the source app:

 l Default: All flows, triggers, and connections are selected for import.

 l Use the dropdown list in the upper-left corner and the Search field to narrow 
down the information displayed.

 l Use the checkboxes to clear selections of specific flows or triggers or click 
Unselect all to clear all the selections.

 l If you select specific triggers or flows to import, the dialog lists only those  
connections that are used in the selected flows and triggers.  If you want to use 
the existing connection, select the existing connection from the Connections in 



TIBCO Flogo® Enterprise User Guide

49 | App Development

current environment > Existing connections dropdown list. You can also 
choose to create a connection instead.

 l If you select All, existing connections are automatically reused. A new 
connection  is created by default. If you want to use an existing connection, 
select the existing connection from the Connections in current environment 
> Existing connections dropdown list.

 l If you select a trigger for import, all flows associated with that trigger are 
selected by default.

 l If you want to import a flow without importing the attached trigger, select the 
flow only. Do not select the attached trigger. The flow is imported as a blank 
flow without being attached to a trigger.

 7. After ensuring that all the entities you want to import are selected, click        Import.        

 8. After importing an app, you must reconfigure all the newly created connections. For 
example, set the password of the new connection after the app is imported.    

Changes in Suffixes Used in the Mapper
The suffixes used in the mapper have undergone some changes. Due to this, you may 
receive a mapper-related warning in the dialog when importing an existing app. Click    
Continue and the app imports successfully. After the import completes, be sure to remap 
the properties in the activities that show errors. This ensures that they switch to the new 
suffix format. 

The following table lists the changes in the suffixes:    

Original suffix 
appearing in 
imported apps       

New suffix used 
by the Mapper 
(after you 
remap)       

For example      Used when mapping      

Activity_id.
Activity_
parameter

$Activity[Activity_
id].
Activity_
parameter

Old suffix:        

$InvokeRESTService.
responseBody.userId

New suffix after 
remapping property:       

When mapping to a 
parameter in the Activity's 
output. Used to resolve 
Activity params.        



TIBCO Flogo® Enterprise User Guide

50 | App Development

Original suffix 
appearing in 
imported apps       

New suffix used 
by the Mapper 
(after you 
remap)       

For example      Used when mapping      

$Activity
[InvokeRESTService].
responseBody.userId

$TriggerData       $trigger       Old suffix:        

$TriggerData.
queryParams.title

New suffix after 
remapping property:       

$trigger.
queryParams.
title

When mapping from the 
output of the trigger to the 
flow input       

N/A        

There was no 
equivalent for 
this in the old 
mapper       

$flow.headers.
parameter

$flow.body.
parameter

$flow is a newly 
introduced suffix, which 
did not have an 
equivalent suffix in the 
old mapper.       

When mapping to any 
parameter in the flow's 
header or input schema 
(schema entered on the         
Input tab of         Flow Inputs & 
Outputs dialog) which is 
the same as the output of 
the trigger, since the 
output of the trigger is 
mapped to the input of the 
flow.        

Used to resolve parameters 
from within the current 
flow. If a flow has a single 
trigger and no input 
parameters defined, then 
the output of the trigger is 
made available via         $flow.        



TIBCO Flogo® Enterprise User Guide

51 | App Development

Resolving Missing Activities and Triggers
When you import an app that contains one or more activities or triggers that are not 
installed in your environment, you see a warning in the    Import App dialog.    

Note: When importing an app that has a connection configured in it, but the 
connector is not installed in your environment, after you install the connector, 
the connection configuration field values of type SECRETS are retained 
postinstallation as long as they were not configured using app properties. If you 
had configured your SECRETS as app properties, reconfigure them after 
installing the missing connector. This is because all configured app properties  
are wiped out when the app is imported.    

To resolve missing activities or triggers for TIBCO provided connectors

When an Activity or trigger used in an app being imported is missing from your      Flogo 
Enterprise environment, the flows in the app get imported, but you see a warning in the      
Import App dialog.    

When you validate your app by clicking      Validate in the app details dialog, you see an error 

marker ( ) next to the flow name. This indicates that one or more activities or triggers 
are missing. The number next to it indicates how many activities or triggers that are 
missing appear in the flow. When you click the missing activities or triggers, you are 
prompted to refer to the connector installation guide.    

Note: Do not upload a TIBCO connector using      Upload Extension. For more 
information on how to install a TIBCO connector, refer to the connector 
installation guide.   

This is also true when you copy an app into the designated folder (the folder you specified 
when you started the UI) for your apps on your local machine.    



TIBCO Flogo® Enterprise User Guide

52 | App Development

To resolve missing custom activities or triggers

When one or more of your custom activities or triggers used in the app being imported are 
missing from your      Flogo Enterprise installation, you see a warning in your      Import App 
dialog similar to the following:    

Once the app is imported, you see an error marker ( ) next to the flow name. After you 
install the missing Activity or trigger, this marker goes away. The number next to the error 
indicates how many activities or triggers are missing in the flow.    

To install the missing custom activities or triggers:    

 1. Click the flow name to open the flow details page. The      Upload an extension dialog 
opens. You can upload the custom Activity or trigger from the Git repository, hence 
only the      From Git repository option is enabled.      

 2. Click      From Git repository. The      Git repository URL text box is pre-populated.      

 3. Click      Import.      Flogo Enterprise downloads the Activity or trigger from the Git 
repository and uploads it on your      Extensions tab. Refer to the section,      Uploading 
Extensions for details on this option.      

App File Persistence
Your Flogo app files get persisted to the directory that you specify on your local machine. 
You can use an external source control system such as Git or SVN to store your apps. You 
can then check in and check out your apps locally from the remote repository. This makes 
it possible for you to implement the continuous Integration/Continuous deployment 
(CI/CD) pipeline by leveraging any tool available in the market to integrate your app 
development with the app deployment.    

When you start the UI, you are prompted to point to the directory where you have checked 
out your apps. If you do not provide any path, the apps are stored in the default directory, 
which is:    <FLOGO_HOME>/data/localstack/apps.    



TIBCO Flogo® Enterprise User Guide

53 | App Development

If you restart the UI, at the time of restart, if you want to continue using the same directory 
that you had specified, click Enter on your keyboard when it prompts you to set the path. 
It stores the path preference that you set the last time.    

After the UI starts, you should be able to see all your apps on the app list page in the UI. 
From this point on, when you create an app or modify an existing app, the changes are 
saved to the directory location that you provided when starting    Flogo Enterprise.    

Each app that you store on your local machine has its folder and the folder name must be 
identical to the app name. If another user makes changes to your app, you must sync your 
local repository with the remote repository (do a pull) to get the changes made by that 
user.    

Warning: 
 l The app file name must be called      flogo.json.      

 l The folder name containing the app must be identical to the app name 
appearing in the      flogo.json file for the app.      

Loading new apps from the disk - When a new app is added to the directory, refreshing 
the browser loads the app into the UI. You do not need to restart the UI.    

Loading the updated app from the disk - In case the    flogo.json on the disk is updated 
(due to minor changes or checkout a newer version from the source control system), click 
the    Reload from Disk to load the updated app into the UI. Be aware that this action 
overrides existing changes in the app.    Reload from Disk option is available under the 
shortcut menu that is next to the other buttons on the app page.    

If another user adds an app to your remote repository, the app gets downloaded to your 
local repository when you do a pull from the remote repository. For the new app to display 
on the  UI, you must refresh your browser. You do not need to restart either the browser or    
Flogo Enterprise.    

You can import any exported app to    Flogo Enterprise. To do so, create a folder with an 
identical name as the app name in your local repository, then copy the    flogo.json file for 
the app to the folder. For apps that are created using the UI,    Flogo Enterprise 



TIBCO Flogo® Enterprise User Guide

54 | App Development

automatically generates a unique ID for each app. But, if you load an existing    flogo.json 
file, the app may or may not have an app ID defined in it.    Flogo Enterprise checks to see if 
an ID exists in the    flogo.json file for the app. If an ID does not exist for the app,    Flogo 
Enterprise generates a unique ID and adds an ID attribute in the    flogo.json file before 
loading the app.    

Note the following:    

 l If you change the ID of the app in your flogo.json file, you see a duplicate app on 
the UI. Refresh your browser to fix this issue. If you continue to work on the app with 
the old app ID, your changes are lost when you restart the UI.    

 l All apps that exist in the path that you provided during      Flogo Enterprise installation 
get loaded on the UI. You cannot selectively choose the apps to be loaded on the UI.    

 l Any Launch Configurations (containing your test data for the app) associated with 
the app are stored in the      <app_folder> > test folder along with the      flogo.json file 
for the app.    

 l File permissions - You must have "write" permission for the app directory on your 
local machine. Otherwise, the app is not loaded and displayed in the UI. An error is 
displayed in the log located in      <FLOGO_HOME>/<FLOGO_VERSION>/logs/studio.logs.    

 l When importing an app, if any extensions are missing, a broken plug-in icon is 
displayed on the missing Activity.    

 l If the app has any missing extension or if a connector uses the associated 
connection, you see the connection post-installation of the missing extension or 
connector.    

 l If you add an app to your local app repository, if that app has any missing extension, 
after uploading the missing extension, the connection in the extension maintains the 
secrets and passwords that were already configured in the connection for the app. 
Refer to the     Resolving Missing Extensions section for details on how to resolve 
missing extensions in an app.    

 l You may notice a change in secret encrypted values in      flogo.json after opening the 
apps using the UI. This does not affect the run time.    

 l We recommend that you do not modify      flogo.json manually to avoid any mishaps.    

 l When upgrading to      Flogo Enterprise the current version from an older      Flogo 
Enterprise version, the existing apps automatically get migrated to the directory that 
you have created on your local disk. You do not need to migrate them manually.    

 l If your app repository gets deleted while in use, you must restart the  UI and set a 



TIBCO Flogo® Enterprise User Guide

55 | App Development

new app repository. Do not continue to work with the deleted repository. Also keep 
in mind that even if you recreate a directory with the same name, your changes do 
not take effect until you restart the  UI.    

Creating Flows and Triggers
An app can have one or more flows and a flow can be attached to one or more triggers. 
Similarly, a trigger can have multiple flows attached to it.    

Flows

Each flow represents specific business logic in an app. A flow contains one or more 
activities. The flow execution is started by a trigger. A new flow can be created only from 
the app details page.    

Triggers

You have the option to create a trigger without creating a flow. You can create a trigger 
from an existing specification that you have saved in either the TIBCO Cloud™ Integration - 
API Modeler or on your local machine. Optionally, you can create a trigger when creating a 
flow by selecting the    Start with a trigger option during flow creation. 

Activities, Triggers, Unit test, Properties and Schema Panel  

You can add a trigger or an activity in a flow from the Activities or Triggers palettes 
available in this panel. You can also get in or out of the unit test mode using the Unit Test 
palette. Properties and Schemas palette can be used to manage the properties and 
schemas. By default the panel exists on the right side of the canvas, but by clicking the 
Move to Left  icon you can move the panel to the left of the canvas.

Flows
This section contains information about creating and managing flows in your app.    

 



TIBCO Flogo® Enterprise User Guide

56 | App Development

Creating a Flow
Every app has at least one flow. Each flow can be attached to one or more triggers. You 
have the option to first create a blank flow (a flow without a trigger) and then attach the 
flow to one or more triggers. On the App Details page, click    Create  to create the first flow 
in an app.   

Before creating a flow that uses connectors, ensure that you create the required 
connections. For more information, see created the necessary connections.

Warning: In an app with multiple triggers, the port number must be unique for 
all the triggers that require a port number. For example, REST and/or GraphQL 
triggers. Two triggers in the same app cannot run on the same port.     

For flows that are attached to multiple triggers, you cannot disable a trigger. Specify a 
particular trigger to run. Or, specify the order in which the triggers run. When a flow runs, 
all triggers get initialized in the order that they appear within the flow.      

When using the Lambda, S3, or Gateway triggers, keep the following in mind:        

 l You can have only one Lambda trigger. An app that has a Lambda trigger cannot 
contain any other triggers including another Lambda trigger. Also, as the Lambda 
trigger supports only one handler per trigger, it can have only one flow attached to it. 
However, the apps that contain a Lambda trigger can contain blank flows that can 
serve as subflows for the flow attached to the Lambda trigger.        

 l You can have only one S3 trigger in an app. An app that has an S3 trigger cannot 
contain any other triggers including another S3 trigger. The S3 trigger supports 
multiple handlers (flows), so you can have multiple flows in the app that are attached 
to the same S3 trigger. You can also have blank flows in the app, which can serve as 
subflows for the flows that are attached to the S3 trigger.        

 l You can have only one Gateway trigger in an app. An app that has a Gateway trigger 
cannot contain any other triggers including another Gateway trigger. The Gateway 
trigger supports multiple handlers (flows), so you can have multiple flows in the app 
that are attached to the same Gateway trigger. You can also have blank flows in the 
app, which can serve as subflows for the flows that are attached to the Gateway 
trigger.     

The output of a trigger provides the input to the flow. Hence, it must be mapped to the 
flow input. When creating a flow without a trigger, there must be a well-defined contract 
within the flow that specifies the input to the flow and the output expected after the flow 



TIBCO Flogo® Enterprise User Guide

57 | App Development

completes execution. You define this contract in the       Flow Inputs & Outputs dialog. The      
Flow Inputs & Outputs contract works as a bridge between the flow and the trigger, 
hence every trigger has to be configured to map its output to the      Input parameters defined 
in      Flow Inputs & Outputs. You do this on the     Map to Flow Inputs tab of the trigger.

Likewise, for triggers (such as the      ReceiveHTTPMessage REST trigger) that send back a 
reply to the caller, the trigger reply must be mapped to the flow outputs (parameters 
configured on the      Output tab of the      Flow Inputs & Outputs accordion tab). You do this 
mapping on the     Map from Flow Outputs tab of the trigger.

A      Return Activity is not added by default. Depending on your requirements, you must add 
and configure the      Return Activity manually. For example, if any trigger needs to send a 
response back to a server, its output must be mapped to the output of the      Return Activity 
in the flow.      

The Map Outputs tab of the      Return Activity displays the flow output schema that you 
configured on the      Output tab of the      Flow Inputs & Outputs accordion tab. The      Map from 
Flow Output tab of the trigger constitutes the trigger reply. This tab also displays the flow 
output schema that you configured on the      Output tab of the      Flow Inputs & Outputs 
accordion tab.      

Perform the following steps when using a      ReceiveHTTPMessage REST trigger:      

 l Add a        Return Activity at the end of the flow.      

 l On the        Map Outputs tab of the        Return Activity, map the elements in the schema to 
the data coming from the upstream activities.      

 l On the        Map from Flow Output tab of the trigger, map the trigger reply elements to 
the flow output elements.           

Follow these steps to create a flow:         

Procedure
 1. On the Apps page, Click an app name to open its page.      

 2. Under the Flows page, click  Create . The Add triggers and flows dialog opens. 

 3. Enter a name for the flow in the Name text box. Flow names within an app must be 
unique. An app cannot contain two flows with the same name.  

 4. Optionally, enter a brief description of what the flow does in the Description text 
box.     The Flow option is selected by default.      To create a flow from a specification, 
select the specification under Start with and refer to the appropriate section under      



TIBCO Flogo® Enterprise User Guide

58 | App Development

Building APIs.      

 5. Click Create. The Flow gets created. 

 6. After a Flow is created, you can start with either of the following actions:

 l Start with a trigger - If you know the trigger with which you want to activate 
the flow, select this option. Select a trigger from the Triggers palette. For more 
details on the type of trigger that you want to create, see the relevant section 
in the        Starting with a Trigger topic. If there are existing flows attached to 
triggers, you are prompted to either use an existing trigger or use a new trigger 
that has not been used in an existing flow within the app.     

 l Configure flow inputs and outputs - Select this option if you know the 
algorithm for the flow, but do not yet know the circumstances that cause the 
flow to run. It creates a blank flow that is not attached to any trigger. Flow 
inputs and outputs create a contract between the trigger and the flow. When 
you create a trigger, you must map the output of the trigger to the input of the 
flow. This contract serves as a bridge between the trigger and the flow. You 
have the option to attach your flow to one or more triggers at any later time 
after the flow has been created.      

If you selected      Start with a trigger, the flow is attached to the trigger you selected. 
If you selected      Configure flow inputs and outputs, a blank flow without a trigger 
gets created. 

Note: StartActivity is a special activity that is always added to the newly 
created flows.     



TIBCO Flogo® Enterprise User Guide

59 | App Development

Selecting a Trigger When Creating a New Flow
When creating a flow, you have the option to either select an existing trigger or select one 
from the triggers palette.    

Trigger configuration fields are categorized into two groups as explained below. A single 
trigger can be associated with multiple handlers.    

 l Trigger Settings - These settings are common for the trigger across all flows that use 
that trigger. If and when a flow attached to the trigger changes any      Trigger Settings 
field, the change gets propagated to all flows attached to the trigger.   

 l Handler Settings - These settings apply to a specific flow attached to the trigger. 
Hence, each flow can set its values for the      Handler Settings fields in the trigger. To 
do so, open the flow and click the trigger to open its configuration dialog. Click the      
Settings tab and edit the fields in the      Handler Settings section.    

Creating a Trigger When Another Trigger of the Same Type Exists

There may be cases when a specific type of trigger exists. For example, there might be a 
REST trigger that exists. When creating a REST flow, you are prompted to select the 
existing REST trigger or create a trigger by selecting it from the triggers palette. If you want 
a REST trigger with a different trigger setting than the one that exists, such as a different 
port or a security options, Select the      Create new option and then select the trigger from 
the ensuing trigger palette. This creates a REST trigger and attaches your new flow to it.    

Creating a Flow Starting with a Trigger
When creating a flow, if you know the circumstances in which you want the flow to 
activate, select the   Start with a trigger option and select an available trigger that 
activates the flow.    

Warning: If an app has multiple triggers that require a port to be specified, 
make sure that the port number is unique for each trigger. For example, REST or 
GraphQL trigger. Two triggers in the same app cannot run on the same port.    

If you are unsure of the circumstances under which the flow should be activated, or if you 
want the flow to be activated under more than one situation, use the      Configure flow 
inputs and outputs option and attach the flow to one or more triggers later as needed. 
See      Creating a Flow without a Trigger for more details on this.    



TIBCO Flogo® Enterprise User Guide

60 | App Development

Creating a Flow Attached to a REST  Trigger
When creating a flow with a REST (Receive HTTP Message) trigger, you can enter the 
schema in the    Configure trigger dialog during flow creation. Also, you can use a Swagger 
2.0 or OpenAPI 3.0 specification file that you have saved either in TIBCO Cloud™ Integration 
- API Modeler or on your local machine.    

For more details on using a specification file, see the      Using an OpenAPI Specification.      

Note: If you want to have two flows using the same operation on the same 
resource,  while creating the flows on the      Settings tab of the      
ReceiveHTTPMessage trigger, ensure that you configure different ports for each 
flow.      

You can create a REST flow by entering a JSON schema or dragging an API specification 
JSON file.      See    the  Using an OpenAPI Specification section about using a specification file.

Warning: If you modify the      Reply Settings tab of a      ReceiveHTTPMessage 
trigger, the corresponding      ConfigureHTTPResponse activities within that flow 
do not change appropriately. This happens when you remove fields from the      
Reply Settings tab. Redo the mappings for the      ConfigureHTTPResponse 
Activity.      

To create a REST flow by entering the schema:         

Procedure
 1. Click an app name on the Apps page.      

 2. Click      Create. The      Add triggers and flows dialog opens. Flow under Create New is 
selected by default.

 3. Enter a name for the flow in the      Name text box. Flow names within an app must be 
unique.

 4. Optionally, enter a brief description of the flow  in the      Description text box.      

 5. Click      Create. A flow with a specified name is created.     

 6. Now, click Triggers palette. The triggers palette opens with all the available triggers 
listed. 

 7. Drag the      Receive HTTP Message to the Triggers area on the left. The trigger 



TIBCO Flogo® Enterprise User Guide

61 | App Development

configuration dialog opens.      

 8. Select the REST operation under the     Method that you want to implement by clicking 
it.      

Note: Two REST triggers cannot have an identical port, path, and method 
combination. Each REST trigger needs to differ from the other for the same 
flow with either a unique port, path, or operation.      

 9. Enter a resource path in the      Resource Path text box.      

 10. Enter the JSON schema or JSON sample data for the operation in the      Response 
Schema text box. This is the schema for both input and output.      

 11. Click      Continue.      

 12. Select one of the following options:      

If you select      Copy Schema, the schema that you entered in the step 10 above 
automatically gets copied or displayed in a tree format to the following locations 
when the trigger gets added:      

 l Trigger output, on the        Map to Flow Inputs tab of the trigger      

 l Flow input, on the        Input Settings tab of the        Flow Inputs & Outputs accordion 
tab.      

 l Trigger reply (if the trigger has a reply), in the        Reply Settings of the trigger.      



TIBCO Flogo® Enterprise User Guide

62 | App Development

For details on configuration parameters, see the REST Trigger section.    

If you select      Just add the trigger, a REST trigger is added to the flow without any 
configuration. You can configure this REST trigger later by clicking the trigger from 
the app details page. Any changes made to the trigger must be saved by clicking      
Save.      

The flow page opens.      

 13. Map the trigger output to the flow input.      

 a. Open the trigger configuration dialog by clicking the trigger:      

 b. Open the        Map to Flow Inputs tab.      

 c. Map the elements under        Flow inputs to their corresponding elements under        
Available data one at a time.      

 14. Map the flow output to the trigger reply as follows:      

 a. In the trigger configuration dialog, click the        Map from Flow Outputs tab.      

 b. Map the elements under        Trigger reply to their corresponding elements under        
Available data.      

 c. Close the dialog.      

 15. Click      Save to save your changes.      

Creating a Flow attached to the GraphQL Trigger
You can create GraphQL flows by uploading a GraphQL schema file with an .gql or
    .graphql extension. Flogo then creates the appropriate flows based on your schema. 
When the flow gets created, a GraphQL trigger automatically gets generated and attached 
to each flow that gets created.

To create a flow using a GraphQL schema, see the    Using GraphQL Schema topic.     For 
details on the GraphQL trigger, see "GraphQL Trigger" section in TIBCO Flogo® Enterprise 
Activities, Triggers, and Connections Guide.

Creating a Flow Attached to Other Triggers
This section applies to triggers that are not REST, or GraphQL triggers.    

rest.htm


TIBCO Flogo® Enterprise User Guide

63 | App Development

To create a flow with such a trigger:          

Procedure
 1. Click an app name on the      Apps page to open the app details page.      

 2. click Create.      The      Add triggers and flows dialog opens. 

 3. Enter a name for the flow in the      Name text box.      

Flow names within an app must be unique.

 4. Optionally, enter a brief description of what the flow does in the      Description text box 
and click      Create.      

A flow gets created and the flow details page opens.

 5. From the Triggers palette, select the desired trigger and drag it to the triggers area.     

 6. Click the trigger to display its properties.      

 7. Configure the properties for the trigger.      See the respective trigger section in TIBCO 
Flogo® Enterprise Activities, Triggers, and Connections Guidefor details.

Creating a Blank Flow (Flow without a Trigger)
You can create a flow in the Flogo app without attaching it to a trigger. This method of 
creating a blank flow is useful when the logic for the flow is available, but you do not know 
the condition under which the flow should activate. You can start by creating a flow with 
the logic and attach it to one or more triggers later.    

Follow these steps to create a flow without a trigger:         

Procedure
 1. Click an app name on the      Apps page to open the app details page.      

 2. click      Create. The      Add triggers and flows dialog opens.Flow is selected by default.     

 3. Enter a name for the flow in the      Name text box.      

Flow names within an app must be unique.      

 4. Optionally, enter a brief description of what the flow does in the      Description text 
box.      

 5. Click      Create. The flow details page opens.     



TIBCO Flogo® Enterprise User Guide

64 | App Development

 6. Click Flow Inputs & Outputs to configure the inputs and/or outputs to the flow on 
the      Input or      Output tab respectively. See      Flow Inputs & Outputs Tab.      

Mapping trigger outputs to flow inputs and flow outputs to trigger reply creates a 
contract between the trigger and the flow. Hence, when you attach the flow to a 
trigger later, you must map the output of the trigger to the flow input. You have the 
option to attach your flow to one or more triggers later after the flow has been 
created. See      Attaching a Flow to One or More Triggers for details.      

 7. Enter a JSON schema containing the input fields to the flow on the      Input Settings 
tab and click      Save.      

 8. Enter the JSON schema containing the flow output fields on the      Output Settings tab 
and click      Save.    

 9. When you are ready to add a trigger, refer to      Adding Triggers to a Flow to add one or 
more triggers to the flow. For triggers that need to send back a response to the 
server, you must map the flow output to the reply of the trigger.

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are 
particularly useful when you create blank flows that are not attached to any triggers.    

Note: The schemas for input and output to a flow can be entered or modified 
only on this      Flow Inputs & Outputs tab. You cannot coerce the flow input or 
output from outside this accordion tab.    

Both these tabs (the    Input tab and the    Output tab) have two views:    

 l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to 
save your changes or      Discard to revert the changes. If you entered JSON data, the 
data is converted to a JSON schema automatically when you click      Save.      

 l List view:

This view displays the data that you entered in the JSON schema view in a list 
format. In this view, you can:      

 o Enter your data directly by adding parameters one at a time      

 o Mark parameters as required by selecting its checkbox.      



TIBCO Flogo® Enterprise User Guide

65 | App Development

 o When creating a parameter, if you select its data type like an array or an object, 
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide 
a schema for the object or array.      

 o Use an app-level schema by selecting      Use an app-level schema. On the      
Schemas page that appears, click      Select beside the schema that you want to 
use. The name of the schema is displayed beside     Use an app-level schema 
and the schema is displayed in a read-only mode.      

Note: You cannot edit an app-level schema in the        List view if        Use an 
app-level schema is selected. To edit an app-level schema, follow 
the instructions in the section        Editing an App-level Schema. You can, 
however, switch to another app-level schema by clicking        Change 
and selecting another app-level schema. You can also unbind the 
app-level schema (by deselecting        Use an app-level schema) from a 
trigger, activity, or the input and output of a flow. After you unbind 
the app-level schema, you can make changes to it using the schema 
editor in the        List view.      

 o Click      Save to save the changes or      Discard to discard your changes.      

Attaching a Flow to One or More Triggers
If you had created a blank flow without attaching it to a trigger, you can attach it to an 
existing trigger that is being used by another flow in the same app.    

A flow that was created without being attached to a trigger has its input and output 
parameters defined on the    Flow Inputs & Outputs accordion tab. You can access it by 
clicking the blue bar with the same label. The output from the trigger is the input to the 
flow. So, you must map the input parameters defined on the    Input tab of this dialog to the 
trigger output parameters. This mapping must be done in the trigger. The mapping creates 
a contract between the trigger and the flow and is mandatory for the flow and the trigger 
to interact with each other.    

You can use one of these methods to attach a flow to a trigger:      

 1. From the app details page:      

 a. Open the app details page by clicking the app. 

 b. Hover over        No trigger, then click        Add trigger. The flow details page opens.



TIBCO Flogo® Enterprise User Guide

66 | App Development

 2. From the flow details page:      

 a. Open the flow details page by clicking the flow name on the app details page.        

 b. From the Triggers palette, drag a desired trigger to the triggers area.        

For REST and GraphQL triggers, you are prompted to enter additional handler setting 
details.       Refer to the "REST Trigger" and "GraphQL Trigger" section in      TIBCO Flogo® 
Enterprise Activities, Triggers, and Connections.

Click the trigger icon to configure the trigger as needed. For REST and GraphQL triggers, be 
sure to map the trigger outputs to flow inputs and the flow outputs to the trigger reply.           

Catching Errors
You can configure a flow to catch errors at two levels:    

 l At the flow level by configuring the Error Handler in the flow. Refer to the section,      
Creating an Error Handler Flow for more details on configuring the error handler in 
the flow.    

 l At the Activity level by creating an error branch from an Activity. Refer to the      Types of 
Branch Conditions section for details on how to create an error branch from an 
Activity.    

Creating an Error Handler Flow
Use the Error Handler to catch exceptions that occur while running a flow. The error 
handler is designed to catch exceptions in the activities within a flow. If there are multiple 
flows in an app, the error handler must be configured for each flow separately. Branching 
is supported for error handler flows similar to the other flows.    

To configure the error handler:         

Procedure
 1. Click an existing activity in a flow.      

 2. Click the Error handler tab.      

The error handler opens with the      error Activity displayed.      

Clicking the error activity exposes the fields that you can configure for an error that 



TIBCO Flogo® Enterprise User Guide

67 | App Development

is generated by the activity.      

The      Map to Flow Inputs tab of the      error Activity has three elements,      Activity,      
message, and      data. The      activity element is used to output the name of the activity 
that is generating the error, the      message element is used to output the error 
message string, and the      data element can be configured to output any data related 
to the error. The      message element on the      Input tab of any activity in the Error 
Handler flow can be configured to output one or all of these three elements.      

 3. From the Activities palette, add an activity for which you want to configure the error 
message. Add a branch to connect the error with the activity that you have added. 

The      Input tab of that Activity displays a     message in its input schema. This is a 
required element that you must map.

Note: A      Return Activity is not added by default. Depending on your 
requirements, you must add the      Return Activity manually.      

 4. Click the     message in the input schema to open its mapper.      



TIBCO Flogo® Enterprise User Guide

68 | App Development

 5. Expand      $error to expose the      Activity,      message, and      data elements that you can 
configure for the error message.      

To map the      message element under      Activity inputs, you can either manually type in 
the error string enclosed in double-quotes or use the      concat function under      string in 
the mapper to output the Activity name along with a message. See      Using Functions 
for more details.      

 6. Continue configuring the error message for each activity in the flow.      

If there is error for the activity in any flow of the app, it is output in the log for the 
app when the app is      built.      



TIBCO Flogo® Enterprise User Guide

69 | App Development

Here is an example of how an error handler flow looks after it is configured:    

Viewing Errors and Warnings 
Flogo Enterprise uses distinct icons to display errors and warnings within an app.    

The following icons are used:    

 - error icon. Resolve the errors before    building the app. Errors should not be ignored.    

 - warning icon. Warnings are generated to alert you of something that might need to 
change in the entity where the warning icon is displayed. You have the option to ignore the 
warning and move on. 

 - missing extension icon. Check and correct missing extensions before building an app. 
Missing extensions must be fixed before proceeding. 

Here is the hierarchy of errors and warnings reported in    Flogo Enterprise:    

Flow level reporting - when you click an app name, the app details page opens displaying 
the list of flows in the app. If there are errors or warnings in a flow, appropriate icons are 
displayed next to the flow name along with a number, where the number indicates an 
aggregate number of errors or warnings in the flow. If there are no errors or warnings, 
these icons are not displayed.

Activity and Trigger level reporting - when you click a flow name, the flow details page 
opens displaying the implementation of the flow. This page displays errors if any at the 
activity level. For instance, a    LogMessage activity may displays an error symbol within the 
activity configuration. Resolve the error before proceeding.   



TIBCO Flogo® Enterprise User Guide

70 | App Development

Activity and Trigger configuration tab level reporting - when you click an activity or a 
trigger in the flow, its configuration page opens, displaying the various tabs. Click a tab to 
see the errors or warnings in the configuration within that tab.    

Activity and Trigger configuration tab level reporting - When you click on an activity or 
a trigger in the flow, its configuration page opens, displaying the various tabs. Click a tab 
to see the errors or warnings in the configuration within that tab.    

Using Subflows
Flogo provides the ability to call any flow from another flow in the same app. The flow 
being called becomes the subflow of the caller flow. This helps in separating the common 
app logic by extracting the reusable components in the app and creating standalone flows 
for them within the app. Any flow in the app can become a subflow for another flow within 
the same app. Also, there are no restrictions on how many subflows a flow can have or 
how many times the same subflow can be called or iterated in another flow. Hence, 
subflows are useful when you want to iterate a piece of app logic more than once or have 
the same piece of logic repeat in multiple locations within the app.    

Here are a few points to keep in mind when creating and using subflows:

 l The subflow and its calling flow must both reside within the same app. You cannot 
call a flow from another app as a subflow in your app.



TIBCO Flogo® Enterprise User Guide

71 | App Development

 l Since you can call any flow from any other flow within the app, you must be careful 
not to create cyclical dependency where a flow calls a subflow and the subflow, in 
turn, calls its calling flow. This results in an infinite calling cycle and the "Cyclic 
dependency detected in the subflow" error is displayed. 

 l You can configure the iteration details on the      Loop tab of the      Start a SubFlow 
Activity. The      Start a SubFlow Activity iterates multiple times, resulting in the subflow 
being called multiple times. 

Important: You can delete any flow in an app even though the flow might 
be in use as a subflow within another flow. You do not receive any error 
messages at the time of deletion, but when you run the app, its execution 
fails with an error. 

Creating Subflows
You create a subflow exactly like you would create any other blank flow.    

To create a subflow:         

Procedure
 1. Identify the piece of logic in your app that you want to reuse elsewhere in the app or 

iterate multiple times.      

 2. Create a flow without a trigger for that logic. For details on how to create such a 
flow, see the      Creating a flow without a trigger.      

 3. To use this flow as a subflow within another flow, you must add a      Start a SubFlow 
Activity at the location in the calling flow from where you want to call the subflow. 
For example, if you want to call a subflow after the third Activity in your calling flow, 
insert a      Start a SubFlow Activity as the fourth Activity in the calling flow. To do so:      

 a. Open the calling flow.      

 b. On the flow details page, click the Activities palette.      

 c. Under the        Default category, select the        Start a SubFlow activity and drag it to 
the activities area. 

 d. Add the branches to connect the SubFlow activity with the activity that you 
want to call a subflow from and to the activity where the subflow must end. 



TIBCO Flogo® Enterprise User Guide

72 | App Development

Also set the branch conditions for each connection line wherever required.

 e. Click the StartaSubFlow activity to open the configuration dialog. To call the 
required subflow, select the subflow from the        Select flow dropdown in the        
Settings tab and save the changes. If you want to see the flow in detail use the 
Open Subflow option in the Settings tab or click the  icon on the 

StartaSubflow Activity. This appends the flow tab to the right of the previously 
appended flow tabs. In the below example, we call the Flow 3 flow using the 
StartaSubflow Activity. After clicking the Open Subflow tab, we see theFlow 3 
flow tab next to the Flow 1 flow tab.

  

Note:  

 l If the subflow is already selected in StartaSubflow Activity, 
then you can directly open that subflow in a different flow tab 
by clicking on the  icon on activity tile.

 l If  icon is present on the StartaSubflow Activity, it means a 
subflow is selected in the StartaSubflow Activity. 

 l An opened subflow tab becomes "active" only after you select 
it from the Flows list dropdown or when you switch to that 
subflow.

 l When you try to open an already opened subflow tab, it is 
highlighted.

 



TIBCO Flogo® Enterprise User Guide

73 | App Development

The schemas that you had configured in the Input Settings and        Output 
Settings of the        Flow Inputs&Outputs tab in the selected subflow appear on 
the        Input and        Output tabs of the        StartaSubFlow Activity.        

You can now configure the input and output for the subflow in the        
StartaSubFlow Activity. If you add additional input and/or output parameters 
on the        Flow Inputs & Outputs tab of your subflow, they become available to 
configure from the        Input and/or        Output tabs of the        StartaSubFlow Activity. 
The output from the        StartaSubFlow Activity is available for use as input in all 
activities that appear after it.        

At app runtime, the        StartaSubFlow Activity in the calling flow calls the 
selected subflow.        

 f. If you want your subflow to iterate multiple times, configure the iteration 
details on the        Loop tab of the        StartaSubFlow activity. Refer to the        Using the 
Loop section for details on how to configure the        Loop tab. 

 g. If you want to run certain events in the main flow without waiting for the 
subflow to complete its execution, you can do this using the Detached 
Invocation toggle on the Settings tab of the StartaSubFlow activity. When you 
set this Detached Invocation toggle to true, the Output option is not available 
in the StartaSubFlow activity window, and without waiting for the subflow 
output, the main flow is executed.     

Creating a Flow Execution Branch
Activities in a flow can have one or more branches. If you specify a condition for a branch, 
the branch runs only when the condition is met. You also have the option to create an 
error branch from an activity. The purpose of the error branch is to catch any errors that 
might occur while running an activity. Branching is also supported for Error Handler flows, 
to catch all errors at the flow level.    

Note: 
 l You cannot create a branch from a trigger or a      Return Activity.                     

 l All activities that come after a branch are run irrespective of how the 
branch condition evaluates.                     

A      Return activity ends the flow execution. Regardless of where the     Return activity is 
placed in the flow, the flow execution exits the process as soon as it encounters a      Return 
activity anywhere in the flow.



TIBCO Flogo® Enterprise User Guide

74 | App Development

Note: A      Return Activity is not added by default. Depending on your 
requirements, you must add the      Return Activity manually. For example, if any 
trigger needs to send a response back to a server, its output must be mapped to 
the output of the      Return Activity in the flow.      

To create a flow execution branch:         

Procedure
 1. From the      Apps page, click the app name then click the flow name to open the flow 

details page.      

 2. For a start branch, drag a connection line from the a blue arrow on StartActivity 
icon to the desired activity that you want to start the execution with. 

A branch gets created. 

Each branch has a label associated with it. The label has the following format:      

When branching to a specific activity:        
<Name of activity in main flow>to<Name of activity in branch>
For example,        LogMessagetoInvokeRESTService. 



TIBCO Flogo® Enterprise User Guide

75 | App Development

 3. You can add a branch between the two activities. Hover over the activity that you 
want to start with and drag a connection line to the activity you want to connect to.

 4. Clicking the branch opens the       Branch Mapping Settings dialog.

 5. Select either of the branch conditions:      Success,      Success with condition,      Success 
with no matching condition, or      Error. See      Types of Branch Conditions for details on 
the conditions.     

 6. Click      Save.      

 7. Add a condition to a branch as required. See      Setting Branch Conditions for details.      

 8. If you want the flow execution to end after this branch is run successfully, add and 
configure the      Return activity at the end of the branch. If you do not want the flow 
execution to end, do not add a      Return activity at the end of the branch. 

Joining or merging branches
You can now connect multiple activities to a single activity. In this case, an activity is 
executed only after all connected activities are either executed or skipped due to 
conditional branch. 



TIBCO Flogo® Enterprise User Guide

76 | App Development

Types of Branch Conditions
Flogo Enterprise supports multiple types of branch conditions.    

Select one of the following conditions during branch creation:    

 l Success

A success branch is run whenever an activity is run successfully. If there is an error in 
the activity completion, this branch does not run. The branch has no conditions set 
in it.      

 l Success with condition

Select this condition if you want a branch to run only when a particular condition is 
met. If you select this condition and do not provide the condition, the branch never 
runs.      

You can form an expression using anything available under upstream activity outputs 
and available functions, which should evaluate to a boolean result value.      

 l Success with no matching condition

This branch condition is displayed only when you already have an existing      Success 
with condition branch.      

 l Error

A branch with this condition runs if there are errors in completion of the activity. An 
activity can have only one      Error branch.      

Details of the error, such as the Activity and the type of the error message, are 
returned in      $error. For example:      



TIBCO Flogo® Enterprise User Guide

77 | App Development

The      Error branch flow differs from the error handler flow. In the error branch, the 
error branch is designed to catch exceptions at the activity level from which the error 
branch originates. Whereas the error handler flow is designed to catch exceptions 
that occur in any activity within the flow. So, if you handle the errors by creating an 
error branch at the activity level, the flow execution control never transfers to the 
error handler flow.      

Order in which Branches are Run
When an Activity has multiple branches, regardless of the number of branches or the order 
in which the branches appear in the UI, the branch execution follows a pre-defined order.    

Note: The flow execution ends if it encounters a Return activity at any branch. 
In such situations, the activities that are placed after the return activity are not 
run. 

The order in which the branches are run is as follows.   

 1. Success with condition branch 

This branch runs only if its branch condition is met. 

 2. Success with no matching condition branch      

This branch condition is displayed only when there is at least one existing      Success 
with condition branch for the Activity. The      Success with no matching condition 
branch is typically used when you want a specific outcome if none of the      Success 
with condition branches meet their condition. 

 l This branch runs only if none of the      Success with condition branches run. If 
the      Success with condition branch runs and it does not have a      Return Activity 
at the end of the branch, the flow execution control is passed to the success 
branch. If the      Success with condition has a      Return activity, the flow execution 
is ended after the      Success with condition branch runs. 



TIBCO Flogo® Enterprise User Guide

78 | App Development

 l If you delete all      Success with condition branches without deleting the      Success 
with no matching condition branch, you receive a warning informing you that 
the      Success with no matching condition branch is orphaned. 

 3. Success branch 

When an Activity has both      Success and      Success with condition branches, always the 
success with condition branch runs first. And if there are multiple success branches, 
the order of execution depends on the reverse order in which the each branch was 
created, that is, the success branch that was created at last is executed first.

 4.   The    Error branch is run as soon as the flow execution encounters an error.

Setting Branch Conditions
You can set conditions on a branch such that only if the condition is met the branch runs.    

To set conditions on a branch:    

 1. Click the branch you want to set the conditions for. The      Branch Mapping Settings 
dialog opens.

 2. Select a branch condition:      Success,      Success with condition, or      Error. If you already 
have a      Success with condition branch present, you see      Success with no matching 
condition.      

See the section,      Types of Branch Conditions, for details on the three conditions.      

 3. Click      Save.      

 4. If you selected      Success with condition, the mapper opens for you to set the 
condition. Click the     condition.      

The mapper is exposed to the right of the dialog. The functions that you can use to 



TIBCO Flogo® Enterprise User Guide

79 | App Development

form the condition are shown under      Functions.      

 5. Enter an expression with the condition or click a field from the output of a preceding 
Activity to use it. The output from preceding activities appears under the left      
Upstream Output in a tree format. 
 



TIBCO Flogo® Enterprise User Guide

80 | App Development

Note: 

 l The condition must resolve to a boolean type. The following image shows 
how the branches appear based on the branch condition:

 l When you hover over the branch lines or the branch labels, they appear in 
different colours according to the condition that is set. 

 o Green - Success 

 o Orange - Success with condition 

 o Purple - Success with no matching condition 

 o Red - Error. 

These lines indicate the exact start and end points of the connection 
between any two activities. This is helpful in large and complex flows 
where the exact flow seems unclear and jumbled. The branch labels 



TIBCO Flogo® Enterprise User Guide

81 | App Development

indicate the names of the activities that are connected. You can rename 
the labels as per requirement. For the success with condition label, when 
it is empty or when there is a wrong condition,  a  icon appears on it. 

Deleting a Branch
You can delete a branch at any time after creating it.    

To delete a branch:    

Procedure
 1. Hover over the branch that you want to delete. A branch label appears.     

 2. On the label, click  icon that appears.      



TIBCO Flogo® Enterprise User Guide

82 | App Development

 3. On the confirmation dialog, click      Delete branch.     The selected branch is deleted.    

Duplicating a Flow
You can duplicate an existing flow in an app. All activities in the flow along with their 
existing configurations get duplicated to a new flow in the app. The duplicate of the 
original flow gets created with a default name beginning with "Copy of" in the same app. 
You can rename the flow by clicking the flow name in the top-left corner of the flow details 
page.  After you have duplicated the flow, you can add more activities, rearrange existing 
activities by dragging them to the desired location or delete activities from the flow 
duplicate.    

Note: The triggers in the flow do not get duplicated. Also, if a flow has subflows, 
the subflows do not get duplicated.    

To duplicate a flow:         

Procedure
 1. Open the      Apps page and click the app to open the app details page.      

 2. Hover over to the extreme right of the flow that you want to duplicate until the      
Duplicate flow icon  displays.      

 3. Click the      Duplicate flow icon. A duplicate of the flow gets created in the app.      

 4. Edit the duplicated flow as needed to add, rearrange, or delete activities in the flow 
and       the app.      



TIBCO Flogo® Enterprise User Guide

83 | App Development

Editing a Flow
You can edit the flow name or its description after creating the flow. You can also add 
more activities. Rearrange existing activities by dragging them to the desired location or 
delete activities from the flow.    

To edit a flow:          

Procedure
 1. On the      Apps page, click the app name to open the app details page.      

 2. Click the flow name that opens the flow page.      Rebuild the app after making the 
required changes.

To edit the flow name, click anywhere in the flow name and edit the name. To add 
an activity between two existing activities, you can make a space by dragging the 
activities to anywhere you want in the activities area.

Switching Between Flows in an App
In an app that has multiple flows, you can switch between the flows within an app. There 
are two ways of doing it:    

 1. Using the Flows list dropdown:    

Click the Flows list dropdown beside the flow name and select the flow you want to 
open. 

 2. Using the flow tabs:  



TIBCO Flogo® Enterprise User Guide

84 | App Development

When you choose a flow from the Flows list dropdown, each flow appends to the 
right of the previously opened flow tab and this flow tab is set to active. The 
remaining tabs are inactive. You can simply click these flow tabs to switch between 
the flows. 

You can also move a tab to the left or right of any existing tab. 

Note: Only opened and appended tabs can be moved to the tabs section. 
The moving of tabs is applicable for the current instance only. For 
example, if you navigate back to the Flow List page and return to canvas, 
the state of the moved tabs is lost. Similarly, if you refresh the page, the 
state of the moved tabs is lost.

Note:  

 l If you try to open a flow tab that is already appended, then that flow 
tab is set to active wherever it is present.

 l Whenever you refresh the app, the order of the flow tabs remains 
same. 

 Caching of Flow tabs

When there are many flow tabs open, the first one is the main tab and the rest are 
appended tabs. In case you have to go back to the other flows and come back to the 
main flow tab again, the other appended flows remain there until closed. At a time, 
only one of the tabs remain active. For example, the Flow 1 is the main flow tab and 
the rest are appended flow tabs. 



TIBCO Flogo® Enterprise User Guide

85 | App Development

Note:  

 l A maximum of 10 flow tabs can be opened. You must close flows that are 
not required before opening a new flow. 

 l You cannot switch between flow tabs while configuring the App properties 
or Schema. 

 l During testing, the flow tabs are not accessible to user.

Deleting a Flow
You can delete a flow from the app details page.    

To delete a flow:         

Procedure
 1. On the Apps page, click the app name to open its app details page.      

 2. Hover over to the extreme right of the flow name that you want to delete until the      
Delete flow icon  displays.      

 3. Click the      Delete flow icon.      

 4. On the confirmation dialog, click      Delete. The selected flow is deleted.      

Note: If multiple flows are attached to a trigger only the specific flow gets 
deleted. If there is  only one flow attached to the trigger, the trigger also gets 
deleted.   

Adding an Activity
After a flow is created, you must add activities to the flow.         

Procedure
 1. From the      Apps page, click the app name then click the flow name to open the flow 

details page.      



TIBCO Flogo® Enterprise User Guide

86 | App Development

 2. Click the Activities palette available on the right side. The categories of the activities 
are displayed.     

 3. Click the category from which you want to add an activity. For example, to add a 
general activity such as      Log Message, click the      General category.      

 4. Drag the required activity to the activities area.      

 5. To change the order in which the activities appear in the flow, you can drag the 
activity anywhere in the activities area.

 6. Click the activity to open its configuration dialog and configure it. 

Tip: If you want to add an activity in between two activities, you can directly 
drop the activity on the branch label in between the two activities. You need not 
delete the incoming and outgoing connections and reconnect them.  Adding an 
activity between two activities is only possible when an activity is dragged and 
dropped from the Activities panel, not for the activities already present on the 
flow canvas.

Searching for a Category or Activity
You can search an activity or category by entering the activity or category name in the    
Search box of the   Activity palette.   

You can enter either the full or  partial name (a string of characters appearing in the name) 
of the activity or category  in the  Search box.   

 l All categories whose names either wholly match the search string or contain the 
partial search string in their name get displayed.      

 l Only those activities in the category whose names contain the search string are 
displayed in the search results. The activities in the category whose names do not 
match or contain the search string are not displayed in the search results.      

 l For any activity whose name wholly or partially matches the search string, the 
category that contains that activity is displayed. For example, if you enter "delete" in 
the search box, since there are activities whose name contains the string "delete" in 
Marketo, Salesforce, Zoho-CRM, all these categories are displayed, even though the 
category names themselves do not contain the string "delete".      



TIBCO Flogo® Enterprise User Guide

87 | App Development

Configuring an Activity
After adding an activity, you must configure it with the required input data. Also configure 
the output schema for activities that generate an output.   

There are three ways to configure data for an activity:    

 l Configuring static data where you manually type the data in the mapper for the field. 
For example, type in a string that you want to output. Strings must be enclosed in 
double quotes. Numbers must be typed in without quotes.      

 l Mapping an Activity input to the output from one of the activities preceding it in the 
flow, provided that the previous activities have some output.      

 l Using functions. For example, the      concat function to concatenate two strings.

To configure an activity:         

Procedure
 1. On the flow details page, click an activity.      

The configuration box opens beneath the activity.      



TIBCO Flogo® Enterprise User Guide

88 | App Development

 2. Click each tab in the configuration box under the activity name and either manually 
enter the required value, use a function, or on the      Input tab, map the output from 
the trigger or a preceding activity using the mapper. Refer to the      Mapper section for 
details on mapping.      

If one or more activities are not configured properly in a flow, the error or warning 
icon is displayed in its upper-right corner. Click the activity whose tab contains the 
error or warning. For more details, see the      Errors and Warnings.      

Duplicating an Activity 
You can duplicate an activity within the same flow. The activity along with the existing 
configuration is duplicated into a new activity. The duplicate of the original activity is 
created with a default name beginning with    CopyOf. You can rename the activity by clicking 
the activity name. Duplicating an activity saves you time and effort in situations when you 
want to create an activity with similar or the same configurations as an existing activity in 
the flow. After you duplicate the activity, you can change the configuration, move it around 
in the flow by dragging and dropping it to the required location or delete it from the flow.    

Note: A trigger within a flow cannot be duplicated.    

To duplicate an activity: 

Procedure
 1. From the      Apps page, click the app name and then click the flow name to open the 

flow details page. 

 2. Hover over the activity that you want to copy and click      .      

For example, in the following screenshot, the      Return activity is duplicated and added 
to the flow. The duplicate activity is called      CopyofReturn:      



TIBCO Flogo® Enterprise User Guide

89 | App Development

 3. Configure the duplicated activity as required.      

Using the Loop Feature in an Activity
When creating a flow, you may want to iterate a certain piece of logic multiple times. For 
example, you want to send an email about an output of a certain activity activity1 in your 
flow to multiple recipients. To do so, you can add a    SendMail activity following    activity1 in 
your flow. Then configuring the    SendMail activity to iterate multiple times when    activity1 
outputs the desired result. Each iteration of the    SendMail activity is used to send an email 
to one recipient.   

Keep the following in mind when using the Loop feature:          

 l Iteration is supported for an activity only. You configure the iteration details on the      
Loop tab of the activity.      

 l The      Loop tab is unavailable for certain activities that do not require iteration. For 
example, the      Return activity. Its purpose is to exit the flow execution and return data 
to the trigger.      

 l You cannot iterate through a trigger.      

 l For apps that were created in      Project Flogo and imported into      Flogo Enterprise, the      
key type on the      Loop tab is converted from the string to the relevant data type of 



TIBCO Flogo® Enterprise User Guide

90 | App Development

value in      Flogo Enterprise.      

To configure multiple iterations of an Activity:    

Procedure
 1. Click the Activity in the flow to expose its configuration tabs.      

 2. Click the      Loop tab.      

 3. Select a type of iteration from the      Type menu.      

The default type is      None, which means the Activity does not iterate.      

Iterate

This type allows you to enter a number that represents the number of times you 
would like the Activity to iterate without considering any condition for iterating.      

Click      iterator to open the mapper to its right. You can either enter a number 
(integer) to specify the number of times the activity must iterate or you can set an 
expression for the loop by either entering the expression manually or mapping the 
output from the preceding activities or triggers. You can also use the available 
functions along with the output from previous activities and/or manually entered 
values to form the loop expression. The loop expression determines the number of 
times the activity iterates.      

Warning: The loop expression must either return a number or an array. 
The array can be of any data type. If your loop expression returns a 
number, for example 3, your activity iterates three times. If your loop 
expression returns an array, the activity iterates as many times as the 
length of the array. You can hover over the expression after entering the 
expression to make sure that the expression is valid. If the expression is 
not valid,  a validation error is displayed.      

If you select this type, the      Input tab of the Activity displays the      $iteration scope in 
the output area of the mapper.      $iteration contains three properties,      key,      index, 
and      value.      index is used to hold the index of the current iteration. The      value holds 
the value that exists at the index location of the current iteration if the loop 
expression evaluates to an array. If the loop expression evaluates an array of objects,      
value also displays the schema of the object. If the loop expression evaluates to a 
number, the      value contains the same integer as the      index for each iteration. To 
examine the result of each iteration of the Activity, you can map the     index and      value 
to the      message input property in the      LogMessage Activity and print them. The      key is 



TIBCO Flogo® Enterprise User Guide

91 | App Development

used to hold the element name when configuring a condition if the value evaluates 
to an object. However, you can map only to the output of the last iteration if you did 
not set the      Accumulate Output checkbox to      Yes. See the      Accumulating the Activity 
Output for All Iterations section for more details on this.      

Repeat while true

Refer to      Flow Design Concepts sample for an example of how to use this feature.      

Select this type if you want to set up a condition for the iteration. This acts like the      
do-while loop where the first iteration is run without checking the condition and the 
subsequent iterations exit the loop or continue after checking the condition. You set 
the condition under which you want the activity to iterate by setting the      condition 
element. The condition gets evaluated before the next iteration of the activity. The 
activity iterates only if the condition evaluates to true. It stops iterating once the 
condition evaluates to false. Click      condition, and manually enter an expression for 
the condition. For example,      $iteration[index] < 5.      

Keep in mind that the index for the      Repeat while true iteration begins at zero and 
iterates n+1 times. If you enter 4 as the iterator value, it runs as the following 
iterations: 0,1,2,3,4.      

By default, the results of only the final iteration are saved and available. All previous 
iteration results are ignored. If you would like the results of all iterations to be stored 
and available, set      Accumulate to      Yes.      

You have the option to set a time interval (in ms) between each iteration, which can 
help you manage the throughput of your machine. To spread the iterations out, set 
the      Delay element. The default delay time is 0 ms, which results in no delay.      

Result
After you enter the loop expression, the loop icon appears on the top-right corner of the 
activity.    

Accumulating the Activity Output for All Iterations
When using the Loop tab to iterate over an Activity, you have the option to specify if you 
want the Loop to output the cumulative data from all iterations. You can do so by setting 
the    Accumulate checkbox to    Yes.    

When the    Accumulate checkbox is set to    Yes, the activity accumulates the data from each 
iteration and outputs that collective data as an array of objects. Here, each object contains 

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts/loops.sample


TIBCO Flogo® Enterprise User Guide

92 | App Development

the output from the corresponding iteration. The accumulated results are displayed as an 
array in the downstream activities in the mapper and be available for mapping.

When mapping to an element within an object in the output array of the activity, you must 
provide the index of the element to which you want to map. For instance, when you click a 
property within the object under   responseBody, the expression displayed in the mapper is    
$activity [<activity-name>] [<<index>>].responseBody.<property-name>. Replace  
<<index>> with the actual index of the object to whose property that you want to map.    

When the   Accumulate checkbox is not selected, the output of the Loop displays an object 
that contains only the data from the last iteration. Data from all previous iterations is 
ignored. When mapping to an element in the output object of the activity, when you click a 
property within the object under    responseBody, the expression displayed in the mapper is    
$activity [<activity-name>].responseBody.<property-name>. 

The    Output tab of the activity changes based on your selection of the    Accumulate 
checkbox. The parent element (the name of the activity and the data type of the iteration 
output) is displayed regardless of your selection. If you set the    Accumulate checkbox to    
Yes, the data type of the parent element is an array of objects. If you did not select the 
checkbox, the data type of the parent element is an object. The    Output tab contents are 
also available in the mapper allowing for the downstream activities to map to them.    

Accessing the Activity Outputs in Repeat While True Loop
This feature is useful when an activity needs to use the loop feature to do batch processing 
or fetch multiple records by running the activity multiple times. With each iteration of the 
activity, the output is available for mapping to the activity input. 

This feature is available in all activities that generate an output (have an      Output tab).    

To use this feature:         

Procedure
 1. On the      Loop tab, set the      Type to      Repeat while true.      

 2. Set the      Access output in input mappings to      Yes.

This makes the output of the activity iteration available in the      Upstream Output for 
mapping. Now you can map your output as a next input parameter.      

 3. Enter a      condition in its text box. The activity evaluates this condition before each 
run. If the condition evaluates to      true the activity runs.



TIBCO Flogo® Enterprise User Guide

93 | App Development

Note: The output is only available in subsequent iterations after the first 
iteration. Since the activity output is not available for the first iteration, your 
condition must perform a check to see if it is the first iteration of the activity.

For example, use      $iteration[index]> 0 && isdefined($activity
[SFQuery].output.locator) to begin your condition. The      $iteration[index]> 
0 checks to make sure that it is not the first run of the activity. The      isdefined
($activity[SFQuery].output.locator) function checks whether the output 
field exists.

Using the Retry On Error Feature in an Activity
Using the Retry on Error tab, you can set the number of times the flow tries to run the 
activity on encountering an error that can be fixed on retrial. The errors such as waiting for 
a server to start, intermittent connection failures, or connection timeout can be fixed on 
retrial.

You can set the count and the interval in one of the following ways:

 l Manually type the value in the mapper

 l Map the value from the previous Activity

 l Select a function from the list of functions

 l Map app property to override the values    

Field        Description        

Count        The number of times the flow should attempt to run the activity. This value 
must be an integer.       

Interval 

(in 
millisecond)       

The time to wait in between each attempt to run the activity. This value 
must be an integer.                     

Note: The Count and Interval fields are mandatory. By default, the values are 
set to 0.



TIBCO Flogo® Enterprise User Guide

94 | App Development

Deleting an Activity
You can delete an activity in a flow from the flow details page. 

To delete an activity:

Procedure
 1. On the      Apps page, click the app name then click the flow name to open the flow 

details page. 

 2. Hover over the activity that you want to delete and click  icon.

Triggers
Triggers are used to activate flows. This section contains information on creating and 
managing triggers in your app.   

 

Creating a Trigger without a Flow
You have the option to either create a trigger as a part of the process of creating a flow or 
you can create a trigger without creating a flow.    

Refer to the section,      Creating a Flow, to create a trigger during the flow creation process.    

To create a trigger without creating a flow, follow the steps below:    

Procedure
 1. On the app details page, click      Create.      

The      Add Triggers and Flows dialog opens.      

 2. Under      Create new, click      Trigger to select it.      

The triggers catalog opens to the right.      

 3. Select the trigger that you want to create in the triggers catalog.      

The trigger gets created with a placeholder for a flow attached to it.      



TIBCO Flogo® Enterprise User Guide

95 | App Development

Deleting a Trigger
You can delete a trigger from the app details page by hovering over the trigger and clicking    
Delete.   

Synchronizing a Schema Between Trigger and Flow
If you make any changes to the schema that you entered when creating the trigger, you 
must explicitly save any changes you make, then propagate the changes to the flow input 
and flow output. This is done by synchronizing the schemas.   

To synchronize the schema between the trigger and the flow:    

Procedure
 1. Click the trigger to open its configuration details.      

 2. Make your changes and click                Save. If you do not click      Save, a warning message is 
displayed asking you to first save your changes before the schema can be 
synchronized.      

 3. Click      Sync on the top-right corner.      

The trigger output schema is copied to flow inputs and the trigger reply schema is 
copied to flow outputs.      

Data Mappings
Flogo Enterprise provides a graphical data mapper to map data between the activities 
within a flow, and between the trigger and the flows attached to the trigger within an app. 
Use the mapper to enter the flow or Activity input values manually or map the input 
schema elements to output data of the same data type from preceding activities, triggers, 
or the flow itself.    

Data Mappings Interface
An Activity has access to the output data from the trigger to which the flow is attached. It 
also has access to the output from any of the activities that precede it in the same flow 



TIBCO Flogo® Enterprise User Guide

96 | App Development

provided that the trigger or Activity has an output. This data is displayed in a tree structure 
under    Available data in the mapper. The input schema for the Activity is displayed in the 
Activity inputs pane to the right of the    Available data pane. You can map data coming 
from the upstream output to the input fields of the Activity. Also, each Activity has access 
to the input fields of the flow to which the Activity belongs. You can enter the flow input 
schema on the    Input Settings tab of the    Flow Inputs and Outputs tab.    

When you click an activity or trigger on the flow details page, the configuration page for 
that activity or trigger opens. The following image is an example of the configuration page 
that opens when you click the    InvokeRESTService activity.   

The left-most pane displays the tabs for the configuration fields for that Activity or trigger. 
Each Activity or trigger has one or more of the following tabs:    

 l Settings

For triggers, this tab is displayed as Trigger Settings. This tab shows the Activity 
settings, trigger settings, or handler settings. 

 o Activity settings are specific to the Activity. 

 o Trigger settings are specific to the particular trigger. 

 o Handler settings apply to a specific flow attached to the trigger. Each flow 
attached to the trigger can have its own handler settings.      

 l Input Settings

On this tab, you can enter the schema for the flow or Activity input.      

 l Input

This tab is displayed for activities and shows the schema that you entered on the 
Input Settings tab in a tree format. You can manually enter values for any elements 
in the input schema or map any input element to the output from previous activities 
or triggers on this tab.      



TIBCO Flogo® Enterprise User Guide

97 | App Development

 l Output Settings

On this tab, you can enter the schema for the flow or Activity output.      

 l Output

This tab displays the schema that you entered on the      Output Settings tab in a tree 
format. The schema displayed on this tab is set to read-only as it is for informational 
purposes only.      

 l Map to Flow Inputs

The settings on this tab must be configured only if your trigger has an output, for 
example, in the REST or GraphQL triggers. You manually enter or map the elements 
from the trigger output (schema set on      Output Settings tab) to the flow input 
elements (schema entered on the      Input Settings tab of the      Flow Inputs & Outputs 
tab). This allows the output from the trigger to become the input to the flow.

 l Reply Settings

This tab is applicable only to triggers that send replies to the caller, such as the REST 
or GraphQL triggers. You enter the trigger reply schema on this tab.            

 l Map from Flow Outputs

This tab is specific to triggers that need to send a reply to the caller, such as the 
REST or GraphQL triggers. You manually enter or map the elements from the output 
of the flow (schema set on      Reply Settings tab) to the flow output elements (schema 
entered on the      Output Settings tab of the      Flow Inputs & Outputs). This allows the 
output of the flow to become the reply that the trigger sends back to the request 
that it receives.      

 l Loop

On this tab, enter the iteration details for activities that you want to iterate.      

When mapping, you can use data from the following sources:    

 l Literal values - literal values can be strings or numeric values. These values can be 
either manually typed in or mapped to a value from the output of the trigger or a 
preceding activity in the same flow. To specify a string, enclose the string in double 
quotes. To specify a number, type the number in the text box for the field. Constants 
and literal values can also be used as input to functions and expressions.    

 l An input element that is directly mapped to an element of the same type in the      
Available data.    

 l Mapping using functions - the mapper provides commonly used functions that you 



TIBCO Flogo® Enterprise User Guide

98 | App Development

can use with the data to be mapped. The functions are categorized into groups. Click 
a function to use its output in your input data. When you use a function, placeholders 
are displayed for the function arguments. Click a placeholder argument within the 
function and drag an element from the      Available data to replace the placeholder. 
Functions are grouped into logical categories. For more details, see     Using Functions.    

 l Expressions - you can enter an expression whose evaluated value is mapped to the 
input field. For more details, see    Using Expressions. 

The error and warning icons are displayed on the Activity inputs pane, on the 
configuration fields in the left-most pane, and the activity tile. In case of errors in mapping 
(such as empty mandatory fields and incorrect mapping at activity or trigger level), an error 
icon  is displayed. A warning icon  is displayed  if your changes are not saved or 
discarded, input and output are not mapped in triggers, or mappings are removed for 
mandatory fields.

Mapping Data from the Data Mappings Interface
In the following example, in the Activity inputs pane, clicking the arrow  expands the 

object pathParams. You can select the input (in this case, id) that you want to map. A 
section with a text editor opens on the right side in the mapper.

To map data coming from the upstream output to the input fields of the Activity:

In the Available data pane, click the arrow  to view the fields. You can map an element 

from the Activity inputs pane to an element in the Available data pane using one of the 
following methods:

 l Drag the element from Available data and drop it on the input in the Activity inputs 



TIBCO Flogo® Enterprise User Guide

99 | App Development

pane. The mapping is displayed in the text editor.

 l Click the element from the Activity inputs pane. The text editor opens on the right 
side of the mapper. Drag the element from the Available data pane and drop it in 
the text editor.

 l Click the element from the Activity inputs pane and double-click the element in the 
Available data pane to map it to the input.

A connection line appears to show the mapping between the Available data and the 
Activity inputs.

To add functions in the mapper, refer to the Using Functions section.

Connection Lines

Connection lines show the mapping between the data and the input. These lines appear 
when you map an element from the Available data with an element from the Activity 
inputs. The lines also appear for mapped arguments. When the mapped element is 
selected in the Activity inputs pane, the connection line is blue. Otherwise, it is gray. The 
numbers at the ends of a connection line indicate the total number of mapped elements 
for a particular element.

The following screenshot shows the connection lines and the total count of mappings for 
each element.



TIBCO Flogo® Enterprise User Guide

100 | App Development

Errors in Mapping

In the mapper, you can see the total count of errors and warnings each in the mapping 
next to the parent object in the Activity inputs pane. 

In the following example, the parent object input has a total of two errors in mapping.

Expanding the input object shows that the array cakes is mapped incorrectly. This also 
shows that cakes contains one element with incorrect mapping.



TIBCO Flogo® Enterprise User Guide

101 | App Development

Expanding the array cakes shows that the array batter under the object batters has an 
error in mapping.

Note: The errors in mappings are also observed when the property in the app 
properties dialog is edited, moved from a group to another or from a group to 
top level as a standalone property. A warning message regarding the same pops 
up on the screen when you edit any properties.

Scopes in Data Mappings
The    Available data pane in the mapper displays the output data from preceding activities, 
triggers, and flow inputs. This area groups the output elements based on a scope. A scope 
represents a boundary in the    Available data within which an input element can be 
mapped. For example, when mapping an input element to an element from the output of a 
trigger, the scope of the input element is represented in    Available data as    $trigger. The 
following scopes are currently supported by the mapper.    



TIBCO Flogo® Enterprise User Guide

102 | App Development

Scope 
Name      

Used to...      Available in...      

$trigger      Map flow input to 
trigger output.     

Trigger (Map to Flow Inputs tab) to map flow inputs 
to trigger outputs.     

$flow      Map flow output to 
trigger reply.     

 l Trigger (Map to Flow Outputs tab) to map flow 
output to trigger reply.       

 l Activities (Input tab) to map Activity input to 
flow input.       

 l Return Activity (Map Output tab) to map flow 
output to flow input.        

$Activity.
[Activity-
name]

Map input elements 
of the Activity to 
elements from the 
output of previous 
activities.     

 $activity represents the scope of an activity.        
[activity-name] indicates the activity whose scope 
that you are defining. Each preceding activity has its 
own scope in the mapper.        

$iteration      Keeps record of the 
current iteration and 
is available only 
when the iterator is 
enabled for an 
activity on the        Loop 
tab.      

Input tab of an Activity that has Loop enabled. This 
tab is displayed only when the Loop for the Activity is 
enabled. The following elements are displayed under        
$iteration:        

 l key - This element represents the iteration 
index. Thus, it is always of type number. For 
example, if the Loop expression is set to an 
array, the key element represents the array 
index of the current iteration.        

 l value - The value can be of any type depending 
on what is being iterated. For example, if you 
are iterating through an array of strings, the 
value is of type string.        

$property        
[property-
name]

Map to app 
properties that are 
defined in the app.     

For any app that has app properties defined, this 
scope is available for mapping from any activity that 
allows mapping. Even the app properties from the 
connection are available for mapping under this 



TIBCO Flogo® Enterprise User Guide

103 | App Development

Scope 
Name      

Used to...      Available in...      

scope.

All the mapped configurations can be pre-checked 
using a flow tester or by creating a pre-check flow.

$loop      Map elements within 
an array.     

$loop is prefixed to the element name when mapping 
an element that is within an array. The scope of $loop 
is the current array that you are iterating through.      

$flowctx Map the flow context 
details to the current 
flow.

Input tab of every activity. The scope provides flow 
context details that can be mapped to any activity 
that allows mapping. Using this scope, the unique 
parameter like FlowId, Flowname, ParentFlowId, 
ParentFlowName, SpanId, TraceId can be accessed 
in the flow and subflow.

Here: 

 l The ParentFlowId and ParentFlowName is the ID 
and name of the flow that is invoking the 
current flow.

 l The TraceId is the unique ID of a single request, 
job, or an action initiated by the user.

 l The SpanId is the unique ID of the activity

Note: This scope is only available for the flow 
configuration and not for the trigger configuration.

Data Types

Supported data types
The following data types are supported: 



TIBCO Flogo® Enterprise User Guide

104 | App Development

 l BIT

 l CHAR

 l DECIMAL

 l INTEGER

 l TEXT

 l NUMERIC

 l REAL

 l SMALLINT

 l DATE

 l TIMESTAMP

 l MONEY

 l ENUM

 l JSON

 l XML

 l TINYINT

 l VARCHAR

 l SMALL MONEY

Unsupported data types
The following data types are not supported:

 l BIGINT

 l BINARY

Reserved Keywords to be Avoided in Schemas
Flogo uses some words as keywords or reserved names. Do not use such words in your 
schema. When you import an app, if the schema entered on the    Input or    Output tab of an 



TIBCO Flogo® Enterprise User Guide

105 | App Development

Activity or trigger contains reserved keywords, after the app is imported, such attributes 
are treated as special characters and might cause runtime errors.    

Avoid using the keywords listed below in your schema:    

 l break

 l case

 l catch

 l class

 l const

 l continue

 l debugger

 l default

 l delete

 l do

 l else

 l enum

 l export

 l extends

 l false

 l finally

 l for

 l function

 l get

 l if

 l import

 l in

 l index

 l instanceof



TIBCO Flogo® Enterprise User Guide

106 | App Development

 l new

 l null

 l return

 l set

 l super

 l switch

 l this

 l Generate

 l true

 l try

 l typeof

 l var

 l void

 l while

 l with

Mapping Different Types of Data
The mapper opens when you click any element in the input schema tree on an Activity 
configuration tab.    

You can map the following elements:    

 l A single element from the input to another single element in the output.      

Note: If the single element comes from an array in the output, then you 
must manually add the array index to use. For example, 
$flow.body.Account.Address[0] city.     

 l A standalone object (an object that is not in an array).     

 l An array of primitive data type to another array of primitive data type.      



TIBCO Flogo® Enterprise User Guide

107 | App Development

 l An array of non-primitive data types (object data type or a nested array) to another 
array of the same non-primitive data type. 

Keep the following in mind when using the mapper:      

 l Make sure that you map all elements that are marked as required (have a red asterisk 
against them), whether they are standalone primitive types, within an object, or 
within an array. When mapping identical objects or arrays, such elements get 
automatically mapped, but if you are mapping non-identical objects or arrays, be 
sure to map the elements marked as required individually.      

 l The      in and      new attributes are treated as special characters if you use them in the 
schema that you enter in the REST Activity or trigger. For example, mappings such as      
$flow.body ["in"] and      $flow.body ["new"] are not supported. If an imported app 
contains these attributes after the app is imported into      Flogo. It results in runtime 
errors.      

 l Use of the anonymous array is not supported on the      Flow Input & Output tab and 
the      Return Activity configurations. To map to an anonymous array, you must create 
a top-level object or a root element and render that.      

 l You cannot use a scope (identified with a beginning      $ sign) in an expression, for 
example,      renderJSON($flow, true). You can use an object or element under it, for 
example,      renderJSON($flow.input, true).      

 l You can only map one element at a time.    



TIBCO Flogo® Enterprise User Guide

108 | App Development

Note: If the output element names contain special characters other than an 
underscore ( _ ), they appear in bracket notation in the mapping text box. 

In the following example,      name under      Available data does not contain any 
special characters. Hence it is displayed in dot notation.        

In the following example,      name 1 contains a space. Hence it appears in the 
bracket notation.

Mapping an Enum value 
You can map values of the Enum data type to the Activity Inputs  element directly by 
selecting the values from the Use available values dropdown. 

This feature is available for all Activities and Triggers that have a schema option. 



TIBCO Flogo® Enterprise User Guide

109 | App Development

Tip: Always use the enum keyword to identify the constant values. 

Mapping a Single Element of Primitive Data Type
You can map a single element of a primitive data type to a single element of the same type 
in the output schema under    Available data.    

 l Drag the element from the Available data and drop it on the destination element 
that you want to map in the Activity inputs pane. 

In the following example,  drag and drop FlowName (source) on message 
(destination) to map it. Alternatively, click      message. Drag and drop     FlowName in the 
text editor, or double-click FlowName.



TIBCO Flogo® Enterprise User Guide

110 | App Development

Mapping an Object
Standalone objects (objects not within an array) whose property data types match can be 
mapped at the root level. If the destination object is identical to the source object under 
Available data (both, the names of the properties as well as their data types match 
exactly), you need not match the elements in the object individually. If the property names 
are not identical, then you must map each property individually within the object.    

For example, in the image below the Person objects are identical. So, you can map Person 
to Person. You need not map name and age individually.   

In the following image, the data types match but the property names do not match. In 
such a case, you must map each property individually in addition to mapping the object 
root.    



TIBCO Flogo® Enterprise User Guide

111 | App Development

Mapping Arrays
When mapping arrays, you must first map their array root before you can map their child 
elements.    

The following mappings are supported when mapping arrays.    

 l Mapping arrays of primitive data types    

 l Mapping an array of objects    

 l Mapping nested arrays    

Mapping an Array of Primitive Data Types
To map arrays of the same primitive data type, you only need to map the array root. You 
do not need to map the array elements.    

Here is an example of mapping arrays of primitive data types:     

The array names need not match, but their data types must match. In      Available data,      
$flow points to      numArray, which is the scope for      numArray in the input. 

Creating Arrays When Data Types Do Not Match

If you want to map an array of primitive data types, but you do not have an array of the 
same data type in your      Available data, you can create an array using the      array.create
(item) function.      



TIBCO Flogo® Enterprise User Guide

112 | App Development

Note:  array.create(item) can only be used to create an array of primitive 
data types. You cannot use it to create an array of objects.      

To do so:    

 1. Click the array for which you want to do the mapping in the input schema. The 
mapper opens to its right.      

 2. Click      Functions and click      array to expand it.      

 3. Click      create(item). It is displayed in the text editor.      

 4. Replace      item with the output element to create the array. 

In the following image, to map      strArray, create an array since there is no array of 
strings under      Available data. The      array.create() function accepts any of the 
following: a hardcoded string, an element from      Available data, an expression, or a 
function as shown below as long as they all evaluate to the appropriate data type.

Iterating Over Arrays

To iterate over an array and map values in a loop, you can use $loop.index.     

Here is an example of mapping values using array index:      



TIBCO Flogo® Enterprise User Guide

113 | App Development

Mapping Complex Arrays
Complex arrays are arrays of objects that can optionally contain nested arrays. You can 
map these arrays using the 3 available options - Configure with Items, Configure with 
Source and Configure with JSON.   

For examples, refer to   arrayforEach sample.   

When you use the Configure with Items option, you define an implicit scope consisting of 
everything available in the    Available data. It is equivalent to creating an implicit array with 
a single object element consisting of everything in the    Available data. Hence, the resulting 
length of the array is always one element.    

To create a confined scope within the    Available data, use the Configure with Source 
option. When using this option, you must map 3 fields - Source, Loop name and the Filter 
by. Here, the Loop name gets auto populated. When mapping identical arrays, the source 
name gets inserted in the Select Source field by default.   

The Source defines the scope within the    Available data. Simply put, the input object or 
array can only be mapped to elements in the    Available data that fall within the boundary 
indicated by its scope. 

The Loop name is a scoping variable given to the scope that you have defined in the first 
argument. By default, the scoping variable name  is the same as the input element name 
for which you are defining the scope. By doing so, the mapper associates the input object 
to its scope by the scoping variable. Once there is a scoping variable for the scope, the 
mapper uses that scoping variable to refer to the scope in future mappings. You can edit 
the scoping variable to any string that might be more meaningful to you. The scoping 
variable is particularly useful when mapping the child elements in nested arrays.    

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample


TIBCO Flogo® Enterprise User Guide

114 | App Development

The Filter by field is optional. When iterating through an upstream output array, you can 
enter a filter to specify a particular condition for mapping as the Filter by field. When using 
this field, you must enter the scoping variable in the loop name field. Only array elements 
that match the filter get mapped. For instance, if you are iterating through an array,    
array1, in the upstream output with a filter    $loop.name=="Jane" mapped in the Filter by 
field, if    array1 has 10 elements and only four out of them match the condition of the filter, 
only those four elements are mapped to the input array and the remaining six are skipped. 
This results in the size of the input array being only four elements, even though    array1 has 
10 elements. See the section,    Filtering Array Elements to Map Based on a Condition for 
more details.    

Note: If you have used the      array.forEach() in a legacy app, to update your app 
with the current changes, delete the old mapping and remap the elements. A 
scoping variable is now included in the Loop name field. For example, if the old 
mapping is:      array.forEach($flow.body.Book), after remapping,      
$flow.body.Book is added to the Source field, where      "Book" is added in the 
Loop name field, which is also the scoping variable. 

Note: If you use a function as a source array in the source field,  the array 
element schema cannot be determined and a design-time validation error is 
returned. It is  recommended that you use the mapper to define the function 
output schema and then use it in the  source field.

Mapping of unmapped  arrays 
With the support of first class for.each() in the Mapper activity, you can map elements to an 
unmapped array in 3 different ways.



TIBCO Flogo® Enterprise User Guide

115 | App Development

 l Using the Configure with Source option

For mapping,  double click the element from Available data array. You can also drag 
the element of the Available data array to the element of the Activity inputs array. 

Note: To change the element that is already mapped, either drag another 
element or select the element from the source array. 

 l Using the Configure with Items option

You can add the elements to your array manually. 

 l Using the Configure with JSON option 

You can map the empty array by literal value mapping  or type in the required 
expression. 



TIBCO Flogo® Enterprise User Guide

116 | App Development

Note: 
 o Reset option can be used to delete all the items from the array and 

set the array to default form.

 o Clear mappings can be used to remove all the mappings on the 
item level. 

 o For an empty for.each() array, you can clear the mappings for child 
items only. 

Add Items to Array
Now, when  there  is  need  to  map  more  than  one  array object  in same array,  you  can  add   
items  to the array. Each item can be mapped with different values.

For example, If one item is mapped with the flow input, the other can be mapped with 
literal values.

You can add an item to array: 

 1. For an unmapped array 

You can add an item in an unmapped array.



TIBCO Flogo® Enterprise User Guide

117 | App Development

Note: Use the Configure with Items option for adding a single item. 

 2. For empty for.each() array

You can also add an item to an empty For.each() array.

Note: 
 l For all pre-existing array mappings with empty array.foreach() the 

properties are displayed as array item and the array level mapping is 
not editable.

 l On adding empty array.foreach(), input mapper at array level turns 
to non editable.

 l Elements under existing array mapping which has array.foreach() 
without source are wrapped in an item object.

 3. Primitive data type array

An item can even be added to an empty primitive data type array.



TIBCO Flogo® Enterprise User Guide

118 | App Development

Note: 
 l Add item option is not available for an array of type 'any'.                    

 l On importing an app with inline array mapping, array elements are 
wrapped in an item object.                 

 l On adding items under an array, mapping cannot be done at the item-level
                 

Mapping Identical Arrays of Objects
When mapping an array of objects in the input to an identical array of objects (matching 
property names and data types) in Available data, keep the following in mind:    

 l Map the array at the root level by either dragging or double clicking the Available 
Source array. The      Configure with Source screen displays the array scope and the 
scoping variable. You need not map the array object properties individually if you 
want all properties to be mapped and if the object property names are identical. The 
properties are automatically mapped.      



TIBCO Flogo® Enterprise User Guide

119 | App Development

 l If you do not want all the properties within the object to be mapped or if the names 
of object properties do not match, you must map the object properties individually 
too after mapping the root. If you do not do the child mapping individually, the 
mismatched properties in the objects remain unmapped if the properties are not 
marked as required (marked with a red asterisk). If such a property is marked as 
required, then you see a warning.      

 l The size of the input array is determined by the size of the array in Available data to 
which you are mapping.      

To map identical arrays of objects:   

 l Drag the array you want to map from      Available data (objArray in the image below) 
and drop it on the array in the Flow outputs pane (objArray1 in the image below). 
The Configure with Source screen appears in the text box. If the names of all the 
child elements match, the child elements get mapped automatically. You need not 
match each child element individually. In this example, none of the child names 
match, so you would need to do the individual mapping otherwise none of the 
elements get mapped. 

   

The      "objArray1" in the Loop name is the scoping variable that constitutes the scope 
of the current input array. Basically, this means that you can map any element in      
objArray1 with an element of the same data type in      flow.objArray in the      Available 
data. So, you are defining the scope of      objArray1 to be all the elements within      
objArray.      

Mapping Array Child Elements to Non-Array Elements or to an 
Element in a Non-Matching Array
There may be situations when you want to map an element within an array of objects to 
an output element that is not in an array or belongs to a non-matching array in the    



TIBCO Flogo® Enterprise User Guide

120 | App Development

Available data pane. In such a situation, you must create an array with a single element. 
You do this by using the Configure with JSON option. When you use this option, it creates 
an array with an item having a single object element. The single object element treats 
everything in the    Available data as the children of the newly created array object element. 
This allows you to map to any of the    Available data elements as they are now treated as if 
they were within an array.    

Important: When using the Configure with Items option be sure to map the 
child elements individually. Otherwise, no child elements get mapped. Only 
elements that you have specifically mapped acquire the mapped values.      

Note: Keep in mind that in this scenario, the resulting length of the array is 
always one element.

Mapping an array child element to a non-array element is a two-step process:          

Procedure
 1. Click the input array root (objArray in the example below) and select the Configure 

with Items option.     

This creates an array of objects with a single element in it. The element contains 
everything under      Available data, hence allowing you to map to any element in the      
Available data pane. The element you are mapping to can be a non-array element or 
reside within a nested array. 

    

 2. Map each element in the input array individually to any element of the same data 
type under      Available data.      



TIBCO Flogo® Enterprise User Guide

121 | App Development

To map an element inside an array, provide the index of the array. To map an 
element in a nested array, provide the index for both the parent and the nested array 
as shown.      

Mapping Nested Arrays
Before you map a nested array, you must map its parent root. The scoping variable is 
particularly useful when mapping the child elements in nested arrays.    

The example below is that of a nested array, where    Address is a nested array whose parent 
is    Customer: 

To map     Address:    

Procedure
 1. Map its parent,      Customer. When you map      Customer, you automatically set the scope 

of      Customer. 



TIBCO Flogo® Enterprise User Guide

122 | App Development

In the image,      Customer is mapped to      MyCustomer. In the Select Source field,      the 
$flow.MyCustomer is the source array (from which      Customer gets the data) that you 
are mapping to. This defines the scope (boundary) in the      Available data within 
which you can map      Customer. So, this is the scope of      Customer. 

The Loop name field, "Customer", is the scoping variable given to this scope - the 
loop here refers to the iteration of      Customer. By default, the scoping variable has the 
same name as the loop for which the scope is being defined (in this case      Customer). 
You can edit the scoping variable to any string that might be more meaningful to 
you. This is equivalent to saying that mapping of a child element of      Customer can 
happen only to children of      MyCustomer in      Available data.      

 2. Map      Address. Now the scope of      Address gets defined. 

     

Notice the mapping for      Address:      

 l contains the parent scope as well. The parent scope is referred to by its 
scoping variable,        "Customer". Remember that the scope of        Customer is already 
set when you mapping        Customer to        MyCustomer in the first step, so we can 
now simply refer to the parent scope by its scoping variable,        "Customer".      



TIBCO Flogo® Enterprise User Guide

123 | App Development

 l $loop[Customer] refers to the iteration of the        MyCustomer array.        $loop 
represents the memory address of the        MyCustomer (the scope for        Customer) 
in        Available data.        

 l $loop[Customer].MyAddress1 is the scope of        Address. This scope is denoted 
by the scoping variable        "Address", which is the second variable in this 
mapping. Since        Address is a nested array of        Customer, when you map to        
Address or its child elements, its mapping includes the scope of        Customer as 
well.        

Mapping Child Elements within a Nested Array Scope
A child element in the input array can be directly mapped to a child element of the same 
data type within the array scope. As mapping is done within the nested array scope, you 
need not explicitly state the scoping variable for the nested array scope. The mapping 
appears as    $loop.<element>.    

To map a nested array child element:          

Procedure
 1. Map the parent of the nested array.      

 2. Map the nested array itself.      

 3. Map the nested array child elements if the names are not identical or if you do not 
want to map all elements in the nested array.     

In the following example, since      street is within the scope of      address1,      street1 is 
directly mapped to      street.      $loop implicitly points to      address which is the scope for      
address1 in the input schema.      



TIBCO Flogo® Enterprise User Guide

124 | App Development

Mapping a Nested Array Child Element Outside the Nested Array 
Scope
To map a nested array child element outside the nested array scope but within its parent 
array, you must use the scoping variable of the parent array.       

Procedure
 1. Map the parent array root.      

 2. Map the nested array root.      

 3. Map the nested array child element.      

In the image below,      $loop implicitly points to      address. In addition, the mapping also 
explicitly specifies the scope of the parent,      "objArray1". This is because      zip1 is 



TIBCO Flogo® Enterprise User Guide

125 | App Development

mapped to      code which is outside the scope of      address1, but within the scope of its 
parent array,      objArray1.     

Mapping an Element from a Parent Array to a Child Element in a 
Nested Array within the Parent
When mapping a primitive data type child element of the parent array to a child element of 
its nested array, the scope in the mapping is implicitly set to the scope of the parent array. 
In addition, you must provide the index of the nested array element whose variable you 
want to map to.       

Procedure
 1. Map the parent array root.      

 2. Map the nested array root.      

 3. Map the parent array element. 

In this example,      $loop is implicitly set to the scope of      Customer which is      



TIBCO Flogo® Enterprise User Guide

126 | App Development

MyCustomer. Notice that you must provide the index of the object in the      MyAddress 
array whose      MyCountry element you want to map to. 

Filtering Array Elements to Map Based on a Condition
When mapping arrays of objects, you can filter the objects that are mapped by specifying a 
filter in the Filter by field when Configure with Source option is selected.   

Specify the filter in the Filter by field. The Select Source value is the scope of the element 
that is mapped and the Loop name is the scoping variable.     

To add  the filter in the Filter by field, the Source name and the Loop name must be 
specified.   

Here's an example that contains a filter in the Filter by    field:

The above example indicates the following:    

 l objArray1 is being mapped to      objArray in      Available data



TIBCO Flogo® Enterprise User Guide

127 | App Development

 l When iterating through      objArray in the      Available data, only the array elements in      
objArray whose child element,      user is "Jane" get mapped. If      user is not equal to 
"Jane" the iteration for that object is skipped and      objArray1 does not acquire that 
object.      

 l $loop here specifies the scope of the current loop that is being iterated, in this case      
objArray, whose scope is      objArray1 in      Available data.      

Mapping JSON Data with json.path() Function
Use the    json.path() function to query an element within JSON data. The JSON data being 
queried can come from the output of an Activity or trigger. In the mapper, you can use the    
json.path() function by itself when providing value to an input parameter or use it within 
expressions to refer to data within a JSON structure.    

This function takes two arguments:    

 l the search path to the element within the JSON data      

 l the JSON object that contains the JSON data you are searching      
You can specify a filter to be used by the    json.path() function to narrow down the results 
returned by the    json.path() function.    

In order to reach the desired node or a specific field in the node in the JSON data, you 
must follow a specific notation defined in the JsonPath specification. Refer to      jsonpath for 
details on the notation to be used and specific examples of using the notation.    

Consider the example below which is available for you to experiment with at      jsonpath 
sample.    

Examples

The following is an example of how to use the function:      

json.path("$.store.book[?(@.price > 10)].title", $flow.body)

In this example,      $.store.book[?(@.price > 10)].title is the query path.      [?(@.price > 
10)] is a filter used to narrow down the query results.      $flow.body is the JSON object 
against which the query is run (in this case the JSON object comes from the flow input, 
hence      $flow). So, this query searches the books array within the      $flow.body JSON object 
and returns the title of the books whose price is more than $10.    

https://github.com/OLIVEAGLE/JSONPATH
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample


TIBCO Flogo® Enterprise User Guide

128 | App Development

Consider the following sample JSON data:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

{
   "store": {
     "book": [
       {
         "category": "reference",
         "author": "Nigel Rees",
         "title": "Sayings of the Century",
         "Availability": [
           {
             "Country": "India",
             "Quantity": 4000,
             "Address": [
               {
                 "city": "houston"
               }
             ]
           }
         ],
         "price": 8.95
       },
       {
         "category": "fiction2",
         "author": "Evelyn Waugh",
         "title": "Sword of Honour",
         "Availability": [
           {
             "Country": "USA",
             "Quantity": 5000,
             "Address": [
               {
                 "city": "sugarland"
               }
             ]
           }
         ],
         "price": 12.99
       },
       {
         "category": "fiction3",



TIBCO Flogo® Enterprise User Guide

129 | App Development

         "author": "Herman Melville",
         "title": "Moby Dick",
         "isbn": "0-553-21311-3",
         "Availability": [
           {
             "Country": "UK",
             "Quantity": 7000,
             "Address": [
               {
                 "city": "stafford"
               }
             ]
           }
         ],
         "price": 8.99
       },
       {
         "category": "fiction4",
         "author": "J. R. R. Tolkien",
         "title": "The Lord of the Rings",
         "isbn": "0-395-19395-8",
         "Availability": [
           {
             "Country": "Australia",
             "Quantity": 2000,
             "Address": [
               {
                 "city": "aaaaa"
               }
             ]
           }
         ],
         "price": 22.99
       }
     ],
     "bicycle": {
       "color": "red",
       "price": 19.95
     }
   },
   "expensive": 10
 }

The following are examples of some JSON query paths that search the JSON data above 
and return the      category of the book. In the examples below, the second input parameter 
for this function,      data is the name of the file that contains the above JSON code.    



TIBCO Flogo® Enterprise User Guide

130 | App Development

 l json.path("$.store.book[?(@.Availability[?(@.Quantity >= 
6000)])].category", $flow.data)

In the example above, the query scope is the entire      book array. The filter used to 
query this array is the condition,      [?(@.Availability[?(@.Quantity >= 6000)])]. 
Only the      category values for the      book elements that have      Quantity >= 6000 is 
returned. So, this query returns      fiction3.      

 l json.path("$.store.book[?(@.author == 'Nigel Rees')].category", 
$flow.data)      

returns      reference since it uses the filter      [?(@.author == 'Nigel Rees')] and the 
only book authored by Nigel Rees in this array of books has its      category as 
reference.      

 l json.path("$.store.book[?(@.Availability[?(@.Address[?(@.city == 
'sugarland')])])].category", $flow.data)

This query is an example of a nested filter where      [?(@.Availability[?(@.Address[?
(@.city == 'sugarland')])])] is the outer filter and the nested filter within it is      [?
(@.city == 'sugarland')]. It returns      reference.      

 l json.path("$.store.book[0].category", $flow.data)

This query does not use a filter. It returns      reference, since your query scope is 
limited to the      book[0] element only within the      store object and your request is to 
return the value of      category.      

Constructing the any, param, or object Data Type in 
Mapper
When mapping values for data type    any or    object, you must manually enter the values in 
the mapper text box.  Below are some examples of how to construct the data type    any:    

Assigning a literal value to data type      any

To assign literal values to the      any data type, you click on the element of type      any, then 
simply enter the values you want to assign to it in the mapper text box. For example, to 
assign the string      Hello! enter:      

"Hello!" 



TIBCO Flogo® Enterprise User Guide

131 | App Development

Assigning an object value to an object or element of data type      any

Here is an example of how to assign literal values to an object:      

{
    "Author": "Martin Fowler",
    "ISBN": "0-321-12742-0",
    "Price": "$45"
 }

Here, "Author", "ISBN", and "Price" are the object properties. You can use a function 
instead of a literal value when assigning values for each element. See the "Using a 
function" section for details on how to use a function.    

Assigning an array value to an object or data type      any

Here is an example of how to assign an array value to an array of objects or to an element 
of data type      any:      

[
 {
    "Author": "Martin Fowler",
    "ISBN": "0-321-12742-0",
    "Price": "$45"
 }
 ]

You can use a function instead of a literal value when assigning values for each element. 
See the "Using a function" section for details on how to use a function.    

Assigning a value from the upstream output

When mapping to an element from the upstream output, the data type of the source 
element whose value you are assigning determines the data type of the destination 
element. For example, if you assign the value of an array, then the target element (the 
element of data type      any) is treated as an array, likewise for a string, number, boolean, or 
object. For example, if you are mapping      $flow.Author which is an array, then the Author 
object in the input (destination object) would also be an array. That is, there is a direct 
assignment from the source to the destination.    

 l Single Element of Primitive Data Type: To assign the value of a single element of a 



TIBCO Flogo® Enterprise User Guide

132 | App Development

primitive data type that belongs to the output of the trigger, a preceding Activity, or 
the flow input, you must enter the expression for it. For example to assign the value 
of      isbn which comes from the flow input, enter the expression:      

"=$flow.isbn" 

Here,      $flow is the scope within which      isbn falls.      

 l An object: When assigning an object, you must create a      mapping node within the 
object. The      mapping node is used to define how the object should be constructed and 
the various fields within the object mapped. For example, to assign the      bookDetails 
object, enter:      

{
 "mapping": {
 "Author": "=$flow.author",
 "ISBN": "=$flow.name",
 "Price": 20,
 "BestSeller": true
 }
 }

You can use a function instead of a literal value when assigning values for each 
element. See the "Using a function" section for details on how to use a function.      

 l An array of objects: The following two examples show you how to assign values to 
arrays:      

 o Building a new array

To provide values for an array that has a fixed size (where the number of 
elements is declared), you must provide the values for each array element. For 
example, if the array has two elements, you must provide the values for each 
property of the object for both objects. Here is an example of how to do that:        

{
   "mapping": {
     "books": [
       {
         "author": "=$loop.author",
         "title": "=$loop.title",



TIBCO Flogo® Enterprise User Guide

133 | App Development

         "price": "=$loop.price"
       },
       {
         "author": "Author2",
         "title": "BookTitle",
         "price": 19.8
       }
     ]
   }
 } 

In the example above        books is an array of two elements. The values for each 
property for both elements are provided.        

You can use a function instead of a literal value when assigning values for each 
element. For details, see Using Functions.        

 o Building an Array from an upstream output array

In the following example,        books is an array of books coming from the upstream 
output. To iterate over the array,        $flow.store.books in upstream output, and 
assign its values to the input array, you would enter the following in the 
mapper text box:        

{
   "mapping": {
     "@foreach($flow.store.books)": {
       "author": "=$loop.author",
       "title": "=$loop.title",
       "price": "=$loop.price"
     }
   }
 }

The        "@foreach($flow.store.books)" indicates that you are iterating an array 
of objects where the        $flow.store.books is the array.        $flow is the scope within 
which        store.books falls and        $loop represents the scope for each property 
within the object. Refer to the        following section for details on the        forEach() 
function.        

 l Using a function: The following example leverages the output of a REST Invoke 
Activity to get a      pet from the public      petstore service. The mapper uses the      
string.concat() function and assigns the function return value to the      description 



TIBCO Flogo® Enterprise User Guide

134 | App Development

field in the      data structure:      

{
   "mapping": {
     "data.description": "=string.concat(\"The pet category name is: 
\",$Activity[rest_3].result.category.name)"
   }
 }

Assigning Values to the      param Data Type
When you import an app that was originally created in Project Flogo™, the app could 
contain elements that are of data type    param. The    param data type is similar to the    object 
data type in that it consists of key-value pairs. The difference between an    object and a    
param is that the    object can contain values of any data type whereas the values for 
elements in the    param data type    must be of data type    string only.    

Here's an example of assigning values to a      param data type element:    

{
 "mapping": {
 "Author": "=$flow.author",
 "ISBN": "=$flow.name",
 "Price": "$20"
  }
 }

Coercing of Activity Input, Output, and Trigger Reply 
Fields
In the OSS marked Activity input, output, or trigger reply configuration, if you have defined 
a parameter, but have not defined or cannot define a schema for the parameter, you can 
coerce the parameter to take the value from a schema that you dynamically define during 
design time. This feature is particularly useful for apps that were created in    Project Flogo 
and imported to    Flogo Enterprise. Such apps most likely have activities for which input 
parameters or output are not defined with a schema.    

Currently, coercion of parameters is supported only for the following data types:    

 l array      



TIBCO Flogo® Enterprise User Guide

135 | App Development

 l object      

 l param      

 l any      

After you enter the schema, it is displayed in a tree format under      Activity inputs,      Output 
tab, or      Trigger reply in the mapper. All subsequent activities also display the elements of 
the schema under the Activity in the Upstream Output. The schema elements are now 
available for you to map. 

Important Considerations
 l Coercion is supported only in the      Default category activities which are the activities 

marked as OSS, except for the      Return and      Start a SubFlow activities. These two 
activities display flow-level data. The flow-level inputs and outputs can be entered or 
modified only on the      Flow Inputs & Outputs accordion tab, hence they cannot be 
coerced from the      Input tab of the Activity itself.      

 l Currently, coercion is supported only for top-level parameters. Nested coercion (for 
example, an object within an object) is not supported.      

 l Currently, coercing a schema for trigger input is not supported. The coercing option 
is not available on the      Map to Flow Inputs tab in the trigger configuration. This is 
because the parameters you see on this tab are flow input parameters and are not 
related to the trigger. You have the option to coerce these parameters on the      Input 
tab of the      Flow Inputs & Outputs accordion tab.      

 l After you have mapped a child element within a parameter, if you change the name 
of the parent or the child, your mapping is lost. However, if you change the data type 
of the element, the mapping is preserved, but you see an error related to the 
mismatch in data type.      

 l The schema you enter is preserved when you export and import the app.      

 l If you edit the schema at a later time, as long as you click      Apply after editing, your 
edits are displayed in the mapper. You must then click      Save in the mapper to persist 
your schema changes.      

 l You cannot coerce a parameter or edit its schema in any activity displayed in a 
subflow. For example, if the      OracleDatabaseQuery activity is displayed in both the 
main flow and the subflow, you cannot edit the schema of any of its parameters in 
the subflow. But you can edit the schema of the      OracleDatabaseQuery activity in the 



TIBCO Flogo® Enterprise User Guide

136 | App Development

main flow. This is because the subflow activity input and output schemas are 
inherited from the main flow. There is a possibility that the same subflow could be 
used in multiple main flows, so if you edit an activity in the subflow it could break 
another main flow that uses the subflow.      

To provide the schema for coercion:          

Procedure
 1. On the flow details page, click the activity or trigger to open its configuration.      

 2. Click any of the following tabs that you want to configure:      

 l Input: To configure a parameter in the activity input      

 l Output: To configure the schema for the activity output      

 l Map from Flow Outputs: To configure the trigger reply      

 3. To configure a schema:     

 l For a parameter in activity input, hover your mouse cursor over the parameter 
name for which you want to configure the schema under        Activity inputs.      

 l For the Activity output, hover your mouse cursor over the parameter name for 
which you want to configure the schema.      

 l For a parameter in the trigger reply, hover your mouse cursor over the 
parameter name.      

Click the ellipsis icon ( ) that is displayed next to it. Clear mappings and Coerce 
with schema options are displayed.

 4. Click the      Coerce with schema option.      

Note: The      Coerce with schema icon is displayed against the parameter 
name for only those parameters that do not have a schema defined on the      
Input Settings tab (or a schema cannot be defined because the Activity 
does not have an      Input Settings tab, for example, the OSS-marked 
activities)      and whose data type is one of the following: array, param, 
object, or any.      

 5. Enter the schema for the parameter or activity output and click      Apply. The mapper 
validates that the data type of the schema you entered matches the data type of the 
parameter being coerced. If the data types do not match,      Apply remains disabled 



TIBCO Flogo® Enterprise User Guide

137 | App Development

and you see an error.       For activity input and trigger reply, the schema you enter 
displays in a tree format under the parameter name in the mapper.      

 l For the activity output, the schema is displayed in a tree format on the        Output 
tab of the activity. Available data displays the output of the preceding 
activities.      

 6. Click      Save to persist the schema into the database or      Discard to discard the schema.       
Now you can map the child elements within the parameter. In the case of the activity      
Output tab, the output tree does not display in the current activity but is displayed 
in the mapper for subsequent activities only. Once persisted in the database, these 
schema trees get displayed in the Available data area of the mapper for subsequent 
activities. This allows you to map to them in subsequent activities.      

Clear Mapping of Child Elements in Objects and Arrays
After mapping an array or an object, you can clear the mapping of all the child elements 
within that array or object with one click. The mapping is cleared at the root level and 
mapping for everything under that root gets cleared, even the nested arrays and objects, 
should there be any. To clear mapping for individual elements in an array or object 
selectively, click on that element and delete the mapping for it.    

To clear the mappings for all child elements of an array or object:          

Procedure
 1. In the mapper, hover your mouse cursor to the right end of the root name until the 

ellipsis icon ( ) is displayed, then click it.     

 2. Click     Clear mappings



TIBCO Flogo® Enterprise User Guide

138 | App Development

Ignoring Missing Object Properties when Mapping 
Objects
There may be instances when you map objects where one or more object properties might 
be missing in the source or target object. The mapper can be set to ignore such cases.    

If you want the mapper to ignore such cases, you must set the    FLOGO_MAPPING_SKIP_
MISSING engine variable to   true. The mapper ignores the missing mapping as long as the 
element is optional (not marked as mandatory with a red asterisk against it). Elements 
marked as mandatory must be mapped.    For more details, see the section on      Environment 
Variables.

Mapping Data by Using if/else Conditions
The if/else statements are used to execute blocks of code based on the specified 
conditions.

if (condition1)
{
 // execute this block of code
}
else if (condition2)
{
 // execute this block of code if the previous condition fails
}



TIBCO Flogo® Enterprise User Guide

139 | App Development

else
{
 // execute this block of code if all conditions fail
}

You can add conditions in your data mappings to get outputs based on those conditions. 
You can add conditions to primitive objects, nested arrays, nested objects, and any other 
type of input. if/else conditions are available in activities and triggers in the main flow 
and error handler. 

To Map Data Using Conditions

Procedure
 1. Click the ellipsis icon  to open the menu of the element  to which you want to add 

the conditions. Select Add Condition. An If condition is added to the element.



TIBCO Flogo® Enterprise User Guide

140 | App Development

 2. In the text editor of the If condition, enter an expression  whose result evaluates to a 
Boolean value. You can enter the expression manually or map data from the 
Available data pane. If children elements exist, you can enter values for them. 

 3. To add an Else-if or an Else condition, click the ellipsis icon  to open the menu 
of the element with the If condition. Click Add Else-If or Add Else. 



TIBCO Flogo® Enterprise User Guide

141 | App Development

Considerations when using conditions:
 l For one If condition, you can add multiple Else-if conditions and one Else 

condition.

 l You can add an Else condition only from an element with an If condition.

 l You can add an Else-if condition from an If condition and from an Else-if 
condition.

Note: In case the option to add conditions is not visible for the last element in 
the Activity inputs pane, scroll further down to view the options.

Deleting a Condition

Click the ellipsis icon  to open the menu of the condition that you want to delete. Click 
Delete.

To delete an If condition that has Else-if and Else 
conditions:
You cannot directly delete an If condition that has Else-if and Else conditions. You must 
first delete the Else-if and Else conditions to delete the parent If condition.

In the following example, to delete the If condition on Character, you must delete the 
Else-if and Else conditions.



TIBCO Flogo® Enterprise User Guide

142 | App Development

Note: For OSS activities having the Coerce with schema option, you can 
maintain only one schema for the input that you coerce. If you add conditions to 
the coerced inputs, you cannot change the schema specific to a condition. When 
you update the schema, it is updated for all the blocks.

Using Functions
You can use a function from the list of functions available under    Functions in the mapper. 
Input parameters to the function can either be mapped from an element under    Available 
data, a literal value, or an expression that evaluates to the appropriate data type or any 
combination of them.    

The following procedure illustrates an example that concatenates two strings and assigns 
the concatenated value to the     message. We manually enter a value for the first string 
(str1) and map the second string to      id under      $flow. The value for      id comes from the flow 
input.    

Procedure
 1. Click the     message to open the text editor to the right.      

 2. Click Functions. Expand the      string function group  and click      concat(str1, str2).      



TIBCO Flogo® Enterprise User Guide

143 | App Development

 3. Select      str1 in the function and type      "Received: " (be sure to include the double 
quotes as shown) to replace      str1 with it.      

 4. Drag      id from      $flow and drop it in place of str2.      

At run time, the output from the      concat function is mapped to the    message. 



TIBCO Flogo® Enterprise User Guide

144 | App Development

Using Expressions
You can use two categories of data mapping expressions.    

Basic Expression

Basic expressions can be written using any combination of the following by using 
operators:    

 l literal values      

 l functions      

 l previous Activity or trigger output      

Refer to      Supported Operators for details on the operators that can be used within a basic 
expression.    

Here are some examples of basic expressions:      

string.concat("Rest Invoke response status code:",$activity
[InvokeRESTService].statusCode)

The above example combines the string and the statusCode from the InvokeRestService 
activity.

string.length($activity[InvokeRESTService].responseBody.data) >=7

The above example checks whether the length of data of the responseBody is greater than 
or equal to 7.

$activity[InvokeRESTService].statusCode == 200 && $activity
[InvokeRESTService].responseBody.data == "Success"

The above example checks whether the statusCode is 200 and the data of responseBody 
has the value as "Success".

Ternary Expression

Ternary expressions are assembled as follows: 



TIBCO Flogo® Enterprise User Guide

145 | App Development

 condition ? statement1 : statement2

The condition is to be evaluated first. If it evaluates to true, then statement1 is executed. 
If the condition evaluates to false, then statement2 is executed.

Here is an example of basic ternary expression:      

$Activity[InvokeRESTService].statusCode == 200 ? "Response 
successfully":"Response failed, status code not 200"

In the above example      $Activity[InvokeRESTService].statusCode == 200 is the 
condition to be evaluated. 

 l If the condition evaluates to true (meaning statusCode equals 200), it returns      
Response successfully. 

 l If the condition evaluates to false (meaning statusCode does not equal 200), it 
returns Response failed, status code not 200.    

Here is an example of a nested ternary expression:      

$Activity[InvokeRESTService].statusCode == 200 ? $Activity
[InvokeRESTService].responseBody.data == "Success" ? "Response with 
correct data" : "Status ok but data unexpected" : "Response failed, 
status code not 200"

The example above checks first to see if      statusCode equals 200. 

 l If the      statusCode does not equal 200,it returns      Response failed, status code not 
200. 

 l If the      statusCode equals 200, only then it checks to see if the      responseBody.data is 
equal to "Success". 

 o If the      responseBody.data is equal to "Success", it returns      Response with 
correct data. 

 o If the      responseBody.data is not equal to "Success", it returns      Status ok but 
data unexpected.    

Supported Operators
Flogo supports the operators that are listed below.    



TIBCO Flogo® Enterprise User Guide

146 | App Development

 l ==      

 l ||      

 l &&      

 l !=      

 l >     

 l <      

 l >=      

 l <=      

 l +     

 l -     

 l /     

 l %     

 l Ternary operators - nested ternary operators are supported. 

For example,      $activity[InvokeRESTService].statusCode==200?($activity
[InvokeRESTService].statusCode==200?true:false):false

Combining Schemas Using Keywords
You can use the oneOf, anyOf, and allOf keywords to combine schemas.

 l oneOf keyword: ensures that the given data is valid against exactly one of the 
selected subschemas.

 l anyOf keyword: ensures that the given data is valid against one or more of the 
selected subschemas. 

 l allOf keyword: ensures that the given data is valid against all the subschemas. 

Using the oneOf Keyword

Procedure



TIBCO Flogo® Enterprise User Guide

147 | App Development

 1. On the schema object in the activity/trigger input, click the ellipsis icon .

For an object with a oneOf keyword, the Select OneOf Schema option is displayed.

Note: Select the Select OneOf Schema option before you add the if/else 
conditions using the Add Condition option. If you add the if/else 
conditions first, then the Select OneOf Schema option is not displayed in 
the menu. 

 2. Click Select OneOf Schema. 
The schema selector dialog displays all available schemas with a oneOf array. 

 3. Select one schema from the schema selector dialog. 

Using the anyOf Keyword 

Procedure
 1. On the schema object in the activity/trigger input, click the ellipsis icon .

For an object with the anyOf keyword, the Select AnyOf Schema option is displayed.



TIBCO Flogo® Enterprise User Guide

148 | App Development

Note: Select the Select AnyOf Schema option before you add the if/else 
conditions using the Add Condition option. If you add the if/else 
conditions first, then the Select AnyOf Schema option is not displayed in 
the menu. 

 2. Click Select AnyOf Schema.

The schema selector dialog displays all available schemas with the anyOf array.

 3. Select one or more schemas from the schema selector dialog.

Developing APIs
Flogo Enterprise lets you take an API-first development approach to implement APIs from a 
Swagger Specification 2.0, OpenAPI Specification 3.0, or GraphQL schema. After you upload 
an API specification file or a GraphQL schema,    Flogo Enterprise validates the file and if the 
validation passes, it automatically creates the flows and triggers for you.       



TIBCO Flogo® Enterprise User Guide

149 | App Development

Using an OpenAPI Specification
You can create the Flogo app logic (flows) by importing an API specification file. You can 
simply drag a specification file to the     UI or navigate to it. If you have an existing 
specification file stored in the TIBCO Cloud™ Integration - API Modeler or TIBCO Cloud™ API 
Modeler, select it when creating the flow. The flows for your app are automatically created 
based on the definitions in the specification file that you uploaded.

Tip: For more information on the TIBCO Cloud™ API Modeler, see TIBCO Cloud™ 
API Modeler.  

When you create an app from a specification, the      ConfigureHTTPResponse and      Return 
activities are automatically added to the flow. The mappings from trigger output to flow 
inputs are configured for you based on the definitions in the specification. The output of 
the      ConfigureHTTPResponse Activity is automatically mapped to the      Return Activity 
input. However, you must configure the input to the      ConfigureHTTPResponse Activity 
manually. If you have multiple response codes configured in the REST trigger, the first 
response code is configured in the      ConfigureHTTPResponse Activity by default. The only 
exception to this is if you have a response code of 200 configured. In that case, the 200 
response code is configured in the      ConfigureHTTPResponse Activity by default.    

Before the      Flogo app is created, a validation process ensures that the features defined in 
the specification are supported in      Flogo Enterprise.    

Considerations when using an API specification file to create a      Flogo app:

 l Flogo Enterprise supports Swagger Specification 2.0 and OpenAPI Specification 3.0.      

 l Currently,      Flogo Enterprise supports only the JSON format.      

 l Cyclic dependency is not supported when creating flows from specifications. For 
example, if you have a type Book that contains an object element of the type, Author. 
The type Author in turn contains an element of the type Book that represents the 
books written by the author. To retrieve the Author, it creates a cyclic dependency 
where the Author object contains the Book object and the Book type, in turn, contains 
the Author object.      

 l String, integer, and boolean are the data types supported by      Flogo Enterprise. A data 
type that appears in your specification but is not supported by     Flogo Enterprise 
results in an error being displayed.      

 l Schema references within schemas are not supported.      

https://docs.tibco.com/pub/tcam/latest/doc/html/Default.htm
https://docs.tibco.com/pub/tcam/latest/doc/html/Default.htm


TIBCO Flogo® Enterprise User Guide

150 | App Development

 l If the specification has a response code other than 200 (OK) or 500 (Error), the 
method that contains the unsupported response code is not created.      

 l You can enter a schema for the response code 200, but the 500 response code must 
be a string.      

 l The basepath element in the schema is not supported.      

If you get a validation error, you can either cancel the process of generating the app or 
click      Continue. If you opt to continue, the process of app creation continues  and the parts 
of the specification that did not pass the validation are ignored.    

Note: The REST reply data type is by default set to      any data type. To configure 
the reply to an explicit data type, see      Configuring the REST Reply section.    

To create an app using an API specification and upload the specification file:    

Procedure
 1. Log in to TIBCO Cloud™ Integration. 

 2. On the Apps page, select Create/Import.

The What do you want to build? dialog is displayed.

 3. To create a Flogo app using an OpenAPI specification: 



TIBCO Flogo® Enterprise User Guide

151 | App Development

 l Under      Quickstart > All app types > APIs, click Create an app from OpenAPI. 

 l On the left, select a category that identifies the type of integration you need. 
On the right, click Create an app from OpenAPI.

 4. In the block that displays below your selection, select one of the following options:    

 l Create a flow using an API specification that exists in the TIBCO Cloud™ 
Integration-API Modeler. To do this, on the      API Specs tab, select the 
specification that you want to use.      

 l Use an API specification saved locally on your computer by uploading it to Flogo 
Enterprise. To do this, click the      Upload file tab. Browse to the saved API 
specification on your local machine or drag your saved API specification into the 
dialog.      

 5. Click Import OpenAPI spec. 

 6. In each flow:      

 a. Open the flow by clicking its name.      

 b. Click the trigger to open its configuration dialog.      

 c. Map the following:      

 l On the        Map to Flow Inputs tab, map the        Available data to        Flow inputs.        

 l On the        Map from Flow Outputs tab, map the        Available data to        Trigger 
reply.        

To test the deployed app, follow the procedure in the     Testing the Deployed App 
section.      

You can also download the specification used to create the app by following the 
procedure in      Downloading the API Specification Used section.      

You also have the option to copy the endpoint URL from the      Endpoints tab by 
clicking the     Copy spec URL. Or you can click the ( ) icon next to the endpoint URL 

itself.      

The following is a list of Swagger 2.0 and OpenAPI Specification 3.0 features supported in 
Flogo:

 l Path Templating

 l Media Type



TIBCO Flogo® Enterprise User Guide

152 | App Development

 o Request Types: application/json, multipart/formdata, x-www-form-
urlencoded

 o Response Types: text/plain, application/json

 l Multiple Status Codes

 l Path Item Object

 l Parameter Object

 l Request Body Object

 l Reference Object

 l Header Object

 l Security Scheme Object

 l allOf, oneOf, and anyOf keywords 

For more information, refer to OpenAPI Specification.

Result
The app is created and the App Details Page is displayed for the new app. Your app does 
not run and has zero instances. To start and scale your app, see Starting, Stopping, and 
Scaling Apps.

Configuring the REST Reply
When creating a REST app from a Swagger 2.0 or OpenAPI 3.0 API specification, the    
ReceiveHTTPMessage reply data type is set to    any by default. You must explicitly configure 
the reply type.    

To explicitly configure the reply type, add a      ConfigureHTTPResponse Activity in the flow. 
This Activity must immediately precede the      Return Activity in the flow.    

https://swagger.io/specification/


TIBCO Flogo® Enterprise User Guide

153 | App Development

You can configure custom codes that you want to use in the HTTP reply on the    Reply 
Settings tab of the    ReceiveHTTPMessage trigger.    

Follow these steps to configure your HTTP reply:    

Procedure
 1. Open the REST trigger configuration pane by clicking it.      

 2. On the      Reply Settings tab of the      ReceiveHTTPMessage REST trigger, configure the 
custom codes that you want to use. Refer to the section, "REST Trigger" in the      
Activities, Triggers, and Connections Guide.      

 3. Add a      ConfigureHTTPResponse Activity immediately preceding the      Return Activity in 
the flow.      

 4. Open the      ConfigureHTTPResponse Activity by clicking it and configure it as follows:      

 a. On the        Settings tab:      

 i. If your flow is attached to multiple REST triggers, select the trigger in 
which you have configured the code you want to use from the        Trigger 
Name drop-down menu. The        Trigger Name field does not display if your 
flow is attached to only one REST trigger.        

 ii. Select a response code from the        Code field menu. Only the codes 
configured in the selected trigger are displayed in the menu.        

 b. The        Input tab displays the schema for the response code. Map the elements or 
manually enter a value for the elements.      

 c. Click        Save.      

 5. Configure the      Return Activity by mapping the      code and body (which is currently of 
data type      any).      



TIBCO Flogo® Enterprise User Guide

154 | App Development

 6. Click      Save.      

 7. On the      Map from Flow Outputs tab in the      ReceiveHTTPMessage trigger, map the      
code and      body to the corresponding elements from the flow output.      

 8. Click      Save.      

Testing the Deployed App
The deployed app can be tested using its API specification. 

To test the deployed app:    

Procedure
 1. Open the app.      

 2. Click      Endpoints to open the tab.      



TIBCO Flogo® Enterprise User Guide

155 | App Development

 3. Click      Test.      

Downloading the API Specification Used
You can download the API specification used to create the app.    
To download the specification:    

Procedure
 1. Open the app.      

 2. Click                Endpoints to open its tab.      

 3. Click the shortcut menu ( ) to the extreme right of the Endpoint URL.      

 4. Click      Download spec.      

The downloaded specification may not be the same as the original specification that 
was used to create the app. This could happen because      Flogo Enterprise follows its 
convention when generating a specification from its apps. Also, any changes that you 
might have made after creating the app are reflected in the downloaded specification 
but are not changed in the original specification from which you created the app. The 
original specification remains untouched. Use the downloaded specification only for 
testing the app.      

Using GraphQL Schema
GraphQL provides a powerful query language for your APIs enabling clients to get the exact 
data that they need. It can get data from multiple resources in a single request by 
aggregating the requested data to form one result set. GraphQL provides a single endpoint 
for accessing data in terms of types and fields.    

Flogo Enterprise provides an out-of-the-box GraphQL trigger that turns your Flogo app into 
a GraphQL server implementation. Each flow in the app acts like a GraphQL field resolver. 
So, the output of the flow must match the return type of the field in the schema.    

Flogo Enterprise allows you to create GraphQL triggers by dragging and dropping your 
GraphQL schema file into the UI or by navigating to the file. A flow gets automatically 
created for every query and mutation type in your schema. You must then open the flow 
and define what kind of data you want the flow to return. This saves you the time and 
effort to programmatically define data structures on the server.    



TIBCO Flogo® Enterprise User Guide

156 | App Development

Note: This section assumes that you are familiar with GraphQL. To learn about 
GraphQL, refer to the GraphQL documentation.    

GraphQL server implementation in      Flogo Enterprise

To obtain samples of GraphQL schemas and app JSON files, go to     GraphQL.    

To use GraphQL in      Flogo Enterprise, you must create a GraphQL trigger. Use one of the 
methods below to create a GraphQL trigger. 

 l You must use only one schema per app. If you attach your app to another GraphQL 
Trigger, you must use the same original schema.

 l The implementation of the GraphQL server in      Flogo Enterprise currently does not 
return the specified field ordering in a query when a request is received. It does not 
affect the correctness of the response returned, but affects the readability and is non-
compliant with current specifications.

 l The GraphQL schema must have either      .gql or      .graphql extension.     

For details on the GraphQL trigger refer to the "GraphQL Trigger" section in the      TIBCO 
Flogo® Enterprise Activities, Triggers, and Connections Guide.    

Creating a New Flogo App Using a GraphQL Schema

Procedure
 1. Log in to TIBCO Cloud™ Integration.

 2. On the Apps page, select Create/Import. The What do you want to build? dialog 
box is displayed.

https://github.com/project-flogo/graphql


TIBCO Flogo® Enterprise User Guide

157 | App Development

 3. Under      Quickstart > All app types > APIs, click Create an app from GraphQL. 

 4. Click browse to upload and navigate to your locally stored GraphQL schema file to 
upload it.      

 5. Click      Import GraphQL file. The new GraphQL trigger gets created with a flow 
attached to it. 

Note: Once the trigger is created from the wizard, the trigger configuration is 
fixed and cannot be changed.    

To implement a single method in your      .gql file

To implement a single method:    

Procedure
 1. In      Flogo Enterprise, open the app details page and click      Create. The      Add triggers 

and flows dialog box opens. 

 2. Under      Create new, click      Flow.      

 3. Enter a name for the flow in the      Name text box. Optionally, enter a description for 
the flow in the      Description text box.      



TIBCO Flogo® Enterprise User Guide

158 | App Development

 4. Click      Create.      

 5. Select      Start with a trigger.      

 6. In the      Triggers catalog, select the appropriate      GraphQL Trigger card.      

 7. Follow the screen prompts to configure the trigger.  A flow with the name you 
specified gets created and attached to the newly created GraphQL trigger. This flow 
implements the method that you selected.      

Tip: If needed, you can later make changes to the GraphQL schema file and 
upload it using the GraphQL trigger without creating a new flow.

To implement all methods defined in your .gql file

You can create flows to implement all methods defined in your      .gql file. To do so:    

Procedure
 1. On the app details page, click      Create. The      Add triggers and flows dialog box opens.      

 2. Under      Start with, click      GraphQL Schema.       

 3. Upload your      <name>.gql file by either dragging and dropping it to the      Add triggers 
and flows dialog box or navigating to it using the      browse to upload link.      Flogo 
Enterprise validates the file extension. You see a green checkmark and the      Upload 
appears.      

 4. Click      Upload.      Flogo Enterprise validates the contents of your schema and if it passes 
the validation, it creates the flows based on the methods defined in your schema file. 
One flow is created for each method in your schema. All the flows are attached to the 
same trigger.      

Manually attaching a flow to an existing GraphQL trigger 

If you have an existing flow in an app, you can manually attach it to a GraphQL trigger. To 
do so:    

Procedure
 1. Click the flow name to open the flow details page.      



TIBCO Flogo® Enterprise User Guide

159 | App Development

 2. Click the       icon to the left of your flow. By default, the existing GraphQL triggers in 

the app are displayed.     

 3. Select one of the existing GraphQL triggers and follow the on-screen directions.      

Limitations on constructs in a GraphQL schema

Flogo Enterprise currently does not support the following GraphQL constructs:    

 l Custom scalar types      

 l Custom directives      

 l Subscription type      

 l Cyclic dependency in the schema. For example, if you have a type      Book that contains 
an object element of the type,      Author. The type      Author in turn contains an element 
of type      Book which represents the books written by the author. To retrieve the      
Author, it creates a cyclic dependency where the      Author object contains the      Book 
object and the      Book type, in turn, contains the      Author object.      

Using App Properties and Schemas
This section discusses how to create app properties, which you can use when populating 
field values. It also describes how to create a schema that can be reused in your app.    

App Properties
App properties provide a way to override property values included in the app binary. You 
can configure some supported fields with app properties when configuring triggers and 
activities. Connection-related app properties cannot be used for configuration anywhere 
within an app. Their only purpose is to allow you to change a connection value if need be 
during runtime. Configuration fields in your flow that require their values to be changed 
when the app goes from a testing stage to production are best configured using app 
properties instead of hard coding their values. App properties for triggers and activities 
reside within the app. App properties for connections are not modifiable from the    App 
Properties dialog box in the app.    

The URL field in an Activity is a good example of a field for which you would want different 
values – may be an internal URL when testing the app and an external URL when the app 



TIBCO Flogo® Enterprise User Guide

160 | App Development

goes into production. You may want the URL used in the Activity to change when the app 
goes from a test environment to production. In such a case, it is best to configure the URL 
field in the Activity with an app property instead of hard-coding the URL. This way, you can 
change the URL by changing the value of the app property used to configure the URL field.    

Before building the app, you can change the default value of an app property from the    App 
Properties dialog box. Once you have built the app and have the app binary, use the CLI to 
change the value of an app property in the app.    

An app property value can have one of the following data types:    

 l string    

 l boolean    

 l number    

 l password    
 

Values for the password data type are encrypted and are not visible by default. But when 
configuring the password value, you can click on the    Show/Hide password property 
value icon ( ) to see the value temporarily to verify that it has been entered correctly.    

App properties are saved within the app, so when you export or import an app, app 
properties configured in the app also get exported or imported with the app. Properties of 
data type    password do not retain their values when an app is exported. So, you must 
reconfigure the password after importing the app.    

If you import an app that was created in a prior version, even though this feature is 
available to the app since the activities were created in an older version of    Flogo Enterprise 
you need to re-create them  to be able to see the slider against their fields which allows you 
to configure an app property for that field.    

Creating App Properties
You can create an app property as a standalone property or as a part of a group. Use a 
group to organize app properties under a parent. A parent acts as an umbrella to hold 
related app properties and is  labeled with a meaningful name. A parent does not have a 
data type associated with it. For instance, if you want to group all app properties 
associated with a particular Activity, you can create a group with a parent that has the 
Activity name and create all that Activity-related app properties under that parent.    



TIBCO Flogo® Enterprise User Guide

161 | App Development

As an example, you can create LOG_LEVEL as a standalone app property without a parent. 
Or you can create it as a part of a hierarchy such as LOG.LOG_LEVEL with the parent of the 
hierarchy being LOG and LOG_LEVEL being the app property under LOG. Keep in mind that 
if you group properties, you must refer to them using the dot notation starting from the 
parent. For example, the LOG_LEVEL property must be referred to as LOG.LOG_LEVEL. You 
can nest a group within a group.    

App Properties Dialog Box Views
You can view existing app properties for an app in the    App Properties dialog box. By 
clicking on the +Group or +Property, the app properties dialog box lets you add a new 
group or a property and rename it. An empty app properties' dialog box looks like this:

Nested groups and properties can also be created from the app properties dialog box by 
clicking on the +group or +property of each group. 



TIBCO Flogo® Enterprise User Guide

162 | App Development

The name of the property added can be changed from default to anything you want. Even 
the type of property value can be changed by selecting it from the drop down. You can 
drag a property with unique names from one group to another but not within the same 
group.



TIBCO Flogo® Enterprise User Guide

163 | App Development

Creating a Standalone App Property
To create a standalone app property for your app, follow the steps below.    

To create a group, see      Creating a Group.    

Note: The standalone properties (properties that are not in a group) or the 
properties within the same group must have unique names.    

Procedure
 1. If your app does not exist, create a new app, and click       Properties shown on the 

screen below.      

If your app already exists, then open the app details page and click      Properties.       
The      App Properties dialog box opens.

If you already have existing properties, they are displayed. Click            +Property to add 
another property.      



TIBCO Flogo® Enterprise User Guide

164 | App Development

 2. Click on the newly created property to make it editable and rename it. The property 
gets created.     

Note: The property name must not contain any spaces or special 
characters other than a dash (-) or an underscore (_).      

     

 3. Select the data type for the new property from its drop-down list.      

 4. Enter a default value for the property in the text box next to the property. 

Note: Only for certificates, the value must be of the format: <encoded_
value>. To get the encoded value of the contents, you can use 
https://www.base64encode.org/ or any other base64 encoding tool.

For example, for an SSL certificate, you can specify the app property as follows:

https://www.base64encode.org/


TIBCO Flogo® Enterprise User Guide

165 | App Development

 5. Click      Save.      

Note: Flogo Enterprise runs validation in the background as you create a 
property. The validation takes into consideration the property type and 
default value of the property that you entered.     Save gets enabled only 
when the validation is successful. Make sure you do not skip this step of 
saving your newly created property or group.      

Creating a Group
You can create one or more standalone app properties or group app properties such that 
they show up in a hierarchy. A group (or hierarchy) consists of a parent node, which is just 
a label and does not have a data type associated with it. You must create properties within 
the parent. You can do so in the    Application Properties dialog box. When creating a group 
you must add the parent first and then create the app properties under the parent. 



TIBCO Flogo® Enterprise User Guide

166 | App Development

Note:     

 l With drag option, a standalone property can be rearranged to another 
location or a property under the group can be moved to another group.

 l A group with its nested groups and properties can be dragged to move 
from one location to another. Also a nested group can be moved up in the 
hierarchy or to the root level. However, no two groups can have same 
name on same level.

 l Group names within an app must be unique. Also, property names within a 
group must be unique.

 l You cannot create a group and an app property with the same name in the 
same hierarchy. 

Procedure
 1. Open the app details page and click      App Properties.      

 2. Click      +Group on the upper-right corner to add the group.      

 3. Click on the newly created group name to make it editable and Enter a meaningful 
name for the group.     

The group gets created. The group is simply a label and cannot be used by itself. So, 
you must add a group or a property within the group.      

 4. To add a property within the group, hover your mouse cursor to the extreme right of 
the group until      +Property is displayed in the group row.    



TIBCO Flogo® Enterprise User Guide

167 | App Development

 5. Click      +Property to add the property and rename it.     

 6. Select a data type for the property and enter a value. Entering a value and selecting a 
data type is mandatory.     Save remains disabled without it.      

 7. Click      Save.      

The property gets created under the parent. 

Note: You can even add a nested group under the parent group by clicking 
on +Group in the group row.     

Deleting a Group or Property
An existing group or a property can be deleted in following ways.

To delete a property   

Procedure
 1. Open the       App Properties dialog box from the app details page.      

 2. Hover your mouse cursor to the extreme right end of the property and click      Delete.     

 3. Click      Save.      

To delete a group or a nested group

Procedure
 1. Open the App Properties dialog box from the app details page. 

 2. Hover your mouse cursor to the extreme right end of the group and click      Delete. A 
confirmation window appears.



TIBCO Flogo® Enterprise User Guide

168 | App Development

Here,

 l Delete all child properties and groups deletes all the standalone properties 
and nested groups and properties under the group.

 l Fold all children into Group_2 > Group_1 deletes the nested group but the 
properties under the nested group are shifted into the parent group.

 l Move all children to top level deletes the parent or a nested group and shifts 
all the properties to the top level as a standalone properties.

 3. Select the desired delete option on the confirmation window and click Confirm.

Caution: The property path mappings may update on editing the property or on 
moving a property from a nested group to a parent group or if the property is 
shifted out of the group to top level as a standalone property. 



TIBCO Flogo® Enterprise User Guide

169 | App Development

Using App Properties in a Flow
Configuring a field with an app property is recommended for fields that require their values 
to be overridden when the app goes into production. Hence, the decision as to which fields 
in an Activity should support app properties (which fields can be configured using an app 
property) must be decided at the time when the extension for the category is being 
developed. The fields that can be configured using an app property display a slider against 
their names in the UI. 

You can use environment variables to assign new values to your app properties at runtime. 
For more information, refer to Overriding Security Certificate Values. You can also override 
the app property values at runtime using a JSON file. For more information, refer to Using 
a JSON File to Override App Property Values. 

Connection-specific app properties are visible in the    App Properties dialog box after you 
select a connection when configuring the Activity or trigger, but they appear in read-only 
mode. This is because connections are reusable across apps and connection-related app 
properties are managed (refreshed) automatically. Connection-related app properties 
cannot be used for configuration anywhere within an app. Their only purpose is to allow 
you to change a connection value if need be during runtime. For more details on how the 
connection properties get created and used, see    Using App Properties in Connections.    

To configure a field with an app property:    

Procedure
 1. Open the flow details page.      

 2. Click the Activity whose field you want to configure with an app property.      

This opens the configuration pane for the Activity.      

 3. Click the slider ( ) against the name of the field you want to configure with an 

app property. If the field does not display a slider, the field cannot be configured 
with an app property.      



TIBCO Flogo® Enterprise User Guide

170 | App Development

 4. The      App Properties dialog box opens. Only those app properties whose data type 
matches the data type of the field are displayed. You can also create a new group or 
a property in this view. Here, you can add a single property or a group at a time.

 5. Select the property you want to configure for the field.      

The property name appears in the text box for the field and the default value of the 
property gets implicitly assigned to the field.      

After configuring the property, if you want to change a field to use a different 
property, hover your mouse cursor over the end of the text box for the field until the      
Select another property value icon appears. Click the      Select another property 
value icon.      



TIBCO Flogo® Enterprise User Guide

171 | App Development

For a field that has been configured with an app property, you can unlink the 
property from the field. Refer to      Unlinking an App Property from a Field Value for 
more details.      

Using App Properties in the Mapper
You can use app properties when mapping an input field. The app properties available for 
mapping are grouped under the    $property domain-specific scope in the mapper. All 
mapper rules and conditions apply to the use of app properties as well. For example, the 
data type of the app property value must match with the input field data type when 
mapping. Connection-related app properties that are used by any connection field in an 
Activity do not appear under    $property since they cannot be accessed. Connection-related 
app properties cannot be used for configuration anywhere within an app. Their only 
purpose is to allow you to change a connection value if need be during runtime. Hence, 
they cannot be used to map input fields.    

Refer to the section on    Mapper for details on how to use the mapper.    

Unlinking an App Property from a Field Value
For a field that has been configured with an app property, if you decide at a later time not 
to use the app property, you can click and slide its slider ball ( ) to the left. This 
removes the app property from the field (unlink it from the field) but leaves the field 
configured with the default value of the app property. The field retains the default value of 
the app property, but it gets disassociated from the app property and appears as a 
manually entered value. Hence, if you change the default value of the app property beyond 
this point, it does not affect the value of the field.    



TIBCO Flogo® Enterprise User Guide

172 | App Development

Using App Properties in Connections
Connection-related app properties can be used to modify or configure app properties 
anywhere within an app. If needed, the connection related app properties also allow you to 
change the connection values during runtime. Before you    build, your app, their values can 
only be edited in the connection details dialog box, the dialog box where you provided the 
credentials for the connection. You can open this dialog box by editing the connection from 
the    Connections page in the UI. Connection-related properties are useful when you want 
to change the value for one of the connection fields, for example, a URL, when an app goes 
from the testing stage to production. 

You can use environment variables to assign new values to your app properties at runtime. 
For more information, refer to Overriding Security Certificate Values. You can also override 
the app property values at runtime using a JSON file. For more information, refer to Using 
a JSON File to Override App Property Values. 

How the connection-related app properties get created

You cannot explicitly create connection-related properties. When you select a connection in 
the      Connection field of an Activity, the supported properties associated with that 
connection automatically get created and populated in the      App Properties dialog box.    

While creating a connection, the fields in the connection details dialog box that support 
app properties are marked with       icon. One property gets created for each field that is 
marked with       in the connection details dialog box. The values you enter for such fields in 
the connection details dialog box become the default values for the connection properties. 
The properties take their name from the connection field they represent in the connection 
details dialog box.    

You begin by creating a connection. In the example below, only the      Connection URL and      
Authentication Key fields support app properties. These are the only two fields that 
display       against them.    



TIBCO Flogo® Enterprise User Guide

173 | App Development

Once the connection is created, you can use it to configure the      Connection field in an 
Activity. In the example below, the connection created above is being used to configure the      
Connection field of the      TCMMessagePublisher Activity.    

After configuring the Connection field with the connection, if you open the      App Properties 
dialog box, the connection properties for the field (enclosed in the red box in the image 
below) is displayed. Notice that only the supported properties (Connection URL and 
Authentication Key) are displayed in a read-only mode.    



TIBCO Flogo® Enterprise User Guide

174 | App Development

The properties that are displayed in the      App Properties dialog box change dynamically 
based on your selection of the connection to use. You can only view the connection 
properties. You cannot edit or delete them from the      App Properties dialog box. Deleting 
the Activity that uses the connection automatically removes the associated connection 
properties that the Activity used from the      App Properties dialog box.    

Using connection-related app properties

Connection-related app properties are available for use from the mapper. You can use 
these properties to change a connection value (for example, a URL or password) just before 
an app goes from a testing stage to production. All the mapped configurations can be pre-
checked using a flow tester or by creating a pre-check flow. Their values cannot be 
changed from the      App Properties dialog box, change their values in the connection details 
dialog box before      building the app.      

Editing an App Property
You can change the default value or data type of an app property at any time.    

After the app has been built, you can override an app property from the CLI.    



TIBCO Flogo® Enterprise User Guide

175 | App Development

Changing the Default Value of a Property from the App 
Properties Dialog Box
You can change the default value of an existing app property at any time after creating the 
property.     Before you    build the app, you can change the default value in the    App 
Properties dialog box.    

To change the default value of an existing app property:    

Procedure
 1. Open the      App Properties dialog box by clicking      Properties on the app details page.      

 2. Click inside the text box for the property value you want to change.      

 3. Edit the value.     

 4. Click      Save.      

Changing the Name or Data Type of an App Property after 
Using It
If you change either the name of an app property or its data type after you have used the 
property to configure a field in an Activity or trigger, the field displays an error message. 
You must explicitly reconfigure the field to use the modified property by deleting the 
property from the text box for the field and adding the modified property.    

When Importing an App
An app being imported could have its app properties. The app properties get imported 
along with the app. If an app property in the app being imported has a name that is 
identical to a property in the host app,  a warning message is displayed  with a choice to 
either overwrite the existing host property (by clicking    Continue) with the property 
definition from the imported app or cancel the import process altogether.    

App properties of type    password do not retain their values when the app is exported, hence 
you must reconfigure the default values of all app properties of data type    password after 
you import the app.    



TIBCO Flogo® Enterprise User Guide

176 | App Development

Overriding an App Property Value While Testing a Flow

Procedure
 1. On the flow details page, click      Test.

 2. Start a new Launch Configuration by clicking      Create a Launch Configuration or 
using an existing Launch Configuration that you had exported from another flow by 
clicking      Import a Launch Configuration. 

The Launch Configurations dialog box opens. For more information about Launch 
Configurations, see Flow Tester.

App properties defined in the app and those defined in a connection are listed under 
properties.

 3. Select the property whose value you want to override and specify the new app 
property value on the right side.       

 4. Click      Next.      

The input values you entered are displayed and validated. If no errors are found you 
get the message,      Input settings are alright.      

 5. Click      Run to execute the flow with the input data you provided in the step above.      



TIBCO Flogo® Enterprise User Guide

177 | App Development

 6. Click      Stop Testing.      

App Schemas
You can define a JSON or Avro schema such that it is available for reuse across an app. 
Creating an app-level schema saves you time and effort of entering the same schema 
multiple times. An app-level schema can be used in any flow, Activity, or trigger 
configuration where a schema editor is provided. You can simply pick an existing schema 
from a list. For example, app-level schemas are available from the following locations:    

 l Inputs or Outputs tab of a flow (including Error Handler flows and subflows)    

 l Input or Output Settings tab of an Activity    

 l Output or Reply Settings tab of a trigger    

App-level schemas are filtered based on the type of Activity or trigger. For example, only 
JSON schemas are displayed in a REST trigger or Activity configuration.    

Currently,    Flogo Enterprise only supports the JSON and Avro types of schemas.    

Defining an App-Level Schema

Procedure
 1. On the App Details page, click      Schemas.      

The Schemas page opens.      

 2. Click      +Schema.      

 3. In the      Schema Name field, enter a schema name.      

 4. Select the type of schema. You can select either JSON or Avro schema. The default is 
JSON schema.     

 5. Enter the schema in the schema editor.      

Note: If you enter JSON data in the editor, it is automatically converted to 
JSON schema.      

 6. Click      Save.      



TIBCO Flogo® Enterprise User Guide

178 | App Development

Result
After the schema is defined, it can be used in any Activity or trigger configuration by using   
Use an app-level schema in the schema editor of the Activity or trigger.    

Editing an App-Level Schema 
When you make changes to an app-level schema, the changes are automatically reflected 
everywhere the schema is used.    

To edit an app-level schema:   

Procedure
 1. On the App Details page, click      Schemas.      

The      Schemas page opens.      

 2. Expand the schema to be edited.      

 3. Edit the schema name or the schema in the editor, as required.      

 4. Click      Save.      

If the app-level schema is used in any flow, Activity, or trigger, a warning is displayed.      

Deleting an App-Level Schema 

Warning: Deleting a schema removes its reference from all the places where it is 
used, but it retains a copy of the schema in the fields that use the schema.    

Procedure
 1. On the App Details page, click      Schemas.      

The      Schemas page opens.      

 2. Click the      Delete icon beside the schema to be deleted.      

Result
After confirmation, the selected schema is deleted.    



TIBCO Flogo® Enterprise User Guide

179 | App Development

Using an App-Level Schema 
You can use an app-level schema from a flow, trigger, or Activity from the following tabs:    

 l Inputs or Outputs tab of a flow    

 l Input or Output Settings tab of an Activity    

 l Output or Reply Settings tab of a trigger    

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are 
particularly useful when you create blank flows that are not attached to any triggers.    

Note: The schemas for input and output to a flow can be entered or modified 
only on this      Flow Inputs & Outputs tab. You cannot coerce the flow input or 
output from outside this accordion tab.    

Both these tabs (the    Input tab and the    Output tab) have two views:    

 l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to 
save your changes or      Discard to revert the changes. If you entered JSON data, the 
data is converted to a JSON schema automatically when you click      Save.      

 l List view:

This view displays the data that you entered in the JSON schema view in a list 
format. In this view, you can:      

 o Enter your data directly by adding parameters one at a time      

 o Mark parameters as required by selecting its checkbox.      

 o When creating a parameter, if you select its data type like an array or an object, 
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide 
a schema for the object or array.      

 o Use an app-level schema by selecting      Use an app-level schema. On the      
Schemas page that appears, click      Select beside the schema that you want to 
use. The name of the schema is displayed beside     Use an app-level schema 
and the schema is displayed in a read-only mode.      



TIBCO Flogo® Enterprise User Guide

180 | App Development

Note: You cannot edit an app-level schema in the        List view if        Use an 
app-level schema is selected. To edit an app-level schema, follow 
the instructions in the section        Editing an App-level Schema. You can, 
however, switch to another app-level schema by clicking        Change 
and selecting another app-level schema. You can also unbind the 
app-level schema (by deselecting        Use an app-level schema) from a 
trigger, activity, or the input and output of a flow. After you unbind 
the app-level schema, you can make changes to it using the schema 
editor in the        List view.      

 o Click      Save to save the changes or      Discard to discard your changes.      

Input or Output Settings Tab of an Activity 
When configuring an Activity, you can select an app-level schema on its    Input or    Output 
Settings tab. For example, the following screenshot shows an app-level schema selected in 
the    Response Schema field of the    Output Settings tab of an InvokeRESTService Activity.    

Output or Reply Settings Tab of a Trigger 
When configuring a trigger, you can select an app-level schema on its    Output or    Reply 
Settings Tab. For example, the following screenshot shows an app-level schema selected 
in the    Reply Data Schema field of the    Reply Settings tab of a ReceiveHTTPMessage 
trigger.    



TIBCO Flogo® Enterprise User Guide

181 | App Development

Note: If there is a change in the schema attached to a trigger, click    Sync to 
synchronize it with the input and/or output of the flow.    

Using Connectors

Note: This section is applicable only if you have uploaded custom extensions for 
connectors. The    Extensions tab displays your uploaded extensions.    

To use the Flogo connectors:    

Procedure
 1. Create one or more connections.

 2. If you do not already have an app,      create an app.    

 3. Create a flow.    

 4. Add the activities about the connector you use as needed.    

 5. Build the app.    



TIBCO Flogo® Enterprise User Guide

182 | App Development

Creating Connections
You must create connections before using the connectors in a flow.    Flogo Enterprise uses 
the configuration provided in these connections to connect to the respective app, data 
sources, systems, or SaaS.    

Before you begin
You must have valid accounts for the SaaS apps to which you want to connect.    
To create a connection, click the    Connections tab on the    Flogo Enterprise page.    

To create a connection using a connector tile:    

 1. If this is the first connection you are creating, click the      Create connection link. For 
subsequent connections, click     Create on the      Connections page.      

 2. Click the connector tile for which you want to create a connection.      

 3. Follow the instructions to configure the connection when prompted.      

Note: 
 l You can have a maximum of four active Salesforce connections for one 

user at any time. If you create more than four connections for the same 
user, the first connection that you created gets deactivated. This limit is 
enforced by Salesforce.      

 l Make sure that the pop-up blocker in your browser is configured to always 
allow pop-ups from an app site. On macOS, clicking the link to the site 
results in the connection details page hanging, so make sure to select 
Always allow pop-ups from      <site>.

 Editing Connections
You can edit the name and other settings of your connection.    
To edit an existing connection:    

Procedure
 1. In      Flogo Enterprise, click the      Connections tab to open its page.     

 2. In the list of existing connections, click the connection that you want to edit. Edit the 



TIBCO Flogo® Enterprise User Guide

183 | App Development

connection details in the connection details dialog box that opens.      

 3. Click      Save. 

Note: Flogo supports automatic upgrade of activities, triggers, and connections. 
To view updates for connections, you must open the connection from the 
Connections page. For more information, see  Auto-Upgrade of Activities, 
Triggers, and Connections.    

Deleting Connections
You can delete an existing connection.    

Procedure
 1. In      Flogo Enterprise, click the      Connections tab to open its page.      

 2. In the list of existing connections, hover over the connection name that you want to 
delete until you see the      Delete connection icon ( ) appear at the end of the row.      

If the connection is being used by an app, you can see a blue icon in the      Usage 
column. Hover over the icon to see which apps use the connection.      

Note: You cannot delete such connections.      

 3. Click the      Delete connection icon.      

 4. On the confirmation dialog box, click      Delete connection.      

Result
The selected connection is deleted.    

Using Extensions
You can create extensions for    Flogo Enterprise or you can upload a    Project Flogo extension 
into    Flogo Enterprise. 



TIBCO Flogo® Enterprise User Guide

184 | App Development

You can create and contribute extensions for the following:    

 l activities      

 l triggers (you can define custom triggers that you can upload and use to create a 
flow)      

 l connectors (a connector provides configuration details to connect external apps, for 
example, Salesforce)      

 l functions (to be used inside the mapper when mapping elements) 

 l custom category extensions

After creating your extension, you upload its      .zip file using the upload dialog box.    

The extension you upload must follow the guidelines found on the GitHub page, Building 
Extensions. 

Important Considerations   
Keep the following in mind before you upload your extension:    

 l A read-only user cannot upload an extension. 

 l When uploading your Activity or trigger extension, by default      Flogo Enterprise 
compiles your extension before uploading it. If you would like to skip the compilation 
process, make sure to compile all the      *.ts files in your extension and generate a      .js 
file for each      .ts file. The      .js file must have an identical name as its corresponding
      .ts file.      

 l You are responsible for the life cycle (uploading, updating, deleting) of the extension 
that you contribute. Any extension that you contribute is visible and available for use 
only to you.      

 l When creating your Activity or trigger extension, if you did not specify a category for 
the extension, the extension is placed in the      Default category.      

 l The category name for an extension must be unique. If a category by the name 
already exists, the upload completely overwrites the category. Out-of-the-box 
contributions cannot be overwritten.      

 l Special characters are not supported in Activity and trigger names. A validation error 
is displayed while uploading if any names contain special characters.      

https://tibcosoftware.github.io/tci-flogo/building-extensions/
https://tibcosoftware.github.io/tci-flogo/building-extensions/


TIBCO Flogo® Enterprise User Guide

185 | App Development

 l Uploading new extension(s) to an existing category overwrites the entire category 
and all its contents. So,  to add a new extension to an existing category while keeping 
the extension(s) that already exist in that category, be sure to include the existing 
extension(s) along with the new Activity, connection, or trigger when creating the
      .zip file to be uploaded.      

 l You cannot delete a single extension from any category other than the      Default 
category. To delete a single trigger, Activity, or connector from a category, you must 
re-upload the whole category which includes all the extensions you want to keep 
minus the extension you want to delete. The same applies when editing an extension 
within a category - after editing an extension on your local machine, make sure to re-
upload the whole category, the edited extension plus all the existing extensions in 
the category. Uploading only the edited extension overwrites the category causing 
you to lose the other extensions in the category.      

An extension that you upload to      Flogo Enterprise is available for use in any flow that 
currently exists in your app or any flow that you create later.    

Creating Extensions
Flogo exposes a number of different extension points. You can easily extend the 
capabilities available by building your own activities. In this section, you explore the 
Activity contribution point and learn how to build a custom Activity in GO. 

Step 1: Generate a basic framework
The easiest way to start creating Activities is to clone the content present in TIBCO 
Extensions. The Activity built returns the concatenation of the two parameters and displays 
it on the console.

You must pull the following sample Activity to begin working on Flogo Core.

git clone https://github.com/TIBCOSoftware/tci-flogo.git

mkdir-p myNewActivity

cp -R /tci-flogo/samples/extensions/TIBCO/activity/* /myNewActivity

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/extensions/TIBCO
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/extensions/TIBCO


TIBCO Flogo® Enterprise User Guide

186 | App Development

Step 2: Update the Metadata
After you have pulled an example from the Flogo core, the first step is to update the 
descriptor.json file with the required information. The file contains the metadata for the 
new Flogo Activity. The metadata in the file contains the following elements.

Element Description

name The name of the Activity 

This must match with the name of the folder in which the Activity 
has been added.

version The version of the Activity.

The semantic versioning for the activities must be used.

type The type of contribution. 

For example: flogo:Activity in this case.

title The application title to be displayed in the Flogo Web UI.

ref The  reference to the GO package that is used by the web UI to 
fetch the contribution details during the installation.

description A brief description of the Activity.

This is displayed in the Flogo Web UI.

author The creator of the Activity.

settings An array of name-type pairs that describe the Activity settings.

Note: 
 l Activity settings are pre-compiled and can be used to 

increase performance.                                 

 l The settings are not fetched for every invocation.                                  

input An array of name-type pairs that describe the input to the 
Activity.



TIBCO Flogo® Enterprise User Guide

187 | App Development

Element Description

The anInput parameter must be of the string type.

output An array of name-type pairs that describe the output of the 
Activity.

The anOutput parameter must be of the string type.

The updated descriptor.json file must look as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

{
   "name": "sample-Activity",
   "type": "flogo:Activity",
   "version": "0.0.1",
   "title": "Sample Activity",
   "description": "Sample Activity",
   "homepage":"https://github.com/project-
flogo/tree/master/examples/Activity",
   "settings": [
     {
       "name": "aSetting",
       "type": "string",
       "required": true
     }
   ],
   "input": [
     {
       "name": "anInput",
       "type": "string",
       "required": true
     }
   ],
   "output": [
     {
       "name": "anOutput",
       "type": "string"
     }
   ] 



TIBCO Flogo® Enterprise User Guide

188 | App Development

Step 3: Build the Logic 
Now, you must update the .GO files available in the current directory. The . GO files in the 
directory are as follows:

File types Description

Activity.go Contains the logic behind Activity implementation in GO

Activity_test.go Contains unit tests for the Activity 

metadata.go Contains the basic input, output, and settings metadata 
used by the engine 

 

The first step is to update the metadata.go file. Define the input, output, and settings in 
the file. These details are used by the engine to build the Activity. Also it is used for 
leveraging contributions using the Flogo GO library. This enables GO developers to leverage 
strongly typed objects for IDE auto-completion.

The sample package of the metadata file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

import "github.com/project-flogo/core/data/coerce"
 
 type Settings struct {
  ASetting string `md:"aSetting,required"`
 }
    
 type Input struct {
  AnInput string `md:"anInput,required"`
 }
 
 func (i *Input) FromMap(values map[string]interface{}) error {
  strVal, err := coerce.ToString(values["anInput"])
  if err != nil {
   return err
  }



TIBCO Flogo® Enterprise User Guide

189 | App Development

  i.AnInput = strVal
  return nil
 }
    
 func (i *Input) ToMap() map[string]interface{} {
  return map[string]interface{}{
   "anInput": i.AnInput,
  }
 }
 
 type Output struct {
  AnOutput string `md:"anOutput"`
 }
 
 func (o *Output) FromMap(values map[string]interface{}) error {
  strVal, err := coerce.ToString(values["anOutput"])
  if err != nil {
   return err
  }
  o.AnOutput = strVal
  return nil
 }
    
 func (o *Output) ToMap() map[string]interface{} {
  return map[string]interface{}{
   "anOutput": o.AnOutput,
  }
 }

The next step is to look at the Business logic and update the Activity.go file.

The sample package of the Activity file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

package sample
 
 import (
  "github.com/project-flogo/core/Activity"
  "github.com/project-flogo/core/data/metadata"
 )
 
 func init() {



TIBCO Flogo® Enterprise User Guide

190 | App Development

  //Activity.Register(&Activity{}, New) to create instances using 
       factory method 'New'
  _ = Activity.Register(&Activity{})
 }
 
 var ActivityMd = Activity.ToMetadata(&Settings{}, &Input{}, &Output{})
 
 //New optional factory method, should be used if one Activity instance 
per configuration is desired
 func New(ctx Activity.InitContext) (Activity.Activity, error) {
 
  s := &Settings{}
  err := metadata.MapToStruct(ctx.Settings(), s, true)
  if err != nil {
   return nil, err
  }
 
  ctx.Logger().Debugf("Setting: %s", s.ASetting)
 
  act := &Activity{} //add aSetting to instance
 
  return act, nil
 }
 
 // Activity is an sample Activity that can be used as a base to create a 
custom Activity
 type Activity struct {
 }
 
 // Metadata returns the Activity's metadata
 func (a *Activity) Metadata() *Activity.Metadata {
  return ActivityMd
 }
 
 // Eval implements api.Activity.Eval - Logs the Message
 func (a *Activity) Eval(ctx Activity.Context) (done bool, err error) {
 
  input := &Input{}
  err = ctx.GetInputObject(input)
  if err != nil {
   return true, err
  }
 
  ctx.Logger().Debugf("Input: %s", input.AnInput)
 
  output := &Output{AnOutput: input.AnInput}
  err = ctx.SetOutputObject(output)



TIBCO Flogo® Enterprise User Guide

191 | App Development

  if err != nil {
   return true, err
  }
 
  return true, nil
 }

Now, to test and build the Activity, you must get below GO packages.

go mod init
go mod tidy

Step 4: Perform Unit Testing
After you have completed the building logic of the Activity, you must now perform a unit 
test. Unit testing gives you an automated way to test the Activity to make sure that it 
works. This also lets other developers run the same tests to validate the output. 

The sample package of the Activity_test file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

package sample
 
 import (
  "testing"
 
  "github.com/project-flogo/core/Activity"
  "github.com/project-flogo/core/support/test"
  "github.com/stretchr/testify/assert"
 )
 
 func TestRegister(t *testing.T) {
 
  ref := Activity.GetRef(&Activity{})
  act := Activity.Get(ref)
 
  assert.NotNil(t, act)
 }



TIBCO Flogo® Enterprise User Guide

192 | App Development

 
 func TestEval(t *testing.T) {
 
  act := &Activity{}
  tc := test.NewActivityContext(act.Metadata())
  input := &Input{AnInput: "test"}
  err := tc.SetInputObject(input)
  assert.Nil(t, err)
 
  done, err := act.Eval(tc)
  assert.True(t, done)
  assert.Nil(t, err)
 
  output := &Output{}
  err = tc.GetOutputObject(output)
  assert.Nil(t, err)
  assert.Equal(t, "test", output.AnOutput)
 }

To run all the test cases for your Activity, run below command:

go test

On a successful run the result must look like as follows:

PASS
ok      github.com/tibco/newConnector/myNewActivity      0.002s

Step 5: Upload the Activity in the Flogo App
Now, you can use the Activity in a Flogo app. 

To install the Activity in Flogo, in the web UI, under Environment and Tools, go to the 
Extensions tab, and click Upload.

Uploading Extensions

Before you begin
When uploading an extension, you can see the logs on the screen. You can change the log 
levels at runtime by setting the      FLOGO_LOG_LEVEL engine variable. Be sure to do so      before 



TIBCO Flogo® Enterprise User Guide

193 | App Development

you begin uploading your extension.      For details on the      FLOGO_LOG_LEVEL engine variable, 
see the      Environment Variables section. For more details on the environment and engine 
variables, see the      Configuring App Properties section. 

To upload an extension:      

Note: This procedure assumes that you have the      .zip file for your extension 
available for upload.      

Procedure
 1. Click the     Extensions tab.           

 2. If this is the first extension, click      Upload an extension.      

If there are existing extensions, click the      Upload in the upper-right corner:      

The      Upload an extension dialog box opens. If you want to upload from the Git 
repository select      From Git repository. See the section,      Pulling Extensions from an 
Open Source Public Git Repository for more details on this.      

To upload an extension residing in a .zip file locally, click      From a Zip file.      

https://integration.cloud.tibco.com/docs/using/using-apps/configuring-apps/configuring-app-properties.html


TIBCO Flogo® Enterprise User Guide

194 | App Development

 3. Click the      browse to upload link and navigate to your extension      .zip file. 
Alternatively, drag the      .zip file from your local machine to the area defined by a 
dotted line in the      Upload an extension dialog box.      

 4. If you would like to skip the compilation process, select the      Skip Compilation check 
box. If the check box is selected,      Flogo Enterprise performs a check before uploading 
to make sure that every      .ts file has a corresponding      .js file present. If a .ts file does 
not have a .js file, the validation fails, and your extension does not upload.      

 5. Click      Upload and compile.      

Flogo Enterprise validates the contents in the      .zip file. If the      .zip file contains a 
valid folder structure, it compiles the extension code. Once the code is compiled 
successfully, it uploads the extension to      Flogo Enterprise. You can view the progress 
of the upload or any errors that occur in the logs:       



TIBCO Flogo® Enterprise User Guide

195 | App Development

A      Complete message is displayed after the extension is successfully uploaded. If 
there were any compilation errors during the upload, you see an error message and 
the upload exits. You can copy-paste the error message if required.       

 6. Click      Done to close the dialog box.      

You can view your extension on the      Extensions page. The newly added extension 
appears under the category that you specified. If you had not specified a category for 
the extension, it appears in the      Default category.  Connectors are denoted by the  

symbol, triggers are denoted by the  symbol, activities are denoted by the       

symbol, and functions have the  symbol next to them. 

The new extension displays the following:      

 l timestamp when the extension was loaded      

 l name of the extension contributor      



TIBCO Flogo® Enterprise User Guide

196 | App Development

 l version of the extension 

Note: While creating a flow,  the  icon is shown on activities that are 
present on the Extensions tab. 

The      Search field that appears above the category searches within the categories for 
the Activity, trigger, or connector you specified in the search text box. You can filter 
the displayed extensions by clicking the      Triggers,      Connectors, or      Activities buttons.      

The extension is now available for you to use. If you uploaded an Activity, the Activity 
is available for use when creating a flow or editing an existing flow. The Activity 
appears under the category you defined for it when creating the extension. The 
output of the Activity is available in the mapper just as it is for any default activities 
that come with the      Flogo Enterprise.      

If you uploaded a connector, the connector is available for creating new connections 
on the      Add Connections > Select connection type dialog box. 

If you uploaded a trigger, the trigger is available for you to select in the      Create a 
Flow dialog box. If you select the trigger, it creates the flow with your trigger. 

If you uploaded a function, it is available  to be used inside the mapper when 
mapping elements.

If you uploaded a category, it is available to use when adding any new activities 
while designing a flow. Triggers and connections in the category can be used as 
mentioned above.

Pulling Extensions from an Open Source Public Git 
Repository
You can upload extensions that are available from an open-source public Git repository by 
pulling them directly into    Flogo Enterprise. This section describes how to pull the    Default 
category    Project Flogo extensions directly from an external public Git repository and 
upload it to    Flogo Enterprise. Pulling from private Git repositories is currently not 
supported. 
Keep the following in mind when pulling the contribution:    

 l You can download only from public repositories. Accessing private Git repositories is 
not supported.      



TIBCO Flogo® Enterprise User Guide

197 | App Development

 l The Git repository link should be the reference of the Activity and not the URL.      

 l The repository link needs to be a reference of the contribution and must not begin 
with      http:// or      https://, for example, to pull the LogMessage Activity from the      
Project Flogo Git repository, use      github.com/project-flogo/contrib/Activity/log

 l Any new default category contribution that you pull from the Git repository gets 
appended to the ones that already exist for the category in      Flogo Enterprise. 
Contributions pulled and uploaded to other categories in      Flogo Enterprise, overwrites 
the category itself. Hence, if there are any existing activities in the category, they get 
deleted when the category is overwritten.      

 l Default category extensions can only be downloaded one at a time.      

To pull an extension from a public Git repository:    

Procedure
 1. On the      Extensions page, click      Upload.      

The      Upload an extension dialog box opens.      

 2. Click      From Git repository.      

When you select this option you are prompted to enter the location of the Git 
repository from which you want to pull the extension.      

 3. Enter the reference to the extension in the Git repository.      

Important: Make sure you do not enter the initial      http://

 4. Click      Import.      

Flogo Enterprise validates the format of the reference you entered in the      Git 
repository URL text box.     Import remains disabled until you enter a valid reference 
format. A      .zip file for the Activity gets generated and uploaded to the      Default 
category on the Extensions page in      Flogo Enterprise. Once you start the process of 
downloading the contribution from the Git repository, you cannot cancel the process 
or switch to the process of uploading      From a Zip file. You must wait for the upload 
process to complete, then click      Done.      

 5. Click      Done.      

The extension you uploaded appears on the      Extensions page.      



TIBCO Flogo® Enterprise User Guide

198 | App Development

Deleting Extensions or Extension Categories
From the Extensions page, you can delete:

 l an existing extension from the Default category 

 l a custom extension category 

Procedure
 1. Click the      Extensions tab.

The existing extensions are displayed on the Extensions page.     

 2. To delete an extension from the Default category, on the tile of the extension that 
you want to delete, click   and select Delete. 

 3. To delete a custom extension category, on the right side of the screen, click   and 

select Delete. 

Individual items within a custom extension category cannot be deleted. The entire 
custom extension category must be deleted.

 4. In the confirmation dialog box, click      Delete.     

Result
The selected extension or extension category is deleted.    

Flow Tester
After you design a flow, use the Flow Tester to test the flow.    

When designing a flow, runtime errors can go undetected until you build the app to 
execute the flow. It can become particularly cumbersome to test flows that start with a 
trigger since the triggers activate based on an external event. So, before you can test the 
flow, you need to configure the external app to send a message to the trigger to activate 
the trigger and consequently execute the flow. The Flow Tester eliminates the need to 
activate the trigger to execute the flow.    

You provide the input to the flow in the Flow Tester. The Flow Tester executes the flow on 
demand without using a trigger. Each Activity executes independently and displays its logs. 
This lets you detect errors in the flow upfront without actually building the app. 



TIBCO Flogo® Enterprise User Guide

199 | App Development

Note: 
 l The Flow Tester takes some time to start as the engine is built from 

scratch every time you start the Flow Tester. The time taken to start the 
Flow Tester depends upon the number of contributions used in the app 
and the resources assigned to the Docker daemon. 

 l The Flow Tester is disabled when Activity type contributions are missing in 
the flow execution. 

 l Expressions and functions are not evaluated in the Flow Tester. Input 
provided is passed as is.

 l You can run the Flow Tester in the debug mode with the following features 
only: 

 o Test run the flow      

 o See the flow execution

 o Select an Activity that is executed and see the inputs and outputs

 o Change the inputs to other valid values and start the Activity from 
that point onwards   

 l You cannot:

 o Insert a debug point and stop the flow execution at a tile

 o Skip a tile from test execution

Testing Flows from the UI
You can use the Flow Tester from the    Flogo Enterprise UI or you can use the CLI to run the    
test command in the Flow Tester. This section describes how to use the Flow Tester from 
the UI.    
When using the Flow Tester from the UI, you must populate your test data in the Launch 
Configuration. Launch Configuration is a mechanism used by the Flow Tester  to store your 
test data.    



TIBCO Flogo® Enterprise User Guide

200 | App Development

What is a Launch Configuration?
A Launch Configuration is a test configuration that contains a set of data with which to test 
the flow. Create a Launch Configuration to hold the test data that you want to use as input 
to the flow. Launch Configurations allow you to save and use your input data without 
having to enter it every time you want to test or retest the flow.    

Blank flows use data configured on the    Input Settings tab of the    Flow Inputs & Outputs 
accordion tab as the input to the flow. Flows created with a trigger use the output of the 
trigger as input to the flow.    

Launch Configurations are particularly useful when you want to test the flow multiple 
times with complex data or multiple sets of data. Create a Launch Configuration once with 
the data and use the Launch Configuration as input to the flow instead of manually 
entering the data every time you want to execute the flow. You can create multiple Launch 
Configurations, each containing a different set of data. A Launch Configuration can contain 
only one set of data. To test a flow with multiple sets of data, create multiple Launch 
Configurations for a flow with each containing one set of data, then test the flow with one 
Launch Configuration at a time.    

Once you create a Launch Configuration, it automatically gets saved and is available to you 
until you explicitly delete it.    

Note: When exporting an app, if the app contains Launch Configurations, the 
Launch Configurations do      not get exported with the app. Launch Configurations 
in an app must be exported independently of the app export.    

Creating and Using a Launch Configuration
Launch Configurations need not be explicitly saved. They persist even after you exit    Flogo 
Enterprise and log back in later.    

Creating your first Launch Configuration

To create the very first Launch Configuration in a flow:    

Procedure



TIBCO Flogo® Enterprise User Guide

201 | App Development

 1. On the flow details page, click      Test.

You can either start a new Launch Configuration by clicking      Create a Launch 
Configuration or use an existing Launch Configuration that you had exported from 
another flow by clicking      Import a Launch Configuration.      

 2. Click      Create a Launch Configuration.      

The Flow Tester opens with the left pane displaying the Launch Configuration name. 
By default, a new Launch Configuration is named "Launch Configuration x" where x 
stands for a number. For example, since this is the first Launch Configuration that 
you are creating, the name of the Launch Configuration displays as      Launch 
Configuration 1. The next Launch Configuration you create is named      Launch 
Configuration 2. You can edit the name in the right pane. The right pane opens the 
mapper which displays the flow input tree.      



TIBCO Flogo® Enterprise User Guide

202 | App Development

 3. Optionally, enter a meaningful string to replace the default name in the      Launch 
Configuration name text box.      

 4. Select the log level from the Log Level drop-down menu. 

 5. Select Using on-premise services if you want to test apps that connect to on-
premise systems. 

Note: Before you select this check box,  enable the flogotester service for 
your organization using the API. For more information, see Enabling or 
Disabling the TIBCO Flogo® Flow Tester for an Organization with the API. 

 6. Enter the values for the elements in the input tree. Refer to      Configuring a Launch 
Configuration for details on entering values.      

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html


TIBCO Flogo® Enterprise User Guide

203 | App Development

Note: If your flow does not require an input, for example, if your flow was 
created with a Timer trigger that does not have an output (consequently 
no input to the flow), you can continue testing the flow without using the 
mapper in the Flow Tester.      

 7. Click      Next.      

The input values you entered are displayed and validated. If no errors are found you 
get the message,      Input settings are alright.      

 8. Click      Run to execute the flow with the input data you provided in the step above.      

All the activities in the flow are executed. For details, see      What can you do using the 
Flow Tester?.      

 9. Click      Stop Testing.      

Creating Subsequent Launch Configurations
If you have an existing Launch Configuration:    

Procedure
 1. Click      New to create another Launch Configuration.      



TIBCO Flogo® Enterprise User Guide

204 | App Development

 2. Follow the procedure from      step 3 onwards in      Creating your first Launch 
Configuration.      

What can you do using the Flow Tester?
When you use the Flow Tester to test a flow, all the activities in the flow are executed. 
While the flow tester is active, you cannot add or delete an Activity in the flow.    

When an Activity is being executed, a blue animation is displayed around it. When the 
execution of the Activity is completed, the Activity is highlighted in the flow and the blue 
animation moves to the next Activity. Activities that have not completed execution are 
greyed out. This helps you see the progress made in the execution of the flow.    

Attention: It is a good practice to stop testing by clicking      Stop Testing    when you finish 
running a flow in the Flow Tester, as the login session remains active for the entire time 
that you are in the testing mode.    



TIBCO Flogo® Enterprise User Guide

205 | App Development

Handling errors

If the Activity encounters an error, it is highlighted with a red colored border and a red 
error icon is displayed on the  the      Error handler tab (if the error handler is run in the 
background). You can click the      Error handler tab to find out till where the execution took 
place successfully. Note that when you navigate back to the Main flow, the red error icon is 
not displayed on the      Error handler tab.    

Note: 
 l If you start the execution from the      Error handler tab, execution is moved 

on to the Main flow tab (as an error handler is always a part of the main 
flow).      

You can, however, start a test from a tile on the        Error Handler tab. In this 
case, the execution starts from the        Error Handler tab.      

 l If the execution is started from a sub-flow, the execution does not move to 
the Main flow and acts as a normal tile execution (as a sub-flow is an 
independent flow).      

Executing the flow from a specific Activity onwards

You can debug a specific Activity in the      Main flow or      Error Handler flow. If it is successful, 
the output is shown on the      Output tab. If an Activity does not have any output (for 
example, the Return Activity), it shows the      Output tab as blank. If the Activity is erroneous, 
the error is shown on the      Errors tab.    



TIBCO Flogo® Enterprise User Guide

206 | App Development

To execute the flow from a specific Activity (and not from the beginning of the flow) with 
different input data, perform the following steps.      

Note: 
 l This can be done only after the entire flow has been executed at least 

once.      

 l When you start the execution of a flow from a specific Activity in the flow, 
you cannot start the execution again from any Activity before the current 
Activity. If you need to do that, you must launch a new test.        

For example, a flow includes A1 -> A2 -> A3 -> A4 -> A5 activities and 
execution is started from the A3 Activity onwards. In subsequent 
executions, you cannot start the execution from any Activity before A3; 
execution always starts from A3 onwards. If you want to run the flow from 
an Activity before A3, you must launch a new test.        

Procedure
 1. Select the Activity from which you want to run the flow.      

The Activity is highlighted in blue. The Activity data is displayed on the      Inputs and      
Outputs tab. If an error is returned, an      Error tab is displayed in place of the      Outputs 
tab.      

 2. On the      Inputs tab, change the input values as required. You cannot do dynamic 
mappings here.      

 3. Click      Run test from this Activity.      

The execution begins from the current Activity. The logs are also displayed only for the 
current Activity and subsequent activities in the flow.      



TIBCO Flogo® Enterprise User Guide

207 | App Development

Note: Once the execution starts from a tile, you cannot access preceding tasks 
executed in the previous runs. The previous activities are greyed out. If you want 
to run the flow from a previous Activity, you must launch a new test.      

Logging information

As the activities are executed, the runtime engine logs for the activities are displayed in the 
Logs output window. The format of the logs is similar to the logs displayed while running 
an app binary.    

To copy these logs, you can click      Copy logs.    

You can also switch from the      Flow logs view to the Activity data view by clicking      Activity 
data.    

Configuring a Launch Configuration
When you click a Launch Configuration name, its mapper opens to its right. The mapper 
displays the input tree in the left pane.    



TIBCO Flogo® Enterprise User Guide

208 | App Development

Procedure
 1. Select Using on-premise services if you want to test apps that connect to on-

premise systems. 

Note: Before you select this check box,  enable the flogotester service for 
your organization using the API. For more information, see Enabling or 
Disabling the TIBCO Flogo® Flow Tester for an Organization with the API.

 2. To configure the mapping, expand the input tree in the left pane.      

 3. Click an element to add a value to the element.      

 4. Enter the value for that element in the text box to its right.      

When entering values for the elements, be aware of the following:      

 l The input tree for a Launch Configuration mapper displays the input you 
configured on the        Flow Inputs & Outputs accordion tab for blank flows. For 
flows created with a trigger, it displays the output schema of the trigger.      

 l For flow inputs that contain only single objects, you must enter the input 
values at the root level. The example below shows how to enter the values for 
a single object,        Customer:        

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html


TIBCO Flogo® Enterprise User Guide

209 | App Development

 l When mapping an array of objects, the input must be provided at the array 
root level, which means that you must provide input for all objects in the array 
by clicking on the root of the array. You cannot configure the input at the array 
element level. 

In the example below, the        Customer is an array of objects. Each object within 
the        Customer array contains        ID,        Phone, and        Name elements. When providing 
values for        Customer, you cannot give the input at the element (ID,        Phone, or        
Name) level. Doing so does not specify the index of the        Customer object for 
which you are assigning the value(s). Hence, you must assign the value to the 
whole        Customer object. Because the        Customer array has multiple objects, 
assign values to each object in the        Customer array by separating the objects 
with a comma delimiter. The array size is determined based on the number of 
objects for which you provide values. In the example below, the array size is 
two because there are two objects for which values have been provided.        

 5. You can override app property values in the launch configuration. Properties defined 
in the app and those defined in a connection are listed under properties.  Select the 
property whose value you want to override and specify the new app property value 
on the right side.



TIBCO Flogo® Enterprise User Guide

210 | App Development

Note: For a password, you must provide an encrypted password value. For 
more information, see Encrypting Password Values. 

 6. Click      Next.      

The mapper performs validations to ensure the validity of the JSON structure and 
also validates that you have entered values for all elements that are marked as 
required in the schema. 

If there are any errors in your input, the mapper displays a list of errors.      If no errors 
are found you get the message, Input settings are alright. 



TIBCO Flogo® Enterprise User Guide

211 | App Development

In your test environment, only the validation errors related to invalid JSON structure 
prevent you from proceeding with your testing. Errors about missing values for 
required elements serve as a warning but allow you to proceed with your testing. 
This is because it is possible that an element that is marked as a required field in the 
schema may not have been used in the activity at the time of testing. In that case, 
the element is not needed for the flow to run. But in the production environment, 
your app does not run successfully until you provide input values for all elements 
marked as required in your schema.      

Exporting a Launch Configuration
There may be occasions when you want to use the same test data configurations for 
testing multiple flows. You have the option to create a Launch Configuration that contains 
this data in one flow, export the Launch Configuration, then import it into each of the 
other flows. The ability to export a Launch Configuration is particularly useful when the 
data set is very complex. In such a scenario, you can export a Launch Configuration, import 
it into another flow and test the flow with the imported Launch Configuration. Reusing a 
Launch Configuration by exporting and importing it saves you the time and effort needed 
to create a separate Launch Configuration for each flow.    

To export a Launch Configuration:    

Procedure
 1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch 

Configuration name that you want to export.      



TIBCO Flogo® Enterprise User Guide

212 | App Development

 2. Click the      Export Launch Configuration ( ) icon.      

A file with the name      <flow-name>_<Launch Configuration-name>.json is 
downloaded to your      Downloads directory. You can import this file into another flow 
and use the Launch Configuration that you just exported. Refer to      Importing a 
Launch Configuration for details on how to import a Launch Configuration.      

Note: The Launch Configuration name is not preserved, so the imported 
Launch Configuration is given a default name of "Launch Configuration x" 
where x stands for the next number in the series of existing Launch 
Configurations. For example, if you have two existing Launch 
Configurations in the flow, the imported Launch Configuration is named 
Launch Configuration 3. You have the option to edit the name to make it 
more meaningful.      

Importing a Launch Configuration
Launch Configurations are stored as JSON files, so when you export a Launch 
Configuration, you export its JSON file. You import the Launch Configuration that was 
exported from another flow by importing the JSON file of the Launch Configuration into 
the flow.    

Note: The Launch Configuration name is not preserved, so the imported Launch 
Configuration is given a default name of "Launch Configuration x" where x 
stands for the next number in the series of existing Launch Configurations. For 
example, if you have two existing Launch Configurations in the flow, the 
imported Launch Configuration is named Launch Configuration 3. You have the 
option to edit the name to make it more meaningful.    

To import a Launch Configuration, follow this procedure:    

Before you begin
You must export the Launch Configuration you want to import and have its JSON file 
accessible before you follow the procedure below.    



TIBCO Flogo® Enterprise User Guide

213 | App Development

If this is the first Launch Configuration

Procedure
 1. If this is the first Launch Configuration in the flow (no existing Launch 

Configurations), click      Test on the flow details page.      

 2. Click      Import a Launch Configuration.      

 3. You have the option to either drag the JSON file of the Launch Configuration you 
want to import, or navigate to the file using the      browse to upload link.      

 4. Click      Import. Data in the Launch Configuration being imported gets validated. In case 
there are any errors, they are displayed in the      Import dialog box.      

When there are existing Launch Configurations

If there are existing Launch Configurations in the flow, click      Import in the Flow Tester and 
either drag the JSON file that was exported from another flow, or navigate to the file using 
the      browse to upload link, then click      Import.    

Cloning a Launch Configuration
Whereas exporting and importing a Launch Configuration is useful for using the same set of 
data in two or more flows, cloning a Launch Configuration is useful when you want to test 
the same flow with two sets of data that have only minor differences.    



TIBCO Flogo® Enterprise User Guide

214 | App Development

A good use case for cloning

Clone a Launch Configuration when you need to test a flow multiple times using the same 
input schema, but different values for one or more elements in the schema during each 
round of testing. You can start by creating a Launch Configuration, then cloning it, then 
editing the cloned Launch Configuration. You can create as many clones as needed. Each 
clone is a separate Launch Configuration having the same input schema. You can change 
the values for the elements in each cloned Launch Configuration as required. Use the 
original Launch Configuration for one round of testing and the cloned Launch 
Configuration(s) for the subsequent round(s). This saves you the effort of editing a single 
Launch Configuration. 
To clone an existing Launch Configuration:    

Procedure
 1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch 

Configuration name that you want to clone.      

 2. Click the      Clone Launch Configuration ( ) icon. The cloned Launch Configuration is 

named      Copy <name-of-the-original-Launch Configuration> by default. You can 
edit the name of the Launch Configuration in the      Launch Configuration name text 
box.      



TIBCO Flogo® Enterprise User Guide

215 | App Development

Deleting a Launch Configuration
When you create a Launch Configuration, it automatically gets saved until you explicitly 
delete it.    
To delete a Launch Configuration:    

Procedure
 1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch 

Configuration name that you want to delete.      

 2. Click the      Delete Launch Configuration ( ) icon.      

Testing Flows from the CLI
This feature allows you to test your Flogo app using the Flogo app binary itself. Once you 
have built the binary for a Flogo app, you can test it using the    test command. This feature 
is also useful to automate the testing process for a flow.    

You can do the following from the CLI:    

 l List all flows in a specified app      

 l Generate test data for a given flow      

 l Test a flow against test data you specify in a JSON file      

 l Test a flow against test data you specify in a JSON file and generate the output of 
the test in an output file that you specify      

Before you begin
 l The app binary must be readily accessible on the machine from which you plan to 

test it.      

Follow these steps to get help on the      test command:    

Procedure
 1. Open a command prompt or terminal window depending on your platform.      

 2. Navigate to the folder where you stored the app binary.      



TIBCO Flogo® Enterprise User Guide

216 | App Development

 3. Run the following command to get the online help on the      test command:      

On Windows: <app-binary> -test

On Macintosh: ./<app-binary> -test

On Linux: ./<app-binary> -test

This command outputs the usage for the      test command along with some examples. 
Refer to      test Command for details.      

 4. Run the command with the appropriate option to test your app. For example, if your 
app binary name is      MyTestApp-darwin-amd64, to get the names of the flows in your 
app, run:      ./MyTestApp-darwin-amd64 -test -flows

The output of the command lists all the flows in the app.      

Using the    test command to test your flow from the 
CLI
To test a flow:      

Procedure
 1. Generate the input JSON file using the      -flowdata option with the command as 

described  (./<app_binary> -test -flowdata <flow_name>). This generates a JSON 
file (<app-name>_<flow-name>_input.json) with the input fields that you specified 
when creating the flow on the      Input tab of the      Flow Inputs & Outputs tab of the 
blank flow.      

Note: You can also use the test configurations that were exported from        
Launch Configuration as the input file instead of generating the input file 
with the        -flowdata option.      

 2. Modify the generated file,      <app-name>_<flow-name>_input.json, from step 1 to set 
specific values for the input fields in the file.      

 3. Use the      <app-name>_<flow-name>_input.json file to test your flow:      

./<app_binary> -test -flowin <app-name>_<flow-name>_input.json -flowout 
<output>.json



TIBCO Flogo® Enterprise User Guide

217 | App Development

For example, if your app name is        MyTestApp and the input file generated by        -flowin 
is        MyTestApp_MyFlow_input.json and the output file you specify for        -flowout is        
MyOutput.json, the command looks as follows:        

./MyTestApp -test -flowin MyTestApp_MyFlow_input.json -flowout 
MyOutput.json

The test Command
Use the    test command in    Flogo Enterprise to test your Flogo app.    

Options      Description and Example      

-flows

SYNTAX:        

./<binary_filename -test -flows

Lists all flows in the specified        <binary_filename> 
app.        

Example:

./MyTestApp -test -flows

where        MyTestApp is the app binary.        

-flowdata

SYNTAX:        

./<binary_filename> -test -flowdata 
<flow-name>

Generates input fields data file for a given flow. 
The input test data is generated based on the 
Flow Inputs you provided when creating the 
flow (on the        Input tab of        Flow Inputs & 
Outputs).        

Example:

./MyTestApp -test -flowdata 
TestFlow

where        MyTestApp is the app binary and        
TestFlow is a flow within        MyTestApp. A JSON 
file with the file name with format        <app-name>_
<flow-name>_input.json gets created. This file 
contains the generated input fields configured 
on the        Input tab of the        Flow Inputs & 



TIBCO Flogo® Enterprise User Guide

218 | App Development

Options      Description and Example      

Outputs.        

You can edit this file to set specific values for 
the input fields and use the file to test your 
flow using the        -flowin option described below.        

-flowin

SYNTAX:        

./<binary_filename> -test -flowin 
<path-to-input-file>

Test flow against given test data contained in 
an input JSON file. This file must exist in the 
location that you specify in the command.        

Example:

./MyTestApp -test -flowin 
/usr/TestFlow_input.json

where        MyTestApp is the app binary and        
/usr/TestFlow_input.json is the path to the 
JSON file containing the input to the flow.        

Note: You can also use the test 
configurations that were exported from        
Launch Configuration as the input file in this 
command.        

-flowout

SYNTAX:        

./<binary_filename> -test -flowin <path to test 
data file> -flowout <path-to-output-file-name>

Write flow output (if applicable) to the specified 
file. If a file with the specified name does not 
already exist in the specified location,        Flogo 
Enterprise creates the file. If you do not specify 
a file name, the output gets printed to the 
console.        

Example:

./MyTestApp -test -flowin TestFlow_
input.json -flowout TestFlow_
output.json

where        MyTestApp is the app binary,        TestFlow_



TIBCO Flogo® Enterprise User Guide

219 | App Development

Options      Description and Example      

input.json is the file containing the input data 
to the flow and        TestFlow_output.json is the 
path to the JSON file you specify to hold the 
output from the flow.        

Unit Testing
With unit testing, you can monitor the health of your application and detect errors in 
individual flows or Activity levels. 

While designing an application with multiple flows and activities, it becomes cumbersome 
to detect runtime errors at the flow and Activity levels. Using unit testing the errors at 
micro level are easily handled. You can run unit testing at any phase of the development 
cycle to verify whether activities in the process are working as expected. Using testing 
processes in the development stage (before you push the application to the production 
environment), helps detect errors and identify issues at an early stage.

Terminologies in Unit Testing 

 1. Test case: A test case is the individual unit for testing a flow. For a given set of 
inputs, the test case checks for a specific output for an Activity or the flow output. 
The expected versus actual output is compared by adding assertions to the test 
case.A test case can have multiple assertions added on activities and flow output. 
The test case is considered as passed when all the assertions in that test case pass.

 2. Assertion: An assertion is a logical expression that evaluates to a boolean value. The 
expected versus actual output is compared by using an assertion expression. For the 
passed assertion, the expression evaluates to true. A non-boolean expression always 
evaluates to false.

 3. Flow Input: Flow input is a set of input data used to run the test on the given flow. 
Each test case has its own set of inputs.

 4. Flow Output: Flow output is the output generated for the given flow for the given set 
of inputs. Flow output can have one or more assertions.

 5. Test Suite: A group of test cases make a test suite. An app can have multiple test 



TIBCO Flogo® Enterprise User Guide

220 | App Development

suites. The test suite is considered as passed when all the tests in the test suite are 
successfully run.

 6. Test Suite file: A test suite file is an exported file that contains all the test suites for 
a given Flogo app. The file has .flogotest as its extension and can be exported from 
the studio as well as the platform API. The test suite file along with the Flogo app 
binary can be used to run the test cases in the stand-alone environment outside TCI.

 7. Test Result File: A  test result file with extension .testresult has the detailed 
execution result of the test suites, the test cases under that test suite and the 
assertion execution result for each test case. The test result file is generated after 
running the tests on the exported binary.

Role Requirements
 l Admins and Users have full access to unit testing for the apps that they own.             

 l Admins cannot import unit test data for apps that they do not own.             

 l Users and read-only users have no access to unit testing for the apps that they do 
not own.             

 l Any user role cannot access unit testing if the apps are created using the platform 
API.

Creating and Running a Test Case
Unit testing in flogo tests smaller chunks of work in the process. 

A test case is a basic building block of unit testing. A test case can have one or more 
assertions on the activities in the main flow, activities in the error handler, or on the flow 
output. One flow can have multiple test cases.

To enable the unit testing mode, click  the Unit Test icon ( ) that is available on the 

Activities, Triggers, Unit test, Properties and Schema  panel on the right. Click the same 
icon to exit the unit testing mode.

Configuring Unit Test Data
To design a unit test case, you need to configure the flow inputs, activities, and flow 
outputs with the appropriate data. When you click any of these components, a 



TIBCO Flogo® Enterprise User Guide

221 | App Development

configuration dialog opens where you can configure the data.  You can configure activities 
using any of the modes listed in  Unit Testing Modes.

Unit Testing Modes
The following tables provide a detailed explanation of the various testing modes available  
for configuring the unit test cases.

For Activities with output (example mapper and RESTInvoke):

Option Description

Execute (Default) This is the default mode for all activities. 

When an activity is set to this mode, it runs as per 
the definition and configuration and does not 
have any effect in the unit test execution. You can 
use this option to reset your unit test 
configurations on the activity. 

Assert on Outputs Adds an assertion for flow output.

For more information, see Creating Assertions for 
Flow Output. 

Assert on Error Adds an assertion for the flow designed in the 
error handler. Unit test case designed for the 
error handler flow is run to detect any run time 
exceptions or errors in the flow implementation.

For more information, see Creating Assertions for 
the Error Handler.

Mock Outputs Use mock data for the activities that have an 
output.

For more information, see Using Mock Data. 

Mock Error Use mock exceptions for an activity    to find out 
whether the exception handling is being done 
correctly. 



TIBCO Flogo® Enterprise User Guide

222 | App Development

For activities without output (example LogMessage):

Option Description

Execute (Default) This is the default mode for all activities. 

When an activity is set to this mode, it runs as per 
the definition and configuration and does not 
have any effect in the unit test execution. You can 
use this option to reset your unit test 
configurations on the activity. 

Assert on Error Adds an assertion for the flow designed in the 
error handler. Unit test case designed for the 
error handler flow is run to detect any run time 
exceptions or errors in the flow implementation.

For more information, see Creating Assertions for 
the Error Handler.

Mock Error Use mock exceptions for an activity    to find out 
whether the exception handling is being done 
correctly. 

Skip Execution Skip an activity in unit testing if the activity does 
not have any output. For example, you can skip 
activities such as Sleep, eFTL Publish message, 
or StartaSubFlow. 

Note: To skip an activity with an output, you 
can mock it without any configuration data. 
For activities that do not have an output, you 
can select Skip Execution. 

Creating a Test Case
Before you start unit testing, you must create a test case. Perform the following procedure 
to create a test case:

Procedure



TIBCO Flogo® Enterprise User Guide

223 | App Development

 1. On the Flows page, click the flow that you want to run a unit test on. The flow design 
page opens. 

 2. On the flow design page, click Unit Test.

 3. On a pop-up layover, click Unit Tests to create a test case.

 4. Provide Test Name and Description for your test case. Click Create.

You can create more test cases by clicking  beside Test Cases.

Important: The unit test results are captured only when the flow execution 
successfully completes. If your test case is configured to create an exception 
while running any of the activities in the flow, then configure at least one of the 
following in your flow: 

 1. Exception Handling: Ensure that your flow has proper exception handling. 
This can be achieved either by configuring an error branch from the 
activity that can potentially raise an exception or by defining an error 
handler for the overall flow. 

 2. Assertions on Error: Add one or more assertions using the Assert on 
Error mode in the flow outputs. For more information, see Creating 
Assertions for the Error Handler.

Defining Flow Input
For a particular activity that has a flow input configured in the actual process, you must 
assign the flow input parameters before you run a test case. You can add separate test 
cases for each flow input.



TIBCO Flogo® Enterprise User Guide

224 | App Development

Note: 
 l If the flow input is configured for the activity, then you must define the 

flow input value when running a test case, otherwise the test case fails. 
However, if the flow input is not configured for the activity, then you need 
not to define the flow input value when running a test case.

 l For inputs containing single objects, you must enter the input values at the 
root level.

 l For mapping an array of objects, you must provide inputs at the array root 
level. Click the root of the array to input values for all objects. You cannot 
configure the input at the array element level.

To define the flow input parameter, follow these steps:   

Procedure
 1. On the Unit Test page, under the Main Flow tab, click Flow Input.

 2. Provide the required flow input details and click Save.

Creating Assertions
To compare the actual vs expected output, you can add multiple assertions on an activity, 
flow output, or error handler. The assertion expression always evaluates to a boolean 
value. 

Note: You cannot create assertions for the activities that do not return output. 
Similarly, you cannot create assertions for the flow output when it has no 
outputs.

To add unit test assertions for a test case: 



TIBCO Flogo® Enterprise User Guide

225 | App Development

Procedure
 1. On the Unit Test page, select one of the flows below to which you want to add an 

assertion:

 l Error Handler: On the Error Handler tab, click <Activity Name>.

 l Main Flow: On the Main Flow tab, click <Activity Name> or Flow Output.

The Unit Test Data Configuration dialog opens.

 2. From the I want to dropdown, select one of the following assertions:

 l Assert on Outputs

 l Assert on Error

Note: The assertion types displayed in the dropdown are based on the 
configuration of the selected activity.

 3. Click New Assertion or  icon to create an assertion. An assertion with the default 

name is created.

 4. Map the data from the Available Data section to the appropriate values and click 
Save.



TIBCO Flogo® Enterprise User Guide

226 | App Development

Note: 
 l While asserting an object, it is recommended to assert each property 

individually rather than asserting the entire object.

 l You cannot save changes if you delete all assertions. To remove all existing 
assertions, select a different mode from the I want to dropdown.

Creating Assertions for Flow Output

Note: You cannot create assertions for the flow output when it has no outputs.

You can add assertions to the flow output to verify that the flow produces the correct data 
by comparing the actual output against predefined assertions. 

To create assertions for the flow output, see Creating Assertions.

Creating Assertions for the Error Handler
You can also add test cases for the flow designed in the error handler. Unit test case 
designed for the error handler flow is run to detect any run time exceptions or errors in the 
flow implementation.

To create assertions for the error handler, see Creating Assertions.

Using Mock Data
In unit testing, you can mock the data for the unit that is being tested. This is useful during 
unit testing so that the external dependencies are no longer a constraint to the unit under 
test. Using mock data the dependencies are replaced by closely controlled replacements 
that simulate the behavior of the real ones.

You can use the mock data for the activities that have an output. Expressions and functions 
are not evaluated in the values given to mock outputs, the input provided is passed as-is. 

In unit testing, you can either use assertions or mock data to test the activities.



TIBCO Flogo® Enterprise User Guide

227 | App Development

Test Case Validation
Before you run a test case, Flogo auto-validates the test cases when you open the unit 
testing mode. 

To validate a test case, switch to unit testing mode to see if there any validation errors. An 
error sign  is displayed on the:

 l assertion level of the activity or mock data

 l flow input and flow output

 l test case level of activity that has errors

Running a Test case
After you are done with creating a test case, the test case is ready to run.

Procedure
 1. To run a test case, click the Play icon  next to the respective test case.

 2. After the test case run is completed, the result is generated.



TIBCO Flogo® Enterprise User Guide

228 | App Development

The result window displays the total number of test cases, which include the number 
of passed and failed test cases. It also displays the total number of assertions and 
the number of passed and failed assertions on activities in the flow, activities in the 
error handler, and in the flow output. The result for assertions on the flow output is 
displayed only if the assertion is added to the flow output.

The icons on the result window are described as follows:

Icon Description

 The assertion on the particular field has passed.

 The assertion on the particular field has failed.

 The assertion on the particular field is skipped.



TIBCO Flogo® Enterprise User Guide

229 | App Development

Tip: 
 l You need not close the result window to modify your test case. You need 

to Minimize the window, make the changes, and Retest the case.

 l You can enable the test cases to include in the Run all Test Cases. Disable 
the test cases to exclude it from Run all Test Cases.

 l You can edit, delete, or copy a test case or a test assertion at any point.

 l For an active unit test case, if you change app level schemas or app 
properties, close the session and rerun the test case.                 

Note: 
 l When running a binary, the test suites or test cases are run by default 

irrespective of whether they are enabled or disabled.                 

 l When you export a .flogotest file, only the instance that you save (either 
assertions or mock data) is reflected in the file.                 

Creating and Running a Test Suite
You can use the Test Suite feature to combine different test cases and run them at once.

Creating a Test Suite
To create a test suite:

Procedure
 1. On the Flows page, click Test Suite. The test suite dialog opens.

 2. In the Test Suite dialog, click New Test Suite. A test suite with a default name gets 
created. 

 3. You can add a test case by clicking Add test cases on the Test Suite pop-up modal.

 4. Select the test cases to be added in the suite. Click Save and close the dialog.



TIBCO Flogo® Enterprise User Guide

230 | App Development

Running a Test Suite
After you are done with creating a test suite, the test suite is ready to run.

Procedure
 1. To run a test suite, click the Play icon   next to the test suite.             

 2. After the test suite run is completed, the result is generated.

A result window displays the total number of test suites and test cases with the 
number of passed and failed test suites and test cases. 

The icons on the result window are described as follows:

Icon Description

The assertion on the particular field has passed.

The assertion on the particular field has failed.

The assertion on the particular field is skipped.



TIBCO Flogo® Enterprise User Guide

231 | App Development

Note: 
 l You can enable the test suites to include in the Run all Test Suites. 

Disable the test suite to exclude it from Run all Test Suites.               

 l When engine is running in unit test mode, it does not fail fast and 
continues on connection errors. The connections have a retry mechanism, 
then the start up time considerably increases. If any activity that uses 
connections is not mocked, the test case throws an error.                

Exporting and Importing a Unit Test
After you complete designing the test cases and test suites, you can export the unit test file 
and import it anytime to get the unit test data in a Flogo app.

The exported file has the app version attached to it. You can maintain the unit test files 
based on your app versions so that you import the correct version of the unit test file 
matching your app versions to avoid any configuration issues.

Exporting a Unit Test
Perform the following procedure to export a unit test:

Procedure
 1. On the Apps page, under Flow, click the shortcut menu .

 2. Go to Export > Unit Tests.
A .FLOGOTEST file is downloaded to your system.

Importing a Unit Test
To import a unit test:

Procedure
 1. On the Apps page, under Flows, click the shortcut menu .



TIBCO Flogo® Enterprise User Guide

232 | App Development

 2. Go to Import > Unit Tests.

 3. Drag or upload the required .FLOGOTEST file and click Upload.

Note: The unit test file is dependent on the names of the flow and activities. 
While importing, if the flow name or activity name in the flow does not match, 
the test cases of that flow and assertions on that activity gets skipped.

Enabling On-premises Services in Unit Testing
You can enable on-premises services in unit testing to run the test cases or test suites on 
the applications that are connecting to the on-premises services.

To enable services, while running a test Case or a test suite, first, you must provide the 
access Key in the Access Key ID text box on the Unit Test page. The access key is stored 
per application per browser session and gets auto-filled in unit test case and unit test suite 
once filled.

Note: 
 l If there is no access Key provided, it is considered that there are no 

activities connecting to the on-premises services.

 l If you refresh the browser window, then the access Key is cleared from the 
text box and you need to reenter the key.

To configure the hybrid agent and generate the access key, see Configuring the hybrid 
agent.

Unit Testing for the CI/CD 

Note: The information in this section is applicable for an app executable only.

This feature allows you to unit test your Flogo app using the app executable. Once you 
have built the executable for a Flogo app, you can run a unit test using the test command. 
This feature is also useful to automate the testing process for activities in development in 
CI/CD pipeline.

https://integration.cloud.tibco.com/docs/#tci/using/hybrid-agent/hybrid-proxy/db-service-hybrid-agent.html
https://integration.cloud.tibco.com/docs/#tci/using/hybrid-agent/hybrid-proxy/db-service-hybrid-agent.html


TIBCO Flogo® Enterprise User Guide

233 | App Development

You can even generate the files using the platform API by following the below steps:

Procedure
 1. Export the app JSON. For details, see exporting an app with the API.

 2. Build an app executable. For details, see building an app executable.

 3. Download the built app executable. For details, see downloading the app executable.

 4. Export the test suite file. For details, see exporting a test suite file with API.

After you have downloaded the app executable file and the test suite file, you can build a 
CI/CD pipeline to run the unit test using the below mentioned commands.

Before you begin
The app executable must be readily accessible on the machine from which you plan to test 
it.

Follow these steps to get help on the test command:

Procedure
 1. Open a command prompt or terminal window depending on your platform.             

 2. Navigate to the folder where you stored the app executable.             

 3. Run the following command to get the online help on the test command:     

 l On Windows: <app-executable> --test --test-file

 l On Macintosh: ./<app-executable> -test --test-file

 l On Linux: ./<app-executable> -test --test-file

This command outputs the usage for the test command along with some examples. 
see the test commands for details.

 4. Run the command with the appropriate option to test your app.

The output of the command generates the .testresult file for the unit test suites or test 
cases that are run. 

The Test Commands
Use the test command in Flogo to run unit test on your Flogo app.

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/export-app.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/build-app-exe.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/downld-app-exe.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/test-suites/export-flgo-test-suite.html


TIBCO Flogo® Enterprise User Guide

234 | App Development

Syntax:  ./<app-executable> --test --app <path to application json> --test-file 
<path to flogotest file> --test-suites <testsuite1, testsuite2> --output-dir 
<path to store .testresult file> --result-filename <custom name of .testresult 
file>

Options Description and example

--test Runs a unit test on the specified <executable_filename> app.

--app

(Optional)

Application JSON path on which the unit testing is to be done. 

If application JSON is not provided it takes the embedded app in the binary.

--test-file The .flogotest file that the user has obtained by exporting a unit test file.

--test-suites

(optional)

Test suite names that are to be run in unit testing.

If test suites are not provided, tests are executed for all test suites in the test 
file.

Example: --test-suites testsuite1, testsuite2

--output-dir

(optional)

Output directory in which the test results are stored.

If the output directory is not provided it stores the test result in the working 
directory.

--result-
filename

(optional)

Name of the unit testing output file.

If the test result file name is not provided it stores as <App 
Name>.testresult.



TIBCO Flogo® Enterprise User Guide

235 | Deployment and Configuration

Deployment and Configuration
After you have created and validated your app, you can  build an app executable to deploy 
and run it.

Building an App Executable
This section instructs you on how to build an app executable. 

Building the App
After you have created your app, you can build it anytime. When you build the app, its 
deployable artifact gets created. You can download it to your local machine. Each 
operating system has its build target. Select the right target for your operating system 
when building the app. You can use the built artifact to run the app.

You can also use the TIBCO Cloud Integration API to build the app executable. For more 
information on the APIs, see TIBCO Cloud™ Integration API. 

Note: Building an app executable in TIBCO® Cloud Integration always builds the 
app executable  with the latest version of Flogo.  

Before you begin
Make sure you have the following:

 l The app for which an app executable needs to be created must have a trigger and a 
flow in it. If the app does not have a trigger and flow, the app executable is not 
created.

 l Read through the Considerations. 

Procedure

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/home.html


TIBCO Flogo® Enterprise User Guide

236 | Deployment and Configuration

 1. Open the      Apps page.      

 2. Click the app for which you want to build an app executable. The page for the 
selected app opens.      

 3. On the page that opens, click      Validate and resolve errors, if any.      

 4. Open the shortcut  menu, click Build app, and select a build target option that is 

compatible with your operating system (such as Darwin/amd64 for the Macintosh).     

Note: If you have created or pushed an app using the tibcli or platform 
API, the Build App option is not displayed as the apps are read-only apps.

The following build target options are available: 

 l Macintosh: Darwin/amd64

 l 64-bit Linux: Linux/amd64

 l 32-bit Linux: Linux/x86

 l Microsoft Windows: Windows/amd64 

The app begins to build. When it is built, the deployable artifact is downloaded to 
your local machine.    

 5. To confirm whether the app executable  is built successfully, go to the History tab 
and check whether Action is displayed as APP BUILD. 

Running the App
On the Macintosh and Linux

Procedure
 1. Open a terminal.      



TIBCO Flogo® Enterprise User Guide

237 | Deployment and Configuration

 2. Run:        

chmod +x <app-file-name>

 3. Run:

./<app-file-name>

On Microsoft Windows

At the command prompt, run: 

<app-file-name>.exe

Considerations
 l You cannot build an app executable if your app uses:

 o TIBCO Cloud™ Mesh.
If your app includes an InvokeRESTService activity that is configured to use 
services from TIBCO Cloud™ Mesh (by setting the Discover services from 
TIBCO Cloud Mesh option to True), you cannot build an app executable.

 o TIBCO Cloud™ Live Apps connectors.

 o TIBCO Cloud™ AuditSafe connectors.

 o Custom Golang code.

 l SSL/TLS configuration is not enabled for inbound triggers such as GraphQL, 
ReceiveHTTPMessage, and Websocket triggers. If you configure SSL for these triggers 
in TIBCO Flogo® Enterprise and then import the app in TIBCO Cloud™ Integration, the 
SSL configuration is not displayed in  TIBCO Cloud™ Integration.

 l For the Amazon S3 Get and Amazon S3 Put activities of TIBCO Flogo® Connector for 
Amazon S3, Input Type/Output Type of File is not supported for a service or 
operation object.
If you create the app in TIBCO Flogo® Enterprise and then import the app in TIBCO 
Cloud™ Integration, the File option is not displayed in:

 o Input Type of the Upload setting of Put activity.



TIBCO Flogo® Enterprise User Guide

238 | Deployment and Configuration

 o Output Type of single object operation setting of Get activity.

 l You cannot build a docker image of an app using TIBCO Cloud™ Integration - Flogo®. 
Instead, download the Linux app executable and then build the docker image.

Exporting App JSON from an Executable
To export the app JSON from an app executable,  use the following command: 

<app_exec> export -o <app-name>.flogo app

Where:

 l <app_exec> refers to the executable of your Flogo application.

 l <app-name> is the desired name of the exported file.

This command extracts the application’s configuration and workflow details, and saves it 
as a JSON file.

Overriding an App's JSON File in the App Binary
While running the app binary, you can override the app binary's embedded JSON file with 
another JSON file by using the    -app option. This saves you the time and effort of creating 
an app binary  if you only want to make minor configuration or mapping changes in the 
app.    

To do this, run the following command:    

 l On Windows:      <app-filename>-windows_amd64 -app <new JSON file.json>

 l On Macintosh:      <app-filename>-darwin_amd64 -app <new JSON file.json>

 l On Linux:      <app-filename>-linux_amd64 -app <new JSON file.json>

Note: You can modify your activities, export the    app.json again, and run it with 
the same binary using the    -app option. For example, you can make changes to 
an existing activity. However, if you add an activity (of the same category or a 
different category) and try to run it from the app binary, it does not work.    



TIBCO Flogo® Enterprise User Guide

239 | Deployment and Configuration

Changing the Log Level of a Running App Instance
When starting an app, you can set the log level for the app by using the FLOGO_LOG_
LEVEL environment variable. For more information, see FLOGO_LOG_LEVEL. 

After the app starts, to change the log level of the running app instance without restarting 
the app, you can use the GET and PUT curl commands. You can perform the operations on 
the console or use an application such as Postman.

The Content-Type is always application/json, even if you have specified another 
Content-Type.

When the log level is changed, a message is displayed on the console.

Example
 1. Start the app as follows:      

FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_LOG_LEVEL=<log_level> ./<app_name>

 2. To get and display the log level on the console, use the GET curl command as 
follows:

curl -i -X GET http://localhost:7777/app/logger

HTTP/1.1 200 OK

Content-Type: application/json

Date: Wed, 18 Aug 2021 00:17:57 GMT

Content-Length: 17

{"level":"INFO"}

 3. To change the log level, use the PUT curl command as follows:

curl -i -X PUT -H "Content-Type: application/json" -d '
{"level":"DEBUG"}' http://localhost:7777/app/logger

HTTP/1.1 200 OK

Content-Type: application/json

Date: Wed, 18 Aug 2021 00:19:05 GMT



TIBCO Flogo® Enterprise User Guide

240 | Deployment and Configuration

Content-Length: 35

{"msg":"Log level set to 'DEBUG'"}

App Configuration Management
Flogo allows you to externalize app configuration using app properties so that you can run 
the same app binary in different environments without modifying your app. It integrates 
with configuration management systems such as Consul and AWS Systems Manager 
Parameter Store to get the values of app properties at runtime.    

You can switch between configuration management systems without modifying your app. 
You can do this by running the command to set the configuration-management-system-
specific environment variable from the command line. Since the environment variables are 
set for the specific configuration management system, at runtime, the app connects to that 
specific configuration management system to pull the values for the app properties.    

Consul
The Consul provides a key/value store for managing app configuration externally.    Flogo 
Enterprise allows you to fetch values for app properties from Consul and override them at 
runtime.    

Note: This section assumes that you have set up Consul and know-how Consul is 
used to storing service configuration. Refer to the Consul documentation for 
consul-specific information.    

A Flogo app connects to the Consul server as its client by setting the environment variable,    
FLOG_APPS_PROPS_CONSUL. At runtime, you must provide the Consul server endpoint for 
your app to connect to a Consul server. You have the option to enter the values for the 
Consul connection parameters. You can either type in their values as JSON strings or create 
a file that contains the values and use the file as input.    

Consul can be started with or without    acl_token. If using an ACL token, make sure to have 
the ACL configured in Consul.       



TIBCO Flogo® Enterprise User Guide

241 | Deployment and Configuration

Using Consul
Below is a high-level workflow for using Consul with your Flogo app.    

Before you begin
You must have access to Consul. 

Set up Consul and understand how Consul is used to storing service configuration. For 
information on Consul, refer to the Consul documentation.    
To use Consul to override app properties in your app (properties that were set in    Flogo 
Enterprise):    

Procedure
 1. Export your app binary from      Flogo Enterprise. Refer to      Exporting and Importing an 

App for details on how to export the app.       

 2. Configure key/value pairs in Consul for the app properties whose values that you 
want to override. At runtime, the app fetches these values from the Consul and uses 
them to replace the default values that were set in the app. 

 3. 
Important: When setting up the Key in Consul, make sure that the Key 
name matches exactly with the corresponding app property name in the        
Application Properties dialog in        Flogo Enterprise. If the property name 
does not match exactly,  a warning message is displayed, and the app uses 
the default value for the property that you configured in        Flogo Enterprise.      

 4. Set the      FLOGO_APP_PROPS_CONSUL environment variable to set the Consul server 
connection parameters. See      Setting the Consul Connection Parameters for details.      

Consul Connection Parameters
Provide the following configuration information during runtime to connect to the Consul 
server.    



TIBCO Flogo® Enterprise User Guide

242 | Deployment and Configuration

Property 
Name      

Require
d      

Description      

server_
address      

Yes      Address of the Consul server, which could be run locally or elsewhere 
in the cloud.      

key_
prefix      

No      Prefix to be prepended to the lookup key. This is essentially the 
hierarchy that your app follows to get to the Key location in the 
Consul. This is helpful in case the key hierarchy is not fixed and may 
change based on the environment during runtime. It is also helpful in 
case that you want to switch to a different configuration service such 
as the AWS param store. Although it is a good idea to include the app 
name in the        key_prefix, it is not required.        key_prefix can be any 
hierarchy that is meaningful to you.        

As an example of a        key_prefix, if you have an app property (for 
example,        Message) that has two different values depending on the 
environment from which it is being accessed (for example,        dev or        test 
environment), your        <key_prefix> for the two values can be        
/dev/<APPNAME>/ and        /test/<APPNAME>/. At run time, the right value 
for        Message is picked up depending on which        <key_prefix> you 
specify in the        FLOGO_APP_PROPS_CONSUL environment variable. Hence, 
setting a        <key_prefix> allows you to change the values of the app 
properties at runtime without modifying your app.        

acl_
token      

No      Use this parameter if you have key access protected by ACL. Tokens 
specify which keys can be accessed from the Consul. You create the 
token on the ACL tab in Consul.        

During runtime, if you use the        acl_token parameter, Key access to 
your app is based on the token you specify.        

To protect the token, encrypt the token for the        key_prefix where your 
Key resides and provides the encrypted value of that token by 
prefixing the        acl_token parameter with SECRET. For example,        "acl_
token": 
"SECRET:QZLOrtN3gOEpXgUuud6jprgo/WzLR7j+Twv28/4KCp7573snZWo+h
GuQauuR2o/7TJ+ZLQ==". Note that the encrypted value follows the        
key_prefix format.        
Provide the encrypted value of the token as the SECRET. SECRETS get 
decrypted at runtime. To encrypt the token, you obtain the token from 



TIBCO Flogo® Enterprise User Guide

243 | Deployment and Configuration

Property 
Name      

Require
d      

Description      

the Consul. Then, encrypt it using the app binary by running the 
following command from the directory in which your app binary is 
located:        

./<app_binary> --encryptsecret <token_copied_from_Consul>

The command outputs the encrypted token that you can use as the 
SECRET.        

Note: Since special characters (such as `! | < > & `) are shell 
command directives, if they appear in the token string when 
encrypting the token, you must use a backslash (\) to escape such 
characters.        

insecure_
connecti
on      

No      Set to        True if you want to connect to a secure Consul server without 
specifying client certificates. This should only be used in test 
environments. 

Default: False     

Setting the Consul Connection Parameters
You set the values for app properties that you want to override by creating a Key/Value 
pair for each property in Consul. You can create a standalone property or a hierarchy that 
groups multiple related properties.    

Before you begin
This document assumes that you have access to Consul and are familiar with its use.    
To create a standalone property (without hierarchy), you simply enter the property name 
as the name of the Key when creating the Key in Consul. When you create a property 
within a hierarchy, enter the hierarchy in the following format in the    Create Key field in 
Consul:    <key_prefix>/<key_name> where    <key_prefix> is a meaningful string or hierarchy 
that serves as a path to the key in Consul and    <key_name> is the name of the app property 
whose value you want to override. 
For example, in    dev/Timer/Message and    test/Timer/Message,    dev/Timer and    test/Timer 
are the    <key_prefix> which could stand for the dev and test environments and    Message is 



TIBCO Flogo® Enterprise User Guide

244 | Deployment and Configuration

the key name. During runtime, you provide the    <key_prefix> value that tells your app the 
location in Consul from where to access the property values.    

Warning: The Key name in Consul must be identical to its counterpart in the      
Application Properties dialog in      Flogo Enterprise. If the key name does not 
match exactly, a warning message is displayed, and the app uses the default 
value that you configured for the property in      Flogo Enterprise.      

Warning: A single app property, for example,      Message, is looked up by your app 
as either      Message or      <key_prefix>/Message in Consul. An app property within a 
hierarchy such as      x.y.z is looked up as      x/y/z or      <key_prefix>/x/y/z in Consul. 
Note that the dot in the hierarchy is represented by a forward slash (/) in Consul.      

After you have configured the app properties in Consul, you need to set the environment 
variable,      FLOGO_APP_PROPS_CONSUL, with the Consul connection parameters for your app to 
connect to the Consul. When you set the environment variable, it triggers the app to run, 
which connects to the Consul using the Consul connection parameters you provided and 
pulls the app property values from the      key_prefix location you set by matching the app 
property name with the      key_name. Hence, the Key names must be identical to the app 
property names defined in the      Application Properties dialog in      Flogo Enterprise.    

You can set the      FLOGO_APP_PROPS_CONSUL environment variable either by directly entering 
the values as a JSON string on the command line or placing the properties in a file and 
using the file as input to the      FLOGO_APP_PROPS_CONSUL environment variable.    

Entering the Consul Parameter Values as a JSON String

To enter the Consul parameters as a JSON string, enter the parameters as key/value pairs 
using the comma delimiter. The following examples illustrate how to set the values as 
JSON strings. You would run the following from the location where your app resides:    

An example when not using security without tokens enabled:      

FLOGO_APP_PROPS_CONSUL="{\"server_
address\":\"http:\/\/127.0.0.1:8500\"}" ./Timer-darwin-amd64

Where      Timer-darwin-amd64 is the name of the app binary.    



TIBCO Flogo® Enterprise User Guide

245 | Deployment and Configuration

An example when tokens are enabled and app properties are within a hierarchy:      

FLOGO_APP_PROPS_CONSUL="{"server_address":"http://127.0.0.1:8500","key_
prefix":"/dev/Timer","acl_token":"SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"}"

 Where      /dev/Timer is the path and      SECRET is the encrypted value of the token obtained 
from the Consul.    

This command directs your app to connect to the Consul at the      server_address and pull 
the values for the properties from the Consul and run your app with those values.    

Refer to the     Consul Connection Parameters section for a description of the parameters. 
Refer to      Encrypting Password Values for details on how to encrypt a value.    

Setting the Consul Parameter Values Using a File

To set the parameter values in a file, create a      .json file, for example,      consul_config.json 
containing the parameter values in key/value pairs. Here is an example:      

{
     "server_address": "http://127.0.0.1:32819",
     "key_prefix": "/dev/<APPNAME>/",
     "acl_token": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"
 }

Place the      consul_config.json file in the same directory that contains your app binary.    

Run the following from the location where your app binary resides to set the      FLOGO_APP_
PROPS_CONSUL environment variable. For example, to use the      consul_config.json file from 
the example above, run:      

FLOGO_APP_PROPS_CONSUL=consul_config.json ./<app_binary_name>

The command extracts the Consul server connection parameters from the file and connects 
to the Consul to pull the app properties values from the Consul and runs your app with 
those values.    

Consul properties can also be run using docker by passing the same arguments for the 
docker image of a binary app. For more information, see Building the App.  



TIBCO Flogo® Enterprise User Guide

246 | Deployment and Configuration

Overriding an App Property at Runtime
While using config management services like Consul or AWS Params store, you can update 
or override an app property at runtime without restarting or redeploying the app.

Note: Currently, this functionality is only available for app properties mapped in 
activities. It is not available for app properties in triggers and connections.

Before you begin
Set the following environment variables:

Environment Variable Description

FLOGO_APP_PROP_RECONFIGURE=true Specifies that app properties can be updated 
or overridden at runtime. 

FLOGO_APP_PROP_SNAPSHOTS=true Used along with FLOGO_APP_PROP_
RECONFIGURE. If you do not want your 
application to pick the updated app 
properties dynamically for a running flow, set 
this variable to true. The updated values are 
effective only for new flows and not existing 
ones. 

FLOGO_HTTP_SERVICE_PORT=<port number> Specifies the service port.  For apps running 
in TCI, you do not need to specify the port. 
The default is 7777.  

FLOGO_APP_PROPS_CONSUL="{"server_
address":"http://127.0.0.1:8500"}"

Specifies the Consul server address. 

Overriding Values by Specifying New Values

Procedure
 1. In the Flogo app, create an app property and map it to the activities as required.             



TIBCO Flogo® Enterprise User Guide

247 | Deployment and Configuration

 2. Create the same key as the app property and add some value.             

 3. Run the app with the environment variables in the "Before you begin" section. 
The app takes all the configured values.             

 4. Update the values.             

 5. To reconfigure the app property values, use the API as follows:

curl -X PUT localhost:7777/app/config/refresh

A successful response is returned from the API. 

 6. Open the app property update logs to verify that the new app property values are 
used by the activities.

Overriding Values by Specifying New Values in the API 
Directly
You can specify the new values of app properties directly through the body of the 
reconfigure API.  This method takes priority over any other resolver specified.

Example:

curl -X PUT -H "Content-Type: application/json" -d '{"Property_
1":"Value"}' localhost:7777/app/config/refresh

Important Considerations 
 l If the same property exists in Consul,  the property from the body of the reconfigure 

API is used.

 l Any new request on the API does not save property values provided on a previous 
request.

 l Properties mentioned in an earlier request and not mentioned in the new request 
take values if present from other resolvers mentioned or the last saved value.

 l Properties that are not mentioned in any resolver take the value from TIBCO Cloud 
Integration.



TIBCO Flogo® Enterprise User Guide

248 | Deployment and Configuration

AWS Systems Manager Parameter Store
AWS Systems Manager Parameter Store is a capability provided by AWS Systems Manager 
for managing configuration data. You can use the Parameter Store to centrally store 
configuration parameters for your apps.    

Your Flogo app connects to the AWS Systems Manager Parameter Store server as its client. 
At runtime, you are required to provide the Parameter Store server connection details by 
setting the    FLOGO_APP_PROPS_AWS environment variable for your app to connect to the 
Parameter Store server. You have the option to enter the values for the Parameter Store 
connection parameters either by typing in their values as JSON strings or by creating a file 
that contains the values and using the file as input.    

Using the Parameter Store
Below is a high-level workflow for using AWS Systems Manager Parameter Store with your 
Flogo app.    

Before you begin
This document assumes that you have an AWS account, have access to the AWS Systems 
Manager, and know how to use the AWS Systems Manager Parameter Store. Refer to the 
AWS documentation for the information on the AWS Systems Manager Parameter Store.    

Overview

To use the Parameter Store to override app properties set in      Flogo Enterprise:    

 1. Build an app binary that has the app properties already configured in      Flogo 
Enterprise. For more information on building an app binary, see Building the App.       

 2. Configure the app properties that you want to override in the Parameter Store. At 
runtime, the app fetches these values from the Parameter Store and uses them to 
replace the default values that were set in the app.      

 3. Set the      FLOGO_APP_PROPS_AWS environment variable to set the Parameter Store 
connection parameters from the command line.      

When you run the command for setting the      FLOGO_APP_PROPS_AWS environment 
variable, it runs your app, connects to the Parameter Store, and fetches the 
overridden values for the app properties from the Parameter Store. Only the values 



TIBCO Flogo® Enterprise User Guide

249 | Deployment and Configuration

for properties that were configured in the Parameter Store are overridden. The 
remaining app properties get their values from the      Application Properties dialog.      

See the      Setting the Parameter Store Connection Parameters and      Parameter Store 
Connection Parameters sections for details.    

Parameter Store Connection Parameters
To connect to the AWS Systems Manager Parameter Store, provide the configuration below 
at runtime.    

Property 
Name      

Required      Data Type      Description      

access_
key_id      

Yes      String      Access ID for your AWS account. To protect the 
access key, an encrypted value can be provided in 
this configuration. See        Encrypting Password Values 
section for information on how to encrypt a string.        

Note: The encrypted value must be prefixed 
with SECRET: For example, 
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+        

This configuration is optional if        use_iam_role is 
set to        true.      

secret_
access_key      

Yes      String      Secret access key for your AWS account. This 
account must have access to the Parameter Store. 
To protect the secret access key, an encrypted 
value can be provided in this configuration. See 
the        Encrypting Password Values section for 
information on how to encrypt a string.        

Note: The encrypted value must be prefixed 
with SECRET: For example,        
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+        

 This configuration is optional if        use_iam_role is 
set to        true.      



TIBCO Flogo® Enterprise User Guide

250 | Deployment and Configuration

Property 
Name      

Required      Data Type      Description      

region      Yes      String      Select a geographic area where your Parameter 
Store is located. This configuration is optional if        
use_iam_role is set to        true and your Parameter 
Store is configured in the same region as the 
running service. When running in AWS services (for 
example, EC2, ECS, EKS), this configuration is 
optional if the Parameter Store is in the same 
region as these services.      

param_
prefix      

No      String      This is essentially the hierarchy that your app 
follows to get to the app property location in the 
Parameter Store. It is the prefix to be prepended 
to the lookup parameter. This is helpful in case the 
parameter hierarchy is not fixed and may change 
based on the environment during runtime.        

This is also helpful in case that you want to switch 
to a different configuration service such as the 
Consul KV store.        
As an example of a        param_prefix, if you have an 
app property (for example,        Message) that has two 
different values depending on the environment 
from which it is being accessed (for example, dev 
or test environment), your        param_prefix for the 
two values can be        /dev/<APPNAME/ and        
/test/<APPNAME/. At run time, the right value for        
Message is picked up depending on which param_
prefix you specify in the        FLOGO_APP_PROPS_AWS 
environment variable. Hence, setting a param_
prefix allows you to change the values of the app 
properties at runtime without modifying your app.      

use_iam_
role      

No      Boolean      Set to        true if the Flogo app is running in the AWS 
services (such as EC2, ECS, EKS) and you want to 
use the IAM role (such as instance role or task role) 
to fetch parameters from the Parameter Store. In 



TIBCO Flogo® Enterprise User Guide

251 | Deployment and Configuration

Property 
Name      

Required      Data Type      Description      

that case,        access_key_id and        secret_access_key 
are not required.      

session_
token 

No String Enter session token if you are using temporary 
security credentials. Temporary credentials expire 
after a specified interval. For more information, 
see the AWS documentation.

Setting the Parameter Store Connection Parameters
You can use the AWS Systems Manager Parameter Store to override the property value set 
in your Flogo app. You do so by creating the property in the Parameter Store and assigning 
it the value with which to override the default value set in the app. You can create a 
standalone property or a hierarchy (group) in which your property resides.    

Before you begin
This document assumes that you have an AWS account and the Parameter Store and are 
familiar with its use. Refer to the AWS documentation for more information on the 
Parameter Store.    
To create a standalone property (without hierarchy), you simply enter the property name 
when creating it. To create a property within a hierarchy enter the hierarchy in the 
following format when creating the property:    <param_prefix>/<property_name>, where    
<param_prefix> is a meaningful string or hierarchy that serves as a path to the property 
name in Parameter Store and    <property_name> is the name of the app property whose 
value you want to override. 
For example, in    dev/Timer/Message and    test/Timer/Message/dev/Timer and    test/Timer 
are the    <param_prefix> which could stand for the dev and test environments respectively, 
and    Message is the key name. During runtime, you provide the    <param_prefix> value, 
which tells your app the location in the Parameter Store from where to access the property 
values.    



TIBCO Flogo® Enterprise User Guide

252 | Deployment and Configuration

Warning: The parameter name in the Parameter Store must be identical to its 
counterpart (app property) in the      Application Properties dialog in      Flogo 
Enterprise. If the parameter names do not match exactly, a warning message is 
displayed, and the app uses the default value that you configured for the 
property in      Flogo Enterprise.      

Warning: A single app property, for example,      Message, is looked up by your app 
as either      Message or      <param_prefix>/Message in the Parameter Store. An app 
property within a hierarchy such as      x.y.z is looked up as      x/y/z or      <param_
prefix>/x/y/z in the Parameter Store. Note that the dot in the hierarchy is 
represented by a forward slash (/) in the Parameter Store.      

After you have configured the app properties in the Parameter Store, you need to set the 
environment variable,      FLOGO_APP_PROPS_AWS, with the Parameter Store connection 
parameters for your app to connect to the Parameter Store. When you set the environment 
variable, it triggers your app to run, which connects to the Parameter Store using the 
Parameter Store connection parameters you provided and pulls the app property values 
from the      param_prefix location you set by matching the app property name with the      
param_name. Hence,  the property names must be identical to the app property names 
defined in the      Application Properties dialog in      Flogo Enterprise.    

You can set the      FLOGO_APP_PROPS_AWS environment variable either by manually entering 
the values as a JSON string on the command line or placing the properties in a file and 
using the file as input to the      FLOGO_APP_PROPS_AWS environment variable.    

If your Container is Not running on ECS or EKS

If the container in which your app resides is running external to ECS, you must enter the 
values for      access_key_id and      secret_access_key parameters when setting the      FLOGO_
APP_PROPS_AWS environment variable.    

Entering the Parameter Store Values as a JSON string

To enter the Parameter Store connection parameters as a JSON string, enter the 
parameters and their value using the comma delimiter. The following example illustrates 
how to set the values as JSON strings. This would be run from the location where your app 
resides:    



TIBCO Flogo® Enterprise User Guide

253 | Deployment and Configuration

FLOGO_APP_PROPS_AWS="{"access_key_id":"SECRET:XXXXXXXXXXXXX",
"secret_access_key":"SECRET:XXXXXXXXXXX",
"region":"us-west-2",
"session_
token":"SECRET:1UBrEIezye8W1mmx7NLAiQzopmp58kUa02XdpmxYqVvkGKUrdN+wgCeH3
mxZ"
"param_prefix":"/MyFlogoApp/Dev/"}"

Where      /MyFlogoApp/Dev/ is the param_prefix (path to the properties) and      SECRET is the 
encrypted version of the key or key_id obtained from the Parameter Store.    

This connects to the Parameter Store, pulls the values for the properties, and overrides the 
default values that were set in the app.    

Refer to the     Parameter Store Connection Parameters section for a description of the 
parameters.    

Setting the Parameter Store values using a file

To set the parameter values in a file, create a      .json file, for example,      aws_config.json 
containing the parameter values. Here is an example:      

{
"access_key_id": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"param_prefix": "/MyFlogoApp/dev/",
 "secret_access_key": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"region": "us-west-2",
"session_
token":"SECRET:1UBrEIezye8W1mmx7NLAiQzopmp58kUa02XdpmxYqVvkGKUrdN+wgCeH3
mxZ"
}

Place the      aws_config.json file in the same directory, which contains your app binary.    

Run the following from the location where your app binary resides to set the      FLOGO_APP_
PROPS_AWS environment variable. For example, to use the      aws_config.json file from the 
example above, run:      

FLOGO_APP_PROPS_AWS=aws_config.json ./<app_binary_name>

This connects to the Parameter Store, pulls the overridden app properties values from the 
Parameter Store, and runs your app with those values.    



TIBCO Flogo® Enterprise User Guide

254 | Deployment and Configuration

If your Container is running on ECS or EKS

In case your Flogo apps are running in ECS and intend to use the EC2 instance credentials, 
set      use_iam_role to      true. The values for      access_key_id and      secret_access_key are 
gathered from the running container. Ensure that the ECS task has permission to access 
the param store.    

The IAM role that you use must have permissions to access the parameter(s) from the AWS 
Systems Manager Parameter Store. The following policy must be configured for the IAM 
role:    

{
    "Version":"2012-10-17",
    "Statement":[
       {
          "Action":[
             "ssm:GetParamaters",
             "ssm:GetParamatersByPath",
          ],
          "Effect":"Allow",
          "Resource":"*"
       }
    ]
 }

The following is an example of how to set the      FLOGO_APP_PROPS_AWS environment variable 
when your container is running on ECS. Notice that the values for      access_key_id and      
secret_access_key are omitted:    

FLOGO_APP_PROPS_AWS="{\"use_iam_role\":true, \"region\":\"us-west-2\"}" 
./Timer-darwin-amd64

AWS AppConfig
AWS AppConfig is a feature provided by AWS System Manager, which lets you create, 
manage, and quickly deploy application configurations. You can use AWS AppConfig to 
simplify the task of configuring changes in application configuration, validating the 
changed configurations, deploying the new configurations and monitoring it.

Using AWS AppConfig, you can override the Flogo app properties at runtime. Your Flogo 
app retrieves configuration data by establishing the connection with AWS AppConfig.  To 
enable the connection between your Flogo app and AWS AppConfig, you are required to set 



TIBCO Flogo® Enterprise User Guide

255 | Deployment and Configuration

the value of FLOGO_APP_PROPS_AWS_APPCONFIG to True. Here, the session retrieves the 
data from AppConfig only once at the start of the session.

Using the AppConfig
Below is a high-level work flow for using AWS Systems Manager AppConfig with your Flogo 
app.

Before you begin
This document assumes that you have an AWS account, have access to the AWS Systems 
Manager, and know how to use the AWS Systems Manager AppConfig. Refer to the AWS 
documentation for the information on the AWS Systems Manager AppConfig.

Overview

 1. Build an app executable that has the app properties already configured in Flogo. For 
more information on building an app executable, see Building an App Executable.

In case of TCI, for a new app, you need to set the engine variables for the Flogo app 
before pushing it to TCI. For an existing app you can configure the engine variables 
and push the updates to the app in the TCI.  

 2. Configure AWS AppConfig to work with your Flogo application. To define the 
properties in AWS AppConfig:     

 a. Create an application in AWS Appconfig to organize and manage configuration 
data.

 b. Select the environment of the application in the Appconfig same as that of the 
environment of your Flogo app.

 c. Create a configuration profile.

A configuration profile enables AWS AppConfig to access your hosted 
configuration versions in its stored location. You can store configurations in 
YAML, JSON, or as text documents in the AWS AppConfig hosted configuration 
store.                   

Refer to AWS documentation for detailed procedure to set up the 
AWS AppConfig.

 3. Configure the app properties that you want to override in the AppConfig. At runtime, 



TIBCO Flogo® Enterprise User Guide

256 | Deployment and Configuration

the app fetches these values from the AppConfig and uses them to replace the 
default values that were set in your Flogo app.

 4. Set the value of the parameter FLOGO_APP_PROPS_AWS_APPCONFIG to True to 
establish the connection between your Flogo app and AWS AppConfig.

Note: If you change the app properties values in AWS AppConfig, then you need 
to repush the app to TCI or re-execute the app executable.

 

AppConfig Client Configuration
IAM role that you would be using to fetch the configuration details must have permissions 
to access configurations from AWS AppConfig. For the same, Following policy must be 
configured for IAM role:

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

{
 "Version": "2012-10-17",
 "Statement": [
   { 
    "Sid": "VisualEditor0",
    "Effect": "Allow",
    "Action": [         
      "appconfig:GetLatestConfiguration",
      "appconfig:StartConfigurationSession",
      "appconfig:ListApplications",
      "appconfig:GetApplication",
      "appconfig:ListEnvironments",
      "appconfig:GetEnvironment",
      "appconfig:ListConfigurationProfiles",
      "appconfig:GetConfigurationProfile",
      "appconfig:GetConfiguration",
      "appconfig:ListDeployments",             
      "appconfig:GetDeployment"
     ],
     "Resource": "*"
    }



TIBCO Flogo® Enterprise User Guide

257 | Deployment and Configuration

  ]
}

To connect to the AWS Systems Manager AppConfig, provide below configuration at 
runtime.

Property Name Required Data Type Description

FLOGO_APP_PROPS_AWS_
APPCONFIG

Yes Boolean Set this as True to 
enable the 
AWS AppConfig support 
feature.

AWS_APPCONFIG_PROFILE_
NAME

Yes String This is name of the 
configuration profile 
created while defining 
the properties in 
AppConfig.

AWS_APPCONFIG_ENV_
NAME

Yes String This is name of the 
environment provided 
while creating 
application in the 
AppConfig.

AWS_APPCONFIG_APP_
IDENTIFIER_NAME

No String Set app identifier name 
for AWS AppConfig. If 
the name is not set, it 
takes the name as that 
of your Flogo app.

It is required only if your 
AWS AppConfig app 
identifier name does not 
match with the Flogo 
app name.

AWS_APPCONFIG_REGION No String Select AWS region where 
your Appconfig is 
located.



TIBCO Flogo® Enterprise User Guide

258 | Deployment and Configuration

Property Name Required Data Type Description

This field is not required 
when your app binary 
(executable) is running 
on AWS EC2 instance in 
the same region as that 
of your AppConfig 
region. For all other 
cases, you must set the 
region.

AWS_APPCONFIG_ACCESS_
KEY_ID

No String If the access key ID is 
not provided, it is picked 
up by following the AWS 
default credentials 
provider chain.

For flogo app 
deployment on TCI, you 
must provide this value.

AWS_APPCONFIG_SECRET_
ACCESS_KEY

No String If the secret access key 
is not provided, it is 
picked up by following 
the AWS default 
credentials provider 
chain. 

For flogo app 
deployment on TCI, you 
must provide this value.

AWS_APPCONFIG_SESSION_
TOKEN 

No String Set this if you want to 
use your session token 
for AWS AppConfig API 
calls.

AWS_APPCONFIG_
ASSUMEDROLE_ARN

No String Set the assume role ARN 
if you want to use 



TIBCO Flogo® Enterprise User Guide

259 | Deployment and Configuration

Property Name Required Data Type Description

assumed role to fetch 
the values from AWS 
AppConfig.

Tip: For sensitive fields such as ACCESS_KEY_ID, SECRET_ACCESS_KEY, and 
SESSION_TOKEN  an encrypted value can be provided in this configuration. See 
the Encrypting Password Values section for information on how to encrypt a 
string. 

Note: The encrypted value must be prefixed with SECRET: For example, 
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

Environment Variables
Flogo Enterprise allows you to externalize the configuration of app properties using 
environment variables.    

Using environment variables with app properties is a two-step process:    

Procedure
 1. Create one environment variable per app property.      

 2. Set the      FLOGO_APP_PROPS_ENV=auto environment variable, which directs it to fetch 
the values of the app properties for which you have created environment variables.      

Note: App binaries that were generated from a version of      Flogo Enterprise older 
than 2.4.0 do not support app properties override using environment variables. 
For example, if you attempt to run an older app binary from      Flogo Enterprise 
2.4.0 (which supports the environment variable functionality) and override app 
properties in the app using environment variables, the binary runs normally but 
the app property override gets ignored.      



TIBCO Flogo® Enterprise User Guide

260 | Deployment and Configuration

Exporting App Properties to a File
You can export the app properties to a JSON file or a    .properties file. The exported JSON 
file can be used to override app property values.    The    .properties file can be used to 
create a ConfigMap in Kubernetes.    When using the exported properties file, the values in 
the properties file get validated by the app during runtime. If a property value in the file is 
invalid, you get an error saying so and the app proceeds to use the default value for that 
property instead.    

Exporting the app properties to a JSON file

Exporting the app properties to a JSON file allows you to override the default app property 
values during app runtime. It is useful if you want to test your app by plugging in different 
test data with successive test runs of your app. You can set the app properties in the 
exported file to a different value during each run of the app. The default app property 
values get overridden with the values that you set in the exported file.    

To export the app properties to a JSON file, run the following command from the directory 
where your app resides:      

./<app-binary-name> -export props-json

 The properties get exported to      <app-binary-name>-props.json file.    

Exporting app properties to a      .properties file

You cannot use a      .properties file format to override the app properties that were 
externalized using environment variables.      The      .properties file is useful when creating the 
ConfigMap in Kubernetes.      To export the app properties to a      .properties file, run the 
following command from the directory where your app resides:      

./<app-binary-name> -export props-env

The properties get exported to      <app-binary-name>-env.properties file. The names of the 
app properties appear in all uppercase in the exported      env.properties file. For example, a 
property named      Message appears as      MESSAGE. A hierarchy such as      x.y.z appears as      X_Y_Z.    



TIBCO Flogo® Enterprise User Guide

261 | Deployment and Configuration

Using a JSON File to Override App Property Values
To override an app prop using a JSON file:

Procedure
 1. In the JSON file, make sure that the app property which you want to override is set 

as follows: 
"<property>":"<value>"
For example:

{
"IntegerOverrideVal":453,
"StringOverridingValue":"hello",
"BoolValue":true
}

Note: Only for  certificates, the format of the property must be: 
"<property>":"<encoded_value>"
To get the encoded value of the contents, you can use 
https://www.base64encode.org/ or any other base64 encoding tool.

 2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable 
as follows:
FLOGO_APP_PROPS_JSON=/<filepath>/<JSON filename>.json ./<binary>

Example: Overriding a Certificate Using a JSON File
You can override a server key and certificate using an app property. You would, typically, 
need to override a certificate if the existing certificate has expired or you want to use a 
custom certificate. You can directly override the certificate at runtime instead of re-
configuring the app. In such a case:

Procedure
 1. In the JSON file, set the ServerKey and ServerCertificate app properties as 

follows: 

{

"ServerKey":"LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2Z0l",

https://www.base64encode.org/


TIBCO Flogo® Enterprise User Guide

262 | Deployment and Configuration

"ServerCertificate":"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1J",

}

 2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable 
as follows:
FLOGO_APP_PROPS_JSON=/home/john/Downloads/appPropOverride.json 
./RestSSLService-linux_amd64

Overriding Security Certificate Values
The use of environment variables to assign new values to your app properties at runtime is 
a handy method that you can use to test your app with multiple data sets.    

Warning: Using environment variables to override app properties in Lambda 
apps is not currently supported.      

Follow these steps to set up the environment variables and use them during app runtime.    

Step 1: Create environment variables for your app properties

You start by creating one environment variable for each app property that you want to 
externalize. To do so, run:      

export <app-property-name>="<value>"

For example, if your app property name is      username, run      export username="abc@xyz.com" 
or      export USERNAME="abc@xyz.com"

A few things to note about this command:    

 l Since special characters (such as `! | &lt; &gt; &amp;@ `) are shell command 
directives, if they appear in      value, enclosing the      value in double-quotes tells the 
system to treat such characters as literal values instead of shell command directives.      

 l The      app-property-name must match the app property exactly or it can use all 
uppercase letters. For example, the app property,      Message, can either be entered as      
Message or      MESSAGE, but not as      message.      

 l If you want to use a hierarchy for your app property, be sure to use underscores (_) 
between each level instead of the dot notation. For example, for an app property 



TIBCO Flogo® Enterprise User Guide

263 | Deployment and Configuration

named      x.y.z, the environment variable name should be either      x_y_z or      X_Y_Z.      

Step 2: Set      FLOGO_APP_PROPS_ENV=auto environment variable

To use the environment variables during app runtime, set the      FLOGO_APP_PROPS_ENV=auto 
environment variable.    

To do so, run:      

FLOGO_APP_PROPS_ENV=auto ./<app-binary>

For example,      FLOGO_APP_PROPS_ENV=auto MESSAGE="This is variable 1." 
LOGLEVEL=DEBUG ./Timer-darwin-amd64

Note: When setting variables of type      password be sure to encrypt its value for 
security reasons. For more information, see      Encrypting Password Values.      

Setting the      FLOGO_APP_PROPS_ENV=auto directs your app to search the list of environment 
variables for each app property by matching the environment variable name to the app 
property name. When it finds a matching environment variable for a property, the app pulls 
the value for the property from the environment variable and runs the app with those 
values. Hence, it is mandatory that the app property name exactly matches the 
environment variable name for the property.    

App properties that were not set as environment variables pick up the default values set 
for them in the app. A warning message similar to the following is displayed in the output:      
<property_name> could not be resolved. Using default values.

Example: Overriding a Certificate Using an Environment 
Variable
You can override a server key and certificate using an app property. You would, typically, 
need to override a certificate if the existing certificate has expired or you want to use a 
custom certificate. You can directly override the certificate at runtime instead of 
reconfiguring the app. In such a case:

 1. Export the base64 encoded values of the content of the file in the terminal itself as 
follows:
export ServerCertificate=<base64encodedCertificateFileContent>



TIBCO Flogo® Enterprise User Guide

264 | Deployment and Configuration

export ServerKey=<base64encodedKeyFileContent>

 2. Set the      FLOGO_APP_PROPS_ENV=auto environment variable as follows:
FLOGO_APP_PROPS_ENV=auto ./<app-binary>

Encrypting Password Values
When entering passwords on the command line or in a file, it is always a good idea to 
encrypt their values for security reasons.    Flogo Enterprise has a utility that you can use to 
encrypt passwords.    

Before you begin
You must have the password to be encrypted handy to run the utility.    
To encrypt a password, run the following:    

Procedure
 1. Open a command prompt or a terminal.      

 2. Navigate to the location of the app binary and run the following command:      

./<app_binary> --encryptsecret <value_to_be_encrypted>

The command outputs the encrypted value, which you can use when setting the 
password in a file or setting the password from the command line or using 
environment variables. For example,      export 
PASSWORD="SECRET:t90Ixj+QYCMFbqCEo/UnELlPPhrClMzv".      

Note that the password value is enclosed in double-quotes. Since special characters 
(such as `! | <, >, &, `) are shell command directives, if such characters appear in the 
encrypted string, using double quotes around the encrypted value directs your 
system to treat them as literal characters. Also, the encrypted value must be 
preceded by      SECRET:

Keep in mind that when you run the      env command to list the environment variables, 
the command does not output the environment variable for the password.      



TIBCO Flogo® Enterprise User Guide

265 | Deployment and Configuration

Container Deployments
You can run Flogo apps as containerized apps in Docker containers and use Kubernetes to 
deploy, manage and scale the apps.       

Kubernetes
You can package a Flogo app binary in a docker image, then push the docker image to a 
container registry and run the Flogo apps on a Kubernetes cluster as a pod.    

For information on deploying apps in a Kubernetes environment, see    Deploying Flogo apps 
to a Kubernetes.       

Deploying Flogo Apps to Kubernetes
You can deploy your Flogo apps to a Kubernetes Cluster running locally on bare metal 
servers, on VMs in hybrid cloud environments, or on fully managed services provided by 
various cloud providers such as Amazon EKS, Azure Container Service, or Google 
Kubernetes Engine. Refer to the Kubernetes documentation for more information. To do so, 
you must create a docker image locally for your app, then push the image to a container 
registry. When you apply the appropriate app deployment configuration to the Kubernetes 
cluster, one or more docker containers get created from the docker image that is 
encapsulated in one or more Kubernetes pods based on the deployment configuration.    

Before you begin
You must have:    

 l The Kubernetes cluster running on your choice of environment      

 l Docker 1.18.x or greater installed on your machine      

 l kubectl installed on your machine      

Procedure
 1. Build a docker image for your app. You can use one of the following ways to build a 

docker image:      



TIBCO Flogo® Enterprise User Guide

266 | Deployment and Configuration

 l Using        the UI:

 a. Build a docker image using the Flogo Enterprise UI. For details, see        
Building the App.

 b. Tag the generated docker image from the command line:        

docker tag <image-id> <app-name>:<version>

 the app tag must be in the format, <app-name>:<app-version>.       

 l From a Linux binary:

 a. Build a Linux binary using the        Linux/amd64 option. For details, see        
Building the App.        

 b. Provide run permission to the app binary:        chmod +x <app-binary>

 c. Create a docker file. For example:        

FROM <OS-version>  # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD 
flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 d. Build the docker image using the docker file. Run the following command:        

docker build -t <app-tag> -f <path-to-Dockerfile> .

 the app tag must be in the format <app-name>:<app-version>        

 l From the CLI:

 a. Export your app as a JSON file (for example,        flogo-rest.json) by clicking        
Export app on the flow details page.        

 b. Build a Linux binary for the app from the CLI. Open a command prompt 
and change directory to        <FLOGO_HOME>/<version>/bin and run:        

builder-<platform>_<arch> build -p linux/amd64 -f <path-
to-the-.json-file>

This generates a linux app binary.        



TIBCO Flogo® Enterprise User Guide

267 | Deployment and Configuration

 c. Provide run permission to the app binary:        

chmod +x <app-binary>

 d. Create a docker file. For example:        

FROM <OS-version>  # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD 
flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 e. Build the docker image using the docker file. Run the following command:        

docker build -t <app-tag> -f <path-to-Dockerfile> .

 The app tag must be in the format <app-name>:<app-version>        

 2. Run the docker image locally to verify that all looks good:      

docker run -it -p 9999:9999 <app-tag>

 3. Authenticate docker with the container registry where you want to push the docker 
image.      

 4. Tag the docker image by running the following command:      

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

 the app tag must be in the format, <app-name>:<app-version>      

 5. Push the local docker image to the container registry by running the following 
command:      

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

Note: Refer to the documentation for your container registry for the exact 
commands to authenticate docker, tag docker image, and push it to the 
registry.      



TIBCO Flogo® Enterprise User Guide

268 | Deployment and Configuration

 6. To deploy your app on Kubernetes, run your app by creating a Kubernetes 
deployment object. Follow these steps to do so:      

 a. Create a YAML file. For example, the YAML file below describes a deployment 
that runs the        gcr.io/<GCP_PROJECT_ID>/<docker-image-name>:<tag> docker 
image on the Google Cloud.      

apiVersion: apps/v1 # for versions before 1.9.0 use 
apps/v1beta2
 kind: Deployment
 metadata:
   name: flogo-app-deployment
 spec:
   selector:
     matchLabels:
       app: flogo-app
   replicas: 2 # tells deployment to run 2 pods matching the 
template
   template:
     metadata:
       labels:
         app: flogo-app
     spec:
       containers:
       - name: flogo-app
         image: gcr.io/<GCP_PROJECT_ID>/<docker-image-
name>:<tag>
         ports:
       - containerPort: 9999

 b. Create a Kubernetes deployment by running the following command:      

kubectl apply -f deployment.yaml

Using ConfigMaps with a Flogo App
Flogo apps running in Kubernetes can use ConfigMaps for the app configuration through 
environment variables. When you bind the ConfigMap with your pod, all the properties in 
the ConfigMap get injected into the pod as environment variables. If your pod has multiple 
containers, you can specify the container into which you want to inject the environment 
variables in the    .yml file of the app. When running the app in Kubernetes, you use the 
ConfigMap. You can create a ConfigMap using a    .property file that was exported from your 
Flogo app.    



TIBCO Flogo® Enterprise User Guide

269 | Deployment and Configuration

To create a ConfigMap when running your app in Kubernetes:    

Important: If you update the app properties in      Flogo Enterprise, you must 
recreate the ConfigMap and repush the app  for your changes to take effect in 
Kubernetes.    

Procedure
 1. Export the Flogo app properties to a      .properties file. Refer to the section      Exporting 

App Properties to a File for details.      

 2. Update the generated      .properties file as desired.      

 3. Create a ConfigMap using the      .properties file. Run the following command:      

kubectl create configmap <name-of-configmap-file-to-be-created> --from-env-
file=<exported-app-prop-filename>.properties

For example, if your exported file name is      Timer-env.properties and you want the 
generated ConfigMap to be called      flogo-rest-config the command would be 
similar to the following:      

kubectl create configmap flogo-rest-config --from-env-file=Timer-
env.properties

 4. Update the Kubernetes deployment configuration YAML file for the app to let your 
app know that you want to use environment variables. Add the following:      

env:
         - name: "FLOGO_APP_PROPS_ENV"
           value: "auto"
         envFrom:
         - configMapRef:
             name: <name-of-the-configmap>

Note: Refer to the Kubernetes documentation for instructions on how to 
configure a pod to use ConfigMaps.      

 5. Build the docker image for the app binary by running the following command:      



TIBCO Flogo® Enterprise User Guide

270 | Deployment and Configuration

docker build -t  <CONTAINER_REGISTRY_URI>/<app-tag>

 6. Push the resulting image to the container registry using the following command:      

kubectl apply -f <appname>.yaml

Managing Sensitive Information Using Kubernetes 
Secrets
You can resolve the values of the app properties in a Flogo app deployed on Kubernetes 
using Kubernetes Secrets. Kubernetes secret object lets you store and manage sensitive 
information like passwords or keys. This section explains how a secret can be used with a 
Kubernetes pod.    

For more information on Kubernetes secrets, refer to the Kubernetes documentation.    

Configuring the Secrets
To use the Kubernetes secrets in a Flogo app, you must set    FLOGO_APP_PROPS_K8S_VOLUME 
with the    volume_path configuration parameter at runtime:    

 l The secret key name must match the app property name. For example, if the 
property is      DB_PASS, the secret key name must be      DB_PASS. For example:      

echo -n 'flogo123>./DB_PASS.txt
 kubectl create secret generic my-first-secret --from-file=./DB_
PASS.txt'

where      DB_PASS.txt contains the password for the database and      DB_PASS is set as a 
property in the Flogo app.      

 l If you want to use a hierarchy for your app property, ensure that you use an 
underscore (_) between each level instead of the dot notation in the name of the 
secret. For example, for an app property named x.y.z, the name of the secret must be 
x_y_z.    



TIBCO Flogo® Enterprise User Guide

271 | Deployment and Configuration

Specifying the Path of the Volume Where the Secrets are 
Mounted
To specify the path to the volume where the secrets are mounted, you can specify the    
volume_path parameter in a JSON file or as a JSON string.    

In a JSON File

 1. Set the      volume_path parameter in a      .json file. For example,      k8s_secrets_
config.json contains:      

{
  "volume_path": "/etc/test"
 }

 2. Set the path to the      .json file in the      FLOGO_APP_PROPS_K8S_VOLUME environment 
variable. For example:      

FLOGO_APP_PROPS_K8S_VOLUME=k8s_secrets_config.json

As a JSON String

Set the      FLOGO_APP_PROPS_K8S_VOLUME environment variable as a JSON string as follows:      

 FLOGO_APP_PROPS_K8S_VOLUME="{\"volume_path\":\"\/etc\/test\"}"

Sample YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

--- 
 apiVersion: extensions/v1beta1
 kind: Deployment
 metadata: 



TIBCO Flogo® Enterprise User Guide

272 | Deployment and Configuration

   labels: 
     app: sampleapp
   name: sampleapp
   namespace: default
 spec: 
   template: 
     metadata: 
       labels: 
         app: sampleapp
     spec: 
       containers: 
         - 
           env: 
             - 
               name: FLOGO_APP_PROPS_K8S_VOLUME
               value: "{\"volume_path\":  \"/etc/test\"}"
             - 
               name: FLOGO_APP_PROPS_ENV
               value: auto
         envFrom: 
             - 
               configMapRef: 
              -   name: first-configmap
           image: "gcr.io/<project_name>/sampleapp:latest"
           imagePullPolicy: Always
          - name: sampleapp
           volumeMounts: 
             - 
               mountPath: /etc/test
               name: test
               readOnly: true
       volumes: 
         - 
           name: test
           secret: 
             secretName: my-first-secret

Amazon Elastic Container Service (ECS) and Fargate
You can package a Flogo app binary in a docker image, push the docker image to Amazon 
ECR, then run, manage, and scale the Flogo app in Docker containers using Amazon ECS 
and AWS Fargate.    



TIBCO Flogo® Enterprise User Guide

273 | Deployment and Configuration

Deploying a Flogo App to Amazon ECS and Fargate

Procedure
 1. Build a Flogo app as a docker image.

 2. Push the Flogo docker image to Amazon Elastic Container Registry (ECR) as follows:      

 a. Authenticate Docker to the ECR Registry using the following command. For 
more information, refer to the AWS documentation for Registry Authentication.      

aws ecr get-login

 b. Tag the Flogo app Docker image with the ECR registry, repository, and optional 
image tag name combination:      

docker tag <flogo_app_docker_image> <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

 c. Push the tagged Docker image to the ECR registry:      

docker push <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

 3. Create a cluster in which to run your apps. For more information on how to create an 
Amazon ECS Cluster, refer to the AWS documentation for Creating Cluster.      

 4. Create a task definition. The task definition defines what docker image to run and 
how to run it. For more information on how to create a task definition, refer to the 
AWS documentation available for Creating Task Definition.      

 5. Run the app in containers. After creating the task definition, you can open the app 
containers either by manually running tasks or by creating a service using the 
Amazon ECS Service Scheduler. For more information on how to create a service, 
refer to the AWS documentation available at      Creating Service.      

Pivotal Cloud Foundry
You can deploy a Flogo app binary to the Pivotal Application Service (PAS) of Pivotal Cloud 
Foundry (PCF) using the Binary Buildpack. For more information, see the section    Deploying 
a Flogo App to Pivotal Application Service.       

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service.html


TIBCO Flogo® Enterprise User Guide

274 | Deployment and Configuration

Deploying a Flogo App to Pivotal Application Service
After installing the Cloud Foundry Command Line Interface (cf CLI), you can push a Flogo 
app to the Pivotal Application Service. For more information on Pivotal Cloud Foundry, 
Pivotal Application Service, and its CLI, refer to the Pivotal Cloud Foundry documentation.    

Before you begin
 l Run the following command to ensure that the Cloud Foundry command-line client is 

installed successfully:      

 $ cf version

This command returns information about the currently installed version of the Cloud 
Foundry command-line client. For example:      

cf version 6.42.0+0cba12168.2019-01-10

 l Run the following command to authenticate yourself in the Pivotal Cloud Foundry:      

$ cf login

Building a Linux Binary

From the UI

To build a Linux binary from the UI:      

Procedure
 1. From the UI, build a Linux binary using the      Linux/amd64 option. See the     Building the 

App section for details.      

 2. Provide run permission to the app binary:      chmod +x <app-binary>

 3. Follow the steps in the appropriate section below.      



TIBCO Flogo® Enterprise User Guide

275 | Deployment and Configuration

From the CLI

To build a Linux binary from the CLI:      

Procedure
 1. Export your app as a JSON file (for example,      flogo-rest.json) by clicking      Export 

app on the flow details page.      

 2. Build a Linux binary for the app from the CLI. Open a command prompt and change 
the directory to      <FLOGO_HOME>/<version>/bin and run:      

builder-<platform>_<arch> build -p linux/amd64 -f <path-to-
the-.json-file>

This generates a Linux app binary.      

 3. Provide run permission to the app binary:      chmod +x <app-binary>

 4. Follow the steps in the appropriate section below.      

Without Using a manifest.yml File

Procedure
 1. Create a temporary folder.      

 2. Copy the      linux/amd64 binary of the app, which you had created in      Building a Linux 
Binary and save it to the temporary folder created in step 1.      

Note: 
 l Ensure that you do not save the binary to a path that already 

contains other files and directories.        

 l In your Flogo app, for a REST trigger, ensure that the port is set to 
8080 in the trigger configuration.        

 3. In a command window, navigate to the path where you saved the binary and run the 
following command:      

 $ cf push <NAME_IN_PCF> -c './<APP_BINARY_NAME>' -b binary_



TIBCO Flogo® Enterprise User Guide

276 | Deployment and Configuration

buildpack -u none

For example:      

 cf push test1 -c ./Timer-linux_amd64 -b binary_buildpack -u none

For the        -u argument, depending on the health check, provide value as        none,        port,        
http, or        process. For example, if the app is a REST API exposing an HTTP endpoint, 
use        port after        -u.        

Note: In your Flogo app, for a REST trigger, ensure that the port is set to 
8080 in the trigger configuration.        

 4. After successfully deploying the app to the Pivotal Application Service, you can check 
the log of the app using the following command:      

$ cf logs <APP_NAME_IN_PCF> --recent

Using a manifest.yml File

Procedure
 1. Create a temporary folder.      

 2. Copy the      linux/amd64 binary of the app, which you had created in      Building a Linux 
Binary and save it to the temporary folder created in step 1.      

Note: In your Flogo app, for a REST trigger, ensure that the port is set to 
8080 in the trigger configuration.      

You have two options:      

 l If you do not mention Path in the        manifest.yml file, you must have both        
manifest.yml and the app binary in the same directory.        

 l If you have the        manifest.yaml file and the app binary in different directories, 
you must mention the following in the        manifest.yml file:       



TIBCO Flogo® Enterprise User Guide

277 | Deployment and Configuration

path:  <app binary path>

 3. Create a manifest file in YAML. The following manifest file illustrates some YAML 
conventions:      

# this manifest deploys REST APP to Pivotal Cloud Foundry 
 
 applications:
 - name: REST_APP
   memory: 100M
   instances: 1
   buildpack: binary_buildpack
   command: ./REST-linux_amd64
   disk_quota: 100M
   health-check-type: port

Note: REST-linux_amd64 indicates the name of app binary.      

 4. Save the      manifest.yml file and run the following command in the same directory:      

$ cf push

Result
The Flogo app is successfully pushed to the Pivotal Cloud Foundry.    

Using Spring Cloud Configuration to Override App Properties
You can use Spring Cloud Configuration to override the properties of Flogo apps running 
on Pivotal Cloud Foundry.    
To do so:    

 1. Create a Repository and Properties File on Github

 2. Setup Spring Cloud Configuration on Pivotal Cloud Foundry

 3. Use Spring Cloud Configuration Service with Flogo



TIBCO Flogo® Enterprise User Guide

278 | Deployment and Configuration

Create a Repository and Properties File on Github

Procedure
 1. Create a repository on Github.      

 2. In the repository created in step 1 above, create properties file with the following file 
naming convention:      

<APP_NAME>-<PROFILE>.properties

For example, if a Flogo app name is        PCFAPP and the profile name is        DEV, the 
properties file name must be        PCFAPP-DEV.properties.      

 3. Populate the      <APP_NAME>-<PROFILE>.properties file with the key-value pairs for the 
overridden app properties.      

Note: 
 l The name of the property must match the name of the app property. 

For example, if the app property is named        Message, define the 
property in the properties file as:        

Message="<value>"

 l If the properties are in a group, define the property as:        

<groupname>.<propertyname> = <value>

For example, if a property,          username, is under the          email group and 
its value is          xyz@abc.com, define the property in the          .properties file 
as:        

email.username=xyz@abc.com

Setup Spring Cloud Configuration on Pivotal Cloud Foundry
Set up an instance of Config Server for Pivotal Cloud Foundry with the Git repository 
created above using Spring Cloud Services on Pivotal Cloud Foundry. Refer to Spring Cloud 
Services for PCF documentation for detailed instructions.    



TIBCO Flogo® Enterprise User Guide

279 | Deployment and Configuration

Using Spring Cloud Configuration Service with Flogo

Procedure
 1. Bind the service instance of Spring Cloud Config Server to your Flogo app.      

 2. Navigate to the setting of the pushed app.      

 3. Under      User Provided Env Variables, add the following environment variable:     

FLOGO_APP_PROPS_SPRING_CLOUD = {"profile":"<PROFILE_NAME>"}

 4. Restage the app and see the logs using the following command:      

$ cf logs <APP_NAME_IN_PCF> --recent

Microsoft Azure Container Instances
You can deploy a Flogo app to a Microsoft Azure container instance using a Flogo app 
docker image. For more information, refer to the section,    Deploying Flogo Apps to 
Microsoft Azure Container Instances.       

Deploying a Flogo App to a Microsoft Azure Container 
Instance

Before you begin
 l Create a Microsoft Azure account.      

 l Download and install Microsoft Azure CLI.      

 l Create a docker image of the Flogo app that needs to be deployed to the Microsoft 
Azure Container Instance.      

 l For information on Microsoft Azure commands, refer to the Microsoft Azure 
documentation.      

Procedure



TIBCO Flogo® Enterprise User Guide

280 | Deployment and Configuration

 1. Create a new resource group using the following command:      

az group create -l <location> -n <name-of-group>

 2. If you have not created an Azure Container Registry, create one using the following 
command. This Azure Container Registry stores all the images that are pushed to the 
registry.      

az acr create -n <name-of-registry> -g <name-of-group> --sku 
<pricing-tier-plan> --admin-enabled true

Note: You must set      --admin-enabled to      true.      

 3. Log in to Azure Container Registry using the following command:      

az acr login -n <name-of-registry>

 4. Tag and push the Flogo app docker image to Azure Container Registry using the 
following commands:      

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>
 docker push <CONTAINER_REGISTRY_URI>/<app-tag>

 5. Create an Azure Container instance using the following command:      

az container create 
 -g <name-of-resource-group> 
 --name <name-of-container> 
 --image <name-of-image> 
 --environment-variables <name=value name=value FLOGO_APP_PROPS_
ENV=auto>  
 --dns-name-label <dns-name-label-for-container-group> 
 --ip-address Public  
 --ports <port-to-open> 
 --registry-login-server <name-of-container-image-registry-login-
server> 
 --registry-username <username> 
 --registry-password <password> 
 #NOTE: If--environment-variables FLOGO_APP_PROPS_ENV=auto is not 



TIBCO Flogo® Enterprise User Guide

281 | Deployment and Configuration

set, the environment variables are not detected at Flogo runtime.
 #NOTE: IP Address must be explicitly set to Public.

For example:      

az container create
 -g flogodemo
 --name flogoapp
 --image flogoacr.azurecr.io/acs_flogo:latest
 --environment-variables prop_str=azure FLOGO_APP_PROPS_ENV=auto --
dns-name-label flogoappazure
 --ip-address Public
 --ports 9999
 --registry-login-server flogoacr.azurecr.io
 --registry-username <username>
 --registry-password <password> 
#where prop_str is the app property defined in the flogo app which 
is being overridden from this command

 6. Get container logs using the following commands:      

az container logs --resource-group <name-of-resource-group> --name 
<name-of-container>

Deploying a Flogo App to a Microsoft Azure Container 
Instance Using a YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

Procedure
 1. Create a YAML file as follows: 

--- apiVersion: 2018-10-01
 location: <location>



TIBCO Flogo® Enterprise User Guide

282 | Deployment and Configuration

 name: <name-of-YAML-file>
 properties:   
 containers:     
 -       
 name: fe-app-yaml      
 properties:         
 environmentVariables:           
 -             
 name: <name-of-app-property>           
 value: <value-of-app-property>          
 -             
 name: <name-of-app-property>            
 value: <value-of-app-property>          
 -             
 name: <name-of-app-property>            
 secureValue: <value-of-app-property>              
 #NOTE: secureValue must be used for passwords
 -             
 name: FLOGO_APP_PROPS_ENV            
 value: auto 
 #NOTE: If the environment variable FLOGO_APP_PROPS_ENV is not set 
to "auto", the environment variables are not detected at Flogo 
runtime.         
 image: "<image>"        
 ports:           
 -            
 port: <port-number>        
 resources:           
 requests:             
 cpu: 1            
 memoryInGb: <memory>  
 imageRegistryCredentials:     
 -       
 password: <password>      
 server: <server>      
 username: <username>  
 ipAddress: <IP-address>    
 ports:       
 -        
 port: <port-number>        
 protocol: <protocol>    
 type: Public  
 #NOTE: IP Address must be explicitly set to Public. 
 



TIBCO Flogo® Enterprise User Guide

283 | Deployment and Configuration

 osType: <OS>
 tags: ~
 type: <type>

 2. Run the following commands:      

az container create --resource-group <name-of-resource-group> --
file <name-of-YAML-file>
 az container show -g <name-of-resource-group> -n <name-of-
container>

 3. After the app is deployed, you can access the app endpoint by accessing the public IP 
address of the Azure container instance followed by the resource path.      

<IP-address>:<port>/<resource-path>

Google Cloud Run
You can package a Flogo app binary in a docker image, push the image to Google 
Container Registry, then deploy the app to Google Cloud Run. 

Note: Only apps with REST and GraphQL triggers work in Google Cloud Run.

Deploying a Flogo App to Google Cloud Run

Before you begin
 l A Google Cloud account.      

For more information, see Google Cloud.     

 l Setup the Google Cloud command-line tool.      

Create or import REST app

Design a new REST app using the UI or import an existing one into the UI.    

https://cloud.google.com/


TIBCO Flogo® Enterprise User Guide

284 | Deployment and Configuration

Build and push a docker image to the container registry
 l From the UI:      

 o Create a Docker image of the app.        

 o Push the Docker image to Google Container Registry.        

For more information, see        Push Docker Image.        

 l From CLI:      

 o Build a Linux/Amd64 binary using the CLI. For more information, see        Building 
the App from the CLI.      

 o Create a Docker file of the app and copy it along with the app binary.      

 o From the directory where the binary and docker files are placed, run the 
following command:        

gcloud builds submit --tag gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:        

gcloud builds submit --tag gcr.io/227xxx/flogo-helloworld:1.0

Deploy app on Cloud Run

You can deploy the app to Cloud Run using the CLI or the Console. This section describes 
how to deploy the app using the CLI. For more information on deploying the app using the 
Console, refer Cloud Run.    

Procedure
 1. Deploy the Flogo app using the following command:      

gcloud beta run deploy --image gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:      

https://cloud.google.com/container-registry/docs/pushing-and-pulling
https://cloud.google.com/run/docs/


TIBCO Flogo® Enterprise User Guide

285 | Deployment and Configuration

gcloud beta run deploy --image gcr.io/227xxx/flogo-helloworld:1.0
 Please specify a region:
  
  [1] us-central1
  
  [2] cancel
  
 Please enter your numeric choice:  1
  
 To make this the default region, run `gcloud config set run/region 
us-central1`.
  
 Service name (helloworld): 
  
 Allow unauthenticated invocations to [helloworld] (y/N)?  y 
##NOTE:  At this prompt, only if you enter Y, you are allowed to 
hit an endpoint without authentication.
 
 Deploying container to Cloud Run service [helloworld] in project 
[227xxx] region [us-central1]
  
 ✓ Deploying new service... Done.                                    
                                                                    
      
  
   ✓ Creating Revision...                                            
                                                                    
      
  
   ✓ Routing traffic...                                              
                                                                    
      
  
   ✓ Setting IAM Policy...                                           
                                                                    
      
  
 Done.                                                               
                                                                    
      
  
 Service [helloworld] revision [helloworld-695fa56d-97d2-46b9-b037-



TIBCO Flogo® Enterprise User Guide

286 | Deployment and Configuration

2dfada50aca5] has been deployed and is serving traffic at 
https://helloworld-pae7vs5yaq-uc.a.run.app

 2. Make a call using the URL returned in the output. For example, you can make a call 
to the following URL returned in step 2:      

https://helloworld-pae7vs5yaq-uc.a.run.app/greetings/Flogo

Red Hat OpenShift
You can package a Flogo app binary in a docker image, then push the docker image to a 
container registry and run the Flogo apps on Red Hat OpenShift.      

Deploying a Flogo App to Red Hat OpenShift

Before you begin
 l Ensure that you have a Red Hat Openshift account and that the Red Hat OpenShift 

environment is set up to deploy the app.      

 l Ensure that the Red Hat OpenShift CLI is installed on your machine.      

 l Ensure that the image of the Flogo app is pushed to the Red Hat Openshift internal 
registry or any other public registry such as Docker Hub.      

Procedure
 1. Build a docker image for your app. You can build a docker image in one of the 

following ways.      

 l Using the UI:

 a. Build a docker image.       

 b. Tag the generated docker image from the command line:        docker tag 
<image-id> <app-name>:<version> The app tag must be in the format 
<app-name>:<app-version>        

 l From a Linux binary:



TIBCO Flogo® Enterprise User Guide

287 | Deployment and Configuration

 a. Build a Linux binary using the        Linux/amd64 option. For more information, 
see        Building the App.        

 b. Provide execute permission to the app binary:        chmod +x <app-binary>

 c. Create a docker file. For example:        

FROM <OS-version>  # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD 
flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 d. Build the docker image using the docker file. Run the following command:        

docker build -t <app-tag> -f <path-to-Dockerfile> .

 The app tag must be in the format <app-name>:<app-version>        

 l From the CLI:

 a. Export your app as a JSON file (for example,        flogo-rest.json) by clicking        
Export app on the flow details page.        

 b. Build a Docker image containing the app using the builder command from 
the CLI. Open a command prompt and change directory to        <FLOGO_
HOME>/<version>/bin and run:        

builder-<platform>_<arch> build -f <path-to-the.json-file> 
-docker -n <docker_image_name>:<tag>

 For example:        

builder_linux_amd64 build -f flogo-rest.json -docker -n 
flogo-rest:v1

For more information on the builder command, refer to the section,        
Builder command.        

 2. Run the docker image locally to verify that everything is fine:      

docker run -it -p 9999:9999 <app-tag>



TIBCO Flogo® Enterprise User Guide

288 | Deployment and Configuration

 3. Authenticate docker with the container registry where you want to push the docker 
image.      

 4. Tag the docker image. Run:      

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

 The app tag must be in the format <app-name>:<app-version>      

 5. Push the local docker image to the container registry by running the following 
command:      

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

Note: Refer to the documentation for your container registry for the exact 
commands to authenticate docker, tag docker image, and push it to the 
registry.      

 6. Login to Openshift from command line:      

oc login --token=<Your token> --server=https://<host 
address>:<port>

For example:      

oc login --token=<Your token> --server=https://api.ca-central-
1.starter.openshift-online.com:6443

 7. Create a project in Red Hat OpenShift:      

oc new-project <PROJECT_NAME>

 8. Deploy the app on Red Hat Openshift using a YAML file. For a sample YAML file, see      
Sample YAML File: Red Hat OpenShift.      

oc create -f <YAML filename>

 9. To get information about pods, run the following command:      



TIBCO Flogo® Enterprise User Guide

289 | Deployment and Configuration

oc get pods

The following is a sample output of the command:      

 10. To get the logs of a particular pod, run the following command:      

oc logs <pod name>

The following is a sample output of the command:      

 11. To access the endpoint of an app, run the following command:      

oc get svc -o wide

The following is a sample output of the command:      

 12. From the output, note the external IP and port. Access the endpoint using the 
following URL:      

http:<external IP>:<port>/<resource_context_path>



TIBCO Flogo® Enterprise User Guide

290 | Deployment and Configuration

Sample YAML File: Red Hat OpenShift

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

The following is a sample YAML file for a REST app:    

apiVersion: v1
 kind: Service
 metadata:
   name: flogo-rest
   labels:
     app: flogo-rest
 spec:
   type: LoadBalancer 
   ports:
   - port: 80
     targetPort: 9999
     name: app
   selector:
     app: flogo-rest
 ---
 apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
   name: flogo-rest
 spec:
   replicas: 1
   template:
     metadata:
       labels:
         app: flogo-rest
     spec:
       containers:
       - name: flogo-rest
         image: <DOCKER_REPOSITORY_NAME>/<APP_IMAGE_NAME>
         ports:
         - containerPort: 9999



TIBCO Flogo® Enterprise User Guide

291 | Deployment and Configuration

Serverless Deployments

Developing for Lambda
AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS). 
Lambda functions automatically run pieces of code in response to specific events while 
also managing the resources that the code requires to run. Refer to the AWS 
documentation for more details on AWS Lambda.    

 

Creating a Connection with the AWS Connector
You must create AWS connections before you use the Lambda trigger or Activity in a flow.    

Note: AWS Lambda is supported on the Linux platform only.    

To create an AWS connection:    

Procedure
 1. In      Flogo Enterprise, click      Connections to open its page.      

 2. Click the      AWS Connector card.      

 3. Enter the connection details. Refer to the section      AWS Connection Details for details 
on the connection parameters.      

 4. Click      Save.      

Your connection gets created and is available for you to select in the drop-down menu 
when adding a      Lambda Activity or trigger.    

AWS Connection Details
To establish the connection, you must specify the following configurations in the    AWS 
Connector dialog. 

The AWS Connector dialog contains the following fields: 



TIBCO Flogo® Enterprise User Guide

292 | Deployment and Configuration

Field      Description      

Name      Specify a unique name for the connection that you are creating. This is 
displayed in the        connection drop-down list for all the         activities.        

Description      A short description of the connection.      

Custom Endpoint      (Optional) To enable the AWS connection to an AWS or AWS compatible 
service running at the URL specified in the        Endpoint field, set this field to        
True. 

This field is not supported in TIBCO Flogo® Connector for Amazon Glacier.

Endpoint      This field is available only when        Custom Endpoint is set to        True.        

Enter the service endpoint URL in the following format: 
<protocol>://<host>:<port>. For example, you can configure a MinIO cloud 
storage server endpoint.       

Region      Region for        AWS connection.      

Authentication 
Type

Select one of the following authentication types as required:

• AWS Credentials: Use this authentication to connect to AWS 
resources using access key, secret key, and assumed role. 

• Default Credentials: Use this authentication to use a role 
configured AWS resource such as EC2, ECS, or EKS without 
configuring the AWS credentials. Credentials are loaded using the 
AWS default credentials provider chain.

Note: To use Default Credentials as the Authentication Type in 
TIBCO Flogo® Connector for Amazon SQS and AWS Lambda, create an 
AWS connection using the Authentication Type as AWS Credentials 
and override AWS Credentials to Default Credentials at runtime.  

Access key ID      Access key ID of the AWS account (from the        Security Credentials field of 
IAM Management Console).                         

For more information, see the AWS documentation.      



TIBCO Flogo® Enterprise User Guide

293 | Deployment and Configuration

Field      Description      

Secret access key      Enter the secret access key. This is the access key ID that is associated 
with your AWS account.                         

For more information, see the AWS documentation.      

Session token (Optional) Enter session token if you are using temporary security 
credentials. Temporary credentials expire after a specified interval.                                                   For 
more information, see the AWS documentation.

Use Assume Role      This enables you to assume a role from another AWS account. By default, 
it is set to        False (indicating that you cannot assume a role from another 
AWS account).        

When set to        True, provide the following information:        

 l Role ARN - Amazon Resource Name of the role to be assumed        

 l Role Session Name - Any string used to identify the assumed role 
session        

 l External ID - A unique identifier that might be required when you 
assume a role in another account        

 l Expiration Duration - The duration in seconds of the role session. 
The value can range from 900 seconds (15 minutes) to the 
maximum session duration setting that you specify for the role        

For more information, see the AWS documentation.

Creating a Flow with Receive Lambda Invocation Trigger
The    Receive Lambda Invocation trigger allows you to create a Flogo flow to create and 
deploy as a Lambda function on AWS.    

Refer to the "Receive Lambda Invocation Trigger" section in the    TIBCO Flogo® Enterprise 
Activities, Triggers, and Connections Guide for details on the trigger.    

To create a flow with the      Receive Lambda Invocation trigger:         

Procedure
 1. Create an app in Flogo.                   



TIBCO Flogo® Enterprise User Guide

294 | Deployment and Configuration

 2. Click the app name on the Apps page to open it.                   

 3. Click     Create a Flow.      

The      Create a Flow dialog box opens.      

 4. Enter a name for the flow in the      Flow Name text box.      

Flow names within an app must be unique.

 5. Optionally, enter a brief description of what the flow does in the      Description text box 
and click      Save.      

A flow gets created. Click the flow name to open the flow page.

 6. From the Triggers palette, select      Receive Lambda Invocation and drag it to the 
triggers area.     

 7. To configure a trigger, enter the JSON schema or JSON sample data for the 
operation. This is the schema for the request payload.      

 8. Click      Continue.      

A flow beginning with the      ReceiveLambdaInvocation trigger gets created.      

 9. Click the      ReceiveLambdaInvocation trigger tile and configure its properties. See the 
"ReceiveLambdaInvocation" section in the      TIBCO Flogo® Enterprise Activities, Triggers, 
and Connections Guide for details.

Deploying a Flow as a Lambda Function on AWS
After you have created the flow, you can deploy it as a Lambda function on AWS.    

Before you begin
Note the following points: 

 l The flow must be configured with the      ReceiveLambdaInvocation trigger. 

 l If the execution role name  is not provided in the ReceiveLambdaInvocation trigger, 
then the Lambda function is created with the default 
AWSLambdaBasicExecutionRole role. It has the following Amazon CloudWatch 
permissions: 

 o Allow: logs:CreateLogGroup

 o Allow: logs:CreateLogStream



TIBCO Flogo® Enterprise User Guide

295 | Deployment and Configuration

 o Allow: logs:PutLogEvents

If a non-existing execution role is provided, then the user whose AWS credentials are 
used in the AWS connection should have the following permissions:

 o iam:CreateRole

 o sts:AssumeRole

To deploy a Flogo app as a Lambda function, user role can have access to following 
AWSLambda_FullAccess policy which has all the required access.

To deploy a flow as a Lambda function on AWS:    

Procedure
 1. Build your      Flogo app (<myApp>) with the      Linux/amd64 target. This is because Lambda 

deployments are Linux-based and building the binary for Linux/amd64 generates the 
appropriate artifact to deploy in your AWS Lambda function. Refer to Building the 
App for details on how to build an app.      

 2. Add execution permission to the native      Linux/amd64 executable file that you built. 
Run      chmod +x <myApp>-linux_amd64

 3. You can deploy the      <myApp>-linux_amd64 in one of two ways:      

 l If you are using a Linux environment to design, build, and deploy your apps, you 
can directly run the following command:      

<LambdaTriggerBinary> --deploy lambda --aws-access-key <secret_key>

For example, myApp-Linux64 --deploy lambda --aws-access-key xxxxxxxxx      

Note: Ensure that the        aws-access-key is identical to the one 
configured in the        Flogo UI for the selected AWS Connection. This is 
used for validation with the        aws-access-key configured as part of the 
AWS Connection within the UI and the value provided here does not 
overwrite the        aws-access-key used while designing the app.        

This approach of deploying to AWS Lambda  works only on Linux platforms. 

 l If you are using a non-Linux environment to design, build, and deploy apps, 
then use this approach:      

 a. Build your Flogo app (<myApp>) with the Linux/amd64 target.

 b. Rename the Flogo executable file to bootstrap. This is mandatory per new 



TIBCO Flogo® Enterprise User Guide

296 | Deployment and Configuration

provided.al2 and provided.al2023 runtimes.

 c. Compress the executable file and rename it to       <myFunctionName>.zip.       

 d. From the AWS Lambda UI, create a Lambda function with Amazon Linux 
2023 runtime.

 e. Create a role or attach an existing role in the Execution role.

 f. Click Create function.

 g. Go to Code source, click Upload from and upload the compressed file.       

After successful deployment, the Lambda function is created in the AWS Lambda 
console.     

 l To override app properties used in a Lambda app during runtime, create a
      .properties or      .json file containing the properties and their values to 
override, then use the command:

./<Lambda-app-name> --deploy --env-config <app-property-file-name>.properties

For example:
     ./MyLambdaApp --deploy --env-config MyLambdaApp-env.properties 
where      MyLambdaApp is the Lambda app name and     MyLambdaApp-
env.properties is the properties file name. 
All properties in the      .properties or      .json file are passed to Lambda as 
environment variables.      

Deploying a Flow as a Lambda Function on AWS using AWS CLI

Procedure
 1. Build your      Flogo App (<myApp>) with the      Linux/amd64 target. This is because Lambda 

deployments are Linux-based and building the binary for Linux/amd64 generates the 
appropriate artifact to deploy in your AWS Lambda function. 

 2. Rename the Flogo executable to bootstrap. This is mandatory as per new 
provided.al2 and provided.al2023 runtimes.

 3. Compress the executable file and rename it to       myFunction.zip.       

 4. Run the AWS CLI:



TIBCO Flogo® Enterprise User Guide

297 | Deployment and Configuration

aws lambda create-function --function-name myFunction \
 --runtime provided.al2023 --handler bootstrap \
 --architectures x86_64 \
 --role arn:aws:iam::111122223333:role/lambda-ex \
 --region us-west-2 \
 --zip-file fileb://myFunction.zip

Creating a Flow with AWS API Gateway Lambda Trigger
The    AWS API Gateway Lambda trigger allows you to invoke Lambda functions as REST 
APIs. A flow created in an app using the AWS API Gateway trigger is deployed as a Lambda 
function.    

Refer to the "AWS API Gateway Lambda Trigger" section in the    TIBCO Flogo® Enterprise 
Activities, Triggers, and Connections Guide for details on the trigger.

To create a flow with the     AWS API Gateway Lambda trigger:    

Procedure
 1. Create an app in Flogo.      

 2. Click the app name on the Apps page to open it.      

 3. Click      Create a Flow.      

The      Create a Flow dialog box opens.      

 4. Enter a name for the flow in the      Flow Name text box.      

Flow names within an app must be unique.

 5. Optionally, enter a brief description of what the flow does in the      Description text box 
and click      Next.      

A flow gets created. Click the flow name to open the flow page.

 6. From the Triggers palette, select      Receive Lambda Invocation and drag it to the 
triggers area.          

 7. Provide the method, resource path, and JSON schema for the operation.      

 8. Click      Continue.      

A flow beginning with the      AWSAPIGatewayLambda trigger is created.      

 9. Click      Copy schema or      Just add the trigger.      



TIBCO Flogo® Enterprise User Guide

298 | Deployment and Configuration

 10. Click the      AWSAPIGatewayLambda trigger tile and configure its properties. See the 
"AWS API Gateway Lambda Trigger" section in the      TIBCO Flogo® Enterprise Activities, 
Triggers, and Connections Guide for details.

What to do next
Deploy the flow on AWS. For instructions on how to do so, see    Deploying a Flow as a 
Lambda Function on AWS.    

Creating a Flow with S3 Bucket Event Lambda Trigger
The    S3 Bucket Event Lambda trigger allows you to create a flow using the operations or 
events that are performed on an S3 bucket trigger, a Lambda function.    

Note: Creating a new event or updating an existing event in the S3 Bucket Event 
Lambda trigger and re-pushing the app deletes existing Events on AWS S3.    

Refer to the "S3 Bucket Event Lambda Trigger" section in the      TIBCO Flogo® Enterprise 
Activities, Triggers, and Connections Guide for details on the trigger. To create a flow with 
the      S3 Bucket Event Lambda trigger:    

Procedure
 1. Create an app in      Flogo Enterprise.      

 2. Click the app name on the apps page to open its page.      

 3. Click      Create a Flow.      

The      Create a Flow dialog box opens.      

 4. Enter a name for the flow in the      Flow Name text box.      

Flow names within an app must be unique. An app cannot contain two flows with the 
same name.      

 5. Optionally, enter a brief description of what the flow does in the      Description text box 
and click      Next.      

 6. Click      Start with a trigger.      

 7. Under      Choose a trigger to add, click      S3 Bucket Event Lambda Trigger.      



TIBCO Flogo® Enterprise User Guide

299 | Deployment and Configuration

 8. Provide the bucket name, event name, and the list of events to be performed. See 
the "S3 Bucket Event Lambda Trigger" section in the      TIBCO Flogo® Enterprise 
Activities, Triggers, and Connections Guide for details.      

 9. Provide any prefix or suffix object filters.      



TIBCO Flogo® Enterprise User Guide

300 | Deployment and Configuration

 10. Click      Continue.      

A flow beginning with the      S3 Bucket Event Lambda trigger is created.      

 11. Click      Copy schema or      Just add the trigger.      

 12. Click the      S3 Bucket Event Lambda trigger tile and configure its properties. See the 
"S3 Bucket Event Lambda Trigger" section in the      TIBCO Flogo® Enterprise Activities, 
Triggers, and Connections Guide for details.      

 13. Create a flow containing the Business logic of the Lambda function that you want to 
trigger using the S3 Bucket Event Lambda trigger.      

What to do next
Deploy the flow on AWS. For instructions, see    Deploying a Flow as a Lambda Function on 
AWS.    

S3 Bucket Event Lambda Trigger
Use the    S3 Bucket Event Lambda trigger to trigger a Lambda function when a supported 
event occurs on the associated S3 bucket.    



TIBCO Flogo® Enterprise User Guide

301 | Deployment and Configuration

Trigger Settings

Note: 

 l Creating a new event or updating an existing event in the S3 Bucket Event 
Lambda trigger and re-pushing the app deletes existing Events on AWS S3.

 l You can have only one S3 trigger in an app. An app that has an S3 trigger 
cannot contain any other triggers including another S3 trigger. The S3 
trigger supports multiple handlers (flows), so you can have multiple flows 
in the app that are attached to the same S3 trigger. You can also have 
blank flows in the app which can serve as subflows for the flows that are 
attached to the S3 trigger.    

 l For overriding app properties, use the FLOGO_APP_PROPS_JSON 
environment variable only. You cannot override app properties using the 
FLOGO_APP_PROPS_ENV environment variable. 

Field        Description        

AWS 
Connection 
Name        

(Mandatory) Name of the AWS connection that you want to use for deploying 
the flow.        

Execution 
Role Name        

Permission of the Lambda function to execute. The role must be assumable 
by Lambda and must have CloudWatch logs permission execution role.        

By default, Cloud watching is enabled.        

Bucket        Name of the S3 bucket with which the trigger is to be associated. This bucket 
must be an existing one.        

Event name        Name of the S3 bucket event notification.        

Event list        A list of operations to be performed on the S3 bucket. Supported operations 
are POST, PUT, COPY, and DELETE.        

Object prefix 
filter        

(Optional) The prefix is to be used to filter the S3 bucket.        



TIBCO Flogo® Enterprise User Guide

302 | Deployment and Configuration

Field        Description        

For example,        images/

Object suffix 
filter        

(Optional) The suffix is to be used to filter the S3 bucket.        

For example,        .jpg

Map to Flow Inputs

Map the flow output to the trigger reply on this tab. The tab displays the following fields.    

Field        Description        

Function        Information about the Lambda function        

Context        Envelope information about this invocation        

Identity        Identity for the invoking users        

ClientApp        Metadata about the calling app        

S3Event        Default schema of S3 bucket event trigger. It can be mapped with the flow 
input to pass the key values to the flow.        

Deploying a Flogo App to Microsoft Azure Functions
After you have designed a Flogo app or imported an existing one, you can deploy it to 
Microsoft Azure Functions as a custom Docker container.  You can do this by using the 
Microsoft Azure portal or do it by using the CLI. 

Before you begin
Make sure you have a Microsoft Azure account with an active subscription and you can log 
in to the Azure Portal. For more information on getting a Microsoft Azure account, see 
Microsoft Azure.

https://portal.azure.com/
https://azure.microsoft.com/


TIBCO Flogo® Enterprise User Guide

303 | Deployment and Configuration

Creating the Azure Function App in the Azure Portal

Before you begin
Install the following:

 l To push images to the Azure Container registry, install the latest version of Azure CLI.

 l Install Docker. For the supported versions, see the Readme.

Procedure
 1. Build a Docker image of your Flogo app.   

 2. If you are using an Azure container registry, log in to the repository created on the 
Azure container registry.     

 3. Tag and push the Docker image of the Flogo app to the repository in the Azure 
container registry. For example: 

docker tag flogo/hello-world:latest myregistry.azurecr.io/flogo-
hello-world:latest

 4. In the Azure portal, create a new Azure Function app. While creating the Azure 
Function app, in the Instance details dialog box, select Docker Container as the 
Publish mode. 

 5. After the Azure Function app is created, go to Settings > Container Settings 
(Classic) on the left navigation pane. 

 6. On the right pane, select the image Source, enter other details, and click Save.      

Tip: If you select Registry Settings > Registry Source as Azure Container 
Registry, and you face issues while selecting the Registry, verify the 
Repository permissions for the repository created for the Flogo app. 
Update the Azure Container Registry and enable Admin user; this enables 
the Azure function to access the images in the repositories. 

 7. If you are using a trigger port other than 80 or 8080, navigate to Settings > 
Configuration and click New application setting. Specify:

 l Name: WEBSITES_PORT



TIBCO Flogo® Enterprise User Guide

304 | Deployment and Configuration

 l Value: <your trigger port>

 8. Click Save. The app is restarted and changes made are reflected in the app.     

 9. To copy the URL for your app and check whether it is working, go to the Overview 
menu. 

Note: Do NOT add the port declared in the trigger settings to the URL. If 
the URL does not work, restart the app manually.

 10. For an app with app properties, to override the app properties, add the following to 
Configuration > Application settings:

 l All the app properties

 l FLOGO_APP_PROPS_ENV=auto

 11. Save the settings. The app restarts when you save the properties.

Creating the Azure Function App from the Azure CLI

Before you begin
Install the following:

 l Visual Studio Code: For more information, see Visual Studio Code.

 l Azure Functions extension for Visual Studio Code: For more information, see 
Visual Studio Code - Azure Functions. 

 l Azure Functions Core Tools (version 3.x or higher): For more information, see 
Local Azure Functions. 

Procedure
 1. Create a new directory (for example, flogo-func-project) and open it.

cd flogo-func-project

 2. Create a new function project using the following command:

func init --worker-runtime custom --docker

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local


TIBCO Flogo® Enterprise User Guide

305 | Deployment and Configuration

The --docker option generates a Dockerfile for the project.

 3. Add a new function from a template using the following command:

func new --name <your-app-name> --template "HTTP trigger"

Here:

--name argument is the unique name of your function

--template argument specifies the template based on which the function is created

Example:

func new --name hello-world --template "HTTP trigger"

 4. Download or build the binary for your HTTP trigger app and copy it into the directory 
you created earlier. 

For example, copy hello-world.json to the flogo-func-project directory.

 5. If it is not an executable file, make it executable by running the following command:

chmod +x <binary-filename>

 6. Add the following script to your project folder with the name start.sh:

start.sh

#!/usr/bin/env sh
echo "Starting function..."
PORT=${FUNCTIONS_CUSTOMHANDLER_PORT} ./hello-world-linux_amd64

 7. Make it executable by running the following command:

chmod +x start.sh

 8. To update the default app prefix from api to your prefix, edit the function.json file. 
For example, you can change the prefix to hello-world. 

function.json



TIBCO Flogo® Enterprise User Guide

306 | Deployment and Configuration

{
"bindings": 
      [
        {
        "authLevel": "anonymous",
        "type": "httpTrigger",
        "direction": "in",
        "name": "req",
        "methods": ["get", "post"],
        "route": "books/{bookID}"
        },
        {
        "type": "http",
        "direction": "out",
        "name": "res"  
        }
      ]
}

 9. To add customHeaders in the extensions, edit the host.json file:

host.json

Caution: Code snippets in the PDF could have undesired line breaks due 
to space constraints and should be verified before directly copying and 
running it in your program.

{
  "version": "2.0",
  "logging": 
     {
     "applicationInsights": 
        {
          "samplingSettings": 
             {
              "isEnabled": true,
              "excludedTypes": "Request"   
             }
        }
    },



TIBCO Flogo® Enterprise User Guide

307 | Deployment and Configuration

  "extensionBundle": 
    {
      "id": "Microsoft.Azure.Functions.ExtensionBundle",
      "version": "[2.*, 3.0.0)"
    },

  "customHandler": 
    {
      "description": 
          {
            "defaultExecutablePath": "start.sh",
            "workingDirectory": "",
            "arguments": []
          },
      "enableForwardingHttpRequest": true
    },

  "extensions": 
   {
     "http": 
      {
        "routePrefix": ""
      }
   }
}

 10. To change the path, edit the Dockerfile:

Dockerfile

FROM mcr.microsoft.com/azure-functions/dotnet:3.0-appservice
ENV AzureWebJobsScriptRoot=/home/site/wwwroot \
AzureFunctionsJobHost__Logging__Console__IsEnabled=true
COPY . /home/site/wwwroot

Your folder structure should now look similar to the following: 

.
├── Dockerfile
├── hello-world-app
│   └── function.json
├── hello-world-rest-trigger-linux_amd64



TIBCO Flogo® Enterprise User Guide

308 | Deployment and Configuration

├── host.json
├── local.settings.json
└── start.sh

 11. Test your app locally by running the following command:

func start

The output returns an URL for the app.

 12. Test whether the app works by navigating to the URL provided in the output.  For 
example:

http://localhost:7071/hello-world

 13. Publish your app to Microsoft Azure. For more information, see Publish the project to 
Azure. 

Deploying a Flogo App in Knative
You can create and deploy a Flogoapp as a Knative service.    For information on Knative, see 
the Knative documentation. 

A Flogoapp running inside a Docker container is called by a Knative service. For the app to 
be called by the Knative service, the app must be  exposed over an HTTP port. In this 
section, a REST Trigger is used to expose the app over an HTTP port.

Before you begin
Make sure you meet the following requirements: 

 l Install the following components by using the instructions from Getting Started with 
Knative:

 o Kind (Kubernetes in Docker)

 o Kubernetes CLI (kubectl)

 o Knative CLI (kn)

 o Knative "Quickstart" environment

https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure
https://knative.dev/docs/
https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/


TIBCO Flogo® Enterprise User Guide

309 | Deployment and Configuration

 l Create a Knative service and make sure you can ping the service endpoint. For 
details, see Deploying your first Knative Service and Ping your Knative Service. 

Note: This section uses a Knative on Kind setup to explain the procedure. 
However, you can also set it up on minikube and Docker Desktop. For more 
information, see Setup Knative on Minikube   and Setup Knative on Docker 
Desktop.

Procedure
 1. Configure a sample Flogo app with a REST Trigger exposed with a port. You can use 

the default REST Trigger port, 9999.     

Important: 
 l Only apps with HTTP endpoints can be deployed as a Knative 

service. Hence, a REST Trigger is used in this procedure.

 l An app with multiple endpoints on different ports cannot be 
deployed as a Knative service.

 2. Build the Flogo app for Linux/amd64 platform and save the binary file locally. For 
more information on building the app binary, see Building the App.

 3. Give executable permissions to the app binary: 

chmod a+x <app_executable>

https://knative.dev/docs/getting-started/first-service/
https://knative.dev/docs/getting-started/first-service/#ping-your-knative-service
https://github.com/csantanapr/knative-minikube
https://github.com/csantanapr/knative-docker-desktop
https://github.com/csantanapr/knative-docker-desktop


TIBCO Flogo® Enterprise User Guide

310 | Deployment and Configuration

 4. Build a Docker image for the Flogo app and tag it: 

docker build --file Dockerfile -t dev.local/flogoknative:1.0.0 .

 5. 
Note: Make sure you tag the image in the following format:
dev.local/<image name>:<tag>
Instead of the latest tag, use a tag such as 1.0.0. 

Here is the sample Dockerfile used in the above command:

FROM alpine:3.8
RUN apk add --no-cache ca-certificates
WORKDIR /app
ADD <app_executable> /app/flogoapp
RUN chmod a+x /app/flogoapp
ENTRYPOINT ["/app/flogoapp"] 

The Docker image is built:

 6. Confirm that the Docker image is built successfully:

docker images | grep knative

The  details of the flogoknative image are displayed: 



TIBCO Flogo® Enterprise User Guide

311 | Deployment and Configuration

 7. To test the Docker image:  

docker run -it -p 9999:9999 dev.local/flogoknative:1.0.0

The  Flogo runtime logs should be displayed as follows: 

 8. Load the Docker image into the default knative cluster: 

kind load docker-image dev.local/flogoknative:1.0.0 --name knative

The Flogo Docker image is loaded inside the knative cluster and is used by Knative 
to create the service.

 9. Create the Knative service: 

kn service create helloflogo --image dev.local/flogoknative:1.0.0 -
-port 9999 --revision-name=<any revision name>

Note: The port should be the same as what the Flogo is listening to. In this 
case, 9999. 

A service is created and an URL is generated. You should see messages similar to the 
following: 



TIBCO Flogo® Enterprise User Guide

312 | Deployment and Configuration

The networking layer, routes, ingress, and load balancer are configured for the 
Knative service.

To see a list of services, execute the following command: 

kn service list 

NOTE: If you notice errors during any of these steps, the service is not created 
successfully. For troubleshooting tips, see Troubleshooting Tips. 

 10. Append the REST Trigger endpoint path (specified in step 1) to the generated service 
URL and hit the endpoint using a browser or curl. For curl, the format of the 
command is curl <URL returned in previous step>/hello/knative. 
You should see the Flogo return message as the response: 

Troubleshooting Tips

Error Message Probable Solution

Errors while creating a kn service: 

 l  configuration does not have any 
ready revision

Check whether executable permissions 
are given to the Flogo app before building 
the Docker image.



TIBCO Flogo® Enterprise User Guide

313 | Deployment and Configuration

 l RevisionMissing

Error while creating a kn service:

IngressNotConfigured/reconciled

Delete your Knative cluster and recreate it 
using the following command: 

  kind delete cluster --name knative 

After deleting the cluster, to reinstall it, 
follow the steps mentioned in Getting 
Started with Knative. 

Error after creating the kn service and running 
the kn service list command: 

RevisionMissing

Make sure you tag the image in the 
following format: 

 dev.local/<image name>:<tag> 

Instead of the latest tag, use a tag such 
as 1.0.0.

After you tag the image, load it in kind 
and then create the service again.

 

Monitoring
This section contains information about how to monitor your apps.    

 

About the TIBCO Flogo Enterprise Monitoring App 
Using the    Flogo Enterprise Monitoring app, you can monitor    Flogo Enterprise apps that are 
running in your environment. The    Flogo Enterprise Monitoring app collects metrics of flows 
and triggers from all running apps that are registered with it. In the UI of the app, you can 
visualize the metrics. 

The Flogo Enterprise Monitoring app can also be used with TIBCO Flogo® Flow State 
Manager to collect information about the state of all run flows of a Flogo app. For more 

https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/


TIBCO Flogo® Enterprise User Guide

314 | Deployment and Configuration

information on how to use the Flogo Enterprise Monitoring app with TIBCO Flogo® Flow 
State Manager, see About TIBCO Flogo® Flow State Manager .

How to Set Up and run the      Flogo Enterprise Monitoring App

The      Flogo Enterprise Monitoring app is available as a ZIP file. It can run as a standalone 
app or in a container, such as Docker or Kubernetes. However, you must run the      Flogo 
Enterprise Monitoring app on the same container platform where the      Flogo Enterprise apps 
are running.    

How Registration Works in the      Flogo Enterprise Monitoring App

Flogo Enterprise apps must be registered with the      Flogo Enterprise Monitoring app to be 
able to view its app metrics. After an app is registered, the      Flogo Enterprise Monitoring app 
can monitor and fetch the instrumentation statistics for the app.    

The      Flogo Enterprise Monitoring app stores the app registration details in a data store. 
Currently, the only data store supported is of the type File. The app registration details 
include app name, app host, app instrumentation port, app version, runtime version under 
which the app is running, and app tags. App tags are custom tags that help you provide 
additional information about the app. You can set them specific to an app.    

Note:  

 l A Flogo app can have one or more instances and they can be registered 
with the      Flogo Enterprise Monitoring app.      

 l Each app instance is identified as unique based on the app name and app 
version.      

API Key for Additional Security

For additional security, the      Flogo Enterprise Monitoring app can also be started using a 
secret key called the API key. The API key must be provided while starting the      Flogo 
Enterprise Monitoring app and the same API key must also be provided while starting the 
Flogo app. The Flogo app registers with the      Flogo Enterprise Monitoring app using the API 
key provided. If an API key is not provided, the Flogo app is not registered with the      Flogo 
Enterprise Monitoring app.    



TIBCO Flogo® Enterprise User Guide

315 | Deployment and Configuration

Using the Flogo Enterprise Monitoring App
Using the    Flogo Enterprise Monitoring app to monitor Flogo apps involves the following 
steps:    

Procedure
 1. Run the      Flogo Enterprise Monitoring app. You can run the app in one of two ways:     

 l Run the app as a standalone app. See        Running the Flogo Enterprise Monitoring 
App.      

 l Run the app in Docker. See        Running the Flogo Enterprise Monitoring App on 
Docker.      

 2. Register the Flogo app to be monitored using the      Flogo Enterprise Monitoring app. 
See      Registering an App with the Flogo Enterprise Monitoring App.     

 3. Access the UI of the      Flogo Enterprise Monitoring app by using a browser and view the 
statistics of the Flogo apps. See      Viewing Statistics of Apps.     

Running Flogo Enterprise Monitoring as a Standalone 
App
You can run the      Flogo Enterprise Monitoring app as a standalone app or in a container 
such as Docker or Kubernetes. This section explains how to run the      Flogo Enterprise 
Monitoring app as a standalone app.    

Before you begin
The    Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO 
Flogo® Enterprise Monitoring App" section of   TIBCO Flogo® Enterprise Installation.    

Procedure
 1. Navigate to the      flogomon/bin folder.      

 2. Run      startup.sh (on macOS or Linux) or      startup.bat (on Windows).      

Result
The web server for the    Flogo Enterprise Monitoring app is started.    



TIBCO Flogo® Enterprise User Guide

316 | Deployment and Configuration

What to do next
Register the Flogo app to be monitored with the    Flogo Enterprise Monitoring app. See    
Registering a Flogo App with the Flogo Enterprise Monitoring App.    

Running the TIBCO Flogo Enterprise Monitoring App On 
Docker 
You can run the    Flogo Enterprise Monitoring app as a standalone app or in a container 
such as Docker or Kubernetes. This section explains how to run the    Flogo Enterprise 
Monitoring app on Docker.    

Before you begin
The    Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO 
Flogo® Enterprise Monitoring App" section of the    TIBCO Flogo® Enterprise Installation.

Procedure
 1. Navigate to the      flogomon folder.      

 2. Build the Docker image by running the      Dockerfile command or      Dockerfile_alpine 
command as follows:      

 docker build -t flogomon -f Dockerfile .

docker build -t flogomon -f Dockerfile_alpine .

 3. To get a list of the most recently created Docker images, run: 

docker images

 4. Run the      Flogo Enterprise Monitoring app using the following commands. For a list of 
configuration properties that can be used while running these commands, refer to      
Configuring the Flogo Enterprise Monitoring App.      

 l With persistent volumes and API key:



TIBCO Flogo® Enterprise User Guide

317 | Deployment and Configuration

docker run -e FLOGO_MON_DATA_DIR=<path where applist.json file 
must be stored> -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> 
-v <path to persistent volumes>:/opt/flogomon/data -e FLOGO_
MON_API_KEY=<secret API key> -it -p 7337:7337 <name of Docker 
image of Flogo Enterprise Monitoring application>

Here,        -p specifies the port on which the        Flogo Enterprise Monitoring app must 
be started. The default port is 7337 and it can be configured using the        FLOGO_
MON_SERVER_PORT property. 

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only 
if you want to use TIBCO Flogo® Flow State Manager.        

For example:      

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://localhost:9091 -v 
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337 
flogomon:latest

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -v 
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337 
flogomon:latest

 l Without persistent volumes and API key:

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> -it -
p 7337:7337 <name of Docker image of Flogo Enterprise 
Monitoring application>

Here,        -p specifies the port on which the        Flogo Enterprise Monitoring app must 
be started. The default port is 7337 and it can be configured using the        FLOGO_
MON_SERVER_PORT property.         

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only 
if you want to use the TIBCO Flogo® Flow State Manager.        



TIBCO Flogo® Enterprise User Guide

318 | Deployment and Configuration

For example:      

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091 -it 
-p 7337:7337 flogomon:latest

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -
it -p 7337:7337 flogomon:latest

Result
The web server for the    Flogo Enterprise Monitoring app is started.    

What to do next
Register the app to be monitored with the    Flogo Enterprise Monitoring app. See    Registering 
an App with the Flogo Enterprise Monitoring App.    

Running the Flogo Enterprise Monitoring Application On 
Kubernetes
You can run the Flogo Enterprise Monitoring app as a standalone app or as a container on 
Kubernetes. This section explains how to run the Flogo Enterprise Monitoring app on 
Kubernetes.    

When the Flogo Enterprise Monitoring app is started on Kubernetes, it monitors Flogo apps 
added to a Kubernetes cluster. If a Flogo app is found, the app is registered with the Flogo 
Enterprise Monitoring app. The YAML file of the app must include some configuration 
details required for registering the app with the Flogo Enterprise Monitoring app. For 
details, refer to      Configurations in the Flogo App's YAML File. After a Flogo app is registered, 
the Flogo Enterprise Monitoring app is available in the App List on the Summary page.   

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO Flogo® 
Enterprise Monitoring App" section of the    TIBCO Flogo® Enterprise Installation.   

An overview of the procedure is given below:   

Procedure



TIBCO Flogo® Enterprise User Guide

319 | Deployment and Configuration

 1. Grant Access Using ClusterRole.     

 2. Configure the ServiceAccount.     

 3. Link the ServiceAccount to the ClusterRole using ClusterRoleBinding.     

 4. Link the Flogo App to the Flogo Enterprise Monitoring Application.     

 5. Specify configurations in the Flogo App's YAML File.     

Granting Access Using ClusterRole
To monitor pods registered in the Kubernetes cluster, the Flogo Enterprise Monitoring app 
requires access to the List, Watch, and Get verbs for all pods across all namespaces. To 
grant access, and update the YAML file as shown in the following sample file.    

Sample YAML file showing ClusterRole

Cluster

apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
   name: flogo-mon-cluster-role
 rules:
 - apiGroups: ["*"]
   resources: ["pods"]
   verbs: ["list","get","watch"]

Configuring the Service Account
Configure a service account for a pod as shown in the following sample YAML file.    

Sample YAML file showing ServiceAccount

Service

apiVersion: v1
 kind: ServiceAccount
 metadata:



TIBCO Flogo® Enterprise User Guide

320 | Deployment and Configuration

   name: flogo-mon-service-account

Linking the ServiceAccount to the ClusterRole 
Link the ServiceAccount to the ClusterRole using ClusterRoleBinding as shown in the 
following sample YAML file.    

Sample YAML file to add a ClusterRoleBinding

Deployment

kind: ClusterRoleBinding
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
   name: flogo-mon-service
 subjects:
 - kind: ServiceAccount
   name: flogo-mon-service-account
   namespace:  default
 roleRef:
   kind: ClusterRole
   name: flogo-mon-cluster-role
   apiGroup: rbac.authorization.k8s.io

Linking the Flogo App to the Flogo Enterprise Monitoring 
Application

 1. Link the Flogo Monitoring Deployment to the service account created in the previous 
steps. See the sample deployment YAML.    

 2. In the Flogo Monitoring Deployment YAML, provide the      FLOGO_APP_SELECTOR label 
with a value as a key-value pair. For example,      appType=flogo.      

Note: All Flogo apps which are required to be linked with the Flogo 
Enterprise Monitoring app must specify this label.      



TIBCO Flogo® Enterprise User Guide

321 | Deployment and Configuration

Sample YAML file for Deployment

Deployment

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

apiVersion: apps/v1
 kind: Deployment
 metadata:
   name: flogo-mon-service
 spec:
   selector:
     matchLabels:
       app: flogo-mon-service
   replicas: 1
   template:
     metadata:
       labels:
         app: flogo-mon-service
     spec:
       containers:
         - name: flogo-mon-service
           image: flogomon:v1
           imagePullPolicy: Never
           env:
             - name: "FLOGO_APP_SELECTOR"
               value: "appType=flogo" 
           ports:
             - containerPort: 7337
       serviceAccountName: flogo-mon-service-account 

Configurations in the Flogo App’s YAML File
To register an app with the Flogo Enterprise Monitoring app, provide the following 
configuration details in the app's YAML file.    

 l Labels: The deployment must have a label with the same value provided in the      
FLOGO_APP_SELECTOR environment variable. For example, if      FLOGO_APP_SELECTOR has 
the value as      appType=flogo, the Flogo app must have a label with the key as      appType 
and Name as      flogo. The Flogo Enterprise Monitoring app attempts to register the 



TIBCO Flogo® Enterprise User Guide

322 | Deployment and Configuration

app with this label only. If the label is not provided, the app is ignored.    

 l Annotations: The following annotations are mandatory:      

 o app.tibco.com/metrics: Setting this annotation to      true registers the app with 
the Flogo Enterprise Monitoring app and enables the metrics collection on the 
app. Setting the annotation to      false deregisters it from the Flogo Enterprise 
Monitoring app and turns off the metrics collection.      

 o app.tibco.com/metrics-port: Provide the HTTP port for the app. This port 
must be the same as the one specified by the      FLOGO_HTTP_SERVICE_PORT 
environment variable. If an invalid value is set, the app is ignored.      

Sample YAML File

App

Caution: Code snippets in the PDF could have undesired line breaks due to 
space constraints and should be verified before directly copying and running it 
in your program.

apiVersion: v1
 kind: Service
 metadata:
   name: flogoapp
   labels:
     app: flogoapp
 spec:
   type: LoadBalancer
   ports:
     - port: 9999
       protocol: TCP
       name: appport
       targetPort: 9999
   selector:
     app: flogoapp
 ---
 apiVersion: apps/v1
 kind: Deployment
 metadata:
   name: flogoapp
 spec:
   selector:
     matchLabels:



TIBCO Flogo® Enterprise User Guide

323 | Deployment and Configuration

       app: flogoapp
   replicas: 2
   template:
     metadata:
       labels:
         app: flogoapp
         appType: flogo
       annotations:
         app.tibco.com/metrics: 'true'
         app.tibco.com/metrics-port: '7777'
     spec:
       containers:
         - name: flogoapp
           image: flogoapp:v1
           imagePullPolicy: Never
           ports:
             - containerPort: 9999
             - containerPort: 7777
           env:
             - name: "FLOGO_HTTP_SERVICE_PORT"
               value: "7777" 

Configuring the Flogo Enterprise Monitoring App
The following properties can be set when running the    Flogo Enterprise Monitoring app as 
described in    Running the Flogo Enterprise Monitoring App.    

Note: These properties can also be set in the      flogomon/config/config.env file. 
If you have set the properties while starting the app, the values in the      
config.env file are ignored, and the values specified during the startup take 
precedence.    

Property        Description        

FLOGO_MON_DATA_DIR        The        Flogo Enterprise Monitoring app uses a file-based data 
store. This property provides the folder where the        
applist.json file must be stored. If you run a Docker app with 
persistent volumes, the        applist.json is created at the location 
specified as persistent volume.        



TIBCO Flogo® Enterprise User Guide

324 | Deployment and Configuration

Property        Description        

Default value:       User Home        

FLOGO_MON_RETRY_
INTERVAL        

The interval (in seconds) after which the        Flogo Enterprise 
Monitoring app retries to ping all instances of the Flogo app 
registered with the        Flogo Enterprise Monitoring app. For 
example, if an  app is down or the network is slow, the        Flogo 
Enterprise Monitoring app tries to collect monitoring data after 
the value specified in this property.        

Default value:       30s        

FLOGO_MON_RETRY_
COUNT        

Number of times the        Flogo Enterprise Monitoring app retries to 
ping all the instances before removing the instance from the 
datastore.        

For example, if an app is down or the network is slow, the        
Flogo Enterprise Monitoring app tries to collect monitoring 
data the number of times specified in this property.        

Default value: 5        

FLOGO_MON_API_KEY        The API Key that is used by the Flogo app to register with the        
Flogo Enterprise Monitoring app. The API key must be provided 
when starting the        Flogo Enterprise Monitoring app and the 
same API key must also be provided when starting the app. 
The app registers with the        Flogo Enterprise Monitoring app 
using the API key provided. If an API key is not provided, the 
app is not registered with the        Flogo Enterprise Monitoring app.        

Default value: Blank        

FLOGO_MON_SERVER_PORT        The port on which the        Flogo Enterprise Monitoring app must 
be started.        

Default value:       7337        

FLOGO_MON_LOG_LEVEL        The log level for the Flogo app.        

Default value:       INFO        



TIBCO Flogo® Enterprise User Guide

325 | Deployment and Configuration

Property        Description        

Properties related to TIBCO Flogo® Flow State Manager

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set 
the property is: 

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example: 

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

Note: This property needs to be set when starting the app 
binary after Flogo Flow State Manager is up and running.

Registering a Flogo App with the Flogo Enterprise 
Monitoring App
After a Flogo app is registered with the    Flogo Enterprise Monitoring app, the collection of 
instrumentation statistics starts automatically. To register a Flogo app with the    Flogo 
Enterprise Monitoring app, start the app with the following properties:    

 l FLOGO_HTTP_SERVICE_PORT=<instrumentation port>: This property specifies the 
port required to enable the app instrumentation.    

 l FLOGO_APP_MON_SERVICE_CONFIG: This property specifies details of the      Flogo 
Enterprise Monitoring app to the Flogo app.      

FLOGO_APP_MON_SERVICE_CONFIG={\"host\":\"<Host of Flogo Enterprise 
Monitoring app>\",\"port\":\"<Port of Flogo Enterprise Monitoring 
app>\",\"tags\":[\"<Tag 1>\",\"<Tag 2>\"],\"apiKey\":\"<API Key>\"}

Option        Description        

Host        Host of the        Flogo Enterprise Monitoring app.        

Port        Port of the        Flogo Enterprise Monitoring app.        



TIBCO Flogo® Enterprise User Guide

326 | Deployment and Configuration

Option        Description        

Tags 
(Optional)        

Custom tags that help you provide additional information about the 
Flogo app; you can set them specific to an app. For example, you can 
specify whether it is a REST app or whether it is running in Kubernetes, 
and so on.        

apiKey 
(Optional)        

For additional security, the        Flogo Enterprise Monitoring app can also be 
started using a secret key called API key. The API key must be provided 
while starting the        Flogo Enterprise Monitoring app and the same API key 
must also be provided while starting the Flogo app. The app registers 
with the        Flogo Enterprise Monitoring app using the API key provided. If 
an API key is not provided, the app is not registered with the        Flogo 
Enterprise Monitoring app.        

Examples
 l If the      Flogo Enterprise Monitoring app is running on localhost on port 7337 and the 

app instrumentation port is 7777, start the Flogo app as:      

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\"}" ./App1

 l If the      Flogo Enterprise Monitoring app is running on localhost on port 7337, the app 
instrumentation port is 7777, and you want to start the      Flogo Enterprise Monitoring 
app based on an API Key APIkey1, start the app as:      

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value 
specified when starting the Flogo Enterprise Monitoring app>\"}" 
./app_linux_amd64

 l If the      Flogo Enterprise Monitoring app is running on localhost on port 7337, the app 
instrumentation port is 7777, and you want to provide additional tags (named      
onpremise and      testing), start the app as:      

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="



TIBCO Flogo® Enterprise User Guide

327 | Deployment and Configuration

{\"host\":\"localhost\",\"port\":\"7337\",\"tags\":
[\"onpremise\",\"testing\"]}" ./App1

 l On Microsoft Windows, if the      Flogo Enterprise Monitoring app is running on      
localhost on port      3000 and the app instrumentation port is      7775, start the app as:      

set FLOGO_HTTP_SERVICE_PORT=7775
 set FLOGO_APP_MON_SERVICE_CONFIG=
{"host":"localhost","port":"3000","appHost":"instance1"}
 flogo-windows_amd64.exe

 l On Linux and Mac, if the      Flogo Enterprise Monitoring app is running on localhost on 
port 7337, the app instrumentation port is 7777, start the app as:      

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value 
specified when starting the Flogo Enterprise Monitoring app>\"}" 
./app_linux_amd64

What to do next:     View the statistics of the app on the UI of the      Flogo Enterprise 
Monitoring app. See      Viewing Statistics of Apps.    

About TIBCO Flogo® Flow State Manager 
Using Flogo® Flow State Manager and the TIBCO Flogo® Enterprise Monitoring App, you can 
collect information about the state of all executed flows of a Flogo app.

Flogo Flow State Manager acts as an interface between a Flogo app and the TIBCO Flogo® 
Enterprise Monitoring application. It collects data from a Flogo app and then persists the 
collected data to a supported database (currently, PostgreSQL). When it receives a request 
from the TIBCO Flogo® Enterprise Monitoring application, Flogo Flow State Manager 
collects data from the database and passes it on to the TIBCO Flogo® Enterprise Monitoring 
application for displaying on the UI.



TIBCO Flogo® Enterprise User Guide

328 | Deployment and Configuration

Flogo Flow State Manager is available as a compressed file. For more information about 
installing Flogo Flow State Manager, see TIBCO Flogo® Enterprise Installation.

For more information about TIBCO Flogo® Enterprise Monitoring App, see About the TIBCO 
Flogo Enterprise Monitoring App .

Using Flogo Flow State Manager

Before you begin
Make sure you meet the following requirements:

 l Install the PostgreSQL database. For more information, see PostgresSQL. 

 l Optionally, download and install a PostgreSQL management tool such as PGAdmin. 
For more information, see PGAdmin. 

Using Flogo Flow State Manager involves the following steps: 

Procedure
 1. Configure the PostgreSQL database as described in Using Flogo Flow State Manager.

 2. Run Flogo Flow State Manager. You can run the app in one of two ways:     

https://www.postgresql.org/
https://www.pgadmin.org/


TIBCO Flogo® Enterprise User Guide

329 | Deployment and Configuration

 l Run the app as a standalone app. See Running Flogo Flow State Manager as a 
Standalone App.      

 l Run the app in Docker. See Running Flogo Flow State Manager on Docker.      

 3. Start the Flogo Enterprise Monitoring app by specifying the host and port of the 
Flogo Flow State Manager. See Starting Flogo Enterprise Monitoring with Details of 
Flogo Flow State Manager.    

 4. Start the Flogo app binary. Information about the state of all executed flows of a 
Flogo app is displayed on the Executions Page.     

Configuring the PostgreSQL Database
All execution data from the Flogo app is stored in the PostgreSQL database. Set up the 
PostgreSQL database for accepting data from the Flogo app as follows:

Procedure
 1. Start the PostgreSQL service as docker container. For example:

docker run -d --name my_postgres -v my_dbdata1:/var/lib/postgresql/data -
p 54320:5432 -e POSTGRES_PASSWORD=<password> -e POSTGRES_USER=<user> 
postgres

 2. Start the PGAdmin portal as a Docker container:
docker run -p 9990:80 -e PGADMIN_DEFAULT_EMAIL=<email address> -e 
PGADMIN_DEFAULT_PASSWORD=<pgadmin_password> -d dpage/pgadmin4

 3. Configure the PostgreSQL server in the PGAdmin admin portal with the following 
details. Note that you must use the same parameter values while configuring 
config.json for Flogo Flow State Manager.

 l Host: IP of the local machine

 l PORT: 54320 (same host and port used while starting PostgreSQL service as 
docker container)

 l User: <user> (configured while starting PostgreSQL server)

 l Password: <password> (configured while starting PostgreSQL server)

 l Maintenance database: same as <user> (if not specifically mentioned while 
starting PostgreSQL server)

 4. Create the steps table by using <flogo_flow_state_



TIBCO Flogo® Enterprise User Guide

330 | Deployment and Configuration

manager.tar>\config\postgres\steps.sql. 

Note: If you are running the steps.sql script  in a terminal, convert the 
script content to a single continuous line.

 5. Create the flowstate table by using <flogo_flow_state_
manager.tar>\config\postgres\flowstate.sql. 

 6. 
Note: If you are running the flowstate.sql script  in a terminal, convert 
the script content to a single continuous line.                 

Running Flogo Flow State Manager as a Standalone App

Procedure
 1. Start Flogo Flow State Manager by executing the binary for your operating system: 

 l flowstatemanager-windows_amd64 (Windows executable)

 l flowstatemanager-linux_amd64 (Linux executable)

 l flowstatemanager-darwin_amd64 (Mac executable)

 2. Copy the <flogo_flow_state_manager.tar>\config\postgres\config.json into the 
bin directory. If the config.json file exists in any other directory, you can also set 
the FLOW_STATE_CONFIG environment variable to point to the location as follows: 

FLOW_STATE_CONFIG=<file path>

 3. Update the values in config.json as follows:

Caution: Code snippets in the PDF could have undesired line breaks due 
to space constraints and should be verified before directly copying and 
running it in your program.

{

"exposeRecorder": true,



TIBCO Flogo® Enterprise User Guide

331 | Deployment and Configuration

"port": "<The port on which you want to start the flow state manager 
binary>",

"persistence": {

"type":"postgres",

"name": "pg-server-1",

"description": "",

"host": "<The IP address where Postgres is running>",

"port": "<port on which the Postgres database server is running>",

"databaseName": "postgres",

"user": "<user value configured while starting PostgreSQL server)>",

"password": "<password value configured while starting PostgreSQL server>",

"Maintenance database": <same as <user>, if not specifically 
mentioned while starting postgreSQL>

"maxopenconnection": "0",

"maxidleconnection": "2",

"connmaxlifetime": "0",

"maxconnectattempts": "3",

"connectionretrydelay": "5",

"tlsparam": "VerifyCA",

"cacert": "",

"clientcert": "",

"clientkey": ""

}

}

Running Flogo Flow State Manager on Docker
To run the Flogo Flow State Manager in a Docker container:

Procedure
 1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per 

your Postgres installation. 



TIBCO Flogo® Enterprise User Guide

332 | Deployment and Configuration

Important: Postgres is not accessible over 'localhost' when Flogo Flow 
State Manager  is running on Docker. You must use the machine's IP 
address.

 2. Go to the root folder (packaging) and run: 

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile 
.

 3. Start the Flogo Flow State Manager service by mounting a volume for config.json: 

docker run -p 8099:8099 -v <parent 
absolutepath>/flowstatemanager/packaging/config/postgres/config.jso
n:/opt/flogo/sm/config.json flogostatemanager:1.0.0

Running Flogo Flow State Manager on Kubernetes

Procedure
 1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per 

your Postgres installation. 

Important: Postgres is not accessible over 'localhost' when Flogo Flow 
State Manager  is running on Docker. You must use the machine's IP 
address.

 2. Go to the root folder (packaging) and run: 

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile 
.

 3. Push the Flogo Flow State Manager  Docker image to the Docker registry.

 4. Update the <flogo_flow_state_manager.tar>/deployments/k8s/deployment.yml  as 
per the required configuration. For example, image name, version, port values, and 
so on. 

 5. Deploy the Flogo Flow State Manager service  in the Kubernetes cluster:



TIBCO Flogo® Enterprise User Guide

333 | Deployment and Configuration

<flogo_flow_state_manager.tar>/deployments/k8s/deploy.sh

This command creates the required configmap and applies the deployment.yml 
configuration to define the deployment and service component for Kubernetes.

 6. To undeploy the Flow State Manager service  in k8s cluster:

<flogo_flow_state_manager.tar>/deployments/k8s/undeploy.sh

Configuring Flogo Flow State Manager

Property        Description        

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set 
the property is: 

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example: 

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

Note: This property needs to be set when starting the app 
binary after Flogo Flow State Manager is up and running. It 
also needs to be set when running the Flogo Enterprise 
Monitoring app. 

FLOGO_FLOW_STATE_
ASYNC_INVOCATION

Specifies whether the Flogo Flow State Manager must be 
invoked asynchronously or not. Enabling the property also 
helps to increase the throughput of the app. The format to set 
the property is:

FLOGO_FLOW_STATE_ASYNC_INVOCATION=true

Note: This property needs to be set when starting the app 
binary after Flogo Flow State Manager is up and running.

Default value:    false



TIBCO Flogo® Enterprise User Guide

334 | Deployment and Configuration

Starting Flogo Enterprise Monitoring with Details of Flogo 
Flow State Manager
Start Flogo Enterprise Monitoring with the host and port details of the  Flogo Flow State 
Manager: 

Procedure
Start the TIBCO Flogo® Enterprise Monitoring app. When starting the app, use the 
FLOGO_FLOW_SM_ENDPOINT environment variable to specify the host and port of the 
Flogo Flow State Manager. For example:

docker run -it -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://<host>:<port> -v ~/temp:/opt/flogomon/data -p 
7337:7337 <fe-mon docker image name>

Procedure
Check the console log to verify that a successful connection has been established 
with Flogo Flow State Manager. 
If you notice a connection error in the log, verify whether the Flogo Flow State 
Manager is running and the host/port details are configured correctly.

Starting the App Binary
Start the app binary after Flogo Flow State Manager is up and running. 

export FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091
FLOGO_HTTP_SERVICE_PORT=7777 
FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"<IP address>\",\"port\":\"<port>\"}" 
./app-binary

Result
Information about the state of all executed flows of a Flogo app is displayed on the 
Executions Page. 



TIBCO Flogo® Enterprise User Guide

335 | Deployment and Configuration

Viewing Statistics by Using Flogo Enterprise 
Monitoring app

Before you begin
 l The      Flogo Enterprise Monitoring app must be running. See      Running the Flogo 

Enterprise Monitoring App or      Running the Flogo Enterprise Monitoring App on 
Docker.      

 l The Flogo app to be monitored must be registered with the     Flogo Enterprise 
Monitoring app. See      Registering a Flogo App with the Flogo Enterprise Monitoring 
App.      

Procedure
 1. In the UI of the      Flogo Enterprise Monitoring app, go to the following URL to monitor 

the app:    
http://<URL of        Flogo Enterprise Monitoring app>:<port of        Flogo Enterprise 
Monitoring app>

For example:      

http://localhost:7337

The      Apps page is displayed as shown below:      

The      Apps page shows all the Flogo apps registered with the      Flogo Enterprise 
Monitoring app. For details, see      Apps Page.      

 2. Click an app name.      

The      Metrics page is displayed. The instrumentation statistics are displayed in two 
tabs - Flow and Triggers. For details, see      Metrics Page.      



TIBCO Flogo® Enterprise User Guide

336 | Deployment and Configuration

Apps Page
The    Apps page shows all the Flogo apps registered with the    Flogo Enterprise Monitoring 
app.    

Note: The apps list on this page is not refreshed automatically. Click    to 
refresh the list manually.    

For each running app, you can view the following details:    

Item      Description      

Name      Name of the app.        

Click the name of an app to get more details of the app. For example, in the 
above screenshot, you can click        HTTPService1 to get more details about the 
service. The details of        HTTPService1 are displayed on the        Metrics page.        

Version      Version of the app.      

Flogo 
Version      

The version in which the app was created.      

Instances      Number of instances registered per app.      

Tags      Tags of the app. These tags help you provide additional information about the 
app. For example, you can specify whether it is a REST app or whether it is 
running in Kubernetes, and so on.      

From the    Apps page, you can also:    

 l Click the heading in the list to sort the apps. For example, to sort the list by name, 



TIBCO Flogo® Enterprise User Guide

337 | Deployment and Configuration

click the heading      Name. Click the same heading again to toggle between the 
ascending or descending order of listing the apps.      

 l The Search control above the list enables you to find apps by name.    

Metrics Page
The Metrics page displays the instrumentation statistics of flows and triggers.    

Select an instance ID from the instance ID list in the upper-left corner of the page. The 
instrumentation statistics of flows and triggers are displayed on the    Triggers tab and    Flow 
tab.

Triggers Tab

Select a trigger from the list on the left to see its details. You can also search for a trigger 
in the list.    

The following information is displayed on the right:    

Name        Description        

Total Trigger Executions (count)



TIBCO Flogo® Enterprise User Guide

338 | Deployment and Configuration

Name        Description        

Started        Total number of trigger instances started        

Completed        Total number of trigger instances completed        

Faulted        Total number of trigger instances failed        

Handler Execution (count)

Handler        Name of the trigger handler        

Config        Configuration of the trigger handler. For example:       

method: POST
 path: /arrayfilter

Started        Total number of trigger handlers started        

Completed        Total number of trigger handlers completed        

Faulted        Total number of trigger handlers failed        

Flow Tab



TIBCO Flogo® Enterprise User Guide

339 | Deployment and Configuration

Select a flow from the list on the left to see its details. You can also search for a flow in the 
list.    

The following information is displayed in the work area on the right:    

Name        Description        

Flow Instances (count)

Started        Total number of flow instances started        

Completed        Total number of flow instances completed        

Faulted        Total number of flow instances failed        

Flow Execution Time (in milliseconds)

Note: The Flow Execution Time (ms) for a faulted flow is always displayed as 0, even if 
the activities within the flow took time to execute. 

Average        Average execution time of the flow for 
successful executions        

Maximum        Maximum execution time for the flow        

Minimum        Minimum execution time for the flow        

Activity Execution (count)

Note: If an Activity is rerun, Activity Execution (count) also includes the rerun counts.  You 
can find out whether an Activity has been rerun  through the difference in the trigger and 
flow metric counts. 

Activity Name       Name of Activity        

Started        Total number of times a given Activity has 
started        

Completed        Total number of times a given Activity has 



TIBCO Flogo® Enterprise User Guide

340 | Deployment and Configuration

Name        Description        

been completed        

Faulted        Total number of times a given Activity has 
failed        

Activity Execution Time (in milliseconds)

Activity Name       Name of Activity        

Average        Average execution time of a given Activity for 
successful executions        

Maximum        Maximum execution time for a given Activity        

Minimum        Minimum execution time for a given Activity        

Executions Page
The Executions page  displays information about the state of all run flows of a Flogo app. 
Details of a trigger are not captured.    



TIBCO Flogo® Enterprise User Guide

341 | Deployment and Configuration

From this page, you can: 

 l Persist execution data: Select Persist Execution Data to persist execution data to 
the supported database (currently, PostgreSQL). 

Note: If Persist execution data is disabled, any new execution data is not 
saved to the database. The Rerun flow from this Activity feature is also 
disabled for all flow executions. 

 l Filter based on app version: You can use the filer to choose the app version for 
which the data must be displayed.

 l Filter based on time frame: Use the All drop-down to filter based on time frame. 
For example: in the last 1 hour, last week, last 30 days, and so on. 

 l Filter based on flow: If you have multiple flows, use the All Flows drop-down to 
filter based on flows. 

 l Filter based on status: Use the All Statuses drop-down to filter based on the status 
of the flow. 

 l Refresh data: Use  to refresh the data in the table. 

 l View execution data: The following data is displayed in a tabular format.       

Name          Description          

Status         Status          

Flow Name         Name of the flow.          

Execution ID         Instance ID of the flow.          

App Instance ID         Instance ID of the app.          

Duration (ms) Duration for which the flow was running. 

Start Time (UTC) Time when the flow was started, based on Coordinated 
Universal Time (UTC).  

End Time (UTC) Time when the flow ended, based on Coordinated Universal 
Time (UTC). 



TIBCO Flogo® Enterprise User Guide

342 | Deployment and Configuration

 l View details of a flow: For each flow, you can view its details by clicking View 
Details. A list of activities executed is displayed:

 l Rerun the flow from a specific Activity: You can rerun the flow from a specific 
Activity. You cannot modify the input data; you can only rerun the Activity. 

Note: If you rerun an Activity, the previous execution record for the 
Activity is overwritten in the database.  Past execution records of the 
Activity that was rerun and all subsequent activities in the flow are 
deleted.

Important: Exercise caution while re-running a flow attached to the App 
Startup Trigger and App Shutdown Trigger. These triggers, typically, 
include logic for creating data or cleaning up data. Such flows might 
impact the running instances of the app. 

To rerun the flow from a specific Activity: 

Procedure
 1. On the View Details page, click the expand icon and then click Input & Output 

Data.



TIBCO Flogo® Enterprise User Guide

343 | Deployment and Configuration

The input and output for the selected Activity are displayed. 

 2. Click Rerun flow from this Activity.

Note: 
 o Rerun flow from this Activity disappears for activities that 

are a part of subflows. Rerun flow from this Activity also 
disappears if Persist Execution Data is disabled.

 o If the version of the app running instance is not same as that 
of the selected version, you cannot rerun the activities.



TIBCO Flogo® Enterprise User Guide

344 | Deployment and Configuration

After the rerun of the activity, the rerun is indicated by . The Executions 

page is also updated with the latest data.  Click  to refresh the changes on 

the Executions page.

App Metrics
For REST APIs, the following methods can be used to enable and disable app metrics at 
runtime.    

Method        Description        Status Code        

POST /app/metrics        Enable instrumentation 
metrics collection        

200 - If successfully enabled        

409 - If the metrics collection is 
already enabled        

DELETE /app/metrics        Disable metrics collection        200 - If successfully disabled        

404 - If metrics collection is not 
enabled        

GET /app/metrics/flows        Retrieve metrics for all flows        200 - Successfully returned 
metrics data        

404 - If the metrics collection is 
not enabled        

500 - If there is an issue when 
returning metrics data        

GET 
/app/metrics/flow/
<flowname>

Retrieve metrics for a given 
flow        

200 - Successfully returned 
metrics data        

400 - If the flow name is 
incorrect        

404 - If the metrics collection is 
not enabled        

500 - If there is an issue 



TIBCO Flogo® Enterprise User Guide

345 | Deployment and Configuration

Method        Description        Status Code        

returning metrics data        

GET 
/app/metrics/flow/
<flowname>/activities        

Retrieve metrics for all 
activities in a given flow        

200 - Successfully returned 
metrics data        

400 - If the flow name is 
incorrect        

404 - If the metrics collection is 
not enabled        

500 - If there is an issue 
returning the metrics data        

Enabling App Metrics
Set the    FLOGO_HTTP_SERVICE_PORT environment variable to point to the port number of the 
HTTP service that provides APIs for collecting app metrics. This enables the runtime HTTP 
service.    

Procedure
 1. Run the following:      

FLOGO_HTTP_SERVICE_PORT=<port>  ./<app-binary>

 2. Run the      curl command for the appropriate REST method. Refer to      App Statistics for 
details on each method. Some examples are:      

curl  -X POST http://localhost:7777/app/metrics
 curl  -X GET http://localhost:7777/app/metrics/flows
 curl  -X DELETE http://localhost:7777/app/metrics

Enabling statistics collection using environment variables
To enable metrics collection through an environment variable:      



TIBCO Flogo® Enterprise User Guide

346 | Deployment and Configuration

Procedure
 1. Run the following:      

FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_APP_METRICS=true ./<appname>

 2. Run the      curl command for the appropriate REST method. Refer to      App Statistics for 
details on each method. Some examples are:      

curl  -X GET http://localhost:7777/app/metrics/flows
 curl  -X DELETE http://localhost:7777/app/metrics/flows

Example: retrieve specific metrics for an app
The following is an example of how you would run the above steps for a fictitious app 
named REST_Echo.      

FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_METRICS=true ./REST_Echo-darwin-
amd64
  
  
 curl  -X GET http://localhost:7777/app/metrics/flows
  
 {"app_name":"REST_Echo","app_version":"1.0.0","flows":
[{"started":127639,"completed":126784,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks"}]}
  
  
  
 curl  -X GET http://localhost:7777/app/metrics/flow/PostBooks/activities
 {"app_name":"REST_Echo","app_version":"1.0.0","tasks":
[{"started":127389,"completed":126908,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks","task_
name":"Return"}]}

Logging App Metrics
You can record app metrics of flows and activities to the console logs. To enable the 
logging of app metrics, use the following environment variables:    



TIBCO Flogo® Enterprise User Guide

347 | Deployment and Configuration

Environment 
Variable Name      

Default 
Values      

Description      

FLOGO_APP_
METRICS_LOG_
EMITTER_
ENABLE      

False      This property can be set to either        True or        False:        

 l True: App metrics are displayed in the logs with the 
values set in FLOGO_APP_METRICS_LOG_EMMITTER_
CONFIG.        

 l False: App metrics are not displayed in the logs.        

If this variable is not provided, the default values are used.        

FLOGO_APP_
METRICS_LOG_
EMITTER_
CONFIG      

Both flow 
and 
Activity      

This property can be set to either        flow level or        Activity 
level. The format for setting the property is:        

{"interval":"<interval_in_seconds>","type":
["flow","Activity"]}

where:        

 l interval is the time interval (in seconds) after which 
the app metrics are displayed in the console.        

 l type is the level at which the app metrics are to be 
displayed -        flow or        Activity. Depending on which 
level you set, the app metrics are displayed only for 
that level.        

For example:        

{"interval":"1s","type":["flow","Activity"]}

For a list of fields or app metrics returned in the response, refer to      Fields returned in the 
response.    

Fields returned in the response
The following table describes the fields that can be returned in the response.    



TIBCO Flogo® Enterprise User Guide

348 | Deployment and Configuration

Flow

Name        Description        

app_name        Name of the app        

app_version        Version of the app       

flow_name        Name of the flow        

started        Total number of times a given flow is started        

completed        Total number of times a given flow is completed        

failed        Total number of times a given flow has failed        

avg_exec_time        Average execution time of a given flow for successful executions        

min_exec_time        Minimum execution time for a given flow        

max_exec_time        Maximum execution time for a given flow        

Activity

Name        Description        

app_name        Name of the app       

app_version        Version of the app       

flow_name        Name of the flow        

Activity_name        Name of the Activity        

started        Total number of times a given Activity is started        

completed        Total number of times a given Activity is completed        



TIBCO Flogo® Enterprise User Guide

349 | Deployment and Configuration

Name        Description        

failed        Total number of times a given Activity has failed        

avg_exec_time        Average execution time of a given Activity for successful executions        

min_exec_time        Minimum execution time for a given Activity        

max_exec_time        Maximum execution time for a given Activity        

Prometheus
Flogo apps support integration with Prometheus for app metrics monitoring. Prometheus is 
a monitoring tool that helps in analyzing the app metrics for flows and activities.    

Prometheus servers scrape data from the HTTP    /metrics endpoint of the apps.    

Prometheus integrates with Grafana, which provides better visual analytics.    

Flogo apps expose the following flow and Activity metrics to Prometheus. These metrics 
are measured in milliseconds:    

Labels      Description      

flogo_flow_execution_count: Total number of times the flow is started, completed, or failed      

ApplicationName      Name of app      

ApplicationVersion      Version of app      

FlowName      Name of flow      

State      State of the flow. One of the following states:        

 l Started        

 l Completed        

 l Failed        

flogo_flow_execution_duration_msec: Total time (in ms) taken by the flow for successful 



TIBCO Flogo® Enterprise User Guide

350 | Deployment and Configuration

Labels      Description      

completion or failure      

ApplicationName      Name of app      

ApplicationVersion      Version of app      

FlowName      Name of flow      

State      State of the flow. One of the following states:        

 l Completed        

 l Failed        

flogo_Activity_execution_count: Total number of times the Activity is started, completed, or 
failed      

ApplicationName      Name of app      

ApplicationVersion      Version of app      

FlowName      Name of flow      

ActivityName      Name of Activity      

State      State of the Activity. One of the following 
states:        

 l Started        

 l Completed        

 l Failed        

flogo_Activity_execution_duration_msec: Total time (in ms) taken by the Activity for 
successful completion or failure      

ApplicationName      Name of app      

ApplicationVersion      Version of app      



TIBCO Flogo® Enterprise User Guide

351 | Deployment and Configuration

Labels      Description      

FlowName      Name of flow      

ActivityName      Name of Activity      

State      State of the Activity. One of the following 
states:        

 l Completed        

 l Failed        

Note: Deprecated in        Flogo Enterprise 2.10.0.       

flogo_flow_metrics: Used for flow-level queries      

ApplicationName      Name of app      

ApplicationVersion      Version of app      

FlowName      Name of flow      

Started      Total number of times flow is started      

Completed      Total number of times flow is completed      

Failed      Total number of times flow is failed      

Note: Deprecated in        Flogo Enterprise 2.10.0.       

flogo_Activity_metrics: Used for Activity-level queries      

ApplicationName      Name of app      

ApplicationVersion      Version of app      

FlowName      Name of flow      

ActivityName      Name of Activity      



TIBCO Flogo® Enterprise User Guide

352 | Deployment and Configuration

Labels      Description      

Started      Total number of times Activity is started in 
given flow      

Completed      Total number of times Activity is completed 
in given flow      

Failed      Total number of times Activity is failed in 
given flow      

For a list of some often-used flow-level queries, refer to the section,    Often-Used Queries.    

Using Prometheus to Analyze Flogo App Metrics
To enable Prometheus monitoring of Flogo apps, run the following:    

FLOGO_HTTP_SERVICE_PORT=7779 FLOGO_APP_METRICS_PROMETHEUS=true ./<app-
binary>

Setting      FLOGO_APP_METRICS_PROMETHEUS variable to      true enables Prometheus monitoring 
of Flogo apps. The variable,      FLOGO_HTTP_SERVICE_PORT is used to set the port number on 
which the Prometheus endpoint is available.    

Use the following endpoint URL in Prometheus server configuration:

http://<APP_HOST_IP>:<FLOGO_HTTP_SERVICE_PORT>/metrics

For example:

http:// 192.0.2.0:7779/metrics

Often-Used Queries
Prometheus uses the PromQL query language. This section lists some of the most often-
used queries at the flow level.    



TIBCO Flogo® Enterprise User Guide

353 | Deployment and Configuration

To Get this Metric      Use this Query      

Total number of flows that got successfully 
executed per app      

count(flogo_flow_execution_count
{State="Completed"}) by (AppName, 
FlowName)      

Total number of flows that failed per app      count(flogo_flow_execution_count
{State="Failed"}) by (AppName, 
FlowName)      

Total number of flows that executed 
successfully across all apps      

(when you are collecting metrics for multiple 
apps)      

count(flogo_flow_execution_count
{State="Completed"})      

Total number of flows that failed across all 
apps      

(when you are collecting metrics for multiple 
apps)      

count(flogo_flow_execution_count
{State="Failed"})      

Total time taken by flows which got executed 
successfully      

sum(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName, 
FlowName)      

Total time taken by flows which failed      sum(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName)      

Minimum time taken by the flows that got 
executed successfully      

(what was the minimum time taken by a flow 
from amongst the flows that executed 
successfully)      

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)      

Minimum time taken by flows which failed      min(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)      

Maximum time taken by flows which executed 
successfully      

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)      

Flow-level Queries



TIBCO Flogo® Enterprise User Guide

354 | Deployment and Configuration

To Get this Metric      Use this Query      

Maximum time taken by flows which failed      max(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)      

Average time taken by flows which executed 
successfully      

avg(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName, 
FlowName)      

Average time taken by flows which failed      avg(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName)      

To Get this Metric      Use this Query      

Total number of activities that got 
successfully executed per flow and app      

count(flogo_Activity_execution_count
{State="Completed"}) by (AppName, 
FlowName,ActivityName)      

Total number of activities that failed per 
flow and app      

count(flogo_Activity_execution_count
{State="Failed"}) by (AppName, 
FlowName,ActivityName)      

Total number of activities that executed 
successfully across all apps      

(when you are collecting metrics for 
multiple apps)      

count(flogo_Activity_execution_count
{State="Completed"})      

Total number of activities that failed 
across all apps      

(when you are collecting metrics for 
multiple apps)      

count(flogo_Activity_execution_count
{State="Failed"})      

Individual time taken by activities which 
got executed successfully per app and 
flow      

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName,ActivityName)

Individual time taken by activities which 
failed per app and flow      

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName, 

Activity-level Queries



TIBCO Flogo® Enterprise User Guide

355 | Deployment and Configuration

To Get this Metric      Use this Query      

FlowName,ActivityName)      

Minimum time taken by the Activity that 
got executed successfully within a given 
flow and app      

min(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName, 
FlowName,ActivityName)      

Minimum time taken by a failed Activity 
within a given flow and app      

min(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName,ActivityName)      

Maximum time taken by an Activity 
which executed successfully within a 
given flow and app      

max(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName, 
FlowName,ActivityName)      

Maximum time taken by an Activity 
which failed within a given flow and app      

max(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName,ActivityName)      

Average time taken by an Activity which 
executed successfully within a given flow 
and app      

avg(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName, 
FlowName,ActivityName)      

Average time taken by an Activity which 
failed within a given flow and app      

avg(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName, 
FlowName,ActivityName)      

OpenTelemetry Collector
Flogo supports integration with OpenTelemetry (OT) Collector. The goal of this collector is 
to create standard software development kit for tracing, metrics and logging which 
different vendors like Jaeger, Zipkin, Datadog, Prometheus  adopt. You have the flexibility 
to switch vendors without changing the application logic with OpenTelemetry.

Note: To use this feature for TIBCO Cloud Integration deployments, ensure that 
the OpenTelemetry Collector is reachable from app containers.



TIBCO Flogo® Enterprise User Guide

356 | Deployment and Configuration

Architecture

This is the schematic view of how the OT collector works: 

Note: You can use the same architecture for Distributed tracing as well. For 
more information, see Tracing Apps by Using OpenTelemetry Collector. 

Configuration

The parameters listed below are required for the configuration of the OT collector: 

Name Required Default Description

FLOGO_
OTEL_
METRICS

Yes False Enable OpenTelemetry metrics for Flogo app

FLOGO_
OTEL_
METRICS_
ATTRIBUTES

No None Add one or more custom attributes to the metrics. 
For example,  FLOGO_OTEL_METRICS_
ATTRIBUTES="deployment_type=flogo"

FLOGO_ Yes None OpenTelemetry protocol (OTLP) receiver endpoint 



TIBCO Flogo® Enterprise User Guide

357 | Deployment and Configuration

Name Required Default Description

OTEL_OTLP_
ENDPOINT

configured for OpenTelemetry Collector. 
For gRPC protocol, set <host>:<otlp_grpc_port> 
For http protocol, set https://<host>:<otlp_http_
port>

FLOGO_
OTEL_OTLP_
HEADERS

No None Set one or more custom gRPC/HTTP headers in the 
request to the collector. 
For example, FLOGO_OTEL_OTLP_
HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>".

FLOGO_
OTEL_TLS_
SERVER_
CERT

No None Set PEM encoded Server/CA certificate when TLS is 
enabled for OTLP receiver. You can configure a path 
to the certificate or use base64 encoded certificate 
value. A file path must be prefixed with "file://". 
e.g. FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.
pem" or FLOGO_OTEL_TLS_SERVER_CERT=<base64_
encoded_server_certificate>. 
When this certificate is not set, unsecure connection 
is established with the collector. 

Monitor Flogo apps metrics using OpenTelemetry

You can see the number of flows and activities executed in the app as per the below 
metrics: 

Metrics Label Description

flogo_activity_executions_
total

- Total number of times the activity is 
started, completed, or failed. 

  app_name Name of application

  app_version Version of application

  flow_name Name of flow



TIBCO Flogo® Enterprise User Guide

358 | Deployment and Configuration

Metrics Label Description

  activity_name Name of activity

  state State of activity - Started, Completed or 
Failed

  host_name Name of the host or app instance ID

flogo_flow_executions_
total

- Total number of times the flow is 
started, completed or failed

  app_name Name of application

  app_version Version of application

  flow_name Name of flow

  state State of flow - Started, Completed or 
Failed

  host_name Name of the host or app instance ID

Example
Prometheus

FLOGO_OTEL_METRICS=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_OTEL_
METRICS_ATTRIBUTES="deployment=local,product=flogo" ./<app-executable>

Distributed Tracing
Distributed tracing allows you to log information about an app's behavior during its 
execution. It shows the path an app takes from start to finish. You can then use the 
information to troubleshoot performance bottlenecks, errors, and debugging failures in the 
app execution.

As the app travels through different services, each segment is recorded as a span. A span is 
a building block of a trace and represents work done  with time intervals and associated 
metadata. All the spans of an app are combined into a single trace to give you a picture of 



TIBCO Flogo® Enterprise User Guide

359 | Deployment and Configuration

an entire request. A trace represents an end-to-end execution; made up of single or 
multiple spans. A Tracer is the actual implementation that records the spans and publishes 
them. 

Distributed tracing is used to help you identify issues with your app (performance of the 
app or simply debugging an issue) instead of going through stack traces. The use of 
distributed tracing is particularly useful in a distributed microservice architecture 
environment where each app is instrumented by a tracing framework and while the tracing 
framework runs in the background, you can monitor each trace in the UI. You can use that 
to track any abnormalities or issues to identify the location of the problem.    

Some Considerations

Keep the following in mind when using the distributed tracing capability in      Flogo 
Enterprise:    

 l At any given point in time, only one tracer can be registered - if you try to register 
multiple tracers, only the first one that you register is accepted and used at run time 
to trace all the activities of the flow.      

 l All the traces start at the flow level.  There are two relations between spans - a span 
is either the child of a parent span or the span is a span that follows (comes after) 
another span. You should be able to see all the operations and the traces for the 
flows and activities that are part of an app. Traces of the triggers used in the app are 
not shown.     

 l Tracing can be done across apps bypassing the tracing context from one app to 
another. To trace across multiple apps, you must make sure that all apps are 
instrumented with similar  tracing frameworks, such as Jaeger semantics so that they 
understand the framework language. Otherwise, you can't get a holistic following of 
the entire trace through multiple services.      

 l When looping is enabled for an Activity, each loop is considered one span, since each 
loop calls the server which triggers a server flow.      

 l If a span is passed on to the trigger, that span becomes the parent span. You should 
be able to see how much time is taken between the time the event is received by the 
trigger and the time the trigger replies. This only works for triggers that support the 
extraction of the context from the underlying technology, for instance, triggers those 
support HTTP headers.      

The      ReceiveHTTPMessage REST trigger and      InvokeRESTService Activity are 
supported for this release where the REST trigger can extract the context from the 



TIBCO Flogo® Enterprise User Guide

360 | Deployment and Configuration

request and      InvokeRESTService Activity can inject the context into the request. If 
two Flogo apps are both Jaeger-enabled, when one app calls the other, you can see 
the chain of events (invocation and how much time is taken by each invocation) in 
the Jaeger UI. If app A is calling app B, the total request time taken by app A is the 
cumulative of the time taken by all activities in app A plus the time taken by the 
service that it calls. If you open up each invocation separately, you can see the 
details of how much time was taken by each Activity in that invocation.      

 l Triggers that support span (for instance the REST trigger) are always the parent, so 
any flows that are attached to that trigger are always the children of the trigger span. 
Trigger span is completed only after the request goes to the flow and the flow 
returns.      

 l A subflow becomes a child of the Activity from which it is called.      

Tracing Apps Using Jaeger
Flogo apps provide an implementation of the OpenTracing framework using the Jaeger 
backend. The    Flogo app binary is built with Jaeger implementation and can be enabled by 
setting the    FLOGO_APP_MONITORING_OT_JAEGER environment variable to    true. You can track 
how the flow went through, the execution time for each Activity, or in case of failure, the 
cause of the failure.    

Each app is displayed as a service in the Jaeger UI. In a Flogo app, each flow is one 
operation (trace) and each Activity in the flow is a span of the trace. A trace is the 
complete lifecycle of a group of spans. The flow is the root span and its activities are its 
child spans.    

 
Prerequisites: The following prerequisites must be met before using the tracing capability 
in    Flogo Enterprise:    

 l By default, Jaeger is not enabled in Flogo, hence tracing is not enabled. To enable 
Jaeger, set the      FLOGO_APP_MONITORING_OT_JAEGER environment variable to      true.      

 l Ensure that the Jaeger server is installed, running, and accessible to the Flogo app 
binary.      

 l If your Jaeger server is running on a machine other than the machine on which your 
app resides, be sure to set the JAEGER_ENDPOINT=http://<JAEGER_HOST>:<HTTP_
TRACE_COLLECTOR_PORT>/api/traces environment variables. Refer to the 
Environment Variables page for the environment variables that you can set.     

https://github.com/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES


TIBCO Flogo® Enterprise User Guide

361 | Deployment and Configuration

Flogo Enterprise-Related Tags in Jaeger

In OpenTracing, each trace and span have their tags. Tags are useful for filtering traces, for 
example, if you want to search for a specific trace or time interval.      

Note: Adding your custom tags for any one span (Activity) only is currently not 
supported. Any custom tags that you create are added to      all spans and traces.      

Flogo Enterprise introduces the following Flogo-specific tags:    

For flows

flow_name Name of the flow        

flow_id Unique instance IDs that are generated by the Flogo engine. They are 
used to identify specific instances of a flow (such as when the same flow 
is triggered multiple times)        

For activities

flow_name Name of the flow        

flow_id Unique instance IDs that are generated by the Flogo engine. They are 
used to identify specific instances of a flow (such as when the same flow 
is triggered multiple times)        

task_name Name of Activity        

taskInstance_id Unique instance ID that is generated by the Flogo engine. This identity is 
used to identify the specific instance of an Activity when an Activity is 
iterated multiple times. This ID is used in looping constructs such as        
iterator or        Repeat while true.        

For subflows

parent_flow Name of the parent flow        



TIBCO Flogo® Enterprise User Guide

362 | Deployment and Configuration

parent_flow_id Unique ID of the parent flow        

flow_name Name of the subflow        

flow_id Unique instance IDs that are generated by the Flogo engine. They are 
used to identify specific instances of a flow (such as when the same flow 
is triggered multiple times)        

The tag values are automatically generated by the      Flogo Enterprise runtime. You cannot 
override the default values. You have the option to set custom tags by setting them in the 
environment variable      JAEGER_TAGS as key/value pair. Keep in mind that these tags are 
added to      all spans and traces.    

Refer to the    Environment Variables page for the environment variables that you can set.    

Tracing Apps by Using AWS X-Ray
If you are running your Flogo app on the cloud or in your local environment, you can track 
your app performance or troubleshoot issues by using AWS X-Ray. For more information 
about AWS X-Ray, refer to AWS X-Ray.

When you use AWS X-Ray for tracing, your app sends trace data to AWS X-Ray. X-Ray 
processes the data to generate a service map and searchable trace summaries. For each 
flow, subflow, and Activity, details such as execution time are displayed on the AWS X-Ray 
dashboard. 

The following example shows the trace details of the InvokeRest_InvokeLambdaApp-
v1.0.0 app. It includes details such as activities  that were invoked, and their execution 
time and status.

https://github.com/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES
https://docs.aws.amazon.com/xray/index.html


TIBCO Flogo® Enterprise User Guide

363 | Deployment and Configuration

Before you begin
Make sure that you meet the following requirements:    

 l Knowledge of AWS X-Ray: For more information, refer to AWS XRay.

 l For an app containing a non-Lambda trigger:

 o AWS X-Ray daemon: You must have an AWS X-Ray daemon running on your 
machine  to send trace data to the AWS X-Ray service. Alternatively, your app 
must have access to another machine where the daemon is running. Download 
the AWS X-Ray daemon from the AWS website and run the AWS X-Ray daemon. 

 o Environment variable: If the AWS X-Ray daemon and app are running on two 
different machines, set the environment variable AWS_XRAY_DAEMON_ADDRESS  to 
the IP address where the AWS X-Ray daemon is running for receiving traces. 
You need not set this variable if the daemon and app are running on the same 
machine. 

 l For an app containing a Lambda trigger: 

 o To trace the app end-to-end, TIBCO recommends that you enable the Active 
Tracing option in AWS along with the Flogo tracing feature. Active Tracing 
provides all the details of the app while the Flogo tracing feature provides 
details specific to the Flogo app. For example, details such as how long it took 
to initialize the container,  are provided by Active Tracing. Details specific to 
the Flogo implementation (such as the flows, sub-flows, or activities executed) 

https://docs.aws.amazon.com/xray/index.html


TIBCO Flogo® Enterprise User Guide

364 | Deployment and Configuration

are provided by the Flogo tracing feature.

 o For an app containing a Lambda trigger, you need not run the AWS X-Ray 
daemon. This is because AWS X-Ray is integrated with AWS Lambda.

 o Add the following permissions to the  execution role. For more information on 
how to add the permissions, refer to the AWS Documentation. 

 n xray:PutTraceSegments

 n xray:PutTelemetryRecords

Note: The AWS API Gateway Lambda and S3 Bucket Event Lambda 
triggers are not supported.

Enabling Tracing Using AWS X-Ray
To enable tracing using AWS X-Ray, set the FLOGO_AWS_XRAY_ENABLE environment variable to 
true. The default is false. 

Search Using Annotations
You can search based on predefined Flogo annotations. The following annotation is 
available in this release:

flogo_flow_name: Name of the flow

Here is an example of using annotations to search:

annotation.flogo_flow_name="sampleFlow"

Metadata
The following metadata about an app is stored in the flogo namespace:

 l flow_name: Name of the flow

 l Activity_name: Name of the Activity

This metadata can be used when debugging. You can use the metadata to identify the 
exact errors, stack traces, flow name, Activity name, and so on. Note that the metadata 
cannot be used for searching traces.
  

https://docs.aws.amazon.com/xray/


TIBCO Flogo® Enterprise User Guide

365 | Deployment and Configuration

Tracing Apps by Using OpenTelemetry Collector
By using OpenTelemetry Collector, you can capture traces from your Flogo app and send 
them to observability vendor tools such as Jaeger, Zipkin, and Datadog. This gives you the 
flexibility to switch between observability vendor tools without changing the logic of your 
app. For more information about OpenTelemetry Collector, see OpenTelemetry 
documentation.

When you use this feature, traces of the Flogo app are sent to the OpenTelemetry 
Collector. OpenTelemetry Collector has vendor-specific configurations  that allow you to 
send these traces to supported observability vendor tools. For example, you can specify 
Zipkin-specific configurations in the otel-zipkin-collector-config.yaml configuration 
file for the traces to be displayed on the Zipkin dashboard. 

The following screenshots show traces from one Flogo app on  two different observability 
vendor tools, Jaeger and Zipkin. 

Jaeger output of a Flogo app

https://opentelemetry.io/
https://opentelemetry.io/


TIBCO Flogo® Enterprise User Guide

366 | Deployment and Configuration

Zipkin output of a Flogo app

Enabling Tracing for OpenTelemetry Collector

Before you begin
Make sure that you meet the following requirements:    

 l Ensure that you can connect to the OpenTelemetry Collector.



TIBCO Flogo® Enterprise User Guide

367 | Deployment and Configuration

Note: 
 o To use this feature for TIBCO Cloud Integration deployments, ensure 

that the OpenTelemetry Collector is reachable from app containers.

 o If the connection to OpenTelemetry Collector is lost, traces during 
that time duration are not collected. 

 l Install an observability vendor tool of your choice: Jaeger, Zipkin, Datadog, and so 
on. 

Mandatory Configuration Parameters

To enable tracing by using OpenTelemetry Collector, set the following mandatory 
parameters: 

Name Default Description

FLOGO_OTEL_TRACE False Enables tracing by using 
OpenTelemetry Collector. 

FLOGO_OTEL_OTLP_ENDPOINT None Specifies the OpenTelemetry 
protocol (OTLP) receiver endpoint  for 
OpenTelemetry Collector. 

Supported protocols are:

 l gRPC: Set to <host>:<otlp_
grpc_port>.

 l HTTP: Set to 
https://<host>:<otlp_http_
port>.

Optional Configuration Parameters

You can also use some optional configuration parameters when tracing apps using 
OpenTelemetry Collector. Here are some commonly used parameters and their 
descriptions: 



TIBCO Flogo® Enterprise User Guide

368 | Deployment and Configuration

Name Default Description

FLOGO_
OTEL_
TRACE_
ATTRIBUTES

None Add one or more custom attributes to the trace. The format is key-
value pairs separated by commas. For example,  to filter based on 
the deployment type and deployment cluster, you can use: 

FLOGO_OTEL_TRACE_
ATTRIBUTES="deployment.type=staging,deployment.cluster=sta
ging3"

FLOGO_
OTEL_OTLP_
HEADERS

None Set one or more custom gRPC or HTTP headers in the request to 
the OpenTelemetry Collector. The format is key-value pairs 
separated by commas. For example: 

FLOGO_OTEL_OTLP_HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>"

FLOGO_
OTEL_TLS_
SERVER_
CERT

None If TLS is enabled for OpenTelemetry protocol receiver, set PEM-
encoded server or CA. You can configure a path to the certificate or 
use base64-encoded certificate value. A file path must be prefixed 
with "file://". 

For example: 

 l FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.pem"

 l FLOGO_OTEL_TLS_SERVER_CERT=<base64_encoded_server_
certificate>

You can also encrypt base64 encoded certificate value by using 
either TIBCO Cloud Integration platform API or by using app 
executable and set it to the environment variable with prefix 
"SECRET:"

For example:

 l FLOGO_OTEL_TLS_SERVER_CERT=SECRET:<encrypted_base64_
encoded_cert_value>

For details about encryption, see Encryption using App executable 
or Encryption using TIBCO Cloud Platform API.

When this certificate is not set, an unsecure connection is 
established with OpenTelemetry Collector. 

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/utils/encrypt-values-fe.html?TocPath=TIBCO%2520Cloud%25E2%2584%25A2%2520Integration%2520API%257C_____11


TIBCO Flogo® Enterprise User Guide

369 | Deployment and Configuration

Tracing With OpenTelemetry Collector

Using OpenTelemetry Collector with Jaeger

The Jaeger Docker image includes OpenTelemetry Collector. So, you need not run 
OpenTelemetry Collector separately.

docker run --name jaeger -p 13133:13133 -p 16686:16686 -p 4317:55680 -d 
--restart=unless-stopped jaegertracing/opentelemetry-all-in-one

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_
OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo" ./TimerOTel-
darwin_amd64

Using OpenTelemetry Collector with Zipkin

Procedure
 1. Start Zipkin as follows:

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin

 2. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

receivers:
otlp:
protocols:
http:

exporters:
zipkin:
# Change IP
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:



TIBCO Flogo® Enterprise User Guide

370 | Deployment and Configuration

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

 3. Start OpenTelemetry  Collector with Zipkin Exporter as follows:

docker run -d --rm -p 4318:4318 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml --name otelcol 
otel/opentelemetry-collector:0.35.0 --config otel-collector-
config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="https://localhost:4318" 
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo" 
./TimerOTel-darwin_amd64

Using OpenTelemetry Collector with Zipkin (with TLS)

Procedure
 1. Update server-cert-gen.sh as follows: 

openssl req -newkey rsa:2048 \
-new -nodes -x509 \
-days 3650 \
-out cert.pem \
-keyout key.pem \
-extensions san \
-config <(echo '[req]'; echo 'distinguished_name=req';
echo '[san]'; echo 'subjectAltName=DNS:localhost,DNS:127.0.0.1') \
-subj 
"/C=US/ST=California/L=Sunnyvale/O=TIBCO/OU=Flogo/CN=localhost" 

 2. Start Zipkin.

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin



TIBCO Flogo® Enterprise User Guide

371 | Deployment and Configuration

 3. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

receivers:
otlp:
protocols:
grpc:
tls_settings:
cert_file: /var/certs/cert.pem
key_file: /var/certs/key.pem

exporters:
zipkin:
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

 4. Create a certs directory under the current directory and copy cert.pem and key.pem 
in the certs directory.

 5. Start OpenTelemetry  Collector with Zipkin Exporter as follows: 

docker run -d --rm -p 4317:4317 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml -v 
"${PWD}/certs":/var/certs --name otelcol otel/opentelemetry-
collector:0.35.0 --config otel-collector-config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" 
FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/dev/Installations/OpenTelemetry/zipkin/certs/cert.pe
m" 
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo" 
./TimerOTel-darwin_amd64



TIBCO Flogo® Enterprise User Guide

372 | Deployment and Configuration

Flogo Related Attributes in OpenTelemetry Collector
In OpenTelemetry, each trace has its own attributes. These attributes are useful for filtering 
traces, for example, if you want to search for a specific trace or time interval.      

Note: 
 l Adding your custom attributes for only one span (Activity) is currently not 

supported. Any custom tags that you create are added to      all traces

 l The prefix 'flogo' is added to tags with product-specific attributes only. 

The following attributes specific to Flogo are available:    

For flows

flogo.event.id The event ID is the unique ID of a single request, job or a 
action initiated by the user.

flogo.flow.id Unique instance IDs that are generated by the Flogo 
engine. They are used to identify specific instances of a 
flow (such as when the same flow is triggered multiple 
times).        

flogo.flow.name Name of the flow.        

For activities

flogo.flow.name Name of the flow.        

flogo.flow.id Unique instance IDs that are generated by the Flogo 
engine. They are used to identify specific instances of a 
flow (such as when the same flow is triggered multiple 
times).        

flogo.task.name Name of Activity.        

flogo.taskInstance.id Unique instance ID that is generated by the Flogo engine. 
This identity is used to identify the specific instance of an 
Activity when an Activity is iterated multiple times. This ID 



TIBCO Flogo® Enterprise User Guide

373 | Deployment and Configuration

is used in looping constructs such as        iterator or        Repeat 
while true.        

For subflows

flogo.parent.flow Name of the parent flow        

flogo.flogo.parent.flow.id Unique ID of the parent flow        

flogo.flow.name Name of the subflow        

flogo.flow.id Unique instance IDs that are generated by the Flogo 
engine. They are used to identify specific instances of a 
flow (such as when the same flow is triggered multiple 
times)        

The attribute values are automatically generated at runtime. You cannot override the 
default values. You have the option to set attributes by setting them in the environment 
variable      FLOGO_OTEL_TRACE_ATTRIBUTES as key/value pair. Keep in mind that these tags are 
added to      all traces.    

Using APIs
You can obtain the runtime statistics of the Go language in    Flogo Enterprise.    

Healthcheck API
Flogo Enterprise runtime allows you to enable healthcheck for a Flogo app that is running.    

To enable healthcheck for your running app:    

Procedure
 1. Set      FLOGO_HTTP_SERVICE_PORT to enable runtime HTTP Service as follows:      

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>



TIBCO Flogo® Enterprise User Guide

374 | Deployment and Configuration

 2. Run the following command:      

curl http://localhost:<port>/ping

Note: Currently, healthcheck endpoint returns HTTP status 200 only when all 
triggers in the app are successfully started. Otherwise, it returns HTTP status 
500.    

Go Language Runtime Statistics and Profiling
Flogo Enterprise allows you to gather runtime system statistics for a    Flogo app that is 
running.    

Warning: Your management port must be set for the Flogo app,  to call the API 
to gather Go language runtime statistics. To set a different management port for 
your      Flogo app, run      FLOGO_HTTP_SERVICE_PORT=<port>./<app-name>/You can 
use curl to call this API.      

To obtain the system statistics on your running app:    

Procedure
 1. From the folder in which your app binary resides, enable the HTTP service using the 

following command:      

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>

 2. Run the following command:      

curl http://localhost:<port>/debug/vars

The command returns the following statistics:    



TIBCO Flogo® Enterprise User Guide

375 | Deployment and Configuration

System Metric 
Name        

Description        

cmdline        Command-line arguments passed to the app binary        

cpus        Number of logical CPUs usable by the current process        

goroutines        The number of Go routines that currently exist        

memstats        Memory statistics for the current process. See the Golang 
documentation for details.        

processid        System process ID        

version        Go language version used to build the app        

Profiling your app runtime

You can collect and visualize runtime profiling data for      Flogo apps using the      pprof tool in 
Golang.    

Endpoint        Description        

/debug/pprof        List all profiles        

/debug/pprof/profile        Profile current CPU usage. By default, it is profiled for every 30 
seconds. To change the profiling interval, set the        seconds query 
parameter to a desired value. For example,        

go tool pprof 
http://localhost:
<port>/debug/pprof/profile?seconds=15

/debug/pprof/heap        A sampling of memory allocations of live objects. For example,        

go tool pprof 
http://localhost:<port>/debug/pprof/heap



TIBCO Flogo® Enterprise User Guide

376 | Deployment and Configuration

Endpoint        Description        

/debug/pprof/goroutine        Stack traces of all current Go routines. For example,        

go tool pprof 
http://localhost:<port>/debug/pprof/goroutine

/debug/pprof/trace        A trace of execution of the current program. For example,        

go tool pprof 
http://localhost:<port>/debug/pprof/trace

CPU and Memory Profiling
If you observe low throughputs or high memory usage, you can enable CPU and/or Memory 
profiling for your Flogo app. Enabling this profiling impacts performance. Hence, we do not 
recommend enabling them in a production environment.    

Before you begin
 l You must have GO version 1.9.0 or higher installed.      

 l Make sure that the      pprof tool is installed on your machine. Refer to      PPOF for more 
details on the      pprof tool.      

Enabling CPU Profiling

To enable CPU profiling:    

Procedure
 1. Open a command prompt or terminal.      

 2. Change the directory to the folder in which your app binary is located.      

 3. Run the following command:      

./<app_binary> -cpuprofile <file>

where      <file> is the profile file. For example,      ./StockService -cpuprofile 

https://github.com/google/pprof


TIBCO Flogo® Enterprise User Guide

377 | Deployment and Configuration

/home/users/StockService_cpu.prof

Enabling Memory Profiling

To enable memory profiling:    

Procedure
 1. Open a command prompt or terminal.      

 2. Change the directory to the folder in which your app binary is located.      

 3. Run the following command:      

./<app_binary> -memprofile <file>

where      <file> is the profile file. For example,      ./StockService -memprofile 
/home/users/StockService_mem.prof

Enabling CPU and Memory Profiling in a Single Command

To enable CPU and memory profiling in a single command:    

Procedure
 1. Open a command prompt or terminal.      

 2. Change the directory to the folder in which your app binary is located.      

 3. Run the following command:      

./<app_binary> -memprofile <file> -cpuprofile <file>

Analyzing your profiling data

Once you capture the profiling data, analyze it using      pprof by running the following 
command:      

go tool pprof <profile file>



TIBCO Flogo® Enterprise User Guide

378 | Deployment and Configuration

Monitoring and Managing Enterprise Apps in TIBCO 
Cloud Integration
With the TIBCO Cloud Integration - Hybrid Agent, you can now monitor Remote apps and 
perform various operations through the TIBCO Cloud Integration user interface, such as 
scaling the app instances, updating application and engine variables, starting or stopping 
an app, and monitoring app metrics. Remote apps are auto-discovered by the Hybrid 
Agent. 

For detailed information, see Configuring Remote Apps.

Environment Variables
This section lists the environment variables that are associated with the    Flogo Enterprise 
runtime environment.    

Environment 
Variable Name      

Default Values      Description      

FLOGO_RUNNER_
QUEUE_SIZE     

50 The maximum number of events from all 
triggers that can be queued by the app 
engine.      

FLOGO_RUNNER_
WORKERS      

5 The maximum number of concurrent 
events that can be run by the app 
engine from the queue.      

FLOGO_LOG_
LEVEL      

INFO      Used to set a log level for the        Flogo app. 
Supported values are:        

 l INFO        

 l DEBUG        

 l WARN        

 l ERROR 

This variable is supported for Remote 

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/remote-app-mgmt.html?TocPath=TIBCO%2520Flogo%25C2%25AE%2520Apps%257CDeployment%2520and%2520Configuration%257CMonitoring%257C_____8


TIBCO Flogo® Enterprise User Guide

379 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

Apps managed with the TIBCO Cloud 
Integration Hybrid Agent.

FLOGO_
LOGACTIVITY_
LOG_LEVEL

INFO Used to control logging in the Log 
activity. Values supported, in the order 
of precedence, are:        

 l DEBUG 

 l INFO               

 l WARN        

 l ERROR 

For example: 

 l If the Log level is set to WARN, 
WARN and ERROR logs are filtered 
and displayed.

 l If Log Level is set to DEBUG, then 
DEBUG, INFO, WARN, and 
ERROR logs are displayed.

FLOGO_MAPPING_
SKIP_MISSING      

False      When mapping objects if one or more 
elements are missing in either the 
source or target object, the mapper 
generates an error when        FLOGO_
MAPPING_SKIP_MISSING is set to        false.        

Set this environment variable to        true, if 
you would like to return a null instead of 
receiving an error.        

FLOGO_APP_
METRICS_LOG_
EMITTER_ENABLE      

False      If you set this property to        True, the app 
metrics are displayed in the logs with 
the values set in FLOGO_APP_METRICS_
LOG_EMMITTER_CONFIG. App metrics 
are not displayed in the logs if this 



TIBCO Flogo® Enterprise User Guide

380 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

environment variable is set to        False. To 
set it to        True, run:        export FLOGO_APP_
METRICS_LOG_EMITTER_ENABLE=true

FLOGO_APP_
METRICS_LOG_
EMITTER_CONFIG      

Both flow and Activity      This property can be set to either flow 
level or Activity level. Depending on 
which level you set, the app metrics 
displays only for that level. Also, you can 
provide an interval (in seconds) at which 
to display the app metrics.        

For example, to set the interval to 30 
seconds and get the app metrics for the 
flow, run:        

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”]}’

To set the interval for 10 seconds and 
get the app metrics for both flow and 
activities, run:        

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”,“Activity”]}’

FLOGO_APP_
METRICS

70 Enables app metrics on the Monitoring 
tab.

FLOGO_APP_
MEM_ALERT_
THRESHOLD

70 The threshold for memory utilization of 
the app. When the memory utilization by 
an app running in a container exceeds 
the threshold that you have specified, 
you get a warning log

FLOGO_APP_CPU_ 70 The threshold for CPU utilization of the 



TIBCO Flogo® Enterprise User Guide

381 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

ALERT_
THRESHOLD

app. When the CPU utilization by an app 
running in a container exceeds the 
threshold that you have specified, you 
get a warning log

FLOGO_APP_
DELAYED_STOP_
INTERVAL

10 seconds When you scale down an instance, all 
inflight jobs are lost because the engine 
is stopped immediately. To avoid losing 
the jobs, delay the stopping of the 
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable to a 
value less than 60 seconds. Here, when 
you scale down the instance, if there are 
no inflight jobs running, then the engine 
stops immediately without any delay. In 
case of inflight jobs:

 l If there are any inflight jobs 
running, then the engine stops 
immediately after the inflight job 
is completed.

 l If the inflight job is not completed 
within a specified time interval, 
then the job gets canceled  and the 
engine stops.

FLOGO_APP_
DELAYED_STOP_
INTERVAL

10 seconds When you scale down an instance, all 
inflight jobs are lost because the engine 
is stopped immediately. To avoid losing 
the jobs, delay the stopping of the 
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable to a 
value less than 60 seconds. Here, when 
you scale down the instance, if there are 
no inflight jobs running, then the engine 
stops immediately without any delay. In 



TIBCO Flogo® Enterprise User Guide

382 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

case of inflight jobs:

 l If there are any inflight jobs 
running, then the engine stops 
immediately after the inflight job 
is completed.

 l If the inflight job is not completed 
within a specified time interval, 
then the job gets canceled  and the 
engine stops.

GOGC 100 Sets the initial garbage collection target 
percentage.

Setting it to a higher value delays the 
start of a garbage collection cycle until 
the live heap has grown to the specified 
percentage of the previous size. 

Setting it to a lower value causes the 
garbage collector to be triggered more 
often as less new data can be allocated 
to the heap before triggering a 
collection.

This section lists the user-defined environment variables that are associated with the    Flogo 
Enterprise runtime environment.    

Environment 
Variable Name      

Default Values      Description      

FLOGO_
MAPPING_
OMIT_NULLS 

True Used to omit all the keys in the 
activity input evaluating to null.

FLOGO_FLOW_
CONTROL_

False If you set FLOGO_FLOW_CONTROL_



TIBCO Flogo® Enterprise User Guide

383 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

EVENTS EVENTS  as true, the Flow limit 
functionality is enabled, whenever 
the incoming requests to trigger 
reaches  FLOGO_ RUNNER_QUEUE_
SIZE limit then trigger  is paused. 
When all the requests currently 
under processing are finished, the 
trigger is resumed again. All the 
connectors supporting the Flow 
limit functionality are mentioned 
in their respective user guides.   

FLOGO_HTTP_
SERVICE_PORT      

N/A      Used to set the port number to 
enable runtime HTTP service, 
which provides APIs for 
healthcheck and statistics.      

FLOGO_LOG_
FORMAT      

TEXT      Used to switch the logging format 
between text and JSON. For 
example, to use the JSON format, 
set FLOGO_LOG_FORMAT=JSON 
./<app-name>      

FLOGO_MAX_
STEP_COUNT

N/A The application stops processing 
requests after the FLOGO_MAX_
STEP_COUNT limit is reached. The 
default limit is set to 10 Million 
even when you do not add this 
variable.

FLOGO_
EXPOSE_
SWAGGER_EP

False If you set this property to        True, 
the Swagger endpoint is exposed. 
The Swagger of the Rest trigger 
app can be accessed by hitting the 
swagger endpoint at 
http://<service-



TIBCO Flogo® Enterprise User Guide

384 | Deployment and Configuration

Environment 
Variable Name      

Default Values      Description      

url>/api/v2/swagger.json.

FLOGO_
SWAGGER_EP

N/A To customize the URI for the 
Swagger endpoint, set this 
environment variable to your 
desired endpoint.

For example: FLOGO_SWAGGER_
EP=/custom/swagger/endpoint

This makes the Swagger endpoint 
available at 
/custom/swagger/endpoint 
instead of the default 
/api/v2/swagger.json.

FLOGO_OTEL_
SPAN_KIND

INTERNAL Used to specify the type of span 
to be used in OpenTelemetry. The 
supported values are INTERNAL, 
SERVER, CLIENT, PRODUCER, and 
CONSUMER.

Note: If no value or an invalid 
value is provided, the default 
value will be set to INTERNAL.

FLOGO_LOG_
CONSOLE_
STREAM

stderr Used to specify the logging output 
stream for Flogo engine and app 
logs. The supported values are 
stdout and stderr.

Pushing Apps to TIBCO Cloud
You can push apps that were created in    Flogo Enterprise to    TIBCO Cloud Integration using 
the TIBCO Cloud - Command Line Interface (tibcli).    
You must download the    TIBCO Cloud Integration artifacts to use TIBCO Cloud CLI to push 
the apps.    



TIBCO Flogo® Enterprise User Guide

385 | Deployment and Configuration

Before you begin
You must have the TIBCO Cloud CLI installed on your local machine before you follow this 
procedure. Refer to the "Downloading TIBCO Cloud Integration Tools" and "Installing the 
TIBCO®Cloud - Command Line Interface" sections in the    TIBCO Cloud Integration 
documentation for details on how to download the TIBCO Cloud CLI and install it.    

Note: For REST apps, be sure to change the port to 9999      before downloading the 
artifacts.    

To push the app using the TIBCO Cloud CLI, follow this procedure:    

Procedure
 1. On the app details page, click Export.      

 2. Select      TIBCO Cloud Integration artifacts.      

The      manifest.json and      flogo.json files are downloaded. The      manifest.json 
contains the manifest details such as the endpoints, memory resource details, and so 
on. The      flogo.json contains the app itself. These are the artifacts needed to push 
the app directly from      Flogo Enterprise using TIBCO Cloud CLI.      

 3. Create a temporary directory on your machine.      

 4. Move the downloaded      flogo.json and the      manifest.json files into a temporary 
directory.      

Note: The      tibcli or      tibcli.exe executable should not be in the same 
directory (the temporary directory you created) as the app you are 
pushing.      

 5. Open a terminal or command prompt and navigate to the temporary directory.      

 6. Run the following command to push the app:      

tibcli app push <app-name>



TIBCO Flogo® Enterprise User Guide

386 | Deployment and Configuration

Important: If there is an existing app with an identical name as the app 
that you are trying to push to the cloud, the existing app is overwritten 
with the newly pushed app. You do not get a warning about it.      

Result
The app is pushed to    TIBCO Cloud Integration. You can see the progress of the app push 
on the UI. After the app is pushed, the app implementation details on the Flowtab are 
replaced with the actual flow.    



TIBCO Flogo® Enterprise User Guide

387 | Best Practices

Best Practices
For efficient development of Flogo apps, follow these best practices:

Development

Flow Design

 l Re-use with subflows

If you are executing the same set of activities within multiple flows of the Flogo app, 
you should put them in a subflow instead of adding the same logic in multiple flows 
again and again. For example, error handling and common logging logic.      

Sub-flows can be called from other flows, thus enabling the logic to be reused. A 
subflow does not have a trigger associated with it. It always gets triggered from 
another flow within the same app.      

 l Terminate the flow execution using a Return Activity

Add a      Return Activity at the end of the flow, when you want to terminate the flow 
execution and the flow has some output that needs to be returned to either the 
trigger (in the case of REST flows) or the parent flow (in the case of a branch flow). 
An Error Handler flow must also have a      Return Activity at the end.      

 l Copying a flow or an Activity

In scenarios where you want to create a flow or an Activity that is very similar to an 
existing flow in your app, you can do so by duplicating the existing flow, then making 
your minimal changes to the flow duplicate. You need not create a new flow. For 
details on how to duplicate a flow, see      Duplicating a Flow. You can also copy 
activities. For details on how to copy an Activity, see      Duplicating an Activity.      

 l Use of ConfigureHTTPResponse Activity

If you define a response code in your REST trigger,      ReceiveHTTPMessage, configure 
the return value for the response code in the      ConfigureHTTPResponse Activity.      

The      Return Activity is a generic Activity to return data to a trigger. However, when 
developing a REST/HTTP API, you might need to use different schema for different 
HTTP response codes. You can configure the      ReceiveHTTPMessage trigger to use 



TIBCO Flogo® Enterprise User Guide

388 | Best Practices

different schema for different response codes by either using the Swagger 2.0 or 
OpenAPI 3.0 specification or manually adding them to the trigger configuration.      

In such a scenario, you should add the      ConfigureHTTPResponse Activity in the flow 
before the      Return Activity, to construct the response data for a specific response 
code.      ConfigureHTTPResponse Activity allows you to select a response code, 
generate the input based on the schema defined on the trigger for that code, and 
map data from the upstream activities to the input.      

You can then map the output of the      ConfigureHTTPResponse Activity to the      Return 
Activity to return the data and response code.      

When you call a REST API from a Flow using the      InvokeRESTService Activity, you can 
enable the 'Configure Response Codes' option to handle the response codes returned 
by the API. You can add specific codes, for example, 200, 404, and define a schema 
for each of them using this option. You can also define the status code range in a 
format such as 2xx if the same schema is being used for all codes in that range.      

 l Reserved keywords

Flogo Enterprise uses some words as keywords or reserved names. Do not use these 
words in your schema. For a complete list of the keywords to be avoided, see      
Reserved Keywords to be Avoided in Schemas.      

Mapper

 l Synchronizing schema

If you make any changes to the trigger configuration after the trigger was created, 
you must click      Sync for the schema changes to be propagated to the flow 
parameters. For more information, see Synchronizing Schema Between Trigger and 
Flow.      

 l Using Expressions and Functions

Within any one flow, use the mapper to pass data between the activities, between 
the trigger and the activities, or the trigger and the flow. When mapping, you can use 
data from the following sources:      

 o Literal values - Literal values can be strings or numeric values. These values can 
either be manually typed in or mapped to a value from the output of the 
trigger or a preceding Activity in the same flow. To specify a string, enclose the 
string in double-quotes. To specify a number, type the number into the text 
box for the field. Constants and literal values can also be used as input to 



TIBCO Flogo® Enterprise User Guide

389 | Best Practices

functions and expressions.      

 o Direct mapping of an input element to an element of the same type in the 
Upstream Output.      

 o Mapping using functions - The mapper provides commonly used functions that 
you can use in conjunction with the data to be mapped. The functions are 
categorized into groups. Click a function to use its output in your input data. 
When you use a function, placeholders are displayed for the function 
parameters. You click a placeholder parameter within the function, then click 
an element from the Upstream Output to replace the placeholder. Functions 
are grouped into logical categories. For more information, see       Using Functions.      

 o Expressions - You can enter an expression whose evaluated value is mapped to 
the input field. For more information, see              Using Expressions.      

 l Complex data mappings

 o Using the        array.forEach() mapper function, you can map complex nested 
arrays, filter elements of an array based on a condition and map array elements 
to non-array elements or elements of another array with a different structure. 
See the following sections for details:        

 n Mapping complex arrays - Using the array.forEach() Function

 n Mapping Array Child Elements to Non-Array Elements or to an Element in 
a Non-Matching Array

 n Filtering Array Elements to Map Based on a Condition

 n Mapping an Identical Array of Objects

 o You can extract a particular element from a complex JSON object. The        
json.path() function takes JSONPath expression as an argument. JSONPath is 
an XPATH like query language for querying an element from JSON data. Refer 
to        Using the json.path() function for more details.      

Branches

 l Branch conditions

You can design conditional flows by creating one or more branches from an Activity 
and defining the branch types as well as the conditions for executing these branches. 
Refer to the      Creating a Flow Execution Branch section for details on how to create 



TIBCO Flogo® Enterprise User Guide

390 | Best Practices

branches, the type of branches you can create, and the order in which the branches 
get executed in a flow.      

Error handling

Errors can be handled at the Activity level or at the flow level. To catch errors at the 
Activity level, use an error branch. In this case, the flow control transfers to the main 
branch when there is an error during Activity execution. Refer to the section,      Catching 
Errors for more details on error handling. To catch errors at the flow level (when you want 
to catch all errors during the flow execution regardless of the activities from which the 
errors are thrown), use the Error Handler at the bottom left on the flow page to create an 
error flow. Since this flow must have a      Return Activity at the end, the flow execution gets 
terminated after the Error Handler flow executes. The control never goes back to the main 
flow. Refer to the section,      Catching Errors, for more details.    

To handle network faults,      Flogo Enterprise provides the ability to configure the Timeout 
and Retry on Error settings for some specific activities such as      InvokeRESTService and      
TCMMessagePublisher. Refer to the      "General Category Triggers and Activities" section of 
the TIBCO Flogo® Enterprise Activities, Triggers, and Connections Guide for details on each      
General category Activity and trigger.  

Deployment and Configuration

Memory considerations 

When Flogo apps are deployed in TIBCO Cloud™ Integration, keep in mind that a maximum 
1GB of memory is allocated to each app instance. If the Flogo app flow execution is 
memory heavy, the container is stopped due to lack of required memory and the following 
error message is displayed:

502 Bad Gateway Error

Using environment variables

When deploying a Flogo app, you can override the values of the app properties using 
environment variables.      For details on using environment variables, see the section on      
Environment Variables.

Externalize configuration using app properties



TIBCO Flogo® Enterprise User Guide

391 | Best Practices

When developing Cloud-Native microservices, we recommend that you separate the 
configuration from the app logic. You should avoid hard-coding values for configuration 
parameters in the Flogo app and use the app properties instead.    

The use of app properties allows you to externalize the app configuration. Externalizing the 
configuration in turn allows you to change the value for any property without having to 
update the app. This is particularly useful when testing your app with different 
configurations and automating deployments across multiple environments as part of the 
CI/CD strategy configurations and automating deployments across multiple environments 
as part of the CI/CD strategy. For details on using app properties, see the section,      App 
Properties. 

Generating and using SSL certificates

When generating an SSL certificate, it is recommended that you use Public DNS as a 
Common Name. Also, when using an SSL certificate, use Public DNS instead of IP address.

Building Engine binary

For multiple apps that have a common set of functionality, you can build a generic Flogo 
Enterprise binary instead of building a separate binary for each app. 



TIBCO Flogo® Enterprise User Guide

392 | Performance Tuning

Performance Tuning 
This section provides guidelines that can be used to understand your performance 
objectives and fine-tune the app environment to optimize performance.

The performance of an app affects stability, scalability, throughput, latency, and resource 
utilization. For optimal performance of the  app, it is important to understand the various 
levels at which the tuning methods and best practices can be applied to the components. 
This section includes the different tuning parameters, steps required to configure the 
parameters, and design techniques for better performance.

This section must be used along with other product documentation and project-specific 
information to achieve the desired performance results. The goal is to assist in tuning and 
optimizing the runtime for the most common scenarios. At the same time, one must focus 
on real-life scenarios to understand the issue and the associated solution.

Note: The performance tuning and configurations in this section are provided 
for reference only. They can be reproduced only in the exact environment and 
under workload conditions that existed when the tests were done. The numbers 
in the document are based on the tests conducted in the performance lab and 
may vary according to the components installed, the workload, the type and 
complexity of different scenarios, hardware, and software configuration, and so 
on. The performance tuning and configurations should be used only as a 
guideline, after validating the customer requirements and environment. TIBCO 
does not guarantee its accuracy.

Tuning Environment Variables
This section lists the environment variables associated with the TIBCO Flogo environment. 
Details such as the default value of environmental variables and how we can change them 
are also included.



TIBCO Flogo® Enterprise User Guide

393 | Performance Tuning

FLOGO_RUNNER_TYPE
This variable defines how events are handled by the Flogo engine. 

 l Supported values: DIRECT and POOLED. 

 l Default: POOLED

POOLED Mode
In this mode, the engine handles events in a flow-controlled way. 

The following pictorial diagram explains the handling of events in POOLED mode.

Events in POOLED mode

Sets of workers are created to handle events received by all the triggers in the given Flogo 
app. In golang terms, one worker corresponds to one go-routine.  The events received are 
added to the worker queue before the workers can pick these events from the worker 
queue. 

Once an event is picked from the queue, the corresponding action (for example, flow) is 
triggered and the worker continues to execute that action until completion (that is, until 
the action is successful or fails). An event that is picked up from the queue is removed  to 
allow the next event to be added to the queue. 

When the queue is full, all trigger handlers that are adding new events to the queue are 
blocked until workers pick up the next set of events from the queue.  Once the worker 
starts executing the action, it never interleaves the action until its completion. So, the total 
number of events processed at a time is directly proportional to the time taken by the 
action to complete and the number of workers in the pool. Hence, for better concurrency, 



TIBCO Flogo® Enterprise User Guide

394 | Performance Tuning

gradually increase the value of queues and workers based on the available compute 
resources (such as CPU and memory). 

Configurations in POOLED mode:

You can configure the workers and the queue size by setting  FLOGO_RUNNER_WORKERS 
and FLOGO_RUNNER_QUEUE_SIZE respectively.

 l FLOGO_RUNNER_WORKERS variable determines the maximum number of concurrent 
events that can be executed by the app engine from the queue. FLOGO_RUNNER_
WORKERS execute a finite number of tasks or concurrent events uninterrupted and 
then yield to the next ready job. FLOGO_RUNNER_WORKERS can be tuned to the 
optimum value by starting with a default value set and increasing it as per 
requirement until the maximum CPU is reached. 

The default value is FLOGO_RUNNER_WORKERS=5. 

 l FLOGO_RUNNER_QUEUE_SIZE variable specifies the maximum number of events 
from all triggers that can be queued by the app engine. FLOGO_RUNNER_QUEUE_
SIZE can be tuned to the optimum value by starting with a default value set and 
increasing it as per requirement. You can change the variable value if you anticipate 
having more than default value events queued at the same time. 

The default value is FLOGO_RUNNER_QUEUE_SIZE=50. 

The CPU and memory resources must be measured under a typical processing load to 
determine if the default variable value is suitable for the environment. If the user load is 
more than the default set value, the user can change the runner worker variable as per the 
requirement to expedite the execution of the concurrent events. Set variable values 
according to your processing volumes, number of CPUs, and allocated memory.

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_WORKERS=75  FLOGO_RUNNER_QUEUE_SIZE =150  ./<app_binary>

docker run -it -e FLOGO_RUNNER_WORKERS=75 -e FLOGO_RUNNER_QUEUE_SIZE=150 
<docker-image>



TIBCO Flogo® Enterprise User Guide

395 | Performance Tuning

Case Study
While setting up the FLOGO_RUNNER_TYPE as POOLED, Flogo runner workers and Flogo 
runner queues are used to handling events received by the trigger. You can increase the 
Flogo runner worker and queue values gradually  to reach the app performance. Set 
variable values according to your processing volumes concerning your number of CPUs and 
allocated memory.

It is recommended that you set the queue size greater than or equal to the number 
of workers.



TIBCO Flogo® Enterprise User Guide

396 | Performance Tuning

DIRECT Mode
In this mode, every event delivered by the handler triggers a corresponding action. Unlike 
the POOLED mode, the handling of events is unbounded. All the events are processed 
concurrently. This might lead to CPU saturation or out-of-memory errors.

The following pictorial diagram explains the handling of events in DIRECT mode.



TIBCO Flogo® Enterprise User Guide

397 | Performance Tuning

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_TYPE=DIRECT ./<app_binary>

docker run -it -e FLOGO_RUNNER_TYPE=DIRECT <docker-image>

Case Study 
This case study illustrates the app performance when Flogo event handling mode is set to 
DIRECT. 

App under test - FLOGO_RUNNER_TYPE

While setting up the FLOGO_RUNNER_TYPE as DIRECT, all the events sent to the trigger are 
processed concurrently. As you keep on increasing the concurrency, you can observe the 
linear increase in resources, that is, CPU and memory utilization.



TIBCO Flogo® Enterprise User Guide

398 | Performance Tuning

Flogo Engine - Direct Mode

FLOGO_LOG_LEVEL
This environment variable is used to set a log level for an app. 

 l Supported values: INFO, DEBUG, WARN, and ERROR. 

 l Default: INFO

You can increase or decrease the logging of the app using this environment variable. To 
increase the logging of the app to debug,  change FLOGO_LOG_LEVEL to DEBUG. To skip 
detailed logging and to just log an error,  set FLOGO_LOG_LEVEL to ERROR. Changes to the 
log level are reflected after restarting the Flogo app in your environment and  by pushing 
the Flogo app again to the cloud environment. 

Deploying the app to your environment

Set the variable value as follows:

FLOGO_LOG_LEVEL=ERROR ./<app_binary>

docker run -it -e FLOGO_LOG_LEVEL=ERROR <docker-image>



TIBCO Flogo® Enterprise User Guide

399 | Performance Tuning

Log level - ERROR

Log level - INFO

Log level - DEBUG



TIBCO Flogo® Enterprise User Guide

400 | Performance Tuning

Case Study
This use case illustrates the app logging impact on the performance of the app.

App under test for Flogo Log level

Performance lab results  have shown that the performance of the app depends on the app 
log level that is set, request payload, and app latency. Set the log level to DEBUG 
functional issues and to ERROR for performance scenarios because setting the logging to 
DEBUG might impact the performance of the app. 

Maximum throughput was achieved with a Log Level set as ERROR.

GOGC
The GOGC variable sets the initial garbage collection target percentage. A collection is 
triggered when the ratio of freshly allocated data to live data remaining after the previous 
collection reaches this percentage. 

Garbage collection refers to the process of managing heap memory allocation: free the 
memory allocations that are no longer in use and keep the memory allocations that are 
being used. Garbage collection significantly affects the performance of your app. 

Deploying the app to your environment

Set the variable value as follows:

GOGC=150  ./<app_binary>

docker run -it -e  GOGC=150  <docker-image>

The default is 100. This means that garbage collection is not triggered until the heap has 
grown by 100% since the previous collection. Setting the variable to a higher value (for 
example, GOGC=200) delays the start of a garbage collection cycle until the live heap has 



TIBCO Flogo® Enterprise User Guide

401 | Performance Tuning

grown to 200% of the previous size. Setting the variable to a lower value (for 
example, GOGC=20) increases the frequency of garbage collection as less new data can be 
allocated on the heap before triggering a collection. 

Case Study 
This use case illustrates the impact of the GOGC variable on performance.

App under test - GOGC

In this low latency scenario, you can observe  significant improvement in-app performance 
while increasing the GOGC variable value from 100 to 1600. It is  advisable to test this value 
for the specific scenario and understand its impact before tuning. You can get the best-
suited value by running the performance test in your test environment.

GOGC value can be tuned based on the workload and available resources after 
validating your test environment.

Performance comparison with different GOGC values



TIBCO Flogo® Enterprise User Guide

402 | Performance Tuning

Flow Limit
Flow limit is useful when the engine needs to be throttled, as the FLOGO_        RUNNER_QUEUE_
SIZE engine variable specifies the maximum number of events that can be started before 
pausing the process trigger. This ensures that the incoming requests do not overwhelm the 
engine performance and the CPU and memory is preserved.

If the number of incoming requests on the trigger exceeds the FLOGO_        RUNNER_QUEUE_SIZE 
limit, the engine pauses the trigger to get any new requests, but continues running the 
existing ones. The engine resumes this trigger when  all the requests currently under 
processing are finished. 

And this flow limit is not enforced by the engine unless the FLOGO_FLOW_CONTROL_
EVENTS variable is set to true for an application as an user-defined Engine Variable on the 
Environment Variable tab of the Flogo Enterprise runtime environment.

Environment variables associated with Flow Limit

Environment 
Variable Name       

Default Values       Description       

FLOGO_RUNNER_
QUEUE_SIZE      

50 The maximum number of events 
from all triggers that can be 



TIBCO Flogo® Enterprise User Guide

403 | Performance Tuning

Environment 
Variable Name       

Default Values       Description       

queued by the app engine.       

FLOGO_RUNNER_
WORKERS       

5 The maximum number of 
concurrent events that can be 
run by the app engine from the 
queue.       

FLOGO_FLOW_
CONTROL_EVENTS       

N/A If you set FLOGO_FLOW_CONTROL_
EVENTS  as true, the Flow limit 
functionality is enabled, 
whenever the incoming requests 
to trigger reaches  FLOGO_        
RUNNER_QUEUE_SIZE       limit then 
trigger  is paused. When all the 
requests currently under 
processing are finished, the 
trigger is resumed again.    

Note: All the connectors supporting the flow limit functionality are mentioned in 
their respective user guides. 

CPU and Memory Monitoring

Top Command

Note: The top command works on Linux platforms only.

The top command is used for memory and CPU monitoring.

The top command produces an ordered list of running processes selected by user-specified 
criteria. The list is updated periodically. By default, ordering is by CPU usage and it shows 
the processes that consume maximum CPU. The top command also shows how much 



TIBCO Flogo® Enterprise User Guide

404 | Performance Tuning

processing power and memory are being used, as well as the other information about the 
running processes.

The top command output monitors the memory as well as the CPU utilization of the TIBCO 
Flogo app binary.

The sample output is as follows:

Docker Stats Command
The docker stats command returns a live data stream for running containers. To limit 
data to one or more specific containers, specify a list of container names or ids separated 
by a space. 

The docker stats command output monitors the memory as well as the CPU utilization of 
the TIBCO Flogo Enterprise app container and TCI Flogo app container.

 l CPU % is the percentage of the host’s CPU the container is using. 

 l MEM USAGE / LIMIT is the total memory the container is using and the total amount 
of memory, it is allowed to use.

Runtime Statistics and Profiling
The Go language provides CPU and memory profiling capabilities. With the profiling tools 
provided by Go, one can identify and correct the specific bottlenecks. You can make your 
app run  faster and with less memory.

The pprof package writes runtime profiling data in the format expected by the pprof 
visualization tool. There are many commands available from the pprof command line. 
Commonly used commands include top.



TIBCO Flogo® Enterprise User Guide

405 | Performance Tuning

For details about profiling, see the “Go Language Runtime Statistics and Profiling” section  
of TIBCO Flogo® Enterprise User Guide.



TIBCO Flogo® Enterprise User Guide

406 | Samples

Samples
When creating apps in TIBCO Flogo® Enterprise, you can import and customize any of the 
predefined samples provided in the tci-flogo GitHub repository. These samples 
demonstrate how to develop, test, and deploy a Flogo app using various out-of-the-box 
capabilities. In the GitHub repository, the samples are organized by category and each 
sample folder contains a readme. Follow the instructions in the readme to import the 
sample to your local workspace and use it. The following samples are currently available: 

Flow Design Concepts

Includes Hello World, Branching, Error Handling, 
Loops, Subflows, and Shared Data samples

API Development

Includes REST, graphQL, and gRPC 
samples

Array Mapping and Filtering

Includes array.forEach, json.path, and JavaScript 
Activity samples

Connectors

Includes Flogo connector samples for 
CRM, DB Connectors, Messaging, and more

Serverless

Includes sample for deploying a Flogo app as an Azure function

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/API-Development
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Connectors
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Serverless/Azure-Functions


TIBCO Flogo® Enterprise User Guide

407 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO 
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website, 
mainly in HTML and PDF formats.    

The Product Documentation website is updated frequently and is more current than any 
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Flogo® Enterprise 
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:    

 l To access the Support Knowledge Base and getting personalized content about 
products you are interested in, visit our product Support website.     

 l To create a Support case, you must have a valid maintenance or support contract 
with a Cloud Software Group entity. You also need a username and password to log 
in to the product Support website. If you do not have a username, you can request 
one by clicking Register on the website.      

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee 
subject matter experts to share and access their collective experience. TIBCO Community 
offers access to Q&A forums, product wikis, and best practices. It also offers access to 
extensions, adapters, solution accelerators, and tools that extend and enable customers to 
gain full value from TIBCO products. In addition, users can submit and vote on feature 

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-flogo-enterprise
https://docs.tibco.com/products/tibco-flogo-enterprise
https://support.tibco.com/
https://support.tibco.com/


TIBCO Flogo® Enterprise User Guide

408 | TIBCO Documentation and Support Services

requests from within the      TIBCO Ideas Portal. For a free registration, go to      
TIBCO Community.    

https://ideas.tibco.com/
https://community.tibco.com/


TIBCO Flogo® Enterprise User Guide

409 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED, 
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE 
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE 
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG 
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED  SOFTWARE IS NOT LICENSED TO BE USED OR 
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER 
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS 
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO 
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN 
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS 
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP 
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE 
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF 
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this 
document may be reproduced in any form without the written authorization of Cloud Software 
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, and Flogo are either registered trademarks or trademarks 
of Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of 
their respective owners and are mentioned for identification purposes only. You acknowledge that all 
rights to these third party marks are the exclusive property of their respective owners. Please refer to 
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is 
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating 
system platforms for a specific software version are released at the same time. See the “readme” file 
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL


TIBCO Flogo® Enterprise User Guide

410 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES 
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED 
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN 
THE PRODUCT(S), THE PROGRAM(S),  AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY 
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR 
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT 
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer 
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2016-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Introduction
	Concepts
	Creating Your First REST API
	Procedure


	App Development
	Creating and Managing a Flogo App Using the UI
	Creating an App
	Creating an App from a Saved Specification
	Creating a New App Using an OpenAPI Specification
	Creating a New App Using GraphQL Schema


	Validating your App
	Important Considerations

	Editing an App
	Auto-Upgrade of Activities, Triggers, and Connections
	Considerations for Auto-Upgrade

	Renaming an App
	Editing the Version of an App
	Using App Tags
	Using Notes
	Switching Between Display Views On the App Page
	Deleting an App
	Exporting and Importing an App
	Exporting an App
	Exporting an App's JSON File

	Importing an App
	Importing Your App to a New App
	Importing Your App to an Existing App
	Changes in Suffixes Used in the Mapper
	Resolving Missing Activities and Triggers


	App File Persistence

	Creating Flows and Triggers
	Flows
	Creating a Flow
	Selecting a Trigger When Creating a New Flow
	Creating a Flow Starting with a Trigger
	Creating a Flow Attached to a REST Trigger
	Creating a Flow attached to the GraphQL Trigger
	Creating a Flow Attached to Other Triggers

	Creating a Blank Flow (Flow without a Trigger)
	Flow Input & Output Tab
	Attaching a Flow to One or More Triggers

	Catching Errors
	Creating an Error Handler Flow
	Viewing Errors and Warnings

	Using Subflows
	Creating Subflows

	Creating a Flow Execution Branch
	Joining or merging branches
	Types of Branch Conditions
	Order in which Branches are Run
	Setting Branch Conditions
	Deleting a Branch

	Duplicating a Flow
	Editing a Flow
	Switching Between Flows in an App
	Deleting a Flow
	Adding an Activity
	Searching for a Category or Activity
	Configuring an Activity
	Duplicating an Activity
	Using the Loop Feature in an Activity
	Accumulating the Activity Output for All Iterations
	Accessing the Activity Outputs in Repeat While True Loop

	Using the Retry On Error Feature in an Activity
	Deleting an Activity

	Triggers
	Creating a Trigger without a Flow
	Deleting a Trigger

	Synchronizing a Schema Between Trigger and Flow

	Data Mappings
	Data Mappings Interface
	Mapping Data from the Data Mappings Interface
	Scopes in Data Mappings
	Data Types
	Supported data types
	Unsupported data types

	Reserved Keywords to be Avoided in Schemas
	Mapping Different Types of Data
	Mapping an Enum value
	Mapping a Single Element of Primitive Data Type
	Mapping an Object
	Mapping Arrays
	Mapping an Array of Primitive Data Types
	Mapping Complex Arrays
	Mapping of unmapped arrays
	Add Items to Array
	Mapping Identical Arrays of Objects
	Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-...
	Mapping Nested Arrays
	Mapping Child Elements within a Nested Array Scope
	Mapping a Nested Array Child Element Outside the Nested Array Scope
	Mapping an Element from a Parent Array to a Child Element in a Nested Array w...
	Filtering Array Elements to Map Based on a Condition


	Mapping JSON Data with json.path() Function
	Constructing the any, param, or object Data Type in Mapper
	Coercing of Activity Input, Output, and Trigger Reply Fields
	Important Considerations

	Clear Mapping of Child Elements in Objects and Arrays
	Ignoring Missing Object Properties when Mapping Objects

	Mapping Data by Using if/else Conditions
	Considerations when using conditions:
	To delete an If condition that has Else-if and Else conditions:

	Using Functions
	Using Expressions
	Supported Operators
	Combining Schemas Using Keywords
	Using the oneOf Keyword
	Using the anyOf Keyword


	Developing APIs
	Using an OpenAPI Specification
	Configuring the REST Reply
	Testing the Deployed App
	Downloading the API Specification Used

	Using GraphQL Schema

	Using App Properties and Schemas
	App Properties
	Creating App Properties
	App Properties Dialog Box Views
	Creating a Standalone App Property
	Creating a Group

	Deleting a Group or Property
	Using App Properties in a Flow
	Using App Properties in the Mapper
	Unlinking an App Property from a Field Value

	Using App Properties in Connections
	Editing an App Property
	Changing the Default Value of a Property from the App Properties Dialog Box
	Changing the Name or Data Type of an App Property after Using It

	When Importing an App
	Overriding an App Property Value While Testing a Flow

	App Schemas
	Defining an App-Level Schema
	Editing an App-Level Schema
	Deleting an App-Level Schema
	Using an App-Level Schema
	Flow Input & Output Tab
	Input or Output Settings Tab of an Activity
	Output or Reply Settings Tab of a Trigger



	Using Connectors
	Creating Connections
	Editing Connections
	Deleting Connections

	Using Extensions
	Important Considerations
	Creating Extensions
	Step 1: Generate a basic framework
	Step 2: Update the Metadata
	Step 3: Build the Logic
	Step 4: Perform Unit Testing
	Step 5: Upload the Activity in the Flogo App

	Uploading Extensions
	Pulling Extensions from an Open Source Public Git Repository
	Deleting Extensions or Extension Categories

	Flow Tester
	Testing Flows from the UI
	What is a Launch Configuration?
	Creating and Using a Launch Configuration
	Creating Subsequent Launch Configurations
	What can you do using the Flow Tester?
	Configuring a Launch Configuration
	Exporting a Launch Configuration
	Importing a Launch Configuration
	Cloning a Launch Configuration
	Deleting a Launch Configuration

	Testing Flows from the CLI
	Using the test command to test your flow from the CLI
	The test Command


	Unit Testing
	Terminologies in Unit Testing
	Role Requirements
	Creating and Running a Test Case
	Configuring Unit Test Data
	Unit Testing Modes

	Creating a Test Case
	Defining Flow Input
	Creating Assertions
	Creating Assertions for Flow Output
	Creating Assertions for the Error Handler

	Using Mock Data

	Test Case Validation
	Running a Test case

	Creating and Running a Test Suite
	Creating a Test Suite
	Running a Test Suite

	Exporting and Importing a Unit Test
	Exporting a Unit Test
	Importing a Unit Test

	Enabling On-premises Services in Unit Testing
	Unit Testing for the CI/CD
	The Test Commands



	Deployment and Configuration
	Building an App Executable
	Building the App
	Running the App
	Considerations
	Exporting App JSON from an Executable
	Overriding an App's JSON File in the App Binary
	Changing the Log Level of a Running App Instance
	Example



	App Configuration Management
	Consul
	Using Consul
	Consul Connection Parameters
	Setting the Consul Connection Parameters
	Overriding an App Property at Runtime
	Overriding Values by Specifying New Values
	Overriding Values by Specifying New Values in the API Directly
	Important Considerations



	AWS Systems Manager Parameter Store
	Using the Parameter Store
	Parameter Store Connection Parameters
	Setting the Parameter Store Connection Parameters

	AWS AppConfig
	Using the AppConfig
	AppConfig Client Configuration

	Environment Variables
	Exporting App Properties to a File
	Using a JSON File to Override App Property Values
	Example: Overriding a Certificate Using a JSON File


	Overriding Security Certificate Values
	Example: Overriding a Certificate Using an Environment Variable

	Encrypting Password Values

	Container Deployments
	Kubernetes
	Deploying Flogo Apps to Kubernetes
	Using ConfigMaps with a Flogo App

	Managing Sensitive Information Using Kubernetes Secrets
	Configuring the Secrets
	Specifying the Path of the Volume Where the Secrets are Mounted
	Sample YAML File


	Amazon Elastic Container Service (ECS) and Fargate
	Deploying a Flogo App to Amazon ECS and Fargate

	Pivotal Cloud Foundry
	Deploying a Flogo App to Pivotal Application Service
	Building a Linux Binary
	Without Using a manifest.yml File
	Using a manifest.yml File
	Using Spring Cloud Configuration to Override App Properties
	Create a Repository and Properties File on Github
	Setup Spring Cloud Configuration on Pivotal Cloud Foundry
	Using Spring Cloud Configuration Service with Flogo


	Microsoft Azure Container Instances
	Deploying a Flogo App to a Microsoft Azure Container Instance
	Deploying a Flogo App to a Microsoft Azure Container Instance Using a YAML File

	Google Cloud Run
	Deploying a Flogo App to Google Cloud Run

	Red Hat OpenShift
	Deploying a Flogo App to Red Hat OpenShift
	Sample YAML File: Red Hat OpenShift


	Serverless Deployments
	Developing for Lambda
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Creating a Flow with Receive Lambda Invocation Trigger
	Deploying a Flow as a Lambda Function on AWS
	Deploying a Flow as a Lambda Function on AWS using AWS CLI


	Creating a Flow with AWS API Gateway Lambda Trigger
	Creating a Flow with S3 Bucket Event Lambda Trigger
	S3 Bucket Event Lambda Trigger

	Deploying a Flogo App to Microsoft Azure Functions
	Creating the Azure Function App in the Azure Portal
	Creating the Azure Function App from the Azure CLI

	Deploying a Flogo App in Knative
	Troubleshooting Tips


	Monitoring
	About the TIBCO Flogo Enterprise Monitoring App
	Using the Flogo Enterprise Monitoring App
	Running Flogo Enterprise Monitoring as a Standalone App
	Running the TIBCO Flogo Enterprise Monitoring App On Docker
	Running the Flogo Enterprise Monitoring Application On Kubernetes
	Granting Access Using ClusterRole
	Configuring the Service Account
	Linking the ServiceAccount to the ClusterRole
	Linking the Flogo App to the Flogo Enterprise Monitoring Application
	Configurations in the Flogo App’s YAML File

	Configuring the Flogo Enterprise Monitoring App
	Registering a Flogo App with the Flogo Enterprise Monitoring App
	Examples


	About TIBCO Flogo® Flow State Manager
	Using Flogo Flow State Manager
	Configuring the PostgreSQL Database
	Running Flogo Flow State Manager as a Standalone App
	Running Flogo Flow State Manager on Docker
	Running Flogo Flow State Manager on Kubernetes
	Configuring Flogo Flow State Manager
	Starting Flogo Enterprise Monitoring with Details of Flogo Flow State Manager
	Starting the App Binary

	Viewing Statistics by Using Flogo Enterprise Monitoring app
	Apps Page
	Metrics Page
	Executions Page

	App Metrics
	Enabling App Metrics
	Enabling statistics collection using environment variables
	Example: retrieve specific metrics for an app

	Logging App Metrics
	Fields returned in the response
	Prometheus
	Using Prometheus to Analyze Flogo App Metrics
	Often-Used Queries

	OpenTelemetry Collector

	Distributed Tracing
	Tracing Apps Using Jaeger
	Tracing Apps by Using AWS X-Ray
	Enabling Tracing Using AWS X-Ray
	Search Using Annotations
	Metadata

	Tracing Apps by Using OpenTelemetry Collector
	Enabling Tracing for OpenTelemetry Collector
	Tracing With OpenTelemetry Collector
	Flogo Related Attributes in OpenTelemetry Collector


	Using APIs
	Healthcheck API
	Go Language Runtime Statistics and Profiling

	CPU and Memory Profiling
	Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration

	Environment Variables
	Pushing Apps to TIBCO Cloud

	Best Practices
	Performance Tuning
	Tuning Environment Variables
	FLOGO_RUNNER_TYPE
	POOLED Mode
	Deploying the app to your environment
	Case Study

	DIRECT Mode
	Deploying the app to your environment
	Case Study


	FLOGO_LOG_LEVEL
	Case Study

	GOGC
	Case Study

	Flow Limit

	CPU and Memory Monitoring
	Top Command
	Docker Stats Command
	Runtime Statistics and Profiling


	Samples
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

