
Copyright © 2016-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Flogo® Enterprise
User Guide
Version 2.25.6 | June 2025

TIBCO Flogo® Enterprise User Guide

2 | Contents

Contents
Contents 2

Introduction 4
Concepts 4

Creating Your First REST API 6
Procedure 7

App Development 26

Deployment and Configuration 27
Building an App Executable 27

Building Flogo App Executable and Docker Image Using Flogo - App Build CLI 27

App Configuration Management 36
Consul 37

AWS Systems Manager Parameter Store 44

AWS AppConfig 51

Environment Variables 55

Overriding Security Certificate Values 58

Encrypting Password Values 60

Azure Key Vault Secrets 61

Container Deployments 63
Kubernetes 63

Amazon Elastic Container Service (ECS) and Fargate 71

Pivotal Cloud Foundry 72

Microsoft Azure Container Instances 78

Google Cloud Run 82

Red Hat OpenShift 84

Serverless Deployments 89
Developing for Lambda 89

TIBCO Flogo® Enterprise User Guide

3 | Contents

Deploying a Flogo App to Microsoft Azure Functions 99

Deploying a Flogo App in Knative 105

Monitoring 111
About the TIBCO Flogo Enterprise Monitoring App 111

About TIBCO Flogo® Flow State Manager 125

Viewing Statistics by Using Flogo Enterprise Monitoring app 132

App Metrics 142

Distributed Tracing 157

Using APIs 172

CPU and Memory Profiling 175

Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration 177

Environment Variables 177

Pushing Apps to TIBCO Cloud 184

Best Practices 186

Performance Tuning 191
Tuning Environment Variables 191

FLOGO_RUNNER_TYPE 192

FLOGO_LOG_LEVEL 197

GOGC 199

Flow Limit 201

CPU and Memory Monitoring 202
Top Command 202

Docker Stats Command 203

Runtime Statistics and Profiling 203

Samples 205

TIBCO Documentation and Support Services 206

Legal and Third-Party Notices 208

TIBCO Flogo® Enterprise User Guide

4 | Introduction

Introduction
TIBCO Flogo® Enterprise is an open-core product based on Project Flogo™, an open-source
ecosystem for event-driven apps. Its ultra-light app engine offers you the flexibility to
deploy your Flogo apps in containers, as serverless functions, or as static binaries on IoT
edge devices. You can quickly implement microservices, serverless functions, event-driven
apps, integrations, and APIs.

Flogo apps are created in TIBCO Cloud™ Integration, which provides a wizard-driven web-
based tool to create integration apps without having to leave your browser. Additionally,
you can now use the TIBCO Flogo® Extension for Visual Studio Code to develop apps in a
similar wizard-driven approach. This extension allows you to build apps directly from
within VSCode, powered by Project Flogo®, a lightweight integration engine. For more
information on creating and using Flogo apps, see TIBCO Cloud™ Integration product
documentation and TIBCO Flogo® Extension for Visual Studio Code product documentation.

Concepts
This section describes the main concepts used in the Flogo Enterprise environment.

Apps

Flogo apps are developed as event-driven apps using triggers and actions and contain the
logic to process incoming events. A Flogo app consists of one or more triggers and one or
more flows.

Trigger

Triggers receive events from external sources such as Apache Kafka®, Salesforce, GraphQL.
Handlers residing in the triggers, dispatch events to flows. Flogo Enterprise provides a set
of out-of-the-box triggers. Also provides a range of connectors for receiving events from a
variety of external systems.

Flow

The Flogo provides a set of actions for processing events in a manner suitable to your
implementation logic. The flow allows you to implement the business logic as a process.

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/introduction2.html
https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/introduction2.html
https://docs.tibco.com/emp/platform-flogo-vscode-preview/0.9.0/doc/html/Default.htm

TIBCO Flogo® Enterprise User Guide

5 | Introduction

You can visually design and test the flows using the UI. A flow consists of one or more
activities that perform a specific task. Activities are linked to facilitate the flow of data
between them and contain conditional logic for branching. Each flow is also connected to a
default error handler. A Flogo app can have one or more flows. A flow can be activated by
one or more triggers within the app.

Activity

Activities perform specific tasks within the flow. A flow typically contains multiple activities.

How Flogo Works

The trigger consists of one or more handlers that serve as the means of communication
between the trigger and the flow. When the trigger receives an event, it uses the respective
flow handlers to pass the data from the event to the flow in the form of flow input. The
business logic in the flow then can use the event data coming in through the flow input.
When the trigger expects a reply from the flow, the data from the flow is passed on to the
trigger in the form of flow output. A flow can contain one or more conditional branches.

Summary:

 1. Create an app.

 2. Create a flow in your app.

 3. Add one or more activities to the flow and configure them.

 4. Optionally, add a trigger to your flow. You can add one or more triggers to a flow as

TIBCO Flogo® Enterprise User Guide

6 | Introduction

and when you need them.

 5. Build your app.

Creating Your First REST API
This tutorial walks you through the steps to build a simple app with a REST service in Flogo
Enterprise. It shows how to create a basic app that returns the booking details of a specific
customer based on a query sent to the app. In this tutorial, the query sent to the app
checks whether the passenger's family name is "Jones". The app then returns the booking
details.

For the sake of this tutorial, the sample data used are: A passenger whose family name is
"Jones" and travels by the "Business" class. All other customers travel by "Economy"
class.

Overall Structure of the App

This app contains:

 l ReceiveHTTPMessage trigger: This trigger listens for an HTTP GET request containing
the family name of the passenger requesting flight booking details. After it receives a
request, it triggers the flow attached to the trigger.

 l FlightBookings flow: This flow is attached to the ReceiveHTTPMessage trigger. This
flow handles the business logic of the app. In this flow, you must configure a
LogMessage activity to log a custom message when a request is received
successfully. The LogMessage activity has two success branches:

 o The first branch accepts requests with any family name and uses a condition to
check if the family name in the request is "Jones". It runs a Return activity to
return the information of a flight booked in "Business" class for Jones.

 o The second branch runs when the first branch runs as false (that is, the family
name is not "Jones"). It runs a Return1 activity to return the information of a
flight booked in "Economy" class if the family name is not "Jones".

Note: Each branch must have its Return activity as the last activity in the
branch.

TIBCO Flogo® Enterprise User Guide

7 | Introduction

Procedure
The high-level steps for creating and configuring the app in this tutorial are as follows:

Procedure
 1. Create a new app.

 2. Create a JSON schema to reuse it across your app. The JSON schema describes the
format of the JSON data used in the tutorial. In this tutorial, we use a simple JSON
schema for the request that the REST service receives and the response that the
service sends back. You can specify the JSON schema directly or specify JSON data,
which is converted to JSON schema automatically.

 3. Create a flow and add a REST trigger (Receive HTTP Message).

 4. Map trigger output to flow input. This is the bridge between the trigger and the flow
where the trigger passes on the request data to the flow input.

 5. Map flow output to trigger reply. This is the bridge between the flow output and the
response that the trigger sends back to the HTTP request it received. After the flow
has finished running, the output of the flow execution is passed back to the trigger
by the Return activity. Hence, we map the flow output to the trigger reply. This
mapping is done in the trigger configuration.

 6. Add a LogMessage Activity to the flow and configure a message that the activity must
log in to the logs for the app as soon as it receives a request.

 7. Add the first branch to check whether the passenger’s last name is Jones to return
the information of a flight booked in "Business" class for Jones.

 8. Add a second branch to process any other passengers and return the information of
a flight booked in "Economy" class if the family name is not Jones.

 9. Validate the app to make sure that there are no errors or warnings in any flows or
activities.

 10. Build the App.

 11. Test the app.

TIBCO Flogo® Enterprise User Guide

8 | Introduction

Step 1: Create an app

To create a Flogo app:

Procedure
 1. Click Apps.

 2. Click Create/Import. The What do you want to build? dialog opens.

 3. To create a Flogo app:

 l Under Quickstart > All app types;Apps, click Create a Flogo app.

 l In the block that displays below your selection, click Create Flogo app.

A Flogo app is created with the default name in the New_Flogo_App_<sequential_
app_number> format.

 4. Click the default app name to make it editable. Change the app name to FlightApp
and click anywhere outside the name to save the changes made to the name.

Step 2: Create a JSON schema

Procedure
 1. Copy the following JSON sample to use in your app:

{
"Class" : "string",
"Cost" : 0,
"DepartureDate" : "2017-05-27",
"DeparturePoint" : "string",

TIBCO Flogo® Enterprise User Guide

9 | Introduction

"Destination" : "string",
"FirstName" : "string",
"Id" : 0,
"LastName" : "string"
}

Note: Ensure that you use straight quotes when entering the schema
elements and values.

 2. On the Appspage, in the Flows section, click Schemas.

 3. In the Schemas dialog that opens, click Schema to add a JSON schema.

 4. Name your schema as FlightResponse and paste the copied schema into the text
editor. Alternatively, if you enter JSON data in the editor, the JSON data is
automatically converted to JSON schema.

 5. Click Save.

Step 3: Create a flow and add a REST trigger

Every app must have at least one flow and, in most cases, a trigger that initiates the flow.
Create a flow with the REST trigger. The ReceiveHTTPMessage REST trigger listens for an

TIBCO Flogo® Enterprise User Guide

10 | Introduction

incoming REST request that contains the details of a passenger who wants to book a flight.
Specify the fields for the request in the REST trigger in JSON schema format.

To create a flow:

Procedure
 1. On the Flows page, click Create.

 The Add triggers and flows dialog is displayed. The Flow option is selected by
default.

 2. In the Flow details section, provide the following details and click Create:
Name: FlightBookings.
Description: Optional description of the flow.

 3. On the FlightBookings flow page, click the Triggers icon. The trigger palette opens.

 4. From the Triggers palette, drag the Receive HTTP Message trigger to the Triggers
area on the left. The Configure trigger: ReceiveHTTPMessage dialog opens.

TIBCO Flogo® Enterprise User Guide

11 | Introduction

 a. Select GET as the Method.

 b. Enter /flightbookings in the Resource path box.

 c. Enable the Use App Level Schema toggle next to Response Schema to open
the Schemas dialog and select the FlightResponse schema you defined earlier.

The selected schema is automatically displayed in the Response Schema box.

 d. Click Continue.

 5. Next, select Copy Schema when prompted.

The schema that you entered when creating the trigger is automatically copied to the
Flow Inputs & Outputs tab to match the input and output of the trigger.

A new flow is created and attached to a REST trigger.

Your flow must look similar to the following image:

TIBCO Flogo® Enterprise User Guide

12 | Introduction

 6. Lastly, close the Flow Inputs & Outputs tab.

Step 4: Map trigger output to flow input

When REST trigger receives a request from a passenger (a REST request), the data from the
request is produced by the ReceiveHTTPMessage REST trigger. For the request to be
processed, this output must be used by the flow in the form of flow input. Hence, you must
map the trigger output to the flow input.

To do this:

Procedure
 1. Click the REST Trigger icon to open its configuration dialog.

In the Configuration dialog, multiple tabs are displayed in a column on the left.
Trigger Settings is selected by default.

 2. Click Output Settings to add the query parameter.

 3. Click Add row to add a query parameter.

 4. In the new row in the Query Parameters table, enter the value of ParameterName
as lastname and click Save in the same row (in the Actions column).

 5. To start the mapping, click the Map to Flow Inputs tab and configure the mapping
of the trigger output. On the Map to Flow Inputs tab, the Available data and Flow
inputs panes are displayed. Flow inputs is the list of flow inputs that can be mapped
to the trigger outputs in the Available data pane. Only headers are displayed in the
flow inputs. The new query parameter is not visible yet.

 6. Save the trigger configuration and click Sync to display the new values. Now,

TIBCO Flogo® Enterprise User Guide

13 | Introduction

queryParams must open in the Flow inputs column.

 7. In the Flow inputs column, click headers.

The headers text editor on the right of Flow inputs is initially empty.

 8. To map the trigger output headers to the flow input header:

 a. Expand $trigger to see all the trigger outputs available. This displays the
headers and body.

 b. Drag headers from the Available data pane to headers in the Flow inputs
pane. Alternatively, click headers from the Flow inputs pane, drag headers
from the Available data pane into the text editor.
The text editor must now display $trigger.headers and a connection line
between the two panes. This indicates that you have successfully mapped the
trigger output headers to the flow input header. The numbers at the end of the
connection line indicate the total number of mappings for the selected
element.

TIBCO Flogo® Enterprise User Guide

14 | Introduction

 9. To map the flow input, in the Flow inputs column, click queryParams. The data
mapper view is the same as the one while mapping headers. The queryParams text
editor is initially empty. Drag queryParams from the Available data pane and drop
it on queryParams in the Flow inputs pane. The text editor must now display
$trigger.queryParams. This indicates that you have successfully mapped the trigger
output queryParams to the flow input queryParams.

 10. To save your progress, click Save.

This completes the mapping of flow inputs.

Step 5: Map the flow output to trigger reply

When the execution of the flow is completed, the output must be sent back to the trigger
for the trigger to send a reply to the REST request initiator. Hence, the flow output data
must be mapped to the trigger reply, which then returns the result of the flow execution to
the REST request initiator.

To map the flow output to the trigger reply:

Procedure
 1. In the left pane, click the Map from Flow Outputs tab to configure the mapping of

the trigger reply. The Available data and Trigger reply panes are displayed. You can
map the following trigger replies to the flow outputs - code and data.

TIBCO Flogo® Enterprise User Guide

15 | Introduction

 2. In the Map from Flow Outputs section:

 a. The Available data pane displays the data available for the mapping. $flow is
displayed in this pane. To see all the flow outputs available for the mapping,
expand $flow. This displays code and data.

 b. Drag code from Available data and drop it on code in the Trigger reply pane.
$flow.code is displayed in the code text editor. You have successfully mapped
the code in Trigger reply to the code in Available data.

 c. Repeat the same steps to map data from Trigger reply with data from
Available data.

Note: You can expand data in both the Trigger reply pane and the
Available data pane to see the tree structure of the data you have
defined in the schema.

 3. Click Save and close the trigger dialog.

Step 6: Add a Log Message Activity to the flow

The flow uses the LogMessage activity to log an entry in the app logs when the trigger
receives a request from the passenger that reaches the trigger in the form of a REST
request.

To add a LogMessage activity:

TIBCO Flogo® Enterprise User Guide

16 | Introduction

Procedure
 1. On the FlightBookings flow page, click Activities, the activities palette opens.

 2. In the Activities palette, under General tab, select Log Message and drag it to the
activities area.

 3. Drag a connection line from StartActivity to the LogMessage activity that you have
created.

 4. Now, to configure the LogMessage activity with a message to log when it receives an
incoming request from the ReceiveHTTPMessage trigger:

 a. Click the LogMessage activity to open the configurations dialog.

 b. Click the Input tab. The Available data and Activity inputs columns are
displayed on the right side of the LogMessage activity tabs.

 c. Click the message to open the mapper to the right. Configure a message to be
logged by the LogMessage activity when the input from the request that the
trigger received is passed on to and received by the flow.

 d. To configure the message, click Functions, and expand the string. Click concat
(str, str2) to add the function to the message box.

TIBCO Flogo® Enterprise User Guide

17 | Introduction

 e. Select str in the box and replace it by entering "Request received for: "
(include the quotes too): string.concat(Request received for: ", str2).

 5. Replace str2 with the family name of the passenger who booked the flight.
(The family name of the passenger is passed on from the trigger to the flow. We had
mapped this trigger output to flow input previously. Hence it is now available for
mapping under $flow in Available data.)

 a. In the Available data pane, expand $flow and expand queryParams.

 b. Drag lastname and drop it in place of str2.

 c. Click Save.

 6. Close the LogMessage dialog.

 Your flow must now look like this:

TIBCO Flogo® Enterprise User Guide

18 | Introduction

Step 7: Add the first Return Activity branch

To add a Return activity and the branch to configure its condition to look for the family
name "Jones":

Procedure
 1. From the Activities palette, drag Return activity available under Default category to

the activity area.

 2. Now, to configure a connection line between a LogMessage activity to the Return
activity. Configure the branch with a condition to read the family name of the
passenger.

 3. Drag a highlighted arrow from the LogMessage activity to the Return activity.

 4. Hover over and click the branch label on the connection line you just created. The
configuration window for branch condition opens.

 5. In the Branch Mapping Settings dialog that opens, select the Success with
condition branch condition.

 a. Click Functions. Select the string>>contains(str1, str2). The selected function
is added to the condition text editor.

 b. Configure str1 in the expression to take the value of the family name that the
user enters. In the Available data, expand $flow > queryParams. Drag
lastname to str1. This family name is the name entered by the user in the
search query.

 c. Replace str2 in the condition by manually typing "Jones".

TIBCO Flogo® Enterprise User Guide

19 | Introduction

 d. Click Save. This branch runs when the name entered as a query parameter is
Jones.

 6. Now, Configure the Return activity for the branch to produce the flow results if this
branch runs (when the passenger's family name is anything but Jones):

 a. Click the return activity to open the configuration dialog.

 b. Click code under Flow outputs to open the mapper and type 200 in the code
box, which is the HTTP success code.

 c. Expand the next flow output data. All the different elements under data that
are returned by this activity are displayed. Assign a value to each field under
data.

 d. Start by clicking Class under data and type "Business" as Jones is traveling by
"Business" class.

 e. Click Cost to type a number of your choice. You can also use a function to
randomize the value. To do so, in the Functions section, expand the number
category and click random(). Enter 5000 as an input parameter to the random
() function.

 f. Click DepartureDate to enter the departure date in any format of your choice.
Use quotation marks as the date needs to be specified as a string. For example,
“01/01/21” or "January 1, 2021" are valid values.

 g. Click DeparturePoint to enter the departure airport name of your choice. Use
quotation marks as the departure point needs to be specified as a string. For

TIBCO Flogo® Enterprise User Guide

20 | Introduction

example, “LAX” or “LHR” are valid values.

 h. Click Destination to enter a string for this field. For example, "Paris" or “JFK”
are valid values.

 i. Click FirstName to enter the first name associated with the family name Jones.
For example, "Brian" or "Paul" are valid values.

 j. Click Id to enter a number of your choice. You can also use a function to
randomize the value. To do so, in the Functions section, expand the number
category and click random(). Enter 999999 as an input parameter to the
random() function.

 k. Click LastName to map this field to the query parameter lastname. Before
doing so, we can use a string function to capitalize the family name that is
returned by our app. To do so, under Functions, expand the string and click
toTitleCase(str). Once string.toTitleCase(str) is added to your box, select str
to replace it with the query parameter. Expand $flow and then queryParams
under Available data. Drag lastname and drop it in place of str. The text
editor must look like this:

 l. Click Save and then close the Return Activity Configuration dialog.

Your flow must look like this:

Step 8: Add a second Return Activity branch

The second branch that you add from the LogMessage activity runs when the success
condition of the first branch is not matched. If the passenger's family name is not "Jones",
the passenger's seat is in "Economy" class.

TIBCO Flogo® Enterprise User Guide

21 | Introduction

To add a second branch from the LogMessage activity:

Procedure
 1. Duplicate the Return activity from the first branch instead of manually adding

another Return activity. You can copy the activity by clicking . The copied activity

is displayed next to your original Return activity:

 2. Click the CopyOfReturn activity to configure the response this branch return.

 3. First, to create a connection between the LogMessage activity and the Return1
activity, hover over to the LogMessage activity, you see that an arrow highlighted.
Drag the arrow to the Return activity.

 4. Select the Success with no matching condition branch condition. If the conditions
of all the other Success with condition branches are not true, this branch is run.
This means, if the family name entered as a query parameter is not Jones, this
second branch is run.

 5. Now, in the configuration window click the name of the activity to make it editable
and rename the activity.

 6. In the Flow outputs section, expand data, select Class, and type "Economy” as this
branch must return "Economy" class bookings.

 7. Click Save and close the dialog.

Your flow must look like this:

TIBCO Flogo® Enterprise User Guide

22 | Introduction

Step 9: Validate the app

Your app is now ready. Before you push the app to the Cloud, validate all the flows for any
errors or warnings. To do so, click Validate. Flogo validates each flow and activity within
the flow. For any errors or warnings, you see the respective icons next to the flow name or
activity tab, which contains the error or warning.

On successful validation, you get the following message:

Step 10: Build the App

Your app is now ready to be built. You can build a Flogo app using a s an executable file.

Procedure
 1. Click the left arrow next to the flow name to open the FlightApp page.

 2. Click Build.

 3. Select your target platform from the Build drop-down list. Select Windows/amd64
on Windows, Darwin/amd64 on Macintosh or Linux/amd64, or Linux/86 on Linux
from the list.

TIBCO Flogo® Enterprise User Guide

23 | Introduction

You see a build log with the progress of the build command. When the build
completes, you see an executable file called FlightApp-darwin_<processor> in your
/Downloadsdirectory.

Step 11: Test the app

Now that the app has been built successfully, you run the app. Once it runs successfully,
you can test your API in a REST client.

On Macintosh and Linux platforms:

To test the app:

Procedure
 1. Open a terminal and change the directory to the location of FlightApp-darwin_

amd64, FlightApp-linux_amd64, or FlightApp-linux_86 file depending on your
platform.

 2. Run the following commands:

 l chmod +x <FlightApp-darwin_amd64>

 l ./FlightApp-darwin_amd64

Note: In the commands, use the file name specific to your platform -
FlightApp-linux_amd64 or FlightApp-linux_86 in the case of Linux.

 3. Click Allow in the following dialog:

The following messages are displayed in the console:

TIBCO Flogo® Enterprise User Guide

24 | Introduction

 4. Make a note of the port number 9999 and path /flightbookings in the logs.

 5. You can test your API in a REST client such as Postman by entering the port number
9999, path /flightbookings, and query parameter lastname. For example,
http://localhost:9999/flightbookings?lastname=jones.

In the above example, note that since the query parameter sent has the family name
as "Jones", the Class in the response has been automatically set to "Business"
class.

 6. Go back to your terminal. You must see the logs you configured with the Log activity.

TIBCO Flogo® Enterprise User Guide

25 | Introduction

TIBCO Flogo® Enterprise User Guide

26 | App Development

App Development
For detailed instructions and information on app deployment, refer to the appropriate
section based on your platform:

 l To deploy an app using TIBCO Cloud™ Integration, see App Deployment.

 l To deploy an app using TIBCO Flogo® Extension for Visual Studio Code, see App
Deployment.

https://integration.cloud.tibco.com/docs/Subsystems/flogo/flogo-all/app-development2.html
https://docs.tibco.com/pub/flogo-vscode/latest/doc/html/flogo-vscode-user-guide/app-development/app-development2.htm
https://docs.tibco.com/pub/flogo-vscode/latest/doc/html/flogo-vscode-user-guide/app-development/app-development2.htm

TIBCO Flogo® Enterprise User Guide

27 | Deployment and Configuration

Deployment and Configuration
After you have created and validated your app, you can build an app executable to deploy
and run it.

Building an App Executable
For detailed instructions and information on building an app executable, refer to the
appropriate section based on your platform:

 l To build an app executable using TIBCO Cloud™ Integration, see Building an App
Executable.

 l To build an app executable using TIBCO Flogo® Extension for Visual Studio Code, see
Building an App Executable.

Building Flogo App Executable and Docker Image
Using Flogo - App Build CLI
TIBCO Flogo® - App Build Command Line Interface is a command-line utility for building
Flogo applications, especially in CI/CD pipelines. It provides a consistent and easy-to-use
interface for building and testing Flogo applications.

Flogo® - App Build Command Line Interface (CLI) Usage
 l Build Flogo application executables (.exe) on Windows, Linux, or Darwin platforms.

 l Test Flogo applications using Flogo app files (.flogo or .json), Flogo app
executables, and .flogotest files.

 l Build Docker images for your Flogo applications.

 l Package Flogo executables into Docker images.

 l Build TIBCO Platform deployment ZIP files for your Flogo applications.

https://integration.cloud.tibco.com/docs/Subsystems/flogo/flogo-all/building-an-app-bina.html
https://integration.cloud.tibco.com/docs/Subsystems/flogo/flogo-all/building-an-app-bina.html
https://docs.tibco.com/pub/flogo-vscode/latest/doc/html/flogo-vscode-user-guide/vscode-extension/Configure_Runtime_for_your_App.htm

TIBCO Flogo® Enterprise User Guide

28 | Deployment and Configuration

Flogo - App Build CLI Commands

flogobuild

Usage

flogobuild [COMMAND]

Commands

Command Description

build-docker-image Builds a Flogo application Docker image.

build-exe Builds a Flogo application executable.

build-tp-deployment Builds a TIBCO Platform deployment zip file for
the Flogo application.

create-context Creates a context for building and packaging
Flogo applications.

delete-context Deletes an existing context.

help Displays help about any command.

list-context Lists available contexts.

package-docker-image Packages an existing Linux-based Flogo
application executable as a Docker image.

set-default-context Sets one of the configured contexts as the default
for building and packaging Flogo applications.

test-app Runs unit test cases.

version Displays the version.

TIBCO Flogo® Enterprise User Guide

29 | Deployment and Configuration

create-context

Note: Before you begin using the Flogo - App Build CLI to build executables,
create Docker images, or run unit tests, it is mandatory to create the context by
specifying the appropriate flags in the command.

Usage

flogobuild create-context [flags]

Available Flags

Flags Description

-n, --context-name This flag is required.

Specify the name of the context.

-e, --ems-home-directory Specify the path to the EMS home directory.

-h, --help Displays help for create-context.

-i, --ibmmq-home-directory Specify the path to the IBM MQ home directory.

--set-default Sets the new context as default.

-u, --user-extension-directory Specify the path to the user extension directory.

-v, --vsc-extension-file This flag is required.

Specify the path to the Flogo VSCode extension
VSIX file.

Note: By default, the context is created at /home/<user-name>/tibco/.fecli.
To override this default directory, set the FLOGO_CLI_CTX_DIR environment
variable and specify the desired destination directory for storing the context.

Example

TIBCO Flogo® Enterprise User Guide

30 | Deployment and Configuration

flogobuild create-context --context-name "<context-name>" --vsc-extension-
file "<path-to-vsc-file>\<.vsix file>" --user-extension-directory "<extension-
directory>" --ems-home-directory "<ems-home-directory>" --ibmmq-home-directory
"<ibmq-home-directory>"

build-docker-image

Usage

flogobuild build-docker-image [flags]

Available Flags

Flag Description

-f , --app-json-file This flag is required.

Specify the path to the Flogo application file
(.json/.flogo).

-c, --context-name Specify the name of the context to be used for
building applications. If not provided, the default
context is used.

-d, --docker-file Specify the path to the Flogo application
Dockerfile.

-i, --docker-image-name This flag is required.

Specify the Docker image name and tag, for
example, flogotestapp:1.0.0.

-n, --exe-name Specify the name of the executable file. If not
provided, the app name is used as the executable
file name.

-h, --help Displays help for build-docker-image.

-o, --output-directory Specify the directory where the executable file is

TIBCO Flogo® Enterprise User Guide

31 | Deployment and Configuration

Flag Description

to be created. If not provided, the executable is
created in the current directory.

Example

flogobuild build-docker-image -f "<path-to-flogo-app-file>\<.flogo/.json file>" -i
"<docker-img-name>" -c "<context-name>" -n "<executable-file-name>" -o "<path-for-exe-
file>" -d "<path-for-dockerfile>"

build-exe

Usage

flogobuild build-exe [flags]

Available Flags

Flag Description

-f, --app-json-file This flag is required.

Specify the path to the Flogo application file
(.json/.flogo).

-c, --context-name Specify the name of the context to be used for
building applications. If not provided, the default
context is used.

-n, --exe-name Specify the name of the executable file. If not
provided, the app name is used as the executable
file name.

-h, --help Displays help for build-exe.

-o, --output-directory Specify the directory where the executable file is
to be created. If not provided, the executable is

TIBCO Flogo® Enterprise User Guide

32 | Deployment and Configuration

Flag Description

created in the current directory.

-p, --platform Specify the platform type for the app executable.
Specify a value in GOOS/GOARCH format. For
example, ["linux/amd64", "windows/amd64",
"darwin/amd64", "darwin/arm64"].

Example

flogobuild build-exe -f "<path-to-flogo-app-file>\<.flogo/.json file>" -c "<context-
name>" -n "<executable-file-name>" -o "<path-for-exe-file>" -p darwin/arm64

build-tp-deployment

Usage

flogobuild build-tp-deployment [flags]

Available Flags

Flag Description

-f, --app-json-files This flag is required.

Specify the path to the Flogo application file
(.json/.flogo).

-c, --context-name Specify the name of the context to be used for
building applications. If not provided, the default
context is used.

-h, --help Displays help for build-exe.

-o, --output-directory This flag is required.

TIBCO Flogo® Enterprise User Guide

33 | Deployment and Configuration

Flag Description

Specify the directory where the deployment zip is
to be created.

-t, --tags Specify a comma-separated list of tags for the
deployment.

-z, --zipfile-name Specify the name of the zip file to be created. If
not provided, build.zip is used.

Example

flogobuild build-tp-deployment -f "<path-to-flogo-app-file>\<.flogo/.json file>" -c
"<context-name>" -o "<path-for-exe-file>" -t "platform,buildZip" -z "<zip-file-
name>"

delete-context

Usage

flogobuild delete-context [flags]

Available Flags

Flag Description

-c, --context-name This flag is required.

Specify the name of the context to be deleted.

-h, --help Displays help for delete-context.

Example

flogobuild delete-context -c <context-name>

TIBCO Flogo® Enterprise User Guide

34 | Deployment and Configuration

list-context

Example

flogobuild list-context

package-docker-image

Usage

flogobuild package-docker-image [flags]

Available Flags

Flag Description

-d, --docker-file Specify the path to the Flogo application Dockerfile.

-i, --docker-image-name This flag is required.

Specify the Docker image name and tag.

-n, --exe-name This flag is required.

Specify the path to the executable file.

-h, --help Displays help for package-docker-image.

Example

flogobuild package-docker-image --docker-image-name "<docker-image-name>" -
-exe-name "<path-to-exe-file>" -d "<path-to-dockerfile>"

set-default-context

Usage

flogobuild set-default-context [flags]

TIBCO Flogo® Enterprise User Guide

35 | Deployment and Configuration

Available Flags

Flag Description

-c, --context-name This flag is required.

Specify the name of the context to be set as default.

-h, --help Displays help for set-default-context.

Example

flogobuild set-default-context -c <Context-name>

test-app

Usage

flogobuild test-app [flags]

Available Flags

Flag Description

-e, --app-exe-file Specify the path to the executable file to be
tested. This parameter is required if the --app-
json-file flag is not provided.

-a, --app-json-file Specify the path to the Flogo application file
(.json/.flogo). This parameter is required if the -
-app-exe-file flag is not provided.

-p, --app-props-file Specify the path to the application property file.

-c, --context-name Specify the name of the context to be used for
building applications. If not provided, the default
context is used.

TIBCO Flogo® Enterprise User Guide

36 | Deployment and Configuration

Flag Description

-v, --env-vars-file Specify the path to the environment variable
property file.

-h, --help Displays help for test-app.

-d, --output-directory Specify the path to the output directory.

-o, --output-file Specify the name of the output file.

-f, --test-file This flag is required.

Specify the path to the test file.

-t, --test-suites Specify a comma-separated list of test suites to
run.

Example

flogobuild test-app --app-exe-file "<path-to-exe-file>" --test-file "<path-to-
test-files>" --context-name <Context-name> --output-directory "<output-dir>" --
output-file "<output-file-name>" --test-suites "<Testsuite_1,Testsuite_2>" --app-
props-file "<path-to-app-prop-file>/<prop-file>" --env-vars-file "<path-to-env-
file>/<env-file>"

App Configuration Management
Flogo allows you to externalize app configuration using app properties so that you can run
the same app binary in different environments without modifying your app. It integrates
with configuration management systems such as Consul and AWS Systems Manager
Parameter Store to get the values of app properties at runtime.

 You can switch between configuration management systems without modifying your app.
You can do this by running the command to set the configuration-management-system-
specific environment variable from the command line. Since the environment variables are
set for the specific configuration management system, at runtime, the app connects to that
specific configuration management system to pull the values for the app properties.

TIBCO Flogo® Enterprise User Guide

37 | Deployment and Configuration

Consul
 The Consul provides a key/value store for managing app configuration externally. Flogo
Enterprise allows you to fetch values for app properties from Consul and override them at
runtime.

Note: This section assumes that you have set up Consul and know-how Consul is
used to storing service configuration. Refer to the Consul documentation for
consul-specific information.

A Flogo app connects to the Consul server as its client by setting the environment variable,
FLOG_APPS_PROPS_CONSUL. At runtime, you must provide the Consul server endpoint for
your app to connect to a Consul server. You have the option to enter the values for the
Consul connection parameters. You can either type in their values as JSON strings or create
a file that contains the values and use the file as input.

Consul can be started with or without acl_token. If using an ACL token, make sure to have
the ACL configured in Consul.

Using Consul
Below is a high-level workflow for using Consul with your Flogo app.

Before you begin
You must have access to Consul.

Set up Consul and understand how Consul is used to storing service configuration. For
information on Consul, refer to the Consul documentation.
To use Consul to override app properties in your app (properties that were set in Flogo
Enterprise):

Procedure
 1. Export your app binary from Flogo Enterprise. Refer to Exporting and Importing an

App for details on how to export the app.

 2. Configure key/value pairs in Consul for the app properties whose values that you
want to override. At runtime, the app fetches these values from the Consul and uses
them to replace the default values that were set in the app.

TIBCO Flogo® Enterprise User Guide

38 | Deployment and Configuration

 3.
Important: When setting up the Key in Consul, make sure that the Key
name matches exactly with the corresponding app property name in the
Application Properties dialog in Flogo Enterprise. If the property name
does not match exactly, a warning message is displayed, and the app uses
the default value for the property that you configured in Flogo Enterprise.

 4. Set the FLOGO_APP_PROPS_CONSUL environment variable to set the Consul server
connection parameters. See Setting the Consul Connection Parameters for details.

Consul Connection Parameters
 Provide the following configuration information during runtime to connect to the Consul
server.

Property
Name

Require
d

Description

server_
address

Yes Address of the Consul server, which could be run locally or elsewhere
in the cloud.

key_
prefix

No Prefix to be prepended to the lookup key. This is essentially the
hierarchy that your app follows to get to the Key location in the
Consul. This is helpful in case the key hierarchy is not fixed and may
change based on the environment during runtime. It is also helpful in
case that you want to switch to a different configuration service such
as the AWS param store. Although it is a good idea to include the app
name in the key_prefix, it is not required. key_prefix can be any
hierarchy that is meaningful to you.

As an example of a key_prefix, if you have an app property (for
example, Message) that has two different values depending on the
environment from which it is being accessed (for example, dev or test
environment), your <key_prefix> for the two values can be
/dev/<APPNAME>/ and /test/<APPNAME>/. At run time, the right value
for Message is picked up depending on which <key_prefix> you
specify in the FLOGO_APP_PROPS_CONSUL environment variable. Hence,
setting a <key_prefix> allows you to change the values of the app
properties at runtime without modifying your app.

TIBCO Flogo® Enterprise User Guide

39 | Deployment and Configuration

Property
Name

Require
d

Description

acl_
token

No Use this parameter if you have key access protected by ACL. Tokens
specify which keys can be accessed from the Consul. You create the
token on the ACL tab in Consul.

During runtime, if you use the acl_token parameter, Key access to
your app is based on the token you specify.

To protect the token, encrypt the token for the key_prefix where your
Key resides and provides the encrypted value of that token by
prefixing the acl_token parameter with SECRET. For example, "acl_
token":
"SECRET:QZLOrtN3gOEpXgUuud6jprgo/WzLR7j+Twv28/4KCp7573snZWo+h
GuQauuR2o/7TJ+ZLQ==". Note that the encrypted value follows the
key_prefix format.
Provide the encrypted value of the token as the SECRET. SECRETS get
decrypted at runtime. To encrypt the token, you obtain the token from
the Consul. Then, encrypt it using the app binary by running the
following command from the directory in which your app binary is
located:

./<app_binary> --encryptsecret <token_copied_from_Consul>

The command outputs the encrypted token that you can use as the
SECRET.

Note: Since special characters (such as `! | < > & `) are shell
command directives, if they appear in the token string when
encrypting the token, you must use a backslash (\) to escape such
characters.

insecure_
connecti
on

No Set to True if you want to connect to a secure Consul server without
specifying client certificates. This should only be used in test
environments.

Default: False

TIBCO Flogo® Enterprise User Guide

40 | Deployment and Configuration

Setting the Consul Connection Parameters
 You set the values for app properties that you want to override by creating a Key/Value
pair for each property in Consul. You can create a standalone property or a hierarchy that
groups multiple related properties.

Before you begin
This document assumes that you have access to Consul and are familiar with its use.
 To create a standalone property (without hierarchy), you simply enter the property name
as the name of the Key when creating the Key in Consul. When you create a property
within a hierarchy, enter the hierarchy in the following format in the Create Key field in
Consul: <key_prefix>/<key_name> where <key_prefix> is a meaningful string or hierarchy
that serves as a path to the key in Consul and <key_name> is the name of the app property
whose value you want to override.
For example, in dev/Timer/Message and test/Timer/Message, dev/Timer and test/Timer
are the <key_prefix> which could stand for the dev and test environments and Message is
the key name. During runtime, you provide the <key_prefix> value that tells your app the
location in Consul from where to access the property values.

Warning: The Key name in Consul must be identical to its counterpart in the
Application Properties dialog in Flogo Enterprise. If the key name does not
match exactly, a warning message is displayed, and the app uses the default
value that you configured for the property in Flogo Enterprise.

Warning: A single app property, for example, Message, is looked up by your app
as either Message or <key_prefix>/Message in Consul. An app property within a
hierarchy such as x.y.z is looked up as x/y/z or <key_prefix>/x/y/z in Consul.
Note that the dot in the hierarchy is represented by a forward slash (/) in Consul.

After you have configured the app properties in Consul, you need to set the environment
variable, FLOGO_APP_PROPS_CONSUL, with the Consul connection parameters for your app to
connect to the Consul. When you set the environment variable, it triggers the app to run,
which connects to the Consul using the Consul connection parameters you provided and
pulls the app property values from the key_prefix location you set by matching the app
property name with the key_name. Hence, the Key names must be identical to the app
property names defined in the Application Properties dialog in Flogo Enterprise.

TIBCO Flogo® Enterprise User Guide

41 | Deployment and Configuration

You can set the FLOGO_APP_PROPS_CONSUL environment variable either by directly entering
the values as a JSON string on the command line or placing the properties in a file and
using the file as input to the FLOGO_APP_PROPS_CONSUL environment variable.

Entering the Consul Parameter Values as a JSON String

To enter the Consul parameters as a JSON string, enter the parameters as key/value pairs
using the comma delimiter. The following examples illustrate how to set the values as
JSON strings. You would run the following from the location where your app resides:

An example when not using security without tokens enabled:

FLOGO_APP_PROPS_CONSUL="{\"server_
address\":\"http:\/\/127.0.0.1:8500\"}" ./Timer-darwin-amd64

WhereTimer-darwin-amd64 is the name of the app binary.

An example when tokens are enabled and app properties are within a hierarchy:

FLOGO_APP_PROPS_CONSUL="{"server_address":"http://127.0.0.1:8500","key_
prefix":"/dev/Timer","acl_token":"SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"}"

 Where/dev/Timer is the path and SECRET is the encrypted value of the token obtained
from the Consul.

This command directs your app to connect to the Consul at the server_address and pull
the values for the properties from the Consul and run your app with those values.

For a description of the parameters, see Consul Connection Parameters.

For details on how to encrypt a value, see Encrypting Password Values.

Setting the Consul Parameter Values Using a File

To set the parameter values in a file, create a .json file, for example, consul_config.json
containing the parameter values in key/value pairs. Here is an example:

{
 "server_address": "http://127.0.0.1:32819",
 "key_prefix": "/dev/<APPNAME>/",
 "acl_token": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"
 }

Place the consul_config.json file in the same directory that contains your app binary.

TIBCO Flogo® Enterprise User Guide

42 | Deployment and Configuration

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_CONSUL environment variable. For example, to use the consul_config.json file from
the example above, run:

FLOGO_APP_PROPS_CONSUL=consul_config.json ./<app_binary_name>

The command extracts the Consul server connection parameters from the file and connects
to the Consul to pull the app properties values from the Consul and runs your app with
those values.

Consul properties can also be run using docker by passing the same arguments for the
docker image of a binary app. For more information, see Building the App.

Overriding an App Property at Runtime
 While using config management services like Consul or AWS Params store, you can update
or override an app property at runtime without restarting or redeploying the app.

Note: Currently, this functionality is only available for app properties mapped in
activities. It is not available for app properties in triggers and connections.

Before you begin
Set the following environment variables:

Environment Variable Description

FLOGO_APP_PROP_RECONFIGURE=true Specifies that app properties can be updated
or overridden at runtime.

FLOGO_APP_PROP_SNAPSHOTS=true Used along with FLOGO_APP_PROP_
RECONFIGURE. If you do not want your
application to pick the updated app
properties dynamically for a running flow, set
this variable to true. The updated values are
effective only for new flows and not existing
ones.

TIBCO Flogo® Enterprise User Guide

43 | Deployment and Configuration

FLOGO_HTTP_SERVICE_PORT=<port number> Specifies the service port. For apps running
in TCI, you do not need to specify the port.
The default is 7777.

FLOGO_APP_PROPS_CONSUL="{"server_
address":"http://127.0.0.1:8500"}"

Specifies the Consul server address.

Overriding Values by Specifying New Values

Procedure
 1. In the Flogo app, create an app property and map it to the activities as required.

 2. Create the same key as the app property and add some value.

 3. Run the app with the environment variables in the "Before you begin" section.
The app takes all the configured values.

 4. Update the values.

 5. To reconfigure the app property values, use the API as follows:

curl -X PUT localhost:7777/app/config/refresh

A successful response is returned from the API.

 6. Open the app property update logs to verify that the new app property values are
used by the activities.

Overriding Values by Specifying New Values in the API
Directly
You can specify the new values of app properties directly through the body of the
reconfigure API. This method takes priority over any other resolver specified.

Example:

curl -X PUT -H "Content-Type: application/json" -d '{"Property_
1":"Value"}' localhost:7777/app/config/refresh

TIBCO Flogo® Enterprise User Guide

44 | Deployment and Configuration

Important Considerations
 l If the same property exists in Consul, the property from the body of the reconfigure

API is used.

 l Any new request on the API does not save property values provided on a previous
request.

 l Properties mentioned in an earlier request and not mentioned in the new request
take values if present from other resolvers mentioned or the last saved value.

 l Properties that are not mentioned in any resolver take the value from TIBCO Cloud
Integration.

AWS Systems Manager Parameter Store
AWS Systems Manager Parameter Store is a capability provided by AWS Systems Manager
for managing configuration data. You can use the Parameter Store to centrally store
configuration parameters for your apps.

Your Flogo app connects to the AWS Systems Manager Parameter Store server as its client.
At runtime, you are required to provide the Parameter Store server connection details by
setting the FLOGO_APP_PROPS_AWS environment variable for your app to connect to the
Parameter Store server. You have the option to enter the values for the Parameter Store
connection parameters either by typing in their values as JSON strings or by creating a file
that contains the values and using the file as input.

Using the Parameter Store
 Below is a high-level workflow for using AWS Systems Manager Parameter Store with your
Flogo app.

Before you begin
 This document assumes that you have an AWS account, have access to the AWS Systems
Manager, and know how to use the AWS Systems Manager Parameter Store. Refer to the
AWS documentation for the information on the AWS Systems Manager Parameter Store.

TIBCO Flogo® Enterprise User Guide

45 | Deployment and Configuration

Overview

To use the Parameter Store to override app properties set in Flogo Enterprise:

 1. Build an app binary that has the app properties already configured in Flogo
Enterprise. For more information on building an app binary, see Building the App.

 2. Configure the app properties that you want to override in the Parameter Store. At
runtime, the app fetches these values from the Parameter Store and uses them to
replace the default values that were set in the app.

 3. Set the FLOGO_APP_PROPS_AWS environment variable to set the Parameter Store
connection parameters from the command line.

When you run the command for setting the FLOGO_APP_PROPS_AWS environment
variable, it runs your app, connects to the Parameter Store, and fetches the
overridden values for the app properties from the Parameter Store. Only the values
for properties that were configured in the Parameter Store are overridden. The
remaining app properties get their values from the Application Properties dialog.

See the Setting the Parameter Store Connection Parameters and Parameter Store
Connection Parameters sections for details.

Parameter Store Connection Parameters
 To connect to the AWS Systems Manager Parameter Store, provide the configuration
below at runtime.

Property
Name

Required Data Type Description

access_
key_id

Yes String Access ID for your AWS account. To protect the
access key, an encrypted value can be provided in
this configuration. See Encrypting Password Values
section for information on how to encrypt a string.

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

This configuration is optional if use_iam_role is

TIBCO Flogo® Enterprise User Guide

46 | Deployment and Configuration

Property
Name

Required Data Type Description

set to true.

secret_
access_key

Yes String Secret access key for your AWS account. This
account must have access to the Parameter Store.
To protect the secret access key, an encrypted
value can be provided in this configuration. See
the Encrypting Password Values section for
information on how to encrypt a string.

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

 This configuration is optional if use_iam_role is
set to true.

region Yes String Select a geographic area where your Parameter
Store is located. This configuration is optional if
use_iam_role is set to true and your Parameter
Store is configured in the same region as the
running service. When running in AWS services (for
example, EC2, ECS, EKS), this configuration is
optional if the Parameter Store is in the same
region as these services.

param_
prefix

No String This is essentially the hierarchy that your app
follows to get to the app property location in the
Parameter Store. It is the prefix to be prepended
to the lookup parameter. This is helpful in case the
parameter hierarchy is not fixed and may change
based on the environment during runtime.

This is also helpful in case that you want to switch
to a different configuration service such as the
Consul KV store.
As an example of a param_prefix, if you have an
app property (for example, Message) that has two

TIBCO Flogo® Enterprise User Guide

47 | Deployment and Configuration

Property
Name

Required Data Type Description

different values depending on the environment
from which it is being accessed (for example, dev
or test environment), your param_prefix for the
two values can be /dev/<APPNAME/ and
/test/<APPNAME/. At run time, the right value for
Message is picked up depending on which param_
prefix you specify in the FLOGO_APP_PROPS_AWS
environment variable. Hence, setting a param_
prefix allows you to change the values of the app
properties at runtime without modifying your app.

use_iam_
role

No Boolean Set to true if the Flogo app is running in the AWS
services (such as EC2, ECS, EKS) and you want to
use the IAM role (such as instance role or task role)
to fetch parameters from the Parameter Store. In
that case, access_key_id and secret_access_key
are not required.

session_
token

No String Enter session token if you are using temporary
security credentials. Temporary credentials expire
after a specified interval. For more information,
see the AWS documentation.

Setting the Parameter Store Connection Parameters
 You can use the AWS Systems Manager Parameter Store to override the property value set
in your Flogo app. You do so by creating the property in the Parameter Store and assigning
it the value with which to override the default value set in the app. You can create a
standalone property or a hierarchy (group) in which your property resides.

Before you begin
This document assumes that you have an AWS account and the Parameter Store and are
familiar with its use. Refer to the AWS documentation for more information on the
Parameter Store.
 To create a standalone property (without hierarchy), you simply enter the property name
when creating it. To create a property within a hierarchy enter the hierarchy in the

TIBCO Flogo® Enterprise User Guide

48 | Deployment and Configuration

following format when creating the property: <param_prefix>/<property_name>, where
<param_prefix> is a meaningful string or hierarchy that serves as a path to the property
name in Parameter Store and <property_name> is the name of the app property whose
value you want to override.
For example, in dev/Timer/Message and test/Timer/Message/dev/Timer and test/Timer
are the <param_prefix> which could stand for the dev and test environments respectively,
and Message is the key name. During runtime, you provide the <param_prefix> value,
which tells your app the location in the Parameter Store from where to access the property
values.

Warning: The parameter name in the Parameter Store must be identical to its
counterpart (app property) in the Application Properties dialog in Flogo
Enterprise. If the parameter names do not match exactly, a warning message is
displayed, and the app uses the default value that you configured for the
property in Flogo Enterprise.

Warning: A single app property, for example, Message, is looked up by your app
as either Message or <param_prefix>/Message in the Parameter Store. An app
property within a hierarchy such as x.y.z is looked up as x/y/z or <param_
prefix>/x/y/z in the Parameter Store. Note that the dot in the hierarchy is
represented by a forward slash (/) in the Parameter Store.

After you have configured the app properties in the Parameter Store, you need to set the
environment variable, FLOGO_APP_PROPS_AWS, with the Parameter Store connection
parameters for your app to connect to the Parameter Store. When you set the environment
variable, it triggers your app to run, which connects to the Parameter Store using the
Parameter Store connection parameters you provided and pulls the app property values
from the param_prefix location you set by matching the app property name with the
param_name. Hence, the property names must be identical to the app property names
defined in the Application Properties dialog in Flogo Enterprise.

You can set the FLOGO_APP_PROPS_AWS environment variable either by manually entering
the values as a JSON string on the command line or placing the properties in a file and
using the file as input to the FLOGO_APP_PROPS_AWS environment variable.

If your Container is Not running on ECS or EKS

If the container in which your app resides is running external to ECS, you must enter the
values for access_key_id and secret_access_key parameters when setting the FLOGO_
APP_PROPS_AWS environment variable.

TIBCO Flogo® Enterprise User Guide

49 | Deployment and Configuration

Entering the Parameter Store Values as a JSON string

To enter the Parameter Store connection parameters as a JSON string, enter the
parameters and their value using the comma delimiter. The following example illustrates
how to set the values as JSON strings. This would be run from the location where your app
resides:

FLOGO_APP_PROPS_AWS="{"access_key_id":"SECRET:XXXXXXXXXXXXX",
"secret_access_key":"SECRET:XXXXXXXXXXX",
"region":"us-west-2",
"session_
token":"SECRET:1UBrEIezye8W1mmx7NLAiQzopmp58kUa02XdpmxYqVvkGKUrdN+wgCeH3
mxZ"
"param_prefix":"/MyFlogoApp/Dev/"}"

Where/MyFlogoApp/Dev/ is the param_prefix (path to the properties) and SECRET is the
encrypted version of the key or key_id obtained from the Parameter Store.

This connects to the Parameter Store, pulls the values for the properties, and overrides the
default values that were set in the app.

Refer to the Parameter Store Connection Parameters section for a description of the
parameters.

Setting the Parameter Store values using a file

To set the parameter values in a file, create a .json file, for example, aws_config.json
containing the parameter values. Here is an example:

{
"access_key_id": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"param_prefix": "/MyFlogoApp/dev/",
 "secret_access_key": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"region": "us-west-2",
"session_
token":"SECRET:1UBrEIezye8W1mmx7NLAiQzopmp58kUa02XdpmxYqVvkGKUrdN+wgCeH3
mxZ"
}

Place the aws_config.json file in the same directory, which contains your app binary.

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_AWS environment variable. For example, to use the aws_config.json file from the
example above, run:

TIBCO Flogo® Enterprise User Guide

50 | Deployment and Configuration

FLOGO_APP_PROPS_AWS=aws_config.json ./<app_binary_name>

This connects to the Parameter Store, pulls the overridden app properties values from the
Parameter Store, and runs your app with those values.

If your Container is running on ECS or EKS

 In case your Flogo apps are running in ECS and intend to use the EC2 instance credentials,
set use_iam_role to true. The values for access_key_id and secret_access_key are
gathered from the running container. Ensure that the ECS task has permission to access
the param store.

The IAM role that you use must have permissions to access the parameter(s) from the AWS
Systems Manager Parameter Store. The following policy must be configured for the IAM
role:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Action":[
 "ssm:GetParamaters",
 "ssm:GetParamatersByPath",
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
 }

The following is an example of how to set the FLOGO_APP_PROPS_AWS environment variable
when your container is running on ECS. Notice that the values for access_key_id and
secret_access_key are omitted:

FLOGO_APP_PROPS_AWS="{\"use_iam_role\":true, \"region\":\"us-west-2\"}"
./Timer-darwin-amd64

TIBCO Flogo® Enterprise User Guide

51 | Deployment and Configuration

AWS AppConfig
AWS AppConfig is a feature provided by AWS System Manager, which lets you create,
manage, and quickly deploy application configurations. You can use AWS AppConfig to
simplify the task of configuring changes in application configuration, validating the
changed configurations, deploying the new configurations and monitoring it.

Using AWS AppConfig, you can override the Flogo app properties at runtime. Your Flogo
app retrieves configuration data by establishing the connection with AWS AppConfig. To
enable the connection between your Flogo app and AWS AppConfig, you are required to set
the value of FLOGO_APP_PROPS_AWS_APPCONFIG to True. Here, the session retrieves the
data from AppConfig only once at the start of the session.

Using the AppConfig
Below is a high-level work flow for using AWS Systems Manager AppConfig with your Flogo
app.

Before you begin
This document assumes that you have an AWS account, have access to the AWS Systems
Manager, and know how to use the AWS Systems Manager AppConfig. Refer to the AWS
documentation for the information on the AWS Systems Manager AppConfig.

Overview

 1. Build an app executable that has the app properties already configured in Flogo. For
more information on building an app executable, see Building an App Executable.

In case of TCI, for a new app, you need to set the engine variables for the Flogo app
before pushing it to TCI. For an existing app you can configure the engine variables
and push the updates to the app in the TCI.

 2. Configure AWS AppConfig to work with your Flogo application. To define the
properties in AWS AppConfig:

 a. Create an application in AWS Appconfig to organize and manage configuration
data.

 b. Select the environment of the application in the Appconfig same as that of the
environment of your Flogo app.

TIBCO Flogo® Enterprise User Guide

52 | Deployment and Configuration

 c. Create a configuration profile.

A configuration profile enables AWS AppConfig to access your hosted
configuration versions in its stored location. You can store configurations in
YAML, JSON, or as text documents in the AWS AppConfig hosted configuration
store.

Refer to AWS documentation for detailed procedure to set up the
AWS AppConfig.

 3. Configure the app properties that you want to override in the AppConfig. At runtime,
the app fetches these values from the AppConfig and uses them to replace the
default values that were set in your Flogo app.

 4. Set the value of the parameter FLOGO_APP_PROPS_AWS_APPCONFIG to True to
establish the connection between your Flogo app and AWS AppConfig.

Note: If you change the app properties values in AWS AppConfig, then you need
to repush the app to TCI or re-execute the app executable.

AppConfig Client Configuration
IAM role that you would be using to fetch the configuration details must have permissions
to access configurations from AWS AppConfig. For the same, Following policy must be
configured for IAM role:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "appconfig:GetLatestConfiguration",
 "appconfig:StartConfigurationSession",
 "appconfig:ListApplications",

TIBCO Flogo® Enterprise User Guide

53 | Deployment and Configuration

 "appconfig:GetApplication",
 "appconfig:ListEnvironments",
 "appconfig:GetEnvironment",
 "appconfig:ListConfigurationProfiles",
 "appconfig:GetConfigurationProfile",
 "appconfig:GetConfiguration",
 "appconfig:ListDeployments",
 "appconfig:GetDeployment"
],
 "Resource": "*"
 }
]
}

To connect to the AWS Systems Manager AppConfig, provide below configuration at
runtime.

Property Name Required Data Type Description

FLOGO_APP_PROPS_AWS_
APPCONFIG

Yes Boolean Set this as True to
enable the
AWS AppConfig support
feature.

AWS_APPCONFIG_PROFILE_
NAME

Yes String This is name of the
configuration profile
created while defining
the properties in
AppConfig.

AWS_APPCONFIG_ENV_
NAME

Yes String This is name of the
environment provided
while creating
application in the
AppConfig.

AWS_APPCONFIG_APP_
IDENTIFIER_NAME

No String Set app identifier name
for AWS AppConfig. If
the name is not set, it
takes the name as that
of your Flogo app.

TIBCO Flogo® Enterprise User Guide

54 | Deployment and Configuration

Property Name Required Data Type Description

It is required only if your
AWS AppConfig app
identifier name does not
match with the Flogo
app name.

AWS_APPCONFIG_REGION No String Select AWS region where
your Appconfig is
located.

This field is not required
when your app binary
(executable) is running
on AWS EC2 instance in
the same region as that
of your AppConfig
region. For all other
cases, you must set the
region.

AWS_APPCONFIG_ACCESS_
KEY_ID

No String If the access key ID is
not provided, it is picked
up by following the AWS
default credentials
provider chain.

 For flogo app
deployment on TCI, you
must provide this value.

AWS_APPCONFIG_SECRET_
ACCESS_KEY

No String If the secret access key
is not provided, it is
picked up by following
the AWS default
credentials provider
chain.

For flogo app

TIBCO Flogo® Enterprise User Guide

55 | Deployment and Configuration

Property Name Required Data Type Description

deployment on TCI, you
must provide this value.

AWS_APPCONFIG_SESSION_
TOKEN

No String Set this if you want to
use your session token
for AWS AppConfig API
calls.

AWS_APPCONFIG_
ASSUMEDROLE_ARN

No String Set the assume role ARN
if you want to use
assumed role to fetch
the values from AWS
AppConfig.

Tip: For sensitive fields such as ACCESS_KEY_ID, SECRET_ACCESS_KEY, and
SESSION_TOKEN an encrypted value can be provided in this configuration. See
the Encrypting Password Values section for information on how to encrypt a
string.

Note: The encrypted value must be prefixed with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

Environment Variables
Flogo Enterprise allows you to externalize the configuration of app properties using
environment variables.

Using environment variables with app properties is a two-step process:

Procedure
 1. Create one environment variable per app property.

 2. Set the FLOGO_APP_PROPS_ENV=auto environment variable, which directs it to fetch
the values of the app properties for which you have created environment variables.

TIBCO Flogo® Enterprise User Guide

56 | Deployment and Configuration

Note: App binaries that were generated from a version of Flogo Enterprise older
than 2.4.0 do not support app properties override using environment variables.
For example, if you attempt to run an older app binary from Flogo Enterprise
2.4.0 (which supports the environment variable functionality) and override app
properties in the app using environment variables, the binary runs normally but
the app property override gets ignored.

Exporting App Properties to a File
 You can export the app properties to a JSON file or a .properties file. The exported JSON
file can be used to override app property values. The .properties file can be used to
create a ConfigMap in Kubernetes. When using the exported properties file, the values in
the properties file get validated by the app during runtime. If a property value in the file is
invalid, you get an error saying so and the app proceeds to use the default value for that
property instead.

Exporting the app properties to a JSON file

 Exporting the app properties to a JSON file allows you to override the default app
property values during app runtime. It is useful if you want to test your app by plugging in
different test data with successive test runs of your app. You can set the app properties in
the exported file to a different value during each run of the app. The default app property
values get overridden with the values that you set in the exported file.

To export the app properties to a JSON file, run the following command from the directory
where your app resides:

./<app-binary-name> -export props-json

 The properties get exported to <app-binary-name>-props.json file.

Exporting app properties to a .properties file

You cannot use a .properties file format to override the app properties that were
externalized using environment variables. The .properties file is useful when creating the
ConfigMap in Kubernetes. To export the app properties to a .properties file, run the
following command from the directory where your app resides:

TIBCO Flogo® Enterprise User Guide

57 | Deployment and Configuration

./<app-binary-name> -export props-env

 The properties get exported to <app-binary-name>-env.properties file. The names of the
app properties appear in all uppercase in the exported env.properties file. For example, a
property named Message appears as MESSAGE. A hierarchy such as x.y.z appears as X_Y_Z.

Using a JSON File to Override App Property Values
To override an app prop using a JSON file:

Procedure
 1. In the JSON file, make sure that the app property which you want to override is set

as follows:
"<property>":"<value>"
For example:

{
"IntegerOverrideVal":453,
"StringOverridingValue":"hello",
"BoolValue":true
}

Note: Only for certificates, the format of the property must be:
"<property>":"<encoded_value>"
To get the encoded value of the contents, you can use
https://www.base64encode.org/ or any other base64 encoding tool.

 2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable
as follows:
FLOGO_APP_PROPS_JSON=/<filepath>/<JSON filename>.json ./<binary>

Example: Overriding a Certificate Using a JSON File
You can override a server key and certificate using an app property. You would, typically,
need to override a certificate if the existing certificate has expired or you want to use a
custom certificate. You can directly override the certificate at runtime instead of re-
configuring the app. In such a case:

https://www.base64encode.org/

TIBCO Flogo® Enterprise User Guide

58 | Deployment and Configuration

Procedure
 1. In the JSON file, set the ServerKey and ServerCertificate app properties as

follows:

{

"ServerKey":"LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2Z0l",

"ServerCertificate":"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1J",

}

 2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable
as follows:
FLOGO_APP_PROPS_JSON=/home/john/Downloads/appPropOverride.json
./RestSSLService-linux_amd64

Overriding Security Certificate Values
The use of environment variables to assign new values to your app properties at runtime is
a handy method that you can use to test your app with multiple data sets.

Warning: Using environment variables to override app properties in Lambda
apps is not currently supported.

Follow these steps to set up the environment variables and use them during app runtime.

Step 1: Create environment variables for your app properties

You start by creating one environment variable for each app property that you want to
externalize. To do so, run:

export <app-property-name>="<value>"

For example, if your app property name is username, run export username="abc@xyz.com"
or export USERNAME="abc@xyz.com"

A few things to note about this command:

 l Since special characters (such as `! | < > &@ `) are shell command
directives, if they appear in value, enclosing the value in double-quotes tells the

TIBCO Flogo® Enterprise User Guide

59 | Deployment and Configuration

system to treat such characters as literal values instead of shell command directives.

 l The app-property-name must match the app property exactly or it can use all
uppercase letters. For example, the app property, Message, can either be entered as
Message or MESSAGE, but not as message.

 l If you want to use a hierarchy for your app property, be sure to use underscores (_)
between each level instead of the dot notation. For example, for an app property
named x.y.z, the environment variable name should be either x_y_z or X_Y_Z.

Step 2: Set FLOGO_APP_PROPS_ENV=auto environment variable

To use the environment variables during app runtime, set the FLOGO_APP_PROPS_ENV=auto
environment variable.

To do so, run:

FLOGO_APP_PROPS_ENV=auto ./<app-binary>

For example, FLOGO_APP_PROPS_ENV=auto MESSAGE="This is variable 1."
LOGLEVEL=DEBUG ./Timer-darwin-amd64

Note: When setting variables of type password be sure to encrypt its value for
security reasons. For more information, see Encrypting Password Values.

Setting the FLOGO_APP_PROPS_ENV=auto directs your app to search the list of environment
variables for each app property by matching the environment variable name to the app
property name. When it finds a matching environment variable for a property, the app pulls
the value for the property from the environment variable and runs the app with those
values. Hence, it is mandatory that the app property name exactly matches the
environment variable name for the property.

App properties that were not set as environment variables pick up the default values set
for them in the app. A warning message similar to the following is displayed in the output:
<property_name> could not be resolved. Using default values.

TIBCO Flogo® Enterprise User Guide

60 | Deployment and Configuration

Example: Overriding a Certificate Using an Environment
Variable
You can override a server key and certificate using an app property. You would, typically,
need to override a certificate if the existing certificate has expired or you want to use a
custom certificate. You can directly override the certificate at runtime instead of
reconfiguring the app. In such a case:

 1. Export the base64 encoded values of the content of the file in the terminal itself as
follows:
export ServerCertificate=<base64encodedCertificateFileContent>
export ServerKey=<base64encodedKeyFileContent>

 2. Set the FLOGO_APP_PROPS_ENV=auto environment variable as follows:
FLOGO_APP_PROPS_ENV=auto ./<app-binary>

Encrypting Password Values
 When entering passwords on the command line or in a file, it is always a good idea to
encrypt their values for security reasons. Flogo Enterprise has a utility that you can use to
encrypt passwords.

Before you begin
 You must have the password to be encrypted handy to run the utility.
 To encrypt a password, run the following:

Procedure
 1. Open a command prompt or a terminal.

 2. Navigate to the location of the app binary and run the following command:

./<app_binary> --encryptsecret <value_to_be_encrypted>

 The command outputs the encrypted value, which you can use when setting the
password in a file or setting the password from the command line or using
environment variables. For example, export
PASSWORD="SECRET:t90Ixj+QYCMFbqCEo/UnELlPPhrClMzv".

Note that the password value is enclosed in double-quotes. Since special characters

TIBCO Flogo® Enterprise User Guide

61 | Deployment and Configuration

(such as `! | <, >, &, `) are shell command directives, if such characters appear in the
encrypted string, using double quotes around the encrypted value directs your
system to treat them as literal characters. Also, the encrypted value must be
preceded by SECRET:

Keep in mind that when you run the env command to list the environment variables,
the command does not output the environment variable for the password.

Azure Key Vault Secrets
Azure Key Vault stores and manages secrets, such as passwords and database connection
strings. TIBCO Flogo® Enterprise retrieves values for Flogo app properties from Azure Key
Vault Secrets and overrides them at runtime.

Integrating Azure Key Vault

To integrate with Azure Key Vault, set the following environment variables for your
application:

 l FLOGO_APP_PROPS_AZURE_KEYVAULT: Set to true to enable Azure Key Vault integration.

 l FLOGO_AZURE_KEYVAULT_NAME: Specify the name of your Azure Key Vault.

Authentication Methods

Flogo supports the following authentication methods for accessing Azure Key Vault:

 1. Service Principal with Secret

 2. Managed Identities for Azure Resources

To configure Azure Key Vault credential management, set the following environment
variables at runtime based on your authentication method:

Variable Description

FLOGO_APP_PROPS_AZURE_
KEYVAULT

Set this to true.

For Service Principal with Secret

TIBCO Flogo® Enterprise User Guide

62 | Deployment and Configuration

Variable Description

FLOGO_AZURE_KEYVAULT_NAME Specify the Azure Key Vault name.

AZURE_TENANT_ID The Microsoft Entra tenant (directory) ID.

AZURE_CLIENT_ID The client (application) ID of an App Registration in the
tenant.

AZURE_CLIENT_SECRET The client secret generated for the App Registration.

Variable Description

FLOGO_APP_PROPS_AZURE_KEYVAULT Set this to true.

FLOGO_AZURE_KEYVAULT_NAME Specify the Azure Key Vault name

For Managed Identities for Azure Resources

Note:
 l Flogo always fetches the current version of the Azure Key Vault Secret.

 l The identity used by your application must have at least the Key Vault
Secrets User role to retrieve secrets from Azure Key Vault.

 l If Azure Key Vault is using access policies to manage permissions, then the
identity used by your application must have at least Get Secret
permissions to retrieve secrets from Azure Key Vault.

Setting Azure Key Vault Secrets

To override the app property values, create a key-value pair for each property in Azure Key
Vault Secrets. You can create standalone properties or organize them in a hierarchy.

 l For a standalone property, use the property name as the secret name in Azure Key
Vault. If the property name contains an underscore (_), it is replaced with a dash (-).

For example: If the app property name is Property_1, then the secret lookup is done
with name Property-1 in Azure Key Vault.

 l For hierarchical properties, if the property name contains dot (.) or underscore (_),

TIBCO Flogo® Enterprise User Guide

63 | Deployment and Configuration

they are replaced with dash (-).

For example: If the app property name is Group_1.Group_2.Property_1, then the
secret lookup is done with name Group-1-Group-2-Property-1 in Azure Key Vault.

Warning: The secret name in Azure Key Vault must exactly match the property
name in the Flogo Application Properties dialog (after replacing underscores and
dots with dashes as described). If the names do not match or if the secret is
disabled, Flogo displays a warning and uses the default property value.

Container Deployments
 You can run Flogo apps as containerized apps in Docker containers and use Kubernetes to
deploy, manage and scale the apps.

Kubernetes
 You can package a Flogo app binary in a docker image, then push the docker image to a
container registry and run the Flogo apps on a Kubernetes cluster as a pod.

For information on deploying apps in a Kubernetes environment, see Deploying Flogo apps
to a Kubernetes.

Deploying Flogo Apps to Kubernetes
 You can deploy your Flogo apps to a Kubernetes Cluster running locally on bare metal
servers, on VMs in hybrid cloud environments, or on fully managed services provided by
various cloud providers such as Amazon EKS, Azure Container Service, or Google
Kubernetes Engine. Refer to the Kubernetes documentation for more information. To do so,
you must create a docker image locally for your app, then push the image to a container
registry. When you apply the appropriate app deployment configuration to the Kubernetes
cluster, one or more docker containers get created from the docker image that is
encapsulated in one or more Kubernetes pods based on the deployment configuration.

Before you begin
 You must have:

TIBCO Flogo® Enterprise User Guide

64 | Deployment and Configuration

 l The Kubernetes cluster running on your choice of environment

 l Docker 1.18.x or greater installed on your machine

 l kubectl installed on your machine

Procedure
 1. Build a docker image for your app. You can use one of the following ways to build a

docker image:

 l Using the UI:

 a. Build a docker image using the Flogo Enterprise UI. For details, see
Building the App.

 b. Tag the generated docker image from the command line:

docker tag <image-id> <app-name>:<version>

 the app tag must be in the format, <app-name>:<app-version>.

 l From a Linux binary:

 a. Build a Linux binary using the Linux/amd64 option. For details, see
Building the App.

 b. Provide run permission to the app binary: chmod +x <app-binary>

 c. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example,
ADD flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 d. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

 the app tag must be in the format <app-name>:<app-version>

 l From the CLI:

 a. Export your app as a JSON file (for example, flogo-rest.json) by clicking

TIBCO Flogo® Enterprise User Guide

65 | Deployment and Configuration

Export app on the flow details page.

 b. Build a Linux binary for the app from the CLI. Open a command prompt
and change directory to <FLOGO_HOME>/<version>/bin and run:

builder-<platform>_<arch> build -p linux/amd64 -f <path-
to-the-.json-file>

This generates a linux app binary.

 c. Provide run permission to the app binary:

chmod +x <app-binary>

 d. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example,
ADD flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 e. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

 The app tag must be in the format <app-name>:<app-version>

 2. Run the docker image locally to verify that all looks good:

docker run -it -p 9999:9999 <app-tag>

 3. Authenticate docker with the container registry where you want to push the docker
image.

 4. Tag the docker image by running the following command:

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

 the app tag must be in the format, <app-name>:<app-version>

 5. Push the local docker image to the container registry by running the following

TIBCO Flogo® Enterprise User Guide

66 | Deployment and Configuration

command:

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

Note: Refer to the documentation for your container registry for the exact
commands to authenticate docker, tag docker image, and push it to the
registry.

 6. To deploy your app on Kubernetes, run your app by creating a Kubernetes
deployment object. Follow these steps to do so:

 a. Create a YAML file. For example, the YAML file below describes a deployment
that runs the gcr.io/<GCP_PROJECT_ID>/<docker-image-name>:<tag> docker
image on the Google Cloud.

apiVersion: apps/v1 # for versions before 1.9.0 use
apps/v1beta2
 kind: Deployment
 metadata:
 name: flogo-app-deployment
 spec:
 selector:
 matchLabels:
 app: flogo-app
 replicas: 2 # tells deployment to run 2 pods matching the
template
 template:
 metadata:
 labels:
 app: flogo-app
 spec:
 containers:
 - name: flogo-app
 image: gcr.io/<GCP_PROJECT_ID>/<docker-image-
name>:<tag>
 ports:
 - containerPort: 9999

 b. Create a Kubernetes deployment by running the following command:

kubectl apply -f deployment.yaml

TIBCO Flogo® Enterprise User Guide

67 | Deployment and Configuration

Using ConfigMaps with a Flogo App
 Flogo apps running in Kubernetes can use ConfigMaps for the app configuration through
environment variables. When you bind the ConfigMap with your pod, all the properties in
the ConfigMap get injected into the pod as environment variables. If your pod has multiple
containers, you can specify the container into which you want to inject the environment
variables in the .yml file of the app. When running the app in Kubernetes, you use the
ConfigMap. You can create a ConfigMap using a .property file that was exported from your
Flogo app.
 To create a ConfigMap when running your app in Kubernetes:

Important: If you update the app properties in Flogo Enterprise, you must
recreate the ConfigMap and repush the app for your changes to take effect in
Kubernetes.

Procedure
 1. Export the Flogo app properties to a .properties file. Refer to the section Exporting

App Properties to a File for details.

 2. Update the generated .properties file as desired.

 3. Create a ConfigMap using the .properties file. Run the following command:

kubectl create configmap <name-of-configmap-file-to-be-created> --from-env-
file=<exported-app-prop-filename>.properties

For example, if your exported file name is Timer-env.properties and you want the
generated ConfigMap to be called flogo-rest-config the command would be
similar to the following:

kubectl create configmap flogo-rest-config --from-env-file=Timer-
env.properties

 4. Update the Kubernetes deployment configuration YAML file for the app to let your
app know that you want to use environment variables. Add the following:

env:
 - name: "FLOGO_APP_PROPS_ENV"

TIBCO Flogo® Enterprise User Guide

68 | Deployment and Configuration

 value: "auto"
 envFrom:
 - configMapRef:
 name: <name-of-the-configmap>

Note: Refer to the Kubernetes documentation for instructions on how to
configure a pod to use ConfigMaps.

 5. Build the docker image for the app binary by running the following command:

docker build -t <CONTAINER_REGISTRY_URI>/<app-tag>

 6. Push the resulting image to the container registry using the following command:

kubectl apply -f <appname>.yaml

Managing Sensitive Information Using Kubernetes
Secrets
 You can resolve the values of the app properties in a Flogo app deployed on Kubernetes
using Kubernetes Secrets. Kubernetes secret object lets you store and manage sensitive
information like passwords or keys. This section explains how a secret can be used with a
Kubernetes pod.

 For more information on Kubernetes secrets, refer to the Kubernetes documentation.

Configuring the Secrets
To use the Kubernetes secrets in a Flogo app, you must set FLOGO_APP_PROPS_K8S_VOLUME
with the volume_path configuration parameter at runtime:

 l The secret key name must match the app property name. For example, if the
property is DB_PASS, the secret key name must be DB_PASS. For example:

echo -n 'flogo123>./DB_PASS.txt

TIBCO Flogo® Enterprise User Guide

69 | Deployment and Configuration

 kubectl create secret generic my-first-secret --from-file=./DB_
PASS.txt'

where DB_PASS.txt contains the password for the database and DB_PASS is set as a
property in the Flogo app.

 l If you want to use a hierarchy for your app property, ensure that you use an
underscore (_) between each level instead of the dot notation in the name of the
secret. For example, for an app property named x.y.z, the name of the secret must be
x_y_z.

Specifying the Path of the Volume Where the Secrets are
Mounted
 To specify the path to the volume where the secrets are mounted, you can specify the
volume_path parameter in a JSON file or as a JSON string.

In a JSON File

 1. Set the volume_path parameter in a .json file. For example, k8s_secrets_
config.json contains:

{
 "volume_path": "/etc/test"
 }

 2. Set the path to the .json file in the FLOGO_APP_PROPS_K8S_VOLUME environment
variable. For example:

FLOGO_APP_PROPS_K8S_VOLUME=k8s_secrets_config.json

As a JSON String

 Set the FLOGO_APP_PROPS_K8S_VOLUME environment variable as a JSON string as follows:

 FLOGO_APP_PROPS_K8S_VOLUME="{\"volume_path\":\"\/etc\/test\"}"

TIBCO Flogo® Enterprise User Guide

70 | Deployment and Configuration

Sample YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

 apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
 labels:
 app: sampleapp
 name: sampleapp
 namespace: default
 spec:
 template:
 metadata:
 labels:
 app: sampleapp
 spec:
 containers:
 -
 env:
 -
 name: FLOGO_APP_PROPS_K8S_VOLUME
 value: "{\"volume_path\": \"/etc/test\"}"
 -
 name: FLOGO_APP_PROPS_ENV
 value: auto
 envFrom:
 -
 configMapRef:
 - name: first-configmap
 image: "gcr.io/<project_name>/sampleapp:latest"
 imagePullPolicy: Always
 - name: sampleapp
 volumeMounts:
 -
 mountPath: /etc/test
 name: test
 readOnly: true
 volumes:
 -
 name: test

TIBCO Flogo® Enterprise User Guide

71 | Deployment and Configuration

 secret:
 secretName: my-first-secret

Amazon Elastic Container Service (ECS) and Fargate
 You can package a Flogo app binary in a docker image, push the docker image to Amazon
ECR, then run, manage, and scale the Flogo app in Docker containers using Amazon ECS
and AWS Fargate.

Deploying a Flogo App to Amazon ECS and Fargate

Procedure
 1. Build a Flogo app as a docker image.

 2. Push the Flogo docker image to Amazon Elastic Container Registry (ECR) as follows:

 a. Authenticate Docker to the ECR Registry using the following command. For
more information, refer to the AWS documentation for Registry Authentication.

aws ecr get-login

 b. Tag the Flogo app Docker image with the ECR registry, repository, and optional
image tag name combination:

docker tag <flogo_app_docker_image> <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

 c. Push the tagged Docker image to the ECR registry:

docker push <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

 3. Create a cluster in which to run your apps. For more information on how to create
an Amazon ECS Cluster, refer to the AWS documentation for Creating Cluster.

 4. Create a task definition. The task definition defines what docker image to run and
how to run it. For more information on how to create a task definition, refer to the

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html

TIBCO Flogo® Enterprise User Guide

72 | Deployment and Configuration

AWS documentation available for Creating Task Definition.

 5. Run the app in containers. After creating the task definition, you can open the app
containers either by manually running tasks or by creating a service using the
Amazon ECS Service Scheduler. For more information on how to create a service,
refer to the AWS documentation available at Creating Service.

Pivotal Cloud Foundry
You can deploy a Flogo app binary to the Pivotal Application Service (PAS) of Pivotal Cloud
Foundry (PCF) using the Binary Buildpack. For more information, see the section Deploying
a Flogo App to Pivotal Application Service.

Deploying a Flogo App to Pivotal Application Service
After installing the Cloud Foundry Command Line Interface (cf CLI), you can push a Flogo
app to the Pivotal Application Service. For more information on Pivotal Cloud Foundry,
Pivotal Application Service, and its CLI, refer to the Pivotal Cloud Foundry documentation.

Before you begin
 l Run the following command to ensure that the Cloud Foundry command-line client

is installed successfully:

 $ cf version

 This command returns information about the currently installed version of the Cloud
Foundry command-line client. For example:

cf version 6.42.0+0cba12168.2019-01-10

 l Run the following command to authenticate yourself in the Pivotal Cloud Foundry:

$ cf login

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service.html

TIBCO Flogo® Enterprise User Guide

73 | Deployment and Configuration

Building a Linux Binary

From the UI

To build a Linux binary from the UI:

Procedure
 1. From the UI, build a Linux binary using the Linux/amd64 option. See the Building the

App section for details.

 2. Provide run permission to the app binary: chmod +x <app-binary>

 3. Follow the steps in the appropriate section below.

From the CLI

To build a Linux binary from the CLI:

Procedure
 1. Export your app as a JSON file (for example, flogo-rest.json) by clicking Export

app on the flow details page.

 2. Build a Linux binary for the app from the CLI. Open a command prompt and change
the directory to <FLOGO_HOME>/<version>/bin and run:

builder-<platform>_<arch> build -p linux/amd64 -f <path-to-
the-.json-file>

This generates a Linux app binary.

 3. Provide run permission to the app binary: chmod +x <app-binary>

 4. Follow the steps in the appropriate section below.

Without Using a manifest.yml File

Procedure
 1. Create a temporary folder.

TIBCO Flogo® Enterprise User Guide

74 | Deployment and Configuration

 2. Copy the linux/amd64 binary of the app, which you had created in Building a Linux
Binary and save it to the temporary folder created in step 1.

Note:
 l Ensure that you do not save the binary to a path that already

contains other files and directories.

 l In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

 3. In a command window, navigate to the path where you saved the binary and run the
following command:

 $ cf push <NAME_IN_PCF> -c './<APP_BINARY_NAME>' -b binary_
buildpack -u none

 For example:

 cf push test1 -c ./Timer-linux_amd64 -b binary_buildpack -u none

For the -u argument, depending on the health check, provide value as none, port,
http, or process. For example, if the app is a REST API exposing an HTTP endpoint,
use port after -u.

Note: In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

 4. After successfully deploying the app to the Pivotal Application Service, you can
check the log of the app using the following command:

$ cf logs <APP_NAME_IN_PCF> --recent

Using a manifest.yml File

Procedure
 1. Create a temporary folder.

 2. Copy the linux/amd64 binary of the app, which you had created in Building a Linux

TIBCO Flogo® Enterprise User Guide

75 | Deployment and Configuration

Binary and save it to the temporary folder created in step 1.

Note: In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

You have two options:

 l If you do not mention Path in the manifest.yml file, you must have both
manifest.yml and the app binary in the same directory.

 l If you have the manifest.yaml file and the app binary in different directories,
you must mention the following in the manifest.yml file:

path: <app binary path>

 3. Create a manifest file in YAML. The following manifest file illustrates some YAML
conventions:

this manifest deploys REST APP to Pivotal Cloud Foundry

 applications:
 - name: REST_APP
 memory: 100M
 instances: 1
 buildpack: binary_buildpack
 command: ./REST-linux_amd64
 disk_quota: 100M
 health-check-type: port

Note: REST-linux_amd64 indicates the name of app binary.

 4. Save the manifest.yml file and run the following command in the same directory:

$ cf push

Result
 The Flogo app is successfully pushed to the Pivotal Cloud Foundry.

TIBCO Flogo® Enterprise User Guide

76 | Deployment and Configuration

Using Spring Cloud Configuration to Override App Properties
You can use Spring Cloud Configuration to override the properties of Flogo apps running
on Pivotal Cloud Foundry.
To do so:

 1. Create a Repository and Properties File on Github

 2. Setup Spring Cloud Configuration on Pivotal Cloud Foundry

 3. Use Spring Cloud Configuration Service with Flogo

Create a Repository and Properties File on Github

Procedure
 1. Create a repository on Github.

 2. In the repository created in step 1 above, create properties file with the following file
naming convention:

<APP_NAME>-<PROFILE>.properties

For example, if a Flogo app name is PCFAPP and the profile name is DEV, the
properties file name must be PCFAPP-DEV.properties.

 3. Populate the <APP_NAME>-<PROFILE>.properties file with the key-value pairs for the
overridden app properties.

TIBCO Flogo® Enterprise User Guide

77 | Deployment and Configuration

Note:
 l The name of the property must match the name of the app property.

For example, if the app property is named Message, define the
property in the properties file as:

Message="<value>"

 l If the properties are in a group, define the property as:

<groupname>.<propertyname> = <value>

For example, if a property, username, is under the email group and
its value is xyz@abc.com, define the property in the .properties file
as:

email.username=xyz@abc.com

Setup Spring Cloud Configuration on Pivotal Cloud Foundry
Set up an instance of Config Server for Pivotal Cloud Foundry with the Git repository
created above using Spring Cloud Services on Pivotal Cloud Foundry. Refer to Spring Cloud
Services for PCF documentation for detailed instructions.

Using Spring Cloud Configuration Service with Flogo

Procedure
 1. Bind the service instance of Spring Cloud Config Server to your Flogo app.

 2. Navigate to the setting of the pushed app.

 3. Under User Provided Env Variables, add the following environment variable:

FLOGO_APP_PROPS_SPRING_CLOUD = {"profile":"<PROFILE_NAME>"}

 4. Restage the app and see the logs using the following command:

TIBCO Flogo® Enterprise User Guide

78 | Deployment and Configuration

$ cf logs <APP_NAME_IN_PCF> --recent

Microsoft Azure Container Instances
You can deploy a Flogo app to a Microsoft Azure container instance using a Flogo app
docker image. For more information, refer to the section, Deploying Flogo Apps to
Microsoft Azure Container Instances.

Deploying a Flogo App to a Microsoft Azure Container
Instance

Before you begin
 l Create a Microsoft Azure account.

 l Download and install Microsoft Azure CLI.

 l Create a docker image of the Flogo app that needs to be deployed to the Microsoft
Azure Container Instance.

 l For information on Microsoft Azure commands, refer to the Microsoft Azure
documentation.

Procedure
 1. Create a new resource group using the following command:

az group create -l <location> -n <name-of-group>

 2. If you have not created an Azure Container Registry, create one using the following
command. This Azure Container Registry stores all the images that are pushed to the
registry.

az acr create -n <name-of-registry> -g <name-of-group> --sku
<pricing-tier-plan> --admin-enabled true

TIBCO Flogo® Enterprise User Guide

79 | Deployment and Configuration

Note: You must set --admin-enabled to true.

 3. Log in to Azure Container Registry using the following command:

az acr login -n <name-of-registry>

 4. Tag and push the Flogo app docker image to Azure Container Registry using the
following commands:

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>
 docker push <CONTAINER_REGISTRY_URI>/<app-tag>

 5. Create an Azure Container instance using the following command:

az container create
 -g <name-of-resource-group>
 --name <name-of-container>
 --image <name-of-image>
 --environment-variables <name=value name=value FLOGO_APP_PROPS_
ENV=auto>
 --dns-name-label <dns-name-label-for-container-group>
 --ip-address Public
 --ports <port-to-open>
 --registry-login-server <name-of-container-image-registry-login-
server>
 --registry-username <username>
 --registry-password <password>
 #NOTE: If--environment-variables FLOGO_APP_PROPS_ENV=auto is not
set, the environment variables are not detected at Flogo runtime.
 #NOTE: IP Address must be explicitly set to Public.

For example:

az container create
 -g flogodemo
 --name flogoapp
 --image flogoacr.azurecr.io/acs_flogo:latest
 --environment-variables prop_str=azure FLOGO_APP_PROPS_ENV=auto --
dns-name-label flogoappazure
 --ip-address Public

TIBCO Flogo® Enterprise User Guide

80 | Deployment and Configuration

 --ports 9999
 --registry-login-server flogoacr.azurecr.io
 --registry-username <username>
 --registry-password <password>
#where prop_str is the app property defined in the flogo app which
is being overridden from this command

 6. Get container logs using the following commands:

az container logs --resource-group <name-of-resource-group> --name
<name-of-container>

Deploying a Flogo App to a Microsoft Azure Container
Instance Using a YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

Procedure
 1. Create a YAML file as follows:

--- apiVersion: 2018-10-01
 location: <location>
 name: <name-of-YAML-file>
 properties:
 containers:
 -
 name: fe-app-yaml
 properties:
 environmentVariables:
 -
 name: <name-of-app-property>
 value: <value-of-app-property>
 -
 name: <name-of-app-property>
 value: <value-of-app-property>

TIBCO Flogo® Enterprise User Guide

81 | Deployment and Configuration

 -
 name: <name-of-app-property>
 secureValue: <value-of-app-property>
 #NOTE: secureValue must be used for passwords
 -
 name: FLOGO_APP_PROPS_ENV
 value: auto
 #NOTE: If the environment variable FLOGO_APP_PROPS_ENV is not set
to "auto", the environment variables are not detected at Flogo
runtime.
 image: "<image>"
 ports:
 -
 port: <port-number>
 resources:
 requests:
 cpu: 1
 memoryInGb: <memory>
 imageRegistryCredentials:
 -
 password: <password>
 server: <server>
 username: <username>
 ipAddress: <IP-address>
 ports:
 -
 port: <port-number>
 protocol: <protocol>
 type: Public
 #NOTE: IP Address must be explicitly set to Public.

 osType: <OS>
 tags: ~
 type: <type>

 2. Run the following commands:

az container create --resource-group <name-of-resource-group> --
file <name-of-YAML-file>
 az container show -g <name-of-resource-group> -n <name-of-
container>

 3. After the app is deployed, you can access the app endpoint by accessing the public IP
address of the Azure container instance followed by the resource path.

TIBCO Flogo® Enterprise User Guide

82 | Deployment and Configuration

<IP-address>:<port>/<resource-path>

Google Cloud Run
 You can package a Flogo app binary in a docker image, push the image to Google
Container Registry, then deploy the app to Google Cloud Run.

Note: Only apps with REST and GraphQL triggers work in Google Cloud Run.

Deploying a Flogo App to Google Cloud Run

Before you begin
 l A Google Cloud account.

For more information, see Google Cloud.

 l Setup the Google Cloud command-line tool.

Create or import REST app

Design a new REST app using the UI or import an existing one into the UI.

Build and push a docker image to the container registry
 l From the UI:

 o Create a Docker image of the app.

 o Push the Docker image to Google Container Registry.

For more information, see Push Docker Image.

 l From CLI:

 o Build a Linux/Amd64 binary using the CLI. For more information, see Building
the App from the CLI.

 o Create a Docker file of the app and copy it along with the app binary.

https://cloud.google.com/
https://cloud.google.com/container-registry/docs/pushing-and-pulling

TIBCO Flogo® Enterprise User Guide

83 | Deployment and Configuration

 o From the directory where the binary and docker files are placed, run the
following command:

gcloud builds submit --tag gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:

gcloud builds submit --tag gcr.io/227xxx/flogo-helloworld:1.0

 Deploy app on Cloud Run

You can deploy the app to Cloud Run using the CLI or the Console. This section describes
how to deploy the app using the CLI. For more information on deploying the app using the
Console, refer Cloud Run.

Procedure
 1. Deploy the Flogo app using the following command:

gcloud beta run deploy --image gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:

gcloud beta run deploy --image gcr.io/227xxx/flogo-helloworld:1.0
 Please specify a region:

 [1] us-central1

 [2] cancel

 Please enter your numeric choice: 1

 To make this the default region, run `gcloud config set run/region
us-central1`.

 Service name (helloworld):

 Allow unauthenticated invocations to [helloworld] (y/N)? y
##NOTE: At this prompt, only if you enter Y, you are allowed to

https://cloud.google.com/run/docs/

TIBCO Flogo® Enterprise User Guide

84 | Deployment and Configuration

hit an endpoint without authentication.

 Deploying container to Cloud Run service [helloworld] in project
[227xxx] region [us-central1]

 ✓ Deploying new service... Done.

 ✓ Creating Revision...

 ✓ Routing traffic...

 ✓ Setting IAM Policy...

 Done.

 Service [helloworld] revision [helloworld-695fa56d-97d2-46b9-b037-
2dfada50aca5] has been deployed and is serving traffic at
https://helloworld-pae7vs5yaq-uc.a.run.app

 2. Make a call using the URL returned in the output. For example, you can make a call
to the following URL returned in step 2:

https://helloworld-pae7vs5yaq-uc.a.run.app/greetings/Flogo

Red Hat OpenShift
 You can package a Flogo app binary in a docker image, then push the docker image to a
container registry and run the Flogo apps on Red Hat OpenShift.

TIBCO Flogo® Enterprise User Guide

85 | Deployment and Configuration

Deploying a Flogo App to Red Hat OpenShift

Before you begin
 l Ensure that you have a Red Hat Openshift account and that the Red Hat OpenShift

environment is set up to deploy the app.

 l Ensure that the Red Hat OpenShift CLI is installed on your machine.

 l Ensure that the image of the Flogo app is pushed to the Red Hat Openshift internal
registry or any other public registry such as Docker Hub.

Procedure
 1. Build a docker image for your app. You can build a docker image in one of the

following ways.

 l Using the UI:

 a. Build a docker image.

 b. Tag the generated docker image from the command line: docker tag
<image-id> <app-name>:<version> The app tag must be in the format
<app-name>:<app-version>

 l From a Linux binary:

 a. Build a Linux binary using the Linux/amd64 option. For more information,
see Building the App.

 b. Provide execute permission to the app binary: chmod +x <app-binary>

 c. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
 WORKDIR /app
 ADD <app-binary> <path-to-app-in-docker-container> # for example,
ADD flogo-rest-linux_amd64 /app/flogo-rest
 CMD ["/app/flogo-rest"]

 d. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

 The app tag must be in the format <app-name>:<app-version>

TIBCO Flogo® Enterprise User Guide

86 | Deployment and Configuration

 l From the CLI:

 a. Export your app as a JSON file (for example, flogo-rest.json) by clicking
Export app on the flow details page.

 b. Build a Docker image containing the app using the builder command from
the CLI. Open a command prompt and change directory to <FLOGO_
HOME>/<version>/bin and run:

builder-<platform>_<arch> build -f <path-to-the.json-file>
-docker -n <docker_image_name>:<tag>

 For example:

builder_linux_amd64 build -f flogo-rest.json -docker -n
flogo-rest:v1

For more information on the builder command, refer to the section,
Builder command.

 2. Run the docker image locally to verify that everything is fine:

docker run -it -p 9999:9999 <app-tag>

 3. Authenticate docker with the container registry where you want to push the docker
image.

 4. Tag the docker image. Run:

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

 The app tag must be in the format <app-name>:<app-version>

 5. Push the local docker image to the container registry by running the following
command:

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

TIBCO Flogo® Enterprise User Guide

87 | Deployment and Configuration

Note: Refer to the documentation for your container registry for the exact
commands to authenticate docker, tag docker image, and push it to the
registry.

 6. Login to Openshift from command line:

oc login --token=<Your token> --server=https://<host
address>:<port>

For example:

oc login --token=<Your token> --server=https://api.ca-central-
1.starter.openshift-online.com:6443

 7. Create a project in Red Hat OpenShift:

oc new-project <PROJECT_NAME>

 8. Deploy the app on Red Hat Openshift using a YAML file. For a sample YAML file, see
Sample YAML File: Red Hat OpenShift.

oc create -f <YAML filename>

 9. To get information about pods, run the following command:

oc get pods

The following is a sample output of the command:

 10. To get the logs of a particular pod, run the following command:

oc logs <pod name>

The following is a sample output of the command:

TIBCO Flogo® Enterprise User Guide

88 | Deployment and Configuration

 11. To access the endpoint of an app, run the following command:

oc get svc -o wide

The following is a sample output of the command:

 12. From the output, note the external IP and port. Access the endpoint using the
following URL:

http:<external IP>:<port>/<resource_context_path>

Sample YAML File: Red Hat OpenShift

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

The following is a sample YAML file for a REST app:

apiVersion: v1
 kind: Service
 metadata:

TIBCO Flogo® Enterprise User Guide

89 | Deployment and Configuration

 name: flogo-rest
 labels:
 app: flogo-rest
 spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 9999
 name: app
 selector:
 app: flogo-rest

 apiVersion: extensions/v1beta1
 kind: Deployment
 metadata:
 name: flogo-rest
 spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: flogo-rest
 spec:
 containers:
 - name: flogo-rest
 image: <DOCKER_REPOSITORY_NAME>/<APP_IMAGE_NAME>
 ports:
 - containerPort: 9999

Serverless Deployments

Developing for Lambda
 AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS).
Lambda functions automatically run pieces of code in response to specific events while
also managing the resources that the code requires to run. Refer to the AWS
documentation for more details on AWS Lambda.

TIBCO Flogo® Enterprise User Guide

90 | Deployment and Configuration

Creating a Connection with the AWS Connector
 You must create AWS connections before you use the Lambda trigger or Activity in a flow.

Note: AWS Lambda is supported on the Linux platform only.

To create an AWS connection:

Procedure
 1. In Flogo Enterprise, click Connections to open its page.

 2. Click the AWS Connector card.

 3. Enter the connection details. Refer to the section AWS Connection Details for details
on the connection parameters.

 4. Click Save.

Your connection gets created and is available for you to select in the drop-down menu
when adding a Lambda Activity or trigger.

AWS Connection Details
 To establish the connection, you must specify the following configurations in the AWS
Connector dialog.

The AWS Connector dialog contains the following fields:

Field Description

 Name Specify a unique name for the connection that you are creating. This is
displayed in the connection drop-down list for all the activities.

Description A short description of the connection.

Custom Endpoint (Optional) To enable the AWS connection to an AWS or AWS compatible
service running at the URL specified in the Endpoint field, set this field to
True.

This field is not supported in TIBCO Flogo® Connector for Amazon Glacier.

TIBCO Flogo® Enterprise User Guide

91 | Deployment and Configuration

Field Description

Endpoint This field is available only when Custom Endpoint is set to True.

Enter the service endpoint URL in the following format:
<protocol>://<host>:<port>. For example, you can configure a MinIO cloud
storage server endpoint.

Region Region for AWS connection.

Authentication
Type

Select one of the following authentication types as required:

• AWS Credentials: Use this authentication to connect to AWS
resources using access key, secret key, and assumed role.

• Default Credentials: Use this authentication to use a role
configured AWS resource such as EC2, ECS, or EKS without
configuring the AWS credentials. Credentials are loaded using the
AWS default credentials provider chain.

Note: To use Default Credentials as the Authentication Type in
TIBCO Flogo® Connector for Amazon SQS and AWS Lambda, create an
AWS connection using the Authentication Type as AWS Credentials
and override AWS Credentials to Default Credentials at runtime.

Access key ID Access key ID of the AWS account (from the Security Credentials field of
IAM Management Console).

 For more information, see the AWS documentation.

Secret access key Enter the secret access key. This is the access key ID that is associated
with your AWS account.

 For more information, see the AWS documentation.

Session token (Optional) Enter session token if you are using temporary security
credentials. Temporary credentials expire after a specified interval. For
more information, see the AWS documentation.

Use Assume Role This enables you to assume a role from another AWS account. By default,
it is set to False (indicating that you cannot assume a role from another

TIBCO Flogo® Enterprise User Guide

92 | Deployment and Configuration

Field Description

AWS account).

When set to True, provide the following information:

 l Role ARN - Amazon Resource Name of the role to be assumed

 l Role Session Name - Any string used to identify the assumed role
session

 l External ID - A unique identifier that might be required when you
assume a role in another account

 l Expiration Duration - The duration in seconds of the role session.
The value can range from 900 seconds (15 minutes) to the
maximum session duration setting that you specify for the role

For more information, see the AWS documentation.

Creating a Flow with Receive Lambda Invocation Trigger
The Receive Lambda Invocation trigger allows you to create a Flogo flow to create and
deploy as a Lambda function on AWS.

Refer to the "Receive Lambda Invocation Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger.

To create a flow with the Receive Lambda Invocation trigger:

Procedure
 1. Create an app in Flogo.

 2. Click the app name on the Apps page to open it.

 3. Click Create a Flow.

The Create a Flow dialog box opens.

 4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique.

 5. Optionally, enter a brief description of what the flow does in the Description text box
and click Save.

TIBCO Flogo® Enterprise User Guide

93 | Deployment and Configuration

A flow gets created. Click the flow name to open the flow page.

 6. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

 7. To configure a trigger, enter the JSON schema or JSON sample data for the
operation. This is the schema for the request payload.

 8. Click Continue.

A flow beginning with the ReceiveLambdaInvocation trigger gets created.

 9. Click the ReceiveLambdaInvocation trigger tile and configure its properties. See the
"ReceiveLambdaInvocation" section in the TIBCO Flogo® Enterprise Activities, Triggers,
and Connections Guide for details.

Deploying a Flow as a Lambda Function on AWS
 After you have created the flow, you can deploy it as a Lambda function on AWS.

Before you begin
Note the following points:

 l The flow must be configured with the ReceiveLambdaInvocation trigger.

 l If the execution role name is not provided in the ReceiveLambdaInvocation trigger,
then the Lambda function is created with the default
AWSLambdaBasicExecutionRole role. It has the following Amazon CloudWatch
permissions:

 o Allow: logs:CreateLogGroup

 o Allow: logs:CreateLogStream

 o Allow: logs:PutLogEvents

If a non-existing execution role is provided, then the user whose AWS credentials are
used in the AWS connection should have the following permissions:

 o iam:CreateRole

 o sts:AssumeRole

To deploy a Flogo app as a Lambda function, user role can have access to following
AWSLambda_FullAccess policy which has all the required access.

To deploy a flow as a Lambda function on AWS:

TIBCO Flogo® Enterprise User Guide

94 | Deployment and Configuration

Procedure
 1. Build your Flogo app (<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function. Refer to Building the
App for details on how to build an app.

 2. Add execution permission to the native Linux/amd64 executable file that you built.
Run chmod +x <myApp>-linux_amd64

 3. You can deploy the <myApp>-linux_amd64 in one of two ways:

 l If you are using a Linux environment to design, build, and deploy your apps, you
can directly run the following command:

<LambdaTriggerBinary> --deploy lambda --aws-access-key <secret_key>

For example, myApp-Linux64 --deploy lambda --aws-access-key xxxxxxxxx

Note: Ensure that the aws-access-key is identical to the one
configured in the Flogo UI for the selected AWS Connection. This is
used for validation with the aws-access-key configured as part of the
AWS Connection within the UI and the value provided here does not
overwrite the aws-access-key used while designing the app.

This approach of deploying to AWS Lambda works only on Linux platforms.

 l If you are using a non-Linux environment to design, build, and deploy apps,
then use this approach:

 a. Build your Flogo app (<myApp>) with the Linux/amd64 target.

 b. Rename the Flogo executable file to bootstrap. This is mandatory per new
provided.al2 and provided.al2023 runtimes.

 c. Compress the executable file and rename it to <myFunctionName>.zip.

 d. From the AWS Lambda UI, create a Lambda function with Amazon Linux
2023 runtime.

 e. Create a role or attach an existing role in the Execution role.

 f. Click Create function.

 g. Go to Code source, click Upload from and upload the compressed file.

After successful deployment, the Lambda function is created in the AWS Lambda

TIBCO Flogo® Enterprise User Guide

95 | Deployment and Configuration

console.

 l To override app properties used in a Lambda app during runtime, create a
 .properties or .json file containing the properties and their values to
override, then use the command:

./<Lambda-app-name> --deploy --env-config <app-property-file-
name>.properties

For example:
./MyLambdaApp --deploy --env-config MyLambdaApp-env.properties
where MyLambdaApp is the Lambda app name andMyLambdaApp-
env.properties is the properties file name.
All properties in the .properties or .json file are passed to Lambda as
environment variables.

Deploying a Flow as a Lambda Function on AWS using AWS CLI

Procedure
 1. Build your Flogo App (<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function.

 2. Rename the Flogo executable to bootstrap. This is mandatory as per new
provided.al2 and provided.al2023 runtimes.

 3. Compress the executable file and rename it to myFunction.zip.

 4. Run the AWS CLI:

aws lambda create-function --function-name myFunction \
 --runtime provided.al2023 --handler bootstrap \
 --architectures x86_64 \
 --role arn:aws:iam::111122223333:role/lambda-ex \
 --region us-west-2 \
 --zip-file fileb://myFunction.zip

TIBCO Flogo® Enterprise User Guide

96 | Deployment and Configuration

Creating a Flow with AWS API Gateway Lambda Trigger
The AWS API Gateway Lambda trigger allows you to invoke Lambda functions as REST
APIs. A flow created in an app using the AWS API Gateway trigger is deployed as a Lambda
function.

Refer to the "AWS API Gateway Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger.

To create a flow with the AWS API Gateway Lambda trigger:

Procedure
 1. Create an app in Flogo.

 2. Click the app name on the Apps page to open it.

 3. Click Create a Flow.

The Create a Flow dialog box opens.

 4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique.

 5. Optionally, enter a brief description of what the flow does in the Description text box
and click Next.

A flow gets created. Click the flow name to open the flow page.

 6. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

 7. Provide the method, resource path, and JSON schema for the operation.

 8. Click Continue.

A flow beginning with the AWSAPIGatewayLambda trigger is created.

 9. Click Copy schema or Just add the trigger.

 10. Click the AWSAPIGatewayLambda trigger tile and configure its properties. See the
"AWS API Gateway Lambda Trigger" section in the TIBCO Flogo® Enterprise Activities,
Triggers, and Connections Guide for details.

What to do next
Deploy the flow on AWS. For instructions on how to do so, see Deploying a Flow as a
Lambda Function on AWS.

TIBCO Flogo® Enterprise User Guide

97 | Deployment and Configuration

Creating a Flow with S3 Bucket Event Lambda Trigger
 The S3 Bucket Event Lambda trigger allows you to create a flow using the operations or
events that are performed on an S3 bucket trigger, a Lambda function.

Note: Creating a new event or updating an existing event in the S3 Bucket
Event Lambda trigger and re-pushing the app deletes existing Events on AWS S3.

Refer to the "S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger. To create a flow with
the S3 Bucket Event Lambda trigger:

Procedure
 1. Create an app in Flogo Enterprise.

 2. Click the app name on the apps page to open its page.

 3. Click Create a Flow.

The Create a Flow dialog box opens.

 4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique. An app cannot contain two flows with the
same name.

 5. Optionally, enter a brief description of what the flow does in the Description text box
and click Next.

 6. Click Start with a trigger.

 7. Under Choose a trigger to add, click S3 Bucket Event Lambda Trigger.

TIBCO Flogo® Enterprise User Guide

98 | Deployment and Configuration

 8. Provide the bucket name, event name, and the list of events to be performed. See
the "S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details.

 9. Provide any prefix or suffix object filters.

TIBCO Flogo® Enterprise User Guide

99 | Deployment and Configuration

 10. Click Continue.

A flow beginning with the S3 Bucket Event Lambda trigger is created.

 11. Click Copy schema or Just add the trigger.

 12. Click the S3 Bucket Event Lambda trigger tile and configure its properties. See the
"S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise Activities,
Triggers, and Connections Guide for details.

 13. Create a flow containing the Business logic of the Lambda function that you want to
trigger using the S3 Bucket Event Lambda trigger.

What to do next
Deploy the flow on AWS. For instructions, see Deploying a Flow as a Lambda Function on
AWS.

Deploying a Flogo App to Microsoft Azure Functions
After you have designed a Flogo app or imported an existing one, you can deploy it to
Microsoft Azure Functions as a custom Docker container. You can do this by using the
Microsoft Azure portal or do it by using the CLI.

TIBCO Flogo® Enterprise User Guide

100 | Deployment and Configuration

Before you begin
Make sure you have a Microsoft Azure account with an active subscription and you can log
in to the Azure Portal. For more information on getting a Microsoft Azure account, see
Microsoft Azure.

Creating the Azure Function App in the Azure Portal

Before you begin
Install the following:

 l To push images to the Azure Container registry, install the latest version of Azure
CLI.

 l Install Docker. For the supported versions, see the Readme.

Procedure
 1. Build a Docker image of your Flogo app.

 2. If you are using an Azure container registry, log in to the repository created on the
Azure container registry.

 3. Tag and push the Docker image of the Flogo app to the repository in the Azure
container registry. For example:

docker tag flogo/hello-world:latest myregistry.azurecr.io/flogo-
hello-world:latest

 4. In the Azure portal, create a new Azure Function app. While creating the Azure
Function app, in the Instance details dialog box, select Docker Container as the
Publish mode.

 5. After the Azure Function app is created, go to Settings > Container Settings
(Classic) on the left navigation pane.

 6. On the right pane, select the image Source, enter other details, and click Save.

https://portal.azure.com/
https://azure.microsoft.com/

TIBCO Flogo® Enterprise User Guide

101 | Deployment and Configuration

Tip: If you select Registry Settings > Registry Source as Azure Container
Registry, and you face issues while selecting the Registry, verify the
Repository permissions for the repository created for the Flogo app.
Update the Azure Container Registry and enable Admin user; this enables
the Azure function to access the images in the repositories.

 7. If you are using a trigger port other than 80 or 8080, navigate to Settings >
Configuration and click New application setting. Specify:

 l Name: WEBSITES_PORT

 l Value: <your trigger port>

 8. Click Save. The app is restarted and changes made are reflected in the app.

 9. To copy the URL for your app and check whether it is working, go to the Overview
menu.

Note: Do NOT add the port declared in the trigger settings to the URL. If
the URL does not work, restart the app manually.

 10. For an app with app properties, to override the app properties, add the following to
Configuration > Application settings:

 l All the app properties

 l FLOGO_APP_PROPS_ENV=auto

 11. Save the settings. The app restarts when you save the properties.

Creating the Azure Function App from the Azure CLI

Before you begin
Install the following:

 l Visual Studio Code: For more information, see Visual Studio Code.

 l Azure Functions extension for Visual Studio Code: For more information, see
Visual Studio Code - Azure Functions.

 l Azure Functions Core Tools (version 3.x or higher): For more information, see

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions

TIBCO Flogo® Enterprise User Guide

102 | Deployment and Configuration

Local Azure Functions.

Procedure
 1. Create a new directory (for example, flogo-func-project) and open it.

cd flogo-func-project

 2. Create a new function project using the following command:

func init --worker-runtime custom --docker

The --docker option generates a Dockerfile for the project.

 3. Add a new function from a template using the following command:

func new --name <your-app-name> --template "HTTP trigger"

Here:

--name argument is the unique name of your function

--template argument specifies the template based on which the function is created

Example:

func new --name hello-world --template "HTTP trigger"

 4. Download or build the binary for your HTTP trigger app and copy it into the directory
you created earlier.

For example, copy hello-world.json to the flogo-func-project directory.

 5. If it is not an executable file, make it executable by running the following command:

chmod +x <binary-filename>

 6. Add the following script to your project folder with the name start.sh:

start.sh

#!/usr/bin/env sh
echo "Starting function..."

https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

TIBCO Flogo® Enterprise User Guide

103 | Deployment and Configuration

PORT=${FUNCTIONS_CUSTOMHANDLER_PORT} ./hello-world-linux_amd64

 7. Make it executable by running the following command:

chmod +x start.sh

 8. To update the default app prefix from api to your prefix, edit the function.json file.
For example, you can change the prefix to hello-world.

function.json

{
"bindings":
 [
 {
 "authLevel": "anonymous",
 "type": "httpTrigger",
 "direction": "in",
 "name": "req",
 "methods": ["get", "post"],
 "route": "books/{bookID}"
 },
 {
 "type": "http",
 "direction": "out",
 "name": "res"
 }
]
}

 9. To add customHeaders in the extensions, edit the host.json file:

host.json

Caution: Code snippets in the PDF could have undesired line breaks due
to space constraints and should be verified before directly copying and
running it in your program.

TIBCO Flogo® Enterprise User Guide

104 | Deployment and Configuration

{
 "version": "2.0",
 "logging":
 {
 "applicationInsights":
 {
 "samplingSettings":
 {
 "isEnabled": true,
 "excludedTypes": "Request"
 }
 }
 },

 "extensionBundle":
 {
 "id": "Microsoft.Azure.Functions.ExtensionBundle",
 "version": "[2.*, 3.0.0)"
 },

 "customHandler":
 {
 "description":
 {
 "defaultExecutablePath": "start.sh",
 "workingDirectory": "",
 "arguments": []
 },
 "enableForwardingHttpRequest": true
 },

 "extensions":
 {
 "http":
 {
 "routePrefix": ""
 }
 }
}

 10. To change the path, edit the Dockerfile:

Dockerfile

TIBCO Flogo® Enterprise User Guide

105 | Deployment and Configuration

FROM mcr.microsoft.com/azure-functions/dotnet:3.0-appservice
ENV AzureWebJobsScriptRoot=/home/site/wwwroot \
AzureFunctionsJobHost__Logging__Console__IsEnabled=true
COPY . /home/site/wwwroot

Your folder structure should now look similar to the following:

.
├── Dockerfile
├── hello-world-app
│ └── function.json
├── hello-world-rest-trigger-linux_amd64
├── host.json
├── local.settings.json
└── start.sh

 11. Test your app locally by running the following command:

func start

The output returns an URL for the app.

 12. Test whether the app works by navigating to the URL provided in the output. For
example:

http://localhost:7071/hello-world

 13. Publish your app to Microsoft Azure. For more information, see Publish the project to
Azure.

Deploying a Flogo App in Knative
 You can create and deploy a Flogoapp as a Knative service. For information on Knative,
see the Knative documentation.

A Flogoapp running inside a Docker container is called by a Knative service. For the app to
be called by the Knative service, the app must be exposed over an HTTP port. In this
section, a REST Trigger is used to expose the app over an HTTP port.

https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure
https://knative.dev/docs/

TIBCO Flogo® Enterprise User Guide

106 | Deployment and Configuration

Before you begin
Make sure you meet the following requirements:

 l Install the following components by using the instructions from Getting Started with
Knative:

 o Kind (Kubernetes in Docker)

 o Kubernetes CLI (kubectl)

 o Knative CLI (kn)

 o Knative "Quickstart" environment

 l Create a Knative service and make sure you can ping the service endpoint. For
details, see Deploying your first Knative Service and Ping your Knative Service.

Note: This section uses a Knative on Kind setup to explain the procedure.
However, you can also set it up on minikube and Docker Desktop. For more
information, see Setup Knative on Minikubeand Setup Knative on Docker
Desktop.

Procedure
 1. Configure a sample Flogo app with a REST Trigger exposed with a port. You can use

the default REST Trigger port, 9999.

Important:
 l Only apps with HTTP endpoints can be deployed as a Knative

service. Hence, a REST Trigger is used in this procedure.

 l An app with multiple endpoints on different ports cannot be
deployed as a Knative service.

https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/first-service/
https://knative.dev/docs/getting-started/first-service/#ping-your-knative-service
https://github.com/csantanapr/knative-minikube
https://github.com/csantanapr/knative-docker-desktop
https://github.com/csantanapr/knative-docker-desktop

TIBCO Flogo® Enterprise User Guide

107 | Deployment and Configuration

 2. Build the Flogo app for Linux/amd64 platform and save the binary file locally. For
more information on building the app binary, see Building the App.

 3. Give executable permissions to the app binary:

chmod a+x <app_executable>

 4. Build a Docker image for the Flogo app and tag it:

docker build --file Dockerfile -t dev.local/flogoknative:1.0.0 .

 5.
Note: Make sure you tag the image in the following format:
dev.local/<image name>:<tag>
Instead of the latest tag, use a tag such as 1.0.0.

Here is the sample Dockerfile used in the above command:

FROM alpine:3.8
RUN apk add --no-cache ca-certificates
WORKDIR /app
ADD <app_executable> /app/flogoapp
RUN chmod a+x /app/flogoapp
ENTRYPOINT ["/app/flogoapp"]

The Docker image is built:

TIBCO Flogo® Enterprise User Guide

108 | Deployment and Configuration

 6. Confirm that the Docker image is built successfully:

docker images | grep knative

The details of the flogoknative image are displayed:

 7. To test the Docker image:

docker run -it -p 9999:9999 dev.local/flogoknative:1.0.0

The Flogo runtime logs should be displayed as follows:

 8. Load the Docker image into the default knative cluster:

TIBCO Flogo® Enterprise User Guide

109 | Deployment and Configuration

kind load docker-image dev.local/flogoknative:1.0.0 --name knative

The Flogo Docker image is loaded inside the knative cluster and is used by Knative
to create the service.

 9. Create the Knative service:

kn service create helloflogo --image dev.local/flogoknative:1.0.0 -
-port 9999 --revision-name=<any revision name>

Note: The port should be the same as what the Flogo is listening to. In this
case, 9999.

A service is created and an URL is generated. You should see messages similar to the
following:

The networking layer, routes, ingress, and load balancer are configured for the
Knative service.

To see a list of services, execute the following command:

kn service list

NOTE: If you notice errors during any of these steps, the service is not created
successfully. For troubleshooting tips, see Troubleshooting Tips.

 10. Append the REST Trigger endpoint path (specified in step 1) to the generated service
URL and hit the endpoint using a browser or curl. For curl, the format of the
command is curl <URL returned in previous step>/hello/knative.
You should see the Flogo return message as the response:

TIBCO Flogo® Enterprise User Guide

110 | Deployment and Configuration

Troubleshooting Tips

Error Message Probable Solution

Errors while creating a kn service:

 l configuration does not have any
ready revision

 l RevisionMissing

Check whether executable permissions
are given to the Flogo app before building
the Docker image.

Error while creating a kn service:

IngressNotConfigured/reconciled

Delete your Knative cluster and recreate it
using the following command:

kind delete cluster --name knative

After deleting the cluster, to reinstall it,
follow the steps mentioned in Getting
Started with Knative.

Error after creating the kn service and running
the kn service list command:

RevisionMissing

Make sure you tag the image in the
following format:

 dev.local/<image name>:<tag>

Instead of the latest tag, use a tag such
as 1.0.0.

After you tag the image, load it in kind
and then create the service again.

https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/

TIBCO Flogo® Enterprise User Guide

111 | Deployment and Configuration

Monitoring
 This section contains information about how to monitor your apps.

About the TIBCO Flogo Enterprise Monitoring App
 Using the Flogo Enterprise Monitoring app, you can monitor Flogo Enterprise apps that are
running in your environment. The Flogo Enterprise Monitoring app collects metrics of flows
and triggers from all running apps that are registered with it. In the UI of the app, you can
visualize the metrics.

The Flogo Enterprise Monitoring app can also be used with TIBCO Flogo® Flow State
Manager to collect information about the state of all run flows of a Flogo app. For more
information on how to use the Flogo Enterprise Monitoring app with TIBCO Flogo® Flow
State Manager, see About TIBCO Flogo® Flow State Manager .

How to Set Up and run the Flogo Enterprise Monitoring App

The Flogo Enterprise Monitoring app is available as a ZIP file. It can run as a standalone
app or in a container, such as Docker or Kubernetes. However, you must run the Flogo
Enterprise Monitoring app on the same container platform where the Flogo Enterprise apps
are running.

How Registration Works in the Flogo Enterprise Monitoring App

Flogo Enterprise apps must be registered with the Flogo Enterprise Monitoring app to be
able to view its app metrics. After an app is registered, the Flogo Enterprise Monitoring app
can monitor and fetch the instrumentation statistics for the app.

The Flogo Enterprise Monitoring app stores the app registration details in a data store.
Currently, the only data store supported is of the type File. The app registration details
include app name, app host, app instrumentation port, app version, runtime version under
which the app is running, and app tags. App tags are custom tags that help you provide
additional information about the app. You can set them specific to an app.

TIBCO Flogo® Enterprise User Guide

112 | Deployment and Configuration

Note:

 l A Flogo app can have one or more instances and they can be registered
with the Flogo Enterprise Monitoring app.

 l Each app instance is identified as unique based on the app name and app
version.

API Key for Additional Security

 For additional security, the Flogo Enterprise Monitoring app can also be started using a
secret key called the API key. The API key must be provided while starting the Flogo
Enterprise Monitoring app and the same API key must also be provided while starting the
Flogo app. The Flogo app registers with the Flogo Enterprise Monitoring app using the API
key provided. If an API key is not provided, the Flogo app is not registered with the Flogo
Enterprise Monitoring app.

Using the Flogo Enterprise Monitoring App
 Using the Flogo Enterprise Monitoring app to monitor Flogo apps involves the following
steps:

Procedure
 1. Run the Flogo Enterprise Monitoring app. You can run the app in one of two ways:

 l Run the app as a standalone app. SeeRunning the Flogo Enterprise Monitoring
App.

 l Run the app in Docker. SeeRunning the Flogo Enterprise Monitoring App on
Docker.

 2. Register the Flogo app to be monitored using the Flogo Enterprise Monitoring app.
SeeRegistering an App with the Flogo Enterprise Monitoring App.

 3. Access the UI of the Flogo Enterprise Monitoring app by using a browser and view the
statistics of the Flogo apps. SeeViewing Statistics of Apps.

TIBCO Flogo® Enterprise User Guide

113 | Deployment and Configuration

Running Flogo Enterprise Monitoring as a Standalone
App
You can run the Flogo Enterprise Monitoring app as a standalone app or in a container
such as Docker or Kubernetes. This section explains how to run the Flogo Enterprise
Monitoring app as a standalone app.

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO
Flogo® Enterprise Monitoring App" section of TIBCO Flogo® Enterprise Installation.

Procedure
 1. Navigate to the flogomon/bin folder.

 2. Run startup.sh (on macOS or Linux) or startup.bat (on Windows).

Result
The web server for the Flogo Enterprise Monitoring app is started.

What to do next
Register the Flogo app to be monitored with the Flogo Enterprise Monitoring app. See
Registering a Flogo App with the Flogo Enterprise Monitoring App.

Running the TIBCO Flogo Enterprise Monitoring App On
Docker
You can run the Flogo Enterprise Monitoring app as a standalone app or in a container
such as Docker or Kubernetes. This section explains how to run the Flogo Enterprise
Monitoring app on Docker.

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO
Flogo® Enterprise Monitoring App" section of the TIBCO Flogo® Enterprise Installation.

Procedure

TIBCO Flogo® Enterprise User Guide

114 | Deployment and Configuration

 1. Navigate to the flogomon folder.

 2. Build the Docker image by running the Dockerfile command or Dockerfile_alpine
command as follows:

 docker build -t flogomon -f Dockerfile .

docker build -t flogomon -f Dockerfile_alpine .

 3. To get a list of the most recently created Docker images, run:

docker images

 4. Run the Flogo Enterprise Monitoring app using the following commands. For a list of
configuration properties that can be used while running these commands, refer to
Configuring the Flogo Enterprise Monitoring App.

 l With persistent volumes and API key:

docker run -e FLOGO_MON_DATA_DIR=<path where applist.json file
must be stored> -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>
-v <path to persistent volumes>:/opt/flogomon/data -e FLOGO_
MON_API_KEY=<secret API key> -it -p 7337:7337 <name of Docker
image of Flogo Enterprise Monitoring application>

Here, -p specifies the port on which the Flogo Enterprise Monitoring app must
be started. The default port is 7337 and it can be configured using the FLOGO_
MON_SERVER_PORT property.

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only
if you want to use TIBCO Flogo® Flow State Manager.

 For example:

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://localhost:9091 -v
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337
flogomon:latest

TIBCO Flogo® Enterprise User Guide

115 | Deployment and Configuration

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -v
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337
flogomon:latest

 l Without persistent volumes and API key:

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> -it -
p 7337:7337 <name of Docker image of Flogo Enterprise
Monitoring application>

Here, -p specifies the port on which the Flogo Enterprise Monitoring app must
be started. The default port is 7337 and it can be configured using the FLOGO_
MON_SERVER_PORT property.

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only
if you want to use the TIBCO Flogo® Flow State Manager.

For example:

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091 -it
-p 7337:7337 flogomon:latest

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -
it -p 7337:7337 flogomon:latest

Result
The web server for the Flogo Enterprise Monitoring app is started.

What to do next
Register the app to be monitored with the Flogo Enterprise Monitoring app. See Registering
an App with the Flogo Enterprise Monitoring App.

TIBCO Flogo® Enterprise User Guide

116 | Deployment and Configuration

Running the Flogo Enterprise Monitoring Application On
Kubernetes
You can run the Flogo Enterprise Monitoring app as a standalone app or as a container on
Kubernetes. This section explains how to run the Flogo Enterprise Monitoring app on
Kubernetes.

When the Flogo Enterprise Monitoring app is started on Kubernetes, it monitors Flogo apps
added to a Kubernetes cluster. If a Flogo app is found, the app is registered with the Flogo
Enterprise Monitoring app. The YAML file of the app must include some configuration
details required for registering the app with the Flogo Enterprise Monitoring app. For
details, refer to Configurations in the Flogo App's YAML File. After a Flogo app is registered,
the Flogo Enterprise Monitoring app is available in the App List on the Summary page.

Before you begin
 The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO
Flogo® Enterprise Monitoring App" section of the TIBCO Flogo® Enterprise Installation.

An overview of the procedure is given below:

Procedure
 1. Grant Access Using ClusterRole.

 2. Configure the ServiceAccount.

 3. Link the ServiceAccount to the ClusterRole using ClusterRoleBinding.

 4. Link the Flogo App to the Flogo Enterprise Monitoring Application.

 5. Specify configurations in the Flogo App's YAML File.

Granting Access Using ClusterRole
To monitor pods registered in the Kubernetes cluster, the Flogo Enterprise Monitoring app
requires access to the List, Watch, and Get verbs for all pods across all namespaces. To
grant access, and update the YAML file as shown in the following sample file.

 Sample YAML file showing ClusterRole

Cluster

TIBCO Flogo® Enterprise User Guide

117 | Deployment and Configuration

apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: flogo-mon-cluster-role
 rules:
 - apiGroups: ["*"]
 resources: ["pods"]
 verbs: ["list","get","watch"]

Configuring the Service Account
Configure a service account for a pod as shown in the following sample YAML file.

Sample YAML file showing ServiceAccount

Service

apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: flogo-mon-service-account

Linking the ServiceAccount to the ClusterRole
Link the ServiceAccount to the ClusterRole using ClusterRoleBinding as shown in the
following sample YAML file.

Sample YAML file to add a ClusterRoleBinding

Deployment

kind: ClusterRoleBinding
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name: flogo-mon-service
 subjects:
 - kind: ServiceAccount
 name: flogo-mon-service-account

TIBCO Flogo® Enterprise User Guide

118 | Deployment and Configuration

 namespace: default
 roleRef:
 kind: ClusterRole
 name: flogo-mon-cluster-role
 apiGroup: rbac.authorization.k8s.io

Linking the Flogo App to the Flogo Enterprise Monitoring
Application

 1. Link the Flogo Monitoring Deployment to the service account created in the previous
steps. See the sample deployment YAML.

 2. In the Flogo Monitoring Deployment YAML, provide the FLOGO_APP_SELECTOR label
with a value as a key-value pair. For example, appType=flogo.

Note: All Flogo apps which are required to be linked with the Flogo
Enterprise Monitoring app must specify this label.

Sample YAML file for Deployment

Deployment

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: flogo-mon-service
 spec:
 selector:
 matchLabels:
 app: flogo-mon-service
 replicas: 1
 template:
 metadata:
 labels:

TIBCO Flogo® Enterprise User Guide

119 | Deployment and Configuration

 app: flogo-mon-service
 spec:
 containers:
 - name: flogo-mon-service
 image: flogomon:v1
 imagePullPolicy: Never
 env:
 - name: "FLOGO_APP_SELECTOR"
 value: "appType=flogo"
 ports:
 - containerPort: 7337
 serviceAccountName: flogo-mon-service-account

Configurations in the Flogo App’s YAML File
To register an app with the Flogo Enterprise Monitoring app, provide the following
configuration details in the app's YAML file.

 l Labels: The deployment must have a label with the same value provided in the
FLOGO_APP_SELECTOR environment variable. For example, if FLOGO_APP_SELECTOR has
the value as appType=flogo, the Flogo app must have a label with the key as appType
and Name as flogo. The Flogo Enterprise Monitoring app attempts to register the
app with this label only. If the label is not provided, the app is ignored.

 l Annotations: The following annotations are mandatory:

 o app.tibco.com/metrics: Setting this annotation to true registers the app with
the Flogo Enterprise Monitoring app and enables the metrics collection on the
app. Setting the annotation to false deregisters it from the Flogo Enterprise
Monitoring app and turns off the metrics collection.

 o app.tibco.com/metrics-port: Provide the HTTP port for the app. This port
must be the same as the one specified by the FLOGO_HTTP_SERVICE_PORT
environment variable. If an invalid value is set, the app is ignored.

TIBCO Flogo® Enterprise User Guide

120 | Deployment and Configuration

Sample YAML File

App

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

apiVersion: v1
 kind: Service
 metadata:
 name: flogoapp
 labels:
 app: flogoapp
 spec:
 type: LoadBalancer
 ports:
 - port: 9999
 protocol: TCP
 name: appport
 targetPort: 9999
 selector:
 app: flogoapp

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: flogoapp
 spec:
 selector:
 matchLabels:
 app: flogoapp
 replicas: 2
 template:
 metadata:
 labels:
 app: flogoapp
 appType: flogo
 annotations:
 app.tibco.com/metrics: 'true'
 app.tibco.com/metrics-port: '7777'
 spec:
 containers:
 - name: flogoapp

TIBCO Flogo® Enterprise User Guide

121 | Deployment and Configuration

 image: flogoapp:v1
 imagePullPolicy: Never
 ports:
 - containerPort: 9999
 - containerPort: 7777
 env:
 - name: "FLOGO_HTTP_SERVICE_PORT"
 value: "7777"

Configuring the Flogo Enterprise Monitoring App
The following properties can be set when running the Flogo Enterprise Monitoring app as
described in Running the Flogo Enterprise Monitoring App.

Note: These properties can also be set in the flogomon/config/config.env file.
If you have set the properties while starting the app, the values in the
config.env file are ignored, and the values specified during the startup take
precedence.

Property Description

 FLOGO_MON_DATA_DIR The Flogo Enterprise Monitoring app uses a file-based data
store. This property provides the folder where the
applist.json file must be stored. If you run a Docker app with
persistent volumes, the applist.json is created at the location
specified as persistent volume.

Default value: User Home

 FLOGO_MON_RETRY_
INTERVAL

 The interval (in seconds) after which the Flogo Enterprise
Monitoring app retries to ping all instances of the Flogo app
registered with the Flogo Enterprise Monitoring app. For
example, if an app is down or the network is slow, the Flogo
Enterprise Monitoring app tries to collect monitoring data after
the value specified in this property.

Default value: 30s

TIBCO Flogo® Enterprise User Guide

122 | Deployment and Configuration

Property Description

 FLOGO_MON_RETRY_
COUNT

 Number of times the Flogo Enterprise Monitoring app retries
to ping all the instances before removing the instance from the
datastore.

 For example, if an app is down or the network is slow, the
Flogo Enterprise Monitoring app tries to collect monitoring
data the number of times specified in this property.

Default value: 5

 FLOGO_MON_API_KEY The API Key that is used by the Flogo app to register with the
Flogo Enterprise Monitoring app. The API key must be provided
when starting the Flogo Enterprise Monitoring app and the
same API key must also be provided when starting the app.
The app registers with the Flogo Enterprise Monitoring app
using the API key provided. If an API key is not provided, the
app is not registered with the Flogo Enterprise Monitoring app.

Default value: Blank

 FLOGO_MON_SERVER_
PORT

 The port on which the Flogo Enterprise Monitoring app must
be started.

Default value: 7337

 FLOGO_MON_LOG_LEVEL The log level for the Flogo app.

Default value: INFO

Properties related to TIBCO Flogo® Flow State Manager

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set
the property is:

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example:

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running.

TIBCO Flogo® Enterprise User Guide

123 | Deployment and Configuration

Registering a Flogo App with the Flogo Enterprise
Monitoring App
After a Flogo app is registered with the Flogo Enterprise Monitoring app, the collection of
instrumentation statistics starts automatically. To register a Flogo app with the Flogo
Enterprise Monitoring app, start the app with the following properties:

 l FLOGO_HTTP_SERVICE_PORT=<instrumentation port>: This property specifies the
port required to enable the app instrumentation.

 l FLOGO_APP_MON_SERVICE_CONFIG: This property specifies details of the Flogo
Enterprise Monitoring app to the Flogo app.

FLOGO_APP_MON_SERVICE_CONFIG={\"host\":\"<Host of Flogo Enterprise
Monitoring app>\",\"port\":\"<Port of Flogo Enterprise Monitoring
app>\",\"tags\":[\"<Tag 1>\",\"<Tag 2>\"],\"apiKey\":\"<API Key>\"}

Option Description

 Host Host of the Flogo Enterprise Monitoring app.

Port Port of the Flogo Enterprise Monitoring app.

 Tags
(Optional)

 Custom tags that help you provide additional information about the
Flogo app; you can set them specific to an app. For example, you can
specify whether it is a REST app or whether it is running in Kubernetes,
and so on.

 apiKey
(Optional)

 For additional security, the Flogo Enterprise Monitoring app can also be
started using a secret key called API key. The API key must be provided
while starting the Flogo Enterprise Monitoring app and the same API key
must also be provided while starting the Flogo app. The app registers
with the Flogo Enterprise Monitoring app using the API key provided. If
an API key is not provided, the app is not registered with the Flogo
Enterprise Monitoring app.

TIBCO Flogo® Enterprise User Guide

124 | Deployment and Configuration

Examples
 l If the Flogo Enterprise Monitoring app is running on localhost on port 7337 and the

app instrumentation port is 7777, start the Flogo app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\"}" ./App1

 l If the Flogo Enterprise Monitoring app is running on localhost on port 7337, the app
instrumentation port is 7777, and you want to start the Flogo Enterprise Monitoring
app based on an API Key APIkey1, start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value
specified when starting the Flogo Enterprise Monitoring app>\"}"
./app_linux_amd64

 l If the Flogo Enterprise Monitoring app is running on localhost on port 7337, the app
instrumentation port is 7777, and you want to provide additional tags (named
onpremise and testing), start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"tags\":
[\"onpremise\",\"testing\"]}" ./App1

 l On Microsoft Windows, if the Flogo Enterprise Monitoring app is running on
localhost on port 3000 and the app instrumentation port is 7775, start the app as:

set FLOGO_HTTP_SERVICE_PORT=7775
 set FLOGO_APP_MON_SERVICE_CONFIG=
{"host":"localhost","port":"3000","appHost":"instance1"}
 flogo-windows_amd64.exe

 l On Linux and Mac, if the Flogo Enterprise Monitoring app is running on localhost on
port 7337, the app instrumentation port is 7777, start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value
specified when starting the Flogo Enterprise Monitoring app>\"}"

TIBCO Flogo® Enterprise User Guide

125 | Deployment and Configuration

./app_linux_amd64

What to do next: View the statistics of the app on the UI of the Flogo Enterprise
Monitoring app. See Viewing Statistics of Apps.

About TIBCO Flogo® Flow State Manager
 Using Flogo® Flow State Manager and the TIBCO Flogo® Enterprise Monitoring App, you
can collect information about the state of all executed flows of a Flogo app.

Flogo Flow State Manager acts as an interface between a Flogo app and the TIBCO Flogo®
Enterprise Monitoring application. It collects data from a Flogo app and then persists the
collected data to a supported database (currently, PostgreSQL). When it receives a request
from the TIBCO Flogo® Enterprise Monitoring application, Flogo Flow State Manager
collects data from the database and passes it on to the TIBCO Flogo® Enterprise Monitoring
application for displaying on the UI.

Flogo Flow State Manager is available as a compressed file. For more information about
installing Flogo Flow State Manager, see TIBCO Flogo® Enterprise Installation.

For more information about TIBCO Flogo® Enterprise Monitoring App, see About the TIBCO
Flogo Enterprise Monitoring App.

TIBCO Flogo® Enterprise User Guide

126 | Deployment and Configuration

Using Flogo Flow State Manager

Before you begin
Make sure you meet the following requirements:

 l Install the PostgreSQL database. For more information, see PostgresSQL.

 l Optionally, download and install a PostgreSQL management tool such as PGAdmin.
For more information, see PGAdmin.

Using Flogo Flow State Manager involves the following steps:

Procedure
 1. Configure the PostgreSQL database as described in Using Flogo Flow State Manager.

 2. Run Flogo Flow State Manager. You can run the app in one of two ways:

 l Run the app as a standalone app. See Running Flogo Flow State Manager as a
Standalone App.

 l Run the app in Docker. See Running Flogo Flow State Manager on Docker.

 3. Start the Flogo Enterprise Monitoring app by specifying the host and port of the
Flogo Flow State Manager. See Starting Flogo Enterprise Monitoring with Details of
Flogo Flow State Manager.

 4. Start the Flogo app binary. Information about the state of all executed flows of a
Flogo app is displayed on the Executions Page.

Configuring the PostgreSQL Database
All execution data from the Flogo app is stored in the PostgreSQL database. Set up the
PostgreSQL database for accepting data from the Flogo app as follows:

Procedure
 1. Start the PostgreSQL service as docker container. For example:

docker run -d --name my_postgres -v my_dbdata1:/var/lib/postgresql/data -
p 54320:5432 -e POSTGRES_PASSWORD=<password> -e POSTGRES_USER=<user>
postgres

 2. Start the PGAdmin portal as a Docker container:

https://www.postgresql.org/
https://www.pgadmin.org/

TIBCO Flogo® Enterprise User Guide

127 | Deployment and Configuration

docker run -p 9990:80 -e PGADMIN_DEFAULT_EMAIL=<email address> -e
PGADMIN_DEFAULT_PASSWORD=<pgadmin_password> -d dpage/pgadmin4

 3. Configure the PostgreSQL server in the PGAdmin admin portal with the following
details. Note that you must use the same parameter values while configuring
config.json for Flogo Flow State Manager.

 l Host: IP of the local machine

 l PORT: 54320 (same host and port used while starting PostgreSQL service as
docker container)

 l User: <user> (configured while starting PostgreSQL server)

 l Password: <password> (configured while starting PostgreSQL server)

 l Maintenance database: same as <user> (if not specifically mentioned while
starting PostgreSQL server)

 4. Create the steps table by using <flogo_flow_state_
manager.tar>\config\postgres\steps.sql.

Note: If you are running the steps.sql script in a terminal, convert the
script content to a single continuous line.

 5. Create the flowstate table by using <flogo_flow_state_
manager.tar>\config\postgres\flowstate.sql.

Note: If you are running the flowstate.sql script in a terminal, convert
the script content to a single continuous line.

Running Flogo Flow State Manager as a Standalone App

Procedure
 1. Start Flogo Flow State Manager by executing the binary for your operating system:

 l flowstatemanager-windows_amd64 (Windows executable)

 l flowstatemanager-linux_amd64 (Linux executable)

 l flowstatemanager-darwin_amd64 (Mac executable)

TIBCO Flogo® Enterprise User Guide

128 | Deployment and Configuration

 2. Copy the <flogo_flow_state_manager.tar>\config\postgres\config.json into the
bin directory. If the config.json file exists in any other directory, you can also set
the FLOW_STATE_CONFIG environment variable to point to the location as follows:

FLOW_STATE_CONFIG=<file path>

 3. Update the values in config.json as follows:

Caution: Code snippets in the PDF could have undesired line breaks due
to space constraints and should be verified before directly copying and
running it in your program.

{

"exposeRecorder": true,

"port": "<The port on which you want to start the flow state manager
binary>",

"persistence": {

"type":"postgres",

"name": "pg-server-1",

"description": "",

"host": "<The IP address where Postgres is running>",

"port": "<port on which the Postgres database server is running>",

"databaseName": "postgres",

"user": "<user value configured while starting PostgreSQL server)>",

"password": "<password value configured while starting PostgreSQL server>",

"Maintenance database": <same as <user>, if not specifically
mentioned while starting postgreSQL>

"maxopenconnection": "0",

"maxidleconnection": "2",

"connmaxlifetime": "0",

"maxconnectattempts": "3",

"connectionretrydelay": "5",

"tlsparam": "VerifyCA",

"cacert": "",

TIBCO Flogo® Enterprise User Guide

129 | Deployment and Configuration

"clientcert": "",

"clientkey": ""

}

}

Running Flogo Flow State Manager on Docker
To run the Flogo Flow State Manager in a Docker container:

Procedure
 1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per

your Postgres installation.

Important: Postgres is not accessible over 'localhost' when Flogo Flow
State Manager is running on Docker. You must use the machine's IP
address.

 2. Go to the root folder (packaging) and run:

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile
.

 3. Start the Flogo Flow State Manager service by mounting a volume for config.json:

docker run -p 8099:8099 -v <parent
absolutepath>/flowstatemanager/packaging/config/postgres/config.jso
n:/opt/flogo/sm/config.json flogostatemanager:1.0.0

Running Flogo Flow State Manager on Kubernetes

Procedure
 1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per

your Postgres installation.

TIBCO Flogo® Enterprise User Guide

130 | Deployment and Configuration

Important: Postgres is not accessible over 'localhost' when Flogo Flow
State Manager is running on Docker. You must use the machine's IP
address.

 2. Go to the root folder (packaging) and run:

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile
.

 3. Push the Flogo Flow State Manager Docker image to the Docker registry.

 4. Update the <flogo_flow_state_manager.tar>/deployments/k8s/deployment.ymlas
per the required configuration. For example, image name, version, port values, and
so on.

 5. Deploy the Flogo Flow State Manager service in the Kubernetes cluster:

<flogo_flow_state_manager.tar>/deployments/k8s/deploy.sh

This command creates the required configmap and applies the deployment.yml
configuration to define the deployment and service component for Kubernetes.

 6. To undeploy the Flow State Manager service in k8s cluster:

<flogo_flow_state_manager.tar>/deployments/k8s/undeploy.sh

Configuring Flogo Flow State Manager

Property Description

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set
the property is:

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example:

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

TIBCO Flogo® Enterprise User Guide

131 | Deployment and Configuration

Property Description

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running. It
also needs to be set when running the Flogo Enterprise
Monitoring app.

FLOGO_FLOW_STATE_
ASYNC_INVOCATION

Specifies whether the Flogo Flow State Manager must be
invoked asynchronously or not. Enabling the property also
helps to increase the throughput of the app. The format to set
the property is:

FLOGO_FLOW_STATE_ASYNC_INVOCATION=true

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running.

Default value: false

Starting Flogo Enterprise Monitoring with Details of Flogo
Flow State Manager
Start Flogo Enterprise Monitoring with the host and port details of the Flogo Flow State
Manager:

Procedure
Start the TIBCO Flogo® Enterprise Monitoring app. When starting the app, use the
FLOGO_FLOW_SM_ENDPOINT environment variable to specify the host and port of the
Flogo Flow State Manager. For example:

docker run -it -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://<host>:<port> -v ~/temp:/opt/flogomon/data -p
7337:7337 <fe-mon docker image name>

Procedure
Check the console log to verify that a successful connection has been established

TIBCO Flogo® Enterprise User Guide

132 | Deployment and Configuration

with Flogo Flow State Manager.
If you notice a connection error in the log, verify whether the Flogo Flow State
Manager is running and the host/port details are configured correctly.

Starting the App Binary
Start the app binary after Flogo Flow State Manager is up and running.

export FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091
FLOGO_HTTP_SERVICE_PORT=7777
FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"<IP address>\",\"port\":\"<port>\"}"
./app-binary

Result
Information about the state of all executed flows of a Flogo app is displayed on the
Executions Page.

Viewing Statistics by Using Flogo Enterprise
Monitoring app

Before you begin
 l The Flogo Enterprise Monitoring app must be running. See Running the Flogo

Enterprise Monitoring App or Running the Flogo Enterprise Monitoring App on
Docker.

 l The Flogo app to be monitored must be registered with the Flogo Enterprise
Monitoring app. See Registering a Flogo App with the Flogo Enterprise Monitoring
App.

Procedure
 1. In the UI of the Flogo Enterprise Monitoring app, go to the following URL to monitor

the app:
http://<URL of Flogo Enterprise Monitoring app>:<port of Flogo Enterprise

TIBCO Flogo® Enterprise User Guide

133 | Deployment and Configuration

Monitoring app>

 For example:

http://localhost:7337

 The Apps page is displayed as shown below:

 The Apps page shows all the Flogo apps registered with the Flogo Enterprise
Monitoring app. For details, see Apps Page.

 2. Click an app name.

The Metrics page is displayed. The instrumentation statistics are displayed in two
tabs - Flow and Triggers. For details, see Metrics Page.

Apps Page
The Apps page shows all the Flogo apps registered with the Flogo Enterprise Monitoring
app.

Note: The apps list on this page is not refreshed automatically. Click to
refresh the list manually.

TIBCO Flogo® Enterprise User Guide

134 | Deployment and Configuration

For each running app, you can view the following details:

Item Description

Name Name of the app.

Click the name of an app to get more details of the app. For example, in the
above screenshot, you can click HTTPService1 to get more details about the
service. The details of HTTPService1 are displayed on the Metrics page.

Version Version of the app.

Flogo
Version

The version in which the app was created.

Instances Number of instances registered per app.

Tags Tags of the app. These tags help you provide additional information about the
app. For example, you can specify whether it is a REST app or whether it is
running in Kubernetes, and so on.

From the Apps page, you can also:

 l Click the heading in the list to sort the apps. For example, to sort the list by name,
click the heading Name. Click the same heading again to toggle between the
ascending or descending order of listing the apps.

 l The Search control above the list enables you to find apps by name.

Metrics Page
 The Metrics page displays the instrumentation statistics of flows and triggers.

Select an instance ID from the instance ID list in the upper-left corner of the page. The
instrumentation statistics of flows and triggers are displayed on the Triggers tab and Flow
tab.

TIBCO Flogo® Enterprise User Guide

135 | Deployment and Configuration

Triggers Tab

Select a trigger from the list on the left to see its details. You can also search for a trigger
in the list.

The following information is displayed on the right:

Name Description

Total Trigger Executions (count)

Started Total number of trigger instances started

Completed Total number of trigger instances completed

Faulted Total number of trigger instances failed

Handler Execution (count)

Handler Name of the trigger handler

Config Configuration of the trigger handler. For example:

TIBCO Flogo® Enterprise User Guide

136 | Deployment and Configuration

Name Description

method: POST
 path: /arrayfilter

Started Total number of trigger handlers started

Completed Total number of trigger handlers completed

Faulted Total number of trigger handlers failed

Flow Tab

Select a flow from the list on the left to see its details. You can also search for a flow in the
list.

The following information is displayed in the work area on the right:

Name Description

Flow Instances (count)

TIBCO Flogo® Enterprise User Guide

137 | Deployment and Configuration

Name Description

Started Total number of flow instances started

Completed Total number of flow instances completed

Faulted Total number of flow instances failed

Flow Execution Time (in milliseconds)

Note: The Flow Execution Time (ms) for a faulted flow is always displayed as 0, even if
the activities within the flow took time to execute.

Average Average execution time of the flow for
successful executions

Maximum Maximum execution time for the flow

Minimum Minimum execution time for the flow

Activity Execution (count)

Note: If an Activity is rerun, Activity Execution (count) also includes the rerun counts. You
can find out whether an Activity has been rerun through the difference in the trigger and
flow metric counts.

Activity Name Name of Activity

Started Total number of times a given Activity has
started

Completed Total number of times a given Activity has
been completed

Faulted Total number of times a given Activity has
failed

Activity Execution Time (in milliseconds)

TIBCO Flogo® Enterprise User Guide

138 | Deployment and Configuration

Name Description

Activity Name Name of Activity

Average Average execution time of a given Activity for
successful executions

Maximum Maximum execution time for a given Activity

Minimum Minimum execution time for a given Activity

Executions Page
 The Executions page displays information about the state of all run flows of a Flogo app.
Details of a trigger are not captured.

From this page, you can:

 l Persist execution data: Select Persist Execution Data to persist execution data to
the supported database (currently, PostgreSQL).

TIBCO Flogo® Enterprise User Guide

139 | Deployment and Configuration

Note: If Persist execution data is disabled, any new execution data is not
saved to the database. The Rerun flow from this Activity feature is also
disabled for all flow executions.

 l Filter based on app version: You can use the filer to choose the app version for
which the data must be displayed.

 l Filter based on time frame: Use the All drop-down to filter based on time frame.
For example: in the last 1 hour, last week, last 30 days, and so on.

 l Filter based on flow: If you have multiple flows, use the All Flows drop-down to
filter based on flows.

 l Filter based on status: Use the All Statuses drop-down to filter based on the status
of the flow.

 l Refresh data: Use to refresh the data in the table.

 l View execution data: The following data is displayed in a tabular format.

Name Description

Status Status

Flow Name Name of the flow.

Execution ID Instance ID of the flow.

App Instance ID Instance ID of the app.

Duration (ms) Duration for which the flow was running.

Start Time (UTC) Time when the flow was started, based on Coordinated
Universal Time (UTC).

End Time (UTC) Time when the flow ended, based on Coordinated Universal
Time (UTC).

 l View details of a flow: For each flow, you can view its details by clicking View
Details. A list of activities executed is displayed:

TIBCO Flogo® Enterprise User Guide

140 | Deployment and Configuration

 l Rerun the flow from a specific Activity: You can rerun the flow from a specific
Activity. You cannot modify the input data; you can only rerun the Activity.

Note: If you rerun an Activity, the previous execution record for the
Activity is overwritten in the database. Past execution records of the
Activity that was rerun and all subsequent activities in the flow are
deleted.

Important: Exercise caution while re-running a flow attached to the App
Startup Trigger and App Shutdown Trigger. These triggers, typically,
include logic for creating data or cleaning up data. Such flows might
impact the running instances of the app.

To rerun the flow from a specific Activity:

Procedure
 1. On the View Details page, click the expand icon and then click Input & Output

Data.

TIBCO Flogo® Enterprise User Guide

141 | Deployment and Configuration

The input and output for the selected Activity are displayed.

 2. Click Rerun flow from this Activity.

Note:
 o Rerun flow from this Activity disappears for activities that

are a part of subflows. Rerun flow from this Activity also
disappears if Persist Execution Data is disabled.

 o If the version of the app running instance is not same as that
of the selected version, you cannot rerun the activities.

TIBCO Flogo® Enterprise User Guide

142 | Deployment and Configuration

After the rerun of the activity, the rerun is indicated by . The Executions

page is also updated with the latest data. Click to refresh the changes on

the Executions page.

App Metrics
 For REST APIs, the following methods can be used to enable and disable app metrics at
runtime.

Method Description Status Code

POST /app/metrics Enable instrumentation
metrics collection

200 - If successfully enabled

409 - If the metrics collection is
already enabled

DELETE /app/metrics Disable metrics collection 200 - If successfully disabled

404 - If metrics collection is not
enabled

GET /app/metrics/flows Retrieve metrics for all flows 200 - Successfully returned
metrics data

404 - If the metrics collection is
not enabled

 500 - If there is an issue when
returning metrics data

GET
/app/metrics/flow/
<flowname>

Retrieve metrics for a given
flow

200 - Successfully returned
metrics data

400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue

TIBCO Flogo® Enterprise User Guide

143 | Deployment and Configuration

Method Description Status Code

returning metrics data

GET
/app/metrics/flow/
<flowname>/activities

Retrieve metrics for all
activities in a given flow

200 - Successfully returned
metrics data

 400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue
returning the metrics data

Enabling App Metrics
 Set the FLOGO_HTTP_SERVICE_PORT environment variable to point to the port number of
the HTTP service that provides APIs for collecting app metrics. This enables the runtime
HTTP service.

Procedure
 1. Run the following:

FLOGO_HTTP_SERVICE_PORT=<port> ./<app-binary>

 2. Run the curl command for the appropriate REST method. Refer to App Statistics for
details on each method. Some examples are:

curl -X POST http://localhost:7777/app/metrics
 curl -X GET http://localhost:7777/app/metrics/flows
 curl -X DELETE http://localhost:7777/app/metrics

Enabling statistics collection using environment variables
To enable metrics collection through an environment variable:

TIBCO Flogo® Enterprise User Guide

144 | Deployment and Configuration

Procedure
 1. Run the following:

FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_APP_METRICS=true ./<appname>

 2. Run the curl command for the appropriate REST method. Refer to App Statistics for
details on each method. Some examples are:

curl -X GET http://localhost:7777/app/metrics/flows
 curl -X DELETE http://localhost:7777/app/metrics/flows

Example: retrieve specific metrics for an app
The following is an example of how you would run the above steps for a fictitious app
named REST_Echo.

FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_METRICS=true ./REST_Echo-darwin-
amd64

 curl -X GET http://localhost:7777/app/metrics/flows

 {"app_name":"REST_Echo","app_version":"1.0.0","flows":
[{"started":127639,"completed":126784,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks"}]}

 curl -X GET http://localhost:7777/app/metrics/flow/PostBooks/activities
 {"app_name":"REST_Echo","app_version":"1.0.0","tasks":
[{"started":127389,"completed":126908,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks","task_
name":"Return"}]}

Logging App Metrics
You can record app metrics of flows and activities to the console logs. To enable the
logging of app metrics, use the following environment variables:

TIBCO Flogo® Enterprise User Guide

145 | Deployment and Configuration

Environment
Variable Name

Default
Values

Description

 FLOGO_APP_
METRICS_LOG_
EMITTER_
ENABLE

False This property can be set to either True or False:

 l True: App metrics are displayed in the logs with the
values set in FLOGO_APP_METRICS_LOG_EMMITTER_
CONFIG.

 l False: App metrics are not displayed in the logs.

If this variable is not provided, the default values are used.

 FLOGO_APP_
METRICS_LOG_
EMITTER_
CONFIG

Both flow
and
Activity

This property can be set to either flow level or Activity
level. The format for setting the property is:

{"interval":"<interval_in_seconds>","type":
["flow","Activity"]}

where:

 l interval is the time interval (in seconds) after which
the app metrics are displayed in the console.

 l type is the level at which the app metrics are to be
displayed - flow or Activity. Depending on which
level you set, the app metrics are displayed only for
that level.

For example:

{"interval":"1s","type":["flow","Activity"]}

For a list of fields or app metrics returned in the response, refer to Fields returned in the
response.

Fields returned in the response
 The following table describes the fields that can be returned in the response.

TIBCO Flogo® Enterprise User Guide

146 | Deployment and Configuration

Flow

Name Description

app_name Name of the app

app_version Version of the app

flow_name Name of the flow

started Total number of times a given flow is started

completed Total number of times a given flow is completed

failed Total number of times a given flow has failed

avg_exec_time Average execution time of a given flow for successful executions

min_exec_time Minimum execution time for a given flow

max_exec_time Maximum execution time for a given flow

Activity

Name Description

app_name Name of the app

app_version Version of the app

flow_name Name of the flow

Activity_name Name of the Activity

started Total number of times a given Activity is started

completed Total number of times a given Activity is completed

TIBCO Flogo® Enterprise User Guide

147 | Deployment and Configuration

Name Description

failed Total number of times a given Activity has failed

avg_exec_time Average execution time of a given Activity for successful executions

min_exec_time Minimum execution time for a given Activity

max_exec_time Maximum execution time for a given Activity

Prometheus
Flogo apps support integration with Prometheus for app metrics monitoring. Prometheus is
a monitoring tool that helps in analyzing the app metrics for flows and activities.

 Prometheus servers scrape data from the HTTP /metrics endpoint of the apps.

Prometheus integrates with Grafana, which provides better visual analytics.

Flogo apps expose the following flow and Activity metrics to Prometheus. These metrics
are measured in milliseconds:

Labels Description

flogo_flow_execution_count: Total number of times the flow is started, completed, or failed

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

State State of the flow. One of the following states:

 l Started

 l Completed

 l Failed

flogo_flow_execution_duration_msec: Total time (in ms) taken by the flow for successful

TIBCO Flogo® Enterprise User Guide

148 | Deployment and Configuration

Labels Description

completion or failure

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

State State of the flow. One of the following states:

 l Completed

 l Failed

flogo_Activity_execution_count: Total number of times the Activity is started, completed, or
failed

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

State State of the Activity. One of the following
states:

 l Started

 l Completed

 l Failed

flogo_Activity_execution_duration_msec: Total time (in ms) taken by the Activity for
successful completion or failure

ApplicationName Name of app

ApplicationVersion Version of app

TIBCO Flogo® Enterprise User Guide

149 | Deployment and Configuration

Labels Description

FlowName Name of flow

ActivityName Name of Activity

State State of the Activity. One of the following
states:

 l Completed

 l Failed

Note: Deprecated in Flogo Enterprise 2.10.0.

flogo_flow_metrics: Used for flow-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

Started Total number of times flow is started

Completed Total number of times flow is completed

Failed Total number of times flow is failed

Note: Deprecated in Flogo Enterprise 2.10.0.

flogo_Activity_metrics: Used for Activity-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

TIBCO Flogo® Enterprise User Guide

150 | Deployment and Configuration

Labels Description

Started Total number of times Activity is started in
given flow

Completed Total number of times Activity is completed
in given flow

Failed Total number of times Activity is failed in
given flow

For a list of some often-used flow-level queries, refer to the section, Often-Used Queries.

Using Prometheus to Analyze Flogo App Metrics
To enable Prometheus monitoring of Flogo apps, run the following:

FLOGO_HTTP_SERVICE_PORT=7779 FLOGO_APP_METRICS_PROMETHEUS=true ./<app-
binary>

Setting FLOGO_APP_METRICS_PROMETHEUS variable to true enables Prometheus monitoring
of Flogo apps. The variable FLOGO_HTTP_SERVICE_PORT is used to set the port number on
which the Prometheus endpoint is available.

Use the following endpoint URL in Prometheus server configuration:

http://<APP_HOST_IP>:<FLOGO_HTTP_SERVICE_PORT>/metrics

Example:

http://192.0.2.0:7779/metrics

Adding Custom Labels to Prometheus Metrics

The FLOGO_APP_METRICS_PROMETHEUS_LABEL environment variable appends custom key-
value labels to all Prometheus metrics emitted by a Flogo application. This helps with
identification, filtering, and analysis of metrics in Prometheus.

TIBCO Flogo® Enterprise User Guide

151 | Deployment and Configuration

To add a custom label, set the FLOGO_APP_METRICS_PROMETHEUS_LABEL environment
variable with a key-value pair.

Syntax:

FLOGO_APP_METRICS_PROMETHEUS_LABEL="<key>=<value>"

Example:

FLOGO_APP_METRICS_PROMETHEUS_LABEL="environment=production"

Usage Example:

FLOGO_HTTP_SERVICE_PORT=7779 FLOGO_APP_METRICS_PROMETHEUS=true

FLOGO_APP_METRICS_PROMETHEUS_LABEL="version=v1.2.3" ./<app-executable>

Often-Used Queries
 Prometheus uses the PromQL query language. This section lists some of the most often-
used queries at the flow level.

To Get this Metric Use this Query

Total number of flows that got successfully
executed per app

count(flogo_flow_execution_count
{State="Completed"}) by (AppName,
FlowName)

Total number of flows that failed per app count(flogo_flow_execution_count
{State="Failed"}) by (AppName,
FlowName)

Total number of flows that executed
successfully across all apps

(when you are collecting metrics for multiple
apps)

count(flogo_flow_execution_count
{State="Completed"})

Total number of flows that failed across all count(flogo_flow_execution_count

Flow-level Queries

TIBCO Flogo® Enterprise User Guide

152 | Deployment and Configuration

To Get this Metric Use this Query

apps

(when you are collecting metrics for multiple
apps)

{State="Failed"})

Total time taken by flows which got executed
successfully

sum(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName)

Total time taken by flows which failed sum(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName)

Minimum time taken by the flows that got
executed successfully

(what was the minimum time taken by a flow
from amongst the flows that executed
successfully)

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)

Minimum time taken by flows which failed min(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)

Maximum time taken by flows which executed
successfully

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)

Maximum time taken by flows which failed max(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)

Average time taken by flows which executed
successfully

avg(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName)

Average time taken by flows which failed avg(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName)

TIBCO Flogo® Enterprise User Guide

153 | Deployment and Configuration

To Get this Metric Use this Query

Total number of activities that got
successfully executed per flow and app

count(flogo_Activity_execution_count
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Total number of activities that failed per
flow and app

count(flogo_Activity_execution_count
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Total number of activities that executed
successfully across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_Activity_execution_count
{State="Completed"})

Total number of activities that failed
across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_Activity_execution_count
{State="Failed"})

Individual time taken by activities which
got executed successfully per app and
flow

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Individual time taken by activities which
failed per app and flow

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Minimum time taken by the Activity that
got executed successfully within a given
flow and app

min(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Minimum time taken by a failed Activity
within a given flow and app

min(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Maximum time taken by an Activity
which executed successfully within a
given flow and app

max(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Activity-level Queries

TIBCO Flogo® Enterprise User Guide

154 | Deployment and Configuration

To Get this Metric Use this Query

Maximum time taken by an Activity
which failed within a given flow and app

max(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Average time taken by an Activity which
executed successfully within a given flow
and app

avg(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Average time taken by an Activity which
failed within a given flow and app

avg(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

OpenTelemetry Collector
Flogo supports integration with OpenTelemetry (OT) Collector. The goal of this collector is
to create standard software development kit for tracing, metrics and logging which
different vendors like Jaeger, Zipkin, Datadog, Prometheus adopt. You have the flexibility
to switch vendors without changing the application logic with OpenTelemetry.

Note: To use this feature for TIBCO Cloud Integration deployments, ensure that
the OpenTelemetry Collector is reachable from app containers.

Architecture

This is the schematic view of how the OT collector works:

TIBCO Flogo® Enterprise User Guide

155 | Deployment and Configuration

Note: You can use the same architecture for Distributed tracing as well. For
more information, see Tracing Apps by Using OpenTelemetry Collector.

Configuration

The parameters listed below are required for the configuration of the OT collector:

Name Required Default Description

FLOGO_
OTEL_
METRICS

Yes False Enable OpenTelemetry metrics for Flogo app

FLOGO_
OTEL_
METRICS_
ATTRIBUTES

No None Add one or more custom attributes to the metrics.
For example, FLOGO_OTEL_METRICS_
ATTRIBUTES="deployment_type=flogo"

FLOGO_
OTEL_OTLP_
ENDPOINT

Yes None OpenTelemetry protocol (OTLP) receiver endpoint
configured for OpenTelemetry Collector.
For gRPC protocol, set <host>:<otlp_grpc_port>
For http protocol, set https://<host>:<otlp_http_
port>

TIBCO Flogo® Enterprise User Guide

156 | Deployment and Configuration

Name Required Default Description

FLOGO_
OTEL_OTLP_
HEADERS

No None Set one or more custom gRPC/HTTP headers in the
request to the collector.
For example, FLOGO_OTEL_OTLP_
HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>".

FLOGO_
OTEL_TLS_
SERVER_
CERT

No None Set PEM encoded Server/CA certificate when TLS is
enabled for OTLP receiver. You can configure a path
to the certificate or use base64 encoded certificate
value. A file path must be prefixed with "file://".
e.g. FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.
pem" or FLOGO_OTEL_TLS_SERVER_CERT=<base64_
encoded_server_certificate>.
When this certificate is not set, unsecure connection
is established with the collector.

Monitor Flogo apps metrics using OpenTelemetry

 You can see the number of flows and activities executed in the app as per the below
metrics:

Metrics Label Description

flogo_activity_executions_
total

- Total number of times the activity is
started, completed, or failed.

 app_name Name of application

 app_version Version of application

 flow_name Name of flow

 activity_name Name of activity

 state State of activity - Started, Completed or
Failed

TIBCO Flogo® Enterprise User Guide

157 | Deployment and Configuration

Metrics Label Description

 host_name Name of the host or app instance ID

flogo_flow_executions_
total

- Total number of times the flow is
started, completed or failed

 app_name Name of application

 app_version Version of application

 flow_name Name of flow

 state State of flow - Started, Completed or
Failed

 host_name Name of the host or app instance ID

Example
Prometheus

FLOGO_OTEL_METRICS=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_OTEL_
METRICS_ATTRIBUTES="deployment=local,product=flogo" ./<app-executable>

Distributed Tracing
 Distributed tracing allows you to log information about an app's behavior during its
execution. It shows the path an app takes from start to finish. You can then use the
information to troubleshoot performance bottlenecks, errors, and debugging failures in the
app execution.

As the app travels through different services, each segment is recorded as a span. A span is
a building block of a trace and represents work done with time intervals and associated
metadata. All the spans of an app are combined into a single trace to give you a picture of
an entire request. A trace represents an end-to-end execution; made up of single or
multiple spans. A Tracer is the actual implementation that records the spans and publishes
them.

TIBCO Flogo® Enterprise User Guide

158 | Deployment and Configuration

Distributed tracing is used to help you identify issues with your app (performance of the
app or simply debugging an issue) instead of going through stack traces. The use of
distributed tracing is particularly useful in a distributed microservice architecture
environment where each app is instrumented by a tracing framework and while the tracing
framework runs in the background, you can monitor each trace in the UI. You can use that
to track any abnormalities or issues to identify the location of the problem.

Some Considerations

Keep the following in mind when using the distributed tracing capability in Flogo
Enterprise:

 l At any given point in time, only one tracer can be registered - if you try to register
multiple tracers, only the first one that you register is accepted and used at run time
to trace all the activities of the flow.

 l All the traces start at the flow level. There are two relations between spans - a span
is either the child of a parent span or the span is a span that follows (comes after)
another span. You should be able to see all the operations and the traces for the
flows and activities that are part of an app. Traces of the triggers used in the app are
not shown.

 l Tracing can be done across apps bypassing the tracing context from one app to
another. To trace across multiple apps, you must make sure that all apps are
instrumented with similar tracing frameworks, such as Jaeger semantics so that they
understand the framework language. Otherwise, you can't get a holistic following of
the entire trace through multiple services.

 l When looping is enabled for an Activity, each loop is considered one span, since
each loop calls the server which triggers a server flow.

 l If a span is passed on to the trigger, that span becomes the parent span. You should
be able to see how much time is taken between the time the event is received by the
trigger and the time the trigger replies. This only works for triggers that support the
extraction of the context from the underlying technology, for instance, triggers those
support HTTP headers.

The ReceiveHTTPMessage REST trigger and InvokeRESTService Activity are
supported for this release where the REST trigger can extract the context from the
request and InvokeRESTService Activity can inject the context into the request. If
two Flogo apps are both Jaeger-enabled, when one app calls the other, you can see
the chain of events (invocation and how much time is taken by each invocation) in

TIBCO Flogo® Enterprise User Guide

159 | Deployment and Configuration

the Jaeger UI. If app A is calling app B, the total request time taken by app A is the
cumulative of the time taken by all activities in app A plus the time taken by the
service that it calls. If you open up each invocation separately, you can see the
details of how much time was taken by each Activity in that invocation.

 l Triggers that support span (for instance the REST trigger) are always the parent, so
any flows that are attached to that trigger are always the children of the trigger span.
Trigger span is completed only after the request goes to the flow and the flow
returns.

 l A subflow becomes a child of the Activity from which it is called.

Tracing Apps Using Jaeger
Flogo apps provide an implementation of the OpenTracing framework using the Jaeger
backend. The Flogo app binary is built with Jaeger implementation and can be enabled by
setting the FLOGO_APP_MONITORING_OT_JAEGER environment variable to true. You can track
how the flow went through, the execution time for each Activity, or in case of failure, the
cause of the failure.

Each app is displayed as a service in the Jaeger UI. In a Flogo app, each flow is one
operation (trace) and each Activity in the flow is a span of the trace. A trace is the
complete lifecycle of a group of spans. The flow is the root span and its activities are its
child spans.

Prerequisites: The following prerequisites must be met before using the tracing capability
in Flogo Enterprise:

 l By default, Jaeger is not enabled in Flogo, hence tracing is not enabled. To enable
Jaeger, set the FLOGO_APP_MONITORING_OT_JAEGER environment variable to true.

 l Ensure that the Jaeger server is installed, running, and accessible to the Flogo app
binary.

 l If your Jaeger server is running on a machine other than the machine on which your
app resides, be sure to set the JAEGER_ENDPOINT=http://<JAEGER_HOST>:<HTTP_
TRACE_COLLECTOR_PORT>/api/traces environment variables. Refer to the
Environment Variables page for the environment variables that you can set.

https://github.com/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES

TIBCO Flogo® Enterprise User Guide

160 | Deployment and Configuration

Flogo Enterprise-Related Tags in Jaeger

In OpenTracing, each trace and span have their tags. Tags are useful for filtering traces, for
example, if you want to search for a specific trace or time interval.

Note: Adding your custom tags for any one span (Activity) only is currently not
supported. Any custom tags that you create are added to all spans and traces.

Flogo Enterprise introduces the following Flogo-specific tags:

For flows

flow_name Name of the flow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

For activities

flow_name Name of the flow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

task_name Name of Activity

taskInstance_id Unique instance ID that is generated by the Flogo engine. This identity is
used to identify the specific instance of an Activity when an Activity is
iterated multiple times. This ID is used in looping constructs such as
iterator or Repeat while true.

For subflows

parent_flow Name of the parent flow

TIBCO Flogo® Enterprise User Guide

161 | Deployment and Configuration

parent_flow_id Unique ID of the parent flow

flow_name Name of the subflow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

The tag values are automatically generated by the Flogo Enterprise runtime. You cannot
override the default values. You have the option to set custom tags by setting them in the
environment variable JAEGER_TAGS as key/value pair. Keep in mind that these tags are
added to all spans and traces.

Refer to the Environment Variables page for the environment variables that you can set.

Tracing Apps by Using AWS X-Ray
If you are running your Flogo app on the cloud or in your local environment, you can track
your app performance or troubleshoot issues by using AWS X-Ray. For more information
about AWS X-Ray, refer to AWS X-Ray.

When you use AWS X-Ray for tracing, your app sends trace data to AWS X-Ray. X-Ray
processes the data to generate a service map and searchable trace summaries. For each
flow, subflow, and Activity, details such as execution time are displayed on the AWS X-Ray
dashboard.

The following example shows the trace details of the InvokeRest_InvokeLambdaApp-
v1.0.0 app. It includes details such as activities that were invoked, and their execution
time and status.

https://github.com/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES
https://docs.aws.amazon.com/xray/index.html

TIBCO Flogo® Enterprise User Guide

162 | Deployment and Configuration

Before you begin
 Make sure that you meet the following requirements:

 l Knowledge of AWS X-Ray: For more information, refer to AWS XRay.

 l For an app containing a non-Lambda trigger:

 o AWS X-Ray daemon: You must have an AWS X-Ray daemon running on your
machine to send trace data to the AWS X-Ray service. Alternatively, your app
must have access to another machine where the daemon is running. Download
the AWS X-Ray daemon from the AWS website and run the AWS X-Ray daemon.

 o Environment variable: If the AWS X-Ray daemon and app are running on two
different machines, set the environment variable AWS_XRAY_DAEMON_ADDRESSto
the IP address where the AWS X-Ray daemon is running for receiving traces.
You need not set this variable if the daemon and app are running on the same
machine.

 l For an app containing a Lambda trigger:

 o To trace the app end-to-end, TIBCO recommends that you enable the Active
Tracing option in AWS along with the Flogo tracing feature. Active Tracing
provides all the details of the app while the Flogo tracing feature provides
details specific to the Flogo app. For example, details such as how long it took
to initialize the container, are provided by Active Tracing. Details specific to
the Flogo implementation (such as the flows, sub-flows, or activities executed)

https://docs.aws.amazon.com/xray/index.html

TIBCO Flogo® Enterprise User Guide

163 | Deployment and Configuration

are provided by the Flogo tracing feature.

 o For an app containing a Lambda trigger, you need not run the AWS X-Ray
daemon. This is because AWS X-Ray is integrated with AWS Lambda.

 o Add the following permissions to the execution role. For more information on
how to add the permissions, refer to the AWS Documentation.

 n xray:PutTraceSegments

 n xray:PutTelemetryRecords

Note: The AWS API Gateway Lambda and S3 Bucket Event Lambda
triggers are not supported.

Enabling Tracing Using AWS X-Ray
To enable tracing using AWS X-Ray, set the FLOGO_AWS_XRAY_ENABLE environment variable to
true. The default is false.

Search Using Annotations
You can search based on predefined Flogo annotations. The following annotation is
available in this release:

flogo_flow_name: Name of the flow

Here is an example of using annotations to search:

annotation.flogo_flow_name="sampleFlow"

Metadata
The following metadata about an app is stored in the flogo namespace:

 l flow_name: Name of the flow

 l Activity_name: Name of the Activity

This metadata can be used when debugging. You can use the metadata to identify the
exact errors, stack traces, flow name, Activity name, and so on. Note that the metadata
cannot be used for searching traces.

https://docs.aws.amazon.com/xray/

TIBCO Flogo® Enterprise User Guide

164 | Deployment and Configuration

Tracing Apps by Using OpenTelemetry Collector
By using OpenTelemetry Collector, you can capture traces from your Flogo app and send
them to observability vendor tools such as Jaeger, Zipkin, and Datadog. This gives you the
flexibility to switch between observability vendor tools without changing the logic of your
app. For more information about OpenTelemetry Collector, see OpenTelemetry
documentation.

When you use this feature, traces of the Flogo app are sent to the OpenTelemetry
Collector. OpenTelemetry Collector has vendor-specific configurations that allow you to
send these traces to supported observability vendor tools. For example, you can specify
Zipkin-specific configurations in the otel-zipkin-collector-config.yaml configuration
file for the traces to be displayed on the Zipkin dashboard.

The following screenshots show traces from one Flogo app on two different observability
vendor tools, Jaeger and Zipkin.

Jaeger output of a Flogo app

https://opentelemetry.io/
https://opentelemetry.io/

TIBCO Flogo® Enterprise User Guide

165 | Deployment and Configuration

Zipkin output of a Flogo app

Enabling Tracing for OpenTelemetry Collector

Before you begin
 Make sure that you meet the following requirements:

 l Ensure that you can connect to the OpenTelemetry Collector.

TIBCO Flogo® Enterprise User Guide

166 | Deployment and Configuration

Note:
 o To use this feature for TIBCO Cloud Integration deployments, ensure

that the OpenTelemetry Collector is reachable from app containers.

 o If the connection to OpenTelemetry Collector is lost, traces during
that time duration are not collected.

 l Install an observability vendor tool of your choice: Jaeger, Zipkin, Datadog, and so
on.

Mandatory Configuration Parameters

To enable tracing by using OpenTelemetry Collector, set the following mandatory
parameters:

Name Default Description

FLOGO_OTEL_TRACE False Enables tracing by using
OpenTelemetry Collector.

FLOGO_OTEL_OTLP_ENDPOINT None Specifies the OpenTelemetry
protocol (OTLP) receiver endpoint for
OpenTelemetry Collector.

Supported protocols are:

 l gRPC: Set to <host>:<otlp_
grpc_port>.

 l HTTP: Set to
https://<host>:<otlp_http_
port>.

Optional Configuration Parameters

You can also use some optional configuration parameters when tracing apps using
OpenTelemetry Collector. Here are some commonly used parameters and their
descriptions:

TIBCO Flogo® Enterprise User Guide

167 | Deployment and Configuration

Name Default Description

FLOGO_
OTEL_
TRACE_
ATTRIBUTES

None Add one or more custom attributes to the trace. The format is key-
value pairs separated by commas. For example, to filter based on
the deployment type and deployment cluster, you can use:

FLOGO_OTEL_TRACE_
ATTRIBUTES="deployment.type=staging,deployment.cluster=sta
ging3"

FLOGO_
OTEL_OTLP_
HEADERS

None Set one or more custom gRPC or HTTP headers in the request to
the OpenTelemetry Collector. The format is key-value pairs
separated by commas. For example:

FLOGO_OTEL_OTLP_HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>"

FLOGO_
OTEL_TLS_
SERVER_
CERT

None If TLS is enabled for OpenTelemetry protocol receiver, set PEM-
encoded server or CA. You can configure a path to the certificate or
use base64-encoded certificate value. A file path must be prefixed
with "file://".

For example:

 l FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.pem"

 l FLOGO_OTEL_TLS_SERVER_CERT=<base64_encoded_server_
certificate>

You can also encrypt base64 encoded certificate value by using
either TIBCO Cloud Integration platform API or by using app
executable and set it to the environment variable with prefix
"SECRET:"

For example:

 l FLOGO_OTEL_TLS_SERVER_CERT=SECRET:<encrypted_base64_
encoded_cert_value>

For details about encryption, see Encryption using App executable
or Encryption using TIBCO Cloud Platform API.

When this certificate is not set, an unsecure connection is
established with OpenTelemetry Collector.

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/utils/encrypt-values-fe.html?TocPath=TIBCO%2520Cloud%25E2%2584%25A2%2520Integration%2520API%257C_____11

TIBCO Flogo® Enterprise User Guide

168 | Deployment and Configuration

Tracing With OpenTelemetry Collector

Using OpenTelemetry Collector with Jaeger

The Jaeger Docker image includes OpenTelemetry Collector. So, you need not run
OpenTelemetry Collector separately.

docker run --name jaeger -p 13133:13133 -p 16686:16686 -p 4317:55680 -d
--restart=unless-stopped jaegertracing/opentelemetry-all-in-one

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_
OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo" ./TimerOTel-
darwin_amd64

Using OpenTelemetry Collector with Zipkin

Procedure
 1. Start Zipkin as follows:

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin

 2. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

receivers:
otlp:
protocols:
http:

exporters:
zipkin:
Change IP
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:

TIBCO Flogo® Enterprise User Guide

169 | Deployment and Configuration

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

 3. Start OpenTelemetry Collector with Zipkin Exporter as follows:

docker run -d --rm -p 4318:4318 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml --name otelcol
otel/opentelemetry-collector:0.35.0 --config otel-collector-
config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="https://localhost:4318"
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo"
./TimerOTel-darwin_amd64

Using OpenTelemetry Collector with Zipkin (with TLS)

Procedure
 1. Update server-cert-gen.sh as follows:

openssl req -newkey rsa:2048 \
-new -nodes -x509 \
-days 3650 \
-out cert.pem \
-keyout key.pem \
-extensions san \
-config <(echo '[req]'; echo 'distinguished_name=req';
echo '[san]'; echo 'subjectAltName=DNS:localhost,DNS:127.0.0.1') \
-subj
"/C=US/ST=California/L=Sunnyvale/O=TIBCO/OU=Flogo/CN=localhost"

 2. Start Zipkin.

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin

TIBCO Flogo® Enterprise User Guide

170 | Deployment and Configuration

 3. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

receivers:
otlp:
protocols:
grpc:
tls_settings:
cert_file: /var/certs/cert.pem
key_file: /var/certs/key.pem

exporters:
zipkin:
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

 4. Create a certs directory under the current directory and copy cert.pem and key.pem
in the certs directory.

 5. Start OpenTelemetry Collector with Zipkin Exporter as follows:

docker run -d --rm -p 4317:4317 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml -v
"${PWD}/certs":/var/certs --name otelcol otel/opentelemetry-
collector:0.35.0 --config otel-collector-config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317"
FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/dev/Installations/OpenTelemetry/zipkin/certs/cert.pe
m"
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo"
./TimerOTel-darwin_amd64

TIBCO Flogo® Enterprise User Guide

171 | Deployment and Configuration

Flogo Related Attributes in OpenTelemetry Collector
In OpenTelemetry, each trace has its own attributes. These attributes are useful for filtering
traces, for example, if you want to search for a specific trace or time interval.

Note:
 l Adding your custom attributes for only one span (Activity) is currently not

supported. Any custom tags that you create are added to all traces

 l The prefix 'flogo' is added to tags with product-specific attributes only.

The following attributes specific to Flogo are available:

For flows

flogo.event.id The event ID is the unique ID of a single request, job or a
action initiated by the user.

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times).

flogo.flow.name Name of the flow.

For activities

flogo.flow.name Name of the flow.

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times).

flogo.task.name Name of the activity.

flogo.task.type Type of the activity.

flogo.taskInstance.id Unique instance ID that is generated by the Flogo engine.

TIBCO Flogo® Enterprise User Guide

172 | Deployment and Configuration

This identity is used to identify the specific instance of an
Activity when an Activity is iterated multiple times. This ID
is used in looping constructs such as iterator or Repeat
while true.

For subflows

flogo.parent.flow Name of the parent flow.

flogo.flogo.parent.flow.id Unique ID of the parent flow.

flogo.flow.name Name of the subflow.

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times).

The attribute values are automatically generated at runtime. You cannot override the
default values. You have the option to set attributes by setting them in the environment
variable FLOGO_OTEL_TRACE_ATTRIBUTES as key/value pair. Keep in mind that these tags are
added to all traces.

Using APIs
 You can obtain the runtime statistics of the Go language in Flogo Enterprise.

Healthcheck API
Flogo Enterprise runtime allows you to enable healthcheck for a Flogo app that is running.

To enable healthcheck for your running app:

Procedure
 1. Set FLOGO_HTTP_SERVICE_PORT to enable runtime HTTP Service as follows:

TIBCO Flogo® Enterprise User Guide

173 | Deployment and Configuration

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>

 2. Run the following command:

curl http://localhost:<port>/ping

Note: Currently, healthcheck endpoint returns HTTP status 200 only when all
triggers in the app are successfully started. Otherwise, it returns HTTP status
500.

Go Language Runtime Statistics and Profiling
Flogo Enterprise allows you to gather runtime system statistics for a Flogo app that is
running.

Warning: Your management port must be set for the Flogo app, to call the API
to gather Go language runtime statistics. To set a different management port for
your Flogo app, run FLOGO_HTTP_SERVICE_PORT=<port>./<app-name>/You can
use curl to call this API.

To obtain the system statistics on your running app:

Procedure
 1. From the folder in which your app binary resides, enable the HTTP service using the

following command:

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>

 2. Run the following command:

curl http://localhost:<port>/debug/vars

The command returns the following statistics:

TIBCO Flogo® Enterprise User Guide

174 | Deployment and Configuration

System Metric
Name

Description

cmdline Command-line arguments passed to the app binary

cpus Number of logical CPUs usable by the current process

goroutines The number of Go routines that currently exist

memstats Memory statistics for the current process. See the Golang
documentation for details.

processid System process ID

version Go language version used to build the app

Profiling your app runtime

You can collect and visualize runtime profiling data for Flogo apps using the pprof tool in
Golang.

Endpoint Description

/debug/pprof List all profiles

/debug/pprof/profile Profile current CPU usage. By default, it is profiled for every 30
seconds. To change the profiling interval, set the seconds query
parameter to a desired value. For example,

go tool pprof
http://localhost:<port>
/debug/pprof/profile?seconds=15

 /debug/pprof/heap A sampling of memory allocations of live objects. For example,

go tool pprof
http://localhost:<port>/debug/pprof/heap

TIBCO Flogo® Enterprise User Guide

175 | Deployment and Configuration

Endpoint Description

 /debug/pprof/goroutine Stack traces of all current Go routines. For example,

go tool pprof
http://localhost:<port>/debug/pprof/goroutine

 /debug/pprof/trace A trace of execution of the current program. For example,

go tool pprof
http://localhost:<port>/debug/pprof/trace

CPU and Memory Profiling
 If you observe low throughputs or high memory usage, you can enable CPU and/or
Memory profiling for your Flogo app. Enabling this profiling impacts performance. Hence,
we do not recommend enabling them in a production environment.

Before you begin
 l You must have GO version 1.9.0 or higher installed.

 l Make sure that the pprof tool is installed on your machine. Refer to PPOF for more
details on the pprof tool.

Enabling CPU Profiling

To enable CPU profiling:

Procedure
 1. Open a command prompt or terminal.

 2. Change the directory to the folder in which your app binary is located.

 3. Run the following command:

./<app_binary> -cpuprofile <file>

where <file> is the profile file. For example, ./StockService -cpuprofile

https://github.com/google/pprof

TIBCO Flogo® Enterprise User Guide

176 | Deployment and Configuration

/home/users/StockService_cpu.prof

Enabling Memory Profiling

To enable memory profiling:

Procedure
 1. Open a command prompt or terminal.

 2. Change the directory to the folder in which your app binary is located.

 3. Run the following command:

./<app_binary> -memprofile <file>

where <file> is the profile file. For example, ./StockService -memprofile
/home/users/StockService_mem.prof

Enabling CPU and Memory Profiling in a Single Command

To enable CPU and memory profiling in a single command:

Procedure
 1. Open a command prompt or terminal.

 2. Change the directory to the folder in which your app binary is located.

 3. Run the following command:

./<app_binary> -memprofile <file> -cpuprofile <file>

Analyzing your profiling data

Once you capture the profiling data, analyze it using pprof by running the following
command:

go tool pprof <profile file>

TIBCO Flogo® Enterprise User Guide

177 | Deployment and Configuration

Monitoring and Managing Enterprise Apps in TIBCO
Cloud Integration
With the TIBCO Cloud Integration - Hybrid Agent, you can now monitor Remote apps and
perform various operations through the TIBCO Cloud Integration user interface, such as
scaling the app instances, updating application and engine variables, starting or stopping
an app, and monitoring app metrics. Remote apps are auto-discovered by the Hybrid
Agent.

For detailed information, see Configuring Remote Apps.

Environment Variables
This section lists the environment variables that are associated with the Flogo Enterprise
runtime environment.

Environment
Variable Name

Default Value Description

FLOGO_RUNNER_
QUEUE_SIZE

50 The maximum number of events from all
triggers that can be queued by the app
engine.

FLOGO_RUNNER_
WORKERS

5 The maximum number of concurrent
events that can be run by the app
engine from the queue.

FLOGO_LOG_
LEVEL

INFO Used to set a log level for the Flogo app.
Supported values are:

 l INFO

 l DEBUG

 l WARN

 l ERROR

This variable is supported for Remote

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/remote-app-mgmt.html?TocPath=TIBCO%2520Flogo%25C2%25AE%2520Apps%257CDeployment%2520and%2520Configuration%257CMonitoring%257C_____8

TIBCO Flogo® Enterprise User Guide

178 | Deployment and Configuration

Environment
Variable Name

Default Value Description

Apps managed with the TIBCO Cloud
Integration Hybrid Agent.

FLOGO_
LOGACTIVITY_
LOG_LEVEL

INFO Used to control logging in the Log
activity. Values supported, in the order
of precedence, are:

 l DEBUG

 l INFO

 l WARN

 l ERROR

For example:

 l If the Log level is set to WARN,
WARN and ERROR logs are filtered
and displayed.

 l If Log Level is set to DEBUG, then
DEBUG, INFO, WARN, and
ERROR logs are displayed.

 FLOGO_
MAPPING_SKIP_
MISSING

False When mapping objects if one or more
elements are missing in either the
source or target object, the mapper
generates an error when FLOGO_
MAPPING_SKIP_MISSING is set to false.

Set this environment variable to true, if
you would like to return a null instead of
receiving an error.

FLOGO_APP_
METRICS_LOG_
EMITTER_ENABLE

False If you set this property to True, the app
metrics are displayed in the logs with
the values set in FLOGO_APP_METRICS_
LOG_EMMITTER_CONFIG. App metrics
are not displayed in the logs if this

TIBCO Flogo® Enterprise User Guide

179 | Deployment and Configuration

Environment
Variable Name

Default Value Description

environment variable is set to False. To
set it to True, run: export FLOGO_APP_
METRICS_LOG_EMITTER_ENABLE=true

 FLOGO_APP_
METRICS_LOG_
EMITTER_CONFIG

Both flow and Activity This property can be set to either flow
level or Activity level. Depending on
which level you set, the app metrics
displays only for that level. Also, you can
provide an interval (in seconds) at which
to display the app metrics.

For example, to set the interval to 30
seconds and get the app metrics for the
flow, run:

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”]}’

To set the interval for 10 seconds and
get the app metrics for both flow and
activities, run:

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”,“Activity”]}’

FLOGO_APP_
METRICS

70 Enables app metrics on the Monitoring
tab.

FLOGO_APP_
MEM_ALERT_
THRESHOLD

70 The threshold for memory utilization of
the app. When the memory utilization by
an app running in a container exceeds
the threshold that you have specified,
you get a warning log

FLOGO_APP_CPU_ 70 The threshold for CPU utilization of the

TIBCO Flogo® Enterprise User Guide

180 | Deployment and Configuration

Environment
Variable Name

Default Value Description

ALERT_
THRESHOLD

app. When the CPU utilization by an app
running in a container exceeds the
threshold that you have specified, you
get a warning log

FLOGO_APP_
DELAYED_STOP_
INTERVAL

10 seconds When you scale down an instance, all
inflight jobs are lost because the engine
is stopped immediately. To avoid losing
the jobs, delay the stopping of the
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable to a
value less than 60 seconds. Here, when
you scale down the instance, if there are
no inflight jobs running, then the engine
stops immediately without any delay. In
case of inflight jobs:

 l If there are any inflight jobs
running, then the engine stops
immediately after the inflight job
is completed.

 l If the inflight job is not completed
within a specified time interval,
then the job gets canceled and the
engine stops.

FLOGO_APP_
DELAYED_STOP_
INTERVAL

10 seconds When you scale down an instance, all
inflight jobs are lost because the engine
is stopped immediately. To avoid losing
the jobs, delay the stopping of the
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable to a
value less than 60 seconds. Here, when
you scale down the instance, if there are
no inflight jobs running, then the engine
stops immediately without any delay. In

TIBCO Flogo® Enterprise User Guide

181 | Deployment and Configuration

Environment
Variable Name

Default Value Description

case of inflight jobs:

 l If there are any inflight jobs
running, then the engine stops
immediately after the inflight job
is completed.

 l If the inflight job is not completed
within a specified time interval,
then the job gets canceled and the
engine stops.

GOGC 100 Sets the initial garbage collection target
percentage.

Setting it to a higher value delays the
start of a garbage collection cycle until
the live heap has grown to the specified
percentage of the previous size.

Setting it to a lower value causes the
garbage collector to be triggered more
often as less new data can be allocated
to the heap before triggering a
collection.

This section lists the user-defined environment variables that are associated with the Flogo
Enterprise runtime environment.

Environm
ent
Variable
Name

Default
Value

Description

FLOGO_
LOG_CTX

False Used to enable context logging for the application. When set to true,
context, such as application name, version, tracing details, and flow
details, is added to the engine and connectors logs.

TIBCO Flogo® Enterprise User Guide

182 | Deployment and Configuration

Environm
ent
Variable
Name

Default
Value

Description

Note: This context is always logged in JSON format.

FLOGO_
LOG_CTX_
FIELDS

None When context logging is enabled, set custom context fields in the
logging. These additional fields are added to the logging context.

Example:

FLOGO_LOG_CTX_
FIELDS="service.name=Foo,service.version=1.0.0,ser
vice.environment=dev"

FLOGO_
ENV

None Used to set the name of the deployment environment, such as dev,
staging, and production. When enabled, by default, the
deployment.environment field is set in the logging context (if
enabled) and in Flogo OpenTelemetry traces and metrics.

FLOGO_
MAPPING_
OMIT_
NULLS

True Used to omit all the keys in the activity input evaluating to null.

FLOGO_
FLOW_
CONTROL_
EVENTS

False If you set FLOGO_FLOW_CONTROL_EVENTS as true, the Flow limit
functionality is enabled, whenever the incoming requests to trigger
reach FLOGO_RUNNER_QUEUE_SIZE limit then trigger is paused. When
all the requests currently under processing are finished, the trigger is
resumed again. All the connectors supporting the Flow limit
functionality are mentioned in their respective user guides.

FLOGO_
HTTP_
SERVICE_
PORT

None Used to set the port number to enable runtime HTTP service, which
provides APIs for health check and statistics.

TIBCO Flogo® Enterprise User Guide

183 | Deployment and Configuration

Environm
ent
Variable
Name

Default
Value

Description

FLOGO_
LOG_
FORMAT

TEXT Used to switch the logging format between text and JSON. For
example, to use the JSON format, set FLOGO_LOG_FORMAT=JSON
 ./<app-name>

FLOGO_
MAX_
STEP_
COUNT

None The application stops processing requests after the FLOGO_MAX_STEP_
COUNT limit is reached. The default limit is set to 10 Million even when
you do not add this variable.

FLOGO_
EXPOSE_
SWAGGER_
EP

False If you set this property to True, the Swagger endpoint is exposed.
The Swagger of the Rest trigger app can be accessed by hitting the
Swagger endpoint at http://<service-url>/api/v2/swagger.json.

FLOGO_
SWAGGER_
EP

None To customize the URI for the Swagger endpoint, set this environment
variable to your desired endpoint.

For example: FLOGO_SWAGGER_EP=/custom/swagger/endpoint

This makes the Swagger endpoint available at
/custom/swagger/endpoint instead of the default
/api/v2/swagger.json.

FLOGO_
OTEL_
SPAN_
KIND

INTERN
AL

Used to specify the type of span to be used in OpenTelemetry. The
supported values are INTERNAL, SERVER, CLIENT, PRODUCER, and
CONSUMER.

Note: If no value or an invalid value is provided, the default value
is set to INTERNAL.

FLOGO_
LOG_
CONSOLE_
STREAM

stderr Used to specify the logging output stream for Flogo engine and app
logs. The supported values are stdout and stderr.

TIBCO Flogo® Enterprise User Guide

184 | Deployment and Configuration

Pushing Apps to TIBCO Cloud
 You can push apps that were created in Flogo Enterprise to TIBCO Cloud Integration using
the TIBCO Cloud - Command Line Interface (tibcli).
 You must download the TIBCO Cloud Integration artifacts to use TIBCO Cloud CLI to push
the apps.

Before you begin
 You must have the TIBCO Cloud CLI installed on your local machine before you follow this
procedure. Refer to the "Downloading TIBCO Cloud Integration Tools" and "Installing the
TIBCO®Cloud - Command Line Interface" sections in the TIBCO Cloud Integration
documentation for details on how to download the TIBCO Cloud CLI and install it.

Note: For REST apps, be sure to change the port to 9999 before downloading
the artifacts.

To push the app using the TIBCO Cloud CLI, follow this procedure:

Procedure
 1. On the app details page, click Export.

 2. Select TIBCO Cloud Integration artifacts.

The manifest.json and flogo.json files are downloaded. The manifest.json
contains the manifest details such as the endpoints, memory resource details, and so
on. The flogo.json contains the app itself. These are the artifacts needed to push
the app directly from Flogo Enterprise using TIBCO Cloud CLI.

 3. Create a temporary directory on your machine.

 4. Move the downloaded flogo.json and the manifest.json files into a temporary
directory.

Note: The tibcli or tibcli.exe executable should not be in the same
directory (the temporary directory you created) as the app you are
pushing.

 5. Open a terminal or command prompt and navigate to the temporary directory.

 6. Run the following command to push the app:

TIBCO Flogo® Enterprise User Guide

185 | Deployment and Configuration

tibcli app push <app-name>

Important: If there is an existing app with an identical name as the app
that you are trying to push to the cloud, the existing app is overwritten
with the newly pushed app. You do not get a warning about it.

Result
The app is pushed to TIBCO Cloud Integration. You can see the progress of the app push
on the UI. After the app is pushed, the app implementation details on the Flowtab are
replaced with the actual flow.

TIBCO Flogo® Enterprise User Guide

186 | Best Practices

Best Practices
For efficient development of Flogo apps, follow these best practices:

Development

Flow Design

 l Re-use with subflows

If you are executing the same set of activities within multiple flows of the Flogo app,
you should put them in a subflow instead of adding the same logic in multiple flows
again and again. For example, error handling and common logging logic.

Sub-flows can be called from other flows, thus enabling the logic to be reused. A
subflow does not have a trigger associated with it. It always gets triggered from
another flow within the same app.

 l Terminate the flow execution using a Return Activity

Add a Return Activity at the end of the flow, when you want to terminate the flow
execution and the flow has some output that needs to be returned to either the
trigger (in the case of REST flows) or the parent flow (in the case of a branch flow).
An Error Handler flow must also have a Return Activity at the end.

 l Copying a flow or an Activity

 In scenarios where you want to create a flow or an Activity that is very similar to an
existing flow in your app, you can do so by duplicating the existing flow, then making
your minimal changes to the flow duplicate. You need not create a new flow. For
details on how to duplicate a flow, see Duplicating a Flow. You can also copy
activities. For details on how to copy an Activity, see Duplicating an Activity.

 l Use of ConfigureHTTPResponse Activity

If you define a response code in your REST trigger, ReceiveHTTPMessage, configure
the return value for the response code in the ConfigureHTTPResponse Activity.

The Return Activity is a generic Activity to return data to a trigger. However, when
developing a REST/HTTP API, you might need to use different schema for different
HTTP response codes. You can configure the ReceiveHTTPMessage trigger to use

TIBCO Flogo® Enterprise User Guide

187 | Best Practices

different schema for different response codes by either using the Swagger 2.0 or
OpenAPI 3.0 specification or manually adding them to the trigger configuration.

In such a scenario, you should add the ConfigureHTTPResponse Activity in the flow
before the Return Activity, to construct the response data for a specific response
code. ConfigureHTTPResponse Activity allows you to select a response code,
generate the input based on the schema defined on the trigger for that code, and
map data from the upstream activities to the input.

You can then map the output of the ConfigureHTTPResponse Activity to the Return
Activity to return the data and response code.

When you call a REST API from a Flow using the InvokeRESTService Activity, you can
enable the 'Configure Response Codes' option to handle the response codes returned
by the API. You can add specific codes, for example, 200, 404, and define a schema
for each of them using this option. You can also define the status code range in a
format such as 2xx if the same schema is being used for all codes in that range.

 l Reserved keywords

Flogo Enterprise uses some words as keywords or reserved names. Do not use these
words in your schema. For a complete list of the keywords to be avoided, see
Reserved Keywords to be Avoided in Schemas.

Mapper

 l Synchronizing schema

If you make any changes to the trigger configuration after the trigger was created,
you must click Sync for the schema changes to be propagated to the flow
parameters. For more information, see Synchronizing Schema Between Trigger and
Flow.

 l Using Expressions and Functions

Within any one flow, use the mapper to pass data between the activities, between
the trigger and the activities, or the trigger and the flow. When mapping, you can use
data from the following sources:

 o Literal values - Literal values can be strings or numeric values. These values can
either be manually typed in or mapped to a value from the output of the
trigger or a preceding Activity in the same flow. To specify a string, enclose the
string in double-quotes. To specify a number, type the number into the text
box for the field. Constants and literal values can also be used as input to

TIBCO Flogo® Enterprise User Guide

188 | Best Practices

functions and expressions.

 o Direct mapping of an input element to an element of the same type in the
Upstream Output.

 o Mapping using functions - The mapper provides commonly used functions that
you can use in conjunction with the data to be mapped. The functions are
categorized into groups. Click a function to use its output in your input data.
When you use a function, placeholders are displayed for the function
parameters. You click a placeholder parameter within the function, then click
an element from the Upstream Output to replace the placeholder. Functions
are grouped into logical categories. For more information, seeUsing Functions.

 o Expressions - You can enter an expression whose evaluated value is mapped to
the input field. For more information, see Using Expressions.

 l Complex data mappings

 o Using the array.forEach() mapper function, you can map complex nested
arrays, filter elements of an array based on a condition and map array elements
to non-array elements or elements of another array with a different structure.
See the following sections for details:

 n Mapping complex arrays - Using the array.forEach() Function

 n Mapping Array Child Elements to Non-Array Elements or to an Element in
a Non-Matching Array

 n Filtering Array Elements to Map Based on a Condition

 n Mapping an Identical Array of Objects

 o You can extract a particular element from a complex JSON object. The
json.path() function takes JSONPath expression as an argument. JSONPath is
an XPATH like query language for querying an element from JSON data. Refer
to Using the json.path() function for more details.

Branches

 l Branch conditions

You can design conditional flows by creating one or more branches from an Activity
and defining the branch types as well as the conditions for executing these branches.
Refer to the Creating a Flow Execution Branch section for details on how to create

TIBCO Flogo® Enterprise User Guide

189 | Best Practices

branches, the type of branches you can create, and the order in which the branches
get executed in a flow.

Error handling

 Errors can be handled at the Activity level or at the flow level. To catch errors at the
Activity level, use an error branch. In this case, the flow control transfers to the main
branch when there is an error during Activity execution. Refer to the section, Catching
Errors for more details on error handling. To catch errors at the flow level (when you want
to catch all errors during the flow execution regardless of the activities from which the
errors are thrown), use the Error Handler at the bottom left on the flow page to create an
error flow. Since this flow must have a Return Activity at the end, the flow execution gets
terminated after the Error Handler flow executes. The control never goes back to the main
flow. Refer to the section, Catching Errors, for more details.

To handle network faults, Flogo Enterprise provides the ability to configure the Timeout
and Retry on Error settings for some specific activities such as InvokeRESTService and
TCMMessagePublisher. Refer to the "General Category Triggers and Activities" section of
the TIBCO Flogo® Enterprise Activities, Triggers, and Connections Guide for details on each
General category Activity and trigger.

Deployment and Configuration

Memory considerations

When Flogo apps are deployed in TIBCO Cloud™ Integration, keep in mind that a maximum
1GB of memory is allocated to each app instance. If the Flogo app flow execution is
memory heavy, the container is stopped due to lack of required memory and the following
error message is displayed:

502 Bad Gateway Error

Using environment variables

When deploying a Flogo app, you can override the values of the app properties using
environment variables. For details on using environment variables, see the section on
Environment Variables.

Externalize configuration using app properties

TIBCO Flogo® Enterprise User Guide

190 | Best Practices

 When developing Cloud-Native microservices, we recommend that you separate the
configuration from the app logic. You should avoid hard-coding values for configuration
parameters in the Flogo app and use the app properties instead.

 The use of app properties allows you to externalize the app configuration. Externalizing
the configuration in turn allows you to change the value for any property without having to
update the app. This is particularly useful when testing your app with different
configurations and automating deployments across multiple environments as part of the
CI/CD strategy configurations and automating deployments across multiple environments
as part of the CI/CD strategy. For details on using app properties, see the section, App
Properties.

Generating and using SSL certificates

When generating an SSL certificate, it is recommended that you use Public DNS as a
Common Name. Also, when using an SSL certificate, use Public DNS instead of IP address.

Building Engine binary

 For multiple apps that have a common set of functionality, you can build a generic Flogo
Enterprise binary instead of building a separate binary for each app.

TIBCO Flogo® Enterprise User Guide

191 | Performance Tuning

Performance Tuning
This section provides guidelines that can be used to understand your performance
objectives and fine-tune the app environment to optimize performance.

The performance of an app affects stability, scalability, throughput, latency, and resource
utilization. For optimal performance of the app, it is important to understand the various
levels at which the tuning methods and best practices can be applied to the components.
This section includes the different tuning parameters, steps required to configure the
parameters, and design techniques for better performance.

This section must be used along with other product documentation and project-specific
information to achieve the desired performance results. The goal is to assist in tuning and
optimizing the runtime for the most common scenarios. At the same time, one must focus
on real-life scenarios to understand the issue and the associated solution.

Note: The performance tuning and configurations in this section are provided
for reference only. They can be reproduced only in the exact environment and
under workload conditions that existed when the tests were done. The numbers
in the document are based on the tests conducted in the performance lab and
may vary according to the components installed, the workload, the type and
complexity of different scenarios, hardware, and software configuration, and so
on. The performance tuning and configurations should be used only as a
guideline, after validating the customer requirements and environment. TIBCO
does not guarantee its accuracy.

Tuning Environment Variables
This section lists the environment variables associated with the TIBCO Flogo environment.
Details such as the default value of environmental variables and how we can change them
are also included.

TIBCO Flogo® Enterprise User Guide

192 | Performance Tuning

FLOGO_RUNNER_TYPE
This variable defines how events are handled by the Flogo engine.

 l Supported values: DIRECT and POOLED.

 l Default: POOLED

POOLED Mode
In this mode, the engine handles events in a flow-controlled way.

The following pictorial diagram explains the handling of events in POOLED mode.

Events in POOLED mode

Sets of workers are created to handle events received by all the triggers in the given Flogo
app. In golang terms, one worker corresponds to one go-routine. The events received are
added to the worker queue before the workers can pick these events from the worker
queue.

Once an event is picked from the queue, the corresponding action (for example, flow) is
triggered and the worker continues to execute that action until completion (that is, until
the action is successful or fails). An event that is picked up from the queue is removed to
allow the next event to be added to the queue.

When the queue is full, all trigger handlers that are adding new events to the queue are
blocked until workers pick up the next set of events from the queue. Once the worker
starts executing the action, it never interleaves the action until its completion. So, the total
number of events processed at a time is directly proportional to the time taken by the
action to complete and the number of workers in the pool. Hence, for better concurrency,

TIBCO Flogo® Enterprise User Guide

193 | Performance Tuning

gradually increase the value of queues and workers based on the available compute
resources (such as CPU and memory).

Configurations in POOLED mode:

You can configure the workers and the queue size by setting FLOGO_RUNNER_WORKERS
and FLOGO_RUNNER_QUEUE_SIZE respectively.

 l FLOGO_RUNNER_WORKERS variable determines the maximum number of concurrent
events that can be executed by the app engine from the queue. FLOGO_RUNNER_
WORKERS execute a finite number of tasks or concurrent events uninterrupted and
then yield to the next ready job. FLOGO_RUNNER_WORKERS can be tuned to the
optimum value by starting with a default value set and increasing it as per
requirement until the maximum CPU is reached.

The default value is FLOGO_RUNNER_WORKERS=5.

 l FLOGO_RUNNER_QUEUE_SIZE variable specifies the maximum number of events
from all triggers that can be queued by the app engine. FLOGO_RUNNER_QUEUE_
SIZE can be tuned to the optimum value by starting with a default value set and
increasing it as per requirement. You can change the variable value if you anticipate
having more than default value events queued at the same time.

The default value is FLOGO_RUNNER_QUEUE_SIZE=50.

The CPU and memory resources must be measured under a typical processing load to
determine if the default variable value is suitable for the environment. If the user load is
more than the default set value, the user can change the runner worker variable as per the
requirement to expedite the execution of the concurrent events. Set variable values
according to your processing volumes, number of CPUs, and allocated memory.

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_WORKERS=75 FLOGO_RUNNER_QUEUE_SIZE =150 ./<app_binary>

docker run -it -e FLOGO_RUNNER_WORKERS=75 -e FLOGO_RUNNER_QUEUE_SIZE=150
<docker-image>

TIBCO Flogo® Enterprise User Guide

194 | Performance Tuning

Case Study
While setting up the FLOGO_RUNNER_TYPE as POOLED, Flogo runner workers and Flogo
runner queues are used to handling events received by the trigger. You can increase the
Flogo runner worker and queue values gradually to reach the app performance. Set
variable values according to your processing volumes concerning your number of CPUs and
allocated memory.

It is recommended that you set the queue size greater than or equal to the number
of workers.

TIBCO Flogo® Enterprise User Guide

195 | Performance Tuning

DIRECT Mode
In this mode, every event delivered by the handler triggers a corresponding action. Unlike
the POOLED mode, the handling of events is unbounded. All the events are processed
concurrently. This might lead to CPU saturation or out-of-memory errors.

The following pictorial diagram explains the handling of events in DIRECT mode.

TIBCO Flogo® Enterprise User Guide

196 | Performance Tuning

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_TYPE=DIRECT ./<app_binary>

docker run -it -e FLOGO_RUNNER_TYPE=DIRECT <docker-image>

Case Study
This case study illustrates the app performance when Flogo event handling mode is set to
DIRECT.

App under test - FLOGO_RUNNER_TYPE

While setting up the FLOGO_RUNNER_TYPE as DIRECT, all the events sent to the trigger are
processed concurrently. As you keep on increasing the concurrency, you can observe the
linear increase in resources, that is, CPU and memory utilization.

TIBCO Flogo® Enterprise User Guide

197 | Performance Tuning

Flogo Engine - Direct Mode

FLOGO_LOG_LEVEL
This environment variable is used to set a log level for an app.

 l Supported values: INFO, DEBUG, WARN, and ERROR.

 l Default: INFO

You can increase or decrease the logging of the app using this environment variable. To
increase the logging of the app to debug, change FLOGO_LOG_LEVEL to DEBUG. To skip
detailed logging and to just log an error, set FLOGO_LOG_LEVEL to ERROR. Changes to the
log level are reflected after restarting the Flogo app in your environment and by pushing
the Flogo app again to the cloud environment.

Deploying the app to your environment

Set the variable value as follows:

FLOGO_LOG_LEVEL=ERROR ./<app_binary>

docker run -it -e FLOGO_LOG_LEVEL=ERROR <docker-image>

TIBCO Flogo® Enterprise User Guide

198 | Performance Tuning

Log level - ERROR

Log level - INFO

Log level - DEBUG

TIBCO Flogo® Enterprise User Guide

199 | Performance Tuning

Case Study
This use case illustrates the app logging impact on the performance of the app.

App under test for Flogo Log level

Performance lab results have shown that the performance of the app depends on the app
log level that is set, request payload, and app latency. Set the log level to DEBUG
functional issues and to ERROR for performance scenarios because setting the logging to
DEBUG might impact the performance of the app.

Maximum throughput was achieved with a Log Level set as ERROR.

GOGC
The GOGC variable sets the initial garbage collection target percentage. A collection is
triggered when the ratio of freshly allocated data to live data remaining after the previous
collection reaches this percentage.

Garbage collection refers to the process of managing heap memory allocation: free the
memory allocations that are no longer in use and keep the memory allocations that are
being used. Garbage collection significantly affects the performance of your app.

Deploying the app to your environment

Set the variable value as follows:

GOGC=150 ./<app_binary>

docker run -it -e GOGC=150 <docker-image>

The default is 100. This means that garbage collection is not triggered until the heap has
grown by 100% since the previous collection. Setting the variable to a higher value (for
example, GOGC=200) delays the start of a garbage collection cycle until the live heap has

TIBCO Flogo® Enterprise User Guide

200 | Performance Tuning

grown to 200% of the previous size. Setting the variable to a lower value (for
example, GOGC=20) increases the frequency of garbage collection as less new data can be
allocated on the heap before triggering a collection.

Case Study
This use case illustrates the impact of the GOGC variable on performance.

App under test - GOGC

In this low latency scenario, you can observe significant improvement in-app performance
while increasing the GOGC variable value from 100 to 1600. It is advisable to test this value
for the specific scenario and understand its impact before tuning. You can get the best-
suited value by running the performance test in your test environment.

GOGC value can be tuned based on the workload and available resources after
validating your test environment.

Performance comparison with different GOGC values

TIBCO Flogo® Enterprise User Guide

201 | Performance Tuning

Flow Limit
Flow limit is useful when the engine needs to be throttled, as the FLOGO_ RUNNER_QUEUE_
SIZE engine variable specifies the maximum number of events that can be started before
pausing the process trigger. This ensures that the incoming requests do not overwhelm the
engine performance and the CPU and memory is preserved.

If the number of incoming requests on the trigger exceeds the FLOGO_ RUNNER_QUEUE_SIZE
limit, the engine pauses the trigger to get any new requests, but continues running the
existing ones. The engine resumes this trigger when all the requests currently under
processing are finished.

And this flow limit is not enforced by the engine unless the FLOGO_FLOW_CONTROL_
EVENTS variable is set to true for an application as an user-defined Engine Variable on the
Environment Variable tab of the Flogo Enterprise runtime environment.

Environment variables associated with Flow Limit

Environment
Variable Name

Default Values Description

 FLOGO_RUNNER_
QUEUE_SIZE

50 The maximum number of
events from all triggers that can

TIBCO Flogo® Enterprise User Guide

202 | Performance Tuning

Environment
Variable Name

Default Values Description

be queued by the app engine.

 FLOGO_RUNNER_
WORKERS

5 The maximum number of
concurrent events that can be
run by the app engine from the
queue.

FLOGO_FLOW_
CONTROL_EVENTS

 N/A If you set FLOGO_FLOW_CONTROL_
EVENTSas true, the Flow limit
functionality is enabled,
whenever the incoming requests
to trigger reaches FLOGO_
RUNNER_QUEUE_SIZElimit then
trigger is paused. When all the
requests currently under
processing are finished, the
trigger is resumed again.

Note: All the connectors supporting the flow limit functionality are mentioned in
their respective user guides.

CPU and Memory Monitoring

Top Command

Note: The top command works on Linux platforms only.

The top command is used for memory and CPU monitoring.

The top command produces an ordered list of running processes selected by user-specified
criteria. The list is updated periodically. By default, ordering is by CPU usage and it shows
the processes that consume maximum CPU. The top command also shows how much

TIBCO Flogo® Enterprise User Guide

203 | Performance Tuning

processing power and memory are being used, as well as the other information about the
running processes.

The top command output monitors the memory as well as the CPU utilization of the TIBCO
Flogo app binary.

The sample output is as follows:

Docker Stats Command
The docker stats command returns a live data stream for running containers. To limit
data to one or more specific containers, specify a list of container names or ids separated
by a space.

The docker stats command output monitors the memory as well as the CPU utilization of
the TIBCO Flogo Enterprise app container and TCI Flogo app container.

 l CPU % is the percentage of the host’s CPU the container is using.

 l MEM USAGE / LIMIT is the total memory the container is using and the total amount
of memory, it is allowed to use.

Runtime Statistics and Profiling
The Go language provides CPU and memory profiling capabilities. With the profiling tools
provided by Go, one can identify and correct the specific bottlenecks. You can make your
app run faster and with less memory.

The pprof package writes runtime profiling data in the format expected by the pprof
visualization tool. There are many commands available from the pprof command line.
Commonly used commands include top.

TIBCO Flogo® Enterprise User Guide

204 | Performance Tuning

For details about profiling, see the “Go Language Runtime Statistics and Profiling” section
of TIBCO Flogo® Enterprise User Guide.

TIBCO Flogo® Enterprise User Guide

205 | Samples

Samples
 When creating apps in TIBCO Flogo® Enterprise, you can import and customize any of the
predefined samples provided in the tci-flogo GitHub repository. These samples
demonstrate how to develop, test, and deploy a Flogo app using various out-of-the-box
capabilities. In the GitHub repository, the samples are organized by category and each
sample folder contains a readme. Follow the instructions in the readme to import the
sample to your local workspace and use it. The following samples are currently available:

Flow Design Concepts

Includes Hello World, Branching, Error Handling,
Loops, Subflows, and Shared Data samples

API Development

Includes REST, graphQL, and gRPC
samples

Array Mapping and Filtering

Includes array.forEach, json.path, and JavaScript
Activity samples

Connectors

Includes Flogo connector samples for
CRM, DB Connectors, Messaging, and more

Serverless

Includes sample for deploying a Flogo app as an Azure function

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/API-Development
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Connectors
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Serverless/Azure-Functions

TIBCO Flogo® Enterprise User Guide

206 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

 Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

 The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for TIBCO Flogo® Enterprise is available on the TIBCO Flogo® Enterprise
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

 l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

 l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-flogo-enterprise
https://docs.tibco.com/products/tibco-flogo-enterprise
https://support.tibco.com/
https://support.tibco.com/

TIBCO Flogo® Enterprise User Guide

207 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO Flogo® Enterprise User Guide

208 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, and Flogo are either registered trademarks or trademarks
of Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO Flogo® Enterprise User Guide

209 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2016-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Introduction
	Concepts
	Creating Your First REST API
	Procedure

	App Development
	Deployment and Configuration
	Building an App Executable
	Building Flogo App Executable and Docker Image Using Flogo - App Build CLI
	Flogo - App Build CLI Commands

	App Configuration Management
	Consul
	Using Consul
	Consul Connection Parameters
	Setting the Consul Connection Parameters
	Overriding an App Property at Runtime
	Overriding Values by Specifying New Values
	Overriding Values by Specifying New Values in the API Directly
	Important Considerations

	AWS Systems Manager Parameter Store
	Using the Parameter Store
	Parameter Store Connection Parameters
	Setting the Parameter Store Connection Parameters

	AWS AppConfig
	Using the AppConfig
	AppConfig Client Configuration

	Environment Variables
	Exporting App Properties to a File
	Using a JSON File to Override App Property Values
	Example: Overriding a Certificate Using a JSON File

	Overriding Security Certificate Values
	Example: Overriding a Certificate Using an Environment Variable

	Encrypting Password Values
	Azure Key Vault Secrets

	Container Deployments
	Kubernetes
	Deploying Flogo Apps to Kubernetes
	Using ConfigMaps with a Flogo App

	Managing Sensitive Information Using Kubernetes Secrets
	Configuring the Secrets
	Specifying the Path of the Volume Where the Secrets are Mounted
	Sample YAML File

	Amazon Elastic Container Service (ECS) and Fargate
	Deploying a Flogo App to Amazon ECS and Fargate

	Pivotal Cloud Foundry
	Deploying a Flogo App to Pivotal Application Service
	Building a Linux Binary
	Without Using a manifest.yml File
	Using a manifest.yml File
	Using Spring Cloud Configuration to Override App Properties
	Create a Repository and Properties File on Github
	Setup Spring Cloud Configuration on Pivotal Cloud Foundry
	Using Spring Cloud Configuration Service with Flogo

	Microsoft Azure Container Instances
	Deploying a Flogo App to a Microsoft Azure Container Instance
	Deploying a Flogo App to a Microsoft Azure Container Instance Using a YAML File

	Google Cloud Run
	Deploying a Flogo App to Google Cloud Run

	Red Hat OpenShift
	Deploying a Flogo App to Red Hat OpenShift
	Sample YAML File: Red Hat OpenShift

	Serverless Deployments
	Developing for Lambda
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Creating a Flow with Receive Lambda Invocation Trigger
	Deploying a Flow as a Lambda Function on AWS
	Deploying a Flow as a Lambda Function on AWS using AWS CLI

	Creating a Flow with AWS API Gateway Lambda Trigger
	Creating a Flow with S3 Bucket Event Lambda Trigger

	Deploying a Flogo App to Microsoft Azure Functions
	Creating the Azure Function App in the Azure Portal
	Creating the Azure Function App from the Azure CLI

	Deploying a Flogo App in Knative
	Troubleshooting Tips

	Monitoring
	About the TIBCO Flogo Enterprise Monitoring App
	Using the Flogo Enterprise Monitoring App
	Running Flogo Enterprise Monitoring as a Standalone App
	Running the TIBCO Flogo Enterprise Monitoring App On Docker
	Running the Flogo Enterprise Monitoring Application On Kubernetes
	Granting Access Using ClusterRole
	Configuring the Service Account
	Linking the ServiceAccount to the ClusterRole
	Linking the Flogo App to the Flogo Enterprise Monitoring Application
	Configurations in the Flogo App’s YAML File

	Configuring the Flogo Enterprise Monitoring App
	Registering a Flogo App with the Flogo Enterprise Monitoring App
	Examples

	About TIBCO Flogo® Flow State Manager
	Using Flogo Flow State Manager
	Configuring the PostgreSQL Database
	Running Flogo Flow State Manager as a Standalone App
	Running Flogo Flow State Manager on Docker
	Running Flogo Flow State Manager on Kubernetes
	Configuring Flogo Flow State Manager
	Starting Flogo Enterprise Monitoring with Details of Flogo Flow State Manager
	Starting the App Binary

	Viewing Statistics by Using Flogo Enterprise Monitoring app
	Apps Page
	Metrics Page
	Executions Page

	App Metrics
	Enabling App Metrics
	Enabling statistics collection using environment variables
	Example: retrieve specific metrics for an app

	Logging App Metrics
	Fields returned in the response
	Prometheus
	Using Prometheus to Analyze Flogo App Metrics
	Often-Used Queries

	OpenTelemetry Collector

	Distributed Tracing
	Tracing Apps Using Jaeger
	Tracing Apps by Using AWS X-Ray
	Enabling Tracing Using AWS X-Ray
	Search Using Annotations
	Metadata

	Tracing Apps by Using OpenTelemetry Collector
	Enabling Tracing for OpenTelemetry Collector
	Tracing With OpenTelemetry Collector
	Flogo Related Attributes in OpenTelemetry Collector

	Using APIs
	Healthcheck API
	Go Language Runtime Statistics and Profiling

	CPU and Memory Profiling
	Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration

	Environment Variables
	Pushing Apps to TIBCO Cloud

	Best Practices
	Performance Tuning
	Tuning Environment Variables
	FLOGO_RUNNER_TYPE
	POOLED Mode
	Deploying the app to your environment
	Case Study

	DIRECT Mode
	Deploying the app to your environment
	Case Study

	FLOGO_LOG_LEVEL
	Case Study

	GOGC
	Case Study

	Flow Limit

	CPU and Memory Monitoring
	Top Command
	Docker Stats Command
	Runtime Statistics and Profiling

	Samples
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

