
TIBCO FOCUS®

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Relational Data Adapter User’s Manual

Release 8207.27.0
March 2021
DN1001155.0321

Contents

1. Introduction to Adapters for Relational Data Sources . 17

Adapter Capabilities . 17

FOCUS and RDBMS Interaction . 18

The Adapter as an RDBMS Application .19

Implementing the Adapter for DB2 as an RDBMS Application. .19

Implementing the Adapter for Teradata as an RDBMS Application. .21

Implementing the Adapter for IDMS/SQL as an RDBMS Application. 21

Implementing the Adapter for Oracle as an RDBMS Application. 21

Environment . 22

Ease of Use . 22

Efficiency .22

Security . 23

2. Invoking Relational Adapters .25

Getting Started Under z/OS . 25

Accessing DB2 Under z/OS. 26

Accessing Teradata Under z/OS. 34

Accessing IDMS SQL Under z/OS. 35

Local Mode Access. 37

Both Central Version and Local Mode. .38

Accessing Oracle Under z/OS. .38

Additional Prerequisites: File Descriptions. 42

Issuing Commands . 43

Adapter Environmental Commands. 43

3. Connection, Authentication, and Security .45

SQL GRANT and REVOKE . 45

DB2 Security .45

DB2 CURRENT SQLID (z/OS). 46

Teradata Login Security . 47

Oracle Connection Attributes . 48

Connecting to an Oracle Database Server. 48

Authenticating a User on an Oracle Database Server. .48

Relational Data Adapter User’s Manual 3

Selecting an Oracle Connection to Access. 51

Oracle Support for DATABASE LINKs. 52

FOCUS DBA Security . 53

4. Describing Tables to FOCUS . 55

Creating Master and Access Files .55

Master Files . 56

File Attributes in the Master File. 57

Segment Attributes in the Master File. .60

Field Attributes in the Master File. 61

Data Type Support. 64

DB2 Data Type Support . 65

Teradata Data Type Support. .68

Oracle Data Type Support. 71

IDMS/SQL Data Type Support. 77

Additional Attributes. .79

FIELDTYPE=R. .84

Access Files . 86

Segment Declarations in the Access File. 86

Field Declarations (DB2 Only). 94

The OCCURS Segment . 94

Creating an OCCURS Segment. 95

The ORDER Field. .96

5. Multi-Table Structures . 99

Types of Embedded Joins .99

Advantages of Multi-table Structures . 100

Creating a Multi-table Structure . 101

Multi-table Master Files. .101

Multi-table Access Files. .108

Multi-field Embedded Equijoins . 110

6. Automated Procedures . 113

Creating File Descriptions . 114

AUTODB2 . 114

Contents

4

AUTODB2 Support for DDF. 115

How to Use AUTODB2. 116

The Main Menu. 117

Main Menu PFkeys. .120

The Table Selection Screen. 123

The Child Selection Screen. 125

The Common Column Selection Screen. 125

Completing the Description. 126

Using PFkeys From non-Main Menu Screens. .127

Retaining the List of Master Files Generated. 127

Changing the AUTODB2 Default Data Sets. 128

The z/OS Parameter Log File. 128

AUTODB2 Usage Notes. .129

AUTODB2 in Batch Mode. 129

AUTODBC . 131

How to Use AUTODBC. 132

Security Logon Screen. 133

Primary Option Menu. .134

Option 1: Displaying ADUCOL Contents. 135

Option 2: Maintaining the ADUCOL. 135

Option 3: Generating Master and Access Files. .137

Option 4: Redefining Your Teradata Security Profile. .141

Option 5: Exiting AUTODBC. 141

Results of the Master File Generation Facilities .142

Common Errors. .145

AUTODB2 Sample Session. 146

AUTODBC Sample Session. .153

Generating a Master and Access File Using the CREATE SYNONYM Command 160

Creating Tables: The CREATE FILE Command .162

CREATE FILE Prerequisites and Processing. 162

7. The Adapter Optimizer . 171

Optimizing Requests . 171

Contents

Relational Data Adapter User’s Manual 5

Optimization Logic .174

Optimizing Record Selection and Projection . 175

Record Selection. 175

Optimizing Selection of Relational Variable Length Character Data Types. 176

Projection. .177

Optimizing Joins .178

RDBMS and FOCUS Join Management. 178

Join Optimization Logic. 179

Optimization of Joins Between Heterogeneous Data Sources. 181

Optimizing Sorts . 182

Optimizing Aggregation . 183

Optimizing DEFINE Fields . 184

Controlling Optimization of Calculations. 184

Optimizing DEFINE Fields Referenced in FOCUS BY Clauses (DB2, Teradata, Oracle). . . . 185

IF-THEN-ELSE Optimization. 186

Valued Expressions. 189

SQL Limitations on Optimization of DEFINE Expressions. .190

DEFINE FUNCTION Optimization . 191

Optimizing Function Calls . 192

Optimization of the HPART, DPART, HDIFF, HDATE, and DATEDIF Functions. 193

Optimization of the DATEDIF and HDIFF Functions. 193

Optimization of the HPART and DPART Functions. .196

Optimization of the HDATE Function. 198

Passing the SUBSTR Character Function to SQL. .200

Passing Function Calls Directly to a Relational Engine Using SQL.Function Syntax.200

The FOCUS EXPLAIN Utility (DB2 and Teradata) . 203

EXPLAIN Processing Overview. 204

Using the EXPLAIN Utility. .204

Sample EXPLAIN Report for DB2. 208

Sample EXPLAIN Report for Teradata. 210

8. Advanced Reporting Techniques . 213

FOCUS and SQL Similarities . 214

Contents

6

The TABLEF Command . 214

Creating Tables Using the HOLD Command . 215

Master Files Generated by HOLD. .218

Access Files Generated by HOLD. .220

Other Files Generated by HOLD. 221

Usage Restrictions for HOLD. 221

Extract File Conversion Charts. 221

HOLD FORMAT SAME_DB. 225

Column Names in the HOLD File. 229

Primary Keys and Indexes in the HOLD File. .229

Using the Dynamic JOIN Command . 230

Constructing a Single-field Dynamic Equijoin. 231

Constructing a Multi-field Dynamic Equijoin. 236

Constructing a Conditional Join. 240

Optimizing Non-Equality WHERE-based Left Outer Joins. 242

Controlling Outer Join Optimization .245

Missing Rows of Data in Cross-referenced Tables .247

The SET ALL Command. 247

Missing Rows in Unique Descendants. 248

Missing Rows in Non-unique Descendants. 251

Summary Chart. .255

JOIN Utilities .256

CHECK FILE. .256

? JOIN. 258

JOIN CLEAR. 259

Implementing Search Limits . 260

Array Blocking for SELECT Requests . 262

Multiple Retrieval Paths . 262

Multiple Retrieval Paths With Sort Phrases and Screening Tests. .263

9. Direct SQL Passthru . 265

Direct SQL Passthru Advantages . 265

Invoking Direct SQL Passthru . 266

Contents

Relational Data Adapter User’s Manual 7

Invoking Automatic Passthru. 266

Issuing Commands and Requests . 267

Displaying the Effects of UPDATE and DELETE Commands. .269

Issuing Adapter Environmental Commands. 270

Issuing Native SQL Commands (Non-SELECT). .271

Issuing SQL SELECT Commands. 271

The SQLOUT Master File. 273

Creating a FOCUS View With Direct SQL Passthru. 281

Parameterized SQL Passthru .283

Parameterized SQL Command Summary. 284

Using the SQL Passthru BEGIN/END SESSION Commands. 285

Using the SQL Passthru COMMIT WORK Command. 286

Using the SQL Passthru ROLLBACK WORK Command. 287

Using the SQL Passthru PREPARE Command. 287

Using the SQL Passthru EXECUTE Command. 289

Using the SQL Passthru PURGE Command. 291

Using the SQL Passthru BIND Command. 291

Parameterized SQL Passthru Sample Session. 293

10. Controlling Connection Scope . 295

Invoking Actions in Response to Events . 295

Understanding Actions . 298

AUTOCOMMIT. 298

AUTOCLOSE. 298

AUTODISCONNECT. .300

Action and Event Combinations .300

SET AUTOCOMMIT ON CRTFORM. .301

SET AUTOCOMMIT ON FIN. 301

SET AUTOCLOSE ON COMMAND. 302

SET AUTODISCONNECT ON COMMIT. .302

SET AUTOCLOSE ON FIN. 303

SET AUTODISCONNECT ON FIN. 303

Combinations of SET AUTOaction Commands . 304

Contents

8

Establishing Different Types of FOCUS Sessions .304

The Default Adapter Session. 305

The User-Controlled Session. 306

The Pseudo-Conversational Session. 306

11. Adapter Commands . 309

Issuing Adapter Commands .309

Querying Adapter Parameter Settings . 310

Parameters That Apply to Multiple Adapters . 312

CONVERSION. 312

CONVERSION LONGCHAR (DB2, Oracle, Teradata). .314

DBSPACE. .316

DEFDATE. 317

EXPLAIN (DB2, Teradata). 317

FETCHSIZE (DB2, Oracle). 318

INSERTSIZE (DB2 CLI, Oracle). 319

IXSPACE (DB2, IDMS/SQL, Oracle). 319

OPTIFTHENELSE. 321

OPTIMIZATION. .321

OWNERID (DB2, Teradata, Oracle). 322

PASSRECS. .323

SQLJOIN OUTER (DB2, Teradata, Oracle). 324

TRIM_LITERALS (DB2, Oracle, Teradata). 325

VARCHAR (DB2, Oracle, Teradata). .326

Parameters That Apply to DB2 Only . 326

BINDOPTIONS. 327

CURRENT DEGREE. 328

CURRENT SQLID. .328

ERRORTYPE. .329

ISOLATION (DB2). 330

PLAN. .331

SSID. 332

NOCOLUMNTITLE. 333

Contents

Relational Data Adapter User’s Manual 9

Parameters That Apply to Teradata Only . 333

Teradata CONNECTION_ATTRIBUTES. 333

TRANSACTION. .334

Parameters That Apply to IDMS/SQL Only .335

CURRENT SCHEMA. 335

TRANSACTION. .336

IDMS SQL Session Control: The CONNECT Command. 337

IDMS SQL Session Control: Other Session Commands. .337

Parameters That Apply to Oracle Only . 338

Oracle CONNECTION_ATTRIBUTES. 338

DATETIME_PROCESS. .340

DEFAULT_CONNECTION. .340

ORACHAR. .341

ORANUMBER. .342

SPMAXPRM. 342

Parameters That Apply to MODIFY Only . 343

LOADONLY. .343

AUTOCOMMIT ON CRTFORM. .344

ERRORRUN. 346

Adapter Dialogue Manager Variables . 346

Dialogue Manager Variables for the Adapter for DB2. .347

Dialogue Manager Variables for the Adapter for Teradata. 347

Dialogue Manager Variables for the Adapter for IDMS/SQL. 348

Dialogue Manager Variables for the Adapter for Oracle. 348

12. Maintaining Tables With FOCUS . 349

Overview of Data Source Maintenance Facilities . 349

Types of Relational Transaction Processing. .350

The Role of the Primary Key. 351

Index Considerations. .351

Modifying Data .352

The MATCH Command . 353

Adapter MATCH Behavior. 354

Contents

10

The NEXT Command . 355

NEXT Processing Without MATCH. 357

NEXT Processing After MATCH on a Full Key or on a Superset. 358

NEXT Processing After MATCH on a Non-Key Field or Partial Key. 360

INCLUDE, UPDATE, and DELETE Processing . 362

RDBMS Transaction Control Within MODIFY . 365

Transaction Termination (COMMIT WORK). 367

Teradata Transaction Termination: BEGIN/END TRANSACTION. 368

RDBMS Transaction Termination (ROLLBACK WORK). .369

Using the Return Code Variable: FOCERROR. 371

Using the Adapter SET ERRORRUN Command. .372

The DB2 Resource Limit Facility. 373

Referential Integrity .373

RDBMS Referential Integrity. 374

FOCUS Referential Integrity. 375

FOCUS INCLUDE Referential Integrity. 375

FOCUS DELETE Referential Integrity. 377

Inhibiting FOCUS Referential Integrity. .378

The MODIFY COMBINE Facility .379

How FOCUS Creates a COMBINE Structure. 381

SET INCLUDE SUBTREE. .382

The LOOKUP Function .383

The FIND Function . 384

Isolation Levels and Locks .385

DB2 Isolation Levels. 385

Changing the DB2 Isolation Level. 386

Changing the DB2 Isolation Level by Switching to Another Plan. .387

Isolation Levels in IDMS/SQL. 388

Oracle Locks. 390

Issuing SQL Commands in MODIFY . 390

Change Verify Protocol: AUTOCOMMIT ON CRTFORM . 391

The FOCURRENT Variable. 393

Rejected Transactions and T. Fields. 394

Contents

Relational Data Adapter User’s Manual 11

Loading Tables Faster: The MODIFY Fastload Facility . 396

DB2 and Oracle Array Blocking for INSERT Requests. .397

13. Static SQL (DB2) . 401

Static SQL Overview . 402

Static SQL Requirements .403

Creating a Static Procedure for DB2 . 404

Write the FOCEXEC. .405

Allocate the Required DDNAMEs. 405

Optionally Issue the SET STATIC Command. .406

Optionally Issue the SET SSID Command. 408

Compile the FOCEXEC. 408

Optionally BIND the Plan for the FOCEXEC. 408

Authorize Users to Run the Plan. 409

Run-time Requirements. .409

Processing and Security Overview. 410

DB2 Static MODIFY Example. 410

Plan Management in DB2 . 413

Basic Plan Management. 413

Extended Plan Management. .414

Resource Restrictions .415

A. Additional Topics .417

Status Return Variable: &RETCODE . 417

Standard FOCUS and Adapter Differences . 418

Adapter for DB2 Stored Procedure Support (CLI Only) .420

Adapter for Oracle Stored Procedure Support .423

Adapter for Teradata Stored Procedure and Macro Support . 425

Default Date Considerations . 427

The Default Date Value. 427

The Adapter SET DEFDATE Command. .428

Effects of DEFDATE on Existing Applications. 428

Chart: FOCUS Date Values for User Input Values. 429

Remote Segment Descriptions . 430

Contents

12

Long Field Name Considerations . 433

Limitations on Long Field Names. .433

Describing a Long Field Name in the Access File (AUTODBC). 433

Determining DB2 Decimal Notation at Run-time .434

CALLDB2: Invoking Subroutines Containing Embedded SQL . 435

Creating CALLDB2-Invoked Subroutines. 437

CALLDB2 Run-time Requirements. 442

The DB2 Distributed Data Facility . 443

File Descriptions for DDF. 443

Accessing Tables at Different Locations. .444

DB2 DRDA Support . 444

Level 1 DRDA Support: CONNECT. 444

Level 2 DRDA Support. .445

Read-only Access to IMS Data From DB2 MODIFY Procedures . 446

Prerequisites for DB2 Access to IMS Data. .447

Implementation of DB2 Access to IMS Data. 447

Run-time Requirements for DB2 Access to IMS. 450

B. SQL Codes and Adapter Messages . 453

Common SQL Return Codes for DB2 . 453

Common DBC Return Codes for Teradata . 454

Common User Errors and Corrections . 455

Accessing Adapter Messages . 456

C. File Descriptions and Tables . 459

Samples Overview . 459

ADDRESS Sample . 460

ADDRESS MASTER. .460

ADDRESS FOCSQL. 460

ADDRESS Diagram. .461

COURSE Sample . 461

COURSE MASTER. .461

COURSE FOCSQL. 461

COURSE Diagram. 462

Contents

Relational Data Adapter User’s Manual 13

DEDUCT Sample . 462

DEDUCT MASTER. 462

DEDUCT FOCSQL. 463

DEDUCT Diagram. 463

EMPINFO Sample .464

EMPINFO MASTER. 464

EMPINFO FOCSQL. 464

EMPINFO Diagram. 465

FUNDTRAN Sample . 465

FUNDTRAN MASTER. .465

FUNDTRAN FOCSQL. 466

FUNDTRAN Diagram. .466

PAYINFO Sample . 466

PAYINFO MASTER. .466

PAYINFO FOCSQL. 467

PAYINFO Diagram. 468

SALINFO Sample . 468

SALINFO MASTER. .468

SALINFO FOCSQL. 468

SALINFO Diagram. 469

ECOURSE Sample . 469

ECOURSE MASTER. .469

ECOURSE FOCSQL. 470

ECOURSE Diagram. .471

EMPADD Sample . 471

EMPADD MASTER. .472

EMPADD FOCSQL. 472

EMPADD Diagram. .474

EMPFUND Sample .474

EMPFUND MASTER. 474

EMPFUND FOCSQL. .475

EMPFUND Diagram. .476

EMPPAY Sample . 476

Contents

14

EMPPAY MASTER. 477

EMPPAY FOCSQL. 477

EMPPAY Diagram. 479

SALDUCT Sample . 479

SALDUCT MASTER. 479

SALDUCT FOCSQL. 480

SALDUCT Diagram. 481

SALARY Sample .481

SALARY MASTER. 481

SALARY FOCSQL. .482

SALARY Diagram With OCCURS Segment. 483

DPBRANCH Sample .483

DPBRANCH Table Definition. 483

DPBRANCH Contents. .484

DPINVENT Sample .484

DPINVENT Table Definition. 484

DPINVENT Contents. 484

DPVENDOR Sample .484

DPVENDOR Table Definition. 484

DPVENDOR Contents. .485

D. Tracing Adapter Processing .487

Available Traces .487

Activating Trace Components . 489

Activating the Trace Destination . 490

Deactivating Trace Components . 491

Trace Activation and Deactivation Examples .491

Querying Traces . 492

Allocating FSTRACE . 492

How to Allocate FSTRACE Online. 493

How to Allocate FSTRACE in Batch. 493

How to Free Trace Allocations. 493

Legal and Third-Party Notices . 495

Contents

Relational Data Adapter User’s Manual 15

Contents

16

Chapter1 Introduction to Adapters for Relational
Data Sources

With the relational adapters, you can use FOCUS to access DB2, Teradata, Oracle, and
CA-IDMS/DB (with the SQL option) tables and views. FOCUS is well adapted to relational
environments and fully supports the relational data model.

Beginners as well as advanced data processing professionals can take advantage of
adapter retrieval and analysis facilities, including easy-to-use, menu-driven query tools
and a powerful reporting language that can satisfy virtually any requirement. FOCUS
Master and Access Files integrate all facilities and provide transparent access to the
underlying relational data source.

In this chapter:

Adapter Capabilities

FOCUS and RDBMS Interaction

The Adapter as an RDBMS Application

Environment

Ease of Use

Efficiency

Security

Adapter Capabilities

The relational adapters provide sophisticated data retrieval facilities as well as transaction
processing and application development tools for updating and maintaining tables resident on
the Relational Database Management System (RDBMS). The FOCUS transaction processors
Maintain and MODIFY support interactive maintenance procedures as well as batch
maintenance using external input files.

The adapters can manage multi-table, multi-record processing supported by all the constructs
of a complete programming language (for example, PERFORM groups, computations, data
value validations, error handling, GOTO commands, and IF-THEN-ELSE logic). They permit you to
update multiple tables in a single procedure. They respect all RDBMS referential integrity rules
while, optionally, maintaining their own referential integrity restrictions that you can specify
within the update procedures themselves or in the Master Files.

Relational Data Adapter User’s Manual 17

Additionally, you can embed SQL statements (the language required by the RDBMS) directly
into FOCUS application code to take advantage of SQL commands that control updates and
locks (COMMIT WORK, ROLLBACK WORK), create RDBMS objects (CREATE INDEX, CREATE
TABLE), and define security privileges (GRANT, REVOKE). With the Direct SQL Passthru facility,
you can even include SQL SELECT statements in report requests and retrieve answer sets from
the RDBMS. A Dialogue Manager variable indicates the success or failure of each SQL
command. You can create new tables with SQL commands or with the FOCUS CREATE FILE
command.

FOCUS complements RDBMS security features by permitting controlled data access at the
user, table, field, or field-value levels. You can use FOCUS security to enhance existing RDBMS
security.

The adapters translate FOCUS retrieval and update requests into an equivalent set of SQL
statements. They also initiate and monitor communication between themselves and the
RDBMS, and provide descriptive error message and recovery support when necessary.

The two distinct components of the adapters are Read and Write:

The Read component translates FOCUS retrieval requests (such as TABLE and GRAPH) into
SQL statements that define the request to the RDBMS. When the RDBMS returns an
answer set in response to these statements, the adapter passes the answer set to the
FOCUS report writer. The report writer can process data from any FOCUS-readable file.

The Write component generates SQL statements from standard Maintain or MODIFY
requests that retrieve and maintain data stored in RDBMS tables.

FOCUS and RDBMS Interaction

FOCUS and the RDBMS interact as follows:

1. Given a TABLE, Maintain, or MODIFY request, the adapter builds SQL statements that
define the request in terms the RDBMS can understand.

2. Having received these SQL statements from the adapter, the RDBMS retrieves or updates
data targeted by the request.

3. In response, the RDBMS sends the data (answer set) and/or return code back to the
adapter, which in turn passes it to FOCUS for further processing (for example, CRTFORM
display and value changes).

FOCUS and RDBMS Interaction

18

The following diagram illustrates FOCUS interacting with a DB2 data source:

The Adapter as an RDBMS Application

Each relational adapter is an RDBMS application. The particular RDBMS determines how its
adapter is implemented.

Implementing the Adapter for DB2 as an RDBMS Application

The adapter functions as an RDBMS application that normally executes dynamic SQL. As such,
it must be registered with the RDBMS in the same way as any other application.

All applications that access DB2 tables on z/OS go through a precompile procedure prior to
normal compilation. The precompiler copies all of the SQL statements from the application into
a separate module called a Database Request Module (DBRM). It also modifies the original
application program by transforming its SQL statements into comments and replacing them
with calls to the DBRM. The modified application program can then go through the usual
process for creating an executable load module.

The SQL statements from the original application program must also be made executable. The
DBRM undergoes its own compilation and optimization process called a bind. The bind
optimizes the SQL code, performs security checking, and determines the most efficient access
path to the required data (the access path identifies available resources, such as specific
indexes and scan methodologies for traversing the data source). The result of the bind is
called an application plan or an application package.

1. Introduction to Adapters for Relational Data Sources

Relational Data Adapter User’s Manual 19

The bind procedure used with the adapter binds separate DBRMs into small application
packages, which you then bind into a special type of application plan that consists of pointers
to each application package. The advantage of this is that you can re-bind individual packages
without having to re-bind the entire application plan. In a distributed database environment,
application packages are essential.

During execution, the program load module works in conjunction with the application plan or
access module under control of the RDBMS.

The following diagram illustrates the process of preparing an application for execution:

You can use either dynamic or static SQL in MODIFY requests. Dynamic SQL is the default for
the adapter. However, even to use static SQL, you must have the adapter installed. The choice
of dynamic or static SQL has the following effects on compilation and bind processing:

With dynamic SQL, the adapter installation includes the precompile, compile, link-edit, and
bind (adapter installation produces an application plan or application package for the
adapter). The source program for the precompiler is an Assembler program that the adapter
calls when it needs to execute SQL statements.

With static SQL, you issue a FOCUS command to convert your FOCEXEC into a source
program for the precompiler. The source program contains the SQL that would be generated
by the FOCEXEC.

At run time, the adapter executes static MODIFY procedures without further processing.

The Adapter as an RDBMS Application

20

Static SQL (DB2) on page 401 discusses the advantages of static SQL and describes
static module creation.

Implementing the Adapter for Teradata as an RDBMS Application

The Adapter for Teradata is an application program that contains dynamic SQL only. No
preprocessing is required when installing the adapter. The Adapter for Teradata is delivered as
a load library. On z/OS, you must link-edit it with the Teradata libraries.

The Teradata RDBMS and data sources reside on a UNIX box. The adapter communicates with
the Teradata RDBMS on UNIX using the Teradata Director Program (TDP) communicating
across a Block Multiplexor Channel. The communications link between your address space and
the Teradata Director Program (TDP) is implemented with either z/OS XMS (Cross Memory
Services) or Supervisor Call (SVC). Your systems programming group determines the type of
link during Teradata installation.

The following diagram illustrates this configuration:

Implementing the Adapter for IDMS/SQL as an RDBMS Application

The Adapter for IDMS/SQL is an application program that contains dynamic SQL only. No
preprocessing is required when installing the adapter. The Adapter for IDMS/SQL is delivered
as a fully executable load module.

Implementing the Adapter for Oracle as an RDBMS Application

The Adapter for Oracle is an application program that contains dynamic SQL only. No
preprocessing is required when installing the adapter.

1. Introduction to Adapters for Relational Data Sources

Relational Data Adapter User’s Manual 21

Environment

The relational adapters operate in conjunction with FOCUS to access:

DB2 under z/OS in TSO and batch.

Teradata under z/OS in TSO and batch.

CA-IDMS/DB with the SQL option under z/OS in TSO and batch.

Oracle under z/OS in TSO and batch.

The adapters are compatible with all currently supported RDBMS releases except where noted.
In addition to DB2, Teradata, Oracle, and CA-IDMS/DB tables, FOCUS accesses FOCUS data
sources, sequential and delimited data sources, VSAM files, and, with the appropriate
adapters installed, many other data sources such as IMSࡊ, CA-IDMS®/DB, CA-Datacom®/DB,
ADABAS®, and Model 204®.

Ease of Use

With any of the relational adapters installed, you can use the FOCUS language to request
access to RDBMS tables and views. There is no need for specialized subroutines or embedded
SQL commands, although with the Direct SQL Passthru facility you can include all SQL
commands in report requests.

To make a table intelligible to FOCUS, describe each table or view once in FOCUS terminology.
FOCUS stores this description as a Master File and an associated Access File. Once you
create Master and Access Files for an RDBMS table, you can refer to the individual columns of
the table using the Master File field name or the RDBMS column name. The AUTODB2 and
AUTODBC facilities can create Master and Access Files for you automatically. (Issuing requests
through the Direct SQL Passthru facility eliminates the need for Master and Access Files but
retains all FOCUS reporting capabilities.)

Once you have a Master and Access File for a table, you can use all FOCUS facilities available
at your site, such as the Report Writer, the database maintenance language, graphics, and
statistics. You do not need to know SQL.

Efficiency

The adapters retrieve from the RDBMS only those rows or columns referenced in the FOCUS
report request. Additionally, the adapters may pass to the RDBMS all of the work required to
join, sort, and aggregate data. This reduces the volume of RDBMS-to-FOCUS communication,
resulting in faster response times for adapter users.

Environment

22

The Adapter for DB2 fully supports the DB2 Distributed Data Facility. It appends a FOR FETCH
ONLY clause to SELECT statements passed to DB2. This clause assists the DB2 optimizer in
access path selection, and offers significant performance improvement in the distributed
database environment. AUTODB2 also supports three-part table names. In addition, the
adapter supports the IBM Distributed Relational Database Architectureࡊ (DRDA®). For a
description of adapter DDF and DRDA support, see Additional Topics on page 417.

Security

FOCUS respects all existing RDBMS security. That is, an adapter user must be authorized, in
RDBMS terms, to retrieve data or update tables. This authorization must come from the
RDBMS database administrator or another authorized user.

FOCUS also provides its own security facilities. You can use them as a complement to RDBMS
security. FOCUS security can enforce the following levels of restriction:

File-level security to prevent access to a table.

Field-level security to limit the fields within a table that are accessible to a user.

Field-value security to limit the rows within a table that are accessible to a user based on
the specified field's values.

Refer to the Describing Data manual for information on DBA security.

1. Introduction to Adapters for Relational Data Sources

Relational Data Adapter User’s Manual 23

Security

24

Chapter2
Invoking Relational Adapters

This chapter explains how to invoke the relational adapters. It contains:

Sample CLISTs, batch JCL, and required DDNAMEs. (See Getting Started Under z/OS
on page 25.)

The adapter SQL ? command for displaying current session defaults. (See Issuing
Commands on page 43.) Adapter Commands on page 309 describes environmental
commands for changing adapter defaults.

Note: The samples provided in this chapter do not contain site-specific information.
Please check with your database administrator for MVS high-level qualifiers, passwords,
and proper authorization.

In this chapter:

Getting Started Under z/OS

Issuing Commands

Getting Started Under z/OS

This section contains information about accessing each adapter under z/OS. Before you can
invoke an adapter, it must be installed and operational.

In the z/OS operating environment, TSO controls the adapter and the FOCUS session. The
adapter can access RDBMS tables interactively from TSO, with TSO batch processing, or as a
z/OS batch job.

You can allocate the FOCUS and adapter load libraries (both from the same version and
release of FOCUS) directly in your CLIST, or your site may choose to allocate them to DDNAME
STEPLIB in your TSO logon procedure. (The FOCUS installation guide discusses the FOCUS
CLIST in greater detail.)

To display the current FOCUS version and release, issue the ? RELEASE query command at the
FOCUS prompt.

Relational Data Adapter User’s Manual 25

To run FOCUS interactively, you invoke a CLIST from TSO using standard allocations for
DDNAMEs FOCEXEC, ERRORS, and MASTER. Allocate FOCSQL to the library containing Access
Files. Allocate FOCLIB to the FOCUS product load library. You must create a new member in the
ERRORS concatenation called EDASERVE which will contain the access parameters for the
relational adapter you will be accessing.

The allocations in batch are similar to those in the CLIST, with a few changes. The STEPLIB
allocation replaces the FOCLIB allocation from the CLIST. You must allocate the file containing
executable FOCUS commands to DDNAME SYSIN. Output is written to the file or SYSOUT class
allocated to DDNAME SYSPRINT.

The following topics provide CLIST and JCL examples for accessing each adapter. The FOCUS
commands are coded in-stream in the samples. However they could have been stored in a
data set. The FIN command is required to terminate FOCUS.

For proper JOB card specifications and data set names for your site, consult with your system
support staff. For additional information on FOCUS and batch processing, refer to your FOCUS
documentation.

Note: The discussions in this section assume that all of your FOCUS and adapter libraries are
catalogued under the same z/OS high-level qualifier. The examples throughout this section use
the identifier hlq to refer to this high-level qualifier.

Accessing DB2 Under z/OS

You must know whether the adapter was installed with the Call Attachment Facility (CAF) or
Call Level Interface (CLI). The CLIST requirements are different in each case.

You must also know the four-character subsystem identifier (SSID) of the DB2 subsystem you
will access and the plan name assigned to the Adapter for DB2 when it was installed. The
defaults for the SSID and plan values are DSN and DSQL respectively, unless your site
changed these defaults at installation time.

If the adapter was installed with the Call Attachment Facility (CAF), you can use the SET SSID
and SET PLAN environmental commands to specify the SSID and plan name from FOCUS (see
Adapter Commands on page 309). For CLI installations, you will connect to DB2 using a
CONNECT statement.

After you prepare your CLIST or JCL, ask your database administrator whether you require
SELECT, INSERT, and/or UPDATE privileges for the tables or views you wish to access.

Getting Started Under z/OS

26

Reference: Accessing the Adapter for DB2 Interactively Under CAF Using an EDASERVE
Configuration File

You can use this sample CLIST as a template. Edit it to conform to the standards of your site.

ALLOC F(FOCLIB) DA('hlq.FOCLIB.LOAD') SHR REUSE
ALLOC F(ERRORS) DA('user.DB2CAF.CFG' -
 'hlq.ERRORS.DATA') SHR REUSE
ALLOC F(MASTER) DA('user.MASTER.DATA' -
 'hlq.MASTER.DATA') SHR REUSE
ALLOC F(FOCSQL) DA('user.FOCSQL.DATA' -
 'hlq.FOCSQL.DATA') SHR REUSE
ALLOC F(FOCEXEC) DA('user.FOCEXEC.DATA' -
 'hlq.FOCEXEC.DATA') SHR REUSE
CALL 'hlq.FOCLIB.LOAD(FOCUS)'

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

Note:

Before executing your CLIST, you must be sure that your DB2 load libraries are available
either by allocating them to DDNAME STEPLIB or by having them in the LINKLIST.

The data set user.DB2CAF.CFG in the allocation for DDNAME ERRORS contains the
EDASERVE member, which will contain the following attributes:

db2_caf = y
db2_rel = 10
db2_access = y

where db2_rel is the version of DB2 that is being accessed.

You will need to set your SSID and PLAN either in the procedure or in a profile (FOCPROF)
using the following commands:

SQL DB2 SET SSID ssid

SQL DB2 SET PLAN planname

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 27

Execute the CLIST to invoke FOCUS and issue the following commands at the FOCUS prompt,
pressing Enter after each line.

SQL DB2 ?
SQL DB2
SELECT * FROM SYSIBM.SYSDUMMY1;
END

If the adapter settings and the request output displayed, the installation and connection were
successful. Issue the following command to exit FOCUS.

FIN

Reference: Accessing the Adapter for DB2 Interactively Under CAF Using the RRSET Module

You can use this sample CLIST as a template. Edit it to conform to the standards of your site.

ALLOC F(FOCLIB) DA('hlq.USE.FOCSQL.LOAD' -
 'hlq.FOCLIB.LOAD') SHR REUSE
ALLOC F(ERRORS) DA('hlq.ERRORS.DATA') SHR REUSE
ALLOC F(MASTER) DA('user.MASTER.DATA' -
 'hlq.MASTER.DATA') SHR REUSE
ALLOC F(FOCSQL) DA('user.FOCSQL.DATA' -
 'hlq.FOCSQL.DATA') SHR REUSE
ALLOC F(FOCEXEC) DA('user.FOCEXEC.DATA'
 'hlq.FOCEXEC.DATA') SHR REUSE
CALL 'hlq.FOCLIB.LOAD(FOCUS)'

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

Note:

Before executing your CLIST, you must be sure that your DB2 load libraries are available
either by allocating them to DDNAME STEPLIB or by having them in the LINKLIST.

You will need to set your SSID and PLAN either in the procedure or in a profile (FOCPROF)
using the following commands:

SQL DB2 SET SSID ssid

SQL DB2 SET PLAN planname

Getting Started Under z/OS

28

The data set hlq.USE.FOCSQL.LOAD in the FOCLIB allocation contains the RRSET module.

Execute the CLIST to invoke FOCUS and issue the following commands at the FOCUS prompt,
pressing Enter after each line.

SQL DB2 ?
SQL DB2
SELECT * FROM SYSIBM.SYSDUMMY1;
END

If the adapter settings and the request output displayed, the installation and connection were
successful. Issue the following command to exit FOCUS.

FIN

Reference: Accessing the Adapter for DB2 in Batch Under CAF Using an EDASERVE Configuration
File

You can use this sample JCL as a template. Edit it to conform to the standards of your site

//job card goes here
//*
//FOCDB2 EXEC PGM=FOCUS
//STEPLIB DD DSN=hlq.FOCSQL.LOAD,DISP=SHR
// DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
// DD DSN=DSNn10.SDSNLOAD,DISP=SHR
//ERRORS DD DSN=hlq.ERRORS.DATA,DISP=SHR
// DD DSN=user.DB2CAF.CFG,DISP=SHR
//MASTER DD DSN=user.MASTER.DATA,DISP=SHR
// DD DSN=hlq.MASTER.DATA,DISP=SHR
//FOCEXEC DD DSN=user.FOCEXEC.DATA,DISP=SHR
// DD DSN=hlq.FOCEXEC.DATA,DISP=SHR
//FOCSQL DD DSN=user.FOCSQL.DATA,DISP=SHR
// DD DSN=hlq.FOCSQL.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SQL DB2 ?
SQL DB2
SELECT * FROM SYSIBM.SYSDUMMY1;
END
FIN
/*

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

n

Is the version of DB2 you will use with FOCUS.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 29

user

Is the high-level qualifier for the private version of a data set.

Note:

If the adapter settings and the request output displayed, the installation and connection were
successful.

The data set user.DB2CAF.CFG contains the EDASERVE member and must be allocated to
DDNAME ERRORS. The EDASERVE member contains the following attributes

db2_caf = y
db2_rel = 10
db2_access = y

where the release is the version of DB2 that is being accessed.

You will need to set your SSID and PLAN either in the procedure or in a profile (FOCPROF)
using the following commands:

SQL DB2 SET SSID ssid

SQL DB2 SET PLAN planname

Reference: Accessing the Adapter for DB2 in Batch Under CAF Using the RRSET Module

You can use this sample JCL as a template. Edit it to conform to the standards of your site

//job card goes here
//*
//FOCDB2 EXEC PGM=FOCUS
//STEPLIB DD DSN=hlq.USE.FOCSQL.LOAD,DISP=SHR
// DD DSN=hlq.FOCSQL.LOAD,DISP=SHR
// DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
// DD DSN=DSNn10.SDSNLOAD,DISP=SH
//ERRORS DD DSN=hlq.ERRORS.DATA,DISP=SHR
//MASTER DD DSN=user.MASTER.DATA,DISP=SHR
// DD DSN=hlq.MASTER.DATA,DISP=SHR
//FOCEXEC DD DSN=user.FOCEXEC.DATA,DISP=SHR
// DD DSN=hlq.FOCEXEC.DATA,DISP=SHR
//FOCSQL DD DSN=user.FOCSQL.DATA,DISP=SHR
// DD DSN=hlq.FOCSQL.DATA,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SQL DB2 ?
SQL DB2
SELECT * FROM SYSIBM.SYSDUMMY1;
END
FIN
/*

Getting Started Under z/OS

30

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

n

Is the version of DB2 you will use with FOCUS.

user

Is the high-level qualifier for the private version of a data set.

Note:

The data set hlq.USE.FOCSQL.LOAD contains the RRSET module and must be in the
allocation for DDNAME STEPLIB.

You will need to set your SSID and PLAN either in the procedure or in a profile (FOCPROF)
using the following commands:

SQL DB2 SET SSID ssid

SQL DB2 SET PLAN planname

If the adapter settings and the request output displayed, the installation and connection were
successful.

Reference: Accessing the Adapter for DB2 Interactively Using CLI

Edit the following CLIST to conform to the standards at your site. This CLIST assumes that the
adapter was installed with the Call Level Interface (CLI)

ALLOC F(FOCLIB) DA('hlq.FOCLIB.LOAD') SHR REUSE
ALLOC F(ERRORS) DA('user.DB2CLI.CFG' -
 'hlq.ERRORS.DATA') SHR REUSE
ALLOC F(MASTER) DA('user.MASTER.DATA' -
 'hlq.MASTER.DATA') SHR REUSE
ALLOC F(FOCSQL) DA('user.FOCSQL.DATA' -
 'hlq.FOCSQL.DATA') SHR REUSE
ALLOC F(FOCEXEC) DA('user.FOCEXEC.DATA' -
 'hlq.FOCEXEC.DATA') SHR REUSE
CALL 'hlq.FOCLIB.LOAD(FOCUS)'

where:

hlq

Is the high-level qualifier under which you installed FOCUS. In this example,
user.DB2CLI.CFG contain the members EDASERVE and FOCPROF.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 31

user

Is the high-level qualifier for a library allocated under the user ID of a specific user.

Note: user.DB2CLI.CFG contains the members EDASERVE and FOCPROF.

The EDASERVE member will contain the following attributes, where the db2_rel is the
release of DB2 being accessed:

db2_cli = y
db2_rel = 10
db2_access = y

FOCPROF can contain the connection command or the connection can be done directly in
the procedure. The connection string is:

-SET &CONSTR='db2locname/userid,password';
ENGINE DB2 SET CONNECTION_ATTRIBUTES <local> &CONSTR

Execute the CLIST to invoke FOCUS and issue the following commands at the FOCUS prompt,
pressing Enter after each line.

SQL DB2 ?
SQL DB2
SELECT * FROM SYSIBM.SYSDUMMY1;
END

If the adapter settings and the request output displayed, the installation and connection were
successful. Issue the following command to exit FOCUS.

Your DB2 database administrator can supply the parameters and the attachment facility
chosen at the time the adapter was installed.

Reference: Accessing the Adapter for DB2 in Batch Using CLI

If the FOCUS load libraries are not allocated in your TSO logon procedure, use the following JCL
after editing it to conform to the standards at your site. This CLIST assumes that the adapter
was installed with the Call Level Interface (CLI)

Getting Started Under z/OS

32

//FOCUSDB2 EXEC PGM=FOCUS,REGION=64M
//STEPLIB DD DSN=DSNn10.SDSNEXIT,DISP=SHR
// DD DSN=DSNn10.SDSNLOAD,DISP=SHR
// DD DSN=DSNn10.SDSNLOD2,DISP=SHR
// DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//DB2LOAD DD DSN=DSNn10.SDSNLOAD,DISP=SHR
//ERRORS DD DSN=user1.DB2CLI.CFG,DISP=SHR
// DD DSN=hlq.ERRORS.DATA,DISP=SHR
//FOCLIB DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//FOCEXEC DD DSN=hlq.FOCEXEC.DATA,DISP=SHR
//MASTER DD DSN=hlq.MASTER.DATA,DISP=SHR
//FOCSQL DD DSN=user1.FOCSQL.DATA,DISP=SHR
//SYSIN DD *
 SQL DB2 ?
 FIN
/*

where:

n

Is your version of DB2, for example, 10 (A).

hlq

Is the high-level qualifier under which you installed FOCUS. In this example,
hlq.FOCUS.DB2CLI.CFG contain the members EDASERVE and FOCPROF.

user1

Is the high-level qualifier for a library allocated under the user ID of a specific user.

Note: user1.DB2CLI.CFG contains the members EDASERVE and FOCPROF.

The EDASERVE member will contain the following attributes, where db2_rel is the release of
DB2 being accessed:

db2_cli = y
db2_rel = 10
db2_access = y

FOCPROF can contain the connection command or the connection can be done directly in
the procedure. The connection string is:

-SET &CONSTR='db2locname/userid,password';
ENGINE DB2 SET CONNECTION_ATTRIBUTES <local> &CONSTR

Your DB2 database administrator can supply the parameters and the attachment facility
chosen at the time the Ladapter was installed.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 33

Accessing Teradata Under z/OS

The communications link between your address space and the Teradata Director Program
(TDP) is implemented with either MVS/XMS (Cross Memory Services) or Supervisor Call (SVC).
(Your systems programming group determines the type of link during Teradata installation.)

After you prepare your CLIST or JCL, you must:

Issue the adapter SET CONNECTION_ATTRIBUTES command at the beginning of your
FOCUS session.

Obtain SELECT and/or UPDATE privileges from your DBC administrator.

For DBC/SQL GRANT information and the SET CONNECTION_ATTRIBUTES command, see
Connection, Authentication, and Security on page 45.

For information about the adapter SET AUTOCLOSE command, which enables you to control
logon interaction with Teradata, see Controlling Connection Scope on page 295.

Reference: Interactive Access to Teradata Under z/OS

Create a CLIST by editing the following sample CLIST to conform to the standards at your site.

ALLOC F(ERRORS) DA('hlq.DBCCLI.CFG' +
 'hlq.ERRORS.DATA') SHR REUSE
ALLOC F(FOCLIB) DA('hlq.FOCLIB.LOAD') SHR REUSE
ALLOC F(FOCEXEC) DA('hlq.FOCEXEC.DATA') SHR REUSE
ALLOC F(MASTER) DA('hlq.MASTER.DATA') SHR REUSE
ALLOC F(ACCESS) DA('user.ACCESS.DATA') SHR REUSE
CALL 'hlq.FOCLIB.LOAD(FOCUS)'

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

Note: In this example, hlq.DBCCLI.CFG contains the members EDASERVE and FOCPROF. The
EDASERVE member contains the following attributes:

dbc_cli = y
dbc_access = y

Getting Started Under z/OS

34

Reference: Batch Access to Teradata Under z/OS

Create a job by adding a JOB card and editing the following sample JCL to conform to the
standards at your site.

job card goes here
//SQLMX EXEC PGM=FOCUS,REGION=0M
//STEPLIB DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//ERRORS DD DSN=hlq.DBCCLI.CFG,DISP=SHR
// DD DSN=hlq.ERRORS.DATA,DISP=SHR
//FOCLIB DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FOCEXEC DD DSN=hlq.FOCEXEC.DATA,DISP=SHR
//MASTER DD DSN=hlq.MASTER.DATA,DISP=SHR
//ACCESS DD DSN=user.ACCESS.DATA,DISP=SHR
//SYSIN DD *
 ENGINE SQLDBC ?
 FIN
/*

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

Note: In this example, hlq.DBCCLI.CFG contains the members EDASERVE and FOCPROF. The
EDASERVE member contains the following attributes:

dbc_cli = y
dbc_access = y

Accessing IDMS SQL Under z/OS

Steps for invoking the adapter vary from site to site. You may be required to complete a series
of menus or to execute a CLIST. Since the adapter can operate under IDMS Central Version or
in Local Mode, you need to include allocations for the appropriate mode in your CLIST or JCL.

After you prepare your CLIST or JCL, ask your database administrator whether you require
SELECT, INSERT, and/or UPDATE privileges for the tables or views you need to access.

If your database administrator (DBA) has turned on IDMS SQL security, the proper privileges
must be granted to every adapter user. The DBA should grant you:

Table privileges that authorize certain operations, such as SELECT or UPDATE, on tables
and views.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 35

The proper CREATE DDL authorization, if you create tables with the FOCUS CREATE FILE
command or the Direct SQL Passthru facility.

For more information on security and table privileges, consult Connection, Authentication, and
Security on page 45. Additional prerequisites and file types are discussed in this chapter.

Example: Sample JCL for Central Version Access to IDMS

You can use the following sample JCL as a template for CV access. Add a valid job card and
edit it to conform to the standards and naming conventions at your site:

//job card goes here
//IDMSCV EXEC PGM=FOCUS
//STEPLIB DD DSN=highlvl.DBA.LOADLIB,DISP=SHR
// DD DSN=highlvl.LOADLIB,DISP=SHR
// DD DSN=prefix.IDMS.LOAD,DISP=SHR
// DD DSN=prefix.FOCLIB.LOAD,DISP=SHR
//ERRORS DD DSN=prefix.ERRNLS.DATA,DISP=SHR
// DD DSN=prefix.ERRORS.DATA,DISP=SHR
//MASTER DD DSN=prefix.MASTER.DATA,DISP=SHR
// DD DSN=userid.MASTER.DATA,DISP=SHR
//FOCIDMS DD DSN=prefix.ACCESS.DATA,DISP=SHR
//FOCEXEC DD DSN=prefix.FOCEXEC.DATA,DISP=SHR
// DD DSN=userid.FOCEXEC.DATA,DISP=SHR
//SYSCTL DD DSN=highlvl.SYSCTL,DISP=SHR
//SYSIDMS DD DSN=highlvl.SYSIDMS,DISP=SHR
//SYSIN DD *
? REL
TABLE FILE EMPFILE
PRINT EMP_NAME_0415
END
FIN

where:

highlvl

Is the high-level qualifier for Computer Associates supplied data sets.

prefix

Is the high-level qualifier for FOCUS production data sets.

userid

Is the high-level qualifier for a private data set belonging to the user.

Getting Started Under z/OS

36

Example: Sample CLIST for Central Version Access to IDMS

You can use the following sample CLIST as a template for CV access. Edit it to conform to the
standards and naming conventions at your site:

ALLOC DD(STEPLIB) DA('highlvl.DBA.LOADLIB'-
 'highlvl.LOADLIB') SHR REUSE
ALLOC F(FOCEXEC) DA('prefix.FOCEXEC.DATA' -
 'userid.FOCEXEC.DATA') SHR REUSE
ALLOC F(MASTER) DA('prefix.MASTER.DATA' -
 'userid.MASTER.DATA') SHR REUSE
ALLOC F(FOCIDMS) DA('prefix.ACCESS.DATA') SHR REUSE
ALLOC F(USERLIB) DA('prefix.IDMS.LOAD') SHR REUSE
ALLOC F(FOCLIB) DA('prefix.FOCLIB.LOAD') SHR REUSE
ALLOC F(ERRORS) DA('prefix.ERRNLS.DATA' -
 'prefix.ERRORS.DATA') SHR REUSE
ALLOC F(SYSCTL) DA('highlvl.SYSCTL') SHR REUSE
ALLOC F(SYSIDMS) DA('highlvl.SYSIDMS') SHR REUSE
CALL 'prefix.FOCLIB.LOAD(FOCUS)'

where:

highlvl

Is the high-level qualifier for Computer Associates supplied data sets.

prefix

Is the high-level qualifier for FOCUS production data sets.

userid

Is the high-level qualifier for a private data set belonging to the user.

Local Mode Access

The user must allocate all IDMS database files. These files must be allocated to the ddnames
that are assigned in the IDMS/DB Schema.

All journal file allocations must be made available along with the default local mode journal,
SYSJRNL, assigned to DD DUMMY.

In some cases, the libraries containing the subschema, DMCL, and IDMSINTB load modules
may not be authorized. If STEPLIB cannot be used for unauthorized IDMS libraries, in a local
mode job you can allocate these unauthorized modules to ddname CDMSLIB. With CDMSLIB
allocated, IDMS will search the CDMSLIB before STEPLIB to obtain all IDMS/DB specific load
modules.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 37

Both Central Version and Local Mode

The IDMS load modules IDMS and IDMSINTB must be made available at run-time, allocated to
the ddname STEPLIB.

When running a CLIST, the STEPLIB ddname is not valid. These members must be allocated to
either the link list or in the TSO logon procedure. Contact your Systems Programmer to add
these members.

The member names of the FOCUS Master Files and Access Files to read the subschema must
be identically named and made available at run time.

SYSIDMS can be allocated to identify the DMCL for both CV and LOCAL modes.

Accessing Oracle Under z/OS

You must indicate which Oracle subsystem is to be accessed.

Note: All Oracle tools and programs that use the Oracle Pro or High Level Interfaces (such as
the Adapter for Oracle) require the services of the SQL Storage Anchor Module (SQLANKOR).
This module resides in a library member for which the Oracle-recommended name is:

'ORACLE.V10203.CMDLOAD(CMDLOAD)' (for Oracle Version 10).

This module is generally placed in a STEPLIB, JOBLIB or system linklist library. It must be
present at run time.

Any application that accesses the Oracle RDBMS must provide a means of connecting to the
Oracle subsystem (or kernel).

Procedure: How to Connect to the Oracle Subsystem

You can set the Oracle SID by using the Oracle SET SSID command. You can issue this
command in the FOCPROF profile. Alternatively, if the SID is at most four characters, you can
specify it in your CLIST or JCL.

To set the SID using the SET SSID command, issue the following:

ENGINE SQLORA SET SID sid

where:

sid

Is the Oracle Subsystem ID.

This should be set before setting the USER or CONNECTION parameters and can be placed in
the FOCPROF member.

Getting Started Under z/OS

38

If the sid is at most four characters, you can specify it in either your CLIST or JCL, instead of in
FOCPROF, using the following DD allocation:

//ORA@sid DD DUMMY

where:

sid

Is the Oracle Subsystem ID.

In your CLIST, you also need to add the following allocation:

ALLOC F(ORA$LIB) DA('ORACLE.V10203.MESG') SHR REUSE

Where ORACLE.V10203.MESG is your installation Oracle MESG library.

The TSO session also needs to have the following data sets available to it in the STEPLIB
allocation, either explicitly or implicitly, using the naming conventions at your site:

ORACLE.V10203.CMDLOAD
ORACLE.V10203.MESG

If you are running in batch, the STEPLIB allocation in the JCL should have the following as part
of the concatenation:

// DD DSN=ORACLE.V10203.CMDLOAD,DISP=SHR
// DD DSN=ORACLE.V10203.MESG,DISP=SHR

The job also needs the ORA$LIB allocation:

//ORA$LIB DD DSN=ORACLE.V10203.MESG,DISP=SHR

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 39

Reference: Creating a Batch Job to Invoke FOCUS

Create a job by adding a JOB card and editing the following sample JCL to conform to the
standards at your site.

job card goes here
//SQLMX EXEC PGM=FOCUS,REGION=0M
//STEPLIB DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//ERRORS DD DSN=hlq.ORACLI.CFG,DISP=SHR
// DD DSN=hlq.ERRORS.DATA,DISP=SHR
//ORA$LIB DD DSN=ORACLE.V10203.MESG,DISP=SHR
//FOCLIB DD DSN=hlq.FOCLIB.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FOCEXEC DD DSN=hlq.FOCEXEC.DATA,DISP=SHR
//MASTER DD DSN=hlq.MASTER.DATA,DISP=SHR
//ACCESS DD DSN=user.ACCESS.DATA,DISP=SHR
//SYSIN DD *
 SQL SQLORA
 SELECT TABLE_NAME, OWNER, TABLESPACE_NAME FROM ALL_TABLES
 WHERE ROWNUM <= 10
 END
 FIN
/*

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

ORACLE.V10203.MESG

Is your installation Oracle MESG library.

Note: If the Oracle sid is at most four characters, you can specify it in your JCL, instead of in
FOCPROF. For information, see How to Connect to the Oracle Subsystem on page 38.

In this example, hlq.ORACLI.CFG has the member EDASERVE. EDASERVE contains the
following attributes:

ora_oci = y
ora_rel = 10
ora_access = y

If the job produces a list of tables, owners, and tablespaces, the adapter installation is
verified.

Getting Started Under z/OS

40

Note: The JESLOG may produce a message similar to the following, which can be ignored:

14.11.28 JOB23212 $HASP708 JOBNAME SYSIN OPEN FAILED
 959 RC=03 DATA SET ALREADY OPENED
 959 DSNAME=USERID.JOBNAME.JOBjobid.D0000101.?

where:

USERID

Is the USERID of the running JOB.

JOBNAME

Is the name of the JOB from the JOB card.

jobid

Is the system-assigned job number of the job.

D0000101

Is the system-generated identifier to keep the DSNAME unique.

Reference: Creating a CLIST to Invoke FOCUS Interactively

Create a CLIST by editing the following sample CLIST to conform to the standards at your site.

ALLOC F(ERRORS) DA('hlq.ORACLI.CFG' +
 'hlq.ERRORS.DATA') SHR REUSE
ALLOC F(ORA$LIB) DA('ORACLE.V10203.MESG') SHR REUSE
ALLOC F(FOCLIB) DA('hlq.FOCLIB.LOAD') SHR REUSE
ALLOC F(FOCEXEC) DA('hlq.FOCEXEC.DATA') SHR REUSE
ALLOC F(MASTER) DA('hlq.MASTER.DATA') SHR REUSE
ALLOC F(ACCESS) DA('user.ACCESS.DATA') SHR REUSE
CALL 'hlq.FOCLIB.LOAD(FOCUS)'

where:

hlq

Is the high-level qualifier for your FOCUS production data sets.

user

Is the high-level qualifier for the private version of a data set.

ORACLE.V10203.MESG

Is your installation Oracle MESG library.

Note: If the Oracle sid is at most four characters, you can specify it in your CLIST, instead of in
FOCPROF. For information, see How to Connect to the Oracle Subsystem on page 38.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 41

In this example, hlq.ORACLI.CFG has the member EDASERVE. EDASERVE contains the
following attributes:

ora_oci = y
ora_rel = 10
ora_access = y

Use your CLIST to invoke FOCUS, and issue the following command at the FOCUS prompt.

SQL SQLORA
SELECT TABLE_NAME, OWNER, TABLESPACE_NAME FROM ALL_TABLES
WHERE ROWNUM <= 10
END

If the command produces a list of tables, owners, and tablespaces, the adapter installation is
verified.

Issue the following command to exit FOCUS.

FIN

Additional Prerequisites: File Descriptions

The adapter requires a Master and Access File for each RDBMS table referenced by FOCUS. In
z/OS, file descriptions and FOCEXECs are stored as members of partitioned data sets (PDSs).
The partitioned data sets are allocated to the following DDNAMEs:

DDNAME Contents (PDS Members)

MASTER Master Files.

FOCSQL or ACCESS Access Files.

FOCEXEC Stored procedures.

Execute the AUTODB2 FOCEXEC supplied with the Adapter for DB2 or the AUTODBC CLIST
supplied with the Adapter for Teradata, to automatically create Master and Access Files for
existing RDBMS tables. You can customize the resulting descriptions with a text editor.
Automated Procedures on page 113, describes step-by-step instructions for the AUTO
facilities.

You can create new table definitions in the RDBMS from the FOCUS environment by issuing
either the FOCUS CREATE FILE command (after creating a Master File and an Access File) or
the SQL CREATE TABLE command. See Automated Procedures on page 113, for the FOCUS
CREATE FILE command.

Getting Started Under z/OS

42

Issuing Commands

Direct SQL Passthru is a facility for passing native SQL commands directly to the RDBMS
without intervention by FOCUS, and for issuing environmental commands that display or
change adapter default settings. For a detailed discussion of the Direct SQL Passthru facility,
consult Direct SQL Passthru on page 265.

Adapter Environmental Commands

The adapter provides environmental commands that display or change adapter default settings
for the duration of the FOCUS session. You can issue these commands from the FOCUS
command line or include them in a FOCEXEC. To display current adapter settings during a
FOCUS session, issue the following command:

{ENGINE|SQL} sqlengine ?

where:
sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDS, SQLDBC, SQLIDMS, or
SQLORA.

Example: Displaying Adapter for DB2 Settings

To display the current adapter settings for a DB2 session within FOCUS, issue the following
adapter query command:

> engine db2 ?
(FOC1440) CURRENT SQL INTERFACE SETTINGS ARE :
(FOC1442) CALL ATTACH FACILITY IS - : ON
(FOC1447) SSID FOR CALL ATTACH IS - : DBAA
(FOC1448) ACTIVE PLAN FOR CALL ATTACH IS - : USERCAF
(FOC1459) USER SET PLAN FOR CALL ATTACH IS - : USERCAF
(FOC1460) INSTALLATION DEFAULT PLAN IS - : M727703B
(FOC1503) SQL STATIC OPTION IS - : OFF
(FOC1444) AUTOCLOSE OPTION IS - : ON FIN
(FOC1496) AUTODISCONNECT OPTION IS - : ON FIN
(FOC1499) AUTOCOMMIT OPTION IS - : ON COMMAND
(FOC1449) CURRENT SQLID IS - : SYSTEM DEFAULT
(FOC1424) ISOLATION LEVEL FOR DB2 TABLE INTERFACE IS :
(FOC1491) FETCH BUFFERING FACTOR - : 100
(FOC1441) WRITE FUNCTIONALITY IS - : ON
(FOC1445) OPTIMIZATION OPTION IS - : ON
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : ON
(FOC1484) SQL ERROR MESSAGE TYPE IS - : DBMS
(FOC1497) SQL EXPLAIN OPTION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW
(FOC1446) DEFAULT DBSPACE IS - : DBUSER01.FOCUS

See Adapter Commands on page 309 for an explanation of the adapter environmental
commands.

2. Invoking Relational Adapters

Relational Data Adapter User’s Manual 43

Issuing Commands

44

Chapter3
Connection, Authentication, and Security

This chapter describes attributes and settings needed for connection to and
authentication by the RDBMS.

In any computer system, it is important to secure data from unauthorized access. Both
the RDBMS and FOCUS provide security mechanisms to ensure that users access only
those objects for which they have authorization.

In this chapter:

SQL GRANT and REVOKE

DB2 Security

Teradata Login Security

Oracle Connection Attributes

FOCUS DBA Security

SQL GRANT and REVOKE

The SQL GRANT and REVOKE commands control access to tables and views within the RDBMS
environment. Without proper authorization, users are denied access to RDBMS tables. Only the
RDBMS database administrator and the creator of the table or view implicitly hold these
privileges.

The SQL GRANT command distributes privileges to others. The SELECT privilege authorizes the
user to generate reports from a table. The INSERT, UPDATE, and DELETE privileges each
provide specific capabilities for changing the values within a table. Contact your RDBMS
database administrator for more details on RDBMS security.

FOCUS honors the security established by the SQL GRANT mechanism. For example, without
SELECT access for the specified table, FOCUS cannot generate a requested report.

DB2 Security

This section examines the DB2 SET CURRENT SQLID command.

Relational Data Adapter User’s Manual 45

DB2 CURRENT SQLID (z/OS)

The DB2 RDBMS on z/OS accepts two types of ID, the primary authorization ID and one or
more optional secondary authorization IDs. It also recognizes the CURRENT SQLID setting.

Any interactive user or batch program that accesses a DB2 subsystem is identified by a
primary authorization ID. A security system such as RACF® normally provides the ID to DB2.
During the process of connecting to DB2, the primary authorization ID may be associated with
one or more secondary authorization IDs (usually RACF groups). Each site controls whether it
uses secondary authorization IDs.

The DB2 database administrator (DBA) may grant privileges to a secondary authorization ID
that are not granted to the primary ID. Thus, secondary authorization IDs provide the means for
granting the same privileges to a group of users. (The DBA associates individual primary IDs
with a secondary ID and grants the privileges to the secondary ID.)

The DB2 CURRENT SQLID may be the primary authorization ID or any associated secondary
authorization ID. At the beginning of the FOCUS session, the CURRENT SQLID is the primary
authorization ID.

You can reset the CURRENT SQLID using the following adapter command

ENGINE [DB2] SET CURRENT SQLID = 'sqlid'

where:

DB2

Is required if you did not previously issue the SET SQLENGINE command for DB2 (see
Direct SQL Passthru on page 265).

sqlid

Is the desired primary or secondary authorization ID, enclosed in single quotation marks.
All DB2 security rules are respected.

Unless you issue the SET OWNERID command described in Adapter Commands on page 309,
the CURRENT SQLID is the implicit owner for unqualified table names and the default owner ID
for DB2 objects, such as tables or indices, created with dynamic SQL statements. (For
example, the FOCUS CREATE FILE command issues dynamic SQL statements.) The CURRENT
SQLID is also the sole authorization ID for GRANT and REVOKE statements. It must have all
the privileges needed to create objects and must have GRANT and REVOKE privileges.

Other types of requests, such as FOCUS TABLE (SQL SELECT) and MODIFY (SQL SELECT,
INSERT, UPDATE, or DELETE) requests, automatically search for the necessary authorization
using the combined privileges of the primary authorization ID and all of its associated
secondary authorization IDs, regardless of the DB2 CURRENT SQLID setting.

DB2 Security

46

The CURRENT SQLID setting remains in effect until the communication thread to DB2 is
disconnected, when it reverts to the primary authorization ID.

Teradata Login Security

The adapter SET CONNECTION_ATTRIBUTES command enables users to identify themselves to
the Teradata RDBMS. When adapter users issue the command at the beginning of a FOCUS
session, Teradata verifies their authorization to access tables and views.

Note: DBCLOGON is a synonym for CONNECTION_ATTRIBUTES supported for compatibility with
earlier releases of the adapter.

The SET CONNECTION_ATTRIBUTES command must be issued before any DBC/SQL
commands or FOCUS requests that require Teradata services. Internally, the adapter stores
the Teradata logon ID and password in the virtual storage space for the user. The DBC
authorization process is deferred until a subsequent command for Teradata services is
executed. The adapter initiates the logon immediately prior to executing a request for Teradata
services by the user.

The SET CONNECTION_ATTRIBUTES command may be issued from the FOCUS command level
or be included in any FOCUS-supported profile. The syntax is

ENGINE [SQLDBC] SET CONNECTION_ATTRIBUTES connection_name/userid,passwd
[;]

where:

SQLDBC

Is required if you did not previously issue the SET SQLENGINE command for Teradata (see
Direct SQL Passthru on page 265).

connection_name

Is the Teradata Director Program ID (TDP ID). Valid values are site-specific and release-
dependent.

Note: Specifying a TDP ID may not be necessary at your site. Contact your database
administrator for the requirements at your site.

userid

Is your Teradata user ID, up to 30 characters long.

passwd

Is the associated Teradata password, up to 30 characters long.

Note: If there is no password for the connection, the userid must still be followed by a
comma.

3. Connection, Authentication, and Security

Relational Data Adapter User’s Manual 47

If the SET CONNECTION_ATTRIBUTES command is rejected, a DBC error message is
generated, and the user should resubmit the command with correct information.

For additional security, a Dialogue Manager procedure can prompt the user for the Teradata
password using -CRTFORM or -PROMPT commands, and store the password in a variable. The -
CRTFORM command also provides a non-display option. For information about Dialogue
Manager, see the Developing Applications manual.

Oracle Connection Attributes

The SET CONNECTION_ATTRIBUTES command allows you to declare a connection to one
Oracle database server and to supply authentication attributes necessary to connect to the
server.

You can declare connections to more than one Oracle database server by issuing multiple SET
CONNECTION_ATTRIBUTES commands. The actual connection takes place when the first
request referencing that connection is issued. You can issue SET CONNECTION_ATTRIBUTES
commands in a FOCEXEC, at the FOCUS command prompt, or in a FOCUS-supported profile.
The profile can be encrypted.

If you issue multiple SET CONNECTION_ATTRIBUTES commands:

The first SET CONNECTION_ATTRIBUTES command sets the default Oracle database server
to be used.

If more than one SET CONNECTION_ATTRIBUTES command declares the same Oracle
database server, the authentication information is taken from the last SET
CONNECTION_ATTRIBUTES command.

Connecting to an Oracle Database Server

The adapter supports connections to:

Local Oracle database servers.

Remote Oracle database servers. To connect to a remote Oracle database server, the
Oracle tnsnames file on the source machine must contain an entry pointing to the target
machine, and the listening process must be running on the target machine.

Once you are connected to an Oracle database server, that server may define Oracle
DATABASE LINKs that can be used to access Oracle tables on other Oracle database servers.

Authenticating a User on an Oracle Database Server

Users can issue multiple SET CONNECTION_ATTRIBUTES commands to supply valid user IDs
and passwords.

Oracle Connection Attributes

48

If needed, the DBA or some other authorized person at your site will supply you with a valid
Oracle user ID and password.

It may be desirable to prompt users for their Oracle password instead of coding it in a
procedure. In this case, use a Dialogue Manager variable in its place, and retrieve the value
using -CRTFORM or -PROMPT commands. If you use -CRTFORM, you can make the password
field non-displayable for additional security.

A valid Oracle user ID and password must be supplied before issuing commands that access
the Oracle RDBMS. If a valid Oracle login ID and password have not been supplied, an error
message is returned. You should respond by correcting and re-issuing the SET
CONNECTION_ATTRIBUTES command.

The SET CONNECTION_ATTRIBUTES command stores both the Oracle login ID and password in
user virtual storage. It does not immediately initiate a login to Oracle. The actual login is
deferred until a subsequent command is issued that requires the services of the Oracle
RDBMS.

Syntax: How to Declare Connection Attributes for Oracle

ENGINE [SQLORA] SET CONNECTION_ATTRIBUTES [connection_name]/
userid,password

where:

SQLORA

Indicates the Adapter for Oracle. You can omit this value if you previously issued the SET
SQLENGINE command.

connection_name

Specifies a remote instance using an Oracle TNSNAME (the net service name used as a
connect descriptor to an Oracle database server across the network). If omitted, the local
database server will be set as the default.

userid

Is the primary authorization ID by which you are known to Oracle, up to 30 characters in
length.

password

Is the password associated with the user ID, up to 30 characters in length.

3. Connection, Authentication, and Security

Relational Data Adapter User’s Manual 49

Note: SET USER is a synonym for SET CONNECTION_ATTRIBUTES, supported for compatibility
with earlier releases of the adapter. However, note that the symbol used for separating the
connection attribute from the authentication information and the symbol used for separating
the user ID from the password changed as of FOCUS 7.2.

Syntax: How to Query the Declared Oracle Connections

Issue the following query command to list status information for all declared connections:

ENGINE SQLORA ? SERVERS

Example: Declaring Connection Attributes for Oracle

Refer to the following diagram in conjunction with these examples.

The following SET CONNECTION_ATTRIBUTES command connects to the Oracle database
server named TNSNAMEA with an explicit user ID and password.

ENGINE SQLORA SET CONNECTION_ATTRIBUTES TNSNAMEA/USERA,PWDA

Oracle Connection Attributes

50

The following SET CONNECTION_ATTRIBUTES command connects to a local Oracle database
server with an explicit user ID and password:

ENGINE SQLORA SET CONNECTION_ATTRIBUTES /USERA,PWDA

Selecting an Oracle Connection to Access

Once all Oracle database servers to be accessed have been declared using the SET
CONNECTION_ATTRIBUTES command, there are two ways to select a specific Oracle
connection from the list of declared connections:

You can select a connection using the SET DEFAULT_CONNECTION command. If you do not
issue this command, the connection name specified in the first SET
CONNECTION_ATTRIBUTES command is used.

You can include the CONNECTION= attribute in the Access File of the table specified in the
current query. This attribute supersedes the default connection.

Syntax: How to Select an Oracle Connection to Access

ENGINE [SQLORA] SET DEFAULT_CONNECTION [connection_name]

where:

SQLORA

Indicates the Adapter for Oracle. You can omit this value if you previously issued the SET
SQLENGINE command.

connection_name

Is the connection name specified in a previously issued SET CONNECTION_ATTRIBUTES
command. If omitted, the local database server is set as the default. If this connection
name has not been previously declared, a FOC1671 message is issued.

Note:

If you issue the ENGINE SQLORA SET DEFAULT_CONNECTION command more than once,
the connection name specified in the last command will be the active connection name.

The SET DEFAULT_CONNECTION command cannot be issued while an uncommitted
transaction (LUW) is pending. In that case, a FOC1671 message is issued.

SET SERVER is a synonym for SET DEFAULT_CONNECTION, supported for compatibility with
earlier releases of the adapter.

3. Connection, Authentication, and Security

Relational Data Adapter User’s Manual 51

Example: Selecting an Oracle Connection to Access

The following SET DEFAULT_CONNECTION command selects the Oracle database server
named TNSNAMEB as the default Oracle database server.

ENGINE SQLORA SET DEFAULT_CONNECTION TNSNAMEB

Note: You must have previously issued a SET CONNECTION_ATTRIBUTES command for
TNSNAMEB.

Oracle Support for DATABASE LINKs

You can be connected to one Oracle database server and access a table on another Oracle
database server (without actually connecting to the second server) if the first server has a
DATABASE LINK defined for the table.

To access a remote Oracle table using DATABASE LINKs, the following conditions must exist.

The Oracle database server to which you are connected must have a valid DATABASE LINK
defined.

The TABLENAME= attribute in the Access File for the Oracle table to be queried must have
the following format:

TABLENAME=[owner.]tablename@databaselink

where:

owner

Is the user ID by default. It can consist of a maximum of 30 characters. Oracle prefers
that the value be uppercase.

tablename

Is the name of the table or view. It can consist of a maximum of 30 characters.

databaselink

Is the valid DATABASE LINK name defined in the currently connected Oracle database
server.

Once you have met these conditions, all requests for the table will be processed on the remote
Oracle database server specified using the DATABASE LINK name. Using this method is
another way to access multiple remote servers in one SQL request.

Oracle Connection Attributes

52

FOCUS DBA Security

You can implement FOCUS security as a complement to existing SQL GRANT security. FOCUS
DBA security provides data control at a number of different levels. It can give users limited
access to a specific table by restricting their access to particular columns and/or rows. It can
further restrict their access to rows whose columns contain certain values. With this
mechanism, a site can securely define a few global tables and eliminate the need to create a
complex series of views for every combination of access rights.

To implement DBA security for a table, specify the security rules in the Master File, following
the description of the table. The FOCUS DBA (as defined in the Master File) can prevent
unauthorized viewing of the restriction rules by encrypting the Master. For information regarding
DBA security or encryption, see the Describing Data manual.

3. Connection, Authentication, and Security

Relational Data Adapter User’s Manual 53

FOCUS DBA Security

54

Chapter4
Describing Tables to FOCUS

In order to access a table or view using FOCUS, you must first describe it in two files, a
Master File, and an associated Access File.

Note: The term table in this manual refers to both RDBMS base tables and views.

The Master File describes the columns of the RDBMS table using keyword-value pairs in
comma-delimited format (see Master Files on page 56). The Access File includes
additional attributes that complete the FOCUS definition of the RDBMS table (see Access
Files on page 86). The adapters require both descriptions to generate SQL queries.

In this chapter:

Creating Master and Access Files

Master Files

Access Files

The OCCURS Segment

Creating Master and Access Files

There are two methods for creating Master and Access Files.

Execute an automated procedure that creates Master and Access Files for existing RDBMS
tables—AUTODB2 for DB2 or AUTODBC for Teradata. Automated Procedures on page 113
describes these facilities.

Use an editor to manually create the descriptions of the table. Refer to a copy of the native
SQL CREATE TABLE statement or a detailed report from the system catalog tables for
column names, data types, lengths, and other descriptive information.

FOCUS file descriptions can represent an entire table or part of a table. Also, several pairs of
file descriptions can define different subsets of columns for the same table, or one pair of
Master and Access Files can describe several tables. This chapter presents single-table
Master and Access Files. For multi-table file descriptions, see Multi-Table Structures on page
99.

You can represent tables with repeating columns as FOCUS OCCURS segments. See The
OCCURS Segment on page 94 for an explanation of these virtual constructs.

Relational Data Adapter User’s Manual 55

FOCUS processes a request with the following steps.

1. It locates the Master File for the table. The file name specified in the report request
identifies the Master File by its member name.

2. It detects the SUFFIX value, DB2, SQLDS, SQLDBC, SQLORA, or SQLIDMS, in the Master
File. Since this value indicates that the data is in an RDBMS table, FOCUS passes control
to the appropriate relational adapter.

3. The adapter locates the corresponding Access File, uses the information contained in both
descriptions to generate the SQL statements required by the request, and passes the SQL
statements to the RDBMS.

4. The adapter retrieves the answer sets generated by the RDBMS and returns control to
FOCUS. Depending on the requirements of the request, FOCUS may perform additional
processing on the returned data.

This example is a Master File for the DB2 table EMPINFO.

FILENAME=EMPINFO ,SUFFIX=DB2,$

SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
MISSING=ON,$
 FIELD=CURRENT_SALARY ,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
 FIELD=HIRE_DATE_TIME ,ALIAS=HDTT ,USAGE=HYYMDm ,ACTUAL=HYYMDm ,
MISSING=ON,$
 FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS ,
MISSING=ON,$

The following is an Access File for the table EMPINFO.

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$

File Descriptions and Tables on page 459 contains a complete list of Master Files and Access
Files for the examples cited in this manual.

Master Files

A table is an RDBMS object consisting of rows and columns. A Master File represents a table
as a single segment.

Master Files

56

A Master File contains three types of declarations.

The file declaration indicates that the data is stored in a DB2, Teradata, Oracle, or CA-IDMS
table or view.

The segment declaration identifies a table.

Field declarations describe the columns of the table.

Each declaration must begin on a separate line. A declaration consists of keyword-value pairs
(called attributes) separated by commas. A declaration can span as many lines as necessary,
as long as no single keyword-value pair spans two lines. Certain attributes are required. The
rest are optional (see Optional Field Attributes on page 84).

Do not use system or SQL reserved words as names for files, segments, fields, or aliases.
Specifying a reserved word generates the SQL syntax errors -104, -105, or -106.

File Attributes in the Master File

FILE[NAME]=name, SUFFIX=suffix [,$]

where:

name

Is a one- to eight-character file name. For documentation purposes, it is recommended that
the Master File name be used as the FILENAME attribute.

Note: Master File names longer than eight characters are supported on z/OS, as
described in FILENAME on page 58.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 57

suffix

Identifies the adapter needed for accessing the table. Valid values are:

DB2

Is the SUFFIX value for the Adapter for DB2.

Note: The suffix value SQLDS is also available for backward compatibility.

SQLDBC

Is the SUFFIX value for the Adapter for Teradata.

SQLIDMS

Is the SUFFIX value for the Adapter for IDMS/SQL.

SQLORA

Is the SUFFIX value for the Adapter for Oracle.

Reference: FILENAME

The FILENAME (or FILE) attribute names the Master File. On z/OS, the name of the Master File
is its member name in the PDS allocated to DDNAME MASTER.

The Master File name consists of alphanumeric characters and must contain at least one
letter. You should make the name representative of the table or view contents. It can have the
same name as the RDBMS table if the table name complies with FOCUS naming conventions.
It must have the same name as its corresponding Access File.

Master File names longer than eight characters are supported on z/OS. Because file and
member names are limited to eight characters, longer Master File names are assigned eight-
character names to be used when interacting with the operating system. The short name
consists of three parts, a prefix consisting of the leftmost characters from the long name,
followed by a left brace character ({), followed by an index number.

The length of the prefix depends on how many long names have a common set of leftmost
characters.

The first ten names that share six or more leftmost characters have a six-character prefix
and a one-character index number, starting from zero.

Starting with the eleventh long name that shares the same leftmost six characters, the
prefix becomes five characters, and the index number becomes two characters, starting
from 00.

Master Files

58

This process can continue until the prefix is one character and the index number is six
characters. If you delete one of these members from the PDS, the member name will be
reused for the next long name.

Example: Long and Short Master File Names

The following table lists sample long names with the corresponding short names that will be
assigned under z/OS.

Long Name Short Name

EMPLOYEES_ACCOUNTING EMPLOY{0

EMPLOYEES_DEVELOPMENT EMPLOY{1

EMPLOYEES_DISTRIBUTION EMPLOY{2

EMPLOYEES_FINANCE EMPLOY{3

EMPLOYEES_INTERNATIONAL EMPLOY{4

EMPLOYEES_MARKETING EMPLOY{5

EMPLOYEES_OPERATIONS EMPLOY{6

EMPLOYEES_PERSONNEL EMPLOY{7

EMPLOYEES_PUBLICATIONS EMPLOY{8

EMPLOYEES_RESEARCH EMPLOY{9

EMPLOYEES_SALES EMPLO{00

EMPLOYEES_SUPPORT EMPLO{01

Syntax: How to Implement a Long Master and Access File Name in z/OS

To relate the short name to its corresponding long name, the first line of the Master and
Access File must contain the following comment:

$ VIRT=complete_long_file_name

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 59

where:

complete_long_file_name

Is the long name, up to 64 characters.

Reference: SUFFIX

The SUFFIX attribute indicates which adapter is required for interpreting requests. Valid values
are DB2, SQLDS, SQLDBC, SQLIDMS, and SQLORA.

Segment Attributes in the Master File

Each table described in a Master File requires a segment declaration that consists of at least
two attributes, SEGNAME and SEGTYPE.

If several Master Files (used only with TABLE requests) include the same table, you can avoid
repeating the same description multiple times. Describe the table in one of the Master Files,
and use the CRFILE attribute in the other Master Files to access the existing description. For a
full explanation of remote segment descriptions, see Additional Topics on page 417.

The syntax for a segment declaration is

SEGNAME=segname, SEGTYPE={S0|KL} [,CRFILE=crfile] [,$]

where:

segname

Is a one- to eight-character name that identifies the segment. If this segment references a
remote segment description, segname must be identical to the SEGNAME from the Master
File that contains the full definition of the columns of the RDBMS table (see Additional
Topics on page 417).

S0

S zero indicates to the adapter that the RDBMS handles the storage order of the data.

KL

References a remote segment description (see Additional Topics on page 417).

crfile

Is required only to reference a remote segment description. Indicates the name of the
remote Master File that contains the full definition of the columns of the RDBMS table
(see Additional Topics on page 417).

Master Files

60

Reference: SEGNAME in the Master File

The SEGNAME attribute identifies or links one table or view. The one- to eight-character
SEGNAME value may be the same as the name chosen for FILENAME, the actual table name,
or an arbitrary name. To reference a remote segment description, the SEGNAME value must be
identical to the SEGNAME in the Master File that contains the full definition of the columns of
the RDBMS table.

The corresponding Access File must contain a segment declaration with the same SEGNAME
value as the Master File. The segment declaration in the Access File specifies the name of the
RDBMS table. In this manner, the SEGNAME value serves as a link to the actual table name.

Reference: SEGTYPE

In a single table Master File, SEGTYPE always has the value S0 (or KL for a remote segment
description). The RDBMS assumes responsibility for both physical storage of rows and the
uniqueness of column values (if a unique index exists). SEGTYPE values for multi-table Master
Files are discussed in Multi-Table Structures on page 99.

Reference: CRFILE

Include the CRFILE attribute in a segment declaration if:

The actual description of the columns of the table is stored in another (remote) Master File.
The CRFILE value must be the name of the Master File that contains the full definition of
the columns of the RDBMS table. For a complete discussion of remote segment
descriptions, see Additional Topics on page 417.

You want to implement a conditional join to another RDBMS table. For information, see
Multi-Table Structures on page 99. (You can also join tables using the JOIN command
described in Advanced Reporting Techniques on page 213).

Field Attributes in the Master File

Each table consists of one or more columns. In the Master File, you define each column as a
field with the primary attributes FIELDNAME, ALIAS, USAGE, ACTUAL, and MISSING. The
Describing Data manual explains additional attributes.

You can get values for these attributes from the DB2 system catalog table SYSCOLUMNS,
from the Oracle SYSTEM.COLUMNS data dictionary view, or from the IDMS SQL schema
definition or standard IDMS dictionary reports. For a sample request for DB2, refer to
Additional Topics on page 417.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 61

Syntax: How to Describe a Column in a Master File

FIELD[NAME]=name, [ALIAS=]sqlcolumn, [{USAGE|FORMAT}=]display
 [,ACTUAL=]sqlfmt, [, MISSING= {OFF|ON}] [,FIELDTYPE=R] ,
$

where:

name

Is a 1- to 66-character unqualified name. In requests, you can qualify a fieldname with its
Master File and/or segment name. Additional Topics on page 417, contains a discussion
of long fieldnames. For more information, consult the Describing Data manual.

sqlcolumn

Is the RDBMS column name, up to:

30 characters long for DB2.

30 characters for Oracle and Teradata.

32 characters for IDMS SQL.

display

Is the FOCUS display format for the field.

sqlfmt

Is the FOCUS definition of the RDBMS data type and length, in bytes, for the field. (See
Data Type Support on page 64.)

OFF|ON

Indicates whether the field can contain null values. OFF, the default, does not permit null
values.

FIELDTYPE=R

Indicates that the field is read-only. Any number of fields can have this attribute. A field
with this attribute must represent a DB2 TIMESTAMP column.

Note: AUTODB2 does not add the FIELDTYPE=R attribute to the FIELD declaration in the
generated Master File. You must edit the Master File to add this attribute.

Master Files

62

Reference: The Primary Key

A primary key for a table is the column or combination of columns whose values uniquely
identify each row of the table. In the EMPINFO table, every employee is assigned a unique
employee identification number. This identification number, and its corresponding employee,
are represented by one (and only one) row of the table.

Note: The terms primary key and foreign key refer to columns that relate two tables. In this
manual, they do not refer to primary and foreign keys defined in SQL CREATE TABLE
statements (RDBMS referential integrity) unless explicitly stated.

The adapter uses information from both the Master File and the Access File to identify the
primary key. In the Access File, the KEYS=n attribute specifies the number of key fields, n. In
the Master File, the first n fields described immediately after the segment declaration
constitute the primary key. Therefore, the order of field declarations in the Master File is
significant.

To define the primary key in a Master File, describe its component fields first after the
segment declaration. You can specify the remaining fields (those that do not participate in the
primary key) in any order.

The KEYS attribute in the Access File completes the process of defining the primary key.

Typically, the primary key is supported by an SQL unique index to prevent the insertion of
duplicate key values. The adapter itself does not require any index or IDMS calc key on
columns comprising the primary key (although a unique index is certainly desirable for both
data integrity and performance reasons).

Reference: FIELDNAME

Field names must be unique within a single-table Master File and can consist of up to 66
alphanumeric characters. Within the Master File, field names cannot include qualifiers. Column
names are acceptable values if they meet the following naming conventions:

A name can consist of letters, digits, and underscore characters. Special characters and
embedded blanks are not advised.

The name must contain at least one letter.

Since the field name displays as the default column title on reports, select a name that is
representative of the data. In TABLE, GRAPH, and MODIFY requests, you can specify field
names, aliases, or a unique truncation of either. Maintain does not support alias names or
truncated names. In all requests, you can qualify a field name with its file name and/or
segment name (see your FOCUS documentation).

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 63

Reference: ALIAS

The ALIAS value for each field must be the full SQL column name (the adapter uses it to
generate SQL statements). The ALIAS name must be unique within the segment. DB2, Oracle
and Teradata permit 30 characters, and IDMS permits 32 characters. The ALIAS name must
comply with the same naming conventions described for field names.

Reference: USAGE/FORMAT

The USAGE attribute indicates the display format of the field. An acceptable value must include
the field type and length and may contain display options. The USAGE format is used for data
display on reports and CRTFORMs. All standard FOCUS USAGE formats are available, except
that Oracle does not support F format. For a complete list of USAGE formats appropriate for
non-FOCUS data sources, see the Describing Data manual.

Note:

The field type described by the USAGE format must be identical to that of the ACTUAL
format. For example, a field with an alphanumeric USAGE field type must have an
alphanumeric ACTUAL field type.

Field type text (TX) varies for each RDBMS in terms of syntax and storage limitations. See
Data Type Support on page 64 for a complete discussion.

Fields with decimal and floating-point data types must be described with the correct scale
and precision. Scale (s) is the number of positions to the right of the decimal point.
Precision (p) is the total length of the field. For FOCUS field formats, the field length
includes the decimal point and negative sign. RDBMS data types exclude positions for the
decimal point and negative sign.

For example, a column defined as DECIMAL(5,2) in DB2 would have a USAGE attribute of
P7.2 to allow for the decimal point and a possible negative sign.

Data Type Support

The ACTUAL attribute indicates the Master File representation of RDBMS data types.

Master Files

64

DB2 Data Type Support

The following tables describe how the adapter maps DB2 data types.

DB2 Data Type

FOCUS Data Type

Remarks

Date-Time Data Types

DATE YYMD DATE

TIME HHIS HHIS

TIMESTAMP HYYMDm HYYMDm

Numeric Data Types

SMALLINT I6 I4

INTEGER I11 I4 Maximum precision is 11.

BIGINT P20 P10 Available on UNIX and Windows only.

DECIMAL (p,s) P6 P8 p is an integer between 1 and 31.
s is an integer between 0 and p.

REAL F9.2 F4 Maximum precision is 9.

FLOAT D20.2 D8 Maximum precision is 20.

LOB Data Types

BLOB BLOB BLOB Up to 2 gigabytes.

CLOB TX50 TX Up to 2 gigabytes.

Other Data Types

CHAR (n) An An n is the number of bytes, and is an
integer between 1 and 254.

LONG VARCHAR (n)
in (1...32700)

 Not supported

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 65

DB2 Data Type

FOCUS Data Type

Remarks

GRAPHIC (n) Am Kn m = (n * 2) + 2

m is the number of bytes, and n is
the number of characters.

VARGRAPHIC (n) Am Kn m = (n * 2) + 2

VARGRAPHIC is assumed to be
GRAPHIC until n = 127 for non-
Unicode.

The maximum length of m is 256.

LONG VARGRAPHIC Not supported

DATALINK Not supported

XML TX50 TX Supported with DB2 Version 9 on
UNIX, Windows, and z/OS; not
supported on IBM i.

The following table describes how the adapter maps non-Unicode Character data types. This
mapping can be changed based on the value of LONGCHAR. The default value is ALPHA.

DB2 Data
Type

Remarks

LONGCHAR ALPHA LONGCHAR TEXT

VARCHAR (n) n is an integer between
1 and 256.

AnV AnV AnV AnV

n is an integer between
257and 32768.

AnV AnV TX50 TX

Note: The main purpose of the LONGCHAR setting is to provide compatibility with previous
releases of the adapter. This SET parameter was designed to control processing of DBMS
Character data types and was never intended for DBMS LOB data types.

Master Files

66

Reference: Data Type Support for Unicode

The following table describes how the adapter maps Unicode Character data types. The
adapter operates in character semantic when configured for Unicode. The LONGCHAR setting
does not affect mapping in this case.

DB2 Data Type

FOCUS Data Type

Remarks

CHAR (n) AnV AnB n is an integer between 1 and 254.

The column stores n bytes (specified
by the ACTUAL attribute) which
represent up to n characters
(specified by the USAGE attribute).

On EBCDIC platforms, the ACTUAL
value is multiplied by 1.5 to
accommodate UTF-EBCDIC. For
example, a CHAR (10) column is
described by USAGE=A10V,
ACTUAL=A15B.

VARCHAR (n) AnV AnVB n is the number of characters, and is
an integer between 1 and 32672.

The column stores up to n bytes
(specified by the ACTUAL attribute),
which represent up to n characters
(specified by the USAGE attribute).

On EBCDIC platforms, the ACTUAL
value is multiplied by 1.5 to
accommodate UTF-EBCDIC. For
example, a VARCHAR (10) column is
described by USAGE=A10V,
ACTUAL=A15VB.

GRAPHIC (n) An An n is the number of characters.

VARGRAPHIC (n) AnV AnV n is the number of characters.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 67

Teradata Data Type Support

The following tables describe how the adapter maps Teradata data types.

Teradata Data Type

FOCUS Data Type

Remarks

Date-Time Data Types

DATE YYMD A8

TIME HHISsm HHISsm The operation with different Teradata
TIME formats depends on
DateTimeFormat setting in the data
source part of the $HOME/.odbc.ini file.
The adapter requires
DateTimeFormat=IAI.

Neither the ODBC nor the CLI interface
supports the integer format of TIME (I).
Only the ANSI format of TIME (AT) is
supported.

TIMESTAMP HYYMdm HYYMd
m

INTERVAL An An INTERVAL identifies a period of time in
different ranges (YEAR, MONTH, DAY,
HOUR, MIN, SEC).

The Teradata external (client)
representation of INTERVAL is always
CHAR (n) where n = p + x. Precision p
from 1 to 4 and x from 1 to 11 depend
on range.

Numeric Data Types

SMALLINT I6 I4 A 2-byte signed binary integer.

Range: -215 to 215 - 1.

Master Files

68

Teradata Data Type

FOCUS Data Type

Remarks

INTEGER I11 I4 A 4-byte binary integer

Range: -2.147G to +2.147G.

BYTEINT I6 I4 A 1-byte signed binary integer

Range: -128 to +127.

BIGINT P20 P10 Teradata representation of a signed,
binary integer value from
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

DECIMAL(n,m) P31.31 P16 n, the precision, is an integer between
1 and 31.

m, the scale, is an integer between 0
and n.

Also referred to as NUMERIC.

FLOAT D20.2 D8 8 bytes.

Range: -2 * 10307 to 2 * 10308.

Same as REAL or DOUBLE PRECISION.

LOB Data Types

GRAPHIC Not supported.

VARGRAPHIC Not supported.

LONG GRAPHIC Not supported.

VARBYTE Not supported.

BLOB Not supported.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 69

The following table lists how the adapter maps non-Unicode Character data types. This
mapping can be changed based on the value of LONGCHAR. The default value is ALPHA.

Teradata Data Type

Remarks

LONGCHAR ALPHA LONGCHAR TEXT

CHAR n is an integer between 1
and 256.

An An An An

n is an integer between
257 and 32000.

An An TX50 TX

VARCHAR (n) n is an integer between 1
and 256.

AnV AnV AnV AnV

n is an integer between
257 and 32000.

AnV AnV TX50 TX

LONG VARCHAR (n) n is an integer between 1
and 256.

AnV AnV AnV AnV

n is an integer between
257 and 64000.

FOCUS supports up to
32767 bytes. All data
exceeding 32K will be
truncated.

AnV AnV TX50 TX

Note: The main purpose of the LONGCHAR setting is to provide compatibility with previous
releases of the adapter. This SET parameter was designed to control processing of DBMS
Character data types and was never intended for DBMS LOB.

Master Files

70

Reference: Data Type Support for Unicode

The following table describes how the adapter maps Unicode Character data types. The
adapter operates in character semantic when configured for Unicode. The LONGCHAR does not
affect mapping in this case.

Teradata Data Type

FOCUS Data Type

Remarks

CHAR(n) AnV AnV n is an integer between 1 and 4000.

VARCHAR (n) AnV AnV n is an integer between 1 and 4000.

Oracle Data Type Support

The following tables describe how the adapter maps Oracle data types.

Oracle Data Type

FOCUS Data Type

Remarks

Date-Time Data Types

DATE HYYMDS HYYMDS Stores point-in-time values (dates
and times) ranging from January
1, 4712 BCE through December
31, 9999 CE.

TIMESTAMP
(fractional_seconds_preci
sion) WITH LOCAL TIME
ZONE

HYYMDS

HYYMDs

HYYMDm

HYYMDS

HYYMDs

HYYMDm

fractional_seconds_precision in
(0,1,2).

fractional_seconds_precision in
(3,4,5).

fractional_seconds_precision in
(6,7,8,9).

The adapter supports TIMESTAMP
without the TIME ZONE portion.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 71

Oracle Data Type

FOCUS Data Type

Remarks

INTERVAL YEAR
(year_precision) TO
MONTH

Not
supported

Not
supported

Stores a period of time in years
and months, where year_precision
is the number of digits in the
YEAR datetime field. Accepted
values are 0 to 9. The default is
2.

INTERVAL DAY
(day_precision) TO
SECOND
(fractional_seconds_preci
sion)

Not
supported

Not
supported

Stores a period of time in days,
hours, minutes, and seconds.

Numeric Data Types

Master Files

72

Oracle Data Type

FOCUS Data Type

Remarks

NUMBER (p, s) Pp,s P1,...,8 p is an integer between 1 and 31.

s is an integer between 0 and p.

Note: If the MISSING=ON attribute
is present in the Master File, the
ACTUAL attribute must be P8 or
longer. If MISSING=OFF, the
ACTUAL attribute will be generated
with the length equal to the
precision of a NUMERIC field in an
Oracle table.

Pp,s P9,...,16 p is an integer between 16 and
31.

s is an integer between 0 and p.

D20.2 D8 p is an integer between 32 and
37.

s is an integer between 0 and p.

I11 I4 p is 38. This value is the Oracle
default.

s is an integer between 0 and p.

INTEGER See
Number

See
Number

Oracle converts and stores this
type as NUMBER.

DECIMAL See
Number

See
Number

Oracle converts and stores this
type as NUMBER.

FLOAT D20.2 D8 An approximate numeric type.

BINARY_DOUBLE D20.2 D8 A 32-bit, single-precision floating-
point approximate numeric type.

BINARY_FLOAT D20.2 D8 A 64-bit, double-precision floating-
point approximate numeric type.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 73

Oracle Data Type

FOCUS Data Type

Remarks

LOB Data Types

BLOB BLOB BLOB The adapter supports BLOB
through the OCI interface, with
ora_oci=y set in edaserve.cfg.

CLOB TX50 TX Adapter supports CLOB through
the OCI interface, with ora_oci=y
set in edaserve.cfg.

NCLOB TX50 TX Adapter supports NCLOB through
the OCI interface, with ora_oci=y
set in edaserve.cfg.

LONG TX50 TX Character data of variable length
up to 2 gigabytes, or 231 – 1
bytes. Provided for backward
compatibility.

The LONG field must be the last
position in the report. This field is
the subject of all limitations as
documented by Oracle.

As of Oracle 8i, this data type is
deprecated. You can migrate to
CLOB whenever possible.

LONG RAW BLOB BLOB As of Oracle 8i, this data type is
deprecated. You can migrate to
BLOB whenever possible.

BFILE Not
supported

Not
supported

Stores unstructured binary data in
operating system files outside the
database.

Other Data Types

Master Files

74

Oracle Data Type

FOCUS Data Type

Remarks

ROWID A18 A18 The pseudo-column data types
that store the physical address of
a row.

UROWID Not
supported

Not
supported

The pseudo-column data types
that store both the physical and
logical address of a row.

MLSLABEL Not
supported

Not
supported

Stores variable-length, binary
operating system labels.

The following table lists how the adapter maps non-Unicode Character data types. This
mapping can be changed based on the value of LONGCHAR. The default value is ALPHA.

Oracle Data Type

Remarks

LONGCHAR ALPHA LONGCHAR TEXT

CHAR (n) n is an integer between 1 and
256.

An An An An

n is an integer between 257
and 2000.

An An TX50 TX

NCHAR (n) n is an integer between 1 and
256.

An An An An

n is an integer between 257
and 2000.

An An TX50 TX

VARCHAR2 (n)

or

VARCHAR (n)

n is an integer between 1 and
256.

AnV AnV AnV AnV

n is an integer between 257
and 4000.

AnV AnV TX50 TX

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 75

Oracle Data Type

Remarks

LONGCHAR ALPHA LONGCHAR TEXT

NVARCHAR2 (n) n is an integer between 1 and
256.

An An An An

n is an integer between 257
and 4000.

An An TX50 TX

RAW (n) n is an integer between 1 and
128, m = 2 * n

Am Am Am Am

n is an integer between 129
and 2000, m = 2 * n

Am Am TX50 TX

Note: The main purpose of the LONGCHAR setting is to provide compatibility with previous
releases of the adapter. This SET parameter was designed to control processing of DBMS
Character data types and was never intended for DBMS LOB.

Reference: Data Type Support for Unicode

The following table describes how the adapter maps Unicode Character data types. The
adapter operates in character semantic when configured for Unicode. The LONGCHAR does not
affect mapping in this case.

Oracle Data Type

FOCUS Data Type

Remarks

CHAR (n) AnV AnB n is an integer between 1 and 2000.

The column stores n bytes (specified
by the ACTUAL attribute) which
represent up to n characters
(specified by the USAGE attribute).

CHAR (n CHAR) An An n is the number of characters, and is
an integer between 1 and 2000.

Master Files

76

Oracle Data Type

FOCUS Data Type

Remarks

CHAR (n BYTE) AnV AnB n is an integer between 1 and 2000.

The column stores n bytes (specified
by the ACTUAL attribute) which
represent up to n characters
(specified by the USAGE attribute).

VARCHAR2 (n)

or

VARCHAR (n)

AnV AnVB n is an integer between 1 and 4000.

The column stores up to n bytes
(specified by the ACTUAL attribute)
which represent up to n characters
(specified by the USAGE attribute).

VARCHAR2 (n CHAR) AnV AnV n is the number of characters, and is
an integer between 1 and 4000.

VARCHAR2 (n BYTE) AnV AnVB n is an integer between 1 and 4000.

The column stores up to n bytes
(specified by the ACTUAL attribute)
which represent up to n characters
(specified by the USAGE attribute).

IDMS/SQL Data Type Support

The following tables describe how the adapter maps IDMS/SQL data types.

IDMS/SQL Data Type

FOCUS Data Type

Remarks

Date-Time Data Types

Date YYMD DATE

Time A8 A8

Timestamp A26 A26

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 77

IDMS/SQL Data Type

FOCUS Data Type

Remarks

Numeric Data Types

Smallint I6 I4

Integer I11 I4

Longint/BIGINT I11 I4

Numeric/Decimal(n,m) P(n+2,m) P8 n is an integer between 1
and 14, m is between 0 and
31.

P(n+2,m) P16 n is an integer between 14
and 31, m is between 0 and
31.

Double Precision D20.2 D8

Float(n) F9.2 F4 n is an integer between 1
and 24.

D20.2 D8 n is an integer between 25
and 56.

Real F9.2 F4

LOB Data Types

Vargraphic (1..16379) TX TX

Other Data Types

Binary(1..32,760) An An n is less than 257.

Graphic (1..16380)(n) A(2*n) A(2*n) 2*n is less than or equal to
32,000.

Master Files

78

The following table lists how the adapter maps Character data types. LONGCHAR setting is not
applicable.

IDMS/SQL Data Type

FOCUS Data Type

Remarks

CHARACTER(1...32,760) An An n is less than or equal to
32,000.

VARCHAR (1...32,760) AnV AnV n is less than or equal to
32,000.

Additional Attributes

Some aspects of ACTUAL = TX or ACTUAL = DATE, TIME, or TIMESTAMP are unique for the
adapters.

Reference: ACTUAL = DATE, TIME, and TIMESTAMP

The adapters support a comprehensive set of date and time formats.

ACTUAL = DATE, in conjunction with USAGE date formats (such as YDM, DMY, MDY), describes
columns with DATE data types. FOCUS date formats containing any combination of the
components year, month, and day can display dates stored with the RDBMS DATE data type.
This feature makes it easier to manipulate dates, and the storage format is compatible with
both FOCUS and non-FOCUS programs.

The FOCUS default date is '1900-12-31'. For information about setting the default value, see
Additional Topics on page 417.

ACTUAL = DATE makes it possible to:

Sort by date into date sequence, regardless of the USAGE display format.

Define date components such as year, month, and day, and extract them from the date
field.

Perform date arithmetic and date comparisons without using special date-handling
functions.

Refer to dates in a natural way (JAN 1 1999, for example) regardless of formats.

Automatically validate dates in transactions.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 79

Easily convert dates from one USAGE format to another (YMD to DMY, for example).

Note:

In report requests, a DATE literal in a WHERE clause must conform to its USAGE format. For
example, the field DATE_FLD, with a display format of YMD and an ACTUAL format of DATE,
is specified as:

WHERE DATE_FLD EQ '990224'

When using MODIFY to update a field with ACTUAL = DATE, be aware that if the USAGE
format lacks a day and/or month component (YY, for example), the adapter assigns a
default day and/or month of '01' to the incoming transaction value (for example, 1999
becomes 19990101).

RDBMS date fields are century aware. However, if you join an RDBMS table to a
nonrelational data source, use a non-aware date literal, or use a MODIFY transaction file
with non-aware dates, you may need to invoke FOCUS Year 2000 solutions such as the
DEFCENT and YRTHRESH parameters. See your FOCUS documentation for details.

Teradata users who choose to use native DBC/SQL in creating tables with dates must use
the Teradata default date format (YY/MM/DD).

Oracle users who choose to use native Oracle/SQL in creating tables with dates must use
the Oracle default date format (DD MON YY).

ACTUAL formats for RDBMS TIME and TIMESTAMP columns are represented by FOCUS date-
time data types, which use the format code H, as described in the ACTUAL format conversion
charts:

These data types are supported for Direct SQL Passthru, TABLE, MODIFY, Maintain, and
SQL Translator requests. They are not supported for Static MODIFY requests.

AUTODB and CREATE FILE support these data types.

Date-time manipulation handled by the FOCUS date-time functions is not converted to SQL.

Reference: ACTUAL = TX

The ACTUAL = TX field type can be used to describe CHAR, VARCHAR, and LONG VARCHAR
data types (LONG for Oracle). Text fields contain variable-length text, usually lengthy
descriptions or explanations. They also support text wrapping in reports. The syntax is

FIELDNAME=name, ALIAS=sqlcolumn, USAGE=TXnn, ACTUAL=TX,$

Master Files

80

where:

nn

Defines the length of an output line for display. (Maximum line length is 254 characters.)

You can specify text fields in report and MODIFY requests. SQL restrictions do not permit them
to be:

Indexed.

Defined as primary key fields.

Used in joins.

The following are additional limitations on the use of text fields in MODIFY requests:

MODIFY can reference up to 95 text fields.

You cannot use text fields in the Scratch Pad Area (HOLD).

You cannot use text fields in a CRTFORM or with TYPE.

You can include at most one text field per FIXFORM subcommand. The text field must be
the last field in the FIXFORM statement.

In report requests (TABLE), you cannot use text fields:

In an IF test or WHERE clause.

As a BY clause or an ACROSS clause.

The following HOLD formats do not support text fields:

DIF

IFPS

CALC

LOTUS

COM, COMMA, COMT, TABT

Text fields cannot take advantage of the standard display options, nor can you use them in a
DEFINE. Trailing blanks are truncated for efficient storage.

Limit: FOCUS can handle text fields up to 32K in size. (Text fields greater than 32K are
truncated at the 32K boundary.)

For Oracle, a RAW column may contain up to 32,767 bytes of text.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 81

For DB2 on z/OS, the maximum physical size of a text value is also 32,767, but the entire row
must fit into the database buffer pool. A buffer pool is a main storage area reserved to hold
data pages or index pages. The buffer pool size is either 4K or 32K, although 4K is generally
assumed. The size of the text field is limited by the total row length and the buffer pool size.
Therefore, the actual space available may be less than the size of the buffer pool. Calculate
the maximum size available for TX fields using the formula

TXsize= (BPsize - nontext_bytes)

where:

BPsize

Is approximately 4000 bytes for 4K buffers or 32,000 bytes for 32K buffers.

nontext_bytes

Is the total number of bytes for field types other than text (TX).

To load text field data, use a FIXFORM or PROMPT command, or use TED in a MODIFY request.
For a complete discussion of text fields, consult the Describing Data and Maintaining
Databases manuals.

Reference: MISSING

The adapter supports RDBMS null data. In a table, a null value represents a missing or
unknown value. It is not the same as a blank or zero. For example, you can use a column
specification that allows nulls for a column that does not have to contain a value in every row
(such as a raise amount in a table containing payroll data).

When a MODIFY or MAINTAIN procedure enters data into a table, it represents missing data in
the table as RDBMS standard null data for columns that allow nulls. At retrieval, null data is
translated into the FOCUS missing data display value. The default NODATA display value is the
period (.).

The MISSING attribute in the Master File indicates whether the RDBMS column accepts null
data. When a field declaration omits the MISSING attribute, it defaults to OFF. The syntax is

MISSING = {OFF|ON} ,$

where:

OFF

Is the default. In the RDBMS, columns should be created with the NOT NULL attribute (or
NOT NULL WITH DEFAULT—DB2 only).

Master Files

82

ON

FOCUS displays the NODATA value for null data. The column should be created without the
NOT NULL attribute.

For null data support:

The RDBMS table definition must describe a column that allows null data (without the
clause NOT NULL).

The Master File for that table must describe a column that allows null data as a field with
the attribute MISSING=ON.

Note: If the column allows null data but the corresponding field in the Master File uses the
attribute MISSING=OFF, null data appears as a zero or blank. In MODIFY or MAINTAIN,
incoming null values for these fields are stored as zero or blank. This practice is not
recommended since it can affect the results of SUM or COUNT aggregate operations, as well
as allowing the (perhaps unintentional) storage of real values for fields that, in fact, should be
null.

Reference: Comparing Fields With Null Values

FOCUS and the RDBMS differ slightly in how they compare null field values:

When two fields contain null values, FOCUS considers them equal. The RDBMS considers
the result of any comparison between them to be UNDEFINED and does not return any
rows.

When one field contains a null value and another field does not, FOCUS considers them not
equal. The RDBMS considers the result of any comparison between them to be undefined
and returns the value FALSE for any such selection condition.

Consider two examples:

TABLE FILE X
PRINT *
WHERE (FIELD1 EQ FIELD2)
END

TABLE FILE X
PRINT *
WHERE (FIELD1 NE FIELD2)
END

The following table summarizes the results produced by FOCUS and the RDBMS:

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 83

Condition Field1 Value Field2 Value FOCUS Result RDBMS Result

EQ Null Null True False

Null Not Null False False

NE Null Null False False

Null Not Null True False

In most cases, the adapter translates the FOCUS WHERE clause to an SQL WHERE predicate
and passes it to the RDBMS for processing. (This translation process is called adapter
optimization.) If the adapter does not translate the FOCUS WHERE test to an SQL WHERE
predicate, FOCUS applies the selection test and may produce a different answer set.

Because of optimization enhancements introduced in recent releases, certain requests (outer
joins, for example) no longer disable optimization as they did in prior releases. Therefore, the
answer set returned may differ from that produced by prior versions of the adapter when
FOCUS handled the request. See The Adapter Optimizer on page 171, for a discussion of
optimization.

Reference: Optional Field Attributes

The optional field attributes DESCRIPTION, TITLE, DEFINE, and ACCEPT are supported for use
with the adapter. Refer to your FOCUS documentation for information about these attributes.

FIELDTYPE=R

A field with the FIELTYPE=R (read-only) attribute represents a DB2 TIMESTAMP column. The
RDBMS automatically increments this type of field. If you supply a value, it is ignored.

Example: Using FIELDTYPE=R

SALTIME is a DB2 table with a TIMESTAMP column (field ENTRY_DATE in the Master File):

FILENAME=SALINFO, SUFFIX=DB2,$

SEGNAME=SALINFO ,SEGTYPE=S0,$
 FIELDNAME=SALEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=PAY_DATE ,ALIAS=PD ,USAGE=YYMD ,ACTUAL=DATE,$
 FIELDNAME=GROSS ,ALIAS=MO_PAY ,USAGE=D12.2M ,ACTUAL=D8,$
 FIELDNAME=ENTRY_DATE,ALIAS=EDATE ,USAGE=HYYMDm ,ACTUAL=HYYMDm,
 FIELDTYPE=R,$

Master Files

84

The following MODIFY procedure asks for an employee ID and pay date. If the employee ID
exists in the table, but the pay date does not, the procedure asks for a monthly salary and
adds a new row to the table:

MODIFY FILE SALINFO
CRTFORM LINE 1
" PLEASE ENTER A VALID EMPLOYEE ID AND PAY_DATE </1"
" EMPLOYEE ID: <SALEID PAY DATE: <PAY_DATE "
MATCH SALEID
ON NOMATCH GOTO EXIT
ON MATCH GOTO ADDCASE
CASE ADDCASE
MATCH PAY_DATE
ON MATCH GOTO EXIT
ON NOMATCH CRTFORM LINE 5
" ENTER NEW MONTHLY SALARY <T.GROSS> "
ON NOMATCH INCLUDE
ENDCASE
DATA
END

The following rows exist in the table for employee ID 071382660:

SALEID PAY_DATE GROSS ENTRY_DATE
------ -------- ----- ----------
071382660 11/11/30 $5,000.33 2011/12/25 01:05:50.595295
071382660 11/12/30 $5,000.33 2012/01/24 01:27:48.680248
071382660 12/01/27 $5,083.67 2012/02/21 03:12:38.689755
071382660 12/02/24 $5,083.67 2012/03/20 06:11:40.965379
071382660 12/03/30 $5,083.67 2012/04/24 04:54:56.465970
071382660 12/04/30 $5,083.67 2012/05/25 01:33:58.063954
071382660 12/05/28 $5,083.67 2012/06/22 04:43:38.063858
071382660 12/06/29 $5,083.67 2012/07/24 03:12:22.609716
071382660 12/07/30 $5,083.67 2012/08/24 01:43:42.648030
071382660 12/08/31 $5,083.67 2012/09/25 06:15:38.112955

The following example executes the MODIFY procedure to add a salary of $6,000 for the pay
date 13/04/30 for this employee:

 PLEASE ENTER A VALID EMPLOYEE ID AND PAY_DATE

 EMPLOYEE ID: 071382660 PAY DATE: 130430

 ENTER NEW MONTHLY SALARY 6000

The RDBMS automatically generates a timestamp value for the ENTRY_DATE field. If the
procedure had supplied a value, it would have been ignored:

SALEID PAY_DATE GROSS ENTRY_DATE
------ -------- ----- ----------
071382660 13/04/30 $6,000.00 2013/05/12 14:43:17.852050

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 85

It is up to the developer to query the data source to find out what value was generated by the
RDBMS for the auto-increment field.

Access Files

Each Master File has a corresponding Access File. The name of the Access File (member name
in the z/OS partitioned data set allocated to DDNAME FOCSQL) must be identical to that of the
Master File or, in the case of a remote segment description can be described in the cross-
referenced Access File. The Access File associates a segment in the Master File with the table
it describes.

The Access File must identify the table and primary key (if there is one). It may also indicate
the logical sort order of data and identify storage areas for the table. Access File field
declarations can define the precision of packed fields.

For multi-table structures, the Access File also contains KEYFLD and IXFLD attributes that
implement embedded equijoins. See Multi-Table Structures on page 99, for details.

The following is an Access File for the DB2 table EMPINFO:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$

Segment Declarations in the Access File

The segment declaration in the Access File establishes the link between the Master File and
the RDBMS table or view. Attributes that constitute the segment declaration are SEGNAME,
TABLENAME, DBSPACE, WRITE, KEYS, and KEYORDER. Values for SEGNAME and TABLENAME
are required. The remaining attributes acquire default values if they are omitted.

Teradata supports the FALLBACK attribute described in FALLBACK (Teradata Only) on page
93.

Oracle supports the CONNECTION attribute described in CONNECTION (Oracle Only) on page
94.

Syntax: How to Describe a Table or View in an Access File

SEGNAME=segname, TABLENAME= tableid [,DBSPACE=storage,]
 [,WRITE= {YES|NO}] [,KEYS= {0|n}] [,KEYORDER=sequence,] ,$

where:

segname

Is the one- to eight-character SEGNAME value from the Master File.

Access Files

86

tableid

Is the RDBMS-specific table name.

For DB2, the format of the table name attribute is

 [location.][creator.]table

For Teradata, the format of the table name attribute is

 [databasename.]table

For Oracle, the format of the table name attribute is

 userid.tablename

For IDMS/SQL, the format of the table name attribute is

 [schema.]table

See TABLENAME on page 88 for complete information.

DBSPACE = storage

Is an RDBMS-specific storage area for the table used by the CREATE FILE or HOLD
FORMAT DB2, SQLDBC, SQLIDMS, or SQLORA commands.

For DB2 on z/OS

 databasename.tablespacename or DATABASEdatabasename

For Teradata, N/A.

For IDMS/SQL, the format of the DBSPACE attribute is

 segment.area

For Oracle, the format of the DBSPACE attribute is

 tablespacename

See DBSPACE on page 90 for complete information.

WRITE = {YES|NO}

YES specifies read and write access using MODIFY and MAINTAIN. YES is the default
value.

NO specifies read-only access using FOCUS MODIFY and MAINTAIN.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 87

KEYS = n

Indicates how many columns constitute the primary key. Is a value from 0 to 64. Zero is
the default.

KEYORDER = sequence

Indicates the primary key sort sequence. Valid values are as follows:

LOW indicates ascending primary key sort sequence. LOW is the default.

ASC is a synonym for LOW.

HIGH indicates descending primary key sort sequence.

DESC is a synonym for HIGH.

Reference: TABLENAME

The TABLENAME attribute specifies the RDBMS table name. This name may have multiple
parts depending on the specific RDBMS.

DB2 RDBMS

 TABLENAME = [location.][creator.]table

where:

location

Is the DB2 subsystem location name for the Distributed Data Facility, 16 characters
maximum.

creator

Defaults to the current authorization ID if not specified. Eight characters maximum.

table

Is the name of the RDBMS table or view, 18 characters maximum.

The TABLENAME attribute identifies the RDBMS table or view. It should contain both the
creator ID and the table name. If not specified, the creator defaults to the current
authorization ID.

The maximum length for a fully-qualified table name is 44. For a discussion of FOCUS
support for the DB2 Distributed Data Facility, see Additional Topics on page 417. All
names must conform to the rules for identifiers stated in the appropriate RDBMS manual.

Teradata RDBMS

 TABLENAME = [databasename.]table

Access Files

88

where:

databasename

Is the name of the database where the table resides, 30 characters maximum. The
default is the database name assigned to your Teradata logon ID, provided one exists.

table

Is the name of the table of view, 30 characters maximum.

In Teradata, the maximum length of a fully-qualified table name is 61 characters including
the required period (.).

Database and table name may consist of uppercase letters (A through Z) and digits (0
through 9). Special characters, dollar sign ($), pound sign (#), and underscore (_) are also
permitted.

IDMS/SQL RDBMS

TABLENAME = [schema.]table

where:

schema

Is the IDMS SQL schema name for the table or view. Eight characters maximum. If not
specified, IDMS searches for a temporary table definition for the named table. If that
does not exist, IDMS uses the current schema in effect for the current user session.

table

Is the name of the table or view, 17 characters maximum.

The maximum IDMS length for a fully qualified table name is 25. All names must conform
to the CA-IDMS rules for identifiers.

Oracle RDBMS

TABLENAME = [creator.]tablename[@dblinkname]

where:

creator

Is the Oracle userid, up to 30 characters in length.

tablename

Is the name of the Oracle table being described, up to 30 characters in length.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 89

dblinkname

Is a valid DATABASE LINK defined in the currently connected Oracle database server.

Note:

If any part of the TABLENAME begins with a number or special character or contains special
characters, enclose it in double quotation marks.

If any part of the TABLENAME includes a dollar sign ($), enclose that part in double
quotation marks, and enclose the entire TABLENAME value in single quotation marks. For
example

TABLENAME = 'USER1."TABLE$1"'

Reference: DBSPACE

The DBSPACE attribute is an RDBMS-specific storage area for the table used by the CREATE
FILE or HOLD FORMAT DB2, SQLDBC, SQLORA, or SQLIDMS commands.

DB2 RDBMS

DBSPACE = databasename.tablespacename

or

DBSPACE = DATABASE databasename

The storage areas identified by the DBSPACE attribute are called tablespaces in DB2. The
IBM default value is DSNDB04, a public database. (DB2 automatically generates a
tablespace in DSNDB04.)

Teradata RDBMS N/A

IDMS/SQL RDBMS

DBSPACE = segment.area

where:

segment

Is the IDMS SQL segment name to be used for the CREATE TABLE DDL resulting from
a CREATE FILE or HOLD FORMAT SQLIDMS command. If not specified, IDMS uses the
default area associated with the schema.

Access Files

90

area

Is the IDMS SQL segment name to be used for the CREATE TABLE DDL resulting from
a CREATE FILE or HOLD FORMAT SQLIDMS command. If not specified, IDMS uses the
default area associated with the schema.

Oracle RDBMS

DBSPACE = tablespacename

Note:

The DBSPACE attribute is ignored for all operations except FOCUS CREATE FILE or HOLD
FORMAT SQLengine.

The adapter may have been installed with a default DBSPACE setting that is used if you do
not either specify the DBSPACE attribute or issue a SET DBSPACE command.

You can also declare storage areas by issuing the SET DBSPACE environmental command
prior to CREATE FILE (see Adapter Commands on page 309).

The Access File DBSPACE attribute overrides both the SET command and the installation
default.

Reference: WRITE

The read/write security attribute, WRITE, determines whether or not the adapter allows FOCUS
MODIFY and MAINTAIN operations (INCLUDE, UPDATE, or DELETE) on the table. The syntax is

WRITE = {YES|NO}

where:

YES

Specifies read and write access using FOCUS MODIFY and MAINTAIN. YES is the default
value.

NO

Specifies read-only access using FOCUS TABLE, MAINTAIN, and MODIFY. You can use
MODIFY or MAINTAIN read-only functions, such as MATCH, NEXT, CRTFORM, or WINFORM,
to display rows.

Note:

The WRITE attribute has no effect on FOCUS reporting operations.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 91

Regardless of the WRITE value, RDBMS security must approve all operations and activities.

The adapter must have been installed to allow Read/Write operations. Contact your system
support staff for installation options installed at your site.

Reference: KEYS

The KEYS attribute indicates how many columns constitute the primary key for the table.
Acceptable values range from 0 to 64. Zero, the default, indicates that the table does not have
a primary key. In the corresponding Master File, primary key columns must correspond to the
first n fields described.

The syntax is

KEYS = {0|n} ,

where:

n

Is a value from 0 to 64. Zero is the default.

The KEYS value has the following significance in reporting operations

When you use FOCUS FST. or LST. direct operators, the adapter instructs the RDBMS to
sort the answer set by the primary key in KEYORDER sequence.

Note: LST. processing is automatically invoked if you request SUM or WRITE of an
alphanumeric field or use one in a report heading or footing.

The adapter uses the KEYS value to determine the relationship between two joined tables.
For example, if the primary key of one table is joined to the primary key of another table,
the adapter can assume that a one-to-one relationship exists between the two tables. It
then uses this assumption in conjunction with the JOIN specification and the current
optimization setting to produce SQL statements. See The Adapter Optimizer on page 171,
and Advanced Reporting Techniques on page 213, for a detailed explanation.

To provide consistent access to tables, you should specify the KEYS attribute whenever a
primary key exists.

The KEYS value also has significance in MODIFY operations (see Maintaining Tables With
FOCUS on page 349, for a detailed explanation).

Access Files

92

Reference: KEYORDER

The KEYORDER attribute is optional. It specifies the logical sort sequence of data by the
primary key. It does not affect the physical storage of data. The adapter uses the KEYORDER
value when you specify FST. and LST. direct operators in report requests. The syntax is

KEYORDER= sequence ,

where:

sequence

Indicates the primary key sort sequence. Valid values are as follows:

LOW sorts the rows in ascending primary key sequence. LOW is the default value.

ASC is a synonym for LOW.

HIGH sorts the rows in descending primary key sequence.

DESC is a synonym for HIGH.

For example, to retrieve the most recent pay dates first, specify KEYORDER = HIGH for the
SALINFO table

SEGNAME = SALINFO, TABLENAME = "USER1"."SALINFO", KEYS = 2,
 WRITE = YES, KEYORDER = HIGH, DBSPACE = PUBLIC.SPACE0,$

The adapter requests rows ordered by SALEID and PAY_DATE in descending order.
FST.PAY_DATE retrieves the most recent salary data for each employee. See the Master File
for SALINFO in File Descriptions and Tables on page 459.

KEYORDER also determines the logical sort order for MODIFY and MAINTAIN NEXT
subcommands (see Maintaining Tables With FOCUS on page 349).

Reference: FALLBACK (Teradata Only)

The FALLBACK attribute indicates whether a secondary copy of data is maintained in addition
to the primary table. The adapter incorporates this backup operation while creating a table in
response to the FOCUS CREATE FILE command. You can also specify the FALLBACK parameter
in native SQL/DBC CREATE TABLE statements.

The syntax is

FALLBACK = {YES|NO}

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 93

where:

YES

Establishes a backup copy. The location is determined by Teradata and becomes available
if the original copy becomes unavailable.

NO

Does not establish a backup copy. NO is the default value.

Reference: CONNECTION (Oracle Only)

The CONNECTION attribute selects a specific connection name from the list of Oracle database
servers declared using the SET CONNECTION_ATTRIBUTES command. This setting supersedes
the default connection in any request that references the Master and Access File pair. SERVER
is a synonym for CONNECTION, and is supported for compatibility with earlier releases.

CONNECTION=connection_name

where:

connection_name

Is the TNSNAME used to connect to an Oracle database server. This name must have
been previously referenced in a SET CONNECTION_ATTRIBUTES command. See
Connection, Authentication, and Security on page 45, for information about the SET
CONNECTION_ATTRIBUTES command.

Field Declarations (DB2 Only)

Access File field declarations define the precision type for DECIMAL fields.

The OCCURS Segment

For use with TABLE requests, you can describe tables that contain repeating columns as
OCCURS segments. Repeating data is not characteristic of normalized tables and views.
However, denormalized tables may exist for some situations.

The OCCURS segment, a virtual construct, eliminates the need to specify the names of every
column in a TABLE request if a group of columns contains similar data. In the OCCURS
segment definition, you redefine all the separate columns as one group that shares the same
name. You can then define the order field, an internal FOCUS counter that enables you to
access specific columns by their sequence numbers within the group instead of by separate
names.

The OCCURS Segment

94

To define an OCCURS segment, you need

An additional segment declaration in the Master File to define the OCCURS segment.

One field declaration to represent the repeating fields.

Optionally, a field declaration for the ORDER field, a counter that is internal to FOCUS and
not contained in the RDBMS.

Creating an OCCURS Segment

To create an OCCURS segment

1. Describe the entire table as a single-table Master File. Include a field declaration for each
repeating column.

2. Add a segment description for the related OCCURS segment. In it, include a field
declaration that redefines the repeating portion of the table.

The syntax for an OCCURS segment declaration is

SEGNAME=segname, PARENT=name, POSITION=field, OCCURS=nnnn,$

where:

segname

Is the name of the OCCURS segment, up to eight characters.

parent

Is the SEGNAME value of the table that contains declarations for the repeating fields.

field

Is the name of the first repeating field in the parent table.

nnnn

Is the number of repeating fields. Acceptable values range from 1 to 4095.

Note:

The OCCURS segment declaration in the Master File must not include the SEGTYPE
attribute.

The Access File must not contain a corresponding segment declaration for the OCCURS
segment.

OCCURS segments are available for TABLE operations. To change data, you must specify
the individual repeating fields from the parent segment.

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 95

Using an OCCURS segment disables adapter optimization.

The following SALARY table contains monthly payroll tax deductions for an employee, and the
Master File describes the repeating columns as 12 separate deduction fields. It also includes
an OCCURS segment, OCC:

 FILENAME=SALARY, SUFFIX=DB2,$
 SEGNAME=SALARY, SEGTYPE=S0,$
 FIELD=EMPID, ALIAS=EMPID, USAGE=A7, ACTUAL=A7,$
 FIELD=EMPNAME, ALIAS=EMPNAME, USAGE=A10, ACTUAL=A10,$
 FIELD=SALARY, ALIAS=PAY, USAGE=P9.2, ACTUAL=P4,$
 FIELD=DEDUCT1, ALIAS=DEDUCT1, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT2, ALIAS=DEDUCT2, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT3, ALIAS=DEDUCT3, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT4, ALIAS=DEDUCT4, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT5, ALIAS=DEDUCT5, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT6, ALIAS=DEDUCT6, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT7, ALIAS=DEDUCT7, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT8, ALIAS=DEDUCT8, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT9, ALIAS=DEDUCT9, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT10, ALIAS=DEDUCT10, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT11, ALIAS=DEDUCT11, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT12, ALIAS=DEDUCT12, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 SEGNAME=OCC, PARENT=SALARY, POSITION=DEDUCT1, OCCURS=12,$
 FIELD=TAX, ALIAS=TAXDEDUC, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$

The OCCURS segment redefines the 12 deduction fields in the SALARY segment, beginning
with DEDUCT1. The TAX field in the OCCURS segment represents the 12 repeating fields.

The corresponding Access File does not contain a declaration for the OCCURS segment:

 SEGNAME = SALARY, TABLENAME = "USER1"."SALARY", KEYS = 1,
 WRITE = NO, DBSPACE = PUBLIC.SPACE0,$

The ORDER Field

The ORDER field is a virtual counter that assigns a sequence number to each field within a
group of repeating fields. Specify this optional field when the order of data is significant. The
ORDER field does not represent an existing column. It is used only for internal processing.

The ORDER field must be the last field described in the OCCURS segment. The syntax is

FIELD=name, ALIAS=ORDER, USAGE=In, ACTUAL=I4,$

where:

name

Is any meaningful name.

In

Is an integer (In) format.

The OCCURS Segment

96

Note:

The value of ALIAS must be ORDER.

The value of ACTUAL must be I4.

In the previous SALARY table example, no column explicitly specifies the month for each TAX
field. To associate the month, the next example adds the ORDER field as the last field in the
OCCURS segment:

 FILENAME=SALARY, SUFFIX=DB2,$
 SEGNAME=SALARY, SEGTYPE=S0,$
 FIELD=EMPID, ALIAS=EMPID, USAGE=A7, ACTUAL=A7,$
 FIELD=EMPNAME, ALIAS=EMPNAME, USAGE=A10, ACTUAL=A10,$
 FIELD=SALARY, ALIAS=PAY, USAGE=P9.2, ACTUAL=P4,$
 FIELD=DEDUCT1, ALIAS=DEDUCT1, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT2, ALIAS=DEDUCT2, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT3, ALIAS=DEDUCT3, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT4, ALIAS=DEDUCT4, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT5, ALIAS=DEDUCT5, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT6, ALIAS=DEDUCT6, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT7, ALIAS=DEDUCT7, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT8, ALIAS=DEDUCT8, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT9, ALIAS=DEDUCT9, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT10, ALIAS=DEDUCT10, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT11, ALIAS=DEDUCT11, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT12, ALIAS=DEDUCT12, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 SEGNAME=OCC, PARENT=SALARY, POSITION=DEDUCT1, OCCURS=12,$
 FIELD=TAX, ALIAS=TAXDEDUC, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=ORDER, ALIAS=ORDER, USAGE=I4, ACTUAL=I4,$

In subsequent report requests, you can use the DECODE function to translate the ORDER field
into monthly values.

In this example, a DEFINE command assigns the month to each counter value. You can specify
a temporary field before the report request or in the Master File

define file salary
month/a3=decode order(1 'jan' 2 'feb' 3 'mar' 4 'apr' 5 'may'
6 'jun' 7 'jul' 8 'aug' 9 'sep' 10 'oct' 11 'nov' 12 'dec' else ' ');
end
table file salary
print last_name tot.tax if month eq 'jan'
end

You can also use the ORDER field in selection tests. For example:

table file salary
print empeid last_name tax
if order eq 12
end

4. Describing Tables to FOCUS

Relational Data Adapter User’s Manual 97

The OCCURS Segment

98

Chapter5
Multi-Table Structures

This chapter describes how to use FOCUS file descriptions to create joins between
tables.

For information about creating joins using the dynamic JOIN command, see Advanced
Reporting Techniques on page 213.

In this chapter:

Types of Embedded Joins

Advantages of Multi-table Structures

Creating a Multi-table Structure

Multi-field Embedded Equijoins

Types of Embedded Joins

With the relational adapters, you can describe two or more related tables in a single Master
File. This type of multi-table structure is called an embedded join. There are two types of
embedded joins:

The equijoin describes the related tables based on common field values in both tables.
This type of embedded join is described in a multi-table Master File and an accompanying
multi-table Access File.

The conditional (or WHERE-based) join describes how to relate rows from the two tables
based on any condition. In this type of embedded join, the Master File for one table
contains a cross-reference to the Master File for the other table. The conditional embedded
join does not require a multi-table Access File.

In an embedded equijoin, each participating table must have at least one field in common with
at least one other table in the structure. Typically, this common field is the primary key of one
table and the foreign key of the other. A single Master and Access File pair can relate up to
1024 separate tables in this manner.

Relational Data Adapter User’s Manual 99

Multi-table Master and Access Files describe the relationships between tables. The adapter
implements these relationships at run time by matching values in fields common to two or
more tables for an equijoin, or by applying the specified conditions for a conditional join. A
report or maintenance procedure can refer to any or all of the tables included in the multi-table
description.

In this chapter, the terms primary key and foreign key refer to the common fields in two related
tables. These may or may not have been described as primary and foreign keys in SQL CREATE
TABLE statements (RDBMS referential integrity). In practice, FOCUS can use any two fields that
share a common format to relate tables in multi-table file descriptions.

Note: This chapter describes manual methods for creating Master File and Access Files.
Automated Procedures on page 113 describes an automated method for creating Master and
Access Files.

Advantages of Multi-table Structures

The following are advantages of defining multiple tables in a single Master File:

For reporting, a multi-table structure automatically joins tables referenced in the report
request, so relationships between tables can be pre-defined for a user without creating an
additional RDBMS view.

A multi-table structure creates a logical view of the data tailored to contain only those
columns that should be seen by a user. The DBA security feature can define additional
levels of security.

Tables described in a multi-table Master File can be maintained together using the FOCUS
MODIFY and Maintain facilities and can take advantage of FOCUS referential integrity
provided by the adapter. (Refer to Maintaining Tables With FOCUS on page 349 for a
description of MODIFY, Maintain, and FOCUS referential integrity.)

TABLE requests access only those RDBMS tables that contain columns referenced (either
explicitly or implicitly) in the request.

A TABLE request that references a dynamically joined structure generates SQL join
predicates for all segments in the subtree that starts from the root segment. Multi-table
Master Files do not necessarily generate these predicates. In a multi-table structure, the
subtree effectively begins with the highest referenced segment. This difference may cause
identical TABLE requests to produce different reports when run against a dynamic join
structure and a multi-table Master File that represent the same tree structure. See
Advanced Reporting Techniques on page 213 for a discussion of dynamic joins.

Advantages of Multi-table Structures

100

Creating a Multi-table Structure

To create a multi-table structure, describe the tables, and the relationships between them, in a
single Master File. An embedded equijoin also requires that the join fields be specified in a
single Access File.

Multi-table Master Files

All segment declarations in a multi-table Master File must describe RDBMS tables or views.
Each segment represents one table or view, up to a total of 1024 segments. An RDBMS view
counts as one segment toward the total, even if the view represents a join of two or more
tables.

If several Master Files (used only with TABLE requests) include the same table, you can avoid
repeating the same description multiple times. Describe the table in one of the Master Files,
and use the CRFILE attribute in the other Master Files to access the existing description. For a
full explanation of remote segment descriptions, see Additional Topics on page 417.

Syntax: How to Define an Equijoin in the Master File

An embedded equijoin uses the PARENT segment attribute to describe the relationships
between tables

FILENAME=mtname, SUFFIX=sqlsuffix [,$]
 SEGNAME=table1, SEGTYPE= {S0|KL} [,CRFILE=crfile1] [,$]
 FIELD=name,...,$
 .
 .
 .
 SEGNAME=table2, SEGTYPE=relationship, PARENT=table1
[,CRFILE=crfile2][,$]
 FIELD=name,...,$
 .
 .
 .

where:

mtname

Is the one- to eight-character name of the multi-table Master File.

sqlsuffix

Is one of the following values: SQLDS, SQLIDMS, SQLDBC, SQLORA.

5. Multi-Table Structures

Relational Data Adapter User’s Manual 101

table1

Is the SEGNAME value for the parent table. If this segment references a remote segment
description, table1 must be identical to the SEGNAME from the Master File that contains
the full definition of the columns in the RDBMS table (see Additional Topics on page 417).

name

Is any field name.

table2

Is the SEGNAME value for the related table. If this segment references a remote segment
description, table2 must be identical to the SEGNAME from the Master File that contains
the full definition of the columns in the RDBMS table.

relationship

Indicates the type of relationship between the table and its parent. Valid values are:

S0 indicates that the related table is in a one-to-many or many-to-many (non-unique)
relationship with the table named as its parent.

U indicates that the related table is in a one-to-one or a many-to-one (unique) relationship
with the table named as its parent.

KL references a remote segment description. Indicates that the related table is in a one-to-
many or many-to-many (non-unique) relationship with the table named as its parent.

KLU references a remote segment description. Indicates that the related table is in a one-
to-one or a many-to-one (unique) relationship with the table named as its parent.

crfile1

References a remote segment description. Indicates the name of the Master File that
contains the full definition of the columns in table1.

crfile2

References a remote segment description. Indicates the name of the Master File that
contains the full definition of the columns in table2.

Syntax: How to Define a Conditional Join in the Master File

Conditional joins in the Master File are supported between relational data sources only. The
conditions are considered virtual fields in the Master File.

Creating a Multi-table Structure

102

FILENAME=mtname, SUFFIX=sqlsuffix [,$]
 SEGNAME=table1, SEGTYPE= {S0|KL} [,CRFILE=crfile1] [,$]
 FIELD=name,...,$
 .
 .
 .
SEGNAME=seg, SEGTYPE=styp, PARENT=parseg,
 [CRFILE=xmfd,] [CRSEG=xseg,]
 JOIN_WHERE=expression; ,$

where:

mtname

Is the one- to eight-character name of the multi-table Master File.

sqlsuffix

Is one of the following values: SQLDS, SQLIDMS, SQLDBC, SQLORA.

table1

Is the SEGNAME value for the parent table. If this segment references a remote segment
description, table1 must be identical to the SEGNAME from the Master File that contains
the full definition of the columns in the RDBMS table (see Additional Topics on page 417).

name

Is any field name.

seg

Is the segment name for the joined segment. Only this segment participates in the join,
even if the cross-referenced Master File describes multiple segments.

styp

Is the segment type for the joined segment. Can be DKU, DKM, KU, or KM as with
traditional cross-references in the Master File.

Note: If you specify a unique join when the relationship between the host and cross-
referenced files is one-to-many, the results will be unpredictable.

parseg

Is the parent segment name.

5. Multi-Table Structures

Relational Data Adapter User’s Manual 103

xmfd

Is the cross-referenced Master File.

xseg

Is the cross-referenced segment, if seg is not the same name as the SEGNAME in the
cross-referenced Master File.

expression

Is any expression valid in a DEFINE FILE command. All of the fields referenced the
expression must lie on a single path.

Reference: SEGNAME

The SEGNAME attribute names the segment. SEGNAME values must be unique within the
Master File. If the segment references a remote Master File, its SEGNAME value must be
identical to the SEGNAME from the Master File that contains the full definition of the columns
in the RDBMS table.

Reference: SEGTYPE

The SEGTYPE attribute indicates how a table participates in a relationship. The SEGTYPE of the
first segment in a multi-table Master File is always S0 (or KL for a remote segment
description). Thereafter, related tables (additional segments) are described as follows:

SEGTYPE=S0 (S-zero) indicates that the related table is in a one-to-many or many-to-many
(non-unique) relationship with the table named as its parent. (For every row of the parent
table there may be more than one matching row in the related table.)

SEGTYPE=U is used for an embedded equijoin and indicates that the related table is in a
one-to-one or a many-to-one (unique) relationship with the table named as its parent. (For
every row of the parent table, there is at most one matching row in the related table. For a
one-to-one relationship to exist, both tables must share the same primary key. For a many-
to-one relationship to exist, the primary key of the related table must be a subset of the
primary key of the parent table.)

SEGTYPE=KL references a remote segment description. It indicates that the related table is
in a one-to-many or many-to-many (non-unique) relationship with the table named as its
parent. (For every row of the parent table there may be more than one matching row in the
related table.)

Creating a Multi-table Structure

104

SEGTYPE=KLU references a remote segment description. It indicates that the related table
is in a one-to-one or a many-to-one (unique) relationship with the table named as its parent.
(For every row of the parent table, there is at most one matching row in the related table.
For a one-to-one relationship to exist, both tables must share the same primary key. For a
many-to-one relationship to exist, the primary key of the related table must be a subset of
the primary key of the parent table.)

SEGTYPE DKU or KU indicates a dynamic unique conditional join.

SEGTYPE DKM or KM indicates a dynamic non-unique conditional join.

Reference: PARENT

All segment declarations other than the first require the PARENT attribute. The PARENT value
for a segment is the SEGNAME of the table to which it will be related at run time.

Reference: CRFILE

Specify the CRFILE attribute only if the actual description of the columns in the table is stored
in another (remote) Master File or to create a conditional join. For a remote segment
description, the CRFILE value must be the name of the Master File that contains the full
definition of the columns in the RDBMS table. For a complete discussion of remote segment
descriptions, see Additional Topics on page 417.

Reference: FIELD

Field names can consist of up to 66 alphanumeric characters. Within the Master File, field
names cannot include qualifiers. Column names are acceptable values if they meet the
following naming conventions:

A name can consist of letters, digits, and underscore characters. Special characters and
embedded blanks are not advised.

The name must contain at least one letter.

Since the field name displays as the default column title for reports, select a name that is
representative of the data. In TABLE, GRAPH, and MODIFY requests, you can specify field
names, aliases, or a unique truncation of either. MAINTAIN does not support alias names or
truncated names. In all requests, you can qualify a field name with its file name and/or
segment name.

Field names must be unique within a single segment. If field names are duplicated across
segments, use the segment name as a qualifier when referencing them in requests.

5. Multi-Table Structures

Relational Data Adapter User’s Manual 105

Reference: ALIAS

The ALIAS value for each field must be the full SQL column name (the adapter uses it to
generate SQL statements). The ALIAS name must be unique within the segment. DB2 permits
a maximum of 18 alphanumeric characters, Teradata and Oracle permit 30, and IDMS SQL
permits 32. The ALIAS name must comply with the same naming conventions described for
field names.

ALIAS names may be duplicated within the Master File if they are defined for different tables.

Example: Specifying an Embedded Equijoin in a Master File

The following Master File relates the DB2 tables EMPINFO and COURSE. The EMPINFO table is
described first. Therefore, its segment declaration does not include the PARENT attribute. In
the COURSE segment declaration, the PARENT attribute identifies EMPINFO as the parent and
notifies the adapter that the two tables may be joined at run time for reporting purposes. The
FILENAME ECOURSE identifies this relationship. (For an example of a multi-table Master File
with a remote segment, refer to Additional Topics on page 417):

FILENAME=ECOURSE ,SUFFIX=SQLDS, $
SEGNAME=EMPINFO ,SEGTYPE=S0, $
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=COURSE ,SEGTYPE=S0 ,PARENT=EMPINFO,$
 FIELD=CNAME ,ALIAS=COURSE_NAME ,USAGE=A15, ACTUAL=A15,$
 FIELD=WHO ,ALIAS=EMP_NO ,USAGE=A9, ACTUAL=A9,$
 FIELD=GRADE ,ALIAS=GRADE ,USAGE=A1, ACTUAL=A1, MISSING=ON,$
 FIELD=YR_TAKEN,ALIAS=YR_TAKEN ,USAGE=A2, ACTUAL=A2,$
 FIELD=QTR ,ALIAS=QUARTER ,USAGE=A1, ACTUAL=A1,$

Note:

The join is based on matching values between a field in the parent segment and a field in
the child segment. The join fields are identified in a multi-table Access File, which is
described in Multi-table Access Files on page 108.

Creating a Multi-table Structure

106

Multi-table Master Files used in MODIFY and Maintain procedures invoke FOCUS referential
integrity. Refer to Maintaining Tables With FOCUS on page 349 for a discussion of
referential integrity before deciding whether to use the same file descriptions for both
reporting and maintenance procedures.

Example: Specifying a Conditional Join in a Master File

The following Master File for the EMPINFO table (defined solely for the purpose of this example
and not included in File Descriptions and Tables on page 459) contains a conditional join to
the PAYINFO table. The conditions create a join that includes all employees who received a
salary increase within six months of being hired:

FILENAME=EMPINFO ,SUFFIX=SQLDS,$
SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE ,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4 ,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4 ,$
FIELD=HIRE_DATE_TIME ,ALIAS=HDTT ,USAGE=HYYMDm ,ACTUAL=HYYMDm ,$
FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS ,$

SEGNAME=PAYINFO, SEGTYPE=KM, PARENT = EMPINFO,
CRFILE = PAYINFO,
JOIN_WHERE = DAT_INC GT HIRE_DATE AND DAT_INC LT (HIRE_DATE + 182);
JOIN_WHERE = EMP_ID EQ PAYEID; ,$

Each table has a single segment Access File. No other Access File is needed.

The following report shows the employees included in the join:

TABLE FILE EMPINFO
PRINT SALARY HIRE_DATE DAT_INC
BY LAST_NAME BY FIRST_NAME
END

The output is:

5. Multi-Table Structures

Relational Data Adapter User’s Manual 107

LAST_NAME FIRST_NAME SALARY HIRE_DATE DAT_INC
--------- ---------- ------ --------- -------
CROSS BARBARA $27,062.00 81/11/02 82/04/09
GREENSPAN MARY $9,000.00 82/04/01 82/06/11
IRVING JOAN $26,862.00 82/01/04 82/05/14
JONES DIANE $18,480.00 82/05/01 82/06/01
MCKNIGHT ROGER $16,100.00 82/02/02 82/05/14
SMITH RICHARD $9,500.00 82/01/04 82/05/14

Multi-table Access Files

A multi-table Master File indicates that tables are related. However, to implement an equijoin
(TABLE) or FOCUS referential integrity (MODIFY and MAINTAIN), you must identify their common
fields to FOCUS in the corresponding Access File.

Note:

A conditional join does not use a multi-table Access File.

The KEYFLD and IXFLD attributes that specify the matching fields for an equijoin should not
be used when doing a conditional join with JOIN_WHERE.

The multi-table Access File includes a segment declaration for each table described in the
Master File, even if the segment was referenced remotely in the Master File. The order of
segment declarations in the Access File does not have to match the order in the Master File,
but maintaining the same order enhances readability.

Each segment declaration in the Access File must contain the required keywords described in
Describing Tables to FOCUS on page 55.

In addition, each segment except the first must identify the fields that it shares with its parent
segment. In each Access File segment declaration other than the first, the KEYFLD and IXFLD
attributes supply the names of the primary key and foreign key fields that implement the
relationships established by the multi-table Master File.

Syntax: How to Create a Multi-table Access File

SEGNAME=table1, TABLENAME=tname1,...,$
SEGNAME=table2, TABLENAME=tname2,...,
 KEYFLD=pkfield, IXFLD=fkfield,$

where:

table1

Is the SEGNAME of the parent table from the multi-table Master File.

Creating a Multi-table Structure

108

table2

Is the SEGNAME of the related table from the multi-table Master File.

tname1, tname2

Are the names of the parent (tname1) and related (tname2) tables:

For DB2, tablename or creator.tablename. For the DB2 Distributed Data Facility,
include a subsystem location identifier (see Additional Topics on page 417).

For Teradata, tablename or databasename.tablename.

For IDMS/SQL, tablename or schema.tablename.

For Oracle, userid.tablename.

pkfield

Is the fieldname of the primary key column in the parent (table1) table.

Note: This attribute is not supported for a conditional join in the Master File
(JOIN_WHERE).

fkfield

Is the fieldname of the foreign key column in the related (table2) table.

Note: This attribute is not supported for a conditional join in the Master File
(JOIN_WHERE).

Reference: KEYFLD and IXFLD

The KEYFLD and IXFLD attributes identify the field shared by a related table pair. KEYFLD is the
FIELDNAME of the common column from the parent table. IXFLD is the FIELDNAME of the
common column from the related table. KEYFLD and IXFLD must have the same data type. It is
recommended, but not required, that their lengths also be the same.

Note: An RDBMS index on both the KEYFLD and IXFLD columns provides the RDBMS with a
greater opportunity to produce efficient joins. The columns must have the same data type. If
their length is the same, the RDBMS handles the join more efficiently.

In the ECOURSE example from Specifying an Embedded Equijoin in a Master File, the fields
EMP_ID in EMPINFO and WHO in COURSE both contain employee identification numbers. They
represent the common field. Since the COURSE table is the related table, its segment
declaration in the ECOURSE Access File identifies these common columns from EMPINFO and
COURSE:

5. Multi-Table Structures

Relational Data Adapter User’s Manual 109

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$
SEGNAME = COURSE, TABLENAME = "USER1"."COURSE", KEYS = 2,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = WHO,$

Multi-field Embedded Equijoins

In relational systems, a relationship or link between tables can depend on multiple columns.
Embedded joins defined in multi-table Master and Access Files also provide this ability. (The
dynamic JOIN command supports this feature as well. See Advanced Reporting Techniques on
page 213).

To describe a multi-field join for a multi-table structure, specify multiple field names for the
KEYFLD and IXFLD attributes in the Access File. Separate the component fields participating in
the multi-field join with slash (/) symbols.

Syntax: How to Implement a Multi-Field Embedded Equijoin

SEGNAME=name1, TABLENAME=table1,...,$
SEGNAME=name2, TABLENAME=table2,...,
 KEYFLD=pkfield1/pkfield2,
 IXFLD=fkfield1/fkfield2,$

where:

name1

Is the SEGNAME of the parent table from the multi-table Master File.

name2

Is the SEGNAME of the related table from the multi-table Master File.

table1, table2

Are the names of the parent (table1) and related (table2) tables:

For DB2, tablename or creator.tablename. For the DB2 Distributed Data Facility,
also include a subsystem location identifier (see Additional Topics on page 417).

For Teradata, tablename or databasename.tablename.

For IDMS/SQL, tablename or schema.tablename.

For Oracle, userid.tablename.

pkfield1/pkfield2

Are the field names that compose the primary key in the parent (or host) table.

Multi-field Embedded Equijoins

110

fkfield1/fkfield2

Are the field names that compose the foreign key in the related table.

Up to 16 fields can participate in a link between two tables. The fields that constitute this
multi-field relationship do not have to be contiguous either within the table or the FOCUS
Master File.

The number and order of fields for the KEYFLD value must correspond to those for the IXFLD
value.

If the list of fields exceeds one line (80 characters), continue it on a second line. You can use
as many lines as necessary, provided that each line is filled up to and including the 80th
position. The 80th position cannot contain a slash (/) character.

Example: Creating a Multi-Field Embedded Equijoin

To illustrate the multi-field equijoin, suppose that the fields LAST_NAME and FIRST_NAME
compose the primary key for the EMPINFO1 table. Also, assume that fields the LNAME and
FNAME serve as the common fields (foreign key) in the COURSE1 table.

The ECOURSE1 Master File (defined solely for the purpose of this example and not included in
File Descriptions and Tables on page 459) reflects the new fields:

FILENAME=ECOURSE1 ,SUFFIX=SQLDS,$
SEGNAME=EMPINFO1 ,SEGTYPE=S0,$
 FIELDNAME=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELDNAME=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELDNAME=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD
,ACTUAL=DATE,$
 FIELDNAME=DEPARTMENT_CD ,ALIAS=DEPARTMENT_CD ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON ,$
 FIELDNAME=CURRENT_SALARY ,ALIAS=CURRENT_SALARY ,USAGE=P9.2 ,ACTUAL=P4, $
 FIELDNAME=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELDNAME=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON ,$
 FIELDNAME=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=COURSE1 ,SEGTYPE=S0 ,PARENT=EMPINFO1, $
 FIELD=CNAME ,ALIAS=COURSE_NAME ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=LNAME ,ALIAS=LNAME ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FNAME ,ALIAS=FNAME ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=GRADE ,ALIAS=GRADE ,USAGE=A1 ,ACTUAL=A1,
 MISSING=ON ,$
 FIELD=YR_TAKEN ,ALIAS=YR_TAKEN ,USAGE=A2 ,ACTUAL=A2, $
 FIELD=QTR ,ALIAS=QUARTER ,USAGE=A1 ,ACTUAL=A1, $

In the ECOURSE1 Access File, the KEYFLD and IXFLD values consist of fieldnames separated
by a slash (/):

5. Multi-Table Structures

Relational Data Adapter User’s Manual 111

SEGNAME = EMPINFO1 ,TABLENAME = "USER1"."EMPINFO1" ,KEYS = 2,WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$
SEGNAME = COURSE1 ,TABLENAME = "USER1"."COURSE1" ,KEYS = 3,WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,
 KEYFLD=LAST_NAME/FIRST_NAME,IXFLD=LNAME/FNAME, $

Multi-field Embedded Equijoins

112

Chapter6
Automated Procedures

This chapter describes the following procedures:

The AUTODB2 facility for DB2 creates Master and Access Files for existing DB2
tables.

The AUTODBC facility creates Master and Access Files for existing Teradata tables.

The FOCUS CREATE FILE command creates an RDBMS table from the description in
an existing Master and Access File.

The CREATE SYNONYM command, which can be used to generate a Master and
Access File (synonym) for any relational data source.

The AUTO facilities and CREATE SYNONYM command use RDBMS catalog definitions of
existing tables or views, along with user selections, to generate Master and Access Files
(see Creating File Descriptions on page 114). The AUTODB2 and AUTODBC facilities and
CREATE SYNONYM command work with any RDBMS release.

Note: Do not use a Master File created (by AUTODB2, AUTODBC, or CREATE SYNONYM)
in one FOCUS release together with an Access File created in a different FOCUS release.

The FOCUS CREATE FILE command uses existing Master and Access Files to generate an
RDBMS table definition. CREATE FILE also generates a unique index if the KEYS value in
the Access File is greater than zero (see Creating Tables: The CREATE FILE Command on
page 162).

In this chapter:

Creating File Descriptions

AUTODB2

AUTODBC

Results of the Master File Generation Facilities

Generating a Master and Access File Using the CREATE SYNONYM Command

Creating Tables: The CREATE FILE Command

Relational Data Adapter User’s Manual 113

Creating File Descriptions

This topic discusses the AUTODB2 facility for creating Master and Access Files for DB2 tables
on z/OS and the AUTODBC facility for creating Master and Access Files for Teradata tables.

AUTODB2

When you invoke the AUTODB2 facility, it presents you with a series of menus that prompt you
to identify the tables you want to describe and the relationships between them. If you are
unfamiliar with any of the terms used in this section, review Multi-Table Structures on page 99.
Subsequent sections explain each menu in detail, and AUTODB2 Sample Session on page 146
contains a sample session.

The following is a brief overview of the AUTODB2 screens:

The initial screen, or Main Menu, allows you to name your Master and Access Files and to
identify the tables that may contain columns needed for defining them. You can use
wildcard characters to generate a list of tables from which to choose. You can also change
certain default values that are displayed on this screen.

The Table Selection Screen displays the list of tables generated as a result of your entries
on the Main Menu. You can select tables from the list displayed. If you choose more than
one table, you must designate one to be the root and the rest to be children.

Note: Descendant is a synonym for child. Both terms, used interchangeably in the following
discussion, refer to tables related by embedded equijoins, as described in Multi-Table
Structures on page 99.

If you select just a root table, and no children, on the Table Selection Screen, AUTODB2
creates your single-table Master and Access File at this point. If you choose at least one
child table, you proceed to the Child Selection Screen.

The Child Selection Screen prompts you to identify pairs of related tables.

The Common Column Selection Screen asks you to identify the primary and foreign key
columns for each pair of related tables (see Multi-Table Structures on page 99, for an
explanation of multi-table structures).

After you describe all the relationships, AUTODB2 creates the Master and Access Files. How to
Use AUTODB2 on page 116 contains sample screens and explains AUTODB2 defaults.

You can use the resulting pair of file descriptions immediately or edit them to include such
options as DEFINE fields. As with any Master File, you can add additional security by including
FOCUS DBA security attributes.

Creating File Descriptions

114

Note: If a table has a Master File created in a prior FOCUS release, and if you re-run AUTODB2
on the table, some field names and/or USAGE formats generated in the new Master File may
differ from those in the old Master File. As a result, requests that ran against the old Master
File, and DEFINE fields based on field length, may require changes.

The RDBMS system catalog table, SYSCOLUMNS, provides column information such as
column names, data types, column lengths, and whether null values are allowed. System
catalog tables SYSKEYS and SYSINDEXES provide unique index information. The RDBMS
searches for the first unique index created and uses the columns on which this index is
defined as the primary key.

In addition to the ability to create multi-table Master and Access Files in interactive mode
(batch mode remains limited to one table description per execution), the AUTODB2 facility
includes the following three key features:

It provides an option on the Main Menu for assigning a USAGE attribute of either x or x.0 to
table columns of data type DECIMAL(x,0).

It provides an option on the Main Menu for changing default Main Menu entries and logging
the new default values to a text file for repeated use.

It provides an extensive on-line help facility.

AUTODB2 uses only FOCUS DYNAM dynamic allocation, freeing it from any dependence on
TSO.

You can execute AUTODB2 in batch mode for single-table structures by supplying the
necessary execution parameters at invocation, eliminating the need for input screens. For
AUTODB2, batch mode execution is possible in the TSO environment as well as in z/OS batch.
See AUTODB2 in Batch Mode on page 129 for an explanation of batch execution.

AUTODB2 Support for DDF

AUTODB2 supports retrieval from and Master File creation for tables from secondary locations.
When a location is specified, the TABLENAME attribute in the Access File consists of three
parts: location.creator.tablename.

During installation, a list of valid locations is included in the AUTODB2 utility. The list appears
on the main menu, just below the row in which the user can enter the location. The first value
in the list appears by default in the main menu. The user can enter any one of the values in
the list. Entering a value not on the list generates the following error message:

PLEASE ENTER A VALID LOCATION.

Table, column, and index information is retrieved from the catalog tables for the selected
location. The location is included in a three-part table name in the Access File if it is not blank.

6. Automated Procedures

Relational Data Adapter User’s Manual 115

Note: The menu option 'Use Creator Name in AFD?=N' is ignored when a non-blank location is
provided. That is, the creator is included in the three-part table name even when you specify to
not include it on the main menu.

The value for location that you include on the menu is logged to the parameter log file when
you press PF4 to log parameters. The next session of AUTODB2 will display the logged value.

Procedure: How to Install AUTODB2 DDF Support

Create a list of valid locations by editing the following lines in the AUTODB2 FOCEXEC.
Uncomment the -DEFAULT command and enter up to six location names. The start and end of
the list must be enclosed in single quotation marks, and each name must be eight characters
long, padded on the right with blanks if necessary:

-*===
-* Change &LOC_LIST to contain possible location values, padded to 8
-* characters, separated by commas. The entire string is enclosed in
-* single quotes. Include a maximum of 6 locations. The first entry is
-* the default. Example:
-* -DEFAULT &LOC_LIST='PROD ,TEST ,DEVELOPM'
-* <------>,<------>,<------>,<------>,<------>,<------>
-DEFAULT &LOC_LIST='

A blank location name designates the location where the plan was bound.

Example: Creating a Location List

With the following list, blank will be the default value that appears on the main menu.

-DEFAULT &LOC_LIST=' ,LOCDSNA ,LOCDSNC '

Note: Specifying blank (' ') as the first option indicates that the default is the location where
the plan was bound.

How to Use AUTODB2

Before starting AUTODB2, it is helpful to know the names of the tables or views you will be
using (including, if possible, their creator names and their database and location names).
Having this information in advance can avert a costly search of the RDBMS catalogs using
wildcard characters from the Main Menu. Get this information from your RDBMS database
administrator, or query the system table SYSCOLUMNS using Master File DB2CAT. (See
Appendix A, Additional Topics, for a sample request.)

The first time you execute AUTODB2, many of the entry fields on the Main Menu screen display
default values. You can customize the default values for your application and use PF4 to store
them in a parameter log file for future use. The PFkey functions are explained following the
description of the Main Menu entry fields.

AUTODB2

116

You also need enough available disk space. AUTODB2 writes the file descriptions directly to
the data sets specified on the Main Menu.

To start AUTODB2, enter the FOCUS environment and issue the following command from the
FOCUS command level:

EX AUTODB2

Press the Enter key.

Note: To allow for the display of the maximum number of characters in the names of tables
and other objects, additional information about these objects is displayed on lines below the
list of names. For example, on the following screen, the formats for each table display on
separate lines below the list of tables. On the left half of the screen, the format for the EID
column is A9, for the LN column is A15, for the FN column is A10, and for the HDT column is
YYMD:

Master: Master File Generation Facility for DB2
AUTOEMP ==Common Column Selection==
Number the Primary Key Columns | Number The Corresponding Foreign
(in sequence) In The Parent Table: | Key Columns In The Child Table:
 USER01 | USER01
 EMPINFO
 ADDRESS
 Key Column Name | Key Column Name

 EID | EID
 LN | AT
 FN | LN1
 HDT | LN2
 FORMAT: A9 | Format: A9
 FORMAT: A15 | Format: A4
 FORMAT: A10 | Format: A20
 FORMAT: YYMD | Format: A20

PF1=Help PF2=Restart PF3=End PF4=Skip PF7=Up PF8=Down

The Main Menu

The following is an example of the Main Menu for AUTODB2. Complete the entry fields on the
Main Menu and press Enter to begin processing:

6. Automated Procedures

Relational Data Adapter User’s Manual 117

Main Menu Master File Generation Facility for DB2
 Master Filename ================> autoemp
 Location => locdsna Creator => USER01
 TABLE => *
 Location values: ,LOCDSNA ,LOCDB9A
 DATABASE NAME ================> *
 Description will be a member of:
 Master Target PDS => USER01.MASTER.DATA
 Access Target PDS => USER01.FOCSQL.DATA
 FOCDEF Target PDS => USER01.FOCDEF.DATA
 Replace Existing Description?=> N (Y/N)
 Read/Write Functionality =====> W (R=Read,W=Write)
 Date Display Format ==========> YYMD
 Time Stamp Display Format ====> HYYMDm
 Time Display Format ==========> HHIS
 Display Decimal when SCALE=0?=> Y (Y/N)
 Use LABEL as Column Heading? => N (Y/N)
 Use Remarks for FOCDEF? ======> N (Y/N)
 Use Creator Name in AFD? =====> Y (Y/N)
 Use Long Fieldnames? =========> Y (Y/N)
 Parm File => USER01.FOCSQL.DATA

PF1=Help PF2=Restart PF3=Exit PF4=Log PF5=MFD PF6=AFD PF9=Picture PF10=List

The following list describes the Main Menu entry fields:

Location

Is one of the values on the list of location values displayed immediately below this entry
field. The first location on the list is displayed initially.

Table, column, and index information is retrieved from the catalog tables for the selected
location. The location is included in a three-part table name in the Access File, if it is not
blank.

The menu option 'Use Creator Name in AFD?=N' is ignored when a non-blank location is
provided. That is, the creator is included in the three-part table name even when you
specify to not include it on the main menu.

If the first option is blank (' '), the default is the location where the plan was bound.

Master Filename

Is the 1- to 8-character name you select for referring to the data in requests. This name
must be a valid member name.

Creator Name (or *)

Is the 1- to 8-character creator name of the tables that you want to describe. Specify an
asterisk (*) to select tables for all creators. The default is your user ID.

You can use the asterisk (*) wildcard character in the creator, table, and database name
entry fields to create a list based on the provided pattern.

AUTODB2

118

Note: You cannot enter a name that contains a dollar sign ($) in the creator, table name,
or database name entry fields; however, with the asterisk (*) wildcard character, you can
generate a list that includes names containing dollar signs. You can then choose tables
from this list.

Table Name (or *)

Is the 1- to 18-character name of an existing table that you want to describe. An asterisk
(*), the default, selects all tables.

Database Name (or *)

Is the 1- to 8-character name of the database that contains any or all tables you may
select. An asterisk (*), the default, selects all databases. You can omit this value if you
provide creator or table.

Master Target PDS

Is the fully-qualified data set name of the Master File PDS in which to store the Master
File. Do not use quotation marks (single or double) in the data set name. The default is
'userid.MASTER.DATA'.

Access Target PDS

Is the fully-qualified data set name of the Access File PDS in which to store the Access
File. Do not use quotation marks (single or double) in the data set name. The default is
'userid.FOCSQL.DATA'.

FOCDEF Target PDS

Is required only if you specify Yes (Y) in the "Use REMARKS for FOCDEF?" field. Is the fully-
qualified data set name of the FOCDEF File PDS in which to store the TableTalk® Help file.
Do not use quotation marks (single or double) in the data set name. The default is
'userid.FOCDEF.DATA'.

Replace Existing Description?

Specifies whether to overwrite existing Master and Access Files (Y/N). No (N) is the
default. Yes (Y) replaces existing descriptions of the same name.

Read/Write Functionality

Indicates read-only or read/write access in the Access File. Read/Write (W), the default,
allows MODIFY and MAINTAIN to update the RDBMS table. Read (R) is for reporting only.
Note: If the adapter was installed for read-only access, this field displays an R and cannot
be changed.

6. Automated Procedures

Relational Data Adapter User’s Manual 119

Date Display Format

Is a valid FOCUS USAGE date format for RDBMS columns described as dates. The default
is YYMD.

Time Stamp Display Format

Is HYYMDm by default. A26 is also acceptable, for compatibility with prior releases.

Time Display Format

Is HHIS by default. A8 is also acceptable, for compatibility with prior releases.

Display Decimal when SCALE=0?

Yes (Y), the default, displays the decimal point for DECIMAL values with no fractional
component (for example 123.). No (N) excludes the decimal point (for example, 123).

Use LABEL as Column Heading?

Selects FOCUS report column headings. No (N), the default, uses the column name for
headings. Yes (Y) uses the RDBMS LABEL.

Use Remarks for FOCDEF?

Indicates whether to include RDBMS REMARKS as HELP for TableTalk. No (N), the default,
excludes the remarks. Yes (Y) includes them. You must specify a FOCDEF Target PDS in
order to select Y.

Use Creator Name in AFD?

Indicates whether to include the creator name in the TABLENAME attribute of the Access
File. Yes (Y), the default, includes the creator name. No (N) includes only the table name.

Main Menu PFkeys

You can implement the following functions from the Main Menu with PFkeys:

Key Function Description

PF1 Help Accesses on-line help.

AUTODB2

120

Key Function Description

PF2 Refresh
the List of
Tables

Clears the existing list of tables maintained by AUTODB2 for this
session. When you select tables from the Main Menu, information is
gathered from the system catalogs. Each time you change the
selection criteria, the new tables are appended to the existing list.
Pressing PF2 purges this list without exiting AUTODB2. You receive
the message "Enter new table selection criteria" when the list is
successfully purged. No message is displayed if you have not yet
created a list of tables.

PF3 Exit Ends the AUTODB2 session and returns to FOCUS.

6. Automated Procedures

Relational Data Adapter User’s Manual 121

Key Function Description

PF4 Log
Default
Menu
Parameter
s

Saves the values that you want to see displayed as defaults on the
Main Menu in future executions of AUTODB2.

Your defaults are saved in member DB2$PARM in the parm data set
indicated on the menu. This data set is either the PDS pre-allocated
to DDNAME DB2$PARM, 'userid.FOCSQL.DATA', or the first data set
allocated to DDNAME FOCSQL, whichever the system finds first (see
The z/OS Parameter Log File on page 128 for more detailed
information on the search order).

The following information is logged:

Location

Creator Name

Table Name

Database Name

MFD Partitioned Data set Name

AFD Partitioned Data set Name

FOCDEF Partitioned Data set Name

Replace existing description

Read/Write Functionality

Date Display Format

Time Stamp Display Format

Time Display Format

Display Decimal when SCALE=0

Use LABEL as Column Heading

Use REMARKS for FOCDEF

Use Creator Name in AFD

Note: The values you enter must pass all validation tests in order for
the new default values to be logged.

AUTODB2

122

Key Function Description

PF5

PF6

TED MFD

TED AFD

Allows you to edit, using TED, the Master (PF5) or Access (PF6) File
whose name you entered (as mastername) in the Master Filename
entry field on the Main Menu. You access member mastername in the
data set entered as either Master Target PDS or Access Target PDS.

Note: You can edit these files even if they were not created with
AUTODB2.

PF9 Picture of
MFD

Generates a diagram of the file entered in the Master Filename entry
field on the Main Menu. After the picture is displayed, type any
character and press Enter to return to the menu. To generate the
picture in z/OS, the mastername entered as Master Filename must be
a member of a data set allocated to DDNAME MASTER (the Master
Target PDS is not used).

PF1
0

Table List Displays a list of all tables that meet the screening criteria provided in
Creator Name, Table Name, and Database Name.

Note: The PFkey options are available only if the values you enter on the screen pass all
validation tests. See Common Errors on page 145 for a discussion of common errors. See
Using PFkeys From non-Main Menu Screens on page 127 for PFkey options available on other
screens.

After you specify the appropriate values on the initial screen, press Enter. AUTODB2 informs
you that it is creating a list of tables with the following message:

===
** AUTODB2 is retrieving TABLE information from catalog. **
** Please wait... **
===

It displays this message only for the first retrieval per AUTODB2 session, or when the selection
criteria have changed since the previous retrieval within the session. AUTODB2 does not
access the catalog a second time for the same immediate selections in a single session.

The Table Selection Screen

If you specified a location, the table selection screen displays the location parameters for the
list of tables generated by your selections on the main menu.

When table information retrieval is complete, choose the tables to include in your Master and
Access Files:

6. Automated Procedures

Relational Data Adapter User’s Manual 123

Master: Master File Generation Facility for DB2
AUTOEMP ==Table Selection==

Place an 'R' next to the Table to be the root of the Master.
Place a 'C' next to all other Tables to be described as children.
Enter 'Y' next to all selected Tables that will be updated.

 Select Write
 Location Creator (R/C) (Y/N)
 -------- ------- ------ -----
 USER01
 USER01
 USER01
 USER01
DB2 TABLE: ADDRESS Y
DB2 TABLE: COURSE Y
DB2 TABLE: DATETIME Y
DB2 TABLE: DEDUCT Y

PF1=Help PF3=End PF4=Add Tables PF7=Up PF8=Down

The Table Selection Screen displays, in alphabetical order, the names of all creator/table
combinations that pass the selection criteria you provided on the Main Menu. You can choose
up to 1024 tables to include in the description.

Identify the root table by placing r in its Select column. Choose all other tables to be included
in the Master File by placing c in their Select columns. Indicate those tables that can be
updated in this view by placing y in their Write columns.

Note:

If the adapter was installed for read-only access, the Write column displays an N and
cannot be changed.

You may have to scroll through the list using the PF7 and PF8 keys in order to view all of
the available tables.

The following message displays after you complete the table selections, if you selected at
least one child table in addition to the root:

===
** AUTODB2 is retrieving COLUMN information from catalog. **
** Please wait... **
===

AUTODB2 retrieves column information from the catalog only the first time you select a
particular table from the Table Selection Screen. You will not see this message when you
make subsequent selections using the same tables. To erase this list and create a new one,
return to the Main Menu with PF3, and restart with PF2.

AUTODB2

124

The Child Selection Screen

When column information retrieval is complete, specify descendants, if any, for each table.

Note: You may have to scroll through the list using the PF7 and PF8 keys in order to view all of
the available tables.

To give you the opportunity to identify all parent-child relationships, every table on your list, in
turn, presents its own Child Selection Screen:

Master: Master File Generation Facility for DB2
AUTOEMP ==Child Selection==

Place a 'C' next to the descendants of Parent:
 USER01
 EMPINFO
 Location Creator Select (C)
 -------- ------- -----------
 USER01
 USER01

DB2 TABLE: ADDRESS c
DB2 TABLE: PAYINFO c
DB2 TABLE:
DB2 TABLE:

PF1=Help PF2=Restart PF3=End PF4=None PF5=Picture PF7=Up PF8=Down

If the parent segment named at the top of the screen has no children, press PF4. Otherwise,
place c in the Select column for each table that is a child of the parent table named at the top
of the screen, and press Enter. Next, AUTODB2 displays a Common Column Selection Screen
for each parent-child pair so you can identify the columns they share.

The Common Column Selection Screen

For each parent-child pair, identify the primary keys from the parent table and the foreign keys
from the related table on the Common Column Selection Screen:

6. Automated Procedures

Relational Data Adapter User’s Manual 125

Master: Master File Generation Facility for DB2
AUTOEMP ==Common Column Selection==
Number the Primary Key Columns | Number The Corresponding Foreign
(in sequence) In The Parent Table: | Key Columns In The Child Table:
 USER01 | USER01
 EMPINFO
 ADDRESS
 Key Column Name | Key Column Name

 1 EID | 1 EID
 LN | AT
 FN | LN1
 HDT | LN2
 FORMAT: A9 | Format: A9
 FORMAT: A15 | Format: A4
 FORMAT: A10 | Format: A20
 FORMAT: YYMD | Format: A20

PF1=Help PF2=Restart PF3=End PF4=Skip PF7=Up PF8=Down

Note: To allow for the display of the maximum number of characters in the names of tables
and other objects, additional information about these objects is displayed on lines below the
list of names. For example, on the following screen, the formats for each table display on
separate lines below the list of tables. On the left half of the screen, the format for the EID
column is A9, for the LN column is A15, for the FN column is A10, and for the HDT column is
YYMD:

Number the key fields from each table in sequence (from 1 to 16). Each primary key field must
have the same format as its corresponding foreign key field. Use PF4 to skip this table if it was
selected in error. This does not affect previous or subsequent selections. However, the
"skipped" segments appear in subsequent lists when you return to the Child Selection Screen
to define any additional paths in the hierarchy.

AUTODB2 guides you in describing the table relationships in top down, left to right order.
Initially, it displays the root table and all of its selected children.

Completing the Description

After you complete the Common Column Selection Screen for the root table, AUTODB2
displays a Child Selection Screen for the first child of the root. Assign children, if any, to this
table.

Child selection continues down this first path until you press PF4 to select no descendants, or
you exhaust the list of descendants. Only then does AUTODB2 display a Child Selection Screen
for the second child of the root. This process continues until all tables have been assigned
children or all possible descendants have been exhausted.

AUTODB2

126

At this point, AUTODB2 generates the Master and Access Files and returns to the Main Menu.
The message "DESCRIPTION CREATED" displays at the bottom of this Status Screen with an
indication, if necessary, of how many duplicate field names were generated and how many
unsupported data types were found.

Note: If duplicate field names were created, either edit them to be unique, or qualify them with
the segment name when referencing them in requests.

For information about the newly generated file descriptions, see Results of the Master File
Generation Facilities on page 142.

Using PFkeys From non-Main Menu Screens

For each screen other than the Main Menu and Table Selection screens, you can erase your
current selections and back up one screen with PF2. Pressing PF3 returns you to the Main
Menu with all selections intact. To erase your selections from the Table Selection Screen,
return to the Main Menu with PF3, and then restart with PF2.

From the Child Selection Screen, use PF5 to generate a diagram of your file structure. The
description is created on disk and remains there even if you end the program with PF3. After
the picture is displayed, type any character and press the Enter key to return to the menu. To
generate the picture in z/OS, you must allocate the target master PDS to DDNAME MASTER. If
a member with the selected master name exists in a data set concatenated in front of the
target data set, the picture is generated from that member.

Retaining the List of Master Files Generated

AUTODB2 maintains a temporary list of the Master Files generated during any one session.
This list is refreshed at the beginning of each session and erased at the end of the session.
You may retain the list by executing AUTODB2 (either on-line or in the background) with the
following syntax

EX AUTODB2 MFDLIST=Y

The list resides in a temporary data set allocated to DDNAME AUTODB2L, with a disposition of
MOD and record length of 114. It is the responsibility of the user to free or erase this file when
it is no longer required. The file layout is:

Length Columns Description

8 1 - 8 Master Filename

8 9 - 16 Number of duplicate fieldnames

6. Automated Procedures

Relational Data Adapter User’s Manual 127

Length Columns Description

5 17 - 21 Number of unsupported data types

5 22 - 26 Number of long decimal fields truncated. This entry, required in
prior releases, exists for upward compatibility.

44 27 - 70 Master Target PDS name

44 71 - 114 Access Target PDS name

Changing the AUTODB2 Default Data Sets

With AUTODB2, you can save custom Main Menu defaults in a parameter log file for repeated
use. You can also change the default data sets that display on the Main Menu.

To change the default data set names that appear the first time you execute AUTODB2,
customize the following lines of code near the top of the AUTODB2 FOCEXEC. These are the
only permanent data sets that AUTODB2 uses. All other data sets are temporary and are
named by the system.

-SET &DSNP0=&USERID ||'.FOCSQL.DATA ';
-SET &DSNM0=&USERID ||'.MASTER.DATA ';
-SET &DSNF0=&USERID ||'.FOCSQL.DATA ';
-SET &DSND0=&USERID ||'.FOCDEF.DATA ';

Note: You must preserve the length of the data set name for each variable (the result of
concatenating the userid with the string between the single quotation marks) at 44 characters.
If necessary, pad the name with blanks to maintain the correct length. You may not change any
other lines in the FOCEXEC.

The z/OS Parameter Log File

The parameter log file, if there is one, is always a data set allocated to DDNAME DB2$PARM.
z/OS identifies the parameter log file with the following steps:

1. If DDNAME DB2$PARM is allocated to a PDS prior to execution of AUTODB2, AUTODB2
uses member DB2$PARM as the parameter log file. If the member does not exist,
AUTODB2 creates it. This allows the user to identify the "profile" data set prior to execution
of AUTODB2 and is recommended for sites that have non-standard data set naming
conventions.

If this DDNAME is allocated to a sequential data set, AUTODB2 frees it, generates a
message, and disables parameter logging.

AUTODB2

128

If DDNAME DB2$PARM is not allocated, AUTODB2 continues searching and attempts to
allocate it in the steps that follow. AUTODB2 does not free this DDNAME upon exiting,
assuming that it may be used again.

2. AUTODB2 allocates data set name 'userid.FOCSQL.DATA', the default name provided in the
code as &DSNP0, as the parameter log file. If the default has been changed, it uses the
new data set name. This assumes standard Information Builders naming conventions.

This data set must be a PDS. If it is not, AUTODB2 displays a message and disables
parameter logging.

3. If the first two steps fail to identify a parameter log file, AUTODB2 allocates the first data
set allocated to DDNAME FOCSQL as the parameter log file. This assumes that the user's
data set is allocated first in the concatenation of data sets to DDNAME FOCSQL.

If the data set allocated to DDNAME FOCSQL is sequential, AUTODB2 displays a message
and disables parameter logging.

Note: AUTODB2 cannot function properly if the data set is not a PDS.

Parameter logging assumes that the user has write access to the target data set. An attempt
to log parameters to a data set without write access results in a security abend.

AUTODB2 Usage Notes

AUTODB2 is a FOCEXEC that has a corresponding Master File. The FOCEXEC and Master
File must be from the same release of FOCUS. If you attempt to use the old version of the
Master File with the new version of the FOCEXEC, the following message is generated:

PROGRAM AND FILE DESCRIPTION DATES DO NOT MATCH: AUTODB2 date
UNABLE TO EXECUTE AUTODB2 - PLEASE REINSTALL

FOCEXEC execution is terminated, and you return to the FOCUS prompt.

AUTODB2 no longer needs the DB2CAT Master and Access Files. These Master and Access
Files remain on the distribution tape. Information Builders no longer certifies the accuracy
of these Master and Access Files with future RDBMS catalog table changes.

AUTODB2 in Batch Mode

You can create a single-table Master File by executing AUTODB2 in the background with an
argument list that supplies the values normally entered on the Main Menu. You can invoke
AUTODB2 batch mode processing in the z/OS batch or TSO environments. The syntax is

EX AUTODB2 BATCH=Y,MASTER=master,CREATOR=creator,TABLENAME=table
 [,option1=value1 ...]

6. Automated Procedures

Relational Data Adapter User’s Manual 129

where:

master

Is the 1- to 8-character name of the Master File that will be generated.

creator

Is the 1- to 8-character name of the creator of the table.

table

Is the 1- to 18-character name of the RDBMS table.

option1 ...

Is an option listed in the following chart.

value1 ...

Is an acceptable value for the corresponding option.

All options from the Main Menu are available. Specify options on the command line by entering
name=value pairs separated by commas. The list can extend over several lines. The following
chart presents the available options:

Option Name Values Description Default

LOC location Location value First value in the location
list

REPLACE Y=Yes,N=No Replace existing description N

FUNC R=Read,
W=Write

Read/Write Functionality W

DATEDISP format Date Display Format YYMD

TIMESTMP format Time Stamp Display Format HYYMDm

TIME format Time Display Format HHIS

DECIMAL Y=Yes,N=No Display Decimal when
SCALE=0?

Y

LABELS Y=Yes,N=No Use Labels as Column
Heading?

N

AUTODB2

130

Option Name Values Description Default

REMARKS Y=Yes,N=No Use Remarks for FOCDEF? N

CREATAFD Y=Yes,N=No Use Creator Name in AFD? Y

LONG Y=Yes,N=No Use Long Fieldnames? Y

USERID userid High level qualifier of output
data sets (required if target
data set names not
provided)

MFDLIST Y=Yes,N=No Store list of Master Files
created per session

N

MASTERDATA dsn Master Target PDS &USERID.MASTER.DATA

FOCSQLDATA dsn Access Target PDS &USERID.FOCSQL.DATA

FOCDEFDATA dsn FOCDEF Target PDS &USERID.FOCDEF.DATA

The default for LOC is the first value in LOC_LIST (provided at installation time). If you want a
value of blank, use blank as the first value in LOC_LIST or execute AUTODB2 with the following
syntax:

EX AUTODB2 LOC=' '

AUTODBC

The AUTODBC facility is a TSO CLIST and is invoked from TSO. In order to generate Master and
Access Files, the AUTODBC facility gathers column and table information from the ADUCOL
repository. The repository is a small FOCUS database that stores information extracted from
the Teradata Data Dictionary/Directory. Using AUTODBC, you can create this required
repository or reuse one retained from a previous AUTODBC session.

he ADUCOL repository provides the following advantages:

Interaction with the Teradata Data Dictionary/Directory is minimized. The Directory within
the Teradata RDBMS is required for many activities and access to its services may require
extended terminal response times.

6. Automated Procedures

Relational Data Adapter User’s Manual 131

Directory information is extracted efficiently as the result of one interaction. The AUTODBC
facility extracts Directory information for a potentially unlimited number of tables in a single
pass. The table limit is subject to available temporary disk space.

Users may create as many Master and Access Files as they need. An unlimited number of
file descriptions may be generated based on the ADUCOL contents.

User-supplied input is reduced. Another repository, the ADUTMP repository, is loaded as a
result of creating the ADUCOL repository. The ADUTMP repository provides the default
database and table names which reduces typing during the file generation process.

Users may retain the repositories for future use. The repositories may be saved for future
AUTODBC sessions during the exit process. Since these repositories are already prepared,
future interaction with the Directory is unnecessary.

The file generation process is straightforward. After you invoke the AUTODBC facility and you
supply your Teradata logon ID and password, the Primary Option Menu is displayed. The
Primary Option Menu lists all the tasks or processes that may be performed from AUTODBC. If
the repositories already exist, you can select the option that generates file descriptions and
complete a series of screens. A status screen indicates successful completion of the process.

Note: You can create file descriptions that describe one or more tables or views. (See Multi-
Table Structures on page 99.)

The resulting pair of file descriptions may be used immediately or edited to include options
such as DEFINE fields. As with any Master File, additional security may be added by including
FOCUS DBA security functions.

How to Use AUTODBC on page 132 explains how to invoke AUTODBC and describes
sample screens for most processes.

Results of the Master File Generation Facilities on page 142 describes the resulting Master
and Access Files.

Common Errors on page 145 explains common errors.

AUTODBC Sample Session on page 153 provides an AUTODBC sample session and the
generated file descriptions.

How to Use AUTODBC

Before you begin your AUTODBC session, you should be aware of these requirements:

AUTODBC must be installed.

AUTODBC

132

Proper authorization, a valid Teradata logon user ID and password. Also, the Teradata
Director Program ID is unique to your site and is release-dependent.

Database names and table names.

The FOCUS FIDEL option. It must be available for AUTODBC.

If you have any questions about these requirements, contact your Teradata database
administrator or consult the appropriate installation guide.

AUTODBC is a CLIST. Therefore, to execute the AUTODBC facility, invoke it from the TSO
operating system (not from FOCUS):

EX AUTODBC

Press the Enter key to display the security logon screen.

Note: For TSO users, the execution syntax may be site-specific. Please ask your Teradata
database administrator for the correct syntax if the command shown above does not invoke
AUTODBC.

Security Logon Screen

The security logon screen, Screen A, opens after you invoke the facility or if you specify Option
4 from the Primary Option Menu, Screen B:

 A --
 | A U T O D B C |
 | RELATIONAL TABLE DESCRIPTOR FACILITY FOR FOCUS/DBC |
 | INFORMATION BUILDERS, INCORPORATED |
 --

 TERADATA USERID =====>
 TERADATA PASSWORD ====>

 TERADATA DIRECCTOR PGM => 0
 TERADATA PARTITION ID => DBC/SQL

 SUPPLY THE REQUIRED TERADATA LOGON INFORMATION

 ENTER= PROCESS PF3= EXIT (INITIAL ENTRY ONLY)

The entry fields and their acceptable values are:

USERID

Is your Teradata user ID.

6. Automated Procedures

Relational Data Adapter User’s Manual 133

PASSWORD

Is your Teradata password. (Its display is suppressed.)

DIRECTORPGMID

Is the single character value of the TDP ID. Specify a blank space instead of the default (0)
if your site does not require a Teradata Director Program ID (TDPID) specification during
logon.

PARTITIONID

Defaults to DBC/SQL.

These values constitute your security profile, which provides access to the Teradata Data
Dictionary/Directory. Your security profile is stored in a work file that is erased when you exit
the facility to prevent unauthorized use of your user ID.

Press the Enter key after you complete the logon screen or press PF3 to exit the facility.

Note: When you first invoke the AUTODBC facility, the PF3 key is valid for exiting from the logon
screen. Otherwise, you must specify Option 5 on the Primary Option Menu to exit the facility
and to delete the current session’s work files. On subsequent screens, the PF3 key functions
as a return key that displays a previous screen.

Primary Option Menu

The Primary Option Menu, Screen B, appears after the initial logon screen and after each
completed task or process:

 B ---
 | A U T O D B C |
 | PRIMARY OPTION MENU |

 AVAILABLE OPTIONS:

 1. DISPLAY ADUCOL CONTENTS
 2. ADUCOL MAINTENANCE
 3. GENERATE FOCUS MASTER AND ACCESS FILE DESCRIPTION
 4. REDEFNE TERADATA SECURITY PROFILE
 5. EXIT THIS FACILITY

 OPTION ===>

 ENTER= PROCESS

AUTODBC

134

Each task or process is assigned an option number. The options are:

1. DISPLAY ADUCOL CONTENTS

Displays the contents (database and table names) of the ADUCOL repository.

2. ADUCOL MAINTENANCE

Enables you to create the ADUCOL repository or add entries to it.

3. GENERATE FILE DESCRIPTIONS

Prompts you with a series of screens to generate single- or multi-table Master and Access
Files.

4. REDEFINE TERADATA SECURITY PROFILE

Enables you to correct or change your security profile.

5. EXIT THIS FACILITY

Enables you to save repositories and to exit the facility.

At this point, you may select tasks or processes in any order. Specify the option number and
press the Enter key.

Subsequent sections explaining processes and sample screens are discussed by option
number.

Option 1: Displaying ADUCOL Contents

In order to display the ADUCOL contents, select Option 1 from the Primary Option Menu and
press the Enter key. The PAUSE message prompts you to press the Enter key again.

The AUTODBC facility produces a report of tables and views sorted by database names. FOCUS
Hot Screen PF keys and commands are available. For example, you may scroll through the
report or print it offline.

When you are finished, press either the Enter key or the PF3 key to return to the Primary
Option Menu.

Option 2: Maintaining the ADUCOL

To create the ADUCOL repository or add entries to it, choose Option 2 and press the Enter key.
The ADUCOL Maintenance screen, Screen D, appears as:

6. Automated Procedures

Relational Data Adapter User’s Manual 135

 D ---
 | A U T O D B C |
 | ADUCOL MAINTENANCE |

 IDENTIFY RELATION DESCRIPTIONS TO BE REFRESHED WITHIN ADUCOL:

 DATABASENAMES TABLENAMES
 --------------------------- ------------------------------
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

For each table or view, type the database name and table name in the appropriate columns. To
move the cursor to a different column, use the Tab keys. To expand the input area for
additional entries, scroll down using the PF8 key.

Press the PF7 key to review the entries. If the entries are correct, press the PF12 key to begin
processing. When processing is successful, the Primary Option Menu is displayed again.

AUTODBC processing involves:

Extracting Teradata table definitions from the Directory (using the Teradata BTEQ facility)
and loading them into the ADUCOL repository using FOCUS. Columns that possess data
types unsupported by AUTODBC are not retrieved (for example, BYTEINT, VARBYTE, and
BYTE). (These data types may be added manually to generated Master Files. See Results of
the Master File Generation Facilities on page 142.) If some of your table entries were
processed during a previous AUTODBC session, the existing table definitions are replaced
with new ones.

Loading the database and table names into the ADUTMP repository.

Note:

AUTODBC supports Teradata views larger than 50 columns and extracts column information
using the DBC/SQL HELP COLUMN statement.

The amount of writable temporary disk space determines the maximum number of table
definitions loaded into the ADUCOL repository.

AUTODBC

136

Table entries cannot be deleted at this point. You may erase the ADUCOL repository during
the exit process (Option 5) or selectively “blank out” tables during the file generation
process (Option 3).

Option 3: Generating Master and Access Files

The AUTODBC file generation process varies, depending on the type of file description you
intend to generate. If you intend to describe one table or view as a single-table Master File, you
need to complete three screens. If you intend to generate a multi-table Master File (an
embedded JOIN), you need to complete three screens, plus additional screens that indicate
primary and foreign keys.

If the ADUCOL repository exists, select Option 3 from the Primary Option Menu and press the
Enter key. If the repository does not exist, you must create it. (See Option 2: Maintaining the
ADUCOL on page 135.)

The Master and Access File Generation screen, Screen E1, displays as:

 E1 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 MASTER/ACCESS FILENAME ==>

 PROCESSING OPTION =======> 1 OPTIONS:
 1= NEW DESCRIPTION ONLY
 2= NEW OR REPLACE

 USE LONG FIELD NAMES ===> N

 SUPPLY THE REQUIRED VALUES

 PF3= RETURN ENTER= PROCESS

The entry fields and their acceptable values are:

MASTER/ACCESS FILENAME

Is the member name or file name for the new Master File and Access Files, up to eight
characters in length.

6. Automated Procedures

Relational Data Adapter User’s Manual 137

PROCESSING OPTION

Is 1 by default. Option 2 replaces current Master and Access Files with new ones. Option 1
does not. (An error message appears for Option 1 if file descriptions exist and you may
specify another name or select Option 2.)

LONG FIELDNAMES

Is no (N) by default. Field names are truncated at 12 characters, alias names are blank in
the Master File, and partial field declarations appear in the Access File. Yes (Y) includes
aliases up to 30 characters in the Master File. (See Additional Topics on page 417, for
long field name limitations.)

Press the Enter key to continue or the PF3 key to return to the Primary Option Menu.

Another screen, Screen E2, displays and lists the contents of the ADUCOL repository.

 E2 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 IDENTIFY THOSE RELATIONS PARTICIPATING IN THE FOCUS VIEW:
 DATABASENAMES TABLENAMES WRITE=
 --------------------------- ------------------------- ------
 => N
 => N
 => N
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

On this screen, choose the tables or views for processing and exclude any unwanted tables.
For each table, indicate WRITE functionality by specifying Y or N in the WRITE= column. The
default No (N) permits read access for both reporting and MODIFY or Maintain browsing. Yes
(Y) permits read-write access for MODIFY and Maintain operations.

To exclude a table and remove it from the screen, use the space bar to erase (blank out) the
database name. This does not affect the ADUCOL repository. The tables or views that remain
on this screen are described in the resulting Master and Access Files.

Before you continue, press the PF7 key to review your choices and to refresh your screen.
Extra or unwanted tables are omitted from the screen. Press the PF12 key to continue.

AUTODBC

138

Note:

You may describe up to 1024 tables or views in a multi-table Master File.

Table entries cannot be added at this point. If you attempt to do so and press the PF12
key, an error message COLUMN DATA table NOT FOUND appears.

After the tables are selected, the next screen, Screen E3, displays.

 E3 --
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |
 --
 IDENTIFY THE RELATIONSHIP FROM AMONG SELECTED RELATIONS:
 CHILD
 DATABASENAMES TABLENAMES OF
 --------------------------- ------------------------ ------
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

This screen prompts you for table relationships. Each table entry is numbered on the left side
of the screen. For each table, specify the number of its parent in the "Child of" column. Leave
a blank for the first parent (the root) of the Master File.

If the screen displays one table for a single-table Master File, leave the "Child of " column
blank and press the PF12 key.

If you are describing a multi-path structure, specify the number of the parent as many times as
necessary.

To review your choices, press the PF7 key. Press the PF12 key to continue.

At this point, either a status screen indicates the successful generation of a pair of single-
table file descriptions or additional screens prompt you for primary and foreign keys.

For a multi-table Master File, you must specify the primary and foreign keys (common columns
that perform the embedded join) for each parent-dependent relationship. You may also specify
multi-field embedded joins. For embedded join concepts and limitations, see Multi-Table
Structures on page 99.

6. Automated Procedures

Relational Data Adapter User’s Manual 139

The following screen, Screen E4, appears twice—once for the dependent and then for the
parent table. It displays the column names, data types, and column lengths for the table
marked with the caret (>) symbol.

 E4 --
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |
 --
 IDENTIFY THE PRIMARY/FOREIGN (KEYFLD/IXFLD) RELATIONSHIP FOR:
 PARENT RELATION ==>
 > CHILD RELATION ===>
 -POSITION-COLUMNNAME- -DATATYPE-
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 =>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

In the Position column on the screen, select the common field and number it 1. If another
common field exists, mark it as 2, the next as 3, and so on, up to a limit of 16. Press the
PF12 key to display column information for each parent-dependent relationship. An error
message appears if the data type does not match.

To return to a previous screen and change a selection, press the PF3 key. Press the PF7 key to
review your selection. When all screens are completed, press the PF12 key and a CREATING
MASTER message appears.

For a multi-field embedded join, you may number up to 16 common fields. You must specify
the fields in the same order and you must have an equal number of specified fields.

Note: The AUTODBC facility determines the order in which the table relationships are
displayed. The order is not necessarily a specific top-to-bottom, left-to-right progression.

When AUTODBC completes the file generation process, a status screen, Screen E5, appears.
Besides indicating success, the status screen lists the new file descriptions and where they
are stored. If errors occur, AUTODBC logs the errors in a z/OS data set which it creates, and it
displays the log name on the status screen.

AUTODBC

140

 E5 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 AUTODBC SMMARY STATISTICS:
 MASTER FILE DESCRIPTION ===>
 ACCESS FILE DESCRIPTION ===>
 NO ERRORS FOUND
 ENTER= CONTINUE

AUTODBC writes the new Master and Access Files to Partitioned data sets as members.
Partitioned data sets are allocated to ddnames ADUMAST and ADUSQL (Master and Access,
respectively). If the ddnames are not allocated, the file descriptions are stored in data sets
named ADUMAST.DATA and ADUSQL.DATA. If neither the ddnames nor data set names are
available, AUTODBC dynamically allocates them.

To use the generated Master and Access Files, copy them from the ADUMAST and ADUSQL
datasets to the MASTER.DATA and FOCDBC.DATA data sets after you exit the AUTODBC facility
(Option 5).

To return to the Primary Option Menu, press the Enter key.

Newly generated file descriptions are discussed in Results of the Master File Generation
Facilities on page 142.

Option 4: Redefining Your Teradata Security Profile

To redefine your security profile, select Option 4 from the Primary Option Menu and press the
Enter key. For an explanation of the sample screen, see Security Logon Screen on page 133.

Option 5: Exiting AUTODBC

To exit the AUTODBC facility, select Option 5 from the Primary Option Menu and press the
Enter key. The Utility Termination Options screen, Screen F, appears before you return to TSO:

 F --
 | A U T O D B C |
 | UTILITY TERMINATION OPTIONS |
 --
 DISPOSITION OPTIONS IN AUTODBC FILE SUPPORT:
 1. REATIN ADUCOL ONLY
 2. RETAIN ADUCOL AND ADUTMP ONLY
 3. SCRATCH ALL AUTODBC MAINTENANCE FILES
 OPTION ===>
 ENTER= PROCESS

6. Automated Procedures

Relational Data Adapter User’s Manual 141

You may retain one or both repositories for future AUTODBC sessions or erase the repositories
and the current session's work files. The options are:

1. RETAIN ADUCOL ONLY

Saves the ADUCOL repository as ADU.ADUCOL.DATA.

2. RETAIN ADUCOL AND ADUTMP ONLY

Saves both ADUCOL and ADUTMP repositories. The ADUTMP repository is saved as
ADU.ADUTMP.DATA. This option is recommended.

3. SCRATCH ALL AUTODBC MAINTENANCE FILES

Erases the repositories and temporary work files. TSO ADUMAST and ADUSQL data sets
that store the generated file descriptions are not affected.

Note: If you did not proceed beyond the initial logon screen, press the PF3 key to return to the
TSO environment.

Results of the Master File Generation Facilities

The AUTODB2 and AUTODBC facilities generate Master and Access Files containing the
declarations described in Describing Tables to FOCUS on page 55, and Multi-Table Structures
on page 99. This section discusses those cases in which they supply a different keyword or
value. Minor changes may be required in some situations. As a rule, you can use the
generated file descriptions, without changes, immediately after the AUTODB2 or AUTODBC
session.

In the Master File:

The FILENAME value is the member name or file name you specified on the AUTODB2 initial
screen or on AUTODBC Screen E1.

The SEGNAME value is:

The DB2 table name.

The Teradata table name, truncated to eight characters. If the first eight characters are
not unique, the table name is truncated to six characters and a two-digit integer is
appended to ensure uniqueness.

The SEGTYPE value is always S0 for the root segment. For descendant segments it is
either S0 or U, depending on the relationships between the various key fields.

Results of the Master File Generation Facilities

142

Field declarations for primary key columns are listed first, followed by those for non-key
fields.

For AUTODB2, FIELDNAME and ALIAS values are the full RDBMS column names.

For AUTODBC, if fields are not unique, the FIELDNAME values are the Teradata column
names truncated to eight characters plus the appended value Qnnn (where nnn is an
integer). The Qnnn value is appended to ensure uniqueness. ALIAS values are the full
Teradata column names.

When Y is specified for long field names, field names up to 12 characters and aliases
up to 30 characters are included in the Master File. Otherwise, a truncated FIELD
declaration of 12 characters with a blank ALIAS appears in the Master File and the
complete column name appears in the Access File, as described in Additional Topics on
page 417.

Data types are determined as follows:

GRAPHIC and VARGRAPHIC data types are described with an ACTUAL attribute of Kn, and
with a USAGE attribute of A(2n+2). LONG VARGRAPHIC data types are not supported.

AUTODB2 supports the TIME and TIMESTAMP data types. TIME and TIMESTAMP data types
are treated as either date-time or alphanumeric strings in the Master File, depending on the
data type specified on the main menu. AUTODBC supports the TIMESTAMP data type as an
alphanumeric string (A26).

Field lengths for USAGE and ACTUAL formats are calculated automatically. The generated
field declarations omit the keywords USAGE and ACTUAL. Only the values appear. Columns
with RDBMS DATE data types are described with an ACTUAL attribute of DATE. Columns
with VARCHAR data types longer than 254 characters are described with an ACTUAL
attribute of text (TX).

For AUTODB2, the ACTUAL field length for DECIMAL(p,s) columns with missing data is
P8 if p<=15, P((p+1)/2) if p>15.

For AUTODBC, the ACTUAL field lengths for numeric fields with missing data are either
P8 for DECIMAL columns or I4 for SMALLINT columns.

The MISSING parameter is included and is set ON if the RDBMS table definition allows
NULLs.

In the Access File:

The SEGNAME value matches the corresponding SEGNAME value in the Master File.

6. Automated Procedures

Relational Data Adapter User’s Manual 143

The TABLENAME value:

For AUTODB2, depends on whether Y was entered on the Main Menu for the field "Use
Creator Name in AFD?" If it was, the creator name and the table name compose the
TABLENAME value. If a location was specified, the location, creator, and table name
compose the TABLENAME value.

For AUTODBC, the database name and the table name compose the TABLENAME value.

KEYS and WRITE values are supplied.

AUTODB2 and AUTODBC use existing RDBMS indexes to determine the KEYS value and the
order in which to place fields in the Master File. KEYS is set to zero if a unique index does
not exist or if an RDBMS view is described.

Note: In the case of a view, the unique indexes are described on the underlying tables, not
on the view; they may not be valid as a primary key for the view. If possible, edit the Master
and Access Files to reflect the index structure of the view’s base tables.

For AUTODB2, the optional keyword DBSPACE is omitted. For AUTODBC, the optional
keywords FALLBACK and KEYORDER are not supplied.

For AUTODBC, KEYFLD and IXFLD values are the Teradata columns selected during Option
3 to relate tables. KEYFLD and IXFLD values match the field names found in the Master
File. For AUTODB2, KEYFLD and IXFLD values were selected on the Common Column
Selection screen.

You may need to edit the generated Master File or its corresponding Access File if:

You prefer field names different from the generated names.

There are RDBMS data types in the tables or views that the adapter does not support. A
warning about unsupported data types appears on the Status Screen.

Field declarations are not generated for columns with unsupported data types. You can add
the field declarations yourself. Consult Describing Tables to FOCUS on page 55 for more
information on describing them.

For DB2, to identify the unsupported columns check the system catalog, SYSCOLUMNS,
with a FOCUS report request. (See Additional Topics on page 417, for an example.)

AUTODB2 includes all data types that FOCUS can access.

A unique index does not exist, or you want to use a different index from the selected one. If
the table or view has a primary key, specify a value greater than zero for the KEYS attribute
and rearrange the fields in the Master File so that the columns comprising the primary key
are described first.

Results of the Master File Generation Facilities

144

Certain fields are classified for security reasons. To add security, delete field declarations
or include FOCUS DBA attributes.

You require options such as DEFINE fields and KEYORDER.

Common Errors

AUTODB2 and AUTODBC provide an easy, straightforward approach for defining tables and
views to FOCUS. Most errors occur at the data entry level and result in error messages. Many
fields trigger validation tests that prompt you for a valid entry. Common errors include:

Leaving the Master Filename entry field blank on the AUTODB2 initial screen or AUTODBC
Screen E1.

For AUTODB2, specifying an invalid user ID for the Creator Name entry field.

For AUTODBC, specifying an invalid user ID or password on the security logon screen. If you
are creating the ADUCOL repository and your security profile is incorrect, you receive the
FOCUS message:

TERADATA ID OR PASSWORD INCORRECT: ENTER 'Y' TO CONTINUE

After you press Y, the Primary Option Menu appears. Select Option 4 and correct your
specified values or select Option 5 to exit the facility.

For AUTODB2, leaving the Table Name entry field blank or specifying a nonexistent table or
view. In these cases, no records are retrieved and you return to the Main Menu.

For AUTODBC, specifying a nonexistent table or view when you are creating the ADUCOL
repository.

Specifying an invalid character for the Read/Write Functionality entry field.

Specifying a duplicate member name or file name for the Master Filename entry field. If the
REPLACE option is specified, AUTODB2 and AUTODBC overwrite the existing members or
files.

At the Status Screen level, you may see one of the following warning messages:

n DUPLICATE. The tables or views contain duplicate column names. You can edit these
field names to make them unique, or qualify them with the segment name when referencing
them in requests.

n UNSUPPORTED. The table or view contains some columns with data types not supported
by FOCUS (LONG VARGRAPHIC, for example).

6. Automated Procedures

Relational Data Adapter User’s Manual 145

For AUTODBC:

NO KEY DETECTED. The table or view does not possess a primary key. Edit the generated
file descriptions accordingly to specify a primary key column.

ALL DATATYPES WITHIN TARGET SQL TABLE ARE UNSUPPORTED. All of the columns
possess data types that AUTODBC does not support.

The status screen also displays the name of the error log file that AUTODBC creates when
errors occur.

Other circumstances can also affect processing:

Permanent PDSs are too small to receive the generated file descriptions as members.

You do not have proper authorization for SELECT privileges on the system catalog tables.

AUTODB2 Sample Session

This sample session executes the AUTODB2 facility to generate Master and Access Files
based on the existing EMPINFO, ADDRESS, and PAYINFO tables. It assigns the name
AUTOEMP to the new file descriptions.

Note: Lowercase values represent user input.

First, execute the AUTODB2 FOCEXEC from the FOCUS command line:

>ex autodb2

AUTODB2 displays the Main Menu with its pre-set defaults.

Type autoemp in the Master Filename entry field and * in the TABLE entry field, and press
Enter:

Results of the Master File Generation Facilities

146

Main Menu Master File Generation Facility for DB2
 Master Filename ================> autoemp
 Location => Creator => USER01
 TABLE => *
 Location values: ,LOCDSNA ,LOCDB9A
 DATABASE NAME ================> *
 Description will be a member of:
 Master Target PDS => USER01.MASTER.DATA
 Access Target PDS => USER01.FOCSQL.DATA
 FOCDEF Target PDS => USER01.FOCDEF.DATA
 Replace Existing Description?=> N (Y/N)
 Read/Write Functionality =====> W (R=Read,W=Write)
 Date Display Format ==========> YYMD
 Time Stamp Display Format ====> HYYMDm
 Time Display Format ==========> HHIS
 Display Decimal when SCALE=0?=> Y (Y/N)
 Use LABEL as Column Heading? => N (Y/N)
 Use Remarks for FOCDEF? ======> N (Y/N)
 Use Creator Name in AFD? =====> Y (Y/N)
 Use Long Fieldnames? =========> Y (Y/N)
 Parm File => USER01.FOCSQL.DATA

PF1=Help PF2=Restart PF3=Exit PF4=Log PF5=MFD PF6=AFD PF9=Picture PF10=List

The default values in the creator, table, and database name fields establish a pattern that
selects all tables for creator USER01. AUTODB2 indicates that it is retrieving table information
from the catalog:

===
** AUTODB2 is retrieving TABLE information from catalog. **
** Please wait... **
===

Next, AUTODB2 presents the Table Selection Screen.

Designate ADDRESS as a child by placing c in its Select column.

Scroll down using the PF8 key to view the EMPINFO table and designate it as the root by
placing r in its Select column.

6. Automated Procedures

Relational Data Adapter User’s Manual 147

Scroll down using the PF8 key to view the PAYINFO table and designate it as a child by placing
c in its Select column:

Master: Master File Generation Facility for DB2
AUTOEMP ==Table Selection==

Place an 'R' next to the Table to be the root of the Master.
Place a 'C' next to all other Tables to be described as children.
Enter 'Y' next to all selected Tables that will be updated.

 Select Writ
 Location Creator (R/C) (Y/N
 -------- ------- ------ ----
 USER01
 USER01
 USER01
 USER01
DB2 TABLE: ADDRESS c Y
DB2 TABLE: COURSE Y
DB2 TABLE: DATETIME Y
DB2 TABLE: DEDUCT Y

PF1=Help PF3=End PF4=Add Tables PF7=Up PF8=Down

AUTODB2 indicates that it is gathering column information about those tables:

===
** AUTODB2 is retrieving COLUMN information from catalog. **
** Please wait... **
===

Now, AUTODB2 displays a Child Selection Screen for the root table, EMPINFO. To define
ADDRESS and PAYINFO as children of EMPINFO, place c in their Select columns:

Master: Master File Generation Facility for DB2
AUTOEMP ==Child Selection==

Place a 'C' next to the descendants of Parent:
 USER01
 EMPINFO
 Location Creator Select (C)
 -------- ------- ------------
 USER01
 USER01

DB2 TABLE: ADDRESS c
DB2 TABLE: PAYINFO c
DB2 TABLE:
DB2 TABLE:

PF1=Help PF2=Restart PF3=End PF4=None PF5=Picture PF7=Up PF8=Down

Results of the Master File Generation Facilities

148

In a more complicated structure, some of the child tables could be descendants of other child
tables. For example, PAYINFO could be a child of EMPINFO, and ADDRESS could be a child of
PAYINFO. When necessary, AUTODB2 displays additional Child Selection Screens. However, in
this example, all tables in the structure have been accounted for, so no additional Child
Selection Screens display.

Next, identify the primary key from EMPINFO and the foreign key from ADDRESS on the
Common Column Selection Screen. Identify EID as the primary key for the EMPINFO table by
placing 1 in its Key column. Indicate that EID is the corresponding foreign key in the ADDRESS
table by placing 1 in its Key column:

Master: Master File Generation Facility for DB2
AUTOEMP ==Common Column Selection==
Number the Primary Key Columns | Number The Corresponding Foreign
(in sequence) In The Parent Table: | Key Columns In The Child Table:
 USER01 | USER01
 EMPINFO
 ADDRESS
 Key Column Name | Key Column Name

 1 EID | 1 EID
 LN | AT
 FN | LN1
 HDT | LN2
 FORMAT: A9 | Format: A9
 FORMAT: A15 | Format: A4
 FORMAT: A10 | Format: A20
 FORMAT: YYMD | Format: A20

PF1=Help PF2=Restart PF3=End PF4=Skip PF7=Up PF8=Down

Since no other fields participate in the relationship, press Enter.

AUTODB2 displays another Common Column Selection Screen, for the EMPINFO and PAYINFO
tables. Identify the primary and foreign keys that relate those two tables:

6. Automated Procedures

Relational Data Adapter User’s Manual 149

Master: Master File Generation Facility for DB2
AUTOEMP ==Common Column Selection==
Number the Primary Key Columns | Number The Corresponding Foreign
(in sequence) In The Parent Table: | Key Columns In The Child Table:
 USER01 | USER01
 EMPINFO
 PAYINFO
 Key Column Name | Key Column Name

 1 EID | 1 EID
 LN | DI
 FN | PI
 HDT | SAL
 FORMAT: A9 | Format: A9
 FORMAT: A15 | Format: YYMD
 FORMAT: A10 | Format: F9.2
 FORMAT: YYMD | Format: D12.2

PF1=Help PF2=Restart PF3=End PF4=Skip PF7=Up PF8=Down

Press the Enter key.

At this point, AUTODB2 creates the Master and Access Files. The Main Menu includes the
"DESCRIPTION CREATED" message at the bottom of the screen:

Main Menu Master File Generation Facility for DB2
 Master Filename ================> AUTOEMP
 Location => Creator => USER01
 TABLE => *
 Location values: ,LOCDSNA ,LOCDB9A
 DATABASE NAME ================> *
 Description will be a member of:
 Master Target PDS => USER01.MASTER.DATA
 Access Target PDS => USER01.FOCSQL.DATA
 FOCDEF Target PDS => USER01.FOCDEF.DATA
 Replace Existing Description?=> N (Y/N)
 Read/Write Functionality =====> W (R=Read,W=Write)
 Date Display Format ==========> YYMD
 Time Stamp Display Format ====> HYYMDm
 Time Display Format ==========> HHIS
 Display Decimal when SCALE=0?=> Y (Y/N)
 Use LABEL as Column Heading? => N (Y/N)
 Use Remarks for FOCDEF? ======> N (Y/N)
 Use Creator Name in AFD? =====> Y (Y/N)
 Use Long Fieldnames? =========> Y (Y/N)
 Parm File => USER01.FOCSQL.DATA
 DESCRIPTION CREATED-3 DUPLICATE
PF1=Help PF2=Restart PF3=Exit PF4=Log PF5=MFD PF6=AFD PF9=Picture PF10=List

Three duplicate field names were created. Either edit them to be distinct, or qualify them with
the segment name in requests.

Results of the Master File Generation Facilities

150

To see a picture of the structure created, press PF9:

 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 3 (REAL= 3 VIRTUAL= 0)
 NUMBER OF FIELDS= 22 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 186
SECTION 01
 STRUCTURE OF DB2 FILE AUTOEMP ON 09/26/13 AT 14.22.32

 EMPINFO
 01 S0

*EID **
*LN **
*FN **
*HDT **
* **

 I
 +-----------------+
 I I
 I ADDRESS I PAYINFO
 02 I S0 03 I S0
************** **************
 *EID ** *EID **
 *AT ** *DI **
 *LN1 ** *PI **
 *LN2 ** *SAL **
 * ** * **
 *************** ***************
 ************** **************

 TYPE ANY CHARACTER AND PRESS ENTER TO CONTINUE >

As indicated on the screen, type any character and press Enter to continue.

6. Automated Procedures

Relational Data Adapter User’s Manual 151

To edit The AUTOEMP Master File (member AUTOEMP in data set USER01.MASTER.DATA),
press PF5:

$$$ CREATED BY AUTODB2 ON 09/26/13 AT 14.21.33 BY USER01
FILENAME=AUTOEMP,SUFFIX=DB2,$

SEGNAME='EMPINFO',SEGTYPE=S0,$
FIELD=EID ,EID ,A9 ,A9
 MISSING=OFF,$
FIELD=LN ,LN ,A15 ,A15
 MISSING=OFF,$
FIELD=FN ,FN ,A10 ,A10
 MISSING=OFF,$
FIELD=HDT ,HDT ,YYMD ,DATE
 MISSING=OFF,$
FIELD=DPT ,DPT ,A10 ,A10
 MISSING=ON,$
FIELD=CSAL ,CSAL ,P9.2 ,P4
 MISSING=OFF,$
FIELD=CJC ,CJC ,A3 ,A3
 MISSING=OFF,$
FIELD=OJT ,OJT ,F9.2 ,F4
 MISSING=ON,$
FIELD=BONUS_PLAN ,BONUS_PLAN ,I9 ,I4
 MISSING=OFF,$
FIELD=HDTT ,HDTT ,HYYMDm ,HYYMDm
 MISSING=ON,$
FIELD=HT ,HT ,HHIS ,HHIS
 MISSING=ON,$

SEGNAME='ADDRESS',SEGTYPE=S0,PARENT='EMPINFO',$
FIELD=EID ,EID ,A9 ,A9
 MISSING=OFF,$
FIELD=AT ,AT ,A4 ,A4
 MISSING=OFF,$
FIELD=LN1 ,LN1 ,A20 ,A20
 MISSING=OFF,$
FIELD=LN2 ,LN2 ,A20 ,A20
 MISSING=OFF,$
FIELD=LN3 ,LN3 ,A20 ,A20
 MISSING=OFF,$
FIELD=ANO ,ANO ,I9 ,I4
 MISSING=OFF,
$

Results of the Master File Generation Facilities

152

SEGNAME='PAYINFO',SEGTYPE=S0,PARENT='EMPINFO',$
FIELD=EID ,EID ,A9 ,A9
 MISSING=OFF,$
FIELD=DI ,DI ,YYMD ,DATE
 MISSING=OFF,$
FIELD=PI ,PI ,F9.2 ,F4
 MISSING=OFF,$
FIELD=SAL ,SAL ,D12.2 ,D8
 MISSING=OFF,$
FIELD=JBC ,JBC ,A3 ,A3
 MISSING=OFF,$
$DUPLICATE=EID ,COUNT= 3,SEGNAME=EMPINFO
$DUPLICATE=EID ,COUNT= 3,SEGNAME=ADDRESS
$DUPLICATE=EID ,COUNT= 3,SEGNAME=PAYINFO

To exit from the FOCUS TED editor, press PF3, or type FILE to save any changes you made.

To edit the AUTOEMP Access File (member AUTOEMP in data set USER01.FOCSQL.DATA),
press PF6. Notice the KEYFLD and IXFLD values that define the embedded JOIN:

$$$ CREATED BY AUTODB2 ON 09/26/13 AT 14.21.33 BY USER01
$$$ FILENAME=AUTOEMP,SUFFIX=DB2,$

SEGNAME='EMPINFO',
TABLENAME='"USER01"."EMPINFO"',
KEYS=01,WRITE=YES,KEYORDER=LOW,$

SEGNAME='ADDRESS',
TABLENAME='"USER01"."ADDRESS"',
KEYS=02,WRITE=YES,KEYORDER=LOW,
KEYFLD=EID,
IXFLD=EID,$

SEGNAME='PAYINFO',
TABLENAME='"USER01"."PAYINFO"',
KEYS=02,WRITE=YES,KEYORDER=LOW,
KEYFLD=EID,
IXFLD=EID,$

To exit from the FOCUS TED editor, press PF3, or type FILE to save any changes you made.

AUTODBC Sample Session

This section describes a sample TSO session where the AUTODBC facility generates Master
File and Access Files based on existing tables DPBRANCH, DPVENDOR, and DPINVENT. (See
File Descriptions and Tables on page 459 for DBC table definitions.) The new file descriptions,
created as a result of this sample session, will be named DEMO for demonstration. Session
results are provided after the status screen at the end of this section.

Note: Lowercase values represent user input. Uppercase values represent TSO or AUTODBC
responses.

6. Automated Procedures

Relational Data Adapter User’s Manual 153

First, the AUTODBC CLIST is executed from the TSO command level:

READY
ex autodbc

The security logon screen displays with its defaults as shown below:

A ---
 | A U T O D B C |
 | RELATIONAL TABLE DESCRIPTOR FACILITY FOR FOCUS/DBC |
 | INFORMATION BUILDERS, INCORPORATED |
 --
 TERADATA USERID =====> jane
 TERADATA PASSWORD ====>
 TERADATA DIRECTOR PGM => 0
 TERADATA PARTITION ID => DBC/SQL
 SUPPLY THE REQUIRED TERADATA LOGON INFORMATION
ENTER= PROCESS PF3= EXIT (INITIAL ENTRY ONLY)

The Teradata user ID and password (suppressed display) are specified. AUTODBC provides the
default values, 0 and DBC/SQL, for the Teradata Director Program ID and Partition ID entry
fields.

The Enter key is pressed to continue and the Primary Option Menu appears.

When the Primary Option Menu displays, ADUCOL MAINTENANCE, Option 2, is selected.
Screen D appears blank for this session, since the ADUCOL repository does not exist.

D --
 | A U T O D B C |
 | ADUCOL MAINTENANCE |

 IDENTIFY RELATION DESCRIPTIONS TO BE REFRESHED WITHIN ADUCOL:
 DATABASENAMES TABLENAMES
 --------------------------- ---------------------------------
=> 1 JANE DPBRANCH
=> 2 JANE DPVENDOR
=> 3 JANE DPINVENT
=>
=>
=>
=>
=>
=>
=>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

Results of the Master File Generation Facilities

154

Three table entries are specified on the blank screen. The database names for this session
are JANE. Then the PF7 key is pressed to review the entries. Each entry is now numbered and
in uppercase.

The PF12 key is pressed to construct the ADUCOL repository.

When processing is complete, the Primary Option Menu reappears. Option 3 is selected to
generate a multi-table Master File and a corresponding Access File.

The Master and Access File Generation screen, Screen E1, displays with its defaults.

E1 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 MASTER/ACCESS FILENAME ==> demo
 PROCESSING OPTION =======> 2 OPTIONS:
 1= NEW DESCRIPTION ONLY
 2= NEW OR REPLACE
 USE LONG FIELD NAMES ===> y
 SUPPLY THE REQUIRED VALUES
PF3= RETURN ENTER= PROCESS

DEMO is specified as the name for the new file descriptions. Instead of the default, Option 2 is
specified to replace existing DEMO file descriptions. To incorporate long field names into the
Master File, Y is specified.

The Enter key is pressed.

Screen E2 appears and lists all tables available for file generation. At this point, tables are
selected for the file descriptions. Extra tables are excluded by using the space bar to "blank
out" the database names. However, for this session, all three tables are required for the
DEMO file descriptions.

6. Automated Procedures

Relational Data Adapter User’s Manual 155

E2 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 IDENTIFY THOSE RELATIONS PARTICIPATING IN THE FOCUS VIEW:
 DATABASENAMES TABLENAMES WRITE=
 ------------------------- -------------------------- ------
=> 1 JANE DPBRANCH N
=> 2 JANE DPVENDOR N
=> 3 JANE DPINVENT N
=>
=>
=>
=>
=>
=>
=>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

WRITE functionality remains unchanged. The default (N) indicates read-only access. The
resulting DEMO file descriptions may be used only for reporting.

After the PF12 key is pressed, a STAND BY message displays.

Table relationships are specified on the next screen, Screen E3:

E3 --
 | A U T O D B C |
 | MASTER AND ACCESS FILE MAINTENANCE |
 --
 IDENTIFY THE RELATIONSHIP FROM AMONG SELECTED RELATIONS:
 CHILD
 DATABASENAMES TABLENAMES OF
 ------------------------ -------------------------- ------
=> 1 JANE DPBRANCH
=> 2 JANE DPVENDOR 3
=> 3 JANE DPINVENT 1
=>
=>
=>
=>
=>
=>
=>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

Results of the Master File Generation Facilities

156

The DPBRANCH table acts as the root. Its "Child of" column is left blank. The DPBRANCH table
has the DPINVENT table as a descendent. The value 1 in the "Child of" column for the
DPINVENT table indicates that its parent is DPBRANCH. The DPINVENT table has the
DPVENDOR table as a descendent. The value 3 in the "Child of" column for the DPVENDOR
table indicates that its parent is DPINVENT.

This produces a single-path structure. The PF12 key is pressed to continue.

The next screen, Screen E4, prompts for the common field (either primary key column or
foreign key column) that will perform the embedded JOIN. The screen appears twice for each
parent-child relationship. It displays columns, data types, and column lengths for the current
table, denoted by the caret (>).

E4 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |
 --
 IDENTIFY THE PRIMARY/FOREIGN (KEYFLD/IXFLD) RELATIONSHIP FOR:
 PARENT RELATION ==> DPINVENT
> CHILD RELATION ===> DPVENDOR
 -POSITION-COLUMNNAME- -DATATYPE-
=> VENDOR_CITY CF 5
=> VENDOR_NAME CF 5
=> 1 VENDOR_NUMBER I2 2
=>
=>
=>
=>
=>
=>
=>
 PF3= RETURN PF7= TOP/REVIEW PF8= DOWN PF12= PROCESS

In this session, Screen E4 displays the contents of the DPVENDOR table, as denoted by the
caret (>) symbol. The DPVENDOR table acts as the descendent and the VENDOR_NUMBER
column is specified as the foreign key.

When the PF12 key is pressed, the same screen appears. It displays the contents of the
parent table, DPINVENT. The DPINVENT table also contains a VENDOR_NUMBER column and it
is specified as the primary key.

The PF12 key repeats the screen two more times. It displays the contents of the DPBRANCH
and DPINVENT tables. The BRANCH_NUMBER column that exists in both tables is specified as
the common column.

After the common columns are selected for each relationship, the PF12 key is pressed to
generate the file descriptions.

6. Automated Procedures

Relational Data Adapter User’s Manual 157

The CREATING MASTER and CREATING ACCESS FILE messages display while AUTODBC
generates the file descriptions. The status screen, Screen E5, appears when the process is
complete.

E5 ---
 | A U T O D B C |
 | MASTER AND ACCESS FILE GENERATION |

 AUTODBC SUMMARY STATISTICS:
 MASTER FILE DESCRIPTION ===> DEMO IN PO DDNAME ADUMAST
 ACCESS FILE DESCRIPTION ===> DEMO IN PO DDNAME ADUSQL
 NO ERRORS FOUND
ENTER= CONTINUE

The AUTODBC facility successfully generates the DEMO Master and Access Files. They are
stored in partitioned data sets allocated to ddnames ADUMAST and ADUSQL.

The Enter key is pressed to return to the Primary Option Menu.

This concludes the sample session. At the Primary Option Menu, users may exit the AUTODBC
facility or continue to generate file descriptions for their applications.

Note: The generated Master and Access Files are allocated to the ADUMAST and ADUSQL data
sets. In order to use them, users should copy or move them to the MASTER.DATA and
FOCDBC.DATA data sets after exiting the AUTODBC facility (Option5).

The resulting DEMO Master File describes a single-path structure. Notice the PARENT values
and the Q002 field suffixes:

Results of the Master File Generation Facilities

158

JANE.MASTER.DATA(DEMO) SIZE=50 LINE=0
00000 * * * TOP OF FILE * * *
00001
00002
00003 FILENAME=DEMO ,SUFFIX=SQLDBC,$
00004
00005
00006 SEGNAME=DPBRANCH,SEGTYPE=S0,$
00007
00009 FIELD=BRANCH_NUMBE,
00010 ALIAS=BRANCH_NUMBER,
00011 I5 ,I2 ,MISSING=OFF,$
00012 FIELD=BRANCH_NAME,
00013 ALIAS=BRANCH_NAME,
00014 A5 ,A5 ,MISSING=OFF,$
00015 FIELD=BRANCH_MANAG,
00016 ALIAS=BRANCH_MANAGER,
00017 A5 ,A5 ,MISSING=OFF,$
00018 FIELD=BRANCH_CITY,
00019 ALIAS=BRANCH_CITY,
00020 A5 ,A5 ,MISSING=OFF,$
00021 SEGNAME=DPINVENT,PARENT=DPBRANCH,SEGTYPE=S0,$
00023

00024 FIELD=BRANCH_NQ002,
00025 ALIAS=BRANCH_NUMBER,
00026 I5 ,I2 ,MISSING=OFF,$
00027 FIELD=VENDOR_NQ002,
00028 ALIAS=VENDOR_NUMBER,
00029 I5 ,I2 ,MISSING=OFF,$
00030 FIELD=PRODUCT,
00031 ALIAS=PRODUCT,
00032 A5 ,A5 ,MISSING=OFF,$
00033 FIELD=NUMBER_OF_UN,
00034 ALIAS=NUMBER_OF_UNITS,
00035 I5 ,I2 ,MISSING=OFF,$
00036 FIELD=PER_UNIT_VAL,
00037 ALIAS=PER_UNIT_VALUE,
00038 P10.2 ,P5 ,MISSING=OFF,$
00039 SEGNAME=DPVENDOR,PARENT=DPINVENT,SEGTYPE=S0,$
00041

00042 FIELD=VENDOR_NUMBE,
00043 ALIAS=VENDOR_NUMBER,
00044 I5 ,I2 ,MISSING=OFF,$
00045 FIELD=VENDOR_NAME,
00046 ALIAS=VENDOR_NAME,
00047 A5 ,A5 ,MISSING=OFF,$
00048 FIELD=VENDOR_CITY,
00049 ALIAS=VENDOR_CITY,
00050 A5 ,A5 ,MISSING=OFF,$
00051 * * * END OF FILE * * *

6. Automated Procedures

Relational Data Adapter User’s Manual 159

In the corresponding DEMO Access File, notice the KEYFLD and IXFLD values that perform the
embedded JOINs.

JANE.FOCDBC.DATA(DEMO) SIZE=34 LINE=0

00000 * * * TOP OF FILE * * *
00001
00002
00003
00004
00005 SEGNAME=DPBRANCH,
00006
00007 TABLENAME=JANE.DPBRANCH,
00008
00009 KEYS=0 ,WRITE=NO,$
00010
00011
00012

00013 SEGNAME=DPVENDOR,
00014
00015 TABLENAME=JANE.DPVENDOR,
00016
00017 KEYS=0 ,WRITE=NO,
00018
00019 KEYFLD=VENDOR_NQ002,
00020
00021 IXFLD=VENDOR_NUMBER,$
00022
00023
00024

00025 SEGNAME=DPINVENT,
00026
00027 TABLENAME=JANE.DPINVENT,
00028
00029 KEYS=0 ,WRITE=NO,
00030
00031 KEYFLD=BRANCH_NUMBER,
00032
00033 IXFLD=BRANCH_NQ002,$
00034
00035 * * * END OF FILE * * *

Generating a Master and Access File Using the CREATE SYNONYM Command

You can generate a synonym (Master and Access File) for a relational data source using the
CREATE SYNONYM command.

Note: The CREATE SYNONYM command attributes are subject to change without notice.

Generating a Master and Access File Using the CREATE SYNONYM Command

160

Syntax: How to Generate a Master and Access File Using the CREATE SYNONYM Command

CREATE SYNONYM [appname/]mastername [DROP]
 FOR tablename
 DBMS adapter
 [AT connection]
 [NOCOLS]
 [STOREDPROCEDURE
 PARMS "parm1[, parm2, ... parmn"]
]
END

where:

appname

Is the application folder in which to generate the synonym.

mastername

Is the name of the resulting synonym.

DROP

Deletes an existing synonym with the same name, if one exists, and generates the new
synonym.

tablename

Is the name of the table for which the synonym is being generated.

adapter

Is the relational adapter for which the synonym is being generated.

connection

Is the name of the connection for the adapter.

NOCOLS

Creates a synonym with no columns in it and, at run time, queries the systems tables to
see what columns are available.

STOREDPROCEDURE

Is required for creating a synonym for a stored procedure.

PARMS "parm1[, parm2, ... parmn"]

Is the list of parameter values being sent to the stored procedure.

An input parameter is a literal value, enclosed in single quotation marks (for example,
125, 3.14, 'abcde'). You can use reserved words as input. Unlike character literals,
reserved words are not enclosed in quotation marks (for example, NULL). Input is
required.

6. Automated Procedures

Relational Data Adapter User’s Manual 161

An output parameter is represented as a question mark (?). You can control whether
output is passed to an application by including or omitting this parameter. If omitted,
this entry will be an empty string (containing 0 characters).

An INOUT parameter consists of a question mark (?) for output and a literal for input,
separated by a slash (/). (For example: ?/125, ?/3.14, ?/'abcde'.) The out value can
be an empty string (containing 0 characters).

For an example of creating and using a synonym for a stored procedure, see Adapter for DB2
Stored Procedure Support (CLI Only) on page 420.

Creating Tables: The CREATE FILE Command

The CREATE FILE command uses existing Master and Access Files to generate new RDBMS
tables and, possibly, unique indexes.

Syntax: How to Create a Table

CREATE FILE name [DROP]

where:

name

Is the name of the Master and Access Files.

DROP

Drops the table, if it already exists, and then creates it.

CREATE FILE Prerequisites and Processing

Before issuing the CREATE FILE command, make sure you have:

RDBMS GRANT authority to create tables (as described in Connection, Authentication, and
Security on page 45).

A Master File. Field declarations describing the primary key columns must be listed first.

An Access File. If KEYS is greater than zero, a unique index will be created. To create the
index in descending order, set KEYORDER to HIGH.

If the Access File does not include a DBSPACE value, you can issue the SET DBSPACE
command to establish a default tablespace or dbspace for the duration of the FOCUS
session. (Consult Describing Tables to FOCUS on page 55 for the DBSPACE attribute and
Adapter Commands on page 309 for the SET DBSPACE command.)

Creating Tables: The CREATE FILE Command

162

If you do not issue the SET DBSPACE command, CREATE FILE uses the adapter installation
default. If your site did not establish a default during installation:

For DB2, the table is placed in the default DB2 database, DSNDB04, and DB2
dynamically creates the tablespace.

For Teradata, the table is placed into the database associated with the user ID.

For IDMS/SQL, the table is placed in the IDMS default area specified in the table's
schema DDL definition.

For Oracle, the table is placed in the default tablespace of the owner of the schema
containing the table

When the table is successfully generated, the FOCUS command level prompt (>) appears.

The adapter generates one table and one unique index (provided the KEYS parameter is not 0)
for every segment declaration in a multi-table Master File. It accomplishes this in a single
logical unit of work, so if one of the tables already exists, it does not create the others unless
you specify the DROP option in the CREATE FILE command. That is, the FOCUS CREATE FILE
command does not, by default, overwrite an existing RDBMS table as it may do for a FOCUS
database.

Note: You can control index space parameters for DB2, Oracle, and IDMS/SQL with the
adapter SET IXSPACE command described in Adapter Commands on page 309.

You have two choices if an SQL error occurs:

Issue the CREATE FILE command with the DROP option.

Change the value of the TABLENAME attribute in the Access File and reissue the CREATE
FILE command.

Discard the existing table with the SQL DROP command and reissue the CREATE FILE
command.

You can also create tables by:

Issuing the native SQL CREATE TABLE command from within the FOCUS environment.
Consult Direct SQL Passthru on page 265 for Direct SQL Passthru.

Using the HOLD FORMAT SQLengine option in a report request. See Advanced Reporting
Techniques on page 213 for information about extract files.

6. Automated Procedures

Relational Data Adapter User’s Manual 163

Example: Using CREATE FILE to Create a DB2 Table

The following DB2 session illustrates table creation. The member name for the pair of file
descriptions is EMPINFO. In order to trace the process, the example uses the SQLCALL
component of the trace facility. (For more information about the adapter trace facilities, see
Tracing Adapter Processing on page 487.)

Since the EMPINFO Master and Access Files exist (see File Descriptions and Tables on page
459), the CREATE FILE command can create the EMPINFO table. If the table already exists, it
will be dropped first:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLCALL//CLIENT
SET TRACESTAMP = OFF
CREATE FILE EMPINFO DROP

The trace displays the SQL statements issued by the adapter:

RRSET10 entered. (DB2), Gfun= 3, fun= 2; CMD_OPEN.
RRSET10 Count= 0
RRSET10 exited. (DB2), Errcode= 0; CMD_OPEN.
RRSET10 Count= 1
RRSET10 entered. (DB2), Gfun= 1, fun= 6; EXECUTE_IM.
RRSET10 SQL: DROP TABLE USER01."EMPINFO"
RRSET10 exited. (DB2), Errcode= 0; EXECUTE_IM.
RRSET10 entered. (DB2), Gfun= 1, fun= 5; COMMIT_WORK.
RRSET10 exited. (DB2), Errcode= 0; COMMIT_WORK.
RRSET10 entered. (DB2), Gfun= 1, fun= 6; EXECUTE_IM.
RRSET10 SQL: CREATE TABLE USER01."EMPINFO"("EID" CHAR (9) NOT NULL ,
RRSET10 SQL: "LN" CHAR (15) NOT NULL ,"FN" CHAR (10) NOT NULL ,"HDT" DATE
RRSET10 SQL: NOT NULL ,"DPT" CHAR (10),"CSAL" DECIMAL(7, 2) NOT NULL ,
RRSET10 SQL: "CJC" CHAR (3) NOT NULL ,"OJT" REAL ,"BONUS_PLAN" INTEGER
RRSET10 SQL: NOT NULL ,"HDTT" TIMESTAMP,"HT" TIME) IN DBUSER01.FOCUS
RRSET10 exited. (DB2), Errcode= 0; EXECUTE_IM.
RRSET10 entered. (DB2), Gfun= 1, fun= 6; EXECUTE_IM.
RRSET10 SQL: CREATE UNIQUE INDEX USER01."EMPINFOIX" ON USER01."EMPINFO"
RRSET10 SQL: ("EID" ASC)
RRSET10 exited. (DB2), Errcode= 0; EXECUTE_IM.
RRSET10 entered. (DB2), Gfun= 1, fun= 5; COMMIT_WORK.
RRSET10 exited. (DB2), Errcode= 0; COMMIT_WORK.
RRSET10 entered. (DB2), Gfun= 3, fun= 3; CMD_CLOSE.
RRSET10 Count= 1
RRSET10 exited. (DB2), Errcode= 0; CMD_CLOSE.
RRSET10 Count= 0

The adapter generates one SQL CREATE TABLE command that consists of:

Column information from the field declarations in the Master File.

Table information from the TABLENAME value in the Access File.

The new table resides in tablespace DBUSER01.FOCUS.

Creating Tables: The CREATE FILE Command

164

Since the KEYS value in the Access File is greater than zero, the adapter issues the SQL
CREATE UNIQUE INDEX command. The first n fields in the Master File and the KEYS value
provide the required information.

The index EMPINFOIX is created in ascending order, the RDBMS default. Its name is composed
of the table name and the suffix IX. The parentheses around the EID field from the Master File
indicate that it is the column to be indexed.

If no SQL errors result from table or index creation, the adapter issues the SQL COMMIT WORK
command to permanently define the table and its index. If an error occurs, the adapter issues
an SQL ROLLBACK WORK command. The ROLLBACK WORK command returns the RDBMS
catalog tables to their original state, and table generation stops.

In this example there are no errors, since each generated SQL statement returns an error code
of 0. The adapter issues the SQL COMMIT WORK command to permanently define the table
and its index.

Example: Using CREATE FILE to Create a Teradata Table

The following session illustrates the table creation process. In order to trace the process, this
example uses the SQLCALL component of the trace facility. (For more information about the
adapter trace facilities, see Tracing Adapter Processing on page 487.)

Since the EMPINFO Master and Access Files exist (see File Descriptions and Tables on page
459), the CREATE FILE command is issued to create the EMPINFO table.

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLCALL//CLIENT
CREATE FILE EMPINFO

The trace displays as:

>>> DBTFOC entered. (SQLDBC), Gfun= 3, fun= 2; CMD_OPEN.
>>> DBTFOC Count= 0
<<< DBTFOC exited. (SQLDBC), Errcode= 0; CMD_OPEN.
<<< DBTFOC Count= 1
>>> DBTFOC entered. (SQLDBC), Gfun= 1, fun= 6; EXECUTE_IM.
>>> DBTFOC SQL: CREATE TABLE USER01.EMPINFO(EID CHAR (0009) NOT NULL ,
>>> DBTFOC SQL: LNAME CHAR (0015) NOT NULL ,FN CHAR (0010) NOT NULL ,HDT
>>> DBTFOC SQL: DATE NOT NULL ,DPT CHAR (0010),CSAL DECIMAL(15, 02) NOT
>>> DBTFOC SQL: NULL ,CJC CHAR (0003) NOT NULL ,OJT FLOAT ,BONUS_PLAN
>>> DBTFOC SQL: INTEGER NOT NULL) UNIQUE PRIMARY INDEX (EID)
<<< DBTFOC exited. (SQLDBC), Errcode= 0; EXECUTE_IM.
>>> DBTFOC entered. (SQLDBC), Gfun= 3, fun= 3; CMD_CLOSE.
>>> DBTFOC Count= 1
<<< DBTFOC exited. (SQLDBC), Errcode= 0; CMD_CLOSE.
<<< DBTFOC Count= 0

6. Automated Procedures

Relational Data Adapter User’s Manual 165

The resulting trace shows that the adapter generated one DBC/SQL CREATE TABLE statement.
The statement consists of:

Column information from the field declarations in the Master File.

Table information from the TABLENAME value in the Access File.

Syntax for a unique primary index.

A unique primary index is created when the KEYS value in the Access File is greater than 0
(zero). The first n fields in the Master File and the KEYS value provide the required information.
The field EID from the EMPINFO Master File appears in parentheses as the column to be
indexed.

Note: The Teradata RDBMS requires a primary index. If the KEYS value is not specified, the
RDBMS creates a non-unique primary index on the first column in the table.

In the lower portion of the trace, the error code 0 indicates success. When table creation fails,
a specific DBC return code is displayed and the adapter issues a DBC/SQL ROLLBACK WORK
command. The ROLLBACK WORK command causes the DBC Directory to return to its original
state and table generation stops.

Example: Using CREATE FILE to Create an IDMS SQL Table

The following IDMS/SQL session illustrates table creation. The member name for the pair of
file descriptions is EMPINFO. In order to trace the process, the example uses the SQLCALL
component of the trace facility. (For more information about the adapter trace facilities, see
Tracing Adapter Processing on page 487.)

Since the EMPINFO Master and Access Files exist (see File Descriptions and Tables on page
459), the CREATE FILE command can create the EMPINFO table:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLCALL//CLIENT
SET TRACESTAMP = OFF
CREATE FILE EMPINFO

The trace displays as follows:

Creating Tables: The CREATE FILE Command

166

>>> IDQFOC entered. (SQLIDMS), Gfun= 3, fun= 4; REFRECH_DI.
<<< IDQFOC SQLFLAGS: 00000000 00000000 0000004D 80000000 00000001 00000002
<<< IDQFOC SQLFLAGS: 01000032 00000000 00000001 00000000 00000000 00000000
<<< IDQFOC SQLFLAGS: 00000000 00000000 00000000 00000000 00000000 00000000
<<< IDQFOC SQLFLAGS: 00000000 00000000 00000000 00000000 00000000 00000000
<<< IDQFOC SQLFLAGS: 00000000 00000000 00000000 00000000 00000000 00000000
<<< IDQFOC SQLFLAGS: 00000000 00000000 00000000 00000000 00000000 00000000
<<< IDQFOC SQLFLAGS: 00000000 00000000 00000000
<<< IDQFOC APTFLAGS: 000000C0 00000001 97D00001 00000001 00000000 3002D802
<<< IDQFOC APTFLAGS: 00000002 00001A8B 00000000 00000000 0000000E 00000000
<<< IDQFOC APTFLAGS: 00000000 00000000 00000004 00000001 00000000
<<< IDQFOC exited. (SQLIDMS), Errcode= 0; REFRECH_DI.
>>> IDQFOC entered. (SQLIDMS), Gfun= 3, fun= 2; CMD_OPEN.
>>> IDQFOC Count= 0
<<< IDQFOC exited. (SQLIDMS), Errcode= 0; CMD_OPEN.
<<< IDQFOC Count= 1
>>> IDQFOC entered. (SQLIDMS), Gfun= 1, fun= 6; EXECUTE_IM.
>>> IDQFOC SQL: CREATE TABLE EMPSCHEM."EMPINFO"(EID CHAR (0009) NOT NULL ,
>>> IDQFOC SQL: LN CHAR (0015) NOT NULL ,FN CHAR (0010) NOT NULL ,HDT DATE
>>> IDQFOC SQL: NOT NULL ,DPT CHAR (0010),CSAL DECIMAL(15, 02) NOT NULL ,CJC
>>> IDQFOC SQL: CHAR (0003) NOT NULL ,OJT FLOAT ,BONUS_PLAN INTEGER NOT
>>> IDQFOC SQL: NULL)
<<< IDQFOC exited. (SQLIDMS), Errcode= 0; EXECUTE_IM.
>>> IDQFOC entered. (SQLIDMS), Gfun= 1, fun= 6; EXECUTE_IM.
>>> IDQFOC SQL: CREATE UNIQUE INDEX "EMPINFOIX" ON EMPSCHEM."EMPINFO"
>>> IDQFOC SQL: (EID ASC)

<<< IDQFOC exited. (SQLIDMS), Errcode= 0; EXECUTE_IM.
>>> IDQFOC entered. (SQLIDMS), Gfun= 1, fun= 5; COMMIT_WORK.
<<< IDQFOC exited. (SQLIDMS), Errcode= 0; COMMIT_WORK.
>>> IDQFOC entered. (SQLIDMS), Gfun= 3, fun= 3; CMD_CLOSE.
>>> IDQFOC Count= 1
<<< IDQFOC exited. (SQLIDMS), Errcode= 0; CMD_CLOSE.
<<< IDQFOC Count= 0

The adapter generates one SQL CREATE TABLE command that consists of:

Column information from the field declarations in the Master File.

Table information from the TABLENAME value in the Access File.

The new table resides in IDMS area EMPSEG.EMPAREA.

Since the KEYS value in the Access File is greater than zero, adapter issues the SQL CREATE
UNIQUE INDEX command. The first n fields in the Master File and the KEYS value provide the
required information.

The index EMPINFOIX is created in ascending order, the IDMS default. Its name is composed
of the table name and the suffix IX. The parentheses around the EID field from the Master File
indicate that it is the column to be indexed.

6. Automated Procedures

Relational Data Adapter User’s Manual 167

If no SQL errors result from table or index creation, the adapter issues the SQL COMMIT WORK
command to permanently define the table and its index. If an error occurs, the adapter issues
an SQL ROLLBACK WORK command. The ROLLBACK WORK command returns the IDMS
system tables to their original state, and table generation stops.

In this example there are no errors, since each generated SQL statement returns an error code
of 0. The adapter issues the SQL COMMIT WORK command to permanently define the table
and its index.

Example: Using CREATE FILE to Create an Oracle Table

The following example shows how the adapter creates the Oracle table EMPINFO using the
CREATE FILE command with the sample EMPINFO Master and Access File. (For information
about the adapter trace facilities, see Tracing Adapter Processing on page 487.)

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLCALL//CLIENT
SET TRACESTAMP = OFF
CREATE FILE EMPINFO

The trace follows:

>>> ORAFOC entered. (SQLORA), Gfun= 3, fun= 2; CMD_OPEN.
>>> ORAFOC Count= 0
<<< ORAFOC exited. (SQLORA), Errcode= 0; CMD_OPEN.
<<< ORAFOC Count= 1
>>> ORAFOC entered. (SQLORA), Gfun= 1, fun= 6; EXECUTE_IM.
>>> ORAFOC SQL: CREATE TABLE USER01.EMPINFO("EID" VARCHAR2 (0009) NOT
NULL
>>> ORAFOC SQL: ,"LN" VARCHAR2 (0015) NOT NULL ,"FN" VARCHAR2 (0010) NOT
>>> ORAFOC SQL: NULL ,"HDT" DATE NOT NULL ,"DPT" VARCHAR2 (0010),"CSAL"
>>> ORAFOC SQL: DECIMAL(07, 02) NOT NULL ,"CJC" VARCHAR2 (0003) NOT NULL ,
>>> ORAFOC SQL: "OJT" REAL ,"BONUS_PLAN" INTEGER NOT NULL ,"HDTT" DATE NOT
>>> ORAFOC SQL: NULL)
<<< ORAFOC exited. (SQLORA), Errcode= 0; EXECUTE_IM.
>>> ORAFOC entered. (SQLORA), Gfun= 1, fun= 6; EXECUTE_IM.
>>> ORAFOC SQL: CREATE UNIQUE INDEX USER01.EMPINFOIX ON USER01.EMPINFO
>>> ORAFOC SQL: ("EID" ASC)
<<< ORAFOC exited. (SQLORA), Errcode= 0; EXECUTE_IM.
>>> ORAFOC entered. (SQLORA), Gfun= 1, fun= 5; COMMIT_WORK.
<<< ORAFOC exited. (SQLORA), Errcode= 0; COMMIT_WORK.
>>> ORAFOC entered. (SQLORA), Gfun= 3, fun= 3; CMD_CLOSE.
>>> ORAFOC Count= 1
<<< ORAFOC exited. (SQLORA), Errcode= 0; CMD_CLOSE.
<<< ORAFOC Count= 0

Creating Tables: The CREATE FILE Command

168

Note:

This example assumes that the Oracle login ID is USER01. Since the login ID is the creator
of the table, it is not really necessary to specify the creator in the Access File in order to
use CREATE FILE.

The Oracle table name is obtained from the Access File.

The column definitions are taken from the USAGE attributes in the Master File.

The unique index is based on the KEYS attribute in the Access File and the order of the
field names in the Master File. In this case, KEYS=1, with EID as the first field described in
the Master File. A unique index was created on the column EMP_ID.

If the CREATE TABLE and CREATE UNIQUE INDEX commands are successful, the adapter
issues a COMMIT WORK to permanently store the table definition in the Oracle RDBMS.

Note: If the adapter specifies SMALLINT, INTEGER or DECIMAL for a data type, Oracle
responds by creating either full size NUMERIC or NUMERIC (n,m) columns. SMALLINT,
INTEGER, and DECIMAL are acceptable keywords for use in creating Oracle tables and are
used by the adapter for CREATE FILE and certain other operations. There is no need for you to
be familiar with them or to use them when creating your own tables.

The order of the columns will be the same as the order in which they were described in the
Master File.

6. Automated Procedures

Relational Data Adapter User’s Manual 169

Creating Tables: The CREATE FILE Command

170

Chapter7
The Adapter Optimizer

Optimization is the process in which the adapter translates the projection, selection, join,
sort, and aggregation operations of a report request into their SQL equivalents and
passes them to the RDBMS for processing.

In this chapter:

Optimizing Requests

Optimization Logic

Optimizing Record Selection and Projection

Optimizing Joins

Optimizing Sorts

Optimizing Aggregation

Optimizing DEFINE Fields

DEFINE FUNCTION Optimization

Optimizing Function Calls

The FOCUS EXPLAIN Utility (DB2 and Teradata)

Optimizing Requests

Adapter optimization allows the RDBMS to perform the work for which it is best suited,
reducing the volume of RDBMS-to-FOCUS communication and improving response time. It also
enables the RDBMS to exploit its own internal optimization techniques.

Syntax: How to Invoke Optimization

To invoke the optimization process, enter the following adapter command at the FOCUS
command level

{ENGINE|SQL} [sqlengine] SET {OPTIMIZATION|SQLJOIN} setting

Relational Data Adapter User’s Manual 171

where:

sqlengine

Is the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if you
previously issued the SET SQLENGINE command.

SQLJOIN

Is a synonym for OPTIMIZATION.

setting

Is the optimization setting. Valid values are as follows:

OFF instructs the adapter to create SQL statements for simple data retrieval from each
table. FOCUS handles all aggregation, sorting, and joining in your address space to
produce the report.

ON instructs the adapter to create SQL statements that take advantage of RDBMS join,
sort, and aggregation capabilities. It is compatible with previous releases in regard to the
multiplicative effect. Misjoined unique segments and multiplied lines in PRINT and LIST
based report requests do not disable optimization (see RDBMS and FOCUS Join
Management on page 178). Other cases of the multiplicative effect invoke the adapter-
managed native join logic described in Optimizing Joins on page 178. ON is the default
value.

FOCUS passes join logic to the RDBMS only when the results will be the same as from a
FOCUS-managed request. Misjoined unique segments, the multiplicative effect, and
multiplied lines in PRINT and LIST based report requests (see RDBMS and FOCUS Join
Management on page 178) invoke the adapter-managed native join logic described in
Optimizing Joins on page 178.

SQL passes join logic to the RDBMS in all possible cases. The multiplicative effect does
not disable optimization, even in cases involving aggregation (SUM, COUNT). Does not
pass join logic to the RDBMS for tables residing on multiple subsystems and for tables
residing on multiple DBMS platforms.

NOAGGR disables optimization of calculations (DEFINE fields) without disabling optimization
of join and sort operations.

AGGR enables optimization of calculations (DEFINE fields). This is the default value for
optimization of calculations.

Optimizing Requests

172

You can invoke the adapter trace facility to evaluate the SQL statements generated by the
adapter. The SQLAGGR trace component verifies whether the adapter passed aggregation and
join operations to the RDBMS. The STMTRACE component displays the SQL SELECT
statements that the adapter generates from report requests. A single SQL SELECT statement
indicates RDBMS-managed join processing. Two or more indicate FOCUS-managed join
processing. For information about adapter trace facilities, see Tracing Adapter Processing on
page 487.

When optimizing a TABLE request, the adapter tries to ensure, within reasonable limits, that
the results of execution of the optimized query will be the same as the results obtained when
reading raw unfiltered data from the same data hierarchy.

Example: SQL Requests Passed to the RDBMS With Optimization OFF

This example demonstrates SQL statements generated without optimization. The report
request joins tables EMPINFO and FUNDTRAN with trace components SQLAGGR and
STMTRACE allocated.

When optimization is disabled, the adapter generates two SELECT statements. The first
SELECT retrieves any rows from the EMPINFO table that have the value MIS in the
DEPARTMENT column. For each EMPINFO row, the second SELECT retrieves rows from the
cross-referenced FUNDTRAN table, resolving the parameter marker (?, :000n, or :H, depending
on the RDBMS) with the value of the host field (EMP_ID). Both SELECT statements retrieve
answer sets, but FOCUS performs the join, sort, and aggregation operations:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLAGGR//CLIENT
SET TRACEON = STMTRACE//CLIENT

SQL DB2 SET OPTIMIZATION OFF
 JOIN EMP_ID IN EMPINFO TO ALL WHO IN FUNDTRAN AS J1
 TABLE FILE EMPINFO
 SUM AVE.CURRENT_SALARY ED_HRS BY WHO BY LAST_NAME
 IF DEPARTMENT EQ 'MIS'
 END

The following trace is generated

(FOC2510) FOCUS-MANAGED JOIN SELECTED FOR FOLLOWING REASON(S):
(FOC2511) DISABLED BY USER
(FOC2590) AGGREGATION NOT DONE FOR THE FOLLOWING REASON:
(FOC2592) RDBMS-MANAGED JOIN HAS BEEN DISABLED
 SELECT T1.EID,T1.LN,T1.DPT,T1.CSAL,T1.OJT FROM
 "USER1"."EMPINFO" T1 WHERE (T1.DPT = 'MIS') FOR FETCH ONLY;
 SELECT T2.EID FROM "USER1"."FUNDTRAN" T2 WHERE (T2.EID = ?)
 FOR FETCH ONLY;

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 173

Example: SQL Requests Passed to the RDBMS With Optimization ON

This example shows the SQL generated with optimization for the report request in SQL
Requests Passed to the RDBMS With Optimization OFF.

With optimization enabled, the adapter generates one SELECT statement that incorporates the
join, sort, and aggregation operations. The RDBMS manages and processes the request.
FOCUS only formats the report.

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLAGGR//CLIENT
SET TRACEON = STMTRACE//CLIENT

SQL DB2 SET OPTIMIZATION ON
 > > JOIN EMP_ID IN EMPINFO TO ALL WHO IN FUNDTRAN AS J1
 > > TABLE FILE EMPINFO
 > SUM AVE.CURRENT_SALARY ED_HRS BY WHO BY LAST_NAME
 > IF DEPARTMENT EQ 'MIS'
 > END

The following trace is generated:

AGGREGATION DONE ...
 SELECT T2.EID,T1.LN, AVG(T1.CSAL), SUM(T1.OJT) FROM
 "USER1"."EMPINFO" T1,"USER1"."FUNDTRAN" T2 WHERE (T2.EID =
 T1.EID) AND (T1.DPT = 'MIS') GROUP BY T2.EID,T1.LN ORDER BY
 T2.EID,T1.LN FOR FETCH ONLY;

Both OPTIMIZATION settings produce the same report.

Reference: A Note About Examples

There are minor differences in the specific SQL syntax generated for each RDBMS. However,
the adapter messages are the same and the generated SQL statements are similar enough
that for the remainder of this manual most examples will illustrate SQL syntax generated by
one adapter.

Optimization Logic

Optimization means passing the following tasks to the RDBMS:

Record selection and projection

Joins

Sorting

Aggregation

Optimization Logic

174

Aside from record selection and projection, the adapter does not offload these functions to the
RDBMS if you set OPTIMIZATION to OFF. When OPTIMIZATION is not OFF, the adapter
evaluates each report request for the existence of joins, sort operations, and finally
aggregation operations. It automatically invokes optimization for record selection and
projection operations.

Optimizing Record Selection and Projection

Regardless of the OPTIMIZATION setting, the adapter may pass record selection and projection
to the RDBMS. It is always more efficient to do so

Record Selection

The adapter can translate all forms of FOCUS record selection to predicates of an SQL WHERE
clause, except those that contain:

Certain DEFINE fields (see Optimizing DEFINE Fields on page 184).

EDIT to perform data type conversions, EDIT of an alphanumeric field that was the result of
such a conversion, or EDIT of a DEFINE field.

LIKE with fields created using DEFINE or COMPUTE.

DATE fields with formats other than YMD or YYMD.

The only optimized selection criteria on date-time columns (criteria passed to the RDBMS in
the generated SQL) are relational expressions that are valid in an IF phrase. For example,
comparison of a date-time column with a date-time literal value is optimized, but
comparison of a date-time column with another date-time column is not optimized.

The adapter optimizes screening conditions based on DEFINE fields that derive their values
from a single segment of the join structure. The adapter optimizes these screening conditions
as long as you do not set OPTIMIZATION OFF, even if it has disabled join optimization in your
request.

When using LIKE in a WHERE clause, make sure any constant in the LIKE predicate either:

Has the same length as the field used in the comparison.

Is padded with blanks or underscore characters (_) to maintain the appropriate length.

Contains the % wildcard character to denote any sequence of characters.

Escape characters in the LIKE predicate are optimized. See your FOCUS documentation for a
discussion of LIKE.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 175

If you fail to specify a wildcard pattern in the LIKE predicate, the WHERE clause passes an
equality predicate to the RDBMS instead of the LIKE predicate. For example

WHERE EID LIKE 'A'

will generate

WHERE (T1.EID = 'A')

not:

WHERE (T1.EID LIKE 'A')

In addition, because of unpredictable comparisons between VARCHAR data types, the WHERE
clause is not passed to the RDBMS if both of the following conditions are true:

The specified pattern is not equal in length to the column used in the comparison.

The pattern contains one or more wildcard characters but does not terminate with the
percent character (%).

In this case, FOCUS performs the screening condition on all rows returned from the RDBMS.

Optimizing Selection of Relational Variable Length Character Data Types

TABLE IF criteria can reference RDBMS variable character data types such as VARCHAR, LONG
VARCHAR, and CLOB (described in the Master File with USAGE=TX and ACTUAL=TX).

Certain types of IF criteria that reference variable length character data types are included in
the generated SQL, causing the selection operations to be performed by the RDBMS and
improving performance.

The IF test to be optimized must be a CONTAINS or OMITS test against a field described with
USAGE=TX and ACTUAL=TX in the Master File. The RDBMS column must be a character
variable length data type.

CONTAINS translates to LIKE in the generated SQL, and OMITS translates to NOT LIKE. The
generated SQL places wildcard characters around the literal string specified in the CONTAINS
or OMITS test.

Reference: Usage Notes for Optimization of Selection of Variable Length Data Types

The following options are not supported with text fields:

CRTFORM

TYPE

Optimizing Record Selection and Projection

176

FSCAN

MODIFY

Example: Optimizing a Selection Test Against a Variable Length Character Column

Consider the following variation of the DB2 Master File named EMPINFO. A CLOB column
named JOBDESC has been added that contains a job description:

FILENAME=EMPINFO ,SUFFIX=DB2,$

SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE ,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4 ,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=JOBDESC ,ALIAS=JDSC ,USAGE=TX50 ,ACTUAL=TX ,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4 ,$

The following request specifies a CONTAINS test against the JOBDESC field:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT

TABLE FILE EMPINFO
PRINT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT CURR_JOBCODE JOBDESC
IF JOBDESC CONTAINS 'PR'
END

The CONTAINS operator is translated to a LIKE operator in the generated SQL:

 SELECT T1."EID",T1."LN",T1."FN",T1."DPT",T1."CJC",T1."JDSC"
FROM USER1."EMPINFO" T1 WHERE (T1."JDSC" LIKE '%PR%') FOR
FETCH ONLY;

Projection

In relational terminology, projection is the act of retrieving any subset of the available columns
from a table. The adapter implements projection by retrieving only those columns referenced in
a TABLE request. Projection reduces the volume of data returned from the RDBMS, which, in
turn, improves application response time.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 177

Optimizing Joins

This discussion applies to joins invoked either by the FOCUS dynamic JOIN command (see
Advanced Reporting Techniques on page 213) or by the embedded join facility (see Multi-Table
Structures on page 99).

For information about using the JOIN command to construct an outer join and about controlling
outer join optimization, see Advanced Reporting Techniques on page 213.

To explain how optimization logic is applied to joins, first there is a discussion of how the
RDBMS and FOCUS differ in their management of joins.

RDBMS and FOCUS Join Management

When the RDBMS manages a join, it effectively first generates a Cartesian product of the
tables, then applies any screening conditions to the resulting rows (including any join
conditions), then applies the SELECT list, and, finally, calculates column function values and
expressions.

In contrast, when FOCUS manages a join, it first reads segment instances from the top to the
bottom of the file structure.

Because FOCUS views RDBMS tables as segments, in very rare situations the RDBMS could
return more instances of a row than FOCUS would if it were processing similar data from a
FOCUS or sequential data source. This difference is called the multiplicative effect.

FOCUS implements a dynamic or embedded join between RDBMS tables (segments) based on
a set of pairs of "from/to" fields. The "to" fields are called the foreign key.

The KEYS attribute in the Access File defines the number of primary key fields (columns) in a
segment. KEYS = n indicates that the first n fields in the segment comprise the primary key. If
the foreign key fields for a child segment or cross-referenced file do not completely cover its
primary key, multiple rows in the child segment (table) may correspond to a single row in the
parent segment. Therefore, the RDBMS-generated Cartesian product may contain multiple
instances of a single parent segment row. The parent segment is multiplied. By definition, all
ancestors of the multiplied segment are also multiplied.

A unique segment is defined as having exactly one instance corresponding to an instance of
its parent segment. If its foreign key fields do not cover its primary key, this is not necessarily
the case, even though the join was specified as unique. A segment in this situation is called
misjoined.

Optimizing Joins

178

Even if a unique segment is misjoined, however, the adapter does not consider it as causing
its parent's multiplication. The adapter processes a "unique segment misjoined" condition
separately from the multiplicative effect. it issues a warning message, and, depending on the
current optimization setting, may or may not disable optimization.

In most cases, the adapter can prevent the multiplicative effect, as described in Optimizing
Joins on page 178 and Optimizing Aggregation on page 183.

Join Optimization Logic

When you invoke optimization, the adapter attempts to build a single SQL statement. In order
for the adapter to create one SQL statement that incorporates an RDBMS join on primary and
foreign keys:

The tables must share a single retrieval path in the joined structure. Multiple paths are not
permitted.

Except for the lowest level segment referenced in the request, primary keys must exist
(KEYS > 0 in the Access File) for all segments referenced in a report request that includes:

Aggregation operators such as SUM or COUNT, when the OPTIMIZATION setting is ON or
FOCUS.

Multiple FST. or LST. operators on a segment that could return more than one record
per sort break, regardless of the OPTIMIZATION setting.

SUM or COUNT operations at any level other than the lowest level in the join structure
cause the RDBMS to duplicate data. In effect, each host row is replicated for each
associated row in the cross-referenced table. This duplication of data is known as the
multiplicative effect.

When all segments other than the lowest level segment in the request have primary keys,
the adapter passes such joins to the RDBMS with an SQL ORDER BY clause on all columns
of each segment's primary key, in top to bottom order. The resulting sort on the returned
answer set enables the adapter to eliminate duplicate rows before passing the data to
FOCUS. This technique is called adapter-managed native join optimization. When adapter-
managed native join optimization cannot be used, SUM or COUNT operations at any level
other than the lowest level in the join structure cause optimization to be disabled.

In some cases, adapter-managed joins may be less efficient than FOCUS-managed joins
from prior releases. To invoke a FOCUS-managed join, set OPTIMIZATION to OFF.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 179

When the adapter manages join optimization, it does not optimize aggregation or sorting,
as described in Optimizing Sorts on page 182 and Optimizing Aggregation on page 183.
This behavior is consistent with that of prior releases when the join was not passed.
Expressions based on a single segment in the structure, however, are passed (see
Optimizing Record Selection and Projection on page 175).

For DB2, tables must reside at the same location (subsystem).

The Master Files for the tables must not include any OCCURS segments.

You must not join more than the number of tables supported by the RDBMS or FOCUS,
whichever is smaller.

For conditional joins, the join expressions must be optimizable, as described in Optimizing
DEFINE Fields on page 184.

If these conditions are satisfied, the adapter generates one SQL SELECT statement that joins
all the referenced tables in a single request.

If you set adapter optimization OFF, or if any condition is not satisfied, the adapter generates
an individual SQL statement for each table. FOCUS performs the required processing on the
returned answer sets.

Note:

A TABLE request that references a dynamically joined structure generates SQL join
predicates for all segments in the subtree that starts from the root segment. The adapter
does not necessarily generate these predicates for multi-table Master Files (see Multi-Table
Structures on page 99). In a multi-table structure, the subtree effectively begins with the
highest referenced segment. This effect may cause identical TABLE requests to produce
different reports when run against a dynamic join structure and a multi-table Master File
that represent the same tree structure.

When the adapter does not pass a join to the RDBMS, the order in which you join the files
becomes critical. To minimize the number of cursors opened, order the files from left to
right by increasing number of records in either the file (for non-RDBMS files) or the returned
answer set (for RDBMS tables).

Join order should not matter in an optimized join. However, performance may degrade when
you join more than three tables.

Optimizing Joins

180

Optimization of Joins Between Heterogeneous Data Sources

The adapter can pass a single SELECT statement for all tables referenced in a TABLE request
to the RDBMS when all active segments from the RDBMS comprise a contiguous single-path
subtree. The adapter can optimize the join between relational tables even when the retrieval
path includes segments from different types of data sources (for example, several DB2
segments and an IMS segment).

Single path means no non-unique RDBMS segment can have an RDBMS parent and a non-
unique sibling (RDBMS or non-RDBMS). Active segments are those containing fields referenced
in the request or fields involved in join operations. Contiguous segments are connected
RDBMS segments with a common target RDBMS. There may be segments of different file
types above or below the contiguous segments. Segments occupying intermediate positions in
a file hierarchy between explicitly active segments are themselves also implicitly active.

Note:

If the request specifies a sort operation, the adapter transfers the sort operation to the
RDBMS only if the root of the SQL subtree is the topmost active segment in the data
source. Additionally, all BY fields must be contained within the segments of the SQL
subtree. If the multiplicative effect is detected and the adapter-managed native join is
invoked, the adapter passes an SQL ORDER BY clause on all columns of each segment’s
primary key, in top-to-bottom order. The resulting sort on the returned answer set enables
the adapter to eliminate duplicate rows before passing the data to FOCUS.

FOCUS and the RDBMS use slightly different sorting/aggregation algorithms. Therefore,
when the RDBMS processes a sort request, the sequence of report rows within a given sort
key value may vary slightly from the sequence that would be produced by FOCUS. While
both report results are equally correct, if such differences are unacceptable, you can set
OPTIMIZATION OFF. FOCUS will then handle all aggregation, sorts and join operations
required to produce the report.

Example: Optimizing Joins Between Heterogeneous Data Sources

The following example illustrates the SQL request passed to DB2 as the result of a dynamic
join between two DB2 tables and an IDMS record. For information about JOIN syntax, see
Advanced Reporting Techniques on page 213:

 JOIN EMP_ID IN EMPINFO TO WHO IN FUNDTRAN AS JOIN1
 JOIN EMP_ID IN EMPINFO TO EMP_ID IN IDMSFILE AS JOIN2

With optimization enabled, the adapter produces one SQL SELECT statement that joins the two
DB2 tables. The RDBMS processes the join:

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 181

> SELECT T1.EID,T2.BN FROM "USER1"."EMPINFO" T1,
 "USER1"."FUNDTRAN" T2 WHERE (T2.EID = T1.EID) FOR FETCH ONLY;

For each DB2 joined row returned, the adapter uses the join field as input to an IDMS OBTAIN
record command utilizing an IDMS index or a Calc key.

With optimization disabled, the adapter generates a separate SQL SELECT statement for each
DB2 table:

 SELECT T1.EID FROM "USER1"."EMPINFO" T1 FOR FETCH ONLY;

After a row is fetched from table1, the join field is used as input to the second select:

 SELECT T2.BN FROM "USER1"."FUNDTRAN" T2 WHERE (T2.EID = ?) FOR
 FETCH ONLY;

For each DB2 joined row returned, the adapter uses the join field as input to an IDMS OBTAIN
record command using an IDMS index or a Calc key.

Optimizing Sorts

Next, if the request specifies a sort operation, the adapter must determine how to sort the
data. The adapter transfers the sort operation to the RDBMS only when:

It can generate a single SQL statement.

Adapter-managed join optimization is not in effect.

For a discussion of these conditions, see Optimizing Joins on page 178.

Under these conditions, the adapter invokes one of the following types of RDBMS-managed
sorting:

1. If the request does not use the direct operators FST. and LST., the adapter translates sort
phrases (BY or ACROSS) into SQL ORDER BY clauses, thus passing responsibility for the
primary sorting of data to the RDBMS. Note that BY TOTAL phrases are not optimized.

2. When the adapter determines that it will retrieve at most one segment instance per sort
break, it translates FOCUS FST. and LST. operators to SQL MIN and MAX operators and
translates sort phrases (BY and ACROSS) into SQL ORDER BY clauses. The adapter applies
this technique in requests that explicitly specify the FST. or LST. operators and in requests
that implicitly use them by referencing a non-numeric field in a report heading or footing.

FOCUS FST. and LST. operators retrieve the first or last segment instance per sort break.
By definition, if a FOCUS request includes FST. or LST. operators on multiple fields from
one segment, each field value displayed on the resulting report must come from the same
instance of that segment. SQL MIN and MAX operators do not dictate that the resulting
fields all come from the same segment instance.

Optimizing Sorts

182

Therefore, before translating the FST. and LST. operators in a FOCUS request to SQL MIN
and MAX operators, the adapter must ascertain that it will retrieve at most one segment
instance per sort break. It makes this determination by analyzing the sort fields in the
request, the primary key of each segment in the join structure, and any join fields that are
components of the primary keys.

One segment instance is returned per sort break in any of the following situations:

The sort field includes a segment's entire primary key.

The sort field is a partial key joined to another sort field consisting of the remaining
primary key component.

The request includes only one FST. or LST. operator on a segment.

3. If the report request contains FST. or LST. operators on a segment that may return multiple
instances, the adapter directs the RDBMS to sort the data by primary key in the sequence
specified by the Access File KEYORDER attribute. From this, the adapter retrieves column
values for the logically first (FST.) or last (LST.) key values of the returned data. After the
RDBMS sort, FOCUS re-sorts the data according to the sort phrases.

Note: LST. processing is invoked for SUM or WRITE operations involving alphanumeric or
date fields and for alphanumeric or date fields in a report heading or footing.

From a performance standpoint, consider using the TABLEF command in conjunction with
RDBMS-managed sorting to free FOCUS from having to verify the sort order. Refer to Advanced
Reporting Techniques on page 213, for the TABLEF command.

Optimizing Aggregation

FOCUS aggregation verbs SUM, COUNT, and WRITE, and direct operators MIN., MAX., and
AVE., retrieve a final aggregated answer set rather than individual values. Since the RDBMS
handles aggregation efficiently, the adapter structures its retrieval request so that the RDBMS
performs the aggregation. The adapter passes aggregation to the RDBMS when:

The IF or WHERE tests in the FOCUS request translate to SQL WHERE clauses. (Use
STMTRACE, described in Tracing Adapter Processing on page 487, to examine the SQL
generated from your request.)

FOCUS generates a single SQL statement (as described in Optimizing Joins on page 178).

Adapter-managed join optimization is not in effect (see Optimizing Joins on page 178).

The request specifies only the FOCUS SUM, COUNT, or WRITE aggregate verbs and the
MIN., MAX., AVE., SUM., DST., and CNT. direct operators. Under certain conditions
(described in Optimizing Sorts on page 182), the request can include the FOCUS FST. and
LST. direct operators.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 183

The request does not reference DEFINE fields that do not comply with the definition of
valued expressions (see Valued Expressions on page 189) or that are otherwise restricted
(see SQL Limitations on Optimization of DEFINE Expressions on page 190).

Note: FOCUS calculates COMPUTE fields on its internal matrix. They do not affect the ability of
the adapter to pass requests for aggregation to the RDBMS.

The adapter translates IF TOTAL and WHERE TOTAL tests to the SQL HAVING clause. It
translates IF TOTAL and WHERE TOTAL tests on DEFINE and COMPUTE fields subject to the
general limitations on the use of DEFINE in aggregation (see Valued Expressions on page
189).

Optimizing DEFINE Fields

The adapter can translate certain DEFINE expressions to SQL as part of aggregation or record
selection operations only. DEFINE expressions that are not translated for the RDBMS are listed
in SQL Limitations on Optimization of DEFINE Expressions on page 190.

A virtual field defined as a constant is passed directly to the RDBMS for optimized processing
that takes advantage of RDBMS join, sort, and aggregation capabilities. This reduces the
volume of RDBMS-to-server communication, which improves response time.

All character constants from the initial TABLE request are passed to the RDBMS unchanged,
without truncating trailing spaces.

For RDBMS-managed record selection, the DEFINE expression must be an arithmetic valued
expression, a character string valued expression, or a logical expression.

For RDBMS-managed aggregation, the DEFINE expression must be an arithmetic or
character string valued expression.

Controlling Optimization of Calculations

Calculations can be processed differently in different RDBMSs and operating environments. If
you want FOCUS to handle calculations instead of the RDBMS, you can issue the The SQL SET
OPTIMIZATION NOAGGR command. This command disables optimization of calculations
(DEFINE fields) without disabling optimization of join and sort operations.

Optimizing DEFINE Fields

184

Optimizing DEFINE Fields Referenced in FOCUS BY Clauses (DB2, Teradata, Oracle)

The adapter can optimize aggregation requests in which a DEFINE field is the object of a
FOCUS BY clause. The display commands in these requests must be aggregation commands
(SUM, COUNT, or WRITE) or prefix operators such as MIN., MAX., and AVE.

FOCUS and the RDBMS use slightly different sorting/aggregation algorithms. Therefore,
when the adapter passes expressions as objects of SQL GROUP BY or ORDER BY phrases
to the RDBMS, the sequence of report rows within a given sort key value may vary slightly
from the sequence that would be produced by FOCUS. While both report results are equally
correct, if such differences are unacceptable you can set adapter optimization OFF. FOCUS
will then handle all aggregation, sorts and join operations required to produce the report.

BY TOTAL phrases are not optimized.

Example: Passing Aggregation on DEFINE Fields to the RDBMS for Processing

This example shows the SQL passed following aggregation on a DEFINE field that is the object
of a BY clause:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
DEFINE FILE DEDUCT
TAX = 0.085 * DED_AMT
END

TABLE FILE DEDUCT
SUM DED_AMT TAX
BY TAX NOPRINT
END

The following SQL is passed to the DB2 DBMS:

 SELECT
(0.085 * T1."DA"),
 SUM(T1."DA"),
 SUM((0.085 * T1."DA"))
 FROM
"USER1"."DEDUCT" T1
 GROUP BY
(0.085 * T1."DA")
 ORDER BY
(0.085 * T1."DA")
 FOR FETCH ONLY;

The following SQL is passed to the Teradata DBMS:

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 185

SELECT (.085 * T1.DA), SUM(T1.DA)(FLOAT), SUM((.085 *
T1.DA))(FLOAT) FROM USER1.DEDUCT T1 GROUP BY (.085 * T1.DA)
ORDER BY (.085 * T1.DA);

The following SQL is passed to the Oracle DBMS:

SELECT (.085 * T1."DA"), SUM(T1."DA"), SUM((.085 * T1."DA"))
FROM USER1.DEDUCT T1 GROUP BY (.085 * T1."DA") ORDER BY (.085 *
T1."DA");

IF-THEN-ELSE Optimization

The adapter can optimize TABLE requests that include DEFINE fields created using IF-THEN-
ELSE syntax. In certain cases, such DEFINE fields can be passed to the RDBMS as CASE
expressions, enhancing performance and minimizing the size of the answer set returned to
FOCUS.

Syntax: How to Control IF-THEN-ELSE Optimization

When you issue the adapter SET OPTIFTHENELSE command, the adapter attempts to deliver
the construct of a FOCUS IF-THEN-ELSEE DEFINE field to the RDBMS as a CASE expression.
The DEFINE field must be an object of a selection test or an aggregation request. The DEFINE
definition may be specified in the TABLE request or in the Master File.

ENGINE sqlengine SET OPTIFTHENELSE {ON|OFF}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

ON

Generates a CASE statement for IF-THEN-ELSE expressions and DECODE expressions
whenever possible. ON is the default value. CASE and ON CASE are synonyms for ON.

OFF

Disables IF-THEN-ELSE optimization. NOCASE and OFF NOCASE are synonyms for OFF.

There is no guarantee that the SQL that is generated will improve performance for all requests.
If you find that this feature does not improve performance, set OPTIFTHENELSE OFF to disable
the feature.

Optimizing DEFINE Fields

186

IF-THEN-ELSE optimization applies to SELECT statements created as a result of FOCUS TABLE
requests and is subject to the limitations described in SQL Limitations on Optimization of
DEFINE Expressions on page 190.

Example: Using IF-THEN-ELSE Optimization Without Aggregation

Consider the following request that has a WHERE condition on an IF-THEN-ELSE DEFINE field
named DEF1:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
ENGINE DB2 SET OPTIFTHENELSE ON
DEFINE FILE EMPINFO
DEF1 = IF (LAST_NAME EQ ' ') AND (FIRST_NAME EQ ' ')
 AND (DEPARTMENT EQ 'MIS') THEN 1 ELSE 0;
END

TABLE FILE EMPINFO
PRINT DEPARTMENT LAST_NAME FIRST_NAME
WHERE DEF1 EQ 1
END

The adapter generates an SQL request that incorporates the IF-THEN-ELSE condition
corresponding to the IF-THEN-ELSE DEFINE field and the WHERE DEF1 EQ 1 test as a CASE
statement:

SELECT
T1."LN",
T1."FN",
T1."DPT"
 FROM
USER1."EMPINFO" T1
 WHERE
((CASE WHEN (((T1."LN" = ' ') AND (T1."FN" = ' ')) AND
(T1."DPT" = 'MIS')) THEN 1 ELSE 0 END) = 1)
 FOR FETCH ONLY;

Example: Using IF-THEN-ELSE Optimization With Aggregation

The following request displays the maximum salary when an IF-THEN-ELSE DEFINE field named
DEF2 equals 1:

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 187

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
ENGINE DB2 SET OPTIFTHENELSE ON
DEFINE FILE EMPINFO
DEF2 = IF LAST_NAME EQ 'SMITH' THEN 1 ELSE IF LAST_NAME EQ 'JONES' THEN 2
 ELSE IF LAST_NAME EQ 'CARTER' THEN 3 ELSE 0;
END
TABLE FILE EMPINFO
SUM MAX.CURRENT_SALARY IF DEF2 EQ 1
END

The adapter generates an SQL request that incorporates the aggregation, the IF-THEN-ELSE
DEFINE field, and the condition corresponding to the WHERE DEF2 EQ 2 test as a CASE
statement:

AGGREGATION DONE ...
 SELECT
 MAX(T1."CSAL")
 FROM
USER1."EMPINFO" T1
 WHERE
((CASE (T1."LN") WHEN 'SMITH' THEN 1 WHEN 'JONES' THEN 2 WHEN
'CARTER' THEN 3 ELSE 0 END) = 1)
 FOR FETCH ONLY;

Example: Using IF-THEN-ELSE Optimization With a Condition That Is Always False

The following request has a condition that is always false because the IF-THEN-ELSE DEFINE
field named DEF3 is defined to be either 1 or 0, never 2:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
ENGINE DB2 SET OPTIFTHENELSE ON
DEFINE FILE EMPINFO
DEF3 = IF FIRST_NAME EQ 'RITA' THEN 1 ELSE 0;
END
TABLE FILE EMPINFO
PRINT FIRST_NAME
IF DEF3 EQ 2
END

Because DEF3 EQ 2 will never be true, the adapter passes the CASE statement ((CASE
(T1."FN") WHEN 'RITA' THEN 1 ELSE 0 END) = 2), which is always false to the RDBMS,
returning zero records from the RDBMS:

Optimizing DEFINE Fields

188

 SELECT
T1."FN"
 FROM
USER1."EMPINFO" T1
 WHERE
((CASE (T1."FN") WHEN 'RITA' THEN 1 ELSE 0 END) = 2)
 FOR FETCH ONLY;

Valued Expressions

There are two types of valued expressions, arithmetic and character string.

Reference: Arithmetic Expressions

Arithmetic expressions return a single number. DEFINE fields are classified as arithmetic if the
expression on the right includes one or more of the following elements:

Real-field operands of numeric data type (I, P, D, F).

Numeric constants.

Arithmetic operators (**, *, /, + , -).

The subtraction of one DATE field from another.

DEFINE-field operands satisfying any of the preceding items.

For example, the arithmetic expression in the following DEFINE uses a numeric real-field
operand (CURR_SAL), a previously-specified DEFINE field (OTIME_SAL), and two numeric
constants (1.1 and 100):

NEW_SAL/D12.2= ((CURR_SAL + OTIME_SAL) * 1.1) - 100;

Reference: Character String Expressions

Character string expressions return a character string. DEFINE fields are classified as
character strings if the expression on the right includes one or more of the following elements:

Real-field operands of alphanumeric (A) data type.

String constants.

String concatenation operators ('|').

DEFINE-field operands satisfying any of the preceding items.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 189

For example, the character string expression in the following DEFINE uses two alphanumeric
field operands (LAST_NAME and FIRST_NAME), a string constant (','), and string concatenation
operators (|):

FORMAL_NAME/A36= LAST_NAME | ',' | FIRST_NAME;

Reference: Logical Expressions

Logical expressions return one of two values: True (1) or False (0). DEFINE fields are classified
as logical if the expression on the right includes any of the following elements:

Real-field operands of any FOCUS-supported data type (including DATE fields).

Constants of a data type consistent with fields in the predicate.

Relational operators (EQ, NE, GT, LT, GE, LE).

Logical operators (AND, OR, NOT).

Arithmetic or character string expression operands (described in Valued Expressions on
page 189).

DEFINE-field operands satisfying any combination of the preceding items.

For example, the logical expression in the following DEFINE is composed of two expressions
connected by the logical operator OR. Each part is itself a logical expression:

SALES_FLAG/I1= (DIV_CODE EQ 'SALES') OR (COMMISSION GT 0);

In the next example, the DEFINE field, QUOTA_CLUB, is the value of a logical expression
composed of two other expressions connected by the logical operator AND. Note that the first
expression is the previously-specified DEFINE field, SALES_FLAG:

QUOTA_CLUB/I1= (SALES_FLAG) AND (UNITS_SOLD GT 100);

SQL Limitations on Optimization of DEFINE Expressions

Since the FOCUS reporting language is more extensive than native SQL, the adapter cannot
pass certain DEFINE expressions to the RDBMS for processing. The adapter does not offload
DEFINE-based aggregation and record selection if the DEFINE includes:

FOCUS function calls.

Self-referential expressions such as:

X=X+1;

Optimizing DEFINE Fields

190

EDIT functions for numeric-to-alpha or alpha-to-numeric field conversions.

DECODE functions for field value conversions.

Relational operators INCLUDES and EXCLUDES.

Some expressions involving fields with ACTUAL=DATE. The subtraction of one DATE field
from another and all logical expressions on DATE fields can be optimized.

Some types of date-time manipulation handled by the FOCUS date-time functions is not
converted to SQL.

Financial Modeling Language (FML) cell calculations.

Note: FML report requests are extended TABLE requests. The Financial Modeling Language
provides special functions for detailed reporting. Consult your FOCUS documentation for
more information.

In addition, IF-THEN-ELSE optimization does not support the following features:

Any type of DECODE expression.

STATIC SQL.

IF/WHERE DDNAME.

Partial date selection.

DEFINE FUNCTION Optimization

The DEFINE FUNCTION syntax can be sent directly to an SQL engine as long as all expressions
used in the function can be optimized.

Note that in order for DEFINE FUNCTION syntax to be optimized, the types and lengths of the
arguments used to call the DEFINE FUNCTION must exactly match the types and lengths of the
DEFINE FUNCTION parameters.

For example, the DB2 data source EMPINFO has columns LAST_NAME (alias LN) and
FIRST_NAME (alias FN). The following DEFINE FUNCTION takes two arguments, N1 and N2, and
sets a flag, which it returns as EMPNAME. EMPNAME has the value 1 if N1 is Smith and N2 is
Richard:

DEFINE FUNCTION EMPNAME (N1/A15, N2/A10)
DEF1/I1 = IF N1 EQ 'SMITH' THEN 1 ELSE IF N1 EQ 'JONES' THEN 2
 ELSE IF N1 EQ 'CARTER' THEN 3 ELSE 0;
DEF2/I1 = IF N2 EQ 'RICHARD' THEN 1 ELSE IF N2 EQ 'BARBARA' THEN 2
 ELSE 0;
EMPNAME/I1 = IF DEF1 EQ 1 AND DEF2 EQ 1 THEN 1 ELSE 0;
END

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 191

The following request uses the result of the DEFINE FUNCTION in an aggregation command.
Note that the format of LAST_NAME exactly matches the format defined for N1, and the format
of FIRST_NAME exactly matches the format defined for N2:

SET TRACEUSER = ON
SET TRACESTAMP = OFF
SET TRACEON = STMTRACE//CLIENT
ENGINE DB2 SET OPTIFTHENELSE ON
DEFINE FILE EMPINFO
DEF3/I1 = EMPNAME(LAST_NAME, FIRST_NAME);
END
TABLE FILE EMPINFO
SUM MAX.LAST_NAME IF DEF3 EQ 1
END

The trace output shows that the IF-THEN-ELSE expressions from the DEFINE FUNCTION are
translated to an SQL expression in the WHERE predicate of the SELECT statement passed to
the RDBMS:

 SELECT
 MAX(T1."LN")
 FROM
USER1."EMPINFO" T1
 WHERE
((CASE WHEN (((CASE (T1."LN") WHEN 'SMITH' THEN 1 WHEN 'JONES'
THEN 2 WHEN 'CARTER' THEN 3 ELSE 0 END) = 1) AND ((CASE
(T1."FN") WHEN 'RICHARD' THEN 1 WHEN 'BARBARA' THEN 2 ELSE 0
END) = 1)) THEN 1 ELSE 0 END) = 1)
 FOR FETCH ONLY;

Optimizing Function Calls

The relational adapters can convert calls to certain FOCUS functions to calls to SQL functions.

The following FOCUS functions can be optimized:

EDIT (for extracting characters from a column)

EDIT(integer|real|pack)

SUBSTR

SUBSTV

LOCASE

UPCASE

LOCASV

UPCASV

Optimizing Function Calls

192

TRIMV

DECODE(char)

DATEDIF

DATEADD

DPART(YEAR|MONTH|DAY|QUARTER)

HDIFF(DAY|HOUR|MINUTE) (dates only)

HADD(YEAR|MONTH|DAY|HOUR|MINUTE|SECOND)

HPART(YEAR|MONTH|DAY|QUARTER) SET INT OPT

Calls to the following FOCUS functions cannot be optimized:

ABS

INT

MAX

MIN

LOG

SQRT.

Note: Do not confuse the FOCUS user-written subroutines MAX and MIN with the MAX. and
MIN. prefix operators. DEFINE fields cannot include prefix operators.

Optimization of the HPART, DPART, HDIFF, HDATE, and DATEDIF Functions

The relational adapters can translate certain calls to the HPART, DPART, HDIFF, HDATE, and
DATEDIF functions to SQL date and time functions, allowing the optimization of some TABLE
requests with DEFINE fields or WHERE phrases that call these functions.

Optimization of the DATEDIF and HDIFF Functions

The DATEDIF function returns the difference between two dates in units, and the HDIFF
function returns the difference between two date-time values in units. Calls to these functions
can be translated to SQL when the unit is the number of days between two values.

Syntax: How to Calculate the Number of Days Between Date or Date-Time Values

The syntax for the DATEDIF function with the day unit is

DATEDIF(from_date, to_date, 'D')

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 193

The syntax for the HDIFF function with the day unit is

HDIFF(to_date_time, from_date_time, 'DAY', outfield)

where:

from_date

Is the starting date or date-time value from which to calculate the difference.

to_date

Is the ending date or date-time value from which to calculate the difference.

outfield

Numeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Reference: Conversion of the DATEDIF and HDIFF Functions to SQL

For Oracle, calls to DATEDIF and HDIFF translate calls to the native DATE-TIME functions with
Datepart Parameter DAY, Startdate, and Enddate.

For DB2, calls to DATEDIF and HDIFF translate as calls to the DAYS function:

SELECT DAYS(d2) - DAYS(d1) FROM tablename

For Teradata, calls to DATEDIF and HDIFF translate as a simple difference between two date
values for the DATE datatype and as calls to the CAST function for the TIMESTAMP datatype.

Example: Optimizing the Difference Between DB2 Date or Timestamp Columns

The following Master File represents a DB2 table named DATETIME with two DATE fields
named DATE1 and DATE2 and two TIMESTAMP fields named TIMEST1 and TIMEST2:

FILENAME=DATETIME, SUFFIX=DB2 , $
 SEGMENT=DATETIME, SEGTYPE=S0, $
 FIELDNAME=DATE1, ALIAS=DATE1, USAGE=YYMD, ACTUAL=DATE,
 MISSING=ON, $
 FIELDNAME=DATE2, ALIAS=DATE2, USAGE=YYMD, ACTUAL=DATE,
 MISSING=ON, $
 FIELDNAME=TIMEST1, ALIAS=TIMEST1, USAGE=HYYMDm, ACTUAL=HYYMDm,
 MISSING=ON, $
 FIELDNAME=TIMEST2, ALIAS=TIMEST2, USAGE=HYYMDm, ACTUAL=HYYMDm,
 MISSING=ON, $

The following request calculates the number of days difference between DATE1 and DATE2
using the DATEDIF function and the number of days difference between TIMEST1 and TIMEST2
using the HDIFF function:

Optimizing Function Calls

194

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT DATE1 DATE2 TIMEST1 TIMEST2
WHERE DATEDIF(DATE2, DATE1, 'D') LT 5 AND
HDIFF(TIMEST1, TIMEST1, 'DAY', 'I11') EQ 1
END

The SQL generated for this request replaces the calls to DATEDIF and HDIFF with calls to the
SQL DAYS function in the SQL WHERE predicate:

SELECT T1."DATE1", T1."DATE2", T1."TIMEST1", T1."TIMEST2"
 FROM USER1."DATETIME" T1
 WHERE ((DAYS(T1."TIMEST1") - DAYS(T1."TIMEST1")) = 1) AND
 ((DAYS(T1."DATE1") - DAYS(T1."DATE2")) < 5)
 FOR FETCH ONLY;

Example: Optimizing the Difference Between Oracle Date or Timestamp Columns

The following Master File represents an Oracle table named DATETIME with two DATE fields
named DATE1 and DATE2 and two TIMESTAMP fields named TIMEST1 and TIMEST2:

FILENAME=DATETIME, SUFFIX=SQLORA , $
 SEGMENT=DATETIME, SEGTYPE=S0, $
 FIELDNAME=DATE1, ALIAS=DATE1, USAGE=YYMD, ACTUAL=DATE,
 MISSING=ON, $
 FIELDNAME=DATE2, ALIAS=DATE2, USAGE=YYMD, ACTUAL=DATE,
 MISSING=ON, $
 FIELDNAME=TIMEST1, ALIAS=TIMEST1, USAGE=HYYMDm, ACTUAL=HYYMDm,
 MISSING=ON, $
 FIELDNAME=TIMEST2, ALIAS=TIMEST2, USAGE=HYYMDm, ACTUAL=HYYMDm,
 MISSING=ON, $

The following request calculates the number of days difference between DATE1 and DATE2
using the DATEDIF function and the number of days difference between TIMEST1 and TIMEST2
using the HDIFF function:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT DATE1 DATE2 TIMEST1 TIMEST2
WHERE DATEDIF(DATE2, DATE1, 'D') LT 5 AND
HDIFF(TIMEST1, TIMEST1, 'DAY', 'I11') EQ 1
END

The SQL generated for this request replaces the calls to DATEDIF and HDIFF with calls to the
SQL EXTRACT and TRUNC functions in the SQL WHERE predicate:

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 195

SELECT T1."DATE1", T1."DATE2", T1."TIMEST1", T1."TIMEST2"
 FROM OWNER1.DATETIME T1
 WHERE (EXTRACT(DAY FROM (TRUNC(T1."TIMEST1") - TRUNC(T1."TIMEST1"))
 DAY(9) TO SECOND) = 1)
 AND (EXTRACT(DAY FROM (TRUNC(T1."DATE1") - TRUNC(T1."DATE2"))
 DAY(9) TO SECOND) < 5);

Optimization of the HPART and DPART Functions

The HPART function extracts a specified component from a date-time value and returns it in
numeric format. The DPART function extracts a specified component from a date value and
returns it in numeric format. Calls to HPART and DPART are optimized when the second
parameter is a case insensitive YEAR, MONTH, QUARTER, DAY-OF-MONTH, or DAY. Calls to
HPART are also optimized when the second argument is a case-insensitive HOUR, MINUTE,
SECOND, or MICROSECOND.

Syntax: How to Extract a Component From a Date-Time Value

HPART(dtvalue, 'component', outfield)

where:

dtvalue

Date-time

Is a date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks.

outfield

Integer

Is the field that contains the result, or the integer format of the output value enclosed in
single quotation marks.

Optimizing Function Calls

196

Syntax: How to Extract a Date Component and Return a Date Component in Integer Format

DPART(datevalue, 'component', outfield)

where:

datevalue

Date

Is a full component date.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. Valid
values are:

For year: YEAR, YY

For month: MONTH, MM

For day: DAY, For day of month: DAY-OF-MONTH.

For quarter: QUARTER, QQ

outfield

Integer

Is the field that contains the result, or the integer format of the output value enclosed in
single quotation marks.

Reference: Conversion of the HPART Function to SQL

For DB2, calls to HPART translate as calls to the YEAR, MONTH, or DAY function.

For Oracle and Teradata (Both DATE and TIMESTAMP data types), calls to HPART and DPART
translate as calls to the EXTRACT function.

Example: Extracting a Component From a DB2 Timestamp Column

The following request uses the HPART function to retrieve the year component from the DB2
TIMEST1 column:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT TIMEST1
WHERE HPART(TIMEST1, 'YEAR', 'I4') EQ 2008
END

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 197

The generated SQL replaces the call to the HPART function with a call to the SQL YEAR
function in the SQL WHERE predicate:

SELECT T1."TIMEST1" FROM USER1."DATETIME" T1
 WHERE (YEAR(T1."TIMEST1") = 2008)
 FOR FETCH ONLY;

Example: Extracting a Component From an Oracle Timestamp Column

The following request uses the HPART function to retrieve the year component from the Oracle
TIMEST1 column:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT TIMEST1
WHERE HPART(TIMEST1, 'YEAR', 'I4') EQ 2008
END

The generated SQL replaces the call to the HPART function with a call to the SQL EXTRACT
function in the SQL WHERE predicate:

SELECT T1."TIMEST1" FROM OWNER1.DATETIME T1
 WHERE (EXTRACT(YEAR FROM T1."TIMEST1") = 2008);

Optimization of the HDATE Function

The HDATE function converts the date portion of a date-time value to the date format YYMD.

Syntax: How to Extract the Date Portion of a Date-Time Value

HDATE(dtvalue, {'YYMD'|outfield})

where:

dtvalue

Date-time

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

YYMD

Date

Is the output format. The value must be YYMD.

outfield

YYMD

Optimizing Function Calls

198

Is the field that contains the result.

Reference: Conversion of the HDATE Function to SQL

For DB2 and Teradata, calls to HDATE translate as calls to the CAST function.

For Oracle, calls to HDATE translate as calls to the TRUNC function.

Example: Extracting the Date Portion of a DB2 Timestamp Column

The following request uses the HDATE function to extract the date portion of the TIMEST1
column:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT DATE1 TIMEST1
WHERE HDATE(TIMEST1, 'YYMD') GT DATE1
END

In the generated SQL, the call to HDATE is replaced by a call to the SQL CAST function in the
SQL WHERE predicate:

SELECT T1."DATE1", T1."TIMEST1" FROM USER1."DATETIME" T1
 WHERE (CAST(T1."TIMEST1" AS DATE) > T1."DATE1")
 FOR FETCH ONLY;

Example: Extracting the Date Portion of an Oracle Timestamp Column

The following request uses the HDATE function to extract the date portion of the TIMEST1
column:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
TABLE FILE DATETIME
PRINT DATE1 TIMEST1
WHERE HDATE(TIMEST1, 'YYMD') GT DATE1
END

In the generated SQL, the call to HDATE is replaced by a call to the SQL TRUNC function in the
SQL WHERE predicate:

SELECT T1."DATE1", T1."TIMEST1" FROM OWNER1.DATETIME T1
 WHERE (TRUNC(T1."TIMEST1") > T1."DATE1");

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 199

Passing the SUBSTR Character Function to SQL

The SUBSTR character function can be passed to SQL for optimized processing that takes
advantage of RDBMS substring functions, thus improving performance and response time.

Passing Function Calls Directly to a Relational Engine Using SQL.Function Syntax

The SQL adapters can pass virtual fields that call certain SQL scalar functions to the relational
engine for processing. This enables you to use SQL functions in a request even when they
have no equivalent in the WebFOCUS language. The function must be row-based and have a
parameter list that consists of a comma-delimited list of column names or constants. In order
to reference the function in an expression, prefix the function name with SQL.

If the virtual field is in the Master File, both TABLE requests and those SQL requests that
qualify for Automatic Passthru (APT) can access the field. If the virtual field is created by a
DEFINE FILE command, TABLE requests can access the field. The function name and
parameters are passed without translation to the relational engine. Therefore, the expression
that creates the DEFINE field must be optimized, or the request will fail.

Reference: Usage Notes for Direct SQL Function Calls

The expression containing the SQL.function call must be optimized or the request will fail
with the following message:

(FOC32605) NON OPTIMIZABLE EXPRESSION WITH SQL. SYNTAX

The function must be a row-based scalar function and have a parameter list that consists
of a comma-delimited list of column names or constants. If the function uses anything
other than a list of comma separated values, the SQL. syntax cannot be used to pass it.

Constant DEFINE fields must be assigned a segment location using the WITH phrase.

Expressions should be declared as DEFINE fields, which are supported as parameters to an
SQL function.

Data types are not supported as parameters to an SQL function. Examples of data type
arguments are CHAR and INT for the CONVERT function and ISO, EUR, JIS, and USA for the
CHAR function.

Example: Calling the SQL CONCAT Function in a Request

This example uses the WebFOCUS Retail demo sample. You can create this sample data
source for a relational adapter by right-clicking the application in which you want to place this
sample, and selecting New and then Samples from the context menu. Then, select WebFOCUS
- Retail Demo from the Sample procedures and data for drop-down list and click Create.

Optimizing Function Calls

200

The following request against the WebFOCUS Retail demo data source uses the SQL CONCAT
function to concatenate the product category with the product subcategory.

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT
SET TRACESTAMP=OFF
SET XRETRIEVAL = OFF

DEFINE FILE WF_RETAIL
CAT_SUBCAT/A50 = SQL.CONCAT(PRODUCT_CATEGORY, PRODUCT_SUBCATEG);
END

TABLE FILE WF_RETAIL
PRINT CAT_SUBCAT
BY PRODUCT_CATEGORY NOPRINT
END

The trace output shows that the SQL function call was passed to the RDBMS.

SELECT
CONCAT(T2."PRODUCT_CATEGORY",T2."PRODUCT_SUBCATEG"),
T2."PRODUCT_CATEGORY",
T2."PRODUCT_SUBCATEG"
FROM
wfr_product T2
ORDER BY
T2."PRODUCT_CATEGORY"
FOR FETCH ONLY;

Example: Calling the SQL COALESCE Function in a Request

The following example creates the table GGDB2 which has columns Biscotti, Capuccino,
Croissant, Espresso, and Latte, some of which are null. It then issues a TABLE request that
calls the SQL function COALESCE. COALESCE returns the first column in the parameter list that
does not contain a null value, if one exists.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 201

The Master File for GGDB2 is:

FILENAME=GGDB2 , SUFFIX=DB2 , IOTYPE=STREAM, $
 SEGMENT=GGDB2, SEGTYPE=S0, $
 FIELDNAME=CATEGORY, ALIAS=CAT, USAGE=A11, ACTUAL=A11,
 MISSING=ON, $
 FIELDNAME=Biscotti, ALIAS=BIS, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Capuccino, ALIAS=CAP, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Croissant, ALIAS=CROI, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Espresso, ALIAS=ESP, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Latte, ALIAS=LAT, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Mug, ALIAS=MUG, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Scone, ALIAS=SCO, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $
 FIELDNAME=Thermos, ALIAS=THER, USAGE=I08, ACTUAL=A08,
 MISSING=ON, $

The following procedure creates the table GGORA based on the FOCUS data source GGSALES
(with MISSING=ON attributes added to the DOLLARS field in the Master File):

SET HOLDMISS = ON
SET HOLDLIST=PRINTONLY
SET ASNAMES = ON
TABLE FILE GGSALES
SUM DOLLARS AS ''
BY CATEGORY
ACROSS PRODUCT
WHERE PRODUCT NE 'Coffee Grinder' OR 'Coffee Pot'
ON TABLE HOLD AS GGFLAT FORMAT ALPHA
END

CREATE FILE GGDB2
MODIFY FILE GGDB2
FIXFORM FROM GGFLAT
DATA ON GGFLAT
END

Optimizing Function Calls

202

The following TABLE request calls the SQL function COALESCE:

SET TRACEUSER = ON
SET TRACESTAMP = OFF
SET TRACEON = STMTRACE//CLIENT

DEFINE FILE GGDB2
VALUE/I8 MISSING ON = SQL.COALESCE(Biscotti, Capuccino, Croissant,
Espresso, Latte);
END
TABLE FILE GGDB2
PRINT Biscotti Capuccino Croissant Espresso Latte VALUE
BY CATEGORY
ON TABLE SET PAGE NOPAGE
END

The trace output shows that the SQL function call was passed to the RDBMS:

 SELECT
COALESCE(T1."BIS", T1."CAP", T1."CROI", T1."ESP", T1."LAT")
T1."CAT",
T1."BIS",
T1."CAP",
T1."CROI",
T1."ESP",
T1."LAT"
 FROM
USER1."GGDB2" T1
 ORDER BY
T1."CAT"
 FOR FETCH ONLY;

The output is:

CATEGORY Biscotti Capuccino Croissant Espresso Latte VALUE
-------- -------- --------- --------- -------- ----- -----
Coffee . 2401556 . 3906243 11000388 2401556
Food 5387773 . 7758857 . . 5387773
Gifts

The FOCUS EXPLAIN Utility (DB2 and Teradata)

The FOCUS for SQL EXPLAIN utility is an interactive development tool that helps you fine-tune
FOCUS query performance. It invokes the RDBMS EXPLAIN function to analyze the efficiency of
data retrieval paths for TABLE requests. You cannot use the EXPLAIN utility with MODIFY,
MAINTAIN, or MATCH FILE requests. The analysis result is displayed in the FOCUS Hot Screen
facility. You can save or print it for further examination.

This section provides:

An overview of internal processing in EXPLAIN Processing Overview on page 204.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 203

Instructions for invoking the FOCUS EXPLAIN utility and descriptions of its prompting
windows in Using the EXPLAIN Utility on page 204.

A sample report request and its EXPLAIN result in Sample EXPLAIN Report for DB2 on page
208 or Sample EXPLAIN Report for Teradata on page 210.

EXPLAIN Processing Overview

Given a TABLE request, the EXPLAIN utility invokes the adapter and generates SQL statements
using its normal mechanisms, the FOCUS TABLE parser and Dialogue Manager.

However, instead of processing the request, FOCUS directs the RDBMS to invoke its own
native EXPLAIN function and analyze the generated statements. The analysis produces a
detailed evaluation of the access path, the methodology for retrieving the data for that request.

The RDBMS places this access path information into a table. The FOCUS EXPLAIN utility reads
these tables and generates a clear and detailed report containing valuable information about
the performance characteristics of your query, information that anyone familiar with the
RDBMS and its performance characteristics can understand and analyze.

Using the EXPLAIN Utility

Enter FOCUS and execute the EXPLAIN utility with the following syntax

EX expproc

where:

expproc

Can be one of the following:

EXPDB2

Is the FOCEXEC that invokes the DB2 EXPLAIN function.

EXPDBC

Is the FOCEXEC that invokes the Teradata EXPLAIN function.

Press the Enter key.

Note: If the IM parameter was set to zero when the adapter was installed, you do not have
access to the EXPLAIN utility. The adapter will generate error message FOC1638 if you attempt
to use it. See the adapter installation instructions for more information.

The EXPLAIN utility cannot analyze an interactive TABLE request. You must provide the name of
a FOCEXEC on the main window. However, you can access the TED editor from the FOCUS
EXPLAIN utility and create or change the TABLE request at will.

The FOCUS EXPLAIN Utility (DB2 and Teradata)

204

If you do not have the tables required for executing the RDBMS EXPLAIN function, the FOCUS
EXPLAIN utility attempts to create them. In DB2, you need appropriate authorization for
creating tables, otherwise an SQLCODE of -551 results. The report results from the FOCUS
EXPLAIN utility are displayed in Hot Screen. You can save or print them for later examination.

Note: DB2 v10 and above require the plan table to be created in Unicode with a Unicode
database.

The main window presents three choices:

To make a selection, move your cursor under one of the numbers and press the Enter key. To
exit the utility and return to the FOCUS command line, press the PF3 key. The choices are:

1. Explain a FOCEXEC Invokes the RDBMS EXPLAIN command for the TABLE
request in your FOCEXEC.

2. Edit a FOCEXEC Invokes the TED editor from within the FOCUS EXPLAIN
utility. You can create a new FOCEXEC or edit an existing
one.

3. Leave this utility Returns you to FOCUS, deleting any entries made in the
RDBMS EXPLAIN tables.

At any point, you can use the PF3 key to return to a previous window.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 205

If you select Choice 1 or 2, you are asked for the name of your FOCEXEC:

If you are creating a new FOCEXEC, the same FOCEXEC naming conventions apply here as for
the FOCUS EXECUTE (EX) command. Specify the z/OS member name. If you have already used
TED (Choice 2), the name of the most recent FOCEXEC is automatically supplied.

Press the Enter key and continue with either the EXPLAIN option or the TED editor:

The EXPLAIN option.

For DB2, the option to explain a FOCEXEC requires a query number, an internal control
number used by the RDBMS when populating the EXPLAIN tables. You can choose any
number between 1 and 32,767. However, if you choose a number that already exists, the
EXPLAIN utility informs you of its existence and deletes all entries with that number before
processing your request. Therefore, make sure the number you choose does not
correspond to an existing entry that you would like to keep. If there are no existing entries
in the EXPLAIN tables, any number will do.

For Teradata, no query number is needed. If you are prompted for a query number, press
Enter again.

The FOCUS EXPLAIN Utility (DB2 and Teradata)

206

For example, the query number 1888 has been entered on the following screen:

At this point, the message PLEASE WAIT, PROCESSING YOUR REQUEST displays, followed
by your EXPLAIN report.

Your EXPLAIN report is displayed in the Hot Screen facility. All Hot Screen options are
available. When you exit Hot Screen, you return to the first window and can evaluate
another request.

The TED editor. Edit a new or existing FOCEXEC. When you are finished, type FILE (to save
your edits) or QUIT. Do not issue the RUN command from TED within the EXPLAIN utility.
You return to the initial main window and can evaluate your FOCEXEC with Choice 1, the
EXPLAIN option.

Note:

With the EXPLAIN option (Choice 1), if you:

Specify a FOCEXEC that generates FOCUS or SQL errors, the EXPLAIN utility stops
processing and you return to the utility main menu.

Misspell the name of a FOCEXEC or specify one that does not exist, the EXPLAIN utility
stops processing and you return to the FOCUS command prompt.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 207

Do not execute large Dialogue Manager applications through the EXPLAIN utility. The FOCUS
TABLE parser executes the Dialogue Manager statements and may produce unpredictable
results.

Create separate FOCEXECs for evaluating individual report requests. Experiment with
alternate parameters to improve response time and RDBMS performance.

Do not use the STMTRACE component in any FOCEXEC that you evaluate with the EXPLAIN
utility.

Sample EXPLAIN Report for DB2

FOCEXEC RPT1 contains the following TABLE request:

TABLE FILE INVQ5
SUM PRICE BY PARTNO
WHERE DESCRIPTION EQ 'BOLT' OR 'NUT' OR 'SCREW'
WHERE PRICE GT .30
IF TOTAL PRICE GT 1
END

The EXPLAIN output consists of two reports. The first is a one-page report:

PAGE 1
 EXPLAIN REPORT 1 FOR FOCEXEC RPT1 RUN ON 06/01/99
 QUERY NUMBER IS 1000
 THE FOLLOWING SQL STATEMENT(S) WILL BE EXPLAINED
 SELECT T1.PARTNO, SUM(T2.PRICE) FROM "TESTID"."INVENT5" T1,
 "TESTID"."QUOT5" T2 WHERE (T2.PARTNO = T1.PARTNO) AND
 (T1.DESCRIPTION IN('BOLT', 'NUT', 'SCREW')) AND (T2.PRICE > .3)
 GROUP BY T1.PARTNO HAVING (SUM(T2.PRICE) > 1.) ORDER BY
 T1.PARTNO FOR FETCH ONLY;

MORE

The FOCUS EXPLAIN Utility (DB2 and Teradata)

208

The second is a four-page report:

 PAGE 1
 EXPLAIN REPORT 2 FOR FOCEXEC RPT1 RUN ON 06/01/99
 QUERY NUMBER IS 1000
 1ST ACCESS OF DATA
 TABLE NAME: TESTID.INVENT5
 TABLE NUMBER: 1
 JOIN METHOD: FIRST TABLE ACCESSED
 MULTIPLE INDEX OPERATION SEQUENCE .: 0
 INDEX ACCESS TYPE: DIRECT INDEX ACCESS
 # OF INDEX KEYS USED: 0
 INDEX NAME: TESTID.INVENT5IX
 INDEX ONLY ACCESS?: NO
 SORT OF BASE TABLE REQUIRED FOR ...: NOTHING
 SORT OF RESULT TABLE REQUIRED FOR .: NOTHING
 LOCKING MODE: INTENT SHARE
 TYPE OF PREFETCH: UNKNOWN/NO PREFETCH
 COLUMN FUNCTION EVALUATED AT: N/A OR DETERMINED AT EXECUTION

MORE

PAGE 2
 EXPLAIN REPORT 2 FOR FOCEXEC RPT1 RUN ON 06/01/99
 QUERY NUMBER IS 1000
 PARALLEL ACCESS DEGREE: .
 PARALLEL ACCESS GROUP: .
 PARALLEL JOIN DEGREE: .
 PARALLEL JOIN GROUP: .

MORE

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 209

 PAGE 3
 EXPLAIN REPORT 2 FOR FOCEXEC RPT1 RUN ON 06/01/99
 QUERY NUMBER IS 1000
 2ND ACCESS OF DATA
 TABLE NAME: TESTID.QUOT5
 TABLE NUMBER: 2
 JOIN METHOD: NESTED LOOP JOIN
 MULTIPLE INDEX OPERATION SEQUENCE .: 0
 INDEX ACCESS TYPE: DIRECT INDEX ACCESS
 # OF INDEX KEYS USED: 0
 INDEX NAME: TESTID.QUOT5IX
 INDEX ONLY ACCESS?: NO
 SORT OF BASE TABLE REQUIRED FOR ...: NOTHING
 SORT OF RESULT TABLE REQUIRED FOR .: NOTHING
 LOCKING MODE: INTENT SHARE
 TYPE OF PREFETCH: UNKNOWN/NO PREFETCH
 COLUMN FUNCTION EVALUATED AT: N/A OR DETERMINED AT EXECUTION

MORE

PAGE 4
 EXPLAIN REPORT 2 FOR FOCEXEC RPT1 RUN ON 06/01/99
 QUERY NUMBER IS 1000
 PARALLEL ACCESS DEGREE: .
 PARALLEL ACCESS GROUP: .
 PARALLEL JOIN DEGREE: .
 PARALLEL JOIN GROUP: .
 IF YOUR REQUEST SPONSORED A SEQUENTIAL SCAN OF THE DATA, OR
 ONE OR MORE ADDITIONAL SORTS, ESPECIALLY ON THE COMPOSITE
 RESULT TABLES, YOU MAY WISH TO REPHRASE THIS REPORT
 END OF REPORT

For information about the EXPLAIN report, consult the DB2 Administration Guide.

Sample EXPLAIN Report for Teradata

Suppose you want to analyze the following request, stored as SAMP1 FOCEXEC:

JOIN EMP_ID IN EMPINFO TO ALL WHO IN FUNDTRAN
TABLE FILE EMPINFO
WRITE AVE.CURRENT_SALARY ED_HRS BY WHO BY LAST_NAME
IF DEPARTMENT_CD IS MIS
END

The FOCUS EXPLAIN Utility (DB2 and Teradata)

210

The EXPLAIN utility produces a two-page report:

PAGE 1

 EXPLAIN REPORT FOR SAMP1 RUN ON 10/10/99

 -_
 SQL STATEMENT AS FOLLOWS:
 SELECT T2.EID(CHAR(9), UPPERCASE),T1.LNAME(CHAR(15),
 UPPERCASE), AVG(T1.CURRENT_SALARY)(DECIMAL(15, 2)),
 SUM(T1.OJT)(FLOAT) FROM EMPINFO T1,FUNDTRAN T2 WHERE (T2.EID =
 T1.EID) AND (T1.DEPARTMENT_CD = ¢MIS¢) GROUP BY T2.EID,T1.LNAME
 ORDER BY T2.EID,T1.LNAME

 1) First, we lock JANE.T2 for read, and we lock JANE.T1 for read.
 2) Next, we do an all-AMPs JOIN step from JANE.T2 by way of an
 all-rows scan with no residual conditions, which is joined to
 JANE.T2 and JANE.T1 are joined using a merge join, with a join
 condition of ("JANE.T2.EID = JANE.T1.EID"). The result goes into
 Spool 2, which is built locally on the AMPs. The size

PAGE 2

 EXPLAIN REPORT FOR SAMP1 RUN ON 10/10/99
 _
 of Spool 2 is estimated to be 4 rows. The estimated time for this
 step is 0.10 seconds.
 3) We do a SUM step to aggregate from Spool 2 (Last Use) by way of an
 all-rows scan. Aggregate Intermediate Results are computed
 globally, then placed in Spool 3.
 4) We do an all_AMPs RETRIEVE step from Spool 3 (Last Use) by way of
 an all-rows scan into Spool 1, which is built locally on the AMPs.
 Then we do a SORT to order Spool 1 by the sort key in spool field1.
 The size of Spool 1 is estimated to be 2 rows. The estimated time
 for this step is 0.07 seconds.
 5) Finally, we send out an END TRANSACTION step to all AMPs involved
 in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of
 statement 1.

7. The Adapter Optimizer

Relational Data Adapter User’s Manual 211

The FOCUS EXPLAIN Utility (DB2 and Teradata)

212

Chapter8
Advanced Reporting Techniques

Using a relational adapter, you can create graphs with GRAPH requests, design
interactive procedures with Dialogue Manager, or extract data from reports with the HOLD
command. However, of all the facilities the adapter makes available to you for reading,
retrieving, and organizing data from RDBMS tables, the most widely used is the Report
Writer, invoked by the TABLE, TABLEF, and MATCH commands. Some reporting features
for the adapter vary from standard FOCUS. These minor variations are discussed in this
chapter. This chapter includes:

Improving retrieval performance with the TABLEF command.

Creating RDBMS tables from a TABLE request.

Joined structures for reporting purposes. How multi-table Master Files compare with
dynamically-joined structures, the JOIN command for unique and non-unique
relationships, and the multi-field JOIN command.

The SET ALL command and multi-table structures. How short retrieval paths affect
report results.

The join utilities CHECK FILE, ? JOIN, and JOIN CLEAR.

Specifying search limits with the READLIMIT and RECORDLIMIT.

For multi-table structures only, multiple retrieval paths and how sort phrases and
screening conditions affect retrieval.

If you are not familiar with FOCUS syntax, you can create report requests with TableTalk,
a menu-driven report generator.

In this chapter:

FOCUS and SQL Similarities

The TABLEF Command

Creating Tables Using the HOLD Command

Using the Dynamic JOIN Command

Controlling Outer Join Optimization

Missing Rows of Data in Cross-referenced Tables

Relational Data Adapter User’s Manual 213

JOIN Utilities

Implementing Search Limits

Array Blocking for SELECT Requests

Multiple Retrieval Paths

FOCUS and SQL Similarities

Some FOCUS and SQL query functions are similar:

SQL SELECT is equivalent to the FOCUS command PRINT. Both display individual values for
a given column or field.

SQL aggregate functions SUM, COUNT *, MAX, MIN, and AVG are comparable to FOCUS
SUM., CNT., MAX., MIN., and AVE. field prefix operators.

The SQL WHERE predicate is similar to FOCUS IF or WHERE screening tests.

The SQL ORDER BY sort phrase is equivalent to the FOCUS BY sort phrase.

SQL set operations such as UNION, intersection, and difference are available as FOCUS
MATCH FILE options. The FOCUS MATCH FILE command generates a subset of data from
tables or views. The subset is stored in a HOLD file and is available as a source for further
report processing. Refer to your FOCUS documentation for more information about the
MATCH FILE command.

You can issue an SQL SELECT request from within FOCUS using the Direct SQL Passthru
facility (see Direct SQL Passthru on page 265).

The TABLEF Command

TABLEF FILE is an alternate for the TABLE FILE command when the answer set returned from
the RDBMS is already in the sort order required for the report. TABLEF is faster and more
efficient because FOCUS does not build (and sort) an internal matrix, but works directly on the
data returned by the RDBMS.

To further improve efficiency, create an SQL clustered index on the sort field used in the
TABLEF request. The RDBMS physically stores the data in the same order as the clustered
index, so the request requires fewer I/Os to data pages.

Most reporting syntax is acceptable in TABLEF requests, but be aware of the following:

If BY phrases are passed to the RDBMS as SQL ORDER BY phrases, the answer sets
returned are sorted and FOCUS does not have to sort them again or verify the sort order.

FOCUS and SQL Similarities

214

In some circumstances FOCUS does not pass an ORDER BY phrase to the RDBMS (see The
Adapter Optimizer on page 171), so you must verify that the ORDER BY is passed before
relying on the sorted order of the returned answer set. Use STMTRACE (see Tracing Adapter
Processing on page 487) to examine the SQL statements generated by the adapter.

ACROSS phrases are not supported.

Requests with multiple display commands (multi-verb requests) are not supported.

The RETYPE command is not available.

You can include the ON TABLE HOLD command in the TABLEF request to produce an extract
file.

Note: In a request that generates report output to the terminal, TABLEF holds locks on data
pages until the adapter issues a COMMIT (usually when the report display is terminated).

Locks may prevent access to the data by other applications. If this presents a problem, reports
generated to the terminal using TABLEF should be processed and terminated as quickly as is
feasible. (For a detailed discussion of locks and isolation levels, see Maintaining Tables With
FOCUS on page 349.) This consideration does not apply to regular TABLE requests, because
the adapter normally issues the COMMIT prior to displaying the report. Nor is it a problem for
requests that generate only offline reports or extract (HOLD) files, as the answer set is
exhausted automatically.

Creating Tables Using the HOLD Command

Using TABLE syntax, you can create extract files (tables) in the RDBMS. You can then use
these tables, like any other RDBMS table, for both read-only and read-write operations. In fact,
with the HOLD FORMAT DB2, SQLIDMS, SQLDBC, or SQLORA option, you can create RDBMS
tables from any FOCUS-readable file. This feature facilitates data migration and leaves the
original source unaffected.

In order to create RDBMS tables and indexes, you must have an adequate level of RDBMS
authority. Your site must also have enabled WRITE access and native SQL support when
installing the adapter. Contact your site DBA for more information.

To extract data and convert it to an RDBMS table, issue the HOLD command with the FORMAT
DB2, SQLDBC, SQLIDMS, or SQLORA option either in the report request or after the report has
printed. The adapter generates a single-table Master and Access File, and it creates and loads
one RDBMS table. If the report request uses the display command PRINT or LIST, it also
creates both a FOCLIST field with internal list values and a unique index on all BY fields and
the FOCLIST field. If the request uses the verb SUM, the adapter creates a unique index on any
BY fields.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 215

If you attempt to issue the HOLD FORMAT sqlengine command without first installing the
adapter, the following error messages are generated:

(FOC1488)SQL INTERFACE IS NOT INSTALLED

(FOC1479)ERROR CONNECTING TO SQL DATABASE

Note: Adapter Commands on page 309 describes how to control index space parameters with
the Adapter for DB2, IDMS/SQL, or Oracle SET IXSPACE command.

The RDBMS table name that results from the extract must not already exist. (See Adapter
Commands on page 309 for a discussion of adapter environmental commands that allow you
to control where the table is placed.)

Within the report request, the syntax is

ON TABLE HOLD [AS name] FORMAT sqlengine

At the command level, the syntax is

HOLD [AS name] FORMAT sqlengine
 [TABLENAME table] [CONNECTION con] [DROP]

where:

name

Is a name for the extract Master File. If the TABLENAME attribute is not specified, it is also
the name of the resulting table. The default name is HOLD. Maximum length depends on
the table name length and format for each adapter (including a period to separate the
creator ID from the table name). All characters become the TABLENAME value in the
Access File. Long Master File names are supported. If the HOLD command includes a long
AS name, both the Master and Access File names will be long. The Master and Access
Files will be named according to the procedure described in Describing Tables to FOCUS on
page 55.

Unless the TABLENAME attribute is specified, the AS name also becomes the table name
and is included in the Access File. If the AS name specified in the HOLD command is
longer than the table name length supported by the RDBMS, the table cannot be created.

Note: If the name contains a period (.), the characters preceding it are treated as the
creator ID. Characters following the period become the file description name and the
FILENAME value in the Master File. Consult Describing Tables to FOCUS on page 55 for
information about creator IDs and TABLENAME values.

sqlengine

Identifies the type of RDBMS table created. Valid values are:

Creating Tables Using the HOLD Command

216

SQL or DB2 indicates that the output data source is stored as a table in DB2. DB2 is a
synonym for SQL.

SQLDBC indicates that the output data source is stored as a Teradata table.

SQLIDMS indicates that the output data source is stored as a CA-IDMS table.

SQLORA indicates that the output data source is stored as an Oracle table.

table

Is the name of the resulting table in the DBMS. It must conform to the name length
supported by the RDBMS or the table cannot be created.

con

Is a connection name (CLI only).

DROP

Before implementing the HOLD command to create the table, drops an existing table with
the same name.

Unless you give them an AS name, file descriptions are temporary and exist only for the
current session. All HOLD tables are permanent and must be explicitly dropped.

To make the HOLD file descriptions permanent, specify an AS name in the HOLD command
and allocate the data sets that contain the generated Master and Access files to permanent
partitioned data sets. The generated Master and Access Files are created as members of the
partitioned data sets allocated to DDNAMEs HOLDMAST and HOLDACC. If you do not allocate
those DDNAMEs, they are allocated dynamically and deleted at the end of the session. To
permanently retain the new file descriptions, allocate HOLDMAST to a permanent partitioned
data set and HOLDACC to a second permanent partitioned data set. If you allocate HOLDMAST
and HOLDACC, do not specify DCB parameters.

Example: Converting the FOCUS PROD Database to a DB2 Table

This example converts the FOCUS PROD data source to a DB2 table:

sql db2 set dbspace public.space0
>
table file prod
print *
on table hold as user1.prodsql format sql
end

 NUMBER OF RECORDS IN TABLE= 14 LINES= 14

 HOLDING SQLDS FILE...

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 217

Master Files Generated by HOLD

Even if the original Master File describes several segments, the Master File resulting from the
ON TABLE HOLD command is a single-table description. It contains the attributes described in
Describing Tables to FOCUS on page 55. Following is a list of the generated keyword/
valuepairs:

The default FILENAME value is HOLD. If you specified a name with the AS phrase, the
FILENAME value is the first eight characters of that name. On z/OS, longer Master File
names are supported (see Describing Tables to FOCUS on page 55). If the name contains a
period (.), the characters preceding the period are treated as the creator id. Characters
following the period become the resulting file description name and FILENAME value in the
Master File.

The SUFFIX value is SQLDS for DB2, SQLDBC for Teradata, SQLIDMS for IDMS/SQL, or
SQLORA for Oracle.

The SEGNAME value is SEG01 and the SEGTYPE value is S0.

FIELDNAME and ALIAS values from the original Master File are retained. If the original
Master File does not define aliases, the original field names are also the new ALIAS values.

If the report request contains an AS phrase to rename a field, the AS phrase name
becomes the new value for FIELDNAME and the original field name becomes the new value
for ALIAS. The AS phrase name is also included as a TITLE value.

The FOCUS PRINT and LIST commands create an additional field named FOCLIST that
contains internal list values.

The resulting USAGE field formats are generally the same as the original USAGE formats.
The new ACTUAL formats are converted based on original USAGE formats and certain
conditions (see the charts in Extract File Conversion Chart for DB2 and DB2 for VM on page
222). If the original Master File contains ACTUAL formats, they are ignored.

MISSING parameter settings are converted to SQL NULL statements.

Example: Sample Master File Generated by HOLD

The following is the generated Master File from the ON TABLE HOLD AS PRODSQL command in
Converting the FOCUS PROD Database to a DB2 Table:

Creating Tables Using the HOLD Command

218

FILE=PRODSQL ,SUFFIX=SQLDS,$
SEGNAME=SEG01 ,SEGTYPE=S0,$
FIELDNAME =FOCLIST ,FOCLIST ,I5 ,I4 ,$
FIELDNAME =PROD_CODE ,PCODE ,A3 ,A3 ,$
FIELDNAME =PROD_NAME ,ITEM ,A15 ,A15 ,$
FIELDNAME =PACKAGE ,SIZE ,A12 ,A12 ,$
FIELDNAME =UNIT_COST ,COST ,D5.2M ,D8 ,$

Example: Creating a DB2 Table With a Long Name on OS/390

The following request creates a 15-character DB2 table named EMPLOYEEINFODB2:

TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_SAL
BY DEPARTMENT
BY LAST_NAME
BY FIRST_NAME
ON TABLE HOLD AS USER1.EMPLOYEEINFODB2 FORMAT DB2
END

This request creates the following Master File:

$ VIRT=EMPLOYEEINFODB2

FILE=EMPLOYEEINFODB2 ,SUFFIX=SQL
SEGNAME=SEG01 ,SEGTYPE=S0
FIELDNAME ='DEPARTMENT' ,'DPT' ,A10 ,A10 ,$
FIELDNAME ='LAST_NAME' ,'LN' ,A15 ,A15 ,$
FIELDNAME ='FIRST_NAME' ,'FN' ,A10 ,A10 ,$
FIELDNAME =FOCLIST ,FOCLIST ,I5 ,I4 ,$
FIELDNAME ='EMP_ID' ,'EID' ,A9 ,A9 ,$
FIELDNAME ='CURR_SAL' ,'CSAL' ,D12.2M ,D8 ,$

This request also creates the following Access File. The AS name is also the table name:

$ VIRT=EMPLOYEEINFODB2
SEGNAME=SEG01 ,
TABLENAME=USER1.EMPLOYEEINFODB2
KEYS=04 , WRITE=YES, $

When the AS name is longer than the supported length for table names in DB2 on z/OS, the
following messages are generated:

> NUMBER OF RECORDS IN TABLE= 12 LINES= 12
 HOLDING SQL FILE...
(FOC1400) SQLCODE IS -107 (HEX: FFFFFF95)
(FOC1414) EXECUTE IMMEDIATE ERROR.

The Master and Access Files are created. However, the table cannot be created because the
table name specified in the Access File is too long and, therefore, invalid. Note that you will
get a more descriptive message if you issue the following command:

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 219

SQL DB2 SET ERRORTYPE DBMS

For example:

(FOC1400) SQLCODE IS -107 (HEX: FFFFFF95)
 : DSNT408I SQLCODE = -107, ERROR: THE NAME name IS
TOO
 : LONG. MAXIMUM ALLOWABLE SIZE IS xx : DSNT418I SQLSTATE =
42622 SQLSTATE RETURN CODE
 : DSNT415I SQLERRP = DSNHSMUD SQL PROCEDURE DETECTING ERROR
 : DSNT416I SQLERRD = 0 0 0 -1 15 0 SQL DIAGNOSTIC INFORMATION
 : DSNT416I SQLERRD = X'00000000' X'00000000' X'00000000'
 : X'FFFFFFFF' X'0000000F' X'00000000' SQL DIAGNOSTIC
 : INFORMATION
(FOC1414) EXECUTE IMMEDIATE ERROR.

Access Files Generated by HOLD

The Access File resulting from the ON TABLE HOLD command contains the declarations
described in Describing Tables to FOCUS on page 55. For PRINT and LIST based reports, the
FOCLIST field and the BY phrases determine the KEYS value and how the index is created.
Following is a list of the generated keyword/value pairs:

The SEGNAME value is SEG01.

The TABLENAME value defaults to HOLD. If you specified a name with the AS phrase, that
name becomes the TABLENAME value. If the name contains a period (.), the characters
preceding it are considered the creator name for DB2, the schema name for IDMS, and the
user ID for Oracle. Characters following the period become the table name.

Note: For DB2, Teradata, and Oracle, if you do not specify a creator name, the ID specified
by the SET OWNERID command becomes the creator. If you did not issue this command,
your user ID becomes the creator, by default. For IDMS, an unqualified table name will be
generated.

The KEYS value and the fields that are indexed depend on the display command and
whether BY sort phrases are used in the request:

If the request specifies the NOPRINT option for a BY phrase, that sort field is not
included in the table or the calculation of the KEYS value, and it is not indexed.

All PRINT (or LIST) requests generate a FOCLIST field. SUM (or COUNT) requests do not.

If the request specifies an aggregate verb such as SUM (or COUNT) with printed BY
phrases, the KEYS value equals the number of printed sort fields.

If the request specifies the command PRINT (or LIST) with printed BY phrases, the KEYS
value equals the number of printed sort fields plus one for the generated FOCLIST field.

Creating Tables Using the HOLD Command

220

If there are no BY phrases in the request, the KEYS value is 01 regardless of the
display command.

The adapter creates a unique index on the printed BY fields plus the FOCLIST field (if it
exists). If there are no BY fields, for a PRINT (or LIST) request, the adapter creates a
unique index on FOCLIST alone. For a SUM (or COUNT) request, it creates a unique
index on the first column referenced in the request.

The WRITE value is YES.

Example: Sample Access File Generated by HOLD

Following is the generated Access File from the ON TABLE HOLD AS PRODSQL statement in
Converting the FOCUS PROD Database to a DB2 Table:

SEGNAME=SEG01 ,
TABLENAME="USER1".PRODSQL ,
KEYS=01 , WRITE=YES, $

Other Files Generated by HOLD

Three work files, FOC$HOLD MASTER, FOC$HOLD FOCTEMP, and FOCSORT, are used with an
internal MODIFY procedure to create and load the output table. The FOC$HOLD Master File is a
fixed-format file with a corresponding sequential data file.

Usage Restrictions for HOLD

You may not use the HOLD FORMAT sqlengine option in multi-verb TABLE requests. Only
one display command is allowed.

You may not use the ACROSS sort phrase.

Names used in AS phrases to rename fields should begin with an alphabetic character. If
the name begins with a digit, SQL error -105 or SQL/DBC error 3708 results and the table
is not generated. For more information on AS names, refer to your FOCUS documentation.

The CNT.DST. prefix operator is not supported.

Extract File Conversion Charts

The following charts show original USAGE formats, conditions, and resulting USAGE and
ACTUAL formats for ON TABLE HOLD. The field length is represented by n.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 221

Reference: Extract File Conversion Chart for DB2 and DB2 for VM

Non-SQL
USAGE

Conditions HOLD USAGE HOLD ACTUAL

An none An An

Dn none Dn D8

Fn none Fn F4

In n EQ 1 or 2
n GT 2
MISSING=ON

In
In
In

I2
I4
I4

Pn.m n LE 31
MISSING=ON

Pn.m
Pn, n<15

P(trunc((n+2)/2))
P8

date Date format date DATE

TXnn TEXT field TXnn TX

HYYMDm Timestamp
field

HYYMDm HYYMDm

HHIS Time format HHIS HHIS

Note:

USAGE field types A, D, F, HYYMDm, HHIS, and TX from the original Master File remain the
same. Their generated ACTUAL formats vary slightly.

USAGE field types I and P from the original Master File are converted based on the original
length and on whether null values are permitted (MISSING=ON).

USAGE values for FOCUS date formats remain the same. They are converted to the ACTUAL
format DATE.

To create SMALLINT NOT NULL columns with the CREATE FILE command or HOLD FORMAT
DB2, use an ACTUAL attribute of I2, and then change the ACTUAL attribute to I4. In all
other cases, use I4 for the ACTUAL attribute.

Creating Tables Using the HOLD Command

222

Reference: Extract File Conversion Chart for Teradata

Non-DBC/
SQLUSAGE

Conditions HOLDUSAGE HOLDACTUAL

An none An An

Dn none Dn D8

Fn none Dn D8

In n EQ 1 or 2
n GT 2
MISSING=ON

In
In
In

I2
I4
I4

Pn.m n < 18
n = 18

Pn.m
Pn.m

P8P10

date date format date DATE

TXnn TEXT field TXnn TX

Note:

USAGE field types I and P from the original Master File are converted based on the original
length and on whether null values are permitted (MISSING=ON).

USAGE field type F is converted to HOLD USAGE and ACTUAL formats of D.

FOCUS date formats as USAGE values remain the same. They are converted to the ACTUAL
format DATE.

Reference: Extract File Conversion Chart for IDMS SQL

Non-SQL USAGE Conditions HOLD USAGE HOLD ACTUAL

An none An An

Dn none Dn D8

Fn none Fn F4

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 223

Non-SQL USAGE Conditions HOLD USAGE HOLD ACTUAL

In n EQ 1 or 2
n GT 2
MISSING=ON

In
In
In

I2I4I4

Pn.m n LE 31
MISSING=ON

Pn.m
Pn.m, n£15

P(trunc((n+2)/2))P8

date Date format date DATE

TXnn TEXT field TXnn TX

Note:

USAGE field types A, D, F, and TX from the original Master File remain the same. Their
generated ACTUAL formats vary slightly.

USAGE field types I and P from the original Master File are converted based on the original
length and on whether null values are permitted (MISSING=ON).

USAGE values for FOCUS date formats remain the same. They are converted to the ACTUAL
format DATE.

To create SMALLINT NOT NULL columns with the CREATE FILE command or HOLD FORMAT
SQLIDMS, use an ACTUAL attribute of I2, and then change the ACTUAL attribute to I4. In all
other cases, use I4 for the ACTUAL attribute.

Reference: Extract File Conversion Chart for Oracle

Non-SQL USAGE Conditions HOLD USAGE HOLD ACTUAL

An none An An

Dn none D20.2 D8

In none I11 I4

Pn.m n LE 31
MISSING=ON

Pn.m
Pn, n£15

P(trunc((n+2)/2))
P8

date Date format HYYMDS H08

Creating Tables Using the HOLD Command

224

Non-SQL USAGE Conditions HOLD USAGE HOLD ACTUAL

TXnn TEXT field TXnn TX

HOLD FORMAT SAME_DB

You can create a report output file, that is, a HOLD file, as a native DBMS temporary table.
This increases performance by keeping the entire reporting operation on the DBMS server,
instead of downloading data to your computer and then back to the DBMS server.

For example, if you temporarily store report output for immediate use by another procedure,
storing it as a temporary table instead of creating a standard HOLD file avoids the overhead of
transmitting the interim data to your computer.

The temporary table columns are created from the following report elements

Display columns

Sort (BY) columns

COMPUTE columns

except for those for which NOPRINT is specified.

The temporary table that you create from your report will be the same data source type (that is,
the same DBMS) as the data source from which you reported. If the data source from which
you reported contains multiple tables, all must be of the same data source type and reside on
the same instance of the DBMS server.

You can choose between several types of table persistence.

You can create extract files as native DBMS tables with the following adapters:

DB2 (on z/OS, UNIX, and Windows)

Oracle

Teradata

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 225

Syntax: How to Save Report Output as a Temporary Table

The syntax to save report output as a native DBMS temporary table is

ON TABLE HOLD [AS filename]FORMAT SAME_DB [PERSISTENCE persistValue]

where:

filename

Specifies the name of the HOLD file. If you omit AS filename, the name of the temporary
table defaults to "HOLD".

Because each subsequent HOLD command overwrites the previous HOLD file, it is
recommended to specify a name in each request to direct the extracted data to a separate
file, thereby preventing an earlier file from being overwritten by a later one.

PERSISTENCE

Specifies the type of table persistence and related table properties. This is optional for
DBMSs that support volatile tables, and required otherwise. For information about support
for volatile tables for a particular DBMS, see Temporary Table Properties for SAME_DB
Persistence Values, and consult your DBMS vendor's documentation.

Creating Tables Using the HOLD Command

226

persistValue

Is one of the following:

VOLATILE

Specifies that the table is local to the DBMS session. A temporary synonym—a
Master File and Access File—is generated automatically; it expires when the server
session ends.

This is the default persistence setting for all DBMSs that support volatile tables.

For information about support for the volatile setting, and about persistence and other
table properties, for a particular DBMS, see Temporary Table Properties for SAME_DB
Persistence Values, and consult your DBMS vendor's documentation.

GLOBAL_TEMPORARY

Specifies that while the table exists, its definition will be visible to other database
sessions and users though its data will not be. A permanent synonym—a Master File
and Access File—is generated automatically.

For information about support for the global temporary setting, and about persistence
and other table properties, for a particular DBMS, see Temporary Table Properties for
SAME_DB Persistence Values, and consult your DBMS vendor's documentation.

PERMANENT

Specifies that a regular permanent table will be created. A permanent synonym—a
Master File and Access File—is generated automatically.

Reference: Temporary Table Properties for SAME_DB Persistence Values

The following chart provides additional detail about persistence and other properties of
temporary tables of different data source types that are supported for use with HOLD format
SAME_DB.

Informix

Microsoft SQL Server

MySQL

A volatile table is created using the CREATE TEMP TABLE command with the WITH NO LOG
option. The definition and the data persist, and are visible, only within the current session.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 227

A volatile table is created as a local temporary table whose name is prefixed with a single
number sign (#). Therefore, the name of a volatile table used as a HOLD file is the name
specified by the HOLD phrase, prefixed with a number sign (#). The table's definition and the
data persist, and are visible, only within the current session.

A volatile table is created using the CREATE TEMPORARY TABLE command. A temporary table
persists and is visible only within the current session (connection). If a temporary table has the
same name as a permanent table, the permanent table becomes invisible.

This type of table is not supported by Informix.

The name of a global temporary table is prefixed with two number signs (##). Therefore, the
name of a global temporary table used as a HOLD file is the name specified by the HOLD
phrase, prefixed with two number signs (##). The table is dropped automatically when the
session that created the table ends and all other tasks have stopped referencing it. The
table's definition and data are visible to other sessions.

This type of table is not supported by MySQL.

DBMS VOLATILE GLOBAL_TEMPORARY

DB2 DB2: on UNIX, Windows, and DB2 for
z/OS: a volatile table is created
using the DECLARE GLOBAL
TEMPORARY TABLE command with
the ON COMMIT PRESERVE ROWS
option. Declared global temporary
tables persist and are visible only
within the current session
(connection). SESSION is the
schema name for all declared global
temporary tables.

DB2 Release 7.1 and up for z/OS
only: a global temporary table is
created using the CREATE GLOBAL
TEMPORARY TABLE command. The
definition of a created global
temporary table is visible to other
sessions, but the data is not. The
data is deleted at the end of each
transaction (COMMIT or ROLLBACK
command). The table definition
persists after the session ends.

Oracle This type of table is not supported by
Oracle.

The table's definition is visible to all
sessions; its data is visible only to
the session that inserts data into it.
The table's definition persists for the
same period as the definition of a
regular table.

Creating Tables Using the HOLD Command

228

DBMS VOLATILE GLOBAL_TEMPORARY

Teradata A volatile table definition and data
are visible only within the session
that created the table and inserted
the data. The volatile table is
created with the ON COMMIT
PRESERVE ROWS option.

A global temporary table persists for
the same duration as a permanent
table. The definition is visible to all
sessions, but the data is visible only
to the session that inserted the
data. The global temporary table is
created with the ON COMMIT
PRESERVE ROWS option.

Column Names in the HOLD File

Each HOLD file column is assigned its name:

1. From the AS name specified for the column in the report request.

2. If there is no AS name specified, the name is assigned from the alias specified in the
synonym. (The alias is identical to the column name in the original relational table.)

3. In all other cases, the name is assigned from the field name as it is specified in the
synonym.

Primary Keys and Indexes in the HOLD File

A primary key or an index is created for the HOLD table. The key or index definition is
generated from the sort (BY) keys of the TABLE command, except for undisplayed sort keys
(that is, sort keys for which NOPRINT is specified). To determine whether a primary key or an
index will be created:

1. If these sort keys provide uniqueness and do not allow nulls (that is, if in the synonym the
column's MISSING attribute is unselected or OFF), and if the DBMS supports primary keys
on the type of table being created, a primary key is created.

2. If these sort keys provide uniqueness but either

a. some of the columns allow nulls

b. the DBMS does not support primary keys on the type of table being created.

3. If these sort keys do not provide uniqueness, a non-unique index is created.

4. If there are no displayed sort keys (that is, no sort keys for which NOPRINT has not been
specified), no primary key or index is created.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 229

Using the Dynamic JOIN Command

With the dynamic JOIN command, you can reference two or more related tables (or non-FOCUS
data sources) in a single FOCUS report request. The data structures remain physically
separate, but FOCUS treats them as a single logical structure.

Two types of join are available, the equijoin and the conditional (WHERE-based join).

The terms primary key and foreign key refer to the common columns that relate host and cross-
referenced tables in an equijoin.

Although the run-time effect of the dynamic join is very similar to that of the embedded join
discussed in Multi-Table Structures on page 99, the dynamic join is easier to construct since it
does not require a separate Master File and Access File. You can create a dynamic join on an
as-needed basis.

Note: A TABLE request that references a dynamically joined structure generates SQL join
predicates for all segments in the subtree that starts from the root segment. Multi-table
Master Files do not necessarily generate these predicates. In a multi-table structure, the
subtree effectively begins with the highest referenced segment. This difference may cause
identical TABLE requests to produce different reports when run against a dynamic join
structure and a multi-table Master File that represent the same tree structure.

The dynamic join is limited to FOCUS read-only operations (for example, TABLE, GRAPH, and
the MODIFY LOOKUP facility). Embedded joins in a Master File support both read-only and read-
write operations.

FOCUS joins can be unique or non-unique. The difference between the two depends on the
cross-referenced relation and its foreign key values:

The multiple or non-unique join defines a one-to-many or many-to-many correlation between
the records of the host file and the records of the cross-referenced file. That is, for any row
in the host file, there may be more than one corresponding row in the cross-referenced file.

The unique join defines a one-to-one correlation between a record in the host file and one
record in the cross-referenced file. For any row in the host file, there is, at most, one
corresponding row in the cross-referenced file. When FOCUS executes a unique join, it
retrieves only one row from the cross-referenced file. Be careful not to identify a join as
unique to FOCUS if it is really non-unique.

The unique join is a FOCUS concept. The RDBMS makes no distinction between unique and
non-unique situations. It always retrieves all matching rows from the cross-referenced file.

Using the Dynamic JOIN Command

230

Note: If the RDBMS processes a join that the FOCUS request specifies as unique, and if
there are, in fact, multiple corresponding rows in the cross-referenced file, the RDBMS
inner join returns all matching rows. If, instead, optimization is disabled so that FOCUS
processes the join, a different report results because FOCUS, respecting the unique join
concept, returns only one cross-referenced row for each host row.

With either type of join, some rows in the host table may lack corresponding rows in the cross-
referenced table. In a report request, such a retrieval path is called a short path.

When a report omits host rows that lack corresponding cross-referenced rows, the join is called
an inner join. When a report displays all matching rows plus all rows from the host file that lack
corresponding cross-referenced rows, the join is called a leftouter join.

Sometimes FOCUS passes responsibility for a join to the RDBMS. The OPTIMIZATION setting is
one factor in determining whether a join is optimized. Other factors depend on the specific
elements in the report request (see The Adapter Optimizer on page 171). In order to
understand join behavior, you must know whether optimization is enabled or disabled for a
particular report request. The SQLAGGR trace gives you that information (see Tracing Adapter
Processing on page 487).

For both embedded and dynamic joins, factors that determine whether a report includes short
path rows are the type of join, the FOCUS SET ALL command, and whether FOCUS or the
RDBMS is handling the join. Subsequent sections describe how these factors interact. SET ALL
is described in The SET ALL Command on page 247.

Reference: Preserving Virtual Fields During Join Parsing

By default, a JOIN command clears all DEFINE FILE commands for the host data source and
the joined structure. Two methods are available for preserving virtual fields during join parsing,
the KEEPDEFINES parameter and the DEFINE FILE SAVE and RETURN commands. For complete
information, see your FOCUS documentation.

Constructing a Single-field Dynamic Equijoin

A single-field dynamic equijoin is a join based on relating values in one column of the host and
cross-referenced tables.

Syntax: How to Construct a Single-Field Dynamic Equijoin

JOIN fielda1 [WITH rfield] IN hostfile [TAG tag1] TO [ALL]
fieldb1 IN crfile [TAG tag2] AS joinname
[END]

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 231

where:

fielda1

Is a field in the host file or a DEFINE field that shares values and format with fieldb1 in the
cross-referenced file.

WITH rfield

Use only if fielda1 is a DEFINE field; associates the DEFINE field with the segment location
of a real field (rfield) in the host file.

hostfile

Is the name of the host file. Use this name in subsequent TABLE requests on the joined
structure.

tag1

Is the tag name for the host file, a one- to eight-character table name qualifier for field and
alias names in the host file. The tag name for the host must be the same in all the JOIN
commands for a join structure. The tag name may not be the same as any table name in
the structure.

ALL

Indicates that the host and cross-referenced files participate in a one-to-many or many-to-
many relationship. That is, for any value of the join field in the host file (fielda1), there may
be more than one corresponding instance of that value for the join field in the cross-
referenced file (fieldb1). In FOCUS terminology, this is known as a non-unique or multiple
join.

Note: The use of the ALL parameter does not disable optimization. Do not confuse this
ALL parameter with the SET ALL command discussed in The SET ALL Command on page
247.

Omitting the ALL parameter indicates a unique join. Omit the ALL parameter only when
each row in the host file has, at most, one corresponding row in the cross-referenced file.
The unique join is a FOCUS concept. The RDBMS makes no distinction between unique
and non-unique situations when it processes a join.

fieldb1

Is a field in the cross-referenced file whose values and format can match that of fielda1.

crfile

Is the name of the cross-referenced file.

Using the Dynamic JOIN Command

232

tag2

Is the tag name for the cross-referenced file, a one- to eight-character table name qualifier
for field and alias names in the cross-referenced file. The tag name may not be the same
as any table name in the structure. In a recursive join structure, if no tag name is provided,
FOCUS prefixes all field names and aliases with the first four characters of the join name.

joinname

Assigns an internal name to the join structure, up to eight characters in length. Joinname
also provides a unique prefix for field names participating in a recursive join.

You can clear the join name when you no longer need this join (see JOIN CLEAR on page
259). Do not specify joinname as the file name in subsequent TABLE FILE requests; use
hostfile.

END

Required when the JOIN command is longer than one line. Terminates the statement.

Example: Using a Single-Field Dynamic Equijoin

JOIN EID IN EMPINFO TAG FILE1 TO ALL PAYEID IN PAYINFO TAG FILE2 AS JOIN1

You can join up to 1024 structures to create a FOCUS view of the data. The joined structure
remains in effect for the duration of the FOCUS session or until you clear the join name using
the JOIN CLEAR command (see JOIN CLEAR on page 259). The adapter instructs the RDBMS
to perform a join based on the smallest subtree of referenced tables (from the root) required
to satisfy the request.

Note: For a join to be optimized, it cannot involve more than the RDBMS limit for an SQL
statement. It also cannot involve more than the FOCUS limit for files in a join.

Each cross-referenced table must have at least one data field in common with its host file.
Fixed sequential, ISAM, VSAM, IMS, CA-IDMS/DB, CA-Datacom/DB®, ADABAS®, Teradata,
MODEL 204®, Oracle, and RDBMS tables and views can be both host files and cross-
referenced files in any combination. You can also join these files to all segments of a FOCUS
data source by using FOCUS database indexed fields.

If the DB2 Distributed Data Facility is installed:

You can use the dynamic JOIN command to join tables from two different DB2 subsystems.
FOCUS processes the join since DB2 does not allow a single SQL statement to reference
tables at more than one location.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 233

When it detects the implicit or explicit presence of multiple LOCATION attributes in the
Access File for the tables referenced in the report request, the adapter temporarily disables
optimization so that FOCUS can manage the join. If you are using local RDBMS aliases for
remote tables, you must set OPTIMIZATION OFF for each request that joins tables from
more than one location.

The following chart lists some of the more common combinations available with the FOCUS
dynamic JOIN command and restrictions on their use. Consult your FOCUS documentation on
creating reports for additional data source combinations and examples of dynamic joins. In the
chart, SQL refers to DB2, Teradata, IDMS SQL, or Oracle tables and views:

From To Special Rules That May Apply

SQL SQL Joined fields must be of the same data type. For efficient
retrieval, their lengths should also be equivalent. Use of indexed
fields for the host and cross-referenced fields is recommended,
but the RDBMS uses the indexes only if both the data types and
lengths are equal.

SQL FOCUS Must join to an indexed field (FIELDTYPE=I). Joined fields must
have common data type and length.

SQL IMS Adapter for IMS must be installed. The DL/I join field must be a
key field in the root segment of the data source. It can be a
primary or secondary index. Join fields must have a common data
type and length.

SQL VSAM For a unique join, the VSAM join field must be a full primary key.
For a non-unique join, the join field can be an initial subset of the
primary key. Joined fields must have a common data type and
length.

SQL QSAM QSAM file must be sorted by its join field. Joined fields must have
a common data type and length.

VSAM SQL Joined fields must have a common data type and length.

QSAM SQL Joined fields must have a common data type and length.

Note:

A QSAM file is a sequential file. One common example is a HOLD file.

Using the Dynamic JOIN Command

234

When joining to a VSAM, QSAM, or IMS data structure, the field in the host data source can
be shorter in length than the field in the cross-referenced data source, but performance is
adversely affected. This is the only exception to the “same data type, same length” rule
when joining non-relational data sources.

For efficiency, create RDBMS indexes on host and cross-referenced fields. Check with the
database administrator or query the index catalog table to see which columns are indexed.

Text fields (TX) may not participate as host or cross-referenced fields.

In report requests, specify the name of the host structure in the TABLE FILE statement, not
the join name specified with the AS phrase.

You can construct a dynamic join based on more than one field or on conditions other than
equality. See Constructing a Multi-field Dynamic Equijoin on page 236 for multi-field joins
and Constructing a Conditional Join on page 240 for conditional joins.

For information about how heterogeneous joins affect adapter optimization, see The
Adapter Optimizer on page 171.

Example: Implementing a Single-Field Dynamic Equijoin

The following examples illustrate the use of the dynamic JOIN command. Each example
specifies a non-unique join and presents an equivalent SQL request for comparison purposes.
Both forms of the request, FOCUS and SQL, return the same result.

Note:

The EMPINFO and COURSE tables are described in File Descriptions and Tables on page
459.

You can reproduce the SQL requests with the STMTRACE trace. See Tracing Adapter
Processing on page 487 for trace syntax.

The first example prints the full name and courses taken for each employee. Since the
employee may have taken more than one course, the example specifies the FOCUS non-unique
join.

Employee information is stored in the DB2 table EMPINFO and is represented by the fields
LAST_NAME and FIRST_NAME. Course information is stored in the DB2 table COURSE and is
represented by the CNAME field.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 235

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT

JOIN EMP_ID IN EMPINFO TAG FILE1 TO ALL WHO IN COURSE TAG FILE2 AS J1
TABLE FILE EMPINFO
PRINT CNAME
BY LAST_NAME BY FIRST_NAME
END

 SELECT T1.EID,T1.LN,T1.FN,T2.COURSE_NAME FROM
 "USER1"."EMPINFO" T1,"USER1"."COURSE" T2 WHERE (T2.EMP_NO =
 T1.EID) ORDER BY T1.LN,T1.FN FOR FETCH ONLY;

The SQL request references both tables in the FROM clause and as a condition (or join
predicate) of the WHERE clause. The BY phrases translate to the ORDER BY phrase. The
PRINT command translates as SELECT.

The next example illustrates a screening test that lists the employees who have taken either
the Advanced or Internals course.

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT

JOIN WHO IN COURSE TAG FILE1 TO ALL EMP_ID IN EMPINFO TAG FILE2 AS J2
TABLE FILE COURSE
PRINT CNAME
BY LAST_NAME BY FIRST_NAME
WHERE CNAME IS 'ADVANCED' OR 'INTERNALS'
END

 SELECT T1.COURSE_NAME,T1.EMP_NO,T2.LN,T2.FN FROM
 "USER1"."COURSE" T1,"USER1"."EMPINFO" T2 WHERE (T2.EID =
 T1.EMP_NO) AND (T1.COURSE_NAME IN('ADVANCED','INTERNALS'))
 ORDER BY T2.LN,T2.FN FOR FETCH ONLY;

The SQL request references both tables in the FROM clause and in a join predicate in the
WHERE clause (along with additional screening conditions). The BY phrases translate to the
ORDER BY phrase.

Constructing a Multi-field Dynamic Equijoin

You can construct a dynamic join based on multiple fields from the host file and cross-
referenced files. Separate the participating field names with the keyword AND.

Using the Dynamic JOIN Command

236

Syntax: How to Construct a Multi-Field Dynamic Equijoin

JOIN fielda1 AND fielda2 IN hostfile [TAG tag1] TO [ALL]
fieldb1 AND fieldb2 IN crfile [TAG tag2] AS joinname
[END]

where:

fielda1

Is a field in the host file that shares values and format with fieldb1 in the cross-referenced
file.

AND fielda2

Is a field in the host file that shares values and format with fieldb2 in the cross-referenced
file.

hostfile

Is the name of the host file. Use this name in subsequent TABLE requests on the joined
structure. The host file can be any type of database or table. See Constructing a Single-
field Dynamic Equijoin on page 231 for possible join combinations.

tag1

Is the tag name for the host file, a one- to eight-character table name qualifier for field and
alias names in the host file. The tag name for the host must be the same in all the JOIN
commands for a join structure. The tag name may not be the same as any table name in
the structure

ALL

Indicates that the host and cross-referenced files participate in a one-to-many or many-to-
many relationship. That is, for any instance of the join fields in the host file (fielda1,
fielda2), there may be more than one corresponding instance of the join fields in the cross-
referenced file (fieldb1, fieldb2). In FOCUS terminology, this is known as a non-unique or
multiple join.

Note: The use of the ALL parameter does not disable optimization. Do not confuse this
ALL parameter with the SET ALL command discussed in The SET ALL Command on page
247.

Omitting the ALL parameter indicates a unique join. Omit the ALL parameter only when
each row in the host file has, at most, one corresponding row in the cross-referenced file.
The unique join is a FOCUS concept. The RDBMS makes no distinction between unique
and non-unique situations when it processes a join.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 237

fieldb1

Is a field in the cross-referenced file whose values and format can match that of fielda1.

AND fieldb2

Is a field in the cross-referenced file whose values and format can match that of fielda2.

crfile

Is the name of the cross-referenced file.

tag2

Is the tag name for the cross-referenced file, a one- to eight-character table name qualifier
for field and alias names in the cross-referenced file. The tag name may not be the same
as any table name in the structure. In a recursive join structure, if no tag name is provided,
FOCUS prefixes all field names and aliases with the first four characters of the joinname.

joinname

Assigns an internal name to the join structure, up to eight characters in length. It also
provides a unique prefix for field names participating in a recursive join.

You can clear the join name when you no longer need this join (see JOIN CLEAR on page
259). Do not specify joinname as the file name in subsequent TABLE FILE requests. Use
hostfile.

END

Required when the JOIN command is longer than one line. Terminates the command.

For a multi-field join, the joined fields from each table must be equal in number, data type, and
field length. The full set of common fields must reside in both the host and cross-referenced
tables.

You can join a maximum of 16 fields from a host file to 16 fields in a cross-referenced file.
Each multi-field JOIN command counts as one join toward the FOCUS maximum of 1023
concurrent joins.

Note: For a join to be optimized, it cannot involve more than 15 tables or views, the RDBMS
limit for an SQL statement.

Example: Using a Multi-field Dynamic Join

For example, two RDBMS tables, EMPINFO and COURSE1, have first and last name fields. In
the EMPINFO Master File, LAST_NAME and FIRST_NAME have field formats A15 and A10:

Using the Dynamic JOIN Command

238

FILENAME=EMPINFO ,SUFFIX=SQLDS,$

SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY ,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
 FIELD=HIRE_DATE_TIME ,ALIAS=HDTT ,USAGE=HYYMDm ,ACTUAL=HYYMDm,$
 FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS,$

In the COURSE1 Master File, LAST_NAME and FIRST_NAME have the same field formats, A15
and A10:

FILE=COURSE1 ,SUFFIX=SQLDS, $
SEGNAME=SEG01 ,SEGTYPE=S0, $
FIELDNAME =FOCLIST ,FOCLIST ,I5 ,I4 ,$
FIELDNAME =CNAME ,COURSE_NAME ,A15 ,A15 ,$
FIELDNAME =LAST_NAME ,LN ,A15 ,A15 ,$
FIELDNAME =FIRST_NAME ,FN ,A10 ,A10 ,$
FIELDNAME =GRADE ,GRADE ,A1 ,A1 ,
 MISSING=ON, $
FIELDNAME =YR_TAKEN ,YR_TAKEN ,A2 ,A2 ,$
FIELDNAME =QTR ,QUARTER ,A1 ,A1 ,$

To create the multi-field join, list both fields for each table with the keyword AND:

JOIN LAST_NAME AND FIRST_NAME IN EMPINFO TAG FILE1
TO ALL LAST_NAME AND FIRST_NAME IN COURSE1 TAG FILE2 AS J1
END

When a report request references the multi-field dynamic equijoin, the adapter generates an
SQL SELECT statement to satisfy the request:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT

TABLE FILE EMPINFO
PRINT LAST_NAME FIRST_NAME CNAME
END

 SELECT T1.LN,T1.FN,T2.COURSE_NAME FROM "USER1"."EMPINFO" T1,
 "USER1"."COURSE1" T2 WHERE (T2.LN = T1.LN) AND (T2.FN = T1.FN) FOR
 FETCH ONLY;

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 239

The SQL SELECT statement implements two joins as conditions (or predicates) of the WHERE
clause.

Constructing a Conditional Join

The conditional join lets you specify conditions other than equality between fields for relating
two tables.

The conditional JOIN command supports FOCUS, relational, VSAM, fixed-format sequential,
ADABAS, and IMS data sources. Because each data source differs in its ability to handle
complex WHERE criteria, the optimization of the WHERE-based JOIN syntax differs depending
on the specific data sources involved in the join and the complexity of the WHERE criteria.

Syntax: How to Construct a Conditional Join

JOIN FILE from_file AT from_field [TAG from_tag] [WITH fieldname]
 TO [ALL|ONE]
 FILE to_file AT to_field [TAG to_tag]
 [AS as_name]
 [WHERE expression1 ;
 WHERE expression2 ;
 ... ;]
END

where:

from_file

Is the host Master File.

from_field

Is the field name in the host Master File whose segment will be joined to the cross-
referenced data source. It can be any field in the segment. It must reside in the lowest
level segment that will be referenced.

from_tag

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
host data source.

fieldname

Is a real field name used to assign a segment location for a virtual field. Required when
issuing a DEFINE field-based WHERE-based JOIN.

ALL

Describes a one-to-many relationship between the from_file and to_file.

Using the Dynamic JOIN Command

240

ONE

Describes a one-to-one relationship between the from_file and to_file.

Note: If you specify a unique join when the relationship between the host and cross-
referenced files is one-to-many, the results will be unpredictable.

to_file

Is the cross-referenced Master File.

to_field

Is the join field name in the cross-referenced Master File. It can be any field in the
segment.

to_tag

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
cross-referenced data source.

as_name

Is the name associated with the JOIN.

expression1, expression2

Are any expressions valid in a DEFINE FILE command. All of the fields used in all of the
expressions the expressions must lie on a single path.

Note: Single line JOIN syntax is not supported. The END command is required.

To issue a DEFINE-based conditional join, the KEEPDEFINES setting must be ON. You then
must create all virtual fields before issuing the join. This differs from traditional DEFINE-based
joins in which the virtual field is created after the JOIN command is issued. In addition, a
virtual field can be part of the JOIN syntax or WHERE criteria. For a discussion of the
KEEPDEFINES setting, see your FOCUS documentation.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 241

Example: Using a Conditional Join

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = STMTRACE//CLIENT

JOIN FILE EMPINFO AT EMP_ID TAG E1
TO ALL FILE PAYINFO AT PAYEID TAG P1 AS JW
WHERE EMP_ID EQ PAYEID;
WHERE (DAT_INC - HIRE_DATE) GT 0;
WHERE (DAT_INC - HIRE_DATE) LT 365;
END

TABLE FILE EMPINFO
PRINT CURRENT_SALARY
COMPUTE DIFF/I5 = DAT_INC - HIRE_DATE;
END

For DB2, the following SQL is generated:

 SELECT T1."EID",T1."HDT",T1."CSAL",T2."EID",T2."DI" FROM
 "USER1"."EMPINFO" T1,"USER1"."PAYINFO" T2 WHERE (T2."EID" =
 T1."EID") AND ((DAYS(T2."DI") - DAYS(T1."HDT")) > 0) AND
 ((DAYS(T2."DI") - DAYS(T1."HDT")) < 365) FOR FETCH ONLY;

The SQL request references both tables in the FROM clause and incorporates the conditions
specified in the JOIN command as predicates of the WHERE clause. The PRINT command
translates as SELECT.

Optimizing Non-Equality WHERE-based Left Outer Joins

A left outer join selects all records from the host table and matches them with records from
the cross-referenced table. When no matching records exist, the host record is still retained,
and default values (blank or zero) are assigned to the cross-referenced fields. The relational
adapters may optimize any WHERE-based left outer join command in which the conditional
expressions are supported by the RDBMS.

Syntax: How to Specify a Conditional Left Outer Join

JOIN LEFT_OUTER FILE hostfile AT hfld1 [TAG tag1]
 [WITH hfld2]
 TO {UNIQUE|MULTIPLE}
 FILE crfile AT crfld [TAG tag2] [AS joinname]
 [WHERE expression1;
 [WHERE expression2;
 ...]

END

Using the Dynamic JOIN Command

242

where:

LEFT OUTER

Specifies a left outer join. If you do not specify the type of join in the JOIN command, the
ALL parameter setting determines the type of join to perform.

hostfile

Is the host Master File.

AT

Links the correct parent segment or host to the correct child or cross-referenced segment.
The field values used as the AT parameter are not used to cause the link. They are used
as segment references.

hfld1

Is the field name in the host Master File whose segment will be joined to the cross-
referenced data source. The field name must be at the lowest level segment in the data
source that is referenced.

tag1

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
host data source.

WITH hfld2

Is a data source field with which to associate a DEFINE-based conditional join. For a
DEFINE-based conditional join, the KEEPDEFINES setting must be ON, and you must create
the virtual fields before issuing the JOIN command.

MULTIPLE

Specifies a one-to-many relationship between hostfile and crfile. Note that ALL is a
synonym for MULTIPLE.

UNIQUE

Specifies a one-to-one relationship between hostfile and crfile. Note that ONE is a synonym
for UNIQUE.

Note: UNIQUE returns only one instance and, if there is no matching instance in the cross-
referenced file, it supplies default values (blank for alphanumeric fields and zero for
numeric fields).

The unique join is a FOCUS concept. The RDBMS makes no distinction between unique
and non-unique situations; it always retrieves all matching rows from the cross-referenced
file.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 243

If the RDBMS processes a join that the request specifies as unique, and if there are, in
fact, multiple corresponding rows in the cross-referenced file, the RDBMS returns all
matching rows. If, instead, optimization is disabled so that FOCUS processes the join, a
different report results because FOCUS, respecting the unique join concept, returns only
one cross-referenced row for each host row.

crfile

Is the cross-referenced Master File.

crfld

Is the join field name in the cross-referenced Master File. It can be any field in the
segment.

tag2

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
cross-referenced data source.

joinname

Is the name associated with the joined structure.

expression1, expression2

Are any expressions that are acceptable in a DEFINE FILE command. All fields used in the
expressions must lie on a single path.

Reference: Conditions for WHERE-based Outer Join Optimization

In order for a WHERE-based left outer join to be optimized, the expressions must be
optimizable for the RDBMS involved and at least one of the following conditions must be
true:

The JOIN WHERE command contains at least one field1 EQ field2 predicate in which
field1 is in table1 and field2 is in table2.

or

The right table has a key or a unique index that does not contain NULL data.

or

The right table contains at least one "NOT NULL" column that does not have a long data
type (such as TEXT or IMAGE).

The adapter SQLJOIN OUTER setting must be ON (the default).

Using the Dynamic JOIN Command

244

Controlling Outer Join Optimization

With the SET SQLJOIN OUTER command, you can control when the adapter optimizes outer
joins without affecting the optimization of other operations. This parameter provides backward
compatibility with prior releases of the adapter and enables you to fine-tune your applications.

When join optimization is in effect, the adapter generates one SQL SELECT statement that
includes every table involved in the join. The RDBMS can then process the join. When join
optimization is disabled, the adapter generates a separate SQL SELECT statement for each
table, and FOCUS processes the join.

You can use the SQLJOIN OUTER setting to disable outer join optimization while leaving other
optimization enhancements in effect.

Syntax: How to Control Outer Join Optimization

SQL sqlengine SET SQLJOIN OUTER {ON|OFF}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, or SQLORA. Omit if you
issued the SET SQLENGINE command.

ON

Enables outer join optimization. ON is the default value for Teradata and Oracle.

OFF

Disables outer join optimization. OFF is the default value for DB2.

Note:

Left outer join optimization is not supported for IDMS SQL.

The SQLJOIN OUTER setting is available only when optimization is enabled (that is,
OPTIMIZATION is not set to OFF).

The SQLJOIN OUTER setting is ignored when SET ALL = OFF.

If SQLJOIN OUTER is set to OFF, the following message displays when you issue the SQL ?
query command:

(FOC1420) OPTIMIZATION OF ALL=ON AS LEFT JOIN - : OFF

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 245

Reference: Effects of Combinations of Settings on Outer Join Optimization

The following table describes how different combinations of OPTIMIZATION and
SQLJOIN OUTER settings affect adapter behavior. It assumes that SET ALL = ON:

Settings Results

ON ON Yes Enabled

ON OFF No Enabled

OFF N/A No Disabled

SQL ON Yes, in all possible cases Enabled

SQL OFF No Enabled

FOCUS ON Yes if results are equivalent to
FOCUS-managed request

Enabled

FOCUS OFF No Enabled

Example: Enabling Left Outer Join Optimization

The following request specifies a left outer join between the EMPINFO and FUNDTRAN tables.
The SQLJOIN OUTER setting specifies that the left outer join should be optimized, and the
SQLAGGR and STMTRACE trace components are activated:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLAGGR//CLIENT
SET TRACEON = STMTRACE//CLIENT

SET ALL = ON
SQL DB2 SET OPTIMIZATION ON
SQL DB2 SET SQLJOIN OUTER ON
JOIN EMP_ID IN EMPINFO TO ALL WHO IN FUNDTRAN AS J1
TABLE FILE EMPINFO
SUM AVE.CURRENT_SALARY ED_HRS BY WHO BY LAST_NAME
IF DEPARTMENT EQ 'MIS'
END

The following trace is generated. One SELECT statement is generated. The LEFT OUTER JOIN
phrase in the FROM predicate specifies the left outer join:

Controlling Outer Join Optimization

246

AGGREGATION DONE ...
 SELECT T2."EID",T1."LN", AVG(T1."CSAL"), SUM(T1."OJT") FROM (
USER1."EMPINFO" T1 LEFT OUTER JOIN "USER1"."FUNDTRAN" T2 ON
T2."EID" = T1."EID") WHERE (T1."DPT" = 'MIS') GROUP BY
T2."EID",T1."LN" ORDER BY T2."EID",T1."LN" FOR FETCH ONLY;

Missing Rows of Data in Cross-referenced Tables

This topic describes factors that affect report results when a host row has no corresponding
cross-referenced row. The discussion applies to both dynamic and embedded joins.

Normally, when a row from the host table or view is retrieved, a corresponding row from the
cross-referenced table can also be retrieved. If a host row lacks a corresponding cross-
referenced row, the retrieval path is called a short path. When there are short paths, the
processing of the host row and the report results depend on:

The FOCUS SET ALL command (or the use of the ALL. prefix).

Whether adapter optimization is enabled or disabled. (See The Adapter Optimizer on page
171 for information about the SET OPTIMIZATION command.)

Note: Even if you set OPTIMIZATION ON, the adapter may disable it. Use the SQLAGGR
trace component to determine whether optimization is enabled for a particular request
(Tracing Adapter Processing on page 487 describes trace facilities).

The type of join, non-unique or unique.

The SET ALL Command

You can include short paths in a report with the FOCUS SET ALL command

SET ALL = {OFF|ON}

where:

OFF

Is the default value. In a join, omits host rows from the report if they lack a corresponding
cross-referenced row.

ON

Includes all host rows in the report. (This is known as a left outer join.)

Note:

The adapter does not support SET ALL = PASS.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 247

SET ALL = ON with a conditional join disables optimization in DB2, Teradata, and Oracle.

Missing Rows in Unique Descendants

In a unique join, the engine that handles the join controls the output:

IF FOCUS handles the join, it treats a unique cross-referenced table as a logical extension
of the host or parent table. Since FOCUS never considers a unique cross-referenced row to
be missing, it displays short paths regardless of whether SET ALL is ON or OFF. FOCUS
handles the join in the following two cases:

OPTIMIZATION is disabled.

OPTIMIZATION is enabled with SET ALL = ON and SQLJOIN OUTER OFF.

In this case the SQLJOIN OUTER OFF setting requires that FOCUS process the left outer
join even though other optimization features remain in effect.

Note: When FOCUS handles join processing, if you describe a join as unique when the
cross-referenced table actually contains more than one matching record for a row in the
host table, FOCUS displays only the first matching cross-referenced row on the report. Do
not specify a unique join to FOCUS when the data structure is non-unique.

If the RDBMS handles the join, OPTIMIZATION must be enabled. The SET ALL command
determines the output:

If SET ALL = OFF, the RDBMS performs an inner join. It omits short paths from the
report and includes multiple matching cross-referenced rows.

If SET ALL = ON the SQLJOIN OUTER setting determines whether FOCUS or the RDBMS
process the join. When SQLJOIN OUTER is ON, the RDBMS processes the left outer join.
It includes all host rows in the report and includes multiple matching cross-referenced
rows.

Since the RDBMS has no concept of a unique join, its behavior is identical whether the
join is unique or non-unique. See Missing Rows in Non-unique Descendants on page
251 for a complete discussion.

The following topics discuss each of these settings.

Reference: How FOCUS Processes a Unique Join

FOCUS handles the join when either of the following conditions is true:

OPTIMIZATION disabled.

Missing Rows of Data in Cross-referenced Tables

248

OPTIMIZATION enabled, SET ALL = ON, and SQLJOIN OUTER OFF.

FOCUS substitutes default values for any missing cross-referenced data (because it does not
consider them to be missing in a unique join). FOCUS recognizes that you have defined the join
to be unique and:

It displays short paths with blanks or zeros in missing columns.

It includes only the first instance found of any multiple matching cross-referenced rows.

The Adapter Optimizer on page 171 discusses factors that determine whether optimization is
disabled. To find out if and why the adapter disabled OPTIMIZATION for a report request, use
the SQLAGGR trace component (see Tracing Adapter Processing on page 487).

Example: FOCUS Unique Join Processing

In the following example, a unique join connects the EMPINFO table, containing employee
information, to the FUNDTRAN table, containing direct deposit account information for the
employees. (File Descriptions and Tables on page 459 provides the Master and Access Files.)

JOIN EMP_ID IN EMPINFO TAG FILE1 TO WHO IN FUNDTRAN TAG FILE2 AS J1
SQL DB2 SET OPTIMIZATION OFF
TABLE FILE EMPINFO
PRINT BANK_NAME BANK_ACCT
BY DEPARTMENT BY EMP_ID
END
NUMBER OF RECORDS IN TABLE= 14 LINES= 14

Since the join is unique and the SET OPTIMIZATION OFF command disables optimization,
FOCUS displays one row per employee on the report. If there is no data for the cross-
referenced table (FUNDTRAN), FOCUS appropriately substitutes zeros or blanks for its fields.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 249

Two new employees, John Royce (333121200, no department) and Donna Lee (455670000,
MIS) have no bank accounts. Six other employees also lack bank accounts:

DEPARTMENT EMP_ID BANK_NAME BANK_ACCT
---------- ------ --------- ---------
. 333121200
MIS 112847612
 117593129 STATE 40950036
 219984371
 326179357 ASSOCIATED 122850108
 455670000
 543729165
 818692173 BANK ASSOCIATION 163800144
PRODUCTION 071382660
 119265415
 119329144 BEST BANK 160633
 123764317 ASSOCIATED 819000702
 126724188
 451123478 ASSOCIATED 136500120

Note: Employee 333121200 has not yet been assigned a department. Its null value is
indicated by the NODATA symbol. However, BANK_NAME and BANK_ACCT are not considered
missing because the join is unique. Note that the bank name and bank account values,
although integers, display as blanks instead of zeros because of the S display option in their
USAGE formats.

Reference: How the RDBMS Processes a Unique Join

The RDBMS processes the join under the following conditions:

OPTIMIZATION enabled with SET ALL = OFF.

Since the RDBMS does not recognize the concept of a unique join, it performs an inner join
just as it does if the join is non-unique. See Missing Rows in Non-unique Descendants on
page 251 for a complete discussion.

OPTIMIZATION enabled with SET ALL = ON and SQLJOIN OUTER ON.

If SQLJOIN OUTER is ON, the RDBMS performs a left outer join just as it does if the join is
non-unique. See Missing Rows in Non-unique Descendants on page 251 for a complete
discussion.

(If SQLJOIN OUTER is OFF, FOCUS processes the join. It substitutes default values for short
path columns and displays only one matching record as described in How FOCUS Processes
a Unique Join on page 248.)

The Adapter Optimizer on page 171 discusses factors that determine whether optimization is
enabled.

Missing Rows of Data in Cross-referenced Tables

250

Missing Rows in Non-unique Descendants

In a non-unique join (JOIN…TO ALL) with missing cross-referenced rows, report results depend
entirely on the SET ALL command because:

If SET ALL=OFF, the RDBMS and FOCUS both perform an inner join. Therefore, the
OPTIMIZATION setting has no effect on the report results. Short paths are omitted from the
report. Multiple matching rows are included.

If SET ALL=ON, the RDBMS and FOCUS both perform a left outer join. Therefore, the
OPTIMIZATION setting has no effect on the report results (although if optimization is
enabled, you can control which engine processes the outer join with the SET SQLJOIN
OUTER command described in How to Control Outer Join Optimization on page 245). Short
paths display in the report with missing columns represented by the NODATA symbol (.).
Multiple matching rows are included.

Reference: SET ALL=OFF With a Non-unique Join

With SET ALL=OFF, optimization may be enabled or disabled. In both cases, however, the
report results are the same, an inner join. Host rows that lack corresponding cross-referenced
rows are not included in the report. Multiple matching rows are included (even if there is only
one).

Example: Non-Unique Join Processing With SET ALL = OFF

For each of the following examples, the same non-unique join is in effect. It connects the
EMPINFO table, containing employee information, to the DEDUCT table, containing salary
deduction information.

The examples also execute the same report request. OPTIMIZATION is set ON and only the SET
ALL command changes.

Two employees, John Royce (333121200, no department) and Donna Lee (455670000, MIS)
have not been paid yet. Therefore, they have no deductions.

When SET ALL is OFF, a host row that lacks a corresponding cross-referenced row is rejected
(regardless of whether FOCUS or the RDBMS processes the join):

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 251

JOIN CLEAR J1
JOIN EMP_ID IN EMPINFO TAG FILE1 TO ALL DEDEID IN DEDUCT TAG FILE2 AS J2
SET ALL=OFF

TABLE FILE EMPINFO
PRINT DED_CODE DED_AMT
BY DEPARTMENT BY EMP_ID BY DEDDATE
END

NUMBER OF RECORDS IN TABLE= 448 LINES= 448

The report displays multiple deduction records in the cross-referenced table for each of 12
long-time employees in the host table. John Royce (333121200, no department) and Donna
Lee (455670000, MIS department) are not listed in the report, because their corresponding
cross-referenced rows do not exist in the DEDUCT table:

DEPARTMENT EMP_ID DEDDATE DED_CODE DED_AMT
---------- ------ ------- -------- -------
MIS 112847612 82/01/29 CITY $1.43
 FED $121.55
 FICA $100.10
 HLTH $22.75
 LIFE $13.65
 SAVE $54.60
 STAT $20.02
 82/02/26 CITY $1.43
 FED $121.55
 FICA $100.10
 HLTH $22.75
 LIFE $13.65
 SAVE $54.60
 STAT $20.02
 .
 .
 .

Reference: SET ALL=ON With a Non-unique Join

With a non-unique join, SET ALL=ON produces a left outer join regardless of whether FOCUS or
the RDBMS handles the join:

If optimization is enabled and SQLJOIN OUTER is ON, the adapter passes a left outer join to
the RDBMS.

If optimization is disabled or optimization is enabled but SQLJOIN OUTER is OFF, FOCUS
handles the join. Honoring the SET ALL command, FOCUS includes all host rows. Since the
join is non-unique, it also includes multiple matching rows.

In both cases the report results are the same.

Missing Rows of Data in Cross-referenced Tables

252

If there are no cross-referenced rows for a host row, the cross-referenced columns display the
NODATA value.

Example: Non-Unique Join Processing With SET ALL = ON

The following example executes the same report request as in Non-Unique Join Processing With
SET ALL = OFF, except that SET ALL is ON:

SET ALL = ON
TABLE FILE EMPINFO
PRINT DED_CODE DED_AMT
BY DEPARTMENT BY EMP_ID BY DEDDATE
END
 NUMBER OF RECORDS IN TABLE= 450 LINES= 450

John Royce (333121200) is now on Page 1 and Donna Lee (455670000) on Page 8. The
department column for John Royce (333121200) displays the NODATA value, since the field
has MISSING=ON:

PAGE 1

 DEPARTMENT EMP_ID DEDDATE DED_CODE DED_AMT
 ---------- ------ ------- -------- -------
 . 333121200 . . .
 MIS 112847612 82/01/29 CITY $1.43
 FED $121.55
 FICA $100.10
 HLTH $22.75
 LIFE $13.65
 .
 .
 .

Donna Lee (455670000) works for MIS:

PAGE 8

 DEPARTMENT EMP_ID DEDDATE DED_CODE DED_AMT
 ---------- ------ ------- -------- -------
 MIS 326179357 82/07/30 STAT $88.93
 82/08/31 CITY $6.35
 FED $539.96
 FICA $444.67
 HLTH $45.37
 LIFE $27.22
 SAVE $108.90
 STAT $88.93
 455670000 . . .
 543729165 82/04/30 CITY $.72
 .
 .
 .

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 253

Note: The report that results from passing a request to the RDBMS with SET ALL=ON may be
sorted in a slightly different order from the report produced if FOCUS processes the join.
However, both results are equally correct.

Reference: SET ALL=ON With Screening Conditions

When SET ALL=ON, screening conditions affect report results for a non-unique join. If a
screening test specifies a field from the cross-referenced structure, host rows whose cross-
referenced rows were screened out are not represented, regardless of the SET ALL command.

The following example includes a WHERE test to screen for health deduction records:

JOIN EMP_ID IN EMPINFO TAG F1 TO ALL DEDEID IN DEDUCT TAG F2 AS JOIN1
SET ALL=ON
TABLE FILE EMPINFO
SUM DED_AMT
BY DEPARTMENT BY LAST_NAME BY FIRST_NAME BY DED_CODE
WHERE DED_CODE EQ 'HLTH'
END

Royce and Lee are omitted as the result of the WHERE test, because they have no deduction
code records:

 DEPARTMENT LAST_NAME FIRST_NAME DED_CODE DED_AMT
 ---------- --------- ---------- -------- -------
 MIS BLACKWOOD ROSEMARIE HLTH $226.87
 CROSS BARBARA HLTH $330.21
 JONES DIANE HLTH $121.16
 MCCOY JOHN HLTH $16.50
 SMITH MARY HLTH $181.99
 PRODUCTION BANNING JOHN HLTH $41.25
 IRVING JOAN HLTH $427.35
 MCKNIGHT ROGER HLTH $122.43
 ROMANS ANTHONY HLTH $105.60
 STEVENS ALFRED HLTH $69.44

Reference: Selective ALL. Prefix

Even if SET ALL=OFF, you can apply the effect of the ON setting to specific tables. To do this,
add the ALL. prefix to one of the host fields in the request. The ALL. prefix causes FOCUS to
process host rows even if they have missing cross-referenced rows. Like SET ALL=ON, the
report results depend on whether screening tests exist for the cross-referenced fields.

For example, when the ALL. prefix is applied to the field DEPARTMENT, the report results are
the same as for SET ALL=ON. (The report is displayed in Non-Unique Join Processing With SET
ALL = ON).

Missing Rows of Data in Cross-referenced Tables

254

SET ALL=OFF
TABLE FILE EMPINFO
PRINT DED_CODE DED_AMT
BY ALL.DEPARTMENT BY EMP_ID BY DEDDATE
END

Note: The ALL. prefix is only effective when the SET ALL value is OFF. SET ALL=ON overrides
the ALL. prefix.

Summary Chart

This summary chart lists possible report results for dynamic joins and multi-table Master Files
(embedded joins):

Join Type RDBMS Behavior (Optimization Enabled) FOCUS Behavior (Optimization Disabled)

NON-UNIQUE

Dynamic
(JOIN...TO

ALL)or
Embedded
(SEGTYPE=S0 or

KL)

Outer Join Inner Join Outer join

(Also applies if
Optimization
Enabled and
SQLJOIN OUTER
OFF)

Inner join

Short paths Appear with
NODATA (.) value
for fields of all
missing segments

Do not appear Appear with
NODATA (.) value
for fields of all
missing segments

Do not appear

More than one
matching row

All matching rows
appear

All matching rows
appear

All matching rows
appear

All matching rows
appear

UNIQUE

Dynamic
(JOIN...TO)

or Embedded
(SEGTYPE=U or

KLU)

Outer join Inner Join FOCUS Unique

(Also applies if
Optimization
Enabled and
SQLJOIN OUTER
OFF)

FOCUS Unique

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 255

Join Type RDBMS Behavior (Optimization Enabled) FOCUS Behavior (Optimization Disabled)

Short paths Appear with
NODATA (.) value
for fields of all
missing segments

Do not appear Appear with blank
or zero for missing
values

Appear with blank
or zero for missing
values

More than one
matching row

All matching rows
appear

All matching rows
appear

Only first matching
row appears

Only first matching
row appears

Note:

For non-unique dynamic and embedded joins, use SET ALL=ON to display the short paths.

For unique dynamic and embedded joins, use either OPTIMIZATION OFF or SET ALL=ON to
display the short paths.

For unique dynamic and embedded joins, when OPTIMIZATION is OFF or SET ALL = ON with
SQLJOIN OUTER OFF, FOCUS produces an outer join unless there is more than one
matching row. If there is more than one matching row, only the first matching row appears.

JOIN Utilities

You can check and control the status of join structures with three commands, CHECK FILE, ?
JOIN query, and JOIN CLEAR.

CHECK FILE

The CHECK FILE command produces a diagram of host and cross-referenced relationships and
retrieval paths. CHECK FILE also reloads the Master File and checks the Master File syntax.

To display the structure, at the FOCUS command level type

CHECK FILE name PICT[URE] [RETRIEVE] [HOLD] [JOIN]

where:

name

Is the name of the host structure (for a dynamic join) or of a multi-table Master File.

PICT[URE]

Displays a diagram of the structure.

JOIN Utilities

256

RETRIEVE

Is optional. Modifies the diagram to show retrieval paths, especially how a unique table is
treated as an extension of its host. See your FOCUS documentation for more information.

HOLD

Creates a temporary HOLD file containing detailed information about the fields and
segments in the structure.

JOIN

Loads and parses the Access File, checking for syntax errors. It does not check for the
existence of the tables or databases named. It checks for the existence of the fields used
as the KEYFLD and IXFLD pairs that implement an equijoin, but not their data types.

Used in conjunction with the HOLD option, JOIN adds a field named INDX to the HOLD file.
The value 1 in this field indicates that you can join to the field. This option is useful when
joining to a data source that requires the target of a join to be a key or index field.

On the diagram, labels for non-unique (KM) or unique (KU) next to the cross-referenced
structure indicate whether the dynamic JOIN is non-unique or unique. Only the first four
fieldnames of each structure display.

The letter K next to a field indicates that it represents the foreign key column or the first
column of a composite foreign key. If the cross-referenced structure has descendants, the
descendants are labeled as either KL (keyed through linkage) or KLU (keyed through linkage
unique), depending on how their relationship was declared to FOCUS.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 257

Example: Displaying a Structure With CHECK FILE

JOIN EMP_ID IN EMPINFO TAG FILE1 TO ALL WHO IN COURSE TAG FILE2 AS J1

CHECK FILE EMPINFO PICT

 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 1 VIRTUAL= 1)
 NUMBER OF FIELDS= 13 INDEXES= 0 FILES= 2
 TOTAL LENGTH OF ALL FIELDS= 95

 SECTION 01
 STRUCTURE OF GNTINT FILE EMPINFO ON 06/19/90 AT 12.17.40

 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

 I
 I
 I
 I COURSE
 02 I KM

 :CNAME ::
 :WHO ::K
 :GRADE ::
 :YR_TAKEN ::
 : ::
 :............::
 :
 JOINED COURSE

Note: “JOINED COURSE” indicates that this relationship was created by a dynamic JOIN
command rather than a multi-segment Master File.

? JOIN

For all dynamic joins that are in effect, the ? JOIN query command identifies the fields
representing the primary/foreign key field pair, the host structure, the cross-referenced
structure, any specified join name, the type of join (non-unique or unique, as indicated by the
presence or absence of the ALL keyword), and whether the join is conditional.

To list all active dynamic join structures, enter:

? JOIN

JOIN Utilities

258

For example:

? join
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
PAYEID PAYINFO P1 EMP_ID EMPINFO E1 Y Y

Note: The ? JOIN query command displays only the first join pair for multi-field joins.

JOIN CLEAR

A maximum of 1023 dynamic joins can be active in any FOCUS session. The JOIN CLEAR
command can release either all or specific existing joins. The syntax is

JOIN CLEAR {*|joinname}

where:

*

Clears all existing joins.

joinname

Is a specific join to be cleared.

The effect of the JOIN CLEAR command depends on whether conditional joins exist:

If no conditional joins exist, the JOIN CLEAR command clears all virtual fields defined for
the host data source and the joined structure.

If conditional joins exist but were issued prior to the join you want to clear, the JOIN CLEAR
command clears only the specified join. Any virtual fields saved in the context of a join that
is cleared will also be cleared.

If conditional joins exist and were issued subsequent to the join you want to clear, or if the
join you want to clear is a conditional join, the JOIN CLEAR command clears the specified
join and all subsequent joins issued for the same host file.

The JOIN CLEAR * command clears every join that was issued along with its associated virtual
fields. However, virtual fields defined in the null context (prior to any joins) remain in effect.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 259

Implementing Search Limits

The RECORDLIMIT phrase sets a maximum for the number of rows the adapter fetches from
the answer set returned by the RDBMS. It does not restrict the RDBMS in its construction of
the answer set. However, if the RDBMS does not have to sort the answer set, using this
feature may result in a significant reduction in response time.

The READLIMIT phrase is synonymous with RECORDLIMIT except in the following cases:

The Adapter for Oracle passes READLIMIT screening conditions to the Oracle RDBMS as
SQL WHERE ROWNUM <=n clauses. ROWNUM is a special pseudo column that allows
Oracle to limit the number of rows retrieved and returned.

For DB2, READLIMIT appends a FETCH FIRST n ROWS ONLY clause to the generated SQL,
restricting the size of the answer set constructed by the RDBMS. For n=1, the SQL request
contains the clause FETCH FIRST 1 ROW ONLY. The reduction in answer set size reduces
response time and enhances performance. This can improve DB2 performance if you know
the size of the desired answer set in advance. For more information, consult the IBM DB2
SQL Reference Manual.

The READLIMIT and RECORDLIMIT phrases are effective in reducing RDBMS-to-FOCUS
communication traffic, the volume of formatted report data, and terminal and disk I/Os.

Search limit tests are helpful when:

Testing a new Master File. Reporting requires only a few rows to indicate if the description
is accurate.

Using the trace facility in problem resolution.

Testing the format of a new report.

In all three cases, a few rows are sufficient to verify results.

Syntax: How to Implement Search Limits

{WHERE|IF} {RECORDLIMIT|READLIMIT} {EQ|IS} n

where:

n

Is the number of records to be included in the TABLE request.

The FOCUS database administrator may place the READLIMIT or RECORDLIMIT test in a Master
File to limit the fetching of rows for all users. If the Master File and the report request both
contain such a test, the adapter uses the lower of the two values.

Implementing Search Limits

260

Note:

For IDMS/SQL and Teradata, READLIMIT and RECORDLIMIT are synonymous and do not
pass any special SQL syntax to the RDBMS.

In some instances, the RDBMS performs a substantial volume of work before returning any
data to FOCUS. To limit the amount of work performed by the RDBMS, add another IF or
WHERE test to one or more of the tables in the request.

Example: Reducing DB2 Answer Set Size

The following request turns on the STMTRACE trace component and issues a retrieval request
with a READLIMIT phrase. The SQL request contains the FETCH FIRST 2 ROWS clause:

SET TRACEUSER=ON
SET TRACEOFF=ALL
SET TRACEON=STMTRACE//CLIENT
TABLE FILE EMPINFO
PRINT LAST_NAME FIRST_NAME CURRENT_SALARY
BY EMP_ID
IF READLIMIT EQ 2
END

The generated SQL request contains the FETCH FIRST 2 ROWS clause:

 SELECT T1."EID",T1."LN",T1."FN",T1."CSAL" FROM
USER1."EMPINFO" T1 ORDER BY T1."EID" FETCH FIRST 2 ROWS ONLY FOR FETCH ONLY;

If the test specifies READLIMIT EQ 1, the SQL request contains the clause FETCH FIRST 1
ROW ONLY:

 SELECT T1."EID",T1."LN",T1."FN",T1."CSAL" FROM
 USER1.EMPINFO" T1 ORDER BY T1."EID" FETCH FIRST 1 ROW ONLY FOR FETCH ONLY;

Example: Using Oracle READLIMIT Optimization

Assume the EMPLOYEE Master File describes the Oracle table USER1.PAYROLL and consider
the following request:

TABLE FILE EMPLOYEE
PRINT EMP_ID
WHERE READLIMIT EQ 5
END

The Adapter for Oracle generates the following SQL for this request:

SELECT T1.EMP_ID FROM "USER1"."PAYROLL" T1 WHERE ROWNUM <=5;

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 261

Because the screening condition is passed to the RDBMS, only the first five rows retrieved by
Oracle are returned. This results in less communication between the RDBMS and FOCUS and
less processing by FOCUS prior to displaying the report output.

Array Blocking for SELECT Requests

The Adapters for Oracle and DB2 support array retrieval from result sets produced by executing
SELECT queries or stored procedures. This technique substantially reduces network traffic and
CPU utilization.

High FETCHSIZE values increase the efficiency of requests involving many rows, at the cost of
higher virtual storage requirements. The default value is 20 for Oracle and 100 for DB2. A
value higher than 100 is not recommended because the increased efficiency it would provide
is generally negligible.

For more information, see Adapter Commands on page 309.

Multiple Retrieval Paths

This section discusses retrieval performance for multi-table Master Files and dynamic joins of
three or more tables. It also explains the role of unique cross-referenced tables.

Master Files and JOIN commands define data retrieval paths. The adapter queries only those
RDBMS tables necessary for the report. These include tables containing fields specified in the
request plus any connecting tables needed to construct a retrieval plan (subtree). The retrieval
sequence of a subtree is top to bottom, left to right.

Note: A TABLE request that references a dynamically joined structure generates SQL join
predicates for all segments in the subtree that starts from the root segment. Multi-table
Master Files do not necessarily generate these predicates. In a multi-table structure, the
subtree effectively begins with the highest referenced segment. This difference may cause
identical TABLE requests to produce different reports when run against a dynamic join
structure and a multi-table Master File that represent the same tree structure.

FOCUS treats unique tables as extensions of their hosts. In cases where the host has both
unique and non-unique cross-referenced tables, FOCUS always retrieves the unique cross-
referenced tables first.

To display retrieval paths, use the CHECK FILE command with the RETRIEVE option. (See
CHECK FILE on page 256).

Array Blocking for SELECT Requests

262

Multiple Retrieval Paths With Sort Phrases and Screening Tests

Fields specified in sort phrases (BY and ACROSS) and screening tests (IF and WHERE) must lie
on the same retrieval path as the other requested fields. That is, the table containing the BY
field or column being screened must precede or follow other tables referenced in the request.
A field that is not on the same path generates FOCUS error message FOC029.

8. Advanced Reporting Techniques

Relational Data Adapter User’s Manual 263

Multiple Retrieval Paths

264

Chapter9
Direct SQL Passthru

With the Direct SQL Passthru facility, you can issue any native SQL command directly to
the RDBMS. This facility, included with the adapter, provides support for both native SQL
and adapter environmental commands. You must know native SQL to use this feature for
issuing SQL statements, but not for the adapter SET commands.

In this chapter:

Direct SQL Passthru Advantages

Invoking Direct SQL Passthru

Issuing Commands and Requests

Parameterized SQL Passthru

Direct SQL Passthru Advantages

Issuing requests through the Direct SQL Passthru facility eliminates the need for Master and
Access Files but retains all FOCUS reporting capabilities.

Note: Direct SQL Passthru is not available within MODIFY.

Direct SQL Passthru provides the following advantages:

Support for native SQL commands, including SQL SELECT statements.

With Direct SQL Passthru, a storage area is created for the RDBMS-supplied data (answer
sets) that result from SELECT statements. Therefore, you can issue SELECT statements.

Support for all SQL SELECT options.

You can issue any SELECT syntax supported by the RDBMS, regardless of whether an
equivalent FOCUS operation exists. Neither the adapter nor the Direct SQL Passthru facility
translates SQL to FOCUS in order to process a request.

For example, no FOCUS syntax exists that would cause the adapter to generate one
SELECT with a UNION or with a subquery. The Direct SQL Passthru facility supports both
operations.

Support for parameter markers in Direct SQL Passthru commands, so you can execute
them repeatedly with varying input values.

Relational Data Adapter User’s Manual 265

An alternative to the SQL Translator.

Some applications use the SQL Translator to access the RDBMS using an adapter. The
Translator translates SQL to FOCUS, and then the adapter uses this FOCUS code to
generate SQL that it passes to the RDBMS. The Direct SQL Passthru facility bypasses
internal translation and offers a more direct means of accessing the RDBMS.

The Translator supports one SQL dialect, ANSI standard Level 2 SQL. You can use the
Translator to produce reports from any data source that is described to FOCUS (for
example, IMS, a FOCUS data source, or the DB2 RDBMS). For more information about the
SQL Translator and access to FOCUS data sources, see your FOCUS documentation.

Note: If your site installed the adapter with the IM parameter set to 0, certain SQL
commands will be disabled. Issuing these commands will produce error message
FOC1638. You can issue SQL SELECT commands regardless of the IM setting; they are
never disabled. Refer to your adapter installation guide for more information.

Invoking Direct SQL Passthru

To invoke the Direct SQL Passthru facility, you must establish the target RDBMS in either of
the following two ways:

Issue the adapter SET SQLENGINE command to establish the target RDBMS for the
duration of the FOCUS session or until you issue another SET SQLENGINE command. The
adapter automatically passes subsequent SQL commands to the specified RDBMS.

Specify the target RDBMS in your request. (See Issuing Commands and Requests on page
267 for information about issuing commands and requests.)

Invoking Automatic Passthru

If you do not establish a target RDBMS, the SQL Translator processes the request. However,
the Translator will invoke Automatic Passthru (APT) when the SQL submitted contains valid
syntax for the RDBMS being accessed.

As a result, the SQL code will not be processed by FOCUS, but instead will be sent directly to
the RDBMS. Column names displayed in the report will be the RDBMS table column names,
which correspond with the Master File ALIAS values. If this behavior is not desirable, you can
disable Automatic Passthru for the request by issuing the SET APT=OFF; command in the SQL
query:

Invoking Direct SQL Passthru

266

SQL
SET APT = OFF;
 sql statement
END

Syntax: How to Issue the SET SQLENGINE Command

SET SQLENGINE = sqlengine

where:

sqlengine

Indicates the target RDBMS. Valid values are

DB2

Indicates the DB2 RDBMS.

SQLDBC

Indicates the Teradata RDBMS.

SQLIDMS

Indicates the CA-IDMS/SQL RDBMS.

SQLORA

Indicates the Oracle RDBMS.

OFF

Indicates that unless the request specifies a target RDBMS, the SQL Translator will
process the request. OFF is the default setting.

You can change the SQLENGINE setting at any point in your FOCUS session.

Issuing Commands and Requests

If you do not issue the SET SQLENGINE command, you must specify the target RDBMS in any
SQL command you want to pass directly to the RDBMS.

Including a target RDBMS in your command overrides the SET SQLENGINE command. For
example, you can specify your RDBMS and override an existing OFF setting. If you do not
specify a target RDBMS (either in your command or with the SET SQLENGINE command), the
SQL keyword invokes the Translator.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 267

Syntax: How to Issue a Direct SQL Passthru Request

The following is a request syntax summary for native SQL commands, including SELECT
statements, and for adapter environmental commands; subsequent sections provide examples

{ENGINE|SQL} [sqlengine]
command [;]
[TABLE FILE SQLOUT]
[options]
END

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

command

Is one SQL command, or one or more adapter SET commands.

;

For SQL SELECT requests only, the semicolon is required if you specify additional FOCUS
report options.

TABLE FILE SQLOUT

For SQL SELECT requests only, allows you to specify additional FOCUS report options or
subcommands. To create a Master File you can use throughout the FOCUS session, see
Creating a FOCUS View With Direct SQL Passthru on page 281.

options

For SQL SELECT requests only, are report formatting options or operations.

END

Terminates the request. Is optional for adapter SET commands, the SQL commands
COMMIT WORK and ROLLBACK WORK, the DB2 CONNECT command, and the adapter
parameterized Passthru commands BEGIN SESSION, END SESSION, and PURGE (see
Parameterized SQL Command Summary on page 284). Required for all other commands.

Note:

The OFF setting is valid only for the SET SQLENGINE command.

You cannot issue an SQL command together with adapter SET commands in one request.

Issuing Commands and Requests

268

Displaying the Effects of UPDATE and DELETE Commands

You can use the SET PASSRECS command to display the number of rows affected by a
successfully executed Direct SQL Passthru UPDATE or DELETE command. The syntax is

{ENGINE|SQL} [sqlengine] SET PASSRECS {OFF|ON}

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

OFF

Is the default value. The adapter provides no information as to the number of records
affected by a successfully executed Direct SQL Passthru UPDATE or DELETE command.

ON

Provides the following message after the successful execution of a Direct SQL Passthru
UPDATE or DELETE command:

(FOC1364) ROWS AFFECTED BY PASSTHRU COMMAND: #/operation

For example, a DELETE command that executes successfully and affects 20 rows generates
the following message:

(FOC1364) ROWS AFFECTED BY PASSTHRU COMMAND: 20/DELETE

In addition to this message, the adapter updates the &RECORDS system variable with the
number of rows affected. You can access this variable using Dialogue Manager, and display it
with the ? STAT query.

Note:

You must use Direct SQL Passthru syntax to issue UPDATE or DELETE commands in order
to invoke the SET PASSRECS command.

The FOC1364 message is for informational purposes only and does not affect the
&FOCERRNUM setting.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 269

The &ROWSAFFECTED variable is populated with the number of rows affected by a Direct SQL
Passthru INSERT, UPDATE, or DELETE command. It is populated regardless of the PASSRECS
setting. &ROWSAFFECTED is initialized to -1 and is set to -1 by any Direct SQL Passthru
command that does not return the number of rows affected, such as a SELECT statement. The
value of &ROWSAFFECTED is overwritten each time a Direct SQL Passthru INSERT, UPDATE, or
DELETE command is executed, so if you want to retain it, you must copy it to another variable
or store it in a calculated field.

Issuing Adapter Environmental Commands

You can issue one or more adapter SET commands in a request using Direct SQL Passthru.
Adapter SET commands are not passed to the RDBMS. The adapter maintains them in
memory.

Example: Issuing Adapter Environmental Commands

The following example specifies the DB2 RDBMS as the target RDBMS, issues four adapter
SET commands, and issues the SQL ? query command to display the updated parameters.
Notice that the request does not include the environmental qualifiers TSO or MVS.

SET SQLENGINE=DB2
SQL SET AUTOCLOSE ON FIN
SQL SET SSID DSN
SQL SET PLAN P7029910
SQL SET DBSPACE PUBLIC.SPACE0
SQL ?

The output is

(FOC1440) CURRENT SQL INTERFACE SETTINGS ARE :
(FOC1442) CALL ATTACH FACILITY IS - : ON
(FOC1447) SSID FOR CALL ATTACH IS - : DSN
(FOC1448) ACTIVE PLAN FOR CALL ATTACH IS - : USERCAF
(FOC1459) USER SET PLAN FOR CALL ATTACH IS - : P7029910
(FOC1460) INSTALLATION DEFAULT PLAN IS - : M727703B
(FOC1503) SQL STATIC OPTION IS - : OFF
(FOC1444) AUTOCLOSE OPTION IS - : ON FIN
(FOC1496) AUTODISCONNECT OPTION IS - : ON FIN
(FOC1499) AUTOCOMMIT OPTION IS - : ON COMMAND
(FOC1449) CURRENT SQLID IS - : SYSTEM DEFAU
(FOC1424) ISOLATION LEVEL FOR DB2 TABLE INTERFACE IS :
(FOC1491) FETCH BUFFERING FACTOR - : 100
(FOC1441) WRITE FUNCTIONALITY IS - : ON
(FOC1445) OPTIMIZATION OPTION IS - : OFF
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : ON
(FOC1484) SQL ERROR MESSAGE TYPE IS - : DBMS
(FOC1497) SQL EXPLAIN OPTION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW
(FOC1446) DEFAULT DBSPACE IS - : PUBLIC.SPACE

Issuing Commands and Requests

270

See Adapter Commands on page 309, for information about adapter SET commands.

Issuing Native SQL Commands (Non-SELECT)

When the adapter identifies SQL commands, it passes them to the RDBMS for immediate
execution.

With Direct SQL Passthru, one SQL command can span several lines without any prefix or
continuation characters. You must complete the command or request with the END keyword.

Example: Issuing Native SQL Commands (Non-SELECT)

This example specifies the DB2 RDBMS as the target RDBMS, creates the DPBRANCH table,
and inserts rows.

SET SQLENGINE=DB2
SQL CREATE TABLE DPBRANCH
 (BRANCH_NUMBER INTEGER NOT NULL,
 BRANCH_NAME CHAR(5) NOT NULL,
 BRANCH_MANAGER CHAR(5) NOT NULL,
 BRANCH_CITY CHAR(5) NOT NULL)
 IN PUBLIC.SPACE0 ;
END
SQL INSERT INTO DPBRANCH VALUES (1,'WEST','PIAF','NY') ;
END
SQL INSERT INTO DPBRANCH VALUES (2,'EAST','SMITH','NY') ;
END

Consult File Descriptions and Tables on page 459 for sample tables.

Issuing SQL SELECT Commands

When you issue an SQL SELECT request using the Direct SQL Passthru facility, the adapter
passes the request directly to the RDBMS. FOCUS does not examine it. The RDBMS evaluates
the request and sends storage requirements to FOCUS for future request results (answer
sets).

Based on the storage requirements, FOCUS creates an internal Master File named SQLOUT
(discussed in The SQLOUT Master File on page 273. The SQLOUT Master File functions as a
template for reading and formatting the request results.

The SQLOUT Master File resides in memory. You cannot edit or print it. It exists only for the
duration of the request. Subsequent requests cannot reference it. To create an internal Master
File that exists for the entire FOCUS session, see Creating a FOCUS View With Direct SQL
Passthru on page 281.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 271

After FOCUS prepares the storage area and the SQLOUT Master File, the RDBMS executes the
SQL SELECT request, retrieves the rows, and returns the answer set to FOCUS. The answer set
is, in effect, a default report. FOCUS performs minimal additional formatting. When the report
is complete, the internal SQLOUT Master File is discarded.

The RDBMS reads data once for SELECT requests using Direct SQL Passthru. FOCUS does not
hold or re-read data locally, except for some types of TABLE subcommands (for example, to re-
sort or summarize rows). For performance reasons, you should incorporate as many operations
as possible (particularly, sorting and aggregation operations) in your SELECT statement and
rely on FOCUS for formatting and operations not available through the RDBMS.

Example: Issuing SQL SELECT Commands

The following example illustrates a SELECT statement and its default report. The SELECT
statement retrieves, from the inventory table, the total number of individual units of products
from each vendor for all branches located in New York. The subquery retrieves New York
branch numbers. The request does not specify additional report formatting:

ENGINE DB2
SELECT VENDOR_NUMBER, PRODUCT, SUM(NUMBER_OF_UNITS)
FROM DPINVENT
WHERE BRANCH_NUMBER IN
 (SELECT BRANCH_NUMBER
 FROM DPBRANCH
 WHERE BRANCH_CITY = 'NY')
GROUP BY VENDOR_NUMBER, PRODUCT
ORDER BY VENDOR_NUMBER, PRODUCT;
END

The output is:

VENDOR_NUMBER PRODUCT E03
------------- ------- ---
 1 RADIO 10
 3 MICRO 9

To produce the preceding default report, the Direct SQL Passthru facility implicitly issues the
following TABLE request against the SQLOUT Master File:

TABLE FILE SQLOUT
PRINT *
END

Internally, the process produces an SQLOUT Master File (described in The SQLOUT Master File
on page 273) that you can use for FOCUS report formatting commands.

Issuing Commands and Requests

272

For an example of a SELECT request that includes FOCUS report formatting commands, see
The SQLOUT Master File on page 273.

The SQLOUT Master File

To give you access to FOCUS report formatting facilities, the adapter generates the SQLOUT
Master File for each SQL SELECT query. The SQLOUT Master File supports read-only access.
The adapter creates this internal Master File in memory based on information from the
RDBMS. You cannot edit or print the SQLOUT Master File. It exists only for the immediate
request, so subsequent requests cannot reference it.

Note: The adapter does not generate an associated Access File, since the SQL statement is
stored in memory.

The SQLOUT Master File describes the answer set. Each field represents one data element in
the outermost SELECT list, reflecting the flat row that the RDBMS returns.

Example: Sample SQLOUT Master File

The following is the SQLOUT Master File created for the example in Issuing SQL SELECT
Commands on page 271:

FILENAME=SQLOUT, SUFFIX=SQLDS, $
 SEGNAME=SQLOUT, SEGTYPE=S0, $
 FIELD='VENDOR_NUMBER' , E01, USAGE=I11 ,ACTUAL=I4 ,MISSING=OFF, $
 FIELD='PRODUCT' , E02, USAGE=A5 ,ACTUAL=A5 ,MISSING=OFF, $
 FIELD='__SUM(NUMBER_OF_UNITS)',
 E03, USAGE=I11 ,ACTUAL=I4 ,MISSING=OFF, $

The FILENAME and the SEGNAME values are SQLOUT. The SUFFIX is SQLDS, SQLDBC,
SQLIDMS, or SQLORA depending on the target engine for the request. The SEGTYPE is S0.
These values are constant.

The Adapters for DB2 and IDMS/SQL use the SQL DESCRIBE function to obtain column
information:

The FIELDNAME value is the column name. For Teradata, the field name is the same
default value assigned to the alias name. For expressions or functions, the FIELDNAME
value depends on the RDBMS. For example, the DB2 RDBMS does not return a column
name, so the field name and the alias are assigned the same default values.

The ALIAS value is set to E0n (n starts at 1 and is incremented by 1 for each data element
in the outermost SELECT list).

The MISSING value is ON if the column allows nulls. Otherwise, it is set to OFF.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 273

The adapter calculates USAGE and ACTUAL formats based on the column data type and length.
The following charts outline these calculations.

Reference: SQLOUT Formats for DB2 and IDMS/SQL

 ACTUAL Formats MISSING=

DATE YYMD DATE same

TIME HHIS HHIS same

TIMESTAMP HYYMDm HYYMDm same

INTEGER I11 I4 same

SMALLINT I6 I2 I4

DECIMAL Pp.s P((p+1)/2) P((p+1)/2) if p>15, P8 if
p<=15

Where p is precision and s is scale. Precision in the USAGE format includes the decimal
point and sign; precision in the ACTUAL format excludes them.

FLOAT (4
byte)

F9.2 F4 same

FLOAT (8
byte)

D12.2 D8 same

VARCHAR(n) An An same

Where n <= 254 characters.

VARCHAR(n) TX50 TX same

Where 254 < n <= 4094 characters. Note: VARCHAR strings > 4094 characters are not
supported.

CHAR(n) An An same

GRAPHIC(n) A(2n+2) Kn same

Issuing Commands and Requests

274

 ACTUAL Formats MISSING=

Where n <= 127 characters.

VARGRAPHIC(n
)

A(2n+2) Kn same

Where n <= 127 characters Note: VARGRAPHIC(n) where n >127 characters is not
supported.

Note: Results of expressions are also one of these data types.

Reference: SQLOUT Formats for Teradata

ACTUAL Formats MISSING=

DATE YYMD DATE same

INTEGER I11 I4 same

SMALLINT I6 I2 I4

DECIMAL Pp.s P((p+1)/2) P((p+1)/2) if p>15, P8 if
p<=15

Where p is precision and s is scale. Precision in the USAGE format includes the decimal
point and sign; precision in the ACTUAL format excludes them.

FLOAT (8
byte)

D12.2 D8 same

VARCHAR(n) An An same

CHAR(n) An An same

BYTE An An same

BYTEINT I6 I2 I4

VARBYTE An An same

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 275

ACTUAL Formats MISSING=

GRAPHIC(n) A(2n+2) Kn same

Where n <= 127 characters.

VARGRAPHIC(n
)

A(2n+2) Kn same

Where n <= 127 characters Note: LONG VARGRAPHIC (VARGRAPHIC(n) where n >127
characters) is not supported.

Note: Results of expressions are also one of these data types.

Reference: SQLOUT Formats for Oracle

ACTUAL Formats MISSING=

DATE HYYMDS HYYMDS same

NUMBER(p,s) I11
Pp.s
D12.2

I4
P((p+1)/2)
D8

same, if p=38,s=0
P8 if p<=15
same, if p>15

Where p is precision and s is scale. Precision in the USAGE format includes the decimal
point and sign; precision in the ACTUAL format excludes them.

VARCHAR(n) An An same

Where n £ 254 characters.

LONG(n) TX50 TX same

Where 254 < n <= 4094 characters. Note: VARCHAR strings > 4094 characters are not
supported.

CHAR(n) An An same

RAW(n) A2n A2n same

Issuing Commands and Requests

276

ACTUAL Formats MISSING=

Where n <= 128 characters Note: Oracle converts RAW data to and from CHAR data. The
data is represented as 1 hexadecimal character, which is equivalent to 2 alphanumeric
characters.

Note: Results of expressions are always floating point.

Syntax: How to Alter Length and Scale of Numeric Columns Returned

You can use the SET CONVERSION command to alter the length and scale of numeric columns
displayed from a SELECT request. That is, you can control the USAGE attribute in the
dynamically created Master File.

{ENGINE|SQL} [sqlengine] SET CONVERSION {RESET|dtype} [RESET|PRECISION
{value|MAX}]

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

RESET

Returns precision and scale values that you previously altered back to the data adapter
defaults. If you specify RESET immediately following the SET CONVERSION command, all
data types return to the defaults. If you specify RESET following a particular data type, only
columns of that data type are reset.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 277

dtype

Applies the command only to columns of a specific data type. Valid datatypes are:

INTEGER

INTEGER (and, for Oracle, SMALLINT).

DECIMAL

DECIMAL.

REAL

Single precision floating point. Not supported for Oracle or Teradata.

FLOAT

Double precision floating point.

value

Is the precision in the following form:

nn [mm]

where:

nn

Must be greater than 1 and less than the maximum allowable value for the data type.
(See description of MAX.)

mm

Is the scale. Valid with DECIMAL, REAL, and FLOAT data types. If you do not specify a
value for scale, the current scale setting remains in effect.

MAX

Sets the precision to the maximum allowable value for the indicated data type:

DATA TYPE MAX Precision

INTEGER 11

REAL 9

FLOAT 20

DECIMAL 33

Issuing Commands and Requests

278

Note: You must include space for the decimal point and for a negative sign (if applicable)
in your precision setting.

Example: Altering the Length and Scale of Numeric Columns Returned

To set the precision for all INTEGER fields to 7:

SQL DB2 SET CONVERSION INTEGER PRECISION 7

To set the precision for all DOUBLE PRECISION fields to 14 and the scale to 3:

ENGINE DB2 SET CONVERSION FLOAT PRECISION 14 3

To set the precision for all INTEGER fields to the default:

SQL DB2 SET CONVERSION INTEGER RESET

To set the precision and scale for all fields to the defaults:

ENGINE DB2 SET CONVERSION RESET

Syntax: How to Control the Precision of the Oracle NUMBER Data Type

You can use the ORANUMBER setting to override the default mapping of a NUMBER data type
with precision between 32 and 38.

SQL [SQLORA] SET ORANUMBER {COMPAT|DECIMAL}

where:

SQLORA

Indicates the Oracle Data Adapter. You can omit this value if you previously issued the SET
SQLENGINE command.

COMPAT

Indicates that the NUMBER data type with precision between 32 and 37 will be mapped to
format D20.2.This is the default.

DECIMAL

Indicates that the NUMBER data type with precision between 32 and 37 will be mapped to
format P33.2.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 279

Example: Customizing Output of a Direct SQL Passthru Report Request

The following example illustrates how to customize the default report output from the example
in Issuing SQL SELECT Commands on page 271. The example adds the TABLE FILE SQLOUT
command to the SELECT statement, and follows it by a report heading and AS phrases that
rename column headings. The primary purpose of the TABLE FILE extension is for report
formatting:

SQL DB2
SELECT VENDOR_NUMBER, PRODUCT, SUM(NUMBER_OF_UNITS)
FROM DPINVENT
WHERE BRANCH_NUMBER IN
 (SELECT BRANCH_NUMBER
 FROM DPBRANCH
 WHERE BRANCH_CITY = 'NY')
GROUP BY VENDOR_NUMBER, PRODUCT
ORDER BY VENDOR_NUMBER, PRODUCT; TABLE FILE SQLOUT
"Number of Units of Each Vendor's Products"
" in New York Branches "
" "
PRINT E01 AS 'Vendor,Number'
 E02 AS 'Product,Name'
 E03 AS 'Total,Units'
END

The output is

 NUMBER OF RECORDS IN TABLE= 2 LINES= 2
PAGE 1
 Number of Units of Each Vendor's Products
 in New York Branches
 Vendor Product Total
 Number Name Units
 ------ ------- -----
 1 RADIO 10
 3 MICRO 9

Reference: Usage Notes for Customizing a Direct SQL Passthru Report

When customizing a report, standard FOCUS report request syntax applies, subject to the
following rules:

You must specify field names or aliases from the SQLOUT Master File.

You can include any FOCUS TABLE formatting options or subcommands that you can code
using the SQLOUT Master File.

Most reporting operations are available. For example, you can use prefix operators,
calculate COMPUTE fields, re-sort the answer set, reorder or suppress the printing of fields,
or create extract files with various formats, including HOLD FORMAT DB2.

Issuing Commands and Requests

280

DEFINE fields are not supported. They are supported for FOCUS views created with Direct
SQL Passthru. See Creating a FOCUS View With Direct SQL Passthru on page 281.

The ?F query command is not available for the SQLOUT Master File. It is available for
FOCUS views created with Direct SQL Passthru.

Creating a FOCUS View With Direct SQL Passthru

You can create a named, internal Master File (FOCUS view) for a particular SELECT statement
with the adapter SQL PREPARE command. Unlike the SQLOUT Master File, you can generate
reports with this FOCUS view for the entire FOCUS session.

In any FOCUS session, you can describe an unlimited number of FOCUS views.

Syntax: How to Create a FOCUS View With Direct SQL Passthru

{ENGINE|SQL} [sqlengine] PREPARE view_name FOR
SELECT....[;]
END

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

view_name

Names the Master File (FOCUS view). The name can be eight characters long and must
conform to FOCUS naming conventions for Master Files (see Describing Tables to FOCUS
on page 55).

SELECT...

Is any SELECT statement.

Reference: Usage Notes for Creating a FOCUS View

You cannot include FOCUS formatting options or subcommands. Issue a TABLE request
against the view name to create a report.

FOCUS views created with SQL PREPARE provide read-only access to data. Write operations
are not permitted.

Do not confuse creating a FOCUS view with creating an RDBMS view.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 281

The attributes and default aliases in the generated Master File are the same as those for the
SQLOUT Master File (see The SQLOUT Master File on page 273). Only its file or member name
and the FILENAME value reflect the view name you specify in the PREPARE command.

With Direct SQL Passthru, the PREPARE command only creates an internal Master File. The
RDBMS does not return data until you execute a TABLE request referencing the FOCUS view.
PREPARE does not generate an Access File. You supply the table names in SELECT statement
FROM clauses.

Master Files created with PREPARE reside in memory, so you cannot edit or print them. They
function like any other FOCUS Master File. For example, you can specify them with TableTalk.
You can assign DEFINE fields to them or use them in MATCH FILE commands. You can also
issue the ?F query to list the field names of the FOCUS view.

Example: Creating a FOCUS View

In this example, the DB2 RDBMS is the target RDBMS. The SQL PREPARE command creates a
view named TOTPROD:

SET SQLENGINE=DB2
SQL PREPARE TOTPROD FOR
SELECT VENDOR_NUMBER, PRODUCT, SUM(NUMBER_OF_UNITS)
FROM DPINVENT
WHERE BRANCH_NUMBER IN
 (SELECT BRANCH_NUMBER
 FROM DPBRANCH
 WHERE BRANCH_CITY = 'NY')
GROUP BY VENDOR_NUMBER, PRODUCT
ORDER BY VENDOR_NUMBER, PRODUCT;
END

After the TOTPROD view is created, you can assign a virtual HI_STOCK field to the TOTPROD
Master File and specify the virtual field in a report request:

DEFINE FILE TOTPROD
 HI_STOCK/A2 = IF (E03 GT 9) THEN '**' ELSE ' ' ;
END
TABLE FILE TOTPROD
"Number of Units of Each Vendor's Products"
" in New York Branches "
" "
PRINT E01 AS 'Vendor,Number'
 E02 AS 'Product,Name'
 E03 AS 'Total,Units'
 HI_STOCK AS ''
FOOTING
"** = Too many units in stock,"
" reevaluate purchasing. "
END

Issuing Commands and Requests

282

The output is

 NUMBER OF RECORDS IN TABLE= 2 LINES= 2
PAGE 1
Number of Units of Each Vendor's Products
 in New York Branches
Vendor Product Total
Number Name Units
------ ------- -----
 1 RADIO 10 **
 3 MICRO 9
** = Too many units in stock,
 reevaluate purchasing.

The one restriction on FOCUS views created with Direct SQL Passthru involves using them with
the FOCUS JOIN command. You cannot join two FOCUS views or a view with another FOCUS-
readable source. You can, however, create a HOLD file of data extracted from the FOCUS view
and use the HOLD file in the join.

Parameterized SQL Passthru

The Direct SQL Passthru facility supports parameterized SQL statements. These statements
incorporate parameter markers to indicate where a value should be substituted, so you can
execute the SQL statements multiple times with varying input values.

The following is an example of a parameterized SQL statement:

INSERT INTO INVENTORY (PARTNO) VALUES(?)

The INSERT statement is executed once for each value you provide for the parameter marker
(?), and a new row with that value is placed in the PARTNO column.

Note: You must use the proper form of parameter marker for the RDBMS you are accessing.
DB2, IDMS/SQL, and Teradata use the question mark (?) as the parameter marker. Oracle
uses :00n, where n is incremented by 1 for each parameter. For example:

SQL SQLORA PREPARE I FOR INSERT INTO EMP (EMP_ID,COURSE)
VALUES(:001,:002)
END

Parameterized SQL Passthru provides the following advantages:

You can execute an SQL statement using varying values without keying in the entire SQL
statement for each value.

Internally, it utilizes the optimal SQL for the native RDBMS.

The execution of a FOCUS session becomes equivalent to that of a 3GL program, with a
framework consisting of such elements as compiled statements and parameter markers
(input values).

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 283

Note:

All errors are posted to Dialogue Manager variables &RETCODE and &FOCERRNUM.

Direct SQL Passthru and Parameterized SQL Passthru are not available within MODIFY.

Parameterized SQL Command Summary

With parameterized SQL you can compile, bind, and repeatedly execute a series of SQL
commands. To avoid invoking END processing between the SQL statements in the series, you
place the whole sequence of SQL requests within SQL BEGIN SESSION and SQL END SESSION
commands.

To incorporate parameter markers in SQL statements, first compile the statements with the
PREPARE command, then bind them with the BIND command, and subsequently execute them
with the EXECUTE command. Place this group of actions within a BEGIN SESSION/END
SESSION pair. You can also include other FOCUS, SQL, and adapter environmental commands
within the BEGIN SESSION/END SESSION pair.

Subsequent sections explain the individual commands involved in Parameterized Passthru
design. Parameterized SQL Passthru Sample Session on page 293 contains a sample session.

Syntax: How to Issue Parameterized Passthru Commands

{ENGINE|SQL} [sqlengine] command [;]
[TABLE FILE statement_name]
[options]
END

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

command

Is one of the following: BEGIN SESSSION, END SESSION, PREPARE, BIND, or EXECUTE.

;

For SQL SELECT requests only, the semicolon is required if you intend to specify additional
FOCUS report options.

Parameterized SQL Passthru

284

TABLE FILE

Is permitted only with PREPARE and EXECUTE commands that invoke SQL SELECT
requests. This invokes FOCUS report formatting options or operations. By including a
TABLE FILE request, you can produce different customized reports with one SQL query. The
answer set is returned at EXECUTE time. If you include a TABLE FILE request in both a
PREPARE and EXECUTE command for the same SQL statement, the EXECUTE request
takes precedence.

statement_name

Is the name of a PREPAREd SELECT statement.

options

Are FOCUS report-formatting options.

END

Terminates the request. Is optional for adapter SET commands, the SQL commands
COMMIT WORK and ROLLBACK WORK, the DB2 CONNECT command, and the adapter
parameterized Passthru commands BEGIN SESSION, END SESSION, and PURGE
(discussed in subsequent sections). Required for all other commands.

Note: Do not confuse the SQL PREPARE and BIND statements with the RDBMS prepare and
bind. The RDBMS versions are not available through the adapter.

Using the SQL Passthru BEGIN/END SESSION Commands

The BEGIN SESSION command begins a sequence of Direct SQL Passthru commands. The
END SESSION command terminates the sequence.

Syntax: How to Begin and Terminate a Sequence of Direct SQL Passthru Commands

{ENGINE|SQL} [sqlengine] {BEGIN|END} SESSION

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

BEGIN

Indicates that a sequence of SQL commands is to be passed to the RDBMS. While the
BEGIN option is in effect, the END syntax that terminates each Direct SQL Passthru
statement does not automatically release resources.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 285

END

Indicates the end of a sequence of SQL commands. Closes all cursors and releases all
resources. Executes actions specified in SET action ON COMMAND (see Controlling
Connection Scope on page 295). Purges all statements PREPAREd inside the BEGIN
SESSION/END SESSION pair.

After the END SESSION command is executed, cursors and statements PREPAREd within the
BEGIN SESSION/END SESSION pair are unavailable. The sequence of statements within the
BEGIN SESSION/END SESSION pair can include:

SQL Passthru commands PREPARE, BIND, and EXECUTE.

FOCUS commands that refer to Direct SQL Passthru-created views.

Other FOCUS commands such as TABLE and MODIFY against SQL or other files.

Note:

FIN issues END COMMAND and then purges all statements PREPAREd outside the
BEGIN SESSION/END SESSION pair.

FOCUS commands must use the same DB2 plan.

SQL commands. The SQL commands COMMIT WORK and ROLLBACK WORK are particularly
useful in Parameterized SQL Passthru requests.

Environmental commands such as SET PLAN, SET SSID, and DB2 CONNECT statements.

If you omit the BEGIN SESSION/END SESSION pair, the adapter automatically brackets each
individual Direct SQL Passthru command with BEGIN SESSION and END SESSION. The
execution of the END SESSION (either implicitly or explicitly) in a Direct SQL Passthru
statement invokes actions requested in SET action ON COMMAND (see Controlling Connection
Scope on page 295). You can use statements PREPAREd without an explicit BEGIN
SESSION/END SESSION pair in TABLE requests, but you cannot use them in the EXECUTE
statement.

Using the SQL Passthru COMMIT WORK Command

COMMIT WORK terminates a unit of work and makes all data source changes permanent.

Syntax: How to COMMIT Data Source Changes

{ENGINE|SQL} [sqlengine] COMMIT WORK

Parameterized SQL Passthru

286

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

After execution of the COMMIT WORK command, the RDBMS drops the PREPAREd status of
SQL statements. It also releases locks. If you need a PREPAREd version of the statement, you
must issue the SQL PREPARE statement again.

Using the SQL Passthru ROLLBACK WORK Command

ROLLBACK WORK terminates a unit of work and restores all data changed by SQL statements
to their state at the last commit point.

Syntax: How to ROLLBACK Data Source Changes

{ENGINE|SQL} [sqlengine] ROLLBACK WORK

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

After execution of the ROLLBACK WORK command, the RDBMS drops the PREPAREd status of
SQL statements. If you need a PREPAREd version of the statement, you must issue the SQL
PREPARE statement again.

Using the SQL Passthru PREPARE Command

The PREPARE command PREPAREs (checks syntax, then compiles) an SQL statement and
stores the compiled version for later use. The SQL statement can contain parameter markers.

Syntax: How to PREPARE an SQL Statement

{ENGINE|SQL} [sqlengine] PREPARE statement_name FOR sql_statement [;]

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 287

statement_name

Is the 1-to 8-character name of an SQL variable that will contain the PREPAREd (compiled)
version of an SQL statement.

sql_statement

Is a character-string expression that can include parameter markers. It represents the SQL
statement to PREPARE. The statement must be one of the following:

UPDATE (WHERE CURRENT OF CURSOR is not supported)

DELETE (WHERE CURRENT OF CURSOR is not supported)

INSERT

SELECT (Master File is created to represent the returned answer set)

CREATE

DROP

ALTER

COMMENT

LABEL

GRANT

REVOKE

COMMIT

ROLLBACK

LOCK

EXPLAIN

;

Is required if sql-statement is a SELECT statement followed by TABLE FILE report options.

Example: Preparing a Parameterized Passthru Command

Consider the following SQL PREPARE command for DB2:

SQL DB2 PREPARE D FOR DELETE FROM USER1.EMPLOYEE
 WHERE EMP_ID = ?

Variable D will contain the PREPAREd version of the following SQL string:

Parameterized SQL Passthru

288

DELETE FROM USER1.EMPLOYEE WHERE EMP_ID = ?

You supply values for the parameter marker in the statement by issuing an EXECUTE
statement for variable D. The parameter marker allows you to execute the same DELETE
statement many times with different values of EMP_ID. You can use a parameter marker
anywhere a literal value appears in an SQL statement.

Reference: Usage Notes for PREPARE

Answer sets for FOCUS TABLE requests in PREPAREd SELECT statements are returned at
EXECUTE time even if they were specified in the PREPARE statement.

If both the PREPARE and EXECUTE commands specify a TABLE FILE request for the same
statement, the EXECUTE request takes precedence.

PREPARE for an already PREPAREd statement unprepares the statement by means of
PURGE. As a side effect, BIND for this statement (if any) is cleared.

Using the PREPARE command with the Oracle RDBMS to issue Data Definition Language
statements such as CREATE or DROP causes the statements to be executed immediately.
A subsequent EXECUTE statement is not necessary.

You must use the proper form of parameter marker for the RDBMS you are accessing. DB2,
IDMS SQL, and Teradata use the question mark (?) as the parameter marker. Oracle uses :
00n, where n is incremented by 1 for each parameter. For example:

SQL SQLORA PREPARE I FOR INSERV INTO EMP (EMP_ID,COURSE)
VALUES(:001,:002)
END

Using the SQL Passthru EXECUTE Command

This statement executes a previously PREPAREd SQL statement. If the SQL statement includes
parameter markers, you must supply their values in the USING clause. If the SQL statement is
a SELECT statement, you can use the TABLE FILE extension to produce a formatted report.

Syntax: How to Execute a Prepared SQL Command

{ENGINE|SQL} [sqlengine] EXECUTE statement_name [USING data_list] [;]

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 289

statement_name

Is the 1-to 8-character name of an SQL variable that contains the PREPAREd (compiled)
version of the SQL statement to execute. Use this name in a TABLE FILE extension if you
want a formatted report.

data_list

Is a list of arguments to substitute for the parameter markers in the PREPAREd SQL
statement. Separate arguments in the list with commas.

;

Is required if the PREPAREd SQL statement is a SELECT statement followed by TABLE FILE
report options.

The SQL commands COMMIT WORK and ROLLBACK WORK destroy all statements PREPAREd
in a unit of recovery. Thus, after a COMMIT or ROLLBACK, you must again PREPARE any
statement you want to EXECUTE.

Example: Executing a Prepared Passthru Command

To execute the PREPARE statement in Preparing a Parameterized Passthru Command, issue:

SQL DB2 EXECUTE D USING 'AAA';

The DELETE statement from Using the SQL Passthru PREPARE Command on page 287 is sent
to the DB2 RDBMS. The RDBMS deletes all rows with an EMP_ID value of 'AAA' from the data
source. The resulting SQLCODE is returned to the program.

You can execute this statement many times within the same unit of recovery by supplying
different values for the EMP_ID to delete.

Reference: Usage Notes for EXECUTE

Use of EXECUTE outside a BEGIN SESSION/END SESSION pair produces fatal error
FOC1477, "Invalid use of BIND or EXECUTE".

Use of EXECUTE for a statement PREPAREd outside a BEGIN SESSION/END SESSION pair
produces fatal error FOC1477, "Invalid use of BIND or EXECUTE".

Answer sets for FOCUS TABLE requests in compiled SELECT statements are returned at
EXECUTE time even if they were specified in the PREPARE statement.

If both the PREPARE and EXECUTE commands specify a TABLE FILE request for the same
statement, the EXECUTE request takes precedence.

To specify missing values in an EXECUTE statement, you can use the word NULL or denote
the missing column values by a comma. For example:

Parameterized SQL Passthru

290

EXECUTE xyz USING 8,9,NULL,,'abcd'

Using the PREPARE command with the Oracle RDBMS to issue Data Definition Language
statements such as CREATE or DROP, causes the statements to be executed immediately.
A subsequent EXECUTE statement is not necessary.

Using the SQL Passthru PURGE Command

The PURGE command clears results from a previously issued PREPARE or BIND command. It is
optional.

Syntax: How to Purge an SQL Command

{ENGINE|SQL} [sqlengine] PURGE statement_name [;]

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

statement_name

Is the 1-to 8-character name of an SQL variable that contains a PREPAREd (compiled)
version of an SQL statement.

Example: Purging an SQL Command

SQL DB2 PREPARE D FOR DELETE FROM USER1.EMPLOYEE
 WHERE EMP_ID = ?
SQL DB2 PURGE D;

Using the SQL Passthru BIND Command

You can use the BIND command to define the format of each parameter specified in a
PREPARE command. The list of formats is comma delimited. Each element is a data type
supported by the RDBMS.

Syntax: How to Define Formats of SQL Parameters

{ENGINE|SQL} [sqlengine] BIND statement_name USING format_list;

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 291

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

statement_name

Is the 1-to 8-character name of an SQL variable that contains a PREPAREd (compiled)
version of an SQL statement.

format_list

Is a comma-delimited list of data types used in the request. The following data types are
supported by the RDBMS:

DB2 Teradata Oracle IDMS SQL

SMALLINT SMALLINT NUMBER(m,n) SMALLINT

INTEGER INTEGER VARCHAR(n) INTEGER

DECIMAL(m,n) DECIMAL(m,n) LONG DECIMAL(m,n)

FLOAT FLOAT CHARACTER(n) FLOAT

REAL BYTEINT DATE REAL

DOUBLE BYTE(n) RAW DOUBLE

VARCHAR(n) VARBYTE(n) VARCHAR(n)

LONGVARCHAR(n) VARCHAR(n) LONGVARCHAR(n)

CHARACTER(n) LONG
VARCHAR(n)

CHARACTER(n)

DATE CHARACTER(n)

DATE

TIME

Parameterized SQL Passthru

292

DB2 Teradata Oracle IDMS SQL

TIMESTAMP

Reference: Usage Notes for BIND

The Oracle data type LONGRAW is currently not supported.

If a statement is PREPAREd and EXECUTEd without a corresponding BIND, the adapter uses
default formats based on the RDBMS storage formats it detects for the columns referenced
by parameter markers in the statement.

Use of BIND outside a BEGIN SESSION/END SESSION pair produces fatal error FOC1477,
"Invalid use of BIND or EXECUTE".

BIND without parameters clears a previous BIND for the statement.

BIND is also cleared when you issue PREPARE for an already PREPAREd statement.

Parameterized SQL Passthru Sample Session

The following sample session illustrates the design of a Parameterized SQL application:

SQL DB2 BEGIN SESSION
SQL DB2 PREPARE ABC FOR UPDATE STARS SET NAME=? WHERE DISTANCE=? ;
END

SQL DB2 PREPARE DEF FOR SELECT * FROM STARS WHERE DISTANCE=? AND
DENSITY=?;
END

SQL DB2 BIND ABC USING CHAR(6),DECIMAL(5,0);
END

SQL DB2 BIND DEF USING DECIMAL(5,0),DECIMAL(6,2);
END

-* repeat with different input data...
 SQL DB2 EXECUTE ABC USING 'GAMMA',555. ;
 END
 SQL DB2 EXECUTE ABC USING 'DELTA',777. ;
 END
 SQL DB2 EXECUTE ABC USING 'ALPHA',9640. ;
 END
 SQL DB2 EXECUTE DEF USING 555.,324.27; TABLE FILE DEF PRINT *
 END
-* end repeat

9. Direct SQL Passthru

Relational Data Adapter User’s Manual 293

SQL DB2 COMMIT WORK ;
END

SQL DB2 END SESSION

Notice that the BIND commands provide formats and the EXECUTE commands provide values
for the parameter markers. Since DEF represents a SELECT statement, the EXECUTE command
for DEF can include a TABLE FILE DEF request. Alternatively, the TABLE FILE DEF request could
have been included in the PREPARE DEF command instead of in the EXECUTE DEF command.

Parameterized SQL Passthru

294

Chapter10
Controlling Connection Scope

The adapter includes a variety of COMMIT, connection, and thread control capabilities.
The SET AUTOaction ON event command implements these facilities.

This chapter includes:

The SET AUTOaction ON event command.

The effects of various action and event combinations.

Examples of three types of sessions, default, user controlled, and pseudo-
conversational, made possible by varying the settings.

In this chapter:

Invoking Actions in Response to Events

Understanding Actions

Action and Event Combinations

Combinations of SET AUTOaction Commands

Establishing Different Types of FOCUS Sessions

Invoking Actions in Response to Events

Actions are RDBMS commands, such as COMMIT WORK, that the adapter issues in response
to events in a FOCUS session. Events include the end of a MODIFY or TABLE request,
interaction with the terminal, and the end of a FOCUS session.

For DB2, you can make a MODIFY transaction pseudo-conversational by issuing CLOSE and
DISCONNECT automatically at all COMMIT points within the MODIFY procedure. Or, by delaying
COMMITs until a group of commands is issued, you can combine FOCUS commands and native
SQL commands in one Logical Unit of Work.

The SET AUTOaction command allows you to control when the adapter issues actions.
Subsequent sections discuss each action.

Syntax: How to Automatically Invoke Actions in Response to Events

{ENGINE|SQL} [sqlengine] SET action ON event

Relational Data Adapter User’s Manual 295

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command or to set AUTOCOMMIT ON
CRTFORM in a MODIFY procedure.

action

Indicates the action to be taken by the adapter. Valid values are:

AUTOCOMMIT

Issues the SQL command COMMIT WORK or the SQL/DBC command END
TRANSACTION. (Teradata implicitly commits each SQL statement individually, so the
COMMIT action is redundant.)

AUTOCLOSE

For DB2, is the DB2 Call Attachment Facility (CAF) CLOSE operation.

For Teradata, AUTOCLOSE sponsors a LOGOFF.

For IDMS/SQL and Oracle, AUTOCLOSE is ignored

AUTODISCONNECT

For DB2, severs the connection between the RDBMS and the user's address space.

For Oracle, sponsors a LOGOFF from the Oracle RDBMS.

For Teradata and IDMS/SQL, is ignored.

Invoking Actions in Response to Events

296

event

Is the event that triggers the action. Valid values are:

CRTFORM

Is valid only in MODIFY procedures with the AUTOCOMMIT action. Issues a COMMIT
before each interaction with the user's terminal. At the end of the MODIFY, the event
setting reverts to its value prior to the AUTOCOMMIT ON CRTFORM.

For Teradata, this setting is not needed and is ignored because any MODIFY that does
not contain BEGIN TRANSACTION and END TRANSACTION statements implicitly
commits each SQL statement individually.

Omit sqlengine from the command. Refer to Maintaining Tables With FOCUS on page
349, for more information on MODIFY.

COMMAND

Executes the specified action at the end of a MODIFY procedure, a TABLE request, a
Direct SQL Passthru request, or a CALLDB2 subroutine containing embedded SQL.

Note: The adapter does not generate an end-of-MODIFY COMMIT if there is no open
Logical Unit of Work.

FIN

Executes the specified action automatically only after the FOCUS session has been
terminated by the FOCUS FIN command. To execute the action within the session, you
must issue it explicitly. Since you cannot issue CLOSE and DISCONNECT explicitly, this
applies to COMMIT only.

COMMIT

Executes the specified action whenever a COMMIT or ROLLBACK is issued either as a
native SQL command or because of a current AUTOCOMMIT setting.

Reference: Usage Notes for SET AUTOaction ON Event

Depending on how often the event occurs (and the corresponding command is issued), the
AUTOaction setting may result in considerable overhead. Almost none of this overhead is
FOCUS related. it is z/OS and RDBMS related.

For DB2, you can use the CLOSE and DISCONNECT commands only if the Adapter for DB2
is installed to use CAF.

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 297

All settings are session level and can be issued from either the FOCUS command line or a
FOCEXEC, except AUTOCOMMIT ON CRTFORM, which can only be issued in a MODIFY
procedure. In a MODIFY procedure, the only valid command is AUTOCOMMIT ON CRTFORM.

You can issue all settings except AUTOCOMMIT ON CRTFORM in batch jobs.

You can use the CLOSE and DISCONNECT actions with FOCUS running under TSO.

If AUTOCOMMIT is set on COMMAND, the adapter issues a COMMIT WORK at the end of a
MODIFY procedure provided there is an open Logical Unit of Work (LUW).

Understanding Actions

Actions control lock retention and the user’s connection to the RDBMS.

AUTOCOMMIT

SET AUTOCOMMIT issues an SQL COMMIT WORK each time the specified event occurs. Until a
COMMIT WORK, changes to the target data source are conditional and locks are held on the
affected data. Other users may have their work delayed waiting for locks to be released.

COMMIT WORK completes the changes to the data source and releases locks, improving
concurrency. On the other hand, delaying the COMMIT preserves the integrity of processed
data through several FOCUS commands or an entire FOCUS session.

Teradata implicitly commits each SQL statement individually, so the COMMIT action is
redundant.

AUTOCLOSE

SET AUTOCLOSE initiates the DB2 Call Attachment Facility (CAF) CLOSE operation or sponsors
a Teradata LOGOFF. It is ignored for IDMS/SQL or Oracle.

For DB2, it determines how long a thread (the connection between the application program in
the user's address space and the DB2 application plan) is open. The thread is not the same
as the address space connection to DB2. The AUTODISCONNECT setting, discussed in a
subsequent section, controls that connection. In FOCUS, a DB2 application program is one of
the following:

The dynamic FOCUS Adapter for DB2.

A MODIFY procedure using static SQL.

A CALLDB2 subroutine using embedded SQL.

Generally speaking, each program has a corresponding plan. (Static SQL (DB2) on page 401,
includes a discussion of plan management.)

Understanding Actions

298

A site that installs a DB2 subsystem determines the maximum number of concurrent users
(threads) the subsystem will support. Since each user requires enough virtual storage for his
application plan, this setting controls the amount of storage the site wants to allocate to active
DB2 users at any one time.

The CAF CLOSE command de-allocates the DB2 thread, releasing the virtual storage for the
application plan. DB2 requires that an existing thread to a plan be closed before a thread to
another plan is opened. If a thread is closed without a subsequent OPEN operation, the closed
thread becomes inactive. The user is still connected to DB2, but not to a particular application
plan. The user (task) still owns the thread. It is not available to other users. To release the
thread, the user must disconnect completely from DB2.

For Teradata, the SET AUTOCLOSE command enables users to control logon and logoff
interaction with the Teradata RDBMS. After the Teradata RDBMS processes a FOCUS request
or native DBC/SQL command, the connection (or communications path) may be deactivated or
retained depending on the AUTOCLOSE setting.

If the AUTOCLOSE setting is ON FIN, the initial logon connection is retained and remains
active for the duration of the FOCUS session. The adapter initiates a Teradata logon
request at the first native DBC/SQL command or FOCUS request requiring Teradata
services, provided a valid SET CONNECTION_ATTRIBUTES command has been issued. The
connection is released at the FIN command.

If the AUTOCLOSE setting is ON COMMAND, the initial logon connection is released after
Teradata processing and, for each subsequent request, is re-established. The adapter logs
on prior to the DBC/SQL call and generates a Teradata logoff request after completing each
FOCUS command (TABLE request, MODIFY procedure, or Direct SQL Passthru request).
Teradata resources are freed prior to report generation and display. Although the logoff
request is issued and the connection to Teradata is disconnected, the FOCUS session
remains active.

Any other setting defaults to AUTOCLOSE ON FIN. AUTOCLOSE ON FIN minimizes overhead
required for repetitive interaction with the Teradata RDBMS by retaining the connection to
Teradata. By contrast, AUTOCLOSE ON COMMAND frees resources that are no longer (or
infrequently) required.

Note For Teradata:

The SET CONNECTION_ATTRIBUTES command described in Adapter Commands on page
309 functions independently from the SET AUTOCLOSE command.

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 299

Regardless of the AUTOCLOSE setting, the FIN command to exit the session generates an
explicit logoff request. This ensures a successful user exit from the Teradata environment.
Teradata frees the resources required for the session.

AUTODISCONNECT

For DB2, DISCONNECT completely detaches the user's address space (or task) from DB2. This
differs from CLOSE because, after a CLOSE, the FOCUS task is still connected to the DB2
subsystem and can open a thread to another plan. After a DISCONNECT, the FOCUS task must
reestablish its connection to DB2 before doing any database work. FOCUS tasks that
frequently issue the DISCONNECT command are connected to DB2 for shorter periods of time,
allowing other tasks to connect and acquire threads as needed. However, there is significant
system overhead associated with frequently connecting and disconnecting, and the possibility
exists that no thread will be immediately available when the task attempts to reconnect.

For Teradata and IDMS/SQL, DISCONNECT is ignored. For Teradata, use AUTOCLOSE instead.

For Oracle, DISCONNECT sponsors a LOGOFF from the Oracle RDBMS. AUTODISCONNECT ON
COMMIT is not supported. It will be converted to AUTODISCONNECT ON FIN.

Action and Event Combinations

The following table summarizes possible combinations of actions and events:

D indicates a default combination.

X indicates a combination that either is not supported or does not apply.

S indicates a supported combination.

Actions Events

COMMIT
COMMIT COMMAND CRTFORM FIN

X D S* S

CLOSE (DB2 CAF and Teradata only) S*** S X D

DISCONNECT (DB2, and Oracle only) S** S X D

Note: * Supported within a MODIFY procedure only. Not needed for Teradata.
** Not supported for Oracle.
*** Not supported for Teradata.

Action and Event Combinations

300

The following sections discuss the advantages and disadvantages of certain combinations of
actions and events.

SET AUTOCOMMIT ON CRTFORM

This command works only from within a MODIFY procedure and requires a slightly different
syntax:

SQL SET AUTOCOMMIT ON CRTFORM

Note the absence of the target database qualifier after the SQL keyword. Including a qualifier
generates a syntax error.

This is the "COMMIT as often as possible" strategy. FOCUS issues a COMMIT prior to
displaying each CRTFORM, thus releasing all locks before presenting data to the user.
AUTOCOMMIT ON CRTFORM invokes Change Verify Protocol (CVP). You must check the
FOCURRENT variable to determine whether CVP detected a conflict with another user.
Maintaining Tables With FOCUS on page 349 discusses this setting and some limits on its
use. This setting also requires the KEYS value in the Access File to be greater than zero.

With this strategy, more concurrent users can access the same DB2 data. However, a COMMIT
carries overhead and may be unnecessary for the application.

At the end of the MODIFY procedure, the event setting reverts to its value before the
AUTOCOMMIT ON CRTFORM was issued.

For Teradata, each SQL statement is implicitly committed. Therefore, this setting is not
needed.

SET AUTOCOMMIT ON FIN

During the FOCUS session, only those COMMIT and ROLLBACK commands you issue explicitly
are executed. The adapter automatically issues a COMMIT at the end of the FOCUS session.
The syntax is

{ENGINE|SQL} [sqlengine] SET AUTOCOMMIT ON FIN

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

With this setting, you do not incur COMMIT overhead until the end of the FOCUS session. You
can also use it to suspend the COMMIT action for a period of time. See Explicit Control of a
Logical Unit of Work (LUW) for an example.

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 301

Maintain does not support the AUTOCOMMIT ON FIN setting.

Holding unneeded locks can cause contention in the system and make other users wait for
data. Delaying the COMMIT also puts data changes at risk in case of system or machine
failure.

SET AUTOCOMMIT ON FIN gives you full control of Logical Units of Work (LUWs) within your
FOCUS session. FOCUS relies on your explicit COMMIT and ROLLBACK commands. No implicit
COMMIT or ROLLBACK is ever forced until the end of the FOCUS session (FIN command). Use
this option cautiously to avoid possible locking problems and unpredictable consequences in
cases of conflict with other AUTOaction settings.

Note:

With AUTOCOMMIT ON FIN, SQL errors do not trigger an automatic ROLLBACK by the
adapter. Examine each return code and take appropriate action to prevent unwanted
changes from being committed at FIN.

Teradata implicitly commits every SQL statement individually unless you enclose them in
BEGIN TRANSACTION and END TRANSACTION commands.

SET AUTOCLOSE ON COMMAND

This setting closes the DB2 thread at the end of each command or logs off from the Teradata
RDBMS. The syntax is:

{ENGINE|SQL} [DB2|SQLDBC] SET AUTOCLOSE ON COMMAND

Omit the DB2 or SQLDBC qualifier if you previously issued the SET SQLENGINE command.

This setting releases some virtual storage, but there is a cost to repeatedly initializing a
thread. Also, closing a thread does not make it available to other users. Only a disconnect can
release it.

Note: AUTOCLOSE is ignored for IDMS/SQL and Oracle. See the description of
AUTODISCONNECT for a comparable function.

SET AUTODISCONNECT ON COMMIT

For DB2, when a COMMIT is issued, the CAF facility disconnects the FOCUS session from DB2,
terminating the DB2 thread. For Oracle, this setting logs off the Oracle RDBMS. The syntax is

{ENGINE|SQL} [sqlengine] SET AUTODISCONNECT ON COMMIT

Action and Event Combinations

302

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2 or SQLORA. Omit if you previously
issued the SET SQLENGINE command.

This setting frees the DB2 thread for use by other users or logs off the Oracle RDBMS. The
disadvantage is the cost of repeatedly connecting to DB2 and acquiring a thread. Threads,
once released, may not be available when needed, so you may experience delays while your
request waits for a thread.

Note:

When you combine this setting with AUTOCOMMIT ON FIN, you can control the span of the
DB2 session.

If you attempt to issue this setting for Oracle, it will be converted to AUTODISCONNECT ON
FIN.

SET AUTOCLOSE ON FIN

The adapter issues a DB2 CAF CLOSE at the end of the FOCUS session or sponsors a LOGOFF
from the Teradata RDBMS. The syntax is

{ENGINE|SQL} [DB2|SQLDBC] SET AUTOCLOSE ON FIN

Omit the DB2 or SQLDBC qualifier if you previously issued the SET SQLENGINE command.

This setting duplicates adapter default behavior, unless the adapter was installed with
AUTOCLOSE ON COMMAND as the default.

Note: AUTOCLOSE is ignored for IDMS SQL and Oracle. See the description of
AUTODISCONNECT for a comparable function.

SET AUTODISCONNECT ON FIN

This command disconnects FOCUS from the RDBMS at the end of the FOCUS session,
duplicating adapter default behavior. The syntax is

{ENGINE|SQL} [sqlengine] SET AUTODISCONNECT ON FIN

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2 or SQLORA. Omit if you previously
issued the SET SQLENGINE command.

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 303

Note: DISCONNECT is ignored for Teradata and IDMS/SQL.

Combinations of SET AUTOaction Commands

Think of actions as a nested sequence. The COMMIT action is the innermost level, then
CLOSE, then DISCONNECT. Events are also organized hierarchically; CRTFORM is the
innermost level, then COMMIT, then COMMAND, and, finally, FIN.

In general, you should not set the outer of two actions to occur more frequently than the inner
action. Recommended combinations follow:

 When AUTOCOMMIT is set to FIN,
 AUTOCLOSE must be FIN,
 AUTODISCONNECT must be FIN*.

 When AUTOCLOSE is set to FIN
 AUTODISCONNECT must be FIN.
 When AUTOCOMMIT is set to COMMAND or CRTFORM,
 AUTOCLOSE may be FIN, COMMAND or COMMIT,
 AUTODISCONNECT may be FIN, COMMAND or COMMIT.
 When AUTOCLOSE is set to COMMAND or COMMIT,
 AUTODISCONNECT may be FIN, COMMAND or COMMIT.
 When AUTOCLOSE or AUTODISCONNECT is set to COMMIT,
 AUTOCOMMIT may be COMMAND or CRTFORM.
 * Violations of this rule can cause unpredictable behavior.

Note For DB2:

Whenever you open a thread to a new application plan or connect to a new DB2
subsystem, the adapter issues a COMMIT WORK regardless of the AUTOCOMMIT setting.

If the event that triggers AUTODISCONNECT occurs more frequently than the event that
triggers AUTOCLOSE, the adapter forces a CAF CLOSE prior to any CAF DISCONNECT.

In order to use the CLOSE and DISCONNECT commands, the Adapter for DB2 must be
installed to use CAF.

Establishing Different Types of FOCUS Sessions

You can establish the following three types of FOCUS sessions by varying the combinations of
SET AUTOaction ON event commands. Each is illustrated in a subsequent section:

The default adapter session uses the settings AUTOCOMMIT ON COMMAND, AUTOCLOSE
ON FIN, and AUTODISCONNECT ON FIN.

The user-controlled session uses the settings AUTOCOMMIT ON FIN, AUTOCLOSE ON FIN,
and AUTODISCONNECT ON FIN.

Combinations of SET AUTOaction Commands

304

Note: Teradata implicitly commits each SQL statement individually unless they are
enclosed in BEGIN TRANSACTION and END TRANSACTION statements.

The pseudo-conversational session uses the settings AUTOCOMMIT ON CRTFORM,
AUTOCLOSE ON COMMIT, and AUTODISCONNECT ON COMMIT.

The Default Adapter Session

The following illustration shows the duration of connections, threads, and Logical Units of Work
(LUWs) using the default adapter settings:

 connection
 |--->|
 |------LUW----->|--- LUW ------>| |--- LUW ----->|
 F
 | F O C U S . . . s e s s i o n I
 N
 | | | | |
 cmd user cmd cmd cmd
 beg COMMIT end beg end
 |--------- MODIFY ------------->| |----TABLE --->|
 (a) (b) (c) (d) (e) (f) (g)
 AUTOCOMMIT ON COMMAND
 AUTOCLOSE ON FIN
 AUTODISCONNECT ON FIN

The FOCUS session begins at point (a) and ends at point (g), with the FIN command. The
connection is established at point (b), the first MODIFY call to the RDBMS, and is retained for
the entire FOCUS session.

The LUW initiated at point (b) by the MODIFY is terminated by the explicit COMMIT issued at
point (c) within the MODIFY. Point (c) also marks the start of the next LUW which is retained
until the end of the MODIFY command at point (d), where the adapter automatically generates
a COMMIT.

A third LUW begins for the TABLE request. It is terminated by the COMMIT automatically
generated at the end of the TABLE command. At FIN, the adapter terminates the connection to
the RDBMS. No COMMIT is generated at FIN.

Note: For DB2, the thread is opened when the connection is established and closed when the
connection is severed.

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 305

The User-Controlled Session

The following illustration shows a session in which the user controls the duration of each
Logical Unit of Work (LUW). The adapter does not automatically issue any COMMIT, CLOSE, or
DISCONNECT command until after the FIN at the end of the FOCUS session:

Note: The Adapter for Teradata does not support this type of session.

 connection
 |--->|
 |----------LUW------------------------>| |--LUW-->|
 F
 | F O C U S . . . s e s s i o n I
 N
 | | | | | | |
 cmd cmd cmd cmd user cmd cmd
 beg end beg end COMMIT beg end
 |----TABLE--->| |-PASSTHRU->| |MODIFY >|
 (a) (b) (c) (d) (e) (f) (g) (h)
(i)
 AUTOCOMMIT ON FIN
 AUTOCLOSE ON FIN
 AUTODISCONNECT ON FIN

The FOCUS session begins at point (a) and ends at point (i) with the FIN command.

The connection is established by the TABLE command at point (b) and retained until FIN. The
LUW also starts at point (b). It is completed at point (f) when the user issues COMMIT WORK
as an SQL Passthru request.

The final LUW, triggered by the MODIFY procedure, is not terminated until FIN since there is no
other user-issued COMMIT.

Note: For DB2, the thread is opened when the connection is established and closed when the
connection is severed.

The Pseudo-Conversational Session

The next illustration shows how connections can be dropped and re-established within a
MODIFY procedure. The AUTOCOMMIT ON CRTFORM, issued within the MODIFY, automatically
generates a COMMIT whenever a CRTFORM is displayed.

Note: The Adapter for Teradata does not support this type of session.

Establishing Different Types of FOCUS Sessions

306

 |--connection--->|--connection->|-conn-->|--connection-->||
 |--LUW---------->|--LUW-------->|-LUW--->|--LUW--------->|
 F
 | F O C U S . . . s e s s i o n I
 N
 | | | | |
 cmd CRTFORM user CRTFORM cmd
 beg COMMIT end
 |---------------------MODIFY---------------------------->|
 (a) (b) (c) (d) (e) (f) (g)
 AUTOCOMMIT ON CRTFORM
 AUTOCLOSE ON COMMIT
 AUTODISCONNECT ON COMMIT

The FOCUS session begins at point (a) and ends at point (g) with the FIN command.

The connection and Logical Unit of Work (LUW) are established at point (b), the beginning of
the MODIFY procedure. The first CRTFORM triggers a COMMIT, terminating the LUW and
connection. The adapter automatically re-establishes them at the next call to the RDBMS, and
they are terminated by the user-issued COMMIT at point (d).

The process is repeated two more times. At the end of the MODIFY procedure, point (f),
AUTOCOMMIT reverts to its previous (default) COMMAND setting, and the adapter generates a
COMMIT.

Note: For DB2, a thread is opened when the connection is established and closed when the
connection is severed.

Example: Explicit Control of a Logical Unit of Work (LUW)

The following example demonstrates how to explicitly control the scope of an LUW using the
AUTO command settings. Numbers to the left refer to explanatory notes that follow the
example.

Dialogue Manager control statements govern COMMIT or ROLLBACK processing based on the
&RETCODE value. The example treats any value other than 0 as a failure:

-TOP
 SQL DB2 SET AUTODISCONNECT ON FIN
 SQL DB2 SET AUTOCLOSE ON FIN
1. SQL DB2 SET AUTOCOMMIT ON FIN

2. SQL DB2 LOCK TABLE XYZ IN EXCLUSIVE MODE
 END
3. -IF &RETCODE NE 0 GOTO ROLLBACK ;

10. Controlling Connection Scope

Relational Data Adapter User’s Manual 307

4. SQL DB2 INSERT INTO XYZ VALUES ('A','B','C','D') ;
 END
 -IF &RETCODE NE 0 GOTO ROLLBACK ;
 SQL DB2 INSERT INTO XYZ VALUES ('E','F','G','H') ;
 END
 -IF &RETCODE NE 0 GOTO ROLLBACK ;
 SQL DB2 INSERT INTO XYZ VALUES ('I','J','K','L') ;
 END
 -IF &RETCODE NE 0 GOTO ROLLBACK ;

5. SQL DB2 COMMIT WORK;
 END
 -IF &RETCODE NE 0 GOTO ROLLBACK ;
 -GOTO OUT
 -ROLLBACK
 SQL DB2 ROLLBACK WORK;
 END
 -OUT 6. SQL DB2 SET AUTOCOMMIT ON COMMAND

Note:

1. AUTOCOMMIT is set to FIN. No COMMIT is issued unless specifically coded. As is required
for this AUTOCOMMIT setting, AUTODISCONNECT and AUTOCLOSE are also set to FIN.

2. Table XYZ is locked for the exclusive use of this program. This lock will be terminated at a
COMMIT or ROLLBACK point.

3. The procedure checks &RETCODE. If it is not zero, the SQLCODE is displayed to show that
the lock was not completed. The procedure issues a ROLLBACK and terminates. This
&RETCODE test is executed after every SQL statement passed to DB2.

4. Three rows are inserted into XYZ.

5. The program issues an explicit COMMIT making the inserts to XYZ permanent and releasing
the exclusive lock.

6. SET AUTOCOMMIT is reissued to restore automatic command-level COMMITs.

Establishing Different Types of FOCUS Sessions

308

Chapter11
Adapter Commands

Adapter commands can change certain parameters that govern your FOCUS session.
These parameters control or identify the Change Verify Protocol, DB2 Call Attachment
Facility defaults, DBSPACE defaults, the Fastload option, the DB2 CURRENT SQLID,
Oracle blocked insert and fetch sizes, adapter logon parameters, optimization, and
isolation levels. Environmental commands that control connection to the RDBMS, such
as SET AUTODISCONNECT, are discussed in Controlling Connection Scope on page 295.

You can display all the current parameter settings with the adapter SQL ? query
described in Querying Adapter Parameter Settings on page 310.

In this chapter:

Issuing Adapter Commands

Querying Adapter Parameter Settings

Parameters That Apply to Multiple Adapters

Parameters That Apply to DB2 Only

Parameters That Apply to Teradata Only

Parameters That Apply to IDMS/SQL Only

Parameters That Apply to Oracle Only

Parameters That Apply to MODIFY Only

Adapter Dialogue Manager Variables

Issuing Adapter Commands

The Direct SQL Passthru facility provides support for issuing adapter environmental
commands.

Note: Commands that you issue from MODIFY procedures, like LOADONLY, ERRORRUN, and
AUTOCOMMIT ON CRTFORM, use a slightly different form of syntax that is described in
Parameters That Apply to MODIFY Only on page 343.

Relational Data Adapter User’s Manual 309

Syntax: How to Issue Adapter Commands

{ENGINE|SQL} [sqlengine] SET command value

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

command

Is an environmental command.

value

Is an acceptable value for the environmental command.

Querying Adapter Parameter Settings

The SQL query command displays defaults and current settings for each adapter.

Syntax: How to Query Data Adapter Parameter Settings

{ENGINE|SQL} [sqlengine] ?

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

Example: Querying Adapter for DB2 Settings

The following is an example for DB2:

Querying Adapter Parameter Settings

310

> sql db2 ?
(FOC1440) CURRENT SQL INTERFACE SETTINGS ARE :
(FOC1442) CALL ATTACH FACILITY IS - : ON
(FOC1447) SSID FOR CALL ATTACH IS - : DBAA
(FOC1448) ACTIVE PLAN FOR CALL ATTACH IS - : USER1CAF
(FOC1459) USER SET PLAN FOR CALL ATTACH IS - : USER1CAF
(FOC1460) INSTALLATION DEFAULT PLAN IS - : M727703B
(FOC1503) SQL STATIC OPTION IS - : OFF
(FOC1444) AUTOCLOSE OPTION IS - : ON FIN
(FOC1496) AUTODISCONNECT OPTION IS - : ON FIN
(FOC1499) AUTOCOMMIT OPTION IS - : ON COMMAND
(FOC1449) CURRENT SQLID IS - : SYSTEM DEFAUL
(FOC1424) ISOLATION LEVEL FOR DB2 TABLE INTERFACE IS :
(FOC1491) FETCH BUFFERING FACTOR - : 100
(FOC1441) WRITE FUNCTIONALITY IS - : ON
(FOC1445) OPTIMIZATION OPTION IS - : ON
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : ON
(FOC1484) SQL ERROR MESSAGE TYPE IS - : DBMS
(FOC1497) SQL EXPLAIN OPTION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW
(FOC1446) DEFAULT DBSPACE IS - : PUBLIC.SPACE0

Example: Querying Adapter for Teradata Settings

The following is an example for Teradata:

> sql sqldbc ?
(FOC1461) CURRENT DBC/SQL SETTINGS ARE:
(FOC1463) DBC/1012 CONNECTION - : OFF
(FOC1467) PARTITION - : DBC/SQL
(FOC1468) TERADATA DIRECTOR PROGRAM (TDP) - : 0
(FOC1469) DBC/1012 USER ID - : DBC
(FOC1444) AUTOCLOSE OPTION IS - : ON COMMAND
(FOC1465) DBC COLNAME OPTION IS - : TITLE
(FOC1441) WRITE FUNCTIONALITY IS - : ON
(FOC1445) OPTIMIZATION OPTION IS - : ON
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : OFF
(FOC1497) SQL EXPLAIN OPTION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW

Example: Querying Adapter for IDMS/SQL Settings

The following is an example for IDMS/SQL:

11. Adapter Commands

Relational Data Adapter User’s Manual 311

> sql sqlidms ?
(FOC1756) CURRENT IDMS DICTIONARY IS - : SYSTEM DEFAULT
(FOC1757) CURRENT SCHEMA IS - : SYSTEM DEFAULT
(FOC1758) CURRENT ISOLATION LEVEL IS - : READ WRITE CURSOR
STABILITY
(FOC1499) AUTOCOMMIT OPTION IS - : ON COMMAND
(FOC1445) OPTIMIZATION OPTION IS - : ON
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW
(FOC1446) DEFAULT DBSPACE IS

Example: Querying Adapter for Oracle Settings

The following is an example for Oracle:

> sql sqlora ?
(FOC1450) CURRENT ORACLE INTERFACE SETTINGS ARE :
(FOC1656) DEFAULT SERVER NAME - : <local>
(FOC1502) USERID AND PASSWORD ARE - : SCOTT
(FOC1496) AUTODISCONNECT OPTION IS - : ON FIN
(FOC1499) AUTOCOMMIT OPTION IS - : ON COMMAND
(FOC1491) FETCH BUFFERING FACTOR - : 20
(FOC1531) INSERT BUFFERING FACTOR - : 1
(FOC1379) MAXIMUM STORED PROCEDURE PARAMETERS - : 256
(FOC1652) CHARACTER TYPE FOR INSERT OR UPDATE - : VAR
(FOC1653) CONVERSION STYLE FOR ORACLE NUMBERS - : COMPAT
(FOC1654) ORACLE HOME - : Not set
(FOC1655) ORACLE SID - : Not set
(FOC1441) WRITE FUNCTIONALITY IS - : ON
(FOC1445) OPTIMIZATION OPTION IS - : ON
(FOC1763) IF-THEN-ELSE OPTIMIZATION IS - : OFF
(FOC1552) INTERFACE DEFAULT DATE TYPE - : NEW
(FOC1446) DEFAULT DBSPACE IS

Parameters That Apply to Multiple Adapters

The following parameters can be used with multiple relational adapters. These include
CONVERSION, DBSPACE, DEFDATE, FETCHSIZE, INSERTSIZE, OPTIFTHENELSE, OPTIMIZATION,
PASSRECS, SQLJOIN OUTER, TRIM_LITERALS, and VARCHAR. This topic also describe the
EXPLAIN parameter that applies to the Adapters for DB2 and Teradata. The IXSPACE parameter
applies to the Adapters for DB2, Oracle, and IDMS/SQL. The OWNERID parameter applies to
the Adapters for DB2, Teradata, and Oracle.

CONVERSION

You can use the SET CONVERSION command to alter the length and scale of numeric columns
displayed from a SELECT request. That is, you can control the USAGE attribute in the
dynamically created Master File.

Parameters That Apply to Multiple Adapters

312

Syntax: How to Alter Length and Scale of Numeric Columns Returned

{ENGINE|SQL} [sqlengine] SET CONVERSION {RESET|dtype} [RESET|PRECISION
{value|MAX}]

where:

sqlengine

Indicates the target RDBMS. Acceptable values are DB2, SQLDBC, SQLIDMS, or SQLORA.
Omit if you previously issued the SET SQLENGINE command.

RESET

Returns precision and scale values that you previously altered back to the adapter
defaults. If you specify RESET immediately following the SET CONVERSION command, all
data types return to the defaults. If you specify RESET following a particular data type, only
columns of that data type are reset.

dtype

Applies the command only to columns of a specific data type. Valid data types are:

INTEGER

INTEGER (and, for Oracle, SMALLINT).

DECIMAL

DECIMAL.

REAL

Single precision floating point. Not supported for Oracle or Teradata.

FLOAT

Double precision floating point.

value

Is the precision in the following form:

nn [mm]

where:

nn

Must be greater than 1 and less than the maximum allowable value for the data type.
(See description of MAX.)

11. Adapter Commands

Relational Data Adapter User’s Manual 313

mm

Is the scale. Valid with DECIMAL, REAL, and FLOAT data types. If you do not specify a
value for scale, the current scale setting remains in effect.

MAX

Sets the precision to the maximum allowable value for the indicated data type:

DATA TYPE MAX Precision

INTEGER 11

REAL 9

FLOAT 20

DECIMAL 33

Note: You must include space for the decimal point and for a negative sign (if applicable)
in your precision setting.

CONVERSION LONGCHAR (DB2, Oracle, Teradata)

The SET parameter CONVERSION LONGCHAR controls the mapping of supported data types
listed below. By default, the adapter maps these data types as alphanumeric (A). The FOCUS
data type A supports a maximum of 4096 characters for TABLE/MODIFY and 32768
characters for API applications.

The following table lists data type mappings based on the value of LONGCHAR for DB2.

DB2 Data
Type

Remarks

LONGCHAR ALPHA BLOB LONGCHAR TEXT

VARCHAR (n) n is an integer
between 1 and
32768

AnV AnV BLOB BLOB TX50 TX

The following table lists data type mappings based on the value of LONGCHAR for Oracle.

Parameters That Apply to Multiple Adapters

314

Oracle Data Type

Remarks

LONGCHAR ALPHA or BLOB LONGCHAR TEXT

CHAR (n) n is an integer between 1
and 2000

An An TX50 TX

VARCHAR (n) n is an integer between 1
and 4000

AnV AnV TX50 TX

VARCHAR2 (n) n is an integer between 1
and 4000

AnV AnV TX50 TX

RAW (n) n is an integer between 1
and 2000m = 2 * n

Am Am TX50 TX

The following table lists data type mappings based on the value of LONGCHAR for Teradata.

Teradata Data Type

Remarks

LONGCHAR ALPHA or BLOB LONGCHAR TEXT

CHAR n is an integer between
1 and 4000

An An TX50 TX

VARCHAR (n) n is an integer between
1 and 4000

AnV AnV TX50 TX

LONG VARCHAR (n) n is an integer between
1 and 4000

AnV AnV TX50 TX

Syntax: How to Control the Mapping of Large Character Data Types

ENGINE sqlengine SET CONVERSION LONGCHAR {ALPHA|TEXT|BLOB}

where:

sqlengine

Indicates the adapter. Acceptable values are DB2, SQLDBC, or SQLORA. You can omit this
value if you previously issued the SET SQLENGINE command.

ALPHA

Maps the DB2 data type VARCHAR as alphanumeric (AnV).

11. Adapter Commands

Relational Data Adapter User’s Manual 315

Maps the Oracle data types CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, and RAW
as alphanumeric (A).

Maps the Teradata data types CHAR, VARCHAR, and LONG VARCHAR as alphanumeric (A).

ALPHA is the default value.

TEXT

Maps the DB2 data type VARCHAR as text (TX).

Maps the Oracle data types CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, and RAW
as text (TX).

Maps the Teradata data types data types CHAR, VARCHAR, and LONG VARCHAR as text
(TX).

Use this value for FOCUS applications.

BLOB

maps the DB2 data type VARCHAR as alphanumeric (A). This is equivalent to ALPHA.

Maps the Oracle data types CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, and RAW
as binary large object (BLOB).

Maps the Teradata data types CHAR, VARCHAR, and LONG VARCHAR as binary large object
(BLOB).

DBSPACE

Within a FOCUS session, you can designate a default storage space for tables you create with
the FOCUS CREATE FILE or HOLD FORMAT SQLengine commands. For the duration of the
session, the RDBMS places such tables in the IDMS/SQL segment.area, Oracle tablespace, or
DB2 database you identify in the SET DBSPACE command.

Issue the SET DBSPACE command from the FOCUS command level

{ENGINE|SQL} [sqlengine] SET DBSPACE storage

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLIDMS, or SQLORA. Omit if you
previously issued the SET SQLENGINE command.

Parameters That Apply to Multiple Adapters

316

storage

For DB2, is databasename.tablespacename or DATABASE databasename. In DB2, the
RDBMS default value is DSNDB04, a public database. (DB2 automatically generates a
tablespace in DSNDB04.)

For IDMS SQL is segment.area. The default is the IDMS default area for the current
schema in effect for the user's SQL session.

For Oracle, is tablespacename. If the SET DBSPACE command is not issued, Oracle uses
the default tablespace for the connected user.

The adapter may have been installed with a default, site-specific, DBSPACE specification. Use
the SQL ? query command to display the setting.

DEFDATE

Use the SET DEFDATE command to change the value of the default date FOCUS uses for the
RDBMS DATE data type. See in Additional Topics on page 417, for a complete discussion.

From the FOCUS command line, issue

{ENGINE|SQL} [sqlengine] SET DEFDATE {NEW|OLD}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

NEW

Supplies '1900-12-31' as the base date for RDBMS columns with DATE data types. NEW
is the default.

OLD

Supplies '1901-01-01' as the base date for RDBMS columns with DATE data types. OLD
was the default in versions of the data adapter prior to FOCUS Version 6.8.

If you use the MODIFY facility to maintain RDBMS tables containing DATE columns, a change in
the default date from prior releases may impact existing applications. See Additional Topics on
page 417 for more information.

EXPLAIN (DB2, Teradata)

You can instruct the adapter to execute an RDBMS EXPLAIN command for the SQL SELECT
statements issued by a FOCUS request before it actually issues the FOCUS request. At the
FOCUS command level enter

11. Adapter Commands

Relational Data Adapter User’s Manual 317

{ENGINE|SQL} [sqlengine] SET EXPLAIN {OFF|ON [n]}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2 or SQLDBC. Omit if you previously
issued the SET SQLENGINE command.

OFF

Is the default. The adapter proceeds as usual.

ON

Instructs the adapter to issue an RDBMS EXPLAIN command for the SQL SELECT
statements issued by a FOCUS request, then issue the request itself. (Do not confuse this
with the adapter EXP facilities.)

n

Is the query number to use in the DB2 EXPLAIN tables only. The default value is 1.

To use the ON setting, you must satisfy all RDBMS requirements for executing an EXPLAIN,
such as having EXPLAIN tables in DB2 or an XPLTRACE allocation for Teradata. The ON setting
applies to TABLE and SQL Passthru SELECT requests only. It is ignored by the MODIFY facility
and non-SELECT SQL Passthru requests.

Note: For Teradata, TABLE requests that result in multiple SQL SELECT statements and Direct
SQL Passthru requests are not supported with SET EXPLAIN set to ON.

FETCHSIZE (DB2, Oracle)

The Adapters for DB2 and Oracle support array retrieval from result sets produced by executing
SELECT queries or stored procedures. This technique substantially reduces network traffic and
CPU utilization.

Using high values increases the efficiency of requests involving many rows, at the cost of
higher virtual storage requirements. A value higher than 100 is not recommended because the
increased efficiency it would provide is generally negligible.

Syntax: How to Specify Block Size for Array Retrieval

The block size for a SELECT request applies to TABLE FILE requests, MODIFY requests, MATCH
requests, and DIRECT SQL SELECT statements.

{ENGINE|SQL} sqlengine SET FETCHSIZE n

Parameters That Apply to Multiple Adapters

318

where:

sqlengine

Indicates the adapter. Valid values are DB2 or SQLORA. You can omit this value if you
previously issued the SET SQLENGINE command.

n

Is the number of rows to be retrieved at once using array retrieval techniques for the CLI
adapter or a cursor with Rowset positioning and multi row Fetch for the CAF adapter.
Accepted values are 1 to 32000 for DB2 and 1 to 5000 for Oracle. The default for DB2 is
100. The default for Oracle is 20. If the result set contains a column that has to be
processed as a CLOB or a BLOB, the FETCHSIZE value used for that result set is 1.

Note: The DB2 default value of 100 is incompatible with compiled (static) MODIFY
procedures. To run a compiled MODIFY procedure, you must SET FETCHSIZE to 1.

INSERTSIZE (DB2 CLI, Oracle)

In combination with LOADONLY, the block size for an INSERT applies to MODIFY INCLUDE
requests. INSERTSIZE is also supported for parameterized DIRECT SQL INSERT statements.

Syntax: How to Specify Block Size for Insert Processing

{ENGINE|SQL} sqlengine SET INSERTSIZE n

where:

sqlengine

Indicates the adapter. Valid values are DB2 and SQLORA. You can omit this value if you
previously issued the SET SQLENGINE command.

n

Is the number of rows to be inserted using array insert techniques. Accepted values are 1
to 5000. 1 is the default value. If the result set contains a column that has to be
processed as a BLOB, the INSERTSIZE value used for that result set is 1.

IXSPACE (DB2, IDMS/SQL, Oracle)

You can override the default parameters for the DB2 or Oracle index space or for the
IDMS/SQL default index segment.area and default index specifications implicitly created by
FOCUS CREATE FILE and HOLD FORMAT DB2, SQLORA, or SQLIDMS. The syntax is

{ENGINE|SQL} [sqlengine] SET IXSPACE [index_spec]

11. Adapter Commands

Relational Data Adapter User’s Manual 319

where:

sqlengine

Identifies the target RDBMS. Valid values are DB2, SQLORA, or SQLIDMS. Omit if you
previously issued the SET SQLENGINE command.

index_spec

Is the portion (up to 94 bytes) of the SQL CREATE INDEX statement beginning with:

The DB2 syntax USING-BLOCK (as specified in the IBM DB2 SQL Reference CREATE
INDEX syntax diagram).

The IDMS/SQL syntax IN segment.area (as specified in the CA-IDMS/DB Release 12
SQL Reference CREATE INDEX syntax diagram).

To reset to the default index space parameters, issue the SET IXSPACE command with no
operands.

Example: Providing Index Space Parameters

Use the long form of Direct SQL Passthru syntax for commands that exceed one line:

{ENGINE|SQL} sqlengine
SET IXSPACE index_spec
END

To specify the USING-BLOCK, FREE-BLOCK, and CLUSTER portions of the CREATE INDEX
statement for DB2, enter the following:

SQL DB2
SET IXSPACE USING STOGROUP SYSDEFLT PRIQTY 100
SECQTY 20 FREEPAGE 16 PCTFREE 5 CLUSTER
END

To specify the segment.area and INDEX BLOCK portions of the CREATE INDEX statement for
IDMS/SQL, enter the following:

SQL SQLIDMS
SET IXSPACE IN EMPSEG.EMPAREA INDEX BLOCK CONTAINS 5 KEYS
END

To specify the Oracle table space ORATS1 for an index:

SQL SQLORA SET IXSPACE TABLESPACE ORATS1

You can use the SQL ? query command to determine the current IXSPACE setting. If the
current setting is the default, IXSPACE does not display in the SQL ? output.

Parameters That Apply to Multiple Adapters

320

OPTIFTHENELSE

When you issue the SET OPTIFTHENELSE command, the adapter attempts to deliver the
construct of FOCUS IF-THEN-ELSE DEFINE fields to the RDBMS as an expression. The DEFINE
field must be an object of a selection test or an aggregation request. The DEFINE definition
may be specified in the TABLE request or in the Master File.

{ENGINE|SQL} [sqlengine] SET OPTIFTHENELSE {ON|OFF}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

ON

Enables IF-THEN-ELSE optimization. ON is the default value.

OFF

Disables IF-THEN-ELSE optimization.

OPTIMIZATION

Depending on the OPTIMIZATION setting, the adapter may generate SQL SELECT statements
that allow the RDBMS to perform operations (such as join and aggregation) and return the data
to the adapter for FOCUS report generation (see The Adapter Optimizer on page 171).

To invoke adapter optimization, issue the following at the FOCUS command level

{ENGINE}SQL} [sqlengine] SET {OPTIMIZATION|SQLJOIN} optsetting

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

SQLJOIN

Is an alias for OPTIMIZATION.

optsetting

Indicates whether the adapter should pass sort, join, and aggregation operations to the
RDBMS for processing. Valid values are:

11. Adapter Commands

Relational Data Adapter User’s Manual 321

OFF instructs the adapter to create SQL statements for simple data retrieval from each
table. FOCUS processes the returned sets of data in your address space or virtual machine
to produce the report.

ON instructs the adapter to create SQL statements that take advantage of RDBMS join,
sort, and aggregation capabilities. ON is compatible with previous releases in regard to the
multiplicative effect. Misjoined unique segments and multiplied lines in PRINT and LIST
based report requests do not disable optimization. Other cases of the multiplicative effect
invoke adapter-managed native join logic. See The Adapter Optimizer on page 171, for
more information. ON is the default.

FOCUS passes join logic to the RDBMS only when the results will be the same as from a
FOCUS-managed request. Misjoined unique segments, the multiplicative effect, and
multiplied lines in PRINT and LIST based requests invoke adapter-managed native join
logic. See The Adapter Optimizer on page 171, for information.

SQL passes join logic to the RDBMS in all possible cases. The multiplicative effect does
not disable optimization, even in cases involving aggregation (SUM, COUNT). Join logic is
not passed to the RDBMS for tables residing on multiple subsystems and for tables
residing on multiple DBMS platforms.

NOAGGR disables optimization of calculations (DEFINE fields) without disabling optimization
of join and sort operations.

AGGR enables optimization of calculations (DEFINE fields). This is the default value for
optimization of calculations.

OWNERID (DB2, Teradata, Oracle)

You can issue the SET OWNERID command to designate a creator name for all unqualified
table names. The adapter will then use the owner ID as the creator name whenever the Access
File does not include a creator value as part of the table name. Direct SQL Passthru requests
are not affected by this setting. The syntax is

{ENGINE|SQL} [sqlengine] SET OWNERID ownerid_value

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, or SQLORA. Omit if you
previously issued the SET SQLENGINE command.

ownerid_value

Is the owner ID to assign to all unqualified table names.

Parameters That Apply to Multiple Adapters

322

The adapter uses the owner ID whenever there is ambiguity about the creator name. For
example, the adapter uses the owner ID as the creator for any table you create using:

The CREATE FILE command when the Access File does not specify a creator.

HOLD FORMAT SQLengine when the name of the extract file does not include a period.

If you do not have sufficient rights to create tables using the owner ID you set, an SQL error
results and the table is not created.

When this setting is in effect, the following line is added to the output of the SQL ? query:

(FOC1520) SQL CURRENT OWNER ID IS ownerid

PASSRECS

You can use the SET PASSRECS command to display the number of rows affected by a
successfully executed Direct SQL Passthru UPDATE or DELETE command. The syntax is

{ENGINE|SQL} [sqlengine] SET PASSRECS {OFF|ON}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

OFF

The adapter provides no information as to the number of records affected by a
successfully executed Direct SQL Passthru UPDATE or DELETE command.

ON

Is the default. Provides the following FOCUS message after the successful execution of a
Direct SQL Passthru UPDATE or DELETE command:

(FOC1364) ROWS AFFECTED BY PASSTHRU COMMAND: #/operation

For example, a DELETE command that executes successfully and affects 20 rows generates
the following message:

(FOC1364) ROWS AFFECTED BY PASSTHRU COMMAND: 20/DELETE

In addition to this message, the adapter updates the FOCUS system variable &RECORDS with
the number of rows affected. You can access this variable with Dialogue Manager and display
it with the ? STAT query.

11. Adapter Commands

Relational Data Adapter User’s Manual 323

Note:

You must use Direct SQL Passthru syntax to issue UPDATE or DELETE commands in order
to invoke the SET PASSRECS command.

Since, by definition, the successful execution of an INSERT command always affects one
record, INSERT does not generate the FOC1364 message.

The FOC1364 message is for informational purposes only and does not affect the
&FOCERRNUM setting.

The &ROWSAFFECTED variable is populated with the number of rows affected by a Direct
SQL Passthru INSERT, UPDATE, or DELETE command. It is populated regardless of the
PASSRECS setting. &ROWSAFFECTED is initialized to -1 and is set to -1 by any Direct SQL
Passthru command that does not return the number of rows affected, such as a SELECT
statement. The value of &ROWSAFFECTED is overwritten each time a Direct SQL Passthru
INSERT, UPDATE, or DELETE command is executed, so if you want to retain it, you must
copy it to another variable or store it in a calculated field.

SQLJOIN OUTER (DB2, Teradata, Oracle)

With the SET SQLJOIN OUTER command you can control when the adapter optimizes outer
joins, without affecting the optimization of other operations. (An outer join is generated when
the SET ALL=ON command is in effect.) This parameter provides backward compatibility with
prior releases of the adapter and enables you to fine-tune your applications.

When join optimization is in effect, the adapter generates one SQL SELECT statement that
includes every table involved in the join. The RDBMS can then process the join. When join
optimization is disabled, the adapter generates a separate SQL SELECT statement for each
table, and FOCUS processes the join.

The syntax is

{ENGINE|SQL} sqlengine SET SQLJOIN OUTER {ON|OFF}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, or SQLORA. Omit if you
issued the SET SQLENGINE command.

ON

Enables outer join optimization. ON is the default for Teradata, and Oracle.

Parameters That Apply to Multiple Adapters

324

OFF

Disables outer join optimization. OFF is the default value for DB2.

Note:

Left outer join optimization is not supported for IDMS/SQL.

The SQLJOIN OUTER setting is available only when optimization is enabled (that is,
OPTIMIZATION is not set to OFF).

The SQLJOIN OUTER setting is ignored when SET ALL = OFF.

The following table describes how different combinations of OPTIMIZATION and
SQLJOIN OUTER settings affect adapter behavior. It assumes that SET ALL = ON:

Settings Results

ON ON Yes Enabled

ON OFF No Enabled

OFF N/A No Disabled

SQL ON Yes, in all possible cases Enabled

SQL OFF No Enabled

FOCUS ON Yes if results are equivalent to
FOCUS managed request

Enabled

FOCUS OFF No Enabled

If SQLJOIN OUTER is set to OFF, the following message displays when you issue the SQL ?
query command:

(FOC1420) OPTIMIZATION OF ALL=ON AS LEFT JOIN - : OFF

TRIM_LITERALS (DB2, Oracle, Teradata)

By default, literal contents are preserved, including trailing blanks in string literals and the
fractional part and exponential notation in numeric literals. This allows greater control over the
generated SQL. In some cases, when trailing blanks are not needed, you can issue the adapter
SET TRIM_LITERALS ON command to trim them.

ENGINE sqlengine SET TRIM_LITERALS {ON|OFF}

11. Adapter Commands

Relational Data Adapter User’s Manual 325

where:

sqlengine

Indicates the adapter. Acceptable values are DB2, SQLDBC, or SQLORA. You can omit this
value if you previously issued the SET SQLENGINE command.

ON

Trims trailing blanks.

OFF

Preserves trailing blanks. OFF is the default value.

VARCHAR (DB2, Oracle, Teradata)

The SET parameter VARCHAR controls the mapping of the VARCHAR data type. By default, the
server maps this data type as variable character (AnV).

Syntax: How to Control the Mapping of Variable-Length Data Types

ENGINE sqlengine SET VARCHAR {ON|OFF}

where:

sqlengine

Indicates the adapter. Acceptable values are DB2, SQLDBC, or SQLORA. You can omit this
value if you previously issued the SET SQLENGINE command.

ON

Maps the VARCHAR data type as variable-length alphanumeric (AnV). This is required for
Unicode environments. ON is the default value.

OFF

Maps the VARCHAR data type as fixed-length alphanumeric (An).

Parameters That Apply to DB2 Only

The following adapter environmental commands apply only to DB2, SET BINDOPTIONS, SET
CURRENT DEGREE, SET CURRENT SQLID, SET ERRORTYPE, SET ISOLATION, SET PLAN, and
SET SSID. (SET AUTOCLOSE also applies to DB2 only and is discussed in Controlling
Connection Scope on page 295.)

Parameters That Apply to DB2 Only

326

BINDOPTIONS

You can override the default BIND string that the adapter creates when you compile a static
MODIFY procedure (with SET STATIC ON).

The syntax is

{ENGINE|SQL} [DB2] SET BINDOPTIONS [bind_spec]

where:

bind_spec

Is the portion of the BIND command that contains the BIND keywords and parameters (not
including the BIND keyword itself). These BIND keywords and parameters must conform to
rules governing the BIND PLAN and BIND PACKAGE commands described in the IBM DB2
Command and Utility Reference.

Note: Do not include the word BIND as part of the bind_spec.

To reset the default options, issue the command with no bind_spec:

SQL DB2 SET BINDOPTIONS

Note: Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

Use the long form of Direct SQL Passthru syntax for commands that exceed one line:

SQL DB2
SET BINDOPTIONS bind_spec
END

The adapter default BIND string has the form:

BIND PLAN (focexec_name) MEM(focexec_name) ACTION(REPLACE) ISOLATION(CS)

You can determine the current setting for BINDOPTIONS with the adapter SQL DB2 ? query
command. If the current setting is the default, BINDOPTIONS does not display in the
SQL DB2 ? output.

Note: If the bind string specifies the MEM keyword, the adapter ignores it and supplies the
MEM keyword with a parameter value equal to the FOCEXEC name. If the bind string omits any
of the other three default keywords, PLAN/PACKAGE, ACTION, or ISOLATION, the adapter adds
them automatically with their corresponding default values. To bind a package, you must
specify the keyword PACKAGE, as PLAN is the default.

11. Adapter Commands

Relational Data Adapter User’s Manual 327

CURRENT DEGREE

DB2 supports parallel query I/O and parallel query CPU to improve response. You can bind
static SQL requests with the DEGREE(ANY) parameter to take advantage of parallel processing.
For dynamic SQL requests, the adapter supports parallel processing if you issue the SET
CURRENT DEGREE command prior to the request.

The syntax is

SQL [DB2] SET CURRENT DEGREE {'1'|'ANY'}

where:

1

Is the default. Does not invoke parallel processing.

ANY

Invokes parallel processing for dynamic requests. If the thread to DB2 is closed during the
session, the value resets to '1'.

Note:

Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

Closing a DB2 thread restores the setting to ‘1’, the default. Therefore, if you set
AUTOCLOSE or AUTODISCONNECT to anything other than ON FIN (the adapter default), you
must reissue the SET CURRENT DEGREE command prior to each request in which you want
it to apply.

CURRENT SQLID

The DB2 RDBMS recognizes two types of ID, the primary authorization ID and one or more
optional secondary authorization IDs. It also recognizes the CURRENT SQLID setting.

An ID known as a primary authorization ID identifies an interactive user or batch program
accessing a DB2 subsystem. A security system such as RACF normally provides the ID to DB2.
During the process of connecting to DB2, the primary authorization ID may be associated with
one or more secondary authorization IDs (usually RACF groups). The site controls whether it
uses secondary authorization IDs.

The DB2 database administrator may grant privileges to a secondary authorization ID that are
not granted to the primary ID. Thus, secondary authorization IDs provide the means for granting
the same privileges to a group of users. (The DBA associates individual primary IDs with the
same secondary ID and then grants the privileges to the secondary ID.)

Parameters That Apply to DB2 Only

328

The DB2 CURRENT SQLID can be the primary authorization ID or any associated secondary
authorization ID. At the beginning of the FOCUS session, the CURRENT SQLID is the primary
authorization ID. You can reset it using the following adapter command

SQL [DB2] SET CURRENT SQLID 'sqlid'

where:

sqlid

Is the desired primary or secondary authorization ID, enclosed in single quotation marks.
All DB2 security rules are respected.

Note: Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

Unless you issue the SET OWNERID command, the CURRENT SQLID is the default owner ID for
DB2 objects (such as tables or indexes) created with dynamic SQL statements. (For example,
the FOCUS CREATE FILE command issues dynamic SQL statements.) The CURRENT SQLID is
also the sole authorization ID for GRANT and REVOKE statements. It must be assigned all the
privileges needed to create objects as well as GRANT and REVOKE privileges. If you do not
issue the SET OWNERID command, the CURRENT SQLID is assumed to be the owner for
unqualified table names.

Other types of requests, such as FOCUS TABLE (SQL SELECT) and MODIFY (SQL SELECT,
INSERT, UPDATE, or DELETE) requests, automatically search for the necessary privileges using
the combined privileges of the primary authorization ID and all of its associated secondary
authorization IDs, regardless of the DB2 CURRENT SQLID setting. The CURRENT SQLID setting
stays in effect until the communication thread to DB2 is disconnected, when it reverts to the
primary authorization ID.

ERRORTYPE

With SET ERRORTYPE, you can instruct the Adapter for DB2 to return native DB2 error
messages, as well as FOCUS error messages, for those error conditions that are reported by
the DBMS. This feature can be enabled both as an installation option and as a run-time SET
parameter.

You can override the installation default setting at run time. The syntax is

{ENGINE|SQL} [DB2] SET ERRORTYPE {FOCUS|DBMS}

where:

FOCUS

Generates only FOCUS error messages.

11. Adapter Commands

Relational Data Adapter User’s Manual 329

DBMS

Produces native DBMS error messages as well as FOCUS error messages.

Note:

Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

The SET option overrides the installation default.

ISOLATION (DB2)

Each RDBMS protects data being read by one user from changes (INSERT, UPDATE, or
DELETE) made by others. The isolation level setting governs the duration of the protection.
That is, the isolation level determines when shared locks on rows or data pages are released,
so that those rows or pages become available for updates by other users. You can dynamically
set the isolation level within the FOCUS session using the SET ISOLATION command for DB2.

Note: For IDMS/SQL, see TRANSACTION on page 336.

You can change the isolation level by issuing this command in a MODIFY procedure or at the
FOCUS command level. (For Maintain, you must issue the command at the FOCUS command
level prior to invoking the Maintain procedure.) The setting remains in effect for the FOCUS
session or until you reset it.

Syntax: How to Dynamically Change the Isolation Level

From the FOCUS command level, issue

{ENGINE|SQL} [DB2] SET ISOLATION level

where:

level

CS is Cursor Stability, the default. Releases shared locks as the cursor moves on in the
table. Use for read-only requests.

RR is Repeatable Read. Use for MODIFY and Maintain read/write routines. Locks the
retrieved data until it is released by an SQL COMMIT WORK or SQL ROLLBACK WORK.

UR is Uncommitted Read. It provides read-only access to records even if they are locked.
However, these records may not yet be committed to the database.

RS is Read Stability. For more information, see the DB2 Command and Utility Reference.

blank resets the level to the adapter default.

Parameters That Apply to DB2 Only

330

Note:

The adapter does not validate the isolation level values. If you issue the SET ISOLATION
command with a level not supported for the version of the RDBMS you are using, the
RDBMS will return an SQL code of -104, signifying an SQL syntax error.

The SET ISOLATION command is enabled only for SELECT requests created as a result of
FOCUS TABLE requests.

This setting cannot override the required isolation level of RR for MODIFY and Maintain
requests.

To display the isolation level setting, issue the SQL ? query command.

PLAN

In addition to the DB2 subsystem-ID, you must identify your DB2 application plan before you
execute any requests. The plan is a result of the data adapter installation process or, possibly,
the result of compiling a procedure that uses static SQL. See Static SQL (DB2) on page 401,
for a discussion of static SQL procedures.

In a CAF environment, issue the SET PLAN command from the FOCUS command level

SQL [DB2] SET PLAN planname

where:

planname

Is the name of your application plan.

Note:

Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

The default isolation level for the DB2 Data Adapter is CS. At installation time, your site
may have chosen RR as the isolation level. Your DB2 database administrator can provide
you with the isolation level for a given data adapter application plan. Refer to ISOLATION
(DB2) on page 330 for more information.

The isolation level called Uncommitted Read (UR) provides read-only access to records
even if they are locked; however, these records may not yet be committed to the database.
For more information, see the DB2 Command and Utility Reference.

11. Adapter Commands

Relational Data Adapter User’s Manual 331

Sometimes, a site binds two different plans during the installation process; each specifies
a different isolation level to control RDBMS locking. You can use the SET PLAN command
to, in effect, change your Isolation Level within a FOCUS session. A level of repeatable read
(RR) is required for read/write MODIFY and Maintain applications including those that
invoke the Change Verify Protocol (CVP); cursor stability (CS) is recommended for TABLE
and read-only MODIFY or Maintain operations. Refer to ISOLATION (DB2) on page 330 for
information.

This technique does not apply to non-CAF versions of the data adapter; they require a
different CLIST or JCL procedure to invoke different versions of the data adapter.

You can reset the plan name at any time, regardless of the AUTOCLOSE setting. If you change
the plan name, the next native SQL command or FOCUS request uses the new plan by closing
and re-opening the thread.

The data adapter may have been installed with a default, site-specific, PLAN setting. Use the
SQL ? query command to display this setting.

SSID

If the CAF option for the adapter is installed at your site, you must indicate which DB2 system
you intend to use. The name for the DB2 system may differ from the default, or your site may
have multiple copies of DB2. To specify the DB2 subsystem-ID (SSID), issue the SET SSID
command before executing native SQL commands or FOCUS requests.

Issue the following from the FOCUS command level or include it in a PROFILE FOCEXEC

SQL [DB2] SET SSID ssid

where:

ssid

Is the DB2 subsystem ID. The default is DSN, unless your site changed the default at
installation time.

Note:

Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

Non-CAF versions of the adapter usually supply the subsystem-ID by specifying the DSN
SYSTEM parameter and the RUN subcommand in the TSO CLIST that invokes FOCUS.

You can reset the SSID at any time, regardless of the AUTOCLOSE setting. If you change the
SSID setting, the next native SQL command or FOCUS request accesses the new DB2
subsystem.

Parameters That Apply to DB2 Only

332

The adapter may have been installed with a default, site-specific, SSID setting. Use the SQL ?
query command to display this setting.

NOCOLUMNTITLE

You can use the SET NOCOLUMNTITLE command to control the column names in a report
when executing a stored procedure.

Syntax: How to Control Column Names

ENGINE DB2 SET NOCOLUMNTITLE {ON|OFF}

where:

DB2

Indicates the adapter. You can omit this parameter value if you previously issued the SET
SQLENGINE command.

ON

Uses generated column names (for example, E01, E02, and so on) instead of the column
names returned by DB2.

OFF

Uses the column names returned by DB2. OFF is the default value.

Parameters That Apply to Teradata Only

This section describes the Teradata SET CONNECTION_ATTRIBUTES and SET TRANSACTION
commands. The SET AUTOCLOSE command is also supported and is described in Controlling
Connection Scope on page 295.

Teradata CONNECTION_ATTRIBUTES

The adapter SET CONNECTION_ATTRIBUTES command enables users to identify themselves to
the Teradata RDBMS. When users issue the command at the beginning of FOCUS sessions,
the RDBMS verifies their authorization to access tables and views.

Note: DBCLOGON is a synonym for CONNECTION_ATTRIBUTES, supported for compatibility with
earlier releases of the adapter.

11. Adapter Commands

Relational Data Adapter User’s Manual 333

The SET CONNECTION_ATTRIBUTES command must be issued before any DBC/SQL
commands or FOCUS requests that require Teradata services. Internally, the adapter stores
the Teradata logon ID and password in the user's virtual storage space and the DBC
authorization process is deferred until a subsequent command for Teradata services is
executed. The adapter initiates the logon immediately prior to executing the user's request for
Teradata services.

The SET CONNECTION_ATTRIBUTES command may be issued from the FOCUS command level
or be included in the users' PROFILE FOCEXEC. The syntax is

SQL [SQLDBC] SET CONNECTION_ATTRIBUTES [tdpid/]tuserid,tpassword [;]

where:

tdpid

Is the Teradata Director Program ID (TDP ID). Valid values are site-specific and release-
dependent:

Note: Specifying a TDP ID may not be necessary at your site. Contact your database
administrator for your site's requirements.

tuserid

Is your Teradata user ID, up to 30 characters long.

tpassword

Is the associated Teradata password, up to 30 characters long.

If the SET CONNECTION_ATTRIBUTES command is rejected, a Teradata error message appears
and the user should resubmit the command with correct information.

For additional security, a Dialogue Manager procedure may be designed as an alternative to
the PROFILE FOCEXEC method. Using -CRTFORM or -PROMPT statements, adapter users are
prompted for the Teradata password and the value is stored in a variable. The -CRTFORM
statement also provides a non-display option. For information about Dialogue Manager, see
your documentation on developing applications.

TRANSACTION

You can control the transaction mode of a Teradata connection by issuing the SET
TRANSACTION command.

Syntax: How to Set the Transaction Mode of a Teradata Connection

To set the transaction mode of a Teradata connection, issue the following command in any
profile or in a procedure

Parameters That Apply to Teradata Only

334

SQL SQLDBC SET TRANSACTION [ANSI|BTET|DEFAULT]

where:

ANSI

Sets the Teradata connection to the ANSI transaction mode. This is the default for a CLI
connection.

BTET

Sets the Teradata connection to the Teradata transaction mode (also known as the BTET
transaction mode).

DEFAULT

For ODBC connections only. Sets the Teradata connection to the Teradata system default
transaction mode. This is the default for an ODBC connection.

For more information about how the Teradata system default is determined, see your
Teradata documentation.

Note: The connection scope is different when setting the transaction mode for ODBC and CLI
connections.

For an ODBC Connection: The transaction mode can be set within an active connection.
There is no need to disconnect.

For a CLI Connection: The transaction mode can be set only before the connection takes
place. You must terminate the connection first using the SQL SQLDBC END SESSION
command, if you want to change the transaction mode for a CLI connection. Failure to do
so will return the following warning:

(FOC1722) WARNING: COULD NOT SET TRANSACTION MODE

Parameters That Apply to IDMS/SQL Only

This section describes the SQLIDMS SET SESSION CURRENT SCHEMA and SET TRANSACTION
commands, and IDMS/SQL session control.

CURRENT SCHEMA

The Adapter for IDMS/SQL uses the user-specified schema name as the first qualifier for all
SQL requests involving SQL tables or views. This command overrides the IDMS/SQL current
schema in effect and precludes the specification of unqualified table names. This prevents
passing unqualified table names to IDMS.

11. Adapter Commands

Relational Data Adapter User’s Manual 335

To identify the schema, issue the SET SESSION CURRENT SCHEMA command from the FOCUS
command level

SQL [SQLIDMS] SET SESSION CURRENT SCHEMA schema

where:

schema

Is the name of the schema in SQL requests.

Note: Omit the SQLIDMS target RDBMS qualifier if you previously issued the SET SQLENGINE
command for SQLIDMS. Use the SQL ? query command to display this setting.

TRANSACTION

IDMS protects data being read by one user from changes (INSERT, UPDATE, or DELETE) made
by others. The isolation level setting governs the duration of the protection. That is, the
isolation level determines when shared locks on rows are released, so that those rows or
pages become available for updates by other users. IDMS/SQL allows you to dynamically set
the isolation level within the FOCUS session using the IDMS SQL SET TRANSACTION
command.

Note: For the equivalent command for DB2, see ISOLATION (DB2) on page 330.

The SET TRANSACTION CURSOR STABILITY or TRANSIENT READ command affects the duration
of row or page shared locks on IDMS/SQL tables for the duration of the IDMS/SQL
transaction. You can specify the command in your MODIFY procedure or from the FOCUS
command level. The setting remains in effect for the FOCUS session or until you reset it.

To set the isolation level from the FOCUS command level, issue

SQL [SQLIDMS] SET TRANSACTION level

where:

level

Can be one of the following:

CURSOR STABILITY is Cursor Stability, the default. Provides the maximum amount of
concurrency while guaranteeing the integrity of the data selected.

TRANSIENT READ is Transient Read. Allows the reading of records locked by other users
(allows dirty reads). Recommended for TABLE only. Transient read prevents the SQL
transaction from performing updates. Use this only when you do not need the data
retrieved to be absolutely consistent and accurate. If you specify Transient Read, IDMS
assumes Read Only.

Parameters That Apply to IDMS/SQL Only

336

READ ONLY allows data to be retrieved, but does not allow the database to be updated.

READ WRITE allows data to be retrieved, and allows the database to be updated.

Note: Omit the SQLIDMS target RDBMS qualifier from the command when issuing it in a
MODIFY procedure or if you previously issued the SET SQLENGINE command for SQLIDMS.

IDMS SQL Session Control: The CONNECT Command

An SQL session is a connection between the FOCUS application and the IDMS database. It
begins when the application connects to a dictionary. You use the CONNECT command to
override the IDMS/SQL default (automatic) connection. The length of time an SQL session
stays in effect depends on whether the connection began automatically or a CONNECT
command was issued. If the CONNECT command was issued, the SQL session is in effect until
a COMMIT RELEASE, ROLLBACK RELEASE, or RELEASE command is executed. All of these
commands may be executed within the FOCUS IDMS/SQL session using Direct SQL Passthru.
Refer to the appropriate CA-IDMS/DB documentation for more information regarding SQL
sessions.

Issue the following from the FOCUS command level or include it in a PROFILE FOCEXEC

SQL [SQLIDMS] CONNECT TO dictname

where:

dictname

Is the database (dictionary) to start the IDMS SQL session. The default is the dictionary in
effect for the user session. This default is set outside of the FOCUS session, for example,
with a SYSIDMS DICTNAME parameter. Please refer to the appropriate CA-IDMS/DB
documentation for a complete description.

Note: Omit the SQLIDMS target RDBMS qualifier if you previously issued the SET SQLENGINE
command for SQLIDMS.

IDMS SQL Session Control: Other Session Commands

Other IDMS SQL commands that affect the IDMS/SQL session can be executed explicitly.

To issue IDMS SQL session commands such as COMMIT, COMMIT RELEASE, ROLLBACK,
ROLLBACK RELEASE, and COMMIT CONTINUE, the syntax is:

SQL [SQLIDMS] COMMIT RELEASE

11. Adapter Commands

Relational Data Adapter User’s Manual 337

Parameters That Apply to Oracle Only

This section describes the Adapter for Oracle SET CONNECTION_ATTRIBUTES, SET
DATETIME_PROCESS, SET DEFAULT_CONNECTION, SET ORACHAR, SET ORANUMBER, and SET
SPMAZPRM commands.

Oracle CONNECTION_ATTRIBUTES

The SET CONNECTION_ATTRIBUTES command allows you to declare a connection to one
Oracle database server and to supply authentication attributes necessary to connect to the
server.

You can connect to more than one Oracle database server by issuing multiple SET
CONNECTION_ATTRIBUTES commands. The actual connection takes place when the first
request referencing that connection is issued. You can issue SET CONNECTION_ATTRIBUTES
commands in a FOCEXEC, at the FOCUS command prompt or in a FOCUS-supported profile.
The profile can be encrypted.

If you issue multiple SET CONNECTION_ATTRIBUTES commands:

The first SET CONNECTION_ATTRIBUTES command sets the default Oracle database server
to be used.

If more than one SET CONNECTION_ATTRIBUTES command declares the same Oracle
database server, the authentication information is taken from the last SET
CONNECTION_ATTRIBUTES command.

The adapter supports connections to:

Local Oracle database servers.

Remote Oracle database servers. To connect to a remote Oracle database server, the
Oracle tnsnames file on the source machine must contain an entry pointing to the target
machine and the listening process must be running on the target machine.

Once you are connected to an Oracle database server, that server may define Oracle
DATABASE LINKs that can be used to access Oracle tables on other Oracle database servers.

If needed, the DBA or some other authorized person at your site will supply you with a valid
Oracle user ID and password.

It may be desirable to prompt users for their Oracle password instead of coding it in a
procedure. In this case, use a Dialogue Manager variable in its place, and retrieve the value
using -CRTFORM or -PROMPT facilities. If you use -CRTFORM, you can make the password field
non-displayable for additional security.

Parameters That Apply to Oracle Only

338

A valid Oracle user ID and password must be supplied before issuing commands that access
the Oracle RDBMS. If a valid Oracle login ID and password have not been supplied, an error
message is returned. You should respond by correcting and re-issuing the SET
CONNECTION_ATTRIBUTES command.

The SET CONNECTION_ATTRIBUTES command stores both the Oracle login ID and password in
user virtual storage. It does not immediately initiate a login to Oracle. The actual login is
deferred until a subsequent command is issued that requires the services of the Oracle
RDBMS.

The syntax is:

SQL [SQLORA] SET CONNECTION_ATTRIBUTES [connection_name]/userid,password

where:

SQLORA

Indicates the Adapter for Oracle. You can omit this value if you previously issued the SET
SQLENGINE command.

connection_name

Specifies a remote instance using an Oracle TNSNAME (the net service name used as a
connect descriptor to an Oracle database server across the network). If omitted, the local
database server will be set as the default.

userid

Is the primary authorization ID by which you are known to Oracle, up to 30 characters in
length.

password

Is the password associated with the user ID, up to 30 characters in length.

Note: SET USER is a synonym for SET CONNECTION_ATTRIBUTES, supported for compatibility
with earlier releases of the adapter. However, note that the symbol used for separating the
connection attribute from the authentication information and the symbol used for separating
the user ID from the password changed in FOCUS 7.2.

Issue the following query command to list status information for all declared connections:

SQL SQLORA ? SERVERS

11. Adapter Commands

Relational Data Adapter User’s Manual 339

DATETIME_PROCESS

When an SQL SELECT statement refers to CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP, you can choose a source for obtaining the system date and time. By
default, the date or time value will be obtained from the system running FOCUS. Using the SET
DATETIME_PROCESS command, you can override this default so that the date or time is
obtained from the Oracle DBMS for reports using Automatic Passthru.

Syntax: How to Choose a Source for System Date and Time

To choose a source for system date and time, the syntax is

SQL SET DATETIME_PROCESS=SERVER|DBMS
END

where:

SERVER

Specifies that the date and time values will be taken from the system running FOCUS. This
is the default.

DBMS

Specifies that the date and time values will be taken from the Oracle DBMS.

DEFAULT_CONNECTION

Once all Oracle database servers to be accessed have been declared using the SET
CONNECTION_ATTRIBUTES command, you can select a default server using the SET
DEFAULT_CONNECTION command. If you do not issue this command, the tnsname value
specified in the first SET CONNECTION_ATTRIBUTES command is used.

SQL [SQLORA] SET DEFAULT_CONNECTION [connection_name]

where:

SQLORA

Indicates the Adapter for Oracle. You can omit this value if you previously issued the SET
SQLENGINE command.

connection_name

Is the net service name used as a connect descriptor to an Oracle database server across
the network. If omitted, then the local database server will be set as the default. If this
name has not been previously declared in a SET CONNECTION_ATTRIBUTES command,
message FOC1671 is issued.

Parameters That Apply to Oracle Only

340

Note:

If you use the SQL SQLORA SET DEFAULT_CONNECTION command more than once, the
connection name specified in the last command will be the active connection name.

The SQL SQLORA SET DEFAULT_CONNECTION command cannot be issued while an
uncommitted transaction (LUW) is pending. In that case message FOC1671 is issued.

ORACHAR

With regard to CHAR and VARCHAR2 data types, special attention must be paid to which of the
two will be used. When you compare a column of CHAR data type to a column of VARCHAR2
data type, where the only difference in data is the additional space in the column of the CHAR
data type, Oracle recognizes that the data types are not the same.

The ORACHAR setting lets you specify which of the two data types will be used for inserting,
updating, and retrieving data.

If you create the tables outside of FOCUS, we recommend that you use either CHAR or
VARCHAR2 data types, but not both. If you create a table with both data types, you might not
be able to retrieve the data you inserted due to Oracle's comparison mechanism.

If you use FOCUS to generate Oracle tables and retrieve data, you will not encounter this
problem, since the data type being used will be either CHAR or VARCHAR2, depending upon
the ORACHAR setting.

SQL [SQLORA] SET ORACHAR {FIX|VAR}

where:

FIX

Uses the CHAR data type.

VAR

Uses the VARCHAR2 data type. This is the default.

Note: Omit the SQLORA target RDBMS qualifier if you issued the SET SQLENGINE command.

Prior to Oracle V7, the Oracle RDBMS treated all character strings transmitted by the adapter
through SQL variables as variable length because all Oracle RDBMS character data types were
essentially variable length. In Oracle V7, the CHAR data type was enhanced to possess fixed
length characteristics similar to other relational database CHAR data types.

11. Adapter Commands

Relational Data Adapter User’s Manual 341

Important: The FIX setting may cause compatibility problems in applications developed in
earlier releases of FOCUS or Oracle or under the default setting of VAR. Use of the FIX setting
with Oracle V7 CHAR columns in MODIFY MATCH, INCLUDE, UPDATE and DELETE commands,
as variables in parameterized Direct SQL Passthru statements, and as cross-referenced fields
in non-optimized join requests should be tested extensively to verify that their behavior is as
expected.

ORANUMBER

The ORANUMBER setting determines how the Oracle NUMBER data type will be described in
the Master File generated for the answer set returned by a Direct SQL Passthru SELECT
request.

By default a NUMBER data type whose precision is:

Between 32 and 37 is mapped to the format D20.2.

38 is mapped to the format I11.

You can use the ORANUMBER setting to override the default mapping of a NUMBER data type
with precision between 32 and 38.

Syntax: How to Override the Precision of the Oracle NUMBER Data Type

SQL [SQLORA] SET ORANUMBER {COMPAT|DECIMAL}

where:

SQLORA

Indicates the Adapter for Oracle. You can omit this value if you previously issued the SET
SQLENGINE command.

COMPAT

Indicates that the NUMBER data type with precision between 32 and 37 will be mapped to
format D20.2.This is the default.

DECIMAL

Indicates that the NUMBER data type with precision between 32 and 37 will be mapped to
format P33.2.

SPMAXPRM

An Adapter for Oracle parameter can be used to set the maximum number of input parameters
for stored procedures.

SQL [SQLORA] SET SPMAXPRM value

Parameters That Apply to Oracle Only

342

where:

value

Is a numeric value indicating the maximum number of input parameters that may be
entered for stored procedures. The default value is 256. This value is displayed by the SQL
SQLORA ? query.

Note: Omit the SQLORA target RDBMS qualifier if you issued the SET SQLENGINE command.

Parameters That Apply to MODIFY Only

The following commands are available only within FOCUS MODIFY procedures, SET LOADONLY,
SET AUTOCOMMIT ON CRTFORM, and SET ERRORRUN. The SET ISOLATION command,
explained in ISOLATION (DB2) on page 330, may also be issued from MODIFY. See Maintaining
Tables With FOCUS on page 349, for a discussion of MODIFY.

When issuing commands from within MODIFY procedures, omit the sqlengine or the
environmental prefix.

LOADONLY

The Fastload facility increases the speed of loading data into tables. Use the LOADONLY
command exclusively in those MODIFY procedures that insert rows. The syntax is:

SQL SET LOADONLY ON

You can use the Fastload feature only with ON NOMATCH INCLUDE operations. Other MODIFY
operations generate an error message if SQL SET LOADONLY is invoked.

In MODIFY processing without Fastload, the adapter uses an SQL SELECT statement to test
the existence of a single row. By examining the SQL return code, the adapter determines
whether the row exists and directs MODIFY processing to the appropriate ON MATCH or ON
NOMATCH logic.

The Fastload option eliminates this SELECT operation. It loads rows into the table without first
evaluating their existence. The RDBMS ensures the uniqueness of stored rows with unique
indexes.

Note:

For Oracle, choose the appropriate INSERTSIZE to use in combination with LOADONLY.

The FOCUS Fastload Facility should not be confused with the Teradata Fastload feature.

11. Adapter Commands

Relational Data Adapter User’s Manual 343

Note: The INSERTSIZE parameter is only functional for consecutive executions of INSERT
statements that are identical to each other (except for the values to be inserted). No other
intervening SQL statements are allowed, including COMMIT WORK. If a statement is issued
that in any way (other than the inserted values) differs from the current blocked INSERT
statement in effect, the block is immediately transmitted to the RDBMS, even if the buffer is
not full. This restriction has several ramifications:

To use INSERTSIZE in a MODIFY request, you must use the SQL SET LOADONLY command
described in Maintaining Tables With FOCUS on page 349. Without LOADONLY, the adapter
does not insert a row without first issuing a SELECT statement to check that the row does
not already exist.

To use INSERTSIZE with Direct SQL Passthru, the INSERT statement must be
parameterized and use the PREPARE, BIND, and EXECUTE command set within a BEGIN
SESSION/END SESSION command pair. In this case, the BIND is not optional. See Direct
SQL Passthru on page 265, for a discussion of parameterized Passthru.

AUTOCOMMIT ON CRTFORM

The AUTOCOMMIT ON CRTFORM facility releases locks on database objects every time a
CRTFORM is displayed. The integrity of data is protected by an automated Change Verify
Protocol (CVP) as an alternative to the RDBMS standard method of locking for concurrency and
integrity. The Change Verify Protocol consists of a series of steps that manage the integrity
and concurrent update/retrieval activity of the database by committing open transactions prior
to displaying each CRTFORM.

Note: This setting is not needed for Teradata because it implicitly commits every SQL
statement individually.

AUTOCOMMIT ON CRTFORM does not apply to Maintain.

CVP lacks the unit-of-work capabilities of the RDBMS protocol, but CVP never retains locks on
displayed records. The elimination of locks increases rates of transaction operations and
improves terminal response times for interactive applications. All open transactions are
automatically committed prior to using CVP for SELECT and UPDATE.

The Change Verify Protocol initiates these steps for each CRTFORM display:

1. The adapter releases all locks held on the record. Before the record displays on the
terminal, the adapter issues an SQL COMMIT WORK statement to release any existing
RDBMS locks.

2. The adapter retrieves the record and displays it on the terminal. The user enters a
database update that results in an UPDATE, DELETE, or INCLUDE action.

Parameters That Apply to MODIFY Only

344

3. The adapter retrieves the record again. It compares the original and current values of the
record to determine if another transaction changed the record in the interim. If the original
(displayed) record has been modified in the time between the original retrieval and the
update request, the update is rejected. If the original (displayed) record remains
unchanged, the update is processed.

With the RDBMS standard method, SQL COMMIT WORK statements specified in applications
define transactions or logical units of work (LUW). The RDBMS uses a locking mechanism to
protect the LUW from interference by other concurrent transactions. The locking mechanism
allocates and isolates database resources for the LUW.

The disadvantage to the RDBMS method is that terminal I/O in the LUW locks data for the
indeterminate amount of time it takes the user to react to the terminal display. The locks are
retained until the user completes the transactions successfully or until the RDBMS issues a
ROLLBACK WORK command.

You can issue the AUTOCOMMIT ON CRTFORM command only from within a MODIFY CRTFORM
procedure. Include it in CASE AT START, not in the TOP case. You may not switch
AUTOCOMMIT modes within the MODIFY procedure.

The AUTOCOMMIT ON CRTFORM facility only works on single-record transactions. (For example,
MODIFY MATCH and NEXT commands retrieve single records.) It is not designed for set
processing with FOCUS multiple-record operations (REPEAT and HOLD, for example). For
multiple-record processing, CVP applies only to the last record.

Syntax: How to Invoke the Change Verify Protocol

The syntax is

SQL SET AUTOCOMMIT {OFF|ON CRTFORM}

where:

OFF

Is the default. It retains the native RDBMS locking protocol.

ON CRTFORM

Invokes the Change Verify Protocol.

Note:

A MODIFY procedure that invokes the Change Verify Protocol can test the value of the
FOCURRENT variable to determine whether or not there is a conflict with another
transaction. See Maintaining Tables With FOCUS on page 349 for more information.

11. Adapter Commands

Relational Data Adapter User’s Manual 345

To avoid data inconsistencies with the AUTOCOMMIT feature, you must set your DB2
isolation level to Repeatable Read (RR), the required isolation level for all read/write
MODIFY applications. For IDMS/SQL, you must set the isolation level to Cursor Stability.
Oracle requires a Write lock.

ERRORRUN

With SET ERRORRUN ON, MODIFY processing continues even when a serious error occurs,
allowing an application to handle its own errors in the event that an RDBMS error is part of the
normal application flow. Code this command explicitly within the MODIFY procedure, preferably
in CASE AT START, where it is executed once.

The syntax is

CASE AT START
SQL SET ERRORRUN {OFF|ON}
.
.
.
ENDCASE

where:

OFF

Causes MODIFY processing to stop when a fatal error is detected (for example, if the table
name is not found). OFF is the default value.

ON

Allows MODIFY processing to continue despite fatal errors. Test the value of FOCERROR to
determine appropriate action after an RDBMS call.

When SET ERRORRUN is ON, the MODIFY procedure reports the error but continues execution.
The MODIFY code can then test the value of FOCERROR to determine the cause of the error
and take appropriate action. Be careful in evaluating the contents of FOCERROR, as failure to
respond to a negative SQLCODE, non-zero return code, or RDBMS error message can cause
unpredictable errors in subsequent RDBMS or MODIFY processing.

SET ERRORRUN returns to its default setting at the end of the MODIFY procedure.

Adapter Dialogue Manager Variables

All adapter environmental settings are available for display and query as Dialogue Manager
variables. The following sections list the variable names for each RDBMS, and the lines
displaying their settings in the SQL ? query.

Adapter Dialogue Manager Variables

346

Note: If the length of the current setting value is greater than 12, the Dialogue Manager
variable makes only the first 12 characters available.

Dialogue Manager Variables for the Adapter for DB2

The following variables are available for DB2:

&SQLCAF - (FOC1442) CALL ATTACH FACILITY IS
&SQLSSID - (FOC1447) SSID FOR CALL ATTACH IS
&SQLPLANA - (FOC1448) ACTIVE PLAN FOR CALL ATTACH IS
&SQLPLANU - (FOC1459) USER SET PLAN FOR CALL ATTACH IS
&SQLPLANI - (FOC1460) INSTALLATION DEFAULT PLAN IS
&SQLSTATIC - (FOC1503) SQL STATIC OPTION IS
&SQLAUTOCLS - (FOC1444) AUTOCLOSE OPTION IS
&SQLAUTODIS - (FOC1496) AUTODISCONNECT OPTION IS
&SQLAUTOCOM - (FOC1499) AUTOCOMMIT OPTION IS
&SQLDBSPACE - (FOC1446) DEFAULT DBSPACE IS
&SQLID - (FOC1449) CURRENT SQLID IS
&SQLISOLATION - (FOC1424) ISOLATION LEVEL FOR DB2 TABLE INTERFACE IS
&SQLWRITE - (FOC1441) WRITE FUNCTIONALITY IS
&SQLOPT - (FOC1445) OPTIMIZATION OPTION IS
&SQLITEOPT - (FOC1763) IF-THEN-ELSE OPTIMIZATION IS
&SQLEMSG - (FOC1484) SQL ERROR MESSAGE TYPE IS
&SQLEXPL - (FOC1497) SQL EXPLAIN OPTION IS
&SQLQUERYNO - (FOC1551) QUERY NUMBER TO BE USED FOR EXPLAIN
&SQLDEFDATE - (FOC1552) INTERFACE DEFAULT DATE TYPE
&SQLOWNERID - (FOC1520) SQL CURRENT OWNER ID IS

&SQLRELEASE - Current release of DB2 in format Dxxx where
 xxx is release number (for example, 910 for
 DB2 Version 9 Release 1).

&SQLVVRRM - Return from CONNECT in the form DSNvvrrM.
 vv is the Version of DB2, rr is the Release, M is the
 Modification level. For more information, consult IBM's
 DB2 SQL Reference.

Dialogue Manager Variables for the Adapter for Teradata

The following variables are available for Teradata:

11. Adapter Commands

Relational Data Adapter User’s Manual 347

&DBCCON - (FOC1463) DBC/1012 CONNECTION
&DBCPART - (FOC1467) PARTITION
&DBCTDP - (FOC1468) TERADATA DIRECTOR PROGRAM (TDP)
&DBCUSER - (FOC1469) DBC/1012 USER ID
&DBCAUTOCLS - (FOC1444) AUTOCLOSE OPTION IS
&DBCWRITE - (FOC1441) WRITE FUNCTIONALITY IS
&DBCOPT - (FOC1445) OPTIMIZATION OPTION IS
&DBCITEOPT - (FOC1763) IF-THEN-ELSE OPTIMIZATION IS
&DBCEMSG - (FOC1484) SQL ERROR MESSAGE TYPE IS
&DBCEXPL - (FOC1497) SQL EXPLAIN OPTION IS
&DBCDEFDATE - (FOC1552) INTERFACE DEFAULT DATE TYPE
&DBCOWNERID - (FOC1520) DBC CURRENT OWNER ID IS

Dialogue Manager Variables for the Adapter for IDMS/SQL

The following variables are available for IDMS/SQL:

&IDQDICTNAME - (FOC1756) CURRENT IDMS DICTIONARY IS
&IDQCURSCHEMA - (FOC1757) CURRENT SCHEMA IS
&IDQISLEVEL - (FOC1758) CURRENT ISOLATION LEVEL IS
&IDQAUTOCOM - (FOC1499) AUTOCOMMIT OPTION IS
&IDQDBSPACE - (FOC1446) DEFAULT DBSPACE IS
&IDQOPT - (FOC1445) OPTIMIZATION OPTION IS
&IDQITEOPT - (FOC1763) IF-THEN-ELSE OPTIMIZATION IS
&IDQDEFDATE - (FOC1552) INTERFACE DEFAULT DATE TYPE

Dialogue Manager Variables for the Adapter for Oracle

The following variables are available for Oracle:

&ORASERVER - (FOC1656) DEFAULT SERVER NAME
&ORAUSER - (FOC1502) USERID AND PASSWORD ARE
&ORAAUTODIS - (FOC1496) AUTODISCONNECT OPTION IS
&ORAAUTOCOM - (FOC1499) AUTOCOMMIT OPTION IS
&ORADBSPACE - (FOC1446) DEFAULT DBSPACE IS
&ORAFETCHSIZE - (FOC1491) FETCH BUFFERING FACTOR
&ORAINSERTSIZ - (FOC1531) INSERT BUFFERING FACTOR
&ORASPMAXPRM - (FOC1379) MAXIMUM STORED PROCEDURE PARAMETERS
&ORAWRITE - (FOC1441) WRITE FUNCTIONALITY IS
&ORAOPT - (FOC1445) OPTIMIZATION OPTION IS
&ORAITEOPT - (FOC1763) IF-THEN-ELSE OPTIMIZATION IS
&ORAEMSG - (FOC1484) SQL ERROR MESSAGE TYPE IS
&ORADEFDATE - (FOC1552) INTERFACE DEFAULT DATE TYPE
&ORAOWNERID - (FOC1520) ORACLE CURRENT OWNER ID IS
&ORADBSPACE - (FOC1446) DEFAULT DBSPACE IS
&ORAMSGTXT - MESSAGE RETURNED BY AN ORACLE STORED PROCEDURE

Adapter Dialogue Manager Variables

348

Chapter12
Maintaining Tables With FOCUS

This chapter describes how to use the adapter to maintain RDBMS tables. In particular,
it identifies aspects of the FOCUS file maintenance facilities MODIFY and Maintain that
are unique for the RDBMS environment. MODIFY and Maintain requests read, add,
update, and delete rows in tables. You can modify single tables, sets of tables defined in
a multi-table Master File, or unrelated sets of tables.

In this chapter:

Overview of Data Source Maintenance
Facilities

Modifying Data

The MATCH Command

The NEXT Command

INCLUDE, UPDATE, and DELETE
Processing

RDBMS Transaction Control Within
MODIFY

Referential Integrity

The MODIFY COMBINE Facility

The LOOKUP Function

The FIND Function

Isolation Levels and Locks

Issuing SQL Commands in MODIFY

Change Verify Protocol: AUTOCOMMIT
ON CRTFORM

Loading Tables Faster: The MODIFY
Fastload Facility

Overview of Data Source Maintenance Facilities

This chapter describes differences between the MODIFY and Maintain facilities when these
differences affect adapter processing.

Your FOCUS documentation contains a detailed discussion of file maintenance with the
MODIFY and Maintain facilities. Read the MODIFY and Maintain information carefully before
developing procedures to use with RDBMS tables.

Note: You can maintain up to 64 tables in a single MODIFY or Maintain procedure. The limit for
a MODIFY COMBINE or a Maintain procedure is 16 Master Files. However, each Master File
can describe more than one table, for a total of 64 segments per procedure minus one for the
artificial root segment created by the COMBINE command. In addition, a Maintain procedure
can call other Maintain procedures that reference additional tables.

Relational Data Adapter User’s Manual 349

Maintaining IDMS network tables is not supported. The MODIFY facility supports true
IDMS/SQL tables only.

Maintain provides a graphical user interface and event-driven processing. In a Maintain
procedure, temporary storage areas called stacks collect data, transaction values, and
temporary field values. You can use the Maintain Window Painter facility to design Winforms,
which are windows that display stack values, collect transaction values, and invoke triggers. A
trigger implements event-driven processing by associating an action (such as performing a
specific case in the Maintain procedure) with an event (such as pressing a particular PF key).
Maintain also provides set-based processing through enhanced NEXT, UPDATE, DELETE, and
INCLUDE commands.

Prerequisites for running MODIFY and Maintain requests include:

The Write Adapter. The Write component of the adapter must be installed and operational.

Proper RDBMS authorization to perform maintenance operations.

You can update some RDBMS views in accordance with data source rules. In general, the
RDBMS permits updates to views that are subsets of columns, rows, or both. It does not
permit updates to views that perform joins or involve aggregation. For rules regarding the
maintenance of RDBMS views, see the SQL Reference Manual for the appropriate RDBMS.

A WRITE attribute value of YES in the Access File for the table (for INCLUDE, UPDATE, and
DELETE operations). For information about this attribute, see Describing Tables to FOCUS on
page 55.

Existing tables to modify. If you intend to load new tables with MODIFY or Maintain, you
must create them first. Do so with the FOCUS CREATE FILE command, discussed in
Automated Procedures on page 113, or with the SQL CREATE TABLE command through the
Direct SQL Passthru facility, discussed in Direct SQL Passthru on page 265.

You can maintain DB2 views as long as they are updateable, as defined in the IBM DB2
SQL Reference.

The examples in this chapter refer to the EMPINFO, COURSE, PAYINFO, ECOURSE, and
EMPPAY Master and Access Files. File Descriptions and Tables on page 459 contains a
complete listing of Master and Access Files.

Types of Relational Transaction Processing

You can process incoming transactions by comparing (or matching on):

The primary key.

Overview of Data Source Maintenance Facilities

350

A non-key field or a subset of primary key fields (for example, two columns of a three-
column primary key).

A superset of the primary key (all key fields plus non-key fields).

In MODIFY, a MATCH on a partial key or on a non-key may retrieve more than one row. MATCH
returns only the first row of this answer set. Subsequent sections demonstrate how to use
NEXT to retrieve the remaining rows.

In Maintain, MATCH always matches on the full primary key and retrieves at most one row. To
match on a partial key or non-key in Maintain, you use the NEXT command without a prior
MATCH. The Maintain implementation of the NEXT command fetches the entire answer set
returned by the RDBMS directly into a stack. It also includes three optional phrases:

The FOR phrase determines how many rows to retrieve.

The WHERE phrase defines retrieval criteria.

The INTO phrase names a stack to receive the returned rows.

See your FOCUS documentation on maintaining databases for complete syntax.

The Role of the Primary Key

In a table, the primary key is the column or combination of columns whose values uniquely
identify a row in a table. Such columns may not contain null data.

The Master and Access Files for a table identify its primary key. Describing Tables to FOCUS on
page 55 explains how to describe primary key columns.

You can implement RDBMS referential integrity by defining primary and foreign keys in SQL
CREATE TABLE statements (see Referential Integrity on page 373). Defining the primary key to
the RDBMS is optional. Most tables have primary keys (and unique indexes created to support
them) whether or not the CREATE TABLE statement explicitly identifies them. In this chapter,
the term primary key or key refers to those columns that compose the unique identifier for
each row.

Index Considerations

Indexes enhance the performance of data maintenance routines, especially indexes created on
a table's primary key. Without an index, the RDBMS must read the entire table to locate
particular rows. With an index, the RDBMS can access rows directly when given search values
for the indexed columns. A table can have several associated indexes. Indexes created for
performance reasons can be unique or non-unique. To use either RDBMS or FOCUS referential
integrity, create indexes on foreign keys.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 351

You can define a unique index on one or more columns in a table. When an index is unique,
the concatenated values of the indexed columns in one row cannot be duplicated in any other
row. A unique index is generally defined on a primary key. Once you create it, the RDBMS
automatically prevents the insertion of duplicate index values. Any attempt to insert a duplicate
row generates an error message.

Example: Unique Index on a Primary Key

An example of a unique index on a primary key is the employee ID (EMP_ID) in the sample
EMPINFO table. Since no two employees can have the same employee number, the value in
the EMP_ID column makes each row unique:

EMP_ID LAST_NAME FIRST_NAME
--------- ----------- ----------
111111111 SMITH JON
123456789 JONES ROBERT
222222222 GARFIELD THOMAS
234567890 SMITH PETER

You cannot add another row with EMP_ID 111111111 to this table.

Modifying Data

With the MODIFY and Maintain facilities, you can add new rows to a table, update column
values for specific rows, or delete specific rows.

The adapter processes a MODIFY or Maintain transaction with the following steps:

1. FOCUS reads the transaction for incoming data values.

2. The adapter generates the appropriate SQL SELECT statement.

3. The RDBMS either returns an answer set consisting of one or more rows that satisfy the
SELECT request, or determines that the row does not exist.

4. After the RDBMS returns the answer set and/or return code, the adapter either:

Performs the update operation (UPDATE or DELETE) on the returned answer set. With
MODIFY, the adapter processes one row at a time. With Maintain, it can either process
one row at a time or a set of rows.

Creates the new row (INCLUDE). In Maintain, it may create multiple rows.

5. The RDBMS changes the data source appropriately.

In MODIFY, you must use the NEXT command to process a multi-row answer set one row at a
time. Each NEXT command puts you physically at the next logical row in the answer set. In
Maintain, one NEXT command can process a multi-row answer set without a prior MATCH.

Modifying Data

352

The MATCH Command

In response to a MATCH command, the adapter selects the first row in the table that meets
the MATCH criteria.

The MATCH command compares incoming data with one or more field values and then
performs actions that depend on whether or not a row with matching field values exists in the
table.

Syntax: How to Use the MATCH Command in MODIFY

The syntax of the MATCH command in MODIFY is

MATCH field1 [field2...fieldn]
 ON MATCH action_1
 ON NOMATCH action_2

where:

field1 ... fieldn

Are fields representing columns. FOCUS compares incoming data values against existing
column values. The fields can be any combination of key and/or non-key fields. Specify
complete fieldnames. MATCH does not support truncated names.

action_1

Is the operation to perform when the values in a row match the incoming data values.

action_2

Is the operation to perform when the existing values in a row do not match the incoming
data values.

Your FOCUS documentation on maintaining databases discusses these actions in detail.

MATCH processing for multi-table Master Files is the same as for a multi-segment FOCUS data
source.

In Maintain, you do not have to include an ON NOMATCH command in order to reject a
transaction. Maintain automatically rejects a transaction that does not satisfy the MATCH
criteria. See your FOCUS documentation on maintaining databases for MATCH syntax in
Maintain.

Reference: Acceptable Actions for MATCH

Acceptable actions for MATCH commands fall into eight groups. They are operations that:

Include, change, or delete rows.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 353

Control MATCH processing, such as rejecting the current transaction.

Read incoming data fields.

Perform computations and validations, or type messages to the terminal.

Control Case Logic.

Control multiple-record processing.

Activate and deactivate fields in MODIFY.

Permanently store data in the RDBMS.

Adapter MATCH Behavior

In MODIFY requests, there are two major differences in the way MATCH commands function for
the adapter and for native FOCUS:

With the adapter, you can change the value of a primary key for a table (subject to RDBMS
limitations) using the UPDATE statement. When modifying a FOCUS data source, you
cannot change key field values.

You can MATCH on any field or combination of fields in the row. However, if the full primary
key is not included in the MATCH criteria, the adapter may retrieve more than one row as a
result of the MATCH.

For example, if the primary key is EMP_ID and the incoming value for MATCH LAST_NAME is
SMITH, the answer set contains all rows with last name SMITH.

Note: In Maintain, MATCH functions identically for the adapter and for native FOCUS.

Example: Using the MODIFY MATCH Command

Consider a MODIFY request that maintains the EMPINFO table. It prompts for an employee ID
and for a new salary. Then it processes the incoming data. The annotated request contains the
following MATCH commands:

 MODIFY FILE EMPINFO
 PROMPT EMP_ID CURRENT_SALARY
1. MATCH EMP_ID
2. ON MATCH UPDATE CURRENT_SALARY
3. ON NOMATCH REJECT
 DATA

The incoming transaction contains the following values:

EMP_ID = 123456789
CURRENT_SALARY = 20000

The MATCH Command

354

The request processes as follows:

1. The MATCH command compares the value of the incoming EMP_ID, 123456789, to the
EMP_ID values in the rows of the EMPINFO table. Since EMP_ID is the primary key of this
table, the RDBMS can return at most one row as a result of this MATCH.

2. If a row exists for EMP_ID 123456789, the MATCH command updates the
CURRENT_SALARY value of that row with the incoming value 20000.

3. If no row exists for EMP_ID 123456789, the MATCH command rejects the transaction.

The NEXT Command

In MODIFY, the NEXT command provides a flexible means of processing multi-row answer sets
by moving the current position in the answer set from one row to the next.

Syntax: How to Use the NEXT Command in MODIFY

NEXT field
 ON NEXT action_1
 ON NONEXT action_2

where:

field

Is any field in the table. It does not have to be a primary key.

action_1

Is the operation to perform when there is a subsequent row in the answer set. May be any
of the acceptable actions listed for MATCH in The MATCH Command on page 353.

action_2

Is the operation to perform when no more rows exist in the answer set.

Reference: Usage Notes for NEXT in MODIFY

The KEYORDER parameter in the Access File controls the sort order (by primary key) for NEXT.
It determines whether to retrieve primary key values in low (ascending order) or high
(descending order) sequence. Describing Tables to FOCUS on page 55 explains how to specify
the KEYORDER parameter. The default is to sort by primary key in ascending order.

Your choice of MATCH and NEXT command combinations determines the contents of the
answer set. Subsequent sections explain these choices in more detail:

NEXT command without a MATCH command. The adapter requests the retrieval of all rows
in the table sorted by primary key.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 355

MATCH with the primary key or a superset of primary key columns. The MATCH returns
the single row that is the starting point for any subsequent NEXT commands.

MATCH on a non-key field or a subset of primary key columns. The RDBMS returns a
multi-row answer set in which each row satisfies the MATCH criteria.

You can also use NEXT commands with multi-table structures (FOCUS views) to modify or
display data in either Case Logic or non-Case Logic requests. If your MATCH or NEXT specifies
a row from a parent table in a multi-table structure, that row becomes the current position in
the parent table. A subsequent NEXT on a field in a descendant of that table retrieves the first
descendant row in the related table. In MODIFY:

Without Case Logic, you can retrieve all parent rows in the table and only the first
descendant row of any specified related table.

With Case Logic, you can retrieve all rows for each table defined in a multi-table Master
File. To do so, first MATCH on the parent. Then, in another case, use NEXT to loop through
the related tables (at the lowest level) until there are no more related instances. On
NONEXT, return to the parent case for the next parent instance.

You can trace Case Logic with the FOCUS TRACE facility. To invoke the TRACE facility for
the adapter, include the TRACE command on a separate line after the MODIFY FILE
command. For complete information about the FOCUS TRACE facility, see your FOCUS
documentation. You can also use the adapter trace facilities described in Tracing Adapter
Processing on page 487.

The following sections illustrate different combinations of MATCH and NEXT commands with
annotated examples. The MODIFY requests have been kept simple for purposes of illustration.
You can create more sophisticated procedures. Assume KEYORDER=LOW for all of the
examples.

Reference: Usage Notes for NEXT in Maintain

The syntax of the NEXT command includes optional FOR and WHERE phrases that control
the number of rows retrieved into a stack. As in MODIFY, the KEYORDER attribute in the
Access File determines whether NEXT returns rows in ascending or descending order of the
primary key.

NEXT always starts its retrieval at the current database position. It will not retrieve a row it
has already passed in its retrieval path unless you use the REPOSITION command to reset
the current position.

Also, as in MODIFY, once you MATCH on a parent segment, a subsequent NEXT on a child
segment retrieves descendant rows within the parent established by the MATCH. However,
one NEXT command can retrieve all such child instances, without Case Logic.

The NEXT Command

356

The UPDATE, DELETE, and INCLUDE commands also incorporate the optional FOR phrase
to process multiple rows from a stack. The system variables FOCERROR and
FOCERRORROW inform you whether the entire set of rows processed successfully and, if
not, which row caused the problem.

For complete details, see your FOCUS documentation on maintaining databases.

NEXT Processing Without MATCH

If you use a NEXT command without a previous MATCH command in a MODIFY request, the
RDBMS returns an answer set consisting of all rows in the table sorted by the primary key. Use
the ON NEXT command to view each row in ascending primary key order. In a Maintain request,
the FOR and WHERE phrases in the NEXT command determine the number of rows retrieved,
sorted by the primary key in KEYORDER sequence.

Example: Using NEXT Without MATCH in MODIFY

In this MODIFY example, the NEXT command retrieves each row in ascending order of
employee ID number (EMP_ID):

MODIFY FILE EMPINFO
NEXT EMP_ID
 ON NEXT TYPE "EMPLOYEE ID: <D.EMP_ID LAST NAME <D.LAST_NAME "
 ON NONEXT GOTO EXIT
DATA
END

The TYPE commands display the following on the screen:

EMPLOYEE ID: 071382660 LAST NAME STEVENS
EMPLOYEE ID: 112847612 LAST NAME SMITH
EMPLOYEE ID: 117593129 LAST NAME JONES
EMPLOYEE ID: 119265415 LAST NAME SMITH
EMPLOYEE ID: 119329144 LAST NAME BANNING
EMPLOYEE ID: 123764317 LAST NAME IRVING
EMPLOYEE ID: 126724188 LAST NAME ROMANS
EMPLOYEE ID: 219984371 LAST NAME MCCOY
EMPLOYEE ID: 326179357 LAST NAME BLACKWOOD
EMPLOYEE ID: 333121200 LAST NAME ROYCE
EMPLOYEE ID: 451123478 LAST NAME MCKNIGHT
EMPLOYEE ID: 455670000 LAST NAME LEE
EMPLOYEE ID: 543729165 LAST NAME GREENSPAN
EMPLOYEE ID: 818692173 LAST NAME CROSS

Example: Using NEXT in Maintain

The following Maintain procedure named NEXT1 retrieves the same answer set into a stack
named INSTACK and displays the retrieved values on a Winform named WIN1 (see your FOCUS
documentation on maintaining databases for instructions on creating Winforms):

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 357

MAINTAIN FILE EMPINFO
FOR ALL NEXT EMP_ID INTO INSTACK
WINFORM SHOW WIN1
END

Executing the NEXT1 procedure displays a Winform similar to the following:

NEXT Processing After MATCH on a Full Key or on a Superset

In MODIFY, NEXT processing is identical for either a MATCH on a full primary key or a MATCH
on a superset (full key plus a non-key field).

When the initial MATCH is successful, the RDBMS retrieves one row. This establishes the
logical position in the table. The subsequent NEXT command causes the RDBMS to retrieve all
rows following the matched row in key sequence.

Example: Using NEXT After MATCH on a Full Primary Key in MODIFY

The following is an example of NEXT processing after a MATCH on a full primary key, the
EMP_ID field:

The NEXT Command

358

 MODIFY FILE EMPINFO
 CRTFORM LINE 1
 " PLEASE ENTER VALID EMPLOYEE ID </1"
1. " EMP: <EMP_ID "
2. MATCH EMP_ID
 ON NOMATCH REJECT
3. ON MATCH GOTO GETREST
 CASE GETREST
4. NEXT EMP_ID
 ON NEXT CRTFORM LINE 10
 " EMP_ID: <D.EMP_ID LAST_NAME: <D.LAST_NAME "
 ON NEXT GOTO GETREST
5. ON NONEXT GOTO EXIT
 ENDCASE
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters the employee ID for the search, 219984371.

2. The MATCH command causes the RDBMS to search the table for the entered value. If no
such row exists, the transaction is rejected.

3. If the specified value matches a value in the EMP_ID column of the table, the procedure
branches to the GETREST case. It contains the NEXT command.

4. The NEXT command retrieves the next logical row in EMP_ID sequence. If such a row
exists, the procedure displays the values of the EMP_ID and LAST_NAME fields. It
continues to display each row in order of the key field, EMP_ID.

5. If there are no more rows, the procedure ends.

The output after executing this MODIFY procedure is:

PLEASE ENTER VALID EMPLOYEE ID (line 1)

EMP: 219984371 (line 3)

EMP_ID: 326179357 LAST_NAME: BLACKWOOD (line 10)

EMP_ID: 333121200 LAST_NAME: ROYCE (line 10)

EMP_ID: 451123478 LAST_NAME: MCKNIGHT (line 10)

EMP_ID: 455670000 LAST_NAME: LEE (line 10)

EMP_ID: 543729165 LAST_NAME: GREENSPAN (line 10)

EMP_ID: 818692173 LAST_NAME: CROSS (line 10)

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 359

Because of the NEXT command, all employees after 219984371 display one at a time on the
screen. Notice that the rows are retrieved in key sequence.

Example: Using NEXT on a Full Primary Key in Maintain

The following Maintain procedure retrieves the same answer set into a stack named
EMPSTACK. Assume that when Maintain displays the Winform called WIN1, the user enters the
transaction value 219984371 into a stack named TRANS and presses PF5 to invoke the
NEXTRECS case:

MAINTAIN FILE EMPINFO
WINFORM SHOW WIN1
CASE NEXTRECS
 FOR ALL NEXT EMP_ID INTO EMPSTACK WHERE EMP_ID GT TRANS.EMP_ID
ENDCASE
END

Executing the NEXT2 procedure displays a Winform similar to the following:

NEXT Processing After MATCH on a Non-Key Field or Partial Key

In a MODIFY request processed by the adapter, you do not have to MATCH on the full set of
key fields. You can match on a non-key field or partial key. (Maintain always matches on the
full primary key, regardless of which fields you specify in the MATCH command.)

When you MATCH on a non-key column or subset of key columns, multiple rows may satisfy the
MATCH condition. The MATCH operation retrieves the first row of the answer set, and the NEXT
command makes the remaining rows in the answer set available to the program in primary key
sequence.

The NEXT Command

360

Example: Using MATCH on a Non-Key Field in MODIFY

This annotated procedure is the previous MODIFY procedure altered to MATCH on the non-key
field LAST_NAME. The NEXT operation retrieves the subsequent rows from the answer set:

 MODIFY FILE EMPINFO
 CRTFORM LINE 1
 " PLEASE ENTER A LAST NAME </1 "
1. " LAST NAME: <LAST_NAME </1"
2. MATCH LAST_NAME
 ON NOMATCH REJECT
3. ON MATCH CRTFORM LINE 5
 " EMP_ID: <D.EMP_ID LAST_NAME: <D.LAST_NAME "
4. ON MATCH GOTO GETSAME
 CASE GETSAME
5. NEXT LAST_NAME
 ON NEXT CRTFORM LINE 10
 " EMP_ID: <D.EMP_ID LAST_NAME: <D.LAST_NAME "
 ON NEXT GOTO GETSAME
6. ON NONEXT GOTO EXIT
 ENDCASE
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters the last name (LAST_NAME) for the search, SMITH.

2. The MATCH command causes the RDBMS to search the table for all rows with the value
SMITH and return them in EMP_ID order. If the value SMITH does not exist, the transaction
is rejected.

3. If the incoming value matches a value in the table, the procedure displays the employee ID
and last name. (This is the first row of the answer set.)

4. After displaying the row, the procedure goes to the GETSAME case. It uses NEXT to loop
through the remaining rows in the answer set.

5. Instead of retrieving the next logical row with a higher key value as in the previous example,
the procedure retrieves the next row in the answer set (all rows in the answer set have the
last name SMITH). If any exist, they display on the screen in order of the key, EMP_ID.

6. When no more rows exist with the value SMITH, the procedure ends.

The output from this MODIFY procedure follows:

PLEASE ENTER A LAST NAME
LAST_NAME smith
EMP_ID: 112847612 LAST_NAME: SMITH
EMP_ID: 119265415 LAST_NAME: SMITH

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 361

A line displays on the screen for each employee with the last name SMITH. Employee ID
112847612 is the result of the MATCH operation. Employee ID 119265415 is the result of
the NEXT operation.

Example: Using NEXT on a Non-Key Field in Maintain

The following Maintain procedure retrieves the answer set into a stack named EMPSTACK.
Assume that when Maintain displays the Winform named WINA, the user enters the
transaction value (SMITH) into the first row of a stack named TRANS and presses PF5 to
invoke the NEXTRECS case:

MAINTAIN FILE EMPINFO
WINFORM SHOW WINA
CASE NEXTRECS
 FOR ALL NEXT EMP_ID INTO EMPSTACK WHERE LAST_NAME EQ TRANS.LAST_NAME
ENDCASE
END

Executing the NEXT3 procedure displays a Winform similar to the following:

INCLUDE, UPDATE, and DELETE Processing

While MATCH and NEXT operations in MODIFY can operate on primary key or non-key columns
and return single or multi-row answer sets, the MODIFY commands INCLUDE, UPDATE, and
DELETE must always identify the target rows by their primary key. Therefore, in MODIFY, each
update operation affects at most one row.

In Maintain, the FOR phrase in the update command determines the number of rows affected.

Example: Updating Rows With MODIFY

Suppose you want to display all the employees in a department and increase certain salaries:

INCLUDE, UPDATE, and DELETE Processing

362

 MODIFY FILE EMPINFO
 CRTFORM LINE 1
 " PLEASE ENTER A VALID DEPARTMENT </1"
1. " DEPARTMENT: <DEPARTMENT "
2. MATCH DEPARTMENT
 ON NOMATCH REJECT
 ON MATCH CRTFORM LINE 10
3. "EMP_ID: <D.EMP_ID SALARY: <T.CURRENT_SALARY> "
4. ON MATCH UPDATE CURRENT_SALARY
 ON MATCH GOTO GETREST
 CASE GETREST
5. NEXT EMP_ID
 ON NEXT CRTFORM LINE 10
 " EMP_ID: <D.EMP_ID SALARY: <T.CURRENT_SALARY> "
 ON NEXT UPDATE CURRENT_SALARY
 ON NEXT GOTO GETREST
6. ON NONEXT GOTO EXIT
 ENDCASE
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters the department (DEPARTMENT) for the search, PRODUCTION.

2. The MATCH command causes the RDBMS to search the table for the first row with the
value PRODUCTION and return it in key sequence (EMP_ID). If none exists, the transaction
is rejected.

3. If the supplied value matches a database value, the procedure displays it.

4. The procedure updates the salary field for the first retrieved row using the turnaround value
from the CRTFORM. EMP_ID establishes the target row for the update.

5. Each time it executes the NEXT, the procedure retrieves the next row with the same
department, PRODUCTION. It displays each one in EMP_ID order. It updates the salary field
for each retrieved row with the turnaround value.

6. When no more rows exist for department PRODUCTION, the procedure ends.

The lines displayed by this MODIFY procedure follow:

 PLEASE ENTER A VALID DEPARTMENT
 DEPARTMENT: PRODUCTION
EMP_ID: 071382660 SALARY: 11000.00

You can change the salary, or leave it as is. Each time you press Enter, the current salary is
updated and the next employee ID displays:

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 363

EMP_ID: 119265415 SALARY: 9500.00
EMP_ID: 119329144 SALARY: 29700.00
EMP_ID: 123764317 SALARY: 26862.00
EMP_ID: 126724188 SALARY: 21120.00
EMP_ID: 451123478 SALARY: 16100.00

Example: Updating Rows With Maintain

In Maintain, you can use stack columns as turnaround values to update a table. The following
annotated Maintain request named UPDATE1 updates the same rows as the preceding
MODIFY request:

 MAINTAIN FILE EMPINFO
1. WINFORM SHOW WIN1
2. CASE MATCHREC
 FOR ALL NEXT EMP_ID INTO EMPSTACK WHERE DEPARTMENT EQ
VALSTACK.DEPARTMENT
 ENDCASE
3. CASE UPDSAL
 FOR ALL UPDATE CURRENT_SALARY FROM EMPSTACK
 ENDCASE
 END

The Maintain processes as follows:

1. A Winform named WIN1 opens. Assume that it displays an entry field labeled DEPARTMENT
(whose source and destination stack is called VALSTACK) and a grid (scrollable table) with
columns EMP_ID and CURRENT_SALARY. See your FOCUS documentation on maintaining
databases for instructions on creating Winforms.

2. The user enters a DEPARTMENT value for the search and presses a PF key or button to
invoke case MATCHREC. Case MATCHREC retrieves the rows that satisfy the NEXT criteria
and stores them in a stack named EMPSTACK. The Winform displays the retrieved rows on
the grid.

3. The user edits all the necessary salaries directly on the Winform grid and then presses a PF
key or button to invoke case UPDSAL, which updates all salaries.

INCLUDE, UPDATE, and DELETE Processing

364

Executing the UPDATE1 procedure displays a Winform similar to the following:

RDBMS Transaction Control Within MODIFY

The adapter supports the Logical Unit of Work (LUW) concept defined by the RDBMS. An LUW
consists of one or more FOCUS maintenance actions (UPDATE, INCLUDE, or DELETE) that
process as a single unit. The maintenance operations within the LUW can operate on the same
or separate tables.

DB2, IDMS/SQL, and Oracle define a transaction as all actions taken since the application
first accessed the RDBMS, last issued a COMMIT WORK, or last issued a ROLLBACK WORK.

The Adapter for Teradata defines a transaction as either explicit or implicit:

An explicit transaction consists of all actions enclosed within DBC/SQL BEGIN
TRANSACTION and END TRANSACTION statements.

An implicit transaction consists of one action that is not enclosed within DBC/SQL BEGIN
TRANSACTION and END TRANSACTION statements. An implicit transaction is treated as a
single unit of work.

Within a logical unit of work, the RDBMS either executes all statements completely, or else it
executes none of them. If the RDBMS detects no errors in any of the statements within the
LUW:

FOCUS issues a COMMIT WORK statement for DB2, IDMS/SQL, and Oracle. The changes
indicated by the updates within the transaction are recorded in the table.

The RDBMS releases locks on the target data. (See Isolation Levels and Locks on page
385.)

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 365

Data source changes become available for other tasks.

In response to unsuccessful execution of any statement in the transaction, the adapter:

Issues a ROLLBACK WORK command. Target data returns to its state prior to the
unsuccessful transaction. All changes attempted by the statements in the transaction are
backed out.

Does not execute the remaining statements in the transaction.

Releases locks on the target data.

Discards partially accumulated results.

The RDBMS and the adapter provide a level of automatic transaction management but, in
many cases, this level of management alone is not sufficient. In MODIFY, the Adapters for
DB2, IDMS/SQL, and Oracle support explicit control of RDBMS transactions with the
commands SQL COMMIT WORK and SQL ROLLBACK WORK. The Adapter for Teradata supports
explicit transaction control with the commands SQLDBC BEGIN TRANSACTION, SQLDBC END
TRANSACTION, and SQL ROLLBACK WORK. (The Adapter for Teradata also supports the SQL
COMMIT WORK command). In Maintain, the equivalent commands are COMMIT and
ROLLBACK.

Note: SQL COMMIT WORK and SQL ROLLBACK WORK are native SQL commands—commands
that the adapter passes directly to the RDBMS for immediate execution. (You can issue SQL
commands in MODIFY, but not in Maintain.) Do not confuse these commands with the FOCUS
COMMIT WORK and ROLLBACK WORK commands that apply to FOCUS data sources only. The
adapter ignores COMMIT WORK and ROLLBACK WORK without the SQL qualifier.

Note: For DB2, IDMS/SQL, and Oracle:

With the default AUTOCOMMIT setting (see Controlling Connection Scope on page 295), unless
you specify SQL COMMIT WORK and/or SQL ROLLBACK WORK in your MODIFY procedure (or
COMMIT and/or ROLLBACK in your Maintain procedure), all FOCUS maintenance actions until
the END command constitute a single LUW. If the procedure completes successfully, the
adapter automatically transmits a COMMIT WORK command to the RDBMS, and the changes
become permanent. If the procedure terminates abnormally, the adapter issues a ROLLBACK
WORK to the RDBMS, and the database remains untouched. Since locks are not released until
the end of the program, a long MODIFY or Maintain procedure that relies on the default, end-of-
program COMMIT WORK can interfere with concurrent access to data. In addition, you may lose
all updates in the event of a system failure.

RDBMS Transaction Control Within MODIFY

366

Note:

Maintain does not respect the SET AUTOCOMMIT ON FIN command that postpones
automatic COMMIT processing until the end of the FOCUS session (see Controlling
Connection Scope on page 295). An automatic COMMIT is issued at the end of every
procedure. All called procedures issue a COMMIT before returning to the calling procedure.
The COMMIT issued by a called procedure commits all uncommitted changes, even those
in the calling procedure.

For more information, consult your FOCUS documentation on maintaining databases.

You cannot use the FOCUS CHECK facility when updating a table. The adapter ignores the
CHECK command. You must use the SQL COMMIT WORK statement in MODIFY or the
COMMIT command in Maintain.

You can COMMIT after each transaction, or you can use a counter within the procedure to
COMMIT after a set number of transactions. This technique can reduce some of the
overhead associated with frequent COMMIT processing.

You can also issue the AUTOCOMMIT ON CRTFORM command in MODIFY CRTFORM
procedures. (See Change Verify Protocol: AUTOCOMMIT ON CRTFORM on page 391.)

The actions described in this section do not apply to non-fatal transaction level RDBMS
errors, such as an attempt to include a row that violates an RDBMS uniqueness constraint.
In such cases, although the SQLCODE is negative, processing continues normally to the
next transaction record. Check the FOCERROR variable (discussed in Using the Return Code
Variable: FOCERROR on page 371) to determine whether or not to ROLLBACK within the
MODIFY procedure.

Transaction Termination (COMMIT WORK)

The native SQL COMMIT WORK statement signals the successful completion of a transaction
at the request of the procedure. Execution of a COMMIT statement makes changes to the
tables permanent. The syntax in a MODIFY request is:

SQL COMMIT WORK

You can issue a COMMIT WORK as an ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT
condition, after an update operation (INCLUDE, UPDATE, DELETE), or within cases of a Case
Logic request.

Note: In Maintain, you must use the Maintain facility COMMIT command to transmit an SQL
COMMIT WORK to the RDBMS.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 367

Example: Using COMMIT WORK in a MODIFY Procedure

A COMMIT WORK example using Case Logic follows:

CASE PROCESS
 CRTFORM
 MATCH field1 ...
 ON MATCH insert, update, delete, ...
 GOTO EXACT
ENDCASE
CASE EXACT
 SQL COMMIT WORK
 GOTO TOP
ENDCASE

The PROCESS case handles the MATCH, ON MATCH, ON NOMATCH processing. Then it
transfers to CASE EXACT, which commits the data, instructing the RDBMS to write the entire
Logical Unit of Work to the data source.

Teradata Transaction Termination: BEGIN/END TRANSACTION

To indicate an explicit transaction or logical unit of work, specify the following syntax as ON
MATCH, ON NOMATCH, ON NEXT, or ON NONEXT conditions, or include them in cases of Case
Logic requests (the semicolon is optional):

SQLDBC BEGIN TRANSACTION[;]

and

SQLDBC END TRANSACTION[;]

The BEGIN TRANSACTION statement indicates the logical starting point of the LUW. The END
TRANSACTION statement indicates the end of the LUW and that processing is completed.
Teradata releases data locks when it encounters the END TRASACTION statement or the
ROLLBACK WORK statement discussed in RDBMS Transaction Termination (ROLLBACK WORK)
on page 369.

Example: Teradata Transaction Control Using BEGIN/END TRANSACTION

This Case Logic request illustrates one explicit transaction representing one LUW. It treats the
operations in CASE PROCESS (MATCH, UPDATE, or INCLUDE) as a single LUW. Teradata locks
the rows until the update is complete and the END TRANSACTION statement is processed.

RDBMS Transaction Control Within MODIFY

368

MODIFY FILE ...
 TRACE
 .
 .
 .
CASE STARTIT
 SQLDBC BEGIN TRANSACTION;
 GOTO PROCESS
ENDCASE

CASE PROCESS
 CRTFORM ...
 MATCH keyfields
 ON MATCH UPDATE ...
 ON MATCH GOTO ENDIT
 ON NOMATCH INCLUDE
 ON NOMATCH GOTO ENDIT
ENDCASE

CASE ENDIT
 SQLDBC END TRANSACTION;
 GOTO STARTIT
ENDCASE

This example illustrates multiple update transaction control. It also illustrates the use of the
ROLLBACK WORK command:

MATCH tab1_keyfields
 ON MATCH SQLDBC BEGIN TRANSACTION;
 ON MATCH DELETE
 ON MATCH CONTINUE
 ON NOMATCH SQLDBC ROLLBACK WORK;
 ON NOMATCH REJECT
 ON NOMATCH GOTO TOP

MATCH tab2_keyfields
 ON MATCH UPDATE anyfield
 ON MATCH SQLDBC END TRANSACTION;
 ON NOMATCH SQLDBC ROLLBACK WORK;
 ON NOMATCH REJECT

RDBMS Transaction Termination (ROLLBACK WORK)

The native SQL ROLLBACK WORK statement signals the unsuccessful completion of a
transaction at the request of the procedure. Execution of a ROLLBACK statement backs out all
changes made to the tables since the last COMMIT statement, or for Teradata, since the last
BEGIN TRANSACTION statement.

The syntax in a MODIFY request is:

SQL ROLLBACK WORK

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 369

You can design a MODIFY procedure to issue a ROLLBACK WORK statement if you detect an
error. For example, if a FOCUS VALIDATE test finds an unacceptable input value, you may
choose to exit the transaction, backing out all changes since the last COMMIT. You can issue
ROLLBACK WORK as an ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT condition, or
within cases of a Case Logic request.

For Teradata, the END TRANSACTION statement is not required when the ROLLBACK WORK
statement is used. The END TRANSACTION statement is implied and, if it is encountered,
produces a message that you can ignore.

Note: In Maintain, you must use the Maintain facility ROLLBACK command to transmit an SQL
ROLLBACK WORK to the RDBMS.

The adapter automatically executes an SQL ROLLBACK WORK statement when you exit from a
transaction early. For example, if you exit a CRTFORM without specifying some action, the
adapter automatically issues a ROLLBACK WORK statement on your behalf.

The RDBMS automatically issues a ROLLBACK WORK statement in case of system failure or
when it detects a fatal data error, such as a reference to a column or table that does not exist.

Example: Using ROLLBACK WORK in a MODIFY Procedure

The following is an example of the ROLLBACK WORK statement using Case Logic:

ON NOMATCH CRTFORM ...
ON NOMATCH VALIDATE ...
 ON INVALID GOTO ROLLCASE
 .
 .
 .
CASE ROLLCASE
 SQL ROLLBACK WORK
 GOTO TOP
ENDCASE

Code the ROLLBACK WORK statement before a REJECT command. FOCUS ignores any action
following the rejection of a transaction, except for GOTO or PERFORM.

For example:

ON MATCH SQL ROLLBACK WORK
ON MATCH REJECT

RDBMS Transaction Control Within MODIFY

370

Example: RDBMS Transaction Control

Each time an employee's salary changes, the following example updates the salary in the
EMPINFO table and posts a historical pay record for the new salary in the related PAYINFO
table. To ensure that both updates complete or neither one does, the MODIFY procedure
places both actions prior to a COMMIT WORK statement. If the descendant table is not
processed, ROLLBACK WORK discards the whole logical transaction.

MODIFY FILE EMPPAY
COMPUTE DAT_INC=&YMD;
CRTFORM LINE 1
"</2 <25 MODIFY FOR SALARY CHANGE </2 "
"<20 ENTER THE EMPLOYEE ID <EMP_ID "
MATCH EMP_ID
 ON MATCH CRTFORM LINE 7
 "<D.FIRST_NAME <D.LAST_NAME "
 "CURRENT SALARY <T.CURRENT_SALARY> "
 "JOBCODE <T.CURR_JOBCODE> "
 "PLEASE CHANGE THE SALARY AND JOB CODE"
 ON MATCH COMPUTE
 OLDSAL/D12.2 = D.CURRENT_SALARY;
 ON MATCH UPDATE CURRENT_SALARY CURR_JOBCODE
 ON NOMATCH REJECT

MATCH DAT_INC
 ON NOMATCH COMPUTE
 SALARY=CURRENT_SALARY;
 JOBCODE=CURR_JOBCODE;
 PCT_INC = (SALARY - OLDSAL)/OLDSAL;
 ON NOMATCH INCLUDE
 ON NOMATCH SQL COMMIT WORK
 ON MATCH SQL ROLLBACK WORK
 ON MATCH REJECT
DATA
END

Using the Return Code Variable: FOCERROR

The RDBMS produces a return code or SQLCODE that reflects the success or failure of SQL
statements. FOCUS stores this return code in the variable FOCERROR. You can test
FOCERROR in a MODIFY or Maintain procedure and take the appropriate action if you
encounter a non-fatal error. A return code of 0 indicates successful completion of the last SQL
command issued (either a native SQL command, such as SQL DELETE or SQL COMMIT WORK,
or an SQL command generated by MODIFY or Maintain).

Fatal error conditions, such as an inactive RDBMS machine, automatically terminate the
procedure. Non-fatal errors, such as an attempt to include a duplicate value for a unique index,
allow the procedure to continue.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 371

You can test the FOCERROR variable in FOCUS VALIDATE or IF commands to determine
whether to continue or terminate processing. For example, if FOCERROR is -803 for DB2, 2801
for Teradata, 1058 for IDMS SQL, or 1481 for Oracle, the INCLUDE or UPDATE operation failed
in an attempt to include a value for a unique index. This condition might indicate the need to
ROLLBACK the transaction or re-prompt the user for new input values.

For a list of common SQL return codes, see SQL Codes and Adapter Messages on page 453.
For a complete list, see the Messages and Codes manual for your RDBMS.

Using the Adapter SET ERRORRUN Command

With SET ERRORRUN ON, MODIFY processing continues even when a serious error occurs,
allowing applications to handle their own errors in the event that an RDBMS error is part of the
normal application flow. Code this command explicitly within the MODIFY program, preferably in
CASE AT START where it executes once.

Note: Maintain does not support the SET ERRORRUN command.

The syntax is

CASE AT START
 SQL SET ERRORRUN {OFF|ON}
ENDCASE

where:

OFF

Stops MODIFY processing when the RDBMS detects a fatal error (for example, when it
cannot find the table name). OFF is the default.

ON

Enables MODIFY processing to continue despite fatal errors. Test the value of FOCERROR
to determine the desired action after an RDBMS call.

When SET ERRORRUN is ON, the MODIFY procedure reports the error but continues execution.
The MODIFY code can then test the value of FOCERROR to determine the cause of the error
and take appropriate action. Be careful in evaluating the contents of FOCERROR, as failure to
respond to a negative SQLCODE or non-zero return code can cause unpredictable errors in
subsequent RDBMS or MODIFY processing.

SET ERRORRUN returns to its default setting of OFF at the end of the MODIFY procedure.

RDBMS Transaction Control Within MODIFY

372

The DB2 Resource Limit Facility

The DB2 Resource Limit Facility, also known as the Governor, sets a limit on the resources a
dynamic SQL query may use. All SQL queries generated by the adapter are dynamic. (For a
discussion of static SQL, see Static SQL (DB2) on page 401.) A DB2 database administrator
can set limits on application plans, individual users, or both.

If an SQL request generated by a MODIFY or Maintain procedure fails because a resource limit
has been reached, the adapter posts the DB2 SQLCODE -905 to the FOCERROR variable.

Since SQLCODE -905 does not terminate a procedure, you need not SET ERRORRUN ON to
continue MODIFY processing.

Referential Integrity

Since primary and foreign key values establish relationships between separate tables, it is
important to maintain these values in a consistent manner throughout the data source. The
term referential integrity defines the type of consistency that should exist between foreign keys
and primary keys

Performance considerations usually make it preferable to have RDBMS indexes on both
primary and foreign keys.

The following definitions help explain referential integrity:

Primary key is the column or combination of columns whose value uniquely identifies a row
within the table. None of the key columns can contain null values. A table can only have
one designated primary key.

The employee ID (EMP_ID) is the primary key in the sample EMPINFO table. The values for
the EMP_ID field make each row unique, since no two employees can have the same
identification number.

Foreign key is a column or combination of columns in one table whose values are the same
as the primary key of another table. The foreign key may be unique or non-unique, but its
value must match a primary key value in the other table or be null.

The employee ID (or WHO field) in the sample COURSE table is a foreign key. This field is
similar to the primary key in the EMPINFO table in that it contains the employee ID of every
employee who has taken a course. It contains multiple rows for those employees who have
taken more than one course.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 373

Referential integrity describes the synchronization of these key field values:

INCLUDE Referential Integrity. A value must exist as a primary key before it can be
entered as a foreign key. For example, a specific employee ID must exist in the
EMPINFO table before a course can be added for that employee in the COURSE table.

DELETE Referential Integrity. If a primary key is deleted, all references to its value as a
foreign key must be deleted, set to null, or changed to reflect an existing primary key
value.

The RDBMS can define and enforce referential integrity rules (constraints).

FOCUS can also provide referential integrity for those tables described in a multi-table Master
File and Access File pair. The following sections discuss both types of referential integrity
constraints.

RDBMS Referential Integrity

The RDBMS provides the ability to define relationships between tables by embedding
referential integrity constraints in the table definitions. The RDBMS prohibits data changes that
violate the rules, and applications using the adapter respect these defined constraints.

Note: Tables you create with the FOCUS CREATE FILE command do not contain primary or
foreign key definitions and, therefore, do not participate in RDBMS referential integrity unless
you can add primary and foreign key definitions to such tables.

Violations of RDBMS referential integrity rules result in an error. The adapter posts the return
code it receives from the RDBMS to the FOCERROR variable. Your MODIFY or Maintain
procedure can test this value.

Referential integrity violations do not terminate MODIFY or Maintain procedures, so you need
not use the FOCUS SET ERRORRUN ON command to continue MODIFY processing.

With RDBMS referential integrity in place, you do not need FOCUS referential integrity to invoke
some level of automatic referential integrity support. You may wish to maintain your tables in
separate Master Files and let the RDBMS take care of all referential integrity enforcement.

You may also choose to describe the tables as related (using multi-table Master and Access
Files) and take advantage of FOCUS referential integrity.

If you use both FOCUS referential integrity and RDBMS referential integrity, the RDBMS
referential integrity takes precedence in cases of conflict. Make sure you are familiar with the
RDBMS referential integrity constraints on the tables involved as well as FOCUS referential
integrity behavior. Check with your RDBMS database administrator for specific referential
integrity constraints.

Referential Integrity

374

FOCUS Referential Integrity

The adapter provides some level of automatic referential integrity for tables described in a
multi-table Master File.

The following sections describe the rules and techniques for ensuring or inhibiting FOCUS
INCLUDE and DELETE referential integrity. The examples use the ECOURSE Master File, a
multi-table description that relates the EMPINFO and COURSE tables. (See File Descriptions
and Tables on page 459.)

FOCUS INCLUDE Referential Integrity

FOCUS MODIFY facility syntax provides automatic referential integrity for inserting new rows in
a related set of tables. The following rules apply:

You must describe the related set of tables in one multi-table Master and Access File. The
multi-table description establishes the relationship (an embedded join) based on the
primary and foreign keys in the tables.

The primary key rows belong to the parent table in the description. The foreign key rows
belong to the related table in the description.

With a multi-table Master File, you cannot add a related row (foreign key) using the FOCUS
MODIFY facility unless the primary key value already exists. Therefore, a MODIFY procedure
that inserts rows must MATCH on the parent table before adding a row in a related table.

Example: Using FOCUS INCLUDE Referential Integrity

The following examples demonstrate referential integrity when adding new rows. The scenarios
are:

1. Add a course for an employee only if data for the employee ID already exists.

2. The employee ID does not exist. Add both a new employee ID and a course.

A simple, annotated FOCUS MODIFY procedure for each scenario follows.

The first example adds course information only if a row already exists for the employee:

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 375

 MODIFY FILE ECOURSE
 CRTFORM LINE 2
 "ADD COURSE INFORMATION FOR EMPLOYEE </1"
1. "EMPLOYEE ID: <EMP_ID </1 "
 "COURSE NAME: <CNAME "
 "GRADE: <GRADE "
 " YEAR TAKEN: <YR_TAKEN QUARTER: <QTR "
2. MATCH EMP_ID
3. ON MATCH CONTINUE
4. ON NOMATCH REJECT
5. MATCH CNAME
 ON NOMATCH INCLUDE
 ON MATCH REJECT
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters the employee ID and information about the course taken. This constitutes
the incoming transaction record.

2. The MATCH command causes the RDBMS to search the table for an existing row with the
specified employee ID.

3. If the employee row exists, the MODIFY continues to the next MATCH command.

4. If no row in the EMPINFO table exists with the specified employee ID, MODIFY rejects this
transaction and routes control to the top of the FOCEXEC.

5. MATCH CNAME causes the RDBMS to search the COURSE table for an existing row with the
specified course for the employee ID located in Step 2. If no such row exists, the MODIFY
adds a row in the COURSE table. If the course row already exists, the MODIFY rejects the
transaction as a duplicate.

The second example adds a row to the EMPINFO table for the new employee and adds a
course for that employee to the COURSE table. If the employee ID already exists, the
procedure adds only the course information to the COURSE table:

Referential Integrity

376

 MODIFY FILE ECOURSE
 CRTFORM LINE 1
1. "ID: <EMP_ID "
2. MATCH EMP_ID
3. ON NOMATCH CRTFORM LINE 2
 " LAST: <LAST_NAME FIRST: <FIRST_NAME </1 "
 " HIRE DATE: <HIRE_DATE DEPT: <DEPARTMENT "
 " JOB: <CURR_JOBCODE SALARY: <CURRENT_SALARY </1"
 " BONUS PLAN: <BONUS_PLAN ED HRS: <ED_HRS </1"
 "COURSE NAME: <CNAME "
 "YEAR: <YR_TAKEN QTR: <QTR "
 " GRADE: <GRADE "
 ON NOMATCH INCLUDE
4. ON MATCH CRTFORM LINE 10
 "COURSE NAME: <CNAME YEAR: <YR_TAKEN QTR: <QTR "
 " GRADE: <GRADE "
5. MATCH CNAME
 ON NOMATCH INCLUDE
 ON MATCH REJECT
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters EMP_ID.

2. The MATCH command causes the RDBMS to search the EMPINFO table for an existing row
for the specified employee ID.

3. If the employee row does not exist, the user enters the data for both the employee and the
specified course. The procedure adds a row to each table.

4. If the employee already exists, the user enters only the course data.

5. The MATCH CNAME command causes the RDBMS to search the COURSE table for the
specified course. If this course does not exist for this employee, the procedure adds it. If it
does exist, the procedure rejects the transaction.

Notice that the MATCH command only identifies CNAME. FOCUS automatically equates the
value of EMP_ID with WHO, part of the key to COURSE.

FOCUS DELETE Referential Integrity

FOCUS provides automatic referential integrity for deleting rows in a related set of tables. Just
as with INCLUDE referential integrity, only tables described in a multi-table Master and Access
File invoke FOCUS DELETE referential integrity.

Note: An attempt to use FOCUS DELETE referential integrity in conjunction with tables that
have an RDBMS ON DELETE RESTRICT constraint on the child segments produces an error
condition. When FOCUS attempts to delete a parent segment, the RDBMS restriction takes
precedence and prevents the deletion.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 377

When you delete a parent row (primary key) in a MODIFY or Maintain procedure, FOCUS
automatically deletes all related rows (foreign keys) at the same time.

Example: Using FOCUS DELETE Referential Integrity

When you delete an employee from the EMPINFO table in the ECOURSE Master File, FOCUS
also deletes all rows from the COURSE table that represent courses the employee has taken:

 MODIFY FILE ECOURSE
 CRTFORM LINE 2
 "DELETE EMPLOYEE AND ALL COURSES </1"
1. "EMPLOYEE ID: <EMP_ID "
2. MATCH EMP_ID
 ON MATCH COMPUTE DOIT/A1 = 'N';
 ON MATCH CRTFORM LINE 6
3. "EMPLOYEE TO BE DELETED: <D.EMP_ID </1"
 " LAST NAME: <D.LAST_NAME </1"
 " FIRST NAME: <D.FIRST_NAME </1"
 " HIRE DATE: <D.HIRE_DATE </1"
 " DEPARTMENT: <D.DEPARTMENT </1"
 " JOB CODE: <D.CURR_JOBCODE </2 "
 "IS THIS THE EMPLOYEE YOU WISH TO DELETE? (Y,N): <DOIT "
 ON MATCH IF DOIT EQ 'N' THEN GOTO TOP;
4. ON MATCH DELETE
 ON NOMATCH REJECT
 DATA
 END

The MODIFY procedure processes as follows:

1. The user enters the employee ID.

2. The MATCH command causes the RDBMS to search the EMPINFO table for an existing row
with the specified employee ID.

3. If the row exists, the MODIFY displays information for verification purposes.

4. Once verified, FOCUS deletes the employee and all associated rows in both the EMPINFO
and the COURSE tables. When FOCUS deletes a parent, it automatically deletes all
associated related instances.

Inhibiting FOCUS Referential Integrity

You may not always want to enforce FOCUS referential integrity. Consider a relationship in
which COURSE is the parent table that contains the primary key and EMPINFO is the related
table that contains the foreign key. If you delete a course offering, you do not want to delete all
employees who have taken the course.

Referential Integrity

378

To handle this problem, specify the parameter WRITE=NO in the Access File for the related
(foreign key) table. This gives you the ability to modify the COURSE table without affecting the
data in the EMPINFO table. You can still use the data in the EMPINFO table for browsing or
lookup tasks. This technique bypasses FOCUS referential integrity.

Another technique is to COMBINE single tables rather than using a multi-table Master File.
COMBINE of single tables does not invoke FOCUS referential integrity.

The MODIFY COMBINE Facility

Some applications require that you use a single input transaction to update several tables in
the same MODIFY procedure. If the tables are not defined in the same Master File, you can
use the COMBINE facility to modify them as if they are one.

Note: In Maintain, you do not issue a COMBINE command to modify unrelated tables. Instead,
you reference multiple tables in the MAINTAIN FILE command. For example:

MAINTAIN FILES EMPINFO AND COURSE

You can maintain up to 63 tables in a single MODIFY procedure that operates on a COMBINE
structure. The COMBINE limit is 16 Master Files. However, each Master File can describe more
than one table, for a total of 64 per procedure, minus one for the virtual root segment created
by the COMBINE command.

The COMBINE facility links multiple tables and assigns a new name to them so FOCUS can
treat the tables as a single structure. Tables in a COMBINE structure can have different SUFFIX
attributes, but you cannot combine a FOCUS data source with anything except other FOCUS
data sources.

Note: In Maintain, you can modify FOCUS data sources and RDBMS tables in the same
procedure.

When you issue a COMBINE command, the COMBINE structure remains in effect for the
duration of the FOCUS session or until you enter another COMBINE command. Only one
COMBINE structure can exist at a time, so each subsequent COMBINE command replaces the
existing structure.

Do not confuse COMBINE with the dynamic JOIN command. You use JOIN to report from
multiple tables or for LOOKUP functions. With the COMBINE facility, you can MODIFY multiple
tables. COMBINE is part of the MODIFY command. Only the MODIFY and CHECK FILE
commands process COMBINE structures. The FIND function also works in conjunction with
COMBINE (see The FIND Function on page 384).

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 379

Note that COMBINE considers the component structures to be unrelated. Although RDBMS
referential integrity is enforced, FOCUS referential integrity does not apply to a COMBINE of
single-table Master Files. Your procedure should check for and enforce referential integrity, if
necessary.

Syntax: How to Create a COMBINE Structure

COMBINE FILES file1 [PREFIX pref1|TAG tag1] [AND]
 .
 .
 .
 filen [PREFIX prefn|TAG tagn] AS asname

where:

file1 - filen

Are the Master File names of the tables you want to modify. You can specify up to 16
Master Files.

pref1 - prefn

Are prefix strings for each file, up to four characters. They provide uniqueness for field
names. You cannot mix TAG and PREFIX in a COMBINE structure. Refer to your FOCUS
documentation for additional information.

tag1 - tagn

Are aliases for the table names, up to eight characters. FOCUS uses the tag name as the
table name qualifier for fields that refer to that table in the combined structure. You cannot
mix TAG and PREFIX in a COMBINE.

AND

Is an optional word to enhance readability.

asname

Is the required name of the combined structure to use in MODIFY procedures and CHECK
FILE commands.

Once you enter the COMBINE command, you can modify the combined structure.

The MODIFY COMBINE Facility

380

How FOCUS Creates a COMBINE Structure

The EMPINFO table contains employee number, last name, first name, hire date, department
code, current job code, current salary, number of education hours, and bonus plan information.
A second table, PAYINFO, is a historical record of the employee's pay history. It contains the
employee number, date of increase, percent of increase, new salary, and job code. (File
Descriptions and Tables on page 459 provides the Master and Access Files for these two
tables.)

Each time a salary changes, both the EMPINFO and PAYINFO tables must reflect the change.
Since both tables need to share data entered for employee number, salary and job code, this
application is appropriate for the COMBINE facility. You can update both tables at the same
time without having to define multi-table Master and Access Files.

The following figures represent the tables as separate entities.

EMPINFO table PAYINFO table
 EMPINFO PAYINFO
01 S0 01 S0
************** **************
*EMP_ID ** *PAYEID **
*LAST_NAME ** *DAT_INC **
*FIRST_NAME ** *PCT_INC **
*HIRE_DATE ** *SALARY **
* ** * **
*************** ***************
************** **************
 EMPINFO PAYINFO

To modify the tables simultaneously, issue the following sequence of commands at the FOCUS
command level or in a FOCEXEC:

COMBINE FILES EMPINFO PAYINFO AS EMPSPAY
MODIFY FILE EMPSPAY
 .
 .
 .

In the following picture, generated by the CHECK FILE command, FOCUS defines a new
segment, identified as SYSTEM99, to be the root segment of the combined structure.
SYSTEM99 acts as the traffic controller for this structure. It is a virtual (artificial) segment. It
counts as one segment towards the total of 64 segments allowed in the COMBINE structure.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 381

check file empspay pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 3 (REAL= 3 VIRTUAL= 0)
 NUMBER OF FIELDS= 15 INDEXES= 0 FILES= 3
 TOTAL LENGTH OF ALL FIELDS= 95
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPINFO ON 07/22/93 AT 09.54.27
 SYSTEM99
 01 S0

 * **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I EMPINFO I PAYINFO
 02 I S0 03 I S0
 ************** **************
 *EMP_ID ** *PAYEID **
 *LAST_NAME ** *DAT_INC **
 *FIRST_NAME ** *PCT_INC **
 *HIRE_DATE ** *SALARY **
 * ** * **
 *************** ***************
 ************** **************
 EMPINFO PAYINFO

The COMBINE facility makes it easy to modify many files with the same transaction. For
additional information regarding the COMBINE facility of MODIFY, refer to your FOCUS
documentation.

SET INCLUDE SUBTREE

In early releases, the adapter used segment activation logic in MODIFY write operations that
differed from that of standard FOCUS against FOCUS files.

In a multi-path file structure involving FOCUS files (including structures generated by the
COMBINE command), INCLUDE or DELETE actions operate only on active segments in the
subtree of the segment specified in the previous MATCH or NEXT command.

However, with external DBMS files, INCLUDE or DELETE actions would operate not only on
active segments in the subtree of the segment specified in the MATCH or NEXT command, but
also on any active segments to the right of that segment in the hierarchy (as displayed by the
CHECK FILE PICTURE command).

The MODIFY COMBINE Facility

382

Currently, the default adapter behavior is consistent with the standard FOCUS behavior.

Note: You can control whether the adapter uses the FOCUS standard behavior for external
DBMS files using the SET INCLUDE SUBTREE subcommand. Place the subcommand on the
line immediately following the MODIFY command:

SQL SET INCLUDE {SUBTREE|LATERAL}

where:

SUBTREE

Institutes the standard FOCUS behavior. INCLUDE or DELETE actions operate only on
active segments in the subtree of the segment specified in the previous MATCH or NEXT
command. This is the default value

LATERAL

INCLUDE or DELETE actions operate not only on active segments in the subtree of the
segment specified in the MATCH or NEXT command, but also on any active segments to
the right of that segment in the hierarchy (as displayed by the CHECK FILE PICTURE
command).

The LOOKUP Function

The LOOKUP function, used in FOCUS MODIFY procedures, retrieves data values from cross-
referenced tables joined dynamically with the JOIN command. The function is valid in both
MODIFY COMPUTE and VALIDATE commands.

The syntax for the LOOKUP function is

rfield/I1 = LOOKUP(field);

where:

rfield

Contains the return code (1 or 0) after the LOOKUP function executes.

field

Is the name of any field in a cross-referenced table. After the LOOKUP, this fieldname
contains the value of the field for you to use as needed.

To use this feature most efficiently with an RDBMS, specify a cross-referenced field for which
an RDBMS index has been established.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 383

Note:

The LOOKUP function is not supported between RDBMS tables and FOCUS data sources in
either direction.

The extended syntax of the LOOKUP function (parameters GE and LE) is not valid for
RDBMS tables. LOOKUP can only retrieve values that match exactly. Refer to your FOCUS
documentation for more information.

The FIND Function

The FIND function, used with COMBINE structures in FOCUS MODIFY procedures or with any
file in a Maintain procedure, verifies the existence of a value in another file structure. The FIND
function sets a temporary field to 1 if the value exists in the other file and to 0 if it does not.
FIND does not return any actual data values.

Use FIND only with a table referenced in a COMBINE command or a MAINTAIN FILE command.
With COMBINE, if the FIND is for a field in a VSAM file, this field must be the index or alternate
index field. For Maintain, the field must be indexed only if it is in a FOCUS data source.

The syntax for the FIND function is

rfield/I1 = FIND(fieldname AS dbfield IN file);

where:

rfield

Contains the return code (1 or 0) after the FIND function executes.

fieldname

Is the comparison field from one COMBINE table or one table referenced in a MAINTAIN
FILE command.

dbfield

For MODIFY, is the field in another COMBINE file structure or an indexed field in a VSAM
file, to use for the value comparison. The AS dbfield clause is optional if rfield and dbfield
have the same name.

For Maintain, is a field name from one of the files listed in the MAINTAIN FILE command,
qualified with its file name.

To use this feature most efficiently with an RDBMS, specify a field for which an RDBMS
index has been established.

The FIND Function

384

file

In MODIFY, names the table or VSAM file in which dbfield resides. In Maintain, is ignored.

The FIND function is only supported within MODIFY or Maintain procedures. For more
information, consult your FOCUS documentation on maintaining databases.

Isolation Levels and Locks

While you are changing data in a table, the table is in an unstable state. The changes may
eventually become permanent, or they may be backed out. In order for reports to contain
meaningful results, users should not see changes until they are permanent.

To protect data integrity, the RDBMS must guarantee to the person updating a table that no
other user will change the selected values before the update made by the first user is
submitted.

The RDBMS provides a locking system for concurrency management. With native SQL, you can
specify the length of time to hold a lock. This section discusses the duration of the lock, called
the isolation level.

DB2 Isolation Levels

During installation, every DB2 application plan is bound with a default isolation level. The
installation procedures for the adapter specify that the default isolation level is Cursor
Stability. (Static MODIFY procedures are an exception. See Static SQL (DB2) on page 401 for
information about isolation levels in static procedures.)

With the Cursor Stability setting, shared (read) locks on a data row or page are released as
your cursor moves off that location. For example, if a report reads many data pages, the
shared lock acquired on each data page is released as the shared lock on the next data page
is acquired.

Use Cursor Stability for read-only applications such as TABLE requests or read-only MODIFY or
Maintain procedures that browse data without updating. You may not use Cursor Stability with
a MODIFY or Maintain procedure that changes values in the database. Doing so would leave
the data susceptible to change by other tasks in the interim between the initial selection
(MATCH) and the update or inclusion.

The isolation level setting named Repeatable Read provides the highest level of protection.
With Repeatable Read, any lock acquired is held until the transaction boundary (COMMIT
WORK or ROLLBACK WORK). Therefore, any data the MODIFY or Maintain procedure displays
on the screen remains unchanged until the procedure submits the update and executes a
COMMIT WORK command.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 385

This higher level of protection is provided at the expense of concurrency, since all locks,
including shared locks, remain in effect until the end of a logical unit of work. Therefore, you
should commit transactions on a regular basis throughout the MODIFY or Maintain procedure.
Periodic transaction termination is especially important for NEXT processing. All rows retrieved
by NEXT remain locked even if they are not all updated. These retrieved rows are not available
for update by another user until your procedure releases them (using SQL COMMIT WORK or
SQL ROLLBACK WORK in MODIFY, or using COMMIT or ROLLBACK in Maintain).

Because of these concurrency considerations, all read/write MODIFY and Maintain procedures
require the Repeatable Read isolation level, including those MODIFY procedures that invoke
the Change Verify Protocol described in Change Verify Protocol: AUTOCOMMIT ON CRTFORM on
page 391.

In DB2, there are two additional isolation levels for read-only access. Uncommitted Read (UR)
provides read-only access to records even if they are locked. However, these records may not
yet be committed to the database. The other isolation level is called Read Stability (RS). For
more information, see the DB2 Command and Utility Reference.

Note: The adapter AUTOCOMMIT ON CRTFORM feature is designed to eliminate some
concurrency problems. (See Change Verify Protocol: AUTOCOMMIT ON CRTFORM on page 391
for more information.) However, it also requires an isolation level of Repeatable Read.

The following sections describe how to change the isolation setting.

Changing the DB2 Isolation Level

The SET ISOLATION command allows you to dynamically change the isolation level for DB2.

For DB2 on z/OS, you can also switch to a plan with a different isolation level. See Changing
the DB2 Isolation Level by Switching to Another Plan on page 387.

Syntax: How to Change the DB2 Isolation Level

You can change the isolation level by issuing the SET ISOLATION command in a MODIFY
procedure or at the FOCUS command level. (For Maintain, you must issue the SET ISOLATION
command at the command level prior to invoking the Maintain procedure.) The setting remains
in effect for the FOCUS session or until you reset it.

From the FOCUS command level, issue

{ENGINE|SQL} [DB2] SET ISOLATION level

Isolation Levels and Locks

386

where:

level

Indicates the isolation level. Valid values are:

CS Cursor Stability, the default. Releases shared locks as the cursor moves on in the
table. Use for read-only requests.

RR Repeatable Read. Use for MODIFY and Maintain read/write routines. Locks the
retrieved data until it is released by an SQL COMMIT WORK or SQL ROLLBACK WORK.

UR Uncommitted Read. Provides read-only access to records even if they are locked.
However, these records may not yet be committed to the database. Use for read-only
requests.

RS Read Stability. Use for read-only requests. For more information, see the DB2
Command and Utility Reference.

blank A blank value resets the level to the adapter default.

Note:

Omit the target RDBMS qualifier to issue the command in MODIFY procedures or if you
previously issued the SET SQLENGINE command.

The adapter does not validate the isolation level values. If you issue the SET ISOLATION
command with a level not supported for the version of the RDBMS you are using, the
RDBMS will return an SQL code of -104, signifying an SQL syntax error.

The SET ISOLATION command is enabled for only SELECT requests created as a result of
FOCUS TABLE requests.

This setting cannot override the required isolation level of RR for MODIFY and Maintain
requests.

For more information about adapter commands, consult Adapter Commands on page 309.

Changing the DB2 Isolation Level by Switching to Another Plan

The Adapter for DB2 SET PLAN command allows you, within a FOCUS session, to switch to a
plan bound with a different isolation level. The SET PLAN command is only available if the
Adapter for DB2 was installed using the Call Attachment Facility (CAF).

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 387

The systems group responsible for adapter installation must generate two DB2 application
plans for the adapter, one bound with the Cursor Stability isolation level and the other with
Repeatable Read. You can then use the adapter SET PLAN command to switch between the
plans for the desired isolation level. After you issue the SET PLAN command, all FOCUS TABLE,
Maintain, or MODIFY procedures take advantage of the new isolation level.

DB2 has two additional isolation levels appropriate for read-only access. Uncommitted Read
(UR) provides read-only access to records even if they are locked. However, these records may
not yet be committed to the database. The other isolation level is Read Stability (RS). For more
information, see the DB2 Command and Utility Reference.

Syntax: How to Dynamically Change the DB2 Plan

Issue the SET PLAN command from the FOCUS command level

{ENGINE|SQL} [DB2] SET PLAN planname

where:

planname

Is the name of your application plan. The default is DSQL unless your site changed the
default at installation time.

Note:

Omit the DB2 qualifier if you previously issued the SET SQLENGINE command for DB2.

In non-CAF versions of the Adapter for DB2, you must use a separate JCL procedure or
CLIST to access each plan.

Isolation Levels in IDMS/SQL

Use Cursor Stability or Transient Read for read-only applications such as TABLE requests or
read-only MODIFY procedures that browse data without updating. You may not use Transient
Read with a MODIFY procedure that changes values in the database. Doing so would leave the
data susceptible to change by other tasks in the interim between the initial selection (MATCH)
and the update or inclusion.

Cursor Stability (the adapter default) provides the highest level of protection. With Cursor
Stability, any lock acquired is held until the transaction boundary (COMMIT WORK or
ROLLBACK WORK) or until an updateable cursor is closed. Therefore, any data the MODIFY
procedure displays on the screen remains unchanged until the procedure submits the update
and executes a COMMIT WORK command.

Isolation Levels and Locks

388

This higher level of protection is provided at the expense of concurrency, since all locks,
including shared locks, remain in effect until the end of a Logical Unit of Work. Therefore, you
should COMMIT transactions on a regular basis throughout the MODIFY procedure. Periodic
transaction termination is especially important for NEXT processing. All rows retrieved by NEXT
remain locked even if they are not all updated, since the cursor used is a retrieval cursor.
These retrieved rows are not available for update by another user until your procedure releases
them (using SQL COMMIT WORK, SQL ROLLBACK WORK, or another IDMS SQL transaction or
session ending command such as RELEASE in MODIFY).

Because of these concurrency considerations, all read/write MODIFY procedures require the
Cursor Stability Isolation Level, including those MODIFY procedures that invoke the Change
Verify Protocol described in Change Verify Protocol: AUTOCOMMIT ON CRTFORM on page 391.

Note: The adapter AUTOCOMMIT ON CRTFORM feature is designed to eliminate some
concurrency problems. However, it also requires an Isolation Level of Cursor Stability.

Syntax: How to Change the IDMS SQL Isolation Level

The isolation level must be Cursor Stability for all read/write MODIFY procedures. You must
issue the IDMS/SQL SET TRANSACTION command at the FOCUS command level prior to
invoking the MODIFY procedure. The setting remains in effect for the FOCUS session or until
you reset it.

From the FOCUS command level, issue

SQL [SQLIDMS] SET TRANSACTION level

where:

level

Can be one of the following:

CURSOR STABILITY is Cursor Stability, the default. Provides the maximum amount of
concurrency while guaranteeing the integrity of the data selected.

TRANSIENT READ is Transient Read. Allows the reading of records locked by other users
(allows dirty reads). Recommended for TABLE only. Transient Read prevents the SQL
transaction from performing updates. Use this only when you do not need the data
retrieved to be absolutely consistent and accurate. If you specify Transient Read, IDMS
assumes Read Only.

READ ONLY allows data to be retrieved, but does not allow the database to be updated.

READ WRITE allows data to be retrieved, and allows the data source to be updated.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 389

Note: Omit the SQLIDMS target RDBMS qualifier from the command when issuing it in a
MODIFY procedure or if you previously issued the SET SQLENGINE command for SQLIDMS.

Oracle Locks

The method of concurrency control used by Oracle is implemented by locking the shared data.
Locks may be of the following types:

Write enables a single user or program to lock out all other users from the data it is
currently reading or modifying, except those users acquiring Access locks. This type of lock
is automatically acquired by Oracle for data involved in FOCUS UPDATE, DELETE or
INCLUDE operations.

Read is used to ensure consistency during read operations (for example, MATCH, NEXT and
TABLE FILE). Several users may hold read locks on a table to retrieve data, at which time
no modification of that data is permitted by Oracle.

Issuing SQL Commands in MODIFY

The adapter allows you to execute a wide range of native SQL commands in a MODIFY
procedure or at the FOCUS command level.

In fact, you can execute all SQL commands that return only SQL return codes—not data—from
within MODIFY. Since SQL SELECT returns data (rows), you cannot execute it from a MODIFY
FOCEXEC. (You can, however, execute SQL SELECT requests at the FOCUS command level
using the Direct SQL Passthru facility discussed in Direct SQL Passthru on page 265.)

Note: Maintain does not support SQL commands.

To place native SQL commands in a FOCUS MODIFY procedure, prefix them with the
environmental qualifier SQL. Do not include TSO or MVS environmental qualifiers. If the
command exceeds one line, end the first line with a hyphen and continue the command on the
next line, prefixing this continued line with the SQL qualifier. Semicolons are optional.

Example: Issuing SQL Commands in MODIFY

For example, the following section of a MODIFY procedure contains the SQL DELETE, CREATE
TABLE, COMMIT WORK, and DROP TABLE statements:

Issuing SQL Commands in MODIFY

390

CASE AT START
 SQL DELETE FROM PERSONNEL.TEMP1 WHERE ACCT_ID > 1000;
 SQL CREATE TABLE PERSONNEL.TEMP2 -
 SQL (ACCT_ID INTEGER, AMOUNT DECIMAL (13,2)) -
 SQL IN PUBLIC.SPACE0;
ENDCASE
 .
 .
 .
NEXT keyfield
 ON NEXT UPDATE anyfield
 ON NEXT SQL COMMIT WORK;
 ON NONEXT SQL DROP TABLE PERSONNEL.TEMP2;
 .
 .
 .

The SQL reference manual for the applicable RDBMS contains a comprehensive list of SQL
commands.

Change Verify Protocol: AUTOCOMMIT ON CRTFORM

The adapter AUTOCOMMIT ON CRTFORM facility provides application developers with an
automated Change Verify Protocol to use as an alternative to the standard RDBMS method of
concurrency and integrity in MODIFY CRTFORM procedures.

Note:

This protocol is not supported for Teradata, which implicitly commits each SQL statement
individually.

Maintain does not support AUTOCOMMIT ON CRTFORM.

Without Change Verify Protocol, the adapter relies solely on the RDBMS to manage the
concurrent update and retrieval activities of its applications. Using the SQL COMMIT WORK
statement, application developers can define transactions, or Logical Units of Work (LUWs),
consisting of one or more database actions. Within the LUW, the RDBMS guarantees database
integrity. Database objects manipulated by the LUW will not change in an unpredictable
manner before the termination of the LUW. Furthermore, if any failure occurs within the
boundaries of the LUW, the RDBMS will undo, or ROLLBACK, any outstanding updates within
the LUW.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 391

The RDBMS uses a locking mechanism to prevent other concurrent transactions from
interfering with the LUW. The locking mechanism allocates and isolates database resources for
the LUW. However, this approach suffers from at least one basic drawback. Terminal I/O locks
data for an indeterminate amount of time. The lock remains allocated to the LUW until the user
chooses to react to the screen display. Data source transaction throughput in many cases
becomes more a function of RDBMS lock management than of RDBMS transaction processing
performance.

AUTOCOMMIT ON CRTFORM automatically invokes the Change Verify Protocol through the
following series of steps:

1. Before displaying a CRTFORM, the adapter issues an SQL COMMIT WORK statement to
release all locks held on the underlying table. The COMMIT releases all locks for the record
displayed on the terminal.

2. If the application requests an update to the displayed record (UPDATE, DELETE, or
INCLUDE), the adapter retrieves the row from the table again. The adapter compares the
held and newly-retrieved images of the transaction record to determine whether a conflict
exists with a transaction from another user. If no conflict exists, FOCUS processes the
update as expected. If another user changed the record in the interim, FOCUS rejects the
update. The application should test the value of the FOCURRENT variable to redirect the
logic flow in the FOCEXEC (see The FOCURRENT Variable on page 393).

3. Many applications retrieve a record and perform VALIDATE tests on that record. If the
record satisfies those tests, the MODIFY branches to a case that matches the record again
and (potentially) updates it. In this situation, AUTOCOMMIT ON CRTFORM retrieves and
compares the displayed and current versions of the record. The second MATCH
subcommand and the update request each sponsor the Change Verify Protocol action. If no
conflict exists, FOCUS submits the update as expected.

Note: In this scenario, the MODIFY application itself must be coded to check FOCURRENT (see
The FOCURRENT Variable on page 393). The second MATCH does not automatically perform
the check. Any maintenance action issued subsequent to the second MATCH subcommand
still performs an automatic check.

The Change Verify Protocol does not have the unit-of-work capabilities of the RDBMS protocol,
but it never holds locks on CRTFORM-displayed records. By eliminating locks from the run-time
path of an application, it can substantially increase rates of transaction throughput and
decrease terminal response times for interactive applications.

You can only issue the AUTOCOMMIT ON CRTFORM command in a MODIFY CRTFORM
procedure. Place it in CASE AT START, not in the TOP case. You cannot switch AUTOCOMMIT
modes within the MODIFY procedure.

Change Verify Protocol: AUTOCOMMIT ON CRTFORM

392

The AUTOCOMMIT facility only works on single-record transactions. (For example, MODIFY
MATCH and NEXT commands retrieve single records.) It is not designed for set processing with
FOCUS multiple-record operations (REPEAT and HOLD, for example). For multiple-record
processing, the Change Verify Protocol applies only to the last record.

Syntax: How to Invoke the Change Verify Protocol

SQL SET AUTOCOMMIT {OFF|ON CRTFORM}

where:

OFF

Is the default. It retains the native RDBMS locking protocol.

ON CRTFORM

Invokes the Change Verify Protocol.

To ensure data integrity in conjunction with AUTOCOMMIT ON CRTFORM, you must use an
RDBMS isolation level of Repeatable Read (RR) for DB2, Cursor Stability for IDMS/SQL, and
Write for Oracle. For a discussion of isolation levels, see Isolation Levels and Locks on page
385.

The FOCURRENT Variable

A MODIFY procedure that invokes the Change Verify Protocol can test the value of the
FOCURRENT variable to determine whether there is a conflict with another transaction. FOCUS
stores a zero in FOCURRENT if there is no conflict, and the transaction is accepted. A non-zero
value indicates a conflict. The transaction is rejected, an error message is displayed, and you
can redirect the MODIFY activity.

The possible values for FOCURRENT are:

0 Transaction accepted

1 Invalid, record input will create duplicate

2 Invalid, record has been deleted

3 Invalid, record has been changed

Your MODIFY application should test FOCURRENT and branch according to its value. For
example, a typical procedure using AUTOCOMMIT ON CRTFORM submits a transaction, tests
FOCURRENT, and, if FOCURRENT is non-zero, resubmits the transaction.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 393

Note:

The FOCURRENT variable is not supported for tables that do not have primary keys. Its
value is always 0. The AUTOCOMMIT ON CRTFORM option is not available for unkeyed
tables.

The FOCURRENT variable is not supported for Teradata.

Rejected Transactions and T. Fields

FOCUS treats transactions rejected because of a conflict as if they failed a VALIDATE test.
Transactions that use CRTFORM turnaround fields (T. fields) may require special handling in
this case. If, within the logic of your application, you wish to re-retrieve a VALIDATE-rejected
record from the data source to display its current image, you must issue the MODIFY command
DEACTIVATE INVALID. If you do not, the turnaround fields display the rejected values you
attempted to enter. Decisions based on these values may be logically incorrect.

Note: Maintain does not support field activation or deactivation.

Example: Testing FOCURRENT

For example, the following MODIFY request updates the CURRENT_SALARY field and contains
a FOCURRENT test:

Change Verify Protocol: AUTOCOMMIT ON CRTFORM

394

MODIFY FILE EMPINFO
-*
CRTFORM LINE 1
" EMP_ID <EMP_ID "
GOTO EMPLOYEE
-*
CASE EMPLOYEE
 MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CRTFORM LINE 3
 " EMP_ID <D.EMP_ID "
 " SALARY <T.CURRENT_SALARY> "
 ON MATCH UPDATE CURRENT_SALARY
 ON MATCH IF FOCURRENT NE 0 THEN GOTO UNDO; <= Check FOCURRENT and
direct
ENDCASE process for appropriate
-* action.
CASE UNDO
 SQL ROLLBACK WORK
 DEACTIVATE INVALID
 GOTO EMPLOYEE
ENDCASE
-*
CASE AT START
 SQL SET AUTOCOMMIT ON CRTFORM <== Releases record after display
ENDCASE
-*
DATA
END

In the following example, the CHANGE case (or second MATCH subcommand) applies the
Change Verify Protocol action. The example also contains two VALIDATE tests:

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 395

MODIFY FILE EMPINFO
CRTFORM LINE 1
 " EMP_ID <EMP_ID "
GOTO VALIDATE
-*
CASE VALIDATE
 MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CRTFORM LINE 3
 " EMP_ID <D.EMP_ID "
 " SALARY <T.CURRENT_SALARY> "
 " BONUS <T.BONUS_PLAN> "
 ON MATCH VALIDATE
 SALTEST= (CURRENT_SALARY GE 0) AND (CURRENT_SALARY LE 100000);
 BONTEST = (BONUS_PLAN GE 0) AND (BONUS_PLAN LE 100);
 ON INVALID TYPE "VALUES OUT OF RANGE "
 ON INVALID GOTO UNDO
 ON MATCH GOTO CHANGE
ENDCASE
-*
CASE CHANGE
 MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH IF FOCURRENT NE 0 THEN GOTO UNDO; <== Check FOCURRENT and
 ON MATCH UPDATE CURRENT_SALARY BONUS_PLAN direct process for
 ON MATCH IF FOCURRENT NE 0 THEN GOTO UNDO; <== appropriate action.
 ON MATCH SQL COMMIT WORK
ENDCASE
-*
CASE UNDO
 SQL ROLLBACK WORK
 DEACTIVATE INVALID <== FOCUS does not return to old
 COMPUTE EMP_ID =EMP_ID; screen with invalid data,
 GOTO VALIDATE but verifies data, then shows
ENDCASE refreshed data on the screen.
-*
CASE AT START
 SQL SET AUTOCOMMIT ON CRTFORM <== Releases record after display
ENDCASE
-*
DATA
END

Note: If the application (and not the adapter) sponsors the second MATCH, the MODIFY
application itself must check FOCURRENT (see The FOCURRENT Variable on page 393). The
second MATCH does not automatically perform the check. Any maintenance action issued
subsequent to the second MATCH subcommand still initiates an automatic check.

Loading Tables Faster: The MODIFY Fastload Facility

The adapter Fastload facility increases the speed of loading data into tables with MODIFY. It is
especially effective when using FIXFORM to load large volumes of data into a table.

Loading Tables Faster: The MODIFY Fastload Facility

396

For Oracle and DB2, you should issue the INSERTSIZE command in conjunction with Fastload
to take advantage of blocked inserts. For more information, see DB2 and Oracle Array Blocking
for INSERT Requests on page 397.

Use the following command to invoke the Fastload option from a MODIFY procedure:

SQL SET LOADONLY

For example:

MODIFY FILE table
SQL SET LOADONLY
 .
 .
 .
MATCH key1
 ON NOMATCH INCLUDE
 ON MATCH REJECT
 .
 .
 .
END

A standard MODIFY procedure uses a MATCH command to test for the existence of a single
row whose primary key value matches that supplied by the input transaction. When the
underlying table is an RDBMS table, the adapter uses an SQL SELECT statement to perform
this test. After examining the return code resulting from the SELECT, FOCUS determines
whether or not the row exists and directs MODIFY processing to the appropriate MATCH logic.

Fastload eliminates this SELECT operation. Its sole responsibility is to load rows into the
RDBMS. Fastload does so without first determining whether the row already exists within the
table. The RDBMS ensures the uniqueness of stored rows using its unique index. However,
FOCUS messages about the existence of duplicates display online or go into a LOG file if one
exists.

Fastload can only insert (ON NOMATCH INCLUDE) rows into a table. Any attempt to use other
MODIFY maintenance functions produces a FOC1404 error message, and the procedure
terminates.

DB2 and Oracle Array Blocking for INSERT Requests

The Adapters for DB2 and Oracle support buffered insertion of rows into tables. This technique
substantially reduces network traffic and CPU utilization.

High INSERTSIZE values increase the efficiency of requests involving many rows, at the cost of
higher virtual storage requirements. A value higher than 100 is not recommended because the
increased efficiency it would provide is generally negligible.

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 397

Syntax: How to Set INSERTSIZE for DB2 and Oracle

SQL [sqlengine] SET INSERTSIZE n

where:

sqlengine

Indicates the Adapter. Valid values are DB2 and SQLORA. You can omit this value if you
previously issued the SET SQLENGINE command.

n

Is the number of rows to be transmitted to the RDBMS at once. Accepted values are 1 to
5000. The default is 1.

Note: The INSERTSIZE parameter is only functional for consecutive executions of INSERT
statements that are identical to each other (except for the values to be inserted). No other
intervening SQL statements are allowed, including COMMIT WORK. If a statement is issued
that in any way (other than the inserted values) differs from the current blocked INSERT
statement in effect, the block is immediately transmitted to the RDBMS, even if the buffer is
not full. This restriction has several ramifications:

To use INSERTSIZE in a MODIFY request, you must use the SQL SET LOADONLY command.
Without LOADONLY, the adapter does not insert a row without first issuing a SELECT
statement to check that the row does not already exist.

To use INSERTSIZE with Direct SQL Passthru, the INSERT statement must be
parameterized and use the PREPARE, BIND, and EXECUTE command set within a BEGIN
SESSION/END SESSION command pair. In this case, the BIND is not optional. See Direct
SQL Passthru on page 265, for a discussion of parameterized Passthru.

Example: Sample Oracle Session Using INSERTSIZE

SET SQLENGINE = SQLORA
SQL SET CONNECTION_ATTRIBUTES /USER1,PASS1
SQL SET AUTOCOMMIT ON COMMAND
SQL SET INSERTSIZE 3
SQL BEGIN SESSION
SQL PREPARE ABC FOR INSERT INTO USER1.PAYROLL
 VALUES (:001,:002);
END
SQL BIND ABC USING CHAR(5), DECIMAL(11,2);
END
SQL EXECUTE ABC USING '11111', 50000; (Row is buffered)
END
SQL EXECUTE ABC USING '22222', 65000; (Row is buffered)
END

Loading Tables Faster: The MODIFY Fastload Facility

398

SQL EXECUTE ABC USING '33333', 30000; (Row is buffered, block transmitted)
END

SQL END SESSION (LUW is committed)

12. Maintaining Tables With FOCUS

Relational Data Adapter User’s Manual 399

Loading Tables Faster: The MODIFY Fastload Facility

400

Chapter13
Static SQL (DB2)

In early releases of the adapter, FOCUS access to the RDBMS was entirely through
dynamic SQL requests. While dynamic SQL is ideal for applications like ad hoc reporting,
in which you do not know in advance what SQL statements you will execute at run time, it
is less desirable for applications that do not require such flexibility.

In contrast, static SQL is ideal when you know beforehand all the SQL statements a
procedure may execute. You register the procedure itself, including the SQL statements,
with the RDBMS through a process known as binding. The resulting database object,
called a DB2 application plan, is stored in the database and retrieved whenever you run
the procedure. Introduction to Adapters for Relational Data Sources on page 17,
introduces bind concepts.

Static SQL provides an additional degree of security not available with dynamic SQL.
Authorization is granted to the static plan, not the underlying database objects,
restricting the SQL statements a user can execute with these objects.

Another important aspect of the static SQL process is that the RDBMS optimizes each
SQL statement in the program and chooses an access path for it. A data access path
consists of low-level data access requests that the RDBMS formulates and stores in
internal format. When you execute the procedure, the RDBMS retrieves these requests
and executes them immediately. The net effect is that SQL statements in the static
request are not reinterpreted at run time. The access path for each statement is pre-
selected and reused each time you run the procedure.

In this chapter:

Static SQL Overview

Static SQL Requirements

Creating a Static Procedure for DB2

Plan Management in DB2

Resource Restrictions

Relational Data Adapter User’s Manual 401

Static SQL Overview

The Adapter for DB2 comes with a Static SQL facility for quickly and easily creating application
plans or packages for MODIFY requests.

The Static SQL for MODIFY facility creates a static SQL module for a compiled MODIFY
procedure. The procedure can contain only one MODIFY request, which can contain SQL
commands. If the procedure references Dialogue Manager variables, you supply all of the
values at compile time and cannot substitute new values at run-time.

When you run static procedures, you take advantage of the following security and performance
benefits of static SQL:

Procedure-level security.

Privileges (for example, SELECT, UPDATE, or DELETE) for operations on a table are
available only to authorized users of the application plan (or package) associated with the
static procedure. Users have no access to underlying tables outside of the procedure.
Under dynamic SQL, privileges must be granted on the actual tables. Many sites do not
allow dynamic access to tables because users can then access the same tables using
other programs, such as QMFࡊ. Static SQL specifically addresses this security concern.

Performance improvements.

Static SQL offers potentially substantial performance improvements for MODIFY
procedures. The PREPARE cursor operation that checks syntax and authorization and
selects access paths is removed from the run-time environment.

MODIFY procedures tend to have many more SQL statements than TABLE requests, and
each statement executed must first be prepared. Furthermore, the access path is lost each
time the procedure executes a COMMIT or ROLLBACK WORK statement, even if the SQL
statement has already been prepared. In procedures that COMMIT after each transaction,
the same SQL statements must be prepared prior to every transaction. Many interactive
programs COMMIT after each transaction to release locks and minimize the impact of a
system or program failure. These programs benefit most from static SQL.

If you do not normally compile your MODIFY procedures, you will probably notice that it
takes less time to initialize the static procedure. FOCUS has already interpreted the
MODIFY commands, and the time required to initialize the procedure is a function of
compiled MODIFY rather than of static SQL.

Static SQL does not increase the actual speed of data retrieval or update. In a static SQL
procedure, the time required to retrieve and/or update a given set of rows is identical to
that of the same procedure executing dynamically, minus the cost of access path selection
and authorization checking for the SQL statements.

Static SQL Overview

402

Note: If RDBMS table statistics change, or if table or index structures are altered after the
static procedure is bound, the procedure should be rebound to ensure optimum
performance. Refer to Optionally BIND the Plan for the FOCEXEC on page 408 for a
discussion of BIND. (Introduction to Adapters for Relational Data Sources on page 17
includes a discussion of basic bind concepts.)

Ease of Use.

The FOCUS implementation of static SQL offers you a far less complex and time-consuming
development cycle than is normally the case with static SQL applications. No third-
generation language or SQL skills are required. In fact, you can write a FOCUS application
to use static SQL without coding a single SQL statement. Additionally, you can develop,
test, and revise your FOCEXEC using dynamic SQL without going through the cumbersome
static SQL preparation process every time you make a change. You do not have to create
the application plan or package until the end of the development cycle.

Static SQL Requirements

You can implement many existing dynamic applications as static procedures with little
preparatory work. A FOCEXEC does not require special coding (for example, embedded SQL) to
use static SQL. All current MODIFY procedures that update DB2 tables (and can currently be
compiled), can be registered as static SQL procedures with no alterations.

A MODIFY procedure to be compiled with the Static SQL for MODIFY facility can also contain
SQL commands (for example, SQL COMMIT WORK, INSERT, or UPDATE). The FOCEXEC can
also invoke other FOCEXECs; however, to run these additional FOCEXECs statically, you must
convert them separately to static SQL.

You must satisfy the following requirements to create a static SQL procedure:

A MODIFY procedure can contain only one MODIFY request. It cannot contain any other
FOCUS or operating system commands. If the FOCEXEC contains Dialogue Manager
commands, FOCUS prompts you for the values of any variables at compilation time. You
cannot substitute new values at run time.

All tables used in a MODIFY procedure must have primary keys. That is, you may not
include any table whose Access File specifies KEYS=0.

A MODIFY procedure cannot use the WITH-UNIQUES method for processing unique
segments.

The Adapter for DB2 must have been installed to use the Call Attachment Facility (CAF).
You can verify this by using the SQL DB2 ? command to display adapter settings (Call
Attachment Facility should be ON).

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 403

You cannot compile a MODIFY FOCEXEC as a static procedure if it accesses a DB2 view
created with a GROUP BY or HAVING clause.

The DB2 environment prohibits the type of static SQL syntax the adapter uses against a
DB2 view created with a GROUP BY or HAVING clause. If you issue a static COMPILE for a
FOCEXEC that operates against such a view, an SQLCODE of -815 results either at BIND or
RUN time, depending on your current level of DB2 maintenance.

Static SQL is not supported for tables with date-time columns.

Note:

Certain resource restrictions exist for any procedure that uses static SQL. Under some
circumstances they may make it impossible to compile a MODIFY procedure to use static
SQL. Resource Restrictions on page 415 explains these restrictions and how to determine
whether your procedure may be affected.

If your table contains a TEXT (LONG VARCHAR) field, place the description of that field at
the end of the segment declaration for that table in the Master File. No change has to be
made to the RDBMS table. If you have more than one TEXT field in a table, place one of
them last. It does not matter where you place the other TEXT field.

The FOCCOMP library member for a MODIFY procedure contains a record of the fact that
the procedure uses static SQL. To have both static and dynamic versions of the compiled
procedure, you need two FOCCOMP libraries, one compiled with STATIC ON or NOBIND, and
the other compiled with STATIC OFF.

The DB2 default value of 100 for the FETCHSIZE parameter is incompatible with static
MODIFY procedures. To run a compiled MODIFY procedure, you must SET FETCHSIZE to 1.

Creating a Static Procedure for DB2

Creating a static MODIFY is an extension to the usual procedure for compiling a FOCEXEC with
the FOCUS COMPILE facility. Invoke the static creation process after you complete the
FOCEXEC or MODIFY procedure.

You must allocate some additional DDNAMEs, you may need to issue the adapter SET STATIC
command, and you must execute the FOCUS COMPILE command. In response, the adapter
automatically creates an Assembler program with the embedded SQL required by the
procedure. It then precompiles, assembles, link-edits, and, optionally, binds the program. It
accomplishes all steps, including the automatic bind, from within FOCUS.

You must give some thought to the issue of plan management discussed in Plan Management
in DB2 on page 413 as it will affect your choice of bind option.

Creating a Static Procedure for DB2

404

This section outlines the steps required to create a static procedure, and provides a
description of FOCUS processing for each step. DB2 Static MODIFY Example on page 410
provides an annotated example.

Creating a static module for DB2 consists of the following steps:

1. Write the procedure.

2. Allocate the required DDNAMEs.

3. Optionally issue the SET STATIC command.

4. Optionally issue the SET SSID command.

5. Compile the FOCEXEC.

6. Optionally bind the plan for the FOCEXEC.

7. Authorize users to run the plan.

Write the FOCEXEC

The MODIFY procedure must be compilable. Consult Static SQL Requirements on page 403 and
your FOCUS documentation on maintaining databases for more information on compiled
MODIFY requirements.

Allocate the Required DDNAMEs

The following chart lists the DDNAMEs you must allocate before compiling a FOCEXEC to use
static SQL. You can add these allocations to your FOCUS CLIST, batch JCL, or PROFILE
FOCEXEC. Note that these allocations are additions to the normal allocations for running
FOCUS with DB2:

DDNAME DCB Parameters Description

ASMSQL DSORG(PO)
RECFM(FB)
LRECL(80)

Target data set for the assembler source code
generated by the compilation. The size of each
member varies depending on the size of the MODIFY
procedure and the number of columns in each table
the MODIFY procedure references.

DBRMLIB DSORG(PO)
RECFM(FB)
LRECL(80)

Target data set for the database request module
generated by the compilation.

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 405

DDNAME DCB Parameters Description

DB2LOAD n/a DB2 load library. The name for this library is site-
specific, but usually follows the form
DSNxy0.SDSNLOAD (where xy0 is DB2 Version x
Release y). The DB2 load library should be the same
one used by the DB2 subsystem where the bind will
take place. Note: The STEPLIB allocation of the DB2
load library is still necessary.

STUBLIB DSORG(PO)
RECFM(U)

Contains the load module created for the procedure.
This data set is also required at run time.

SQLERR1 DSORG(PS)
RECFM(FB)
LRECL(130)

Contains the output of the IBM precompiler. DCB
parameters are set by the precompiler. To route
output to the terminal, use DA(*).

SQLERR2 DSORG(PS)
RECFM(FM)
LRECL(121)

Contains the output of the IBM assemble operation.
DCB parameters are set by the assembler. To route
output to the terminal, use DA(*).

SQLERR3 DSORG(PS)
RECFM(FA)
LRECL(81)

Contains the output of the IBM linkage editor. DCB
parameters are set by the linkage editor. To route
output to the terminal, use DA(*).

FOCCOMP DSORG(PO)
RECFM(VB)
LRECL(32756)
BLKSIZE(32760)

Contains the compiled MODIFY procedure. This data
set is also required at run time. Note: The FOCCOMP
library member for a MODIFY procedure contains a
record of the fact that the procedure uses static SQL.
If you have both static and dynamic versions of the
compiled procedure, you need two FOCCOMP libraries,
one compiled with STATIC ON or NOBIND, and the
other compiled with STATIC OFF.

Optionally Issue the SET STATIC Command

The syntax for the SET STATIC command is

{ENGINE|SQL} [DB2] SET STATIC process

Creating a Static Procedure for DB2

406

where:

process

Indicates the command that invokes static processing. Valid values are:

OFF

Is the default setting. Reverses ON or NOBIND settings. Does not invoke static
processing for any subsequent COMPILE commands issued. For information about the
FOCUS COMPILE command, see your FOCUS documentation on maintaining
databases.

ON

invokes static processing with automatic bind. This option does not support extended plan
management (see Plan Management in DB2 on page 413) or modification of any of the
default bind parameters. If you require more flexibility, use the NOBIND option.

NOBIND

invokes static processing without bind. Use this option if you need extended plan
management, to change the default bind parameters, or to bind your programs at another
time (for example, during an off peak period).

Note:

If FOCUS performs the bind, the isolation level is always RR for MODIFY requests. To
change the isolation level, you must issue the BIND outside of FOCUS, as described in
Optionally BIND the Plan for the FOCEXEC on page 13-9.

Before requesting an automatic bind, make sure the DB2 subsystem is operational. In
addition, the bind operation itself requires DB2 privileges that you may not possess. Your
DB2 database administrator can tell you if you are authorized to use BIND.

Omit the DB2 qualifier if you previously issued the SET SQLENGINE command for DB2.

Batch considerations:

You can create or run static procedures in batch. The DSN command processor cannot be
invoked in batch. Therefore, you must compile your programs using the NOBIND option and
bind the programs separately.

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 407

Optionally Issue the SET SSID Command

If you request the automatic bind option and the DB2 subsystem in which you want the bind to
occur is different from your installation default, you must issue the SET SSID command (see
Adapter Commands on page 309). You can obtain the current setting for the DB2 subsystem
by issuing the SQL DB2 ? command.

Note: The DB2 subsystem referenced by the SET SSID command should use the DB2 load
library allocated to DDNAME DB2LOAD.

Compile the FOCEXEC

To compile the MODIFY procedure, use the FOCUS COMPILE facility.

Syntax: How to Compile a Static MODIFY Procedure on z/OS

Before compiling the request, be sure to allocate all input and output files, such as transaction
files or log files, that the MODIFY will use at run time. Any COMBINE structures must be in
effect both before compiling the MODIFY and at run time.

Issue the COMPILE command

COMPILE focexec

where:

focexec

Is the name of the MODIFY procedure to compile.

You do not have to recompile or rebind FOCUS applications for different releases of a FOCUS
Version. This saves time and effort.

For example, a FOCUS static MODIFY procedure compiled and bound in Version 7.6
Release 11, does not have to be recompiled or rebound for FOCUS Version 7.6 Release 12, or
vice versa. However, the procedure must be recompiled and rebound for a different FOCUS
Version (for example, FOCUS Version 7.7).

Note: The ‘AS module’ extension to the COMPILE command is not supported for static SQL
procedures. The module name must be identical to the FOCEXEC name.

FOCEXECs compiled with the Static SQL facility do not support the use of the LOAD command.
To execute them you must use the RUN command.

Optionally BIND the Plan for the FOCEXEC

This step is only necessary if you issued the SET STATIC command with the NOBIND option.

Creating a Static Procedure for DB2

408

You may choose to bind one application plan for each FOCEXEC (basic plan management) or to
combine several FOCEXECs into one application plan (extended plan management). Also, use
this option to supply bind parameters (such as isolation level) other than the default. Plan
Management in DB2 on page 413 discusses plan management, and Introduction to Adapters
for Relational Data Sources on page 17 introduces bind concepts.

Issue the BIND command outside the FOCUS environment, using one of the methods supplied
by IBM. Your BIND may include one or more FOCEXEC DBRMs.

For example:

BIND PLAN (BIGPLAN) MEM(FEX1 FEX2 FEX3 FEX4) ACTION(ADD) ISOLATION(CS)

For a full explanation of bind methods and parameters, consult the IBM DB2 Command and
Utility Reference.

Authorize Users to Run the Plan

Issue the SQL GRANT EXECUTE command to authorize users to execute the application plan
created with the previous steps. This example shows how to issue the command from within a
FOCUS session:

SQL DB2 GRANT EXECUTE ON PLAN BIGPLAN TO USER1, USER2

For more information on GRANT, consult the IBM DB2 SQL Reference.

Run-time Requirements

In addition to the allocations required for FOCUS and the adapter outlined in Invoking
Relational Adapters on page 25, you must include allocations for the FOCCOMP and STUBLIB
libraries allocated to DDNAMEs FOCCOMP and STUBLIB.

If you use extended plan management (see Extended Plan Management on page 414), you
must issue the adapter SET PLAN command before running any of the procedures included in
the DB2 application plan (see Maintaining Tables With FOCUS on page 349):

SQL DB2 SET PLAN BIGPLAN

This setting overrides the plan for the FOCUS dynamic adapter. Extended Plan Management on
page 414 explains options for resetting the plan at the conclusion of your procedures.

You can use the SQL DB2 ? command to view all current adapter plan settings, for example:

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 409

 SQL DB2 SET PLAN BIGPLAN
 SQL DB2 ?
 >
 .
 .
 .
 (FOC1448) ACTIVE PLAN FOR CALL ATTACH IS - :
 (FOC1459) USER SET PLAN FOR CALL ATTACH IS - : BIGPLAN
 (FOC1460) INSTALLATION DEFAULT PLAN IS - : P7029910
 .
 .
 .

The most recently issued request to DB2 sets the Active Plan. If the thread is closed or
marked inactive, no value displays for Active Plan. Your SET PLAN command determines the
User Set Plan.

Note: To execute a static MODIFY procedure, you do not need the Access File library (allocated
to DDNAME FOCSQL) at run time if you will not be accessing DB2 dynamically during the
FOCUS session. The Master File library (allocated to DDNAME MASTER) is required for all static
and dynamic access.

Processing and Security Overview

When you run a compiled FOCEXEC procedure, the adapter searches the STUBLIB load library
for a load module of the same name and loads it, if it exists.

When you run a compiled MODIFY procedure, FOCUS loads the FOCCOMP library member into
virtual memory. If the flag setting in this member indicates that this is a static procedure, the
adapter searches the STUBLIB load library for a load module of the same name. The adapter
compares timestamps in the FOCCOMP and STUBLIB members for consistency.

Next, FOCUS connects to DB2 and opens a thread to the application plan of the same name
as the static procedure (you can use the SET PLAN command to override this). DB2 compares
the owner, program name, and timestamps in the STUBLIB member and the DB2 application
plan for consistency.

This process verifies that the compiled MODIFY (FOCCOMP member), the program load module
(STUBLIB member), and the DB2 application plan are valid and that no substitutions have
been made.

DB2 Static MODIFY Example

The following annotated example illustrates the creation and automatic bind of a static MODIFY
procedure named MOD1. The numbers 1 through 7 refer to the explanatory notes that follow
the example.

Creating a Static Procedure for DB2

410

Also included for your information are the options FOCUS uses for each step (for example,
Assembler options). Please refer to the appropriate IBM manual for an explanation of these
parameters and their possible settings.

 SQL DB2 SET SSID DB2P
 SQL DB2 SET STATIC ON
1. COMPILE MOD1
 EMPLOYEE ON 02/27/91 at 14.26.57
2. (FOC1472) STATIC SQL PROGRAM CREATED SUCCESSFULLY:
3. (FOC1473) STATIC SQL PROGRAM PREPROCESSED. RETURN CODE IS: 4
4. (FOC1474) STATIC SQL PROGRAM ASSEMBLED . RETURN CODE IS: 0
5. (FOC1476) STATIC SQL PROGRAM LINKED . RETURN CODE IS: 0
 DSN SYSTEM(DB2P)
6. BIND PLAN(MOD1) MEM(MOD1) ACTION(ADD) ISOLATION(RR)
 DSNT252I - BIND OPTIONS FOR PLAN MOD1
 ACTION ADD
 OWNER PMSEF
 VALIDATE RUN
 ISOLATION RR
 ACQUIRE USE
 RELEASE COMMIT
 EXPLAIN NO
 DSNT253I - BIND OPTIONS FOR PLAN MOD1
 NODEFER PREPARE
 DSNT200I - BIND FOR PLAN MOD1 SUCCESSFUL
 END

7. COMPILED...

The steps in the process are:

1. Issue the COMPILE command.

The user invokes the FOCUS COMPILE facility for MODIFY procedures.

2. Create the Assembler program.

In this initial step, FOCUS reads the MODIFY procedure and creates an Assembler program
with embedded SQL statements representing all SQL statements the MODIFY will execute.
This program is the input file for the next step.

3. Precompile the Assembler program.

FOCUS invokes the IBM precompiler for the Assembler program created in Step 2. The
precompiler comments out the embedded SQL statements and replaces them with
Assembler calls to DB2. It places the SQL statements in a Database Request Module
(DBRM) created as a member in the data set allocated to DBRMLIB. This member is part of
the input to the bind process. Introduction to Adapters for Relational Data Sources on page
17, introduces bind concepts. FOCUS places the modified source program into a temporary
data set. It writes the IBM precompiler listing to the data set allocated to DDNAME
SQLERR1 or to the terminal.

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 411

This step uses the Assembler precompiler included in the DB2 load library allocated to
DDNAME STEPLIB. The adapter SET SSID command has no influence on the precompiler
used. If you have more than one DB2 subsystem, be sure that the DB2 load library used in
the precompilation step is the same one used by the DB2 subsystem in which the program
will run. The DB2 subsystem does not have to be active during this step.

The precompiler options for this step are HOST(ASM), DATE(ISO).

Note: The precompilation process generates the statement WARNINGS HAVE BEEN
SUPPRESSED DUE TO LACK OF TABLE DECLARATIONS. This message is normal and may
be ignored. The precompilation should complete with a return code of four (4).

4. Assemble the program.

FOCUS assembles the modified source program using IBM's Assembler H and places the
output into a temporary data set. It writes the resulting listing to the data set allocated to
DDNAME SQLERR2 or to the terminal.

The assembler options are DECK, NOOBJECT, NOALIGN and TERM. This step should
complete with a return code of zero (0).

5. Link-edit the program.

FOCUS links the assembled source program using IBM's linkage editor, placing the run-time
module into the data set allocated to DDNAME STUBLIB. It writes the linkage editor output
to the data set allocated to DDNAME SQLERR3 or to the terminal.

The linkage editor options are TERM, RENT, AMODE(31), RMODE(ANY), and LIST. This step
should complete with a return code of zero (0).

6. Optional automatic BIND.

Since the SET STATIC ON command requests an automatic BIND, FOCUS invokes the DB2
DSN command processor and submits the following bind request:

DSN SYSTEM(DB2P)
BIND PLAN (MOD1) MEM(MOD1) ACTION(REPLACE) ISOLATION(RR)

Note:

The SSID of the DB2 subsystem in which this plan will be bound is DB2P. The target
subsystem for the bind was established by the SET SSID command.

The plan name will be the same as that of the FOCEXEC (MOD1). The MEM parameter
means that application plan MOD1 will include member MOD1 from the data set
allocated to DDNAME DBRMLIB. Member MOD1 was created during the precompilation
step. The plan owner is the DB2 primary authorization ID in effect at the time of the
bind.

Creating a Static Procedure for DB2

412

7. Compile the FOCEXEC.

FOCUS compiles the FOCEXEC and creates member MOD1 in the data set allocated to
DDNAME FOCCOMP. It sets a flag in the FOCCOMP member to indicate that this is a static
procedure.

FOCEXECs compiled with the Static SQL facility do not support the use of the LOAD
command. To execute them you must use the RUN command.

Plan Management in DB2

Using extended plan management, you can create application plans that contain multiple
procedures. This section discusses both the basic and extended plan management options.
Introduction to Adapters for Relational Data Sources on page 17 introduces application plans,
packages, and bind concepts.

Basic Plan Management

With basic plan management, you create a separate DB2 application plan for every MODIFY
procedure. You do not have to issue the SET PLAN command, and the adapter automatically
establishes and terminates the necessary DB2 threads for each procedure invoked.

The following examples assume that MOD1 and MOD2 are static MODIFY procedures and that
a corresponding DB2 application plan exists for each of them:

Step MODIFY

1. RUN MOD1

2. RUN MOD2

3. RUN MOD2

4. EX RPT1

The adapter takes the following actions:

1. First, it closes the thread to a prior application plan, if one exists. It deallocates that plan
with a Call Attachment Facility (CAF) CLOSE.

Then it opens a thread to plan MOD1. If no prior connection existed, it first issues a CAF
CONNECT. It establishes the thread to MOD1 with a CAF OPEN.

2. It opens a thread to plan MOD2. First it deallocates the thread to MOD1 with a CAF CLOSE,
then issues a CAF OPEN to establish the thread to MOD2.

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 413

3. No action. The adapter recalls that it already has a thread to MOD2 and takes no action.

4. It opens a thread to the FOCUS dynamic plan. First it deallocates the thread to MOD2 with
a CAF CLOSE. Then it issues a CAF OPEN to establish the thread to the installation default
application plan for the dynamic SQL adapter.

Note: The settings for AUTOCLOSE and AUTODISCONNECT affect thread retention across
invocations of the same procedure, as in items 2 and 3. Some settings sever a thread and/or
connection to DB2, either at the conclusion of any procedure, or within the procedure itself.
More information is available in Controlling Connection Scope on page 295.

Extended Plan Management

With extended plan management, you can create a DB2 application plan that contains more
than one procedure. You must issue the SET PLAN command to establish an umbrella plan
that includes each FOCEXEC to be invoked.

The primary purpose of extended plan management is to limit the amount of overhead involved
in plan switching. Therefore, this method of binding is not consistent with the AUTOCLOSE or
AUTODISCONNECT options, both of which terminate threads and/or connections to DB2.

The following example assumes that MOD1 and MOD2 have been bound into a plan called
BIGPLAN:

Step MODIFY

1. SQL DB2 SET PLAN BIGPLAN

2. RUN MOD1

3. RUN MOD2

4. RUN MOD2

5. SQL DB2 SET PLAN

6. EX RPT1

The adapter takes the following actions:

1. It sets the application plan. The SET PLAN command tells the adapter that all required SQL
statements for subsequent FOCEXECs are contained in BIGPLAN.

2. It opens a thread to plan BIGPLAN. It establishes the thread to BIGPLAN with a CAF OPEN.
If there is no prior connection to DB2, it executes a CONNECT before the OPEN.

Plan Management in DB2

414

3. No action. The adapter recalls that the user-set plan is BIGPLAN and that the thread has
already been established.

4. No action. The adapter recalls that the user-set plan is BIGPLAN and that the thread has
already been established.

5. It returns control to the dynamic adapter. Setting the plan to blank instructs the adapter to
return control to the installation default application plan. If you wish to return control to a
plan other than the default plan, specify that plan name.

Another option would be to include the dynamic adapter in BIGPLAN by including the DBRM
for RSQL as part of the member list when binding BIGPLAN. This procedure would eliminate
the need to reset the plan for dynamic access to DB2. If using this option, skip steps 5 and
6.

6. It opens a thread to the FOCUS dynamic plan. It executes a CAF OPEN to establish the
thread to the installation default application plan.

Resource Restrictions

Static compilation creates an Assembler routine that includes SQL statements. Each SQL
statement uses a certain number of Assembler resource units (base registers) from the finite
number of base registers available. Exceeding this limit might, in some cases, prohibit a large
FOCEXEC from compiling successfully. These cases, however, should be extremely rare, and
should only involve extremely large generated SQL SELECT statements. The vast majority of
applications will be unaffected. These limitations are not unique to FOCUS. They apply to any
Assembler program with embedded SQL.

The adapter uses an optimization algorithm to allocate resources from the available pool of 16
registers. If it determines that a limit has been exceeded, it issues an error message during
static compilation. Therefore, if your FOCEXEC already exists, the easiest way to determine if it
exceeds any limits is to statically compile it.

If the adapter determines that a base register limit has been exceeded during the creation of
the Assembler program, it issues the FOC1355 and FOC1359 error messages and terminates
compilation. In some cases, the adapter cannot determine whether limits have been exceeded
until the program is actually assembled. It flags these errors as addressability errors during
the assembly and adds them to the Assembler listing file that it generates.

13. Static SQL (DB2)

Relational Data Adapter User’s Manual 415

Resource Restrictions

416

AppendixA
Additional Topics

This appendix describes the Dialogue Manager status return variable, &RETCODE, stored
procedure support, the FOCUS default date and its implications for reporting and
modifying an RDBMS table, differences between the relational adapters and standard
FOCUS, and remote segment descriptions.

It also discusses additional topics relevant to specific adapters.

In this appendix:

Status Return Variable: &RETCODE

Standard FOCUS and Adapter
Differences

Adapter for DB2 Stored Procedure
Support (CLI Only)

Adapter for Oracle Stored Procedure
Support

Adapter for Teradata Stored Procedure
and Macro Support

Default Date Considerations

Remote Segment Descriptions

Long Field Name Considerations

Determining DB2 Decimal Notation at
Run-time

CALLDB2: Invoking Subroutines
Containing Embedded SQL

The DB2 Distributed Data Facility

DB2 DRDA Support

Read-only Access to IMS Data From DB2
MODIFY Procedures

Status Return Variable: &RETCODE

The Dialogue Manager status return variable, &RETCODE, indicates the status of FOCUS query
commands. You can use it to test RDBMS return codes. The &RETCODE variable contains the
last return code resulting from an executed report request, MODIFY request, or native SQL
command (issued with or without Direct SQL Passthru). See SQL Codes and Adapter Messages
on page 453 for a list of common SQL return codes.

In a Dialogue Manager request, you can use a -IF command to test the &RETCODE value
against a specified SQL or DBC return code. You can then take corrective actions based on the
result of the -IF test. An SQL return code of zero (0) indicates a successful execution, a
positive return code indicates a warning, and a negative return code indicates an error. For
Teradata, any non-zero return code is either a warning or an error.

Relational Data Adapter User’s Manual 417

Example: Testing the Return Code Using &RETCODE

The following FOCEXEC issues the FOCUS CREATE FILE command to create the DB2 EMPINFO
table. The FOCEXEC tests for an SQL return code of -601, generated when a DB2 table already
exists. The -TYPE command displays message text. The first -TYPE command displays the
&RETCODE value. The second explains that the table exists.

CREATE FILE EMPINFO
-RUN
-TYPE RETCODE IS &RETCODE
-IF &RETCODE EQ -601 GOTO DUPL;
-EXIT
-DUPL
-TYPE THIS TABLE ALREADY EXISTS. SPECIFY ANOTHER TABLE NAME.
-EXIT

When you execute the FOCEXEC, the following messages display:

 > (FOC1400) SQLCODE IS : -601/FFFFFDA7
 (FOC1421) TABLE EXISTS ALREADY. DROP IT OR USE ANOTHER TABLENAME
 (FOC1414) EXECUTE IMMEDIATE ERROR.
 RETCODE IS -601
 THIS TABLE ALREADY EXISTS. SPECIFY ANOTHER TABLE NAME
 >

Since the table already exists, the RDBMS generates the SQL return code -601, and the
&RETCODE variable stores the code. The expression in the -IF command is true, and the text
messages display.

Note: Another useful Dialogue Manager variable, &FOCERRNUM, stores the last FOCUS or
adapter (not RDBMS) error number generated by the execution of a FOCEXEC. See your FOCUS
documentation for information about &FOCERRNUM and other statistical variables.

Standard FOCUS and Adapter Differences

In the design of the adapter, every effort has been made to retain compatibility with the FOCUS
mainframe product. Concepts described in your FOCUS documentation become portable across
environments. In some situations, however, these goals conflict with the need for pragmatic
and efficient use of the relational model as implemented within the RDBMS.

In the following areas, results may be different from those you expect, or some features may
not be available:

When describing an embedded join in a multi-table Master File, the FOCUS FIELDTYPE
keyword (FIELDTYPE=I) is not required for the cross-referencing field of the SQL table. The
adapter ignores the keyword.

Standard FOCUS and Adapter Differences

418

You may not use the logical relations INCLUDES and EXCLUDES with non-FOCUS data
sources in a FOCUS IF or WHERE test.

GROUP fields are not supported.

The FOCUS CREATE FILE command requires the DROP option in order to write over an
existing table.

HOLD FORMAT SQLengine tables created with the default name HOLD are not dropped at
the end of a FOCUS session. To drop the table, issue the RDBMS DROP TABLE command.

HOLD tables will not be overwritten when a HOLD command is issued with the same name,
unless the DROP option is specified in the HOLD command.

JOIN results (embedded or dynamic) are a function of Master Files or a JOIN specification
and an OPTIMIZATION setting. All variations are discussed in Advanced Reporting
Techniques on page 213.

Since MODIFY FILE does not create a table if it does not exist, you must create the table
prior to executing the MODIFY.

Some RDBMS views may not be updated. See the documentation for your RDBMS for
update restrictions concerning views.

The maximum number of bytes per Direct SQL Passthru request is 32764 bytes.

A COMBINE command in a MODIFY procedure may link several non-FOCUS data sources.
However, you cannot use the COMBINE command to link a FOCUS data source with an
RDBMS table.

The adapter allows you to change the value of the primary key of a table with the UPDATE
command in a MODIFY MATCH request. When modifying a FOCUS data source, you cannot
change key field values. Also, with the adapter you can match on any field or combination
of fields in a row. You need not include the full primary key.

MODIFY does not support FOCUS alternate file views and remote segment descriptions.

When modifying non-FOCUS data sources including RDBMS tables, you must code the
keywords TRACE or ECHO on the line following the MODIFY FILE command in order to
invoke tracing or echoing.

Teradata and Oracle do not support the FOCUS field formats F and Z.

The adapter does not support the Oracle LONG RAW data type, which has been deprecated
in Oracle 8.

A. Additional Topics

Relational Data Adapter User’s Manual 419

Adapter for DB2 Stored Procedure Support (CLI Only)

DB2 stored procedures are procedures that are compiled and stored in the DB2 database.
These procedures must be developed within DB2 using the CREATE PROCEDURE command.
After creating the procedure, you can use the CREATE SYNONYM command to generate a
Master and Access File for the stored procedure. You can then run requests against the
generated synonym to report against the stored procedure, if you are using the CLI version of
the adapter.

The adapter supports stored procedures with IN, OUT, and INOUT parameters.

The output parameter values that are returned by stored procedures are available as result
sets. These values form a single-row result set that is transferred to the client after all other
result sets are returned by the invoked stored procedure. The names of the output parameters
(if available) become the column titles of that result set.

Note that only the output parameters (and the returned value) referenced in the invocation
string are returned to the client. As a result, users have full control over which output
parameters have values displayed.

FOCUS supports invocation of stored procedures written according to the rules of the
underlying DBMS. Note that the examples shown in this section are SQL-based. See the DBMS
documentation for rules, languages, and additional programming examples.

Adapter for DB2 Stored Procedure Support (CLI Only)

420

Example: Sample Stored Procedure

The following stored procedure uses IN and OUT parameters:

CREATE PROCEDURE SPSAMP (IN CNAME CHAR(30), OUT OUTVAL
CHAR(50))
RESULT SETS
1
LANGUAGE
SQL

BEGIN

DECLARE GETTBINFO
CHAR(100);
DECLARE TRIMCNAME
VARCHAR(35);
DECLARE C1 CURSOR WITH RETURN FOR
S1;

SET TRIMCNAME = '''%' || TRIM(CNAME) ||
'%''';
SET GETTBINFO
=
 'SELECT COLCOUNT,NAME FROM SYSIBM.SYSTABLES WHERE CREATOR LIKE ' ||
TRIMCNAME;
SET OUTVAL='TABLES FOR USER ' ||
CNAME;

PREPARE S1 FROM
GETTBINFO;
OPEN
C1;

END

The following CREATE SYNONYM command generates a Master File and Access File for the
stored procedure. Note that the supplied input parameter is a value, while the output
parameter is represented by a question mark (?). For information about the CREATE SYNONYM
command, see Generating a Master and Access File Using the CREATE SYNONYM Command.

CREATE SYNONYM FSPSAMP DROP
 FOR USER1.SPSAMP
 DBMS DB2
 AT CON1
 STOREDPROCEDURE
 PARMS "'USER1',?"
END

A. Additional Topics

Relational Data Adapter User’s Manual 421

The following Master File is generated as a result of the CREATE SYNONYM command.

FILENAME=FSPSAMP, SUFFIX=DB2 , $
 SEGMENT=INPUT, SEGTYPE=S0, $
 FIELDNAME=CNAME, ALIAS=P0001, USAGE=A30, ACTUAL=A30,
 MISSING=ON, ACCESS_PROPERTY=(NEED_VALUE), $
 SEGMENT=OUTPUT, SEGTYPE=S0, PARENT=INPUT, $
 FIELDNAME=OUTVAL, ALIAS=P0002, USAGE=A50, ACTUAL=A50,
 MISSING=ON, $
 SEGMENT=ANSWERSET1, SEGTYPE=S0, PARENT=INPUT, $
 FIELDNAME=COLCOUNT, ALIAS=COLCOUNT, USAGE=I6, ACTUAL=I2, $
 FIELDNAME=NAME, ALIAS=NAME, USAGE=A128V, ACTUAL=A128V, $

The following Access File is generated as a result of the CREATE SYNONYM command.

SEGNAME=INPUT,
 CONNECTION=CON1,
 STPNAME=USER1.SPSAMP, $
 SEGNAME=OUTPUT,
 STPRESORDER=0, $
 SEGNAME=ANSWERSET1,
 STPRESORDER=1, $

The following request invokes the stored procedure, specifying a value for the input parameter,
CNAME.

TABLE FILE FSPSAMP
PRINT NAME COLCOUNT
WHERE CNAME EQ 'SYSIBM'
HEADING
"<OUTVAL "
" "
END

Adapter for DB2 Stored Procedure Support (CLI Only)

422

The output is:

PAGE 1

TABLES FOR USER SYSIBM

COLCOUNT NAME
-------- ----
 10 SYSOBDS
 16 SYSCONTEXT
 5 SYSCTXTTRUSTATTRS
 7 SYSCONTEXTAUTHIDS
 33 SYSCOPY
 16 SYSCOLAUTH
 41 SYSCOLUMNS
 7 SYSFOREIGNKEYS
 59 SYSINDEXES
 35 SYSINDEXPART
 8 SYSKEYS
 16 SYSRELS
 9 SYSSYNONYMS
 30 SYSTABAUTH
 46 SYSTABLEPART
 59 SYSTABLES

Adapter for Oracle Stored Procedure Support

The Adapter for Oracle allows you to use Direct SQL Passthru to call an Oracle stored
procedure using any necessary input parameters. These procedures need to be developed
within Oracle using the CREATE PROCEDURE command. They can either return an answer set
or a return code indicating the result of the invocation when no data is returned. When an
answer set is returned, the adapter creates a temporary Master File named SQLOUT that can
be used to generate reports against the answer set.

Note: Oracle stored procedure support only allows the processing of one answer set per
invocation. Attempts to retrieve multiple answer sets generate an error message.

Syntax: How to Invoke an Oracle Stored Procedure

{ENGINE|SQL} SQLORA EX spname parm1,parm2,...,parmn;

where:

spname

Is the Oracle stored procedure, it is of the form:

A. Additional Topics

Relational Data Adapter User’s Manual 423

packagename.procedurename

parm1,parm2,...,parmn

Are the parameter values to be supplied as input for the procedure and must be scalar in
type. That is, only single values are acceptable as opposed to vector or array types. Non-
supported parameter types will generate an error message.

Reference: Rules for Oracle Stored Procedures

Only scalar input parameters are allowed, but not required.

Output parameters are not allowed, except for optional cursor type parameters.

A cursor used for output parameters must be defined with:

The TYPE statement in a PACKAGE or PROCEDURE.

An associated record layout of the answer set to be returned.

The cursor must be opened in the procedure.

No fetching is allowed from the output parameter cursors in the stored procedure. The
Adapter for Oracle fetches the answer set.

Any error messages must be issued using the RAISE APPLICATION ERROR method.

Note: Any application error that is issued by the stored procedure is available in the variable
&ORAMSGTXT. The variable &ORAMSGTXT can be used in conjunction with &RETCODE to
process errors and/or messages that are returned by the stored procedure.

Syntax: How to Set a Maximum Number of Input Parameters for Oracle Stored Procedures

An adapter parameter can be used to set the maximum number of input parameters.

{ENGINE|SQL} SQLORA SET SPMAXPRM value

where:

value

Is a numeric value indicating the maximum number of input parameters that may be
entered for stored procedures. The default value is 256. This value is displayed by the SQL
SQLORA ? query.

Adapter for Oracle Stored Procedure Support

424

Example: Sample Oracle Stored Procedure

CREATE OR REPLACE PACKAGE pack1 AS
TYPE nfrectype IS RECORD (
employee NF29005.EMPLOYEE_ID5%TYPE,
ssn5 NF29005.SSN5%TYPE,
l_name NF29005.LAST_NAME5%TYPE,
f_name NF29005.FIRST_NAME5%TYPE,
birthday NF29005.BIRTHDATE5%TYPE,
salary NF29005.SALARY5%TYPE,
joblevel NF29005.JOB_LEVEL5%TYPE);
TYPE nfcurtype IS REF CURSOR RETURN nfrectype ;
PROCEDURE proc1(c_saltable IN OUT nfcurtype);
END pack1 ;
/
CREATE OR REPLACE PACKAGE BODY pack1 AS
PROCEDURE proc1 (c_saltable IN OUT nfcurtype)
IS
BEGIN
OPEN c_saltable FOR SELECT
EMPLOYEE_ID5,SSN5,LAST_NAME5,FIRST_NAME5,BIRTHDAT
E5,SALARY5,JOB_LEVEL5 FROM NF29005;
END proc1 ; -- end of procedure
END pack1; -- end of package body
/

Example: Invoking an Oracle Stored Procedure That Returns an Answer Set

This example invokes a stored procedure that returns an answer set. The results can then be
displayed using a TABLE request against the Master File SQLOUT that is created by the
adapter to describe the returned answer set:

SQL SQLORA EX pkg1.tblproc parma;
TABLE FILE SQLOUT
PRINT *
END

Example: Invoking an Oracle Stored Procedure That Returns a Return Code

In the following example, the return code from the Oracle stored procedure is inspected to
determine the flow of control.

SQL SQLORA EX pkg1.insrtproc parm1;
-IF &RETCODE EQ 0 GOTO OK;
-TYPE &ORAMSGTXT
-OK;

Adapter for Teradata Stored Procedure and Macro Support

SQL Passthru is supported for Teradata macros and stored procedures.

A. Additional Topics

Relational Data Adapter User’s Manual 425

Macros need to be developed within Teradata using the CREATE or REPLACE MACRO
command. Procedures need to be developed within Teradata using the CREATE PROCEDURE
command.

You must call a macro in the same transaction mode in which it was compiled. To find out
which transaction mode is currently in effect, issue the HELP SESSION command:

SQL SQLDBC HELP SESSION;
TABLE FILE SQLOUT PRINT TRANSACTION_SEMANTICS
END

Before you can call a stored procedure or a macro, you must set the connection accordingly, by
issuing the SET MACRO command

SQL SQLDBC SET MACRO {ON|OFF}

where:

ON

Enables one to call a macro. This is the default.

OFF

Enables one to call a stored procedure.
Example: Calling a Macro

This is an example of the syntax for calling a macro:

ENGINE SQLDBC
EX SAMPLE PARM1,PARM2,PARM3...;
TABLE FILE SQLOUT
END

Example: Calling a Stored Procedure

The supported syntax to call a stored procedure is shown below.

ENGINE SQLDBC
EX SAMPLE PARM1,PARM2,PARM3...;
TABLE FILE SQLOUT
END

When using the adapter with:

ODBC, all scalar parameters (IN, OUT, and INOUT) are supported.

CLI, scalar IN parameters, and INOUT parameters in IN mode, are supported.

Adapter for Teradata Stored Procedure and Macro Support

426

Example: Sample Teradata Stored Procedure

CREATE OR REPLACE PACKAGE pack1 AS
TYPE nfrectype IS RECORD (
employee NF29005.EMPLOYEE_ID5%TYPE,
ssn5 NF29005.SSN5%TYPE,
l_name NF29005.LAST_NAME5%TYPE,
f_name NF29005.FIRST_NAME5%TYPE,
birthday NF29005.BIRTHDATE5%TYPE,
salary NF29005.SALARY5%TYPE,
joblevel NF29005.JOB_LEVEL5%TYPE);
TYPE nfcurtype IS REF CURSOR RETURN nfrectype ;
PROCEDURE proc1(c_saltable IN OUT nfcurtype);
END pack1 ;
/
CREATE OR REPLACE PACKAGE BODY pack1 AS
PROCEDURE proc1 (c_saltable IN OUT nfcurtype)
IS
BEGIN
OPEN c_saltable FOR SELECT
EMPLOYEE_ID5,SSN5,LAST_NAME5,FIRST_NAME5,BIRTHDAT
E5,SALARY5,JOB_LEVEL5 FROM NF29005;
END proc1 ; -- end of procedure
END pack1; -- end of package body
/

Default Date Considerations

The default date value the adapter uses for the RDBMS DATE data type changed starting with
FOCUS Version 6.8. If you use the FOCUS MODIFY facility to maintain RDBMS tables
containing DATE columns, this change may have some impact on your applications. If you have
a read-only version of the adapter, or if your site does not use MODIFY, you will not be
affected.

You can control the default date value with the data adapter SET DEFDATE command.

The Default Date Value

The adapter uses the default date value in conjunction with RDBMS DATE columns described
in a Master File as ACTUAL=DATE. Under certain circumstances, if your MODIFY procedure
does not provide a value for a DATE column, the adapter substitutes the default value. In
FOCUS Version 6.8 and up, the default value changed to make adapter date behavior more
closely resemble that of the FOCUS DBMS.

In releases of FOCUS prior to 6.8, the adapter default value for RDBMS tables was
'1901-01-01' (for the sake of convenience, all DATE values are in DB2 ISO format unless
otherwise indicated). The FOCUS DBMS default (or base) value has always been '1900-12-31'.

A. Additional Topics

Relational Data Adapter User’s Manual 427

With the FOCUS DBMS, base date values print as blanks in report output by default. (This
discussion assumes that the FOCUS DATEDISPLAY parameter is OFF, the default. The SET
DATEDISPLAY = ON command displays the base date in FOCUS reports. See your FOCUS
documentation for details.) The old adapter default DATE value always displayed on reports.

When the DEFDATE value is NEW, the adapter base date value is identical to the FOCUS DBMS
base date: 1900-12-31, and it displays the same way in reports.

The Adapter SET DEFDATE Command

You can control the adapter default date with the following adapter SET command

{ENGINE|SQL} [sqlengine] SET DEFDATE {NEW|OLD}

where:

sqlengine

Indicates the target RDBMS. Valid values are DB2, SQLDBC, SQLIDMS, or SQLORA. Omit if
you previously issued the SET SQLENGINE command.

OLD

The adapter supplies the old default date, '1901-01-01'.

NEW

The adapter supplies the new default date, '1900-12-31'. NEW is the default value.

Effects of DEFDATE on Existing Applications

With the new default date, TABLE requests no longer require DEFINE or COMPUTE commands
in order to display blanks instead of default dates. Applications that test for default values
require updating to reflect the new default date.

For the sake of consistency, you may wish to update your databases to change old default
values to the new default. You can use the following code to change old default values

SQL [sqlengine] UPDATE creator.tablename
 SET date_column = '1900-12-31' WHERE date_column = '1901-01-01'
END

where:

sqlengine

Is DB2,SQLDBC, SQLIDMS, or SQLORA. Omit if you previously issued the SET SQLENGINE
command.

Default Date Considerations

428

The change in the default date value affects only the selection of default values supplied by
MODIFY procedures under certain circumstances, and whether default values appear on a
FOCUS report. In all other respects (for example, in screening conditions), the default value is
a valid date value. If you use a report writer other than FOCUS, any default date values in the
RDBMS table will display as either '1901-01-01' or '1900-12-31', depending on the FOCUS
release that placed them in the table and the value of the DEFDATE parameter.

Chart: FOCUS Date Values for User Input Values

The following chart summarizes how FOCUS stores date values in response to specific user
input values for non-conditional and conditional data entry in MODIFY:

 If DEFDATE is NEW:

Non-conditional data entry (<date_column>) in MODIFY

ON blank blank 1901/01/01 blank 1900-12-31

ON '.' NODATA NODATA NODATA null

ON 0 (zero) blank 1901/01/01 blank 1900-12-31

OFF blank blank 1901/01/01 blank 1900-12-31

OFF '.' input value rejected by MODIFY

OFF 0 (zero) blank 1901/01/01 blank 1900-12-31

Conditional data entry (<date_column) in MODIFY

ON blank NODATA NODATA NODATA null

ON '.' NODATA NODATA NODATA null

ON 0 (zero) blank 1901/01/01 blank 1900-12-31

OFF blank blank 1901/01/01 blank 1900-12-31

OFF '.' input value rejected by MODIFY

OFF 0 (zero) blank 1901/01/01 blank 1900-12-31

Note:

FOCUS displays the NODATA value whenever a column contains a null value. The default
NODATA value is the period ('.').

A. Additional Topics

Relational Data Adapter User’s Manual 429

Column 1 shows the MISSING parameter in the Master File for the column described as
ACTUAL=DATE.

Column 2 shows the value the MODIFY user enters for that column.

Column 3 shows, for the FOCUS DBMS, how that value would display in FOCUS report
requests. If a blank appears on the report, the stored value is '1900-12-31'.

Column 4 shows, for an RDBMS table, how the entered value displays in a FOCUS report if
DEFDATE is OLD. You can see the value FOCUS stored, since it appears on the report
instead of a blank.

Column 5 shows, again for an RDBMS table, how the entered value displays on a FOCUS
report provided DEFDATE is NEW. The report output is now identical to the report produced
for the FOCUS DBMS (Column 3).

Column 6 shows the actual default value stored in the RDBMS table for values entered
when DEFDATE is NEW.

The chart shows how values are stored and displayed for conditional (single caret) and
unconditional (double caret) fields.

Note: If you enter a blank for a conditional field, and if a value already exists for that field, the
field is not updated. The chart shows what happens when you enter blanks for conditional
fields that have no prior values.

If you want to be sure that FOCUS does not store a default value regardless of the user's
input, have the application program check the entered value. If the user enters 0 (zero) or
blank, COMPUTE the date field as 'MISSING' to make FOCUS set the column to NULL in
UPDATE or INSERT statements. This technique works only if the date column allows nulls and
is described to FOCUS as MISSING=ON.

See your FOCUS documentation if you are not familiar with the terms in the preceding
discussion.

Remote Segment Descriptions

Remote segment descriptions simplify the process of describing hierarchies of RDBMS tables
to FOCUS. You can use them for Master and Access Files that provide read-only access to
RDBMS tables. You cannot use the same descriptions for MODIFY procedures.

The adapter allows you to create multi-table Master and Access Files that define RDBMS
tables or views as segments in the description (see Multi-Table Structures on page 99). Each
Master File segment description consists of a segment declaration followed by descriptions of
all of the fields in the segment (columns of the corresponding table).

Remote Segment Descriptions

430

It is not unusual for several Master Files to contain a segment description for the same
RDBMS table. If a table's description is detailed in one Master File, you can automatically
incorporate that description in other Master Files. The syntax is

SEGNAME=segname, PARENT=parent, SEGTYPE= {KL|KLU}, CRFILE=filename,$

where:

segname

Is identical to the SEGNAME in the Master File that contains the full description of the
columns in the RDBMS table (the remote Master File).

parent

Is the parent of the segment.

KL

Describes one-to-many relationships.

KLU

Describes unique relationships.

filename

Is the name of the remote Master File that contains the full description of the fields in the
segment.

Note:

You may not use the attributes CRKEY and CRSEGNAME.

If a Master File that contains a CRFILE cross-reference to a segment in another Master File
does not contain a declaration for that segment in its own Access File, the adapter issues
a FOC1351 message as a warning. The adapter then attempts to use the corresponding
segment reference from the cross-referenced Access File. If the information in that Access
File (such as the KEYFLD/IXFLD pair) can function correctly with the local Master File, the
adapter continues processing. If not, it displays additional error messages, and processing
terminates. The FOC1351 message should be considered only a warning unless
accompanied by additional messages.

You may not use Master Files containing remotely-described segments in CREATE FILE
commands or MODIFY procedures.

A. Additional Topics

Relational Data Adapter User’s Manual 431

SEGTYPEs KL and KLU describe segments whose field attributes are described in other Master
Files that FOCUS may read at run-time. You can use remote segment descriptions for
situations in which several Master Files introduce different views on the same collection of
RDBMS tables. You describe the fields of one or several tables in one Master File, and refer to
this first file from other Master Files without including all the field descriptions again.

The separately described segment must have the same name in the file in which it is defined
and in the file that references it. The CRFILE attribute identifies the Master File that contains
the complete segment definition. For example:

SEGNAME=DEPT, PARENT=EMP, SEGTYPE=KL, CRFILE=MAINFILE, $

The adapter obtains the descriptions of fields in the DEPT segment in this file from the DEPT
segment in the MAINFILE Master File, where they must physically reside. DEPT cannot be a KL
or KLU segment in MAINFILE. Similarly, a dynamic JOIN may not specify a KL or KLU segment
as the cross-referenced segment in the target file.

Once you specify the CRFILE attribute in a Master File, that specification becomes the default
for subsequently described segments. If you later wish to describe a segment locally (using the
traditional method), you must re-specify the local filename using the CRFILE attribute, even
though this is not technically a cross-reference. Obviously, the same holds true if you wish to
change cross-referenced files from one segment to the next.

FOCUS reads only the field attributes from the segment, not the segment attributes. The
MAINFILE Master File does not have to be the description of a real file. It does not need an
Access File. It just needs the description of the named segment. Thus, you can set up one
large Master File that contains field descriptions of all RDBMS tables or views you may use in
reporting, even if you only use the large description for reference, not for reporting.

If you describe the root segment remotely, specify its SEGTYPE as KL.

If two or more segments in a FOCUS Master File represent the same RDBMS table, only one of
these segments can have a remote segment description. This requirement is necessary in
order to preserve unique SEGNAMEs within the local Master File (because a remote SEGNAME
must be identical to its corresponding local SEGNAME).

Remote segment descriptions exist only for convenience. They save typing effort but offer no
logical implications regarding parent-child relationships and their implementation.

A Master File that contains remote segment declarations must have its own Access File for
defining the relationships between all of its segments (including the remote segments). This
local Access File overrides the Access File corresponding to the CRFILE Master File, if one
exists.

Remote Segment Descriptions

432

Example: Using a Remote Segment Description

The following example shows the ECOURSE Master File with the COURSE segment described
remotely:

FILENAME=ECOURSE ,SUFFIX=DB2, $
SEGNAME=EMPINFO ,SEGTYPE=S0, $
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=COURSE ,SEGTYPE=KL ,PARENT=EMPINFO, CRFILE=COURSE,$

The corresponding Access File is:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$
SEGNAME = COURSE, TABLENAME = "USER1"."COURSE", KEYS = 2,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = WHO,$

Long Field Name Considerations

For a complete discussion of long and qualified field name support, consult your FOCUS
documentation.

Note: If a request written for a prior release of FOCUS contains truncated field names, and if
you rerun AUTODB2 or AUTODBC on the table, the AUTO facility may generate field names in
the new Master File that are different from the names it generated before long field names
were supported.

Limitations on Long Field Names

The following limitations apply to long field names and aliases:

In a Master File, the FIELDNAME and ALIAS attributes may not be qualified.

Long field names are truncated to 12 characters in CHECK FILE PICTURE operations.

In ModifyTalk, field name, title, and field length may not exceed 80 characters.

Describing a Long Field Name in the Access File (AUTODBC)

An alternative method describes field names greater than 12 characters in the Access File.

A. Additional Topics

Relational Data Adapter User’s Manual 433

For this method, specify the field name declaration with a 12-character (or less) field name in
the Master File; leave the ALIAS value blank. In the corresponding Access File, specify a long
field name declaration after the appropriate segment declaration.

A long field name declaration consists of two attributes, FIELD and ALIAS. The FIELD value is
the 12-character field name from the Master File. The ALIAS value identifies the full RDBMS
column name, up to 30 characters. (See Describing Tables to FOCUS on page 55 for naming
conventions.) The long field name declarations must follow their associated segment
declarations and correspond to the field order of the Master File.

For example, this EMPINFO Master File for a Teradata data source contains blank ALIAS values
for the DEPARTMENT and SALARY fields. The column names DEPARTMENT_CD and
CURRENT_SALARY are longer than 12 characters

FILENAME=EMPINFO, SUFFIX=SQLDBC, $
SEGNAME=EMPINFO, SEGTYPE=S0, $
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=LAST_NAME ,ALIAS=LNAME ,USAGE=A15,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS= ,USAGE=A10,ACTUAL=A10,
 MISSING=ON,$
 FIELD=SALARY ,ALIAS= ,USAGE=P9.2,ACTUAL=P8 ,$
 FIELD=CURR_JOBCODE,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=D6.2,ACTUAL=D8 ,
 MISSING=ON, $
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN,USAGE=I4 ,ACTUAL=I4 ,$

The long field name declarations in the Access File are specified:

SEGNAME=EMPINFO, TABLENAME=EMPINFO, KEYS=1, WRITE=YES,FALLBACK=YES,$
 FIELD=DEPARTMENT, ALIAS=DEPARTMENT_CD, $
 FIELD=SALARY , ALIAS=CURRENT_SALARY, $

Determining DB2 Decimal Notation at Run-time

The Adapter for DB2 generates the appropriate SQL for whichever decimal point notation was
selected (period or comma) when the IBM DB2 software was installed, regardless of the
FOCUS Continental Decimal Notation (CDN) parameter setting. You can then set the CDN
parameter to control how FOCUS displays the numbers.

Continental decimal notation uses a comma to mark the decimal position in a number and
uses periods, blanks, or single quotation marks for separating significant digits into groups of
three. In FOCUS, to set the CDN parameter, issue the following

SET CDN = cdnvalue

Determining DB2 Decimal Notation at Run-time

434

where:

cdnvalue

Can be one of the following:

OFF uses a period as the decimal separator and a comma as the thousands separator.
OFF is the default.

ON uses a comma as the decimal separator and a period as the thousands separator.

SPACE uses a comma as the decimal separator and a space as the thousands separator.

QUOTE uses a comma as the decimal separator and a single quotation mark as the
thousands separator.

Regardless of the CDN setting, the adapter generates the appropriate SQL for the decimal
point notation (comma or period) selected when the IBM DB2 software was installed using the
supplied IBM Application Programming Defaults Panel DSNTIPF. For more information on
setting IBM DB2 application defaults, refer to the IBM DB2 Administration Guide. The SET CDN
command controls how numbers are displayed in the FOCUS environment.

For example, given the number 3,045,000.76:

SET CDN = ON Displays the number as 3.045.000,76.

SET CDN = OFF Displays the number as 3,045,000.76.

Note: In order for this feature to function correctly, the proper DB2 DSNEXIT data set (for
example, DSN910.SDSNEXIT) must be first in the sequence of data sets allocated to DDNAME
STEPLIB. If this is not possible at your site, you can place the DSNEXIT data set in the FOCLIB
concatenation instead, as FOCUS searches FOCLIB before STEPLIB.

CALLDB2: Invoking Subroutines Containing Embedded SQL

CALLDB2, a FOCUS subroutine included in the Adapter for DB2, provides a standard method
for invoking user-written subroutines that make embedded SQL calls to DB2.

Prior to CALLDB2, you had to bind subroutines containing embedded SQL with the application
plan for the adapter, so they generated increased administrative overhead. The application
programmer was responsible for run-time plan management (making sure to invoke the correct
application plan with the adapter SET PLAN command), and for instructing the adapter to
establish a thread to DB2 before invoking the subroutine.

A. Additional Topics

Relational Data Adapter User’s Manual 435

CALLDB2 eliminates the requirement to include adapter Database Request Modules (DBRMs)
in the application plan for the subroutine. In addition, CALLDB2 ensures that subroutines do
not disrupt the current Adapter for DB2 thread. The adapter automatically closes any existing
thread to DB2 and opens a new thread to the application plan for the subroutine. After the
subroutine completes, the adapter restores the original environment. With CALLDB2, you can
invoke subroutines when no prior thread to DB2 exists.

Note: The CALLDB2 feature requires that the Adapter for DB2 be installed to use the Call
Attachment Facility (CAF). You can verify this by issuing the SQL DB2 ? command. Call Attach
should be ON.

For additional documentation, consult your FOCUS documentation. Read it before writing
subroutines that use CALLDB2.

Note: Any additions, differences, or limitations described in this topic override that document.

Syntax: How to Invoke CALLDB2

CALLDB2 is an Information Builders-supplied subroutine you invoke from a Dialogue Manager
program. The syntax is

-SET &var = CALLDB2('subrtine','planname',input1,input2,...,['format']);

where:

&var

Is the Dialogue Manager variable to receive the value returned by the subroutine.

subrtine

Is a subroutine that uses embedded SQL. The subroutine name can be up to eight
characters long (unless you are writing the subroutine in a language that allows less) and
must be enclosed in single quotation marks. The first character must be a letter (A-Z).
Each additional character can be a letter or a number. You must pad the name on the right
with blanks if it is less than eight characters long.

planname

Is the DB2 application plan for your subroutine. The plan name can be up to eight
characters long and must be enclosed in single quotation marks. You must pad the name
on the right with blanks if it is less than eight characters long.

CALLDB2: Invoking Subroutines Containing Embedded SQL

436

input1...

Are the input arguments. You must know what arguments the subroutine requires, their
formats, and the order in which to specify them. You can include up to 26 input arguments
(normally, user written subroutines allow 28, but CALLDB2 uses two of them for subroutine
name and plan name).

format

Is the format of the output value, enclosed in single quotation marks. This parameter is
optional. If you do not provide a format, the default format is determined by the format of
the last element in the calling list. If your program does not return an output value, the
default return value is the last element in the calling list. In cases of error, the returned
value is '*ERROR* '.

Although Dialogue Manager variables contain only alphanumeric data, they can serve as
numeric arguments. The -SET command converts their alphanumeric values to double-precision
format before passing them to the subroutine. However, if a subroutine returns a numeric
value and you set a Dialogue Manager variable to this value, FOCUS truncates the output to an
integer and converts it to a character string before storing it in the variable.

Note: You can invoke CALLDB2 only from Dialogue Manager -SET, -IF, or -TSO RUN control
statements. You cannot invoke it from DEFINE, COMPUTE, MODIFY VALIDATE or IF commands,
or from Financial Modeling Language (also known as Extended Matrix Reporting) RECAP
commands.

Creating CALLDB2-Invoked Subroutines

The steps for creating a CALLDB2-invoked subroutine are:

1. Write the subroutine program logic.

2. Precompile the subroutine.

3. Compile or assemble the subroutine.

4. Link-edit the subroutine.

5. BIND the subroutine.

Introduction to Adapters for Relational Data Sources on page 17, includes a discussion of bind
concepts.

A. Additional Topics

Relational Data Adapter User’s Manual 437

Procedure: How to Write the Subroutine

Your subroutine should assume that the adapter will do all thread handling. This includes
connection to DB2, disconnection from DB2, and the opening and closing of threads. In
addition, do not code COMMIT WORK or ROLLBACK WORK statements within the subroutine
itself. The adapter tracks open logical units of work (LUWs), and it cannot detect a COMMIT
WORK or ROLLBACK WORK in a subroutine.

Since CALLDB2 is an adapter command, its behavior is affected by the adapter SET
AUTOaction ON event command (see Controlling Connection Scope on page 295 for more
information about this command). If AUTOCOMMIT is set ON COMMAND, the default setting,
the adapter assumes there is an open LUW and automatically issues a COMMIT WORK at the
end of a CALLDB2 subroutine.

If your subroutine requires the adapter to issue a conditional COMMIT or ROLLBACK WORK:

1. Set AUTOCOMMIT on FIN immediately before entering the subroutine to prevent the adapter
from generating an automatic COMMIT WORK at the end of the CALLDB2 command.

2. Exit the subroutine and return a value to the Dialogue Manager procedure indicating which
action, COMMIT or ROLLBACK, the procedure should take on behalf of the subroutine.

3. After your Dialogue Manager procedure issues the COMMIT or ROLLBACK WORK command,
reset AUTOCOMMIT on COMMAND to restore the default adapter environment.

The example in Sample Procedure for Invoking CALLDB2 illustrates this technique.

A CALLDB2 subroutine is also subject to the rules of adapter plan management. Two types of
plan management are defined for the adapter, basic and extended. If you use basic plan
management, the adapter automatically switches plans as required. The adapter SET PLAN
command invokes the alternative, extended plan management. In this case, the application
program, not the adapter, manages plans. The discussion in Plan Management in DB2 on page
413 in Static SQL (DB2) on page 401, applies to CALLDB2 subroutines.

Example: Preparing a Static Subroutine for use With CALLDB2

The following very simple COBOL program illustrates the steps involved in preparing a static
subroutine for use with CALLDB2:

CALLDB2: Invoking Subroutines Containing Embedded SQL

438

 ID DIVISION.
 PROGRAM-ID. TESTDB2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 LINKAGE SECTION.
 01 VALUE1 PIC X(8).
 01 VALUE2 PIC X(8).
 01 RETCODE PIC S9(9) COMP SYNC.
1. PROCEDURE DIVISION USING VALUE1, VALUE2, RETCODE.
2. EXEC SQL WHENEVER SQLERROR GO TO PROGRAM-EXIT
 END-EXEC.
3. EXEC SQL INSERT INTO USER1.TESTDB2
 (COL1)
 VALUES(:VALUE1)
 END-EXEC.
 EXEC SQL INSERT INTO USER1.TESTDB2
 (COL1)
 VALUES(:VALUE2)
 END-EXEC.
4. PROGRAM-EXIT.
 MOVE SQLCODE TO RETCODE.
 GOBACK.
 //**

The subroutine:

1. Accepts two input values and returns a value named RETCODE.
2. Checks the SQLCODE after each SQL command. If it encounters a negative SQLCODE, the

subroutine branches to PROGRAM-EXIT.
3. Issues two SQL INSERT commands that place the input values into a single-column DB2

table.
4. Passes the value of the SQLCODE back to FOCUS. If the procedure encountered an error, it

returns the negative SQLCODE from that error back to the Dialogue Manager routine.
Otherwise, it passes the last SQLCODE, which should be zero, back to the Dialogue
Manager routine. The Dialogue Manager routine will check the value of the returned
SQLCODE and issue an SQL COMMIT WORK or ROLLBACK WORK depending on the
returned value.

The following steps prepare the sample subroutine, TESTDB2, for execution. JCL for each step
is provided for illustrative purposes. In general, these steps apply to any user-written
subroutine containing embedded SQL. Your JCL will vary depending on such factors as choice
of language and site-specific requirements or conventions. Consult the appropriate IBM
manual for help with each step.

Example: Precompiling the Subroutine

This example includes the sample program as in-stream input to the precompilation step:

A. Additional Topics

Relational Data Adapter User’s Manual 439

//Job card goes here...
//***
//*** PRECOMPILE COBOL II CODE CONTAINING EMBEDDED (STATIC) SQL ***
//***
//PC EXEC PGM=DSNHPC,
// PARM='HOST(COB2),OPTIONS,SOURCE,XREF'
//STEPLIB DD DISP=SHR,DSN=DSN910.SDSNLOAD
//DBRMLIB DD DISP=SHR,DSN=prefix.DBRMLIB.DATA(TESTDB2)
//SYSCIN DD DSN=prefix.PRECOMP.OUTPUT,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=4080)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSIN DD *
ID DIVISION.
 PROGRAM-ID. TESTDB2.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.

LINKAGE SECTION.
01 VALUE1 PIC X(8).
01 VALUE2 PIC X(8).
01 RETCODE PIC S9(9) COMP SYNC.
PROCEDURE DIVISION USING VALUE1, VALUE2, RETCODE.
 EXEC SQL WHENEVER SQLERROR GO TO PROGRAM-EXIT
 END-EXEC.
 EXEC SQL INSERT INTO USER1.TESTDB2
 (COL1)
 VALUES(:VALUE1)
 END-EXEC.
 EXEC SQL INSERT INTO USER1.TESTDB2
 (COL1)
 VALUES(:VALUE2)
 END-EXEC.
PROGRAM-EXIT.
 MOVE SQLCODE TO RETCODE.
 GOBACK.
//**

The precompilation process produces a modified source program (the data set allocated to
DDNAME SYSCIN) and a database request module or DBRM (member TESTDB2 in the data set
allocated to DDNAME DBRMLIB).

Example: Compiling or Assembling the Subroutine

After precompilation, compile or assemble the modified source program:

CALLDB2: Invoking Subroutines Containing Embedded SQL

440

//Job card goes here...
//***************************************
//*** COBOL II COMPILE OF SOURCE CODE ***
//***************************************
//COB2 EXEC PGM=IGYCRCTL,PARM='OBJECT',REGION=1024K
//STEPLIB DD DSN=VSCOBOL.COBCOMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=prefix.OBJECT.MODULE,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD DSN=prefix.PRECOMP.OUTPUT,DISP=(OLD,DELETE)
//**

The output of the compilation in this example is the data set allocated to DDNAME SYSLIN.

Example: Link-Editing the Subroutine

Link-edit the output of the compilation or assembly to produce a run-time module:

//Job card goes here...
//**********************************
//*** LINK EDIT OBJECT MODULE(S) ***
//**********************************
//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET,MAP',REGION=512K
//SYSLIN DD DSN=prefix.OBJECT.MODULE,DISP=(OLD,DELETE)
// DD *
 INCLUDE DB2(DSNALI)
 INCLUDE DB2(DSNHADDR)
 MODE AMODE(31),RMODE(ANY)
 NAME TESTDB2(R)
/*
//SYSLMOD DD DSN=prefix.TESTDB2.LOAD,DISP=SHR
//SYSLIB DD DSN=VSCOBOL.COBLIB,DISP=SHR
//DB2 DD DSN=DSN910.SDSNLOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=*
//
/*

The run-time module in this example is the data set allocated to DDNAME SYSLMOD. You
must include DSNALI, the language interface, during link-edit. DSNALI is in the DB2 load library
(DSN910.SDSNLOAD in the example). The link-edit of the sample program also includes
DSNHADDR, used to move values to and from the SQL Descriptor Area (SQLDA). DSNHADDR is
required only for COBOL programs.

A. Additional Topics

Relational Data Adapter User’s Manual 441

Example: Binding the Subroutine

Now, bind the DBRM created during precompilation into an application plan, and store it in the
DB2 database:

//Job card goes here...
//**********************************
//*** BIND THE PLAN ***
//**********************************
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=10
//STEPLIB DD DSN=DSN910.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//DBRMLIB DD DSN=prefix.DBRMLIB.DATA,DISP=SHR
//SYSTSIN DD *
DSN SYSTEM(DB2P)
BIND PLAN(TESTDB2) MEMBER(TESTDB2) -
 ACTION(REPLACE) ISOLATION(RR)
END
//*

The BIND subcommand creates an application plan called TESTDB2 that contains SQL
statements from the DBRM named TESTDB2.

Refer to the DB2 Command and Utility Reference for an explanation of possible BIND
parameters.

Note: If you make any changes to your subroutine, you have to repeat the precompilation,
compilation or assembly, link-edit, and BIND steps.

CALLDB2 Run-time Requirements

ALLOC F(USERLIB) DA('prefix.TESTDB2.LOAD' -
 'prefix.FOCSQL.LOAD' -
 'prefix.FOCLIB.LOAD' -
 'prefix.FUSELIB.LOAD') SHR REU

or:

//STEPLIB DD DSN=prefix.TESTDB2.LOAD,DISP=SHR
// DD DSN=prefix.FOCSQL.LOAD,DISP=SHR
// DD DSN=prefix.FOCLIB.LOAD,DISP=SHR
// DD DSN=prefix.FUSELIB.LOAD,DISP=SHR

Example: Sample Procedure for Invoking CALLDB2

This sample Dialogue Manager procedure invokes the TESTDB2 subroutine:

CALLDB2: Invoking Subroutines Containing Embedded SQL

442

1. SQL DB2 SET AUTOCOMMIT ON FIN
 -RUN
 -*
2. -SET &RUNOK = CALLDB2('TESTDB2 ','TESTDB2 ','BLUE','RED','I4') ;
 -RUN

3. -SET &LUW = IF &RUNOK NE 0 THEN 'SQL DB2 ROLLBACK WORK' ELSE
 - 'SQL DB2 COMMIT WORK' ;
4. &LUW
 -RUN

5. SQL DB2 SET AUTOCOMMIT ON COMMAND
 -RUN

The procedure:

1. Sets AUTOCOMMIT on FIN to prevent the adapter from issuing an automatic COMMIT WORK
at the end of the subroutine.

2. Invokes CALLDB2 for subroutine TESTDB2. The return code from the subroutine will be
stored in Dialogue Manager variable &RUNOK.

3. Tests the value of the return code and, depending on the result of the test, stores either
the SQL COMMIT WORK or the SQL ROLLBACK WORK command in Dialogue Manager
variable &LUW.

4. Issues the COMMIT or ROLLBACK command.

5. Sets AUTOCOMMIT on COMMAND to restore data adapter default behavior.

The DB2 Distributed Data Facility

The adapter fully supports the DB2 Distributed Data Facility (DDF). The following sections
describe adapter support for DB2 DDF.

File Descriptions for DDF

To identify the DB2 subsystem, include the DB2 LOCATION attribute in the TABLENAME
parameter of the Access File. This identifies the table to FOCUS as a remote table. The syntax
is

TABLENAME=[location.][creator.]table

where:

location

Is the DB2 subsystem location name; 16 characters maximum.

A. Additional Topics

Relational Data Adapter User’s Manual 443

creator

Is the authorization ID of the table's creator, 8 characters maximum.

table

Is the name of the RDBMS table or view, 18 characters maximum.

Note:

The TABLENAME value can have be a maximum of 44 characters (including the required
periods).

AUTODB2 can create Access Files that specify three-part table names. For information, see
Automated Procedures on page 113.

Accessing Tables at Different Locations

The adapter allows you to join tables at different locations. FOCUS performs the join since DB2
does not permit a single SQL statement to reference data at more than one location.

The adapter determines that FOCUS must manage the join based on the presence and value of
the LOCATION attribute in the TABLENAME parameter of one or more of the tables referenced
in the request. If all remote tables have the same LOCATION attribute, the adapter optimizes
the join to the RDBMS. If you use local aliases for remote tables (and, therefore, have no
LOCATION attribute in the table name), you must SET OPTIMIZATION=OFF for each request that
joins tables from more than one location.

FOCUS automatically appends a "FOR FETCH ONLY" clause to SELECT statements generated
by TABLE requests. This clause assists the DB2 optimizer in access path selection and offers
substantial performance improvements.

DB2 DRDA Support

The Adapter for DB2 supports IBM’s Distributed Relational Database Architecture (DRDA),
including:

The Level 1 DRDA CONNECT command.

Level 2 commands such as SET CONNECTION and RELEASE, and the SET CURRENT
PACKAGESET command.

Level 1 DRDA Support: CONNECT

Users can change their default database server with the CONNECT command.

DB2 DRDA Support

444

The administrator (or authorized person) may establish one ID and password for a group of
users. Assigning CONNECT authority to the group ID, rather than the individual users,
simplifies the task of administering privileges (see Connection, Authentication, and Security on
page 45).

Syntax: How to Issue the CONNECT Command

The syntax of the CONNECT command is

{ENGINE|SQL} [DB2] CONNECT [TO dbname|RESET]

where:

dbname

Is the DB2 location identifier.

RESET

Reconnects to the local DB2 server.

You can include the CONNECT command in a FOCEXEC such as the PROFILE FOCEXEC. The
FOCEXEC may be encrypted.

Note:

The adapter must be installed using the DB2 BIND PACKAGE command. Consult with your
on-site DBA.

For more information, consult the IBM DB2 SQL Reference manual.

Level 2 DRDA Support

Level 2 DRDA commands include:

The SET CONNECTION and RELEASE commands for controlling connection to a remote
server.

The SET CURRENT PACKAGESET command.

Syntax: How to Dynamically Connect to a DB2 Server or Release a Connection

The syntax for the SET CONNECTION and RELEASE commands is

SQL [DB2] SET CONNECTION server_name

SQL [DB2] RELEASE {server_name|option}

A. Additional Topics

Relational Data Adapter User’s Manual 445

where:

server_name

Is the location name of any valid DRDA database server.

option

Can be one of the following:

CURRENT
ALL [SQL]

Note: Omit the DB2 target RDBMS qualifier if you previously issued the SET SQLENGINE
command for DB2.

Syntax: How to Switch Application Packages Dynamically

You can use the SET CURRENT PACKAGESET command to switch application packages during
a session. The effect is similar to the SET PLAN command, but does not require that the DB2
thread be closed and reopened (for example, when switching isolation levels).

SQL [DB2] SET CURRENT PACKAGESET {packageset_name|USER}

where:

packageset_name

Is the name of any package set previously bound into the current DB2 plan.

USER

Indicates the primary authorization ID.

Use of DRDA and the SET CURRENT PACKAGESET command requires that the adapter be
installed using the DB2 BIND PACKAGE command. For more information, consult with the DBA
at your site or refer to the IBM DB2 Application Programming and SQL Guide.

For a complete description of these commands, refer to the IBM DB2 SQL Reference.

Read-only Access to IMS Data From DB2 MODIFY Procedures

The Adapter for DB2 not only allows FOCUS MODIFY procedures to view and/or update data
residing in DB2 tables, it also gives them read-only access to IMS data sources. You can issue
FIND and LOOKUP commands against IMS data sources and use MATCH and NEXT commands
to display IMS data. FOCUS can access data from both DB2 and IMS transparently, postponing
or eliminating the need to physically move IMS files to DB2.

Read-only Access to IMS Data From DB2 MODIFY Procedures

446

Prerequisites for DB2 Access to IMS Data

Read-only access to IMS data from DB2 MODIFY procedures requires installation of the
Adapter for IMS/DB in addition to the Adapter for DB2. Both products are available from
Information Builders. See the appropriate installation documentation for installation
instructions.

Note:

This feature requires that the Adapter for DB2 be installed to use the Call Attachment
Facility (CAF). You can verify the attachment facility by issuing the SQL DB2 ? command.
Call Attach should be ON.

To issue MODIFY write commands (INCLUDE, UPDATE, DELETE) against DB2 tables, you
must install the DB2 Read/Write Adapter. If your MODIFY procedure only displays data
(MATCH, NEXT, FIND, LOOKUP), the DB2 Read-only Adapter is sufficient.

Implementation of DB2 Access to IMS Data

MODIFY commands accessing IMS data behave similarly to MODIFY commands accessing the
FOCUS DBMS. If you are not familiar with FOCUS MODIFY commands, consult Maintaining
Tables With FOCUS on page 349 and your FOCUS documentation on maintaining databases.

If an IMS data source participates in a COMBINE structure with a DB2 table, the MODIFY
MATCH, NEXT, REPOSITION, and FIND commands can access the IMS data. If you dynamically
JOIN the IMS file to a DB2 Master File, you can LOOKUP data values in the IMS file. The
following sections discuss these two techniques.

Syntax: How to Issue MODIFY Subcommands With a COMBINE Structure

If you COMBINE the IMS data source with a DB2 table, several MODIFY subcommands can
access the IMS data. The syntax is

COMBINE FILES file1 [PREFIX pref1|TAG tag1] [AND]
 .
 .
 .
 filen [PREFIX prefn|TAG tagn] AS asname

where:

file1 - filen

Are the Master File names of the tables you want to modify. You can specify up to 16
Master Files.

A. Additional Topics

Relational Data Adapter User’s Manual 447

pref1 - prefn

Are prefix strings for each file, up to four characters. They provide uniqueness for
fieldnames. You cannot mix TAG and PREFIX in a COMBINE structure. Refer to your FOCUS
documentation on maintaining databases for additional information.

tag1 - tagn

Are aliases for the table names, up to eight characters. FOCUS uses the tag name as the
table name qualifier for fields that refer to that table in the combined structure. You cannot
mix TAG and PREFIX in a COMBINE.

AND

Is an optional word to enhance readability.

asname

Is the required name of the combined structure to use in MODIFY procedures and CHECK
FILE commands.

Note:

Any attempt to perform an INCLUDE, UPDATE, or DELETE operation on an IMS segment
results in an error message.

Avoid using CRTFORM * on IMS segments.

Once you issue the COMBINE FILE command, you can access the IMS files in the structure
with the following MODIFY commands:

MATCH

The MATCH command selects specific segment instances based on their values. It
compares field values in the instances with incoming data values.

The adapter passes a MATCH on a full key that is defined as .IMS, .HKY, or .KEY, directly
to the IMS DBMS. This is the most efficient access method. The Adapter for IMS/DB
issues a GET UNIQUE.

A MATCH on a non-key or partial key field repositions to the beginning of the chain and
searches forward for the specified value. This search is not passed to the IMS DBMS and,
therefore, is less efficient. The adapter issues GET NEXT commands until the match
condition is met or no records remain.

Read-only Access to IMS Data From DB2 MODIFY Procedures

448

When you specify a MATCH with both a key and a non-key field, the MATCH condition for
the key is passed to the IMS DBMS for retrieval. Then the adapter does the sequential
forward search for the non-key value. The adapter issues a GET UNIQUE for the qualified
key, applies the condition for the non-key value based on the qualified key, and then
issues GET NEXT commands for the qualified value.

NEXT

The NEXT command selects the next segment instance after the current position, making
the selected instance the new current position. The current position depends on the
execution of the MATCH and NEXT commands:

If a MATCH or NEXT command selects a segment instance, that instance becomes the
current position within the segment.

If a MATCH or NEXT command selects a parent instance of a segment chain, the
current position is before the first instance in that chain.

At the beginning of a request, the current position is in the root segment before the
first instance.

NEXT processing with a MATCH command is identical to NEXT processing without a MATCH
command. If a current position has not been established, the adapter issues a GET
UNIQUE to retrieve the first record and then issues GET NEXT calls to retrieve remaining
records.

NEXT processing after MATCH on a non-key or partial key produces the same results. It is
important to realize that the MATCH on the non-key is not passed to the IMS DBMS. The
adapter repositions from the beginning of the chain and searches forward until the
condition is met. Therefore, for maximum efficiency, consider matching on the primary key.

REPOSITION

The REPOSITION command sets the current position to the beginning of the IMS segment
chain you are traversing or to the beginning of the chain of any of the parent instances
along the segment path. Refer to your FOCUS documentation on maintaining databases for
additional information.

FIND

The FIND function tests for the existence of indexed values in IMS data sources. COMBINE
must be in effect in order to use FIND. Refer to your FOCUS documentation on maintaining
databases for additional information.

A. Additional Topics

Relational Data Adapter User’s Manual 449

You can also use the following MODIFY commands for DB2 tables in the COMBINE structure
(refer to Maintaining Tables With FOCUS on page 349, for additional information):

MATCH, NEXT, REPOSITION, INCLUDE, DELETE.

FIND. You cannot use LOOKUP, which requires a dynamic JOIN, in the same MODIFY
because you cannot issue a JOIN when a COMBINE is in effect.

Reference: The LOOKUP Function With a Dynamic JOIN

The LOOKUP function retrieves data values from data sources joined dynamically by the JOIN
command (see Advanced Reporting Techniques on page 213). When you join a DB2 Master File
to an IMS file, you can LOOKUP either DB2 or IMS data.

You cannot issue LOOKUP if the MODIFY contains commands that require a COMBINE (for
example, FIND of IMS or DB2 data), or if it contains MATCH and/or NEXT commands against
IMS data.

LOOKUP for IMS data sources supports the extended syntax parameters GE and LE, while
LOOKUP for DB2 data does not. Refer to your FOCUS documentation for additional information.
Also consult Advanced Reporting Techniques on page 213, and Maintaining Tables With FOCUS
on page 349, of this manual, and the FOCUS IMS/DB Data Adapter documentation.

Run-time Requirements for DB2 Access to IMS

After the Adapters for IMS/DB and DB2 are installed, you must create a CLIST or JCL to invoke
this feature. Subsequent sections outline JCL and CLIST preparation.

Example: JCL Preparation for DB2 Access to IMS in Batch

The following JCL runs a batch FOCUS job that uses both the Adapters for IMS/DB and DB2 to
provide read-only access to IMS data sources during update of DB2 tables. You must
concatenate the FOCLIB.LOAD library into the allocations for DDNAME STEPLIB since the IMS
software program, DFSRRC00, searches STEPLIB only for libraries that are called. You can
concatenate the Adapter for IMS/DB module, IMS, with DDNAME STEPLIB or USERLIB.

This JCL is only a model. Before executing it, you must create an appropriate job card and
modify the JCL to conform to your site's specifications

Read-only Access to IMS Data From DB2 MODIFY Procedures

450

//JOB card goes here
//BATIMS EXEC PGM=DFSRRC00,PARM='DLI,FOCUS,PSBNAME'
//STEPLIB DD DISP=SHR,DSN=prefix.FOCLIB.LOAD
 DISP=SHR,DSN=DSN910.SDSNLOAD
//USERLIB DD DISP=SHR,DSN=prefix.IMS.LOAD
 DD DISP=SHR,DSN=prefix.FOCSQL.LOAD
 DD DISP=SHR,DSN=prefix.FOCLIB.LOAD
 DD DISP=SHR,DSN=prefix.FUSELIB.LOAD
//DFSRESLB DD DISP=SHR,DSN=IMSVS.RESLIB
//ERRORS DD DISP=SHR,DSN=prefix.ERRORS.DATA
 DISP=SHR,DSN=prefix.IMS.DATA
//IMS DD DISP=SHR,DSN=user.DBDLIB
 DD DISP=SHR,DSN=user.PSBLIB
//FOCPSB DD DISP=SHR,DSN=user.FOCPSB(PSBNAME)
//MASTER DD DISP=SHR,DSN=user.MASTER.DATA
//FOCSQL DD DISP=SHR,DSN=user.FOCSQL.DATA
//FOCEXEC DD DISP=SHR,DSN=user.FOCEXEC.DATA
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 FOCUS request goes here. For example,
TABLE FILE imsfile
PRINT field1
END
FIN

where:

prefix

Is the high-level qualifier for your FOCUS production libraries.

user

Is the qualifier for a private version of a library.

Note: For a description of other IMS environments and their corresponding JCL requirements,
see the Adapter for IMS/DB documentation.

Example: CLIST Preparation for DB2 Access to IMS in Interactive Environments

You can use this feature interactively if you call it from a CLIST or REXX EXEC. You can allocate
the FOCUS load libraries directly in your CLIST or REXX EXEC. This CLIST is only a model. Edit it
to conform to your site's standards

A. Additional Topics

Relational Data Adapter User’s Manual 451

PROC 0
CONTROL MSG NOLIST NOFLUSH
ALLOC F(STEPLIB) DA('prefix.FOCLIB.LOAD') SHR REUSE
ALLOC F(USERLIB) DA('prefix.IMS.LOAD' -
 'prefix.FOCSQL.LOAD' -
 'prefix.FOCLIB.LOAD' -
 'prefix.FUSELIB.LOAD') SHR REUSE
ALLOC F(DFSRESLB) DA('IMSVS.RESLIB') SHR REUSE
ALLOC F(FOCEXEC) DA('user.FOCEXEC.DATA') SHR REUSE
ALLOC F(MASTER) DA('user.MASTER.DATA') SHR REUSE
ALLOC F(FOCSQL) DA('user.FOCSQL.DATA') SHR REUSE
ALLOC F(ERRORS) DA('prefix.ERRORS.DATA' -
 'prefix.IMS.DATA') SHR REUSE
ALLOC F(FOCPSB) DA('user.FOCPSB(PSBNAME)') SHR REUSE
ALLOC F(IMS) DA('user.PSBLIB' -
 'user.DBDLIB') SHR REUSE
CALL 'IMSVS.RESLIB(DFSRRC00)' 'DLI,FOCUS,PSB'

where:

prefix

Is the high-level qualifier for your FOCUS production libraries.

user

Is the high-level qualifier for a private version of a library.

Note: For a description of other IMS environments and their corresponding CLIST
requirements, see the Adapter for IMS/DB documentation.

Read-only Access to IMS Data From DB2 MODIFY Procedures

452

AppendixB
SQL Codes and Adapter Messages

This appendix lists common RDBMS return codes, describes common errors and
solutions, and explains how to access adapter messages.

In this appendix:

Common SQL Return Codes for DB2

Common DBC Return Codes for Teradata

Common User Errors and Corrections

Accessing Adapter Messages

Common SQL Return Codes for DB2

+100 No row meets the search conditions specified in a DELETE, UPDATE, or FETCH
operation; or table is empty.

0 Successful execution.

-104 SQL syntax error. Run trace to determine nature of translation error.

-204 The table specified by TABLENAME in the FOCUS Access File does not exist.

-205 The SQL column name, defined by the ALIAS parameter in either the FOCUS
Master or Access File, does not exist within the target TABLENAME.

-301
-302

The USAGE type or length defined for a field in the FOCUS Master does not
conform to the corresponding column definition in the SQL table.

-309
-407

There is a null value within a predicate (-309) or within an update statement
(-407) where nulls are not allowed.

-551
-552

You tried to perform an action within SQL for which you are not authorized.

-601 You tried to create a table, index, or view using a name that already exists.

Relational Data Adapter User’s Manual 453

-612 You tried to create a table that contains duplicate SQL column names. Check
each Master File segment for unique ALIAS values.

-803 You tried to include or update a value within a column for which a UNIQUE INDEX
exists, and that value is already present.

-904 A resource is unavailable. Refer to the DB2 messages and codes manual in
order to evaluate the situation.

-905 A resource limit based on the DB2 RLST Governor has been exceeded. There
are rows in the SYSIBM.DSNRLST00 table that pertain to this resource and the
limits placed on it. Consult your DB2 DBA to find out what action is necessary.

-911
-913

The application was the victim in a deadlock or experienced a timeout.

-923 DB2 is not operational.

Note: If the adapter is using the DB2 Call Attachment Facility (CAF), and an attempt to
communicate with a DB2 subsystem results in a CAF error (for example, the subsystem
specified does not exist), the adapter will return the decimal representation of the CAF error
code to FOCUS. The hexadecimal representations of these codes range from 00C10002
(decimal 12648450) to 00C10824 (decimal 12650532) and may be found, accompanied by
their explanations, in the IBM DB2 Messages and Codes manual. Consult this IBM manual for
information concerning any of these error codes that are returned by the adapter.

Common DBC Return Codes for Teradata

Some common mainframe host messages are:

CLI02
6

HSISPB unavailable. Failed to issue GLOBAL TXTLIB CLI. (CLI TXTLIB found on
the TERADATA disk contains HSISPB).

CLI03
6

Invalid TDPID in logon text string. The TDP ID preceding the logon string does
not conform to the rules for a valid TDP ID.

CLI04
0

Invalid logon string. The logon string passed to DBCLGN is invalid.

CLI28
2

Requested TDP not available. The TDP ID specified is valid but the requested
TDP is not active.

Common DBC Return Codes for Teradata

454

CLI42
6

TDP unavailable -- connect failed -- TDP not logged on. The TDP is unavailable
because the TDP machine is not logged on.

CLI52
1

Failure due to security violation. An attempt to log on to Teradata was made and
an invalid logon id was given.

Some general return codes, which may be tested with the Dialogue Manager &RETCODE
variable or the MODIFY FOCERROR variable, include:

0 No error. Successful execution.

2978 Table to be created already exists.

2980 Duplicate primary key. An insert was attempted using a unique primary key, a
row with the key value specified was found already to exist.

3510 Too many END TRANSACTION statements. You issued an END TRANSACTION
statement that does not correspond to a BEGIN TRANSACTION statement.

3523 User does not have specified operation access to object. (For example, you tried
to perform an action within Teradata for which you are not authorized.)

3604 Cannot place a null value in a NOT NULL field.

3807 Table/view table name does not exist. You referenced a table or view that does
not exist.

Common User Errors and Corrections

The following is a partial list of common data adapter error messages that you may encounter
and their solutions.

(FOC1351 or FOC2567) ACCESS FILE NOT FOUND

Ensure that each Master File has an associated Access File. If this is the case, check that
the Access File exists in a library allocated to ddname FOCSQL. The member names for
both Master and Access Files must be identical.

B. SQL Codes and Adapter Messages

Relational Data Adapter User’s Manual 455

(FOC1356 or FOC2566) NO TABLE NAME FOR THE SEGMENTIN THE ACCESS FILE

Check that both the database and table names specified by the TABLENAME keyword in
the Access File are valid. Verify that the SEGNAME values in the Master and Access Files
match.

(FOC1377) TERADATA TABLE MUST NOT HAVE KEYS=0

Each Teradata table used in a MODIFY procedure must have a primary key. Edit the Master
and Access Files for this table to define the primary key (see Describing Tables to FOCUS
on page 55) and resubmit the procedure.

(FOC1388 or FOC2554) INTEGER FIELDS FOR SQL MUST HAVEACTUAL FORMAT OF I2
OR I4

Only ACTUAL=I2 or ACTUAL=I4 may be used in describing an integer in the Master File. The
Adapter for Teradata supports the Teradata data types BYTEINT, SMALLINT, and INTEGER.

(FOC2555) ACTUAL FORMAT F IS INVALID FOR SQL, USE FORMAT
D(FOC2557)ACTUAL FORMAT Z IS INVALID FOR SQL, USE FORMAT A

The field type equivalent of the Teradata floating-point data type, FLOAT, is D. Currently,
there are no Teradata equivalents for the single-precision floating-point field type F or the
zoned-decimal field type Z. Therefore, these field types (F and Z) may not be used.

(FOC1410) SQL COLUMN NOT FOUND. CHECK FIELDNAME ANDALIAS KEYWORDS

Check the spelling of the ALIAS value in the Master File. Also, verify this in the long field
name declaration in the Access File. Check with your database administrator to make sure
the column exists in the table or re-run the AUTODBC facility to refresh the description.

(FOC1413) USER HAS INSUFFICIENT AUTHORITY FOR REQUESTED OPERATION

The RDBMS has determined that you do not possess the authority to perform the
requested operation. Notify the database administrator to resolve the error. A trace of the
requested operation is recommended to identify the RDBMS object and the type of
operation causing the violation.

Accessing Adapter Messages

If you need to see the text or explanation for any adapter message, you can display it online in
your FOCUS session or find it in a standard FOCUS ERRORS file, ERRNLS.DATA.

To display an error message online, issue the following query command at the FOCUS
command level

? n

Accessing Adapter Messages

456

where:

n

Is the message number.

This command displays the message number and text along with a detailed explanation of the
message (if available).

Example: Displaying a Message

Issue the following command to get the text and an explanation of the error:

? 1369

The output is:

(FOC1369) STATIC LOAD MODULE ANDFOCCOMP OUT OF SYNCH %1%2%3%4

When a FOCEXEC which was compiled using the static SQL option was run, the
timestamps for the FOCCOMP and its corresponding static SQL load module did not
match. Check current FOCCOMP and STUBLIB allocations, and recompile the FOCEXEC
with the static SQL option activated if necessary.

B. SQL Codes and Adapter Messages

Relational Data Adapter User’s Manual 457

Accessing Adapter Messages

458

AppendixC
File Descriptions and Tables

This appendix consists of sample tables and views cited in previous chapters.

In this appendix:

Samples Overview

ADDRESS Sample

COURSE Sample

DEDUCT Sample

EMPINFO Sample

FUNDTRAN Sample

PAYINFO Sample

SALINFO Sample

ECOURSE Sample

EMPADD Sample

EMPFUND Sample

EMPPAY Sample

SALDUCT Sample

SALARY Sample

DPBRANCH Sample

DPINVENT Sample

DPVENDOR Sample

Samples Overview

This appendix consists of sample tables and views cited in previous chapters. It provides
single-table Master and Access Files and CHECK FILE diagrams for:

ADDRESS

COURSE

DEDUCT

EMPINFO

FUNDTRAN

PAYINFO

SALINFO

In addition, it includes the following multi-table Master and Access Files and CHECK FILE
diagrams:

ECOURSE

EMPADD

EMPFUND

EMPPAY

SALDUCT

Relational Data Adapter User’s Manual 459

An OCCURS segment is described in the following Master File and Access File with a CHECK
FILE diagram:

SALARY

This appendix also illustrates sample tables used in examples for the Direct SQL Passthru
facility:

DPBRANCH DPINVENT DPVENDOR

As discussed in Direct SQL Passthru on page 265, the in-memory SQLOUT Master Files and the
FOCUS views created with SQL PREPARE vary depending on the specified SELECT statements.
They are not accessible for the above tables and are not provided in this appendix.

ADDRESS Sample

The ADDRESS table contains employees’ home and bank addresses.

ADDRESS MASTER

For DB2:

FILENAME=ADDRESS ,SUFFIX=DB2
SEGNAME=ADDRESS ,SEGTYPE=S0,$
 FIELDNAME=ADDEID ,ALIAS=EID ,USAGE=A9 , ACTUAL = A9,$
 FIELDNAME=TYPE ,ALIAS=AT ,USAGE=A4 , ACTUAL = A4,$
 FIELDNAME=ADDRESS_LN1 ,ALIAS=LN1 ,USAGE=A20 , ACTUAL = A20,$
 FIELDNAME=ADDRESS_LN2 ,ALIAS=LN2 ,USAGE=A20 , ACTUAL = A20,$
 FIELDNAME=ADDRESS_LN3 ,ALIAS=LN3 ,USAGE=A20 , ACTUAL = A20,$
 FIELDNAME=ACCTNUMBER ,ALIAS=ANO ,USAGE=I9L , ACTUAL = I4,$

Note: For Teradata, change the suffix value to SQLDBC, for CA-IDMS, change the suffix value to
SQLIDMS, and for Oracle, change the suffix value to SQLORA.

ADDRESS FOCSQL

For DB2:

SEGNAME = ADDRESS, TABLENAME = "USER1"."ADDRESS", KEYS = 2, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$

For Teradata:

SEGNAME = ADDRESS,TABLENAME = USER1.ADDRESS, KEYS = 2, WRITE = YES,
 FALLBACK=YES,$

For IDMS SQL:

ADDRESS Sample

460

SEGNAME = ADDRESS, TABLENAME = ADDSCHEM.ADDRESS, KEYS = 2, WRITE = YES,
 DBSPACE = ADDSEG.ADDAREA,$

For Oracle:

SEGNAME=ADDRESS, TABLENAME=USER1.ADDRESS, KEYS=2, WRITE=YES,
 DBSPACE=SPACE1, $

ADDRESS Diagram

check file address pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 6 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 77
 SECTION 01
 STRUCTURE OF SQLDS FILE ADDRESS ON 06/17/93 AT 13.51.17
 ADDRESS
 01 S0

 *ADDEID **
 *TYPE **
 *ADDRESS_LN1 **
 *ADDRESS_LN2 **
 * **

COURSE Sample

The COURSE table lists the courses that the employees attended.

COURSE MASTER

For DB2 :

FILENAME=COURSE ,SUFFIX=DB2,$
SEGNAME=COURSE ,SEGTYPE=S0 ,$
 FIELD=CNAME ,ALIAS=COURSE_NAME ,USAGE=A30, ACTUAL=A30,$
 FIELD=WHO ,ALIAS=EMP_NO ,USAGE=A9, ACTUAL=A9,$
 FIELD=GRADE ,ALIAS=GRADE ,USAGE=A1, ACTUAL=A1, MISSING=ON,$
 FIELD=YR_TAKEN,ALIAS=YR_TAKEN ,USAGE=A2, ACTUAL=A2,$
 FIELD=QTR ,ALIAS=QUARTER ,USAGE=A1, ACTUAL=A1,$

Note: For Teradata, change the suffix value to SQLDBC, for CA-IDMS, change the suffix value to
SQLIDMS, and for Oracle, change the suffix value to SQLORA.

COURSE FOCSQL

For DB2:

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 461

SEGNAME = COURSE, TABLENAME = "USER1"."COURSE", KEYS = 2, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0, $

For Teradata:

SEGNAME=COURSE, TABLENAME=USER1.COURSE, KEYS=2, WRITE=YES, FALLBACK=YES,
$

For IDMS SQL:

SEGNAME = COURSE, TABLENAME = CRSSCHEM.COURSE, KEYS = 2, WRITE = YES,
 DBSPACE = CRSSEG.CRSAREA, $

For Oracle:

SEGNAME=COURSE, TABLENAME=USER1.COURSE, KEYS=2, WRITE=YES,
 DBSPACE=SPACE1, $

COURSE Diagram

check file course pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 5 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 28
 SECTION 01
 STRUCTURE OF SQLDS FILE COURSE ON 06/17/93 AT 13.51.41
 COURSE
 01 S0

 *CNAME **
 *WHO **
 *GRADE **
 *YR_TAKEN **
 * **

DEDUCT Sample

The DEDUCT table contains data on monthly pay deductions.

DEDUCT MASTER

For DB2:

FILENAME=DEDUCT , SUFFIX=DB2,$
SEGNAME=DEDUCT ,SEGTYPE=S0,$
 FIELDNAME=DEDEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL = A9,$
 FIELDNAME=DEDDATE ,ALIAS=PD ,USAGE=YMD ,ACTUAL = DATE,$
 FIELDNAME=DED_CODE,ALIAS=DC ,USAGE=A4 ,ACTUAL = A4,$
 FIELDNAME=DED_AMT ,ALIAS=DA ,USAGE=D12.2M ,ACTUAL = D8,$

DEDUCT Sample

462

Note:

For Teradata, change the suffix value to SQLDBC, the USAGE format for DED_AMT to P9.2,
and the ACTUAL to P8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

DEDUCT FOCSQL

For DB2:

SEGNAME = DEDUCT, TABLENAME = "USER1"."DEDUCT", KEYS = 3, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = PUBLIC.SPACE0,$

For Teradata:

SEGNAME = DEDUCT, TABLENAME = USER1.DEDUCT, KEYS = 3, WRITE = YES,
 KEYORDER=HIGH, FALLBACK=YES,$

For IDMS SQL:

SEGNAME = DEDUCT, TABLENAME = DEDSCHEM.DEDUCT, KEYS = 3, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = DEDSEG.DEDAREA,$

For Oracle:

SEGNAME=DEDUCT, TABLENAME=USER1.DEDUCT, KEYS=3, WRITE=YES,
 KEYORDER = HIGH, DBSPACE=SPACE1, $

DEDUCT Diagram

check file deduct pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 4 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 25
 SECTION 01
 STRUCTURE OF SQLDS FILE DEDUCT ON 06/16/93 AT 09.42.45
 DEDUCT
 01 S0

 *DEDEID **
 *DEDDATE **
 *DED_CODE **
 *DED_AMT **
 * **

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 463

EMPINFO Sample

The EMPINFO table contains employee IDs, names, positions, and current salary information.

EMPINFO MASTER

For DB2:

FILENAME=EMPINFO ,SUFFIX=DB2,$
SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY ,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
 FIELD=HIRE_DATE_TIME ,ALIAS=HDTT ,USAGE=HYYMDm,ACTUAL=HYYMDm ,
 MISSING=ON,$
 FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS ,
 MISSING=ON,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for LAST_NAME to LNAME.

Change the ACTUAL format for CURRENT_SALARY to P8.

Change the USAGE format for ED_HRS to D6.2 and the ACTUAL to D8.

Remove the fields HIRE_DATE_TIME and HIRE_TIME.

For CA-IDMS, change the suffix value to SQLIDMS. Also, remove the fields HIRE_DATE_TIME
and HIRE_TIME.

For Oracle, change the suffix value to SQLORA. Also, change the USAGE and ACTUAL
formats for HIRE_DATE_TIME to HYYMDS and remove field HIRE_TIME.

EMPINFO FOCSQL

For DB2:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$

EMPINFO Sample

464

For Teradata:

SEGNAME = EMPINFO,TABLENAME = USER1.EMPINFO, KEYS = 1, WRITE = YES,
 FALLBACK=YES,$

For IDMS SQL:

SEGNAME = EMPINFO, TABLENAME = EMPSCHEM.EMPINFO, KEYS = 1,
 WRITE = YES, DBSPACE=EMPSEG.EMPAREA, $

For Oracle:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
DBSPACE=SPACE1, $

EMPINFO Diagram

check file empinfo pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 9 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 63
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPINFO ON 06/16/93 AT 09.44.03
 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

FUNDTRAN Sample

The FUNDTRAN table contains data about the employees' direct deposit accounts.

FUNDTRAN MASTER

For DB2:

FILENAME=FUNDTRAN ,SUFFIX=DB2
SEGNAME=FUNDTRAN, SEGTYPE=S0,$
 FIELDNAME=WHO ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=BANK_NAME ,ALIAS=BN ,USAGE=A20 ,ACTUAL=A20,$
 FIELDNAME=BANK_CODE ,ALIAS=BC ,USAGE=I6S ,ACTUAL=I4,$
 FIELDNAME=BANK_ACCT ,ALIAS=BA ,USAGE=I9S ,ACTUAL=I4,$
 FIELDNAME=EFFECT_DATE ,ALIAS=EDATE ,USAGE=YMD ,ACTUAL=DATE,$

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 465

Note: For Teradata, change the suffix value to SQLDBC, for CA-IDMS, change the suffix value to
SQLIDMS, and for Oracle, change the suffix value to SQLORA.

FUNDTRAN FOCSQL

For DB2:

SEGNAME = FUNDTRAN, TABLENAME = "USER1"."FUNDTRAN", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$

For Teradata:

SEGNAME=FUNDTRAN,TABLENAME=USER1.FUNDTRAN,KEYS=1,WRITE=YES,FALLBACK=YES,$

For IDMS SQL:

SEGNAME = FUNDTRAN, TABLENAME = FUNDSCHM.FUNDTRAN, KEYS = 1,
 WRITE = YES, DBSPACE = FUNDSEG.FUNDAREA,$

For Oracle:

SEGNAME=FUNDTRAN, TABLENAME=USER1.FUNDTRAN, KEYS=1, WRITE=YES,
 DBSPACE=SPACE1, $

FUNDTRAN Diagram

check file fundtran pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 5 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 41
 SECTION 01
 STRUCTURE OF SQLDS FILE FUNDTRAN ON 06/17/93 AT 13.53.15
 FUNDTRAN
 01 S0

 *WHO **
 *BANK_NAME **
 *BANK_CODE **
 *BANK_ACCT **
 * **

PAYINFO Sample

The PAYINFO table contains the employees' salary history.

PAYINFO MASTER

For DB2:

PAYINFO Sample

466

FILENAME=PAYINFO, SUFFIX=DB2,$
SEGNAME=PAYINFO ,SEGTYPE=S0,$
 FIELDNAME=PAYEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=DAT_INC ,ALIAS=DI ,USAGE=YMD ,ACTUAL=DATE,$
 FIELDNAME=PCT_INC ,ALIAS=PI ,USAGE=F6.2 ,ACTUAL=F4,$
 FIELDNAME=SALARY ,ALIAS=SAL ,USAGE=D12.2M ,ACTUAL=D8,$
 FIELDNAME=JOBCODE ,ALIAS=JBC ,USAGE=A3 ,ACTUAL=A3,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for PCT_INC to PINC, the USAGE format to D6.2, and the ACTUAL
format to D8.

Change the USAGE format for SALARY to P9.2 and the ACTUAL to P8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

PAYINFO FOCSQL

For DB2:

SEGNAME = PAYINFO, TABLENAME = "USER1"."PAYINFO", KEYS = 2, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$

For Teradata:

SEGNAME=PAYINFO,TABLENAME=USER1.PAYINFO,KEYS=2,WRITE=YES,FALLBACK=YES,$

For IDMS SQL:

SEGNAME = PAYINFO, TABLENAME = PAYSCHEM.PAYINFO, KEYS = 2, WRITE = YES,
 DBSPACE = PAYSEG.PAYAREA,$

For Oracle:

SEGNAME=PAYINFO, TABLENAME=USER1.PAYINFO, KEYS=2, WRITE=YES,
 DBSPACE=SPACE1, $

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 467

PAYINFO Diagram

check file payinfo pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 5 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 28
 SECTION 01
 STRUCTURE OF SQLDS FILE PAYINFO ON 06/16/93 AT 09.44.31
 PAYINFO
 01 S0

 *PAYEID **
 *DAT_INC **
 *PCT_INC **
 *SALARY **
 * **

SALINFO Sample

The SALINFO table contains data on the employees’ monthly pay.

SALINFO MASTER

For DB2:

FILENAME=SALINFO, SUFFIX=DB2,$
SEGNAME=SALINFO ,SEGTYPE=S0,$
 FIELDNAME=SALEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=PAY_DATE ,ALIAS=PD ,USAGE=YMD ,ACTUAL=DATE,$
 FIELDNAME=GROSS ,ALIAS=MO_PAY ,USAGE=D12.2M ,ACTUAL=D8,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the USAGE format for GROSS to P9.2 and the ACTUAL to P8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

SALINFO FOCSQL

For DB2:

SEGNAME = SALINFO, TABLENAME = "USER1"."SALINFO", KEYS = 2,
 WRITE = YES, KEYORDER = HIGH, DBSPACE = PUBLIC.SPACE0,$

SALINFO Sample

468

For Teradata:

SEGNAME = SALINFO,TABLENAME = USER1.SALINFO, KEYS = 2, WRITE = YES,
 KEYORDER=HIGH, FALLBACK=YES,$

For IDMS SQL:

SEGNAME = SALINFO, TABLENAME = SALSCHEM.SALINFO, KEYS = 2,
 WRITE = YES, KEYORDER = HIGH, DBSPACE = SALSEG.SALAREA,$

For Oracle:

SEGNAME=SALINFO, TABLENAME=USER1.SALINFO, KEYS=2, WRITE=YES,
 KEYORDER=HIGH, DBSPACE=SPACE1, $

SALINFO Diagram

check file salinfo pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 1 (REAL= 1 VIRTUAL= 0)
 NUMBER OF FIELDS= 3 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 21
 SECTION 01
 STRUCTURE OF SQLDS FILE SALINFO ON 06/17/93 AT 13.52.04
 SALINFO
 01 S0

 *SALEID **
 *PAY_DATE **
 *GROSS **
 * **
 * **

ECOURSE Sample

The ECOURSE view accesses the EMPINFO and COURSE tables.

ECOURSE MASTER

For DB2:

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 469

FILENAME=ECOURSE ,SUFFIX=DB2, $
SEGNAME=EMPINFO ,SEGTYPE=S0, $
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=COURSE ,SEGTYPE=S0 ,PARENT=EMPINFO,$
 FIELD=CNAME ,ALIAS=COURSE_NAME ,USAGE=A30, ACTUAL=A30,$
 FIELD=WHO ,ALIAS=EMP_NO ,USAGE=A9, ACTUAL=A9,$
 FIELD=GRADE ,ALIAS=GRADE ,USAGE=A1, ACTUAL=A1, MISSING=ON,$
 FIELD=YR_TAKEN,ALIAS=YR_TAKEN ,USAGE=A2, ACTUAL=A2,$
 FIELD=QTR ,ALIAS=QUARTER ,USAGE=A1, ACTUAL=A1,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for LAST_NAME to LNAME.

Change the ACTUAL format for CURRENT_SALARY to P8.

Change the USAGE format for ED_HRS to D6.2 and the ACTUAL to D8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

ECOURSE FOCSQL

For DB2:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,$
SEGNAME = COURSE, TABLENAME = "USER1"."COURSE", KEYS = 2,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = WHO,$

For Teradata:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
 FALLBACK=YES,$
SEGNAME=COURSE, TABLENAME=USER1.COURSE, KEYS=2 WRITE=YES,
 FALLBACK=YES, KEYFLD=EMP_ID,IXFLD=WHO,$

ECOURSE Sample

470

For IDMS SQL:

SEGNAME = EMPINFO, TABLENAME = EMPSCHEM.EMPINFO, KEYS = 1,
 WRITE = YES, DBSPACE = EMPSEG.EMPAREA,$
SEGNAME = COURSE, TABLENAME = CRSSCHEM.COURSE, KEYS = 2,
 WRITE = YES, DBSPACE = CRSSEG.CRSAREA,
 KEYFLD = EMP_ID, IXFLD = WHO,$

For Oracle:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
 DBSPACE=SPACE1,
SEGNAME = COURSE, TABLENAME = USER1.COURSE, KEYS = 2, WRITE=YES,
 DBSPACE=SPACE1,
 KEYFLD = EMP_ID, IXFLD = WHO,$

ECOURSE Diagram

check file ecourse pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 14 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 91
 SECTION 01
 STRUCTURE OF SQLDS FILE ECOURSE ON 06/16/93 AT 09.43.01
 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

 I
 I
 I
 I COURSE
 02 I S0

 *CNAME **
 *WHO **
 *GRADE **
 *YR_TAKEN **
 * **

EMPADD Sample

The EMPADD view accesses the EMPINFO and ADDRESS tables.

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 471

EMPADD MASTER

For DB2:

FILENAME=EMPADD, SUFFIX=DB2,$
SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=ADDRESS ,SEGTYPE=S0, PARENT = EMPINFO,$
 FIELD=ADDEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=TYPE ,ALIAS=AT ,USAGE=A4 ,ACTUAL=A4,$
 FIELD=ADDRESS_LN1 ,ALIAS=LN1 ,USAGE=A20 ,ACTUAL=A20,$
 FIELD=ADDRESS_LN2 ,ALIAS=LN2 ,USAGE=A20 ,ACTUAL=A20,$
 FIELD=ADDRESS_LN3 ,ALIAS=LN3 ,USAGE=A20 ,ACTUAL=A20,$
 FIELD=ACCTNUMBER ,ALIAS=ANO ,USAGE=I9L ,ACTUAL=I4,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for LAST_NAME to LNAME.

Change the ACTUAL format for CURRENT_SALARY to P8.

Change the USAGE format for ED_HRS to D6.2 and the ACTUAL to D8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

EMPADD FOCSQL

For DB2:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$
SEGNAME = ADDRESS, TABLENAME = "USER1"."ADDRESS", KEYS = 2, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = ADDEID,$

For Teradata:

EMPADD Sample

472

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
FALLBACK=YES,$
SEGNAME=ADDRESS, TABLENAME=USER1.ADDRESS, KEYS=2, WRITE=YES,
FALLBACK=YES,
 KEYFLD=EMP_ID, IXFLD=ADDEID,$

For IDMS SQL:

SEGNAME = EMPINFO, TABLENAME = EMPSCHEM.EMPINFO, KEYS = 1, WRITE = YES,
 DBSPACE = EMPSEG.EMPAREA,$
SEGNAME = ADDRESS, TABLENAME = ADDSCHEM.ADDRESS, KEYS = 2, WRITE = YES,
 DBSPACE = ADDSEG.ADDAREA,
 KEYFLD = EMP_ID, IXFLD = ADDEID,$

For Oracle:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
 DBSPACE=SPACE1,
SEGNAME = ADDRESS, TABLENAME = USER1.ADDRESS, KEYS = 2, WRITE=YES,
 DBSPACE=SPACE1,
 KEYFLD = EMP_ID, IXFLD = ADDEID,$

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 473

EMPADD Diagram

check file empadd pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 15 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 140
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPADD ON 06/16/93 AT 09.43.16
 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

 I
 I
 I
 I ADDRESS
 02 I S0

 *ADDEID **
 *TYPE **
 *ADDRESS_LN1 **
 *ADDRESS_LN2 **
 * **

EMPFUND Sample

The EMPFUND view accesses the EMPINFO and FUNDTRAN tables.

EMPFUND MASTER

For DB2:

EMPFUND Sample

474

FILENAME=EMPFUND ,SUFFIX=DB2,$
SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=FUNDTRAN, SEGTYPE=U, PARENT=EMPINFO,$
 FIELDNAME=WHO ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=BANK_NAME ,ALIAS=BN ,USAGE=A20 ,ACTUAL=A20,$
 FIELDNAME=BANK_CODE ,ALIAS=BC ,USAGE=I6S ,ACTUAL=I4,$
 FIELDNAME=BANK_ACCT ,ALIAS=BA ,USAGE=I9S ,ACTUAL=I4,$
 FIELDNAME=EFFECT_DATE ,ALIAS=EDATE ,USAGE=YMD ,ACTUAL=DATE,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for LAST_NAME to LNAME.

Change the ACTUAL format for CURRENT_SALARY to P8.

Change the USAGE format for ED_HRS to D6.2 and the ACTUAL to D8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

EMPFUND FOCSQL

For DB2:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$
SEGNAME = FUNDTRAN, TABLENAME = "USER1"."FUNDTRAN", KEYS = 1,
 WRITE = YES, DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = WHO,$

For Teradata:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
FALLBACK=YES,$
SEGNAME=FUNDTRAN,TABLENAME=USER1.FUNDTRAN,KEYS=1, WRITE=YES,
FALLBACK=YES,
 KEYFLD=EMP_ID, IXFLD=WHO,$

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 475

For IDMS SQL:

SEGNAME = EMPINFO, TABLENAME = EMPSCHEM.EMPINFO, KEYS = 1, WRITE = YES,
 DBSPACE = EMPSEG.EMPAREA,$
SEGNAME = FUNDTRAN, TABLENAME = FUNDSCHM.FUNDTRAN, KEYS = 1,
 WRITE = YES, DBSPACE = FUNDSEG.FUNDAREA,
 KEYFLD = EMP_ID, IXFLD = WHO,$

For Oracle:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
 DBSPACE=SPACE1,
SEGNAME = FUNDTRAN, TABLENAME = USER1.FUNDTRAN, KEYS = 1, WRITE=YES,
 DBSPACE=SPACE1,
 KEYFLD = EMP_ID, IXFLD = WHO,$

EMPFUND Diagram

check file empfund pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 14 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 104
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPFUND ON 06/16/93 AT 09.43.45
 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

 I
 I
 I
 I FUNDTRAN
 02 I U

 *WHO *
 *BANK_NAME *
 *BANK_CODE *
 *BANK_ACCT *
 * *

EMPPAY Sample

The EMPAY view accesses the EMPINFO and PAYINFO tables.

EMPPAY Sample

476

EMPPAY MASTER

For DB2:

FILENAME=EMPPAY ,SUFFIX=DB2,$
SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4,$
SEGNAME=PAYINFO ,SEGTYPE=S0, PARENT=EMPINFO, $
 FIELDNAME=PAYEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=DAT_INC ,ALIAS=DI ,USAGE=YMD ,ACTUAL=DATE,$
 FIELDNAME=PCT_INC ,ALIAS=PI ,USAGE=F6.2 ,ACTUAL=F4,$
 FIELDNAME=SALARY ,ALIAS=SAL ,USAGE=D12.2M ,ACTUAL=D8,$
 FIELDNAME=JOBCODE ,ALIAS=JBC ,USAGE=A3 ,ACTUAL=A3,$

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the ALIAS for LAST_NAME to LNAME.

Change the ACTUAL format for CURRENT_SALARY to P8.

Change the USAGE format for ED_HRS to D6.2 and the ACTUAL to D8.

Change the USAGE format for PCT_INC to D6.2 and the ACTUAL to D8.

Change the USAGE format for SALARY to P9.2 and the ACTUAL to P8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

EMPPAY FOCSQL

For DB2:

SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,$
SEGNAME = PAYINFO, TABLENAME = "USER1"."PAYINFO", KEYS = 2, WRITE = YES,
 DBSPACE = PUBLIC.SPACE0,
 KEYFLD = EMP_ID, IXFLD = PAYEID, $

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 477

For Teradata:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPLOYEE, KEYS=1, WRITE=YES,
 FALLBACK=YES,$
SEGNAME=PAYINFO, TABLENAME=USER1.PAYINFO, KEYS=2, WRITE=YES,
 FALLBACK=YES,
 KEYFLD=EMP_ID, IXFLD=PAYEID,$

For IDMS SQL:

SEGNAME = EMPINFO, TABLENAME = EMPSCHEM.EMPINFO, KEYS = 1, WRITE = YES,
 DBSPACE = EMPSEG.EMPAREA.SPACE0,$
SEGNAME = PAYINFO, TABLENAME = PAYSCHEM.PAYINFO, KEYS = 2, WRITE = YES,
 DBSPACE = PAYSEG.PAYAREA,
 KEYFLD = EMP_ID, IXFLD = PAYEID, $

For Oracle:

SEGNAME=EMPINFO, TABLENAME=USER1.EMPINFO, KEYS=1, WRITE=YES,
 DBSPACE=SPACE1,
SEGNAME = PAYINFO, TABLENAME = USER1.PAYINFO, KEYS = 2, WRITE=YES,
 DBSPACE=SPACE1,
 KEYFLD = EMP_ID, IXFLD = PAYEID,$

EMPPAY Sample

478

EMPPAY Diagram

check file emppay pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 14 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 91
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPPAY ON 06/16/93 AT 09.44.14
 EMPINFO
 01 S0

 *EMP_ID **
 *LAST_NAME **
 *FIRST_NAME **
 *HIRE_DATE **
 * **

 I
 I
 I
 I PAYINFO
 02 I S0

 *PAYEID **
 *DAT_INC **
 *PCT_INC **
 *SALARY **
 * **

SALDUCT Sample

The SALDUCT view accesses the SALINFO and DEDUCT tables.

SALDUCT MASTER

For DB2:

FILENAME=SALDUCT, SUFFIX=DB2,$
SEGNAME=SALINFO ,SEGTYPE=S0,$
 FIELDNAME=SALEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9,$
 FIELDNAME=PAY_DATE ,ALIAS=PD ,USAGE=YMD ,ACTUAL=DATE,$
 FIELDNAME=GROSS ,ALIAS=MO_PAY ,USAGE=D12.2M ,ACTUAL=D8,$
SEGNAME=DEDUCT ,SEGTYPE=S0, PARENT =SALINFO,$
 FIELDNAME=DEDEID ,ALIAS=EID ,USAGE=A9 ,ACTUAL = A9,$
 FIELDNAME=DEDDATE ,ALIAS=PD ,USAGE=YMD ,ACTUAL = DATE,$
 FIELDNAME=DED_CODE,ALIAS=DC ,USAGE=A4 ,ACTUAL = A4,$
 FIELDNAME=DED_AMT ,ALIAS=DA ,USAGE=P9.2 ,ACTUAL = P4,$

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 479

Note:

For Teradata:

Change the suffix value to SQLDBC.

Change the USAGE format for GROSS to P9.2 and the ACTUAL to P8.

Change the ACTUAL format for DED_AMT to P9.2 and the ACTUAL to P8.

For CA-IDMS, change the suffix value to SQLIDMS.

For Oracle, change the suffix value to SQLORA.

SALDUCT FOCSQL

For DB2:

SEGNAME = SALINFO, TABLENAME = "USER1"."SALINFO", KEYS = 2, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = PUBLIC.SPACE0,$
SEGNAME = DEDUCT, TABLENAME = "USER1"."DEDUCT", KEYS = 3, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = PUBLIC.SPACE0,
 KEYFLD = SALEID/PAY_DATE , IXFLD = DEDEID/DEDDATE,$

For Teradata:

SEGNAME = SALINFO,TABLENAME = USER1.SALINFO, KEYS=2, WRITE=YES,
 KEYORDER=HIGH, FALLBACK=YES,$
SEGNAME = DEDUCT, TABLENAME = USER1.DEDUCT, KEYS=3, WRITE=YES,
 KEYORDER=HIGH, FALLBACK=YES,
 KEYFLD=SALEID/PAY_DATE, IXFLD=DEDEID/DEDDATE,$

For IDMS SQL:

SEGNAME = SALINFO, TABLENAME = SALSCHEM.SALINFO, KEYS = 2, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = SALSEG.SALAREA,$
SEGNAME = DEDUCT, TABLENAME = DEDSCHEM.DEDUCT, KEYS = 3, WRITE = YES,
 KEYORDER = HIGH, DBSPACE = DEDSEG.DEDAREA,
 KEYFLD = SALEID/PAY_DATE, IXFLD = DEDEID/DEDDATE,$

For Oracle:

SEGNAME=SALINFO, TABLENAME=USER1.SALINFO, KEYS=2, WRITE=YES,
 KEYORDER = HIGH, DBSPACE=SPACE1,
SEGNAME = DEDUCT, TABLENAME = USER1.DEDUCT, KEYS = 3, WRITE=YES,
 KEYORDER = HIGH, DBSPACE=SPACE1,
 KEYFLD = SALEID/PAY_DATE, IXFLD = DEDEID/DEDDATE,$

SALDUCT Sample

480

SALDUCT Diagram

check file salduct pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 7 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 42
 SECTION 01
 STRUCTURE OF SQLDS FILE SALDUCT ON 06/17/93 AT 13.52.47
 SALINFO
 01 S0

 *SALEID **
 *PAY_DATE **
 *GROSS **
 * **
 * **

 I
 I
 I
 I DEDUCT
 02 I S0

 *DEDEID **
 *DEDDATE **
 *DED_CODE **
 *DED_AMT **
 * **

SALARY Sample

The SALARY table contains data on salary and monthly pay deductions.

SALARY MASTER

For DB2:

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 481

 FILENAME=SALARY, SUFFIX=DB2,$
 SEGNAME=SALARY, SEGTYPE=S0,$
 FIELD=EMPID, ALIAS=EMPID, USAGE=A7, ACTUAL=A7,$
 FIELD=EMPNAME, ALIAS=EMPNAME, USAGE=A10, ACTUAL=A10,$
 FIELD=SALARY, ALIAS=PAY, USAGE=P9.2, ACTUAL=P8,$
 FIELD=DEDUCT1, ALIAS=DEDUCT1, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT2, ALIAS=DEDUCT2, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT3, ALIAS=DEDUCT3, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT4, ALIAS=DEDUCT4, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT5, ALIAS=DEDUCT5, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT6, ALIAS=DEDUCT6, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT7, ALIAS=DEDUCT7, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT8, ALIAS=DEDUCT8, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT9, ALIAS=DEDUCT9, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT10, ALIAS=DEDUCT10, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT11, ALIAS=DEDUCT11, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=DEDUCT12, ALIAS=DEDUCT12, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 SEGNAME=OCC, PARENT=SALARY, POSITION=DEDUCT1, OCCURS=12,$
 FIELD=TAX, ALIAS=TAXDEDUC, USAGE=P9.2, ACTUAL=P8, MISSING=ON,$
 FIELD=ORDER, ALIAS=ORDER, USAGE=I4, ACTUAL=I4,$

Note: For Teradata, change the suffix value to SQLDBC, for CA-IDMS, change the suffix value to
SQLIDMS, and for Oracle, change the suffix value to SQLORA.

SALARY FOCSQL

For DB2:

SEGNAME = SALARY, TABLENAME = "USER1"."SALARY", KEYS = 1,
WRITE = NO, DBSPACE = PUBLIC.SPACE0,$

For Teradata:

SEGNAME=SALARY, TABLENAME=USER1.SALARY, KEYS=1, WRITE= NO, FALLBACK=YES,$

For IDMS SQL:

SEGNAME = SALARY, TABLENAME = SALRSCHEM.SALARY, KEYS = 2,
 WRITE = YES, DBSPACE = SALRSEG.SALRAREA,$

For Oracle:

SEGNAME=SALARY, TABLENAME=USER1.SALARY, KEYS=1, WRITE = NO,
 DBSPACE=SPACE1, $

SALARY Sample

482

SALARY Diagram With OCCURS Segment

check file salary pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 2 VIRTUAL= 0)
 NUMBER OF FIELDS= 6 INDEXES= 0 FILES= 1
 TOTAL LENGTH OF ALL FIELDS= 129
 SECTION 01
 STRUCTURE OF SQLDS FILE SALARY ON 06/16/93 AT 09.44.51
 SALARY
 01 S0

 *EMPID **
 *EMPNAME **
 *SALARY **
 *DEDUCT **
 * **

 I
 I
 I
 I OCC
 02 I S0

 *TAX **
 *ORDER **
 * **
 * **
 * **

DPBRANCH Sample

The DPBRANCH table contains branch information.

DPBRANCH Table Definition

 CREATE TABLE DPBRANCH
 (BRANCH_NUMBER INTEGER NOT NULL,
 BRANCH_NAME CHAR(5) NOT NULL,
 BRANCH_MANAGER CHAR(5) NOT NULL,
 BRANCH_CITY CHAR(5) NOT NULL);

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 483

DPBRANCH Contents

 SELECT * FROM DPBRANCH;
 BRANCH_NUMBER BRANCH_NAME BRANCH_MANAGER BRANCH_CITY
 ------------- ----------- -------------- -----------
 1 WEST PIAF NY
 2 EAST SMITH NY
 3 NORTH AMES NY
 4 EAST ALVIN MIAMI
 5 WEST FIELD MIAMI

DPINVENT Sample

The DPINVENT table contains inventory information.

DPINVENT Table Definition

 CREATE TABLE DPINVENT
 (BRANCH_NUMBER INTEGER NOT NULL,
 VENDOR_NUMBER INTEGER NOT NULL,
 PRODUCT CHAR(5) NOT NULL,
 NUMBER_OF_UNITS INTEGER NOT NULL,
 PER_UNIT_VALUE DECIMAL(9,2) NOT NULL);

DPINVENT Contents

 SELECT * FROM DPINVENT;
 BRANCH_NUMBER VENDOR_NUMBER PRODUCT NUMBER_OF_UNITS PER_UNIT_VALUE
 ------------- ------------- ------- --------------- --------------
 1 1 RADIO 5 12.95
 2 1 RADIO 5 12.95
 3 1 RADIO 5 12.95
 4 1 RADIO 5 12.95
 1 3 MICRO 6 110.00
 4 3 MICRO 2 110.00
 2 3 MICRO 1 110.00
 2 3 MICRO 2 110.00

DPVENDOR Sample

The DPVENDOR table contains vendor information.

DPVENDOR Table Definition

 CREATE TABLE DPVENDOR
 (VENDOR_NUMBER INTEGER NOT NULL,
 VENDOR_NAME CHAR(5) NOT NULL,
 VENDOR_CITY CHAR(5) NOT NULL);

DPINVENT Sample

484

DPVENDOR Contents

 SELECT * FROM DPVENDOR;
 VENDOR_NUMBER VENDOR_NAME VENDOR_CITY
 ------------- ----------- -----------
 1 ACME NY
 2 STAR OMAHA
 3 MMT NY
 4 PIKE MIAMI

C. File Descriptions and Tables

Relational Data Adapter User’s Manual 485

DPVENDOR Sample

486

AppendixD
Tracing Adapter Processing

The adapter communicates with the RDBMS through SQL statements it generates on
your behalf. You can view these SQL statements with the trace facility. Traces are helpful
for debugging procedures or for adapter performance analysis. The trace facility is easy
to invoke, requires no changes to either the adapter or FOCUS request, and have no
effect on how the adapter functions.

The trace facility can provide several types of information, organized into trace
components and levels.

Using a SET command, you must turn on each trace component and level you want to
generate prior to issuing the request to be traced.

Note: The trace facility is intended for use in query optimization and problem debugging.
Application programs should not be written to depend on the format or content of any
trace, as they may change in later releases of the adapter.

In this appendix:

Available Traces

Activating Trace Components

Activating the Trace Destination

Deactivating Trace Components

Trace Activation and Deactivation Examples

Querying Traces

Allocating FSTRACE

Available Traces

There are four types of trace available for the relational adapters. The following chart lists the
associated trace component name and function for each trace:

Relational Data Adapter User’s Manual 487

Component Trace Function

SQLDI Records SQL statements, RDBMS return codes, COMMIT and ROLLBACK
commands, and SQL cursor operations such as PREPARE, OPEN, FETCH,
and CLOSE. You can use this trace component with all FOCUS report
requests, MODIFY requests, and with native SQL commands.

Has levels 1, 2, and 3.

SQLAGGR Displays adapter-to-RDBMS aggregation and join analysis. Indicates
whether the adapter successfully transferred aggregation and join
operations to the RDBMS. You can use it only for FOCUS reporting
operations such as TABLE, GRAPH, and MATCH FILE.

When the adapter is able to pass all join, sort, and aggregation operations
to the RDBMS, it does not populate the SQLAGGR trace. In this case, the
message "AGGREGATION DONE..." appears either at the terminal or in the
job output, whichever is appropriate.

Has level 1 only.

STMTRACE Records SQL SELECT statements generated by the adapter for FOCUS
report requests, MODIFY procedures, or Direct SQL Passthru SELECT
requests. It also records the SQL Data Definition Language (DDL)
statements generated by the CREATE FILE command. You can display the
trace information online or store it in a file or sequential data set. This
technique can save you time and effort when you create tables and
indexes.

The adapter terminates its generated SQL SELECT statements with a
semicolon. Therefore, you can submit them to the RDBMS for processing,
interactively or in batch, without any modifications. Thus, you can use
STMTRACE for debugging, performance tuning, and for capturing SQL Data
Definition and Data Manipulation statements to reuse.

Has levels 1 and 2.

SQLCALL Traces commands and data exchange between the physical and the logical
layers of the adapter.

You can activate all or any combination of these traces during your FOCUS session or in batch.
You can display the results online or store them in a file or sequential data set.

Available Traces

488

Activating Trace Components

You must activate the trace destination as well as the trace components. For information on
activating the trace destination, see Activating the Trace Destination on page 490.

Syntax: How to Activate Trace Components

Activate specific trace components prior to running the request for which you want the trace
generated:

SET TRACEON = component / [level] / destination

where:

component

Is the component to activate. Components for the relational adapters are:

SQLDI traces the SQL physical layer (formerly FSTRACE)

SQLAGGR provides optimization information (formerly FSTRACE3)

STMTRACE displays generated SQL statements (formerly FSTRACE4)

SQLCALL traces commands and data exchange between the physical and the logical layers
of the adapter.

level

If a component is associated with multiple levels, identifies the trace level to activate.
Trace levels are not necessary for the relational components. You must indicate their
absence with a double slash (//).

destination

Can be one of the following:

FSTRACE returns the trace output to the destination indicated in the allocation for
DDNAME FSTRACE. You must explicitly allocate this DDNAME.

CLIENT displays the trace output on the screen of an online session. No explicit allocation
is necessary.

Syntax: How to Control Trace Timestamps

By default, a timestamp is prepended to each line of trace output. You can turn off the trace
timestamps using the SET TRACESTAMP command.

SET TRACESTAMP = {ON|OFF|TLEFT}

D. Tracing Adapter Processing

Relational Data Adapter User’s Manual 489

where:

ON

Prepends a timestamp to each line of trace output. ON is the default value.

OFF

Omits the timestamp from the trace output.

TLEFT

Prepends a timestamp to each line of trace output. Includes microseconds in the
timestamp.

Activating the Trace Destination

Traces can go to the screen (CLIENT) or to a file (allocated to DDNAME FSTRACE). You must
activate the trace destination as well as activating each trace component.

Syntax: How to Activate the Trace Destination

You activate the tracing facility by issuing the following command at the command level, in a
FOCEXEC, or in any FOCUS-supported profile:

SET TRACEUSER={OFF|ON|FSTRACE}

where:

OFF

Does not activate any trace destination. OFF is the default value.

ON

Activates the screen as the trace destination for any trace component you activate using
CLIENT as the component destination.

FSTRACE

Activates a file as the trace destination for any trace component you activate using
FSTRACE as the destination. You must allocate DDNAME FSTRACE to a file (for
information, see Allocating FSTRACE on page 492).

Note: You must issue the SET TRACEUSER=FSTRACE command after activating all of the
trace components you want to go to the allocated file. In the SET TRACEON commands for
those components, specify FSTRACE as the destination. For example:

Activating the Trace Destination

490

DYNAM ALLOC DD FSTRACE DA USER1.FSTRACE.DATA SHR REU
SET TRACEON = STMTRACE//FSTRACE
SET TRACEON = SQLDI//FSTRACE
SET TRACEUSER = FSTRACE

Deactivating Trace Components
SET TRACEOFF=ALL
SET TRACEOFF = component [/ [level] [/ [destination]]]

where:

ALL

Deactivates all traces for all components.

component

Deactivates traces for the named component. If omitted, the command applies to all
components.

level

Identifies the trace level to be deactivated. If omitted, all trace levels are deactivated.

destination

Turns off the trace levels associated with DDNAME. Valid values for DDNAME are FSTRACE
or CLIENT.

Tip: To make sure that only the traces you want are activated, issue the following command
prior to activating any components:

SET TRACEOFF = ALL

Trace Activation and Deactivation Examples

The following commands activate the trace facility to the screen, make sure that only the trace
components we want are activated, and activates the SQLDI trace component to the screen:

SET TRACEUSER = ON
SET TRACEOFF = ALL
SET TRACEON = SQLDI//CLIENT

The following command activates the STMTRACE component and writes the trace output to the
file allocated to DDNAME FSTRACE. Note that the SET TRACEUSER=FSTRACE command is
issued after all trace components are activated:

SET TRACEOFF = ALL
SET TRACEON = STMTRACE//FSTRACE
SET TRACEUSER = FSTRACE

D. Tracing Adapter Processing

Relational Data Adapter User’s Manual 491

The following command turns off all trace components allocated to DDNAME FSTRACE:

SET TRACEOFF = //FSTRACE

Querying Traces

The trace query commands tell you which trace components and levels are either activated or
deactivated for every component. Be aware that these commands may show a voluminous
amount of information that does not pertain to the components in which you are interested.

To list all of the trace level/component combinations currently active, issue the following
command:

SET TRACEON = ?

To list all of the trace level/component combinations not currently active, issue the following
command:

SET TRACEOFF = ?

Example: Querying Traces

The following command queries the active traces. None are activated:

> > set traceon = ?
Name Level Description Set Comp.ID
> >

The next commands activate the SQLCALL and STMTRACE traces:

SET TRACEON = SQLCALL//CLIENT
SET TRACEON = STMTRACE//CLIENT

Now, issuing the query command generates a list of all active trace components:

> > set traceon = ?
Name Level Description Set Comp.ID
STMTRACE 1 SQL/MDX Generated Statement Trace
STMTRACE 2 SQL/MDX Generated Substatement Trc
SQLCALL 1 SQL Call to Physical Layer

Allocating FSTRACE

You can allocate FSTRACE during your session or in batch. You can store the results in a file or
sequential data set.

Tip: The trace facilities are intended for use in query optimization and problem debugging.
Application programs should not be written to depend on the format or content of any trace, as
they may change in later releases.

Querying Traces

492

How to Allocate FSTRACE Online

You can allocate FSTRACE to a z/OS sequential data set. To capture trace data in a sequential
file, issue the appropriate command from the command level. For example:

{MVS|TSO} ALLOC F(FSTRACE) DA('userid.FSTRACE.DATA') SHR REU

or

DYNAM ALLOC DD FSTRACE DATASET userid.FSTRACE.DATA SHR REUSE

Note: DCB attributes are LRECL=80 and RECFM=F.

To view the trace information, use the system editor or the FOCUS TED editor.

How to Allocate FSTRACE in Batch

You can write trace results to SYSOUT. BLKSIZE information is optional, but should be
compatible with other FSTRACE formats. For example, to allocate DDNAME FSTRACE:

//FSTRACE DD SYSOUT=*,DCB=(LRECL=80,BLKSIZE=80,RECFM=F)

You can also write trace results to a z/OS sequential data set. First, allocate the FSTRACE
data set in a prior batch step (as shown) or in ISPF:

//ALLOC EXEC PGM=IEFBR14
//FSTRACE DD DISP=(,CATLG),DSN=userid.FSTRACE.DATA,
// UNIT=SYSDA,VOL=SER=USERM1,SPACE=(TRK,(5,5)),
// DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
 .
 .
 .

Then, allocate the trace data set with DISP=MOD in the batch FOCUS JCL:

 .
 .
 .
//FOCBATCH EXEC PGM=FOCUS
//FSTRACE DD DISP=(MOD,KEEP,KEEP),DSN=userid.FSTRACE.DATA

How to Free Trace Allocations

To clear the FSTRACE allocation:

{MVS|TSO} FREE F(FSTRACE)

or

DYNAM FREE FILE FSTRACE

D. Tracing Adapter Processing

Relational Data Adapter User’s Manual 493

Allocating FSTRACE

494

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 495

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

496

Index

_local 37

_SYSJRNL 37

? JOIN 258

? RELEASE 25

&LOC_LIST 116

&RETCODE 418

&ROWSAFFECTED variable 270, 324

$ VIRT 59

A

ACCEPT 84

Access File attributes 86

CONNECTION (Oracle) 94

DBSPACE 87, 90

FALLBACK (Teradata) 93

IXFLD 108, 109

KEYFLD 108, 109

KEYORDER 88, 93

KEYS 88, 92

SEGNAME 86

TABLENAME 87, 88

WRITE 87, 91

Access File

ADDRESS sample 460

as PDS member 42

attributes 86

automatic generation 113

COURSE sample 461

Access File

DEDUCT sample 463

ECOURSE sample 109, 470

ECOURSE1 sample 111

EMPADD sample 472

EMPFUND sample 475

EMPINFO sample 56, 86, 464

EMPPAY sample 477

field attributes 94

FUNDTRAN sample 466

generated by AUTODB2/SQL/DBC 143

generated by HOLD 221

multi-field embedded join 110, 111

multi-table structures 108

PAYINFO sample 467

remote segment descriptions 432

SALARY sample 482

SALDUCT sample 480

SALINFO sample 93, 468

samples 459

segment attributes 86

access path 401

actions

AUTOCLOSE 298

AUTOCOMMIT 298

AUTODISCONNECT 300

ACTUAL 64

DATE 79

TIME 79

Relational Data Adapter User’s Manual 497

ACTUAL 64

TIMESTAMP 79

TX 80

adapter 17

differences from standard FOCUS 418

environmental commands 309

processing overview 18

read and write components 18

ADDRESS sample

Access File 460

diagram 461

Master File 460

aggregation 183

optimization 183

ALIAS 64, 106

ALL 247

ALL. prefix 254

alternate file view 419

application

package (DB2 for VM) 19

plan (DB2) 19

APT 266

arithmetic expressions and optimization 189

array retrieval 318

artificial segment 381

ASMSQL (static SQL) 405

assembler options (static SQL) 412

attachment facilities for DB2 31

authorize users 45

static SQL 409

AUTOaction ON event 296

usage notes 297

AUTOCLOSE 296, 298

ON COMMAND 302

ON FIN 303

AUTOCOMMIT 296, 298

and CALLDB2 438

and Maintain 302

ON CRTFORM 301, 344, 345

ON FIN 301

AUTODB2 113, 129

and DDF 115, 116

batch mode 129

changing default data sets 128

child selection screen 125

common column selection screen 125

completing description 126

errors 145

generated Access File 143

generated Master File 142

main menu 117

MFDLIST 127

parameter log file 128

PFkeys 120, 127

sample session 146

status screen 127

table selection screen 123

unsupported data types 144

AUTODBC 113

embedded join 139

Index

498

AUTODBC 113

errors 145

exiting 141

generated Access File 143

generated Master File 142

long field name alternative 433

long field names 143

primary option menu 134

sample session 153

saving 142

security logon screen 133

security profile 141

unsupported data types 144

using 132

AUTODISCONNECT 296, 300

ON COMMIT 302

ON FIN 303

automated procedures 113, 114

CREATE FILE 162

Automatic Passthru 266

B

basic plan management for DB2 413

batch access 25

batch job for access to adapter 35, 40

batch mode 129

AUTODB2 129

batch trace allocation 493

batch

accessing DB2 32

BEGIN SESSION 285

BEGIN TRANSACTION (Teradata) 365, 368, 369

BIND 292

CALLDB2 442

concepts (DB2) 19

static SQL (DB2) 408

usage notes 293

BINDOPTIONS (DB2) 327

block size 318

C

CAF 26

SET AUTOCLOSE 296, 298

SET PLAN 331

SET SSID 332

static SQL 403

CAIDMS

accessing in MVS 35

call attachment facility 17

Call Attachment Facility (CAF)

JCL 29, 30

Call Level Interface (CLI)

JCL 32, 33

CALLDB2

AUTOCOMMIT setting 438

BIND 442

COMMIT WORK 438

creating a DBRM 440

Dialogue Manager example 442

linkedit 441

Index

Relational Data Adapter User’s Manual 499

CALLDB2

plan management 438

precompile 439

ROLLBACK WORK 438

sample subroutine 438

SQLCODE 439

syntax 436

thread control 435

writing a subroutine 438

calling stored procedures 420

for DB2 420

case logic 354, 356, 367, 370

CDN 434

Central Version access 36, 37

Central Version and Local Mode access 38

change verify protocol 17

character expressions 189

CHECK FILE 256

JOIN 256

RETRIEVE 256

child selection screen (AUTODB2) 125

CLI (Call Level Interface)

JCL 32, 33

CLI

CLIST for accessing DB2 31

JCL for accessing DB2 32

CLIST 31

for accessing DB2 with CLI 31

IMS access from DB2 MODIFY 451

COMBINE 380

diagram 381

different SUFFIX 379

FIND 384

IMS access from DB2 MODIFY 447

versus JOIN 379

COMMAND, SET AUTOaction ON 297

commands 265

adapter 309

Direct SQL Passthru 265

environmental 309

COMMIT 438

controlling 295

SET AUTOaction ON 297

common column selection screen (AUTODB2) 125

COMPILE

DB2 static MODIFY 408

conditional join 99, 240

embedded 102

example 107, 242

CONNECT

DB2 444, 445

DB2 for VM 445

IDMS SQL 337

CONNECTION (DB2) 445

connection (Oracle) 48, 340

CONNECTION attribute (Oracle) 51, 94

connection scope 295

AUTOCLOSE 298

AUTOCLOSE ON COMMAND 302

Index

500

connection scope 295

AUTOCLOSE ON FIN 303

AUTOCOMMIT 298

AUTOCOMMIT ON CRTFORM 301

AUTOCOMMIT ON FIN 301

AUTODISCONNECT 300

AUTODISCONNECT ON COMMIT 302

AUTODISCONNECT ON FIN 303

default data adapter session 305

example 307

pseudo-conversational session 306

SET AUTOaction ON event 304

types of sessions 304

user-controlled session 306

CONNECTION_ATTRIBUTES 47

Oracle 49, 338

Teradata 333

controlling column names for DB2 333

CONVERSION 277, 279, 312, 313

CONVERSION LONGCHAR 314

counter field 96

COURSE sample

Access File 461

diagram 462

Master File 461

CREATE FILE 113

creating table and index 162

DB2 example 164

IDMS SQL example 166

Oracle example 168

CREATE FILE 113

storage areas 162

Teradata example 165

CREATE INDEX 165

CREATE SYNONYM 113

CREATE TABLE 163

creator

default 322

CRFILE 61, 102, 105

remote segment descriptions 432

cross-referenced tables

Access File 108

JOIN command 232

Master File 101

non-unique missing instances 251, 252

types 233

unique missing instances 248, 250

CRSEG 102

CRTFORM

and AUTOCOMMIT 393

SET AUTOaction ON 297

CS (DB2) 330, 385, 387

CURRENT DEGREE (DB2) 328

CURRENT PACKAGESET (DB2) 446

CURRENT SCHEMA (IDMS SQL) 336

CURRENT SQLID 46

CURRENT SQLID (DB2) 328, 329

cursor stability 387

DB2 330, 385

IDMS SQL 336, 389

Index

Relational Data Adapter User’s Manual 501

customizing Direct SQL Passthru reports 280

CVP 392, 393, 395

D

data adapter

tracing generated statements 487

data formats

for IDMS/SQL 77

data locks 392

Oracle 390

data sets in AUTODB2 128

data types

for DB2 65

for Oracle 71

for Teradata 68

DATABASE LINKS (Oracle) 52

database request module 17

DATE 79

changing old default values 428

chart of default 429

default 427

DATETIME_PROCESS (Oracle) 340

DB2 Adapter

column names 333

data types 65

FETCHSIZE command 318

INSERTSIZE command 319

DB2 CURRENT SQLID 46

DB2 for VM

CONNECT 445

DB2

accessing in z/OS with CLI 31, 32

adapter as an RDBMS application 19

CAF AUTOCLOSE 296

CLIST 31

CONNECT 444, 445

CREATE FILE example 164

DDF 23, 443

DDF with JOIN command 233

decimal notation 434

Dialogue Manager variables 347

displaying defaults 310

DRDA 23

DSN 26

DSQL 26

extract file conversion chart 222

FETCHSIZE 318

JCL 32

parallel processing 328

PRECISION in Access File 94

preparing an application for execution 20

RELEASE 445

resource limit 373

return codes 453

SET AUTOCLOSE 298

SET BINDOPTIONS 327

SET CONNECTION 445

SET CURRENT DEGREE 328

SET CURRENT PACKAGESET 446

SET CURRENT SQLID 328, 329

Index

502

DB2

SET ERRORTYPE 329

SET INSERTSIZE 397

SET ISOLATION 386

SET PLAN 26, 331, 388

SET SSID 26, 332

SET STATIC 406

SQLOUT formats 274, 275

static SQL assembler options 412

static SQL authorize users 409

static SQL basic plan management 413

static SQL BIND 408

static SQL COMPILE for MODIFY 408

static SQL DDNAMEs 405

static SQL extended plan management 414

static SQL GRANT EXECUTE 409

Static SQL GROUP BY restriction 404

Static SQL HAVING restriction 404

static SQL linkedit options 412

static SQL MODIFY example 410

static SQL precompiler options 412

static SQL run-time requirements 409

static SQL security 410

static SQL SET PLAN 409

static SQL SET SSID 408

DB2LOAD (DB2 static SQL) 406

DBA security 53

DBC return codes 454

DBRM 19

creating for CALLDB2 440

DBRMLIB (DB2 static SQL) 405

DBSPACE 87, 90, 162, 316

DDF (DB2) 23, 443

and AUTODB2 115, 116

JOIN command 233

joining tables 444

LOCATION 443

DDNAME

ASMSQL (DB2 static SQL) 405

DB2LOAD (DB2 static SQL) 406

DBRMLIB (DB2 static SQL) 405

FOCCOMP (DB2 static SQL) 406

HOLDACC 217

HOLDMAST 217

SQLERR1 (DB2 static SQL) 406

SQLERR2 (DB2 static SQL) 406

SQLERR3 (DB2 static SQL) 406

static SQL (DB2) 405

STUBLIB (DB2 static SQL) 406

DEACTIVATE INVALID 394

decimal

notation (DB2) 434

DEDUCT sample

Access File 463

diagram 463

Master File 462

default data sets in AUTODB2 128

default date

changing old values 428

chart 429

Index

Relational Data Adapter User’s Manual 503

default settings 43

displaying 43

DEFAULT_CONNECTION (Oracle) 51, 340

DEFDATE 317, 428

DEFINE 84

preserving after JOIN 231

DEGREE, CURRENT (DB2) 328

DELETE 269, 323

referential integrity 377, 378

DESCRIPTION 84

descriptions (Master and Access File) 55

multi-table 99

Dialogue Manager

CALLDB2 436

CALLDB2 example 442

invoking static subroutines (DB2) 436

variables (DB2) 347

variables (IDMS SQL) 348

variables (Oracle) 348

variables (Teradata) 347

dictionary for IDMS SQL session 337

differences 418

adapter and standard FOCUS 418

Direct SQL Passthru 43, 265

advantages 265

Automatic Passthru 266

creating a FOCUS view 281, 282

DB2 and IDMS/SQL formats 274, 275

DPBRANCH sample 483, 484

DPINVENT sample 484

Direct SQL Passthru 43, 265

DPVENDOR sample 484, 485

invoking 267

issuing environmental commands 270

native SQL commands 271

Oracle formats 276

report formatting 280

reporting guidelines 280, 282

SQL SELECT command 272

SQLOUT Master File 273

syntax 268

displaying defaults 43

SQL ? 310

displaying structures 256

Distributed Relational Database Architecture 17

DPBRANCH sample 483, 484

DPINVENT sample 484

DPVENDOR sample 484, 485

DRDA (DB2) 23

CONNECT 444

RELEASE 445

SET CONNECTION 445

DSN (DB2) 26

DSQL (DB2) 26

dummy segment 381

DYNAM

FSTRACE allocation 493

dynamic join 230

dynamic

procedures and static versions (DB2) 406

Index

504

dynamic

SQL 20

E

ease of use 22

ECOURSE sample

Access File 109, 470

diagram 471

Master File 106, 469

ECOURSE1 sample 111

Access File 111

Master File 111

efficiency 22, 171

search limits 260

TABLEF 214

embedded join 99

compared to dynamic 230

specifying in Access File 108

EMPADD sample

Access File 472

diagram 474

Master File 472

EMPFUND sample

Access File 475

diagram 476

Master File 474

EMPINFO sample 56

Access File 56, 86, 464

diagram 465

Master File 464

EMPPAY sample

Access File 477

diagram 479

Master File 477

END SESSION 285

END TRANSACTION (Teradata) 365, 368, 369

environmental commands 265, 270, 309

AUTOCOMMIT ON CRTFORM 344, 393

BINDOPTIONS (DB2) 327

CONNECT (IDMS SQL) 337

CONNECTION_ATTRIBUTES (Oracle) 49, 50,

338

CONNECTION_ATTRIBUTES (Teradata) 333

CONVERSION 277, 312, 313

CONVERSION LONGCHAR 314

CURRENT DEGREE (DB2) 328

CURRENT SCHEMA (IDMS SQL) 336

CURRENT SQLID (DB2) 328

DATETIME_PROCESS (Oracle) 340

DBSPACE 316

DEFAULT_CONNECTION (Oracle) 51, 52, 340

DEFDATE 317, 428

ERRORRUN (MODIFY 372

ERRORRUN (MODIFY) 346

ERRORTYPE (DB2) 329

example 270

EXPLAIN 317

for IDMS SQL 337

for Teradata 333

INCLUDE LATERAL 382

Index

Relational Data Adapter User’s Manual 505

environmental commands 265, 270, 309

INCLUDE SUBTREE 382

INSERTSIZE 397

INSERTSIZE (Oracle) 398

INSERTSIZE example (Oracle) 398

ISOLATION (DB2) 386

LOADONLY (MODIFY) 343

OPTIFTHENELSE 321

OPTIMIZATION 171, 321

ORACHAR (Oracle) 341

ORANUMBER (Oracle) 279, 342

OWNERID 322

PASSRECS 269, 323

PLAN (DB2) 331, 388

SESSION (IDMS SQL) 336

SPMAXPRM (Oracle) 342, 424

SQL ? 310

SQLENGINE 267

SQLJOIN OUTER 324

SSID (DB2) 332

syntax 310

TRANSACTION IDMS/SQL) 388

environments 22

acceptable for CAIDMS/DB 35

acceptable for Oracle 38

acceptable for Teradata 34

equijoin 99

embedded 101

error handling 453

DB2 SQL codes 453

error handling 453

common errors and solutions 455

DBC return codes 454

fatal errors 372

FOCERROR 371

FOCUS TRACE facility 356

RDBMS 366

ROLLBACK WORK 369

traces 487

error messages

common errors 455

displaying 457

error processing in MODIFY 346

ERRORRUN 346, 372

ERRORTYPE (DB2) 329

escape character for LIKE 175

events 297

COMMAND 297

COMMIT 297

CRTFORM 297

FIN 297

example 418

querying trace facilities 492

&RETCODE 418

AUTODB2 146

BEGIN TRANSACTION (Teradata) 368

CALLDB2 BIND 442

CALLDB2 linkedit 441

CALLDB2 precompile 439

CALLDB2 procedure 442

Index

506

example 418

CALLDB2 subroutine 438

COMMIT WORK 368, 371

conditional join 242

CONNECTION_ATTRIBUTES (Oracle) 50

control of LUW (DB2) 307

CONVERSION 279

DB2 static MODIFY 410

DEFAULT_CONNECTION (Oracle) 52

environmental commands 270

EXPLAIN utility 208, 210

FOCURRENT 394

FOCUS view 282

formatting SQL reports 280

index on primary key 352

MODIFY MATCH 354

multi-field dynamic join 238

NEXT after MATCH on full key 358

NEXT after MATCH on non-key 361

NEXT in Maintain 357

NEXT on full key in Maintain 360

NEXT on non-key in Maintain 362

NEXT without MATCH 357

non-unique missing instances 251, 253

optimization 173

optimization of outer join 246

Oracle stored procedure 425

Parameterized SQL Passthru 293

READLIMIT 261

remote segment description 433

example 418

ROLLBACK WORK 370

SET INSERTSIZE (Oracle) 398

single field dynamic join 235

SQL command 271

SQL EXECUTE 290

SQL in MODIFY 390

SQL PREPARE 288

SQL SELECT command 272

SQLOUT Master File 273

trace facilities 491

unique missing instances 249

UPDATE in Maintain 364

UPDATE in MODIFY 362

EXCLUDES restriction for IF/WHERE 419

EXECUTE 289, 290

EXPLAIN 317

EXPLAIN utility

DB2 example 208

Hot Screen facility 207

invoking 204

processing overview 204

RDBMS EXPLAIN function 204

TED 205

TED RUN restriction 207

Teradata example 210

types of windows 205

extended plan management (DB2) 414

extract files

SAME_DB 225

Index

Relational Data Adapter User’s Manual 507

extract files

conversion chart for DB2 222

conversion chart for IDMS SQL 223

conversion chart for Oracle 224

conversion chart for Teradata 223

TABLEF 215

usage restrictions 221

F

FALLBACK (Teradata) 93

fastload facility 343

FETCHSIZE 262, 318

FETCHSIZE command 318

for DB2 318

field attributes 62

Access File 94

field names 63

limitations 105

FIELDNAME 63, 105

FIELDTYPE 418

file attributes

Access File 108

file descriptions 42, 55

multi-table 99

FILENAME 58

FIN, SET AUTOaction ON 297

FIND 384

FOC$HOLD 221

FOCCOMP (DB2 static SQL) 406

static and dynamic versions 406

FOCERROR 371

FOCEXEC

for static SQL 405

FOCLIST 218, 220

FOCSQL 42

PDS member 42

FOCURRENT 393, 394

FOCUS 19

and adapter differences 418

and data adapter interaction 19

database maintenance 349

DELETE referential integrity 377, 378

file descriptions 55, 99

formatting of SQL reports 280

INCLUDE referential integrity 375

referential integrity, inhibiting 378

reporting techniques 213

similarities to SQL 214

view 233

foreign key 373

FORMAT 64

formatting Direct SQL Passthru reports 280

freeing traces 493

FST. 93, 182

FSTRACE allocation 493

function keys (AUTODB2) 120, 127

FUNDTRAN sample

Access File 466

diagram 466

Master File 465

Index

508

G

getting started 25

additional prerequisites 42

authorizing users (Teradata) 34

DB2 CLIST 31

DB2 JCL 32

IDMS SQL 35

Oracle on MVS 38

SELECT GRANT privileges 34

site-specific information 25

Teradata on z/OS 34

GLOBAL TXTLIB 454

GRANT 45, 409

EXECUTE (DB2 static SQL) 409

GROUP BY restriction (static SQL) 404

GROUP field restriction 419

H

HAVING restriction (static SQL) 404

heterogeneous file types 181

join optimization 181

HOLD files

SAME_DB 225

HOLD

Access File 221

conversion chart for DB2 222

conversion chart for IDMS SQL 223

conversion chart for Oracle 224

conversion chart for Teradata 223

Master File 218

HOLD

Master File with long name 219

usage restrictions 221

HOLDACC 217

HOLDMAST 217

how the adapter works 18, 56

I

IDMS SQL

accessing in MVS 35

adapter as an RDBMS application 21

CONNECT 337

CREATE FILE example 166

Dialogue Manager variables 348

displaying defaults 311

extract file conversion chart 223

SET CURRENT SCHEMA 336

SET SESSION 336

SQLOUT formats 274, 275

IDMS/SQL Adapter

data formats 77

IDMS/SQL

SET ISOLATION 388

SET TRANSACTION 389

IF tests 175

multiple retrieval paths 263

optimization 175

IMS access from DB2 MODIFY

CLIST 451

COMBINE 447

Index

Relational Data Adapter User’s Manual 509

IMS access from DB2 MODIFY

JCL 450

LOOKUP 450

prerequisites 447

INCLUDE

referential integrity 375

INCLUDES restriction for IF/WHERE 419

index 63

CREATE FILE 165–167

creating 162

FIELDTYPE 418

in MODIFY and Maintain 351

on primary key 352

indexes for SAME_DB 229

inner join 231, 251

INSERTSIZE 397

INSERTSIZE (Oracle) 398

example 398

INSERTSIZE command 319

for DB2 319

ISOLATION (DB2) 330, 386

isolation level

changing (DB2) 330, 386

changing (IDMS/SQL) 388, 389

cursor stability (DB2) 330, 385

cursor stability (IDMS SQL) 336

repeatable read (DB2) 385

transient read (IDMS SQL) 336, 389

uncommitted read (DB2) 388

IXFLD 108, 109

J

JCL 32

for accessing DB2 with CLI 32

IMS access from DB2 MODIFY 450

trace allocation 493

job for access to adapter 35, 40

join 179

? JOIN 258

adapter-managed optimization 179

CHECK FILE 256

clearing 259

combinations 234

conditional 102, 240

dynamic conditional 240

embedded 99, 230

embedded conditional 102

embedded equijoin 101, 108

embedded multi-field 111

inner 231, 251

Master File 99

multi-field embedded 110

multiple 237

non-unique 232, 237

optimization 179

optimization of heterogeneous 181

optimization of outer 324

outer 231

preserving virtual fields 231

querying 258

retrieval paths 262

Index

510

join 179

single-field dynamic 232

summary chart 255

unique 232, 237

versus COMBINE 379

K

Kanji character set 143

KEYFLD 108, 109

KEYORDER 88, 93

NEXT 355

KEYS 88, 92

keys for SAME_DB 229

KL 431

KLU 431

L

large character data types 314

LATERAL 382

LIKE 175

with escape character 175

limitations 190

adapter differences 418

alternate file view 419

field naming conventions 63, 105

long field names 433

maximum joined structures 233

multi-field join 238

optimization of DEFINE fields 190

limits

views in MODIFY and Maintain 350

linkedit 441

CALLDB2 example 441

options for static SQL (DB2) 412

LOADONLY (MODIFY) 343

Local Mode and Central Version access 38

locks 392

Oracle read 390

Oracle write 390

log parameters in AUTODB2 128

logical 190

expressions and optimization 190

sort order 93

unit of work 391

long field names

in the Access File (AUTODBC) 433

limitations 433

long Master File name 219

long Master File names 59

LOOKUP 383

IMS access from DB2 MODIFY 450

LST. 93, 182

LUW

example of controlling (DB2) 307

M

main menu (AUTODB2) 117

PFkeys 120

Index

Relational Data Adapter User’s Manual 511

Maintain 349

and AUTOCOMMIT 302

DB2 resource limits 373

FOCERROR 371

index considerations 351

MATCH 351

NEXT 351, 356, 357

NEXT on full key 360

NEXT on non-key 362

prerequisites 350

processing overview 352

RDBMS referential integrity 374

UPDATE 364

maintaining tables

error handling 371, 372

processing overview 352

RDBMS referential integrity 374

SET ERRORRUN 372

SET INCLUDE LATERAL 382

SET INCLUDE SUBTREE 382

SET ISOLATION (DB2) 330, 386

SET PLAN (DB2) 388

SET TRANSACTION (IDMS/SQL) 389

SET TRANSACTION IDMS/SQL) 388

transaction control (Teradata) 369

maintenance level 25

mapping data types

for Oracle 71

MASTER 42

PDS member 42

MATCH 353

actions 353

differences from standard FOCUS 354

example 354

Maintain 351

messages 453

displaying 457

MFDLIST (AUTODB2) 127

misjoined unique segment 178

MISSING 82

missing data 231

ALL. prefix 254

inner join 231, 251

non-unique descendant 251–253

outer join 231

SET ALL 247

summary chart 255

unique descendant 248–250

MODIFY 349

case logic 354, 356, 367, 370

COMMIT WORK 367

CVP 392, 393, 395

DB2 resource limits 373

differences from standard FOCUS 354

dynamic and static versions of (DB2) 406

fastload facility 343

FIND 384

FOCERROR 371

FOCURRENT 393, 394

index considerations 351

Index

512

MODIFY 349

LOOKUP 383

MATCH 353, 354

NEXT 355

NEXT after MATCH on full key 358

NEXT after MATCH on non-key 361

NEXT without MATCH 357

prerequisites 350

processing overview 352

RDBMS referential integrity 374

ROLLBACK WORK 369

SET AUTOCOMMIT ON CRTFORM 344

SET ERRORRUN 346, 372

SET INCLUDE LATERAL 382

SET INCLUDE SUBTREE 382

SET INSERTSIZE 397

SET ISOLATION (DB2) 330, 386

SET LOADONLY 343

SET PLAN (DB2) 388

SET TRANSACTION (IDMS/SQL) 388, 389

SQL commands 390

static and dynamic versions of (DB2) 406

static SQL 401

static SQL performance 402

TRACE facility 356

transaction control (Teradata) 369

UPDATE 362

VALIDATE 383

multi-field embedded join 110, 111

multi-table structures 99

Access File 108

advantages 100

embedded conditional join 102

embedded equijoin 101

referential integrity 374

multiplicative effect 178

multiplied segment 178

MVS 17

accessing CA-IDMS/DB 35

accessing Oracle 38

N

native SQL 17, 265

commands 271

example 271

reporting query functions 214

NEXT 355

after MATCH on full key 358

after MATCH on non-key 361

Maintain 351, 357

on full key in Maintain 360

on non-key in Maintain 362

without MATCH 357

NOCOLUMNTITLE command for DB2 333

NODATA character 82

non-unique joins 230

missing data 251–253

SET ALL OFF 251

SET ALL ON 252, 253

Index

Relational Data Adapter User’s Manual 513

non-unique joins 230

SET ALL ON with screening conditions 254

non-unique segment 102, 105

NOT NULL 82

null data 82, 83

NUMBER support for Oracle 342

O

OCCURS segment

benefits 95

diagram 483

ORDER field 96

POSITION 95

sample 96, 481

syntax 95

OPTIFTHENELSE 186, 321

optimization 171

adapter-managed join 179

aggregation 183

and date-time values 175

DEFINE fields in BY 185

example 173

FST. and LST. 182

join between heterogeneous file types 181

join management 178

join summary chart 255

joins 179

logic 174

outer join 246, 324

projection 177

optimization 171

record selection 175

sorting 182

ORA@ssn (Oracle) 38

ORACHAR (Oracle) 341

Oracle Adapter

data types 71

Oracle

accessing in MVS 38

authorizing users 48

connecting 48

connecting to the subsystem 38

CONNECTION attribute 51, 94

CREATE FILE example 168

data adapter as an RDBMS application 21

data type support for VARCHAR2 341

DATABASE LINKS 52

declared connections query command 50

Dialogue Manager variables 348

displaying defaults 312

extract file conversion chart 224

FETCHSIZE 318

locks 390

NUMBER data type support 342

parameters for stored procedures 342

SET CONNECTION_ATTRIBUTES 338

SET DATETIME_PROCESS 340

SET DEFAULT_CONNECTION 51, 340

SET INSERTSIZE 397, 398

SET ORACHAR 341

Index

514

Oracle

SET ORANUMBER 279, 342

SET SPMAXPRM 342, 424

SQLOUT formats 276

ORANUMBER (Oracle) 279, 342

ORDER field 96

outer join 231

outer joins

controlling optimization 246, 324

output files 225

SAME_DB 225

OWNERID 322

and CURRENT SQLID (DB2) 46

P

parallel processing (DB2) 328

parameter log file in AUTODB2 128

Parameterized SQL Passthru

BEGIN SESSION 285

command summary 284

COMMIT WORK 286

END SESSION 285

example 293

ROLLBACK WORK 287

sample session 293

syntax 284

PARENT 105

partial key 360

PASSRECS 269, 323

Passthru 265

automatic 266

PAYINFO sample

Access File 467

diagram 468

Master File 466

performance with static SQL 402

PFkeys (AUTODB2) 120, 127

PLAN (DB2) 26, 331, 388

static SQL 409

plan management

CALLDB2 438

POSITION 95

precompile for CALLDB2 439

precompile static SQL (DB2)

options 412

PREPARE 287–289

primary key 63, 92, 351, 373

primary option menu (AUTODBC) 134

procedure-level security in static SQL 402

projection 177

PURGE 291

Q

query commands 43

for traces 492

? JOIN 258

declared Oracle connections 50

default settings 43

SQL ? 310

Index

Relational Data Adapter User’s Manual 515

R

RDBMS applications

DB2 19

IDMS SQL 21

Oracle 21

Teradata 21

RDBMS

access path 401

EXPLAIN function 204

referential integrity 374

return codes 371

storage areas 162

transaction control 371

transaction control (Teradata) 369

read stability (DB2) 330

read

component with write component 18

lock in Oracle 390

READLIMIT 260, 261

record selection 175

optimization 175

RECORDLIMIT 260

referential integrity

FOCUS COMBINE 380

FOCUS DELETE 377, 378

FOCUS INCLUDE 375

FOCUS, inhibiting 378

multi-table Master File 99

RDBMS 374

relational transactions

types 350

RELEASE (DB2) 445

release level 25

remote segment descriptions 60, 101

Access File 432

CRFILE 432

example 433

KL segment 431

KLU segment 431

root segment 432

views 432

repeatable read (DB2) 330, 385, 387

report writer 18

reporting 213

CHECK FILE 256

Direct SQL Passthru 272, 280

formatting 280

search limit test 260

TABLEF 214

REPOSITION 356

requirements for static SQL 403

resource restrictions for static SQL 415

retrieval

display of paths 256

plan (subtree) 262

return codes 371

DB2 453

Teradata 454

REVOKE 45

Index

516

ROLLBACK WORK 287, 369, 370

CALLDB2 438

root for remote segment descriptions 432

RR (DB2) 330, 385, 387

run-time requirements 409

DB2 static SQL 409

S

SALARY sample

Access File 482

diagram 483

Master File 481

SALDUCT sample

Access File 480

diagram 481

Master File 479

SALINFO sample

Access File 93, 468

diagram 469

Master File 468

sam;le session

AUTODBC 153

SAME_DB HOLD format 225

sample session 146

AUTODB2 146

Parameterized SQL Passthru 293

schema (IDMS SQL) 336

screening conditions

optimization of 175

search limit test 260

security 23

DB2 static SQL 410

Oracle 48, 338

static SQL 402

Teradata 34, 333

segment attributes

Access File 86

Master File 61

segment

SYSTEM99 381

SEGNAME 61, 86, 104

SEGTYPE 61, 104

SELECT

example 272

session (IDMS SQL) 336

control 337

SET 309

ALL 247

APT 266

AUTOaction ON event 296

AUTOaction ON event combinations 304

AUTOaction ON event types of sessions 304

AUTOCLOSE 296, 298

AUTOCLOSE ON COMMAND 302

AUTOCLOSE ON FIN 303

AUTOCOMMIT 296, 298

AUTOCOMMIT ON CRTFORM 301, 344, 345

AUTOCOMMIT ON FIN 301

AUTODISCONNECT 296, 300

AUTODISCONNECT ON COMMIT 302

Index

Relational Data Adapter User’s Manual 517

SET 309

AUTODISCONNECT ON FIN 303

BINDOPTIONS (DB2) 327

CDN 434

CONNECTION (DB2) 445

CONNECTION_ATTRIBUTES (Oracle) 49, 50,

338

CONNECTION_ATTRIBUTES (Teradata) 333

CONVERSION 277, 279, 312, 313

CONVERSION LONGCHAR 314

CURRENT DEGREE (DB2) 328

CURRENT PACKAGESET (DB2) 446

CURRENT SCHEMA (IDMS SQL) 336

CURRENT SQLID 46

CURRENT SQLID (DB2) 328, 329

DATETIME_PROCESS (Oracle) 340

DBSPACE 316

DEFAULT_CONNECTION 51, 52

DEFAULT_CONNECTION (Oracle) 51, 340

DEFDATE 317, 428

ERRORRUN (MODIFY) 346, 372

ERRORTYPE (DB2) 329

EXPLAIN 317

INCLUDE LATERAL 382

INCLUDE SUBTREE 382

INSERTSIZE 397

INSERTSIZE (Oracle) 398

ISOLATION (DB2) 330, 386

LOADONLY (MODIFY) 343

OPTIFTHENELSE 186, 321

SET 309

OPTIMIZATION 171, 321

ORACHAR (Oracle) 341

ORANUMBER (Oracle) 279, 342

OWNERID 322

OWNERID and CURRENT SQLID (DB2) 46

PASSRECS 269, 323

PLAN (DB2) 26, 331, 388, 409

SESSION (IDMS SQL) 336

SPMAXPRM (Oracle) 342, 424

SQLENGINE 267

SQLJOIN OUTER 245, 324

SSID (DB2) 26, 332, 408

STATIC 406

TRACEOFF 491

TRACEON 489

TRACEUSER 490

TRANSACTION (IDMS/SQL) 389

TRANSACTION IDMS/SQL) 388

short retrieval path

behavior chart 255

sorting 182

logical order 93

optimization 182

SPMAXPRM (Oracle) 342, 424

SQL 265

? query 43

Automatic Passthru 266

BEGIN SESSION 285

BIND 292, 293

Index

518

SQL 265

COMMIT WORK 286, 287

CREATE INDEX 165

CREATE TABLE 163

Direct SQL Passthru 265

dynamic and static 20

END SESSION 285

EXECUTE 289, 290

generated by adapter 18

in MODIFY 390

PREPARE 287–289

PURGE 291

query 310

query (DB2 example) 310

query (IDMS SQL example) 311

query (Oracle example) 312

query (Teradata example) 311

return codes for DB2 453

ROLLBACK WORK 287, 369

similarities to FOCUS 214

static 401, 402

unique index 63

SQLAGGR trace 488

SQLCALL trace 488

SQLCODE 371

CALLDB2 439

SQLDI trace 488

SQLENGINE 267

SQLERR1 (DB2 static SQL) 406

SQLERR2 (DB2 static SQL) 406

SQLERR3 (DB2 static SQL) 406

SQLID 46

SQLID (DB2) 328, 329

SQLJOIN 171, 321

SQLJOIN OUTER 245, 324

SQLOUT Master File 268, 271, 273

SSID (DB2) 26, 332

static SQL 408

STATIC 406

static procedures 401

and dynamic versions (DB2) 406

static SQL 20, 401, 402

DB2 assembler options 412

DB2 authorize users 409

DB2 basic plan management 413

DB2 BIND 408

DB2 COMPILE for MODIFY 408

DB2 DDNAMEs 405

DB2 extended plan management 414

DB2 FOCEXEC 405

DB2 GRANT EXECUTE 409

DB2 linkedit options 412

DB2 MODIFY example 410

DB2 precompiler options 412

DB2 run-time requirements 409

DB2 security 410

DB2 SET PLAN 409

DB2 SET SSID 408

DB2 SET STATIC 406

DB2 steps for creating 404

Index

Relational Data Adapter User’s Manual 519

static SQL 20, 401, 402

GROUP BY restriction 404

HAVING restriction 404

requirements 403

resource restrictions 415

security 402

status screen (AUTODB2) 127

STMTRACE trace 488

stored procedures 420

for DB2 420

specifying parameters 420

string expressions 189

STUBLIB (static SQL) 406

subroutines

coding for CALLDB2 438

subsystem (Oracle), connecting 38

subtree 233, 262

SUBTREE 382

SUFFIX 60

COMBINE 379

SYSTEM99 381

T

table 55

creating 113, 162

describing multiple 99

setting default creator 322

TABLEF 183, 214

TABLENAME 87, 88

TDP (Teradata) 21

TDP ID (Teradata) 334

TED from EXPLAIN utility 205

temporary tables 225

Teradata Adapter

data types 68

SET TRANSACTION command 334

Teradata stored procedures 425

Teradata

accessing in z/OS 34

authorizing users 333

CREATE FILE example 165

data adapter as an RDBMS application 21

Director Program (TDP) 21

Director Program ID 334

displaying defaults 311

extract file conversion chart 223

FALLBACK attribute in Access File 93

return codes 454

SET AUTOCLOSE 298

SET CONNECTION_ATTRIBUTES 47, 333

transaction control 369

testing 17

thread control 295

CALLDB2 435

default data adapter session 305

example 307

pseudo-conversational session 306

user-controlled session 306

TIME 79

TIMESTAMP 79

Index

520

TITLE 84

trace facilities 487

activating 489, 490

allocating 493

batch mode 493

deactivating 491

deallocating 493

examples 491

FOCUS MODIFY 356

querying 492

TRACEOFF 491

TRACEON 489

TRACEUSER 490

TRANSACTION (IDMS/SQL) 388, 389

transaction control

example 371

ROLLBACK WORK 369

Teradata 369

transient read (IDMS SQL) 336

TRIM_LITERALS SET parameter 325

TSO 17

accessing DB2 31

TX 80

U

uncommitted read (DB2) 330, 388

Unicode data types 67

for DB2 67

for Oracle 76

for Teradata 71

unique joins 230

missing data 248–250

unique segment 102, 105

retrieval path 262

unit of work 391

unsupported data types 144

UPDATE 269, 323

example in Maintain 364

example in MODIFY 362

UR 388

USAGE 64

USER 17

V

VALIDATE 372

LOOKUP 383

VARCHAR SET parameter 326

VARCHAR2 (Oracle) 341

variable length data types 326

variables

Dialogue Manager (DB2 for VM) 347

Dialogue Manager (DB2) 347

Dialogue Manager (IDMS SQL) 348

Dialogue Manager (Oracle) 348

Dialogue Manager (Teradata) 347

view 99

FOCUS 99, 233

MODIFY and Maintain 350

remote segment descriptions 432

Index

Relational Data Adapter User’s Manual 521

virtual fields

preserving 231

virtual segment 381

SYSTEM99 381

VSAM files 233

W

WHERE tests 263

multiple retrieval paths 263

optimization 175

WHERE-based join 240

Master File syntax 103

preserving virtual fields 231

WRITE 87, 91

inhibiting referential integrity 379

Z

z/OS 17, 25

accessing Teradata 34

batch access to DB2 32

file descriptions 42

FOCUS and adapter differences 418

interactive access to DB2 31

PDS members 42

Index

522

	Contents
	1. Introduction to Adapters for Relational Data Sources
	Adapter Capabilities
	FOCUS and RDBMS Interaction
	The Adapter as an RDBMS Application
	Implementing the Adapter for DB2 as an RDBMS Application
	Implementing the Adapter for Teradata as an RDBMS Application
	Implementing the Adapter for IDMS/SQL as an RDBMS Application
	Implementing the Adapter for Oracle as an RDBMS Application

	Environment
	Ease of Use
	Efficiency
	Security

	2. Invoking Relational Adapters
	Getting Started Under z/OS
	Accessing DB2 Under z/OS
	Reference: Accessing the Adapter for DB2 Interactively Under CAF Using an EDASERVE Configuration File
	Reference: Accessing the Adapter for DB2 Interactively Under CAF Using the RRSET Module
	Reference: Accessing the Adapter for DB2 in Batch Under CAF Using an EDASERVE Configuration File
	Reference: Accessing the Adapter for DB2 in Batch Under CAF Using the RRSET Module
	Reference: Accessing the Adapter for DB2 Interactively Using CLI
	Reference: Accessing the Adapter for DB2 in Batch Using CLI

	Accessing Teradata Under z/OS
	Reference: Interactive Access to Teradata Under z/OS
	Reference: Batch Access to Teradata Under z/OS

	Accessing IDMS SQL Under z/OS
	Example: Sample JCL for Central Version Access to IDMS
	Example: Sample CLIST for Central Version Access to IDMS
	Local Mode Access
	Both Central Version and Local Mode

	Accessing Oracle Under z/OS
	Procedure: How to Connect to the Oracle Subsystem
	Reference: Creating a Batch Job to Invoke FOCUS
	Reference: Creating a CLIST to Invoke FOCUS Interactively

	Additional Prerequisites: File Descriptions

	Issuing Commands
	Adapter Environmental Commands
	Example: Displaying Adapter for DB2 Settings

	3. Connection, Authentication, and Security
	SQL GRANT and REVOKE
	DB2 Security
	DB2 CURRENT SQLID (z/OS)

	Teradata Login Security
	Oracle Connection Attributes
	Connecting to an Oracle Database Server
	Authenticating a User on an Oracle Database Server
	Syntax: How to Declare Connection Attributes for Oracle
	Syntax: How to Query the Declared Oracle Connections
	Example: Declaring Connection Attributes for Oracle

	Selecting an Oracle Connection to Access
	Syntax: How to Select an Oracle Connection to Access
	Example: Selecting an Oracle Connection to Access

	Oracle Support for DATABASE LINKs

	FOCUS DBA Security

	4. Describing Tables to FOCUS
	Creating Master and Access Files
	Master Files
	File Attributes in the Master File
	Reference: FILENAME
	Example: Long and Short Master File Names

	Syntax: How to Implement a Long Master and Access File Name in z/OS
	Reference: SUFFIX

	Segment Attributes in the Master File
	Reference: SEGNAME in the Master File
	Reference: SEGTYPE
	Reference: CRFILE

	Field Attributes in the Master File
	Syntax: How to Describe a Column in a Master File
	Reference: The Primary Key
	Reference: FIELDNAME
	Reference: ALIAS
	Reference: USAGE/FORMAT

	Data Type Support
	DB2 Data Type Support
	Reference: Data Type Support for Unicode

	Teradata Data Type Support
	Reference: Data Type Support for Unicode

	Oracle Data Type Support
	Reference: Data Type Support for Unicode

	IDMS/SQL Data Type Support

	Additional Attributes
	Reference: ACTUAL = DATE, TIME, and TIMESTAMP
	Reference: ACTUAL = TX
	Reference: MISSING
	Reference: Comparing Fields With Null Values
	Reference: Optional Field Attributes

	FIELDTYPE=R
	Example: Using FIELDTYPE=R

	Access Files
	Segment Declarations in the Access File
	Syntax: How to Describe a Table or View in an Access File
	Reference: TABLENAME
	Reference: DBSPACE
	Reference: WRITE
	Reference: KEYS
	Reference: KEYORDER
	Reference: FALLBACK (Teradata Only)
	Reference: CONNECTION (Oracle Only)

	Field Declarations (DB2 Only)

	The OCCURS Segment
	Creating an OCCURS Segment
	The ORDER Field

	5. Multi-Table Structures
	Types of Embedded Joins
	Advantages of Multi-table Structures
	Creating a Multi-table Structure
	Multi-table Master Files
	Syntax: How to Define an Equijoin in the Master File
	Syntax: How to Define a Conditional Join in the Master File
	Reference: SEGNAME
	Reference: SEGTYPE
	Reference: PARENT
	Reference: CRFILE
	Reference: FIELD
	Reference: ALIAS
	Example: Specifying an Embedded Equijoin in a Master File
	Example: Specifying a Conditional Join in a Master File

	Multi-table Access Files
	Syntax: How to Create a Multi-table Access File
	Reference: KEYFLD and IXFLD

	Multi-field Embedded Equijoins
	Syntax: How to Implement a Multi-Field Embedded Equijoin
	Example: Creating a Multi-Field Embedded Equijoin

	6. Automated Procedures
	Creating File Descriptions
	AUTODB2
	AUTODB2 Support for DDF
	Procedure: How to Install AUTODB2 DDF Support
	Example: Creating a Location List

	How to Use AUTODB2
	The Main Menu
	Main Menu PFkeys
	The Table Selection Screen
	The Child Selection Screen
	The Common Column Selection Screen
	Completing the Description
	Using PFkeys From non-Main Menu Screens
	Retaining the List of Master Files Generated
	Changing the AUTODB2 Default Data Sets
	The z/OS Parameter Log File
	AUTODB2 Usage Notes

	AUTODB2 in Batch Mode

	AUTODBC
	How to Use AUTODBC
	Security Logon Screen
	Primary Option Menu
	Option 1: Displaying ADUCOL Contents
	Option 2: Maintaining the ADUCOL
	Option 3: Generating Master and Access Files
	Option 4: Redefining Your Teradata Security Profile
	Option 5: Exiting AUTODBC

	Results of the Master File Generation Facilities
	Common Errors
	AUTODB2 Sample Session
	AUTODBC Sample Session

	Generating a Master and Access File Using the CREATE SYNONYM Command
	Syntax: How to Generate a Master and Access File Using the CREATE SYNONYM Command

	Creating Tables: The CREATE FILE Command
	Syntax: How to Create a Table
	CREATE FILE Prerequisites and Processing
	Example: Using CREATE FILE to Create a DB2 Table
	Example: Using CREATE FILE to Create a Teradata Table
	Example: Using CREATE FILE to Create an IDMS SQL Table
	Example: Using CREATE FILE to Create an Oracle Table

	7. The Adapter Optimizer
	Optimizing Requests
	Syntax: How to Invoke Optimization
	Example: SQL Requests Passed to the RDBMS With Optimization OFF
	Example: SQL Requests Passed to the RDBMS With Optimization ON

	Reference: A Note About Examples

	Optimization Logic
	Optimizing Record Selection and Projection
	Record Selection
	Optimizing Selection of Relational Variable Length Character Data Types
	Reference: Usage Notes for Optimization of Selection of Variable Length Data Types
	Example: Optimizing a Selection Test Against a Variable Length Character Column

	Projection

	Optimizing Joins
	RDBMS and FOCUS Join Management
	Join Optimization Logic
	Optimization of Joins Between Heterogeneous Data Sources
	Example: Optimizing Joins Between Heterogeneous Data Sources

	Optimizing Sorts
	Optimizing Aggregation
	Optimizing DEFINE Fields
	Controlling Optimization of Calculations
	Optimizing DEFINE Fields Referenced in FOCUS BY Clauses (DB2, Teradata, Oracle)
	Example: Passing Aggregation on DEFINE Fields to the RDBMS for Processing

	IF-THEN-ELSE Optimization
	Syntax: How to Control IF-THEN-ELSE Optimization
	Example: Using IF-THEN-ELSE Optimization Without Aggregation
	Example: Using IF-THEN-ELSE Optimization With Aggregation
	Example: Using IF-THEN-ELSE Optimization With a Condition That Is Always False

	Valued Expressions
	Reference: Arithmetic Expressions
	Reference: Character String Expressions
	Reference: Logical Expressions

	SQL Limitations on Optimization of DEFINE Expressions

	DEFINE FUNCTION Optimization
	Optimizing Function Calls
	Optimization of the HPART, DPART, HDIFF, HDATE, and DATEDIF Functions
	Optimization of the DATEDIF and HDIFF Functions
	Syntax: How to Calculate the Number of Days Between Date or Date-Time Values
	Reference: Conversion of the DATEDIF and HDIFF Functions to SQL
	Example: Optimizing the Difference Between DB2 Date or Timestamp Columns
	Example: Optimizing the Difference Between Oracle Date or Timestamp Columns

	Optimization of the HPART and DPART Functions
	Syntax: How to Extract a Component From a Date-Time Value
	Syntax: How to Extract a Date Component and Return a Date Component in Integer Format
	Reference: Conversion of the HPART Function to SQL
	Example: Extracting a Component From a DB2 Timestamp Column
	Example: Extracting a Component From an Oracle Timestamp Column

	Optimization of the HDATE Function
	Syntax: How to Extract the Date Portion of a Date-Time Value
	Reference: Conversion of the HDATE Function to SQL
	Example: Extracting the Date Portion of a DB2 Timestamp Column
	Example: Extracting the Date Portion of an Oracle Timestamp Column

	Passing the SUBSTR Character Function to SQL
	Passing Function Calls Directly to a Relational Engine Using SQL.Function Syntax
	Reference: Usage Notes for Direct SQL Function Calls
	Example: Calling the SQL CONCAT Function in a Request
	Example: Calling the SQL COALESCE Function in a Request

	The FOCUS EXPLAIN Utility (DB2 and Teradata)
	EXPLAIN Processing Overview
	Using the EXPLAIN Utility
	Sample EXPLAIN Report for DB2
	Sample EXPLAIN Report for Teradata

	8. Advanced Reporting Techniques
	FOCUS and SQL Similarities
	The TABLEF Command
	Creating Tables Using the HOLD Command
	Example: Converting the FOCUS PROD Database to a DB2 Table
	Master Files Generated by HOLD
	Example: Sample Master File Generated by HOLD
	Example: Creating a DB2 Table With a Long Name on OS/390

	Access Files Generated by HOLD
	Example: Sample Access File Generated by HOLD

	Other Files Generated by HOLD
	Usage Restrictions for HOLD
	Extract File Conversion Charts
	Reference: Extract File Conversion Chart for DB2 and DB2 for VM
	Reference: Extract File Conversion Chart for Teradata
	Reference: Extract File Conversion Chart for IDMS SQL
	Reference: Extract File Conversion Chart for Oracle

	HOLD FORMAT SAME_DB
	Syntax: How to Save Report Output as a Temporary Table
	Reference: Temporary Table Properties for SAME_DB Persistence Values
	Column Names in the HOLD File
	Primary Keys and Indexes in the HOLD File

	Using the Dynamic JOIN Command
	Reference: Preserving Virtual Fields During Join Parsing
	Constructing a Single-field Dynamic Equijoin
	Syntax: How to Construct a Single-Field Dynamic Equijoin
	Example: Using a Single-Field Dynamic Equijoin
	Example: Implementing a Single-Field Dynamic Equijoin

	Constructing a Multi-field Dynamic Equijoin
	Syntax: How to Construct a Multi-Field Dynamic Equijoin
	Example: Using a Multi-field Dynamic Join

	Constructing a Conditional Join
	Syntax: How to Construct a Conditional Join
	Example: Using a Conditional Join

	Optimizing Non-Equality WHERE-based Left Outer Joins
	Syntax: How to Specify a Conditional Left Outer Join
	Reference: Conditions for WHERE-based Outer Join Optimization

	Controlling Outer Join Optimization
	Syntax: How to Control Outer Join Optimization
	Reference: Effects of Combinations of Settings on Outer Join Optimization
	Example: Enabling Left Outer Join Optimization

	Missing Rows of Data in Cross-referenced Tables
	The SET ALL Command
	Missing Rows in Unique Descendants
	Reference: How FOCUS Processes a Unique Join
	Example: FOCUS Unique Join Processing

	Reference: How the RDBMS Processes a Unique Join

	Missing Rows in Non-unique Descendants
	Reference: SET ALL=OFF With a Non-unique Join
	Example: Non-Unique Join Processing With SET ALL = OFF

	Reference: SET ALL=ON With a Non-unique Join
	Example: Non-Unique Join Processing With SET ALL = ON

	Reference: SET ALL=ON With Screening Conditions
	Reference: Selective ALL. Prefix

	Summary Chart

	JOIN Utilities
	CHECK FILE
	Example: Displaying a Structure With CHECK FILE

	? JOIN
	JOIN CLEAR

	Implementing Search Limits
	Syntax: How to Implement Search Limits
	Example: Reducing DB2 Answer Set Size
	Example: Using Oracle READLIMIT Optimization

	Array Blocking for SELECT Requests
	Multiple Retrieval Paths
	Multiple Retrieval Paths With Sort Phrases and Screening Tests

	9. Direct SQL Passthru
	Direct SQL Passthru Advantages
	Invoking Direct SQL Passthru
	Invoking Automatic Passthru
	Syntax: How to Issue the SET SQLENGINE Command

	Issuing Commands and Requests
	Syntax: How to Issue a Direct SQL Passthru Request
	Displaying the Effects of UPDATE and DELETE Commands
	Issuing Adapter Environmental Commands
	Example: Issuing Adapter Environmental Commands

	Issuing Native SQL Commands (Non-SELECT)
	Example: Issuing Native SQL Commands (Non-SELECT)

	Issuing SQL SELECT Commands
	Example: Issuing SQL SELECT Commands

	The SQLOUT Master File
	Example: Sample SQLOUT Master File
	Reference: SQLOUT Formats for DB2 and IDMS/SQL
	Reference: SQLOUT Formats for Teradata
	Reference: SQLOUT Formats for Oracle
	Syntax: How to Alter Length and Scale of Numeric Columns Returned
	Example: Altering the Length and Scale of Numeric Columns Returned

	Syntax: How to Control the Precision of the Oracle NUMBER Data Type
	Example: Customizing Output of a Direct SQL Passthru Report Request

	Reference: Usage Notes for Customizing a Direct SQL Passthru Report

	Creating a FOCUS View With Direct SQL Passthru
	Syntax: How to Create a FOCUS View With Direct SQL Passthru
	Reference: Usage Notes for Creating a FOCUS View
	Example: Creating a FOCUS View

	Parameterized SQL Passthru
	Parameterized SQL Command Summary
	Syntax: How to Issue Parameterized Passthru Commands

	Using the SQL Passthru BEGIN/END SESSION Commands
	Syntax: How to Begin and Terminate a Sequence of Direct SQL Passthru Commands

	Using the SQL Passthru COMMIT WORK Command
	Syntax: How to COMMIT Data Source Changes

	Using the SQL Passthru ROLLBACK WORK Command
	Syntax: How to ROLLBACK Data Source Changes

	Using the SQL Passthru PREPARE Command
	Syntax: How to PREPARE an SQL Statement
	Example: Preparing a Parameterized Passthru Command

	Reference: Usage Notes for PREPARE

	Using the SQL Passthru EXECUTE Command
	Syntax: How to Execute a Prepared SQL Command
	Example: Executing a Prepared Passthru Command

	Reference: Usage Notes for EXECUTE

	Using the SQL Passthru PURGE Command
	Syntax: How to Purge an SQL Command
	Example: Purging an SQL Command

	Using the SQL Passthru BIND Command
	Syntax: How to Define Formats of SQL Parameters
	Reference: Usage Notes for BIND

	Parameterized SQL Passthru Sample Session

	10. Controlling Connection Scope
	Invoking Actions in Response to Events
	Syntax: How to Automatically Invoke Actions in Response to Events
	Reference: Usage Notes for SET AUTOaction ON Event

	Understanding Actions
	AUTOCOMMIT
	AUTOCLOSE
	AUTODISCONNECT

	Action and Event Combinations
	SET AUTOCOMMIT ON CRTFORM
	SET AUTOCOMMIT ON FIN
	SET AUTOCLOSE ON COMMAND
	SET AUTODISCONNECT ON COMMIT
	SET AUTOCLOSE ON FIN
	SET AUTODISCONNECT ON FIN

	Combinations of SET AUTOaction Commands
	Establishing Different Types of FOCUS Sessions
	The Default Adapter Session
	The User-Controlled Session
	The Pseudo-Conversational Session
	Example: Explicit Control of a Logical Unit of Work (LUW)

	11. Adapter Commands
	Issuing Adapter Commands
	Syntax: How to Issue Adapter Commands

	Querying Adapter Parameter Settings
	Syntax: How to Query Data Adapter Parameter Settings
	Example: Querying Adapter for DB2 Settings
	Example: Querying Adapter for Teradata Settings
	Example: Querying Adapter for IDMS/SQL Settings
	Example: Querying Adapter for Oracle Settings

	Parameters That Apply to Multiple Adapters
	CONVERSION
	Syntax: How to Alter Length and Scale of Numeric Columns Returned

	CONVERSION LONGCHAR (DB2, Oracle, Teradata)
	Syntax: How to Control the Mapping of Large Character Data Types

	DBSPACE
	DEFDATE
	EXPLAIN (DB2, Teradata)
	FETCHSIZE (DB2, Oracle)
	Syntax: How to Specify Block Size for Array Retrieval

	INSERTSIZE (DB2 CLI, Oracle)
	Syntax: How to Specify Block Size for Insert Processing

	IXSPACE (DB2, IDMS/SQL, Oracle)
	Example: Providing Index Space Parameters

	OPTIFTHENELSE
	OPTIMIZATION
	OWNERID (DB2, Teradata, Oracle)
	PASSRECS
	SQLJOIN OUTER (DB2, Teradata, Oracle)
	TRIM_LITERALS (DB2, Oracle, Teradata)
	VARCHAR (DB2, Oracle, Teradata)
	Syntax: How to Control the Mapping of Variable-Length Data Types

	Parameters That Apply to DB2 Only
	BINDOPTIONS
	CURRENT DEGREE
	CURRENT SQLID
	ERRORTYPE
	ISOLATION (DB2)
	Syntax: How to Dynamically Change the Isolation Level

	PLAN
	SSID
	NOCOLUMNTITLE
	Syntax: How to Control Column Names

	Parameters That Apply to Teradata Only
	Teradata CONNECTION_ATTRIBUTES
	TRANSACTION
	Syntax: How to Set the Transaction Mode of a Teradata Connection

	Parameters That Apply to IDMS/SQL Only
	CURRENT SCHEMA
	TRANSACTION
	IDMS SQL Session Control: The CONNECT Command
	IDMS SQL Session Control: Other Session Commands

	Parameters That Apply to Oracle Only
	Oracle CONNECTION_ATTRIBUTES
	DATETIME_PROCESS
	Syntax: How to Choose a Source for System Date and Time

	DEFAULT_CONNECTION
	ORACHAR
	ORANUMBER
	Syntax: How to Override the Precision of the Oracle NUMBER Data Type

	SPMAXPRM

	Parameters That Apply to MODIFY Only
	LOADONLY
	AUTOCOMMIT ON CRTFORM
	Syntax: How to Invoke the Change Verify Protocol

	ERRORRUN

	Adapter Dialogue Manager Variables
	Dialogue Manager Variables for the Adapter for DB2
	Dialogue Manager Variables for the Adapter for Teradata
	Dialogue Manager Variables for the Adapter for IDMS/SQL
	Dialogue Manager Variables for the Adapter for Oracle

	12. Maintaining Tables With FOCUS
	Overview of Data Source Maintenance Facilities
	Types of Relational Transaction Processing
	The Role of the Primary Key
	Index Considerations
	Example: Unique Index on a Primary Key

	Modifying Data
	The MATCH Command
	Syntax: How to Use the MATCH Command in MODIFY
	Reference: Acceptable Actions for MATCH
	Adapter MATCH Behavior
	Example: Using the MODIFY MATCH Command

	The NEXT Command
	Syntax: How to Use the NEXT Command in MODIFY
	Reference: Usage Notes for NEXT in MODIFY
	Reference: Usage Notes for NEXT in Maintain
	NEXT Processing Without MATCH
	Example: Using NEXT Without MATCH in MODIFY
	Example: Using NEXT in Maintain

	NEXT Processing After MATCH on a Full Key or on a Superset
	Example: Using NEXT After MATCH on a Full Primary Key in MODIFY
	Example: Using NEXT on a Full Primary Key in Maintain

	NEXT Processing After MATCH on a Non-Key Field or Partial Key
	Example: Using MATCH on a Non-Key Field in MODIFY
	Example: Using NEXT on a Non-Key Field in Maintain

	INCLUDE, UPDATE, and DELETE Processing
	Example: Updating Rows With MODIFY
	Example: Updating Rows With Maintain

	RDBMS Transaction Control Within MODIFY
	Transaction Termination (COMMIT WORK)
	Example: Using COMMIT WORK in a MODIFY Procedure

	Teradata Transaction Termination: BEGIN/END TRANSACTION
	Example: Teradata Transaction Control Using BEGIN/END TRANSACTION

	RDBMS Transaction Termination (ROLLBACK WORK)
	Example: Using ROLLBACK WORK in a MODIFY Procedure
	Example: RDBMS Transaction Control

	Using the Return Code Variable: FOCERROR
	Using the Adapter SET ERRORRUN Command
	The DB2 Resource Limit Facility

	Referential Integrity
	RDBMS Referential Integrity
	FOCUS Referential Integrity
	FOCUS INCLUDE Referential Integrity
	Example: Using FOCUS INCLUDE Referential Integrity

	FOCUS DELETE Referential Integrity
	Example: Using FOCUS DELETE Referential Integrity

	Inhibiting FOCUS Referential Integrity

	The MODIFY COMBINE Facility
	Syntax: How to Create a COMBINE Structure
	How FOCUS Creates a COMBINE Structure
	SET INCLUDE SUBTREE

	The LOOKUP Function
	The FIND Function
	Isolation Levels and Locks
	DB2 Isolation Levels
	Changing the DB2 Isolation Level
	Syntax: How to Change the DB2 Isolation Level

	Changing the DB2 Isolation Level by Switching to Another Plan
	Syntax: How to Dynamically Change the DB2 Plan

	Isolation Levels in IDMS/SQL
	Syntax: How to Change the IDMS SQL Isolation Level

	Oracle Locks

	Issuing SQL Commands in MODIFY
	Example: Issuing SQL Commands in MODIFY

	Change Verify Protocol: AUTOCOMMIT ON CRTFORM
	Syntax: How to Invoke the Change Verify Protocol
	The FOCURRENT Variable
	Rejected Transactions and T. Fields
	Example: Testing FOCURRENT

	Loading Tables Faster: The MODIFY Fastload Facility
	DB2 and Oracle Array Blocking for INSERT Requests
	Syntax: How to Set INSERTSIZE for DB2 and Oracle
	Example: Sample Oracle Session Using INSERTSIZE

	13. Static SQL (DB2)
	Static SQL Overview
	Static SQL Requirements
	Creating a Static Procedure for DB2
	Write the FOCEXEC
	Allocate the Required DDNAMEs
	Optionally Issue the SET STATIC Command
	Optionally Issue the SET SSID Command
	Compile the FOCEXEC
	Syntax: How to Compile a Static MODIFY Procedure on z/OS

	Optionally BIND the Plan for the FOCEXEC
	Authorize Users to Run the Plan
	Run-time Requirements
	Processing and Security Overview
	DB2 Static MODIFY Example

	Plan Management in DB2
	Basic Plan Management
	Extended Plan Management

	Resource Restrictions

	A. Additional Topics
	Status Return Variable: &RETCODE
	Example: Testing the Return Code Using &RETCODE

	Standard FOCUS and Adapter Differences
	Adapter for DB2 Stored Procedure Support (CLI Only)
	Example: Sample Stored Procedure

	Adapter for Oracle Stored Procedure Support
	Syntax: How to Invoke an Oracle Stored Procedure
	Reference: Rules for Oracle Stored Procedures
	Syntax: How to Set a Maximum Number of Input Parameters for Oracle Stored Procedures
	Example: Sample Oracle Stored Procedure
	Example: Invoking an Oracle Stored Procedure That Returns an Answer Set
	Example: Invoking an Oracle Stored Procedure That Returns a Return Code

	Adapter for Teradata Stored Procedure and Macro Support
	Example: Calling a Macro
	Example: Calling a Stored Procedure
	Example: Sample Teradata Stored Procedure

	Default Date Considerations
	The Default Date Value
	The Adapter SET DEFDATE Command
	Effects of DEFDATE on Existing Applications
	Chart: FOCUS Date Values for User Input Values

	Remote Segment Descriptions
	Example: Using a Remote Segment Description

	Long Field Name Considerations
	Limitations on Long Field Names
	Describing a Long Field Name in the Access File (AUTODBC)

	Determining DB2 Decimal Notation at Run-time
	CALLDB2: Invoking Subroutines Containing Embedded SQL
	Syntax: How to Invoke CALLDB2
	Creating CALLDB2-Invoked Subroutines
	Procedure: How to Write the Subroutine
	Example: Preparing a Static Subroutine for use With CALLDB2
	Example: Precompiling the Subroutine
	Example: Compiling or Assembling the Subroutine
	Example: Link-Editing the Subroutine
	Example: Binding the Subroutine

	CALLDB2 Run-time Requirements
	Example: Sample Procedure for Invoking CALLDB2

	The DB2 Distributed Data Facility
	File Descriptions for DDF
	Accessing Tables at Different Locations

	DB2 DRDA Support
	Level 1 DRDA Support: CONNECT
	Syntax: How to Issue the CONNECT Command

	Level 2 DRDA Support
	Syntax: How to Dynamically Connect to a DB2 Server or Release a Connection
	Syntax: How to Switch Application Packages Dynamically

	Read-only Access to IMS Data From DB2 MODIFY Procedures
	Prerequisites for DB2 Access to IMS Data
	Implementation of DB2 Access to IMS Data
	Syntax: How to Issue MODIFY Subcommands With a COMBINE Structure
	Reference: The LOOKUP Function With a Dynamic JOIN

	Run-time Requirements for DB2 Access to IMS
	Example: JCL Preparation for DB2 Access to IMS in Batch
	Example: CLIST Preparation for DB2 Access to IMS in Interactive Environments

	B. SQL Codes and Adapter Messages
	Common SQL Return Codes for DB2
	Common DBC Return Codes for Teradata
	Common User Errors and Corrections
	Accessing Adapter Messages
	Example: Displaying a Message

	C. File Descriptions and Tables
	Samples Overview
	ADDRESS Sample
	ADDRESS MASTER
	ADDRESS FOCSQL
	ADDRESS Diagram

	COURSE Sample
	COURSE MASTER
	COURSE FOCSQL
	COURSE Diagram

	DEDUCT Sample
	DEDUCT MASTER
	DEDUCT FOCSQL
	DEDUCT Diagram

	EMPINFO Sample
	EMPINFO MASTER
	EMPINFO FOCSQL
	EMPINFO Diagram

	FUNDTRAN Sample
	FUNDTRAN MASTER
	FUNDTRAN FOCSQL
	FUNDTRAN Diagram

	PAYINFO Sample
	PAYINFO MASTER
	PAYINFO FOCSQL
	PAYINFO Diagram

	SALINFO Sample
	SALINFO MASTER
	SALINFO FOCSQL
	SALINFO Diagram

	ECOURSE Sample
	ECOURSE MASTER
	ECOURSE FOCSQL
	ECOURSE Diagram

	EMPADD Sample
	EMPADD MASTER
	EMPADD FOCSQL
	EMPADD Diagram

	EMPFUND Sample
	EMPFUND MASTER
	EMPFUND FOCSQL
	EMPFUND Diagram

	EMPPAY Sample
	EMPPAY MASTER
	EMPPAY FOCSQL
	EMPPAY Diagram

	SALDUCT Sample
	SALDUCT MASTER
	SALDUCT FOCSQL
	SALDUCT Diagram

	SALARY Sample
	SALARY MASTER
	SALARY FOCSQL
	SALARY Diagram With OCCURS Segment

	DPBRANCH Sample
	DPBRANCH Table Definition
	DPBRANCH Contents

	DPINVENT Sample
	DPINVENT Table Definition
	DPINVENT Contents

	DPVENDOR Sample
	DPVENDOR Table Definition
	DPVENDOR Contents

	D. Tracing Adapter Processing
	Available Traces
	Activating Trace Components
	Syntax: How to Activate Trace Components
	Syntax: How to Control Trace Timestamps

	Activating the Trace Destination
	Syntax: How to Activate the Trace Destination

	Deactivating Trace Components
	Trace Activation and Deactivation Examples
	Querying Traces
	Example: Querying Traces

	Allocating FSTRACE
	How to Allocate FSTRACE Online
	How to Allocate FSTRACE in Batch
	How to Free Trace Allocations

	Legal and Third-Party Notices
	Index

