
TIBCO FOCUS®

Copyright © 2022. TIBCO Software Inc. All Rights Reserved.

Developing Applications

Release 9.0.0
July 2022
DN1001057.0722

Contents

1. Customizing Your Environment . 23

When Do You Use the SET Command? . 23

Coding a SET Command . 23

Types of SET Parameters . 27

Calculations. .28

Data and Metadata. 29

Date Manipulation Tasks. .33

Graph Tasks. 34

Memory Setup and Optimization Tasks. .36

Report Code, Content, and Processing Tasks. 38

Report Layout and Display Tasks. .43

Security Tasks. .49

Terminal Tasks. 49

SET Parameter Syntax .51

ACCBLN. 55

ACROSSLINE. 55

ACROSSPRT. .55

ACROSSTITLE. 56

ACRSVRBTITL. 57

ALL .58

ALLOWCVTERR. 58

ALTBACKPERLINE. 59

ARCFGU. 60

ASNAMES. .60

AUTOFIT. 61

AUTOINDEX. 62

AUTOPATH. 62

AUTOSTRATEGY. 63

AUTOTABLEF. 63

BASEURL. 63

BINS. 64

BLANKEMPTY. 64

Developing Applications 3

BLANKINDENT. 65

BOTTOMMARGIN. .66

BUSDAYS. .66

BYDISPLAY. .66

BYPANEL. 67

CACHE. 68

CARTESIAN. 69

CDN. 69

CENT-ZERO. 70

CNOTATION. 70

COLLATION. 71

COMPMISS. 72

COMPOUND. .73

COMPUTE. .74

COUNTWIDTH. 74

CSSURL. 75

CURRENCY_DISPLAY. 75

CURRENCY_ISO_CODE. 76

CURRENCY_PRINT_ISO. 76

CURRSYMB. 77

CURSYM_D. 77

CURSYM_E. 78

CURSYM_F. .78

CURSYM_G. 78

CURSYM_L. .79

CURSYM_Y. 79

DATE_ORDER. .79

DATE_SEPARATOR. 80

DATEDISPLAY. 81

DATEFNS. 82

DATEFORMAT. 82

DATETIME. 82

DB_INFILE. 83

Contents

4

DBACSENSITIV. 83

DBAJOIN. .84

DBASOURCE. 84

DEFCENT. 85

DEFECHO. 86

DEFINES. .86

DIRECTHOLD. 87

DMH_LOOPLIM. 87

DMH_STACKLIM. 87

DMPRECISION. .88

DRILLFOCMISSING. 88

DROPBLNKLINE. .89

DTSTRICT. .90

DUPLICATECOL. 90

EMBEDDABLE. 90

EMPTYCELLS. .91

EMPTYREPORT. 91

EQTEST. .92

ERROROUT. .93

ESTRECORDS. 94

EUROFILE. .94

EXCELSERVURL. .94

EXL2KLANG. 95

EXL2KTXTDATE. 95

EXTAGGR. 96

EXTENDNUM. 96

EXTHOLD. 97

EXTRACT. .97

EXTSORT. 98

FIELDNAME. 98

FILE[NAME]. 99

FILTER. 99

FIXRET[RIEVE]. 100

Contents

Developing Applications 5

FLOATMAPPING. .100

FOC144. 101

FOCEXURL. 101

FOCFIRSTPAGE. 102

FOCSTACK. .102

FORMULTIPLE. 103

HDAY. 103

HIDENULLACRS. 104

HLDCOM_TRIMANV. 104

HNODATA. .104

HOLDATTR. 105

HOLDFORMAT. 106

HOLDLIST. 106

HOLDMISS. .107

HOLDSTAT. 108

HTMLARCHIVE. 108

HTMLCSS. 108

HTMLEMBEDIMG. 109

HTMLENCODE. .109

INDEX. .110

JOIN_LENGTH_MODE (JOINLM). 111

JOINOPT. .111

KEEPDEFINES. 112

KEEPFILTERS. 113

LANG[UAGE] .113

LAYOUTGRID. 115

LEADZERO. 116

LEFTMARGIN. 116

LINES. 116

MATCHCOLUMNORDER. .117

MAXDATAEXCPT. 118

MAXLRECL. .118

MDICARDWARN. 119

Contents

6

MDIENCODING. 119

MDIPROGRESS. 120

MESSAGE. 120

MISS_ON. 121

MISSINGTEST. 121

MULTIPATH. 122

NEG-ZERO. 123

NODATA. 123

NULL. .124

OLDSTYRECLEN. 124

ONFIELD. .125

ORIENTATION. 125

OVERFLOWCHAR. 126

PAGE[-NUM]. .126

PAGESIZE. 127

PANEL. 129

PARTITION_ON. 129

PASS. 130

PCOMMA. 130

PCTFORMAT. 131

PDFLINETERM. .132

PERMPASS .132

PHONETIC_ALGORITHM. .133

PRFTITLE. 133

PRINT. 134

PRINTDST. 134

PRINTPLUS. 135

PSPAGESETUP. 135

QUALCHAR. 136

QUALTITLES. .136

RANK. 137

RECAP-COUNT. .137

RECORDLIMIT. 138

Contents

Developing Applications 7

RIGHTMARGIN. .138

RPAGESET. 138

SAVEDMASTERS. .139

SAVEMATRIX. 139

SHADOW. 140

SHIFT. 140

SHORTPATH. 141

SHOWBLANKS. 142

SORTMATRIX. .142

SORTMEMORY. 143

SPACES. 143

SQLTOPTTF. 144

SQUEEZE. 144

STYLE[SHEET]. .145

SUBTOTALS. .145

SUMMARYLINES. .146

SUMPREFIX. 147

TESTDATE. 147

TIME_SEPARATOR. 148

TITLELINE. .148

TITLES. 148

TOPMARGIN. .149

UNITS. .149

USER. 150

USERFCHK. 150

USERFNS. .151

WARNING. .152

WEEKFIRST. 152

WPMINWIDTH. 153

XLSXPAGEBRKIGNORE. 154

XRETRIEVAL. .154

YRTHRESH. .154

Contents

8

2. Managing Applications . 157

What Is an Application? . 157

Application Commands Overview . 159

Search Path Management Commands .162

APP PATH. .162

APP PREPENDPATH. 163

APP APPENDPATH. 164

APP MAP. 165

APP SET METALOCATION_SAME. 167

APP ? METALOCATION_SAME. .167

APP SHOWPATH. 167

Application and File Management Commands . 168

APP CREATE. 168

APP COPY. 170

APP COPYF[ILE]. .171

APP MOVE. 172

APP MOVEF[ILE]. 173

APP DELETE. 174

APP DELETEF[ILE]. .174

APP PROPERTY CODEPAGE. .175

APP RENAME. .175

APP RENAMEF[ILE]. 176

Designating File Types for APP Commands. 177

Output Redirection Commands . 181

APP HOLD. 183

APP HOLDDATA. .184

APP HOLDMETA. 184

APP FI[LEDEF]. 185

Application Metadata Commands and Catalog Metadata . 185

Retrieving Basic Information. .185

STATE. 186

APP LIST. 187

Contents

Developing Applications 9

APP QUERY. 188

Retrieving Extended Catalog Information. 190

catalog/sysapps. 190

catalog/sysfiles. 191

APP HELP . 193

Accessing Metadata and Procedures . 193

Search Rules. .193

Creation Rules for Procedure Files. 194

Locating Master Files and Procedures. 194

Accessing Existing Data Files. .196

Creation Rules for Data Files. 196

Data Set Names. .201

Allocating Temporary Files . 202

3. Managing Flow of Control in an Application . 207

Uses for Dialogue Manager . 207

Dialogue Manager Variables Overview. 210

Dialogue Manager Processing . 211

Creating a Procedure . 214

Including Comments in a Procedure. 215

Sending a Message to the User. 216

Controlling User Access to Data. 217

Creating a Startup Procedure. 218

Executing and Terminating a Procedure .219

Executing Procedures. 219

Executing Stacked Commands and Continuing the Procedure. 220

Executing Stacked Commands and Exiting the Procedure. .221

Canceling the Execution of a Procedure. 222

Locking Procedure Users Out of FOCUS. 223

Navigating a Procedure .223

Branching Unconditionally. .224

Branching Conditionally. .225

Looping in a Procedure. 228

Contents

10

Incorporating Another Procedure With -INCLUDE. 231

Nesting Procedures With -INCLUDE. 234

Calling Another Procedure With EXEC. 234

Developing an Open-Ended Procedure. 235

Using Variables in a Procedure . 236

Local Variables. 238

Global Variables. 239

System Variables. 240

Statistical Variables. .248

Special Variables. 251

Querying the Values of Variables and Parameters. 251

Supplying and Verifying Values for Variables .253

Supplying a Default Variable Value. 256

Supplying Variable Values in an Expression. .257

Reading Variable Values From and Writing Variable Values to an External File. 262

Reading or Writing an Entire File. 269

EDAGET: Reading a File of a Specified Type. 269

EDAPUT: Writing a File of a Specified Type. 271

Supplying Variable Values on the Command Line. 273

Prompting Directly for Values With -PROMPT. 276

Prompting for Values on Screens With -CRTFORM. 277

Prompting for Values on Menus and Windows With -WINDOW. 277

Prompting for Values Implicitly. .277

Verifying User-Supplied Values Against a Set of Format Specifications.278

Verifying User Input Against a Pre-Defined List of Values. 279

Manipulating and Testing Variables . 281

Testing Variables for Length, Type, and Existence. 282

Replacing a Variable Immediately. 285

Validating Variable Values Without Data File Access: REGEX. 287

Concatenating Variables. 289

Creating an Indexed Variable. 290

Creating a Standard Quote-Delimited String. 291

Performing a Calculation on a Variable. .295

Contents

Developing Applications 11

Changing a Variable Value With the DECODE Function. 295

Extracting Characters From a Variable Value With the EDIT Function. 296

Removing Trailing Blanks From Variables With the TRUNCATE Function. 297

Calling a Function. .299

Using Variables to Alter Commands. 301

Using Numeric Amper Variables in Functions . 302

Determining Amper Variable Data Type. 302

Manipulating Amper Variables. 302

Using an Amper Variable in an Expression. .303

Using Amper Variables as Subroutine Parameters. 304

Using a Numeric Amper Variable as a Numeric Subroutine Parameter. 304

Using a Numeric Amper Variable as an Alphanumeric Subroutine Parameter. 305

Debugging a Procedure .306

Issuing an Operating System Command . 313

Dialogue Manager Quick Reference . 313

-* Command. 314

? Command. .314

-CLOSE Command. 314

-CRTCLEAR Command. 315

-CRTFORM Command. .315

-DEFAULT[S|H] Command. 316

-EXIT Command. .317

-GOTO Command. 317

-IF Command. .317

-INCLUDE Command. 318

-label Command. 319

-MVS Command. 319

-MVS RUN Command. 319

-PASS Command. .320

-PROMPT Command. 320

-QUIT Command. 321

-READ Command. 322

-READFILE Command. 323

Contents

12

-REMOTE Command. 323

-REPEAT Command. .323

-RUN Command. 324

-SET Command. 325

-TSO Command. .325

-TSO RUN Command. 326

-TYPE Command. 326

-WINDOW Command. 327

-WRITE Command. .328

-" " Command. 328

Dialogue Manager Defaults and Limits. .329

4. Testing and Debugging With Query Commands . 333

Using Query Commands . 334

Displaying Combined Structures . 336

Displaying Virtual Fields . 336

Displaying the Currency Data Source in Effect . 338

Displaying Available Fields .338

Displaying the File Directory Table . 339

Displaying Field Information for a Master File .341

Displaying Data Source Statistics .342

Displaying Defined Functions .344

Displaying HOLD Fields .345

Displaying JOIN Structures .345

Displaying National Language Support .346

Displaying LET Substitutions . 347

Displaying Information About Loaded Files . 347

Displaying Explanations of Error Messages .348

Displaying PF Key Assignments .349

Displaying the Release Number . 349

Displaying Parameter Settings . 350

Displaying Graph Parameters . 352

Displaying the Site Code . 353

Contents

Developing Applications 13

Displaying Command Statistics .354

Displaying StyleSheet Parameter Settings . 357

Displaying Information About the SU Machine . 359

Displaying Data Sources Specified With USE . 359

Displaying Global Variable Values .360

Reporting Dynamically From System Tables . 361

Overview of System Table Synonyms. 361

SYSAPPS: Reporting on Applications and Application Files. 363

SYSCOLUM: Reporting on Tables and Their Columns. 364

SYSDEFFN: Reporting on DEFINE FUNCTIONS. 365

SYSERR: Reporting on Error Message Files. .366

SYSFILES: Reporting on Metadata or Procedure Directory Information. 367

SYSIMP: Reporting on Impact Analysis Information. 369

SYSINDEX: Reporting on Index Information. 370

SYSKEYS: Reporting on Key Information. 371

SYSRPDIR: Reporting on Stored Procedures. 372

SYSSET: Reporting on SET Parameters. 373

SYSSQLOP: Reporting on Function Information. .373

SYSTABLE: Reporting on Table Information. 374

Reporting on Data Types. .375

5. Defining a Word Substitution . 377

The LET Command . 377

Variable Substitution .380

Null Substitution . 382

Multiple-Line Substitution .383

Recursive Substitution . 384

Using a LET Substitution in a COMPUTE or DEFINE Command . 385

Checking Current LET Substitutions . 385

Interactive LET Query: LET ECHO . 386

Clearing LET Substitutions .387

Saving LET Substitutions in a File .388

Assigning Phrases to Function Keys .388

Contents

14

6. Enhancing Application Performance . 391

FOCUS Facilities . 391

Loading a File .391

Loading Master Files, FOCUS Procedures, and Access Files. 393

Displaying Information About Loaded Files. 394

Saving Master Files in Memory for Reuse . 395

Accessing a FOCUS Data Source . 398

Using MINIO. 398

Determining If a Previous Command Used MINIO. .399

7. Working With Cross-Century Dates . 403

When Do You Use the Sliding Window Technique? . 403

The Sliding Window Technique . 404

Defining a Sliding Window. .405

Creating a Dynamic Window Based on the Current Year. 406

Applying the Sliding Window Technique . 407

When to Supply Settings for DEFCENT and YRTHRESH. 407

Date Validation. 408

Defining a Global Window With SET . 408

Defining a Dynamic Global Window With SET . 411

Querying the Current Global Value of DEFCENT and YRTHRESH . 414

Defining a File-Level or Field-Level Window in a Master File . 415

Defining a Window for a Virtual Field . 422

Defining a Window for a Calculated Value . 428

Additional Support for Cross-Century Dates . 433

Default Date Display Format. .433

Date Display Options. .434

System Date Masking. 434

Date Functions. 434

Date Conversion. .434

Century and Threshold Information. 434

Date Time Stamp. 435

8. Euro Currency Support . 437

Contents

Developing Applications 15

Integrating the Euro Currency . 437

Converting Currencies .438

Creating the Currency Data Source .439

Identifying Fields That Contain Currency Data .442

Activating the Currency Data Source . 444

Processing Currency Data . 445

Querying the Currency Data Source in Effect . 449

Punctuating Numbers . 449

Selecting an Extended Currency Symbol . 451

9. Designing Windows With Window Painter . 455

Introduction . 455

How Do Window Applications Work?. 456

Window Files and Windows . 457

Types of Windows You Can Create. 458

Vertical Menus. 458

Horizontal Menus. .458

Text Input Windows. 459

Text Display Windows. 460

File Names Windows. 460

Field Names Windows. .461

File Contents Windows. 462

Return Value Display Windows. 462

Execution Windows. 464

Multi-Input Windows. 466

Creating Windows. .467

Creating a Horizontal Menu. 467

Pull-down Menus. 470

Creating a Multi-Input Window. 472

Integrating Windows and the FOCEXEC . 475

Transferring Control in Window Applications. 476

Return Values. 478

Goto Values. .479

Contents

16

Returning From a Window to Its Caller. 480

Window System Variables. .480

&WINDOWNAME. .480

&WINDOWVALUE. 480

Testing Function Key Values. .481

Executing a Window From the FOCUS Prompt. 482

Tutorial: A Menu-Driven Application . 484

Creating the Application FOCEXEC. .485

Creating the Window File. .487

Creating the Text Display Window Named BORDER. 489

Creating the Text Display Window Named BANNER. 493

Creating the Vertical Menu Window Named MAIN. 495

Creating the Vertical Menu Window Named EXECTYPE. 501

Creating the File Names Window Named EXECNAME. 503

Executing the Application. 505

Window Painter Screens .505

Invoking Window Painter. 506

Entry Menu. 506

Main Menu. 508

Window Creation Menu. 510

Window Design Screen. 512

Window Options Menu. .515

Utilities Menu. 527

Transferring Window Files . 530

Creating a Transfer File. 531

Transferring the File to the New Environment. 532

Editing the Transfer File. 532

The Format of the Transfer File. 532

Operating Environment Considerations. 536

Compiling the Transfer File. 538

A. Master Files and Diagrams .541

EMPLOYEE Data Source .541

Contents

Developing Applications 17

EMPLOYEE Master File. 543

EMPLOYEE Structure Diagram. 544

JOBFILE Data Source . 544

JOBFILE Master File. 545

JOBFILE Structure Diagram. .545

EDUCFILE Data Source .546

EDUCFILE Master File. 546

EDUCFILE Structure Diagram. 547

SALES Data Source .547

SALES Master File. 548

SALES Structure Diagram. 549

PROD Data Source . 549

PROD Master File. 550

PROD Structure Diagram. .550

CAR Data Source .550

CAR Master File. 551

CAR Structure Diagram. 552

LEDGER Data Source . 552

LEDGER Master File. .553

LEDGER Structure Diagram. .553

FINANCE Data Source .553

FINANCE Master File. 553

FINANCE Structure Diagram. 554

REGION Data Source . 554

REGION Master File. 554

REGION Structure Diagram. 554

COURSES Data Source .555

COURSES Master File. 555

COURSES Structure Diagram. 555

EMPDATA Data Source . 555

EMPDATA Master File. 556

EMPDATA Structure Diagram. 556

EXPERSON Data Source .556

Contents

18

EXPERSON Master File. 557

EXPERSON Structure Diagram. 557

TRAINING Data Source . 557

TRAINING Master File. 558

TRAINING Structure Diagram. 558

COURSE Data Source . 558

COURSE Master File. 558

COURSE Structure Diagram. 559

JOBHIST Data Source . 559

JOBHIST Master File. 559

JOBHIST Structure Diagram. 559

JOBLIST Data Source . 559

JOBLIST Master File. .560

JOBLIST Structure Diagram. .560

LOCATOR Data Source . 560

LOCATOR Master File. .560

LOCATOR Structure Diagram. 561

PERSINFO Data Source . 561

PERSINFO Master File. 561

PERSINFO Structure Diagram. 561

SALHIST Data Source . 562

SALHIST Master File. 562

SALHIST Structure Diagram. 562

PAYHIST File .562

PAYHIST Master File. 562

PAYHIST Structure Diagram. 563

COMASTER File . 563

COMASTER Master File. 564

COMASTER Structure Diagram. .565

VIDEOTRK, MOVIES, and ITEMS Data Sources .565

VIDEOTRK Master File. 566

VIDEOTRK Structure Diagram. 567

MOVIES Master File. 568

Contents

Developing Applications 19

MOVIES Structure Diagram. .568

ITEMS Master File. 568

ITEMS Structure Diagram. 569

VIDEOTR2 Data Source . 569

VIDEOTR2 Master File. 569

VIDEOTR2 Structure Diagram. 570

Gotham Grinds Data Sources . 570

GGDEMOG Master File. 571

GGDEMOG Structure Diagram. 572

GGORDER Master File. 572

GGORDER Structure Diagram. 573

GGPRODS Master File. 573

GGPRODS Structure Diagram. 574

GGSALES Master File. 574

GGSALES Structure Diagram. 575

GGSTORES Master File. 575

GGSTORES Structure Diagram. 575

Century Corp Data Sources . 576

CENTCOMP Master File. 577

CENTCOMP Structure Diagram. .577

CENTFIN Master File. 578

CENTFIN Structure Diagram. 578

CENTHR Master File. .579

CENTHR Structure Diagram. 581

CENTINV Master File. 582

CENTINV Structure Diagram. 582

CENTORD Master File. 583

CENTORD Structure Diagram. 584

CENTQA Master File. .585

CENTQA Structure Diagram. .586

CENTGL Master File. 586

CENTGL Structure Diagram. .587

CENTSYSF Master File. .587

Contents

20

CENTSYSF Structure Diagram. 587

CENTSTMT Master File. 588

CENTSTMT Structure Diagram. 589

B. Error Messages . 591

Accessing Error Files .591

Displaying Messages . 591

Legal and Third-Party Notices . 593

Contents

Developing Applications 21

Contents

22

Chapter1
Customizing Your Environment

You can use the SET command to change parameters that govern your FOCUS
environment.

In this chapter:

When Do You Use the SET Command?

Coding a SET Command

Types of SET Parameters

SET Parameter Syntax

When Do You Use the SET Command?

If you are an application developer, use the SET command to:

Help you work efficiently and meet your testing and debugging needs.

Provide a uniform and appropriate run-time environment for your end users with desirable
defaults that do not need customization.

If you are creating your own ad hoc reports, use SET commands when you need to tailor the
report presentation or content to meet your individual needs.

Coding a SET Command

The following guidelines apply to SET command syntax:

You can set several parameters in one command by separating each with a comma.

You can include as many parameters as you can fit on one line. If you exceed one line,
repeat the SET command for each new line.

You can set many, but not all, parameters using ON TABLE SET or ON GRAPH SET within a
request. Parameters that cannot be set in this way are specified in the detailed description.

For the specific syntax of a parameter with its valid values, see SET Parameter Syntax on page
51.

Developing Applications 23

Syntax: How to Set Parameters

SET parameter = option[, parameter = option,...]

where:

parameter

Is the setting you wish to change.

option

Is a valid value for the parameter.

Example: Setting a Single Parameter

In the following example, the PAGE-NUM parameter suppresses default page numbering.

SET PAGE-NUM = OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

The output is:

LAST_NAME FIRST_NAME

STEVENS
SMITH
JONES
SMITH
BANNING
IRVING
ROMANS
MCCOY
BLACKWOOD
MCKNIGHT
GREENSPAN
CROSS

ALFRED
MARY
DIANE
RICHARD
JOHN
JOAN
ANTHONY
JOHN
ROSEMARIE
ROGER
MARY
BARBARA

Coding a SET Command

24

Example: Setting Multiple Parameters

The following example sets two parameters in one command in a stored procedure. The first
parameter, NODATA, changes the default character for missing data from a period to the word
NONE. The second parameter, PAGE-NUM, suppresses default page numbering.

SET NODATA = NONE, PAGE-NUM = OFF
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

In the output, NONE appears when there is no salary information for a specific employee
because that employee does not work in the department that is referenced. There is no page
number at the top of the output.

The output is:

 DEPARTMENT

EMP_ID MIS PRODUCTION

071382660 NONE $11,000.00
112847612 $13,200.00 NONE
117593129 $18,480.00 NONE
119265415 NONE $9,500.00
119329144 NONE $29,700.00
123764317 NONE $26,862.00
126724188 NONE $21,120.00
219984371 $18,480.00 NONE
326179357 $21,780.00 NONE
451123478 NONE $16,100.00
543729165 $9,000.00 NONE
818692173 $27,062.00 NONE

Syntax: How to Set Parameters in a Report Request

ON TABLE SET parametervalue [AND parametervalue ...]

where:

parameter

Is the setting you wish to change.

value

Is a valid value for the parameter.

1. Customizing Your Environment

Developing Applications 25

Example: Setting Parameters in a Report Request

In the following example, the command ON TABLE SET changes the default character for
missing data from a period to the word NONE and suppresses default page numbering.

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT
ON TABLE SET NODATA NONE AND PAGE-NUM OFF
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

In the output, NONE appears when there is no salary information for a specific employee.
There is no page number at the top of the output.

The output is:

 DEPARTMENT

EMP_ID MIS PRODUCTION

071382660 NONE $11,000.00
112847612 $13,200.00 NONE
117593129 $18,480.00 NONE
119265415 NONE $9,500.00
119329144 NONE $29,700.00
123764317 NONE $26,862.00
126724188 NONE $21,120.00
219984371 $18,480.00 NONE
326179357 $21,780.00 NONE
451123478 NONE $16,100.00
543729165 $9,000.00 NONE
818692173 $27,062.00 NONE

Syntax: How to Set Parameters in a Graph Request

ON GRAPH SET parametervalue [AND parametervalue ...]

where:

parameter

Is the setting you wish to change.

value

Is a valid value for the parameter.

Coding a SET Command

26

Example: Setting Parameters in a Graph Request

In the following example, the command ON GRAPH SET changes the default setting for the 3D
parameter to OFF.

GRAPH FILE GGORDER
SUM QUANTITY
ACROSS PRODUCT_DESC
ON GRAPH SET 3D OFF
END

The output is:

 O
 r
 d 400,000 +
 e I
 r I
 e I ==
 d I ==
 , I ==
 U 200,000 + == ==
 n I == ==
 i I == == == ==
 t I == == == == == ==
 s I == == == == == == == == == ==
 I == == == == == == == == == ==
 0 +--
 Biscotti French Roast Scone
 Coffee Grinder Hazelnut Thermos
 Coffee Pot Kona
 Croissant Mug

 Product

Types of SET Parameters

This topic lists the types of tasks that can be accomplished, and the SET parameters that
allow you to perform these tasks. If a single parameter applies to more than one activity, it
appears in more than one category. For more detailed descriptions, as well as the syntax for
each parameter, see SET Parameter Syntax on page 51.

The following are the types of tasks performed with SET parameters.

Calculations Affects the way calculations are performed in FOCUS.

Data and Metadata Determines the way data is stored and processed.

1. Customizing Your Environment

Developing Applications 27

Date Manipulation Tasks Controls the way dates are processed and displayed on
reports.

Graph Tasks Controls the processing and display of graphs.

Memory Setup and
Optimization Tasks

Affects the memory and optimization of your application.

Report Code, Content, and
Processing Tasks

Determines the content and processing of a request.

Report Layout and Display
Tasks

Affects the display of a report.

Security Tasks Controls user access to data sources and procedures.

Terminal Tasks Specifies the options for display in your terminal.

Calculations

The following parameters control the behavior of calculations in FOCUS.

AGGR[RATIO]

Determines the ratio of aggregation based on retrieved records and the final size of the
answer set.

CDN

Specifies the punctuation used in numeric notation.

COMPUTE

Controls the compilation of expressions.

DMPRECISION

Specifies precision of numeric values in Dialogue Manager -SET commands to calculate
accurate numeric variable values.

FLOATMAPPING

Takes advantage of decimal-based precision numbers for all numeric processing for
floating point numbers.

MISS_ON

Sets a default value, either SOME or ALL for MISSING ON in DEFINE and COMPUTE.

Types of SET Parameters

28

MISSINGTEST

Determines whether the IF expression in IF-THEN-ELSE tests is checked for missing values.

MODCOMPUTE

Controls compilation of MODIFY calculations.

NEG-ZERO

Displays the value zero (0) as a negative number when it is the result of rounding a
negative decimal value.

PARTITION_ON

Sets the partition size for statistical functions.

USERFCHK

Controls the level of verification applied to DEFINE FUNCTION arguments and WebFOCUS
for WF, FOCUS for FOCUS-supplied function arguments.

USERFNS

Determines whether a WebFOCUS for WF, FOCUS for FOCUS-supplied function or a locally-
written function with the same name is used.

Data and Metadata

The following parameters determine the way data is stored and processed.

ACCBLN

Accepts blank or zero values for fields with ACCEPT commands in the Master File.

ASNAMES

Controls the FIELDNAME attribute in a HOLD Master File.

BLKCALC

Enables system-determined blocking for HOLD files written to DASD.

COUNTWIDTH

Expands the default format of COUNT fields from a five byte integer to a nine byte integer.

DATEFORMAT

Specifies the order of the date components (month/day/year) when date-time values are
entered in a formatted-string or translated-string format.

DEFINES

Compiles virtual fields into machine code to improve performance.

1. Customizing Your Environment

Developing Applications 29

DIRECTHOLD

Controls whether HOLD Files in FOCUS format are created directly.

DTSTRICT

Controls the use of strict processing for date-time fields.

EQTEST

Controls whether the characters $ and $* are treated as wildcard characters or normal
characters in selection criteria.

EUROFILE

Activates the data source that contains information for the currency you want to convert.

FIELDNAME

Controls the use of long and qualified field names.

FOCALLOC

Automatically allocates FOCUS files.

HIPERFOCUS

Activates HiperFOCUS.

HIPERINSTALL

Installs or disables HiperFOCUS.

HLDCOM_TRIMANV

Controls whether trailing blanks are retained when the output is held in a delimited format.

HNODATA

Controls missing values propagated to a HOLD file.

HOLDFORMAT

Determines the default format for HOLD files.

HOLDLIST

Determines what fields in a report request are included in the HOLD file.

HOLDMISS

Distinguishes between missing data and default data (zeros or blanks) in a HOLD file.

HOLDSTAT

Determines if comments and DBA information are included in HOLD Master Files.

Types of SET Parameters

30

HTMLARCHIVE

Packages HTML and DHTML reports together with image files into a single web archive
document (.mht file).

HTMLENCODE

Encodes data within HTML output.

INDEX

Is the indexing scheme used for indexes.

KEEPDEFINES

Controls whether a virtual field created for a host or joined structure is retained after a
JOIN command is run.

MASTER

Enables use of blank delimited (Fusion) Master File syntax, and provides increased
enforcement of syntax rules in comma delimited Master File syntax.

MAXDATAEXCPT

Enables you to change the number of data exceptions allowed before the session is
terminated.

MAXLRECL

Specifies the maximum length of a record described with the Master File OCCURS
attribute.

MDICARDWARN

Displays a warning message when the cardinality of a dimension exceeds a specified
value.

MDIENCODING

Enables retrieval of output from an MDI file without reading the data source.

MDIPROGRESS

Displays messages about the progress of an MDI build.

MINIO

Determines whether a block is read more than once when reading or writing to a file.

NULL

Enables creation of a variable-length comma or tab delimited HOLD file that differentiates
between a missing value and a blank string or zero value.

1. Customizing Your Environment

Developing Applications 31

OLDSTYRECLEN

Determines whether the record length, LRECL, is set to the current setting of LRECL=0, or
the older setting of LRECL=512.

PCOMMA

Enables retrieval of comma delimited files created by a PC application or HOLD FORMAT
COM command.

PREFIX

Specifies the prefix of existing data sets automatically allocated by FOCUS.

QUALCHAR

Specifies the qualifying character to be used in qualified field names.

RANK

Determines how rank numbers are assigned in a request when multiple data values fall
into the same rank category.

SAVEDMASTERS

Saves a Master File to memory after it has been used in a request.

SHADOW

Activates the Absolute File Integrity feature.

SHIFT

Controls the use of shift strings.

SUSI

See Simultaneous Usage Reference Manual for z/OS .

SUTABSIZE

See Simultaneous Usage Reference Manual for z/OS .

TRACKIO

Gathers more pages to fill a track before reading or writing the pages to disk.

WEBARCHIVE

Packages multiple EXL2K files into a single file.

WEEKFIRST

Specifies what day of the week is the start of the week.

Types of SET Parameters

32

WIDTH

Used for communication between 3270 terminals and the operating system.

WPMINWIDTH

Specifies a minimum width for format WP output files.

XRETRIEVAL

Controls the retrieval of data when previewing a report.

XFOCUSBINS

Defines the number of pages of memory to use as buffers for XFOCUS data sources.

Date Manipulation Tasks

The following parameters control the way dates are processed and displayed in reports.

BUSDAYS

Specifies which days are considered business days and which are not.

DATE_ORDER

Specifies the order of date components.

DATE_SEPARATOR

Specifies the separator for date components.

DATEDISPLAY

Controls the display of a base date

DATEFNS

Activates year 2000-compliant versions of date subroutines.

DATETIME

Sets date and time in reports .

DEFCENT

Defines a default century for your application.

EXL2KTXTDATE

Controls whether translated dates are sent as date values with format masks instead of
text values.

HDAY

Specifies the holiday file from which to retrieve dates that are considered holidays.

1. Customizing Your Environment

Developing Applications 33

LEADZERO

Avoids the truncation of leading zeros.

TIME_SEPARATOR

Specifies the separator for time components for the &TOD variable.

TESTDATE

Temporarily alters the system date in order to test a dynamic window.

YRTHRESH

Defines the start of a 100-year window.

Graph Tasks

The following parameters control the processing and display of graphs. For information about
these parameters, see the Creating Reports Manual.

AUTOTICK

Sets the tick mark intervals for graphs.

BARNUMB

Places summary numbers at the end of bars on bar charts, or slices on pie charts.

BARSPACE

Specifies the number of lines separating the bars on bar charts.

BARWIDTH

Specifies the number of lines per bar on bar charts.

BSTACK

Specifies whether bar chart bars are stacked or placed side by side.

DEVICE

Specifies the plotting device or terminal to be used.

FRAME

For GDDM graphics, indicates if you want a frame around your graph.

GCOLOR (or GRIBBON)

Depending on device type, determines black and white or color patterns or ribbons used.

GMISSING

Specifies whether variables with the value specified in GMISSVAL are to be ignored.

Types of SET Parameters

34

GMISSVAL

Specifies the variable value that represents missing data.

GPROMPT

Specified whether FOCUS should prompt for graph parameters.

GRIBBON

Same as GCOLOR.

GRID

Draws a grid of parallel horizontal lines at the vertical class marks on the graph.

GTREND

Specifies the use of basic linear regression to alter the X and Y axis values in a SCATTER
graph.

HAUTO

Performs automatic scaling of the horizontal axis for the given values.

HAXIS

Specifies the width, in characters, of the horizontal axis.

HCLASS

Specifies the horizontal interval mark when AUTOTICK is OFF.

HISTOGRAM

Draws a histogram instead of a curve when the values on the horizontal axis are not
numeric.

HMAX

Sets the maximum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

HMIN

Sets the minimum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

PAUSE

Specifies whether there is a pause for paper adjustment on the plotter after the request is
executed.

PIE

Specifies a pie chart.

1. Customizing Your Environment

Developing Applications 35

PLOT

Specifies the width and height settings for certain devices.

PRINT

Specifes whether the graph is printed or displayed on the terminal.

TERM[INAL]

Specifies the plotting device or terminal to be used.

VAUTO

Performs automatic scaling of the vertical axis for the given values.

VAXIS

Specifies the length of the vertical axis, in lines.

VCLASS

Specifies the vertical interval mark when AUTOTICK is OFF.

VGRID

Draws a grid at the horizontal and vertical class marks of the graph.

VMAX

Sets the maximum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

VMIN

Sets the minimum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

VTICK

Sets the vertical axis interval mark when AUTOTICK is OFF.

VZERO

Treats missing values on the vertical axis as zeros.

Memory Setup and Optimization Tasks

The following parameters control the memory and optimization of your application.

AUTOINDEX

Retrieves data faster by automatically taking advantage of indexed fields in a FOCUS data
source.

Types of SET Parameters

36

AUTOPATH

Dynamically selects an optimal retrieval path.

AUTOSTRATEGY

Determines when FOCUS stops the search for a key field specified in a WHERE or IF test.

BINS

Specifies the number of pages of memory used for data source buffers.

CACHE

Stores FOCUS data source pages in memory and buffers between the data source and
BINS.

COMPUTE

Controls the compilation of expressions.

DEFINES

Compiles virtual fields into machine code to improve performance.

DMH_LOOPLIM

Controls the number of loop iterations allowed in Dialogue Manager.

DMH_STACKLIM

Controls the number of lines allowed in FOCSTACK.

ESTRECORDS

Passes the estimated number of records to be sorted in the request.

FIXRETRIEVE

Enables keyed retrieval from a fixed format sequential file, such as a HOLD file.

FOCSTACK

Specifies the amount of space, in thousands of bytes, used by FOCUS commands waiting
for execution.

HLISUTRACE

Records the last 20 events that the FOCUS Database Server performed.

HLISUDUMP

Is used for debugging FOCUS Database Server problems.

1. Customizing Your Environment

Developing Applications 37

IBMLE

This parameter is no longer functional. FOCUS is fully LE compliant, and all FOCUS
applications must be LE compliant

IMMEDTYPE

Tells FOCUS where to send line mode output.

SQLTOPTTF

Enables the SQL Translator to generate TABLEF commands instead of TABLE commands.

SUWEDGE

Keeps Master Files on a FOCUS Database Server open between requests.

ZIIP

Enables you to offload specific categories of FOCUS processing to a zIIP specialty engine.

Report Code, Content, and Processing Tasks

The following parameters affect the content or processing of a report.

ALL

Handles missing segment instances in a report.

ALLOWCVTERR

Controls the display of a row of data that contains an invalid date format.

ARCFGU

Allows you to override the standard search path for the In-Documents Analytics (IDA)
configuration file.

ASNAMES

Controls the FIELDNAME attribute in a HOLD Master File.

AUTOTABLEF

Avoids creating the internal matrix based on the features used in the query.

BLANKEMPTY

Enables you to distinguish between a null value and a space value in a non-numeric XLSX
data cell. This applies to XLSX output format only.

BUSDAYS

Specifies which days are considered business days.

Types of SET Parameters

38

CARTESIAN

Generates a report containing all combinations of non-related data instances in a multi-
path request containing a PRINT or LIST command.

CDN

Specifies punctuation used in numeric notation.

CENT-ZERO

Displays a leading zero in decimal-only numbers.

COLLATION

Controls ordering of alphanumeric values.

COMPMISS

Controls whether the missing attribute is propagated to reformatted fields in a report
request.

COMPUTE

Controls the compile of expressions.

DATEDISPLAY

Controls the display of date format fields that contain the value zero.

DATEFNS

Activates year 2000-compliant versions of date subroutines.

DATETIME

Sets date and time in a report .

DBAJOIN

Controls whether DBA restrictions are treated as report filters or are added to the join
conditions.

DB_INFILE

Controls whether the expression generated by the DB_INFILE function for use against a
relational data source is optimized.

DEFCENT

Defines a default century for your application.

DEFECHO

Defines a default value for the &ECHO variable for your application.

1. Customizing Your Environment

Developing Applications 39

DRILLFOCMISSING

Enables you to control when to pass the _FOC_MISSING string or a period (.) as the drill-
down value for MISSING values.

EMPTYCELLS

For numeric fields, enables you to handle MISSING options for fields with the XLSX output
format to allow raw data displayed in the formula bar the value of 0 for MISSING, instead
of the absence of a value or empty cell.

EMPTYREPORT

Controls the output generated when a report request retrieves zero records.

ERROROUT

Terminates a request and returns a message when an error is encountered.

ESTRECORDS

Passes the estimated number of records to be sorted in the request.

EXCELSERVURL

Specifies the location to be used to zip the file components that comprise an EXCEL 2007
file (.xlsx).

EXL2KLANG

Specifies the language used for Microsoft® Excel requests. This language must be the
same as the language of Excel on the browser machine.

EXTAGGR

Enables aggregation in an external sort.

EXTHOLD

Enables you to use an external sort to create HOLD files.

EXTRACT

Activates Structured HOLD Files for a request.

EXTSORT

Activates the external sorting feature.

FIELDNAME

Controls the use of long and qualified field names.

FILENAME

Specifies a file to be used, by default, in commands.

Types of SET Parameters

40

FILTER

Activates declared filters.

FOC144

Suppresses warning message FOC144, which reads Warning Testing in Independent sets of
Data .

FORMULTIPLE

Allows you to include the same value of a FOR field in multiple rows of the FML matrix.

HNODATA

Controls missing values propagated to a HOLD file.

HOLDATTR

Includes the TITLE and ACCEPT attributes from the original Master File in the HOLD Master
File.

JOINLM

Controls whether strict equality is required or partial key joins are supported for record-
oriented adapters. JOINLM is a synonym for JOIN_LENGTH_MODE.

JOINOPT

Ensures proper alignment of report output by correcting for lagging (missing) values. Also
enables joins between fields with different numeric data types.

KEEPDEFINES

Controls whether a virtual field created for a host or joined structure is retained after a
JOIN command is run.

LANG[UAGE]

The LANG[UAGE] parameter specifies the National Language Support (NLS) environment. It
sets the language of FOCUS error messages and can also be used to set the language of
report titles if the Master File Description contains alternate language TITLE attributes.

LEADZERO

Avoids the truncation of leading zeros.

MESSAGE

Controls the display of informational messages.

MULTIPATH

Controls whether MATCH requests use grouped or ungrouped processing.

1. Customizing Your Environment

Developing Applications 41

NODATA

Determines the character string that indicates missing data in a report.

ONFIELD

Controls whether ON phrases are ignored for fields not referenced in a request.

PAUSE

Pauses before displaying a FOCUS report on the terminal.

PARTITION_ON

Controls the partition size for statistical functions.

PFnn

Assigns a function to a PF key.

PDFLINETERM

Determines if an extra space is appended to each record of a PDF output file to facilitate
proper file transfer between Windows and UNIX.

PHONETIC_ALGORITHM

Sets the phonetic algorithm to use with the PHONETIC function.

PRINTDST

Controls processing of reports that use the PRINT command in conjunction with multiple
DST operators.

QUALCHAR

Specifies the qualifying character to be used in qualified field names.

SAVEMATRIX

Saves the matrix from your request to protect it from being overwritten when using
Dialogue Manager commands.

SHORTPATH

Controls how tests against missing cross-referenced segment instances are processed in
a left outer join.

SORTLIB

Tells FOCUS which sort package is installed at your site.

SORTMATRIX

Controls whether to employ in-memory sorting with decreased use of external memory.

Types of SET Parameters

42

SORTMEMORY

Controls the amount of internal memory available for sorting.

SUMMARYLINES

Permits the combination of fields with and without prefix operators on summary lines in
one request.

SUMPREFIX

Allows users to choose the answer set display order when using an external sort to
perform aggregation of alphanumeric or smart date formats.

TITLES

Uses predefined column titles in the Master File as column titles in report output.

Report Layout and Display Tasks

The following parameters affect the layout and display of a report.

ACROSSLINE

Controls underlining of column titles on report output. TITLELINE is a synonym.

ACROSSPRT

Reduces the number of report lines within each sort group when a request uses the PRINT
command and an ACROSS phrase.

ACROSSTITLE

Controls whether ACROSS titles display above or to the left of ACROSS values.

ACRSVRBTITL

Controls the display of ACROSS column titles when there is only one displayed field for an
ACROSS group.

ALTBACKPERLINE

Alternates the background color by line for reports that use positioned drivers, for example
PDF, DHTML, PPT, and PPTX.

AUTOFIT

Controls resizing of HTML report output to fit its window.

BASEURL

Specifies a default location where your browser searches for relative URLs referenced in
the HTML documents created by FOCUS.

1. Customizing Your Environment

Developing Applications 43

BLANKINDENT

Clarifies relationships within an FML hierarchy by indenting the captions (titles) of values at
each level.

BOTTOMMARGIN

Sets the bottom boundary for report contents on a page in a styled report.

BYDISPLAY

Displays a sort field on every row, column, or both in a report.

BYPANEL

Controls the repetition of BY fields on panels.

BYSCROLL

Scrolls report headings and footings along with the report contents.

CENT-ZERO

Displays a leading zero in decimal-only numbers.

COLUMNSCROLL

Enables you to scroll by column within the panels of a report provided that the report is
wider than the screen width.

COMPOUND

Enables you to combine multiple reports into a single PDF or PS file to create a compound
report.

CSSURL

Links an HTML report to an external cascading style sheet (CSS) file in order to style the
report.

CURRENCY_DISPLAY

Defines the position of the currency symbol relative to the monetary number.

CURRENCY_ISO_CODE

Defines the ISO code for the currency symbol to use.

CURRENCY_PRINT_ISO

Defines what will happen when the currency symbol cannot be displayed by the code page
in effect.

Types of SET Parameters

44

CURRSYMB

Sets a currency symbol to display on the report output when a numeric format specification
uses the M or N display options.

CURSYM_D

Sets the characters to display on the report output when a numeric format specification
uses the :D or :d display options.

CURSYM_E

Sets the characters to display on the report output when a numeric format specification
uses the :E or :e display options.

CURSYM_F

Sets the characters to display on the report output when a numeric format specification
uses the :F display option.

CURSYM_G

Sets the characters to display on the report output when a numeric format specification
uses the :G display option.

CURSYM_L

Sets the characters to display on the report output when a numeric format specification
uses the :L or :l display options.

CURSYM_Y

Sets the characters to display on the report output when a numeric format specification
uses the :Y or :y display options.

CUSTOM-PAGE-LENGTH

Sets the page length for PAGESIZE=CUSTOM.

CUSTOM-PAGE-WIDTH

Sets the page width for PAGESIZE=CUSTOM.

DISPLAYROUND

Adds a small number to floating point and double-precision numbers for display, in order to
correct rounding errors caused by conversion from binary to decimal.

DROPBLNKLINE

Eliminates blank lines from the report output.

1. Customizing Your Environment

Developing Applications 45

DUPLICATECOL

Controls whether columns for multiple display commands are spread out or stacked on top
of each other.

EXTENDNUM

Prevents visual overflow on reports.

FOCFIRSTPAGE

Assigns a page number to the first page of output.

HIDENULLACRS

Hides ACROSS columns containing only null values.

HTMLCSS

Creates an inline Cascading Style Sheet command in the HTML page that displays the
report output.

HTMLEMBEDIMG

Determines whether to embed images and graphs directly into an HTML or DHTML .htm
file.

LAN[GUAGE]

Specifies the National Language Support (NLS) environment. Sets the language of FOCUS
error messages. Can also be used to set the language of report titles if the Master File
Description contains alternate language TITLE attributes.

LAYOUTGRID

Displays a grid in the report output, which enables you to evaluate the correct placement
of data and objects during your report design. This option is applicable only when using the
PDF, PS, or DHTML report output.

LEFTMARGIN

Sets the left boundary for report contents on a page in a styled report.

LINES

Sets the maximum number of lines of printed output that appear on a page, from the
heading at the top to the footing on the bottom. The OFFLINE-FMT parameter determines
the format of printed report output generated from a request.

ORIENTATION

Specifies the page orientation for styled reports.

Types of SET Parameters

46

OVERFLOWCHAR

Changes the character that displays in a numeric report column when the column does not
have enough space for the value.

PAGE[-NUM]

Controls the numbering of output pages.

PAGE-SCALE

Scales wide PDF report output to fit the width of the page.

PAGESIZE

Specifies the page size for StyleSheets.

PANEL

Sets the maximum line width of a report panel.

PAPER

Specifies the length of paper for printed output.

PCTFORMAT

Controls whether fields prefixed with PCT., RPCT., and PCT.CNT. display with the format of
the original field or with a percent sign.

PRFTITLE

Generates readable and translatable column titles for prefixed fields on reports.

PRINT

Specifies the report output destination.

PRINTPLUS

Specifies enhancements to display alternatives.

PSPAGESETUP

Coordinates the paper source used by a PostScript printer with the PAGESIZE parameter
setting.

QUALTITLES

Uses qualified column titles in report output when duplicate field names exist in a Master
File.

REBUILDMSG

Allows direct control over the frequency with which REBUILD issues messages.

1. Customizing Your Environment

Developing Applications 47

RECAP-COUNT

Includes lines containing a value created with RECAP when counting the number of lines
per page for printed output.

RIGHTMARGIN

Sets the right boundary for report contents on a page.

SHOWBLANKS

Preserves leading and internal blanks in HTML and EXL2K report output.

SPACES

Sets the number of spaces between columns in a report.

SQUEEZE

Determines the column width in report output.

STYLE[SHEET]

Controls the format of report output by accepting or rejecting StyleSheet parameters.

SUBTOTALS

Controls whether summary lines display above or below the data.

TERM[INAL]

Selects the terminal type.

TITLELINE

Controls underlining of column titles. ACROSSLINE is a synonym.

TOPMARGIN

Sets the top boundary on a page for report output.

TRANTERM

Displays extended currency symbols on TSO.

UNITS

Specifies the unit of measure for page margins, column positions, and column widths.

WEBTAB

Encloses CRTFORM display fields in @ signs.

XLSXPAGEBRKIGNORE

Synchronizes FOCUS page breaks with Excel page breaks for format XLSX.

Types of SET Parameters

48

Security Tasks

The following parameters specify user access to data sources and procedures.

DBACSENSITIV

Controls whether password validation is case-sensitive.

DBASOURCE

Controls the source of access restrictions in a multi-file structure.

PASS

Enables user access to a data source or stored procedure protected by DBA security.

PERMPASS

The PERMPASS parameter establishes a user password that remains in effect throughout
a session or connection.

USER

In FOCUS , enables user access to a data source or stored procedure protected by DBA
security.

Terminal Tasks

The following parameters specify options for display in your terminal.

DISPLAY

Is the PC display mode selection.

EXTTERM

Enables the use of extended terminal attributes.

HOTMENU

Automatically displays the Hot Screen PF key legend at the bottom of the Hot Screen
report.

SBORDER

Generates a solid border on the screen for full-screen mode.

SCREEN

Selects the Hot Screen facility.

TRMOUT

Suppresses all output messages to the terminal.

1. Customizing Your Environment

Developing Applications 49

Types of SET Parameters

50

SET Parameter Syntax

This topic alphabetically lists the SET parameters that control the environment with a
description and the syntax.

A B C D

3D

ACCBLN

ACROSSLINE

ACROSSPRT

ACROSSTITLE

ACRSVRBTITL

ALL

ALLOWCVTERR

ALTBACKPERLINE

ARCFGU

ASNAMES

AUTOFIT

AUTOINDEX

AUTOPATH

AUTOSTRATEGY

AUTOTABLEF

BINS

BLANKEMPTY

BLANKINDENT

BOTTOMMARGIN

BUSDAYS

BYDISPLAY

BYPANEL

CACHE

CARTESIAN

CDN

CENT-ZERO

CNOTATION

COLLATION

COMPMISS

COMPOUND

COMPUTE

COUNTWIDTH

CSSURL

CURRSYMB

CURSYM_D

CURSYM_E

CURSYM_F

CURSYM_G

CURSYM_L

CURSYM_Y

CUSTOM_PAGE
_LENGTH

CUSTOM_PAGE
_WIDTH

DATE_ORDER

DATE_SEPARATOR

DATEDISPLAY

DATEFORMAT

DATETIME

DB_INFILE

DBACSENSITIV

DBAJOIN

DBASOURCE

DEFCENT

DEFECHO

DEFINES

DIRECTHOLD

DISPLAYROUND

DMH_LOOPLIM

DMH_STACKLIM

DMPRECISION

DRILLFOCMISSING

DRILLMETHOD

DROPBLNKLINE

DTSTRICT

DUPLICATECOL

1. Customizing Your Environment

Developing Applications 51

E F G H

EMBEDDABLE

EMPTYCELLS

EMPTYREPORT

EQTEST

ERROROUT

ESTRECORDS

EUROFILE

EXCELSERVURL

EXL2KLANG

EXL2KTXTDATE

EXTAGGR

EXTENDNUM

EXTHOLD

EXTRACT

EXTSORT

FIELDNAME

FILECOMPRESS

FILENAME

FILTER

FIXRETRIEVE

FOC144

FOCEXURL

FOCFIRSTPAGE

FOCSTACK

FORMULTIPLE

HDAY

HIDENULLACRS

HLDCOM_TRIMANV

HNODATA

HOLDATTRS

HOLDFORMAT

HOLDLIST

HOLDMISS

HOLDSTAT

HTMLARCHIVE

HTMLCSS

HTMLEMBEDIMG

HTMLENCODE

I J K L

INDEX JOIN_LENGTH_MOD
E

JOINOPT

KEEPDEFINES

KEEPFILTERS

LANGUAGE

LAYOUTGRID

LEADZERO

LEFTMARGIN

LINES

LOOKGRAPH

SET Parameter Syntax

52

M N O P

MATCHCOLUMNORDER

MAXDATAEXCPT

MAXLRECL

MDICARDWARN

MDIENCODING

MDIPROGRESS

MESSAGE

MISS_ON

MISSINGTEST

MULTIPATH

NEG-ZERO

NODATA

NULL

OLDSTYRECLEN

ONFIELD

ORIENTATION

OVERFLOWCHAR

PAGE-NUM

PAGE-SCALE

PAGESIZE

PANEL

PARTITION_ON

PASS

PCOMMA

PCTFORMAT

PDFLINETERM

PERMPASS

PHONETIC_ALGORIT
HM

PRFTITLE

PRINT

PRINTDST

PRINTPLUS

PSPAGESETUP

1. Customizing Your Environment

Developing Applications 53

Q R S T

QUALCHAR

QUALTITLES

RANK

RECAP-COUNT

RECORDLIMIT

RIGHTMARGIN

RPAGESET

SAVEDMASTERS

SAVEMATRIX

SHADOW

SHIFT

SHORTPATH

SHOWBLANKS

SORTMATRIX

SORTMEMORY

SPACES

SQLTOPTTF

SQUEEZE

STYLEMODE

STYLESHEET

SUBTOTALS

SUMMARYLINES

SUMPREFIX

TESTDATE

TITLELINE

TITLES

TOPMARGIN

U V W X-Y-Z

UNITS

USER

USERCHK

USERFNS

WARNING

WEBARCHIVE

WEEKFIRST

WPMINWIDTH

XLSXPAGEBRKIGNO
RE

XRETRIEVAL

YRTHRESH

SET Parameter Syntax

54

ACCBLN

The ACCBLN parameter accepts blank or zero values for fields with ACCEPT commands in the
Master File (see the Describing Data manual).

The syntax is:

SET ACCBLN = {ON|OFF}

where:

ON

Accepts blank and zero values for fields with ACCEPT commands unless blank or zero
values are explicitly coded in the list of acceptable values. ON is the default value.

OFF

Does not accept blank and zero values for fields with ACCEPT commands unless blank or
zero values are explicitly coded in the list of acceptable values.

ACROSSLINE

The ACROSSLINE parameter controls underlining of column titles on report output. TITLELINE is
a synonym for ACROSSLINE.

The syntax is:

SET {ACROSSLINE|TITLELINE} = {ON|OFF|SKIP}

where:

ON

Underlines column titles on report output. ON is the default value.

OFF

Replaces the underline with a blank line.

SKIP

Specifies no underline and no blank line.

ACROSSPRT

The ACROSSPRT parameter reduces the number of report lines within each in a request that
uses the PRINT command and an ACROSS phrase.

1. Customizing Your Environment

Developing Applications 55

The PRINT command generates a report that has a single line for each record retrieved from
the data source after screening out those that fail IF or WHERE tests. When PRINT is used in
conjunction with an ACROSS phrase, many of the generated columns may be empty. Those
columns display the missing data symbol.

To avoid printing such a sparse report, you can use the SET ACROSSPRT command to
compress the lines in the report. The number of lines is reduced within each sort group by
swapping non-missing values from lower lines with missing values from higher lines, and then
eliminating any lines whose columns all have missing values.

Because data may be moved to different report lines, row-based calculations, such as ROW-
TOTAL and ACROSS-TOTAL in a compressed report are different from those in a non-
compressed report. Column calculations are not affected by compressing the report lines.

The syntax is:

SET ACROSSPRT = {NORMAL|COMPRESS}

where:

NORMAL

Does not compress report lines.

COMPRESS

Compresses report lines by promoting data values up within a sort group.

ACROSSTITLE

In a report that uses the ACROSS sort phrase to sort values horizontally across the page, by
default, two lines are generated on the report output for the ACROSS columns. The first line
displays the name of the sort field (ACROSS title), and the second line displays the values for
that sort field (ACROSS value). The ACROSS field name is left justified above the first ACROSS
value.

The ACROSSTITLE parameter enables you to display both the ACROSS title and the ACROSS
values on one line in PDF, HTML, EXL2K, or EXL07 report output. You can issue the SET
ACROSSTITLE = SIDE command. This command places ACROSS titles to the left of the
ACROSS values. The titles are right justified in the space above the BY field titles. The heading
line that is created, by default, to display the ACROSS title will not be generated.

This feature is designed for use in requests that have both ACROSS fields and BY fields. For
requests with ACROSS fields but no BY fields, the set command is ignored, and the ACROSS
titles are not moved.

The syntax is:

SET Parameter Syntax

56

SET ACROSSTITLE = {ABOVE|SIDE}

where:

ABOVE

Displays ACROSS titles above their ACROSS values. ABOVE is the default value.

SIDE

Displays ACROSS titles to the left of their ACROSS values, above the BY columns.

ACRSVRBTITL

Using the SET ACRSVRBTITL command, you can control the display of an ACROSS column title
in an ACROSS group. The behavior of the title is determined by the number of verb columns in
the ACROSS group. The field count is affected by the following features, which add internal
matrix columns to the report:

Fields in a heading or footing.

Fields whose display is suppressed with the NOPRINT phrase.

Reformatted fields (which are normally counted twice).

A COMPUTE command referencing multiple fields.

The syntax is:

SET ACRSVRBTITL = {HIDEONE|ON|OFF}

ON TABLE SET ACRSVRBTITL {HIDEONE|ON|OFF}

where:

HIDEONE

Suppresses the title when there is only one display field, or there is only one display field
and the request contains one or more of the features that add internal matrix columns to
the report. This value is the default.

ON

Always displays the title even if there is only one display field.

OFF

Suppresses the title when there is only one display field. Displays the title when there is
only one display field and the request contains one or more of the features that add
internal matrix columns to the report. This is legacy behavior.

1. Customizing Your Environment

Developing Applications 57

ALL

The ALL parameter handles missing segment instances in a report.

The command SET ALL = ON specifies a left outer join. With a left outer join, all records from
the host file display on the report output. If a cross-referenced segment instance does not
exist for a host segment instance, the report output displays missing values for the fields from
the cross-referenced segment.

If there is a screening condition on the dependent segment, those dependent segment
instances that do not satisfy the screening condition are omitted from the report output, and
so are their corresponding host segment instances.

The syntax is:

SET ALL = {ON|OFF|PASS}

where:

ON

Includes missing segment instances in a report when fields in the segment are not
screened by WHERE or IF criteria in the request. The missing field values are denoted by
the NODATA character, set with the NODATA parameter (for more information, see NODATA
on page 123).

OFF

Omits missing segment instances from a report. OFF is the default value.

PASS

Includes missing segment instances in a report, regardless of WHERE or IF criteria in the
request.

This option is not supported when MULTIPATH = COMPOUND (see MULTIPATH on page
122).

ALLOWCVTERR

The ALLOWCVTERR parameter applies to non-FOCUS data sources when converting from the
way the date is stored (ACTUAL attribute) to the way it is formatted (FORMAT or USAGE
attribute).

It controls the display of a row of data that contains an invalid date format (formerly called a
smart date). When it is set to ON, the invalid date format is returned as the base date or a
blank, depending on the settings for the MISSING and DATEDISPLAY parameters.

Note: The ALLOWCVTERR parameter is not supported for virtual fields.

SET Parameter Syntax

58

The syntax is:

SET ALLOWCVTERR = {ON|OFF}

where:

ON

Displays a row of data that contains an invalid date format. When ALLOWCVTERR is set to
ON, the display of invalid dates is determined by the settings of the MISSING attribute and
DATEDISPLAY command.

The results are explained in the following table:

DATEDISPLAY MISSING RESULT

OFF OFF A blank is returned.

ON The value of the NODATA character (a period, by
default) is returned. (See NODATA on page 123).

ON OFF The base date is returned (December 31, 1900, for
dates with YMD or YYMD format; or January 1901, for
dates with YM, YYM, YQ, or YYQ format).

ON The value of the NODATA character (a period, by
default) is returned.

OFF

Does not display a row of data that contains an invalid date format and generates an error
message. OFF is the default value.

ALTBACKPERLINE

The ALTBACKPERLINE attribute alternates the background color by line for reports that use
positioned drivers, for example PDF, DHTML, PPT, and PPTX. This enables you to wrap a long
field value, and alternate the background color of each line for that value, independent of
borders. In order to apply alternating background color per line, you need to explicitly add the
SET ALTBACKPERLINE=ON command to procedures that use WRAP.

The syntax is:

SET ALTBACKPERLINE = {ON|OFF}

1. Customizing Your Environment

Developing Applications 59

where:

ON

Alternates background color by line.

OFF

Alternates background color by row. This is the default value.

ARCFGU

The SET ARCFGU command allows you to override the standard search path for the In-
Document Analytics (IDA) configuration file by finding and using the user-created irpcfgu.json
file. Using the SET command, you can set the search to look in all directories (DEFAULT), in
one specific directory (app_name), or to not look for this override (NONE). SET ARCFGU=NONE
provides the fastest search.

The syntax is:

SET ARCFGU={DEFAULT|app_name|NONE}

where:

DEFAULT

Searches all directories in the application path for the irpcfgu.json file. This is the default
value and the slowest execution.

app_name

Specifies the explicit name of the application, not necessarily from the APP PATH.

NONE

Does not use the user-customized version. If the value is NONE, the search does not look
for a user configuration file. This is the fastest execution.

ASNAMES

The ASNAMES parameter controls the FIELDNAME attribute in a HOLD Master File. When an AS
phrase is used in a TABLE request, the specified literal is used as a field name in a HOLD file.
It also controls how field names are specified for the values of an ACROSS field when a HOLD
file is created.

The syntax is:

SET ASNAMES = {ON|OFF|MIXED|FOCUS|FLIP}

SET Parameter Syntax

60

where:

OFF

Does not use the literal specified in an AS phrase as a field name in HOLD files, and does
not affect the way ACROSS fields are named.

ON

Uppercases the literal specified in an AS phrase and propagates it as the field name in the
HOLD Master File. Creates names for ACROSS fields that consist of the AS name value
concatenated to the beginning of the ACROSS field value and controls the way ACROSS
fields are named in HOLD files of any format.

MIXED

Uses the literal specified in an AS phrase for the field name, retaining the case of the AS
name, and creates names for ACROSS fields that consist of the AS name value
concatenated to the beginning of the ACROSS field value.

FOCUS

Uses the literal specified in an AS phrase as the field name and controls the way ACROSS
fields are named only in HOLD files in FOCUS format. FOCUS is the default value.

FLIP
Propagates the field names in the original Master File to the alias names in the HOLD
Master File and the alias names in the original Master File to the field names in the HOLD
Master File.

AUTOFIT

The AUTOFIT parameter automatically resizes HTML report output to fit its window or frame and
HTML5 graphs to fit their containers.

The syntax is:

SET AUTOFIT = {OFF|ON|RESIZE}

ON {GRAPH|TABLE} SET AUTOFIT {OFF|ON|RESIZE}

where:

OFF

Respects the dimensions specified by the data and styles for TABLE or by the HAXIS and
VAXIS parameters for HTML5 graphs.

1. Customizing Your Environment

Developing Applications 61

ON

Always resizes HTML report output to fit its window or frame and HTML5 graph output to fit
its container.

RESIZE

Applies to HTML5 graphs only. Respects the dimensions specified by the HAXIS and VAXIS
parameters initially, but resizes the graph output if the container is resized.

AUTOINDEX

The AUTOINDEX parameter speeds data retrieval by automatically taking advantage of indexed
fields or multi-dimensional indexes (MDI) in most cases where TABLE requests contain equality
or range tests on those fields or dimensions. This applies only to FOCUS and XFOCUS data
sources.

AUTOINDEX is never performed when the TABLE request contains an alternate file view, for
example, TABLE FILE filename.fieldname. Indexed retrieval is not performed when the TABLE
request contains BY HIGHEST or BY LOWEST phrases and AUTOINDEX is ON.

The syntax is:

SET AUTOINDEX = {ON|OFF}

where:

ON

Uses indexed retrieval when possible. ON is the default value.

OFF

Uses indexed retrieval only when explicitly specified using an indexed view, for example,
TABLE FILE filename.indexed-fieldname.

AUTOPATH

The AUTOPATH parameter dynamically selects an optimal retrieval path for accessing a FOCUS
data source by analyzing the data source structure and the fields referenced, and choosing the
lowest possible segment as the entry point. Use AUTOPATH only if your field is not indexed.

The syntax is:

SET AUTOPATH = {ON|OFF}

where:

ON

Dynamically selects an optimal retrieval path. ON is the default value.

SET Parameter Syntax

62

OFF

Uses sequential data retrieval. The end user controls the retrieval path through
filename.segname.

AUTOSTRATEGY

The AUTOSTRATEGY parameter determines when FOCUS stops the search for a key field
specified in a WHERE or IF test. When set to ON, the search ends when the key field is found,
optimizing retrieval speed. When set to OFF, the search continues to the end of the data
source.

The syntax is:

SET AUTOSTRATEGY = {ON|OFF}

where:

ON

Stops the search when a match is found. ON is the default value.

OFF

Searches the entire data source.

AUTOTABLEF

The AUTOTABLEF parameter avoids creating the internal matrix based on the features used in
the query. Avoiding internal matrix creation reduces internal overhead costs and yields better
performance.

The syntax is:

SET AUTOTABLEF = {ON|OFF}

where:

ON

Does not create an internal matrix. ON is the default value.

OFF

Creates an internal matrix.

BASEURL

The BASEURL parameter specifies a default location where your browser searches for relative
URLs referenced in the HTML documents created by FOCUS. This allows you to hyperlink to
files, images, and Java files using only the file names rather than the full URLs.

1. Customizing Your Environment

Developing Applications 63

The syntax is:

SET BASEURL = url

where:

url

Is the fully qualified directory in which additional HTML files, graphics files, and Java applet
class files reside. If the URL represents a web server address, it must begin with http://
and end with a slash (/).

BINS

The BINS parameter specifies the number of pages of memory (blocks of 4,096 bytes) used
for data source buffers.

The syntax is:

SET BINS = n

where:

n
Is the number of pages used for data source buffers. Valid values are 13 to 64. 64 is the
default value. This is the recommended value.

BLANKEMPTY

The BLANKEMPTY parameter enables you to distinguish between a null value and a space
value in a non-numeric XLSX data cell. This applies to XLSX output format only.

The syntax is:

SET BLANKEMPTY = {ON|OFF}
ON TABLE SET BLANKEMPTY {ON|OFF}

where:

ON

Considers a single space value to be an empty cell. This is legacy behavior.

OFF

Handles a cell containing a space value as a single space. OFF is the default value.

SET Parameter Syntax

64

Note:

For non-numeric formatted fields, regular data fields that contain spaces preserve the
space in the cell. Cells that are flagged as MISSING continue to generate empty cells in
XLSX output.

The EMPTYCELLS parameter handles MISSING options for fields with the XLSX output
format to allow raw data displayed in the formula bar the value of 0 for MISSING, instead of
the absence of a value or empty cell.

BLANKINDENT

To clarify relationships within an FML hierarchy, the captions (titles) of values are indented at
each level. You can use the BLANKINDENT parameter in an HTML, PDF, or PostScript report to
specify the indentation between each level the hierarchy. You can use the default indentation
for each hierarchy level or choose your own indentation value. To print indented captions in an
HTML report, you must set the BLANKINDENT parameter to ON or to a number.

In PDF and PS reports, you may need to adjust the widths of columns to accommodate the
indentations.

The syntax is:

SET BLANKINDENT = {ON|OFF|n}

where:

ON

Indents FML hierarchy captions 0.125 units for each space normally displayed before the
caption. For child levels in an FML hierarchy, it indents 0.125 units for each space that
would normally display between this line and the line above it.

OFF

Turns off indentations for FML hierarchy captions in an HTML report. For other formats,
uses the default indentation of two spaces. OFF is the default value.

n

Is an explicit measurement in the unit of measurement defined by the UNITS parameter.
This measurement is multiplied by the number of spaces that would normally display
before the caption. For child levels in an FML hierarchy, it indents n units for each space
that would normally display between this line and the line above it. The default number of
spaces is two. Zero (0) produces the same report output as OFF. Negative values for n are
not supported. They generate the following message, and the request processes as if
BLANKINDENT=OFF:

1. Customizing Your Environment

Developing Applications 65

VALID VALUES ARE OFF, ON OR A POSITIVE NUMBER (IN CURRENT UNITS)

BOTTOMMARGIN

The BOTTOMMARGIN parameter sets the StyleSheet bottom boundary for report contents on a
page.

This parameter applies only to PostScript and PS report formats.

The syntax is:

SET BOTTOMMARGIN = {n|.250}

where:

n

Is the bottom margin, in inches, for report contents on a page. 0.25 inches is the default
value.

BUSDAYS

The BUSDAYS parameter specifies which days are considered business days and which days
are not if, your business does not follow the traditional Monday through Friday week.

The syntax is:

SET BUSDAYS = {week|_MTWTF_}

where:

week

Is SMTWTFS, representing the days of the week. Any day that you do not want to designate
as a business day must be replaced with an underscore in the designated place for that
day.

If a letter is not in its correct position, or if you replace a letter with a character other than
an underscore, you receive an error message. _MTWTF_ is the default value.

BYDISPLAY

Within a sort group, the sort field value displays only on the first line of the rows or leftmost
column of the columns for its sort group. However, you can display the appropriate BY or
ACROSS field on every row in a report using the SET BYDISPLAY command. Although SET
BYDISPLAY is supported for all output formats, it is especially important for making your report
output more usable by Excel, which cannot sort columns properly when they have blank values
in some rows.

SET Parameter Syntax

66

This feature may enable you to avoid specifying the sort field twice, once as a display field and
once for sorting (with the NOPRINT option).

The syntax is:

SET BYDISPLAY = {OFF|ON|BY|ACROSS|ALL}

where:

OFF

Displays a BY field value only on the first line or column of the report output for the sort
group and on the first line or column of a page. OFF is the default value.

ON or BY

Displays the associated BY field value on every line of report output produced. BY is a
synonym for ON.

ACROSS

Displays the relevant ACROSS field value on every column of report output produced.

ALL

Displays the relevant BY field value on every line of report output and the relevant ACROSS
field value on every column of report output.

BYPANEL

The BYPANEL parameter applies only to HOTSCREEN.

It controls the repetition of BY fields on panels. When BYPANEL is specified, the maximum
number of panels is 99. When BYPANEL is OFF, the maximum number of panels is four.

The syntax is:

SET BYPANEL = option

where:

option

Is one of the following:

ON repeats the sort field values on each report panel.

OFF does not repeat sort field values on each report panel. Fields are displayed only on
the first panel, and columns may split between panels. This value is the default.

0 does not repeat sort field values on each report panel, and columns do not split between
panels.

1. Customizing Your Environment

Developing Applications 67

n repeats n columns of sort fields on each report panel. The value for n can be equal to or
less than the total number of sort fields specified in the request.

CACHE

The CACHE parameter controls the number of cache pages to be allocated. This command
cannot be used with ON TABLE SET.

Stores 4K FOCUS data source pages in memory and buffers them between the data source
and BINS.

When a procedure calls for a read of a data source page, FOCUS first searches BINS, then
cache memory, and then the data source on disk. If the page is found in cache, FOCUS does
not have to perform an I/O to disk.

When a procedure calls for a write of a data source page, the page is written from BINS to
disk. The updated page is also copied into cache memory so that the cache and disk versions
remain the same. Unlike reads, cache memory does not save disk I/Os for write procedures.

FOCSORT pages are also written to cache. When the cache becomes full, they are written to
disk. For optimal results, set cache to hold the entire data source plus the size of FOCSORT for
the request. To estimate the size of FOCSORT for a given request, issue the ? STAT command,
then add the number of SORTPAGES listed to the number of data source pages in memory.
Issue a SET CACHE command for that amount. If cache is set to 50, 50 4K pages of
contiguous storage are allocated to cache.

To clear the CACHE setting, issue a SET CACHE = n command. This command flushes the
buffer (everything in cache memory is lost).

The syntax is:

SET CACHE = {0|n}

where:

0

Allocates no space to cache, which is inactive. 0 is the default value.

n

Is the number of 4K pages of contiguous storage allocated to cache memory. The
minimum is two pages. The maximum is determined by the amount of memory available. If
HiperFOCUS is activated, the default cache size is 256 pages (1MB) and the cache is
placed in a hiperspace.

SET Parameter Syntax

68

CARTESIAN

The CARTESIAN parameter applies to requests containing PRINT or LIST.

It generates a report containing all combinations of non-related data instances in a multi-path
request. ACROSS cancels this parameter.

The syntax is:

SET CARTESIAN = {ON|OFF}

where:

ON

Generates a report with non-related records.

OFF

Disables the Cartesian product. OFF is the default value.

CDN

The CDN parameter specifies punctuation used in numeric notation.

Continental Decimal Notation (CDN) is supported for output in TABLE requests. It is not
supported in DEFINE or COMPUTE commands.

The syntax is:

SET CDN = option

where:

option

Is one of the following:

DOTS_COMMA or ON uses CDN. Sets the decimal separator as a comma and the thousands
separator as a period. For example, the number 3,045,000.76 is represented as
3.045.000,76. ON should be used for Germany, Denmark, Italy, Spain, and Brazil.

Note: Numeric parameters that use CDN ON must be separated by a comma followed by a
space in calls to functions.

COMMAS_DOT or OFF turns CDN off. For example, the number 3,045,000.76 is represented
as 3,045,000.76. OFF is the default value. OFF should be used for the USA, Canada,
Mexico, and the United Kingdom.

SPACES_COMMA or SPACE sets the decimal point as a comma, and the thousands
separator as a space. For example, the number 3,045,000.76 is represented as 3 045
000,76. SPACE should be used for France, Norway, Sweden, and Finland.

1. Customizing Your Environment

Developing Applications 69

SPACES_DOT or SPACEP sets the decimal point as a period and the thousands separator
as a space. For example, the number 3,045,000.76 is represented as 3 045 000.76.

QUOTES_COMMA or QUOTE sets the decimal point as a comma and the thousands separator
as an apostrophe. For example, the number 3,045,000.76 is represented as
3'045'000,76. QUOTE should be used for Switzerland.

QUOTES_DOT or QUOTEP sets the decimal point as a period and the thousands separator
as an apostrophe. For example, the number 3,045,000.76 is represented as
3'045'000.76.

Note: If the display format of a report is Excel 2000 or later, Continental Decimal Notation is
controlled by the settings on the computer. That is, numbers in report output are formatted
according to the convention of the locale (location) set in regional or browser language options.

CENT-ZERO

The CENT-ZERO parameter displays a leading zero in decimal-only numbers. The setting of CDN
determines whether a decimal point or comma is the decimal separator.

The syntax is:

SET CENT-ZERO = {ON|OFF}

where:

ON

Displays fractions with a leading zero. The fraction is preceded by either a decimal point or
comma, depending on the CDN setting.

OFF

Does not display a leading zero. The fraction is preceded by either a decimal point or
comma, depending on the CDN setting. OFF is the default value.

CNOTATION

Column notation assigns a sequential column number to each column in the internal matrix
created for a report request. You can use column notation in COMPUTE and RECAP commands
to refer to these columns in your request.

SET Parameter Syntax

70

Because column numbers refer to columns in the internal matrix, they are assigned after
retrieval and aggregation are completed. Columns not actually displayed on the report output
may exist in the internal matrix. For example, calculated values used in the request generate
one or more columns in the internal matrix. Fields with the NOPRINT option take up a column
in the internal matrix, and a reformatted field generates an additional column for the
reformatted value. Certain RECAP calculations, such as FORECAST or REGRESS generate
multiple columns in the internal matrix.

BY fields are not assigned column numbers but, by default, every other column in the internal
matrix is assigned a column number, which means that you have to account for all of the
internally generated columns if you want to refer to the appropriate column value in your
request. You can change this default column assignment behavior with the SET
CNOTATION=PRINTONLY command, which assigns column numbers only to columns that
display on the report output, or the SET CNOTATION=EXPLICIT command, which assigns
column numbers to columns that are referenced in the request.

The syntax is:

SET CNOTATION={ALL|PRINTONLY|EXPLICIT}

where:

ALL

Assigns column reference numbers to every column in the internal matrix. ALL is the
default value.

PRINTONLY

Assigns column reference numbers only to columns that display on the report output.

EXPLICIT

Assigns column reference numbers to all fields referenced in the request, whether it is
displayed or not.

Note: This setting is not supported in an ON TABLE phrase.

COLLATION

The COLLATION parameter controls the ordering and matching of all language elements that
involve comparison of two alphanumeric values.

The syntax is:

SET COLLATION = {BINARY|SRV_CI|SRV_CS|CODEPAGE}

1. Customizing Your Environment

Developing Applications 71

where:

BINARY

Bases the collation sequence on binary values.

SRV_CI

Bases collation sequence on the LANGUAGE setting, and is case-insensitive.

SRV_CS

Bases collation sequence on the LANGUAGE setting, and is case-sensitive.

CODEPAGE

Bases collation sequence on the code page in effect, and is case-sensitive. CODEPAGE is
the default value.

In most cases, CODEPAGE is the same as BINARY. The only differences are for Danish,
Finnish, German, Norwegian, and Swedish in an EBCDIC environment.

COMPMISS

When a field is reformatted in a request (for example, SUM field/format), an internal COMPUTE
field is created to contain the reformatted field value and displayed on the report output. If the
original field has a missing value, that missing value can be propagated to the internal field by
setting the COMPMISS parameter ON. If the missing value is not propagated to the internal
field, it displays a zero (if it is numeric) or a blank (if it is alphanumeric). If the missing value is
propagated to the internal field, it displays the missing data symbol on the report output.

The syntax is:

SET COMPMISS = {ON|OFF}

where:

ON

Propagates a missing value to a reformatted field.

OFF

Displays a blank or zero for a reformatted field. OFF is the default value.

SET Parameter Syntax

72

COMPOUND

The COMPOUND parameter, which is used to create compound reports, combines multiple
reports into a single PDF or PostScript (PS) file. Using COMPOUND enables you to concatenate
reports with styled report formats (PDF, HTML, Power Point, Excel). You can also embed image
files, including graphs saved as images, in a compound report.

For more information about creating compound reports, see the TIBCO FOCUS® Creating
Reports manual.

For a compound report that may contain different report types, the syntax is:

SET COMPOUND = {OPEN|CLOSE} [NOBREAK]

or

ON TABLE SET COMPOUND {OPEN|CLOSE}

Note that when you are using this syntax, you must also include the following code to identify
the display format of each of the different reports to be concatenated:

ON TABLE {PCHOLD|HOLD|SAVE} [AS name] FORMAT formatname

If all of the reports in the compound set are of the same type, either PDF or PS, the syntax is:

ON TABLE {PCHOLD|HOLD|SAVE} [AS name] FORMAT {PDF|PS} {OPEN|CLOSE} [NOBREAK]

where:

name

Is the name of the generated file. The name is taken from the first request in the
compound report. If no name is specified in the first report, the name HOLD is used.

formatname

Is the name of the styled report format. Valid formats include PDF, PS, HTML, PPT, and
EXL2K.

OPEN

Is specified with the first report, and begins the concatenation process. A report that
contains the OPEN attribute must be in PDF or PS format.

CLOSE

Is specified with the last report, and ends the concatenation process.

1. Customizing Your Environment

Developing Applications 73

NOBREAK

Is an optional phrase that suppresses page breaks. By default, each report is displayed on
a separate page. You can use NOBREAK selectively in a request to control which reports
are displayed on the same page.

Note:

You can save or hold the output from a compound report.

Compound reports cannot be nested.

Multi-pane reports cannot be used in a compound report.

COMPUTE

The COMPUTE parameter controls the compilation of calculations when a request is executed.

The syntax is:

SET COMPUTE = {COMPILED|OLD}

where:

COMPILED

Implements expression compilation at request run time, compiling only those expressions
that are used in the request. COMPILED is the default value.

OLD

The value OLD has been deprecated and functions as COMPILED.

COUNTWIDTH

The COUNTWIDTH parameter expands the default format of COUNT fields from a five-byte
integer to a nine-byte integer or a specified integer format supported in your operating
environment.

The syntax is:

SET {COUNTWIDTH|LISTWIDTH} = {ON|OFF|n}

where:

ON

Expands the default format of COUNT fields from a five-byte integer to a nine-byte integer.

SET Parameter Syntax

74

OFF

Does not expand the default format of COUNT fields from a five-byte integer to a nine-byte
integer. OFF is the default value.

n
Enables you to specify a width for the COUNT field up to the maximum integer format
supported in your operating environment.

CSSURL

The CSSURL parameter links an HTML report to an external cascading style sheet (CSS) file in
order to style the report.

The syntax is:

SET CSSURL = link

where:

link

Is the URL location of the CSS file. This can be an absolute or relative link.

CURRENCY_DISPLAY

This parameter defines the position of the currency symbol relative to the monetary number.

The syntax is:

SET CURRENCY_DISPLAY = pos

where:

pos
Defines the position of the currency symbol relative to a number. The default value is
default, which uses the position for the format and currency symbol in effect. Valid values
are:

LEFT_FIXED. The currency symbol is left-justified preceding the number.

LEFT_FIXED_SPACE. The currency symbol is left-justified preceding the number, with at
least one space between the symbol and the number.

LEFT_FLOAT. The currency symbol precedes the number, with no space between them.

LEFT_FLOAT_SPACE. The currency symbol precedes the number, with one space
between them.

1. Customizing Your Environment

Developing Applications 75

TRAILING. The currency symbol follows the number, with no space between them.

TRAILING_SPACE. The currency symbol follows the number, with one space between
them.

Note: This setting is not supported with FORMAT EXL2K report output.

CURRENCY_ISO_CODE

This parameter defines the ISO code for the currency symbol to use.

The syntax is:

SET CURRENCY_ISO_CODE = iso

where:

iso

Is a standard three-character currency code such as USD for US dollars or JPY for
Japanese yen. The default value is default, which uses the currency code for the configured
language code.

Note: This setting is not supported with FORMAT EXL2K report output.

CURRENCY_PRINT_ISO

This parameter defines what will happen when the currency symbol cannot be displayed by the
code page in effect, if the format of the field to be displayed includes the !C or :C extended
currency symbol.

The syntax is:

SET CURRENCY_PRINT_ISO = {DEFAULT|ALWAYS|NEVER}

where:

DEFAULT

Replaces the currency symbol with its ISO code when the symbol cannot be displayed by
the code page in effect. This is the default value.

ALWAYS

Always replaces the currency symbol with its ISO code.

NEVER

Never replaces the currency symbol with its ISO code. If the currency symbol cannot be
displayed by the code page in effect, it will not be printed at all.

SET Parameter Syntax

76

Note:

Using a Unicode environment allows the printing of all currency symbols, otherwise this
setting is needed.

This parameter is not supported with FORMAT EXL2K report output.

CURRSYMB

The CURRSYMB parameter specifies a symbol used to represent currency when a numeric
format specification uses the M or N display options. The default currency symbol depends on
the code page being used.

The syntax is:

SET CURRSYMB = symbol

where:

symbol

Is any printable character or a supported currency code.

Note: In order to specify a dollar sign as the character, you must enclose it in single
quotation marks (').

USD or '$' specifies U.S. dollars.

GBP specifies the British pound.

JPY specifies the Japanese yen.

EUR specifies the Euro.

NIS specifies the Israeli new shekel.

CURSYM_D

The CURSYM_D parameter specifies the characters used to represent currency when a
numeric format specification uses the !D, :D, !d, or :d display options which, by default, display
a floating (D) or fixed (d) dollar sign to the left of the number.

The syntax is:

SET CURSYM_D = currsym

1. Customizing Your Environment

Developing Applications 77

where:

currsym

Specifies up to four printable characters.

CURSYM_E

The CURSYM_E parameter specifies the characters used to represent currency when a numeric
format specification uses the !E, :E, !e, or :e display options which, by default, display a
floating (E) or fixed (e) euro symbol to the left of the number.

The syntax is:

SET CURSYM_E = currsym

where:

currsym

Specifies up to four printable characters.

CURSYM_F

The CURSYM_F parameter specifies the characters used to represent currency when a numeric
format specification uses the !F or :F display option which, by default, places a floating euro
symbol to the right of the number. This command supports adding a blank space between the
number and the currency symbol.

The syntax is:

SET CURSYM_F = currsym

where:

currsym

Specifies up to four printable characters. If the characters include a blank space, they
must be enclosed in single quotation marks.

CURSYM_G

The CURSYM_G parameter specifies the characters used to represent currency when a
numeric format specification uses the !G or :G display option which, by default, places a
floating dollar sign to the right of the number. This command supports adding a blank space
between the number and the currency symbol.

The syntax is:

SET CURSYM_G= currsym

SET Parameter Syntax

78

where:

currsym

Specifies up to four printable characters. If the characters include a blank space, they
must be enclosed in single quotation marks.

CURSYM_L

The CURSYM_L parameter specifies the characters used to represent currency when a numeric
format specification uses the !L, :L, !l, or :l display options which, by default, display a floating
(L) or fixed (l) British pound symbol to the left of the number.

The syntax is:

SET CURSYM_L = currsym

where:

currsym

Specifies up to four printable characters.

CURSYM_Y

The CURSYM_Y parameter specifies the characters used to represent currency when a numeric
format specification uses the !Y, :Y, !y, or :y display options which, by default, display a
floating (Y) or fixed (y) Japanese yen or Chinese yuan symbol to the left of the number.

The syntax is:

SET CURSYM_Y = currsym

where:

currsym

Specifies up to four printable characters.

DATE_ORDER

This parameter defines the order of date components for display.

The syntax is:

SET DATE_ORDER = {DEFAULT|DMY|MDY|YMD}

where:

DEFAULT

Respects the original order of date components. This is the default value.

1. Customizing Your Environment

Developing Applications 79

DMY

Displays all dates in day/month/year order.

MDY

Displays all dates in month/day/year order.

YMD

Displays all dates in year/month/day order.

Note:

DATE_ORDER overrides the specified date order for all date and date-time displays. To limit
the scope to a request when using DATE_ORDER, use the ON TABLE SET phrase.

To use this setting with the Dialogue Manager system variables, (for example, &DATE,
&TOD, &YMD, &DATEfmt, and &DATXfmt) append the suffix .DATE_LOCALE to the system
variable. This allows system variables that are localized to coexist with non-localized
system variables.

This parameter is not supported with FORMAT EXL2K report output.

DATE_SEPARATOR

This parameter defines the separator for date components for display.

The syntax is:

SET DATE_SEPARATOR = separator

where:

separator
Can be one of the following values.

DEFAULT, which respects the separator defined by the USAGE format of the field.

SLASH, which uses a slash (/) to separate date components.

DASH, which uses a dash (-) to separate date components.

BLANK, which uses a blank to separate date components.

DOT, which uses a dot (.) to separate date components.

NONE, which does not separate date components.

SET Parameter Syntax

80

Note:

DATE_SEPARATOR overrides the date separator for all date and date-time displays unless
they include a translation display option (T,Tr, t, or tr), in which case the specified separator
is produced.

To use this setting with the Dialogue Manager system variables, (for example, &DATE,
&TOD, &YMD, &DATEfmt, and &DATXfmt) append the suffix .DATE_LOCALE to the system
variable. This allows system variables that are localized to coexist with non-localized
system variables.

This parameter is not supported with FORMAT EXL2K report output.

DATEDISPLAY

The DATEDISPLAY parameter controls the display of a base date. Previously, TABLE always
displayed a blank when a date read from a file matched the base date or a field with a smart
date format had the value 0. The following shows the base date for each supported date
format:

Format Base Date

YMD and YYMD 1900/12/31

YM and YYM 1901/01

YQ and YYQ 1901/Q1

JUL and YYJUL 00/365 and 1900/365

Note: You cannot set DATEDISPLAY with the ON TABLE command.

The syntax is:

SET DATEDISPLAY = {ON|OFF}

where:

ON

Displays the base date if the data is the base date value.

OFF

Displays a blank if the date is the base date value. OFF is the default value.

1. Customizing Your Environment

Developing Applications 81

DATEFNS

The DATEFNS parameter activates year 2000-compliant versions of date functions.

The syntax is:

SET DATEFNS = {ON|OFF}

where:

ON

Loads the year 2000-compliant versions of functions supplied by Information Builders.

OFF

This value is no longer functional, and operates as ON.

DATEFORMAT

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats. It
makes the input format of a value independent of the format of the variable to which it is being
assigned.

The syntax is:

SET DATEFORMAT = datefmt

where:

datefmt

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

DATETIME

The DATETIME parameter sets time and date in reports. This command is useful for
determining (statically or dynamically) exactly when your report was run. You can display the
DATETIME value using any FOCUS date variable (for example, YMD, MDY, TOD). If DATETIME is
not set, the behavior of the FOCUS date variables remain the same.

The syntax is:

SET DATETIME = option

SET Parameter Syntax

82

where:

option

Is one of the following:

STARTUP, which is the time and date when you began your session. STARTUP is the
default value.

CURRENT|NOW, which changes each time it is interrogated. For example, if your batch
job starts before midnight at 11:59 P.M., it will not complete until the next day. If
DATETIME is set to NOW|CURRENT, any reference to the variable gives the current
date, not the date when the job started.

RESET, which freezes the date and time of the current run for the rest of the session or
until another SET DATETIME command is issued.

DB_INFILE

The SET DB_INFILE command controls whether the expression generated by the DB_INFILE
function for use against a relational data source is optimized.

The syntax is:

SET DB_INFILE = {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}

where:

DEFAULT

Enables DB_INFILE to create a subquery if its analysis determines that it is possible. This
is the default value.

EXPAND_ALWAYS

Prevents DB_INFILE from creating a subquery and, instead, expands the expression into IF
and WHERE clauses in memory.

EXPAND_NEVER

Prevents DB_INFILE from expanding the expression into IF and WHERE clauses in memory
and, instead, attempts to create a subquery. If this is not possible, a FOC32585 message
is generated and processing halts.

DBACSENSITIV

When a DBA or user issues the SET USER, SET PERMPASS or SET PASS command, this user
ID is validated before they are given access to any data source whose Master File has DBA
attributes. The password is also checked when encrypting or decrypting a FOCEXEC.

1. Customizing Your Environment

Developing Applications 83

The SET DBACSENSITIV command determines whether the password is converted to
uppercase prior to validation.

The syntax is:

SET DBACSENSITIV = {ON|OFF}

where:

ON

Does not convert passwords to uppercase. All comparisons between the password set by
the user and the password in the Master File or FOCEXEC are case-sensitive.

OFF

Converts passwords to uppercase prior to validation. All comparisons between the
password set by the user and the password in the Master File or FOCEXEC are not case-
sensitive. OFF is the default value.

DBAJOIN

The DBAJOIN parameter controls where DBA restrictions are treated as WHERE conditions in
the report request or are added as join conditions.

SET DBAJOIN = {OFF|ON}

where:

OFF

Treats DBA restrictions as WHERE filters in the report request. OFF is the default value.

ON

Treats DBA restrictions as join conditions.

DBASOURCE

The DBASOURCE parameter determines which security attributes are used to grant access to
multi-file structures. By default, access restrictions are based on the host file in a JOIN
structure or the last file in a COMBINE structure. If you set the DBASOURCE parameter to ALL,
access restrictions from all files in a JOIN or COMBINE structure will be enforced.

All files in the JOIN or COMBINE structure must have the same DBA password. If the DBA
attributes are not the same, there will be no way to access the structure.

The SET DBASOURCE command can only be issued one time in a session or connection. Any
attempt to issue the command additional times will be ignored. If the value is set in a profile
such as FOCPARM, no user can change it at any point in the session.

SET Parameter Syntax

84

When DBASOURCE=ALL:

In a TABLE request against a JOIN structure, access to a cross-reference file or segment is
allowed only if the user has at least read access to each file in the structure.

In a MODIFY COMBINE structure, the user must have a minimum of READ access to all files
in the structure. The user requires WRITE, UPDATE, or READ/WRITE access to a file in the
structure when an INCLUDE, DELETE, or UPDATE request is issued against that file.

When DBASOURCE=HOST:

In a TABLE request, the user needs read access to the host file in the JOIN structure. All
security limitations come from the host file. Note that you can create and activate a
DBAFILE in order to enforce security restrictions from all files in the structure.

In a MODIFY procedure, the user needs write access to the last file in the COMBINE
structure. All security limitations come from the restrictions in the last file in the structure.
Note that you can create and activate a DBAFILE in order to enforce security restrictions
from all files in the structure.

The syntax is:

SET DBASOURCE = {HOST|ALL}

where:

HOST

Enforces access restrictions only from the host file in a JOIN structure or the last file in a
COMBINE structure unless a DBAFILE is used to enforce access restrictions to other files
in the structure. HOST is the default value.

ALL

Requires the user to have read access to every file in a JOIN or COMBINE structure. The
user needs W, U, or RW access to a file in a COMBINE structure when an INCLUDE,
UPDATE, or DELETE command is issued against that file.

DEFCENT

The DEFCENT parameter defines a default century globally or on a field-level for an application
that does not contain an explicit century. DEFCENT is used in conjunction with YRTHRESH to
interpret the current century according to the given values. When assigned globally, the time
span created by these parameters applies to every 2-digit year used by the application unless
you specify file-level or field-level values. (See YRTHRESH on page 154.)

Note: This same result can be achieved by including the FDEFCENT and FYRTHRESH attributes
in the Master File.

1. Customizing Your Environment

Developing Applications 85

The syntax is:

SET DEFCENT = {cc|19}

where:

cc

Is the default century. 19 is the default value if one is not supplied. The value cc defaults
to 19, for the twentieth century.

DEFECHO

The DEFECHO parameter defines a default value for the &ECHO variable.

The syntax is:

SET DEFECHO = {OFF|ON|ALL|NONE}

where:

OFF

Establishes OFF as the default value for &ECHO. OFF is the default value.

ON

Establishes ON as the default value for &ECHO.

ALL

Establishes ALL as the default value for &ECHO.

NONE

Prevents procedure code from being displayed (echoed). Once the value of DEFECHO or
&ECHO has been set to NONE, it cannot be changed during the session or connection.

DEFINES

The DEFINES parameter increases the speed of calculations in virtual fields by compiling virtual
fields into machine code.

The syntax is:

SET DEFINES = {COMPILED|OLD}

where:

COMPILED

Implements expression compilation at request run time, compiling only those DEFINEs that
are used in the request. COMPILED is the default value.

SET Parameter Syntax

86

OLD

The value OLD has been deprecated and functions as COMPILED.

DIRECTHOLD

The DIRECTHOLD parameter creates a HOLD file in FOCUS format directly, without an internally
generated MODIFY procedure and an intermediate sequential file.

The syntax is:

SET DIRECTHOLD = {ON|OFF}

where:

ON

Creates a FOCUS HOLD file directly without an intermediate sequential file and MODIFY
procedure. ON is the default value and the only value supported. OFF is allowed for
backward syntax compatibility, but it operates the same way as ON.

OFF

OFF is allowed for backward syntax compatibility, but it operates the same way as ON.

DMH_LOOPLIM

The DMH_LOOPLIM parameter sets the maximum number of Dialogue Manager loop iterations
allowed, using -REPEAT or -GOTO commands.

The syntax is:

SET DMH_LOOPLIM = n

where:

n

Sets the maximum number of loop iterations allowed. The default value is zero (0), which
does not limit the number of loop iterations.

DMH_LOOPLIM should be set high enough to run your existing reports and procedures
without error for your entire session. It is recommended that if you set this parameter, you
set it in a profile.

DMH_STACKLIM

The DMH_STACKLIM parameter sets the maximum number of lines allowed in FOCSTACK.

The syntax is:

SET DMH_STACKLIM = n

1. Customizing Your Environment

Developing Applications 87

where:

n

Sets the maximum number of lines allowed in FOCSTACK. The default value is zero (0),
which does not limit the number of stacked commands.

DMH_STACKLIM should be set high enough to run your existing reports and procedures
without error for your entire session. It is recommended that if you set this parameter, you
set it in a profile.

DMPRECISION

The DMPRECISION parameter specifies numeric precision in Dialogue Manager -SET
commands.

Without this setting, results of numeric calculations are returned as integer numbers, although
the calculations themselves employ double-precision arithmetic. To return a number with
decimal precision without this setting, you have to enter the calculation as input into
subroutine FTOA, where you can specify the number of decimal places returned.

The syntax is:

SET DMPRECISION = {OFF|n}

where:

OFF

Specifies truncation without rounding after the decimal point. OFF is the default value

n

Is a positive number from 0-9, indicating the point of rounding. Note that n=0 results in a
rounded integer value.

DRILLFOCMISSING

The DRILLFOCMISSING parameter enables you to control when to pass the _FOC_MISSING
string or a period (.) as the drill-down value for MISSING values.

The syntax is:

SET DRILLFOCMISSING = {ON|OFF}
ON TABLE SET DRILLFOCMISSING {ON|OFF}

SET Parameter Syntax

88

where:

ON

Passes the _FOC_MISSING string as the drill-down value for MISSING data. ON is the
default value.

OFF

Passes the period (.) as the drill-down value for MISSING data.

DROPBLNKLINE

The DROPBLNKLINE parameter suppresses blank lines around subtotals, subheadings, and
subfootings when formatting a report for output. In addition, certain data lines may be blank
and appear as blank lines on the report output. You can eliminate these blank lines from the
report output using the SET DROPBLNKLINE=ON command.

This setting does not apply to the following output formats: HOLD/PCHOLD/SAVE formats
ALPHA, INTERNAL, BINARY, COM, COMT, COMMA, TAB, TABT, FIX, DFIX, all DBMS, VSAM,
LOTUS, SYLK, DIF, FOCUS, and XFOCUS.

The syntax is:

SET DROPBLNKLINE = {OFF|ON|BODY|HEADING|ALL}

where:

OFF

Inserts system-generated blank lines as well as empty data lines. OFF is the default value.

ON|BODY

Removes system-generated blank lines within the body of the report, for example, before
and after subheads. In addition, certain data lines that may be blank and appear as blank
lines on the report output will be removed from the output. BODY is a synonym for ON.

HEADING

Removes the blank lines between headings and titles and between the report body and the
footing. Works in positioned formats (PDF, PS, DHTML, PPT, PPTX) when a request has a
border or backcolor StyleSheet attribute anywhere in the report.

ALL

Provides both the ON and HEADING behaviors.

1. Customizing Your Environment

Developing Applications 89

DTSTRICT

The DTSTRICT parameter controls the use of strict processing. Strict processing checks date-
time values when they are input by an end user, read from a transaction file, displayed, or
returned by a subroutine to ensure that they represent a valid date and time. For example, a
numeric month must be between 1 and 12, and the day must be within the number of days for
the specified month.

The syntax is:

SET DTSTRICT = {ON|OFF}

where:

ON

Invokes strict processing. ON is the default value.

OFF

Does not invoke strict processing. Date-time components can have any value within the
constraint of the number of decimal digits allowed in the field. For example, if the field is a
two-digit month, the value can be 12 or 99, but not 115.

DUPLICATECOL

The DUPLICATECOL parameter reformats report requests that use multiple display commands,
placing aggregated fields in the same column above the displayed field.

The syntax is:

SET DUPLICATECOL = {ON|OFF}

where:

ON

Displays the report with each field as a column. ON is the default value.

OFF

Displays the report with common fields as a row.

EMBEDDABLE

The EMBEDDABLE parameter controls the generation of document-level HTML tags (such as,
<html>, <head>, <body>) in HTML5 chart output. This enables multiple HTML5 charts to be
embedded in an HTML page.

SET Parameter Syntax

90

The syntax is:

SET EMBEDDABLE = {OFF|ON}

where:

OFF

Generates complete HTML report output with document-level HTML tags. This is the
default value.

ON

Generates report output in HTML format without document-level tags. This setting should
be used when creating HTML5 graph output to be used with -HTMLFORM.

Note: SET EMBEDDABLE=ON also affects HTML report output and Java-based graph
formats. For those formats, it is the equivalent of using HOLD FORMAT HTMTABLE.

EMPTYCELLS

For numeric fields, the EMPTYCELLS parameter enables you to handle MISSING options for
fields with the XLSX output format to allow raw data displayed in the formula bar the value of 0
for MISSING, instead of the absence of a value or empty cell.

The syntax is:

SET EMPTYCELLS = {ON|ZEROVALUE|XLSXOFF}
ON TABLE SET EMPTYCELLS {ON|ZEROVALUE|XLSXOFF}

where:

ON

For numeric fields, creates empty cells for cells with MISSING values. ON is the default
value.

ZEROVALUE

For numeric fields, inserts a 0 raw value in cells with MISSING values. This applies to
Excel 2007 and higher (.xlsx output format).

XLSXOFF

For fields with MISSING values, generates an empty cell for alphanumeric fields and 0 in
cells for numeric.

EMPTYREPORT

The EMPTYREPORT parameter controls the output generated when a TABLE request retrieves
zero records.

1. Customizing Your Environment

Developing Applications 91

EMPTYREPORT is not supported with TABLEF or Excel. When a TABLEF or Excel request
retrieves zero records, an empty report is generated.

Note: Using the IF TOTAL or WHERE TOTAL phrases when EMPTYREPORT is set to OFF may
produce an empty report if there is no data that satisfies the TOTAL condition. This occurs
because the test for report lines for EMPTYREPORT is applied before the TOTAL condition is
applied.

The syntax is:

SET EMPTYREPORT={ANSI|ON|OFF}

where:

ANSI

Produces a single-line report and displays the missing data character or a zero if a COUNT
is requested. In each case, &RECORDS will be 0, and &LINES will be 1.

If the SQL Translator is invoked, ANSI automatically replaces OFF as the default setting for
EMPTYREPORT.

ON

Produces an empty report (column headings with no content). This was the default
behavior in prior releases.

OFF

Produces no report output. OFF is the default value except for SQL Translator requests.
When the SQL Translator is invoked, ANSI replaces OFF as the default setting for the
EMPTYREPORT parameter, so the results are the same as for the ANSI setting.

The command can also be issued from within a request using:

ON TABLE SET EMPTYREPORT ANSI

EQTEST

The EQTEST parameter controls whether the characters $ and $* are treated as wildcard
characters or normal characters in IF tests and WHERE tests that can be converted to one or
more IF tests.

The syntax is:

SET EQTEST = {WILDCARD|EXACT}

SET Parameter Syntax

92

where:

WILDCARD

Treats the $ and $* characters as wildcard characters. WILDCARD is the default value.

EXACT

Treats the $ and $* characters as normal characters, not wildcards, in IF tests and in
WHERE tests that can be translated to IF tests.

ERROROUT

The ERROROUT parameter controls how a batch FOCUS job step responds to an error condition
encountered in a procedure. This parameter cannot be set with the ON TABLE SET command.

When ERROROUT is set to ON, any error message generated terminates the job step and
issues a return code of 8. Warning messages do not invoke this behavior. When ERROROUT is
set to OFF, depending on the specific message, FOCUS determines whether FOCEXEC
processing continues. Users can check a Dialogue Manager variable, such as &FOCERRNUM
and issue the following command to terminate FOCUS and set n as the return code:

-QUIT FOCUS n

exit rc

Note: The ERROROUT setting is ignored in an interactive session.

The syntax is:

SET ERROROUT = {ON|OFF}

where:

ON

When an error message is generated in a batch FOCUS job step, ON sets the return code
to 8 and terminates the job step.

In addition, the following message displays to inform the user why the program terminated:

Exiting due to Exit on Error

OFF

Does not set a return code or automatically terminate a job step or procedure in response
to any error message. OFF is the default value.

1. Customizing Your Environment

Developing Applications 93

ESTRECORDS

The ESTRECORDS parameter passes the estimated number of records to be sorted in the
request.

ESTRECORDS can only be set with the ON TABLE SET command within the TABLE, MATCH, or
GRAPH request.

The syntax is:

ON TABLE SET ESTRECORDS n

where:

n

Is the estimated number of records to be sorted.

EUROFILE

The EUROFILE parameter activates the data source that contains information for the currency
you want to convert. This setting can be changed during a session to access a different
currency data source. This parameter cannot be issued in a report request.

Note: You cannot set any additional parameters on the same line as EUROFILE. FOCUS
ignores any other parameters specified on the same line.

The syntax is:

SET EUROFILE = {ddname|OFF}

where:

ddname

Is the name of the Master File for the currency data source you want to use. The ddname
must refer to a read-only data source accessible by FOCUS. There is no default value.

OFF

Deactivates the current currency data source and removes it from memory.

EXCELSERVURL

The EXCELSERVURL parameter is needed for generating XLSX report output.

The syntax is:

SET EXCELSERVURL = LOCAL

SET Parameter Syntax

94

EXL2KLANG

When included in the member NLSCFG in the ERRNLS PDS, the EXL2KLANG parameter
specifies the language used for Microsoft® Excel requests. This language must be the same
as the language of Excel on the browser machine in order to correctly display output.

You can code the SET EXL2KLANG command in a profile or procedure to override the setting in
the errors file.

The syntax is:

EXL2KLANG = {language|ENG}

where:

language

Is the Excel language. Valid values are:

ENG for English. ENG is the default value.

FRE for French.

GER for German.

JPN for Japanese.

KOR for Korean.

SPA for Spanish.

EXL2KTXTDATE

The EXL2KTXTDATE parameter allows you to specify that translated dates should be sent as
date values with format masks instead of text values.

The syntax is:

SET EXL2KTXTDATE = {TEXT|VALUE}

where:

TEXT

Passes date values that contain text to Excel 2000 as formatted text. TEXT is the default
value.

1. Customizing Your Environment

Developing Applications 95

VALUE

Passes the types of translated date values that contain text and are supported Excel date
formats to Excel 2000 as standard date values with text format masks applied.

EXTAGGR

The EXTAGGR parameter uses external sorts to perform aggregation.

The syntax is:

SET EXTAGGR = {ON|OFF|NOFLOAT}

where:

ON

Allows aggregation by an external sort. ON is the default.

OFF

Does not allow aggregation by an external sort.

NOFLOAT

Allows aggregation if there are no floating data fields present.

EXTENDNUM

The EXTENDNUM parameter controls whether asterisks (*) display on report output when the
value to be displayed does not fit in the allotted space on report output or whether the report
column is extended to display the number.

The syntax is:

SET EXTENDNUM = {ON|OFF|AUTO}

where:

ON

Displays all numbers in full, regardless of the USAGE format defined.

OFF

Displays asterisks when the value does not fit in the space allotted by the USAGE format.
This is the legacy behavior.

SET Parameter Syntax

96

AUTO

Applies an ON or OFF setting based on output format and SQUEEZE settings, as shown in
the following table.

Format SQUEEZE Setting EXTENDNUM

PDF, PS, DHTML, PPT, PPTX ON

OFF

ON

OFF

HTML, EXL2K, XLSX N/A ON

WP, other delimited formats N/A OFF

AUTO is the default value.

EXTHOLD

The EXTHOLD parameter enables you to create a HOLD file using an external sort.

The syntax is:

SET EXTHOLD = {ON|OFF}

where:

ON

Creates HOLD files using an external sort. ON is the default value.

OFF

Does not create HOLD files using an external sort.

EXTRACT

The EXTRACT parameter activates Structured HOLD Files for a request.

This parameter is only supported in a TABLE or TABLEF request using an ON TABLE phrase.

The syntax is:

ON TABLE SET EXTRACT = {ON|*|OFF}

where:

ON

Activates Structured HOLD Files for this request and extracts all fields mentioned in the
request.

1. Customizing Your Environment

Developing Applications 97

*

Activates Structured HOLD Files for this request and indicates that a block of extract
options follows. For example, you can exclude specific fields from the Structured HOLD
File.

OFF

Deactivates Structured HOLD files for this request. OFF is the default value.

EXTSORT

The EXTSORT parameter activates an external sorting feature for use with the TABLE, MATCH,
and GRAPH commands.

If the report can be processed entirely in memory, external sorting does not occur.

In order to determine if the report can be processed in memory, issue the ? STAT query after
the TABLE, MATCH, or GRAPH command, and check the value of the SORT USED parameter.

When StyleSheets are being used, an external sort does not work.

The syntax is:

SET EXTSORT = {ON|OFF}

where:

ON

Enables the selective use of an external sorting product to sort report. ON is the default
value.

OFF

Uses the internal sorting procedure to sort reports.

FIELDNAME

The FIELDNAME parameter controls whether long and qualified field names are supported.

This command cannot be used with ON TABLE SET.

The syntax is:

SET FIELDNAME = {NEW|NOTRUNC|OLD}

where:

NEW

Supports long and qualified field names. NEW is the default value.

SET Parameter Syntax

98

NOTRUNC

Supports long and qualified field names, but not unique truncations.

OLD

This parameter value is no longer operational. It now functions as the value NEW.

FILE[NAME]

The FILE[NAME] parameter specifies a file to be used, by default, in commands. When you set
a default file name, you can use that file without specifying its name.

The syntax is:

SET FILE[NAME] = filename

where:

filename

Is a default file to be used in commands.

FILTER

The FILTER parameter assigns screening conditions to a data source for reporting purposes. It
activates and deactivates filters.

The SET FILTER command is limited to one line. To activate more filters to fit on one line
repeat the SET FILTER command.

The syntax is:

SET FILTER= {*|xx[yy zz]} IN {file|*} {ON|OFF}

where:

*

Denotes all declared filters. * is the default value.

xx, yy, zz

Are the names of filters as declared in the NAME = syntax of the FILTER FILE command.

file

Is the name of the data source you are assigning screening conditions to.

1. Customizing Your Environment

Developing Applications 99

ON

Activates all (*) or specifically named filters for the data source or all data sources (*). The
maximum number of filters you can activate for a data source is limited by the number of
WHERE/IF phrases the filters contain, not to exceed the limit of WHERE/IF criteria in any
single report request.

OFF

Deactivates (*) or specifically named filters for the data source or all data sources (*). OFF
is the default value.

FIXRET[RIEVE]

FOCUS HOLD files support keyed retrieval from a fixed format sequential file, which can greatly
reduce the I/Os incurred in reading extract files. The performance gains are accomplished by
using the SEGTYPE= parameter in the Master File to specify that the BY fields in the request
be used as a logical key for sequential files. The FIXRETRIEVE parameter allows you to stop
the retrieval process when an equality test on this field holds true. This changes former
behavior, as the interface previously read all of the records from the QSAM file and then
passed them to FOCUS to apply the screening conditions when creating the final report.

The syntax is:

SET FIXRET[RIVE] = {ON|OFF}

where:

ON

Enables keyed retrieval. ON is the default value.

OFF

Disables keyed retrieval.

FLOATMAPPING

SET FLOATMAPPING enables you to take advantage of decimal-based precision numbers
available in DB2 and Oracle, and extends that functionality to all numeric processing for
floating point numbers. With this processing, you gain both precision, including improved
rounding, and enhanced performance.

The syntax is

SET FLOATMAPPING = {D|M|X}

SET Parameter Syntax

100

where:

D

Uses the standard double-precision processing. This is the default value.

M

Uses a new internal format that provides decimal precision for double-precision floating
point numbers up to 16 digits.

X

Uses a new internal format that provides decimal precision for double-precision floating
point numbers up to 34 digits.

Note: If the field is passed to a HOLD file, the internal data types X or M data type will be
propagated to the USAGE and ACTUAL formats in the HOLD Master File.

FOC144

The FOC144 parameter suppresses warning message FOC144, which reads:

 "Warning: Testing in Independent sets of Data."

The syntax is:

SET FOC144 = {NEW|OLD}

where:

NEW

Displays the FOC144 warning message. NEW is the default value.

OLD

Suppresses the FOC144 warning message.

FOCEXURL

The FOCEXURL parameter is used to generate HTML5 graph output from FOCUS

The syntax is:

SET FOCEXURL = path

1. Customizing Your Environment

Developing Applications 101

where:

path

Is the location of the WebFOCUS Servlet. The default path for Servlet is /ibi_apps/
WFServlet.

FOCFIRSTPAGE

The FOCFIRSTPAGE parameter assigns a page number to the first page of output.

The syntax is:

SET FOCFIRSTPAGE = {n|1|&FOCNEXTPAGE}

where:

n

Is the number to be assigned to the first page of output. Valid values are integers with one
to six characters. 1 is the default value.

&FOCNEXTPAGE

Is a variable whose value is determined by the last page number used by the last report.
Its value is one more than that number.

FOCSTACK

This setting is no longer needed, but has been left in the product so that existing applications
that still include it continue to work. The FOCSTACK parameter specified the amount of
memory, in thousands of bytes, used by FOCSTACK, the stack of FOCUS commands awaiting
execution.

This command cannot be used with ON TABLE SET.

The syntax is:

SET FOCSTACK [SIZE] = {n|8}

where:

n

Is the maximum amount, in thousands of bytes, that can be used by FOCSTACK. The
maximum value depends on your region size.

8

Allows 8000 bytes to be used by FOCSTACK. 8 is the default value.

SET Parameter Syntax

102

FORMULTIPLE

You can use the same value of a FOR field in many separate rows whether alone, as part of a
range, or in a calculation by including the following syntax before or within an FML request:

The syntax is:

SET FORMULTIPLE = {ON|OFF}

where:

ON

Enables you to reference the same value of a FOR field in more than one row in an FML
request.

With FORMULTIPLE set to ON, a value retrieved from the data source is included on every
line in the report output for which it matches the tag references.

OFF

Does not enable you to include the same value in multiple rows. OFF is the default value.

With FORMULTIPLE set to OFF, multiple tags referenced in any of these ways (OR, TO, *)
are evaluated first for an exact reference or for the end points of a range, then for a mask,
and finally within a range. For example, if a value is specified as an exact reference and
then as part of a range, the exact reference is displayed. Note that the result is
unpredictable if a value fits into more than one row whose tags have the same priority (for
example, an exact reference and the end point of a range.)

HDAY

The HDAY parameter specifies the holiday file from which to retrieve dates that are designated
as holidays for use with the date functions DATEDIF, DATEMOV, DATECVT, and DATEADD. The
file must be named HDAY, followed by two to four characters.

To clear the holiday file, use

SET HDAY = OFF

The syntax is:

SET HDAY = xxxx

where:

xxxx

Are the letters in the name of the holiday file, named HDAYxxxx. This string must be
between two and four characters long.

1. Customizing Your Environment

Developing Applications 103

The default is no setting for this parameter.

HIDENULLACRS

The HIDENULLACRS parameter hides the display of ACROSS groups containing only null
columns.

Hiding null ACROSS columns is supported for all styled output formats except for the EXL2K
PIVOT and EXL2K FORMULA options. It is not supported for Active Technologies.

The syntax is:

SET HIDENULLACRS = {ON|OFF}

where:

ON

Hides columns with missing data in ACROSS groups within a BY-generated page break.

OFF

Does not hide columns. OFF is the default value.

HLDCOM_TRIMANV

The HLDCOM_TRIMANV parameter controls whether trailing blanks are retained in AnV fields in
delimited output files.

The syntax is:

SET HLDCOM_TRIMANV = {OFF|ON}

where:

OFF

Retains trailing blanks in AnV fields when the output is held in a delimited format. OFF is
the default value.

ON

Removes trailing blanks in AnV fields when the output is held in a delimited format.

HNODATA

The HNODATA parameter controls the missing data characters that are propagated to fields
with the MISSING=ON attribute in HOLD FORMAT ALPHA files. Missing values in fields that do
not have the MISSING=ON attribute are propagated to a HOLD file as blank (for alphanumeric
fields) or zero (for numeric fields).

The syntax is:

SET Parameter Syntax

104

SET HNODATA = {charstring|,$}

where:

charstring

Is a string of up to 12 characters propagated to a HOLD FORMAT ALPHA file for missing
values in a field with the MISSING=ON attribute. A period (.) is the default value.

If the string is longer than the length of the field, the value stored in:

An alphanumeric field is the leftmost character of the string.

A numeric field is a blank string.

When an alphanumeric string other than the default value (the period) is used to populate
a missing numeric field, a blank is inserted in the held field to prevent a format error when
displaying the data. If you use the default HNODATA value, it is inserted in numeric fields.
In this way, a request against the HOLD file can recognize missing data that was
propagated to the HOLD file.

If a number with decimal places is specified for HNODATA and the field with missing data
is integer, the value is rounded to a whole number and inserted. In a numeric field that
supports decimal places, it is rounded and inserted with the correct number of decimal
digits.

,$

Indicates that nothing should be placed in the field when there is missing data. This
setting can be used to support null values in non-FOCUS data sources.

HOLDATTR

The HOLDATTR parameter controls which attributes from the original Master File are used in
the HOLD Master File. This setting does not affect the way fields are named in the HOLD
Master File.

Note: HOLDATTRS is a synonym for HOLDATTR.

The syntax is:

SET HOLDATTR = {ON|OFF|FOCUS|CUBE}

1. Customizing Your Environment

Developing Applications 105

where:

ON

Includes the TITLE attribute from the original Master File in HOLD Master Files for HOLD
files of any format. PROPERTY attributes are also propagated. The ACCEPT attribute is
included in the HOLD Master File when the HOLD file is in FOCUS format.

OFF

Does not include the TITLE or ACCEPT attributes from the original Master File in the HOLD
Master File.

FOCUS

Includes the TITLE and ACCEPT attributes in HOLD Master Files when the HOLD file is in
FOCUS format. PROPERTY attributes are also propagated. FOCUS is the default value.

CUBE

Propagates folders and DV_ROLE attributes, as well as TITLE attributes to the HOLD
Master File. It also propagates the field name as the alias value.

HOLDFORMAT

The HOLDFORMAT parameter determines the default format for HOLD files. This value can be
overridden for an individual HOLD file by issuing the ON TABLE SET HOLD FORMAT command in
a request.

The syntax is:

SET HOLDFORMAT = {BINARY|ALPHA}

where:

BINARY

Creates HOLD files in binary format. BINARY is the default value.

ALPHA

Creates HOLD files in ALPHA format.

HOLDLIST

The HOLDLIST parameter controls whether only displayed fields or all fields are included in the
HOLD or PCHOLD file.

The syntax is:

SET HOLDLIST = {PRINTONLY|ALL|ALLKEYS|EXPLICIT}

SET Parameter Syntax

106

where:

PRINTONLY

Includes only those fields in the HOLD or PCHOLD file that are specified in the report
request.

ALL

Includes all fields referenced in a request in the HOLD or PCHOLD file, including both
computed fields and fields referenced in a COMPUTE command. ALL is the default value.
(OLD may be used as a synonym for ALL.)

Note: Vertical sort (BY) fields specified in the request with the NOPRINT option are not
included in the HOLD file, even with SET HOLDLIST=ALL.

ALLKEYS

Includes all fields in the HOLD or PCHOLD file, including NOPRINTed BY fields.

EXPLICIT

Includes fields in the HOLD or PCHOLD file that are explicitly omitted from the report
output using the NOPRINT option in the request, but does not include fields that are
implicitly NOPRINTed. For example, if a field is reformatted in the request, two versions of
the field exist, the one with the new format and the one with the original format, which is
implicitly NOPRINTed.

HOLDMISS

The HOLDMISS parameter enables you to distinguish between missing data and default values
of blank (for character data) or zero (for numeric data) in a HOLD file.

The syntax is:

SET HOLDMISS = {OFF|ON}

where:

OFF

Does not allow you to store missing data in a HOLD file. OFF is the default value.

ON

Enables you to store missing data in a HOLD file. When TABLE generates a default value
for data not found, it generates missing values.

1. Customizing Your Environment

Developing Applications 107

HOLDSTAT

The HOLDSTAT parameter includes comments and DBA information in HOLD Master Files. This
information can be from the HOLDSTAT ERRORS file, or a file specified by the user.

The syntax is:

SET HOLDSTAT = {ON|OFF|name}

where:

ON

Derives comments and DBA information from a HOLDSTAT file. In z/OS, this information is
derived from the member HOLDSTAT in the PDS allocated to the ddname MASTER or
ERRORS.

OFF

Does not include information from the HOLDSTAT file in the HOLD Master File. OFF is the
default value.

name

Specifies a HOLDSTAT file, created by the end user, whose information is included in the
HOLD Master File.

HTMLARCHIVE

The HTMLARCHIVE parameter packages HTML or DHTML reports together with image files into
a single web archive document (.mht file). The only browser that supports this format for HTML
is Internet Explorer.

The syntax is:

SET HTMLARCHIVE = {ON|OFF}

where:

ON

Packages HTML or DHTML reports together with image files into a single web archive
document (.mht file).

OFF

Does not package multiple files into a single document. OFF is the default value.

HTMLCSS

The HTMLCSS parameter creates an internal Cascading Style Sheets command in the HTML
display page.

SET Parameter Syntax

108

The syntax is:

SET HTMLCSS = {ON|OFF}

where:

ON

Creates an internal CSS command in the HTML page that displays the report output.

OFF

Does not create an internal CSS command in the HTML page that displays the report
output. OFF is the default value.

HTMLEMBEDIMG

The HTMLEMBEDIMG parameter activates an encoding mechanism that embeds images and
graphs directly into an HTML or DHTML .htm file to ensure that all FOCUS reports can be
accessed from any browser.

The syntax is:

SET HTMLEMBEDIMG = {OFF|ON|AUTO}

where:

OFF

Does not affect the default behavior. If HTMLARCHIVE is set ON, .mht files are generated.

ON

Encodes images within the .htm file.

AUTO

Determines how to handle images based on the browser of the calling client. For clients in
Internet Explorer, HTMLARCHIVE will be used to embed the images into an .mht file. For all
other browsers, HTMLEMBEDIMG will encode the image information into an .htm file. If the
displaying browser is unknown, AUTO will use the HTMLARCHIVE setting that is in effect.

HTMLENCODE

The HTMLENCODE parameter controls whether HTML tags are encoded when these tags are
stored within the actual data or created using a DEFINE or COMPUTE command.

In a FOCUS report, HTMLENCODE=ON causes any text set in a string to be encrypted for
transportation, and then decrypted to be displayed as written on a report. This is both for
security and to ensure that special characters are displayed correctly.

1. Customizing Your Environment

Developing Applications 109

The syntax is:

SET HTMLENCODE {ON|OFF}

where:

ON

Encodes the HTML output that is data. This setting disables the rendering of HTML tags
within a browser when these tags are stored within the actual data or created using a
DEFINE or COMPUTE command.

OFF

Disables HTML encoding. OFF is the default value.

Note: Because of the new format of the zipped XLSX files, native HTML symbols, such as a
caret (<), cannot be supported as tag characters. For XLSX, unlike other output formats,
HTMLENCODE defaults to ON. HTMLENCODE set to OFF will cause any data containing HTML
tag characters to be omitted from the cell.

INDEX

The INDEX parameter determines the indexing scheme used for indexes. Indexes are fields
specified with FIELDTYPE=I keywords in the Master Files. The OLD setting for INDEX is no
longer supported, but has been left in the product so that applications that included it continue
to work.

The syntax is:

SET INDEX[TYPE] = {NEW|OLD}

where:

NEW

Creates a binary tree index. NEW is the default value.

OLD

Creates a hash index.

SET Parameter Syntax

110

JOIN_LENGTH_MODE (JOINLM)

The JOIN_LENGTH_MODE (JOINLM) parameter controls processing of equality joined field pairs
for the record oriented Adapters (such as VSAM, DFIX, and FIX). There are two supported
modes of handling compatible but not identical joined fields:

SQL compliance. The JOIN command processor assures strict value equality of joined
fields. Detected truncation of significant characters during host to cross-referenced
conversion raises a target not found condition. A shorter host field value is extended to the
length of cross-referenced field with non-significant characters according to the data type.

FOCUS reporting. The JOIN command processor assures partial value equality of joined
fields.

When joining a shorter to a longer field, a search range is created to find all cross-
referenced values that are prefixed with the host value (partial key join).

When joining a longer to a shorter field, the host value is unconditionally truncated to
the cross-referenced field length.

The syntax is:

SET JOIN_LENGTH_MODE = {SQL|RANGE}

where:

SQL

Sets SQL compliant mode. Assures strict equality of host and cross-referenced fields. This
is the default value.

RANGE

Sets FOCUS reporting mode. Supports partial key joins.

JOINOPT

The JOINOPT parameter has two functions:

Correcting for lagging values with a unique join. If a parent segment has two or more
unique child segments so that each has multiple children, the report may incorrectly display
a missing value. The remainder of the child values may then be misaligned in the report.
These misaligned values are called lagging values. The JOINOPT parameter ensures proper
alignment of your output by correcting for lagging values.

1. Customizing Your Environment

Developing Applications 111

Enabling joins with data type conversion. You can join two or more data sources
containing different numeric data types. For example, you can join a field with a short
packed decimal format to a field with a long packed decimal format, or a field with an
integer format to a field with a packed decimal format. This provides enormous flexibility for
creating reports from joined data sources.

The syntax is:

SET JOINOPT = {NEW|GNTINT|OLD}

where:

NEW

Corrects lagging values when a parent segment has multiple unique children. Also,
enables joins with data type conversion.

GNTINT

Corrects lagging values when a parent segment has multiple unique children. Also,
enables joins with data type conversion.

OLD

Does not correct lagging values or support joins with data type conversion. This is the
default value.

KEEPDEFINES

The KEEPDEFINES parameter controls whether a virtual field created for a host or joined
structure is retained after a JOIN command is run. This parameter applies when a DEFINE
command precedes the JOIN command.

The syntax is:

SET KEEPDEFINES = {ON|OFF|ALL}

where:

ON

Retains the virtual field after a JOIN command is run.

OFF

Clears the virtual field after a JOIN command is run. OFF is the default value.

ALL

Retains all prior and subsequent virtual fields in the request after a JOIN command is run.

SET Parameter Syntax

112

KEEPFILTERS

By default, filters defined on the host data source are cleared by a JOIN command. However,
filters can be maintained when a JOIN command is issued, by issuing the SET
KEEPFILTERS=ON command.

Setting KEEPFILTERS to ON reinstates filter definitions and their individual declared status
after a JOIN command. The set of filters and virtual fields defined prior to each join is called a
context (see your documentation on SET KEEPDEFINES and on DEFINE FILE SAVE for
information about contexts as they relate to virtual fields). Each new JOIN or DEFINE FILE
command creates a new context.

If a new filter is defined after a JOIN command, it cannot have the same name as any
previously defined filter unless you issue the FILTER FILE command with the CLEAR option. The
CLEAR option clears all filter definitions for that data source in all contexts.

When a JOIN is cleared, each filter definition that was in effect prior to the JOIN command and
that was not cleared, is reinstated with its original status. Clearing a join by issuing the JOIN
CLEAR join_name command removes all of the contexts and filter definitions that were created
after the JOIN join_name command was issued.

The syntax is:

SET KEEPFILTERS = {OFF|ON}

where:

OFF

Does not preserve filters issued prior to a join. This is the default value.

ON

Preserves filters across joins.

LANG[UAGE]

The LANG[UAGE] parameter specifies the National Language Support (NLS) environment. It
sets the language of error messages and can also be used to set the language of report titles
if the Master File contains alternate language TITLE attributes. For more information, see the
Describing Data manual and the Describing Data manual.

The syntax is:

SET LANG[UAGE] = [LNG|ln]

1. Customizing Your Environment

Developing Applications 113

where:

LNG

Is the 3-letter abbreviation used to specify a language.

ln

Is the 2-letter ISO code used to specify a language.

The abbreviations and ISO codes used to specify a language are shown in the following
table.

Language Name
(Code)

Displayed Language
(GUI)

Language
Abbreviation

Language ISO code

AMENGLISH or
ENGLISH or
UKENGLISH

English AME or
ENG or
UKE

en

ARABIC Arabic ARB ar

BALTIC Lithuanian BAL lt

CZECH Czech CZE cs

DANISH Danish DAN da

DUTCH Dutch DUT nl

FINNISH Finnish FIN fi

FRENCH French - Standard
or Canadian

FRE fr
fc

GERMAN German - Standard
or Austrian

GER de
at

GREEK Greek GRE el

HEBREW Hebrew HEB or HEW iw

ITALIAN Italian ITA it

SET Parameter Syntax

114

Language Name
(Code)

Displayed Language
(GUI)

Language
Abbreviation

Language ISO code

JAPANESE Japanese-JIS or EUC JPN or JPE ja or je

KOREAN Korean KOR ko

POLISH Polish POL po

PORTUGUESE Portuguese- Brazil
or Portugal

POR br
pt

RUSSIAN Russian RUS ru

S-CHINESE Chinese-
Simplified GB

PRC zh

SPANISH Spanish SPA es

SWEDISH Swedish SWE sv

T-CHINESE Chinese-
Traditional Big-5

ROC tw

THAI Thai THA th

TURKISH Turkish TUR tr

LAYOUTGRID

Displays a grid in the report output, which enables you to evaluate the correct placement of
data and objects during your report design. This option is applicable only when using the PDF,
PS, or DHTML report output.

The syntax is:

SET LAYOUTGRID = {ON|OFF}

where:

ON

Displays a grid in the report output.

1. Customizing Your Environment

Developing Applications 115

OFF

Turns off the grid in the report output. OFF is the default value.

LEADZERO

Leading zeros are truncated in Dialogue Manager strings. The functions in FOCUS, when called
in Dialogue Manager, may return a numeric result. If the format of the result is YMD and
contains a 00 for the year, the 00 is truncated.

The syntax is:

SET LEADZERO = {ON|OFF}

where:

ON

Allows the display of leading zeros if present.

OFF

Truncates leading zeros if present. OFF is the default value.

LEFTMARGIN

The LEFTMARGIN parameter sets the StyleSheet left boundary for report contents on a page.
This parameter applies to PostScript and PDF reports.

The syntax is:

SET LEFTMARGIN = {value|.250}

where:

value

Is the left boundary of report contents on a page. 0.250 inches is the default value.

LINES

The LINES parameter sets the maximum number of lines of printed output that appear on a
page, from the heading to the footing.

It sets the maximum number of lines that appear on a logical page, from the heading at the
top to the footing on the bottom. The value of LINES can range between 1 and 999999. For
styled output formats, specify 999 or higher to generate continuous forms. When continuous
forms are specified, but the output format has a physical page size (as is the case with PDF
output), the column titles repeat at the top of the physical page, without page numbers. For
unstyled output formats, specify 999999 for continuous forms.

SET Parameter Syntax

116

If this value is less than the value set for PAPER, the difference provides a bottom margin.
FOCUS never puts more lines on a page than the LINES parameter specifies, but may put less.

Note: When using SKIP-LINE in a report, always set LINES to at least one less than the value
for PAPER. This avoids unintentional page beaks at the bottom of the page.

When the STYLESHEET parameter is in effect, the setting for LINES is ignored.

The syntax is:

SET LINES = {n|57}

where:

n
Is the maximum number of lines of printed output that appear on a page.

MATCHCOLUMNORDER

The MATCHCOLUMNORDER parameter controls how fields in MATCH FILE requests are
sequenced in the MATCH output. The new default method groups fields across files with their
sort field values in the resulting HOLD file regardless of their position within the MATCH
request. The old legacy method appends them to the HOLD file record as they are referenced
in the request.

The syntax is:

SET MATCHCOLUMNORDER = {GROUPED|UNGROUPED}

where:

GROUPED

Groups verb objects with their highest-level common sort keys. This can result in the fields
being propagated to the HOLD file in a different order from the legacy process. This can
affect a subsequent request against the MATCH results if that request uses the default
alias names generated in the HOLD Master File. This typically occurred when fields with
the same name, not used as keys, were merged together with MATCH. The advantage of
the new technique is that it supports HOLD file formats such as FORMAT FOCUS that
generate an associated Master File.

UNGROUPED

Does not group verb objects with their sort keys across files when laying out the resulting
HOLD file record. Fields are appended to the HOLD file record as they are referenced in the
request.

1. Customizing Your Environment

Developing Applications 117

MAXDATAEXCPT

Data exceptions occur when data that is supposed to contain a numeric value is manipulated
in ways unsupported by the architecture of the operating environment. You can change the
number of data exceptions allowed before the session is terminated using the SET
MAXDATAEXCPT command.

Note: SET MAXDATAEXCPT is functional on mainframe platforms only. All other platforms allow
the syntax, but do not support the functionality.

If this command is issued in a TABLE request using the ON TABLE SET phrase, a new count is
established for that request. The running session count is saved and is restored after the
request executes.

The syntax is:

SET MAXDATAEXCPT={10|maxexcpt}

where:

maxexcpt

Is a one to four-digit number that represents how many data exceptions can occur before
the session is terminated. 10 is the default value. The value zero (0) allows an unlimited
number of data exceptions. The value one (1) terminates the session at the first data
exception.

If MAXDATAEXCPT is changed in a request, a new count is established and the session
counter is saved and then restored after the request executes. If you issue the command
outside of a TABLE request, the running counter is reset to zero.

MAXLRECL

The MAXLRECL parameter defines the maximum record length for an external file that can be
read. 0 is the default value. However, FOCUS can read a 12K lrecl by default. This may be set
to a maximum of 64K. Note that the maximum length of the internal memory area for data
fields is still 32K.

Note: MAXLRECL is character-based, not byte-based. In a Unicode environment, three bytes is
used to represent each character on UNIX and Windows, and four bytes is used to represent
each character on z/OS. If you are using a double-byte character set, each character uses two
bytes.

The syntax is:

SET MAXLRECL = {n|0}

SET Parameter Syntax

118

where:

n

Is the maximum record length for an external file with OCCURS segments. 0 is the default
value.

MDICARDWARN

The MDICARDWARN parameter displays a warning message every time the cardinality in a
dimension exceeds a specified value, offering you the chance to study the MDI build. When the
number of equal values of the data in a dimension reaches a specified percent, a warning
message is issued. In order for MDICARDWARN to be reliable, the data source should contain
at least 100,000 records.

Note: In addition to the warning message, a number displays in brackets. This number is the
least number of equal values for the dimension mentioned in the warning message text.

The syntax is:

SET = MDICARDWARN = n

where:

n

Is a percentage value from 0 to 50.

MDIENCODING

The MDIENCODING parameter enables retrieval of output from the MDI file without reading the
data source.

The following rules apply to fields in a TABLE request that uses MDIENCODING:

Only one MDI can be referred to at a time.

Only dimensions that are part of the same parent-child hierarchy can be used
simultaneously in a request. A dimension that is not part of a parent-child relationship can
be used as the field in a request if it has a MAXVALUES attribute.

The syntax is:

SET MDIENCODING = {ON|OFF}

where:

ON

Enables retrieval of output from the MDI file without reading the data source.

1. Customizing Your Environment

Developing Applications 119

OFF

Requires access of the data source to allow retrieval of MDI values.

Note: This command can only be issued in an ON TABLE phrase. It has no default value.

MDIPROGRESS

The MDIPROGRESS parameter displays messages about the progress of an MDI build. The
messages show the number of data records accumulated for every n records inserted into the
MDI as it is processed.

The syntax is:

SET MDIPROGRESS = {n|0}

where:

n

Is an integer greater than 1000, which displays a progress message for every n records
accumulated in the MDI build. 100,000 is the default value.

0

Disables progress messages.

MESSAGE

The MESSAGE parameter displays or suppresses informational messages in the view source of
your web browser. This parameter cannot be used with ON TABLE SET.

The syntax is:

SET {MESSAGE|MSG} = {ON|OFF}

where:

ON

Displays informational messages. ON is the default value.

OFF

Suppresses both informational messages and carets that appear when FOCUS executes
commands in procedures. Error messages and the carets that prompt for input are still
displayed.

SET Parameter Syntax

120

MISS_ON

When a virtual field or calculated value can have missing values, you can specify whether all or
some of the field values used in the expression that creates the DEFINE or COMPUTE field
must be missing to make the result field missing. If you do not specify ALL or SOME for a
DEFINE or COMPUTE with MISSING ON, the default value is SOME.

The SET parameter MISS_ON enables you to specify whether SOME or ALL should be used for
MISSING ON in a DEFINE or COMPUTE that does not specify which to use.

The syntax is:

SET MISS_ON = {SOME|ALL}

where:

SOME

Indicates that if at least one field in the expression has a value, the temporary field has a
value (the missing values of the field are evaluated as 0 or blank in the calculation). If all
of the fields in the expression are missing values, the temporary field has a missing value.
SOME is the default value.

ALL

Indicates that if all the fields in the expression have values, the temporary field has a
value. If at least one field in the expression has a missing value, the temporary field has a
missing value.

MISSINGTEST

By default, when an IF-THEN-ELSE expression is used to calculate a result and the IF
expression evaluates to zero (for numeric expressions) or blank (for alphanumeric
expressions), the left hand side is checked to see if it has MISSING ON. If it does, the result
of the expression will be MISSING, not true or false, and the outcome returned will be
MISSING, not the result of evaluating the THEN or ELSE expression, if the field only needs
some missing values. You can use the SET MISSINGTEST command to eliminate the missing
test for the IF expression so that either the THEN expression or the ELSE expression will be
evaluated and returned as the result.

The syntax is:

SET MISSINGTEST = {NEW|OLD|SPECIAL}

1. Customizing Your Environment

Developing Applications 121

where:

NEW

Excludes the IF expression from the missing values evaluation so that it results in either
true or false, not MISSING. If it evaluates to true, the THEN expression is used to calculate
the result. If it evaluates to false, the ELSE expression is used to calculate the result. This
is the default.

OLD

Includes the IF expression in the missing values evaluation. If the IF expression evaluates
to MISSING, the result is also MISSING, if the missing field only needs some missing
values.

SPECIAL

Is required for passing parameters to RStat.

MULTIPATH

The MULTIPATH parameter controls testing on independent paths.

The syntax is:

SET MULTIPATH = {SIMPLE|COMPOUND}

where:

SIMPLE

Includes a parent segment in the report output if:

It has at least one child that passes its screening conditions.

It lacks any referenced child on a path, but the child is optional (see the Creating
Reports manual).

The (FOC144) warning message is generated when a request screens data in a multi-path
report.

(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

COMPOUND

Includes a parent in the report output if it has all of its required children (see the Creating
Reports manual). The COMPOUND setting does not generate the (FOC144) warning
message. COMPOUND is the default value.

SET Parameter Syntax

122

The segment rule is applied level by level as FOCUS descends the data source/view hierarchy.
The existence of a parent segment depends on the existence of the child segment and the
child segment depends on the existence of the grandchild for the full data source tree.

NEG-ZERO

The SET NEG-ZERO parameter displays the value zero (0) as a negative number when it is the
result of rounding a negative decimal value.

The syntax is:

SET NEG-ZERO = {OFF|ALWAYS|EXCEL}

where:

OFF

Does not display negative zero values. This is the default traditional behavior.

ALWAYS

Applies negative formats, including a minus sign, for zero when it is the result of rounding
a negative number.

EXCEL

Applies negative formats B, R, and CR for zero when it is the result of rounding a negative
number.

Excel always displays zero negative values using this schema, no matter what value is set
for NEG-ZERO.

Note:

The NEG-ZERO parameter does not apply to exponential formats (for example E10.2).

The NEG-ZERO parameter does not apply when rounding is done for purposes other than
display. For example, it is not applied in conversion from floating-point to packed decimal or
integer as part of a computation.

NODATA

The NODATA parameter determines the character string that indicates missing data in a report.

The syntax is:

SET {NODATA|NA} = {string|.}

1. Customizing Your Environment

Developing Applications 123

where:

string

Is the character string that indicates missing data in reports. A period (.) is the default
value.

NULL

The NULL parameter enables you to create a variable-length comma or tab delimited HOLD file
that differentiates between a missing value and a blank string or zero value.

The HOLD formats supported for SET NULL=ON are COM, COMT, TAB, and TABT. Missing
values in a record are denoted by two consecutive delimiters. A record that starts with a
missing value has a delimiter in the first position, and a record that ends with a missing value
has a delimiter in the last position.

The syntax is:

SET NULL = {ON|OFF}

where:

ON

Propagates missing values to a delimited HOLD file when the field has MISSING=ON in the
Master File.

OFF

Propagates the value zero for a missing numeric value and blank ("") for a missing
alphanumeric value to a delimited HOLD file. OFF is the default value.

OLDSTYRECLEN

The OLDSTYRECLEN parameter determines whether the record length, LRECL, is set to the
current setting of LRECL=0, or the older setting of LRECL=512.

The syntax is:

SET OLDSTYRECLEN = {ON|OFF}

where:

ON

Determines that LRECL=512.

OFF

Determines that LRECL=0. OFF is the default value.

SET Parameter Syntax

124

ONFIELD

The ONFIELD parameter determines whether ON phrases that refer to fields not present in the
request are ignored or cause the request to terminate. Allowing ON phrases for absent fields
enables user selections at run time to determine which elements are included in each
execution of the request.

Note that any field used must be present in the Master File for the data source or the following
message is generated and execution terminates:

The syntax is:

SET ONFIELD = {ALL|IGNORE}

ON TABLE SET ONFIELD {ALL|IGNORE}

where:

ALL

Issues a message and terminates execution when a field referenced in an ON phrase is
not present in the request. ALL is the default value.

IGNORE

Ignores ON phrases that reference fields that are not present in the request as well as ON
phrases that include options not supported by the type of field specified.

ORIENTATION

The ORIENTATION parameter specifies the page orientation for reports styled with StyleSheets.

The syntax is:

SET ORIENTATION = {PORTRAIT|LANDSCAPE}

where:

PORTRAIT

Displays the page in portrait style. PORTRAIT is the default value.

LANDSCAPE

Displays the page in landscape style.

1. Customizing Your Environment

Developing Applications 125

OVERFLOWCHAR

The OVERFLOWCHAR parameter controls the characters displayed in a numeric report column
when the column does not provide enough space to display its value. The number of overflow
characters displayed is the same as the length assigned to the field. By default, the displayed
overflow character is the asterisk (*).

The syntax is

SET OVERFLOWCHAR = 'char'

where:

char

Is a single byte displayable character. Depending on the character specified, it may not
need to be enclosed in single quotation marks (').

The following characters are not supported as the overflow character: numeric digits,
comma, period, apostrophe, percent sign, minus sign, space, current currency symbol,
dollar sign, Yen symbol, Pound Sterling sign, and Euro symbol. In addition, other symbols
may have significance in your operating environment.

PAGE[-NUM]

The PAGE[-NUM] parameter controls the numbering of output pages.

The syntax is:

SET PAGE[-NUM] = option

where:

option
Is one of the following:

ON displays the page number on the upper left-hand corner of the page. ON is the default
value.

OFF suppresses page numbering.

NOPAGE suppresses page breaks, causing the report to be printed as a continuous page.
When PAGE is set to NOPAGE, the LINES parameter controls where column headings are
printed. You can use NOLEAD in place of NOPAGE.

TOP omits the line at the top of each page of the report output for the page number and
the blank line that follows it. The first line of report output contains the heading, if one was
specified, or the column titles if there is no heading.

SET Parameter Syntax

126

Note: The settings ON, TOP, and OFF include the carriage control character 1 in the first
column of each page.

PAGESIZE

The PAGESIZE parameter specifies the page size for StyleSheets. For optimal report
appearance, the actual paper size must match your setting for PAGESIZE. If it does not, your
report is cropped or contains extra blank spaces.

The syntax is:

SET PAGESIZE = size

where:

size

Specifies the page size. If the actual paper size does not match the PAGESIZE setting,
your report is either cropped or contains extra blank space.

1. Customizing Your Environment

Developing Applications 127

The page size options are:

LETTER sets the page size to 8.5 x 11 inches.
ENVELOPE-PERSONAL sets the page size to 3.625 x 6.5 inches.
ENVELOPE-MONARCH sets the page size to 3.875 x 7.5 inches.
ENVELOPE-9 sets the page size to 3.875 x 8.875 inches.
ENVELOPE-10 sets the page size to 4.125 x 9.5 inches.
ENVELOPE-12 sets the page size to 4.5 x 11 inches.
ENVELOPE-DL sets the page size to 4.3 x 8.6 inches.
ENVELOPE-ITALY sets the page size to 4.3 x 9.1 inches.
ENVELOPE-B4 sets the page size to 9.8 x 13.9 inches.
ENVELOPE-B5 sets the page size to 6.9 x 9.8 inches.
ENVELOPE-B6 sets the page size to 6.9 x 4.9 inches.
ENVELOPE-C3 sets the page size to 12.75 x 18 inches.
ENVELOPE-C4 sets the page size to 9 x 12.75 inches.
ENVELOPE-C5 sets the page size to 6.4 x 9 inches.
ENVELOPE-C6 sets the page size to 4.5 x 6.375 inches.
ENVELOPE-C65 sets the page size to 4.5 x 9 inches.

STATEMENT sets the page size to 5.5 x 8.5 inches.
EXECUTIVE sets the page size to 7.5 x 10.5 inches.
GERMAN-STANDARD-FANFOLD sets the page size to 8.5 x 12 inches.
GERMAN-LEGAL-FANFOLD sets the page size to 8.5 x 13 inches.
FOLIO sets the page size to 8.5 x 13 inches.
LEGAL sets the page size to 8.5 x 14 inches.
10X14 sets the page size to 10 x 14 inches.
TABLOID sets the page size to 11 x 17 inches.
CUSTOM enables you to set a custom page size for a DHTML, PDF, or PPTX report.

A3 sets the page size to 11.7 x 16.8 inches.
A4 sets the page size to 8.25 x 11.7 inches.
A5 sets the page size to 5.8 x 8.25 inches.
B4 sets the page size to 9.8 x 13.9 inches.
B5 sets the page size to 7.2 x 10.1 inches.
C sets the page size to 17 x 22 inches.
D sets the page size to 22 x 34 inches.
E sets the page size to 34 x 44 inches.
US-STANDARD-FANFOLD sets the page size to 14.875 x 11 inches.
LEDGER sets the page size to 17 x 11 inches.
QUARTO sets the page size to 8.5 x 10.8 inches.

SET Parameter Syntax

128

PANEL

The PANEL parameter sets the maximum line width, in characters, of a report panel for a
screen or printer. If report output exceeds this value, the output is partitioned into several
panels. For example, if you set PANEL to 80, the first 80 characters of a record appear on the
first panel, the second 80 characters appear on the second panel, and so on.

When printing a report to your screen, the ideal value for the PANEL parameter is the width of
your screen (usually 80). When printing to your printer, the ideal value for PANEL is the print
width of your printer (usually 132). If PANEL is larger or set to 0, long report lines wrap around
the screen or page.

When the BYPANEL parameter is OFF, a report can be divided into a maximum of 4 panels. If
SET BYPANEL has a value other than OFF, the report may be divided into 99 panels.

When the STYLESHEET parameter is in effect, PANEL is ignored.

The syntax is:

SET PANEL = {0|n}

where:

n

Is the maximum line width, in characters, of a report panel.

0

Does not divide the report into panels. Long report lines wrap around the screen or page. 0
is the default value.

PARTITION_ON

When using a statistical function, you must establish the size of the partition on which the
function will operate, if the request contains sort fields. You can do this using the
PARTITION_ON command.

The syntax is:

SET PARTITION_ON = {FIRST|PENULTIMATE|TABLE}

where:

FIRST

Uses the first (also called the major) sort field in the request to partition the values.

PENULTIMATE

Uses the next to last sort field where the COMPUTE is evaluated to partition the values.
This is the default value.

1. Customizing Your Environment

Developing Applications 129

TABLE

Uses the entire internal matrix to calculate the statistical function.

PASS

The PASS parameter enables user access to a data source or stored procedure protected by
DBA security.

This command cannot be used with ON TABLE SET.

The syntax is:

SET PASS = password [IN filename]

where:

password

Is the password that allows access to data sources protected by DBA database security.

filename

Is a specific FOCUS data source or stored procedure protected by security.

PCOMMA

The PCOMMA parameter controls the retrieval of comma-delimited files.

By default, when a Master File specifies SUFFIX=COM, incoming alphanumeric values are not
enclosed in double quotation marks, and each record is terminated with a comma and dollar
sign (,$) character combination. This format does not support retrieval of most comma-
delimited files produced by a PC application.

The syntax is:

SET PCOMMA = option

where:

option
Can be one of the following:

ON, which enables the retrieval of comma-delimited data sources created by a PC
application, in which alphanumeric data is enclosed in double quotation marks and
each record is completely contained on one line and is terminated with a carriage
return and line feed. It can also retrieve comma-delimited data sources in which
alphanumeric data is not enclosed in double quotation marks and each record is
terminated with a comma and dollar sign.

SET Parameter Syntax

130

OFF, which does not enable the retrieval of comma-delimited data sources created by a
PC application. It indicates that alphanumeric data is not enclosed in double quotation
marks and each record is terminated with a comma and dollar sign. OFF is the default
value.

DFIX, which causes delimited files with SUFFIX=COM, COMT, TAB, and TABT to be
processed through the Adapter for DFIX. This processing provides more complete and
meaningful messages and some changes to the processing of missing values when
two delimiters in a row are encountered. With DFIX processing, a missing value is
assigned to the field.

In order to be eligible for DFIX processing, the delimited file must satisfy the following
requirements.

Each record must be completely contained on one line and terminated with the crlf
(carriage return/linefeed) character combination.

The ENCLOSURE can be only in the first position after the delimiter for COM (new)
and COMT records. Otherwise, it will not be recognized.

The number of fields on a line cannot exceed the number of fields defined in the
Master File.

PCTFORMAT

The PCTFORMAT parameter controls whether fields prefixed with the operators PCT., RPCT.,
and PCT.CNT. display with a percent sign or with the format associated with the original field.

The syntax is:

SET PCTFORMAT = {OLD|PERCENT}

where:

OLD

Displays columns prefixed with PCT., RPCT., and PCT.CNT. with the format associated with
the original field.

PERCENT

Displays columns prefixed with PCT., RPCT., and PCT.CNT. with a percent sign. It also
allows the prefixed fields to be reformatted. This is the default value.

PCT.CNT.field will always display with two decimal places, unless reformatted. For PCT.field
and RPCT.field, with SET PCTFORMAT = PERCENT, if the original field has a:

Precision-based format (F, D, M, X), the column will display with length 7 and two decimal
places.

1. Customizing Your Environment

Developing Applications 131

Packed format, the column will display with its original number of decimal places.

Integer format, the column will display with no decimal places.

PDFLINETERM

The PDFLINETERM parameter determines if an extra space is appended to each record of a
PDF output file to facilitate proper file transfer between Windows and UNIX.

In Windows systems, the end of each PDF file has a table containing the byte offset, including
two line termination characters, a carriage return, and a line feed. In UNIX, files are terminated
by only one character, a line feed. Transferring files between Windows and UNIX systems
requires the proper use of the PDFLINETERM parameter.

The syntax is:

SET PDFLINETERM = {STANDARD|SPACE}

where:

STANDARD

Creates a PDF file without any extra characters. This file will be a valid PDF file if
transferred in text mode to a Windows machine, but not to a UNIX machine. If
subsequently transferred from a UNIX machine to a Windows machine in text mode, it will
be a valid PDF file on the Windows machine.

SPACE

Creates a PDF file with an extra space character appended to each record. This file will be
a valid PDF file if transferred in text mode to a UNIX machine, but not to a Windows
machine. If subsequently transferred from an ASCII UNIX machine to a Windows machine
in binary mode, it will be a valid PDF file on the Windows machine.

PERMPASS

The PERMPASS parameter establishes a user password that remains in effect throughout a
session or connection. You can issue this setting in any supported profile but is most useful
when established for an individual user by setting it in a user profile. It cannot be set in an ON
TABLE phrase. It is recommended that it not be set in FOCPARM or FOCPROF because it would
then apply to all users. In a FOCUS session, SET PERMPASS can be issued in PROFILE, a
FOCEXEC, or at the command prompt.

All security rules established in the DBA sections of existing Master Files are respected when
PERMPASS is in effect. The user cannot issue the SET PASS or SET USER command to change
to a user password with different security rules. Any attempt to do so generates the following
message:

SET Parameter Syntax

132

permanent PASS is in effect. Your PASS will not be honored.
VALUE WAS NOT CHANGED

Only one permanent password can be established in a session. After it is set, it cannot be
changed within the session.

The syntax is:

SET PERMPASS=userpass

where:

userpass

Is the user password used for all access to data sources with DBA security rules
established in their associated Master Files.

PHONETIC_ALGORITHM

The PHONETIC_ALGORITHM parameter sets a phonetic algorithm to use with the PHONETIC
function, which calculates an index for alphanumeric values such as names, based on their
pronunciation, so that words that have variations in spelling can be grouped together.

The syntax is:

SET PHONETIC_ALGORITHM = {METAPHONE|SOUNDEX}

where:

METAPHONE

Uses the Metaphone algorithm for indexing. Metaphone is suitable for use with most
English words, not just names. Metaphone algorithms are the basis for many popular spell
checkers. METAPHONE is the default algorithm, except on z/OS.

Note: Metaphone is not optimized in the SQL sent to a relational DBMS. Therefore, if you
need to optimize the request for an SQL DBMS, the SOUNDEX value should be used.

SOUNDEX

Soundex is a legacy phonetic algorithm for indexing names by sound, as pronounced in
English. SOUNDEX is the default algorithm on z/OS.

PRFTITLE

The PRFTITLE parameter generates descriptive column titles for prefixed fields. These column
titles have readable and translatable descriptions of the prefix operators.

1. Customizing Your Environment

Developing Applications 133

The syntax is:

SET PRFTITLE = {SHORT|LONG}

where:

SHORT

Places the prefix operator name above the field name to generate the column title.

LONG
Generates descriptive column titles for prefixed fields that can be translated to other
languages.

PRINT

The PRINT parameter specifies the report output destination.

It determines whether report output is sent to your screen or to the printer.

You can enter ONLINE and OFFLINE as separate commands that have the same effect as
specifying ONLINE and OFFLINE as PRINT settings.

The syntax is:

SET PRINT = {ONLINE|OFFLINE}

where:

ONLINE

Sends report output to the terminal. ONLINE is the default value.

OFFLINE

Sends report output to the system printer.

PRINTDST

The handling of DST operators has been improved to support multiple DST operators in the
same request, and the ability to use DST with ACROSS.

With these improvements, you can control the behavior of requests that use the PRINT
command with multiple DST operators to achieve independent DST values. To implement this
functionality, set the PRINTDST parameter to NEW.

The syntax is:

SET PRINTDST = {OLD|NEW}

SET Parameter Syntax

134

where:

OLD

Processes multiple DST operators in a PRINT request as nested BY fields, making them
dependent on each other. OLD is the default value.

NEW

Processes multiple DST operators in a PRINT request as totally independent objects.

PRINTPLUS

The PRINTPLUS parameter introduces enhancements to the display alternatives offered by the
FOCUS Report Writer. To force a break at a specific spot, you must use NOSPLIT. PRINTPLUS
is not supported with StyleSheets. Problems may be encountered if HOTSCREEN is set to
OFFLINE.

The syntax is:

SET {PRINTPLUS|PRTPLUS} = {ON|OFF}

where:

ON

Handles the PAGE-BREAK internally to provide the correct spacing of pages, NOSPLIT is
handled internally and you can perform RECAPs in cases where pre-specified conditions
are met. Additionally, a Report SUBFOOT now prints above the footing instead of below it.

OFF

Does not support StyleSheets. OFF is the default value.

PSPAGESETUP

The PSPAGESETUP parameter causes the paper source used by a PostScript printer to match
the PAGESIZE parameter setting.

The syntax is:

SET PSPAGESETUP = {OFF|ON}

where:

OFF

Does not include PostScript code for the selection of a PostScript printer paper source.
OFF is the default value.

1. Customizing Your Environment

Developing Applications 135

ON

Includes PostScript code that automatically tells a PostScript printer to set its paper
source to the size specified by PAGESIZE.

QUALCHAR

The QUALCHAR parameter specifies the qualifying character to be used in qualified field
names.

The syntax is:

SET QUALCHAR = {character|.}

where:

character

Is a valid qualifying character. They include:

. period (hex 4B)

: colon (hex 7A)

! exclamation point (hex 5A)

% percent sign (hex 6C)

¦ broken vertical bar (hex 6A)

\ backslash (hex E0)

A period (.) is the default value. The use of the other qualifying characters listed above is
restricted and should not be used with 66-character field names.

If the qualifying character is a period, you can use any of the other characters listed above
as part of a field name. If you change the default qualifying character to a character other
than the period, then you cannot use that character in a field name.

QUALTITLES

The QUALTITLES parameter uses qualified column titles in report output when duplicate field
names exist in a Master File. A qualified column title distinguishes between identical field
names by including the segment name.

The syntax is:

SET QUALTITLES = {ON|OFF}

SET Parameter Syntax

136

where:

ON

Uses qualified column titles when duplicate field names exist and FIELDNAME is set to
NEW.

OFF

Disables qualified column titles. OFF is the default value.

RANK

The RANK parameter determines how rank numbers are assigned when a request contains the
[RANKED] BY [HIGHEST|LOWEST] n phrase and multiple data values fall into the same rank
category. If the rank number for the next group of values is the next sequential integer, the
ranking method is called dense. If the rank number for the next group of values is the previous
rank number plus the number of multiples, the ranking method is called sparse.

The syntax is:

SET RANK = {DENSE|SPARSE}

where:

DENSE

Specifies dense ranking. With this method, each rank number is the next sequential
integer, even when the same rank is assigned to multiple data values. DENSE is the
default value.

SPARSE

Specifies sparse ranking. With this method, if the same rank number is assigned to
multiple data values, the next rank number will be the previous rank number plus the
number of multiples.

RECAP-COUNT

The RECAP-COUNT parameter includes lines containing a value created with RECAP when
counting the number of lines per logical page for printed output.

The number of lines per page is determined by the LINES parameter.

The syntax is:

SET RECAP-COUNT = {ON|OFF}

1. Customizing Your Environment

Developing Applications 137

where:

ON

Counts lines containing a value created with RECAP.

OFF

Does not count lines containing a value created with RECAP. OFF is the default value.

RECORDLIMIT

The RECORDLIMIT parameter limits the number of records retrieved or displayed.

The syntax is:

SET RECORDLIMIT = {RECORDLIMIT|OUTPUTLIMIT}

where:

RECORDLIMIT

In a request with a RECORDLIMIT filter (WHERE RECORDLIMIT EQ n or IF RECORDLIMIT EQ
n), limits the records displayed on the report output to the number of reads specified in
the filter. RECORDLIMIT is the default.

OUTPUTLIMIT

In a request with a RECORDLIMIT filter (WHERE RECORDLIMIT EQ n or IF RECORDLIMIT EQ
n), applies the RECORDLIMIT filter to the number of records displayed in the final output.

RIGHTMARGIN

The RIGHTMARGIN parameter sets the StyleSheet right boundary for report contents on a
page. This parameter applies to PostScript and PDF reports.

The syntax is:

SET RIGHTMARGIN = {value|.250}

where:

value

Is the right boundary of report contents on a page. 0.250 inches is the default value.

RPAGESET

The RPAGESET parameter controls how the number of lines per logical page are determined
when output contains text created with SUBFOOT and a field value created with RECAP.

The syntax is:

SET Parameter Syntax

138

SET RPAGESET = {NEW|OLD}

where:

NEW

Sets the number of lines per logical page equal to the LINES value plus two plus the
number of the highest BY field with a SUBFOOT.

OLD

Sets the number of lines per logical page equal to the value of the LINES parameter. See
LINES on page 116 for details. OLD is the default.

SAVEDMASTERS

The SAVEDMASTERS parameter saves a Master File in memory after it is used in a request.
Saving a Master File prevents re-parsing the Master File when referenced in subsequent
requests, resulting in performance improvement.

Up to 99 Master Files can be saved to memory.

This parameter cannot be set in the ON TABLE SET command.

The syntax is:

SET SAVEDMASTERS = n

where:

n

Is an integer between 0 and 99 that specifies the maximum number of Master Files on the
SAVEDMASTERS list. 10 is the default value.

Note that the most recently used Master File is always stored in memory, even with
SAVEDMASTERS set to zero. However, the zero setting does not generate the list of saved
Master Files.

SAVEMATRIX

The SAVEMATRIX parameter saves the matrix from your request to protect it from being
overwritten when using Dialogue Manager commands.

The syntax is:

SET SAVEMATRIX = {ON|OFF}

1. Customizing Your Environment

Developing Applications 139

where:

ON

Saves the internal matrix from the last report request, preventing it from being overwritten.

OFF

Overwrites the internal matrix for each request. OFF is the default.

SHADOW

The SHADOW parameter activates the Absolute File Integrity feature for FOCUS files (but not
XFOCUS files).

The syntax is:

SET SHADOW [PAGE] = {ON|OFF|OLD}

where:

ON

Activates the Absolute File Integrity feature. The maximum number of pages shadowed is
256K.

OFF

Deactivates the Absolute File Integrity feature. OFF is the default value.

OLD

Indicates that your FOCUS file was created before Version 7.0. This means that the
maximum number of pages shadowed is 63,551.

SHIFT

The SHIFT parameter controls the use of shift strings.

The syntax is:

SET SHIFT = {ON|OFF}

where:

ON

Specifies a shift string for Hebrew or DBCS (double-byte character support).

OFF

Indicates that SHIFT is not in effect. OFF is the default value.

SET Parameter Syntax

140

SHORTPATH

The SHORTPATH parameter controls how screening conditions against missing cross-
referenced segment instances are processed in a left outer join.

In FOCUS, the command SET ALL = ON or JOIN LEFT_OUTER specifies a left outer join. With a
left outer join, all records from the host file display on the report output. If a cross-referenced
segment instance does not exist for a host segment instance (called a short path), the report
output displays missing values for the fields from the cross-referenced segment. However, the
fields are not assigned missing values for testing purposes.

If there is a screening condition on the dependent segment, those dependent segment
instances that do not satisfy the screening condition are omitted from the report output, and
so are their corresponding host segment instances. With missing segment instances, tests for
missing values fail because the fields in the segment have not been assigned missing values.

When a relational engine performs a left outer join, it processes host records with missing
cross-referenced segment instances slightly differently from the way FOCUS processes those
records when both of the following conditions apply:

There is a screening condition on the cross-referenced segment.

A host segment instance does not have a corresponding cross-referenced segment
instance.

When these two conditions are true, FOCUS omits the host record from the report output, while
relational engines supply null values for the fields from the dependent segment and then apply
the screening condition. If the missing values pass the screening condition, the entire record is
retained on the report output. This type of processing is useful for finding or counting all host
records that do not have matching records in the cross-referenced file or for creating a DEFINE-
based join from the cross-referenced segment with the missing instance to another dependent
segment.

If you want FOCUS to assign null values to the fields in a missing segment instance when a
left outer join is in effect, you can issue the command SET SHORTPATH=SQL.

SET SHORTPATH = {FOCUS|SQL}

where:

FOCUS

Omits a host segment from the report output when it has no corresponding cross-
referenced segment and the report has a screening condition on the cross-referenced
segment.

1. Customizing Your Environment

Developing Applications 141

SQL

Supplies missing values for the fields in a missing cross-referenced segment in an outer
join. Applies screening conditions against this record and retains the record on the report
output if it passes the screening test.

Note: There must be an outer join in effect, either as a result of the SET ALL=ON
command or a JOIN LEFT_OUTER command (either inside or outside of the Master File).

SHOWBLANKS

The SHOWBLANKS parameter preserves leading and internal blanks in HTML and EXL2K report
output.

The syntax is:

SET SHOWBLANKS = {OFF|ON}

where:

OFF

Removes leading and internal blanks in HTML and EXL2K report output. OFF is the default
value.

ON

Preserves leading and internal blanks in HTML and EXL2K report output.

SORTMATRIX

The SORTMATRIX parameter controls whether to employ in-memory sorting with decreased use
of external memory. The syntax is

SET SORTMATRIX = {SMALL|LARGE}

where:

SMALL

Creates a single sort matrix of up to 2048 rows, and uses a binary search based insertion
sort with aggregation during retrieval. The maximum number of rows in this matrix has
been determined to provide the best performance for this type of sort. If the sort matrix
becomes full, it is written to a file called FOCSORT on disk, the in-memory matrix is
emptied, and retrieval continues, writing to FOCSORT as many times as necessary. When
the end of data is detected, the remaining rows are written to FOCSORT and the merge
routine merges all of the sort strings in FOCSORT (which, in extreme cases, may require
multiple merge phases), while also completing the aggregation.

SET Parameter Syntax

142

LARGE

Creates a large matrix or multiple small matrices in memory, when adequate memory is
available as determined by the SORTMEMORY parameter. LARGE is the default value. The
goal of this strategy is to do as much sorting as possible in internal memory before writing
any records to disk. Whether disk I/O is necessary at all in the sorting process depends on
the amount of memory allocated for sorting and the size of the request output. If the
amount of SORTMEMORY is not large enough to meaningfully make use of the LARGE
strategy, the sort will default to the SMALL strategy. The LARGE strategy greatly reduces
the need for disk I/O and, if disk I/O is required after all (for very large output), it virtually
eliminates the need for multiple merge phases.

SORTMEMORY

The SORTMEMORY parameter controls the amount of internal memory available for sorting.
The syntax is:

SET SORTMEMORY = {n|512}

where:

n
Is the positive number of megabytes of memory available for sorting. The default value is
512.

SPACES

The SPACES parameter sets the number of spaces between columns in a report.

This parameter does not work with HTML, PDF, or styled reports.

The syntax is:

SET SPACES = {AUTO|n}

where:

AUTO

Automatically places either one to two spaces between columns. AUTO is the default
value.

n

Is the number of spaces to place between columns of a report. Valid values are integers
between one and eight.

1. Customizing Your Environment

Developing Applications 143

SQLTOPTTF

The SQLTOPTTF parameter enables the SQL Translator to generate TABLEF commands instead
of TABLE commands.

The syntax is:

SET SQLTOPTTF = {ON|OFF}

where:

ON

Generates TABLEF commands when possible. For example, a TABLEREF command is
generated if there is no JOIN or GROUP BY command. ON is the default value. ON is the
default value.

OFF

Always generates TABLE commands.

SQUEEZE

The SQUEEZE parameter applies only to the StyleSheet feature.

It determines the column width in report output. The column width is based on the size of the
data value or column title, or on the field format defined in the Master File.

The syntax is:

SET SQUEEZE = {ON|OFF|n}

where:

ON

Assigns column widths based on the widest data value or widest column title, whichever is
longer.

OFF

Assigns column widths based on the field format specified in the Master File. This value
pads the column width to the length of the column title or field format descriptions,
whichever is greater. OFF is the default value.

n

Represents a specific numeric value, based on the UNITS parameter setting, to which the
column width can be set (valid only in PDF and PS).

SET Parameter Syntax

144

STYLE[SHEET]

The STYLE[SHEET] parameter controls the format of report output by accepting or rejecting
StyleSheet parameters. The parameters specify formatting options, such as page size,
orientation, and margins.

The syntax is:

SET STYLE[SHEET] = {stylesheet|ON|OFF}

where:

stylesheet

Is the name of the StyleSheet file. For UNIX and Windows, this is the name of the
StyleSheet file without the file extension .sty. For z/OS, this is the member name in the
PDS allocated to ddname FOCSTYLE.

For a PDF or PostScript report, it uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE.
The settings for LINES, PAPER, PANEL, and WIDTH are ignored.

ON

Uses the page layout settings for UNITS, TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE. The settings for LINES, PAPER,
PANEL, and WIDTH are ignored.

For a PDF or PostScript report, uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE;
the settings for LINES and WIDTH are ignored.

OFF

This uses the settings for LINES, PAPER, PANEL, and WIDTH. The settings for UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION,
and SQUEEZE are ignored. OFF is the default value.

SUBTOTALS

The SUBTOTALS parameter specifies whether summary lines are displayed above or below the
detail lines in a report. The summary commands affected include SUBTOTAL, SUB-TOTAL,
RECOMPUTE, SUMMARIZE, COMPUTE, RECAP, and COLUMN-TOTAL.

The syntax is:

1. Customizing Your Environment

Developing Applications 145

SET SUBTOTALS {ABOVE|BELOW}

where:

ABOVE

Places summary lines above the detail lines and displays the sort field values on every
detail line of the report output.

BELOW

Places summary lines below the detail lines. BELOW is the default value.

SUMMARYLINES

The SUMMARYLINES parameter allows users to combine fields with and without prefix
operators on summary lines in one request. Prefix operator processing is used for all summary
lines. Fields without prefix operators are processed as though they were specified with the
operator SUM.

This command cannot be used with ON TABLE SET.

The syntax is:

SET SUMMARYLINES = {NEW|OLD|EXPLICIT}

where:

NEW

Propagates all summary operations to the grand total line. Uses prefix operator processing
for all summary commands (all summary fields without prefix operators are processed as
though they had a SUM. operator). Fields listed in a summary command are populated only
on summary lines created by that summary command and on summary lines created by
propagation of that summary command. Supports display of alphanumeric fields on
summary lines. NEW is the default value.

OLD

This value is no longer supported. It processes as NEW.

EXPLICIT

Does not propagate SUBTOTAL and RECOMPUTE to the grand total line. Uses prefix
operator processing for all summary commands (all summary fields without prefix
operators are processed as though they had a SUM. operator). Fields listed in a summary
command are populated only on summary lines created by that summary command and on
summary lines created by propagation of that summary command. Supports display of
alphanumeric fields on summary lines.

SET Parameter Syntax

146

Note: This command is not supported in a request using the ON TABLE SET syntax.

SUMPREFIX

The SUMPREFIX parameter allows users to choose the answer set display order when using an
external sort to perform aggregation on alphanumeric or smart date formats.

The syntax is:

SET SUMPREFIX = {FST|LST|MIN|MAX}

where:

FST

Displays the first value when alphanumeric or smart date data types are aggregated.

LST

Displays the last value when alphanumeric or smart date data types are aggregated. LST is
the default value.

MIN

Displays the minimum value in the sort order set by your FOCUS code page and
configuration when alphanumeric or smart date data types are aggregated.

MAX

Displays the maximum value in the sort order set by your FOCUS code page and
configuration when alphanumeric or smart date data types are aggregated.

TESTDATE

The TESTDATE parameter temporarily alters the system date in order to test a dynamic window
allowing you to simulate clock settings to determine the behavior of your program.

The syntax is:

SET TESTDATE = {yyyymmdd|TODAY}

where:

yyyymmdd

Is an 8-digit date in the format YYYYMMDD.

TODAY

Is the current date. TODAY is the default value.

1. Customizing Your Environment

Developing Applications 147

TIME_SEPARATOR

This parameter defines the separator for time components for the&TOD system variable.

The syntax is:

SET TIME_SEPARATOR = {DOT|COLON}

where:

DOT

Uses a dot (.) to separate time components. This is the default value.

COLON

Uses a colon (:) to separate time components.

TITLELINE

The TITLELINE parameter controls underlining of column titles on report output.

The syntax is:

SET {TITLELINE|ACROSSLINE} = {ON|OFF|SKIP}

where:

ON

Underlines column titles on report output. ON is the default value.

OFF

Replaces the underline with a blank line.

SKIP

Specifies no underline and no blank line.

TITLES

The TITLES parameter controls whether to use pre-defined column titles in the Master File as
column titles in report output.

The syntax is:

SET Parameter Syntax

148

SET TITLES = {ON|OFF|NOPREFIX}

ON TABLE SET TITLES {ON|OFF|NOPREFIX}

where:

ON

Displays the value of the TITLE attribute as the column heading on the report output, if a
TITLE attribute exists in the Master File. If the field has a prefix operator in the report
request, creates the column heading using both the prefix operator and the TITLE attribute.
If there is no TITLE attribute, the field name is used instead. ON is the default value.

OFF

Displays the field name as the column heading on the report output. If the field has a
prefix operator in the report request, creates the column heading using both the prefix
operator and the field name.

NOPREFIX

Displays the value of the TITLE attribute as the column heading on the report output, if a
TITLE attribute exists in the Master File. If there is no TITLE attribute, the field name is
used instead. If the field has a prefix operator in the report request, creates the column
heading using both the prefix operator and the field name.

TOPMARGIN

The TOPMARGIN parameter sets the top StyleSheet boundary for report contents on a page.

This parameter applies to PostScript and PDF reports.

The syntax is:

SET TOPMARGIN = {value|.250}

where:

value

Is the top boundary on a page for report output. 0.250 inches is the default value.

UNITS

The UNITS parameter applies to PostScript and PDF reports.

It specifies the unit of measure for page margins, column positions, and column widths.

The syntax is:

SET UNITS = {INCHES|CM|PTS}

1. Customizing Your Environment

Developing Applications 149

where:

INCHES

Uses inches as the unit of measure. INCHES is the default value.

CM

Uses centimeters as the unit of measure.

PTS

Uses points as the unit of measurement. (One inch = 72 points, one cm = 28.35 points).

USER

The USER parameter enables user access to a data source or stored procedure protected by
DBA security.

The syntax is:

SET USER = user

where:

user

Is the user name that, with a password, enables access to a data source or stored
procedure protected by DBA security.

USERFCHK

The USERFCHK parameter controls the level of verification applied to DEFINE FUNCTION
arguments and FOCUS-supplied function arguments. It does not affect verification of the
number of parameters. The correct number must always be supplied.

Note that the USERFNS=SYSTEM setting must be in effect. For details, see USERFNS on page
151.

Issue the following command in FOCPARM, FOCPROF, on the command line, in a procedure, or
in an ON TABLE command.

SET USERFCHK = setting

where:

setting

Can be one of the following:

SET Parameter Syntax

150

ON verifies parameters in requests, but does not verify parameters for functions used in
Master File DEFINEs. If a parameter has an incorrect length, an attempt is made to fix the
problem. If such a problem cannot be fixed, a message is generated and the evaluation of
the affected expression is terminated. ON is the default value.

Because parameters are not verified for functions specified in a Master File, no errors are
reported for those functions until the DEFINE field is used in a subsequent request when,
if a problem occurs, the following message is generated:

(FOC003) THE FIELDNAME IS NOT RECOGNIZED

OFF does not verify parameters except in the following cases:

If a parameter that is too long would overwrite the memory area in which the
computational code is stored, the size is automatically reduced without issuing a
message.

Note: The OFF setting will be deprecated in a future release.

If an alphanumeric parameter is too short, it is padded with blanks to the correct
length.

Note: We strongly recommend that you not use this option, as disabling parameter
checking can lead to unexpected issues.

FULL is the same as ON, but also verifies parameters for functions used in Master File
DEFINEs.

ALERT verifies parameters in a request without halting execution when a problem is
detected. It does not verify parameters for functions used in Master File DEFINEs. If a
parameter has an incorrect length and an attempt is made to fix the problem behind the
scenes, the problem is corrected with no message. If such a problem cannot be fixed, a
warning message is generated. Execution then continues as though the setting were OFF.

USERFNS

If your site has a locally written function with the same name as an Information Builders-
supplied function, the USERFNS parameter determines which function is used.

Parameter verification can be enabled for DEFINE FUNCTIONs and functions supplied by
FOCUS.

The syntax is:

SET USERFNS= {SYSTEM|LOCAL}

1. Customizing Your Environment

Developing Applications 151

where:

SYSTEM

Gives precedence to functions supplied by FOCUSand to those created with the DEFINE
FUNCTION command. SYSTEM is the default value.

This setting is required to enable parameter verification. For details, see USERFCHK on
page 150.

LOCAL

Gives precedence to locally written functions. Parameter verification is not performed with
this setting in effect.

WARNING

The WARNING parameter suppresses (FOC441) warnings. The file exists already. Create will
overwrite it.

The syntax is:

SET WARNING = {ON|OFF}

where:

ON

Turns on warning messages. On is the default.

OFF

Turns off warning messages.

WEEKFIRST

The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used in
week computations by the HDIFF, HNAME, HPART, HYYWD, and HSETPT functions, described in
the TIBCO WebFOCUS® Using Functions manual.

The HPART and HNAME subroutines can extract a week number from a date-time value. To
determine a week number, they can use ISO 8601 standard week numbering, which defines
the first week of the year as the first week in January with four or more days. Any preceding
days in January belong to week 52 or 53 of the preceding year.

Depending on the value of WEEKFIRST, these functions can also define the first week of the
year as the first week in January with seven days.

The WEEKFIRST parameter does not change the day of the month that corresponds to each
day of the week, but only specifies which day is considered the start of the week.

SET Parameter Syntax

152

The syntax is:

SET WEEKFIRST = {value|7}

where:

value
Can be:

1 through 7, representing Sunday through Saturday with non-standard week numbering.

or

ISO1 through ISO7, representing Sunday through Saturday with ISO standard week
numbering.

Note: ISO is a synonym for ISO2.

The ISO standard establishes Monday as the first day of the week, so to be fully ISO
compliant, the WEEKFIRST parameter should be set to ISO or ISO2.

WPMINWIDTH

If you need the report width for a format WP output file to remain fixed across releases for later
processing of the output file, you can set the width you need using the SET WPMINWIDTH
command. This parameter specifies the minimum width of the output file. It will be
automatically increased if the width you set cannot accommodate the fields propagated to the
output file in the request. On z/OS, The LRECL of the output file will be four bytes more than
the report width because the file is variable length and needs an additional four bytes to hold
the actual length of each record instance. In other operating environments, the length of the
record is the value of WPMIDWIDTH.

The syntax is:

SET WPMINWIDTH = {0|nnn}

ON TABLE SET WPMINWIDTH {0|nnn}

where:

nnn

Is the minimum width of the output file. On z/OS, the LRECL will automatically be nnn + 4
bytes. If you specify zero (0) for nnn, the width will be calculated automatically based on
the report request. If the width you specify cannot accommodate the fields propagated to
the output file, it will be automatically increased enough to accommodate them.

1. Customizing Your Environment

Developing Applications 153

XLSXPAGEBRKIGNORE

The XLSXPAGEBRKIGNORE parameter controls whether page breaks in FOCUS format XLSX
report output insert Excel page breaks at the same location in the output.

The syntax is:

SET XLSXPAGEBRKIGNORE = {OFF|ON}

where:

OFF

Synchronizes FOCUS page breaks with Excel page breaks in format XLSX report output.
This is the default value.

ON

Does not synchronize FOCUS page breaks with Excel page breaks in format XLSX report
output. This value conforms to behavior in prior releases.

XRETRIEVAL

The XRETRIEVAL parameter previews the format of a report without actually accessing any
data. This parameter enables you to perform TABLE, TABLEF, or MATCH requests and produce
HOLD Master Files without processing the report.

The syntax is:

SET XRETRIEVAL = {ON|OFF}

where:

ON

Performs retrieval when previewing a report. ON is the default value.

OFF

Specifies that no retrieval is to be performed.

YRTHRESH

The YRTHRESH parameter defines the start of a 100-year window globally or on a field-level.
Used with DEFCENT, interprets the current century according to the given values. Two-digit
years greater than or equal to YRTHRESH assume the value of the default century. Two-digit
years less than YRTHRESH assume the value of one more than the default century. (See
DEFCENT on page 85.)

Note: This same result can be achieved by including the FDEFCENT and FYRTHRESH attributes
in the Master File.

SET Parameter Syntax

154

The syntax is:

SET YRTHRESH = {[-]yy|0}

where:

yy

Is the year threshold for the window. 0 is the default value.

If yy is a positive number, that number is the start of the 100-year window. Any 2-digit
years greater than or equal to the threshold assume the value of the default century. Two-
digit years less than the threshold assume the value of one more than the default century.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and the default century is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

1. Customizing Your Environment

Developing Applications 155

SET Parameter Syntax

156

Chapter2
Managing Applications

An application is a platform-independent repository for a group of related components,
such as procedures, Master and Access Files, data files, HTML files, PDF files, and
image files.

You can use a variety of application (APP) commands to control the application
environment, including the application itself, its component files, and its search paths.

In this chapter:

What Is an Application?

Application Commands Overview

Search Path Management Commands

Application and File Management Commands

Output Redirection Commands

Application Metadata Commands and Catalog Metadata

APP HELP

Accessing Metadata and Procedures

Allocating Temporary Files

What Is an Application?

An application is a platform-independent repository for a group of related components, such as
procedures, Master and Access Files, data files, HTML files, PDF files, and image files. It
provides a way to confer a unique identity on the application components and facilitates the
sharing of components across applications in an organized manner. This construct also
simplifies the process of moving a user application from one platform to another.

Developing Applications 157

These components are physically grouped together on an application-by-application basis for
run-time execution. This physical grouping can be within an application under a common root or
a mapping to an application anywhere in the file system. The physical application or mapped
name is referred to as the application name in this document. A comprehensive set of
application (APP) commands are provided to control/manipulate the application components,
as well as to facilitate applications that can be written and deployed to any platform.

The physical location of an application and its components is determined by a configuration
parameter called approot. This parameter is set at installation time and stored in the
configuration file, edaserve.cfg. On z/OS, the EDASERVE configuration file must be a member
in a PDS allocated to DDNAME ERRORS. The default value is dependent on the platform,
relative to the install ID home directory, where applicable.

Application directories can be nested, except on z/OS. A nested application directory is an
application created within a higher-level application. For more information. see Nested
Application Directories.

On z/OS, data sets are created for each component type using the approot value as the high-
level qualifier.

On z/OS, the following is a list of all application data sets automatically created for an
application, where approot is USERID.APPS and the application name is BASEAPP:

APP CREATE BASEAPP
USERID.APPS.BASEAPP.ACCESS.DATA
USERID.APPS.BASEAPP.ETG.DATA
USERID.APPS.BASEAPP.FOCCOMP.DATA
USERID.APPS.BASEAPP.FOCEXEC.DATA
USERID.APPS.BASEAPP.FOCSTYLE.DATA
USERID.APPS.BASEAPP.GIF.DATA
USERID.APPS.BASEAPP.HTML.DATA
USERID.APPS.BASEAPP.MAINTAIN.DATA
USERID.APPS.BASEAPP.MASTER.DATA
USERID.APPS.BASEAPP.SQL.DATA
USERID.APPS.BASEAPP.WINFORMS.DATA

To reference an application file in a FOCUS command, use the syntax appname/filename if the
file is not first in the application path. For example:

TABLE FILE baseapp/GGSALES
...

No allocation or definition is needed for referencing the standard file types. Other types of files
that you may create within an application must be allocated or defined before being used.
FOCUS files can be defined with a USE command.

What Is an Application?

158

Application Commands Overview

This topic lists the platform-independent application (APP) commands that enable you to
control the application environment.

You can use the following wildcard characters in the file name and file type references for the
APP commands COPYFILE, MOVEFILE, DELETEFILE, and RENAMEFILE.

An asterisk (*) replaces any combination of characters of any length (including zero).

Note that an asterisk can also be used to replace the entire filename or filetype parameter.

A question mark (?) replaces zero or one character.

Reference: APP Commands Quick Reference

Click any command in the following charts to access detailed information, including the
required syntax.

Search Path Management Commands

Command Description

APP PATH Sets or resets the application search path.

APP PREPENDPATH Temporarily adds application names to the beginning of an
existing APP PATH search path.

APP APPENDPATH Temporarily adds application names to the end of an existing
APP PATH search path.

APP MAP Defines a virtual application that points to a physical location
outside of the approot structure or redirects an application to
another application. This command makes the virtual or
redirected application available for addition to the search path.
It does not automatically add it to the APP PATH.

APP SET
METALOCATION_SAME

Indicates whether corresponding Master and Access files must
be in the same application directory.

APP ?
METALOCATION_SAME

Retrieves the value of APP SET METALOCATION_SAME.

APP SHOWPATH Lists all the currently active applications in the search path.

2. Managing Applications

Developing Applications 159

Application Management Commands

Command Description

APP COPY Copies the contents of one application to a second
application.

APP CREATE Creates an application under the approot location.

APP DELETE Deletes an application.

APP MOVE Moves the contents of one application to a second application.

APP PROPERTY
CODEPAGE

Specifies a code page for files in an application.

APP RENAME Renames an application.

File Management Commands

Command Description

APP COPYF[ILE] *Copies a single component or component type from one
application to another.

APP MOVEF[ILE] *Moves a single component or component type from one
application to another.

APP RENAMEF[ILE] *Renames a single component or component type in an
application.

APP DELETEF[ILE] *Deletes a single component or component type from an
application.

* The shortened form of the APP commands is used in the remainder of this document.

Application Commands Overview

160

Output Redirection Commands

Command Description

APP HOLD Controls where output files are created for any HOLD, SAVE,
SAVB, CREATE SYNONYM, or APP QUERY HOLD process in the
application, unless a FILEDEF command has been used to
allocate data files.

APP HOLDDATA Designates an application as the location for temporary data
files created with the HOLD, SAVE, or SAVB command.

APP HOLDMETA Designates an application as the location for temporary Master
and Access Files created with the HOLD command.

APP FI[LEDEF] This command has been deprecated and aliased to FILEDEF.

Help Commands

Command Description

APP HELP Displays a list of APP commands with a brief description of
each.

Reference: Application Metadata Commands and Metadata Tables

Click any command in the following chart to access detailed information, including the required
syntax.

Command Description

STATE app/file.extension Check file existence

APP LIST app [HOLD] Lists the applications under approot.

If the HOLD option is used, it lists the applications under
approot and writes the output to a temporary file called
focappl.ftm, which you can then use in a report request.

2. Managing Applications

Developing Applications 161

Command Description

APP QUERY app [HOLD] Lists all files in the application.

If the HOLD option is used, it lists all files in the application
and writes the output to a temporary file called
focappq.ftm, which you can then use in a report request.

catalog/sysfiles Table, list of accessible app name objects on path for a
given type (default MASTER).

catalog/sysdirs Table, recursive list of physical files under a physical
directory.

catalog/sysapps Table, metadata for physical objects on path.

catalog/systables Table, app name of tables (and related metadata) on path.

For information about reporting from system tables, see the TIBCO WebFOCUS® Developing
Reporting Applications manual.

Search Path Management Commands

FOCUS has a default search path for application and system components. You can supplement
this search path by using one or more of the following APP commands:

APP PATH

APP PREPENDPATH

APP APPENDPATH

APP SET METALOCATION_SAME

APP ? METALOCATION_SAME

Generally, these commands add applications to the beginning of the default search path. The
exception is temporary components that are created in the current session. These temporary
components are searched first, before the user-defined path.

APP PATH

The APP PATH command sets the search path to a designated list of application names that
refer to applications under the approot value. You can specify multiple application names to
extend the search path.

Search Path Management Commands

162

Syntax: How to Add an Application to the Search Path Manually

APP PATH app1[/] [app2[/] ...]
 [appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter in the edaserve.cfg file determines whether nested applications are searched
for files referenced in a procedure, and to what level. If you need to specify more
application names than can fit on one line, add the continuation character (-) at the end of
the first line, and code more application names on the next line.

Note:

You can use the APP PATH command without an application name to reset the search path
to the initial list.

APP PATH does not validate the application list.

APP PREPENDPATH

The APP PREPENDPATH command enables you to temporarily add application names to the
beginning of an existing APP PATH search path.

If you wish to use this command to alter the search path, you must code it manually in your
application.

2. Managing Applications

Developing Applications 163

Syntax: How to Add Application Names to the Beginning of a Search Path

APP PREPENDPATH app1[/] [app2[/]] ...
 [appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter determines whether nested applications are searched for files referenced in a
procedure, and to what level. If you need to specify more application names than can fit on
one line, add the continuation character (-) at the end of the first line, and code more
application names on the next line.

APP APPENDPATH

The APP APPENDPATH command enables you to temporarily add application names to the end
of an existing APP PATH search path.

If you wish to use this command to alter the search path, you must code it manually in your
application.

Syntax: How to Add Application Names to the End of a Search Path

APP APPENDPATH app1[/] [app2[/]] ... [appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter determines whether nested applications are searched for files referenced in a
procedure, and to what level. If you need to specify more application names than can fit on
one line, add the continuation character (-) at the end of the first line, and code more
application names on the next line.

Search Path Management Commands

164

APP MAP

The APP MAP command allows you to assign an application name to a non-approot application
anywhere in the file system or to redirect an application. The application name becomes a
virtual application under approot, which can be referenced in an APP PATH command and any
other APP command that takes an application name as a parameter.

Note that mapping does not automatically add a directory to the path, it simply makes it
available for addition to the search path.

Syntax: How to Map a Physical File Location or Redirect an Application

To map a physical file location outside of approot, the syntax is:

APP MAP virtualname real_location

where:

virtualname

Is an application name of up to 64 characters that can later be used in an APP PATH
command.

real_location

Is a real full path name or DDNAME in the native style of the given operating system. On
UNIX and Linux, the location may be a mixed case name, but the MAP virtualname itself is
always handle insensitive when used (that is, EX mymap/mytest).

Note that if the real location contains spaces, it must be surrounded by double quotation
marks.

To redirect an approot or non-approot application to a different name, the syntax is:

APP MAP app1 app2/dir1/dir2/../dirn

where:

app1

Can be an existing physical, mapped or linked app. It can also be a new app.

app2

Can be a physical, mapped or linked or non-existent app.

dir1 ... dirn

Are application directory names.

Syntax: How to Map DDNAME Allocations

The syntax for this type of mapping is

2. Managing Applications

Developing Applications 165

APP MAP appname file_extension=//dd:ddname;file_extension=//
dd:ddname;...

where:

appname

Is the name of the application used to reference this mapping in an APP PATH, APP
APPENDPATH, or APP PREPENDPATH command.

file_extension

Is one of the following valid FOCUS file extensions:

.mas

.fex

.acx

.htm

.sty

.gif

.psb

ddname

Is the ddname of the allocation you wish to map. The allocation can be performed using
JCL code or a DYNAM command.

Example: Mapping DDNAME Allocations

DYNAM ALLOC FILE MYMAS DA EDAARH.MASTER.DATA SHR REU
APP MAP APP1 MAS=//DD:MYMAS;
APP APPENDPATH APP1

By default, FOCUS has an APP MAP command in the EDASPROF file to map the application
MVSAPP to the allocations FOCEXEC, MASTER, ACCESS, HTML, FOCSTYLE, GIF, FOCPSB.
While allocations of these ddnames are not required for the APP MAP command to be valid,
once the ddnames are allocated by JCL or DYNAM commands, they become available for use.

Reference: APP MAP With Universal Naming Convention (UNC)

On platforms that support Universal Naming Convention (UNC), you must use the UNC to
designate a network drive to access APP directories. The UNC must:

Be at least one folder below the initial shared location.

Not contain spaces unless enclosed in double quotation marks. For example,

\\mynode\myshare\accnting
"\\mynode\my share\accnting"

Search Path Management Commands

166

APP SET METALOCATION_SAME

The APP SET METALOCATION_SAME command identifies whether Master Files and their
corresponding Access Files must be in the same location.

Syntax: How to Control the Location of Synonym Files

APP SET METALOCATION_SAME {ON|OFF}

where:

ON

Specifies that Master Files and their corresponding Access Files must reside in the same
application directory. ON is the default value.

OFF

Specifies that once the Master File for a request is located, FOCUS will use the active
search path to find the corresponding Access File.

APP ? METALOCATION_SAME

The APP ? METALOCATION_SAME command queries whether Master Files and their
corresponding Access Files must be in the same location.

Syntax: How to Query Whether Synonym Files Must Reside in the Same Location

APP ? METALOCATION_SAME

If the result of this query command is ON, FOCUS expects to find corresponding Master and
Access Files in the same application directory. If the result is OFF, FOCUS uses the active
search path to find the Access File that corresponds to a given Master File.

APP SHOWPATH

The APP SHOWPATH command lists all the currently active applications in the search path,
including baseapp, which is always last.

Syntax: How to List Active Applications

APP SHOWPATH

Example: Listing Active Applications in the Search Path

FOCUS is generally installed with two default applications: ibisamp (contains sample files), and
baseapp (which can contain any files you create).

2. Managing Applications

Developing Applications 167

The APP SHOWPATH command generates the following output is:

ibisamp
baseapp

Application and File Management Commands

The APP commands in this section provide management options for applications and their
component files.

APP CREATE

In general, the APP CREATE command creates an application under the approot high-level
qualifier.

The APP CREATE command can create any number of applications with one command.

Syntax: How to Create an Application Manually

APP CREATE app1[/app1a...] [app2[/app2a...] ...
 [appn[/appna...]] [DROP]

where:

app1...appn

Are application names under approot. The application name can be up to 64 characters.

app1a...appna

Are nested application directories, allowed when nested applications are configured. In
order to create a nested application, the parent application must already exist.

DROP

Deletes an application if one already exists with the same name as the one to be created,
and then creates a new application with that name. Note that any files in the pre-existing
application are deleted. Without the DROP option, a message will be generated, and the
pre-existing application will not be deleted or changed.

The application name may not contain spaces. If the name contains spaces, each section is
understood to be a separate application. If you require a name with spaces, you must create it
using another mechanism, such as Windows Explorer. You can then use the APP MAP
command to add it to APPROOT.

If you need to specify more application names than can fit on one line, add the continuation
character (-) at the end of the first line, and code more application names on the next line.

Application and File Management Commands

168

The word HOLD cannot be used as an application name.

Syntax: How to Change Default Characteristics of Component File Types (z/OS Only)

You can change the default characteristics of individual component file types by issuing a
DYNAM SET APP command. This command controls the types of component files that are
generated for the application when an APP CREATE command is issued. By default, all
component file types are generated.

The syntax is

DYNAM SET APP FOR filetype [SKIP|CREATE] [POSTFIX aaa.bbb] [parms]

where:

filetype

Are the component types that may be affected by this command, in uppercase: FOCEXEC,
MASTER, ACCESS, HTML, GIF, FOCSTYLE, MAINTAIN, ETG. You must issue a separate
command for each component type you wish to affect.

SKIP

Indicates that the designated file type should not be created when the APP CREATE
command is issued.

CREATE

Creates the designated file type when the APP CREATE command is issued. This is the
default setting.

POSTFIX

Specifies the lower level qualifier of the DSN (data set name) for the component type. The
APPROOT value is used to complete the full DSN, which is expressed as

approotvalue.appname.component_type

The default value for component_type is filetype.DATA.

parms

Are the allocation parameters you can set. The default parameter values are:

File Type Parameter

FOCEXEC RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE 50 50 DIR
50

2. Managing Applications

Developing Applications 169

File Type Parameter

MASTER RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50 50 DIR 50

ACCESS RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50 50 DIR 50

HTML RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE 50 50 DIR
50

GIF RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE 50 50 DIR
50

The GIF file type creates libraries for GIF and JPG files.

FOCSTYLE RECFM FB TRKS LRECL 1024 BLKSIZE 27648 SPACE 50 50 DIR
50

MAINTAIN RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE 50 50 DIR
50

ETG RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50 50 DIR 50

Example: Changing Default Characteristics of an Application

The following command indicates that GIF files should not be created when the APP CREATE
command is issued.

DYNAM SET APP FOR GIF SKIP

The following command indicates that Procedures (FOCEXECs) should be created when APP
CREATE is issued.

DYNAM SET APP FOR FOCEXEC TRKS SP 10 20 DIR 30

APP COPY

The APP COPY command copies the entire contents of one application to another. The target
application must already exist.

Syntax: How to Copy an Application

APP COPY app1[/app1a...] app2[/app2a...]

Application and File Management Commands

170

where:

app1[/app1a...]

Is the application being copied. It can be a nested application name.

app2[/app2a...]

Is the application to which the contents of the first application are being copied. It can be
a nested application name.

APP COPYF[ILE]

The APP COPYF[ILE] command copies one or more components or component types from one
application to another.

Note that if you copy a component manually, you can, optionally, rename it in the process.

If you copy a Master File, the corresponding Access File is also copied. However, copying an
Access File (file type FOCSQL) does not automatically copy the corresponding Master File.

Syntax: How to Copy an Application Component Manually

APP COPYF[ILE] app1[/app1a...]
 {filename1|*} filetype1 app2 [/app2a...]
 {filename2|*} {filetype2|*} [IFEXIST] DROP

where:

app1[/app1a...]

Is the application that contains the component to be copied. It can be a nested application
name.

filename1

Are the components to be copied. Use an asterisk (*) to copy all components of file type
filetype1.

You can use the following wildcard characters in the file name and file type references.

An asterisk (*) replaces any combination of characters of any length (including zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

A question mark (?) replaces zero or one character.

filetype1

Is the file type, in uppercase, of the component to be copied.

2. Managing Applications

Developing Applications 171

app2[/app2a...]

Is the application to which the named component is being copied. It can be a nested
application name.

filename2

Is the component name in the target application, after the copy process. Use an asterisk
(*) to propagate the file names from the source application to the target application.

filetype2

Is the component type, in uppercase, in the target application after the copy process. Use
an asterisk (*) to propagate the file types from the source application to the target
application.

IFEXIST

Ignores any component in the source application that does not exist.

DROP

Overwrites any component already in the target application with the same name and file
type as a component being copied.

For a full list of the types of files you can copy with APP commands, see Designating File Types
for APP Commands on page 177.

APP MOVE

The APP MOVE command moves the entire contents of one application to another. The target
application must already exist.

Syntax: How to Move an Application

APP MOVE app1[/app1a...] app2[/app2a...]

where:

app1[/app1a...]

Is the application being moved. It can be a nested application name.

app2[/app2a...]

Is the application to which the contents of the first application are being moved. It can be
a nested application name.

Application and File Management Commands

172

APP MOVEF[ILE]

The APP MOVEF[ILE] command moves one or more components or component types from one
application to another.

Note that if you move a component manually, you can, optionally, rename it in the process.

If you move a Master File, the corresponding Access File is also moved. However, moving an
Access File (file type FOCSQL) does not automatically move the corresponding Master File.

Syntax: How to Move an Application Component Manually

APP MOVEF[ILE] app1[/app1a...]
 {filename1|*} filetype1 app2 [/app2a...]
 {filename2|*} {filetype2|*} [IFEXIST] [DROP]

where:

app1[/app1a...]

Is the application that contains the component to be moved. It can be a nested application
name.

filename1

Is the name of the component to be moved. Use an asterisk (*) to move all components of
file type filetype1.

You can use the following wildcard characters in the file name and file type references.

An asterisk (*) replaces any combination of characters of any length (including zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

A question mark (?) replaces zero or one character.

filetype1

Is the file type, in uppercase, of the component to be moved.

app2[/app2a...]

Is the application to which the named component is being moved. It can be a nested
application name.

filename2

Is the component name in the target application, after the move process. Use an asterisk
(*) to propagate the file names from the source application to the target application.

2. Managing Applications

Developing Applications 173

filetype2

Is the component type, in uppercase, in the target application after the move process. Use
an asterisk (*) to propagate the file types from the source application to the target
application.

IFEXIST

Ignores any component in the source application that does not exist.

DROP

Overwrites any component already in the target application with the same name and file
type as a component being moved.

For a full list of the types of files you can move with APP commands, see Designating File Types
for APP Commands on page 177.

APP DELETE

The APP DELETE command deletes applications under approot.

Syntax: How to Delete an Application Manually

APP DELETE app1[/app1a...] [app2[/app2a...] ...
 [appn[/appna...]]

where:

app1[/app1a...]... [appn[/appna...]

Are application names. Nested application names are supported. If you need to specify
more application names than can fit on one line, add the continuation character (-) at the
end of the first line, and enter additional application names on the next line.

APP DELETEF[ILE]

The APP DELETEF[ILE] command deletes one or more components or component types from an
application.

If you delete a Master File, the corresponding Access File is also deleted. However, deleting an
Access File (file type FOCSQL) does not automatically delete the corresponding Master File.

Syntax: How to Delete an Application Component Manually

APP DELETEF[ILE] app[/appna...] {filename|*} filetype

Application and File Management Commands

174

where:

appn[/appa...]

Is the application from which the component or component type is being deleted. Nested
application names are supported.

filename

Is the name of the component to be deleted. Use an asterisk (*) to delete all files of type
filetype.

You can use the following wildcard characters in the file name and file type references.

An asterisk (*) replaces any combination of characters of any length (including zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

A question mark (?) replaces zero or one character.

filetype

Is the component type, in uppercase, of the component to be deleted.

For a full list of the types of files you can use with APP commands, see Designating File Types
for APP Commands on page 177.

APP PROPERTY CODEPAGE

The APP PROPERTY appname CODEPAGE command identifies the codepage to be used for
non-data files in the application directory.

Syntax: How to Specify a Code Page for an Application

APP PROPERTY app[/appa...] CODEPAGE number

where:

app[/appa...]

Is an application name. Nested application names are supported.

number

Is the code page number for non-data files in the application.

APP RENAME

The APP RENAME command renames an existing application.

2. Managing Applications

Developing Applications 175

Note: You cannot rename an application if it is active in the search path.

Syntax: How to Rename an Application

APP RENAME app1[/app1a...] app2[/app2a...]

where:

app1[/app1a...]

Is the application name to be renamed. It can be a nested application name.

app2[/app2a...]

Is the new application name of up to 64 characters. It can be a nested application name.

Example: Renaming an Application

The following shows app1 being renamed to app2.

APP RENAME app1 app2

APP RENAMEF[ILE]

The APP RENAMEF[ILE] command renames one or more components in an application.

If you rename a Master File, the corresponding Access File is also renamed. However,
renaming an Access File (file type FOCSQL) does not automatically rename the corresponding
Master File.

Syntax: How to Rename an Application Component

APP RENAMEF[ILE] app[/appa...] filename1
filename2 filetype [DROP]

where:

app[/appa...]

Is the name of the application that contains the component being renamed. It can be a
nested application name

filename1

Is the file name of the component to be renamed.

You can use the following wildcard characters in the file name and file type references.

An asterisk (*) replaces any combination of characters of any length (including zero).

Application and File Management Commands

176

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

A question mark (?) replaces zero or one character.

filename2

Is the new name for the component. The component name may be up to 64 characters.

filetype

Is the file type, in uppercase, of the component to be renamed.

DROP

Overwrites an existing component with the same file name and file type.

For a full list of the types of files you can use with APP commands, see Designating File Types
for APP Commands on page 177.

Designating File Types for APP Commands

The APP COPYF, APP MOVEF, APP DELETEF, and APP RENAMEF commands enable you to
perform their actions on a wide variety of file types.

The following is a comprehensive list of the file types you can use with APP commands and the
file extensions associated with the on-disk names for hierarchical file systems.

Note that the file types must be coded in uppercase in any APP command that requires it.

Note: This list reflects file types supported across all products and release levels. Particular
file types may not be supported in particular releases or with every product.

File Type File Extension

ACX .acx

ADR .adr

AFM .afm

BMP .bmp

BST .bst

cascading style sheet .css

CONTROL .ctl

2. Managing Applications

Developing Applications 177

File Type File Extension

DATA .dat

DDS .DDS

DEFAULT The APP filename value is used to derive
the physical extension for the APP
command, so that unknown user-defined
extensions may be supported in an APP
command (for example, APP COPYFILE
BASEAPP MYFILE.FOO DEFAULT BASEAPP
MYFILE FOCEXEC).

DTD .dtd

EDANLS .nls

EDAPRFU .prf

EDAPROF .prf

EDAPSB .psb

EPS .eps

ERRORS .err

ETG .etg

ETL .etl

EXCEL .xls

FMU .fmu

FOCCOMP .fcm

FOCDEF .def

FOCEXEC OR FEX .fex

FOCFTMAP .fmp

FOCPSB .psb

Application and File Management Commands

178

File Type File Extension

FOCSQL .acx

FOCSTYLE .sty

FOCTEMP .ftm

FOCUS .foc

GIF .gif

HLI .hli

HTML .htm

IBICPG .sl

JPG .jpg

JS .js

LSN .lsn

MAINTAIN .mnt

MASTER OR MAS .mas

MASTER has a special behavior that any
matching Access File (.acx) is also
operated upon by the APP command. This
is so metadata is operated upon as a
matched pair. Use MAS if it is strictly
desired to only operate on the Master File
and not the Access File.

MHT .mht

Microsoft Access database .mdb

MNTPAINT .mpt

OMI .omi

PDF .pdf

2. Managing Applications

Developing Applications 179

File Type File Extension

PFA .pfa

PFB .pfb

PNG .png

PS .ps

SMARTLIB .knb

SQL .sql

SVG .svg

TABS .txt

TDL .tdl

TRF .trf

TTEDIT .tte

TXT .txt

WINFORMS .wfm

WSDL .wsd

XHT .xht

XLSM .xlsm

XLSX .xlsx

XLTM .xltm

XLTX .xltx

XML .xml

XSD .xsd

Application and File Management Commands

180

File Type File Extension

XSL .xsl

Output Redirection Commands

Three APP commands (APP HOLD, APP HOLDDATA, and APP HOLDMETA) along with the
FILEDEF and DYNAM commands comprise a class of commands that control where output is
stored. In order to redirect output as you wish, it is important to understand the interactions
among these commands.

Note: When the same behavior applies for APP HOLD, APP HOLDDATA, and APP HOLDMETA,
these commands are referred to collectively as APP HOLD*. Note also that although DYNAM
(USS only) and FILEDEF are not members of the APP family of commands, these file allocation
commands interact with the APP HOLD* commands. Therefore, where appropriate, these
commands are also included in this discussion. APP FI[LEDEF] has been deprecated and
aliased to FILEDEF.

The most straightforward of these commands is APP HOLD, which allows you to relocate all
output to a particular application. You can use this command with operations that produce
output files, such as HOLD, SAVE and SAVB, as well as with CREATE SYNONYM and APP
QUERY HOLD. (For details about HOLD, SAVE, and SAVB commands, see the TIBCO FOCUS®

Creating Reportsmanual.)

The APP HOLD* commands are particularly helpful when you are creating permanent files for
other applications to use. However, if a command is used at an inappropriate point in the
application or if it remains in effect when further steps are performed within the application,
the target application may be flooded with intermediate and unintended files. Understanding
the behavior of each command and the interactions among them will help you avoid this
situation.

2. Managing Applications

Developing Applications 181

Reference: Interactions Among Output Redirection Commands

This chart describes the behavior associated with each redirection command and the
interactions among them if multiple commands are used.

Command Stand Alone Notes

APP HOLD Redirects all output from HOLD,
SAVE, SAVB, CREATE SYNONYM,
and APP QUERY HOLD commands
to the designated application.

When issued without a
specific appname, APP
HOLD has the effect of
turning off the
command.

APP HOLDDATA Redirects the data from HOLD,
SAVE, and SAVB operations to the
designated application, but does
not redirect the associated
metadata (see Note 1 after chart).

Overrides APP HOLD.

APP HOLDMETA Redirects the metadata from
HOLD, SAVE, and SAVB
operations to the designated
application, but does not redirect
the associated data (see Note 1
after chart).

Overrides APP HOLD.

FILEDEF ddname
DYNAM ALLOC ddname

Redirects the data from specific
HOLD, SAVE, and SAVB
operations to the designated
target, but does not redirect the
associated metadata (see Note 1
after chart).

The AS phrase must match the
ddname. When there is no AS
phrase, the ddname must match
a predefined default name: HOLD
for HOLD output files; SAVE for
SAVE output files; and SAVB for
SAVB output files.

Overrides APP HOLD
and APP HOLDDATA.

Output Redirection Commands

182

Command Stand Alone Notes

DYNAM ALLOC HOLDMAST Redirects the metadata from
HOLD, SAVE, and SAVB
operations to the designated
target (using the HOLDMAST
ddname), but does not redirect
the associated data (see Note 1
after chart).

The recommended practice is to
use this command on a request-
by-request basis to avoid
overriding previous output. If used
as a global setting, previously
held output will be overwritten
with the same name.

Overrides APP HOLD
and APP HOLDMETA.

Note:

Not all formats have associated metadata. For example, the HOLD FORMAT PDF command
does not produce metadata, therefore, there is no metadata to redirect.

The use of the APP HOLD command to redirect CREATE SYNONYM output is neither
necessary nor desirable since the CREATE SYNONYM command directly supports
application names using the syntax:

CREATE SYNONYM appname/synonym ...

APP HOLD

The APP HOLD command defines an application in which to hold output data files (and
associated Master and Access Files, if applicable) created by a HOLD, SAVE, or SAVB process
in the application.

APP HOLD is intended to be used to refresh files that are common for all users of the
application. It should not be used for private files since it points to an application area that is
used by multiple users. If the same hold name (HOLD or AS name, for example) is used,
conflicts between users could result.

For related information, see Interactions Among Output Redirection Commands on page 182.

2. Managing Applications

Developing Applications 183

Syntax: How to Designate a Storage Location for Temporary Files

APP HOLD appname[/appnamea...]

where:

appname[/appnamea...]

Is the application in which you wish to store output files. It can be a nested application
name.

Note: Issuing APP HOLD without an appname turns off the effects of the command.

APP HOLDDATA

The APP HOLDDATA command designates an application as the location for storing data files
created with the HOLD command. For related information, see Interactions Among Output
Redirection Commands on page 182.

Syntax: How to Designate a Storage Location for Data Files

APP HOLDDATA appname[/appnamea...]

where:

appname[/appnamea...]

Is the name of the location for the data files created by any write process in the
application. It can be a nested application name

APP HOLDMETA

The APP HOLDMETA command designates an application directory as the location for storing
Master and Access Files created in the application. For related information, see Interactions
Among Output Redirection Commands on page 182.

Syntax: How to Designate a Storage Location for Master and Access Files

APP HOLDMETA appname[/appnamea...]

where:

appname[/appnamea...]

Is the name of the location for the Master and Access Files created in the application. It
can be a nested application name.

Output Redirection Commands

184

APP FI[LEDEF]

The APP FI[LEDEF] command has been deprecated and aliased to FILEDEF.

Application Metadata Commands and Catalog Metadata

Developers may want to write applications that check application metadata and decide a
course of action. For example, they may want to check the existence of a file or a file date, and
decide on the need for another step, such as recreation of the file. There are multiple ways to
accomplish a simple check for file existence or some other attribute, that have evolved over
the release history of the product. However, some of these methods have limitations. A good
example of this is the STATE command, which uses a native path name for UNIX. This type of
path name would not match a Windows file path and, therefore, would require IF THEN ELSE or
GOTO logic to issue the correct version of the command for the operating environment, that
might be quite cumbersome, depending on how often it is needed.

To solve part of this problem, commands such as STATE, FILEDEF, and DYNAM have been
extended to support APP names (that is, issue APP MAP then use STATE mymap/myproc.fex).
To deal with more complex issues, such as retrieving a list of available applications (APP
names) and files within a particular application, a series of APP commands were developed
(APP LIST and APP QUERY). However, as features such as nested applications (sub-directories)
were implemented, it became apparent that a much more extended ecosystem for accessing
application metadata was needed.

To satisfy this need for extended information, various internal tables were extended or created.
Today the catalog/sysapps table is the primary method for accessing application metadata
using standard TABLE or SELECT syntax. This is what is used in most internal applications.
That is not to say that the prior methods are no longer supported. At times they can provide
quick and simple coding for a specific need, but they have limitations (as noted). More
complex situations require the use of the newer methods to access information. Additionally,
tables such as catalog/systables and catalog/syscolum can provide additional information
that is table specific, such as what DBMS a table is using and the data specification of
particular columns, but they are beyond the scope of this section. It should also be noted that
the newer methods occasionally overlap on how to accomplish a task. For example, a number
of the catalog/sys* tables can be used to answer the question of whether a file exists.
However, the tables differ from each other in the more detailed information, such as physical
or application locations and attributes.

Retrieving Basic Information

The following commands return basic information about files and applications.

2. Managing Applications

Developing Applications 185

STATE

The STATE command allows you to check for the existence of a file. The file reference you
supply can be the full path native operating system file name, or a file name prefaced with an
APP name. This section only described the use of APP-name prefaced files. When an APP name
is used, it does not matter if the name was natively created under APPROOT or as an APP MAP
name.

If the file does not exist, the STATE command displays a message to that effect. After issuing
the STATE command, the &RETCODE system variable contains the value zero (0) if the file
exists, or a non-zero value if the file does not exist.

Syntax: How to Check File Existence

STATE appname/filename.filetype -TYPE RETCODE &RETCODE

where:

appname

Is the application under which the file is stored.

filename

Is the name of the file.

filetype

Is the file type or extension of the file.

If the file exists, the &RETCODE value will be 0 (zero). Otherwise, it will be non-zero and can be
used to further direct the logic of the application, typically in a -SET or a -IF command. The
STATE command will also output a not found message. To suppress this message, use the
SET TRMOUT={OFF|ON} command.

For example, the following STATE command checks the existence of the file myproc.fex in the
baseapp application. The STATE command displays a message if the file does not exist. The -
TYPE command displays the value zero (0) if the file exists or the value -1 if the file does not
exist.

STATE baseapp/myproc.fex
-TYPE RETCODE &RETCODE

Application Metadata Commands and Catalog Metadata

186

Example: Checking the Existence of a File With the STATE Command

The following partial example suppresses the message returned by the STATE command,
issues the STATE command to check if the file myproc.fex exists in the baseapp application,
checks the return code, and creates the file if it does not exist, before continuing with the next
step in the application. If the file does exist, the code immediately transfers to the next step in
the application, (-RESUME label):

SET TRMOUT=OFF
STATE baseapp/myproc.fex
SET TRMOUT=ON
-IF &RETCODE EQ 0 THEN GOTO RESUME;
...
* Some code to create the file goes here
...
-RESUME

APP LIST

The APP LIST command alphabetically lists the applications available under the application
root, APPROOT, or under an APP MAPped location. It does not care if the APP is on the current
application map or not, as it is a raw list of available applications.

Syntax: How to List the Applications in APPROOT

APP LIST [HOLD]

If the HOLD option is used, the output is written to a temporary file called focappl.ftm,
(FOCAPPL on z/OS), which can, in turn, be used in a request to drive a report or take an action
using the catalog/focappl Master File.

Limitations:

APP LIST does not display nested application names.

On operating systems that use case-sensitive file names (such as UNIX), uppercase
physical directory names are not valid (so are not returned by APP LIST). APP names are
case insensitive, but they are created on disk as lowercase, which may in turn be upper-
cased by the native operating system. However, APP LIST returns them in lowercase, to be
homogenous across operating systems.

Example: Using APP LIST to List and Work with Applications

The following request lists applications

APP LIST

2. Managing Applications

Developing Applications 187

The APP LIST output is:

BEGIN-APP-LIST
15/02/2000 13.36.38 baseapp
15/02/2000 13.36.38 ggdemo
15/02/2000 13.36.38 ncp
15/02/2000 13.36.38 template
END-APP-LIST

The following request lists applications that have been stored using the HOLD option

APP LIST HOLD
SQL SELECT DATE, TIME, APPNAME FROM FOCAPPL;
END

The APP LIST output is:

DATE TIME APPNAME
---- ---- -------
15/02/2000 13.36.38 baseapp
15/02/2000 13.36.38 ggdemo
15/02/2000 13.36.38 ncp
15/02/2000 13.36.38 template

The following practical example of using the APP LIST HOLD command issues a TABLE request
against the HOLD file to check if any files exist in the application myapp. If no lines are
returned, the application does not exist, so it is created, and the application continues.
Otherwise, the application continues without creating the application.

APP LIST HOLD
TABLE FILE FOCAPPL
PRINT * ON TABLE HOLD WHERE APPNAME = 'myapp'
END
-IF &LINES GT 0 THEN GOTO RESUME
APP CREATE myapp
-RESUME

APP QUERY

The APP QUERY command lists files within a given application. Applications and specific
nested applications can be queried.

Application Metadata Commands and Catalog Metadata

188

Syntax: How to List Components

APP QUERY app1[/app1a...] [app2[/app2a]...] ...
 [appn[/appna]] [HOLD]

where:

app1[/app1a...appn[/appna]

Are application names. They can be nested application names. If you need to specify more
application names than can fit on one line, add the continuation character (-) at the end of
the first line, and continue more application names on the next line.

If the HOLD option is used, the output is written to a temporary file called focappq.ftm
(FOCAPPQ on z/OS), which can, in turn, be used in a request to drive a report or take an action
using the catalog/focappq Master File.

Limitations: All files within an APP are listed. On systems like UNIX, this may include files of
any case, so files such as MYPROC.FEX and myproc.fex may appear in a listing, but only the
lowercase version would be accessed in a request.

Example: Listing Application Files

The following request lists application files.

APP QUERY abc

The APP QUERY output is:

BEGIN-APP-QUERY: abc
24/10/2014 21.38.28 4 F myproc1.fex
24/10/2014 21.38.35 4 F myproc1.fex
24/10/2014 21.37.49 4 F myapp1
24/10/2014 21.32.36 0 D myapp2
END-APP-QUERY

The following request lists files that have been stored using the HOLD option.

APP QUERY ABC HOLD
SQL SELECT DATE, TIME, GMTTIME, SIZE, OTYPE, FILENAME, APPNAME FROM
FOCAPPQ ;
END

The APP QUERY output is:

DATE TIME GMTTIME SIZE OTYPE FILENAME APPNAME
---- ---- ------- ---- ----- -------- -------
24/10/2014 21.38.28 1414201108 4 F myproc1.fex abc
24/10/2014 21.38.35 1414201115 4 F myproc2.fex abc
24/10/2014 21.37.49 1414201069 4 D myapp1 abc
24/10/2014 21.32.36 1414200756 0 D myapp2 abc

2. Managing Applications

Developing Applications 189

Note that APP QUERY … HOLD returns a slightly extended type of information. Whitespace has
selectively been removed from the above output for readability (the FILENAME column is
actually 70 characters wide).

The following practical example of using the APP QUERY HOLD command checks the existence
of the file myproc1.fex in application abc. If the file does not exist, the procedure exits. If the
file does exist, the procedure continues.

APP QUERY abc HOLD
TABLE FILE FOCAPPQ
PRINT * ON TABLE HOLD
WHERE APPNAME = 'abc'
WHERE FILENAME = 'myproc1.fex'
END
-IF &LINES GT 0 THEN GOTO RESUME
-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

Retrieving Extended Catalog Information

This section provides basic information about querying the FOCUS catalogs.

For more information, see Reporting Dynamically From System Tables on page 361.

catalog/sysapps

The catalog/sysapps table contains metadata for physical objects on path.

This section only touches on basic uses typically needed by a developer. The Master File on
disk robustly describes more attributes than are described here. You can directly study the
Master File in order to understand other uses. The catalog/sys* group of files are subject to
change (and are usually upwardly compatible). You should never write applications that have
specific dependencies (typically on object size), which tend to cause upward compatibility
issues.

Example: Listing Files in an APP

The following request lists the application name, application location, file names, and file
extensions in the application named abc.

TABLE FILE SYSAPPS
PRINT APPNAME APPLOC FNAME FEXT
WHERE APPNAME EQ 'abc' ;
END

Application Metadata Commands and Catalog Metadata

190

The output (with whitespace selectively removed for readability) is:

APPNAME APPLOC FNAME FEXT
------- ------ ----- ----
abc /usr/wf/ibi/apps/abc myproc1 fex
abc /usr/wf/ibi/apps/abc myproc2 fex

The following practical example of using the SYSAPPS table to check file existence checks the
existence of the file myproc1.fex in the application abc. If it does not exist, the procedure exits.
If the file does exist, the procedure transfers to the next step in order to continue:

TABLE FILE SYSAPPS
PRINT * ON TABLE HOLD
WHERE APPNAME = 'abc' ;
WHERE FNAME = 'myproc1' ;
WHERE FEXT = 'fex' ;
END
-IF &LINES GT 0 THEN GOTO RESUME
-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

catalog/sysfiles

The catalog/sysapps table contains metadata for app name objects on a path for a select
object type. The default is for file type MASTER (Master Files), but is settable for other types.
Unless limited in some way, all objects (of the selected type) are displayed.

This section only touches on basic uses typically needed by a developer. The Master File on
disk robustly describes more attributes than are described here. You can directly study it in
order to understand other uses. The catalog/sys* group of files are subject to change (and are
usually upwardly compatible). You should never write applications that have specific
dependencies (typically on object size), which tend to cause upward compatibility issues.

Example: Listing APP MASTER Objects

The following request lists file names, file names with their application paths, and extensions
of files with file type MASTER (the default):

TABLE FILE SYSFILES
PRINT FILENAME LGNAME PHNAME EXTENSION
END

2. Managing Applications

Developing Applications 191

The output (with some records and whitespace selectively removed for readability) is:

FILENAME LGNAME PHNAME EXTENSION
-------- ------ ------ ---------
...
mydata MASTER baseapp/mydata.mas mas
mdschema MASTER _edahome/catalog/mdschema.mas mas

Example: Listing APP FOCEXEC Objects

The following request sets the file type to FOCEXEC and then prints the file names, file names
with their application paths, and extensions of files with file type FOCEXEC:

SQL FMI SET SYSFILES FOCEXEC
TABLE FILE SYSFILES
PRINT FILENAME LGNAME PHNAME EXTENSION
END

The output (with some records and whitespace selectively removed for readability) is:

FILENAME LGNAME PHNAME EXTENSION
-------- ------ ------ ---------
...
myproc1 FOCEXEC baseapp/myproc1 fex
myproc2 FOCEXEC baseapp/myproc2 fex
...

Note: The value for LGNAME will switch to DEFAULT if the data is limited and only one object
returns.

A valid value for the SQL FMI SET SYSFILES command is any valid FOCUS file type. Some
examples are FOCUS, FOCEXEC, STY, PDF. or ACCESS. For a full list of valid file types, see
Designating File Types for APP Commands on page 177.

Application Metadata Commands and Catalog Metadata

192

Example: Using the SYSFILES Table to Check File Existence

The following practical example of using the SYSFILES table to check file existence prints the
filename myproc1 with extension fex (with the file type set to FOCEXEC). If no lines are
returned, the file does not exist and the procedure exits. If the file exists, the procedure
transfers to the point at which processing continues.

SQL FMI SET SYSFILES FOCEXEC
TABLE FILE SYSFILES
PRINT FILENAME ON TABLE HOLD
WHERE FILENAME = 'myproc1' ;
WHERE EXTENSION = 'fex' ;
END
-IF &LINES GT 0 THEN GOTO RESUME
-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

APP HELP

The APP HELP command provides help information for all of the APP commands.

Syntax: How to Retrieve Information About APP Commands: APP HELP

APP HELP command parameters

where:

command

Is any valid APP command.

parameters

Are parameters that are available to or required by the command.

Accessing Metadata and Procedures

Permanent files include metadata and procedures that were either created before the session
by another application or remain after the session is over for use by another application.

Search Rules

Unless a file name is fully qualified with the application name, the search sequence is:

1. Applications set using APP HOLDMETA for metadata files, and APP HOLDDATA for hold data
files.

2. Applications set in APP PATH (including MVSAPP for z/OS).

2. Managing Applications

Developing Applications 193

3. The baseapp application.

4. The EDAHOME/catalog.

5. For stored procedures only: if the file is not found, FOCUS checks to see if the file was
allocated with a FILEDEF or DYNAM command, and if so, tries to execute it.

Example: Search Paths

The following commands follow the search path, starting with the application set by the APP
HOLDMETA command:

APP HOLDMETA APP1

When a procedure is executed, and referred to by a one-part name

EX ABC

the following is executed

profile.fex in APP1 application

followed by

EX APP1/ABC

If the procedure ABC is not found in APP1, FOCUS follows the standard search path for
procedures to find and execute it.

Creation Rules for Procedure Files

Unless a file name is fully qualified or redirected to another location using an APP HOLD, APP
HOLDMETA, APP HOLDDATA, FILEDEF, or DYNAM command, it is created in the temporary
application area of the agent and disappears after the agent is released.

For example, on z/OS if DYNAM allocation for HOLDMAST or HOLDACC is present, the
metadata files are created in the corresponding PDSs (for example, for a CREATE SYNONYM or
TABLE FILE file with HOLD).

For related information, see Output Redirection Commands on page 181.

Locating Master Files and Procedures

Once your path is set, you can locate Master Files and procedures using the WHENCE
command.

Accessing Metadata and Procedures

194

Syntax: How to Locate Files

You can issue the WHENCE command to return the fully-qualified path to the first occurrence of
a file in your application path. On z/OS, WHENCE will return the location of the file if it is in an
allocated DDNAME, or, if FOCUS is APP-enabled, WHENCE will return the name of the APP
PDS. . You can issue the APP WHENCE command to return the name of the first application on
your application path in which the file resides.

To return the location of the first occurrence of a Master File, procedure, or other FOCUS file
type on your application path, issue the following command

WHENCE filename filetype

To return the name of the first application on your application path that contains a Master File,
procedure, or other FOCUS file type, issue the following command

APP WHENCE filename filetype

where:

filename

Is the name of the file you are trying to locate.

filetype

Is the type of file you are trying to locate.

Example: Locating Files

The following command returns the location of the first occurrence of the Excel file named
pivot_demo.xlsx on the application path.

WHENCE pivot_demo xlsx

The output is:

C:\ibi\apps\retail8205\uploads\pivot_demo.xlsx

The following command returns the location of the first occurrence of the Master File GGSALES
on z/OS:

WHENCE GGSALES MASTER

The output is:

DD:MASTER(GGSALES)

2. Managing Applications

Developing Applications 195

If the command is run in an APP-enabled environment, returns the name of the APP PDS that
contains the file. For example:

APP PATH IBISAMP
WHENCE GGSALES MASTER

The output is:

USER1.APPS.IBISAMP.MASTER.DATA(GGSALES)

The following command returns the name of the application that contains the first occurrence
of the Excel file named pivot_demo.xlsx on the application path.

APP WHENCE pivot_demo xlsx

The output is:

APPNAME: retail

Accessing Existing Data Files

You can allocate existing data files using the following methods:

DATASET keyword in the Master File.

FILEDEF command for non-FOCUS data sources (FIXED, RMS, VSAM, XML).

USE command for FOCUS data sources.

For z/OS, native operating system services, when supported.

DYNAM command.

Superseded by JCL DD card.

It is recommended that you use only one method for each allocation.

Creation Rules for Data Files

For a newly created data file, the location is determined as follows:

1. An application set by APP HOLDDATA applies to all HOLD files.

2. For FILEDEF command, one for each data file.

3. For z/OS, native operating system allocations when supported.

The request that caused the file to be created determines the file DCB parameters, such as
record length, record format, and so on.

For related information, see Output Redirection Commands on page 181.

Accessing Metadata and Procedures

196

Example: Sample Allocations by JCL

The following table contains sample allocations by JCL.

VSAM //VSAM01 DD DISP=SHR, DSN=qualif.DATA.VSAM

This type of allocation requires the szero = y parameter in the edaserve.cfg
file to support sharing of BufferPool Zero.

Fixed //FIX01 DD DISP=SHR,DSN=qualif.FIXED.DATA

PDS //MASTER DD DISP=SHR,DSN=qualif.MASTER.DATA

FOCUS //CAR DD DISP=SHR,DSN=qualif.CAR.FOCUS

Example: Sample DYNAM Commands

The following table contains samples of the DYNAM command.

VSAM DYNAM ALLOC FILE QVASM DA qualif.QVSAM.VSAM SHR REUSE

Fixed DYNAM ALLOC FILE FILE1 DA qualif.FILE1.DATA SHR REUSE

PDS DYNAM ALLOC FILE MASTER DA qualif.MASTER.DATA SHR REUSE

FOCUS DYNAM ALLOC FILE CAR DA qualif.CAR.FOCUS SHR REU

Syntax: How to Issue a FILEDEF Command

FI[LEDEF] filedes DISK app/[appa.../]physfile.ftm

where:

filedes

Is a file designation (ddname).

app/[appa...]

Is an application name. It can be a nested application name.

2. Managing Applications

Developing Applications 197

physfile.ftm

Is a physical file located in the application.

Syntax: How to Issue a FILEDEF Command to Concatenate Files

FI[LEDEF] concatname DISK [app1/]filename1.ext
FI[LEDEF] name2 DISK [app2/]filename2.ext
...
FI[LEDEF] namen DISK [appn/]filenamen.ext
FI[LEDEF] concatname CONCAT name2 ... namen

where:

concatname

Is the ddname for one of the files and the name for the concatenated files. Use this name
in a request. The individual ddnames will not be available once they are used in a FILEDEF
CONCAT command.

name2 ... namen

Are ddnames for the files that will be added to the concatenation.

app1 ... appn

Are application names. They can be nested application names.

filename1.ext ...filenamen.ext

Are the physical file names.

Accessing Metadata and Procedures

198

Example: Concatenating Files Using FILEDEF

The following request creates three files, file1.ftm, file2.ftm, and file3.ftm.

APP HOLD app1
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME LE 'F'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file1 FORMAT ALPHA
END
-RUN
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME GT 'F' AND STATE_PROV_NAME LE 'M'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file2 FORMAT ALPHA
END
-RUN
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME GT 'M'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file3 FORMAT ALPHA
END

The following commands concatenate the three files.

FILEDEF FILE1 DISK app1/file1.ftm
FILEDEF FILE2 DISK app1/file2.ftm
FILEDEF FILE3 DISK app1/file3.ftm
FILEDEF FILE1 CONCAT FILE2 FILE3

The following procedure issues a request against the concatenated files.

TABLE FILE FILE1
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF, SIZE=8,$
END

2. Managing Applications

Developing Applications 199

The output is shown in the following image.

Accessing Metadata and Procedures

200

Syntax: How to Issue a FILEDEF Command for a Native MVS Data Set

FI filedes DISK "//'NATIVE.MVS.DATASET'"

where:

filedes

Is a file designation.

NATIVE.MVS.DATASET

Is a Native MVS data set. It can contain any number of qualifiers, up to 44 characters
long.

Syntax: How to Issue a USE Command

The USE command can be issued instead of an allocation command for FOCUS data sources.
The USE command is the only mechanism for accessing files on the sink machine.

Example: Sample USE Commands

The USE command supports renaming of Master Files and concatenation of data sets. The
USE command is the only mechanism for accessing files on the sink machine.

Renaming a Master File

USE
 CAR1 AS CAR
END

Concatenating Master Files

USE
 CAR1 AS CAR
 CAR2 AS CAR
END

Accessing Files on a Sink Machine

USE
 CAR1 ON FOCSU01
END

Data Set Names

If a data set name satisfies one of the following conditions, FOCUS assumes that it is an MVS
file name:

Data set name starts with "//".

2. Managing Applications

Developing Applications 201

Data set name contains no "/" and contains at least one "."

Syntax: How to Define a Data Set

The following syntax is supported:

DATASET=APP1/physfile.ftm
DATASET='qualif.car.data'
DATASET=qualif.car.data

In addition, on z/OS, you can use the following:

GDG files FILENAME=CARGDG,SUFFIX=FOCUS,
DATASET='qualif.CARGDG.FOCUS(0)'

PDS members FILENAME=CARMEMB,SUFFIX=FOCUS,
DATASET=qualif.CARPDS.DATA(CARMEMB)

FOCUS, VSAM, Fixed FILENAME=CAR,SUFFIX=FOCUS,
DATASET=//'qualif.CAR.FOCUS'

Allocating Temporary Files

Temporary files are transient files that disappear after you end a session

For z/OS, you can control the size and location of these temporary metadata files and data
files. You can specify that the temporary files reside in MVS data sets, or in hiperspace.

Syntax: How to Allocate Temporary Files

To specify the allocation of your temporary files, issue the following command

DYNAM SET TEMP[ALLOC] {MVS|HIPER}

where:

MVS

Allocates temporary files to MVS data sets.

HIPER

Allocates temporary files to hiperspace.

Allocating Temporary Files

202

Reference: Usage Notes for Allocating Temporary Files

For z/OS, temporary metadata files can be allocated using a similar procedure to allocating
permanent metadata files:

If DYNAM allocation for HOLDMAST or HOLDACC is present, temporary files are stored in
the designated PDSs.

If DYNAM SET TEMP[ALLOC] MVS is issued; in the default temporary PDSs.

If DYNAM SET TEMP[ALLOC] HIPER is issued; in the HIPERSPACE.

Syntax: How to Allocate Temporary Files to MVS Data Sets

To alter the default allocation parameters for temporary files for MVS data sets, issue the
following command

DYNAM SET TEMP[ALLOC] FOR type dynam_parms

where:

type

Is one of the following: HOLDACC, HOLDMAST, HOLD SAVE, REBUILD, FOCUS, FOCSORT,
OFFLINE, or FOC$HOLD.

dynam_parms

Are regular DYNAM ALLOC parameters to be used as default for that type. Note that DCB
parameters, if provided here, will be ignored, since they must be compatible with the file
type being written.

This is similar to the functionality of IBITABLA in the SSCTL Server. The defaults should be
overwritten for all cases when, in older versions, a private copy of IBITABLA existed containing
different values.

Reference: System Defaults for Allocating Temporary Files to MVS Data Sets

System defaults for HOLDMAST and HOLDACC are:

TRKS 5 5 DSORG PO DIR 36 NEW REU

System defaults for all other types are:

CYLS 5 10 DSORG PS NEW REU

2. Managing Applications

Developing Applications 203

Syntax: How to Support Long Synonym Names Using DYNAM SET LONGSYNM

FOCUS supports synonym names up to 64 characters. However, PDS member names cannot
exceed eight characters. FOCUS accounts for this operating environment limitation with the
command DYNAM SET LONGSYNM.

A synonym comprises a Master File and, usually, an Access File. When you create a synonym
with a name exceeding eight characters, the LONGSYNM setting currently in effect determines
how the long name of the Master File and of the Access File will be handled.

You can issue DYNAM SET LONGSYNM anywhere SET commands are valid, including the global
profile (EDASPROF) and a stored procedure (FOCEXEC).

The syntax is

DYNAM SET LONGSYNM {MVS|MATCH}

where:

MVS

Specifies that when you save a synonym with a name exceeding eight characters, FOCUS
truncates the name, preserving up to the first six characters, followed by a left curly brace
({) and a suffix number that ensures the name is unique. (FOCUS preserves the original
long name within the synonym files.)

For example, if you create a Master File named VERYLONGNAMETEST, it will be saved as
VERYLO{0. If you then create a Master File named VERYLONGNAMEPROD, it will be saved
as VERYLO{1.

FOCUS chooses a suffix number by taking the next unused number in the sequence for
that truncation of a Master File or Access File name. If the next number available for the
Master File is different than that available for the Access File, the files will be created with
different numbers. For example, if the highest Master File name truncated to VERYLO is
VERYLO{8, and the highest Access File name truncated to VERYLO is VERYLO{5, and you
create a synonym specifying the name VERYLONGNAMEAGAIN, the new Master File will be
saved as VERYLO{9, and the new Access File will be saved as VERYLO{6.

MATCH

Works the same as the MVS setting, except that it ensures that the truncated names of a
Master File and Access File synonym will always match. That is, they will be named using
the same suffix number.

In the example provided for the MVS setting, if SET LONGSYNM had instead been set to
MATCH, both the new Master File and the new Access File would have been named
VERYLO{9.

Allocating Temporary Files

204

Matching names may be a convenience for some people if they manually manage synonym
files. It is less efficient than the MVS setting, however.

Syntax: How to Pre-Allocate Temporary Files

You can pre-allocate an individual file for a user, using the following techniques:

For UNIX and Linux or to allocate a file stored under USS from FOCUS for Mainframe:

FILEDEF XXX DISK /u/another/area/xxx.dat

where:

/u/another/area

Has enough free space to hold the file.

For FOCUS files:

You can use the FILEDEF and USE commands to create a FOCUS file.

FILEDEF NAME DISK /{pathname}{filename}.foc
USE NAME NEW
END

Syntax: How to Dynamically Allocate FOCUS Files on z/OS

You can dynamically allocate FOCUS files on z/OS with the USE command. The command is

DYNAM ALLOC FILE ddname SPACE
USE ddname AS masterfile
END

where:

ddname

Is the DDNAME.

masterfile

Is the Master File name.

If the DDNAME and Master File name are the same, use just the command:

DYNAM ALLOC

2. Managing Applications

Developing Applications 205

Allocating Temporary Files

206

Chapter3
Managing Flow of Control in an
Application

Dialogue Manager is the part of the FOCUS language that controls the execution of your
application's components. You can add flexibility to your application design by
dynamically managing the flow or control in procedures using Dialogue Manager
commands and variables whose values are supplied at run time.

In this chapter:

Uses for Dialogue Manager

Dialogue Manager Processing

Creating a Procedure

Executing and Terminating a Procedure

Navigating a Procedure

Using Variables in a Procedure

Supplying and Verifying Values for Variables

Manipulating and Testing Variables

Using Numeric Amper Variables in Functions

Debugging a Procedure

Issuing an Operating System Command

Dialogue Manager Quick Reference

Uses for Dialogue Manager

The following are ways to use Dialogue Manager to control the flow of your application:

Control the execution of a procedure. Use Dialogue Manager control commands to
determine the sequence in which FOCUS commands execute and when and how
procedures terminate. For details, see Executing and Terminating a Procedure on page
219.

Developing Applications 207

Navigate a procedure. You can conditionally execute requests, repeat execution with
program loops, or call another procedure. For details, see Navigating a Procedure on page
223.

Customize a procedure with variables. Dynamically change a procedure's execution by
including variables whose values depend on user input, developer settings, or system
information. You can also test a variable's value, the result of a calculation, the existence
of a file, or an operating system condition, and execute or not based on the results of the
test. For details, see Using Variables in a Procedure on page 236, Supplying and Verifying
Values for Variables on page 253, and Manipulating and Testing Variables on page 281.

Issue operating system commands. You can issue an operating system command to query
the environment or load a function and run it. For details on issuing operating system
commands, see Issuing an Operating System Command on page 313.

You can also use Dialogue Manager commands and variables to:

Control passwords. You can directly assign and change passwords. For details, see
Controlling User Access to Data on page 217.

Send a message to an application user. You can send a message to the user while a
procedure is processing to explain the purpose of the procedure, display results, or present
other useful information. For details, see Sending a Message to the User on page 216.

Test and debug the application. You can use variables to display command lines as they
execute and to test Dialogue Manager command logic. See Debugging a Procedure on page
306.

Reference: Overview of Dialogue Manager Commands

For descriptions and syntax, see Dialogue Manager Quick Reference on page 313.

Command Meaning

-* Is a comment line; it has no action.

-CLOSE ddname Closes the specified ‑READ or ‑WRITE file.

-CLOSE * Closes all -READ and -WRITE files currently open.

-CRTCLEAR Clears the screen display.

Uses for Dialogue Manager

208

Command Meaning

-CRTFORM Initiates full-screen variable data entry.

-DEFAULT
-DEFAULTS

Presets initial values for variable substitution.

-EXIT Executes stacked commands and returns to the FOCUS
prompt.

-GOTO Establishes an unconditional branch.

-HTMLFORM For use with the Web Interface to FOCUS.

-IF Tests and branches control based on test results.

-INCLUDE Dynamically incorporates one procedure in another.

-label User-supplied name identifying the target for -GOTO or -IF.

-MVS RUN Same as -TSO RUN.

-PASS Sets password directly.

-PROMPT Types a prompt message on the screen and reads a reply.

-QUIT Exits the procedure without executing stacked commands.

-READ Reads records from a sequential file.

-READFILE Reads fields based on a Master File into Dialogue Manager
variables.

-REPEAT Executes a loop.

-RUN Executes all stacked FOCUS commands and returns to
procedure for further processing.

-SET Assigns a value to a variable.

-TSO RUN In MVS/TSO, loads and executes a user-written function.

3. Managing Flow of Control in an Application

Developing Applications 209

Command Meaning

-TYPE Types informative messages to the screen or other output
device.

-WINDOW Invokes Window Painter, transferring control from the
procedure to the specified window file.

-WRITE Writes a record to a sequential file.

-"..." Brackets contents for -CRTFORM display line.

-? SET parameter
&myvar

Captures the value of a settable parameter in &myvar.

-? &[variablename] Displays the values of currently defined amper variables.

Dialogue Manager Variables Overview

You can write procedures containing variables which values are unknown until run time,
allowing a user to customize the procedure by supplying different values each time it executes.
Variables fall into two categories:

Local and global variables. Local and global variable values must be supplied at run time.
Local variables retain the values only for one procedure. Global variables retain the values
across procedures unless you explicitly clear them. They lose the values when you exit from
FOCUS. You create a local variable by choosing a name that starts with a single ampersand
(&); you create a global variable by choosing a name that starts with a double ampersand
(&&).

System and statistical variables. System and statistical variable values are automatically
supplied by the system when a procedure references them. System and statistical
variables have names that begin with a single ampersand (&). For example, the variable
&LINES indicates how many lines of output were produced, and the variable &DATE
indicates the current date.

For complete information, see Using Variables in a Procedure on page 236, Supplying and
Verifying Values for Variables on page 253, and Manipulating and Testing Variables on page
281.

Uses for Dialogue Manager

210

Dialogue Manager Processing

Modify your application at run time with user input and environment conditions by using
Dialogue Manager stored procedures, which include commands and variables.

In the FOCUS community, stored procedures are often referred to as FOCEXECs. In this
document they are referred to as procedures.

The following diagram illustrates how a Dialogue Manager procedure is processed.

1. Processing begins from the command processor when a procedure is invoked for execution
at the FOCUS prompt (for example, EX SLRPT).

2. The FOCEXEC Processor reads each line of the procedure. Any variables on the line are
assigned the current values.

3. If a variable is missing a value, FOCUS issues a prompt. The user then supplies the
missing value.

All Dialogue Manager commands execute as soon as Dialogue Manager reads them.

4. When a command line containing no Dialogue Manager commands is fully expanded with
any variables resolved (through either a -SET command or prompting), it is placed onto the
command execution stack (FOCSTACK).

3. Managing Flow of Control in an Application

Developing Applications 211

5. Dialogue Manager execution commands (for example, -RUN) and statistical variables flush
the FOCSTACK and route all currently stacked commands to the FOCUS Command
Processor.

By the time your FOCSTACK is ready for execution, this has happened:

All variables have received values and these values have been integrated into the
command lines containing variables.

Dialogue Manager commands have been used to place FOCUS commands into proper
sequential order for execution.

At this point the FOCUS Command Processor no longer sees any Dialogue Manager
commands. It only sees FOCUS command lines in the stack.

For an illustration, see Processing a Procedure, where the FOCUS Command Processor routes
execution to the TABLE module and executes the TABLE request that was stacked.

Note: Any FOCUS command can be placed in a procedure, including the EXEC command. When
an EXEC command is processed in a procedure, the commands from the new procedure are
first stacked and then executed.

Example: Processing a Procedure

The following example traces the execution process of a procedure. The numbers at the left
refer to explanatory notes that follow the example.

1. -TOP
2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.
3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;
4. TABLE FILE SALES
 SUM UNIT_SOLD
 BY PROD_CODE
 IF CITY IS &WHICHCITY
 END
5. -RUN
6. -GOTO TOP
7. -QUIT

Assume this procedure is stored in a file named SLRPT. To execute it, the user types either of
the following:

EXEC SLRPT

or

EX SLRPT

Dialogue Manager Processing

212

The following describes the individual steps of the procedure:

1. -TOP

This is a label, which serves as a target to which -IF ... GOTO or -GOTO commands transfer
processing control. Labels call for no special processing, so control passes to the next
command.

2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.

The prompt "ENTER NAME OF CITY OR DONE" appears on the terminal. Assume the user
types "STAMFORD" and the variable value is stored for later use. Processing continues with
the next line.

3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;

Had DONE been entered, control would pass to -QUIT at the bottom of the procedure. This
would end processing, cause an immediate exit from this procedure, and return control to
the FOCUS prompt. Since STAMFORD was entered, processing continues with the next line.

4. TABLE FILE SALES

 .
 .
 .

Without a leading hyphen, this is interpreted as a FOCUS command. Only Dialogue Manager
commands execute immediately, so the next five lines are placed in the stack where
FOCUS commands are kept until executed; this is referred to as FOCSTACK. Note that the
value STAMFORD, entered in response to the prompt, is inserted into the FOCUS command
line as the value for &WHICHCITY.

At this point the FOCSTACK looks like:

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
IF CITY IS STAMFORD
END

Control passes to the next Dialogue Manager command.

5. -RUN

This command sends the stack to FOCUS, which executes the stored request and returns
control to the next Dialogue Manager command.

6. -GOTO TOP

Control is now routed back to -TOP, thus establishing a loop. Execution continues from -TOP
with the -PROMPT command.

3. Managing Flow of Control in an Application

Developing Applications 213

7. -QUIT

This command is reached when the user types DONE in response to the prompt. The
procedure is exited and the FOCUS prompt appears.

Creating a Procedure

You can use the FOCUS integrated text editor, TED, or invoke your system editor from FOCUS
with the IEDIT command to create procedures that contain Dialogue Manager functionality.
IEDIT is especially useful with variable length files or those whose record lengths are greater
than 80 characters.

TED and IEDIT have two valuable features for creating and editing procedures:

If you issue the TED command, or invoke your system editor using the IEDIT command
without specifying a procedure name, the last executed procedure is automatically
selected. This is convenient when developing and testing new procedures.

Test the execution of the procedure by typing RUN on the command line in TED or in a
system editor accessed with the IEDIT command. RUN automatically saves the procedure
and executes it. If there is an error in your procedure, type TED or IEDIT to bring you back to
the editor. It places you directly on the line in which the error was detected.

For details, see Editing Files With TED and Invoking Your System Editor With IEDIT in the
Overview and Operating Environments manual.

These options complement the FILE and SAVE options that are common to other editors.

In addition to Dialogue Manager commands and variables that directly affect an application's
flow of control, you can use commands to:

Add comments to a procedure. See Including Comments in a Procedure on page 215.

Send messages to the terminal. See Sending a Message to the User on page 216.

Control user access to data. See Controlling User Access to Data on page 217.

You can also create a profile procedure that defines startup conditions and can include
Dialogue Manager commands. See Creating a Startup Procedure on page 218.

Reference: Rules for Creating Procedures

Follow these general rules when creating procedures:

Dialogue Manager commands must begin in the first position of the line.

Creating a Procedure

214

At least one space must be inserted between the Dialogue Manager command and other
text.

If a Dialogue Manager command exceeds one line, the following line must begin with a
hyphen (-). The continuation line must have a space between the hyphen and the rest of the
line.

Procedure names cannot contain special characters.

Including Comments in a Procedure

It is good practice to include comments in a procedure for the benefit of others who may use
it. It is particularly recommended that you use comments in a procedure heading to supply the
date, the version, and other relevant information. Two styles of comments are available:

FOCUS-Style Comments. A hyphen and an asterisk (-*) mark the beginning of a comment,
which can be on a single line.

C-Style Comments. The comment is enclosed within an opening /* tag (slash followed by
asterisk) and a closing */ tag (asterisk followed by slash). A C-style comment can appear
anywhere and span multiple lines.

Comments do not appear on the terminal nor do they trigger processing. They are visible only
when viewing the contents of the procedure through the editor and are strictly for the benefit of
the developer. However, you can view comments on the terminal by using the &ECHO variable.
For details, see Debugging a Procedure on page 306.

Syntax: How to Add a FOCUS-Style Comment in a Procedure

1. Begin the comment line with the command:

-*

2. Type the comment text after the command, optionally with a space before the text.

You can place a comment at the beginning or end of a procedure or in between commands. A
comment cannot be on the same line as a command.

The following entry is valid:

.

.

.
-*Version 2 06/10/00
-RUN

3. Managing Flow of Control in an Application

Developing Applications 215

The following is invalid:

-RUN -*Version 2 06/10/00

Example: Placing a FOCUS-Style Comment in a Procedure

The following example places a comment at the beginning of a procedure.

-* Version 1 08/26/02 HRINFO Procedure
TABLE FILE CENTHR
 .
 .
 .

Example: Placing C-Style Comments in a Procedure

The following example places C-style comments in a procedure.

TABLE FILE GGSALES /* this is a multi-line comment
that will not interfere with processing and will be ignored
until the comment is closed with */
SUM /* Another comment */ DOLLARS
 .
 .
 .

Sending a Message to the User

You can use the -TYPE command to send a message to the terminal while a procedure is
processing. Typically, the message serves the following purposes:

Explains the purpose of the procedure.

Displays the results of a procedure or calculation during testing of a procedure.

Presents other useful information.

Indicates what type of information to supply in response to a prompt.

Syntax: How to Send a Message to the User

-TYPE sends the message to the terminal as soon as it is encountered in the processing of a
procedure. The syntax is

-TYPE[+|0|1] text

or

-label TYPE text

Creating a Procedure

216

where:

text

Is the message to be sent. The message is sent to the screen, followed by a line feed. It
remains on screen until scrolled off or replaced by a new screen.

If you include quotation marks around the text, they are displayed as part of the message.
(This differs from the use of TYPE in MODIFY, where quotation marks are used as
delimiters and must enclose informative text.)

-label

Is the target of a -GOTO or -IF.

+|0|1

Are optional entries that pass printer control characters to the output device. They are
particularly useful for character printers. Options + and 1 do not work on IBM 3270-type
terminals.

+ suppresses the line feed following the printing of text.

0 forces a line feed before the message text is displayed.

1 forces a page eject before the message text is printed.

If supplied, these values must follow -TYPE without a space.

Example: Sending a Message

The following example illustrates the use of -TYPE to inform a user about the content of a
report:

-* Version 1 06/26/00 SLRPT Procedure
-* Component of Retail Sales Reporting Module
-TYPE This report calculates percentage of returns.
TABLE FILE SALES
 .
 .
 .
END

Controlling User Access to Data

You can issue and control passwords with the -PASS command. This is especially useful for
specifying a password for a particular file or set of files that a given user can read from or write
to. Passwords have detailed sets of functions associated with them through the DBA facility.

The procedure that sets passwords can be encrypted so that it and the passwords that it sets
cannot be typed and made known.

3. Managing Flow of Control in an Application

Developing Applications 217

A variable can also be associated with -PASS so that you can prompt for and assign a
password value. You can also check the value of the password and skip or execute a portion of
the procedure depending on the value.

Syntax: How to Set a Password in a Procedure

-PASS password

where:

password

Is a password or a variable containing a password.

Since -PASS is a Dialogue Manager command, it executes immediately and is not sent to the
FOCSTACK. This means that the user need not issue the password with the SET command.

Creating a Startup Procedure

You can establish startup conditions in a profile that executes its content immediately upon
entry into FOCUS. Using this procedure you can:

Establish standard conditions that apply throughout the subsequent working session. For
example, you can predefine environment parameters or automatically compute variables
and make them available for later use.

Provide a menu of subsequent user options.

Control use of an application.

You can create a profile using any text editor or the FOCUS editor TED. The file is a procedure
(FOCEXEC) named PROFILE.

Note: It is possible to use an alternate procedure as a profile or not to execute a profile at all.
For more information, see the Overview and Operating Environments manual.

Example: Creating a Startup Profile

The following example creates a startup profile):

USE
SALES
EMPLOYEE
END
DYNAM ALLOC DD MYSAV DA USER1.SAVE.TEMP SHR REU
DEFINE FILE SALES
RATIO/D5.2 = (RETURNS/UNIT_SOLD);
END
-TYPE FOCUS SESSION ON &DATE MDYY &TOD

Creating a Procedure

218

LET WORKREPORT=TABLE FILE EMPLOYEE
SET LINES=57, PAPER=66, PAGE=OFF
OFFLINE

Upon entering FOCUS, the profile is executed and a message, introduced by the -TYPE
command, displays the current date and time.

Executing and Terminating a Procedure

You can use Dialogue Manager commands to manage the execution and termination of a
procedure. The commands used for these purposes are EXEC, -RUN, -EXIT, -QUIT, and -QUIT
FOCUS.

EXEC executes the named procedure.

-RUN causes immediate execution of all stacked commands, closes any external files, and
continues the procedure. See Executing Stacked Commands and Continuing the Procedure
on page 220 for more information.

-EXIT forces the execution of stacked commands, and closes the procedure. For more
information, see Executing Stacked Commands and Exiting the Procedure on page 221.

-QUIT cancels execution of any stacked commands and causes an immediate exit from the
procedure. For more information, see Canceling the Execution of a Procedure on page 222.

-QUIT FOCUS terminates a procedure and exits FOCUS. For more information, see Canceling
the Execution of a Procedure on page 222.

Executing Procedures

Procedures are generally initiated from the FOCUS prompt (>). Type the EXEC command
followed by the name of the procedure to run.

If you wish to supply arguments for the procedure, see How to Supply a Variable Value on the
Command Line on page 273.

You can execute a single procedure or call and execute one procedure from within another
one. For details, see Calling Another Procedure With EXEC on page 234.

Syntax: How to Execute a Procedure

EX[EC] procedure

3. Managing Flow of Control in an Application

Developing Applications 219

where:

procedure

Is the name of the procedure.

Example: Executing a Procedure

To summon a procedure named SLRPT for execution, enter either:

EXEC SLRPT

or

EX SLRPT

Executing Stacked Commands and Continuing the Procedure

You can execute stacked commands and continue the procedure with the -RUN command.

The -RUN command causes immediate execution of all stacked commands and closes any
external files opened with -READ or -WRITE. For related information, see Reading Variable
Values From and Writing Variable Values to an External File on page 262.

Following execution of the stacked commands, processing of the procedure continues with the
line that follows -RUN.

Example: Executing Stacked Commands and Continuing the Procedure

The following illustrates the use of -RUN to execute stacked code and then return to the
procedure. The numbers to the left correspond to the notes explaining the code.

1. TABLE FILE SALES
 PRINT PROD_CODE UNIT_SOLD
 BY CITY
 END
2. -RUN
 TABLE FILE EMPLOYEE
 PRINT LAST_NAME FIRST_NAME
 BY DEPARTMENT
 END

The procedure processes as follows:

1. The first four lines are the report request. Each line is placed on a stack to be executed
later.

2. -RUN causes the stacked commands to be executed and the output returned to the
terminal. Processing continues with the line following -RUN.

Executing and Terminating a Procedure

220

Executing Stacked Commands and Exiting the Procedure

You can execute stacked commands then exit a procedure with the -EXIT command. -EXIT
forces the execution of stacked commands as soon as it is encountered.

-EXIT closes all external files, terminates the procedure, and returns to the FOCUS prompt
unless the procedure was called by another procedure, in which case control returns to the
calling procedure. For related information, see Calling Another Procedure With EXEC on page
234.

Example: Executing Stacked Commands and Exiting the Procedure

In this example, the first report request or the second report request executes, but not both.

1. -SET &PROC = 'SALES';
2. -IF &PROC EQ 'EMPLOYEE' GOTO EMPLOYEE;
 -SALES
3. TABLE FILE SALES
 SUM UNIT_SOLD
 BY PROD_CODE
 END
4. -EXIT
 -EMPLOYEE
 TABLE FILE EMPLOYEE
 PRINT LAST_NAME
 BY DEPARTMENT
 END

The procedure processes as follows:

1. Dialogue Manager assigns SALES to &PROC.

2. An -IF test is done, and since the value for &PROC is not EMPLOYEE, the test fails and
control is passed to the next line, -SALES.

If the value for &PROC had been EMPLOYEE, control would pass to ‑EMPLOYEE.

3. The FOCUS code is processed, and stacked to be executed later.

4. -EXIT executes the stacked commands. The output is sent to the terminal and the
procedure is terminated.

The request under the label -EMPLOYEE is not executed.

This example also illustrates an implicit exit. If the value of &PROC was EMPLOYEE, control
would pass to the label -EMPLOYEE after the -IF test, and the procedure would never encounter
-EXIT. The TABLE FILE EMPLOYEE request would execute and the procedure would
automatically terminate.

3. Managing Flow of Control in an Application

Developing Applications 221

Canceling the Execution of a Procedure

You can cancel the execution of a procedure with the -QUIT command. -QUIT cancels execution
of any stacked commands and causes an immediate exit from the procedure. Control returns
directly to the application regardless of whether the procedure was called by another
procedure.

This command is useful if tests or computations generate results that make additional
processing unnecessary.

You can use a variation, -QUIT FOCUS, to cancel the execution of a procedure and terminate
the FOCUS session. It returns you to the operating system and sets a return code.

Syntax: How to Cancel the Execution of a Procedure

-QUIT

Syntax: How to Cancel the Execution of a Procedure and Exit FOCUS

-QUIT FOCUS [n|8]

where:

n

Is the operating system return code number. It can be a constant or variable. A variable
should be an integer. If you do not supply a value or if you supply a non-integer value, the
return code posted to the operating system is 8 (the default).

A major function of user-controlled return codes is to detect processing problems. The
return code value determines whether to continue or terminate processing. This is
particularly useful for batch processing. For related information, see Testing the Status of a
Query on page 312.

Example: Canceling the Execution of a Procedure

The following example illustrates the use of -QUIT to cancel execution based on the results of
an -IF test:

1. -DEFAULT &CODE='B11';
2. -IF &CODE EQ '0' OR &CODE EQ 'DONE' GOTO QUIT;
3. TABLE FILE SALES
 SUM UNIT_SOLD
 WHERE PROD_CODE EQ &CODE
 END
4. -QUIT

Executing and Terminating a Procedure

222

The procedure processes as follows:

1. The -DEFAULT command sets the default value for &CODE to B11.

2. The value B11 is passed to &CODE.

3. The FOCUS code is processed, and stacked to be executed later.

4. -QUIT cancels the execution of stacked commands and exits the procedure.

Locking Procedure Users Out of FOCUS

Users can respond to a Dialogue Manager value request with QUIT and return to the FOCUS
command level or the prior procedure. In situations where it is important to prevent users from
entering native FOCUS or QUIT from a particular procedure, the environment can be locked and
QUIT deactivated.

Syntax: How to Lock Procedure Users Out of FOCUS

Enter the following command within the procedure:

-SET &QUIT=OFF;

With QUIT deactivated, any attempt to return to native FOCUS produces an error message
indicating that "quit" is not a valid value. The user is prompted for another value.

A user can terminate the FOCUS session from inside a locked procedure by responding to a
prompt with

QUIT FOCUS

to return to the operating system, not the FOCUS command level.

Note: The default value for &QUIT is ON.

Navigating a Procedure

You can navigate a procedure in the following ways:

Unconditional branching. Transfers control to a label. For details, see Branching
Unconditionally on page 224.

Conditional branching. Transfers control to a label depending on the outcome of a test. For
details, see Branching Conditionally on page 225.

Looping. Performs a function repeatedly in your procedure. For details, see Looping in a
Procedure on page 228.

3. Managing Flow of Control in an Application

Developing Applications 223

Calling another procedure. Incorporates a whole or partial procedure into your procedure.
For details, see Incorporating Another Procedure With -INCLUDE on page 231 and Calling
Another Procedure With EXEC on page 234.

Branching Unconditionally

You can perform unconditional branching, which transfers control to a label with the -GOTO
command.

The first time through a procedure, Dialogue Manager notes the addresses of all the labels so
they can be found immediately if needed again. If Dialogue Manager hasn't stored the address
of the label in the -GOTO command, it searches forward through the procedure for the target
label. If no label is found, it begins searching at the top of the procedure.

Dialogue Manager takes no action on labels that do not have a corresponding -GOTO. If a
‑GOTO does not have a corresponding label, execution halts and an error message is
displayed.

Syntax: How to Branch Unconditionally

-GOTO label
 .
 .
 .
-label [TYPE text]

where:

-label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the name
of any other Dialogue Manager command except -QUIT or -EXIT. Do not use arithmetic or
logical operations, words that can be confused with functions, or reserved words.

Note: The word CONTINUE can be used as a label in a -GOTO that is not part of a -IF
command, but CONTINUE will not be recognized as a label in a -IF command, where it
always transfers to the command immediately following the -IF.

The label text may precede or follow the -GOTO command in the procedure.

Note: When the label is specified in the -GOTO command, a dash does not precede it.

TYPE text

Sends a message to the terminal.

Navigating a Procedure

224

Example: Branching Unconditionally

The following example "comments out" all the FOCUS code using an unconditional branch.
This is more efficient that placing -* in front of every line:

-GOTO DONE
TABLE FILE SALES
PRINT UNIT_SOLD RETURNS
BY PROD_CODE,CITY
END
-RUN
-DONE

Branching Conditionally

Conditional branching performs a test of the values of variables and, based on the test,
transfers control to a label in the procedure with the -IF... GOTO command. This helps control
the execution of requests and builds a dynamic procedure by choosing to execute or not
execute parts of a procedure.

For example, you can check whether an extract file was created from a production data source.
If the extract file exists, the program runs a set of reports against the extract. If it does not
exist, the program branches around the reports and writes a message to a log file.

Note: Generally, an -IF test does not require that each test specify a target label. However, in a
compound IF test, where a series of tests are nested within each other, a specified target label
is required for each test.

Syntax: How to Branch Conditionally

-IF expression [THEN] {GOTO label1|CONTINUE} [ELSE IF...] [ELSE {GOTO
label2|CONTINUE}] ;

where:

expression

Is a valid expression. Literals do not need to be enclosed in single quotation marks unless
they contain embedded blanks or commas.

THEN

Is an optional word that increases readability of the command.

3. Managing Flow of Control in an Application

Developing Applications 225

label1

Is a user-defined name of up to 12 characters to which to pass control if the -IF test is
true. Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use arithmetic or logical operations, words that can be
confused with functions, or reserved words. The word CONTINUE can be used as a label in
a -GOTO that is not part of a -IF command, but CONTINUE will not be recognized as a label
in a -IF command, where it always transfers to the command immediately following the -IF.

The label text may precede or follow the -IF criteria in the procedure.

CONTINUE

Continues to the command that follows the semicolon of the -IF command.

Note: CONTINUE cannot be used as a label in a -IF statement.

ELSE IF

Specifies a compound -IF test. The command -IF must end with a semicolon to signal that
all logic has been specified. For more information, see Conditional Branching Based on a
Compound -IF Test on page 228.

ELSE GOTO label2

Passes control to label2 when the -IF test fails.

If a command spans more than one line, continuation lines must begin with a hyphen and one
or more spaces.

Example: Performing Conditional Branching

The following example passes control to the label -PRODSALES if &OPTION is equal to S.
Otherwise, control passes to the label -PRODRETURNS, the next line in the procedure.

-IF &OPTION EQ 'S' GOTO PRODSALES;
-PRODRETURNS
TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
BY STORE_CODE
END
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
END
-EXIT

The following command specifies both transfers explicitly:

Navigating a Procedure

226

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE
- GOTO PRODRETURNS;

Notice that the continuation line begins with a hyphen and includes a space after the hyphen.

Example: Conditional Branching Based on Testing of System and Statistical Variables

In the following example, if data (&LINES) is retrieved with the request, then the procedure
branches to the label -PRODSALES; otherwise, it terminates.

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE BY CITY
WHERE TOTAL UNIT_SOLD GE 50
ON TABLE HOLD
END
-RUN
-IF &LINES NE 0 GOTO PRODSALES;
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE ACROSS CITY
END

Example: Conditional Branching Based on User Input

In the following example, the first report request or the second report request, but not both,
executes. Suppose that for the procedure to run a user must supply a value for a variable
named &PROC. The user may enter SALES or EMPLOYEE.

1. -IF &PROC EQ 'EMPLOYEE' GOTO EMPLOYEE;
2. -SALES
 TABLE FILE SALES
 SUM UNIT_SOLD
 BY PROD_CODE
 END
3. -EXIT
 -EMPLOYEE
 TABLE FILE EMPLOYEE
 PRINT PLANT_NAME
 BY DEPARTMENT
 END

The procedure processes as follows:

1. The user enters the value SALES for &PROC. An -IF test is done, and since the value for
&PROC is not EMPLOYEE, the test fails and control is passed to the next line, -SALES

If the value for &PROC had been EMPLOYEE, control would pass to -EMPLOYEE.

3. Managing Flow of Control in an Application

Developing Applications 227

2. The FOCUS code is processed, and stacked to be executed later.

3. -EXIT executes the stacked commands. The output is sent to the terminal and the
procedure is terminated.

The request under the label -EMPLOYEE is not executed.

Example: Conditional Branching Based on a Compound -IF Test

A compound -IF test is a series of nested -IF tests nested. In a compound -IF test, each test
must specify a target label.

In this example, if the value of &OPTION is neither R nor S, the procedure terminates (-GOTO
QUIT). -QUIT serves both as a target label for the GOTO and as an executable command. For
the procedure to run, a user must supply a value for a variable named &OPTION.

-IF &OPTION EQ 'R' THEN GOTO PRODRETURNS ELSE IF
- &OPTION EQ 'S' THEN GOTO PRODSALES ELSE
- GOTO QUIT;
-PRODRETURNS
TABLE FILE SALES
PRINT PROD_CODE UNIT_CODE
BY STORE_CODE
END
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
END
-RUN
-QUIT

Looping in a Procedure

You can perform an action repeatedly by looping in your procedure with the -REPEAT command.
Looping can be used for many tasks. For example, you can populate an indexed variable using
a loop or use the output of a request in a second request.

A process loop can be executed a designated number of times or until a condition is met. A
loop ends when any of the following occurs:

It is executed in its entirety.

A -QUIT or -EXIT command is issued.

A -GOTO is issued to a label outside of the loop.

Note: If you issue another -GOTO later in the procedure to return to the loop, the loop
proceeds from the point at which it left off.

Navigating a Procedure

228

Note that the -SET command provides another method for implementing loops. See Controlling
Loops With -SET on page 231.

Tip: During loop processing, the search for labels that indicate the target of a -REPEAT or a -
GOTO command takes longer in a procedure with variable, rather than fixed (80 character),
record lengths. To speed execution in this situation, consider replacing loops with EX or -
INCLUDE commands. See Incorporating Another Procedure With -INCLUDE on page 231 and
Calling Another Procedure With EXEC on page 234.

Syntax: How to Specify a Loop

-REPEAT label n TIMES

or

-REPEAT label WHILE condition;

or

-REPEAT label FOR &variable [FROM fromval] [TO toval] [STEP s]

where:

label

Identifies the code to be repeated (the loop). A label can include another loop if the label
for the second loop has a different name than the first.

n TIMES

Specifies the number of times to execute the loop. The value of n can be a local variable,
a global variable, or a constant. If it is a variable, it is evaluated only once, so you cannot
change the number of times to execute the loop. The loop can only be ended early using -
QUIT or -EXIT.

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that can be true or false. The loop executes if the condition is true.

&variable

Is a variable that is tested at the start of each execution of the loop and incremented by s
with each execution. It is compared with the value of fromval and toval, if supplied. The
loop is executed only if &variable is greater than or equal to fromval or less than or equal
to toval.

3. Managing Flow of Control in an Application

Developing Applications 229

fromval

Is a constant that is compared with &variable at the start of the execution of the loop. The
default value is 1.

toval

Is a value that is compared with &variable at the start of the execution of the loop. The
default value is 1,000,000.

STEP s

Is a constant used to increment &variable at the end of the execution of the loop. It may
be positive or negative. The default increment is 1.

Note: The parameters FROM, TO, and STEP can appear in any order.

Example: Repeating a Loop

These examples illustrate each syntactical element of -REPEAT.

-REPEAT label n TIMES

For example:

-REPEAT LAB1 2 TIMES
-TYPE INSIDE
-LAB1 TYPE OUTSIDE

The output is:

INSIDE
INSIDE
OUTSIDE

-REPEAT label WHILE condition;

For example:

-SET &A = 1;
-REPEAT LABEL WHILE &A LE 2;
-TYPE &A
-SET &A = &A + 1;
-LABEL TYPE END: &A

The output is:

1
2
END: 3

-REPEAT label FOR &variable FROM fromval TO toval STEP s

Navigating a Procedure

230

For example:

-REPEAT LABEL FOR &A STEP 2 TO 4
-TYPE INSIDE &A
-LABEL TYPE OUTSIDE &A

The output is:

INSIDE 1
INSIDE 3
OUTSIDE 5

Example: Controlling Loops With -SET

The following example illustrates the use of -SET to control a loop:

1. -DEFAULT &N=0
2. -START
3. -SET &N=&N+1;
4. EX SLRPT
 -RUN
5. -IF &N GT 5 GOTO NOMORE;
6. -GOTO START
5. -NOMORE TYPE EXCEEDING REPETITION LIMIT
 -EXIT

The procedure executes as follows:

1. The -DEFAULT command gives &N the initial value of 0.

2. -START begins the loop. This is also the target of an unconditional -GOTO.

3. The -SET command increments the value of &N by one each time the loop executes.

4. The FOCUS command EX SLRPT is stacked. -RUN then executes the stacked command.

5. The -IF command tests the current value of the variable &N. If the value is greater than 5,
control passes to the label -NOMORE, which displays a message for the end user and
forces an exit. If the value of &N is 5 or less, control goes to the next Dialogue Manager
command.

6. -GOTO passes control to the -START label, and the loop continues.

Incorporating Another Procedure With -INCLUDE

You can insert a whole or partial procedure in another procedure with the -INCLUDE command.
A partial procedure might contain heading text, or code that should be included at run time
based on a test in the calling procedure. It executes immediately when encountered.

3. Managing Flow of Control in an Application

Developing Applications 231

A calling procedure cannot branch to a label in a called procedure, and vice versa. When a
procedure is included using the -INCLUDE command, the procedure being included has full
access to variables defined in the calling procedure.

The -INCLUDE command can be used for the following:

Controlling the environment. For example, the included procedure may set variables such
as server name or user name before the calling procedure continues execution.

As a security mechanism. The included procedure can be encrypted and a direct password
set.

Shortening the code when there are several possible procedures that may be called. For
example, the command -INCLUDE &NEWLINES could be used to determine the called
procedure, reducing the number of GOTO commands.

Continuing sections of code used throughout the application such as standard headings
and footings. This enables changes made in a single module effect the entire application.

Syntax: How to Incorporate a File

-INCLUDE filename [filetype]

where:

filename

Is the name of a FOCUS procedure.

filetype

Is the procedure's DDNAME. If none is included, FOCEXEC is assumed.

Example: Incorporating Another Procedure With -INCLUDE

In the following example, Dialogue Manager searches for a procedure named DATERPT as
specified by the -INCLUDE command.

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
 .
 .
 .
-PRODRETURNS
-INCLUDE DATERPT
-RUN
 .
 .
 .

Navigating a Procedure

232

Assume that DATERPT contains the following code, which Dialogue Manager incorporates into
the original procedure. Dialogue Manager substitutes a value for the variable &PRODUCT as
soon as the -INCLUDE is encountered. -RUN executes the request.

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
WHERE PROD_CODE EQ '&PRODUCT';
END

Example: Incorporating a Procedure With a Heading

The following incorporates a heading, which is stored as a procedure:

TABLE FILE SALES
-INCLUDE SALEHEAD
SUM UNIT_SOLD AND RETURNS AND COMPUTE
 .
 .
 .

The file SALEHEAD contains:

HEADING
"THE ABC CORPORATION"
"RETAIL SALES DIVISION"
"MONTHLY SALES REPORT"

This heading is included in the report request.

Example: Incorporating a Procedure for a Virtual Field

The following incorporates a virtual field from a procedure:

-INCLUDE DEFRATIO
 TABLE FILE SALES
-INCLUDE SALEHEAD
 SUM UNIT_SOLD AND RETURNS AND RATIO
 BY CITY
 .
 .
 .

The file DEFRATIO creates a virtual field:

DEFINE FILE SALES
RATIO/D5.2=(RETURNS/UNIT_SOLD);
END

This virtual field is dynamically included before the report request executes.

3. Managing Flow of Control in an Application

Developing Applications 233

Nesting Procedures With -INCLUDE

Any number of different procedures can be invoked from a single calling procedure.

You can also nest a procedure within itself, or recursively. Recursive -INCLUDE commands
cannot exceed four levels. For non-recursive -INCLUDE commands, the level of nesting is
limited only by the available memory.

Files 1 through 4 are incorporated into the original procedure. All of the included files are
viewed as part of the original procedure.

A procedure cannot branch to a label in an included file.

Calling Another Procedure With EXEC

You can call a procedure from another procedure with the EXEC command. The called
procedure must be fully executable. It behaves as a completely separate procedure with its
own content. It cannot use any local variables (&variables) defined by the calling procedure
(unless they are explicitly passed to the called procedure on the command line). However, the
executed (called) procedure can use any global variables (&&variables) that have been defined
in the calling procedure.

When an EXEC command is encountered, it is stacked and executed when the appropriate
Dialogue Manager command is encountered.

Navigating a Procedure

234

Syntax: How to Call a Procedure With the EXEC Command

EX[EC] procedure

where:

procedure

Is the name of the procedure.

You can include arguments for the procedure. See Supplying Variable Values on the
Command Line on page 273.

Note: This syntax is identical to execution syntax for any stored procedure. However, in this
context the EXEC command is included within another procedure.

Example: Calling a Procedure With EXEC

In the following example, a procedure calls DATERPT:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
 .
 .
 .
-PRODRETURNS
 EX DATERPT
 .
 .
 .
-RUN

Note: If the last executable command in the called procedure is a -CRTFORM, control is not
returned to the calling procedure unless another Dialogue Manager command is included to
terminate the -CRTFORM, such as -RUN or a -label.

Developing an Open-Ended Procedure

A file of stored FOCUS commands without variables looks and executes exactly as though it
had been typed interactively into FOCUS from the terminal. However, if there is an error in your
procedure file, it will be rejected. If you make an error while typing interactively from the
terminal, FOCUS issues prompts to help you correct the error.

If you store a procedure without the END command, you can execute all of the procedure lines.
The terminal opens to allow interactive completion of the procedure. You can add additional
command lines and enter the END command from the terminal to complete the procedure.

3. Managing Flow of Control in an Application

Developing Applications 235

Note that you cannot use amper variables when typing online at a terminal. Open-ended
procedures do not support variable substitution in lines entered after the terminal is opened.
Variable substitution is supported in the stored portion of the procedure.

Example: Developing and Running an Open-Ended Procedure

Assume the following open-ended procedure is stored as SLRPT:

-TYPE ENTER REST OF PROCEDURE
 TABLE FILE SALES
 HEADING CENTER
 "MONTHLY REPORT"
 SUM UNIT_SOLD AND RETURNS AND COMPUTE
 RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;

You can invoke the procedure by typing EX SLRPT. It executes normally but fails to encounter
an END command in the file. It then opens up the terminal displaying the FOCUS prompt. You
could supply:

BY STORE_CODE
END

Or, alternatively:

IF CITY IS STAMFORD
BY STORE_CODE
END

Using Variables in a Procedure

Interactive variable substitution is at the heart of Dialogue Manager. You can create
procedures that include variables (also called amper variables) and supply values for them at
run time. These variables store a string of text or numbers and can be placed anywhere in a
procedure. A variable can refer to a field, a command, descriptive text, a file name—literally
anything.

Note: A Dialogue Manager variable contains only alphanumeric data. If a function or expression
returns a numeric value to a Dialogue Manager variable, the value is truncated to an integer
and converted to alphanumeric format before being stored in the variable, unless you specify
the precision to use as described in How to Specify Precision for Dialogue Manager Calculations
on page 259.

Using Variables in a Procedure

236

Variables fall into two categories:

Local and global variables have values supplied at run time. Local variable values remain in
effect for the respective procedure, while global variable values remain in effect for all
procedures executed during an entire FOCUS session (that is, from the time you enter
FOCUS until you exit with the FIN command).

Leading double ampersands (&&) denote global variables. All other Dialogue Manager
variables begin with a single ampersand (&). For this reason, in the FOCUS community they
are known as amper variables.

For details, see Local Variables on page 238 and Global Variables on page 239.

System, statistical, and special variables have values that the system automatically
resolves whenever you request them.

For details, see System Variables on page 240, Statistical Variables on page 248, and
Special Variables on page 251.

The maximum number of local, global, system, statistical, special, and index variables
available in a procedure is 1024. Approximately 40 are reserved for use by FOCUS.

Variables can be used only in procedures. They are ignored if you use them while creating
reports live at the terminal.

You can query the values of each type of variable you use. For details, see Querying the Values
of Variables and Parameters on page 251.

The values for variables may be supplied in a variety of ways. For details, see Supplying and
Verifying Values for Variables on page 253.

Reference: Naming Conventions for Local and Global Variables

Local and global variable names are user-defined, while system and statistical variables have
predefined names. The following rules apply to the naming of local and global variables:

A local variable name is always preceded by an ampersand (&). The variable can be named
or positional.

A positional variable consists of a single ampersand followed by a numeric string (for
example, &1). The value of a positional variable is passed to a procedure when it is
executed.

A global variable name is always preceded by a double ampersand (&&).

Embedded blanks are not permitted in a variable name.

3. Managing Flow of Control in an Application

Developing Applications 237

If a value for a variable might contain an embedded blank, comma, or equal sign, enclose
the variable in single quotation marks when referred to.

A variable name may be any combination of the characters A through Z, 0 through 9, and
the underscore. The first character of the name should be a letter.

You can assign a number instead of a name to a variable to create a positional variable.

The underscore may be included in a variable name, but the following special characters
are not permitted: plus sign, minus sign, asterisk, slash, period, ampersand, and
semicolon.

Syntax: How to Specify a Variable Name

&[&]name

where:

&

Denotes a local variable. A single ampersand followed by a numeric string denotes a
positional variable.

&&

Denotes a global variable.

name

Is the variable name. The name you assign must follow the rules outlined in Naming
Conventions for Local and Global Variables on page 237.

Local Variables

Local variables are identified by a single ampersand (&) preceding the name of the variable.
They remain in effect throughout a single procedure.

Example: Using Local Variables

Consider the following procedure, SALESREPORT, in which &CITY, &CODE1, and &CODE2 are
local variables:

Using Variables in a Procedure

238

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END

Assume you supply the following values when you call the procedure:

EX SLRPT CITY = STAMFORD, CODE1=B10, CODE2=B20

Dialogue Manager substitutes the values for the variables as follows:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ STAMFORD
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
END

After the procedure executes and terminates, the values STAMFORD, B10, and B20 are lost.

Global Variables

Global variables differ from local variables in that once a value is supplied, it remains current
throughout the FOCUS session unless set to another value with -SET or cleared by the LET
CLEAR command. For information on LET CLEAR, see Defining a Word Substitution on page
377. Global variables are useful for gathering values at the start of a work session for use by
several subsequent procedures. All procedures that use a particular global variable receive the
current value until you exit from FOCUS.

Global variables are specified through the use of a double ampersand (&&) preceding the
variable name. It is possible to have a local and global variable with the same name. They are
distinct and may have different values.

3. Managing Flow of Control in an Application

Developing Applications 239

Example: Using Global Variables

The following example illustrates the use of three global variables: &&CITY, &&CODE1,
&&CODE2. The values are substituted in the first procedure, PROC1, and the values are
retained and passed to the second procedure, PROC2.

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &&CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &&CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &&CODE1 TO &&CODE2
END
EX PROC2

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &&CITY AND PRODUCT &&CODE1"
PRINT UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &&CITY
IF PROD_CODE EQ &&CODE1
END

System Variables

FOCUS automatically substitutes values for system variables encountered in a Dialogue
Manager request. For example, you can use the system variable &DATE to automatically
incorporate the system date in your request.

System-supplied variables should not be overridden. To avoid this possibility, user-supplied
variables should not be given system variables names.

Reference: Summary of System Variables

A list of Dialogue Manager system variables follows:

Variable Format or Value Description

&DATE MM/DD/YY Returns the current date.

Using Variables in a Procedure

240

Variable Format or Value Description

&DATEfmt

&DATXfmt

Returns the current date or
date-time value, where fmt
can be any valid date or
date-time format. &DATEfmt
retains trailing blanks in the
returned value. &DATXfmt
suppresses trailing blanks
in the returned value.

Note: Using the
concatenation symbol (|) to
remove punctuation
between components is not
supported. To return a
value without punctuation
between the components,
use &YYMD or
&DATEHYYMDN.

For information about date
and date-time formats, see
Chapter 4, Describing an
Individual Field, in the
Describing Data manual.

Returns the current date or date-time
value, where fmt can be any valid
date or date-time format. Because
many date format options can be
appended to the prefix DATE to form
one of these variable names, you
should avoid using DATE as the prefix
when creating a variable name.

&DMY DDMMYY Returns the current date.

&DMYY DDMMCCYY Returns the current (four-digit year)
date.

&ECHO ON,OFF, ALL, or NONE Displays command lines as they
execute in order to test and debug
procedures.

&EXITRC Any value returned by a
command is valid, but zero
is considered normal
(successful) execution.

Return code value from execution an
operating system command.
Referencing &EXITRC forces the
execution of all stacked commands,
like the command -RUN.

3. Managing Flow of Control in an Application

Developing Applications 241

Variable Format or Value Description

&FOCCODEPAGE Returns the code page being used by
FOCUS.

&FOCCPU milliseconds Calculates the OS CPU time.

&FOCEXTTRM ON
OFF

Indicates the availability of extended
terminal attributes.

&FOCFEXNAME Returns the name of the FOCEXEC
running even if it was executed using
an EX command or a ‑INCLUDE
command from within another
FOCEXEC. This variable differs from
the &FOCFOCEXEC variable because
&FOCFOCEXEC returns the name of
the calling FOCEXEC only.

&FOCFIELDNAME NEW
OLD
NOTRUNC

Returns a string indicating whether
long and qualified field names are
supported. A value of OLD means
that they are not supported; NEW
means that they are supported; and
NOTRUNC means that they are
supported, but unique truncations of
field names cannot be used.

&FOCFOCEXEC Manages reporting operations
involving many similarly named
requests that are executed using EX.
&FOCFOCEXEC enables you to easily
determine which procedure is
running. &FOCFOCEXEC can be
specified within a request or in a
Dialogue Manager command to
display the name of the currently
running procedure.

Using Variables in a Procedure

242

Variable Format or Value Description

&FOCINCLUDE Manages reporting operations
involving many similarly named
requests that are included using -
INCLUDE. &FOCINCLUDE can be
specified within a request or in a
Dialogue Manager command to
display the name of the current
included procedure.

&FOCMODE CRJE
MSO
OS
TSO

Identifies the operating environment.

&FOCNEXTPAGE Establishes consecutive page
numbering across multiple reports.
When a report is processed, the
variable &FOCNEXTPAGE is set to the
number following the last page
number in the report. This value can
then be used as the first page
number in a subsequent report,
making the report output from
multiple requests more useful and
readable.

&FOCPRINT ONLINE
OFFLINE

Returns the current print setting.

&FOCPUTLVL FOCUS PUT level
number.

(For example, 9306 or 9310.)
&FOCPUTLVL is no longer supported.

&FOCQUALCHAR .
:
!
%
|
\

Returns the character used to
separate the components of qualified
field names.

&FOCREL release number Identifies the FOCUS Release number
(for example, 6.5 or 6.8).

3. Managing Flow of Control in an Application

Developing Applications 243

Variable Format or Value Description

&FOCSBORDER ON
OFF

Whether solid borders are used in
full-screen mode.

&FOCTRMSD 24
27
32
43

Indicates terminal height. (This can
be any value; the examples shown
are common settings.)

&FOCTRMSW 80
132

Indicates terminal width. (This can be
any value; the examples shown are
common settings.)

&FOCTRMTYP 3270
TTY
UNKNOWN

Identifies the terminal type.

&FOCUSER Returns the connected user ID.
Similar to the GETUSER function.

&HIPERFOCUS ON
OFF

Returns a string showing whether
HiperFOCUS is on.

&IORETURN Returns the code set by the last
Dialogue Manager -READ or -WRITE
operation. (0 = successful; 1=
unsuccessful.)

&MDY MMDDYY Returns the current date. The format
makes this variable useful for
numerical comparisons.

&MDYY MMDDCCYY Returns the current (four-digit year)
date.

Using Variables in a Procedure

244

Variable Format or Value Description

&RETCODE Any value defined by the
FOCUS command.

Any value returned by a
command is valid, but zero
is considered normal
(successful) execution.

The one exception is the
&RETCODE value of dash
operating system
commands, such as -DOS, -
UNIX, and -WINNT,
represent the success, not
of the command they are
running, but of the ability of
the server to spawn out to
the OS and run the
command. In this case, the
&RETCODE value is
normally zero because it
reflects that the spawn
executes normally
regardless of the results of
the specific command. For
this case, the amper
variable &EXITRC should be
used to check the
command result or the non-
dash version of the
command should be used.

numeric

&RETCODE executes all stacked
commands, like the command -RUN.

&SETFILE alphanumeric Contains the value from the SET FILE
command.

3. Managing Flow of Control in an Application

Developing Applications 245

Variable Format or Value Description

&TOD HH.MM.SS Returns the current time. When you
enter FOCUS, this variable is updated
to the current system time only when
you execute a MODIFY, SCAN, or
FSCAN command. To obtain the exact
time during any process, use the
HHMMSS function.

&YMD YYMMDD Returns the current date.

&YYMD CCYYMMDD Returns the current (four-digit year)
date.

Example: Retrieving the Date Using the System Variable &DATE

The following example incorporates the system variable &DATE into a request. The footing
uses the system variable &DATE to insert the current system date at the bottom of the report.

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
FOOTING
"CALCULATED AS OF &DATE"
END

Example: Retrieving the Procedure Name Using the System Variable &FOCFOCEXEC

This example illustrates how to use the system variable &FOCFOCEXEC in a request to display
the name of the currently running procedure:

TABLE FILE EMPLOYEE
"REPORT: &FOCFOCEXEC -- EMPLOYEE SALARIES"
PRINT CURR_SAL BY EMP_ID
END

Using Variables in a Procedure

246

If the request is stored as a procedure called SALPRINT, when executed it produces the
following:

REPORT: SALPRINT -- EMPLOYEE SALARIES
EMP_ID CURR_SAL
------ --------
071382660 $11,000.00
112847612 $13,200.00
117593129 $18,480.00
119265415 $9,500.00
119329144 $29,700.00
123764317 $26,862.00
126724188 $21,120.00
219984371 $18,480.00
326179357 $21,780.00
451123478 $16,100.00
543729165 $9,000.00
818692173 $27,062.00

&FOCFOCEXEC and &FOCINCLUDE can also be used in -TYPE commands. For example, you
have a procedure named EMPNAME that contains the following:

-TYPE &|FOCFOCEXEC is: &FOCFOCEXEC

When EMPNAME is executed, the following output is produced:

&FOCFOCEXEC IS: EMPNAME

Example: Displaying a Date Using the System Variable &YYMD

You can display a date variable containing a 4-digit year without separators. The variables are
&YYMD, &MDYY, and &DMYY.

The following example shows a report using &YYMD:

TABLE FILE EMPLOYEE
HEADING
"SALARY REPORT RUN ON DATE &YYMD"
" "
PRINT DEPARTMENT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

3. Managing Flow of Control in an Application

Developing Applications 247

The resulting output for May 19, 1999 is:

Statistical Variables

FOCUS posts many statistics concerning overall operations while a procedure executes in the
form of statistical variables. As with system variables, FOCUS automatically supplies values for
these variables on request.

Reference: Summary of Statistical Variables

A list of Dialogue Manager statistical variables follows:

Variable Description

&ACCEPTS Indicates the number of transactions accepted. This
variable applies only to MODIFY requests.

&BASEIO Indicates the number of input/output operations
performed.

&CHNGD Indicates the number of segments updated. This variable
applies only to MODIFY requests.

Using Variables in a Procedure

248

Variable Description

&DELTD Indicates the number of segments deleted. This variable
applies only to MODIFY requests.

&DUPLS Indicates the number of transactions rejected as a result
of duplicate values in the data source. This variable
applies only to MODIFY requests.

&FOCDISORG Indicates the percentage of disorganization for a FOCUS
file. You can use the ? FILE command to display or test
this variable, even if the value is less than 30% (the level
at which ? FILE displays the amount of disorganization).

&FOCERRNUM Indicates the last error number, in the format FOCnnnn,
displayed after the execution of a procedure. If more than
one occurred, &FOCERRNUM holds the number of the
most recent error. If no error occurred, &FOCERRNUM has
a value of 0. This value can be passed to the operating
system with the line -QUIT FOCUS &FOCERRNUM. It can
also be used to control branching from a procedure to
execute an error-handling routine.

&FORMAT Indicates the number of transactions rejected as a result
of a format error. This variable applies only to MODIFY
requests.

&INPUT Indicates the number of segments added to the data
source. This variable applies only to MODIFY requests.

&INVALID Indicates the number of transactions rejected as a result
of an invalid condition. This variable applies only to
MODIFY requests.

&LINES Indicates the number of lines printed in last report. This
variable applies only to report requests.

&NOMATCH Indicates the number of transactions rejected as a result
of not matching a value in the data source. This variable
applies only to MODIFY requests.

3. Managing Flow of Control in an Application

Developing Applications 249

Variable Description

&READS Indicates the number of records read from a non-FOCUS
file.

&RECORDS Indicates the number of records retrieved in last report.
This variable applies only to report requests.

&REJECTS Indicates the number of transactions rejected for reasons
other than the ones specifically tracked by other statistical
variables. This variable applies only to MODIFY requests.

&TRANS Indicates the number of transactions processed. This
variable applies only to MODIFY requests.

Example: Controlling Execution of a Request With the Statistical Variable &LINES

In the following example, the system calculates the value of the statistical variable &LINES. If
&LINES is 0, control passes to the TABLE FILE EMPLOYEE request identified by the label
‑RPT2. If the value is not 0, control passes to the label ‑REPTDONE, and processing is
terminated.

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END
-RUN
-IF &LINES EQ 0 GOTO RPT2 ELSE GOTO REPTDONE;
-RPT2
TABLE FILE EMPLOYEE
 .
 .
 .
END
-RUN
-QUIT
-REPTDONE
-EXIT

Using Variables in a Procedure

250

Special Variables

FOCUS provides special variables that apply to the cursor, function keys, windows, and other
features.

Reference: Summary of Special Variables

A list of special variables follow:

Variable Description

&CURSOR Holds the cursor position.

&CURSORAT Reads the cursor position.

&ECHO Controls the display of commands for debugging purposes.

&PFKEY Holds the PF Key function that was pressed or entered.

&QUIT Controls whether the response QUIT, or PF1 in - CRTFORM, to a prompt
causes an exit from the procedure.

&STACK Controls whether the entire procedure, or only the Dialogue Manager
commands are executed.

&WINDOWNAME Holds the name of the last window activated by the most recently
executed -WINDOW command (see Designing Windows With Window
Painter on page 455).

&WINDOWVALUE Holds the return value of the last window activated by the most recently
executed -WINDOW command (see Designing Windows With Window
Painter on page 455).

Querying the Values of Variables and Parameters

Two Dialogue Manager commands enable you to:

Display the values of all types of local, global, and system variables. See How to Display
the Value of a Variable on page 252.

Store the value of a parameter in a variable. The stored value can then be queried with
the ? SET command. See How to Store Parameter Value Settings on page 252.

3. Managing Flow of Control in an Application

Developing Applications 251

In addition, you can issue two QUERY (?) commands from the FOCUS prompt to display the
values of:

Global variables. Since global variable values remain current throughout the FOCUS
session, it is helpful to be able to display the values on demand. The syntax is

? &&

Statistics stored in variables. You can query the current value of all statistical variables
(except &FOCDISORG and &FOCERRNUM). The syntax is:

? STAT

For details about these commands, see Testing and Debugging With Query Commands on page
333.

Syntax: How to Display the Value of a Variable

You can query all Dialogue Manager variables (local, global, system, and statistical) from a
stored procedure. The syntax is

-? &[&variablename]

where:

&

Issued alone, displays variables of all types.

variablename

Is a complete amper variable or a partial string of up to 12 characters. Only amper
variables starting with the specified string are displayed.

The command displays the following message, followed by a list of currently defined amper
variables and the values:

CURRENTLY DEFINED & VARIABLES:

Since local variables do not exist outside a procedure, no similar query is available from the
FOCUS command line.

Syntax: How to Store Parameter Value Settings

You can store the current value of a SET parameter in a variable and use the value in a
procedure. The syntax is

-? SET parameter &[&]variablename

Using Variables in a Procedure

252

where:

parameter

Is any valid FOCUS setting that may be queried with the ? SET or ? SET ALL command. For
details about these commands, see #unique_355.

variablename

Is the name of the variable where the value is to be stored.

Example: Storing a Parameter Value Setting

If you enter

-? SET ASNAMES &ABC
-TYPE &ABC

the value stored in &ABC becomes the value of ASNAMES. If you omit &ABC from the
command, then a variable called &ASNAMES is created that contains the value of ASNAMES.

Supplying and Verifying Values for Variables

When you design a Dialogue Manager procedure with variables, you must decide how the
variables in the procedure acquires values at run time. You can use and/or combine the
following techniques.

You can supply variable values directly in procedures, without prompting users for input, using
the following methods:

-DEFAULT[S] or -DEFAULTH to supply default variable values. See Supplying a Default
Variable Value on page 256.

-SET to compute a variable value in an expression or to assign a literal value. See
Supplying Variable Values in an Expression on page 257.

-READ to supply variable values from an external file. See Reading Variable Values From
and Writing Variable Values to an External File on page 262.

EXEC to supply values on the command line when running a procedure. See Supplying
Variable Values on the Command Line on page 273.

You can prompt users for variable values using the following methods:

-PROMPT to prompt directly for user input. You can request a set of values before they are
needed. You can write your own text for these prompts and validate the entered values to
confirm that they fit a preset list of acceptable items or match a predefined format. See
Prompting Directly for Values With -PROMPT on page 276.

3. Managing Flow of Control in an Application

Developing Applications 253

-CRTFORM to prompt for user input on screens. The -CRTFORM command gathers variable
values through full-screen data entry. Many values can be input and manipulated at the
same time. Several screens can be included in a single procedure and used for a variety of
purposes, including the development of menu-driven applications. See Prompting for Values
on Screens With -CRTFORM on page 277.

-CRTFORM invokes FIDEL, the FOCUS Interactive Data Entry Language, and incorporates
most of its functions. You can also use Screen Painter to design and paint -CRTFORM data
entry screens directly on your terminal screen.

Note that the Dialogue Manager command -CRTFORM is used for entering Dialogue
Manager amper variable values. The equivalent MODIFY command, CRTFORM (without a
hyphen), is used in MODIFY requests to enter field values.

-WINDOW to prompt for user input in windows you design. You can create a series of
menus and windows using the Window Painter facility and display them on the screen using
the -WINDOW command. When displayed, the menus and windows can collect data by
prompting users to select a value, enter a value, or press a program function (PF) key. See
Prompting for Values on Menus and Windows With -WINDOW on page 277.

Implicit prompting. FOCUS recognizes variables in a procedure by the leading ampersand
(&). If a value has not been provided by some other means, FOCUS automatically requests
a value from the terminal when needed. See Prompting for Values Implicitly on page 277.

Verifying user input: For values supplied by users, you can also verify input by comparing it
against:

Format specifications. See Verifying User-Supplied Values Against a Set of Format
Specifications on page 278.

A pre-defined list of acceptable values. See Verifying User Input Against a Pre-Defined List of
Values on page 279.

Reference: Rules for Supplying Variable Values

The following rules apply to values for variables:

If a value contains an embedded comma, equal sign, or blank, you must enclose the
variable name in single quotation marks when you use it in an expression. For example, if
the value for &LOCATION is BOS, MA, you must refer to the variable as '&LOCATION' in any
expression.

Once a value is supplied for a local variable, it is used throughout the procedure, unless it
is changed by -CRTFORM, -PROMPT, -READ, -SET, or -WINDOW.

Supplying and Verifying Values for Variables

254

Once a value is supplied for a global variable, it is used throughout the FOCUS session in
all procedures, unless it is changed by -CRTFORM, -PROMPT, -READ, -SET, or -WINDOW, or
cleared by LET CLEAR.

Dialogue Manager automatically prompts the terminal if a value has not been supplied for a
variable.

The lengths of values stored in Dialogue Manager (amper) variables vary by context:

When used with the commands -READ, -TYPE, and WRITE, the maximum length of a
variable is approximately 32,000 characters (32K).

When used with other Dialogue Manager commands or the EX command, a variable
value cannot exceed 4,096 characters (4K).

Example: Supplying Variable Values in a Procedure

This example illustrates the use of the -DEFAULT and -SET commands to supply values for
variables. The end user supplies the value B10 for &CODE1, B20 for &CODE2, and SMITH for
®IONMGR, as prompted by Dialogue Manager.

The numbers to the left of the example apply to the notes that follow:

1. -DEFAULT &VERB=SUM
2. -SET &CITY=IF &CODE1 GT 'B09' THEN 'STAMFORD' ELSE 'UNIONDALE';
3. -TYPE REGIONAL MANAGER FOR &CITY
 SET PAGE=OFF
5. TABLE FILE SALES
 HEADING CENTER
 "MONTHLY REPORT FOR &CITY"
 "PRODUCT CODES FROM &CODE1 TO &CODE2"
 " "
 &VERB UNIT_SOLD AND RETURNS AND COMPUTE
 RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
 BY PROD_CODE
 IF PROD_CODE IS-FROM &CODE1 TO &CODE2
 FOOTING CENTER
4. "REGION MANAGER: ®IONMGR"
 "CALCULATED AS OF &DATE"
 END
6. -RUN

The procedure executes as follows:

1. The -DEFAULT command sets the value of &VERB to SUM.

2. The -SET command supplies the value for &CITY depending on the value the end user
entered in the form for &CODE1. Because the end user entered B10 as the value for
&CODE1, &CITY becomes STAMFORD.

3. Managing Flow of Control in an Application

Developing Applications 255

3. When the user runs the report, FOCUS writes a message that incorporates the value for
&CITY:

REGIONAL MANAGER FOR STAMFORD

4. The user supplied the value for ®IONMGR in response to an implicit prompt. FOCUS
supplies the current data at run time.

5. The FOCUS stack contains the following lines:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
FOOTING CENTER
"REGION MANAGER: SMITH"
"CALCULATED AS OF 06/11/03"
END

6. The -RUN command causes execution of all commands in the stack. The output from the
report request is as follows:

 MONTHLY REPORT FOR STAMFORD
 PRODUCT CODES FROM B10 TO B20

PROD_CODE UNIT_SOLD RETURNS RATIO
--------- --------- ------- -----
B10 103 13 12.6
B12 69 4 5.8
B17 49 4 8.2
B20 40 1 2.5

 REGION MANAGER: SMITH
 CALCULATED AS OF 06/11/03

Supplying a Default Variable Value

-DEFAULT commands set default values for local or global variables. This technique ensures
that a value is passed to a variable so that the user is not prompted for the value.

You can issue multiple -DEFAULT commands for a variable. If the variable is global, these -
DEFAULT commands can be issued in separate FOCEXECs. At any point before another method
is used to establish a value for the variable, the most recently issued ‑DEFAULT command will
be in effect.

However, as soon as a value for the variable is established using any other method (for
example, by issuing a ‑SET command, retrieving a value input by the user, or reading a value
from a file), subsequent ‑DEFAULT commands issued for that variable are ignored.

Supplying and Verifying Values for Variables

256

Note that -DEFAULTS and -DEFAULTH are synonyms for -DEFAULT.

Syntax: How to Supply a Default Value

-DEFAULT[S|H] &[&]name=value [...] [;]

where:

name

Is the name of the variable.

value

Is the default value assigned to the variable.

;

Is an optional punctuation character.

Note: -DEFAULTS and -DEFAULTH are synonyms for -DEFAULT.

Example: Supplying a Default Value

In the following example, -DEFAULT sets the default value for &PLANT to Boston (BOS):

-DEFAULT &PLANT=BOS
TABLE FILE CENTHR
 .
 .
 .

Supplying Variable Values in an Expression

You can assign a variable's value by computing the value in an expression or assigning a literal
value to a variable with the -SET command. You can also use the IN FILE phrase to test
whether a character value exists in a file and populate a variable with the result. The value of
the variable is set to 1 if the test value exists in the file and 0 (zero) if it does not.

You can use this technique to supply dates to Dialogue Manager as variable values. A date
supplied to Dialogue Manager in a variable cannot be more than 20 characters long, including
spaces. Dialogue Manager variables only accept full-format dates (that is, MDY or MDYY, in
any order).

If you are working with cross-century dates that do not include a four-digit year, you can use the
SET parameters DEFCENT and YRTHRESH variables to identify the century. For details, see
Working With Cross-Century Dates on page 403.

3. Managing Flow of Control in an Application

Developing Applications 257

If you want to set a variable value to a number, the only supported characters you can use are
numeric digits, a leading minus sign, and a period to represent following decimal places.
These are the only valid characters that Dialogue Manager supports in a number, regardless of
EDIT options or the value of CDN.

Syntax: How to Assign a Value in an Expression

-SET &[&]name= {expression|value};

-SET &[&]var3= &var1 IN FILE filename1 [OR &var2 IN FILE filename2 ...];

where:

name

Is the name of the variable.

expression

Is a valid expression. Expressions can occupy several lines, so you must end the
command with a semicolon.

value

Is a literal value, or arithmetic or logical expression assigned to the variable. If the literal
value contains commas or embedded blanks, you must enclose the value in single
quotation marks.

&[&]var3

Is a variable that is populated with the value 1 if the result of the expression on the right
side of the equal sign is true, or with the value 0 if the result is false.

&var1

Is the variable that contains the value to be searched for in filename1.

&var2

Is the variable that contains the value to be searched for in filename2.

Reference: Usage Notes for IN FILE

The result of the IN FILE phrase is an alphanumeric value (1 or 0) that can be used in a
logical expression connected with AND and OR operators within same –SET command. This
value cannot be used as an argument in an alphanumeric operation such as concatenation
within the same -SET command.

In order for IN FILE to return the value 1, the values in the file and the search string must
match exactly, starting with the leftmost byte in the file.

Supplying and Verifying Values for Variables

258

The file can be in any order and have duplicate values. The search stops when either the
first match is found or the end of the file is reached. If the file is allocated but does not
exist, the value 0 is returned. If the file is not allocated, a FOC351 message displays.

The length of the variable used in the IN FILE phrase determines the number of bytes from
the beginning of each record in the file used for comparison. Only an exact match on that
number of bytes will return a 1. Trailing blanks in the variable will require the same number
of trailing blanks in the file in order to match. For example, the following will match only the
value 'ABC ' (ABC with three trailing blanks):

-SET &VAR1 = 'ABC ';
-SET &VAR2 = &VAR1 IN FILE FILE1;

Syntax: How to Specify Precision for Dialogue Manager Calculations

The DMPRECISION setting enables Dialogue Manager -SET commands to calculate accurate
numeric variable values without using the FTOA function.

Without this setting, results of numeric calculations are returned as integer numbers, although
the calculations themselves employ double-precision arithmetic. To return a number with
decimal precision without this setting, you have to enter the calculation as input into
subroutine FTOA, where you can specify the number of decimal places returned.

The SET DMPRECISION command gives users the option of either accepting the default
truncation of the decimal portion of output from arithmetic calculations, or specifying up to
nine decimal places for rounding.

SET DMPRECISION = {OFF|n}

where:

OFF

Specifies truncation without rounding after the decimal point. OFF is the default value.

n

Is a positive number from 0-9, indicating the point of rounding. Note that n=0 results in a
rounded integer value.

When using SET DMPRECISION, you must include -RUN after the SET DMPRECISION
command to ensure that it is set prior to any numeric -SET commands.

As the actual conversion to double precision follows the rules for the operating system, the
values may vary from platform to platform.

3. Managing Flow of Control in an Application

Developing Applications 259

Example: Setting Precision for Dialogue Manager Calculations

The following table below shows the result of dividing 20 by 3 with varying DMPRECISION
(DMP) settings:

SET DMPRECISION = Result

OFF 6

0 7

1 6.7

2 6.67

9 6.666666667

Example: Setting a Variable Value in an Expression

In the following example, -SET assigns the value 14Z or 14B to the variable &STORECODE, as
determined by the logical IF expression. The value of &CODE is supplied by the user.

-SET &STORECODE = IF &CODE GT C2 THEN '14Z' ELSE '14B';
 TABLE FILE SALES
 SUM UNIT_SOLD AND RETURNS
 BY PROD_CODE
 IF PROD_CODE GE &CODE
 BY STORE_CODE
 IF STORE_CODE IS &STORECODE
 END

Example: Setting a Literal Value

The use of single quotation marks around a literal is optional unless the literal contains
embedded blanks, commas, or equal signs. In these cases, you must include them as
illustrated below:

-SET &NAME='JOHN DOE';

In prior releases, to assign a literal value that included a single quotation mark, you had to
place two single quotation marks where you wanted one to appear:

-SET &NAME='JOHN O''HARA';

Supplying and Verifying Values for Variables

260

Although this technique still works, it is no longer required. However, to start or end a string
with a single quotation mark, you must specify two single quotation marks.

Example: Setting the Difference Between Two Dates

This example supplies dates to Dialogue Manager as variables. The variable &DELAY is set to
the difference in days between &LATER and &NOW and the result is returned to your terminal.

-SET &NOW = 'JUN 30 2002';
-SET &LATER = '2002 25 AUG';
-SET &DELAY = &LATER - &NOW;
-TYPE &DELAY

Example: Testing Whether a Variable Value Is in a File

The following FOCEXEC creates an alphanumeric HOLD file called COUNTRY1 with the names
of countries from the CAR file. It then sets the variable &C equal to FRANCE. The IN FILE
phrase returns the value 1 to &IN1 if FRANCE is in the HOLD file and 0 if it is not:

TABLE FILE CAR
PRINT COUNTRY
ON TABLE HOLD AS COUNTRY1 FORMAT ALPHA
END
-RUN
-SET &C = 'FRANCE';
-SET &IN1 = &C IN FILE COUNTRY1;
-TYPE THE VALUE IS &IN1

The output shows that FRANCE is in the file COUNTRY1:

THE VALUE IS 1

Example: Initializing a Variable to a Long String

To set the value of a variable with -SET, you need to specify a character string on the right side
of the SET command. Since the character string cannot span multiple lines, if necessary, you
can concatenate shorter strings or variables to compose the long string.

The following procedure creates a variable named &LONG that contains a long string:

-SET &LONG = 'THIS IS A LONG AMPER VARIABLE. NOTE THAT IN ORDER '
- |'TO SET ITS VALUE USING -SET, YOU MUST CONCATENATE SHORTER STRINGS, '
- |'EACH OF WHICH MUST FIT ON ONE LINE.';
-TYPE &LONG
END

3. Managing Flow of Control in an Application

Developing Applications 261

The output is:

THIS IS A LONG AMPER VARIABLE.NOTE THAT IN ORDER TO SET ITS VALUE USING
-SET, YOU MUST CONCATENATE SHORTER STRINGS, EACH OF WHICH MUST FIT ON
ONE LINE.

Reading Variable Values From and Writing Variable Values to an External File

You can read variable values from an external file, or write variable values to an external file
with the -READ and -WRITE commands.

You can supply variable values with the -READ command. For example, an external file may
contain the start and end dates of a reporting period. Dialogue manager can read these
values from an external file and use them in a variable in a WHERE command that limits
the range of data selected in a report request.

You can save variable values in an external file with the -WRITE command. For example, a
request can store the summed total of sales for the day in an external file so that it can be
compared to the following day's total sales.

The external file can be a fixed-format file (in which the data is in fixed columns) or a free-
format file (in which the data is comma delimited).

You can also read a file using the -READFILE command. The -READFILE command reads a file
by first reading its Master File and creating Dialogue Manager amper variables based on the
ACTUAL formats for each field in the Master File. It then reads the file and, if necessary,
converts the fields from numeric values to alphanumeric strings before returning them to the
created variables. Display options in the USAGE formats are not propagated to the variables.
The names of the amper variables are the field names prefixed with an ampersand (&).

Syntax: How to Retrieve a Variable Value From an External File

-READ ddname[,] [NOCLOSE] &name[.format.][,] ...

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM ALLOCATE.

A space after the ddname denotes a fixed format file while a comma denotes a comma-
delimited file.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is closed
upon completion of the procedure or when a -CLOSE or subsequent -WRITE command is
encountered.

Supplying and Verifying Values for Variables

262

name

Is the variable name. You may specify more than one variable. Using commas to separate
variables is optional.

If the list of variables is longer than one line, end the first line with a comma and begin the
next line with a dash followed by a blank (-) for comma-delimited files or a dash followed by
a comma followed by a blank (-,) for fixed format files. For example:

Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,
- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,
-, &CODE2.A3

format

Is the format of the variable. It may be Alphanumeric (A) or Numeric (I). Note that format
must be delimited by periods. The format is ignored for comma-delimited files.

Note: -SET provides an alternate method for defining the length of a variable using the
corresponding number of characters enclosed in single quotation marks ('). For example,
the following command defines the length of &CITY as 8:

-SET &CITY=' ';

Example: Reading a Value From an External File

Assume that EXTFILE is a fixed-format file containing the following data:

STAMFORDB10B20

To detect the end of a file, the following code tests the system variable &IORETURN. When no
records remain to be read, a value equal to zero is not found.

3. Managing Flow of Control in an Application

Developing Applications 263

-READ EXTFILE &CITY.A8. &CODE1.A3. &CODE2.A3.
-IF &IORETURN NE 0 GOTO RESUME;
 TABLE FILE SALES
 SUM UNIT_SOLD
 BY CITY
 IF CITY IS &CITY
 BY PROD_CODE
 IF PROD_CODE IS-FROM &CODE1 TO &CODE2
 END
-RESUME
 .
 .
 .

Syntax: How to Write a Variable Value to an External File

-WRITE ddname [NOCLOSE] text

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM ALLOCATE.
For information about file allocations, see the Overview and Operating Environments
manual.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is closed
upon completion of the procedure or when a -CLOSE or subsequent -READ command is
encountered.

text

Is any combination of variables and text. To write more than one line, end the first line with
a comma (,) and begin the next line with a hyphen followed by a space (-).

-WRITE opens the file to receiving the text and closes it upon exit from the procedure. When
the file is reopened for writing, the new material overwrites the old. To reopen to add new
records instead of overwriting existing ones, use the attribute DISP MOD when you define the
file to the operating system.

Example: Writing to a File

The following example reopens the file PASS to add new text:

DYNAM ALLOC DD PASS DA USER1.PASS.DATA MOD
-WRITE PASS &DIV &RED &TEST RESULT IS,
- &RECORDS AT END OF RUN

Supplying and Verifying Values for Variables

264

Example: Reading From and Writing to an External File

The following example illustrates reading from and writing to sequential files. It also illustrates
the use of operating system commands. The numbers in the margin refer to notes that follow
the example.

 SET HOLDLIST=PRINTONLY
 -RUN
1. -TOP
2. -PROMPT &CITY.ENTER NAME OF CITY -- TYPE QUIT WHEN DONE.
3. DYNAM ALLOC DD PASS DA USER1.PASS.DATA LRECL 80 RECFM FB
 -RUN
4. -WRITE PASS &CITY
 TABLE FILE SALES
 HEADING CENTER
 "LOWEST MONTHLY SALES FOR &CITY"
 " "
 PRINT DATE PROD_CODE
 BY LOWEST 1 UNIT_SOLD
 BY STORE_CODE
 BY CITY
 IF CITY EQ &CITY
 FOOTING CENTER
 "CALCULATED AS OF &DATE"
 ON TABLE SAVE AS INFO
 END

5. -RUN
6. DYNAM ALLOC DD LOG DA USER1.LOG.DATA LRECL 80 RECFM FB
 -RUN
 MODIFY FILE SALES
 COMPUTE
 TODAY/I6=&YMD;
 CITY='&CITY';
 FIXFORM X5 STORE_CODE/A3 X15 DATE/A4 PROD_CODE/A3
 MATCH STORE_CODE DATE PROD_CODE
 ON MATCH TYPE ON LOG
 "<STORE_CODE><DATE><PROD_CODE><TODAY>"
 ON MATCH DELETE
 ON NOMATCH REJECT
 DATA ON INFO
 END
7. -RUN
 EX SLRPT3
8. -RUN
11. -GOTO TOP
12. -QUIT

The procedure SLRPT3, which is invoked from the calling procedure, contains the following
lines:

3. Managing Flow of Control in an Application

Developing Applications 265

9. -READ PASS &CITY.A8.
 TABLE FILE SALES
 HEADING CENTER
 "MONTHLY REPORT FOR &CITY"
 "LOWEST SALES DELETED"
 " "
 PRINT PROD_CODE UNIT_SOLD RETURNS DAMAGED
 BY STORE_CODE
 BY CITY
 IF CITY EQ &CITY
 FOOTING CENTER
 "CALCULATED AS OF &DATE"
 END
10. -RUN

The following annotations explain the logic and show the dialogue between the user and the
screen. User entries are in lowercase:

1. -TOP marks the beginning of the procedure.

2. -PROMPT sends the following prompt to the screen after the procedure is executed:

ENTER NAME OF CITY -- TYPE QUIT WHEN DONE<STAMFORD

3. DYNAM defines and opens a file named PASS.

4. -WRITE writes the value of &CITY to the sequential file named PASS. In this case the value
written is STAMFORD.

5. -RUN executes the stacked TABLE request. In this case, a sequential file named INFO is
created with the SAVE command. This is a sequential file, containing the result of the
report request as shown below.

NUMBER OF RECORDS IN TABLE= 8 LINES= 8

ALPHANUMERIC RECORD NAMED INFO
FIELDNAME ALIAS FORMAT LENGTH

UNIT_SOLD SOLD I5 5
STORE_CODE SNO A3 3
CITY CTY A15 15
DATE DTE A4MD 4
PROD_CODE PCODE A3 3

TOTAL 30
SAVED...

6. DYNAM defines a log file for the subsequent MODIFY request.

7. -RUN executes the stacked MODIFY request. The data comes directly from the INFO file
created in the prior TABLE request and is entered using FIXFORM. Hence, the product with
the lowest UNIT_SOLD is deleted from the file, and logged to a log file.

SALES FOCUS A1 ON 09/04/2003 AT 10.04.35

Supplying and Verifying Values for Variables

266

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 1

8. The next -RUN executes another procedure called SLRPT3.

9. -READ reads the value for &CITY from the sequential file PASS. In this case the value
passed is STAMFORD.

10.The -RUN executes the TABLE request and control is routed back to the calling procedure.

 MONTHLY REPORT FOR STAMFORD
 LOWEST SALES DELETED

STORE_CODE CITY PROD_CODE UNIT_SOLD RETURNS DAMAGED
---------- ---- --------- --------- ------- -------
14B STAMFORD B10 60 10 6
 B12 40 3 3
 B17 29 2 1
 C7 45 5 4
 D12 27 0 0
 E2 80 9 4
 E3 70 8 9

 CALCULATED AS OF 09/04/03

11.-GOTO TOP routes control to the top.

12.When the user types QUIT, processing ends.

Syntax: How to Read Master File Fields Into Dialogue Manager Variables

-READFILE mastername

where:

mastername

Is the name of the Master File to be read.

Reference: Usage Notes for -READFILE

A -RUN command does not close the file. You must issue a -CLOSE command to close the
file. You must be careful not to delete, change, or re-allocate the file before closing it.

If multiple fields have the same field name, only one variable is created, and it contains the
value of the last field in the Master File.

-READFILE does not work if the Master File contains DBA restrictions. The following
message is generated:

(FOC339) DIALOGUE MANAGER -READ FAILED: CHECK FILEDEF OR ALLOCATION FOR:
-READFILE filename

3. Managing Flow of Control in an Application

Developing Applications 267

-READFILE is not supported with text fields. The following message is generated:

(FOC702) THE OPTION SPECIFIED IS NOT AVAILABLE WITH TEXT FIELDS:
fieldname

-READFILE cannot read XFOCUS data sources. The file to be read must have an associated
Master File.

Example: Reading Fields From a Data Source Into Dialogue Manager Variables Using -READFILE

The following request creates a binary HOLD file, then uses -READFILE to read the first record
from the HOLD file and type the values that were retrieved into Dialogue Manager variables.
Note that the names of the variables are the field names prefixed with an ampersand:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME DEPARTMENT CURR_SAL
BY EMP_ID
ON TABLE HOLD AS READF1 FORMAT BINARY
END
-RUN
-READFILE READF1
-TYPE LAST_NAME IS &LAST_NAME
-TYPE FIRST_NAME IS &FIRST_NAME
-TYPE DEPARTMENT IS &DEPARTMENT
-TYPE CURR_SAL IS &CURR_SAL
-TYPE EMP_ID IS &EMP_ID

The output is:

> NUMBER OF RECORDS IN TABLE= 12 LINES= 12
 HOLDING BINARY FILE...
LAST_NAME IS STEVENS
FIRST_NAME IS ALFRED
DEPARTMENT IS PRODUCTION
CURR_SAL IS 11000.00
EMP_ID IS 071382660

Syntax: How to Close an External File

The -CLOSE command closes an external file opened with the -READ or -WRITE command. The
NOCLOSE option keeps a file open even when -RUN is encountered.

-CLOSE {ddname|*}

where:

ddname

Is the ddname of the open file described to FOCUS via an allocation.

Supplying and Verifying Values for Variables

268

*

Closes all -READ and -WRITE files that are currently open.

Reading or Writing an Entire File

Using the EDAGET and EDAPUT commands, you can read or write an entire file of a specified
type.

EDAGET: Reading a File of a Specified Type

Using the EDAGET command, you can retrieve and display an entire file.

The -READ command only reads one line at a time, so this is a way to avoid issuing repeated
commands for reading a single file.

Syntax: How to Read a File of a Specified Type

EX EDAGET filetype,[app/]filename,content-type

where:

filetype

Is the type of file. On z/OS, this is a DDNAME. The following table lists some of the most
common FOCUS file types. Other FOCUS-readable files use the standard extensions, and
the file types match the extensions:

File Type Extension

MASTER .mas

ACCESS .acx

FOCEXEC .fex

FOCSQL .acx

FOCSTYLE .sty

DATA .dat

FOCCOMP .fcm

FOCTEMP .ftm

3. Managing Flow of Control in an Application

Developing Applications 269

File Type Extension

FOCUS .foc

HOLDMAST .mas

HOLDACC .acx

HTML .htm

EXCEL .xls

MAINTAIN .mnt

FOCPSB .psb

TTEDIT .tte

app

Is an optional application name where the file resides. On z/OS, you can specify an app if
you have enabled application logic in the EDASERVE configuration file and created the data
sets associated with the application.

filename

Is the file name.

content-type

Is the type of data in the file. Valid values are:

T, which means a text file.

B, which means a binary file.

Note: EDAGET cannot retrieve a file that was written to memory by EDAPUT.

Example: Reading a File Using EDAGET

The following EDAGET command reads a Master File named tempmas.mas in the app1
application. The content type is text:

EX EDAget MASTER,app1/tempmast,T

Supplying and Verifying Values for Variables

270

Using the tempmas.mas file created in EDAPUT: Writing a File of a Specified Type on page
271, the output is:

FILENAME=TEMPMAST, SUFFIX=FIX,$ SEGNAME=ONE, SEGTYPE=S1 ,$
FIELD=FIELD1 ,ALIAS= ,A10 ,A10 ,$ FIELD=FIELD2 ,ALIAS= ,P18 ,A18 ,$

EDAPUT: Writing a File of a Specified Type

Using the EDAPUT command, you can write any number of lines and save them as common
FOCUS file types, either in memory or on disk.

The -WRITE command only writes one line at a time, so this is a way to avoid issuing repeated
commands for writing a single file.

Syntax: How to Write a File of a Specified Type

EX -LINES n EDAPUT filetype,[app/]filename,type,location

where:

n

Is the number of lines that will be written, including the EDAPUT line.

filetype

Is the type of file. You specify the file type and, on Windows and UNIX, the file is saved
with the associated extension. On z/OS, this is a DDNAME and the file is stored in the
PDS associated with the DDNAME. The following table lists some of the most common
FOCUS file types. Other FOCUS-readable files use the standard extensions, and the file
types match the extensions:

File Type Extension

MASTER .mas

ACCESS .acx

FOCEXEC .fex

FOCSQL .acx

FOCSTYLE .sty

DATA .dat

3. Managing Flow of Control in an Application

Developing Applications 271

File Type Extension

FOCCOMP .fcm

FOCTEMP .ftm

FOCUS .foc

HOLDMAST .mas

HOLDACC .acx

HTML .htm

EXCEL .xls

MAINTAIN .mnt

FOCPSB .psb

WINFORMS .wfm

TTEDIT .tte

app

Is an optional application name under which to store the file. On z/OS, you can specify an
app if you have enabled application logic in the EDASERVE configuration file and created
the data sets associated with the application.

filename

Is the file name.

type

Is the creation type. Valid values are:

CV, create variable.

C, create fixed

A, append to file.

location

Is the location for the created file. Valid values are:

FILE, write to current location (this will overwrite an existing file of the same name and
extension in the same location).

Supplying and Verifying Values for Variables

272

MEM, write to memory only (this will not overwrite an existing file on disk). Files written
to memory are first in the path.

Example: Writing a Master File to Disk

The following EDAPUT command writes a Master File named tempmast.mas to the app1
application directory in variable format. On z/OS, it writes member TEMPMAST to the
APP1.MASTER.DATA data set under the high-level qualifier assigned as approot in the
EDASERVE configuration file:

EX -LINES 5 EDAPUT MASTER,app1/tempmast,CV,FILE,
FILENAME=TEMPMAST, SUFFIX=FIX,$
SEGNAME=ONE, SEGTYPE=S1 ,$
 FIELD=FIELD1 ,ALIAS= ,A10 ,A10 ,$
 FIELD=FIELD2 ,ALIAS= ,P18 ,A18 ,$

Supplying Variable Values on the Command Line

When a user knows the values required by a procedure, some or all of the values can be typed
on the command line using the EXEC command following the name of the procedure. This
saves time since FOCUS now has values to pass to each local or global variable so the user is
not prompted to supply them.

Syntax: How to Supply a Variable Value on the Command Line

EX[EC] procedure [[&&][variable=]value, ...]

where:

procedure

Is the name of the procedure that contains the name/value values.

variable

Is the name of the variable for which you are supplying a value. Omit for a positional
variable.

For a local variable, do not include the ampersand in the variable name.

For a global amper variable, you must supply the double ampersand in the variable name:

EX SLRPT &&GLOBAL=value, CITY = STAMFORD, CODE1=B10, CODE2=B20

value

Is the value you are giving to the variable.

Name/value pairs must be separated by commas.

3. Managing Flow of Control in an Application

Developing Applications 273

When the list of values to be supplied exceeds the width of the terminal, insert a comma
as the last character on the line and enter the balance of the list on the following line(s),
as shown:

EX SLRPT AREA=S, CITY = STAMFORD, VERB=COUNT, FIELDS = UNIT_SOLD,
CODE1=B10, CODE2=B20

Reference: Rules for Using Named and Positional Variables With EXEC

You can mix named and positional variables freely in the EXEC command. Positional variables
are unnamed values passed to a procedure when it is invoked.

Follow these rules:

Names must be associated with values for named variables.

It is not necessary to enter the name=value pairs in the order encountered in the
procedure.

Values for positional variables must be supplied in the order that those variables are
numbered within the procedure.

If the variable is positional (it is a numbered variable), you do not need to specify the
variable name in the EXEC command. FOCUS matches the EXEC values to the positional
variables as they are encountered in the procedure. For an example, see Using Positional
Variables.

Example: Supplying Values on the Command Line

Consider the following procedure named SLRPT:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
BY CITY
IF CITY EQ &CITY
END

You can supply values for the variables as parameters using the EX command as follows:

EX SLRPT CITY=STAMFORD, CODE1=B10, CODE2=B20

Supplying and Verifying Values for Variables

274

Example: Using Positional Variables

Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &1"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &2 TO &3
BY CITY
IF CITY EQ &1
END

The EX command that calls the procedure is as follows:

EX SLRPT STAMFORD, B10, B20

This command substitutes STAMFORD for the first positional variable, B10 for the second, and
B20 for the third.

Example: Mixing Named and Positional Variables

The report request SLRPT includes named and positional variables:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
&VERB UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &1 TO &2
BY CITY
IF CITY EQ &CITY
END

The following EX command executes SLRPT and populates the named and positional variables:

EX SLRPT CITY=STAMFORD, B10, B20, VERB=COUNT

&CITY is a named variable whose value is STAMFORD.

&1 is a positional variable whose value is B10.

&2 is a positional variable whose value is B20.

&VERB is a named variable whose value is COUNT.

3. Managing Flow of Control in an Application

Developing Applications 275

Prompting Directly for Values With -PROMPT

The Dialogue Manager command -PROMPT solicits values before the variables to which they
refer are used in the procedure. The user is prompted for a value as soon as -PROMPT is
encountered. If a looping condition is present, -PROMPT requests a new value for the variable,
even if a value exists already. Thus, each time through the loop, the user is prompted for a
new value.

With -PROMPT you can specify format, text, and lists in the same way as all other variables.

Example: Prompting for Variable Values

The following is an example of the use of -PROMPT:

-PROMPT &CODE1
-PROMPT &CODE2
-SET &CITY = IF &CODE1 GT B09 THEN STAMFORD ELSE UNION;
-TYPE REGIONAL MANAGER FOR &CITY
-PROMPT ®IONMGR
 TABLE FILE SALES
 HEADING CENTER
 "MONTHLY REPORT FOR &CITY"
 "PRODUCT CODES FROM &CODE1 TO &CODE2"
 SUM UNIT_SOLD AND RETURNS AND COMPUTE
 RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
 BY CITY
 IF CITY EQ &CITY
 BY PROD_CODE
 IF PROD_CODE IS-FROM &CODE1 TO &CODE2
 FOOTING CENTER
 "REGION MANAGER: ®IONMGR"
 "CALCULATED AS OF &DATE"
 END

-PROMPT sends the following prompts to the screen. User input is shown in lowercase:

PLEASE SUPPLY VALUES REQUESTED

CODE1= > b10
CODE2= > b20
REGIONAL MANAGER FOR STAMFORD
REGIONMGR= > smith

Note how the sequence of supplied values determines the overall flow of the procedure. The
value of &CODE1 determines the value of &CITY that gives meaning to the -TYPE command. -
TYPE gives the user the necessary information to make the correct choice when supplying the
value for ®IONMGR.

By default, all user input is automatically converted to uppercase.

Supplying and Verifying Values for Variables

276

Prompting for Values on Screens With -CRTFORM

-CRTFORM sets up full-screen menus for entering values. The -CRTFORM command in Dialogue
Manager and the CRTFORM command in MODIFY are two versions of FIDEL for use in different
contexts. The syntax, functions and features are fully outlined in the Maintaining Databases
manual.

Prompting for Values on Menus and Windows With -WINDOW

You can create a series of menus and windows using Window Painter, and then display those
menus and windows on the screen using the -WINDOW command. When displayed, the menus
and windows collect data by prompting a user to select a value, to enter a value, or to press a
program function (PF) key For details, see Designing Windows With Window Painter on page
455.

Prompting for Values Implicitly

If a value for a variable is not supplied by any other means, FOCUS automatically prompts the
user for the value. This is known as an implicit prompt. These prompts occur sequentially as
each variable is encountered in the procedure.

Example: Automatically Prompting for Variable Values

Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
.
.
.
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
.
.
.
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

When you execute the procedure, FOCUS prompts for the values for the variables one at a
time. The terminal dialogue is as follows. User input is in lowercase:

3. Managing Flow of Control in an Application

Developing Applications 277

PLEASE SUPPLY VALUES REQUESTED

CODE1= > b10
CODE2= > b20
REGIONAL MANAGER FOR STAMFORD
REGIONMGR= > smith

At the point when all variables have values, FOCUS processed the report request.

Verifying User-Supplied Values Against a Set of Format Specifications

You can specify variables with format conditions against which entered values can be
compared. If the entered values do not have the specified format, FOCUS prints error
messages and prompts the user again for the value(s).

Reference: Format Specifications for Variables

Alphanumeric formats are described by the letter A followed by the number of characters. The
number of characters can be from 1 to 3968.

Numeric formats are described by the letter I, followed by the number of digits to be entered.
The number of digits can be from 1 to 10 (value must be less than 231-1), and the value
supplied for the number can contain a decimal point.

The description of the format must be enclosed by periods.

If you test field names against input variable values, specify formats of the input variables. If
you do not, and the supplied value exceeds the format specification from the Master File, the
procedure is ended and error messages are displayed. To continue, the procedure must be
executed again. However, if you do include the format, and the supplied value exceeds the
format, Dialogue Manager rejects the value and the user is prompted again.

Note: FOCUS internally stores all Dialogue Manager variables as alphanumeric codes. To
perform arithmetic operations, Dialogue Manager converts the variable value to double-
precision floating point decimal and then converts the result back to alphanumeric codes,
dropping the decimal places. For this reason, do not perform tests that look for the decimal
places in the numeric codes.

Example: Using a Format Specification to Verify User Input

Consider the following format specification:

&STORECODE.A3.

Supplying and Verifying Values for Variables

278

No special message is sent to the screen detailing the specified format. However, if in the
above example the user enters more than three alphanumeric characters, the value is
rejected, the error message FOC291 is displayed and the user is prompted again.

Note the following example detailing the dialogue between FOCUS and the user:

PLEASE SUPPLY VALUES REQUESTED

STORECODE= > cc14
(FOC291) THE VALUE IN THE PROMPT REPLY EXCEEDS THE MAXIMUM LENGTH: 03
CHARS:CC14
STORECODE=

Verifying User Input Against a Pre-Defined List of Values

You can define values that constitute acceptable responses to prompts. If the user does not
enter one of the available options, the terminal displays the list and re-prompts the user. This
is an excellent way to limit the values supplied and to provide help information to the screen
while prompting.

In addition, you can supply text that either explains what type of value is needed or lists
choices of acceptable values on the screen.

Example: Providing a List of Valid Values With -PROMPT

The following lists acceptable responses for &CITY:

-PROMPT &CITY.(STAMFORD,UNIONDALE,NEWARK).

A message is printed if the user does not respond with one of the values on the list. This is
followed by a display of the values list. Then, another prompt is issued for the needed value.
For example:

PLEASE SUPPLY VALUES REQUESTED

CITY= > union
PLEASE CHOOSE ONE OF THE FOLLOWING:
 STAMFORD,UNIONDALE,NEWARK
CITY= >

Syntax: How to Create a Reply List as a Variable

You can provide a reply list as a variable, then prompt for the values you have defined for that
variable. The syntax is

-SET &list='value,...';
-PROMPT &variable.(&list)[.text.]

3. Managing Flow of Control in an Application

Developing Applications 279

where:

list

Is the name of the reply list variable. Note that in the -PROMPT command, the value is
substituted between the parentheses and delimited by periods. If the prompt text has
parentheses, enclose that text in single quotation marks (').

value

Is the desired value. You may list more than one value, separated by commas. Enclose the
value(s) in single quotation marks ('). A semicolon is required when using -SET.

variable

Is the name of the variable for which you are prompting the user for values.

.text

Optionally provides prompting text.

Example: Using a Variable to Provide a Reply List

In this example, three acceptable values are defined for &CITY:

-SET &CITIES='STAMFORD,UNIONDALE,NEWARK';
-PROMPT &CITY.(&CITIES).'(ENTER CITY)'.

The resulting screen is exactly the same as when the list itself is provided in the parentheses.
See Providing a List of Valid Values With -PROMPT.

You can also create more complex combinations. For example:

-SET &CITIES=IF &CODE1 IS B10 THEN 'STAMFORD, NEWARK'
- ELSE 'STAMFORD, UNIONDALE, NEWARK';

Example: Supplying Text for Variable Prompting

This example uses customized text to prompt for a values for &CITY, &CODE1, &CODE2, and
®IONMGR:

Supplying and Verifying Values for Variables

280

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY.ENTER CITY. "
 .
 .
 .
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1.A3.BEGINNING CODE. TO
 &CODE2.A3.ENDING CODE.
 .
 .
 .
"REGION MANAGER: ®IONMGR.REGIONAL SUPERVISOR."
"CALCULATED AS OF &DATEMDYY"
END

Notice that text has been specified for &CITY and ®IONMGR without specification of a
format.

Based on the example, the terminal displays the following prompts one by one:

ENTER CITY
stamford
BEGINNING CODE
b10
ENDING CODE
b20
REGIONAL SUPERVISOR
smith

Manipulating and Testing Variables

You can use a variety of techniques to manipulate and test Dialogue Manager variables.

You can screen a value by adding a suffix to the variable value:

The .LENGTH suffix tests the length of a value.

The .TYPE suffix tests the type of a value.

The .EXIST suffix tests the presence of a value.

The .EVAL suffix replaces a variable with its value.

You can use the -SET command alone or in conjunction with other commands and functions
to manipulate the values for variables in order to:

Concatenate variables and/or literals. See Concatenating Variables on page 289.

Create an index for variables. See Creating an Indexed Variable on page 290.

3. Managing Flow of Control in an Application

Developing Applications 281

Perform calculations on a variable. See Performing a Calculation on a Variable on page
295.

Change variable values. See Changing a Variable Value With the DECODE Function on
page 295.

Extract and insert characters. See Extracting Characters From a Variable Value With the
EDIT Function on page 296.

Remove trailing blanks. See Removing Trailing Blanks From Variables With the TRUNCATE
Function on page 297.

Call other functions. See Calling a Function on page 299.

You can determine the command structure of a procedure based on the value of a variable.
See Using Variables to Alter Commands on page 301.

Testing Variables for Length, Type, and Existence

To ensure that a supplied value is valid and being used properly in a procedure, you can test it
for presence, type, and length. For example, you would not want to perform a numerical
computation on a variable for which alphanumeric data has been supplied.

Syntax: How to Screen a Variable Value for Length and TYPE

-IF &name{.LENGTH|TYPE} rest_of_expression GOTO label...;

where:

&name

Is a user-supplied variable.

.LENGTH

Tests for the length of a value. If a value is not present, a zero (0) is passed to the
expression. Otherwise, the number of characters in the value is passed.

.TYPE

Tests for the type of a value. The letter N (numeric) is passed to the expression if the
value can be interpreted as a number up to 231-1 and stored in four bytes as a floating
point format. In Dialogue Manager, the result of an arithmetic operation with numeric fields
is truncated to an integer after the whole result of an expression is calculated. If the value
could not be interpreted as numeric, the letter A (alphanumeric) is passed to the
expression. If the value is not defined, the letter U is passed to the expression.

Manipulating and Testing Variables

282

rest_of_expression

Is the remainder of an expression that uses &name with the specified suffix.

GOTO label

Specifies a label to branch to.

Example: Testing for Variable Length

If the length of &OPTION is more than one character, control passes to the label -FORMAT,
which informs the client application that only a single character is allowed.

-IF &OPTION.LENGTH GT 1 GOTO FORMAT ELSE
-GOTO PRODSALES;
 .
 .
 .
-PRODSALES
 TABLE FILE SALES
 .
 .
 .
 END
-EXIT
-FORMAT
-TYPE ONLY A SINGLE CHARACTER IS ALLOWED.

Example: Storing the Length of a Variable

The following example sets the variable &WORDLEN to the length of the string contained in the
variable &WORD.

-PROMPT &WORD.ENTER WORD.
-SET &WORDLEN = &WORD.LENGTH;

You can use this technique when you want to use one variable to populate another.

Example: Testing for Variable Type

If &OPTION is not alphanumeric, control passes to the label -NOALPHA, which informs the
client application that only alphanumeric characters are allowed.

3. Managing Flow of Control in an Application

Developing Applications 283

-IF &OPTION.TYPE NE A GOTO NOALPHA ELSE
- GOTO PRODSALES;
 .
 .
 .
-PRODSALES
 TABLE FILE SALES
 .
 .
 .
 END
-EXIT
-NOALPHA
-TYPE ENTER A LETTER ONLY.

Syntax: How to Test for the Presence of a Variable Value

-IF &name.EXIST GOTO label...;

where:

&name

Is a user-supplied variable.

.EXIST

Tests for the presence of a value. If a value is not present, a zero (0) is passed to the
expression. Otherwise, a non-zero value is passed.

GOTO label

Specifies a label to branch to.

Example: Testing for the Presence of a Variable

If no value is supplied, &OPTION.EXIST is equal to zero and control is passed to the label
‑CANTRUN. The procedure sends a message to the client application and then exits. If a value
is supplied, control passes to the label ‑PRODSALES.

-IF &OPTION.EXIST GOTO PRODSALES ELSE GOTO CANTRUN;
 .
 .
 .
-PRODSALES
 TABLE FILE SALES
 .
 .
 .

Manipulating and Testing Variables

284

 END
-EXIT
-CANTRUN
-TYPE TOTAL REPORT CAN'T BE RUN WITHOUT AN OPTION.
-EXIT

Replacing a Variable Immediately

The .EVAL operator enables you to replace a variable with its value immediately, making it
possible to change a procedure dynamically. The .EVAL operator is particularly useful in
modifying code at run time.

Reference: Usage Notes for .EVAL

A Dialogue Manager variable is a placeholder for a value that will be substituted at run time. In
some situations, the value of the variable may not be resolved at the point where the
command containing the variable is encountered, unless evaluation is forced by using
the .EVAL operator. One example where .EVAL Is required is in a -IF statement, when the
variable is embedded in a label (for example, GOTO AB&label.EVAL). The .EVAL operator is also
required any time a variable is included within single quotation marks (').

Syntax: How to Replace a Variable Immediately

[&]&variable.EVAL

where:

variable

Is a local or global variable.

When the command procedure is executed, the expression is replaced with the value of the
specified variable before any other action is performed. The command that contains this value
is then re-evaluated.

Without the .EVAL operator, a variable cannot be used in place of some commands.

Example: Replacing a Variable Immediately

The following example illustrates how to use the .EVAL operator in a record selection
expression. The numbers to the left apply to the notes that follow the procedure:

3. Managing Flow of Control in an Application

Developing Applications 285

1. -SET &R='IF SALARY GT 100000';
2. -IF &Y EQ 'YES' THEN GOTO START;
3. -SET &R = '-*';
 -START
4. TABLE FILE CENTHR
 SUM SALARY
 BY PLANT
5. &R.EVAL
 END

The procedure executes as follows:

1. The procedure sets the value of &R to 'IF SALARY GT 100000'.

2. If &Y is YES, the procedure branches to the START label, bypassing the second -SET
command.

3. If &Y is NO, the procedure continues to the second -SET command, which sets &R to '-*',
which is a comment.

The report request is stacked.

4. The procedure evaluates the value of &R. If the end user wanted a record selection test,
the value of &R is 'IF SALARY GT 100000' and this line is stacked.

5. If the end user does not want a record selection test, the value of &R is '-*' and this line is
ignored.

Example: Using .EVAL to Interpret a Variable

Without .EVAL, Dialogue Manager interprets a variable only once. Therefore, in the following
example,

-SET &A='-TYPE';
&A HELLO

Dialogue Manager does not recognize that &A is the -TYPE command so it does not display the
word HELLO and generates the error message:

UNKNOWN FOCUS COMMAND -TYPE

Appending the .EVAL operator to the &A variable enables Dialogue Manager to interpret the
variable correctly. The code

-SET &A='-TYPE';
&A.EVAL HELLO

Manipulating and Testing Variables

286

produces the following output:

HELLO
>>

Validating Variable Values Without Data File Access: REGEX

You can validate a parameter value without accessing the data by using the REGEX mask. The
REGEX mask specifies a regular expression to be used as the validation string. A regular
expression is a sequence of special characters and literal characters that you can combine to
form a search pattern.

Many references for regular expressions exist on the web. For a basic summary, see the
section Summary of Regular Expressions in Chapter 2, Security, of the Server Administration
manual.

The following messages display in case of an error:

(FOC2909) INVALID REGULAR EXPRESSION:
(FOC2910) RESPONSE DOES NOT MATCH THE REGULAR EXPRESSION:

Syntax: How to Validate a Variable Value Using a REGEX Mask

&variable.(|VALIDATE=REGEX,REGEX='regexpression').

where:

&variable

Is the variable to validate.

regexpression

Is the regular expression that specifies the acceptable values.

3. Managing Flow of Control in an Application

Developing Applications 287

Example: Using a REGEX Mask to Validate a Social Security Number

The following request validates a Social Security number in either xxxxxxxxx or xxx-xx-xxxx
format:

-REPEAT NEXTFMT FOR &FMTCNT FROM 1 TO 2
-SET &EMPID1=DECODE &FMTCNT(1 '071382660' 2 '818-69-2173');
-SET &EMPID=IF
 &EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\-?\d{2}\-?\d{4}$').Employee ID.
CONTAINS '-'
- THEN EDIT(&EMPID1,'999$99$9999') ELSE &EMPID1;
TABLE FILE EMPLOYEE
HEADING
" "
"Testing EMPID = &EMPID1</
1"
PRINT EID CSAL
WHERE EID EQ '&EMPID.EVAL'
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
END
-RUN
-NEXTFMT

The output is

Testing EMPID = 071382660

EMP_ID CURR_SAL
071382660 $11,000.00

Testing EMPID = 818-69-2173

EMP_ID CURR_SAL
818692173 $27,062.00

Example: Using REGEX With an Incorrect Value

In the following request, the second value for &EMPID1 is invalid because it does not conform
to the REGEX mask:

-REPEAT NEXTFMT FOR &FMTCNT FROM 1 TO 2
-SET &EMPID1=DECODE &FMTCNT(1 '071382660' 2 '818-69-2173');
-TYPE EMPID1 = &EMPID1
-SET &EMPID=&EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\d{2}\d{4}$').Employee
ID.;
-TYPE EMPID = &EMPID
-NEXTFMT

Manipulating and Testing Variables

288

The FOC2910 message in the output shows that the second value for &EMPID1 was rejected:

EMPID1 = 071382660
EMPID = 071382660
EMPID1 = 818-69-2173
 ERROR AT OR NEAR LINE 7 IN PROCEDURE __WCFEX FOCEXEC *
(FOC2910) RESPONSE DOES NOT MATCH THE REGULAR EXPRESSION: 818-69-2173
 ERROR AT OR NEAR LINE 7 IN PROCEDURE __WCFEX FOCEXEC *
(FOC295) A VALUE IS MISSING FOR: &EMPID1

Example: Using REGEX With an Invalid Regular Expression

In the following request, the REGEX mask is not a valid regular expression:

-SET &EMPID1='071382660';
-SET &EMPID=&EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\d{2)}\d{4}$').Employee
ID.;

The FOC2909 message in the output shows that the regular expression is not valid:

ERROR AT OR NEAR LINE 5 IN PROCEDURE __WCFEX FOCEXEC *
(FOC2909) INVALID REGULAR EXPRESSION: ^\d{3}\d{2)}\d{4}$
 ERROR AT OR NEAR LINE 5 IN PROCEDURE __WCFEX FOCEXEC *
(FOC295) A VALUE IS MISSING FOR: &EMPID1

Concatenating Variables

You can append a variable to a character string or combine two or more variables and/or
literals. See the Creating Reports manual for complete information on concatenation. When
using variables, it is important to separate each variable from the concatenation symbol (||)
with a space.

Syntax: How to Concatenate Variables

-SET &name3 = &name1 || &name2;

where:

&name3

Is the name of the concatenated variable.

&name1 || &name2

Are the variables, separated by a space and the concatenation symbol.

Note: The example shown uses strong concatenation, indicated by the || symbol. Strong
concatenation moves any trailing blanks from &name1 to the end of the result. Conversely,
weak concatenation, indicated by the symbol |, preserves any trailing blanks in &name1.

3. Managing Flow of Control in an Application

Developing Applications 289

Creating an Indexed Variable

You can append the value of one variable to the value of another variable, creating an indexed
variable. This feature applies to both local and global variables.

If the indexed value is numeric, the effect is similar to that of an array in traditional computer
programming languages. For example, if the value of index &K varies from 1 to 10, the variable
&AMOUNT.&K refers to one of ten variables, from &AMOUNT1 to &AMOUNT10.

A numeric index can be used as a counter; it can be set, incremented, and tested in a
procedure.

Syntax: How to Create an Indexed Variable

-SET &name.&index[.&index...] = expression;

where:

&name

Is a variable.

.&index

Is a numeric or alphanumeric variable whose value is appended to &name. The period is
required.

When more than one index is used, all index values are concatenated and the string
appends to the name of the variable.

For example, &V.&I.&J.&K is equivalent to &V1120 when &I=1, &J=12, and &K=0.

expression

Is a valid expression. For information on the kinds of expressions you can write, see the
Creating Reports manual.

Example: Using an Indexed Variable in a Loop

An indexed variable can be used in a loop. The following example creates the equivalent of a
DO loop used in traditional programming languages:

-SET &N = 0;
-LOOP
-SET &N = &N+1;
-IF &N GT 12 GOTO OUT;
-SET &MONTH.&N=&N;
-TYPE &MONTH.&N
-GOTO LOOP
-OUT

Manipulating and Testing Variables

290

In this example, &MONTH is the indexed variable and &N is the index. The value of the index is
supplied through the command -SET; the first -SET initializes the index to 0, and the second -
SET increments the index each time the procedure goes through the loop.

If the value of an index is not defined prior to reference, a blank value is assumed. As a result,
the name and value of the indexed variable do not change.

Indexed variables are included in the system limit of 1024, which includes variables reserved
by FOCUS.

Creating a Standard Quote-Delimited String

Character strings must be enclosed in single quotation marks to be handled by most database
engines. In addition, embedded single quotation marks are indicated by two contiguous single
quotation marks. FOCUS, WebFOCUS, and iWay require quotes around variables containing
delimiters, which include spaces and commas.

The QUOTEDSTRING suffix on a Dialogue Manager variable applies the following two
conversions to the contents of the variable:

Any single quotation mark embedded within a string is converted to two single quotation
marks.

Single quotation marks are added around the string.

Dialogue Manager commands differ in their ability to handle character strings that are not
enclosed in single quotation marks and contain embedded blanks. An explicit or implied
‑PROMPT command can read such a string. The entire input string is then enclosed in single
quotation marks when operated on by .QUOTEDSTRING.

Note: When using the -SET command to reference a character string, ensure the character
string is enclosed in single quotes to prevent errors.

Syntax: How to Create a Standard Quote-Delimited Character String

&var.QUOTEDSTRING

where:

&var

Is a Dialogue Manager variable.

Example: Creating a Standard Quote-Delimited Character String

The following example shows the results of the QUOTEDSTRING suffix on input strings.

3. Managing Flow of Control in an Application

Developing Applications 291

-SET &A = ABC;
-SET &B = 'ABC';
-SET &C = O'BRIEN;
-SET &D = 'O'BRIEN';
-SET &E = 'O''BRIEN';
-SET &F = O''BRIEN;
-SET &G = OBRIEN';
-TYPE ORIGINAL = &A QUOTED = &A.QUOTEDSTRING
-TYPE ORIGINAL = &B QUOTED = &B.QUOTEDSTRING
-TYPE ORIGINAL = &C QUOTED = &C.QUOTEDSTRING
-TYPE ORIGINAL = &D QUOTED = &D.QUOTEDSTRING
-TYPE ORIGINAL = &E QUOTED = &E.QUOTEDSTRING
-TYPE ORIGINAL = &F QUOTED = &F.QUOTEDSTRING
-TYPE ORIGINAL = &G QUOTED = &G.QUOTEDSTRING

The output is:

ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O''BRIEN QUOTED = 'O''''BRIEN'
ORIGINAL = OBRIEN' QUOTED = 'OBRIEN'''

ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O''BRIEN QUOTED = 'O''''BRIEN'
ORIGINAL = OBRIEN' QUOTED = 'OBRIEN'''

Note: The -SET command will remove single quotes around a string. Notice in the example
above that the result of -SET &B = 'ABC' was changed to ORIGINAL = ABC (as shown in the
output), prior to the QUOTEDSTRING conversion.

Example: Converting User Input to a Standard Quote-Delimited Character String

The following -TYPE command accepts quoted or unquoted input and displays quoted output.

-TYPE THE QUOTED VALUE IS: &E.QUOTEDSTRING

The output is:

PLEASE SUPPLY VALUES REQUESTED
E=
O'BRIEN
THE QUOTED VALUE IS: 'O''BRIEN'

Manipulating and Testing Variables

292

Example: Using Quote-Delimited Strings With Relational Data Adapters

The following procedure creates an Oracle table named SQLVID from the VIDEOTRK data
source.

TABLE FILE VIDEOTRK
SUM CUSTID EXPDATE PHONE STREET CITY STATE ZIP
 TRANSDATE PRODCODE TRANSCODE QUANTITY TRANSTOT
BY LASTNAME BY FIRSTNAME
WHERE LASTNAME NE 'NON-MEMBER'
ON TABLE HOLD
END
-RUN
CREATE FILE SQLVID
-RUN
MODIFY FILE SQLVID
FIXFORM FROM HOLD
DATA ON HOLD
END

Consider the following SQL Translator request:

SET TRACEUSER = ON
SET TRACEON = STMTRACE//CLIENT
SQL
SELECT *
FROM SQLVID WHERE LASTNAME = &1.QUOTEDSTRING;
END

When this request is executed, you must enter a last name, in this case O'BRIEN:

PLEASE SUPPLY VALUES REQUESTED
1=
O'BRIEN

In the generated SQL request, the character string used for the comparison is correctly
enclosed in single quotation marks, and the embedded single quote is doubled:

SELECT SQLCOR01.CIN , SQLCOR01.LN , SQLCOR01.FN ,
SQLCOR01.EXDAT , SQLCOR01.TEL , SQLCOR01.STR , SQLCOR01.CITY ,
SQLCOR01.PROV , SQLCOR01.POSTAL_CODE , SQLCOR01.OUTDATE ,
SQLCOR01.PCOD , SQLCOR01.TCOD , SQLCOR01.NO , SQLCOR01.TTOT
FROM SQLVID SQLCOR01 WHERE SQLCOR01.LN = 'O''BRIEN';

The output is:

CIN LN FN ...
--- -- -- ...
5564 O'BRIEN DONALD ...

The following input variations are translated to the correct form of quoted string demonstrated
in the trace.

3. Managing Flow of Control in an Application

Developing Applications 293

'O'BRIEN'
'O''BRIEN'

Any other variation results in:

A valid string that does not match the database value and does not return any rows. For
example, O''''BRIEN becomes 'O''''''''BRIEN' in the WHERE predicate.

An invalid string that produces one of the following messages:

Error - Semi-colon or END expected

Error - Missing or Misplaced quotes

Error - (value entered) is not a valid column

Error - Syntax error on line ... Unbalanced quotes

Strings without embedded single quotation marks can be entered without quotes or embedded
in single quotation marks, either SMITH or 'SMITH'.

If you use &1 without the QUOTEDSTRING suffix in the request, acceptable input strings that
retrieve O'Brien's record are:

'''O'''BRIEN'''
'''O''''BRIEN'''

Using &1 without the QUOTEDSTRING suffix, the acceptable form of a string without embedded
single quotation marks is '''SMITH'''.

To make a string enclosed in single quotation marks acceptable without the QUOTEDSTRING
suffix, use '&1' in the request. In this case, in order to retrieve O'Brien's record, you must
enter the string that would have resulted from the QUOTEDSTRING suffix:

'O''''BRIEN'

To enter a string without embedded single quotation marks using '&1', you can either omit the
surrounding single quotation marks or include them: SMITH or 'SMITH'.

Note: The form '&1.QUOTEDSTRING' is not supported.

Reference: Usage Notes for Quote-Delimited Character Strings

An unmatched single quotation mark at the beginning of a character string is treated as invalid
input and generates the following message:

(FOC257) MISSING QUOTE MARKS: value;

Manipulating and Testing Variables

294

Performing a Calculation on a Variable

You can use -SET to define a value for a substituted variable based on the results of a logical
or arithmetic expression or a combination.

Syntax: How to Perform a Calculation on a Variable

-SET &name = expression;

where:

&name

Is a user-supplied variable that has its value assigned with the expression.

expression

Is an expression following the rules outlined in the Creating Reports manual, but with
limitations as defined in this topic. The semicolon after the expression is required to
terminate the -SET command. For information about setting a precision for Dialogue
Manager calculations, see How to Specify Precision for Dialogue Manager Calculations on
page 259.

Example: Altering a Variable Value

The following example demonstrates the use of -SET to alter variable values based on tests.

-START
-TYPE RETAIL PRICE ABOVE OR BELOW $1.00 IN THIS REPORT?
-PROMPT &CHOICE.ENTER A OR B.
-SET &REL = IF &CHOICE EQ A THEN 'GT' ELSE 'LT';
 TABLE FILE SALES
 PRINT PROD_CODE UNIT_SOLD RETAIL_PRICE
 BY STORE_CODE BY DATE
 IF RETAIL_PRICE &REL 1.00
 END

In the example, the &CHOICE variable receives either A or B as the value supplied through -
PROMPT. Assuming the user enters the letter A, -SET assigns the string value GT to &REL.
Then, the value GT is passed to the &REL variable in the procedure, so that the expanded
FOCUS command at execution time is:

IF RETAIL_PRICE GT 1.00

Changing a Variable Value With the DECODE Function

You can use the DECODE function to change a variable to an associated value.

3. Managing Flow of Control in an Application

Developing Applications 295

Example: Changing the Value of a Variable

In this example the variable refers to a label:

1. -PROMPT &SELECT. ENTER CHOICE (A,B,C,D,E).
2. -SET &GO=DECODE &SELECT (A ONE B TWO C THREE
 - D FOUR E FIVE ELSE EXIT);
3. -GOTO &GO
 -ONE
 .
 .
 .
 -TWO
 .
 .
 .

The example processes as follows:

1. -PROMPT prompts the user at the terminal for a value for the variable &SELECT. Assume
the user enters A.

2. -SET defines the variable &GO in terms of the DECODE function. Depending on the value
input for &SELECT, DECODE associates a substitution. In this case, ONE is substituted for
A.

3. -GOTO &GO transfers control to the label -ONE.

In the example, &GO can be another procedure (see Dialogue Manager Quick Reference on
page 313) that is executed, depending on the value that is decoded:

-TOP
-TYPE
-PROMPT &SELECT.ENTER 1, 2, 3, 4, 5, OR EXIT TO END.
-SET &GO=DECODE &SELECT (1 ONE 2 TWO 3 THREE
- 4 FOUR 5 FIVE ELSE EXIT);
-IF &GO IS EXIT GOTO EXIT;
EX &GO
-RUN
-GOTO TOP
-EXIT

For more information on DECODE, see the Using Functions manual.

Extracting Characters From a Variable Value With the EDIT Function

You can use the mask option of the EDIT function with amper variables. You can insert
characters into an alphanumeric value, or extract certain characters from the value.

Manipulating and Testing Variables

296

Example: Extracting a Character From a Variable

In this example, EDIT extracts a particular character, in this case the J, for comparison in order
to branch to the appropriate label. Assume there are nested menus and the user must supply
a number to branch to a particular menu. If the first character is a J, the branch is to the label
JUMP that enables the user to jump in nested menus (the numbers refer to the explanation
below):

1. -TYPE CHOOSE 1 for Edit, 2 for Print, 3 for Math
1. -TYPE TO JUMP LEVELS OF MENUS TYPE J1.3 ETC.
2. -PROMPT &OPTION.A4.Please enter selection:.
3. -SET &XYZ = EDIT(&OPTION, '9$$$');
4. -IF &XYZ EQ J THEN GOTO JUMP;
 .
 .
 .
5. -JUMP
 .
 .
 .

The example processes as follows:

1. -TYPE send messages to the screen explaining the options to the user.

2. -PROMPT asks the user to enter a value for the variable &OPTION. It can have as many as
four characters.

3. -SET calculates the variable &XYZ, which is the &OPTION variable, using the mask option of
EDIT. The first character is screened.

4. -IF determines the branch. If the variable &XYZ is equal to J, processing continues to the
label JUMP. Otherwise, processing continues to the next command in the procedure.

5. -JUMP is a label. The coding that follows contains the necessary FOCUS commands to
enable the user to jump to the various menus.

Removing Trailing Blanks From Variables With the TRUNCATE Function

The Dialogue Manager TRUNCATE function removes trailing blanks from Dialogue Manager
amper variables and adjusts the length accordingly.

The Dialogue Manager TRUNCATE function has only one argument, the string or variable to be
truncated. If you attempt to use the Dialogue Manager TRUNCATE function with more than one
argument, the following error message is generated:

(FOC03665) Error loading external function 'TRUNCATE'

3. Managing Flow of Control in an Application

Developing Applications 297

This function can only be used in Dialogue Manager commands that support function calls,
such as -SET and -IF commands. It cannot be used in -TYPE or -CRTFORM commands or in
arguments passed to stored procedures.

Note: A user-written function of the same name can exist without conflict.

Syntax: How to Remove Trailing Blanks From Variables

-SET &var2 = TRUNCATE(&var1);

where:

&var2

Is the Dialogue Manager variable to which the truncated string is returned. The length of
this variable is the length of the original string or variable minus the trailing blanks. If the
original string consisted of only blanks, a single blank, with a length of one is returned.

&var1

Is a Dialogue Manager variable or a literal string enclosed in single quotation marks.
System variables and statistical variables are allowed as well as user-created local and
global variables.

Example: Removing Trailing Blanks

The following example shows the result of truncating trailing blanks:

-SET &LONG = 'ABC ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABC LENGTH = 03

The following example shows the result of truncating a string that consists of all blanks:

-SET &LONG = ' ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

Manipulating and Testing Variables

298

The output is:

LONG = LENGTH = 06
RESULT = LENGTH = 01

The following example uses the TRUNCATE function as an argument for EDIT:

-SET &LONG = 'ABC ' ;
-SET &RESULT = EDIT(TRUNCATE(&LONG)|'Z','9999');
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABCZ LENGTH = 04

Calling a Function

Any function name encountered in a Dialogue Manager expression that is not recognized as a
system standard name or FOCUS function is assumed to be a function. These functions are
externally programmed by users and stored in a library that is available at the time referenced.
One or more arguments are passed to the user program, which performs an operation or
calculation and returns a single value or character string.

Dialogue Manager variables can receive the values from functions through the -SET command.

Syntax: How to Set a Variable Value Based on the Result From a Function

-SET &name = routine(argument,...,'format');

where:

name

Is the name of the variable in which the result is stored.

routine

Is the name of the function.

argument

Represents the argument(s) that must be passed to the function. Numeric arguments are
converted to double-precision (D) format.

3. Managing Flow of Control in an Application

Developing Applications 299

format

Is the predefined format of the result. This is used to convert numeric results back to
character representation. It must be enclosed in single quotation marks.

Example: Setting a Variable Value Based on the Result From a Function

In the following example, FOCUS invokes the function RATE, adds 0.5 to the calculated value,
and then formats the result as a double precision number. This result is then stored in the
variable &COST:

-PROMPT &COMPANY.WHAT COMPANY ARE YOU USING?.
-PROMPT &DEST.WHERE ARE YOU SENDING THE PACKAGE TO?.
-PROMPT &WEIGHT.HOW HEAVY IS THE PACKAGE IN POUNDS?.
-SET &COST = RATE(&COMPANY,&DEST,&WEIGHT,'D6.2') + 0.5;
-TYPE THE COST TO SEND A &WEIGHT pound PACKAGE
-TYPE TO &DEST BY &COMPANY IS &COST

Syntax: How to Load and Execute a Function With -TSO/-MVS RUN

These Dialogue Manager commands cause a function to be loaded and executed.

The commands provide an alternative to -SET, which is generally the preferred method for
calling user-supplied functions (see How to Set a Variable Value Based on the Result From a
Function on page 299).

However,-TSO/-MVS RUN must be used for this purpose when the function being called:

Does not have arguments.

Has no return argument.

Does not accept numeric arguments in double precision format. In this case it is the user's
responsibility to do the appropriate conversion.

The syntax is

{-TSO|-MVS} RUN routine[, argument,...]

where:

routine

Is the name of the function.

argument

Represents the argument(s) being passed to the function. Arguments that are variables
must have sizes predefined in prior -SET commands.

Manipulating and Testing Variables

300

If you use this syntax, please note the foIlowing:

If the function returns a value that is not alphanumeric, Dialogue Manager is not able to
display or interpret the value correctly.

You must convert all numeric arguments to double precision before they are passed to the
function. (You can use the ATODBL function to convert them.) However, if any portion of the
double precision number can be interpreted as an EBCDIC comma, Dialogue Manager
incorrectly interprets this argument as two arguments.

A user-written function may employ an argument for both input and output purposes. It is
the responsibility of the user program to move the correct number of characters into the
output variables.

Example: Loading and Executing a Function

In this example, the function is CODENAME. The arguments that are variables are either
prompted for or set at the beginning of the procedure and values are then supplied for the
arguments.

-PROMPT &MYCODE.A3.
-SET &MYNAME = '';
-SET &MYFACTOR = '' ;
-TSO RUN CODENAME,&MYCODE,&MYNAME,&MYFACTOR

Using Variables to Alter Commands

A variable can refer to a FOCUS command or to a particular field. Therefore, the command
structure of a procedure can be determined by the value of the variable.

Example: Using a Variable to Control What the TABLE Command Prints

In this example, the variable &FIELD determines the field to print in the TABLE request.

In the file named SALES, the variable &FIELD can display the values RETURNS, DAMAGED, or
UNIT_SOLD.

TABLE FILE SALES
 .
 .
 .
PRINT &FIELD
BY PROD_CODE
 .
 .
 .

3. Managing Flow of Control in an Application

Developing Applications 301

Using Numeric Amper Variables in Functions

FOCUS stores all amper variables as strings in alphanumeric format whether they contain
alphanumeric or numeric data or a mixture of the two. There are only two data types available
to amper variables: alphanumeric and numeric.

Determining Amper Variable Data Type

Data typing for amper variables is determined by the data content only. As a result, using
quotation marks around a numeric value in a -SET command has no effect on the data type of
the amper variable.

For example, the following request stores numeric data in variables &A, &B, and &C:

-SET &A=12345;
-SET &B='12345';
-SET &C=123.45
-TYPE &A &B &C
-TYPE &A.TYPE &B.TYPE &C.TYPE

The output shows that &A, &B, and &C all have the numeric data type:

12345 12345 123.45
N N N

Manipulating Amper Variables

When an amper variable is displayed, substituted, concatenated, or appended, there is no
transformation of the value contained in the amper variable.

Substitution

-SET &C=123.45
IF RETAIL_COST EQ &C

becomes

IF RETAIL_COST EQ 123.45

Also, consider the following:

-SET &D= &C;
-TYPE &D &D.TYPE

The output shows that &D has the same value as &C and is also numeric:

123.45 N

Using Numeric Amper Variables in Functions

302

Concatenation

The amper variable &F is created by concatenating &A and &C:

-SET &F = &A | &C;
-TYPE &F &F.TYPE

The output shows that the value of &F is the value of &A followed by the value of &C, and that
the type is numeric:

12345123.45 N

The following example creates the amper variable &E by embedding an ampersand in the
string. The ampersand is not recognized as the start of a variable name and is treated as an
alphanumeric symbol in a string:

-SET &E = 1234&C;
-TYPE &E &E.TYPE

The output shows that the variable is of type alphanumeric, not numeric. It is not the
concatenation of the string '1234' with the variable &C:

1234&C A

This same behavior can be produced with concatenation:

-SET &G = AT&|T;
-TYPE &G &G.TYPE

The output is:

AT&T A

Using an Amper Variable in an Expression

When an amper variable is used in an expression, conversion may be required in order to
process the expression. The amper variable used in the expression is generally seen as a
literal, and its value is substituted in before the expression is processed. Under these
circumstances, data conversion necessary to process the expression is performed. Numerics
contained in amper variables are seen as integers. If the expression can be evaluated as
integer, it will be.

In the following example, &C is set to 123.55. Then an expression creates &D by adding 100
to &C :

-SET &C=123.55;
-SET &D=&C + 100;
-TYPE &D &D.TYPE

3. Managing Flow of Control in an Application

Developing Applications 303

The output shows that &D is numeric and its value is 123.55+100 truncated to the integer
223 because integer arithmetic is used:

223 N

The following expression requires conversion to double precision, as the numeric literal
(100.49) in the expression is not an integer:

-SET &C=123.55;
-SET &D=&C + 100.49;
-TYPE &D &D.TYPE

The output shows that while the arithmetic was done by converting the value of &C to double
precision, the result is truncated before being returned to &D:

224 N

If you want the result to retain the decimal places, you can set the DMPRECISION parameter to
the number of decimal places you want returned to the resulting amper variable.

For example:

SET DMPRECISION=2
-RUN
-SET &C=123.55;
-SET &D=&C + 100.49;

Now the result retains the decimal places:

224.04 N

Using Amper Variables as Subroutine Parameters

How you treat numeric amper variables when passing them to a subroutine depends on the
data type of the subroutine parameter.

Using a Numeric Amper Variable as a Numeric Subroutine Parameter

When using a numeric amper variable as a numeric parameter in a subroutine call, the amper
variable is treated as a field. Since as a field, it has no specified type in either the Master File
or the FOCEXEC, it takes the default data type of double precision.

Note that when the result is returned to an output variable, its type is determined by its
content. If it has only numbers and a decimal point, it is numeric. If it contains other symbols,
it is alphanumeric.

Using Numeric Amper Variables in Functions

304

For example, the FTOA subroutine converts a double or single precision number (D or F) to an
alphanumeric string with the format specified within the parentheses of the second parameter:

FTOA (number_to_convert, '(format)', 'alpha_output_format')

The following example sets &C to 123.55 and passes it to the FTOA subroutine to be
converted to an alphanumeric string with a dollar sign:

-SET &C=123.55;
-SET &G=FTOA(&C,'(D7.2M)','A11');
-TYPE &G &G.TYPE

The output shows that the string $123.55 has been returned to &G. Since it has a symbol
other than numeric digits and a decimal point, its type is alphanumeric:

$123.55 A

In the following example, the format returned does not specify a dollar sign:

-SET &A=12345;
-SET &G=FTOA(&A/100,'(D7.2)','A11');
-TYPE &G &G.TYPE

Since the returned string contains only numeric digits and a decimal point, its type is numeric:

123.45 N

Note that if the number had another digit, it would be returned with a comma, and its type
would be alphanumeric:

-SET &A=123456;
-SET &G=FTOA(&A/100,'(D7.2)','A11');
-TYPE &G &G.TYPE

The output is:

1,234.56 A

Using a Numeric Amper Variable as an Alphanumeric Subroutine Parameter

When using a numeric amper variable as an alphanumeric parameter in a subroutine call, you
must convert the numeric value to an alphanumeric string before using it in order to avoid
failure due to a format error. You can do this using one of the subroutines designed to convert
numerics to alphanumeric, or you can concatenate an alphanumeric character to the numeric
value in order to assign it an alphanumeric data type.

3. Managing Flow of Control in an Application

Developing Applications 305

For example, the following converts &C to a string and returns the string to the variable &G. It
then passes &G to the RJUST subroutine, which right justifies the value and returns it to the
variable &H:

-SET &C=123.55;
-SET &G=FTOA(&C,'(D7.2M)','A11');
-SET &H = RJUST(11,&G,'A11');
-TYPE &G &G.TYPE
-TYPE &H &H.TYPE

The output is:

$123.55 A
 $123.55 A

Debugging a Procedure

You can test and debug your procedure with the following.

The &ECHO variable controls the display of command lines as they execute so you can test
and debug procedure.

The &STACK variable enables you to test the logic of Dialogue Manager commands. Setting
this variable to OFF lets you run the procedure while preventing the execution of stacked
(non-Dialogue Manager) commands. This gives you the ability to view the sequence of
commands and see how the variable values are resolved.

The &RETCODE variable returns a code after a procedure is executed. If the procedure
results in normal output or no records are retrieved, the value of &RETCODE is 1. If an error
occurs while parsing the procedure, the value of &RETCODE is 8.

&RETCODE can be used to test the result of an operating system command. This retrieves
the return code from the operating system.

The &IORETURN variable tests the result of Dialogue Manager -READ and -WRITE
commands. After a -READ or -WRITE operation, a non-zero return code indicates an error
such as end-of-file being reached.

&IORETURN can be used to test the result of the following:

A -READ command. If &IORETURN equals zero, a value was successfully read from the
external file.

A -WRITE command. If &IORETURN equals zero, a value was successfully written to the
external file.

Debugging a Procedure

306

Syntax: How to Display Command Lines as They Execute

{-DEFAULT|-SET|EX} &ECHO = {ON|ALL|OFF|NONE}

where:

ON

Displays FOCUS commands that are expanded and stacked for execution.

ALL

Displays Dialogue Manager commands and FOCUS commands that are expanded and
stacked for execution.

OFF

Suppresses the display of both stacked commands and Dialogue Manager commands.
This value is the default.

NONE

Prevents procedure code from being displayed (echoed). Once the value of &ECHO has
been set to NONE, it cannot be changed during the session or connection.

By default, any procedure that does not explicitly set the &ECHO variable executes with the
value OFF. You can change this default value for &ECHO with the SET DEFECHO command, as
described in How to Establish a Default Value for the &ECHO Variable on page 307.

Syntax: How to Establish a Default Value for the &ECHO Variable

SET DEFECHO = {OFF|ON|ALL|NONE}

where:

OFF

Establishes OFF as the default value for &ECHO. OFF is the default value.

ON

Establishes ON as the default value for &ECHO. Displays FOCUS commands that are
expanded and stacked for execution.

ALL

Establishes ALL as the default value for &ECHO. ALL displays Dialogue Manager
commands and FOCUS commands that are expanded and stacked for execution.

3. Managing Flow of Control in an Application

Developing Applications 307

NONE

Prevents procedure code from being displayed (echoed). Once the value of DEFECHO or
&ECHO has been set to NONE, it cannot be changed during the session or connection.

Reference: Usage Notes for SET DEFECHO = NONE

If you issue the SET DEFECHO=NONE command in a FOCEXEC, the setting does not affect
&ECHO in that routine. It takes effect as the value of &ECHO in the next executed (EX)
procedure after which it may not be changed.

If you attempt to reset &ECHO within the duration of its NONE value, the value you
attempted to set will display if you issue a -TYPE command, but the value will not actually
change.

Example: Preventing Procedure Code From Being Displayed

The following procedure queries the value of the DEFECHO parameter and issues a TABLE
request against the EMPLOYEE data source:

? SET DEFECHO
-RUN
-TYPE ECHO = &ECHO
TABLE FILE EMPLOYEE
PRINT CURR_SAL CURR_JOBCODE
BY LAST_NAME BY FIRST_NAME
END
-RUN

The query command output shows that DEFECHO is OFF (the default value):

 DEFECHO OFF

The -TYPE command shows that the value of &ECHO is OFF (the default):

ECHO = OFF

Because &ECHO is OFF the TABLE commands do not display as the procedure executes:

Debugging a Procedure

308

 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14
 RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

 END OF REPORT

Now, set DEFECHO=ON and re-run the procedure.

The query command output shows that DEFECHO is ON:

 DEFECHO ON

The -TYPE command shows that the value of &ECHO has been changed to ON:

ECHO = ON

Because &ECHO is ON, the TABLE commands display as the procedure executes:

TABLE FILE EMPLOYEE
PRINT CURR_SAL CURR_JOBCODE
BY LAST_NAME BY FIRST_NAME
END

The output displays next:

3. Managing Flow of Control in an Application

Developing Applications 309

 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14
 RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

 END OF REPORT

Now, issue the SET DEFECHO = NONE command and rerun the procedure:

SET DEFECHO = NONE

The query command output shows that the value of DEFECHO has been changed to NONE:

 DEFECHO NONE

The -TYPE command shows that the value of &ECHO is NONE:

ECHO = NONE

Because DEFECHO has the value NONE, the TABLE commands do not display as the procedure
executes. The output is:

Debugging a Procedure

310

 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14
 RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

 END OF REPORT

Once the value of DEFECHO has been set to NONE, it cannot be changed. The following SET
command attempts to change the value to ON, but the query command output shows that it is
still NONE:

SET DEFECHO=ON
? SET DEFECHO
 DEFECHO NONE

Syntax: How to Test Dialogue Manager Command Logic

{-DEFAULT|-SET|EX procname} &STACK = {ON|OFF}

where:

procname

Is the procedure to execute.

ON

Executes stacked commands normally. This value is the default.

3. Managing Flow of Control in an Application

Developing Applications 311

OFF

Prevents the execution of stacked commands. In addition, system variables (for example,
&RECORDS or &LINES) are not set. Dialogue Manager commands are executed so you can
test the logic of the procedure.

Note: &STACK is usually used with &ECHO = ALL for debugging purposes. The terminal
displays both the Dialogue Manager commands, as well as the FOCUS commands with the
supplied values. You can view the logic of the procedure.

Example: Using the &RETCODE Variable to Test the Result of a Command

If you are using Simultaneous Usage (SU), you must know if the FOCUS Database Server is
available before beginning a particular procedure. The following procedure tests whether SINK1
is available before launching PROC1.

? SU SINK1
-RUN
-IF &RETCODE EQ 16 GOTO BAD;
-INCLUDE PROC1
-BAD
-EXIT

Reference: Testing the Status of a Query

The system variable &RETCODE returns a code after a query is executed. If the query results in
a normal display, the value of &RETCODE is 0. If a display error occurs, or no display results
(as can happen when the query finds no data), the value of &RETCODE is 8. (If the error occurs
on a ? SU, the value of &RETCODE is 16.)

The value of &RETCODE is set following the execution of any of these queries:

 NORMAL NODISPLAY ERROR

? HOLD 0 8

? SU* 0 8 16

? JOIN 0 8

? COMBINE 0 8

? DEFINE 0 8

Debugging a Procedure

312

 NORMAL NODISPLAY ERROR

? USE 0 8

? LOAD 0 8

*The &RETCODE value of ? SU means: 0 indicates that the FOCUS Database Server (formerly
called the sink machine) is up with one or more users; 8 indicates that the FOCUS Database
Server is up with no users; 16 indicates that there is an error in communicating to the FOCUS
Database Server.

You can test the status of any of these queries by checking the &RETCODE variable and
providing branching instructions in your procedure.

Issuing an Operating System Command

You can issue an operating system command to set up an environment in which a request
must run. For example, a program may allocate files, rename files, copy files, or perform other
operations before executing a request.

Syntax: How to Execute an Operating System Command

op_system command

where:

op_system

Specifies the operating system.

-MVS specifies the z/OS operating system.

-TSO specifies the z/OS operating system.

command

Is an operating system command.

Dialogue Manager Quick Reference

This topic provides an alphabetical list of all Dialogue Manager commands, including a
description of functions and syntax.

It also provides a grouped list of Dialogue Manager defaults and limits.

3. Managing Flow of Control in an Application

Developing Applications 313

Note that this information is also presented throughout the chapter in the context of the task
to which it applies.

-* Command

The command -* signals the beginning of a comment line.

Any number of comment lines can follow one another, but each must begin with -*. A comment
line may be placed at the beginning or end of a procedure, or in between commands. However,
it cannot be on the same line as a command.

Use comment lines liberally to document a procedure so that its purpose and history are clear
to others.

The syntax is

-* text

where:

text

Is a comment. A space is not required between -* and text.

? Command

The command -? displays the current value of a local variable.

The syntax is

-? &[variablename]

where:

variablename

Is a variable name of up to 12 characters. If this parameter is not specified, the current
values of all local, global, and defined system and statistical variables are displayed.

-CLOSE Command

-CLOSE closes an external file opened with the -READ or -WRITE NOCLOSE option. The
NOCLOSE option keeps a file open until the -READ or -WRITE operation is complete.

Dialogue Manager Quick Reference

314

The syntax is

-CLOSE {ddname|*}

where:

ddname

Is the ddname of the open file described to FOCUS via an allocation.

*

Closes all -READ and -WRITE files that are currently open.

-CRTCLEAR Command

-CRTCLEAR clears the current screen display.

The syntax is

-CRTCLEAR

-CRTFORM Command

-CRTFORM creates forms that prompt the user for values for variables.

All lines following a -CRTFORM command that begin with a hyphen and enclose text in double
quotation marks (") are part of a single-screen form. Pressing ENTER passes all input data to
associated variables.

With -CRTFORM, the first line that does not begin with a -" signals the end of the form. With -
CRTFORM BEGIN, the command -CRTFORM END signals the end of the form.

All FIDEL facilities are available to -CRTFORM except HEIGHT, WIDTH, and LINE.

CRTFORM in MODIFY functions identically to -CRTFORM in Dialogue Manager.

For additional information, see -PROMPT Command on page 320.

The syntax is

-CRTFORM [TYPE n] [BEGIN|END [LOWER|UPPER]]

where:

-CRTFORM

Invokes FIDEL and signals the beginning of the screen form.

TYPE n

Enables you to define the number of lines (n) to reserve for messages. You can specify a
number from 1 to 4. The default is 4.

3. Managing Flow of Control in an Application

Developing Applications 315

BEGIN

Supports the use of other Dialogue Manager commands to help build the form.

END

Signals the end of the -CRTFORM. Used with -CRTFORM BEGIN.

LOWER

Reads lowercase data from the screen. Once you specify LOWER, every screen thereafter
is a lowercase screen until you specify otherwise.

UPPER

Translates lowercase letters to uppercase. This is the default.

-DEFAULT[S|H] Command

DEFAULT commands set default values for local or global variables. ‑DEFAULT guarantees that
the variables are always given a value and helps ensure that it executes correctly.

You can issue multiple -DEFAULT commands for a variable. If the variable is global, these
‑DEFAULT commands can be issued in separate FOCEXECs. At any point before another
method is used to establish a value for the variable, the most recently issued ‑DEFAULT
command will be in effect.

However, as soon as a value for the variable is established using any other method,
subsequent -DEFAULT commands issued for that variable are ignored.

You can override -DEFAULT values by supplying values for the variables on the command line,
by specifically prompting for values with -PROMPT or -CRTFORM, or by supplying a value with -
SET subsequent to -DEFAULT.

Default values are provided in other FOCUS modules to anticipate user needs and reduce the
need for keystrokes in situations where most users desire a predefined outcome. For
additional information, see also -SET Command on page 325.

The syntax is

-DEFAULT[S|H] &[&]name=value [...]

where:

&name

Is the name of the variable.

value

Is the default value assigned to the variable.

Dialogue Manager Quick Reference

316

-EXIT Command

-EXIT forces a procedure to end. All stacked commands are executed and the procedure exits.
If the procedure was called by another one, the calling procedure continues processing.

Use -EXIT for terminating a procedure after processing a final branch that completes the
desired task. The last line of a procedure is an implicit -EXIT.

The syntax is

-EXIT

-GOTO Command

-GOTO transfers control to a specified label.

If Dialogue Manager finds the label, processing continues with the line following it. If Dialogue
Manager does not find the label, processing ends and an error message is displayed.

The syntax is

-GOTO label

 .
 .
 .
-label [TYPE text]

where:

label

The label in the -label command Is a user-defined name of up to 12 characters that
specifies the target of the -GOTO action.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic
and logical operations, and so on.

TYPE text

Optionally sends a message to the client application.

-IF Command

-IF routes execution of a procedure based on the evaluation of the specified expression.

An -IF without an explicitly specified ELSE whose expression is false continues processing with
the line immediately following it.

3. Managing Flow of Control in an Application

Developing Applications 317

The syntax is

-IF expression [THEN] GOTO label1
[- ELSE GOTO label2]
[- ELSE IF...];

where:

label

Is a user-defined name of up to 12 characters that specifies the target of the GOTO action.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic or
logical operations, and so on.

expression

Is a valid expression. Literals need not be enclosed in single quotation marks unless they
contain embedded blanks or commas.

THEN

Is an optional keyword that increases readability of the command.

ELSE GOTO

Passes control to label2 when the -IF test fails.

ELSE IF

Specifies a compound -IF test.

The semicolon is required at the end of the command, and continuation lines must begin
with a hyphen.

-INCLUDE Command

-INCLUDE specifies another procedure to be incorporated and executed at run time, as if it
were part of the calling procedure. The specified procedure may comprise either a fully
developed or partial procedure. Note that a partial procedure does not execute if called outside
of the procedure containing -INCLUDE.

When using -INCLUDE, you may not branch to a label outside of the specified procedure.

A procedure may contain more than one -INCLUDE. Any number of -INCLUDEs may be nested,
but recursive -INCLUDEs are limited to four levels.

You may use any valid command in a -INCLUDE.

EXEC may also be used to execute a procedure inside another procedure.

Dialogue Manager Quick Reference

318

The syntax is

-INCLUDE filename [filetype]

where:

filename

Is the procedure to be incorporated in the calling procedure.

filetype

Is the procedure's DDNAME. If none is included, FOCEXEC is assumed.

-label Command

The label specified in the -label command Is the target of a -GOTO command or -IF criteria.

The syntax is

-label [TYPE message]

where:

label

Is a user-supplied name of up to 12 characters that identifies the target for a branch.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic or
logical operations, and so on.

TYPE message

Sends a message to the client application.

-MVS Command

-MVS executes a z/OS command. -MVS is a synonym for -TSO. It is only supported with the
RUN command.

-MVS RUN Command

This command is the same as -TSO RUN.

The syntax is

-MVS RUN

3. Managing Flow of Control in an Application

Developing Applications 319

-PASS Command

-PASS directly issues and controls passwords. This feature is especially useful for specifying a
particular file or set of files that a given user can read or write. Passwords have detailed sets
of functions associated with them through DBA module.

The procedure that sets passwords should be encrypted so that it and the passwords that it
sets cannot be typed and made known.

A variable can be associated with -PASS so that you can prompt for and assign a password
value.

The PASS command provides the same function at the command level, as does the PASS
parameter of the SET command.

The syntax is

-PASS password

where:

password

Is a literal FOCUS password or a variable containing a password.

-PROMPT Command

Types a message to the terminal and reads the reply from the user. This reply assigns a value
to the variable named.

If a format is specified and the supplied value does not conform, FOCUS displays an error
message and prompts the user again for the value.

If a (list) is specified and the user does not reply with a value on the list, FOCUS reprompts
and prints the list of acceptable values.

Note: You cannot use format and list together.

In MODIFY, PROMPT specifies additional data input needs.

In GRAPH, when it is set on, GPROMPT automatically prompts for all parameters needed to
execute the graph request. This is quite a different function from -PROMPT in Dialogue
Manager.

For additional information, see -CRTFORM Command on page 315.

The syntax is

-PROMPT &name [[.format|.(list)] [.text].]

Dialogue Manager Quick Reference

320

where:

&name

Is a user-defined variable.

format

Optionally specifies alphanumeric or integer data type and length.

text

Optionally specifies prompting text that appears on the screen. Must be delimited by
periods.

list

Optionally specifies a range of acceptable responses. Must be enclosed in parentheses.

-QUIT Command

-QUIT forces an immediate exit from the procedure. Stacked lines are not executed. This differs
from an -EXIT, which executes all lines that are currently on the stack.

Like -EXIT, -QUIT returns the user to the FOCUS prompt.

-QUIT FOCUS takes the user out of FOCUS altogether and returns the user to the operating
system level.

-QUIT can be made the target of a branch, with the same results as those already described.

QUIT can be entered in response to -PROMPT or -CRTFORM to force an exit from the procedure.
The QUIT command can, however, be turned off from within Dialogue Manager to prevent the
user from exiting FOCUS prompt.

The QUIT command can also be used to exit from MODIFY and TABLE requests as well as
Dialogue Manager procedures.

The principle of QUIT remains consistent throughout FOCUS, namely that the exited request or
procedure is not executed and the user is returned to the FOCUS prompt.

For additional information, see also -RUN Command on page 324 and -EXIT Command on page
317.

The syntax is

-QUIT or -QUIT FOCUS [n]

3. Managing Flow of Control in an Application

Developing Applications 321

where:

n

Is the operating system return code. It can be a constant or an integer variable up to
4095. If you do not supply a value or if you supply a non-integer value for n, the return
code is 8 (the default value).

-READ Command

Reads data from an external (non-FOCUS) file. -READ can access data in either fixed or free
form.

For additional information, see -WRITE Command on page 328.

The syntax is

-READ ddname[,] [NOCLOSE] &name[.format.][,] ...

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM ALLOCATE.
A space after the ddname denotes a fixed format file while a comma denotes a comma-
delimited file.

NOCLOSE

Indicates that the ddname should be kept open even after a -RUN is executed. The
ddname is closed upon completion of the procedure or when a -CLOSE or subsequent -
WRITE command is encountered.

name

Is the variable name. You may specify more than one variable. Using a comma to separate
variables is optional.

If the list of variables is longer than one line, end the first line with a comma and begin the
next line with a dash followed by a blank (-) for comma-delimited files or a dash followed by
a comma followed by a blank (-,) for fixed format files. For example:

Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,-, &CODE2.A3

Dialogue Manager Quick Reference

322

format

Is the format of the variable. It may be Alphanumeric (A) or Integer (I). Note that format
must be delimited by periods. The format is ignored for comma-delimited files.

-READFILE Command

-READFILE reads a Master File, then reads values from a file into variables based on the fields
listed in the Master File.

-READFILE mastername

where:

mastername

Is the name of the Master File to be read.

-REMOTE Command

-REMOTE passes execution of the commands within a -REMOTE BEGIN and -REMOTE END
command to a server.

For information, see the Overview and Operating Environments Manual.

The syntax is

-REMOTE BEGIN
commands
-REMOTE END

-REPEAT Command

-REPEAT allows looping in a procedure.

A loop ends when any of the following occurs:

It is executed in its entirety.

A -QUIT or -EXIT is issued.

A -GOTO is issued to a label outside of the loop. If a -GOTO is later issued to return to the
loop, the loop proceeds from the point it left off.

The syntax is

-REPEAT label n TIMES
-REPEAT label WHILE condition
-REPEAT label FOR &variable
 [FROM fromval] [TO toval] [STEP s]

3. Managing Flow of Control in an Application

Developing Applications 323

where:

label

Identifies the code to be repeated (the loop). A label can include another loop if the label
for the second loop has a different name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of n can be a local variable,
a global variable, or a constant. If it is a variable, it is evaluated only once, so you cannot
change the number of times to execute the loop. The loop can only be ended early using -
QUIT or -EXIT.

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that can be true or false. The loop is run if the condition is true.

&variable

Is a variable that is tested at the start of each execution of the loop and incremented by s
with each execution. It is compared with the value of fromval and toval, if supplied. The
loop is executed only if &variable is greater than or equal to fromval or less than or equal
to toval.

fromval

Is a constant that is compared with &variable at the start of the execution of the loop. The
default value is 1.

toval

Is a value that is compared with &variable at the start of the execution of the loop. The
default value is 1,000,000.

STEP s

Is a constant used to increment &variable at the end of the execution of the loop. It may
be positive or negative. The default increment is 1.

Note: The parameters FROM, TO, and STEP can appear in any order.

-RUN Command

-RUN causes immediate execution of all stacked FOCUS commands.

Following execution, processing of the procedure continues with the line that follows -RUN.

Dialogue Manager Quick Reference

324

-RUN is commonly used to do the following:

Generate results from a request that can then be used in testing and branching.

Close an external file opened with -READ or -WRITE. When a file is closed, the line pointer is
placed at the beginning of the file for a -READ. The line pointer for -WRITE is positioned
depending on the allocation and definition of the file.

The syntax is

-RUN

-SET Command

-SET assigns a literal value, or a value that is computed in an arithmetic or logical expression,
to a variable.

Single quotation marks around a literal value are optional unless it contains an embedded
blank, comma, or equal sign, in which case you must include them.

The syntax is

-SET &[&]name= {expression|value};

where:

&name

Is the name of the variable.

expression

Is a valid expression. Expressions can occupy several lines, so you should end the
command with a semicolon.

value

Is a literal value, or arithmetic or logical expression assigned to the variable. If the literal
value contains commas or embedded blanks, you must enclose the value in single
quotation marks.

-TSO Command

-TSO executes a TSO operating system command from within Dialogue Manager. It is only
supported with the RUN command.

The syntax is

-TSO command

3. Managing Flow of Control in an Application

Developing Applications 325

where:

command

Is a TSO RUN command.

-TSO RUN Command

In TSO, loads and executes the specified user-written function.

Note that the preferred way to execute user-written programs is with the -SET command.

The syntax is

-TSO RUN function

where:

function

Is the name of a user-written function.

-TYPE Command

Transmits informative messages to the user at the terminal. Any number of -TYPE lines may
follow one another but each must begin with -TYPE.

Substitutable variables may be embedded in text. The values currently assigned to each
variable is displayed in the assigned position in the text.

-TYPE1 and TYPE+ are not supported by IBM 3270-type terminals.

TYPE is used in a variety of ways in FOCUS to send informative messages to the screen. A
TYPE command may appear on the same line as a label in Dialogue Manager. In MODIFY, TYPE
is used to print messages at the start and end of processes, at selected positions in MATCH
or NOMATCH, NEXT or NONEXT, and to send a message after an INVALID data condition.

The syntax is

-TYPE[+] text
-TYPE[0] text
-TYPE[1] text

where:

-TYPE1

Sends the text after issuing a page eject.

-TYPE0

Sends the text after skipping a line.

Dialogue Manager Quick Reference

326

-TYPE+

Sends the text but does not add a line feed.

text

Is a character string that fits on a line.

-WINDOW Command

-WINDOW executes a window file. When the command is encountered, control is transferred
from the procedure to the specified window file. The window specified in the command
becomes the first active window. Control remains within the window file until a menu option is
chosen, or a window is activated, for which there is no goto value.

The window file, and the windows in it, are created using Window Painter.

The syntax is

-WINDOW windowfile windowname [PFKEY|NOPFKEY]
[GETHOLD][BLANK|NOBLANK][CLEAR|NOCLEAR]

where:

windowfile

Identifies the file in which the windows are stored. This is a member name. The member
must belong to a PDS allocated to ddname FMU.

windowname

Identifies which window in the file is displayed first.

PFKEY

Enables you to test for function key values during window execution.

NOPFKEY

You are unable to test for function key values during window execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select window.

BLANK

Clears all previously set amper variable values when -WINDOW is encountered. This is the
default setting.

NOBLANK

When -WINDOW is encountered, the values of previously set amper variables are retained.

3. Managing Flow of Control in an Application

Developing Applications 327

CLEAR

Clears the screen before displaying the first window. This is the default behavior. When
specified in conjunction with the Terminal Operator Environment (TOE), the TOE screen is
redisplayed when control is transferred back to the procedure.

NOCLEAR

Displays the specified window directly over the current screen.

-WRITE Command

-WRITE writes data to a sequential file.

If the command continues over several lines, put a comma at the end of the line and a hyphen
at the beginning of each subsequent line.

Unless you specify the NOCLOSE option, an opened file is closed upon termination of the
procedure with -RUN, -EXIT, or -QUIT.

In TABLE, WRITE is a synonym for SUM; functionally it is quite different from ‑WRITE.

For additional information, see -READ Command on page 322.

The syntax is

-WRITE ddname [NOCLOSE] text

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM ALLOCATE.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is closed
upon completion of the procedure or when a -CLOSE or subsequent -READ command is
encountered.

text

Is any combination of variables and text. To write more than one line, end the first line with
a comma (,) and begin the next line with a hyphen followed by a space (-).

-" " Command

The -" " syntax is associated with the FIDEL -CRTFORM command. All textual data enclosed by
the double quotation marks is printed to the screen. You can use position markers and specify
variable fields within double quotation marks.

Dialogue Manager Quick Reference

328

When -CRTFORM is processed, the screen displays a form and the cursor stops at each amper
variable date entry field. If a variable has not been declared prior to the -CRTFORM, FOCUS
prompts the user for a value to assign to the variable.

In MODIFY, enclosing data in double quotation marks (" ") without the leading hyphen is used
with CRTFORM, or for headings, footings, subheads, and subfoots within a TABLE request.

For additional information, see -CRTFORM Command on page 315.

The syntax is

-" "

where:

" "

Enclose textual information, fields and spot markers.

Dialogue Manager Defaults and Limits

This topic provides you with an easier way of locating default values, operating system and
FOCUS limits, summary tables, general rules, and tips for ease-of-use.

General rules to follow when you are creating procedures are:

If a Dialogue Manager command exceeds one line, the following line must begin with a
hyphen (-).

The hyphen (-) must be placed at the first position of the command line.

The command is usually attached to the hyphen (-), but you may leave space between the
hyphen and the Dialogue Manager command.

At least one space must be inserted between the Dialogue Manager command and other
text.

General rules for supplying values for variables:

The lengths of values stored in Dialogue Manager (amper) variables vary by context:

When used with the commands -READ, -TYPE, and WRITE, the maximum length of a
variable is approximately 32,000 characters (32K).

When used with other Dialogue Manager commands or the EX command, a variable
value cannot exceed 4,096 character (4K).

If a value contains an embedded comma (,) or embedded equal sign (=) the value must be
enclosed between single quotation marks. For example:

3. Managing Flow of Control in an Application

Developing Applications 329

EX SLRPT AREA=S, LOCATION='NY, NY'

Once a value is supplied for a local variable, it is used for that variable throughout the
procedure, unless it is changed through a -PROMPT, -SET, or -READ.

Once a value is supplied for a global variable, it is used for that global variable throughout
the FOCUS session in all procedures, unless it is changed through a -PROMPT, -SET, or -
READ.

Dialogue Manager automatically sends a prompt to the terminal if a value has not been
supplied for a variable. Automatic prompts (implied prompting) are identical in syntax and
function to the direct prompts created with -PROMPT.

Operating system default values, limits, and format specifications.

The default value for the operating system return code value is 8.

Literals must be surrounded by single quotation marks if they contain embedded blanks or
commas. To produce a literal that starts or ends with a single quotation mark, place two
single quotation marks where you want one to appear.

Alphanumeric formats are described by the letter A followed by the number of characters.
The number of characters can be from 1 to 3968.

Integer formats are described by the letter I followed by the number of digits to be entered.
The number can be from one to 10 digits in length, value must be less than 231-1.

A label is a user-defined name of up to 12 characters. You cannot use blanks and should
not use the name of any other Dialogue Manager command except QUIT and EXIT. The
label may precede or follow GOTO in the procedure.

A date supplied to Dialogue Manager cannot exceed 20 characters, including spaces.

The level of nested -INCLUDE files is limited only by available memory. However, recursive -
INCLUDE commands are limited to four levels.

The default setting for &QUIT is ON.

When using Window Painter:

Screens should not begin in row 0, column 0, or column 1.

The maximum screen size is 22 rows by 77 columns.

A File Contents window has a limit of 12K worth of data. This is approximately 150
lines.

Dialogue Manager Quick Reference

330

The maximum number of menu items is 41.

File Name windows must have a WIDTH of 24 or greater, or meaningless characters will
appear.

3. Managing Flow of Control in an Application

Developing Applications 331

Dialogue Manager Quick Reference

332

Chapter4 Testing and Debugging With
Query Commands

You can debug a FOCUS application by querying your environment to display information,
such as release, FOCUS information, and joins, as well as by identifying files you are
using.

In this chapter:

Using Query Commands

Displaying Combined Structures

Displaying Virtual Fields

Displaying the Currency Data Source in
Effect

Displaying Available Fields

Displaying the File Directory Table

Displaying Field Information for a Master
File

Displaying Data Source Statistics

Displaying Defined Functions

Displaying HOLD Fields

Displaying JOIN Structures

Displaying National Language Support

Displaying LET Substitutions

Displaying Information About Loaded
Files

Displaying Explanations of Error
Messages

Displaying PF Key Assignments

Displaying the Release Number

Displaying Parameter Settings

Displaying Graph Parameters

Displaying the Site Code

Displaying Command Statistics

Displaying StyleSheet Parameter
Settings

Displaying Information About the SU
Machine

Displaying Data Sources Specified With
USE

Displaying Global Variable Values

Reporting Dynamically From System
Tables

Developing Applications 333

Using Query Commands

Query commands display information about your metadata, physical data sources, language
environment, and development and run-time environment.

Syntax: How to Issue a Query Command

? query [filename]

where:

query

Is the subject of the query.

filename

Is the name of the file that is the subject of the query. This parameter applies to only
some queries.

To list the query commands, type a question mark in a procedure or at the command prompt.

Reference: Query Command Summary

The following is a list of query commands. This topic contains a detailed description of each.

Query Command Description

? COMBINE Displays a list of combined file structures.

? DEFINE Displays currently active virtual fields created by the DEFINE
command or attribute.

?F Lists fields currently available.

? FDT Displays physical attributes of a FOCUS data source.

?FF Lists field names, aliases, and format information for an active
Master File.

? FILE Displays the number of segment instances in a FOCUS data source
and the last time the data sources was changed.

? FUNCTION Displays functions created with the DEFINE command.

Using Query Commands

334

Query Command Description

? HOLD Displays fields described in a HOLD Master File.

? JOIN Displays JOIN structures that exist between data sources.

? LANG Displays information about National Language Support.

? LET Displays word substitutions created with the LET command.

? LOAD Provides information about all loaded files: the file type, file name,
and resident size.

? MDI Generates statistics and descriptions for multi-dimensional indexes.

? n Displays an explanation of an error message (n represents the
number of the error message).

? PFKEY Displays the PF key assignments.

? RELEASE Displays the release number of your product.

? SET Displays parameter settings that control FOCUS.

? SET GRAPH Displays parameter settings that control graphs produced with the
GRAPH command.

? SET NOT Produces a list of SET commands that cannot be set in a specific
area.

? SITECODE Retrieves the site code.

? STAT Displays statistics about the last command executed.

? STYLE Displays the current settings for StyleSheet parameters.

? SU Is communication available to the SU machine.

? USE Displays data sources specified with the USE command.

4. Testing and Debugging With Query Commands

Developing Applications 335

Query Command Description

? && Displays values of global variables.

Displaying Combined Structures

The ? COMBINE command displays files that are in the current combined structures.

Syntax: How to Display Combined Structures

? COMBINE

Example: Displaying Combined Structures

Issuing the command

? COMBINE

produces information similar to the following:

COMBINE EDUCFILE AND JOBFILE AS EDJOB
>
? COMBINE
 FILE=EDJOB TAG PREFIX

 EDUCFILE
 JOBFILE
>

Displaying Virtual Fields

The? DEFINE command lists the active virtual fields used in a request. The fields can be
created by either the DEFINE command or DEFINE attribute in the Master File. The command
displays field names of up to 32 characters. If a name exceeds 32 characters, an ampersand
(&) in the 32nd position indicates a longer field name.

Syntax: How to Display Virtual Fields

? DEFINE [appname/][filename]

where:

appname

Is the application directory.

Displaying Combined Structures

336

filename

Is the data source containing the virtual fields. If filename is omitted, the command
displays all virtual fields.

Example: Displaying Virtual Fields

Assume that you created a virtual field named FULLNAME in a request against the EMPLOYEE
database.

Issuing

? DEFINE

produces the following information:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
EMPLOYEE PROJECTEDSAL D12.2
EMPLOYEE FULLNAME A26
>

Reference: ? DEFINE Query Information

The following information is listed for each virtual field created with DEFINE:

Option Description

FILE Is the name of the data source containing the virtual field.

FIELD NAME Is the name of the virtual field.

FORMAT Is the format of the virtual field. The notation is the same as that used for
the FORMAT attribute in a Master File.

SEGMENT Is the number of the segment in the Master File containing the virtual
field. During reporting, your application treats the virtual field as a field in
this segment. To relate segment numbers to segment names, use ? FDT.

VIEW Is the root segment of DEFINE that specifies an alternate view. For
example:

DEFINE FILE EMPLOYEE.JOBCODE

4. Testing and Debugging With Query Commands

Developing Applications 337

Option Description

TYPE Indicates whether the virtual field is created by the DEFINE attribute in the
Master File, or by a DEFINE command, identified by MASTER or a blank,
respectively.

Displaying the Currency Data Source in Effect

The ? SET EUROFILE command displays the currency data source in effect.

Syntax: How to Display the Currency Data Source in Effect

To display the currency data source in effect, issue the command:

? SET EUROFILE

Displaying Available Fields

The ?F command displays the fields that are currently available.

?F displays entire 66 character field names.

Syntax: How to Display Available Fields

?F filename

where:

filename

Is the name of a data source.

Example: Displaying Available Fields

Issuing the command

?F EMPLOYEE

produces the following information:

Displaying the Currency Data Source in Effect

338

FILENAME = EMPLOYEE
EMP_INFO EMP_ID LAST_NAME FIRST_NAME HIRE_DATE
DEPARTMENT CURR_SAL CURR_JOBCODE ED_HRS
BANK_NAME BANK_CODE BANK_ACCT EFFECT_DATE
DAT_INC PCT_INC SALARY PAYINFO JOBCODE
TYPE ADDRESS_LN1ADDRESS_LN2 ADDRESS_LN3 ACCTNUMBER
PAY_DATE GROSS
DED_CODE DED_AMT
JOBSEG JOBCODE JOB_DESC
SEC_CLEAR
SKILLS SKILLS_DESC
DATE_ATTEND ATTENDSEG.EMP_ID
COURSE_CODE COURSE_NAME

Displaying the File Directory Table

The ? FDT command displays the file directory table, which lists the physical characteristics of
a FOCUS data source.

Each segment and index (those fields designated by the keyword FIELDTYPE=I in the Master
File) occupies an integral number of pages. The file directory table shows the amount of space
occupied by each segment instance in a page, the starting and ending page numbers, and the
number of pages in between for each segment and index.

Syntax: How to Display a File Directory Table

? FDT filename

where:

filename

Is the name of the data source.

Example: Displaying a File Directory Table

Issuing the command

? FDT EMPLOYEE

produces the following information:

4. Testing and Debugging With Query Commands

Developing Applications 339

 DIRECTORY:EMPLOYEEFOCUS F ON 09/25/1997 AT 09.50.28
 DATE/TIME OF LAST CHANGE: 03/30/1999 16.19.22

 SEGNAME LENGTH PARENT START END PAGES LINKS TYPE

 1 EMPINFO 22 1 1 1 6
 2 FUNDTRAN 10 1 2 2 1 2
 3 PAYINFO 8 1 3 3 1 3
 4 JOBSEG 11 3 4
 5 SECSEG 4 4 2
 6 SKILLSEG 11 4 2
 7 ADDRESS 19 1 4 4 1 2
 8 SALINFO 6 1 5 5 1 3
 9 DEDUCT 5 8 6 8 3 2
10 ATTNDSEG 7 1 3
11 COURSEG 11 10 2
>

Reference: ? FDT Query Information

The following information is listed in the file directory table:

SEGNAME Is the name of each segment in the file. The segments are also
numbered consecutively down the left of the table. Unnumbered entries
at the foot of the table are indexes, which belong to fields having the
attribute FIELDTYPE=I in the Master File.

LENGTH Is the length in words (units of four bytes) of each segment instance.
Divide this number into 992 to get the number of instances that fit on a
page.

PARENT Is the parent segment. Each number refers to a segment name in the
SEGNAME column.

START Is the page number on which the segment or index begins.

END Is the page number on which the segment or index ends.

PAGES Is the number of pages occupied by the segment or index.

LINKS Is the length, in words, of the pointer portion in each segment instance.
Every segment instance consists of two parts, data and pointers. Pointers
are internal numbers used to find other instances.

Displaying the File Directory Table

340

TYPE Is the type of index. NEW indicates a binary index. OLD indicates a hash
index. Segments of type KU, LM, DKU, DKM, KL, and KLU are not
physically in this file. Therefore, this information is omitted from the
table.

Displaying Field Information for a Master File

The ?FF command displays field names, aliases, and format information for an active Master
File.

Syntax: How to Display Field Information for a Master File

?FF filename [string]

where:

filename

Is the name of the Master File.

string

Is a character string up to 66 characters long. The command displays information only for
fields beginning with the specified character string. If you omit this parameter, the
command displays information for all fields in the Master File.

Example: Displaying Field Information for a Master File

Issuing the command

?FF EMPLOYEE

produces the following information:

FILENAME= EMPLOYEE
EMP_INFO
EMP_ID EID A9
LAST_NAME LN A15
FIRST_NAME FN A10
HIRE_DATE HDT 16YMD
DEPARTMENT DPT A10
CURR_SAL CSAL D12.2M
CURR_JOBCODE CJC A3
ED_HRS OJT F6.2

4. Testing and Debugging With Query Commands

Developing Applications 341

BANK_NAME BN A20
BANK_CODE BC I6S
BANK_ACCT BA I9S
EFFECT_DATE EDATE 16YMD

DAT_INC DI I6YMD
PCT_INC PI F6.2
SALARY SAL D12.2M
PAY_INFOJOBCODEJBC A3

Displaying Data Source Statistics

The ? FILE command displays information, such as the number of segment instances in a
FOCUS data source and when the data source was last changed.

Syntax: How to Display Data Source Statistics

? FILE filename

where:

filename

Is the name of the data source.

Example: Displaying Data Source Statistics

Issuing the command

? FILE EMPLOYEE

produces statistics similar to the following:

 STATUS OF FOCUS FILE: EMPLOYEEFOCUS A1 ON 03/12/99 AT 12.29.51
 ACTIVE DELETED DATE OF TIME OF LAST TRANS
SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER

EMPINFO 12 12/21/93 11.01.32 1
FUNDTRAN 6 11/16/89 16.19.19 12
PAYINFO 19 11/16/89 16.19.20 19
ADDRESS 21 11/16/89 16.19.21 21
SALINFO 70 11/16/89 16.19.22 448
DEDUCT 448 11/16/89 16.19.22 448
TOTAL SEGS 576
TOTAL CHARS 8984
TOTAL PAGES 8
LAST CHANGE 01/29/96 11.01.32 1

Displaying Data Source Statistics

342

Reference: ? FILE Query Information

The following data source statistics are listed:

SEGNAME Is the name of each segment in the data source. After the
segments, the indexes are listed, if applicable.

Indexes are those fields specified by the attribute FIELDTYPE=I
in the Master File.

ACTIVE COUNT Is the number of instances of each segment.

DELETED COUNT Is the number of segment instances deleted, for which the
space is not reused.

DATE OF LAST CHG Is the date on which data in a segment instance or index was
last changed.

TIME OF LAST CHG Is the time of day, on a 24-hour clock, when the last update of a
file was made for that segment or index.

LAST TRANS NUMBER Is the number of transactions performed by the last update
request to access the segment. If the data source was changed
under Simultaneous Usage mode, this column refers to the REF
NUMB column of the CR HLIPRINT file.

TOTAL SEGS Is the total number of segment instances in the file (shown
under ACTIVE COUNT), and the number of segments deleted
when the file was last changed (shown under DELETED COUNT).

TOTAL CHARS Is the number of characters of data in the file.

TOTAL PAGES Is the number of pages in the data source. Pages are physical
records in FOCUS data sources.

LAST CHANGE Is the date and time the data source was last changed.

If a data source is disorganized by more than 29%, that is, the physical placement of data in
the data source is considerably different from its logical or apparent placement, the following
message appears

4. Testing and Debugging With Query Commands

Developing Applications 343

FILE APPEARS TO NEED THE -REBUILD- UTILITY
REORG PERCENT IS A MEASURE OF FILE DISORGANIZATION
0 PCT IS PERFECT -- 100 PCT IS BAD
REORG PERCENT IS x%

where:

x

Is a percentage between 30 and 100.

The variable &FOCDISORG also indicates the level of disorganization. Following is an example
of how to use &FOCDISORG in a Dialogue Manager -TYPE command:

-TYPE THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: &FOCDISORG

This command, depending on the amount of disorganization, produces a message similar to
the following:

THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: 10

When using a -TYPE command with &FOCDISORG, a message is displayed even if the
percentage of disorganization is less than 30%.

Displaying Defined Functions

The ? FUNCTION command displays all defined functions and the parameters.

Syntax: How to Display DEFINE Functions

To display defined functions, issue the command:

? FUNCTION

Example: Displaying DEFINE Functions

Issuing the command

? FUNCTION

produces information similar to the following:

Name Format Parameter Format
DIFF D8 VAL1 D8
 VAL2 D8

Displaying Defined Functions

344

Displaying HOLD Fields

The ? HOLD command lists fields described in a Master File created by the ON TABLE HOLD
command. The list displays the field names, the aliases, and the formats as defined by the
FORMAT (USAGE) attribute. The ? HOLD command displays field names up to 32 characters. If
a field name exceeds 32 characters, an ampersand (&) in the 32nd position indicates a longer
field name.

The ? HOLD command displays fields of a HOLD Master File created by the current request.

Syntax: How to Display HOLD Fields

? HOLD [filename]

where:

filename

Is the name assigned in the AS phrase in the ON TABLE HOLD command. If you omit the
file name, it defaults to HOLD.

Example: Displaying HOLD Fields

Issuing the command

? HOLD

produces information similar to the following:

DEFINITION OF CURRENT HOLD FILE FIELDNAME ALIAS FORMAT COUNTRY E01 A10
CAR E02 A16

Displaying JOIN Structures

The ? JOIN command lists the JOIN structures currently in effect. The command displays field
names up to 12 characters. If a field name exceeds 12 characters, an ampersand in the
twelfth position indicates a longer field name.

Syntax: How to Display JOIN Structures

To display JOIN structures, issue the command:

? JOIN

Example: Displaying JOIN Structures

Issuing the command

? JOIN

4. Testing and Debugging With Query Commands

Developing Applications 345

produces information similar to the following:

JOINS CURRENTLY ACTIVE
HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
JOBCODE EMPLOYEE JOBCODE JOBFILE N N

Reference: ? JOIN Query Information

The following JOIN information is listed:

HOST FIELD Is the name of the host field that is joining the data sources.

FILE Is the name of the host data source.

TAG Is a tag name used as a unique qualifier for field names in the host
data source.

CROSSREFERENCE
FIELD

Is the name of the cross-referenced field used to join the data
sources.

FILE Is the name of the cross-referenced data source.

TAG Is a tag name used as a unique qualifier for field names in the cross-
referenced data source.

AS Is the name of the joined structure.

ALL Displays Y for a non-unique join and N for a unique join.

WH Specifies whether the join is a conditional join or an equi-join.

Displaying National Language Support

The ? LANG command displays information about National Language Support.

Syntax: How to Display Information About National Language Support

To display information about National Language Support:

? LANG

Displaying National Language Support

346

Example: Displaying Information About National Language Support

Issuing the command

? LANG

produces information similar to the following:

 LANGUAGE AND DBCS STATUS

Language 01/AMENGLISH ()
Code Page 00037
Dollar value 5B($)
DBCS Flag OFF(SBCS)

Displaying LET Substitutions

The ? LET command lists the active word substitutions created by the LET command. A word in
the left column is used in a report request to represent the word or phrase in the right column.
For more information on the LET command, see Defining a Word Substitution.

Syntax: How to Display LET Substitutions

To display word substitutions, issue the command:

? LET

Example: Displaying LET Substitutions

Issuing the command

? LET

produces information similar to the following:

 PR PRINT
 TF TABLE FILE EMPLOYEE

Displaying Information About Loaded Files

The ? LOAD command displays the file type, file name, and resident size of currently loaded
files.

Syntax: How to Display Information About Loaded Files

? LOAD [filetype]

4. Testing and Debugging With Query Commands

Developing Applications 347

where:

filetype

Specifies the type of file (MASTER, FOCEXEC, Access File, FOCCOMP, or MODIFY) on which
information displays. To display information on all memory-resident files, omit file type.

Example: Displaying Information About Loaded Files

Issuing the command

? LOAD

produces information similar to the following:

FILES CURRENTLY LOADED
CARCRYPTMODIFY 00213548 BYTES
CAR MASTER
VIDEOACXFOCSQL
CARCRYPTFOCEXEC
RTEST FOCEXEC 8400 BYTES

Displaying Explanations of Error Messages

The ? n command displays a detailed explanation of an error message, providing assistance in
correcting the error.

Error messages generated by certain data adapters, such as the DB2 and MODEL 204 data
adapters, are also accessible through this feature.

Syntax: How to Display Explanations of Error Messages

? n

where:

n

Is the error message number.

Displaying Explanations of Error Messages

348

Example: Displaying Explanations of Error Messages

If you receive the message

(FOC125) RECAP CALCULATIONS MISSING

issuing the command

? 125

produces the following message:

(FOC125) RECAP CALCULATIONS MISSING
The word RECAP is not followed by a calculation. Either the RECAP
should be removed, or a calculation provided.

Displaying PF Key Assignments

The ? PFKEY command displays the PF key assignments.

Syntax: How to Display PF Key Assignments

To display the PF key assignments, issue the command:

? PFKEY

Example: Displaying PF Key Assignments

Issuing the command

? PFKEY

produces results similar to the following:

PF01 = HX PF02 = CANCEL PF03 = END PF04 = RETURN
PF05 = RETURN PF06 = SORT PF07 = BACKWARD PF08 = FORWARD
PF09 = RETURN PF10 = LEFT PF11 = RIGHT PF12 = UNDO
PF13 = RETURN PF14 = RETURN PF15 = END PF16 = RETURN
PF17 = RETURN PF18 = RETURN PF19 = BACKWARD PF20 = FORWARD
PF21 = RETURN PF22 = RETURN PF23 = RETURN PF24 = UNDO

Displaying the Release Number

The ? RELEASE command displays the number of the currently installed release of your
product.

Syntax: How to Display the Release Number

To display the release number, issue the command:

4. Testing and Debugging With Query Commands

Developing Applications 349

? RELEASE

Example: Displaying the Release Number

Issuing the command

? RELEASE

produces information similar to the following:

FOCUS 7.2.0 created 11/07/2001 11.38.32

Displaying Parameter Settings

The ? SET command lists the parameter settings that control your FOCUS environment. Your
application sets default values for these parameters, but you can change them with the SET
command.

SET parameters are described in Customizing Your Environment.

Syntax: How to Display Parameter Settings

? SET [ALL|[FOR] parameter]

where:

ALL

Displays all possible parameter settings.

parameter

Is a SET parameter. This displays the setting for the specific parameter.

FOR

Includes where the parameter can be set from in addition to the parameter setting.

Displaying Parameter Settings

350

Example: Displaying Parameter Settings

Issuing the command

? SET

produces information similar to the following:

 PARAMETER SETTINGS
ALL. OFF FOCSTACK SIZE 8 QUALCHAR .
ASNAMES FOCUS FOC2GIGDB OFF QUALTITLES OFF
AUTOINDEX ON HDAY REBUILDMSG 1000
AUTOPATH ON HIPERFOCUS OFF RECAP-COUNT OFF
BINS 64 HOLDATTRS FOCUS SAVEMATRIX OFF
BLKCALC NEW HOLDLIST ALL SCREEN ON
BUSDAYS _MTWTF_ HOLDSTAT OFF SHADOW PAGE OFF
BYPANELING OFF HOTMENU OFF SPACES AUTO
CACHE 0 IBMLE OFF SQLENGINE
CARTESIAN OFF INDEX TYPE NEW SUMPREFIX LST
CDN OFF LANGUAGE AMENGLISH TCPIPINT OFF
COLUMNSCROLL OFF LINES/PAGE 66 TEMP DISK A
DATEDISPLAY OFF LINES/PRINT 57 TERMINAL IBM3270
DATEFNS ON MESSAGE ON TESTDATE TODAY
DATETIME STARTUP/RESET MODE TITLES ON
DEFCENT 19 MULTIPATH SIMPLE VIEWNAMESIZE 18
EMPTYREPORT OFF NODATA . WIDTH 80
EXL2KLANG 1 PAGE-NUM ON WINPFKEY OLD
EXTAGGR ON PANEL 0 XFBINS 16 (passive)
EXTHOLD ON PAUSE ON XFOCUS OFF
EXTSORT ON XRETRIEVAL ON
FIELDNAME NEW PRINT ONLINE YRTHRESH 0
FOCALLOC OFF PRINTPLUS OFF

Some parameters are listed differently from the way you specify them in the SET command.
These include:

SET Parameters Description

FOCSTACK SIZE Is the same as the FOCSTACK parameter.

INDEX TYPE Is the same as the INDEX parameter.

LINES/PAGE Is the same as the PAPER parameter.

LINES/PRINT Is the same as the LINES parameter.

SHADOW PAGES Is the same as the SHADOW parameter.

4. Testing and Debugging With Query Commands

Developing Applications 351

Example: Displaying a Single Parameter Setting

Issuing the command

? SET PAGESIZE

produces the following if the parameter is set to its default value:

PAGESIZE Letter

Example: Displaying Where a Parameter Can Be Set

Issuing the command

? SET FOR EXTSORT

produces the following information:

EXTSORT ON

 SETTABLE FROM COMMAND LINE : YES
 SETTABLE ON TABLE : YES
 SETTABLE FROM SYSTEM-WIDE PROFILE : YES
 SETTABLE FROM HLI PROFILE : YES

Displaying Graph Parameters

The ? SET GRAPH command lists the parameter settings that control graphs produced with the
GRAPH command. These parameters are described further in Customizing Your Environment.

Syntax: How to Display Graph Parameters

To display graph parameters, issue the command:

? SET GRAPH

Example: Displaying Graph Parameters

Issuing the command

? SET GRAPH

Displaying Graph Parameters

352

produces information similar to the following:

 GRAPH PARAMETER SETTINGS
AUTOTICK ON HISTOGRAM ON
BARNUMB OFF HMAX .00
BARSPACE 0 HMIN .00
BARWIDTH 1 HSTACK OFF
BSTACK OFF HTICK .00
DEVICE IBM3270 PIE OFF
GMISSING OFF VAUTO ON
GMISSVAL .00 VAXIS 66
GPROMPT OFF VCLASS .00
GRIBBON(GCOLOR) OFF VGRID OFF
GRID OFF VMAX .00
GTREND OFF VMIN .00
HAUTO ON VTICK .00
HAXIS 130 VZERO OFF
HCLASS .00

>

If you change the PLOT parameter settings, a small table appears at the end of the list:

PLOT TABLE (EBCDIC):

ENTER PLOT MODE 0050 (FOR 3284 WIDTH)
EXIT PLOT MODE 0018 (FOR 3284 HEIGHT)
LEFT 0000
RIGHT 0000
UP 0000
DOWN 0000

The entries in the table at the bottom are:

ENTER PLOT MODE Width of graph on IBM 3284 or 3287 printer.

EXIT PLOT MODE Height of graph on IBM 3284 or 3287 printer.

Ignore the parameters LEFT, RIGHT, UP, and DOWN.

Displaying the Site Code

The FOCUS site code is installed as part of the License Management facility.

Once the site code has been installed, you can retrieve its value by issuing the ? SITECODE
query command. If the site code has not been installed, you will get a message indicating that
the site code is not available.

4. Testing and Debugging With Query Commands

Developing Applications 353

Syntax: How to Retrieve the Site Code

? SITECODE

Example: Querying the Site Code

Assume you installed the License Management facility with site code A52709b.

Issue the following query command in a FOCEXEC:

? SITECODE

The output is:

SITE CODE A527O9b

If the site code is not installed, the ? SITECODE query returns the following message:

SITE CODE NOT AVAILABLE

Displaying Command Statistics

The ? STAT command lists statistics for the most recently executed command.

Each statistic applies only to a certain command. If another command is executed, the
statistic is either 0 or does not appear in the list at all. When you execute commands in stored
procedures, these statistics are automatically stored in Dialogue Manager statistical variables.
See your Dialogue Manager documentation for details.

Syntax: How to Display Command Statistics

To display command statistics, issue the command:

? STAT

Example: Displaying Command Statistics

Issuing the command

? STAT

Displaying Command Statistics

354

produces information similar to the following:

 STATISTICS OF LAST COMMAND
RECORDS = 0 SEGS DELTD = 0
LINES = 0 NOMATCH = 0
BASEIO = 0 DUPLICATES = 0
SORTIO = 47 FORMAT ERRORS = 0
SORT PAGES = 0 INVALID CONDTS = 0
READS = 0 OTHER REJECTS = 0
TRANSACTIONS = 0 CACHE READS = 0
ACCEPTED = 0 MERGES = 0
SEGS INPUT = 0 SORT STRINGS = 0
SEGS CHNGD = 0 INDEXIO = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
AGGREGATION BY EXT.SORT: NO HOLD FROM EXTERNAL SORT: NO

Reference: ? STAT Query Information

The following information displays:

RECORDS

Is for TABLE, TABLEF, and MATCH commands. It indicates the number of data source
records used in the report. The meaning of a record depends on the type of data source
used.

LINES

Is for TABLE and TABLEF commands. It indicates the number of lines displayed in a report.

BASEIO

Is for TABLE, TABLEF, GRAPH, MODIFY, and FSCAN command. It indicates the number of
I/O operations performed on the data source.

SORTIO

Is for TABLE, TABLEF, GRAPH, and MATCH commands. It indicates the number of I/O
operations performed on the FOCSORT file, which is a work file invisible to the end user.

SORTPAGES

Is for TABLE and TABLEF commands. It indicates the number of physical records in the
FOCSORT file.

READS

Is for the MODIFY and FSCAN commands. It indicates the number of fixed format records
read in external files by the FIXFORM command.

TRANSACTIONS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
processed.

4. Testing and Debugging With Query Commands

Developing Applications 355

ACCEPTED

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
accepted.

SEGS INPUT

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
accepted in the data source.

SEGS CHNGD

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
updated in the data source.

SEGS DELTD

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
deleted from the data source.

NOMATCH

Is for the MODIFY and FSCAN commands. It indicates the number of transactions rejected
for lack of matching values in the data source. This occurs on an ON NOMATCH REJECT
condition.

DUPLICATES

Is for the MODIFY and FSCAN commands. It indicates the number of transactions rejected
because the matching field values already exist in the data source. This occurs on an ON
MATCH REJECT condition.

FORMAT ERRORS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions rejected
because field values for data fields do not conform to the field formats defined in the
Master File.

INVALID CONDTS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions rejected
because field values for data fields do not conform to the field formats defined in the
Master File.

OTHER REJECTS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions rejected
for reasons other than those listed above.

CACHE READS

Is the number of cache reads performed. For details, see CACHE on page 68.

MERGES

Is the number of times that merge routines were invoked.

Displaying Command Statistics

356

SORT STRINGS

Is the number of times that the sort capacity was exceeded.

INTERNAL MATRIX CREATED

Indicates how report sorting was handled. If an external sort handled it entirely, the value
is NO. If both the application and an external sort handled it, the value is Y.

SORT USED

Is the type of sort facility used. It can have a value of FOCUS, EXTERNAL, SQL, or NONE.
NONE means that the report did not require sorting.

AGGREGATION BY EXT. SORT

Uses external sorts to perform aggregation.

AUTOINDEX USED

Automatically takes advantage of indexed fields to speed data retrieval.

AUTOPATH USED

Selects an optimal retrieval path for accessing a data source.

HOLD FROM EXTERNAL SORT

Creates hold files with an external sort.

Displaying StyleSheet Parameter Settings

The ? STYLE command displays the current settings for StyleSheet parameters.

Syntax: How to Display StyleSheet Parameter Settings

? [SET] STYLE

Example: Displaying StyleSheet Parameter Settings

Issuing the command

? STYLE

4. Testing and Debugging With Query Commands

Developing Applications 357

produces information similar to the following:

ONLINE-FMT
OFFLINE-FMT STANDARD
STYLESHEET ON
SQUEEZE OFF
PAGESIZE LETTER
ORIENTATION PORTRAIT
UNITS INCHES
LABELPROMPT OFF
LEFTMARGIN .250
RIGHTMARGIN .250
TOPMARGIN .250
BOTTOMMARGIN .250
STYLEMODE FULL
TARGETFRAME
FOCEXURL
BASEURL

Note: OFFLINE-FMT is not supported. ONLINE-FMT and FOCEXURL apply to WebFOCUS.

Reference: ? STYLE Query Information

The following StyleSheet information is listed:

STYLESHEET Rejects or accepts StyleSheet parameters that specify
formatting options, such as page size, orientation, and margins.

LABELPROMPT Specifies on which label of the first page to begin printing a
multi-pane report, such as a mailing label report.

STYLEMODE Speeds the retrieval of large report output by displaying output
in multiple HTML tables where each table is a separate report
page.

ORIENTATION Is the page orientation for styled reports. Can be either portrait
or landscape.

UNITS Is the unit of measure for PostScript and PDF report output, as
inches, centimeters, or points.

TOPMARGIN Is the top boundary for a page of report output.

BOTTOMMARGIN Is the bottom boundary for a page of report output.

LEFTMARGIN Is the left boundary for a page of report output.

Displaying StyleSheet Parameter Settings

358

RIGHTMARGIN Is the right boundary for a page of report output.

TARGETFRAME Is a frame to which all drill-down hyperlinks are directed.

BASEURL Is the default location where the browser searches for relative
URLs specified in the HTML documents created by your
application.

Displaying Information About the SU Machine

The ? SU command displays the communication available to the FOCUS Database Server.

Syntax: How to Display Information About the TIBCO FOCUS Database Server

? SU [userid|ddname]

where:

userid

Is a sync machine user ID.

ddname

Is a valid ddname.

Example: Displaying Information About the TIBCO FOCUS Database Server

Issuing the command

? SU SYNCA

produces the following information:

USERID FILEID QUEUE
WIBMLH QUERY
WIBJBP CAR

Displaying Data Sources Specified With USE

The ? USE command displays data sources specified with the USE command.

Syntax: How to Display Data Sources Specified With USE

To display data sources specified with the USE, issue the command:

4. Testing and Debugging With Query Commands

Developing Applications 359

? USE

Example: Displaying Data Sources Specified With USE

Issuing the command

? USE

produces information similar to the following:

DIRECTORIES IN USE ARE:
CAR FOCUS F
EMPLOYEE FOCUS F
LEDGER FOCUS F

Displaying Global Variable Values

The ? && command lists Dialogue Manager global variables and the current values. Global
variables maintain the values for all procedures executed during a FOCUS session.

Note: You can query all Dialogue Manager variables (local, global, system, and statistical) from
a stored procedure by issuing:

-? &

See your Dialogue Manager documentation for details.

Syntax: How to Display Global Variable Values

? &&

Your site may replace the ampersand (& or &&) indicating Dialogue Manager variables, with
another symbol. In that case, use the replacement symbol in your query command. For
example, if your installation uses the percent sign (%) to indicate Dialogue Manager variables,
list global variables by issuing:

? %%

Example: Displaying Global Variable Values

Issuing the command

? &&

produces information similar to the following:

Displaying Global Variable Values

360

&&STORECODE 001
&&STORENAME MACYS

Reporting Dynamically From System Tables

You can issue report requests against a set of synonyms that dynamically gather information
about your environment, including its applications, files, columns, directories, tables, indexes,
and keys. You can also retrieve information about functions, SET parameters, and error files.
These synonyms reside in the MASTER.DATA data set and have the suffix FMI (FOCUS
Metadata Interface).

Overview of System Table Synonyms

Each FMI synonym retrieves information about a specific set of files in your environment. If you
examine an FMI Master File, the REMARKS and DESCRIPTION attributes document what data
will be returned by each system table and each column within the system table.

Note: The system table synonyms may change in future releases. Therefore, you should not
design applications that depend on the structure of the system table synonyms.

4. Testing and Debugging With Query Commands

Developing Applications 361

For example, following is a version of the SYSFILES Master File, which, by default, retrieves
information about Master Files in your application path.

$--$
$ Copyright (c) 2013 TIBCO, Inc. All rights reserved. @MFSM_NOPROLOG@ $
$--$
$--CAN BE USED TO RETRIEVE DIRECTORY INFO - USE THE FOLLOWING TO DEFINE DIRECTORY
$--SQL FMI SET SYSFILES EDASYNM
$--SQL FMI SET SYSFILES FOCEXEC
FILE=SYSFILES, SUFFIX=FMI, REMARKS='Metadata: Directory information', $
SEGMENT=FILE,SEGTYPE=S0,$
 FIELD=FILENAME , ,A64 ,A64B, DESC='MEMBER NAME
',$
 FIELD=LGNAME , ,A8 ,A8B , DESC='LOGICAL NAME
',$
 FIELD=PHNAME , ,A80 ,A80B, DESC='PHYSICAL NAME 1ST PART
',$
 FIELD=PHNAME2 , ,A80 ,A80B, DESC='PHYSICAL NAME 2ND PART
',$
 FIELD=PHNAME3 , ,A80 ,A80B, DESC='PHYSICAL NAME ETC..
',$
 FIELD=PHNAME4 , ,A80 ,A80B, DESC='PHYSICAL NAME The whole length up to
512 bytes ',$
 FIELD=PHNAME5 , ,A80 ,A80B, DESC='PHYSICAL NAME The last part is 32 but
can be up ',$
 FIELD=PHNAME6 , ,A80 ,A80B, DESC='PHYSICAL NAME to 44 because of nlscut
of ',$
 FIELD=PHNAME7 , ,A80 ,A80B, DESC='PHYSICAL NAME previous 6 parts (2
bytes per part)',$
 FIELD=VERSION , ,I4 ,I1, DESC='MF:VERSION
',$
 FIELD=MOD , ,I4 ,I1, DESC='MF:MODIFICATION NUMBER
',$
 FIELD=LINECNT , ,I4 ,I2, DESC='MF:CURRENT LINE COUNTER.
',$
 FIELD=DATE , ,A8 ,A8B, DESC='IBI DATE (DD/MM/YY)
',$
 FIELD=TIME , ,A8 ,A8B, DESC='IBI TIME (HH.MM.SS)
',$
 FIELD=USERID , ,A100 ,A100B, DESC='MF: LAST USER WHO CHANGED. UNIX/
NT:owner',$
 FIELD=SIZE , ,I11 ,I4, DESC='UNIX/NT:SIZE IN BYTES.
',$
 FIELD=EXTENSION , ,A3 ,A3B, DESC='ACCEPTED SHORT EXTENSION FOR FILE
',$

A list of some of the most useful FMI synonyms follows. You can generate a list of system
table synonyms by issuing a request against the systable synonym.

SYSAPPS. Retrieves information about applications and the files within them.

SYSCOLUM. Retrieves information about tables and their columns.

SYSDEFFN. Retrieves DEFINE FUNCTION information.

Reporting Dynamically From System Tables

362

SYSERR. Retrieves information about error message files.

SYSFILES. Retrieves directory information.

SYSIMP. Retrieves impact analysis information.

SYSINDEX. Retrieves index information.

SYSKEYS. Retrieves information about keys.

SYSRPDIR. Retrieves information about all available FOCEXECs in your application path.

SYSSET. Retrieves information about SET commands and global Dialogue Manager
variables.

SYSSQLOP. Retrieves function information.

SYSTABLE. Retrieves table information.

SYSVDTP. Retrieves data type information for Relational Adapters.

SYSAPPS: Reporting on Applications and Application Files

The sysapps synonym retrieves information about applications and the files within them.

Example: Retrieving Application and File Information

The following request retrieves the application name and path and the file name, extension,
suffix, keys, and number of segments for Master Files in the ibisamp application, where the
file names start with the letters a through g.

TABLE FILE SYSAPPS
PRINT APPNAME AS App APPLOC AS Path
FNAME AS 'File,Name' SUFFIX AS 'File,Type' KEYS
NUMSEG AS '# of,Segments'
WHERE APPNAME EQ 'ibisamp'
WHERE FEXT EQ 'mas'
WHERE FQNAME LT 'C:\ibi\apps\ibisamp\hday'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

4. Testing and Debugging With Query Commands

Developing Applications 363

The output is shown in the following image.

SYSCOLUM: Reporting on Tables and Their Columns

The syscolum synonym retrieves table information, including table names creator names,
segment names and numbers, segment roles in a dimension view or business view, column
names, and column data types. Use it to report on data sources referenced in a Master File.

Example: Retrieving Table and Column Information

The following request retrieves table and column information from tables whose table names
start with the characters wf_.

TABLE FILE SYSCOLUM
PRINT TBNAME AS Table TBTYPE AS Suffix NAME AS Field,Name COLTYPE AS
Data,Type ACTUAL AS Format
WHERE TBNAME LIKE 'wf_%'
WHERE RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

Reporting Dynamically From System Tables

364

The output is shown in the following image.

SYSDEFFN: Reporting on DEFINE FUNCTIONS

The sysdeffn synonym retrieves information about DEFINE FUNCTIONs, including function
names, arguments, argument formats, function fields, and descriptions.

Example: Retrieving DEFINE FUNCTION Information

The following request retrieves DEFINE FUNCTION names, arguments, and argument formats.

TABLE FILE SYSDEFFN
PRINT DFNAME AS Function,Name ARGNAME AS Argument,Name ARGFORMAT AS
Argument,Format
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

4. Testing and Debugging With Query Commands

Developing Applications 365

The output is shown in the following image.

SYSERR: Reporting on Error Message Files

The syserr synonym retrieves error file names, the lowest and highest message numbers in
each file, message and explanation text, message number, whether the message is a warning,
whether the message is informational, and whether the line number is displayed in a
procedure.

Example: Retrieving Error Message File Information

The following request retrieves message text and explanations.

TABLE FILE SYSERR
BY ERRNUM NOPRINT SUBHEAD
" <ERRTEXT "
 "<ERRLINE1 "
 "<ERRLINE2 "
 "<ERRLINE3 "
 "<ERRLINE4 "
WHERE RECORDLIMIT EQ 7
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

Reporting Dynamically From System Tables

366

The output is shown in the following image.

SYSFILES: Reporting on Metadata or Procedure Directory Information

The sysfiles synonym retrieves Master Files or FOCEXEC files in your application path. By
default, sysfiles retrieves a list of Master Files and their properties. The SET SYSFILES
command determines which type of files are retrieved.

4. Testing and Debugging With Query Commands

Developing Applications 367

The syntax is

SQL FMI SET SYSFILES {EDASYNM|FOCEXEC}

where:

EDASYNM

Retrieves information about Master Files. This is the default value.

FOCEXEC

Retrieves information about procedure files.
Example: Retrieving Master File Information

The following request retrieves the file name, extension, and path for the Master File names
that start with the letters a through h in the ibisamp application directory.

TABLE FILE SYSFILES
PRINT FILENAME AS File
EXTENSION AS Extension
PHNAME AS Path
WHERE PHNAME LIKE 'ibisamp/%'
WHERE FILENAME LT 'i'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

Reporting Dynamically From System Tables

368

The output is shown in the following image.

SYSIMP: Reporting on Impact Analysis Information

The sysimp synonym retrieves information about where files reside and where they are
referenced. Sysimp contains a segment for caller information and a child segment for the files
called by each caller.

4. Testing and Debugging With Query Commands

Developing Applications 369

Example: Retrieving Impact Analysis Information

The following request retrieves the names, types, and descriptions of caller files whose names
start with the letters s through z in the ibisamp application and the names, types, and
descriptions of the files they called.

TABLE FILE SYSIMP
PRINT CTYPE AS Caller,Type CDESCRIPTION AS Description
RFILE AS Called,Name
RPT_TYPE AS Called,Type
RLINENUM AS Line RUSAGE AS 'Used In'
REXTENSION AS Extension RDESCRIPTION AS Description
BY CFILE/A15 AS Caller,Name
WHERE CAPPLICATION EQ 'ibisamp'
WHERE CFILE GE 's'
ON TABLE SET PAGE NOLEAD
ON TABLE SET SHOWBLANKS ON
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The partial output is shown in the following image.

SYSINDEX: Reporting on Index Information

The sysindex synonym retrieves information about indexes defined in a synonym.

Reporting Dynamically From System Tables

370

Example: Retrieving Index Information

The following request retrieves index field names for files that start with the characters gg.

TABLE FILE SYSINDEX
PRINT NAME AS Index
BY TBNAME AS File
WHERE TBNAME LIKE 'gg%'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

SYSKEYS: Reporting on Key Information

The syskeys synonym retrieves information about keys defined in a synonym.

Example: Retrieving Key Information

The following request retrieves key field names and sort order for files that start with the
characters gg.

TABLE FILE SYSKEYS
PRINT IXNAME AS Key ORDERING AS Order
BY TBNAME AS File
WHERE TBNAME LIKE 'gg%'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

4. Testing and Debugging With Query Commands

Developing Applications 371

The output is shown in the following image.

SYSRPDIR: Reporting on Stored Procedures

The sysrpdir synonym retrieves all available FOCEXECs in your application path.

Example: Retrieving Stored Procedure Information

The following request retrieves procedures that start with the characters wf_.

TABLE FILE SYSRPDIR
PRINT RPC_TYPE AS Procedure,Type
BY RPC_NAME AS Procedure,Name
WHERE RPC_NAME LIKE 'wf_%'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

Reporting Dynamically From System Tables

372

SYSSET: Reporting on SET Parameters

The sysset synonym retrieves information about SET parameters, their allowed values, and
their default values.

Example: Retrieving Information About SET Parameters

The following request displays SET parameters that start with the letter D, along with their
descriptions and values.

TABLE FILE SYSSET
PRINT SETDESC CURR_VALUE VALUE IS_DEFAULT
BY SETNAME AS Set,Name
WHERE SETNAME GE 'D' AND SETNAME LT 'E'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The partial output is shown in the following image.

SYSSQLOP: Reporting on Function Information

The syssqlop synonym retrieves information about functions, their descriptions, parameters,
syntax, and adapter category.

4. Testing and Debugging With Query Commands

Developing Applications 373

Example: Retrieving Function Descriptions and Syntax

The following request retrieves the names, descriptions, and syntax for the legacy functions
whose names begin with the letters A and B.

TABLE FILE SYSSQLOP
SUM FUNCTION_DESC FUNCTION_SYNTAX
BY FUNCTION
WHERE CATEGORY LIKE 'L%'
WHERE FUNCTION LE 'C'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

SYSTABLE: Reporting on Table Information

The systable synonym retrieves information about synonyms in your path, including type of
synonym, creator, number of columns, keys, record length, and description.

Example: Retrieving A List of FMI Synonyms

The following request retrieves the names, descriptions, and attributes of the system table
synonyms.

TABLE FILE SYSTABLE
PRINT TBTYPE REMARKS COLCOUNT RECLENGTH KEYCOLUMNS
BY NAME
WHERE NAME LIKE 'sys%'
WHERE TBTYPE EQ 'FMI'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

Reporting Dynamically From System Tables

374

The output is shown in the following image.

Reporting on Data Types

The sysvdtp synonym retrieves data types and their corresponding USAGE and ACTUAL formats
for the SQL Adapters and for fixed sequential data sources. It is not an FMI synonym, but
retrieves the data type information from a delimited sequential file.

Note: In order to access the data file containing the data types for each adapter, you must
allocate DDNAME SYSVDTP to the SYSVDTP member of your FUSELIB.DATA data set.

DYNAM ALLOC DD SYSVDTP DA hlq.FUSELIB.DATA MEMBER SYSVDTP SHR REU

4. Testing and Debugging With Query Commands

Developing Applications 375

Example: Retrieving Data Types for the Adapter for MySQL

The following request retrieves data type information for the Adapter for MySQL

TABLE FILE SYSVDTP
PRINT DATA_TYPE_CATEGORY
VENDOR_DATA_TYPES
TYPE_RANGE
SERVER_USAGE_CATEGORY
SERVER_USAGE
SERVER_ACTUAL
REMARKS
BY ADAPTER
WHERE SUFFIX EQ 'SQLMYSQL'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

Reporting Dynamically From System Tables

376

Chapter5
Defining a Word Substitution

A LET substitution enables you to define a word to represent other words and phrases.
By substituting words for phrases, you can reduce the typing necessary to enter requests
(especially when entering phrases repeatedly) and make requests easier to understand.

In this chapter:

The LET Command

Variable Substitution

Null Substitution

Multiple-Line Substitution

Recursive Substitution

Using a LET Substitution in a COMPUTE or DEFINE Command

Checking Current LET Substitutions

Interactive LET Query: LET ECHO

Clearing LET Substitutions

Saving LET Substitutions in a File

Assigning Phrases to Function Keys

The LET Command

The LET command enables you to represent a word or phrase with another word. This reduces
the amount of typing necessary for issuing requests, and makes the requests easier to
understand. A substitution is especially useful when you use the same phrase repeatedly.
Note that you cannot use LET substitutions in Dialogue Manager commands, and substitutions
cannot be used in a MODIFY or Maintain request.

The LET command has a short form and a long form. Use the short form for one or two LET
definitions that fit on one line. Otherwise, use the long form.

Developing Applications 377

When you define a word with LET then use that word in a request, the word is translated into
the word or phrase it represents. The result is the same as if you entered the original word or
phrase directly. You can substitute any phrase that you enter online unless you are entering a
MODIFY request.

A LET substitution lasts until it is cleared or until the request terminates. To clear active LET
substitutions, issue the LET CLEAR command. To use the same substitutions in many
requests, place the LET commands in a stored procedure. If you want to save currently active
LET substitutions, use the LET SAVE facility. These substitutions can then be executed later
with one short command.

Syntax: How to Make a Substitution (Short Form)

LET word = phrase [;word = phrase...]

where:

word

Is a string of up to 80 characters with no embedded blanks.

phrase

Is a string of up to 256 characters, which can include embedded blanks. The phrase can
also include other special characters, but semicolons and pound signs need special
consideration. If the word you are defining appears in the phrase you are replacing, you
must enclose it in single quotation marks.

More than one substitution can be defined on the same line by placing a semicolon
between definitions.

Example: Making a Substitution (Short Form)

The LET command defines the word WORKREPORT as a substitute for the phrase TABLE FILE
EMPLOYEE:

LET WORKREPORT = TABLE FILE EMPLOYEE

Issuing the following

WORKREPORT
PRINT LAST_NAME
END

results in this request:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
END

The LET Command

378

The next command includes TABLE as both the word you are defining and as part of the phrase
it is replacing. It is enclosed in single quotation marks in the phrase:

LET TABLE = 'TABLE' FILE EMPLOYEE

More than one word is defined in the following command. The definitions are separated by a
semicolon:

LET WORKREPORT=TABLE FILE EMPLOYEE; PR=PRINT

Syntax: How to Make a Substitution (Long Form)

LET
word = phrase
.
.
.
END

where:

word

Is a string of up to 80 characters with no embedded blanks.

phrase

Is a string of up to 256 characters, and can include embedded blanks.

END

Is required to terminate the command.

As shown, LET and END must each be on a separate line.

As with the short form, you can define several words on one line by separating the definitions
with a semicolon.

Example: Making a Single Substitution (Long Form)

The following example illustrates a single substitution.

LET
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES' OR 'BANNING' OR 'MCCOY' OR
'MCKNIGHT'
END

Example: Making Multiple Substitutions (Long Form)

The following example illustrates substitutions that span more than one line. Notice that there
is no semicolon after the definition PR = PRINT:

5. Defining a Word Substitution

Developing Applications 379

LET
WORKREPORT = TABLE FILE EMPLOYEE; PR = PRINT
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES'
END

Example: Defining Substitutions for Translation

Non-English speakers can use LET commands to translate a request into another language.
For example, this request

TABLE FILE CAR
SUM AVE.RCOST OVER AVE.DCOST
BY CAR ACROSS COUNTRY
END

can be translated into French as:

CHARGER FICHIER CAR
SOMMER AVE.RCOST SUR AVE.DCOST
PAR CAR TRAVERS COUNTRY
FIN

Variable Substitution

Using the LET command, you can define a word that represents a variable phrase. A variable
phrase contains placeholder symbols (carets) to indicate missing elements in the phrase. This
allows you to give a phrase different meanings in different requests. Placeholders can be parts
of words within phrases. They can also be used to represent system commands.

Placeholders can be numbered or unnumbered. If the placeholders are not numbered, then
they are filled from left to right: the first word in the request after the LET-defined word fills the
first placeholder, the second word fills the second placeholder, and so on to the last
placeholder. If they are numbered, the placeholders are filled in numerical order. If you do not
supply enough words to fill all the placeholders, the extra placeholders are null.

Example: Making a Variable Substitution

The command

LET UNDERSCORE = ON < > UNDER-LINE

contains one placeholder. After issuing this command, you can use the word UNDERSCORE in
a request:

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID BY HIRE_DATE
UNDERSCORE EMP_ID
END

Variable Substitution

380

The field name following the LET-defined word supplies the missing value to the placeholder. In
the example, EMP_ID follows the defined word UNDERSCORE. This field name is inserted in
the placeholder and translates UNDERSCORE EMP_ID as:

ON EMP_ID UNDER-LINE

Example: Making Multiple Variable Substitutions (Unnumbered)

Issuing the LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR < >

and then including the following line in a request

TESTNAME 'MCKNIGHT' 'STEVENS' 'BLACKWOOD'

translates the line as:

WHERE LAST_NAME IS 'MCKNIGHT' OR 'STEVENS' OR 'BLACKWOOD'

Notice that the variable phrase needs no placeholder at the end, and could also be code as
WHERE LAST_NAME IS <> OR <>. Once all the placeholders are filled, the rest of the definition
follows. In this example, the words MCKNIGHT and STEVENS would fill the two placeholders.
BLACKWOOD would be left over, so it would follow the variable phrase.

If you do not supply enough words to fill in all the placeholders, the extra placeholders are null.
For example, issuing this LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR

and then entering this command

TESTNAME 'MCCOY'

translates the statement into:

WHERE LAST_NAME IS 'MCCOY' OR OR

This statement is illegal and produces an error message.

Example: Making Multiple Variable Substitutions (Numbered)

The following LET command contains numbered placeholders:

LET TESTNAME = WHERE LAST_NAME IS <1> OR <2> OR <3>

Therefore, the following line

TESTNAME 'STEVENS' 'MCKNIGHT' 'BLACKWOOD'

5. Defining a Word Substitution

Developing Applications 381

is translated as follows:

WHERE LAST_NAME IS 'STEVENS' OR 'MCKNIGHT' OR 'BLACKWOOD'

If two placeholders have the same number, both placeholders are filled with the same word.
For example, if you issue this LET command

LET RANGE = SUM MAX.<1> AND MIN.<1>

and this line

RANGE SALARY

the translated statement is:

SUM MAX.SALARY AND MIN.SALARY

Example: Making a Variable Substitution in a Phrase

Issuing the following LET command

LET BIGGEST = MAX.< >

and entering the line

WRITE BIGGEST SALARY

translates the statement as:

WRITE MAX.SALARY

Example: Defining a System Command

Each of the following LET commands define a system command:

LET ALFOC = TSO ALLOC F(< >) DA(< >.FOCUS) SHR
LET LISTMEM = TSO LISTDS < > MEMBERS

Null Substitution

With a null substitution, you can use more than one word to represent a phrase. By using more
than one word in a request instead of a single word, you can make the request more readable.

You can define a null word using LET. A null word is ignored by the application.

Syntax: How to Define a Null Word

To define a null word, issue the command

Null Substitution

382

LET word=;

Example: Defining a Null Word

This LET command defines DISPLAY as a null word:

LET
DISPLAY=;
AVESAL = SUM AVE.SALARY BY DEPARTMENT
END

In the following request, the word DISPLAY is used in the code DISPLAY AVESAL, for
readability, to make clear that the request prints the value represented by AVESAL:

TABLE FILE EMPLOYEE
DISPLAY AVESAL
WHERE DEPARTMENT IS 'PRODUCTION'
END

The word DISPLAY is ignored and the request is translated as:

TABLE FILE EMPLOYEE
SUM AVE.SALARY BY DEPARTMENT
WHERE DEPARTMENT IS 'PRODUCTION'
END

Multiple-Line Substitution

Many commands, such as END, must appear on a separate line in a report request. To include
such a command in a LET definition, place a number sign (#) and a space before the command
to indicate a new line. This allows you to substitute one word for several lines of code.

Example: Making Multiple-Line Substitutions

This LET command uses the number sign and a space to indicate that a new line is required
for the END command:

LET HOLDREP = ON TABLE HOLD # END

The following request

TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
HOLDREP

is translated as:

5. Defining a Word Substitution

Developing Applications 383

TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
ON TABLE HOLD
END

Recursive Substitution

Recursive substitution allows a phrase in one LET definition to contain a word defined in
another LET definition. Recursive substitution can also be used to abbreviate long phrases
within LET commands.

Example: Making a Recursive Substitution

In the following LET command

LET
TESTNAME=IF LAST_NAME IS RIGHTNAME
RIGHTNAME = STEVENS OR MCKNIGHT OR MCCOY
END

the word RIGHTNAME in the phrase in the first definition is defined in the second definition.
(Note that the two phrases in the LET command could be reversed.) This LET command is
equivalent to:

LET
TESTNAME = IF LAST_NAME IS STEVENS OR MCKNIGHT OR MCCOY
END

Example: Abbreviating a Long Phrase

Consider the following LET command, which illustrates recursive substitution:

LET
TESTNAME = STEVENS OR SMITH OR MCCOY OR CONT1
CONT1 = BANNING OR IRVING OR ROMANS OR CONT2
CONT2 = JONES OR BLACKWOOD
END

You can use TESTNAME in this request:

TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS TESTNAME
END

This is the equivalent of:

Recursive Substitution

384

TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS STEVENS OR SMITH OR MCCOY OR
BANNING OR IRVING OR ROMANS
OR JONES OR BLACKWOOD
END

Using a LET Substitution in a COMPUTE or DEFINE Command

A semicolon must follow an expression in a COMPUTE or DEFINE command. To use a LET
substitution in a DEFINE or COMPUTE, you must include two semicolons in the LET syntax. You
cannot create a LET substitution for a phrase that contains a semicolon.

Example: Using a LET Substitution in a COMPUTE or DEFINE Command

The following LET syntax includes two semicolons, since the substitution will be made in a
COMPUTE command:

LET
SALTEST = LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;;
END

Issuing the command

AND COMPUTE SALTEST

translates the line into

AND COMPUTE LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;

with one semicolon after the word LOW, as required by the expression in the COMPUTE.

Checking Current LET Substitutions

The ? LET command displays the currently active LET substitutions.

Syntax: How to Check Current LET Substitutions

? LET [word1 word2 ... wordn]

5. Defining a Word Substitution

Developing Applications 385

where:

word1 word 2...wordn

Are the LET-defined words you want to check. If you omit these parameters, ? LET displays
a two-column list of all active LET substitutions. The left column contains the LET-defined
words; the right column contains the phrases the words represent.

Example: Checking Selected LET Substitutions

Issuing

? LET CHART TESTNAME RIGHTNAME

displays a two-column list of the LET substitutions for CHART, TESTNAME, and RIGHTNAME.

Example: Checking All Current LET Substitutions

Issuing

? LET

displays a list of all current LET substitutions.

Interactive LET Query: LET ECHO

The LET ECHO facility shows how FOCUS interprets FOCUS statements. This facility is a
diagnostic tool you can use when statements containing LET-defined words are not being
interpreted the way you expect them to.

When the LET ECHO facility is activated, when you enter a FOCUS statement, LET ECHO
displays the statement as interpreted by FOCUS.

Syntax: How to Activate the LET ECHO Facility

To activate the LET ECHO facility, issue the command:

LET ECHO

Syntax: How to Deactivate the LET ECHO Facility

ENDECHO

Interactive LET Query: LET ECHO

386

Reference: Results of LET ECHO Commands

The following explains the results of a LET ECHO command:

If you enter a statement containing no LET-defined words, LET ECHO displays the statement
as you entered it.

If you enter a statement containing LET-defined words, LET ECHO displays the statement
with the substitutions made.

If the statement contains variable substitutions, LET ECHO displays the substitutions with
the placeholders filled in.

If the statement contains multiple-line substitutions, LET ECHO displays the statement with
the substitutions on multiple lines.

If the statement contains null substitutions, LET ECHO displays the statement with the LET-
defined words deleted.

If the statement contains recursive substitutions, the substitutions appear as they are
finally resolved.

LET ECHO may be coded as the first line of a FOCEXEC and ENDECHO as the last line.

Note: If you enter a statement containing a variable substitution, you must enter as many
words after the LET-defined word as there are placeholders in the phrase; otherwise, LET ECHO
will wait for additional input.

Clearing LET Substitutions

Use the LET CLEAR command to clear LET substitutions.

Syntax: How to Clear LET Substitutions

LET CLEAR {*|word1 [word2...wordn]}

where:

*

Clears all substitutions.

word1...wordn

Are the LET-defined words that you want to clear.

Example: Clearing LET Substitutions

Issuing the following command

5. Defining a Word Substitution

Developing Applications 387

LET CLEAR CHART TESTNAME RIGHTNAME

clears substitutions for CHART, TESTNAME, and RIGHTNAME. If there are no additional LET
substitutions in effect, the following command would have the same effect:

LET CLEAR *

Saving LET Substitutions in a File

Since LET substitutions only last the duration of a session, saving them is helpful if you need
the same substitutions for another request.

To save LET substitutions currently in effect, use the LET SAVE command.

Syntax: How to Save LET Substitutions

LET SAVE [filename]

where:

filename

Is the eight-character name of the file in which you want to save the substitutions. If you
do not supply a file name, the default file name is LETSAVE.

Assigning Phrases to Function Keys

You can assign a phrase to a function key. Then when you have a blank line and press a
function key, that phrase appears as if you actually typed it. This process works only in
situations where the LET facility is operative.

Syntax: How to Assign a Phrase to a Function Key

LET !n= [.]phrase

where:

n

Is a function key number from 1 to 24.

.

Suppresses the echo of the phrase when you press the function key.

phrase

Is the phrase that the specified function key represents.

Saving LET Substitutions in a File

388

Example: Assigning Phrases to Function Keys

The following assigns values to function keys:

LET !4 = EX DAILYRPT
LET !6 = END
LET !20 = IF RECORDLIMIT EQ 10
LET !21 = .EX MYREPORT

5. Defining a Word Substitution

Developing Applications 389

Assigning Phrases to Function Keys

390

Chapter6
Enhancing Application Performance

This topic covers FOCUS facilities that are available across command environment
boundaries. These facilities are easy to use and, in many cases, step-by-step
instructions are provided.

In this chapter:

FOCUS Facilities

Loading a File

Saving Master Files in Memory for Reuse

Accessing a FOCUS Data Source

FOCUS Facilities

The FOCUS facilities discussed in this topic are classified as file utilities for FOCUS and
external files. They are summarized in the following table:

Command Description

LOAD Loads FOCUS procedures and Master Files into memory (see Loading a
File on page 391).

MINIO Improves performance by reducing I/O operations when accessing
FOCUS data sources (see Accessing a FOCUS Data Source on page
398).

SET
SAVEDMASTERS

Improves performance by saving Master Files in memory.

Loading a File

Use the LOAD command to load the following types of files into memory for use within a
FOCUS session:

Master Files (MASTER).

Developing Applications 391

Access Files.

FOCUS procedures (FOCEXEC).

Using memory-resident files decreases execution time because the files do not have to be
read from the disk. Use the UNLOAD command to remove the files from memory.

The LOAD command loads unparsed Master Files into memory. To store parsed Master Files in
memory, use the SET SAVEDMASTERS command described in Saving Master Files in Memory
for Reuse on page 395.

Syntax: How to Load a File

LOAD filetype filename1... [filename2...]

where:

filetype

Specifies the type of file to be loaded (MASTER, FOCEXEC, or Access File). For a list of
Access File Types, see Considerations for Loading a Master File, FOCUS Procedure, or
Access File on page 393.

filename1...

Specifies one or more files to be loaded. Separate the file type and file name(s) with a
space.

Example: Loading Multiple Files

The following command loads four FOCEXECs—CARTEST, FOCMAP1, FOCMAP2, and FOCMAP3
—into memory:

>LOAD FOCEXEC CARTEST FOCMAP1 FOCMAP2 FOCMAP3

A subsequent reference to one of these files during the current FOCUS session will use the
loaded, rather than the disk version.

Syntax: How to Unload a File

UNLOAD [*|filetype] [*| filename1... [filename2...]]

Loading a File

392

where:

filetype

Specifies the type of file to be unloaded (MASTER, FOCEXEC, or Access File). For a list of
Access File Types, see Considerations for Loading a Master File, FOCUS Procedure, or
Access File on page 393.

To unload all files of all types, use an asterisk.

filename1...

Specifies one or more files to be unloaded. Separate the file type and file name(s) with a
space. To unload all files of that file type, use an asterisk.

Example: Unloading Multiple Files

The following command unloads two memory-resident FOCEXECs— CARTEST and FOCMAP3:

>UNLOAD FOCEXEC CARTEST FOCMAP3

Any subsequent reference to one of these files will use the disk version.

Loading Master Files, FOCUS Procedures, and Access Files

Loading Master Files, Access Files, and FOCEXECs into memory eliminates the I/Os required
to read each time they are referenced. Whenever FOCUS requires a Master File, Access File, or
executes a FOCEXEC, it first looks for a memory-resident MASTER, Access File, or FOCEXEC
file. If FOCUS cannot find the file in memory, it then searches for a disk version in the normal
way.

Reference: Considerations for Loading a Master File, FOCUS Procedure, or Access File

The following are considerations for loading a Master File, FOCUS procedure, and Access File:

If you load a Master File, Access File, or a FOCEXEC that has already been loaded into
memory, the new copy replaces the old copy.

Do not load a Master File, Access File, or a FOCEXEC that you are developing because
FOCUS will always use the memory-resident copy of the file (until you reload it), rather than
the one you are developing. The copy that you are developing on TED or your system editor
is the disk copy, not the memory-resident copy.

A loaded Master File, Access File, or FOCEXEC requires a maximum of 80 bytes of memory
for each of its records plus a small amount of control information, rounded up to a multiple
of 4200 bytes.

6. Enhancing Application Performance

Developing Applications 393

The following are the file types for the various Access Files:

Access File File Type

ADABAS FOCADBS

CA-DATACOM FOCDTCM

DB2 FOCSQL

FOCUS ACCESS

CA-IDMS FOCIDMS

IDMS/SQL FOCSQL

IMS/DB ACCESS

Model 204 ACCESS

ORACLE FOCSQL

TERADATA FOCDBC

Displaying Information About Loaded Files

The ? LOAD command displays the file type, file name, and resident size of currently loaded
files.

Syntax: How to Display Information About Loaded Files

? LOAD [filetype]

where:

filetype

Specifies the type of file (MASTER, Access File, FOCEXEC, or MODIFY) on which information
will be displayed. For a list of Access File Types, see Considerations for Loading a Master
File, FOCUS Procedure, or Access File on page 393.

To display information on all memory-resident files, omit the file type.

Example: Displaying Information About Loaded Files

Issuing the command

Loading a File

394

? LOAD

produces information similar to the following:

FILES CURRENTLY LOADED

 CAR MASTER 4200 BYTES
 EXPERSON MASTER 4200 BYTES
 CARTEST FOCEXEC 8400 BYTES

Saving Master Files in Memory for Reuse

You can save up to 99 Master Files in memory after they have been used in a request. The
saved Master Files are not re-parsed when referenced in subsequent requests, resulting in a
significant performance improvement. The greatest improvement occurs in Master Files with a
great many fields, where parsing is slowest.

Saving Master Files in memory is particularly helpful when running multiple requests against
several Master Files. The most recently used Master File is stored in memory regardless of
this setting. With each request that specifies a new Master File, the prior Master File is moved
down on the saved list and the new Master File is placed at the top of the list. Once all of the
slots on the list are full, parsing a new Master File causes the one at the bottom to drop off
the list. If an already saved Master File is used in a request, it moves to the top of the list.

Only one occurrence of a Master File name is maintained on the list. Therefore, if you use an
already saved Master File as the host file in a JOIN, in a HOLD command (with the same AS
name), in a USE...AS command, or in a COMBINE command without specifying a unique name,
the new version of the Master File replaces the previous version on the list. A JOIN CLEAR or
USE CLEAR command purges the parsed Master File from memory.

If a Master File will be re-parsed multiple times, you can save the I/O needed to retrieve it from
disk by loading it into memory using the LOAD command described in Loading a File on page
391.

Note: SAVEDMASTERS is not an effective technique to use with massive amounts of data
because the amount of time saved by not re-parsing is small in comparison to the time for
processing the data.

Syntax: How to Save Parsed Master Files in Memory

SET SAVEDMASTERS = n

6. Enhancing Application Performance

Developing Applications 395

where:

n

Is an integer between 0 and 99 that specifies the maximum number of Master Files on the
SAVEDMASTERS list. The default value is 0. Note that the most recently used Master File
is always stored in memory, even with SAVEDMASTERS set to zero. However, the zero
setting does not generate the list of saved Master Files.

Syntax: How to Query the SAVEDMASTERS Setting

The following query command indicates the number of Master Files allowed on the list of saved
Master Files and lists the names of the Master Files on the list.

? SET SAVEDMASTERS

Example: Saving and Querying Parsed Master Files

The following command specifies that up to three parsed Master Files can be saved:

SET SAVEDMASTERS = 3

Issue the Query command:

? SET SAVEDMASTERS

The output of the query command indicates that the list can contain up to three Master Files,
but none are currently saved:

SAVEDMASTERS 3

The following procedure parses two Master Files, EMPLOYEE and MOVIES:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME BY EMP_ID
END
-RUN
TABLE FILE MOVIES
PRINT TITLE BY DIRECTOR
END
-RUN

? SET SAVEDMASTERS

In this example, the output of the query command indicates that the list can contain up to
three Master Files and that the list currently consists of MOVIES and EMPLOYEE:

Saving Master Files in Memory for Reuse

396

SAVEDMASTERS 3

 MOVIES
 EMPLOYEE

Reference: Usage Notes for SET SAVEDMASTERS

Memory resources are used to store the parsed Master Files, reducing the amount of
memory available for other processes.

You cannot selectively purge Master Files from the list.

The SAVEDMASTERS parameter is not supported in a request (ON TABLE SET) or in
FOCPARM.

The SAVEDMASTERS setting is not supported on a FOCUS Database Server or with a
Maintain procedure.

The SAVEDMASTERS setting is not supported with SCAN or FSCAN.

Issuing the CHECK FILE or REBUILD command causes the specified Master File to be re-
parsed.

The ?F and ?FF commands only re-parse the Master File when issued outside of a request
for a Master File other than the most recently used Master File.

Using an alternate file view (TABLE FILE filename.fieldname) or the AUTOPATH=ON setting
re-parses the Master File.

If the SAVEDMASTERS value is changed between requests:

Raising the number allows more Master Files to be saved as they are parsed.

Lowering the number drops the oldest saved Master Files.

If changes are made to a Master File that is saved, the changes will not be implemented
until the Master File is re-parsed.

When only one Master File has been used, it is not placed on the SAVEDMASTERS list.

DEFINE expressions are not stored and, therefore, are re-parsed every time they are used.

Creating a HOLD file erases the Master File name from the list if it is there, and the HOLD
command does not place the new Master File on the list.

SAVEDMASTERS is most effective when a Master File has a lot of fields.

6. Enhancing Application Performance

Developing Applications 397

The FML Hierarchy LOAD CHART command does not add the Master File to the
SAVEDMASTERS list.

Accessing a FOCUS Data Source

MINIO is a new I/O buffering technique that improves performance by reducing I/O operations
when accessing FOCUS data sources. With MINIO set on, no block is ever read more than
once, and therefore the number of reads performed is the same as the number of tracks
present. This results in an overall reduction in elapsed times when reading and writing.

With FOCUS data sources that are not disorganized, MINIO can greatly reduce the number of
I/O operations for TABLE and MODIFY commands. I/O reductions of up to 50% are achievable
with MINIO. The actual reduction varies depending on data source structure and average
numbers of children segments per parent segment. By reducing I/O operations, elapsed times
for TABLE and MODIFY commands also drop.

Syntax: How to Set MINIO

SET MINIO = {ON|OFF}

where:

ON

Does not read a block more than once; the number of reads performed will be the same as
the number of tracks present. This results in an overall reduction in elapsed times when
reading and writing. This value is the default.

OFF

Disables MINIO.

Using MINIO

MINIO reduces CPU time slightly while slightly raising memory utilization. MINIO requires one
track I/O buffer per referenced segment type. Between 40K and 48K of above-the-line virtual
memory is needed per referenced segment.

Accessing a FOCUS Data Source

398

When MINIO is enabled, FOCUS decides for each command whether or not to employ it, and
which data sources to use it with. It is possible in executing a single command referencing
several data sources that MINIO might be used for some but not for others. Data sources
accessed via indexes, or physically disordered through online updates, are not candidates for
MINIO buffering. Physical disorganization, in this case, means that the sequence of selected
records jumps all over the data source, as opposed to progressing steadily forward. When
disorganization occurs, MINIO abandons its buffering techniques and resorts to the standard
I/O methodology.

When reading data sources, MINIO is used with TABLE, TABLEF, GRAPH, MATCH and during the
DUMP phase of the REBUILD command, provided the target data source is not accessed via an
index or is physically disorganized.

When writing to data sources, MINIO is used with MODIFY but never with MAINTAIN, provided
there is no CRTFORM or COMMIT subcommand. CRTFORMs indicate online transaction
processing, which requires that completed transactions be written out to the data source.
COMMITs are explicit orders to do so. These events are incompatible with MINIO minimization
logic and therefore rule out its use.

As with reads, using MINIO with MODIFY also requires that a data source be accessed
sequentially. Attempts to access an index, or to update physically disorganized data sources
can cause MINIO to be disabled. In addition, frequent repositioning to previously accessed
records, even within well-organized data sources, will cause MINIO to be disabled.

Determining If a Previous Command Used MINIO

The ? STAT command is used to determine whether the previous data source access
command employed MINIO.

Syntax: How to Determine If a Previous Command Used MINIO

To determine if a previous command used MINIO, issue the command:

? STAT

Example: Determining If a Previous Command Used MINIO

Typing ? STAT generates a screen similar to the following:

6. Enhancing Application Performance

Developing Applications 399

 STATISTICS OF LAST COMMAND

RECORDS = 0 SEGS CHNGD = 0
LINES = 0 SEGS DELTD = 0
BASEIO = 87 NOMATCH = 0
TRACKIO = 16 DUPLICATES = 0
SORTIO = 0 FORMAT ERRORS = 0
SORT PAGES = 0 INVALID CONDTS = 0
READS = 1 OTHER REJECTS = 0
TRANSACTIONS = 1500 CACHE READS = 0
ACCEPTED = 1500 MERGES = 0
SEGS INPUT = 1500 SORT STRINGS = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
MINIO USED: YES

In the preceding example MINIO USED is displayed as YES. It may also display NO or
DISABLED.

YES means that MINIO buffering has taken place reducing the number of tracks read/
written to the FOCUS data source.

NO means that MINIO buffering has not taken place.

DISABLED means that MINIO buffering was started but terminated as no performance gains
could be made. This does not mean that the command did not complete successfully. It
only indicates that MINIO buffering began and ended during the read/write.

Reference: Restrictions for Using MINIO

Note the following restrictions when you are using the MINIO command:

When MINIO is used with MODIFY, all CHECK subcommands are ignored. If a MODIFY
command terminates abnormally, the condition of the data source is unpredictable, and it
should be restored from a backup copy and the update repeated. Since MINIO is designed
to minimize I/O during large data source loads and updates, it has no checkpoint or restart
facility. If this is unacceptable, set MINIO off.

MINIO is not used to access data sources through FOCUS Database Servers (formerly
called sink machines) or HLI programs.

MINIO requires the presence of the TRACKIO feature. Meaning, TRACKIO must be set to ON
which is the default setting. If TRACKIO is set to OFF, then MINIO is deactivated.

MINIO buffering starts when the FOCUS data source exceeds 64 pages in size. If this size
is never reached, MINIO is never activated.

Accessing a FOCUS Data Source

400

If the file being modified UPDATEs, INCLUDEs, or DELETEs a field that is indexed, MINIO is
disabled. In other words, FIELDTYPE=I or INDEX=I is coded in the Master File for this field.

CRTFORM and COMMIT commands disable MINIO.

MAINTAIN procedures will not use MINIO buffering techniques.

MINIO is not enabled if the data source is physically disorganized by transaction
processing.

6. Enhancing Application Performance

Developing Applications 401

Accessing a FOCUS Data Source

402

Chapter7
Working With Cross-Century Dates

Many existing business applications use two digits to designate a year, instead of four
digits. When they receive a value for a year, such as 00, they typically interpret it as
1900, assuming that the first two digits are 19, for the twentieth century. These
applications require a way to handle dates when the century changes (for example, from
the twentieth to the twenty-first), or when they need to perform comparisons or arithmetic
on dates that span more than one century.

The cross-century date feature described in this topic enables the correct interpretation
of the century if it is not explicitly provided, or is assumed to be the twentieth. The
feature is application-based, that is, it involves modifications to procedures or metadata
so that dates are accurately interpreted and processed. The feature is called the sliding
window technique.

In this chapter:

When Do You Use the Sliding Window Technique?

The Sliding Window Technique

Applying the Sliding Window Technique

Defining a Global Window With SET

Defining a Dynamic Global Window With SET

Querying the Current Global Value of DEFCENT and YRTHRESH

Defining a File-Level or Field-Level Window in a Master File

Defining a Window for a Virtual Field

Defining a Window for a Calculated Value

Additional Support for Cross-Century Dates

When Do You Use the Sliding Window Technique?

If your application accesses dates that contain an explicit century, the century is accepted as
is. Your application can run correctly across centuries, and you do not need to use the sliding
window technique.

Developing Applications 403

If your application accesses dates without explicit centuries, they assume the default value
19. Your application will require remediation, such as the sliding window technique, to ensure
the correct interpretation of the century if the default is not valid, and to run as expected in the
next century.

This topic does not cover remediation options such as date expansion, which requires that
data be changed in the data source to accommodate explicit century values. For a list of
Information Builders documentation on remediation, see your latest Publications Catalog.

This topic covers the use of the sliding window technique in reporting applications. Details on
when to use the sliding window technique are provided later in this topic. It also includes
reference information on the use of the technique with FOCUS MODIFY requests. For additional
information on implementing this technique with Maintain, see your database maintenance
documentation the Maintaining Databases manual. References to MODIFY and Maintain apply
only to Developer Studio.

The Sliding Window Technique

With the sliding window technique, you do not need to change stored data from a 2-digit year
format to a 4-digit year format in order to determine the century. Instead, you can continue
storing 2-digit years and expand them when accessed.

The sliding window technique recognizes that the earliest and latest values for a single date
field in most business applications are within 100 years of one another. For example, a human
resources application typically contains a field for the birth date of each active employee. The
difference in the birth date (or age) of the oldest active employee and the youngest active
employee is not likely to be more than 100.

The technique is implemented as follows:

You define the start of a 100-year sliding window by supplying two values: one for the
default century (DEFCENT) and one for the year threshold (YRTHRESH). For example, a
value of 19 for the century, combined with a value of 60 for the threshold, creates a
window that starts in 1960 and ends in 2059.

The threshold provides a way to assign a value to the century of a 2-digit year:

A year greater than or equal to the threshold assumes the value of the default century
(DEFCENT). Using the sample value 19 for the default century and 60 for the threshold,
a 2-digit year of 70 is interpreted as 1970 (70 is greater than 60).

A year less than the threshold assumes the value of the default century plus 1
(DEFCENT + 1). Using the same sample values (19 and 60), a 2-digit year of 50 is
interpreted as 2050 (50 is less than 60), and a 2-digit year of 00 is interpreted as
2000 (00 is also less than 60).

The Sliding Window Technique

404

The conversion rule for this example is illustrated as follows:

Any 2-digit year is assumed to fall within the window. You must handle dates that fall
outside the defined window by coding.

Each file or each date field used in an application can have its own conversion rule, which
provides the flexibility required by most applications.

Defining a Sliding Window

You can define a sliding window in several ways, depending on the specific requirements of
your application:

Globally. The SET DEFCENT and SET YRTHRESH commands define a window on a global
level.

On a file level. The FDEFCENT and FYRTHRESH attributes in a Master File define a window
on a file level, allowing the correct interpretation of date fields from multiple files that span
different time periods.

On a field level. The DEFCENT and YRTHRESH attributes in a Master File define a window
on a field level, allowing the correct interpretation of date fields, within a single file, that
span different time periods.

For a virtual field. The DEFCENT and YRTHRESH parameters on a DEFINE command, in
either a request or a Master File, define a window for a virtual field.

For a calculated value. The DEFCENT and YRTHRESH parameters on a COMPUTE
command define a window for a calculated value.

If you define more than one window using any of the preceding methods, the precedence is as
follows:

1. DEFCENT and YRTHRESH on a DEFINE or COMPUTE command.

2. DEFCENT and YRTHRESH field-level attributes in a Master File.

3. FDEFCENT and FYRTHRESH file-level attributes in a Master File.

7. Working With Cross-Century Dates

Developing Applications 405

4. SET DEFCENT and SET YRTHRESH on a global level; if you do not specify values, the
defaults are used (DEFCENT = 19, YRTHRESH = 0).

Creating a Dynamic Window Based on the Current Year

An optional feature of the sliding window technique enables you to create a dynamic window,
defining the start of a 100-year span based on the current year. The start year and threshold
for the window automatically change at the beginning of each new year.

If an application requires that a window's start year change when a new year begins, use of
this feature avoids the necessity of manually re-coding it.

To implement this feature, YRTHRESH or FYRTHRESH is offset from the current year, or given a
negative value.

For example, if the current year is 1999 and YRTHRESH is set to -38, a window from 1961 to
2060 is created. The start year 1961 is derived by subtracting 38 (the value of YRTHRESH)
from 1999 (the current year). To interpret dates that fall within this window, the threshold 61 is
used.

At the beginning of the year 2000, a new window from 1962 to 2061 is automatically created;
for dates that fall within this window, the threshold 62 is used. In the year 2001, the window
becomes 1963 to 2062, and the threshold is 63, and so on.

With each new year, the start year for the window is incremented by one.

When using this feature, do not code a value for DEFCENT or FDEFCENT, since the feature is
designed to automatically calculate the value for the default century. Be aware of the following:

If you do code a value for DEFCENT on the field level in a Master File, or for FDEFCENT on
the file level in a Master File, the feature will not work as intended. The value for the
century, which is automatically calculated by YRTHRESH by design, will be reset to the
value you code for DEFCENT or FDEFCENT.

If you code a value for DEFCENT anywhere other than the field level in a Master File (for
example, on the global level), and YRTHRESH is negative, the coded value will be ignored.
The default century will be automatically calculated as designed.

The Sliding Window Technique

406

Applying the Sliding Window Technique

To apply the sliding window technique correctly, you need to understand the difference
between a date format (formerly called a smart date) and a legacy date:

A date format refers to an internally stored integer that represents the number of days
between a real date value and a base date (either December 31, 1900, for dates with YMD
or YYMD format; or January 1901, for dates with YM, YYM, YQ, or YYQ format). A Master
File does not specify a data type or length for a date format; instead, it specifies display
options such as D (day), M (month), Y (2-digit year), or YY (4-digit year). For example, MDYY
in the USAGE (also known as FORMAT) attribute of a Master File is a date format. A real
date value such as March 5, 1999, displays as 03/05/1999, and is internally stored as
the offset from December 31, 1900.

A legacy date refers to an integer, packed decimal, double precision, floating point, or
alphanumeric format with date edit options, such as I6YMD, A6MDY, I8YYMD, or A8MDYY.
For example, A6MDY is a 6-byte alphanumeric string; the suffix MDY indicates how
Information Builders will return the data in the field. The sample value 030599 displays as
03/05/99.

For details on date fields, see the Describing Data manual.

When to Supply Settings for DEFCENT and YRTHRESH

The rest of this topic refers simply to DEFCENT when either DEFCENT or FDEFCENT applies,
and to YRTHRESH when either YRTHRESH or FYRTHRESH applies.

Supply settings for DEFCENT and YRTHRESH in the following cases:

When you issue a DEFINE or COMPUTE command to convert a legacy date without century
digits to a date format with century digits (for example, to convert the format I6YMD to
YYMD). With DEFINE and COMPUTE, DEFCENT and YRTHRESH do not work directly on
legacy dates; for example, you cannot use them to convert the legacy date format I6YMD to
the legacy date format I8YYMD.

When a DEFINE command, COMPUTE command, or Dialogue Manager -SET command calls
a function, supplied by Information Builders, that uses legacy dates, the input date does
not contain century digits.

7. Working With Cross-Century Dates

Developing Applications 407

On input, the function will use the window defined for an 16 legacy date field (with edit
options). The output format may be 18 (again, with edit options), which includes a 4-digit
year.

When data is entered or changed in a date format field in a FOCUS data source, or a SQL
date is entered or changed in a Relational Database Management System (RDBMS), and
the input date does not contain century digits.

For example, you can use the sliding window technique in applications that use FIXFORM or
CRTFORM with MODFIY.

When a data source is read, and the ACTUAL attribute in the Master File is non-date
specific (for example, A6, I6, or P6), without century digits, and the FORMAT or USAGE
attribute specifies a date format. This case does not apply to FOCUS data sources.

Follow these rules when implementing the sliding window technique:

Specify values for both DEFCENT and YRTHRESH to ensure consistent coding and accurate
results, except when YRTHRESH has a negative value. In that case, specify a value for
YRTHRESH only; do not code a value for DEFCENT.

Do not use DEFCENT and YRTHRESH with ON TABLE SET.

Finally, keep in mind that the sliding window technique does not change the way existing data
is stored. Rather, it accurately interprets data during application processing.

Date Validation

Date formats are validated on input. For example, 11/99/1999 is rejected as input to a date
field formatted as MDYY, because 99 is not a valid day. Information Builders generates an
error message.

Legacy dates are not validated. The date 11991999, described with the format A8MDYY, is
accepted, even though it, too, contains the invalid day 99.

Defining a Global Window With SET

The SET DEFCENT and SET YRTHRESH commands define a window on a global level. The time
span created by the SET commands applies to every 2-digit year used by the application unless
you specify file-level or field-level windows elsewhere.

For details on specifying parameters that govern the environment, see Customizing Your
Environment.

Syntax: How to Define a Global Window With SET

To define a global window, issue two SET commands.

Defining a Global Window With SET

408

The first command is

SET DEFCENT = {cc|19}

where:

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

The second command is

SET YRTHRESH = {[-]yy|0}

where:

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of FDEFCENT for the century. Two-digit years less than the threshold assume the
value of FDEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and FDEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

Example: Defining a Global Window With SET

In the following request, the SET command defines a global window from 1983 to 2082.

As SET syntax allows, the command is entered on one line, with the parameters separated by
a comma. You do not need to repeat the keyword SET for YRTHRESH.

The DEFINE command converts the legacy date EFFECT_DATE into the date format NEW_DATE.
It creates NEW_DATE as a virtual field, derived from the existing field EFFECT_DATE. The
format of EFFECT_DATE is I6YMD, which is a 2-digit year. NEW_DATE is formatted as YYMD,
which is a 4-digit year. For details on DEFINE, see the Creating Reports manual.

The request is:

7. Working With Cross-Century Dates

Developing Applications 409

SET DEFCENT = 19, YRTHRESH = 83

DEFINE FILE EMPLOYEE
NEW_DATE/YYMD = EFFECT_DATE;
END

TABLE FILE EMPLOYEE
PRINT EFFECT_DATE NEW_DATE BY EMP_ID
END

In the report, the value of the 2-digit year 82 is less than the threshold 83, so it assumes the
value 20 for the century (DEFCENT + 1) and is returned as 2082 in the NEW_DATE column.
The other year values (83 and 84) are greater than or equal to the threshold 83, so the century
defaults to the value 19 (DEFCENT); they are returned as 1983 and 1984 under NEW_DATE.

The output is:

PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660
112847612
117593129 82/11/01 2082/11/01
119265415
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188
219984371
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165
818692173 83/05/01 1983/05/01

In the example, missing date values appear as blanks by default. To retrieve the base date
value for the NEW_DATE field instead of blanks, issue the command

SET DATEDISPLAY = ON

before running the request.

The base date value for NEW_DATE, which is formatted as YYMD, is returned as 1900/12/31:

Defining a Global Window With SET

410

PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660 1900/12/31
112847612 1900/12/31
117593129 82/11/01 2082/11/01
119265415 1900/12/31
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188 1900/12/31
219984371 1900/12/31
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165 1900/12/31
818692173 83/05/01 1983/05/01

If NEW_DATE had a YYM format, the base date would appear as 1901/01. If it had a YYQ
format, it would appear as 1901 Q1.

If the value of NEW_DATE is 0 and SET DATEDISPLAY = OFF (the default), blanks are displayed.
With SET DATEDISPLAY = ON, the base date is displayed instead of blanks. Zero (0) is treated
as an offset from the base date, which results in the base date.

For details on SET DATEDISPLAY, see Customizing Your Environment.

Defining a Dynamic Global Window With SET

This topic illustrates the creation of a dynamic window using the global command SET
YRTHRESH. You can also implement this feature on the file and field level, and on a DEFINE or
COMPUTE.

With this option of the sliding window technique, the start year and threshold for the window
automatically changes at the beginning of each new year. The default century (DEFCENT) is
automatically calculated.

You can use SET TESTDATE to alter the system date when testing a dynamic window (that is,
when YRTHRESH has a negative value). However, when testing a dynamic window defined in a
Master File, you must issue a CHECK FILE command each time you issue a SET TESTDATE
command. CHECK FILE reloads the Master File into memory and ensures the correct
recalculation of the start date of the dynamic window. For details on SET TESTDATE, see your
documentation on the SET command. For details on CHECK FILE, see the Describing Data
manual.

7. Working With Cross-Century Dates

Developing Applications 411

Example: Defining a Dynamic Global Window With SET

In the following request, the COMPUTE command calls the function AYMD, supplied by
Information Builders. AYMD adds one day to the input field, HIRE_DATE; the output field,
HIRE_DATE_PLUS_ONE, contains the result. HIRE_DATE is formatted as I6YMD, which is a
legacy date with a 2-digit year. HIRE_DATE_PLUS_ONE is formatted as I8YYMD, which is a
legacy date with a 4-digit year.

The function uses the YRTHRESH value set at the beginning of the request to create a dynamic
window for the input field HIRE_DATE. The start date of the window is incremented by one at
the beginning of each new year. Notice that DEFCENT is not coded, since the default century is
automatically calculated whenever YRTHRESH has a negative value.

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

Sample values are shown in the reports for 1999, 2000, and 2018, which follow the request.

For details on AYMD, see the Using Functions manual.

The request is:

SET YRTHRESH = -18

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
 HIRE_DATE_PLUS_ONE/I8YYMD = AYMD
 (HIRE_DATE, 1, HIRE_DATE_PLUS_ONE);
END

In 1999, the window spans the years 1981 to 2080. The threshold is 81 (1999 - 18). In the
report, the 2-digit year 80 is less than the threshold 81, so it assumes the value 20 for the
century (DEFCENT + 1), and is returned as 2080 in the HIRE_DATE_PLUS_ONE column. The
other year values (81 and 82) are greater than or equal to the threshold 81, so the century
defaults to the value of DEFCENT (19); they are returned as 1981 and 1982.

The output is:

Defining a Dynamic Global Window With SET

412

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 1981/07/02
 82/05/01 1982/05/02
 82/01/04 1982/01/05
 82/08/01 1982/08/02
 82/01/04 1982/01/05
 82/07/01 1982/07/02
 81/07/01 1981/07/02
 82/04/01 1982/04/02
 82/02/02 1982/02/03
 82/04/01 1982/04/02
 81/11/02 1981/11/03

In 2000, the window spans the years 1982 to 2081. The threshold is 82 (2000 - 18). In the
report, the 2-digit years 80 and 81 are less than the threshold; for the century, they assume
the value 20 (DEFCENT + 1). The 2-digit year 82 is equal to the threshold; for the century, it
defaults to the value 19 (DEFCENT).

The output is:

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 2081/07/02
 82/05/01 1982/05/02
 82/01/04 1982/01/05
 82/08/01 1982/08/02
 82/01/04 1982/01/05
 82/07/01 1982/07/02
 81/07/01 2081/07/02
 82/04/01 1982/04/02
 82/02/02 1982/02/03
 82/04/01 1982/04/02
 81/11/02 2081/11/03

Running the report in 2018 illustrates the automatic recalculation of DEFCENT from 19 to 20.
In 2018, the window spans the years 2000 to 2099. The threshold is 0 (2018 - 18). A 2-digit
year greater than or equal to 0 defaults to the recalculated value 20 (DEFCENT).

Since all the values for the HIRE_DATE year are greater than 0, the century defaults to 20.

The output is:

7. Working With Cross-Century Dates

Developing Applications 413

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 2081/07/02
 82/05/01 2082/05/02
 82/01/04 2082/01/05
 82/08/01 2082/08/02
 82/01/04 2082/01/05
 82/07/01 2082/07/02
 81/07/01 2081/07/02
 82/04/01 2082/04/02
 82/02/02 2082/02/03
 82/04/01 2082/04/02
 81/11/02 2081/11/03

Querying the Current Global Value of DEFCENT and YRTHRESH

You can query the current global value of DEFCENT and YRTHRESH.

Syntax: How to Query the Current Global Value of DEFCENT and YRTHRESH

? SET DEFCENT
? SET YRTHRESH

where:

DEFCENT

Returns the value for the DEFCENT parameter.

YRTHRESH

Returns the value for the YRTHRESH parameter.

Example: Querying the Current Global Value of DEFCENT and YRTHRESH

Enter

? SET DEFCENT
? SET YRTHRESH

to query the current global value of DEFCENT and YRTHRESH.

The following is a response to the query:

DEFCENT 19
YRTHRESH 0

Querying the Current Global Value of DEFCENT and YRTHRESH

414

Defining a File-Level or Field-Level Window in a Master File

In this implementation of the sliding window technique, you change the metadata used by an
application. Two pairs of Master File attributes enable you to define a window on a file or field
level:

The FDEFCENT and FYRTHRESH attributes define a window on a file level. They enable the
correct interpretation of legacy date fields from multiple files that span different time
periods.

A file-level window takes precedence over a global window for the dates associated with
that file.

The DEFCENT and YRTHRESH attributes define a window on a field level, enabling the
correct interpretation of legacy date fields, within a single file, that span different time
periods. Each legacy date field in a file can have its own window. For example, in an
insurance application, the range of dates for date of birth may be from 1910 to 2009, and
the range of dates for expected death may be from 1990 to 2089.

A field-level window takes precedence over a file-level or global window for the dates
associated with that field.

For details on Master Files, see the Describing Data manual.

Syntax: How to Define a File-Level Window in a Master File

To define a window that applies to all legacy date fields in a file, add the FDEFCENT and
FYRTHRESH attributes to the Master File on the file declaration.

The syntax for the first attribute is

{FDEFCENT|FDFC} = {cc|19}

where:

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

The syntax for the second attribute is

{FYRTHRESH|FYRT} = {[-]yy|0}

where:

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

7. Working With Cross-Century Dates

Developing Applications 415

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

Example: Defining a File-Level Window in a Master File

Tip: Use the abbreviated forms of FDEFCENT/FYRTHRESH or DEFCENT/YRTHRESH to reduce
keystrokes. The examples in this topic use the abbreviated forms where available (for
instance, FDFC instead of FDEFCENT). Maintain supports only the abbreviated forms in certain
command syntax (for example, on a COMPUTE or DECLARE command). For details, see the
Maintaining Databases manual.

In the following example, the FDEFCENT and FYRTHRESH attributes define a window from
1982 to 2081. The window is applied to all legacy date fields in the file, including HIRE_DATE,
DAT_INC, and others, if they are converted to a date format.

The Master File is:

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
.
.
.

The DEFINE command in the following request creates two virtual fields named
NEW_HIRE_DATE, which is derived from the existing field HIRE_DATE; and NEW_DAT_INC,
which is derived from DAT_INC. The format of HIRE_DATE and DAT_INC is I6YMD, which is a
legacy date with a 2-digit year. NEW_HIRE_DATE and NEW_DAT_INC are date formats with 4-
digit years (YYMD). For details on DEFINE, see the Creating Reports manual.

Defining a File-Level or Field-Level Window in a Master File

416

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

The window created in the Master File applies to both legacy date fields. In the report, the year
82 (which is equal to the threshold), for both HIRE_DATE and DAT_INC, defaults to the century
value 19 and is returned as 1982 in the NEW_HIRE_DATE and NEW_DAT_INC columns. The
year 81, for both HIRE_DATE and DAT_INC, is less than the threshold 82 and assumes the
century value 20 (FDEFCENT + 1).

The partial output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
 80/06/02 2080/06/02 82/01/01 1982/01/01
 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 1982/01/01
 82/05/01 1982/05/01 82/06/01 1982/06/01
 82/05/01 1982/05/01 82/05/01 1982/05/01
.
.
.

Syntax: How to Define a Field-Level Window in a Master File

To define a window that applies to a specific legacy date field, add the DEFCENT and
YRTHRESH attributes to the Master File on the field declaration.

The syntax for the first attribute is

{DEFCENT|DFC} = {cc|19}

where:

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

The syntax for the second attribute is

{YRTHRESH|YRT} = {[-]yy|0}

7. Working With Cross-Century Dates

Developing Applications 417

where:

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

Example: Defining a Field-Level Window in a Master File

In this example, the application requires a different window for two legacy date fields in the
same file.

The DEFCENT and YRTHRESH attributes in the Master File define a window for HIRE_DATE from
1982 to 2081, and a window for DAT_INC from 1983 to 2082.

The Master File is:

FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, DFC=19, YRT=83, $
.
.
.

The request is the same one used in the previous example (defining a file-level window in a
Master File):

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

Defining a File-Level or Field-Level Window in a Master File

418

However, the report illustrates the use of two different windows for the two legacy date fields.
For example, the year 82 for HIRE_DATE defaults to the century value 19, since 82 is equal to
the threshold for the window for this field. The date returned for NEW_HIRE_DATE is 1982.

The year 82 for DAT_INC assumes the century value 20 (DEFCENT + 1), since 82 is less than
the threshold for the window for this field (83). The date returned for NEW_DAT_INC is 2082.

The partial output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
 80/06/02 2080/06/02 82/01/01 2082/01/01
 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 2082/01/01
 82/05/01 1982/05/01 82/06/01 2082/06/01
 82/05/01 1982/05/01 82/05/01 2082/05/01
.
.

Example: Defining a Field-Level Window in a Master File Used With MODIFY

This example illustrates the use of field-level DEFCENT and YRTHRESH attributes to define a
window used with MODIFY. To run this example yourself, you need to create a Master File
named DATE and a procedure named DATELOAD.

The Master File describes a segment with 12 date fields of different formats. The first field is a
date format field. The DEFCENT and YRTHRESH attributes included on this field create a
window from 1990 to 2089. The window is required because the input data for the first date
field does not contain century digits, and the default value 19 cannot be assumed.

The Master File looks like this:

FILENAME=DATE, SUFFIX=FOC
 SEGNAME=ONE, SEGTYPE=S1
 FIELDNAME=D1_YYMD, ALIAS=D1, FORMAT=YYMD, DFC=19, YRT=90, $
 FIELDNAME=D2_I6YMD, ALIAS=D2, FORMAT=I6YMD, $
 FIELDNAME=D3_I8YYMD, ALIAS=D3, FORMAT=I8, $
 FIELDNAME=D4_A6YMD, ALIAS=D4, FORMAT=A6YMD, $
 FIELDNAME=D5_A8YYMD, ALIAS=D5, FORMAT=A8YYMD, $
 FIELDNAME=D6_I4YM, ALIAS=D6, FORMAT=I4YM, $
 FIELDNAME=D7_YQ, ALIAS=D7, FORMAT=YQ, $
 FIELDNAME=D8_YM, ALIAS=D8, FORMAT=YM, $
 FIELDNAME=D9_JUL, ALIAS=D9, FORMAT=JUL, $
 FIELDNAME=D10_Y, ALIAS=D10, FORMAT=Y, $
 FIELDNAME=D11_YY, ALIAS=D11, FORMAT=YY, $
 FIELDNAME=D12_MDYY, ALIAS=D12, FORMAT=MDYY, $

7. Working With Cross-Century Dates

Developing Applications 419

The procedure (DATELOAD) creates a FOCUS data source named DATE and loads two records
into it. The first field of the first record contains the 2-digit year 92. The first field of the second
record contains the 2-digit year 88. For details on commands such as CREATE and MODIFY,
and others used in this file, see the Maintaining Databases manual.

The procedure looks like this:

CREATE FILE DATE
MODIFY FILE DATE
FIXFORM D1/8 D2/6 D3/8 D4/6 D5/8 D6/4 D7/4 D8/4 D9/5 D10/2 D11/4 D12/8
MATCH D1
 ON NOMATCH INCLUDE
 ON MATCH REJECT
DATA
 92022900022920000229000229200002290002000100020006000200002292000
 88022900022920000229000229200002290002000100020006000200002292000
END

The following request accesses all the fields in the new data source:

TABLE FILE DATE
PRINT *
END

In the report, the year 92 for D1_YYMD defaults to the century value 19, since 92 is greater
than the threshold for the window for this field (90). It is returned as 1992 in the D1_YYMD
column. The year 88 assumes the century value 20 (DEFCENT + 1), because 88 is less than
the threshold. It is returned as 2088 in the D1_YYMD column.

The partial output is:

PAGE 1

D1_YYMD D2_I6YMD D3_I8YYMD D4_A6YMD D5_A8YYMD D6_I4YM D7_YQ D8_YM ...
------- -------- --------- -------- --------- ------- ----- -----
1992/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1 00/02 ...
2088/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1 00/02 ...

Example: Defining Both File-Level and Field-Level Windows

The following Master File defines windows at both the file and field level:

Defining a File-Level or Field-Level Window in a Master File

420

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=83
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.
 FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $
.
.
.

 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
.
.
.

The request is:

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_EFFECT_DATE/YYMD = EFFECT_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC
NEW_DAT_INC
END

When the field HIRE_DATE is accessed, the time span 1982 to 2081 is applied. For all other
legacy date fields in the file, such as EFFECT_DATE and DAT_INC, the time span specified at
the file level is applied, that is, 1983 to 2082.

For example, the year 82 for HIRE_DATE is returned as 1982 in the NEW_HIRE_DATE column,
since 82 is equal to the threshold of the window for that particular field. The year 82 for
EFFECT_DATE and DAT_INC is returned as 2082 in the columns NEW_EFFECT_DATE and
NEW_DAT_INC, since 82 is less than the threshold of the file-level window (83).

The partial output is:

7. Working With Cross-Century Dates

Developing Applications 421

PAGE 1

HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC NEW_DAT_INC
--------- ------------- ----------- --------------- ------- ----------
 80/06/02 2080/06/02 82/01/01 2082/01/01
 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 2082/01/01
 82/05/01 1982/05/01 82/11/01 2082/11/01 82/06/01 2082/06/01
 82/05/01 1982/05/01 82/11/01 2082/11/01 82/05/01 2082/05/01
.

Missing date values for NEW_EFFECT_DATE appear as blanks by default. To retrieve the base
date value for NEW_EFFECT_DATE instead of blanks, issue the command

SET DATEDISPLAY = ON

before running the request. The base date value is returned as 1900/12/31. See Defining a
Global Window With SET on page 408 for sample results.

Defining a Window for a Virtual Field

The DEFCENT and YRTHRESH parameters on a DEFINE command create a window for a virtual
field. The window is used to interpret date values for the virtual field when the century is not
supplied. You can issue a DEFINE command in either a request or a Master File.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; the values are always taken from the left side of the DEFINE syntax (that is, from
the left side of the equal sign). If the expression in the DEFINE contains a function call, the
function uses the DEFCENT and YRTHRESH values for the input field. The standard order of
precedence (field level/file level/global level) applies to the DEFCENT and YRTHRESH values
for the input field.

Syntax: How to Define a Window for a Virtual Field in a Request

Use standard DEFINE syntax for a request, as described in the Creating Reports manual. Partial
DEFINE syntax is shown here.

On the line that specifies the name of the virtual field, include the DEFCENT and YRTHRESH
parameters and values. The parameters must immediately follow the field format information.

DEFINE FILE filename
 fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
 expression;
.
.
.
END

Defining a Window for a Virtual Field

422

where:

filename

Is the name of the file for which you are creating the virtual field.

fieldname

Is the name of the virtual field.

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the value of
the virtual field.

END

Is required to terminate the DEFINE command.

7. Working With Cross-Century Dates

Developing Applications 423

Example: Defining a Window for a Virtual Field in a Request

In the following request, the DEFINE command creates two virtual fields, GLOBAL_HIRE_DATE
and WINDOWED_HIRE_DATE. Both virtual fields are derived from the existing field HIRE_DATE.
The format of HIRE_DATE is I6YMD, which is a legacy date with a 2-digit year. The virtual fields
are date formats with a 4-digit year (YYMD).

The second virtual field, WINDOWED_HIRE_DATE, has the additional parameters DEFCENT and
YRTHRESH, which define a window from 1982 to 2081. Notice that both DEFCENT and
YRTHRESH are coded, as required.

The request is:

DEFINE FILE EMPLOYEE
GLOBAL_HIRE_DATE/YYMD = HIRE_DATE;
WINDOWED_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
END

Assuming that there are no FDEFCENT and FYRTHRESH file-level settings in the Master File for
EMPLOYEE, the global default settings (DEFCENT = 19, YRTHRESH = 0) are used to interpret
2-digit years for HIRE_DATE when deriving the value of GLOBAL_HIRE_DATE. For example, the
value of all years for HIRE_DATE (80, 81, and 82) is greater than 0; consequently they default
to 19 for the century and are returned as 1980, 1981, and 1982 in the GLOBAL_HIRE_DATE
column.

For WINDOWED_HIRE_DATE, the window created specifically for that field (1982 to 2081) is
used. The 2-digit years 80 and 81 for HIRE_DATE are less than the threshold for the window
(82); consequently, they are returned as 2080 and 2081 in the WINDOWED_HIRE_DATE
column.

The output is:

Defining a Window for a Virtual Field

424

PAGE 1

HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
--------- ---------------- ------------------
 80/06/02 1980/06/02 2080/06/02
 81/07/01 1981/07/01 2081/07/01
 82/05/01 1982/05/01 1982/05/01
 82/01/04 1982/01/04 1982/01/04
 82/08/01 1982/08/01 1982/08/01
 82/01/04 1982/01/04 1982/01/04
 82/07/01 1982/07/01 1982/07/01
 81/07/01 1981/07/01 2081/07/01
 82/04/01 1982/04/01 1982/04/01
 82/02/02 1982/02/02 1982/02/02
 82/04/01 1982/04/01 1982/04/01
 81/11/02 1981/11/02 2081/11/02

Example: Defining a Window for Function Input in a DEFINE Command

The following sample request illustrates a call to the function AYMD in a DEFINE command.
AYMD adds 60 days to the input field, HIRE_DATE; the output field, SIXTY_DAYS, contains the
result. HIRE_DATE is formatted as I6YMD, which is a legacy date with a 2-digit year.
SIXTY_DAYS is formatted as I8YYMD, which is a legacy date with a 4-digit year.

For details on AYMD, see the Using Functions manual.

DEFINE FILE EMPLOYEE
SIXTY_DAYS/I8YYMD = AYMD(HIRE_DATE, 60, 'I8YYMD');
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE SIXTY_DAYS
END

The function uses the DEFCENT and YRTHRESH values for the input field HIRE_DATE. In this
example, they are set on the field level in the Master File:

FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

7. Working With Cross-Century Dates

Developing Applications 425

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the century.

The output is:

PAGE 1

HIRE_DATE SIXTY_DAYS
--------- ----------
 80/06/02 2080/08/01
 81/07/01 2081/08/30
 82/05/01 1982/06/30
 82/01/04 1982/03/05
 82/08/01 1982/09/30
 82/01/04 1982/03/05
 82/07/01 1982/08/30
 81/07/01 2081/08/30
 82/04/01 1982/05/31
 82/02/02 1982/04/03
 82/04/01 1982/05/31
 81/11/02 2082/01/01

Syntax: How to Define a Window for a Virtual Field in a Master File

Use standard DEFINE syntax for a Master File, as discussed in your documentation on
describing data the Describing Data manual. Partial DEFINE syntax is shown here.

The parameters DEFCENT and YRTHRESH must immediately follow the field format information.

DEFINE fieldname/[format] [{DEFCENT|DFC} {cc|19}
 {YRTHRESH|YRT} {[-]yy|0}] = expression;$

where:

fieldname

Is the name of the virtual field.

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

Defining a Window for a Virtual Field

426

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the value of
the virtual field.

Example: Defining a Window for a Virtual Field in a Master File

In the following example, the DEFINE command in a Master File creates a virtual field named
NEW_HIRE_DATE. It is derived from the existing field HIRE_DATE. The format of HIRE_DATE is
I6YMD, which is a legacy date with a 2-digit year. NEW_HIRE_DATE is a date format with a 4-
digit year (YYMD).

The parameters DEFCENT and YRTHRESH on the DEFINE command create a window from
1982 to 2081, which is used to interpret all 2-digit years for the virtual field. Notice that both
DEFCENT and YRTHRESH are coded, as required.

The field-level window takes precedence over any global settings in effect. There is no file-level
setting in the Master File.

The Master File is:

FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.
DEFINE NEW_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;$

The following request generates the values in the sample report:

7. Working With Cross-Century Dates

Developing Applications 427

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
END

Since the 2-digit years 80 and 81 are less than the threshold 82, the century assumes the
value of DEFCENT + 1 (20), and they are returned as 2080 and 2081 in the NEW_HIRE_DATE
column. The 2-digit year 82 is equal to the threshold and therefore defaults to the value of
DEFCENT (19). It is returned as 1982.

The output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE
--------- -------------
 80/06/02 2080/06/02
 81/07/01 2081/07/01
 82/05/01 1982/05/01
 82/01/04 1982/01/04
 82/08/01 1982/08/01
 82/01/04 1982/01/04
 82/07/01 1982/07/01
 81/07/01 2081/07/01
 82/04/01 1982/04/01
 82/02/02 1982/02/02
 82/04/01 1982/04/01
 81/11/02 2081/11/02

Defining a Window for a Calculated Value

Use the DEFCENT and YRTHRESH parameters on a COMPUTE command in a report request to
create a window for a temporary field that is calculated from the result of a PRINT, LIST, SUM,
or COUNT command. The window is used to interpret a date value for that field when the
century is not supplied.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; the values are always taken from the left side of the COMPUTE syntax (that is,
from the left side of the equal sign). If the expression in the COMPUTE contains a function call,
the function uses the DEFCENT and YRTHRESH values for the input field. The standard order of
precedence (field level/file level/global level) applies to the DEFCENT and YRTHRESH values
for the input field.

You can also use the parameters on a COMPUTE command in a MODIFY or Maintain
procedure, or on a DECLARE command in Maintain. For details on the use of the parameters in
Maintain, see the Maintaining Databases manual.

Defining a Window for a Calculated Value

428

Syntax: How to Define a Window for a Calculated Value in a Report

Use standard COMPUTE syntax, as described in the Creating Reports manual. Partial COMPUTE
syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field format
information.

TABLE FILE filename
command
[AND] COMPUTE fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT}
{[-]yy|0}] =
 expression;
.
.
.
END

where:

filename

Is the name of the file for which you are creating the calculated value.

command

Is a command such as PRINT, LIST, SUM, or COUNT.

fieldname

Is the name of the calculated value.

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

7. Working With Cross-Century Dates

Developing Applications 429

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the value of
the temporary field.

END

Is required to terminate the request.

Syntax: How to Define a Window for a Calculated Value in a MODIFY Request

Use standard MODIFY and COMPUTE syntax, as described in the Maintaining Databases
manual; partial syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field format
information.

MODIFY FILE filename
.
.
.
COMPUTE
 fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
 expression;
.
.
.
[END]

where:

filename

Is the name of the file you are modifying.

fieldname

Is the name of the field being set to the value of expression.

format

Is a date format such as MDY or YYMD.

Defining a Window for a Calculated Value

430

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults to
19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero (0).

If yy is a positive number, two-digit years greater than or equal to the threshold default to
the value of DEFCENT for the century. Two-digit years less than the threshold assume the
value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting that
number from the current year, and DEFCENT is automatically calculated. The start date is
automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the value of
fieldname.

END

Terminates the request. Do not add this command if the request contains PROMPT
statements.

Example: Defining a Window for a Calculated Value

In the following request, the parameters DEFCENT and YRTHRESH on the COMPUTE command
define a window from 1999 to 2098. Notice that both DEFCENT and YRTHRESH are coded, as
required. The window is applied to the field created by the COMPUTE command,
LATEST_DAT_INC.

DAT_INC is formatted as I6YMD, which is a legacy date with a 2-digit year. LATEST_DAT_INC is
a date format with a 4-digit year (YYMD). The prefix MAX retrieves the highest value of
DAT_INC.

The request is:

7. Working With Cross-Century Dates

Developing Applications 431

TABLE FILE EMPLOYEE
SUM SALARY AND COMPUTE
 LATEST_DAT_INC/YYMD DFC 19 YRT 99 = MAX.DAT_INC;
END

The highest value of DAT_INC is 82/08/01. Since the year 82 is less than the threshold 99, it
assumes the value 20 for the century (DEFCENT + 1).

The output is:

PAGE 1

 SALARY LATEST_DAT_INC
 ------ --------------
 $332,929.00 2082/08/01

Example: Defining a Window for Function Input in a COMPUTE Command

The following sample request illustrates a call to the function JULDAT in a COMPUTE
command. JULDAT converts dates from Gregorian format (year/month/day) to Julian format
(year/day). For century display, dates in Julian format are 7-digit numbers. The first 4 digits are
the century. The last three digits represent the number of days, counting from January 1.

For details on JULDAT, see the Using Functions manual.

In the request, the input field is HIRE_DATE. The function converts it to Julian format and
returns it as JULIAN_DATE. HIRE_DATE is formatted as I6YMD, which is a legacy date with a 2-
digit year. JULIAN_DATE is formatted as I7, which is a legacy date with a 4-digit year.

TABLE FILE EMPLOYEE
PRINT DEPARTMENT HIRE_DATE
AND COMPUTE
 JULIAN_DATE/I7 = JULDAT(HIRE_DATE, JULIAN_DATE);
BY LAST_NAME BY FIRST_NAME
END

The function uses the FDEFCENT and FYRTHRESH values for the input field HIRE_DATE. In this
example, they are set on the file level in the Master File:

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.

Defining a Window for a Calculated Value

432

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the century.

The output follows. By default, the second occurrence of the last name SMITH displays as
blanks.

PAGE 1

LAST_NAME FIRST_NAME DEPARTMENT HIRE_DATE JULIAN_DATE
--------- ---------- ---------- --------- -----------
BANNING JOHN PRODUCTION 82/08/01 1982213
BLACKWOOD ROSEMARIE MIS 82/04/01 1982091
CROSS BARBARA MIS 81/11/02 2081306
GREENSPAN MARY MIS 82/04/01 1982091
IRVING JOAN PRODUCTION 82/01/04 1982004
JONES DIANE MIS 82/05/01 1982121
MCCOY JOHN MIS 81/07/01 2081182
MCKNIGHT ROGER PRODUCTION 82/02/02 1982033
ROMANS ANTHONY PRODUCTION 82/07/01 1982182
SMITH MARY MIS 81/07/01 2081182
 RICHARD PRODUCTION 82/01/04 1982004
STEVENS ALFRED PRODUCTION 80/06/02 2080154

Additional Support for Cross-Century Dates

The following features apply to the use of dates in your applications.

Default Date Display Format

The default date display format is MM/DD/CCYY, where MM is the month; DD is the day of the
month; CC is the first two digits of a 4-digit year, indicating the century; and YY is the last two
digits of a 4-digit year.

For example:

02/11/1999

For a table that fully describes the display of a date based on the specified format and user
input, see the Describing Data manual.

7. Working With Cross-Century Dates

Developing Applications 433

Date Display Options

The following date display options are available:

You can display a row of data, even though it contains an invalid date field, using the
command SET ALLOWCVTERR. The invalid date field is returned as the base date or as
blanks, depending on other settings. For details, see your documentation on the SET
command. This feature applies to non-FOCUS data sources when converting from the way
data is stored (ACTUAL attribute) to the way it is formatted (FORMAT or USAGE attribute).

If a date format field contains the value zero (0), you can display its base date using the
command SET DATEDISPLAY = ON. By default, the value zero in a date format field such as
YYMD is returned as a blank. For details, see Customizing Your Environment.

You can display the current date with a 4-digit year using the Dialogue Manager system
variables &YYMD, &MDYY, and &DMYY. The system variable &DATEfmt displays the current
date as specified by the value of fmt, which is a combination of allowable date options,
including a 4-digit year (for example, &DATEYYMD). For details, see Managing Flow of
Control in an Application on page 207.

System Date Masking

You can temporarily alter the system date for application testing and debugging using the
command SET TESTDATE. With this feature, you can simulate clock settings beyond the year
1999 to determine the way your program will behave. For details, see Customizing Your
Environment.

Date Functions

The date functions supplied with your software work across centuries. Many of them facilitate
date manipulation. For details, see the Using Functions manual.

Date Conversion

You can convert a legacy date to a date format in a FOCUS data source using the option DATE
NEW on the REBUILD command. For details, see the Maintaining Databases manual.

Century and Threshold Information

The ALL option, in conjunction with the HOLD option, on the CHECK FILE command includes
file-level and field-level default century and year thresholds as specified in a Master File. For
details, see the Describing Data manual.

Additional Support for Cross-Century Dates

434

Date Time Stamp

The year in the time stamp for a FOCUS data source is physically written to page one of the file
in the format CCYY.

7. Working With Cross-Century Dates

Developing Applications 435

Additional Support for Cross-Century Dates

436

Chapter8
Euro Currency Support

The following topics describe how to create and use a currency data source to convert to
and from the new euro currency.

In this chapter:

Integrating the Euro Currency

Converting Currencies

Creating the Currency Data Source

Identifying Fields That Contain Currency Data

Activating the Currency Data Source

Processing Currency Data

Querying the Currency Data Source in Effect

Punctuating Numbers

Selecting an Extended Currency Symbol

Integrating the Euro Currency

With the introduction of the euro currency, businesses need to maintain books in two
currencies, add new fields to the data source designs, and perform new types of currency
conversions. You can perform currency conversions according to the rules specified by the
European Union. To do this:

1. Create a currency data source with the currency IDs and exchange rates you will use. See
Creating the Currency Data Source on page 439.

2. Identify fields in your data sources that represent currency data. See Identifying Fields That
Contain Currency Data on page 442.

3. Activate your currency data source. See Activating the Currency Data Source on page 444.

4. Perform currency conversions. See Processing Currency Data on page 445.

Developing Applications 437

Converting Currencies

Euro currency was introduced in Euroland on January 1, 2002, and on July 1, 2002 it became
the only legal tender. All monetary transactions now occur in euro currency.

The European Union has set fixed exchange rates between the euro and the traditional
national currency in each of the 12 adopting member nations. Although 12 or more currencies
in the European Union use the euro, more than 100 currencies have a recognized status
worldwide. In addition, you may need to define custom currencies for other applications.

While the exchange rates within Euroland remain fixed, exchange rates between the euro and
non-euro countries continue to vary freely and, in fact, several rates may be in use at one time
(for example, actual and budgeted rates).

You identify your currency codes and rates by creating a currency data source. For more
information, see Creating the Currency Data Source on page 439.

Reference: Currency Conversion Rules

The European Union has established the following rules for currency conversions:

The exchange rate must be specified as a decimal value, r, with six significant digits.

This rate will establish the following relationship between the euro and the particular
national currency:

1 euro = r national units

To convert from the euro to the national unit, multiply by r and round the result to two
decimal places.

To convert from the national currency to the euro, divide by r and round the result to two
decimal places.

To convert from one national currency to another, first convert from one national unit to the
euro, rounding the result to three decimal places (your application rounds to exactly three
decimal places). Then convert from the euro to the second national unit, rounding the result
to two decimal places. This two-step conversion process is triangulation.

Example: Performing Triangulation

The following example illustrates triangulation. In this case, 10 US dollars (USD) are converted
to French francs (FRF). The exchange rate for USD to euros (EUR) is 1.17249. The exchange
rate for FRF to euros is 6.55957.

The 10 USD are converted to EUR by dividing the 10 USD by the EUR exchange rate of
0.8840:

Converting Currencies

438

EUR = 10 / 0.8840

This results in 11.3122 euros.

The euros are converted to FRF by multiplying the above result by the exchange rate of FRF
for euros (6.55957):

FRF = 11.3122 * 6.55957

The result is 74.26. FRF. This means 74.26 FRF are equivalent to 10 USD.

Creating the Currency Data Source

Supply values for each type of currency you need.

You must supply the following values in your currency data source:

A three-character code to identify the currency, such as USD for US dollars or BEF for
Belgian francs. (For a partial list of recognized currency codes, see Sample Currency Codes
on page 440.)

One or more exchange rates for the currency.

There is no limit to the number of currencies you can add to your currency data source, and the
currencies you can define are not limited to official currencies. Therefore, the currency data
source can be fully customized for your applications.

The currency data source can be any type of data source your application can access (for
example, FOCUS, FIX, DB2, or VSAM). The currency Master File must have one field that
identifies each currency ID you will use and one or more fields to specify the exchange rates.

We strongly recommend that you create a separate data source for the currency data rather
than adding the currency fields to another data source. A separate currency data source
enhances performance and minimizes resource utilization because the currency data source is
loaded into memory before you perform currency conversions.

Syntax: How to Create a Currency Data Source

FILE = name, SUFFIX = suffix,$
FIELD = CURRENCY_ID,, FORMAT = A3, [ACTUAL = A3 ,]$
FIELD = rate_1,, FORMAT = {D12.6|numeric_format1},[ACTUAL = A12,]$
 .
 .
 .
FIELD = rate_n,, FORMAT = {D12.6|numeric_formatn}, [ACTUAL = A12,]$

8. Euro Currency Support

Developing Applications 439

where:

name

Is the name of the currency data source.

suffix

Is the suffix of the currency data source. The currency data source can be any type of data
source your application can access.

CURRENCY_ID

Is the required field name. The values stored in this field are the three-character codes
that identify each currency, such as USD for U.S. dollars. Each currency ID can be a
universally recognized code or a user-defined code.

Note: The code EUR is automatically recognized. You should not store this code in your
currency data source. See Sample Currency Codes on page 440 for a list of common
currency codes.

rate_1...rate_n

Are types of rates (such as BUDGET, FASB, ACTUAL) to be used in currency conversions.
Each rate is the number of national units that represent one euro.

numeric_format1...numeric_formatn

Are the display formats for the exchange rates. Each format must be numeric. The
recommended format, D12.6, ensures that the rate is expressed with six significant digits
as required by the European Union conversion rules. Do not use Integer format (I).

ACTUAL An

Is required only for non-FOCUS data sources.

Note: The maximum number of fields in the currency data source must not exceed 255
(that is, the CURRENCY_ID field plus 254 currency conversion fields).

Reference: Sample Currency Codes

On January 1, 1999, Euroland set exchange rates between the euro and other currencies.
Countries included in Euroland as of that date are marked with an asterisk (*). The rates are
fixed and will not change, although the rates for other countries change over time.

Currency Name Currency Code Rate

American dollar USD .974298

Creating the Currency Data Source

440

Currency Name Currency Code Rate

Austrian schilling ATS 13.7603

Belgian franc* BEF 40.3399

British pound GBP .625152

Canadian dollar CAD 1.54504

Danish krone DKK 7.42659

Dutch guilder* NLG 2.20371

Deutsche mark* DEM 1.95583

Euro EUR 1

Finnish markka FIM 5.94573

French franc* FRF 6.55957

Greek drachma* GRD 340.750

Irish pound* IEP 0.787564

Italian lira* ITL 1936.27

Japanese yen or Chinese yuan JPY 118.377

Luxembourg franc* LUF 40.3399

Norwegian kroner NOK 7.34864

Portuguese escudo* PTE 200.482

Spanish peseta* ESP 166.386

Swedish krona SEK 9.20906

Swiss franc CHF 1/4634

8. Euro Currency Support

Developing Applications 441

Example: Specifying Currency Codes and Rates in a Master File

The following Master File for a comma-delimited currency data source specifies two rates for
each currency, ACTUAL and BUDGET:

FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID,, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

The following is sample data for the currency data source defined by this Master File:

FRF, 6.55957, 6.50000,$
USD, 0.974298, 1.00000,$
BEF, 40.3399, 41.00000,$

Identifying Fields That Contain Currency Data

After you have created your currency data source, you must identify the fields in your data
sources that represent currency values. To designate a field as a currency-denominated value
(a value that represents a number of units in a specific type of currency) add the CURRENCY
attribute to one of the following:

The FIELD specification in the Master File.

The left side of a DEFINE or COMPUTE.

Syntax: How to Identify a Currency Value

Use the following syntax to identify a currency-denominated value.

In a Master File

FIELD = currfield,, FORMAT = numeric_format, ..., CURR =
{curr_id|codefield} ,$
DEFINE currfield/numeric_format CURR curr_id = expression ;$
DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END
COMPUTE currfield/numeric_format CURR curr_id = expression ;

In a DEFINE in the Master File

DEFINE currfield/numeric_format CURR curr_id = expression ;$

In a DEFINE FILE command

DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END

Identifying Fields That Contain Currency Data

442

In a COMPUTE command

COMPUTE currfield/numeric_format CURR curr_id = expression ;

where:

currfield

Is the name of the currency-denominated field.

numeric_format

Is a numeric format. Depending on the currency denomination involved, the recommended
number of decimal places is either two or zero. Do not use I or F format.

CURR

Indicates that the field value represents a currency-denominated value. CURR is an
abbreviation of CURRENCY, which is the full attribute name.

curr_id

Is the three-character currency ID associated with the field. In order to perform currency
conversions, this ID must either be the value EUR or match a CURRENCY_ID value in your
currency data source.

codefield

Is the name of a field, qualified if necessary, that contains the currency ID associated with
currfield. The code field should have format A3 or longer and is interpreted as containing
the currency ID value in its first three bytes. For example:

FIELD = PRICE,, FORMAT = P12.2C, ..., CURR = TABLE.FLD1,$
 .
 .
 .
FIELD = FLD1,, FORMAT = A3, ...,$

The field named FLD1 contains the currency ID for the field named PRICE.

filename

Is the name of the file for which this field is defined.

expression

Is a valid expression.

Example: Identifying a Currency-Denominated Field

The following Master File contains the description of a field named PRICE that is denominated
in U.S. dollars.

8. Euro Currency Support

Developing Applications 443

FILE=CURRDATA,SUFFIX=COM,$
FIELD=PRICE, FORMAT=P17.2 , ACTUAL=A5, CURR=USD,$
.
.
.

Activating the Currency Data Source

Before you can perform currency conversions, you must specify the currency data source by
setting the EUROFILE parameter with the SET command. By default, the EUROFILE parameter
is not set.

The SET command can be issued at the FOCUS command prompt, in a procedure, or in any
supported profile. It cannot be set within a report request.

After a data source is activated, you can access a different currency data source by reissuing
the SET command.

Note: The EUROFILE parameter must be set alone. For example, appending an additional SET
parameter will cause the additional parameter setting to be lost.

Syntax: How to Activate Your Currency Data Source

SET EUROFILE = {ddname|OFF}

where:

ddname

Is the name of the Master File for the currency data source. The ddname must refer to a
data source known to and accessible by your application in read-only mode.

OFF

Deactivates the currency data source and removes it from memory.

Reference: EUROFILE Error Messages and Notes

Issuing the SET EUROFILE command when the currency data source Master File does not
exist generates the following error message:

(FOC205) THE DESCRIPTION CANNOT BE FOUND FOR FILE NAMED: ddname

Issuing the SET EUROFILE command when the currency Master File specifies a FOCUS data
source and the associated FOCUS data source does not exist generates the following error
message:

Activating the Currency Data Source

444

(FOC036) NO DATA FOUND FOR THE FOCUS FILE NAMED: name

Processing Currency Data

After you have created your currency data source, identified the currency-denominated fields in
your data sources, and activated your currency data source, you can perform currency
conversions.

Each currency ID in your currency data source generates a virtual conversion function whose
name is the same as its currency ID. For example, if you added BEF to your currency data
source, a virtual BEF currency conversion function will be generated.

The euro function, EUR, is supplied automatically with your application. You do not need to add
the EUR currency ID to your currency data source.

The result of a conversion is calculated with very high precision, 31 to 36 significant digits,
depending on platform. The precision of the final result is always rounded to two decimal
places. In order to display the result to the proper precision, its format must allow at least two
decimal places.

Syntax: How to Process Currency Data

In a procedure

DEFINE FILE filename
result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);
END

or

COMPUTE result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);

In a Master File

DEFINE result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);$

where:

filename

Is the name of the file for which this field is defined.

result

Is the converted currency value.

8. Euro Currency Support

Developing Applications 445

format

Is a numeric format. Depending on the currency denomination involved, the recommended
number of decimal places is either two or zero. The result will always be rounded to two
decimal places, which will display if the format allows at least two decimal places. Do not
use an Integer or Floating Point format.

curr_id

Is the currency ID of the result field. This ID must be the value EUR or match a currency ID
in your currency data source. Any other value generates the following message:

(FOC263) EXTERNAL FUNCTION OR LOAD MODULE NOT FOUND: curr_id

Note: The CURR attribute on the left side of the DEFINE or COMPUTE identifies the result
field as a currency-denominated value which can be passed as an argument to a currency
function in subsequent currency calculations. Adding this attribute to the left side of the
DEFINE or COMPUTE does not invoke any format or value conversion on the calculated
result.

infield

Is a currency-denominated value. This input value will be converted from its original
currency to the curr_id denomination. If the infield and result currencies are the same, no
calculation is performed and the result value is the same as the infield value.

rate1

Is the name of a rate field from the currency data source. The infield value is divided by the
rate1 value of the currency to produce the equivalent number of euros.

If rate2 is not specified in the currency calculation and triangulation is required, this
intermediate result is then multiplied by the result currency rate1 value to complete the
conversion.

In certain cases, you may need to provide different rates for special purposes. In these
situations you can specify any field or numeric constant for rate1 as long as it indicates
the number of units of the infield currency denomination that equals one euro.

rate2

Is the name of a rate field from the currency data source. This argument is only used for
those cases of triangulation in which you need to specify different rate fields for the infield
and result currencies. It is ignored if the euro is one of the currencies involved in the
calculation.

The number of euros that was derived using rate1 is multiplied by the result currency rate2
value to complete the conversion.

Processing Currency Data

446

In certain cases, you may need to provide different rates for special purposes. In these
situations you can specify any field or numeric constant for rate2 as long as it indicates
the number of units of the result currency denomination that equals one euro.

Reference: Currency Calculation Error Messages

Issuing a report request against a Master File that specifies a currency code not listed in the
active currency data source generates the following message:

(FOC1911) CURRENCY IN FILE DESCRIPTION NOT FOUND IN DATA

A syntax error or undefined field name in a currency conversion expression generates the
following message:

(FOC1912) ERROR IN PARSING CURRENCY STATEMENT

Example: Using the Currency Conversion Function

Assume that the currency data source contains the currency IDs USD and BEF, and that PRICE
is denominated in Belgian francs as follows:

FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

The following example converts PRICE to euros and stores the result in PRICE2 using the
BUDGET conversion rate for the BEF currency ID:

COMPUTE PRICE2/P17.2 CURR EUR = EUR(PRICE, BUDGET);

This example converts PRICE from Belgian francs to US dollars using the triangulation rule:

DEFINE PRICE3/P17.2 CURR USD = USD(PRICE, ACTUAL);$

First PRICE is divided by the ACTUAL rate for Belgian francs to derive the number of euros
rounded to three decimal places. Then this intermediate value is multiplied by the ACTUAL
rate for US dollars and rounded to two decimal places.

The following example uses a numeric constant for the conversion rate:

DEFINE PRICE4/P17.2 CURR EUR = EUR(PRICE,5);$

The next example uses the ACTUAL rate for Belgian francs in the division and the BUDGET
rate for US dollars in the multiplication:

DEFINE PRICE5/P17.2 CURR USD = USD(PRICE, ACTUAL, BUDGET);$

8. Euro Currency Support

Developing Applications 447

Example: Converting U.S. Dollars to Euros, French Francs, and Belgian Francs

The following is an example of converting U.S. dollars to Euros, French Francs, and Belgian
Francs.

1. Create a currency data source that identifies the currency and one or more exchange rates.
(See Creating the Currency Data Source on page 439 for details.) The following sample data
source is named CURRCODE:

FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID,, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

2. Create a data source that contains the values to be converted. (See Identifying Fields That
Contain Currency Data on page 442 for details.) The following sample data source is named
CURRDATA:

FILE=CURRDATA,SUFFIX=COM,$
FIELD=PRICE, FORMAT=P17.2 , ACTUAL=A5, CURR=USD,$

3. Create a request that uses the currency data source to convert the currency values
contained in the data source containing these values. The following procedure converts
PRICE to euros, French francs, and Belgian francs. The numbers on the left correspond to
the notes explaining the code.

 -* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER z/OS
1. -* DYNAM ALLOC FILE CURRCODE DA USER1.FOCEXEC.DATA(CURRCODE) SHR REU
2. -* DYNAM ALLOC FILE CURRDATA DA USER1.FOCEXEC.DATA(CURRDATA) SHR REU
 -* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER WINDOWS NT
1. FILEDEF CURRCODE DISK GGDEMO/CURRCODE.COM
2. FILEDEF CURRCODE DISK GGDEMO/CURRDATA.COM
3. SET EUROFILE = CURRCODE
 DEFINE FILE CURRDATA
4. PRICEEUR/P17.2 CURR EUR = EUR(PRICE, ACTUAL);
 END
 TABLE FILE CURRDATA
 PRINT PRICE PRICEEUR AND COMPUTE
5. PRICEFRF/P17.2 CURR FRF = FRF(PRICE, ACTUAL);
 PRICEBEF/P17.2 CURR BEF = BEF(PRICE, ACTUAL);
 END

The report request executes as follows:

1. The FILEDEF or DYNAM command informs the operating system of the location of the
CURRCODE data source.

2. The FILEDEF command informs the operating system of the location of the CURRDATA data
source.

3. The SET command specifies the currency data source as CURRCODE.

Processing Currency Data

448

4. This line calls the EUR function, which converts U.S. dollars to euros.

5. The next two lines are the conversion functions that convert euros into the equivalent in
French and Belgian Francs.

The output is:

PRICE PRICEEUR PRICEFRF PRICEBEF
----- -------- -------- --------
 5.00 4.26 27.97 172.01
 6.00 5.12 33.57 206.42
40.00 34.12 223.78 1376.20
10.00 8.53 55.95 344.06

You cannot use the derived euro value PRICEEUR in a conversion from USD to BEF. PRICEEUR
has two decimal places (P17.2), not three, as the triangulation rules require.

Querying the Currency Data Source in Effect

You can issue a query to determine what currency data source is in effect. To do this, issue ?
SET ALL or ? SET EUROFILE.

Syntax: How to Determine the Currency Data Source in Effect

? SET EUROFILE

Example: Determining the Currency Data Source in Effect

Assume the currency data source is named CURRCODE.

If you issue the following commands

SET EUROFILE = CURRCODE
? SET EUROFILE

the output is:

EUROFILE CURRCODE

Punctuating Numbers

Countries differ in how they punctuate numbers, and you can reflect these differences in your
reports using Continental Decimal Notation (CDN) which is specified with the CDN SET
parameter. The CDN SET allows you to choose to punctuate numbers with a combination of
commas, decimals, spaces, and single quotation marks.

The CDN SET parameter can be used in a report request but is not supported in DEFINE or
COMPUTE commands.

8. Euro Currency Support

Developing Applications 449

Note: The punctuation specified by the CDN parameter also determines the punctuation used
in numbers affected by the CENT-ZERO SET parameter.

Syntax: How to Determine the Punctuation of Large Numbers

SET CDN = option

where:

option

Determines the punctuation used in numeric notation. The options are:

ON, which uses CDN. For example, the number 3,045,000.76 is represented as
3.045.000,76.

OFF, which turns CDN off. For example, the number 3,045,000.76 is represented as
3,045,000.76. This value is the default.

SPACE, which separates groups of three significant digits with a space instead of a
comma, and marks a decimal position with a comma instead of a period. For example,
the number 3,045,000.76 is represented as 3 045 000,76.

QUOTE, which separates groups of three significant digits with a single quotation mark
(') instead of a comma, and marks a decimal position with a comma instead of a
period. For example, the number 3,045,000.76 is represented as 3'045'000,76.

QUOTEP, which separates groups of three significant digits with a single quotation
mark (') instead of a comma, and marks a decimal position with period. For example,
the number 3,045,000.76 is represented as 3'045'000.76.

Example: Displaying Numbers Using Continental Decimal Notation

The following table shows how 1234.56 is displayed, depending on the setting of CDN.

CDN Setting Result

OFF 1,234.56

ON 1.234,56

SPACE 1 234,56

QUOTE 1'234,56

Punctuating Numbers

450

CDN Setting Result

QUOTEP 1'234.56

Example: Determining the Punctuation of Large Numbers

In the following request, CDN is set to ON which punctuates numbers using a period to
separate thousands, and a comma to separate decimals.

SET CDN = ON
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME CURR_SALEND

The output is:

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------

STEVENS ALFRED $11.000,00
SMITH MARY $13.200,00
JONES DIANE $18.480,00
JONES DIANE $17.750,00
BANNING JOHN $29.700,00
IRVING JOAN $26.862,00
IRVING JOAN $24.420,00
ROMANS ANTHONY $21.120,00
MCCOY JOHN $18.480,00
BLACKWOOD ROSEMARIE $21.780,00
MCKNIGHT ROGER $16.100,00
MCKNIGHT ROGER $15.000,00
CROSS BARBARA $27.062,00
CROSS BARBARA $25.775,00

Selecting an Extended Currency Symbol

You can select a currency symbol for display in report output regardless of the default currency
symbol configured for National Language Support (NLS). Use the extended currency symbol
format in place of the floating dollar (M) or non-floating dollar (N) display option. When you use
the floating dollar (M) or non-floating dollar (N) display option, the currency symbol associated
with the default code page is displayed. For example, when you use an American English code
page, the dollar sign is displayed.

Note: You can use the SET CURRSYMB command to control which symbol displays for the M
and N options.

8. Euro Currency Support

Developing Applications 451

The extended currency symbol format allows you to display a symbol other than the dollar sign.
For example, you can display the symbol for a United States dollar, a British pound, a
Japanese yen, or the euro. Extended currency symbol support is available for numeric formats
(I, D, F, and P).

Use the following character combinations as the final two characters in any numeric display
format:

Display Option Description Example

!d Fixed dollar sign. D12.2!d

:d Fixed dollar sign. D12.2:d

!D Floating dollar sign. D12.2!D

:D Floating dollar sign. D12.2:D

!e Fixed euro symbol. F9.2!e

:e Fixed euro symbol. F9.2:e

!E Floating euro symbol on the left
side.

F9.2!E

:E Floating euro symbol on the left
side.

F9.2:E

!F Floating euro symbol on the right
side.

F9.2!F

:F Floating euro symbol on the right
side.

F9.2:F

!l Fixed British pound sign. D12.1!l

:l Fixed British pound sign. D12.1:l

!L Floating British pound sign. D12.1!L

:L Floating British pound sign. D12.1:L

!y Fixed Japanese yen symbol. I9!y

Selecting an Extended Currency Symbol

452

Display Option Description Example

:y Fixed Japanese yen symbol. I9:y

!Y Floating Japanese yen symbol. I9!Y

:Y Floating Japanese yen symbol. I9:Y

Note: The colon (:) is equivalent to the exclamation point (!), however, only the colon is
invariant across code pages, so using the colon is recommended.

Reference: Extended Currency Symbol Formats

The following guidelines apply:

A format specification cannot be longer than eight characters.

The extended currency option must be the last option in the format.

The extended currency symbol format cannot include the floating (M) or non-floating (N)
display option.

A non-floating currency symbol is displayed only on the first row of a report page. If you use
field-based reformatting (as in the example that follows) to display multiple currency
symbols in a report column, only the symbol associated with the first row is displayed. In
this case, do not use non-floating currency symbols.

Lowercase letters are transmitted as uppercase letters by the terminal I/O procedures.
Therefore, the fixed extended currency symbols can only be specified in a procedure.

Extended currency symbol formats can be used with fields in floating point, decimal,
packed, and integer formats. Alphanumeric, dynamic, and variable character formats
cannot be used.

8. Euro Currency Support

Developing Applications 453

Selecting an Extended Currency Symbol

454

Chapter9
Designing Windows With Window Painter

The following topics describe how to create FOCUS menus and windows that work with
FOCEXECs.

In this chapter:

Introduction

Window Files and Windows

Integrating Windows and the FOCEXEC

Tutorial: A Menu-Driven Application

Window Painter Screens

Transferring Window Files

Introduction

FOCUS Window Painter is a tool that helps you design and create your own menus and screens
for attractive and easy-to-use applications.

Many window types and features are available, and you can implement horizontal menus and
multi-input windows as part of your FOCUS application. Horizontal menus can also have pull-
down menus associated with each menu item.

You can perform a string search in an active window by entering any pattern followed by a
blank and pressing Enter. Within the pattern:

An asterisk (*) is a multiple character wildcard.

A question mark (?) is a single character wildcard.

An equal sign (=) repeats the last string.

FOCUS tries to locate the line matching the pattern starting from the line following the current
line. The search concludes at the line preceding the current line. If no match is found, a beep
sounds and the cursor remains at the current position.

Developing Applications 455

The windows you can design with FOCUS Window Painter look just like the menus and screens
you see in the FOCUS Talk Technologies, such as TableTalk and PlotTalk, but you can
customize each to fit your application. You can design user-friendly menus and display
convenient and eye-catching instructions onscreen.

FOCUS Window Painter itself guides you step by step, using windows like those you created.

On the windows you create, you can prompt users to:

Select menu items from a list.

Enter data.

Select from automatically generated lists of available files and field names.

Register a choice by pressing a function key.

You can also simply display explanations and instructions.

Window Painter is flexible enough to design the many different types of windows you might
need for any application written with FOCUS.

You can also upload window files from FOCUS running in one operating environment, such as
PC/FOCUS, and edit them using Window Painter for use on another operating environment,
such as z/OS.

How Do Window Applications Work?

Window Painter stores the windows you design in window files. Window files work in
conjunction with FOCEXEC procedures that use Dialogue Manager.

There are two major parts in any window application, each of which is a step for the developer:

The windows, created with Window Painter, which users see.

The Dialogue Manager FOCEXEC.

You can invoke Window Painter to create and edit windows by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

You can invoke the Window facility in your FOCEXEC by including the Dialogue Manager
command -WINDOW in the FOCEXEC. The -WINDOW command provides the name of the
window file, and the name of the individual window that should be displayed first. When the -
WINDOW command is executed by Dialogue Manager, control in the FOCEXEC passes to the
Window facility.

Introduction

456

The user is moved through the window file by goto values. A goto value tells the Window facility
which window to display next.

You specify goto values when creating the windows with Window Painter. When your window is
a menu with several items, you may assign a different goto value for each menu item, so that
the next window depends on the user's selection.

When you create the windows, you also specify return values. As with goto values, you may
assign a different return value to each item on a menu. Return values are collected as the user
moves through the windows, and are substituted for "amper variables" which can be used later
in the window file or in the FOCEXEC when control passes back. (Amper variables are Dialogue
Manager variables of the format &variablename.)

When the selected value is inserted in the FOCEXEC, you may test it with a Dialogue Manager
IF...THEN command and branch accordingly to a label in the FOCEXEC. In this way, you move
the user through a series of windows, collecting return values for amper variables, using only
one command in your FOCEXEC.

You can use windows to collect amper variable values in place of any other method of
prompting available through Dialogue Manager.

For a complete discussion of the Dialogue Manager facility, see Managing Flow of Control in an
Application on page 207. For details of integrating a FOCEXEC with the Window facility using
return and goto values, see Integrating Windows and the FOCEXEC on page 475.

Window Files and Windows

Windows—that is, menus and screens—are stored in window files. Windows are included in a
specified window file as you create and save them during a Window Painter session.

Window files are contained in a partitioned data set (PDS) allocated to ddname FMU. Before
any window files can be created, a PDS must be created and ddname FMU must be allocated
to it.

Note, however, that creating a PDS is not necessary if you are creating window files to be used
only in the current FOCUS session: Window Painter temporarily allocates the PDS. For a full
description of allocation requirements, see the appropriate Guide to Operations topic in the
FOCUS Overview and Operating Environments manual

A window file can contain a maximum of 384 windows, and a number of windows may be
displayed on the screen at once. All the windows in a single application may be stored together
in one window file, or you may create separate window files for different parts of the
application such as Help Windows.

9. Designing Windows With Window Painter

Developing Applications 457

You can make an application more attractive by presenting menus in windows containing titles
and other design elements, and can make an application easier to use by displaying function
key definitions or other useful information.

Types of Windows You Can Create

Window Painter creates 10 different types of windows, each with its own special uses. These
windows are described in the following topics.

Vertical Menus

This is a vertical menu:

A menu is a window that lets users select an option from a list. These options are called menu
items. A vertical menu lists its menu items one below the other. A user can select an item by
moving the cursor down the list with the arrow keys and pressing Enter when the cursor is on
the line of the desired item. A user can select more than one item if the window includes the
Multi-Select option, which is part of the Window Options Menu. Help information can be
specified for each item in the menu by using the menu-item help feature of help windows. For
additional information on Multi-Select and Help windows, see Window Options Menu on page
515.

Horizontal Menus

This is a horizontal menu:

Window Files and Windows

458

A horizontal menu displays its menu items on a line, from left to right. You select an item by
using PF11 or the Tab key to move right and PF10 or Shift+Tab to move left across the line,
and pressing Enter when the cursor is at the desired item. You can also select an item by
employing the search techniques available for FOCUS windows. (Search techniques are not
available with pull-down windows).

If you use PF11 at the last item on the menu, the cursor moves to the first item on the menu.
If you use PF10 at the first item on the menu, the cursor moves to the last item on the menu,
unless there is another screen to scroll to.

An application can display an associated pull-down menu for an item on a horizontal menu
when the cursor is on that item. Choose the pull-down option from the Window Options menu
as discussed in Creating Windows on page 467. An option to display descriptive text above or
below the horizontal menu is also available from the Window Options menu.

You can assign any return value to each item on the menu. When you select a menu item, the
corresponding return value is collected.

In a horizontal or vertical menu, you can assign a goto value to each menu item.

Text Input Windows

This is a text input window:

Amper variables can be used in a Windows application. A text input window prompts the user
to supply information needed in a FOCEXEC. It is also possible to display an existing value to
be edited. Each text input window accepts one line of input up to 76 characters long. You
assign the length and format of the field when you create the window. Additional information
about creating a text input window is found in Window Creation Menu on page 510.

9. Designing Windows With Window Painter

Developing Applications 459

Text Display Windows

This is a text display window:

A text display window lets you present information such as instructions or messages. No
selections can be made from a text display window, and no data can be entered in it.

File Names Windows

This is a file names window:

A File Names window presents a list of names of up to 1023 PDS members. The user can
select one of these names by moving the cursor and pressing Enter when the cursor is on the
line of the desired file name. You can specify selection criteria for the displayed file names
when the window is created. A user can select more than one file if the window includes the
Multi-Select option, which is available on the Window Options Menu.

Window Files and Windows

460

Note that the maximum number of file (or member) names which can be displayed decreases
as the width of the window increases. Narrow windows can display a greater number of names.

Field Names Windows

This is a field names window:

A field names window presents a list of all field names from a Master File; the user can select
one by moving the cursor and pressing Enter when the cursor is on the line of the desired field
name. A user can select more than one field if the window includes the Multi-Select option,
which is available on the Window Options Menu.

You can use a field names window as the next step after a file names window. That way, you
can present a selection of files first, followed by the fields in a selected file.

The field names are qualified when duplicates exist. You can use PF10 and PF11 to scroll left
and right if a field name exceeds the maximum number of characters allowed on a line in a
data field window.

Use PF6 as a three-way toggle to sort the fields in one of the following ways:

1. Display field names in the order in which they appear in the Master File.

2. Display field names in alphabetical order.

3. Display the fully qualified field names in the order in which they appear in the Master File.

9. Designing Windows With Window Painter

Developing Applications 461

File Contents Windows

This is a file contents window:

The file contents window displays the contents of a file. There is no limit on the size of a file
contents window. The user can select a line of contents by moving the cursor to it and
pressing Enter. Each line can be up to 77 characters long. A user can select more than one
line if the window includes the Multi-Select option, which is described as part of the Window
Options Menu in Window Options Menu on page 515.

The contents of any member of a PDS (except as noted below) can be displayed. Sequential
files can also be displayed in TSO. You are prompted for a file name (the ddname) and a file
type (the member name). This information should be entered as "member name ddname".

Note: You cannot display a file with unprintable characters in a file contents window. This
includes files such as FOCUS files, HOLD files, SAVB files, FOCCOMP files, and encrypted files.

Return Value Display Windows

This is a return value display window:

The return value display window displays amper variables that have been collected from other
windows. No selections can be made from a return value display window, and no data can be
entered into it.

Window Files and Windows

462

Return value display windows are very useful for constructing a command (or any string of
words or terms) by working through a series of windows. An example of this type of application
is seen when you construct a TABLE request using TableTalk.

Each line of the return value display window is stored in a variable called &windownamexx,
where windowname is the name of the window and xx is a line number.

Unless you use the Line-break option to place return values on separate lines, all collected
return values are placed on the same line until the end of the line is reached. The length of the
line is determined by the size of the window created. A description of the Line-break option on
the Window Options Menu can be found in Window Options Menu on page 515.

Only one return value display window may be displayed at a time on the screen. It collects a
value from any active window (that is, a window from which a selection is being made or to
which text is being entered, or an active text display window) if it is on that window's display
list. A description of the Display lists option on the Window Options Menu can be found in
Window Options Menu on page 515.

You can clear the collected values from a return value display window by including it on the
hide list of a window that is being used. A description of the Hide lists option on the Window
Options Menu can be found in Window Options Menu on page 515.

For a Multi-Select window, the return value display window gives the number of selections, not
the values selected. The values can be retrieved by using the -WINDOW command with the
GETHOLD option.

9. Designing Windows With Window Painter

Developing Applications 463

Execution Windows

This is an execution window:

The execution window contains FOCUS commands such as Dialogue Manager commands, and
TABLE requests.

You can create an execution window by choosing its option on the Window Creation menu.

When this window is first displayed, it has a width of 77 characters, and no heading. You can
place FOCUS commands within it. Note that the commands in an execution window appear just
as you type them; commands are not automatically converted to uppercase.

The Window Painter Main Menu contains an option that enables you to run a window in order
to see any return values collected. If you were to run (not execute) the execution window from
the Window Painter Main Menu, you would see the execution window contents, then any
windows called, and finally any return values collected by running the windows.

Note the following rules when using execution windows:

When you GOTO an execution window, the contents of the window are executed. In all
cases, execution begins at the top of the window.

An execution window is not displayed when executed, although the commands it contains
may generate a display.

An execution window can use an amper variable as a goto value.

Window Files and Windows

464

An execution window clears the screen and the Return Value display window.

Execution windows have no return values.

Execution windows can contain up to 22 lines.

Execution windows can use local variables.

Goto values for execution windows should be assigned at line 1.

Windows called from within execution windows preempt window goto values. For example, a
-WINDOW command issued from within an execution window preempts an assigned goto
value.

The FOCUS commands within an execution window follow normal Dialogue Manager
execution (that is, FOCUS commands are stacked, Dialogue Manager commands are
executed immediately). Any windows called from the execution window follow the logic
determined by the windows themselves. This substantially affects the application's transfer
of control.

Use -RUN for immediate execution; otherwise requests are performed after leaving the
window application.

Normally, FOCUS returns to the window designated by the assigned goto value after the
contents of the execution window have been executed. However, when a jump is made to a
window from inside an execution window, the commands in the execution window following the
jump are skipped (along with any attached gotos). This differs from initiating a window from
inside Dialogue Manager, which when finished returns you to the command following the
GOTO.

9. Designing Windows With Window Painter

Developing Applications 465

Multi-Input Windows

This is a multi-input window:

A multi-input window prompts you for information used in the application. A multi-input window
may include up to 50 input fields, each of which can be up to 76 characters long. You assign
the length, name, and format of the field when you create the window.

Use the Tab key to move the cursor between the fields on a multi-input window.

You can supply help information for each field in a multi-input window by using the Help window
option. For information on Help windows, see Window Options Menu on page 515.

For a multi-input window, the return value is the name of the input field occupied by the cursor
when you pressed Enter or a function key. The name that you supply for each input field is
assigned to an amper variable with the same name as the field (each input field has a unique
name). The variable &WINDOWVALUE contains the value of the input field occupied by the
cursor when you pressed Enter or a function key.

Use a unique name for each field on a multi-input window. To display the field names
specified, use the Input Fields option on the Window Options menu.

Window Files and Windows

466

Creating Windows

The process of creating windows begins with choosing the type of window you want to create
from the Window Creation menu. Each type of window requires slightly different instructions.
The tutorial in Tutorial: A Menu-Driven Application on page 484 describes how to create and
implement text display window, vertical menu, and file names windows. This topic describes
how to create horizontal menus (with or without associated pull-down menus) and multi-input
windows.

Creating a Horizontal Menu

To create a horizontal menu, begin by placing the cursor at the Menu (horizontal) option on the
Window Creation menu:

You are prompted to enter a name and brief description for the window, after which you reach
the creation screen. On this screen:

1. Move the cursor to the location in which you want the top left corner of the menu to be
displayed. Press Enter.

2. Next, use the arrow keys to move the cursor down (enough spaces to leave a line for each
item you want to display as a menu choice) and to the right (enough spaces to just fit the
longest menu item). Press PF4. You see two windows: one is for entering information and
the other is the corresponding horizontal menu.

3. Enter the menu items in the window containing the cursor. Press Enter after each item; the
item automatically appears on the horizontal menu.

9. Designing Windows With Window Painter

Developing Applications 467

The following is an example of a completed creation screen:

Window Files and Windows

468

Once you have entered the items on your menu, there are several options you can select for
each item. Move the cursor to any item and press PF2 to display the Window Options menu:

Position the cursor on any option you want to select and press Enter.

Two features available for horizontal menus are Menu text and Text line. Menu text is a line of
text displayed when the cursor is on a menu item. The line on which the text is displayed is
called the text line. You can position the text line one or two lines either above or below the
horizontal menu.

The following example illustrates Menu text and Text line. When the cursor is positioned on
Vertical in the example below, the following is displayed:

In this example, the Menu text VERTICAL MENU TESTS is positioned at Text line x-1, one line
above the menu. To place the Text line two lines above the Menu text, change x-1 to x-2. For
Text lines below the menu text, use x+1 or x+2.

9. Designing Windows With Window Painter

Developing Applications 469

You can also select the Pull-down option for a horizontal menu. With this option, you can
assign a pull-down menu to be displayed for a horizontal menu item whenever the cursor is
positioned on that item.

Pull-down Menus

When you set the Pull-down option ON, you can display an associated pull-down menu for an
item in a horizontal menu by positioning the cursor on that item. The default is OFF. To change
the setting to ON, position the cursor on the Pull-down option and press Enter. Note that when
Pull-down is set ON, Menu Text is automatically set OFF.

The associated pull-down menu must be a vertical menu. When creating the horizontal menu,
you must assign a Goto value to point to the pull-down menu. To do so, position the cursor on
the goto value, press Enter, and enter the name of the pull-down menu you want to display in
the space provided:

You must create the vertical menu, rpts, as you would any other vertical menu. See Tutorial: A
Menu-Driven Application on page 484 for examples.

Window Files and Windows

470

The following example shows a horizontal menu with the Reporting pull-down menu displayed:

The following screen shows the same menu with the Ad hoc pull-down menu displayed:

The following screen shows the same menu with the Maintenance pull-down menu displayed:

Note: To move from item to item in a horizontal menu, use PF10 and PF11.

9. Designing Windows With Window Painter

Developing Applications 471

Creating a Multi-Input Window

To create a multi-input window, begin by placing the cursor at the Multi-Input window option on
the Window Creation menu and press Enter. You are then prompted for a name, description
and heading. Place the window on the screen and size it as desired.

To place entries on the window:

1. Type the text for display.

2. Press PF6 at the point where the field begins.

3. Space along for the length of the field.

4. Press PF6 again to signify the end of the input area.

5. Enter name and information for the field.

Window Files and Windows

472

The following example shows a multi-input window, with Name: entered as display text.

This is what the developer's screen looks like after several fields have been included in the
multi-input window:

Note: Text fields may be supplied without headings or instructions. For example, see the city
and state portion of the address line.

9. Designing Windows With Window Painter

Developing Applications 473

This is how the window appears when run as part of the application:

The following screen shows what is returned from the window when it is run inside the Window
Painter:

Note: To move from field to field in a multi-input window, use the Tab key.

Window Files and Windows

474

Integrating Windows and the FOCEXEC

The windows created with Window Painter are designed for use within an application FOCEXEC.
This topic discusses how to integrate the windows into your FOCEXEC.

Syntax: How to Invoke the Window Facility

To invoke the Window facility, insert the following Dialogue Manager command in your
FOCEXEC

-WINDOW windowfile windowname [PFKEY|NOPFKEY] [GETHOLD] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

where:

windowfile

Identifies the file in which the windows are stored. This is a member name. The member
must belong to a PDS allocated to ddname FMU.

windowname

Identifies which window in the file to display first. Can be set in Window Painter or in first
window displayed. This is optional.

PFKEY

Enables testing for function key values during window execution.

NOPFKEY

Prevents testing for function key values during window execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select window. Does not cause
window to be displayed.

BLANK

Clears all previously set amper variable values when the -WINDOW command is
encountered. This is the default setting.

NOBLANK

No amper variable values are cleared when the -WINDOW command is encountered.

9. Designing Windows With Window Painter

Developing Applications 475

CLEAR

When FOCUS is being used with the Terminal Operator Environment (described in the
Overview and Operating Environments manual), the -WINDOW command clears the screen
before displaying the first window. The Terminal Operator Environment screen is
redisplayed when control is transferred from the Window facility back to the FOCEXEC. This
is the default setting.

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the window file's
windows are displayed directly over the Terminal Operator Environment screens.

Note: NOBLANK is particularly important in applications that use more than one -WINDOW
command.

Transferring Control in Window Applications

When the -WINDOW command is encountered, control in the FOCEXEC is transferred to the
Window facility. Control remains with the Window facility until one of the following occurs:

The user makes a selection for which you have assigned no goto value.

The PFKEY option is in effect and the user presses a function key (the function key must be
set to RETURN, HX, CANCEL, or END, as described in the Testing Function Key Values on
page 481.)

Once control passes back to the FOCEXEC, control only returns to the Window facility if another
WINDOW command is encountered.

Example: Window File in an Application FOCEXEC

This example shows an application FOCEXEC and a window file named REPORT which contains
three windows: R1, R2, and R3.

The numbers at the left of the example refer to the flow of execution (that is, the order in
which the commands and windows are executed).

Integrating Windows and the FOCEXEC

476

1. -START
2. -WINDOW REPORT R1 PFKEY
 -*
3. -*Control is transferred from the above command
 -*to window R1 in window file REPORT.
 -*
4. -IF &PFKEY EQ PF05 GOTO LABEL1;
 -*
 -*Control returns to the above command from
 -*window R2 in window file REPORT.
 .
 .
 -LABEL1
5. -WINDOW REPORT R3
 -*
6. -*Control is transferred from the above command
 -*to window R3 in window file REPORT.
 -*
7. -IF &R3 EQ EXIT GOTO EXIT;
 -*
 -*Control returns to the above command from
 -*WINDOW R3 in window file REPORT.
 .
 .
 -EXIT

Note:

At Step 3, the user selects an option from Window R1. This option's goto value is R2.
Control is transferred to Window R2.

The user presses a function key in Window R2. Control is transferred to the FOCEXEC, to
the command following the -WINDOW command (Step 4).

At Step 6, the user selects the option to exit; no goto value was set for that option. Control
is transferred to the FOCEXEC, to the command following the -WINDOW command (Step 7).

The flow of control has certain implications for the design of your window applications:

Any time you pass control back to the FOCEXEC, the window or menu option must have no
goto value, or else must prompt the user to press a function key (as described in Testing
Function Key Values on page 481).

At some point in the window session, control should return to the FOCEXEC so that the
accumulated return values can be substituted for amper variables, and the variables then
used in the FOCEXEC.

Any time you pass control from the FOCEXEC to the Window facility you must insert the -
WINDOW command in the FOCEXEC.

9. Designing Windows With Window Painter

Developing Applications 477

Note that it is not necessary to create a new window file for each -WINDOW command; you
can simply enter the same file again at any window.

To test for a function key value in the middle of a series of windows, remember that
pressing the function key automatically returns control to the FOCEXEC; an -IF test
command should follow the -WINDOW command, and a second -WINDOW command should
be placed after the -IF command to transfer control back to the window file.

If you want to clear an existing set of variable values, return control to the FOCEXEC and
execute another -WINDOW command with the BLANK option in effect.

To back up a step during window execution, the user may press PF12 or PF24. This does not
cause control to pass to the FOCEXEC. However, you can force Dialogue Manager to return
control to a FOCEXEC by a PF key setting as described in Testing Function Key Values on page
481.

Return Values

When the user responds to your window prompt by entering text, selecting an item from a
menu, or pressing a function key, this response is the return value that fills in an amper
variable in your FOCEXEC.

There are two ways in which amper variables are most commonly used in FOCEXECs:

To collect values to plug into a FOCUS procedure such as a TABLE or GRAPH request so it
can run.

To test the value returned in a variable, and branch accordingly to a different part of the
FOCEXEC or to another FOCEXEC.

The return value collected can be a character string, a number, the name of a file, a procedure
name, or part of a FOCUS command.

A return value amper variable in the FOCEXEC has the same name as the window in which it is
collected; that is:

&windowname

For example, the return value collected by the window MAIN supplies a value for the variable
&MAIN.

In vertical menu and horizontal menu windows, you assign any return value to each item on
the menu. If the user selects that option, that return value is collected.

In text input windows, the return value is the text that the user types.

Integrating Windows and the FOCEXEC

478

In text display windows, you can assign one return value to the entire window. Unlike other
return values, a text display window return value is collected as soon as control passes to
the window, without the user selecting anything.

Return value display windows display return values collected from other types of windows.
These return values can be displayed one per line, or several together on a single line.
Although this type of window does not have a return value, each line has a corresponding
amper variable (&windownamexx, where xx is the line number).

For a multi-input window, the return value is the name of the input field on which the cursor
is positioned when you press Enter or a PF key.

In windows with the Multi-Select option, the return value is the number of items selected.

In file names, field names, and file contents windows, the return value is, respectively, the
file name, field name, or line of file contents that the user selects from the display.

Example: Return Value in a Menu-Driven Application

Assume that you have written a menu-driven application that enables a user to report from any
one of a list of files. You have created a series of windows for this application, one of which is
a file names window named FILE designed to collect a return value for &FILE. The window
displays a list of all the user's files that meet certain file-identification criteria specified when
you created the window.

Your FOCEXEC contains these lines:

-START
-WINDOW EXAMPLE FILE
.
.
.
TABLE FILE &FILE

When the user moves the cursor to SALES and presses ENTER, SALES is collected to be
substituted for &FILE in the FOCEXEC:

TABLE FILE SALES

Goto Values

When creating your windows, you also assign goto values telling the Window facility which
window to display next. These values allow you to move the user through a series of windows,
collecting return values for amper variables, without adding lines to your FOCEXEC.

In vertical menu and horizontal menu windows, you assign a goto value for each menu item.

9. Designing Windows With Window Painter

Developing Applications 479

In all other windows, you assign a single goto value.

You can use an amper variable as a GOTO value.

As described in Transferring Control in Window Applications on page 476, if you assign no goto
value to a menu option or window, control passes back to the FOCEXEC when the user selects
that option or presses Enter at that window.

It is important not to confuse these goto values with the Dialogue Manager -GOTO command.
The goto value points your application to a new window in the window file; the -GOTO command
transfers control to a label in your FOCEXEC.

Returning From a Window to Its Caller

You can return from a window to its caller via the <ESCAPE> option. If you enter this string as
the goto value of a window, control returns to the previous window upon completion of the
current window, you must enter the right and left carets as part of the goto value.

Window System Variables

We have already discussed return values: these are specific to each window. Two other
Window facility variables, &WINDOWNAME and &WINDOWVALUE, are specific to the -WINDOW
session (not to each window) and receive values when the Window facility passes control from
a window file back to the FOCEXEC.

&WINDOWNAME

&WINDOWNAME is an amper variable containing the name of the last window that was
displayed before the Window facility transferred control back to the FOCEXEC.

This variable can be used in many ways. For example, if the goto values/function key prompts
in a window file allow a user to leave the window file from several different windows, you can
test &WINDOWNAME in the FOCEXEC to determine which window the user was in last (and,
therefore, which path the user navigated through the window file).

&WINDOWVALUE

&WINDOWVALUE is an amper variable containing the return value from the last window that
was displayed before the Window facility transferred control back to the FOCEXEC. If the user
selected a line for which no return value was set (for example, a blank line between two menu
options in a vertical menu window), then &WINDOWVALUE contains the line number of the line
that was selected.

Integrating Windows and the FOCEXEC

480

This variable can be used in many ways. For example, if the goto values/function key prompts
allow a user to leave the window file from several different windows, and you need to know the
return value of the last window the user was in before she or he left the file by pressing a
function key, you can test &WINDOWVALUE.

Testing Function Key Values

To test for function key values, you must specify the PFKEY option on the -WINDOW command
line. When the PFKEY option is set and a user presses a function key during window execution,
the name of that key is stored in the amper variable &PFKEY.

For example, if the user presses PF1, the 4-character value of &PFKEY is PF01. If PF2, the
value is PF02, and so forth. If the user presses Enter, the value is ENTR. The value of &PFKEY
is reset each time the user presses a function key.

Note that if the PFKEY option is specified, the Window facility's default PF key actions are
overridden by the general FOCUS PF key settings. This means that when you specify the PFKEY
option, if you still want the standard Window facility PF key actions to be available to window
users (for example, PF1 = HELP, PF3 = UNDO), you must use the SET command in your
application FOCEXEC, followed by a -RUN command, to explicitly set those actions.

For example, if you specify the PFKEY option but you want to retain all of the Window facility's
default PF key actions using the same PF keys, you need to include the following commands
before the -WINDOW command in your application FOCEXEC:

SET PF01=HELP
SET PF03=UNDO
SET PF04=TOP
SET PF05=BOTTOM
SET PF06=SORT
SET PF07=BACKWARD
SET PF08=FORWARD
SET PF09=SELECT
SET PF10=LEFT
SET PF11=RIGHT
SET PF12=UNDO
-RUN

When you specify the PFKEY option, any PF key which you want to test for in the application
FOCEXEC must be set to RETURN. (HX, CANCEL, and END also function as RETURN within the
Window facility, and can be used in place of it.)

For example, if you design your application so that a user can press PF2 to choose an
additional menu option, and therefore you want to test &PFKEY for the value PF02 in your
application FOCEXEC, then you must include the following SET command before the -WINDOW
command in your application FOCEXEC:

9. Designing Windows With Window Painter

Developing Applications 481

SET PF02=RETURN

The SET PF command is discussed in Customizing Your Environment, and in the Maintaining
Databases manual.

You can list the current general FOCUS PF key settings by issuing the ? PFKEY command.
The ? PFKEY command is discussed in Testing and Debugging With Query Commands.

The variable &PFKEY can be tested just like any other amper variable. Note that the name of
the variable is always &PFKEY; it is not linked to a window name like other amper variables
collected through windows.

You may test the PFKEY variable repeatedly throughout the FOCEXEC. Additional SET
commands are not required.

One of the advantages of using the &PFKEY variable is that it enables you to collect two return
values from a single menu. You might, for example, create a window called FILES, which
prompts the user to enter the name of a file, then press PF7 to produce a graph or PF8 to
produce a report. Both the file name as &FILES and the function key value as &PFKEY would
be collected as return values.

It is always important to remember that pressing a function key immediately returns control to
the FOCEXEC if that key was set to RETURN (or to HX, CANCEL, or END).

Note: If the cursor is on a menu that has a FOCEXEC associated with it, the FOCEXEC is
executed and the GOTO value associated with the menu choice is assumed. The PFKEY is
ignored.

In the example above, if the user presses a function key before typing the file name, the
&FILES variable is not collected. If the key was set to something other than RETURN, HX,
CANCEL, or END, then the action it was set to is invoked, and control remains within the
Window facility.

Executing a Window From the FOCUS Prompt

You can execute a window directly from the FOCUS command prompt.

Syntax: How to Execute a Window From the FOCUS Prompt

EX 'windowfile FMU' [windowname] [PFKEY|NOPFKEY] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

Integrating Windows and the FOCEXEC

482

where:

windowfile

Is the file containing the windows. It must have ddname FMU, and appear within single
quotation marks.

windowname

Identifies the first window to be executed. If a window name is not specified, FOCUS
executes the default start window, or the first window created.

PFKEY

Tells FOCUS you will test for function key values during execution.

NOPFKEY

Tells FOCUS you will not test for function key values during execution.

BLANK

Clears previously set amper variables when the window is called. This is the default
setting.

NOBLANK

Retains previously set amper variables.

CLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is cleared
when the EX command is encountered. The Terminal Operator Environment screen is
restored when the last window in the chain has been executed. This is the default setting.

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is not
cleared when the EX command is encountered, and any windows are displayed within the
Terminal Operator Environment screens.

For example, to execute the window MAIN in the window file REPORT, you could issue EX
'REPORT FMU' MAIN from the FOCUS command prompt, which is equivalent to issuing -
WINDOW REPORT MAIN from Dialogue Manager.

9. Designing Windows With Window Painter

Developing Applications 483

Tutorial: A Menu-Driven Application

This tutorial describes a menu-driven system that clerical personnel can use to produce sales
reports and graphs at your chain of retail stores. The system must fulfill three major
requirements:

Ease of use. Your system must let employees be productive without extensive training.

Functionality. The system has to work properly with only a few steps.

Appearance. There should be continuity between screens, and a general unity of design.
The reports and graphs produced must be attractive and easy to read.

The application prompts the user to select reporting or creating a graph.

Then, the user may opt to execute an existing FOCUS request or to create a new one. A user
who chooses to execute an existing request is shown an automatically generated list of
FOCEXECs from which to pick. A user who chooses to create a new request is placed in either
TableTalk or PlotTalk, depending on whether reporting or creating a graph was chosen in the
first step.

While the report or graph is being generated, a corresponding message is displayed on the
terminal screen. And, after the output is displayed, the user can choose to generate another
report or graph, or else to exit.

The following figure illustrates the logic of the application FOCEXEC.

-START
-WINDOW SAMPLE MAIN
-*
-*Control is transferred from the above command
-*to window MAIN in window file SAMPLE.
-*
-IF &MAIN ...
-*
-*Control returns to the above command
-*from option "Exit?" in window MAIN,
-*from option "New Request?" in window EXECTYPE,
-*and from every selection in window EXECNAME.
-*
.
.
.
-GOTO START
-EXIT

Tutorial: A Menu-Driven Application

484

Window If option selected is... Then go to:

MAIN Report? Graph?Exit? window EXECTYPEwindow
EXECTYPEback to FOCEXEC

EXECTYPE Existing Request?New Request? window EXECNAMEback to
FOCEXEC

EXECNAME The options in this window are a list
of report and graph requests from
which the user can select.

Control is transferred back to the
FOCEXEC.

Creating the Application FOCEXEC

A FOCEXEC called SAMPLE drives this application.

Begin by using the TED editor to create the FOCEXEC file SAMPLE. At the FOCUS prompt, type

TED SAMPLE

Type in the following FOCEXEC. Note that the numbers on the left refer to explanatory notes.
Do not type them in your FOCEXEC file, but read the notes as you go along. All commands that
begin with a hyphen, such as -WINDOW, are Dialogue Manager commands, and must begin in
the first column. Dialogue Manager is discussed in Managing Flow of Control in an Application
on page 207.

Notice that this application determines variable values in two ways: there are variables for
which values are collected by windows, and variables which are set within the FOCEXEC using
the -SET command.

9. Designing Windows With Window Painter

Developing Applications 485

-START
1. -WINDOW SAMPLE MAIN
2. -IF &MAIN EQ XXIT GOTO EXIT;
 -IF &MAIN EQ RPT GOTO GENERATE;
 -IF &MAIN EQ GRPH GOTO GENERATE;
 -GOTO START
 -***************** GENERATE ********************
3. -GENERATE
4. -IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
5. -RPTEX
6. EX &EXECNAME
7. -SET &FORMAT=IF &MAIN EQ RPT THEN REPORT
 -ELSE IF &MAIN EQ GRPH THEN GRAPH;
8. -TYPE GENERATING &FORMAT
9. -RUN
10. -GOTO START
11. -NEWRPT
12. -SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK
 -ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
13. &PROCNAME
14. -RUN
15. -GOTO START
 -********************** EXIT **********************
16. -EXIT

1. The -WINDOW command transfers control to the Window facility. SAMPLE is the name of
the window file this application uses and we will create it in this tutorial. MAIN is the
window where the procedure begins.

Control does not return to the next line of the FOCEXEC until a window is processed for
which no goto value has been assigned, in this case, EXECTYPE or EXECNAME.

2. The return value collected for &MAIN----collected from the window MAIN----is tested. The
FOCEXEC branches to a label depending on its value.

If the return value for &MAIN is RPT or GRPH, the FOCEXE branches to -GENERATE; if XXIT,
to -EXIT. Each return value corresponds to a selection on the menu window MAIN.

3. This label beings to GENERATE section of the FOCEXEC

4. The value collected for &EXECTYPE (from window EXECTYPE) is tested and the FOCEXEC
branches accordingly. Note that this value was collected from the window EXECTYPE while
the Window facility was in control, without a prompt from Dialogue Manager.

5. This label begins the RPTEX section of the FOCEXEC.

6. The FOCUS command that executes an existing report is stacked. The value of
&EXECNAME----the name of the existing report----was collected while the window file was in
control. The single quotation marks around &EXECNAME tell FOCUS to treat the value----
which may contain more than one word----as part of a single file identification.

7. The value of the variable &FORMAT is set according to the return value from the MAIN
window. If the value was RPT, &FORMAT is set to REPORT; if the value is GRPH, &FORMAT
is set to GRAPH.

Tutorial: A Menu-Driven Application

486

8. A message containing the value of &FORMAT is displayed for the user while the stacked
FOCUS request is executing.

9. -RUN executes the stacked command(s).

10.When the request output has been displayed, the FOCEXEC branches back to -START,
where the user can choose to exit or to create another report or graph. All amper variable
values collected in the previous round are cleared when the -WINDOW command is
encountered.

11.This label begins the section NEWRPT.

12.This command sets the value of &PROCNAME to TABLETALK if the value of &MAIN is RPT,
to PLOTTALK if the value is GRPH.

13.This line stacks the command TABLETALK or PLOTTALK.

14.-RUN executes the stacked command.

15.This commands returns to -START, as in note 10.

16.This command ends FOCEXEC execution.

Creating the Window File

The -WINDOW command SAMPLE FOCEXEC tells FOCUS to look for a window file named
SAMPLE and a window named MAIN. The complete list of windows used in this application is:

BORDER A text display window used as a background display for the other
windows.

BANNER A text display window that introduces the application.

MAIN A vertical menu from which the user can choose to create a graph or a
report, or exit the application.

EXECTYPE A vertical menu from which the user chooses to execute an existing
procedure or create a new one.

EXECNAME A file names window displaying all FOCEXEC files, from which the user
can select one to execute. This window is seen only if the user opts to
execute an existing report in EXECTYPE.

All these windows are included in the window file named SAMPLE. Start by building that
window file.

Before you can use Window Painter to create a window file, a PDS must be allocated with
ddname FMU, LRECL 4096, and RECFM F. BLKSIZE 4096 is recommended.

9. Designing Windows With Window Painter

Developing Applications 487

You can reach the FOCUS Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

The Entry Menu is the first screen you see:

Since you are creating a new window file, choose NEW FILE, and press Enter. The next screen
you see prompts you to name the window file.

Since the FOCEXEC looks for a window file named SAMPLE, type

SAMPLE

and press Enter.

A screen appears asking for a description of the window file.

Type

Sample file for Window Painter tutorial

Tutorial: A Menu-Driven Application

488

and press Enter.

Creating the Text Display Window Named BORDER

Now you are ready to create the first window. The Window Painter Main Menu screen appears.
Select

Create a new window

and press Enter.

9. Designing Windows With Window Painter

Developing Applications 489

The Window Creation Menu asks what kind of window you want to create.

The BORDER window is the first window you create for the application. BORDER supplies a
background border for other windows. It is a text display window, so select

Text display

and press Enter.

Next, you are asked to name the window. Type

BORDER

and press Enter.

Tutorial: A Menu-Driven Application

490

The Window Description Screen appears next. This description does not appear when the
window is displayed, but becomes part of the document file that Window Painter creates
describing all windows in the file. Since the document file is very useful when writing your
FOCEXEC, it is a good idea to enter a functional description here. To describe this window, type

This window borders all my screens.

and press Enter. The ability to annotate screens in this manner is very useful when selecting
windows to edit.

The Window Heading Screen comes next. Since you do not want a heading displayed on this
window, simply press Enter to bypass it.

The Window Design Screen displayed now is nearly blank, with a cursor for you to position
where you want the upper left-hand corner of BORDER to be. Leave the cursor where it is and
press Enter.

A small box appears around the cursor: this is the window. Make the window larger. Using the
arrow keys, move the cursor to the right edge of the screen, on the line just above the status
line: this is the new lower right corner of the window. Now press PF4 to resize the window. (PF4
functions as the SIZE key in the Window Design Screen.) The window has been resized so that
its lower right corner is where you positioned the cursor: the window now fills the entire screen.

When resizing a window, remember that the window's lower right corner refers to the lower
right corner of the window border, which is shown as a plus sign (+) on the screen. It is this
corner that you are moving when you resize the window. On the other hand, the last row of the
window refers to the last row that can contain data or text: this is the row immediately above
the bottom border.

This window's border forms the background border for the other windows in this application.

9. Designing Windows With Window Painter

Developing Applications 491

If you need help using the keyboard while in the Window Design Screen, press PF1 (the
Window Painter Help key) to see the following display:

Press Enter to continue.

Tutorial: A Menu-Driven Application

492

Now that the window is complete. Press PF3 and save the window.

Press Enter to select Save. You return to the Main Menu.

Creating the Text Display Window Named BANNER

BANNER is also a text display window, but is smaller than BORDER and contains text that
identifies this application.

From the Window Painter Main Menu, select

Create a new window

and press Enter. Select

Text Display

and press Enter. The name of this window is

BANNER

and its description is:

Banner for application MAIN menu.

Enter this name and description just as you did for the BORDER window. When prompted for a
heading, press Enter.

9. Designing Windows With Window Painter

Developing Applications 493

At the Window Design Screen, use the arrow keys to move the cursor two spaces to the right,
and press Enter. Now position the cursor 64 more spaces to the right and two rows down, and
press PF4 to resize the window.

Enter text to be displayed in the window. Reposition the cursor on the first line within the
window, 10 spaces to the right of the window's left border, and type:

The Milkmore Farms Weekly Reporting System

Type a line of asterisks (*) across the window's second line. (Begin at the second column
within the window, because the first column of every window is protected.)

Center the banner in the width of the screen. Estimate where the upper left corner of the
window would be if the window were centered. Position the cursor there, and then press PF9.
The window moves to its new location. Repeat the process if you need to center it more
precisely.

The window should look like this:

Press PF3 and save the window.

Tutorial: A Menu-Driven Application

494

Creating the Vertical Menu Window Named MAIN

You will now create the MAIN vertical menu window, which collects the amper variable &MAIN.
Select

Create a new window

and press Enter.

BORDER and BANNER are text display windows, from which no options may be selected. Since
MAIN, however, is a menu from which a selection must be made, choose

Menu (vertical)

and press Enter. Name the window:

MAIN

On the Description screen, type

User can report, graph, or exit.

and press Enter.

When prompted for a heading, type 10 spaces, then

Would you like to:

and press Enter.

On the Window Design Screen, move the cursor five rows from the top and 20 columns from
the left, and press Enter. The window is created wide enough to contain the heading. Now
position the cursor six rows below the window's bottom edge, and 10 columns to the right of
its right edge. Press PF4 and the window is resized.

9. Designing Windows With Window Painter

Developing Applications 495

Type the following menu options as they appear below:

You assign goto and return values for each menu option. To assign either value to an option,
the cursor must first be on that option.

Move your cursor back to

Create a report?

Tutorial: A Menu-Driven Application

496

and press PF2 to display the pop-up Window Options Menu.

Assigning a goto value tells the Window facility to display another window when this item is
selected during execution.

In the next window of this application, the user is prompted to either execute an existing report
or create a new one. The window that displays the prompt is called EXECTYPE, so the goto
value of the first two menu options is EXECTYPE.

Move the cursor to

Goto value

and press Enter.

In the space provided, type

EXECTYPE

9. Designing Windows With Window Painter

Developing Applications 497

and press Enter.

The return value collected by this window—&MAIN—is tested in the FOCEXEC:

-START
-WINDOW SAMPLE MAIN
-IF &MAIN EQ XXIT GOTOEXIT;
-IF &MAIN EQ RPT GOTO GENERATE;
-IF &MAIN EQ GRPH GOTO GENERATE;
.
.
.

Now move the cursor to

Return value

and press Enter.

Type the value

RPT

Tutorial: A Menu-Driven Application

498

as shown, and press Enter.

Exit the Window Options Menu by moving the cursor to

Exit this menu

and pressing Enter.

Set the values for:

Create a graph?

Move the cursor to the second menu item, and press PF2.

Repeat the steps you just performed, assigning the goto value

EXECTYPE

and the return value:

GRPH

Leave the Window Options menu and move the cursor to

EXIT?

For this option, you do not assign a goto value. Since it exits to the FOCEXEC, there is no other
window to be displayed.

Repeat the steps to assign the return value:

9. Designing Windows With Window Painter

Developing Applications 499

XXIT

With the Window Options Menu still on the screen, move the cursor to

Display list

and press Enter.

The display list may specify up to 16 windows to be displayed when this window is visible
during execution. Since you want BORDER and BANNER to be displayed with MAIN, you must
add each to the list.

Select:

Add to the list

A list of windows appears, from which you select by moving the cursor and pressing Enter. The
windows must be selected in the order in which they should appear, because they are overlaid
one on top of another when displayed. Select BORDER and BANNER for MAIN's display list,
being certain to select BORDER first so that it is displayed behind BANNER.

When you have finished, choose Quit to return to the Window Options Menu.

Quit the Window Options Menu and press PF3 to save MAIN.

Tutorial: A Menu-Driven Application

500

Before moving on, look at what you have done so far. Select

Run the window file

and press Enter.

Select

MAIN

as the starting screen. Press Enter, and the following appears:

Position the cursor on the "Create a report" line. When you press Enter to continue the display,
you see an error message because EXECTYPE—the goto value—has not been created yet.
Ignore it, and press Enter to continue. You see a screen displaying amper variables for this
window and the values. Press Enter to return to the Main Menu.

Creating the Vertical Menu Window Named EXECTYPE

So far you have created two text display windows and a vertical menu. The next window we
create is also a vertical menu.

Select

Create a new window

from the Main Menu, and choose

9. Designing Windows With Window Painter

Developing Applications 501

Menu (vertical)

from the Window Creation Menu. Enter

EXECTYPE

as the window name.

When prompted for a description, type

Create a new FOCEXEC or run existing one

and press Enter. When prompted for a heading, press Enter.

When the Window Design Screen appears, move the cursor 12 rows down the screen and 22
columns to the right, and press Enter. Now reposition the cursor four rows beneath the bottom
edge of the window and 32 columns to the right of the right edge of the window, and press PF4
to resize it.

Type the following two menu options as they appear below:

When you created the MAIN window, you used the Window Options Menu to set each return
value and goto value. There is an easier way to set return and goto values using the PF6 and
PF5 keys.

Pressing PF5 prompts you successively for a Return value, a GOTO value, and a FOCEXEC
name. When prompted for the Return value, enter EXIST and press PF5. You are prompted for
A GOTO value. Press Enter, and you are prompted for a FOCEXEC name. Press Enter.

Tutorial: A Menu-Driven Application

502

If you select

... using an existing request.

from the EXECTYPE menu, the file names window EXECNAME displays next. EXECNAME
contains a list of existing FOCEXEC files from which you may choose.

Move the cursor to the second menu item.

Consider the return and goto values for this option.

If you choose to create a new report or graph request, EXECNAME is not displayed. Rather,
control must pass back to the FOCEXEC, which executes these lines:

.

.

.
-IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
.
.
.
-NEWRPT
-SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK
ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
&PROCNAME
-RUN

For control to pass to the FOCEXEC if this option is chosen, do not assign a goto value to it.
Remember that during execution, control passes to the FOCEXEC when an option without a
goto value is selected.

The return value may be anything other than EXIST. For now, press PF6, and enter

NEXIST

Rather than create display and hide lists for EXECTYPE, make a pop-up window. A pop-up
window is displayed like any other window, but disappears when the user presses Enter.
EXECTYPE pops up in front of MAIN.

Press PF2 to display the Window Options Menu, move the cursor to

Popup(Off)

and press Enter. (Off) changes to (On).

Exit the Window Options Menu, press PF3, and save the window.

Creating the File Names Window Named EXECNAME

Your final window is the file names window that displays a list of existing FOCUS report
requests. On the Window Creation Menu, select:

9. Designing Windows With Window Painter

Developing Applications 503

File names

Name the window

EXECNAME

and type in the description:

Select an existing FOCEXEC from list.

Enter an explanatory heading:

Select the request you want to execute and press ENTER:

You are prompted for file-identification criteria. Type

* FOCEXEC

and press Enter.

When the application is executed, this selects all members of ddname FOCEXEC.

On the Window Design Screen, move the cursor two rows down and press Enter. Use PF9 to
center the window on the screen. Resize the window: reposition the cursor two columns to the
right of the window's right edge and 10 rows below the window's bottom edge, and press PF4.

Since only BORDER should be displayed with this window, add BANNER, MAIN, and EXECTYPE
to the hide list and add BORDER to the display list.

When the user selects a file name from this window during execution, that file name is
automatically collected as the return value. You cannot set the return value any other way for
this type of window.

In the FOCEXEC, that return value is plugged into the line

EX &EXECNAME

Tutorial: A Menu-Driven Application

504

and the report or graph request is executed.

In order for this to happen, you must return control to the FOCEXEC assigning no goto value to
this window.

To change the file identification criteria of a file names window (or of a field names or file
contents window) after it has been created, change the "return value." Although these two
window types cannot have actual return values set when the window is created or edited, the
"return value" that can be set is actually the window's file identification criteria. You can
change the file identification criteria just as you would change the actual return value of a
vertical menu window.

Exit from the Window Options Menu, press PF3, and save the window. The window file is
complete. Exit from Window Painter.

Executing the Application

To execute the SAMPLE FOCEXEC, at the FOCUS prompt, type

EX SAMPLE

and press Enter. When prompted to choose a new or existing FOCEXEC, select

... using a new request.

unless you have created one in an earlier FOCUS session. The application executes PlotTalk or
TableTalk. If you save the request you create, you can try the SAMPLE FOCEXEC again, and
execute the new request by selecting:

... using an existing request.

This completes the tutorial.

Window Painter Screens

The creation of windows is itself an automated window-driven process. There are six major
screens:

The Entry Menu

The Main Menu

The Window Creation Menu

The Window Design Screen

The Window Options Menu

9. Designing Windows With Window Painter

Developing Applications 505

The Utilities Menu

These screens assist you whenever you create or edit windows.

Invoking Window Painter

To invoke Window Painter, type the WINDOW PAINT command at the FOCUS prompt and press
Enter.

Syntax: How to Invoke Window Painter

WINDOW [PAINT [filename]]

where:

PAINT

Is optional.

filename

Is the name of the window file that you want to work with. This is a member name. The
member must belong to ddname FMU.

If you do not specify file name, you begin your Window Painter session at the Entry Menu
where you can choose a window file to use or create a new window file. If you do specify file
name, you skip the Entry Menu and begin your Window Painter session at the Main Menu
working with the window file you specified.

If the file name does not exist, you are asked if you want to create a new file. If not, the
Window Painter Entry Menu is displayed.

Entry Menu

You can reach the Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

Window Painter Screens

506

The Entry Menu is the first screen you see:

The Entry Menu invites you to choose a window file in which to work. If you are creating
windows for a new application, you should start a new window file. If you are maintaining or
creating windows for an existing application, use the window file that corresponds to your
application.

When you become comfortable working with windows, you can write FOCEXECs that include
branching between window files. Refer to Transferring Control in Window Applications on page
476 for a detailed discussion on branching and transferring control.

9. Designing Windows With Window Painter

Developing Applications 507

Main Menu

Once you have selected a window file from the Entry Menu, or entered the WINDOW PAINT
command with the file name option, the Main Menu appears:

The following table summarizes the options on the Main Menu, along with illustrations of
screens that appear when you select the options:

Menu Option Description

Create a new
window

Brings up the Window Creation Menu. You can select the type of
window to create.

Window Painter Screens

508

Menu Option Description

Edit an existing
window

Brings up a list of windows in your current window file. You can
select the one to edit.

Menu Option Description

Delete an existing
window

Brings up a list of windows in your current window file. You can select
the one to delete.

9. Designing Windows With Window Painter

Developing Applications 509

Menu Option Description

Run the window
file

Brings up a list of windows in your current window file. You can
select the one from which to start running the window file.

After the window file is run, the windows' amper variable values are
displayed. The display includes the first 20 characters of each value.

This option shows you how your windows work without executing the
FOCEXEC. Use this option to test your window file.

Switch Window
files

Returns you to the Window Painter Entry Menu, from which you can
select another window file. The previous window file is saved
whenever you switch window files.

Utilities Brings up the Utilities Menu, which is discussed in Utilities Menu on
page 527.

End Returns you to native FOCUS. All work saved during the Window
Painter session is kept.

Quit without saving Returns you to native FOCUS. All work saved during the Window
Painter session is discarded.

Window Creation Menu

You can reach the Window Creation Menu by selecting

Create a New Window

Window Painter Screens

510

from the Main Menu. The following screen appears:

You need to select the type of window to create. You are asked to enter an 8-character name
and an optional 40-character description. These are for your use only and do not appear in the
window during execution.

For a vertical menu, horizontal menu, text input, text display, file names, field names, file
contents, multi-input, or return value display window, you are prompted to supply a 60-
character heading.

For a text input window, you are prompted to choose the format of the text entry field
(alphanumeric, with all text translated to uppercase; alphanumeric, with no case translation; or
numeric). Later, in the Window Design Screen, you can make the length of the text entry field
shorter than the window's header length by typing a single character in the window immediately
following the last desired field position, or by typing characters continuously from the first field
position to the last desired field position.

For a file names, field names, or file contents window, you are prompted to produce file-
identification criteria that can consist of an amper variable, a complete file identification, or
(for file names windows) a file specification which includes an asterisk (for example, *
MASTER).

The asterisk is used as a wildcard character indicating that any character or sequence of
characters can occupy that position. The asterisk can be used as the member name but not in
the ddname.

If an amper variable is used, you can prompt for the file identification criteria at run time.

File-identification criteria must specify the member name first and the ddname second.

9. Designing Windows With Window Painter

Developing Applications 511

If you are creating a field names window, your file-identification criterion is the name of a
Master File.

In addition, you can create execution windows containing FOCUS commands such as Dialogue
Manager commands or TABLE requests. You are prompted for the window name and heading.
Once a window has been specified, the Window Design screen opens.

For complete information about the types of windows you can create in Window Painter, see
Types of Windows You Can Create on page 458.

The next screen displayed is the Window Design Screen, discussed in the next section. This
screen enables you to enter information, and position and size your window.

Window Design Screen

In this screen you design the appearance and functionality of your windows. It appears during
the window creation process, when you press Enter after typing the heading of your window.

The Window Design Screen consists of a blank screen, a cursor, and text asking you to move
the cursor to the starting position for the window. This starting position becomes the upper left
corner of the window. Use the cursor arrow keys to move the cursor to the place where you
want the upper left corner of the window to be, and press Enter.

Window Painter Screens

512

The window appears with its heading at the top. You can enlarge it, type text in it, and move it
around the screen.

The Window Design Screen allows you to use the keyboard to manipulate the window you are
creating.

The following chart summarizes Window Design Screen key functions in all window types.

PF Key Function

PF1 Displays a window of help information.

PF2 Displays the Window Options menu. This menu is discussed in Window
Options Menu on page 515.

PF3 Displays the exit menu. You can select:

Exiting from the Window Design Screen while saving your work.

Quitting from the Screen without saving your work.

Continuing your work.

9. Designing Windows With Window Painter

Developing Applications 513

PF Key Function

PF4 Resizes the window. First move the cursor to the desired position of the
window's lower right corner. When you press PF4, the window's upper left
corner remains in the same position; the window's lower right corner
moves to the current cursor position.

If the window size is reduced, nothing in the window is deleted; all window
contents beyond the window border can be seen by scrolling the window.

PF5 Gets the Return value, the GOTO value, and the FOCEXEC name for the
active window.

PF6 Sets the return value of the line that the cursor is on.

PF7 Scrolls the window up if the window contents extend beyond the top
border.

PF8 Scrolls the window down if the window contents extend beyond the bottom
border.

PF9 Moves the window. First move the cursor to the desired position of the
window's upper left corner. When you press PF9, the window's upper left
corner (the + in the border) moves to the current cursor position. The rest
of the window moves accordingly.

PF10 Deletes the line of window contents identified by the current cursor
position. If the window contents do not extend beyond the window borders,
the window itself is reduced by one line.

PF11 Adds one line of window contents beneath the line identified by the current
cursor position. If the window contents do not extend beyond the window
borders, the window itself increases by one line.

PF12 Provides the same function as the PF3 key.

PF13 - PF24 These keys provide the same functions as the corresponding keys PF1 -
PF12.

If a window's contents extend beyond a top or bottom border, then the message

(MORE)

Window Painter Screens

514

is displayed on that border to remind you of more lines of contents hidden beyond that border.
You can view these lines by scrolling toward the border. When the window is used in an
application, the user can also scroll the window to see all of the contents.

The display line at the bottom of the Window Design Screen shows instructions or information.
When you first see the Window Design Screen, the display line tells you to move the cursor
and press Enter. The display line shows the name of the window file, and the name and type of
window being created; it also tells which keys to press for the HELP function, the SIZE
function, and the Window Options Menu.

Window Options Menu

When the Window Design Screen is displayed, pressing PF2 brings up the following Window
Options Menu:

The following table summarizes the options on this menu, along with illustrations of screens
that appear when you select some of the options:

9. Designing Windows With Window Painter

Developing Applications 515

Menu Option Description

Goto value Selecting this option allows you to specify the next window in the
path from this selection field or window. You are asked to supply
the name of the window. (It does not matter whether or not this
window exists. You can create it later, but remember the name
chosen.)

In menu windows, goto values are assigned to each menu item. In
other windows, there is a single goto value for the entire window.

To assign a goto value, your cursor must be on the proper line
when the Window Options Menu is brought up. Select Goto value
from the Window Options Menu. You are prompted to enter the
name of the window that is the target of the goto. Type the name
in the space provided and press Enter again. The goto value is
assigned.

Window Painter Screens

516

Menu Option Description

Return value The return value supplies a value for an amper variable. If the
user selects this field during execution, the return value you have
assigned is plugged into the amper variable in your FOCEXEC.
Return values are assigned to each menu item in menu windows,
and one per window for other window types. The only exceptions
are the multi-input window, where the return value is the name of
the input field occupied by the cursor when you pressed Enter or
a PF key, and the return value display window, which does not
have a return value but instead displays other windows' return
values. The return value for a Multi-Select window is the number
of selections.

To assign a return value, your cursor must be on the proper line.
Select Return value from the Window Options Menu and you are
prompted to enter a return value. Note that for file names, field
names, and file contents windows, the value that you enter is the
file-identification criterion for that window. Type the value in the
space provided and press Enter again to assign the return value .

9. Designing Windows With Window Painter

Developing Applications 517

Menu Option Description

FOCEXEC name Attaches a FOCEXEC to each menu selection of the window. The
FOCEXEC is executed when the menu item is selected.

Heading Changes the heading of any window you are working on. You can
also add or remove a heading.

Description Changes the description of any window you are working on.

Show a window Used only during window editing, brings another window onto the
screen for reference. You cannot edit the second window.

Unshow a window Removes the shown window from the display.

Window Painter Screens

518

Menu Option Description

Display list Enables you to specify a list of up to 16 windows that
are visible when this window is displayed during
execution. Note that if part of a window on the display
list extends beyond the window border or does not fit
on the screen, it cannot be scrolled.

As many as 16 windows can be displayed on the screen
at one time. This applies to all windows on the screen
(that is, a window displayed during execution, windows
displayed when executed previously and not hidden
afterward, and windows displayed because specified on
a display list). The window facility interprets each
window heading as a separate window: if all of the
windows have headings, 16 can be displayed on the
screen at one time.

9. Designing Windows With Window Painter

Developing Applications 519

Menu Option Description

Hide list Allows you to specify windows that does not appear when this
window is displayed during execution. You can specify up to 16
specific windows or all windows in the window file. If you select
"All", all the windows are hidden except those in the display list.
If you do not hide a window that was displayed, it remains on the
screen until another window that includes it on a hide list is
displayed during execution.

Menu Option Description

Popup (Off/On) Makes the window disappear when the user presses Enter during
execution. Defaults to OFF, which leaves the window on screen. Set
Popup to OFF with text display windows as they do not work even if
set to ON.

Window Painter Screens

520

Menu Option Description

Help window Allows you display information about a window or a menu item when
a user presses PF1 (the Window facility HELP key) during execution.
The information displayed is text within a specified Help window.

Note that if the PFKEY option is specified in the -WINDOW command,
you have to explicitly set a PF key as the HELP key, as described in
Testing Function Key Values on page 481.

When selecting the Help window option, you are asked to supply the
name of the Help window file that contains the Help window. Next,
you are asked to supply the name of the Help window itself. The
Help window can be an existing window, or one that you created.

If the Help window displays field names, it qualifies duplicates with
the segment name.

You can use any window type for a Help window. A text display
window is easiest, except when supplying different help information
for each item in a vertical menu, horizontal menu (that is, item-
specific help).

To assign item-specific help, use a file contents window that displays
a file containing text in the following format

=>HELPFILE
=> menu item
this is the Help message you want the user to see.

where:

=>

Is entered with an equal sign (=) and a greater-than sign (>).

HELPFILE

Must be uppercase.

menu item

Is the exact text of the menu item. Any blank spaces that
precede this text in the menu must also precede this text here in
the Help file. Note that at least one blank space always
precedes the menu item text in a vertical menu, horizontal
menu, or multi-input window.

9. Designing Windows With Window Painter

Developing Applications 521

Menu Option Description

Help window
(continued)

For example, if the first three lines of a vertical menu are

(1) Generate a sales report
(2) Generate a stock report

and there are three blank spaces between the left border of the
window and the beginning of the text, the file containing help text
could look like this:

=>HELPFILE
=> (1) Generate a sales report
This option displays a list of existing sales report
requests, and lets you select one of these requests
to execute.
=> (2) Generate a stock report
This option displays a list of existing stock report
requests, and lets you select one of these requests
to execute.

The lines immediately following the menu item text are displayed
when the user positions the cursor on the menu item and presses
PF1.
In some cases you may assign topic-specific help, but want the help
text for some of the topics to be contained in a separate file. In this
case, on the line following the menu item text, replace the help
message with the file identification of the file containing that menu
item's help message.
Use this file-identification format:

FILENAME= membername ddname

Window Painter Screens

522

Menu Option Description

Help window
(continued)

To assign one set of instructions that can be used for multiple menu
items, use the following syntax:

=>DEFAULT
This text appears when you have not written
topic-specific help.

The DEFAULT text must be the last section in the Help file.
Lines beginning with an asterisk (*) are comment lines that are not
displayed.
What follows is an example of a topic-specific Help file for the Main
Menu used in the tutorial.

=>HELPFILE
*Help file for tutorial/Main Menu
=> Create a report?
Choose this option if you wish to create a new report.
=> Create a graph?Select this option if you wish to
create pie charts, bar charts or other graphics.
=> Exit?
If you wish to leave the application, choose this
option.

9. Designing Windows With Window Painter

Developing Applications 523

Menu Option Description

Line-break Formats the contents of the return value display window. This option
is set when designing the windows from which you collect the return
value(s) to be displayed.

When you select this option, you see:

None
New line before value
New line after value
Both

where:

None

Places return value directly after preceding value. If there is not
enough room on this line, return value is placed on the next line.

New line before value

Places return value on the next line.

New line after value

Places return value on the same line as preceding value. Places
next return value on next line.

Both

Places return value on a line by itself.

Window Painter Screens

524

Menu Option Description

Multi-Select Enables you to select multiple items from one window. The number
of items you select is collected as the return value from that window;
each selected item's return value is stored in a temporary file in
memory. You can later retrieve these stored values for use in a
FOCEXEC. Values for up to 8 windows can be stored at one time.

When you select this option, you see:

-Select Multi(On)

During execution, the user selects individual values by pressing PF9.
After all selections have been made, the user presses Enter.
Note that when the -WINDOW command is issued with the PFKEY
option, the PF9 key cannot be used to make selections unless a SET
command is issued before the -WINDOW command. For example:

SET PF09=SELECT

You can also set a different PF key for selecting multiple items.
A Multi-Select window can have no more than one goto value.
Although in a vertical menu window you can assign a different goto
value to each menu item, only the value assigned to the first item is
effective.
The return value collected for a window using the Multi-Select option
is the number of values selected by the user.
To retrieve the individual values, issue a special WINDOW call, as
follows

-WINDOW windowfile windowname GETHOLD

where:

windowfile

Is the name of the window file.

windowname

Is the name of the Multi-Select window.

GETHOLD

Is the special parameter that retrieves one value at a time from
the temporary file.

9. Designing Windows With Window Painter

Developing Applications 525

Menu Option Description

Multi-Select
(continued)

The value is assigned to the variable &windowname.

The GETHOLD option requires at least two -WINDOW commands in
your FOCEXEC. The first -WINDOW command (without the GETHOLD
option) transfers control to the Window facility where a Multi-Select
window is used. The second and subsequent -WINDOW commands
use the GETHOLD option to retrieve the stored amper variables
collected in a particular Multi-Select window.

For each value to be retrieved, you need a -WINDOW command with
the GETHOLD option. Each value is stored in &windowname. To use
this value, assign it to another variable. For example, if the return
value has the value 4, issue the special -WINDOW command four
times; each time you would collect the value from &windowname.
Alternatively, you could perform a loop.

Note that -WINDOW with the GETHOLD option does not transfer
control from the FOCEXEC to the Window facility.

Quit Returns you to the Window Painter Entry Menu.

Input fields Input fields pertain to Multi Input Windows. Selecting the field takes
you to that field.

Menu text Specifies a line of descriptive text, up to 60 characters long, for
items on a horizontal menu. Use the Text line option to position the
text.

Text line (x+1) On a horizontal menu, positions descriptive text one or two lines
above or below the menu. Valid values are x+1 or x+2 to place the
text above the horizontal menu, x-1 or x-2 to place the text below the
horizontal menu. Use the Menu text option to define the descriptive
text.

Window Painter Screens

526

Menu Option Description

Pulldown (off/on) If the setting is ON, placing the cursor on an item in a horizontal
menu can display an associated pull-down menu. The default setting
is OFF. Turn the setting ON by positioning the cursor on this option
and pressing Enter. The pull-down menu must be a vertical menu
and must be assigned as the goto value for the horizontal menu
item. Note that setting Pull-down ON automatically shuts off Menu
Text.

Switch window Enables you to work on and move between two windows. When you
select this option, you can create a new window or edit an existing
window without returning to the Main Menu.

Utilities Menu

If you select the Utilities option from the Window Painter Main Menu, the Utilities Menu is
displayed:

9. Designing Windows With Window Painter

Developing Applications 527

The following table summarizes the options on this menu, along with illustrations of screens
that appear when you select some of the options:

Window Painter Screens

528

Menu Option Description

Document the file When you select this utility, Window Painter creates
documentation of the window file. You can display the document
on the screen using TED or another system editor, or send it to a
printer or disk file.

This option creates a member of the TRF PDS; that PDS must
have already been allocated. However, creating a PDS is not
necessary if you are only going to use the documentation file
during the current FOCUS session: Window Painter temporarily
allocates the PDS.

This document contains detailed information about all the
windows in the window file. It shows you the kinds of windows,
the structure and format, and any options you have assigned from
the Window Options Menu, including return and goto values. The
text you enter when prompted for a window file description or
individual window description is part of this document. The
document is especially useful when creating a FOCEXEC, since it
provides return and goto values in addition to other information.

Note: If you create another file with the same name, the file is
not overwritten. It is appended.

9. Designing Windows With Window Painter

Developing Applications 529

Menu Option Description

Change the file
description

Changes the description of the current window.

Compress the file This utility is provided to help you save space in memory. It allows
space made available by deleted or edited windows to be reused.

Rename a window When you select this utility, you see a list of the windows in the
current window file. You can change the name of any of these
windows.

Copy a window This function copies a window from one window file to another, or
duplicates it within the same file.

The copy function is useful when you create a new application, or
need to add windows to an existing application, and want the
windows to look like those you have already created. You can copy
any window and edit it to conform to the new application.

Select the start
window

Enables you to choose a default start window. This window is the
first to be entered if a specific window is not selected upon startup.
If a default start window is not explicitly chosen, FOCUS selects the
first window created to be the start window.

Create a transfer
file

Creates a file to be transferred for use with the Window facility in
another FOCUS environment.

This option creates a member of the TRF PDS; that PDS must have
already been allocated.

Quit the utilities
menu

Returns you to the Main Menu.

Transferring Window Files

If you use FOCUS in more than one operating environment, you can transfer an existing window
file from one environment to be used in another environment. For example, if you have a fully-
developed window application in PC/FOCUS, and you want to develop a similar application in
mainframe FOCUS, you can transfer the PC/FOCUS window file to mainframe FOCUS.

Transferring Window Files

530

You can transfer a window file to a new environment in four simple steps:

1. Create a transfer file from the original window file using Window Painter.

2. Transfer the new file to the new environment using FTP.

3. Edit the transferred file in TED, if necessary.

4. Compile the transferred file using the WINDOW COMPILE command.

These steps are described in the following topics.

Creating a Transfer File

The window files that you design in Window Painter are compiled files; before a window file can
be transferred to another environment, a user-readable source code version must be created.
This user-readable file is called a transfer file, and is created using the transfer file option of
Window Painter.

This Window Painter option automatically creates a new member of the PDS allocated to
ddname TRF; the PDS must already have been allocated (with LRECL between 80 and 132
and RECFM FB). However, it is not necessary to create the PDS if you use the transfer file
during the current FOCUS session: Window Painter temporarily allocates the PDS.

For information about the transfer files created by FOCUS Window Painter in other operating
environments, see the appropriate FOCUS Users Manual for those environments.

To convert a window file to a transfer file, go to the Window Painter Utilities Menu and select:

Create a transfer file

You are prompted for the name of the new transfer file. Enter a member name; it can have the
same name as the window file, or an entirely new name.

Note that you should not give the transfer file a name already assigned to a window
documentation file. Also, you should not give the transfer file a name already assigned to an
existing transfer file unless you want to merge the two files. See the appropriate operating
environment topic in the Overview and Operating Environments manual for more information
about duplicate window transfer and window documentation file names.

You are asked to select which window(s) you want to transfer. Select

All

to transfer all of the windows in the current window file, or select any single window in the file.
This is the last step in creating a transfer file.

9. Designing Windows With Window Painter

Developing Applications 531

Note that you can merge transfer files: if a transfer file already exists for your window file, and
you only need to add a new window to it, you can give the new transfer file the same name as
the old one, and select the new window. Window Painter merges the source code for the new
window into the existing file, so that you have a single complete transfer file.

Transferring the File to the New Environment

Once the transfer file exists, it can be transferred to the new environment using FTP.

Editing the Transfer File

Window facility features introduced in one FOCUS release may not be fully supported in earlier
releases. Because different operating environments may be running different releases of
FOCUS, the transfer file created by the FOCUS Window facility in one environment may contain
features not fully supported by the Window facility in another environment.

If your transfer file contains Window facility features not fully supported in the new
environment, you may need to remove or fine-tune those features. If the new environment
supports features are not supported in the original environment, you can add those features to
the transfer file. Adding, removing, and fine-tuning features can be done by simply editing the
transfer file.

The Format of the Transfer File

The transfer file is a user-readable source code listing of all of the windows and features that
were included from the original window file. You can remove or fine-tune an unsupported
feature by simply editing or deleting the appropriate line in the transfer file. You can
accomplish this by using TED or any other editor.

Each transfer file contains:

One set of window file attributes describing the file.

For each window defined in the file, one set of window attributes describing that window.

For each line in each window, one set of attributes describing that line.

If any attribute is not specified in the transfer file, it defaults to a value of zero or blank
(depending on whether the value is normally numeric or alphanumeric).

Transferring Window Files

532

Reference: Transfer File Syntax: Window File Attributes

Attribute Description

FILENAME The name of the original window file.

DESCRIPTION A comment field describing the file.

WINDOWNAME The name of the window.

TYPE The type of window:

1. Vertical menu

2. Text input window

3. Text display window

4. Horizontal menu

5. File names window

6. Field names window

7. File contents window

8. Return value display window

9. Execution window

10.Multi-input window

COMMENT A comment field describing the window.

TRANSLATE Type of input for text input windows (Type 2).

0 Allow mixed-case input.

1 Allow numeric input only.

2 Translate input to uppercase.

ROW The row number of the upper left corner of the window.

COLUMN The column number of the upper left corner of the window.

9. Designing Windows With Window Painter

Developing Applications 533

Attribute Description

HEIGHT The height of the window data (the number of lines of window data,
not the height of the actual window frame).

If there are more data lines than what fits in the window frame, use
the PF7 and PF8 keys to scroll the window.

TEXT LINE Position of menu text. Values are: +1, +2, -1, -2.

WIDTH The width of the window frame, not including the border.

INPUT FIELDS Fields for multi-input windows.

WINDOW The number of lines in the actual window frame (not the number of
lines of window data). This does not include borders.

POPUP Sets the pop-up feature.

0 This is not be a pop-up window.

1 This is a pop-up window.

Reference: Transfer File Syntax: Window Attributes

Attribute Description

BORDER Sets the window border.

0 There is no window border.

1 There is a window border.

2 There is a window border.

Options 1 and 2 both result in a basic window border.

HEADLEN Length of the window heading. If this value is 0, there is no heading.

Transferring Window Files

534

Attribute Description

RETURN Sets the line break feature for use with return value display windows.

0 Line break is not used.

1 New line before this return value.

2 New line after this return value.

3 New line before and after this value.

MULTI Sets the multi-select feature.

0 This is not a multi-select window.

1 This is a multi-select window.

HEADING The text of the window heading.

HELP The name of the help window for this window.

HELPFILE The name of the window file that contains the help window.

DISPLAY The name of a window to be displayed at the same time this one is
displayed. There can be up to 16 DISPLAY values for each window.
This attribute is optional.

HIDE The name of a window to be hidden when this one is displayed.
There can be up to 16 HIDE values for each window. This attribute is
optional.

Reference: Transfer File Syntax: Window Line Attributes

Attribute Description

DATA A line to be displayed in the window (for example, a menu choice in
a vertical menu Window, or a line of text in a text display window).
The data can include amper variables (including &windowname).

9. Designing Windows With Window Painter

Developing Applications 535

Attribute Description

GOTO The name of the window to go to if this line is selected by the user.
The value can be an amper variable (including &windowname). If the
value is blank, and this line is selected, Windows returns to Dialogue
Manager.

VALUE The return value supplied if this line is selected by the user. This
value is placed in the amper variable &windowname, where
windowname is the name of the window.

For file names windows (TYPE = 5), this is the file selection criteria
(including asterisks) of the file names to be displayed.

For field names windows (TYPE = 6), this is the name of the Master
File whose fields are displayed.

For file contents windows (TYPE = 7), this is the name of the file
whose contents are to be displayed.

Operating Environment Considerations

When you transfer a window file to a mainframe operating environment from a different
environment, differences in hardware and operating software may require that you make
changes to the file. These changes are discussed below.

Screen position. Windows should not begin in row 1 or in column 1. If you transfer a
window with these row or column positions, truncation occurs. Adjust the ROW and
COLUMN attributes if necessary.

Screen size. Windows should not have more than 22 rows or 77 columns. Windows that
extend beyond the end of the terminal screen is automatically truncated without any
warning message.

This is important to note if you are transferring a window file from an environment where
the screen size differs from that in the mainframe environment. Adjust the ROW and
COLUMN attributes if necessary.

Window Position. Column 1 of vertical menu, horizontal menu, multi-input and text display
windows cannot be used. Window text must begin to the right of column 1.

Function keys. Windows transferred from other environments may refer to function keys
not present in the mainframe environment. Change function key references if necessary.

Transferring Window Files

536

Blank lines. Blank line are acknowledged by Window Painter.

Colors and Border Types. The use of colored windows and background and multiple border
types is not supported.

File Naming Conventions. File naming conventions differ in different operating
environments. When transferring a file from some environments, the Window facility
automatically translates references to FOCEXECs, Master Files, and error files, as shown
below. You must change other file references yourself when you edit the transfer file.

PC or UNIX Extension Mainframe ddname

.FEX FOCEXEC

.MAS MASTER

.ERR ERRORS

Example: Sample Transfer File

To illustrate the transfer file format, part of the transfer file for the SAMPLE window file is
shown below (SAMPLE is described in the tutorial). The MAIN and EXECNAME windows from
the file are included in the example.

9. Designing Windows With Window Painter

Developing Applications 537

FILENAME=SAMPLE
DESCRIPTION='Sample file for windows tutorial'
WINDOWNAME=MAIN,TYPE=1
COMMENT='User can report, graph, or exit.'
ROW= 6,COLUMN=23,HEIGHT= 7,WIDTH=38,WINDOW= 7,POPUP= 0,BORDER=
2,HEADLEN=28
RETURN=0
MULTI=0
HEADING='Would you like to:'
DATA=' '
$
DATA=' Create a report?'
GOTO='EXECTYPE',VALUE='RPT '
$
DATA=' '
$
DATA=' Create a graph?'
GOTO='EXECTYPE',VALUE='GRPH'
$
DATA=' '
$
DATA=' Exit?'
GOTO=' ',VALUE='XXIT'
$
DATA=' '
$
DISPLAY=BORDER ,$
DISPLAY=BANNER ,$
WINDOWNAME=EXECNAME,TYPE=5
COMMENT='Select an existing FOCEXEC from list.'
ROW= 4,COLUMN=11,HEIGHT=11,WIDTH=57,WINDOW=11,POPUP= 0,BORDER=
2,HEADLEN=55,
RETURN=0
MULTI=0
HEADING='Select the request you want to execute and press ENTER:'
DATA=' '
GOTO=' ',VALUE='* FOCEXEC'
$
DISPLAY=BORDER,$
HIDE=BANNER,$
HIDE=MAIN,$
HIDE=EXECTYPE,$

Compiling the Transfer File

The transfer file can be executed in its current format, but it may execute slowly, and uses a
large amount of memory. You can make your window application more efficient, requiring less
time and memory for execution, by compiling it.

You can compile a transfer file using the WINDOW COMPILE command. This produces a new
compiled window file, in the same format as the window files produced by Window Painter.

Transferring Window Files

538

Note that before you can issue this command, a PDS with LRECL 4096 and RECFM F must
have already been allocated to ddname FMU. However, you do not need to create this PDS if
you are only going to use the transfer file during the current FOCUS session: Window Painter
temporarily allocates the PDS.

Syntax: How to Compile a Transfer File

WINDOW COMPILE windowfile

where:

windowfile

Is the name of the transfer file.

This must be a member name of a member of a PDS allocated to ddname TRF.

The command creates a new member of the PDS allocated to ddname FMU, with the same
member name specified in the command.

When a Dialogue Manager -WINDOW command is encountered in a FOCEXEC, FOCUS searches
for a compiled window file (an FMU file) with the specified file name. If the compiled file is not
found, the transfer file (TRF file) with the same file name is used.

Note that if you compile a transfer file and later make changes to it, you need to recompile the
updated transfer file: otherwise, FOCUS continues to use the older, unchanged compiled file.

9. Designing Windows With Window Painter

Developing Applications 539

Transferring Window Files

540

AppendixA
Master Files and Diagrams

This appendix contains descriptions and structure diagrams for the sample data sources
used throughout the documentation.

In this appendix:

EMPLOYEE Data Source

JOBFILE Data Source

EDUCFILE Data Source

SALES Data Source

PROD Data Source

CAR Data Source

LEDGER Data Source

FINANCE Data Source

REGION Data Source

COURSES Data Source

EMPDATA Data Source

EXPERSON Data Source

TRAINING Data Source

COURSE Data Source

JOBHIST Data Source

JOBLIST Data Source

LOCATOR Data Source

PERSINFO Data Source

SALHIST Data Source

PAYHIST File

COMASTER File

VIDEOTRK, MOVIES, and ITEMS Data
Sources

VIDEOTR2 Data Source

Gotham Grinds Data Sources

Century Corp Data Sources

EMPLOYEE Data Source

EMPLOYEE contains sample data about company employees. Its segments are:

EMPINFO

Contains employee IDs, names, and positions.

Developing Applications 541

FUNDTRAN

Specifies employee direct deposit accounts. This segment is unique.

PAYINFO

Contains the employee salary history.

ADDRESS

Contains employee home and bank addresses.

SALINFO

Contains data on employee monthly pay.

DEDUCT

Contains data on monthly pay deductions.

EMPLOYEE also contains cross-referenced segments belonging to the JOBFILE and EDUCFILE
files, also described in this appendix. The segments are:

JOBSEG (from JOBFILE)

Describes the job positions held by each employee.

SKILLSEG (from JOBFILE)

Lists the skills required by each position.

SECSEG (from JOBFILE)

Specifies the security clearance needed for each job position.

ATTNDSEG (from EDUCFILE)

Lists the dates that employees attended in-house courses.

EMPLOYEE Data Source

542

COURSEG (from EDUCFILE)

Lists the courses that the employees attended.

EMPLOYEE Master File

FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
 FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $
 FIELDNAME=CURR_SAL, ALIAS=CSAL, FORMAT=D12.2M, $
 FIELDNAME=CURR_JOBCODE, ALIAS=CJC, FORMAT=A3, $
 FIELDNAME=ED_HRS, ALIAS=OJT, FORMAT=F6.2, $
 SEGNAME=FUNDTRAN, SEGTYPE=U, PARENT=EMPINFO
 FIELDNAME=BANK_NAME, ALIAS=BN, FORMAT=A20, $
 FIELDNAME=BANK_CODE, ALIAS=BC, FORMAT=I6S, $
 FIELDNAME=BANK_ACCT, ALIAS=BA, FORMAT=I9S, $
 FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $
 SEGNAME=PAYINFO, SEGTYPE=SH1, PARENT=EMPINFO
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
 FIELDNAME=PCT_INC, ALIAS=PI, FORMAT=F6.2, $
 FIELDNAME=SALARY, ALIAS=SAL, FORMAT=D12.2M, $
 FIELDNAME=JOBCODE, ALIAS=JBC, FORMAT=A3, $
 SEGNAME=ADDRESS, SEGTYPE=S1, PARENT=EMPINFO
 FIELDNAME=TYPE, ALIAS=AT, FORMAT=A4, $
 FIELDNAME=ADDRESS_LN1, ALIAS=LN1, FORMAT=A20, $
 FIELDNAME=ADDRESS_LN2, ALIAS=LN2, FORMAT=A20, $
 FIELDNAME=ADDRESS_LN3, ALIAS=LN3, FORMAT=A20, $
 FIELDNAME=ACCTNUMBER, ALIAS=ANO, FORMAT=I9L, $
 SEGNAME=SALINFO, SEGTYPE=SH1, PARENT=EMPINFO
 FIELDNAME=PAY_DATE, ALIAS=PD, FORMAT=I6YMD, $
 FIELDNAME=GROSS, ALIAS=MO_PAY, FORMAT=D12.2M, $
 SEGNAME=DEDUCT, SEGTYPE=S1, PARENT=SALINFO
 FIELDNAME=DED_CODE, ALIAS=DC, FORMAT=A4, $
 FIELDNAME=DED_AMT, ALIAS=DA, FORMAT=D12.2M, $
 SEGNAME=JOBSEG, SEGTYPE=KU, PARENT=PAYINFO, CRFILE=JOBFILE,
 CRKEY=JOBCODE,$
 SEGNAME=SECSEG, SEGTYPE=KLU, PARENT=JOBSEG, CRFILE=JOBFILE, $
 SEGNAME=SKILLSEG, SEGTYPE=KL, PARENT=JOBSEG, CRFILE=JOBFILE, $
 SEGNAME=ATTNDSEG, SEGTYPE=KM, PARENT=EMPINFO, CRFILE=EDUCFILE,
 CRKEY=EMP_ID,$
 SEGNAME=COURSEG, SEGTYPE=KLU, PARENT=ATTNDSEG, CRFILE=EDUCFILE,$

A. Master Files and Diagrams

Developing Applications 543

EMPLOYEE Structure Diagram

The EMPLOYEE structure follows:

JOBFILE Data Source

JOBFILE contains sample data about company job positions. Its segments are:

JOBSEG

Describes what each position is. The field JOBCODE in this segment is indexed.

JOBFILE Data Source

544

SKILLSEG

Lists the skills required by each position.

SECSEG

Specifies the security clearance needed, if any. This segment is unique.

JOBFILE Master File

FILENAME=JOBFILE, SUFFIX=FOC
 SEGNAME=JOBSEG, SEGTYPE=S1
 FIELDNAME=JOBCODE, ALIAS=JC, FORMAT=A3, INDEX=I,$
 FIELDNAME=JOB_DESC, ALIAS=JD, FORMAT=A25 ,$
 SEGNAME=SKILLSEG, SEGTYPE=S1, PARENT=JOBSEG
 FIELDNAME=SKILLS, ALIAS=, FORMAT=A4 ,$
 FIELDNAME=SKILL_DESC, ALIAS=SD, FORMAT=A30 ,$
 SEGNAME=SECSEG, SEGTYPE=U, PARENT=JOBSEG
 FIELDNAME=SEC_CLEAR, ALIAS=SC, FORMAT=A6 ,$

JOBFILE Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE JOBFILE ON 05/15/03 AT 14.40.06

 JOBSEG
 01 S1

 *JOBCODE **I
 *JOB_DESC **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SECSEG I SKILLSEG
 02 I U 03 I S1
 ************** *************
 *SEC_CLEAR * *SKILLS **
 * * *SKILL_DESC **
 * * * **
 * * * **
 * * * **
 ************** **************

A. Master Files and Diagrams

Developing Applications 545

EDUCFILE Data Source

EDUCFILE contains sample data about company in-house courses. Its segments are:

COURSEG

Contains data on each course.

ATTNDSEG

Specifies which employees attended the courses. Both fields in the segment are key
fields. The field EMP_ID in this segment is indexed.

EDUCFILE Master File

FILENAME=EDUCFILE, SUFFIX=FOC
 SEGNAME=COURSEG, SEGTYPE=S1
 FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, $
 FIELDNAME=COURSE_NAME, ALIAS=CD, FORMAT=A30, $
 SEGNAME=ATTNDSEG, SEGTYPE=SH2, PARENT=COURSEG
 FIELDNAME=DATE_ATTEND, ALIAS=DA, FORMAT=I6YMD, $
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, INDEX=I, $

EDUCFILE Data Source

546

EDUCFILE Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE EDUCFILE ON 05/15/03 AT 14.45.44

 COURSEG
 01 S1

 *COURSE_CODE **
 *COURSE_NAME **
 * **
 * **
 * **

 I
 I
 I
 I ATTNDSEG
 02 I SH2

 *DATE_ATTEND **
 *EMP_ID **I
 * **
 * **
 * **

SALES Data Source

SALES contains sample data about a dairy company with an affiliated store chain. Its
segments are:

STOR_SEG

Lists the stores buying the products.

DAT_SEG

Contains the dates of inventory.

PRODUCT

Contains sales data for each product on each date. The PROD_CODE field is indexed. The
RETURNS and DAMAGED fields have the MISSING=ON attribute.

A. Master Files and Diagrams

Developing Applications 547

SALES Master File

FILENAME=KSALES, SUFFIX=FOC
 SEGNAME=STOR_SEG, SEGTYPE=S1
 FIELDNAME=STORE_CODE, ALIAS=SNO, FORMAT=A3, $
 FIELDNAME=CITY, ALIAS=CTY, FORMAT=A15, $
 FIELDNAME=AREA, ALIAS=LOC, FORMAT=A1, $
 SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=SH1,
 FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, $
 SEGNAME=PRODUCT, PARENT=DATE_SEG, SEGTYPE=S1,
 FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I,$
 FIELDNAME=UNIT_SOLD, ALIAS=SOLD, FORMAT=I5, $
 FIELDNAME=RETAIL_PRICE,ALIAS=RP, FORMAT=D5.2M,$
 FIELDNAME=DELIVER_AMT, ALIAS=SHIP, FORMAT=I5, $
 FIELDNAME=OPENING_AMT, ALIAS=INV, FORMAT=I5, $
 FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I3, MISSING=ON,$
 FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=I3, MISSING=ON,$

SALES Data Source

548

SALES Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE SALES ON 05/15/03 AT 14.50.28

 STOR_SEG
 01 S1

 *STORE_CODE **
 *CITY **
 *AREA **
 * **
 * **

 I
 I
 I
 I DATE_SEG
 02 I SH1

 *DATE **
 * **
 * **
 * **
 * **

 I
 I
 I
 I PRODUCT
 03 I S1

 *PROD_CODE **I
 *UNIT_SOLD **
 *RETAIL_PRICE**
 *DELIVER_AMT **
 * **

PROD Data Source

The PROD data source lists products sold by a dairy company. It consists of one segment,
PRODUCT. The field PROD_CODE is indexed.

A. Master Files and Diagrams

Developing Applications 549

PROD Master File

FILE=KPROD, SUFFIX=FOC
 SEGMENT=PRODUCT, SEGTYPE=S1,
 FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I, $
 FIELDNAME=PROD_NAME, ALIAS=ITEM, FORMAT=A15, $
 FIELDNAME=PACKAGE, ALIAS=SIZE, FORMAT=A12, $
 FIELDNAME=UNIT_COST, ALIAS=COST, FORMAT=D5.2M, $

PROD Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE PROD ON 05/15/03 AT 14.57.38
 PRODUCT
01 S1

*PROD_CODE **I
*PROD_NAME **
*PACKAGE **
*UNIT_COST **
* **

CAR Data Source

CAR contains sample data about specifications and sales information for rare cars. Its
segments are:

ORIGIN

Lists the country that manufactures the car. The field COUNTRY is indexed.

COMP

Contains the car name.

CARREC

Contains the car model.

BODY

Lists the body type, seats, dealer and retail costs, and units sold.

CAR Data Source

550

SPECS

Lists car specifications. This segment is unique.

WARANT

Lists the type of warranty.

EQUIP

Lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

CAR Master File

FILENAME=CAR,SUFFIX=FOC
 SEGNAME=ORIGIN,SEGTYPE=S1
 FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
 SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
 FIELDNAME=CAR,CARS,A16,$
 SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=MODEL,MODEL,A24,$
 SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC
 FIELDNAME=BODYTYPE,TYPE,A12,$
 FIELDNAME=SEATS,SEAT,I3,$
 FIELDNAME=DEALER_COST,DCOST,D7,$
 FIELDNAME=RETAIL_COST,RCOST,D7,$
 FIELDNAME=SALES,UNITS,I6,$
 SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
 FIELDNAME=LENGTH,LEN,D5,$
 FIELDNAME=WIDTH,WIDTH,D5,$
 FIELDNAME=HEIGHT,HEIGHT,D5,$
 FIELDNAME=WEIGHT,WEIGHT,D6,$
 FIELDNAME=WHEELBASE,BASE,D6.1,$
 FIELDNAME=FUEL_CAP,FUEL,D6.1,$
 FIELDNAME=BHP,POWER,D6,$
 FIELDNAME=RPM,RPM,I5,$
 FIELDNAME=MPG,MILES,D6,$
 FIELDNAME=ACCEL,SECONDS,D6,$
 SEGNAME=WARANT,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=WARRANTY,WARR,A40,$
 SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=STANDARD,EQUIP,A40,$

A. Master Files and Diagrams

Developing Applications 551

CAR Structure Diagram

LEDGER Data Source

LEDGER contains sample accounting data. It consists of one segment, TOP. This data source
is specified primarily for FML examples. Aliases do not exist for the fields in this Master File,
and the commas act as placeholders.

LEDGER Data Source

552

LEDGER Master File

FILENAME=LEDGER, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S2,$
 FIELDNAME=YEAR , , FORMAT=A4, $
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=AMOUNT , , FORMAT=I5C,$

LEDGER Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE LEDGER ON 05/15/03 AT 15.17.08

 TOP
 01 S2

 *YEAR **
 *ACCOUNT **
 *AMOUNT **
 * **
 * **

FINANCE Data Source

FINANCE contains sample financial data for balance sheets. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the fields in
this Master File, and the commas act as placeholders.

FINANCE Master File

FILENAME=FINANCE, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S2,$
 FIELDNAME=YEAR , , FORMAT=A4, $
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=AMOUNT , , FORMAT=D12C,$

A. Master Files and Diagrams

Developing Applications 553

FINANCE Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE FINANCE ON 05/15/03 AT 15.17.08

 TOP
 01 S2

 *YEAR **
 *ACCOUNT **
 *AMOUNT **
 * **
 * **

REGION Data Source

REGION contains sample account data for the eastern and western regions of the country. It
consists of one segment, TOP. This data source is specified primarily for FML examples.
Aliases do not exist for the fields in this Master File, and the commas act as placeholders.

REGION Master File

FILENAME=REGION, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S1,$
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=E_ACTUAL, , FORMAT=I5C,$
 FIELDNAME=E_BUDGET, , FORMAT=I5C,$
 FIELDNAME=W_ACTUAL, , FORMAT=I5C,$
 FIELDNAME=W_BUDGET, , FORMAT=I5C,$

REGION Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE REGION ON 05/15/03 AT 15.18.48

 TOP
 01 S1

 *ACCOUNT **
 *E_ACTUAL **
 *E_BUDGET **
 *W_ACTUAL **
 * **

REGION Data Source

554

COURSES Data Source

COURSES contains sample data about education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

COURSES Master File

FILENAME=COURSES, SUFFIX=FOC,$
 SEGNAME=CRSESEG1, SEGTYPE=S1, $
 FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, FIELDTYPE=I, $
 FIELDNAME=COURSE_NAME, ALIAS=CN, FORMAT=A30, $
 FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=I3, $
 FIELDNAME=DESCRIPTION, ALIAS=CDESC, FORMAT=TX50, $

COURSES Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE COURSES ON 05/15/03 AT 12.26.05

 CRSESEG1
 01 S1

*COURSE_CODE **I
*COURSE_NAME **
*DURATION **
*DESCRIPTION **T
* **

EMPDATA Data Source

EMPDATA contains sample data about company employees. It consists of one segment,
EMPDATA. The PIN field is indexed. The AREA field is a temporary field.

A. Master Files and Diagrams

Developing Applications 555

EMPDATA Master File

FILENAME=EMPDATA, SUFFIX=FOC
 SEGNAME=EMPDATA, SEGTYPE=S1
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=MIDINITIAL, ALIAS=MI, FORMAT=A1, $
 FIELDNAME=DIV, ALIAS=CDIV, FORMAT=A4, $
 FIELDNAME=DEPT, ALIAS=CDEPT, FORMAT=A20, $
 FIELDNAME=JOBCLASS, ALIAS=CJCLAS, FORMAT=A8, $
 FIELDNAME=TITLE, ALIAS=CFUNC, FORMAT=A20, $
 FIELDNAME=SALARY, ALIAS=CSAL, FORMAT=D12.2M, $
 FIELDNAME=HIREDATE, ALIAS=HDAT, FORMAT=YMD, $
$
DEFINE AREA/A13=DECODE DIV (NE 'NORTH EASTERN' SE 'SOUTH EASTERN'
CE 'CENTRAL' WE 'WESTERN' CORP 'CORPORATE' ELSE 'INVALID AREA');$

EMPDATA Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE EMPDATA ON 05/15/03 AT 14.49.09

 EMPDATA
 01 S1

 *PIN **I
 *LASTNAME **
 *FIRSTNAME **
 *MIDINITIAL **
 * **

EXPERSON Data Source

The EXPERSON data source contains personal data about individual employees. It consists of
one segment, ONESEG.

EXPERSON Data Source

556

EXPERSON Master File

FILE=EXPERSON ,SUFFIX=FOC
 SEGMENT=ONESEG, $
 FIELDNAME=SOC_SEC_NO ,ALIAS=SSN ,USAGE=A9 ,$
 FIELDNAME=FIRST_NAME ,ALIAS=FN ,USAGE=A9 ,$
 FIELDNAME=LAST_NAME ,ALIAS=LN ,USAGE=A10 ,$
 FIELDNAME=AGE ,ALIAS=YEARS ,USAGE=I2 ,$
 FIELDNAME=SEX ,ALIAS= ,USAGE=A1 ,$
 FIELDNAME=MARITAL_STAT ,ALIAS=MS ,USAGE=A1 ,$
 FIELDNAME=NO_DEP ,ALIAS=NDP ,USAGE=I3 ,$
 FIELDNAME=DEGREE ,ALIAS= ,USAGE=A3 ,$
 FIELDNAME=NO_CARS ,ALIAS=CARS ,USAGE=I3 ,$
 FIELDNAME=ADDRESS ,ALIAS= ,USAGE=A14 ,$
 FIELDNAME=CITY ,ALIAS= ,USAGE=A10 ,$
 FIELDNAME=WAGE ,ALIAS=PAY ,USAGE=D10.2SM ,$
 FIELDNAME=CATEGORY ,ALIAS=STATUS ,USAGE=A1 ,$
 FIELDNAME=SKILL_CODE ,ALIAS=SKILLS ,USAGE=A5 ,$
 FIELDNAME=DEPT_CODE ,ALIAS=WHERE ,USAGE=A4 ,$
 FIELDNAME=TEL_EXT ,ALIAS=EXT ,USAGE=I4 ,$
 FIELDNAME=DATE_EMP ,ALIAS=BASE_DATE ,USAGE=I6YMTD ,$
 FIELDNAME=MULTIPLIER ,ALIAS=RATIO ,USAGE=D5.3 ,$

EXPERSON Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE EXPERSON ON 05/15/03 AT 14.50.58

 ONESEG
 01 S1

 *SOC_SEC_NO **
 *FIRST_NAME **
 *LAST_NAME **
 *AGE **
 * **

TRAINING Data Source

TRAINING contains sample data about training courses for employees. It consists of one
segment, TRAINING. The PIN field is indexed. The EXPENSES, GRADE, and LOCATION fields
have the MISSING=ON attribute.

A. Master Files and Diagrams

Developing Applications 557

TRAINING Master File

FILENAME=TRAINING, SUFFIX=FOC
 SEGNAME=TRAINING, SEGTYPE=SH3
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=COURSESTART, ALIAS=CSTART, FORMAT=YMD, $
 FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, $
 FIELDNAME=EXPENSES, ALIAS=COST, FORMAT=D8.2, MISSING=ON $
 FIELDNAME=GRADE, ALIAS=GRA, FORMAT=A2, MISSING=ON, $
 FIELDNAME=LOCATION, ALIAS=LOC, FORMAT=A6, MISSING=ON, $

TRAINING Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE TRAINING ON 05/15/03 AT 14.51.28

 TRAINING
 01 SH3

 *PIN **I
 *COURSESTART **
 *COURSECODE **
 *EXPENSES **
 * **

COURSE Data Source

COURSE contains sample data about education courses. It consists of one segment,
CRSELIST.

COURSE Master File

FILENAME=COURSE, SUFFIX=FOC
 SEGNAME=CRSELIST, SEGTYPE=S1
 FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, INDEX=I, $
 FIELDNAME=CTITLE, ALIAS=COURSE, FORMAT=A35, $
 FIELDNAME=SOURCE, ALIAS=ORG, FORMAT=A35, $
 FIELDNAME=CLASSIF, ALIAS=CLASS, FORMAT=A10, $
 FIELDNAME=TUITION, ALIAS=FEE, FORMAT=D8.2, MISSING=ON, $
 FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=A3, MISSING=ON, $
 FIELDNAME=DESCRIPTN1, ALIAS=DESC1, FORMAT=A40, $
 FIELDNAME=DESCRIPTN2, ALIAS=DESC2, FORMAT=A40, $
 FIELDNAME=DESCRIPTN2, ALIAS=DESC3, FORMAT=A40, $

COURSE Data Source

558

COURSE Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE COURSE ON 05/15/03 AT 12.26.05

 CRSELIST
 01 S1

*COURSECODE **I
*CTITLE **
*SOURCE **
*CLASSIF **
* **

JOBHIST Data Source

JOBHIST contains information about employee jobs. Both the PIN and JOBSTART fields are
keys. The PIN field is indexed.

JOBHIST Master File

FILENAME=JOBHIST, SUFFIX=FOC
SEGNAME=JOBHIST, SEGTYPE=SH2
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I ,$
 FIELDNAME=JOBSTART, ALIAS=SDAT, FORMAT=YMD, $
 FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, $
 FIELDNAME=FUNCTITLE, ALIAS=FUNC, FORMAT=A20, $

JOBHIST Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE JOBHIST ON 01/22/08 AT 16.23.46
 JOBHIST
 01 SH2

 *PIN **I
 *JOBSTART **
 *JOBCLASS **
 *FUNCTITLE **
 * **

JOBLIST Data Source

JOBLIST contains information about jobs. The JOBCLASS field is indexed.

A. Master Files and Diagrams

Developing Applications 559

JOBLIST Master File

FILENAME=JOBLIST, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
 FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, INDEX=I ,$
 FIELDNAME=CATEGORY, ALIAS=JGROUP, FORMAT=A25, $
 FIELDNAME=JOBDESC, ALIAS=JDESC, FORMAT=A40, $
 FIELDNAME=LOWSAL, ALIAS=LSAL, FORMAT=D12.2M, $
 FIELDNAME=HIGHSAL, ALIAS=HSAL, FORMAT=D12.2M, $
DEFINE GRADE/A2=EDIT (JCLASS,'$$$99');$
DEFINE LEVEL/A25=DECODE GRADE (08 'GRADE 8' 09 'GRADE 9' 10
'GRADE 10' 11 'GRADE 11' 12 'GRADE 12' 13 'GRADE 13' 14 'GRADE 14');$

JOBLIST Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE JOBLIST ON 01/22/08 AT 16.24.52
 JOBSEG
 01 S1

 *JOBCLASS **I
 *CATEGORY **
 *JOBDESC **
 *LOWSAL **
 * **

LOCATOR Data Source

JOBHIST contains information about employee location and phone number. The PIN field is
indexed.

LOCATOR Master File

FILENAME=LOCATOR, SUFFIX=FOC
SEGNAME=LOCATOR, SEGTYPE=S1,
 FIELDNAME=PIN, ALIAS=ID_NO, FORMAT=A9, INDEX=I, $
 FIELDNAME=SITE, ALIAS=SITE, FORMAT=A25, $
 FIELDNAME=FLOOR, ALIAS=FL, FORMAT=A3, $
 FIELDNAME=ZONE, ALIAS=ZONE, FORMAT=A2, $
 FIELDNAME=BUS_PHONE, ALIAS=BTEL, FORMAT=A5, $

LOCATOR Data Source

560

LOCATOR Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE LOCATOR ON 01/22/08 AT 16.26.55
 LOCATOR
 01 S1

 *PIN **I
 *SITE **
 *FLOOR **
 *ZONE **
 * **

PERSINFO Data Source

PERSINFO contains employee personal information. The PIN field is indexed.

PERSINFO Master File

FILENAME=PERSINFO, SUFFIX=FOC
SEGNAME=PERSONAL, SEGTYPE=S1
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=INCAREOF, ALIAS=ICO, FORMAT=A35, $
 FIELDNAME=STREETNO, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=APT, ALIAS=APT, FORMAT=A4, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=POSTALCODE, ALIAS=ZIP, FORMAT=A10, $
 FIELDNAME=COUNTRY, ALIAS=CTRY, FORMAT=A15, $
 FIELDNAME=HOMEPHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=EMERGENCYNO, ALIAS=ENO, FORMAT=A10, $
 FIELDNAME=EMERGCONTACT, ALIAS=ENAME, FORMAT=A35, $
 FIELDNAME=RELATIONSHIP, ALIAS=REL, FORMAT=A8, $
 FIELDNAME=BIRTHDATE, ALIAS=BDAT, FORMAT=YMD, $

PERSINFO Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE PERSINFO ON 01/22/08 AT 16.27.24
 PERSONAL
 01 S1

 *PIN **I
 *INCAREOF **
 *STREETNO **
 *APT **
 * **

A. Master Files and Diagrams

Developing Applications 561

SALHIST Data Source

SALHIST contains information about employee salary history. The PIN field is indexed. Both the
PIN and EFFECTDATE fields are keys.

SALHIST Master File

FILENAME=SALHIST, SUFFIX=FOC
SEGNAME=SLHISTRY, SEGTYPE=SH2
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=EFFECTDATE, ALIAS=EDAT, FORMAT=YMD, $
 FIELDNAME=OLDSALARY, ALIAS=OSAL, FORMAT=D12.2, $

SALHIST Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE SALHIST ON 01/22/08 AT 16.28.02
 SLHISTRY
 01 SH2

 *PIN **I
 *EFFECTDATE **
 *OLDSALARY **
 * **
 * **

PAYHIST File

The PAYHIST data source contains the employees' salary history. It consists of one segment,
PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format sequential file.

PAYHIST Master File

FILENAME=PAYHIST, SUFFIX=FIX
 SEGMENT=PAYSEG,$
 FIELDNAME=SOC_SEC_NO, ALIAS=SSN, USAGE=A9, ACTUAL=A9, $
 FIELDNAME=DATE_OF_IN, ALIAS=INCDATE, USAGE=I6YMTD, ACTUAL=A6, $
 FIELDNAME=AMT_OF_INC, ALIAS=RAISE, USAGE=D6.2, ACTUAL=A10,$
 FIELDNAME=PCT_INC, ALIAS=, USAGE=D6.2, ACTUAL=A6, $
 FIELDNAME=NEW_SAL, ALIAS=CURR_SAL, USAGE=D10.2, ACTUAL=A11,$
 FIELDNAME=FILL, ALIAS=, USAGE=A38, ACTUAL=A38,$

SALHIST Data Source

562

PAYHIST Structure Diagram

SECTION 01
 STRUCTURE OF FIX FILE PAYHIST ON 05/15/03 AT 14.51.59

 PAYSEG
 01 S1

 *SOC_SEC_NO **
 *DATE_OF_IN **
 *AMT_OF_INC **
 *PCT_INC **
 * **

COMASTER File

The COMASTER file is used to display the file structure and contents of each segment in a
data source. Since COMASTER is used for debugging other Master Files, a corresponding
FOCEXEC does not exist for the COMASTER file. Its segments are:

FILEID, which lists file information.

RECID, which lists segment information.

FIELDID, which lists field information.

DEFREC, which lists a description record.

PASSREC, which lists read/write access.

CRSEG, which lists cross-reference information for segments.

ACCSEG, which lists DBA information.

A. Master Files and Diagrams

Developing Applications 563

COMASTER Master File

SUFFIX=COM,SEGNAME=FILEID
 FIELDNAME=FILENAME ,FILE ,A8 , ,$
 FIELDNAME=FILE SUFFIX ,SUFFIX ,A8 , ,$
 FIELDNAME=FDEFCENT ,FDFC ,A4 , ,$
 FIELDNAME=FYRTHRESH ,FYRT ,A2 , ,$
SEGNAME=RECID
 FIELDNAME=SEGNAME ,SEGMENT ,A8 , ,$
 FIELDNAME=SEGTYPE ,SEGTYPE ,A4 , ,$
 FIELDNAME=SEGSIZE ,SEGSIZE ,I4 , A4,$
 FIELDNAME=PARENT ,PARENT ,A8 , ,$
 FIELDNAME=CRKEY ,VKEY ,A66, ,$
SEGNAME=FIELDID
 FIELDNAME=FIELDNAME ,FIELD ,A66, ,$
 FIELDNAME=ALIAS ,SYNONYM ,A66, ,$
 FIELDNAME=FORMAT ,USAGE ,A8 , ,$
 FIELDNAME=ACTUAL ,ACTUAL ,A8 , ,$
 FIELDNAME=AUTHORITY ,AUTHCODE ,A8 , ,$
 FIELDNAME=FIELDTYPE ,INDEX ,A8 , ,$
 FIELDNAME=TITLE ,TITLE ,A64, ,$
 FIELDNAME=HELPMESSAGE ,MESSAGE ,A256, ,$
 FIELDNAME=MISSING ,MISSING ,A4 , ,$
 FIELDNAME=ACCEPTS ,ACCEPTABLE ,A255, ,$
 FIELDNAME=RESERVED ,RESERVED ,A44 , ,$
 FIELDNAME=DEFCENT ,DFC ,A4 , ,$
 FIELDNAME=YRTHRESH ,YRT ,A4 , ,$
SEGNAME=DEFREC
 FIELDNAME=DEFINITION ,DESCRIPTION ,A44, ,$
SEGNAME=PASSREC,PARENT=FILEID
 FIELDNAME=READ/WRITE ,RW ,A32, ,$
SEGNAME=CRSEG,PARENT=RECID
 FIELDNAME=CRFILENAME ,CRFILE ,A8 , ,$
 FIELDNAME=CRSEGNAME ,CRSEGMENT ,A8 , ,$
 FIELDNAME=ENCRYPT ,ENCRYPT ,A4 , ,$
SEGNAME=ACCSEG,PARENT=DEFREC
 FIELDNAME=DBA ,DBA ,A8 , ,$
 FIELDNAME=DBAFILE , ,A8 , ,$
 FIELDNAME=USER ,PASS ,A8 , ,$
 FIELDNAME=ACCESS ,ACCESS ,A8 , ,$
 FIELDNAME=RESTRICT ,RESTRICT ,A8 , ,$
 FIELDNAME=NAME ,NAME ,A66, ,$
 FIELDNAME=VALUE ,VALUE ,A80, ,$

COMASTER File

564

COMASTER Structure Diagram

SECTION 01
 STRUCTURE OF EXTERNAL FILE COMASTER ON 05/15/03 AT 14.53.38

VIDEOTRK, MOVIES, and ITEMS Data Sources

VIDEOTRK contains sample data about customer, rental, and purchase information for a video
rental business. It can be joined to the MOVIES or ITEMS data source. VIDEOTRK and MOVIES
are used in examples that illustrate the use of the Maintain Data facility.

A. Master Files and Diagrams

Developing Applications 565

VIDEOTRK Master File

FILENAME=VIDEOTRK, SUFFIX=FOC
 SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

VIDEOTRK, MOVIES, and ITEMS Data Sources

566

VIDEOTRK Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/15/03 AT 12.25.19

 CUST
 01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

 I
 I
 I
 I TRANSDAT
 02 I SH1

*TRANSDATE **
* **
* **
* **
* **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
 ************** **************

A. Master Files and Diagrams

Developing Applications 567

MOVIES Master File

FILENAME=MOVIES, SUFFIX=FOC
 SEGNAME=MOVINFO, SEGTYPE=S1
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
 FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
 FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
 FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
 FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
 FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
 FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

MOVIES Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE MOVIES ON 05/15/03 AT 12.26.05

 MOVINFO
 01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

ITEMS Master File

FILENAME=ITEMS, SUFFIX=FOC
 SEGNAME=ITMINFO, SEGTYPE=S1
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=PRODNAME, ALIAS=PROD, FORMAT=A20, $
 FIELDNAME=OURCOST, ALIAS=WCOST, FORMAT=F6.2, $
 FIELDNAME=RETAILPR, ALIAS=PRICE, FORMAT=F6.2, $
 FIELDNAME=ON_HAND, ALIAS=NUM, FORMAT=I5, $

VIDEOTRK, MOVIES, and ITEMS Data Sources

568

ITEMS Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE ITEMS ON 05/15/03 AT 12.26.05

 ITMINFO
 01 S1

*PRODCODE **I
*PRODNAME **
*OURCOST **
*RETAILPR **
* **

VIDEOTR2 Data Source

VIDEOTR2 contains sample data about customer, rental, and purchase information for a video
rental business. It consists of four segments.

VIDEOTR2 Master File

FILENAME=VIDEOTR2, SUFFIX=FOC
 SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
 FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
 SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
 SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
 SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

A. Master Files and Diagrams

Developing Applications 569

VIDEOTR2 Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTR2 ON 05/15/03 AT 16.45.48

 CUST
 01 S1

 *CUSTID **
 *LASTNAME **
 *FIRSTNAME **
 *EXPDATE **
 * **

 I
 I
 I
 I TRANSDAT
 02 I SH1

 *TRANSDATE **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
 ************** **************
 *TRANSCODE ** *MOVIECODE **I
 *QUANTITY ** *COPY **
 *TRANSTOT ** *RETURNDATE **
 * ** *FEE **
 * ** * **
 *************** ***************
 ************** **************

Gotham Grinds Data Sources

Gotham Grinds is a group of data sources that contain sample data about a specialty items
company.

GGDEMOG contains demographic information about the customers of Gotham Grinds, a
company that sells specialty items like coffee, gourmet snacks, and gifts. It consists of one
segment, DEMOG01.

GGORDER contains order information for Gotham Grinds. It consists of two segments,
ORDER01 and ORDER02.

Gotham Grinds Data Sources

570

GGPRODS contains product information for Gotham Grinds. It consists of one segment,
PRODS01.

GGSALES contains sales information for Gotham Grinds. It consists of one segment,
SALES01.

GGSTORES contains information for each of Gotham Grinds 12 stores in the United States.
It consists of one segment, STORES01.

GGDEMOG Master File

FILENAME=GGDEMOG, SUFFIX=FOC
 SEGNAME=DEMOG01, SEGTYPE=S1
 FIELD=ST, ALIAS=E02, FORMAT=A02, INDEX=I,TITLE='State',
 DESC='State',$
 FIELD=HH, ALIAS=E03, FORMAT=I09, TITLE='Number of Households',
 DESC='Number of Households',$
 FIELD=AVGHHSZ98,ALIAS=E04, FORMAT=I09, TITLE='Average Household Size',
 DESC='Average Household Size',$
 FIELD=MEDHHI98, ALIAS=E05, FORMAT=I09, TITLE='Median Household Income',
 DESC='Median Household Income',$
 FIELD=AVGHHI98, ALIAS=E06, FORMAT=I09, TITLE='Average Household Income',
 DESC='Average Household Income',$
 FIELD=MALEPOP98,ALIAS=E07, FORMAT=I09, TITLE='Male Population',
 DESC='Male Population',$
 FIELD=FEMPOP98, ALIAS=E08, FORMAT=I09, TITLE='Female Population',
 DESC='Female Population',$
 FIELD=P15TO1998,ALIAS=E09, FORMAT=I09, TITLE='15 to 19',
 DESC='Population 15 to 19 years old',$
 FIELD=P20TO2998,ALIAS=E10, FORMAT=I09, TITLE='20 to 29',
 DESC='Population 20 to 29 years old',$
 FIELD=P30TO4998,ALIAS=E11, FORMAT=I09, TITLE='30 to 49',
 DESC='Population 30 to 49 years old',$
 FIELD=P50TO6498,ALIAS=E12, FORMAT=I09, TITLE='50 to 64',
 DESC='Population 50 to 64 years old',$
 FIELD=P65OVR98, ALIAS=E13, FORMAT=I09, TITLE='65 and over',
 DESC='Population 65 and over',$

A. Master Files and Diagrams

Developing Applications 571

GGDEMOG Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE GGDEMOG ON 05/15/03 AT 12.26.05

 GGDEMOG
 01 S1

*ST **I
*HH **
*AVGHHSZ98 **
*MEDHHI98 **
* **

GGORDER Master File

FILENAME=GGORDER, SUFFIX=FOC,$
 SEGNAME=ORDER01, SEGTYPE=S1,$
 FIELD=ORDER_NUMBER, ALIAS=ORDNO1, FORMAT=I6, TITLE='Order,Number',
 DESC='Order Identification Number',$
 FIELD=ORDER_DATE, ALIAS=DATE, FORMAT=MDY, TITLE='Order,Date',
 DESC='Date order was placed',$
 FIELD=STORE_CODE, ALIAS=STCD, FORMAT=A5, TITLE='Store,Code',
 DESC='Store Identification Code (for order)',$
 FIELD=PRODUCT_CODE, ALIAS=PCD, FORMAT=A4, TITLE='Product,Code',
 DESC='Product Identification Code (for order)',$
 FIELD=QUANTITY, ALIAS=ORDUNITS, FORMAT=I8, TITLE='Ordered,Units',
 DESC='Quantity Ordered',$
SEGNAME=ORDER02, SEGTYPE=KU, PARENT=ORDER01, CRFILE=GGPRODS, CRKEY=PCD,
CRSEG=PRODS01 ,$

Gotham Grinds Data Sources

572

GGORDER Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE GGORDER ON 05/15/03 AT 16.45.48

 GGORDER
 01 S1

 *ORDER_NUMBER**
 *ORDER_DATE **
 *STORE_CODE **
 *PRODUCT_CODE**
 * **

 I
 I
 I
 I ORDER02
 02 I KU

 :PRODUCT_ID :K
 :PRODUCT_DESC:
 :VENDOR_CODE :
 :VENDOR_NAME :
 : :
 :............:

GGPRODS Master File

FILENAME=GGPRODS, SUFFIX=FOC
 SEGNAME=PRODS01, SEGTYPE=S1
 FIELD=PRODUCT_ID, ALIAS=PCD, FORMAT=A4, INDEX=I, TITLE='Product,Code',
 DESC='Product Identification Code',$
 FIELD=PRODUCT_DESCRIPTION, ALIAS=PRODUCT, FORMAT=A16, TITLE='Product',
 DESC='Product Name',$
 FIELD=VENDOR_CODE, ALIAS=VCD, FORMAT=A4, INDEX=I, TITLE='Vendor ID',
 DESC='Vendor Identification Code',$
 FIELD=VENDOR_NAME, ALIAS=VENDOR, FORMAT=A23, TITLE='Vendor Name',
 DESC='Vendor Name',$
 FIELD=PACKAGE_TYPE, ALIAS=PACK, FORMAT=A7, TITLE='Package',
 DESC='Packaging Style',$
 FIELD=SIZE, ALIAS=SZ, FORMAT=I2, TITLE='Size',
 DESC='Package Size',$
 FIELD=UNIT_PRICE, ALIAS=UNITPR, FORMAT=D7.2, TITLE='Unit,Price',
 DESC='Price for one unit',$

A. Master Files and Diagrams

Developing Applications 573

GGPRODS Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE GGPRODS ON 05/15/03 AT 12.26.05

 GGPRODS
 01 S1

*PRODUCT_ID **I
*PRODUCT_DESC**I
*VENDOR_CODE **
*VENDOR_NAME **
* **

GGSALES Master File

FILENAME=GGSALES, SUFFIX=FOC
 SEGNAME=SALES01, SEGTYPE=S1
 FIELD=SEQ_NO, ALIAS=SEQ, FORMAT=I5, TITLE='Sequence#',
 DESC='Sequence number in database',$
 FIELD=CATEGORY, ALIAS=E02, FORMAT=A11, INDEX=I, TITLE='Category',
 DESC='Product category',$
 FIELD=PCD, ALIAS=E03, FORMAT=A04, INDEX=I, TITLE='Product ID',
 DESC='Product Identification code (for sale)',$
 FIELD=PRODUCT, ALIAS=E04, FORMAT=A16, TITLE='Product',
 DESC='Product name',$
 FIELD=REGION, ALIAS=E05, FORMAT=A11, INDEX=I, TITLE='Region',
 DESC='Region code',$
 FIELD=ST, ALIAS=E06, FORMAT=A02, INDEX=I, TITLE='State',
 DESC='State',$
 FIELD=CITY, ALIAS=E07, FORMAT=A20, TITLE='City',
 DESC='City',$
 FIELD=STCD, ALIAS=E08, FORMAT=A05, INDEX=I, TITLE='Store ID',
 DESC='Store identification code (for sale)',$
 FIELD=DATE, ALIAS=E09, FORMAT=I8YYMD, TITLE='Date',
 DESC='Date of sales report',$
 FIELD=UNITS, ALIAS=E10, FORMAT=I08, TITLE='Unit Sales',
 DESC='Number of units sold',$
 FIELD=DOLLARS, ALIAS=E11, FORMAT=I08, TITLE='Dollar Sales',
 DESC='Total dollar amount of reported sales',$
 FIELD=BUDUNITS, ALIAS=E12, FORMAT=I08, TITLE='Budget Units',
 DESC='Number of units budgeted',$
 FIELD=BUDDOLLARS, ALIAS=E13, FORMAT=I08, TITLE='Budget Dollars',
 DESC='Total sales quota in dollars',$

Gotham Grinds Data Sources

574

GGSALES Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE GGSALES ON 05/15/03 AT 12.26.05

 GGSALES
 01 S1

*SEQ_NO **
*CATEGORY **I
*PCD **I
*PRODUCT **I
* **

GGSTORES Master File

FILENAME=GGSTORES, SUFFIX=FOC
 SEGNAME=STORES01, SEGTYPE=S1
 FIELD=STORE_CODE, ALIAS=E02, FORMAT=A05, INDEX=I, TITLE='Store ID',
 DESC='Franchisee ID Code',$
 FIELD=STORE_NAME, ALIAS=E03, FORMAT=A23, TITLE='Store Name',
 DESC='Store Name',$
 FIELD=ADDRESS1, ALIAS=E04, FORMAT=A19, TITLE='Contact',
 DESC='Franchisee Owner',$
 FIELD=ADDRESS2, ALIAS=E05, FORMAT=A31, TITLE='Address',
 DESC='Street Address',$
 FIELD=CITY, ALIAS=E06, FORMAT=A22, TITLE='City',
 DESC='City',$
 FIELD=STATE, ALIAS=E07, FORMAT=A02, INDEX=I, TITLE='State',
 DESC='State',$
 FIELD=ZIP, ALIAS=E08, FORMAT=A06, TITLE='Zip Code',
 DESC='Postal Code',$

GGSTORES Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE GGSTORES ON 05/15/03 AT 12.26.05

 GGSTORES
 01 S1

*STORE_CODE **I
*STORE_NAME **
*ADDRESS1 **
*ADDRESS2 **
* **

A. Master Files and Diagrams

Developing Applications 575

Century Corp Data Sources

Century Corp is a consumer electronics manufacturer that distributes products through
retailers around the world. Century Corp has thousands of employees in plants, warehouses,
and offices worldwide. Their mission is to provide quality products and services to their
customers.

Century Corp is a group of data sources that contain financial, human resources, inventory,
and order information. The last three data sources are designed to be used with chart of
accounts data.

CENTCOMP Master File contains location information for stores. It consists of one
segment, COMPINFO.

CENTFIN Master File contains financial information. It consists of one segment, ROOT_SEG.

CENTHR Master File contains human resources information. It consists of one segment,
EMPSEG.

CENTINV Master File contains inventory information. It consists of one segment, INVINFO.

CENTORD Master File contains order information. It consists of four segments, OINFO,
STOSEG, PINFO, and INVSEG.

CENTQA Master File contains problem information. It consists of three segments,
PROD_SEG, INVSEG, and PROB_SEG.

CENTGL Master File contains a chart of accounts hierarchy. The field GL_ACCOUNT_PARENT
is the parent field in the hierarchy. The field GL_ACCOUNT is the hierarchy field. The field
GL_ACCOUNT_CAPTION can be used as the descriptive caption for the hierarchy field.

CENTSYSF Master File contains detail-level financial data. CENTSYSF uses a different
account line system (SYS_ACCOUNT), which can be joined to the SYS_ACCOUNT field in
CENTGL. Data uses "natural" signs (expenses are positive, revenue negative).

CENTSTMT Master File contains detail-level financial data and a cross-reference to the
CENTGL data source.

Century Corp Data Sources

576

CENTCOMP Master File

FILE=CENTCOMP, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=COMPINFO, SEGTYPE=S1, $
 FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
 TITLE='Store Id#:',
 DESCRIPTION='Store Id#', $
 FIELD=STORENAME, ALIAS=SNAME, FORMAT=A20,
 WITHIN=STATE,
 TITLE='Store,Name:',
 DESCRIPTION='Store Name', $
 FIELD=STATE, ALIAS=STATE, FORMAT=A2,
 WITHIN=PLANT,
 TITLE='State:',
 DESCRIPTION=State, $
 DEFINE REGION/A5=DECODE STATE ('AL' 'SOUTH' 'AK' 'WEST' 'AR' 'SOUTH'
 'AZ' 'WEST' 'CA' 'WEST' 'CO' 'WEST' 'CT' 'EAST'
 'DE' 'EAST' 'DC' 'EAST' 'FL' 'SOUTH' 'GA' 'SOUTH' 'HI' 'WEST'
 'ID' 'WEST' 'IL' 'NORTH' 'IN' 'NORTH' 'IA' 'NORTH'
 'KS' 'NORTH' 'KY' 'SOUTH' 'LA' 'SOUTH' 'ME' 'EAST' 'MD' 'EAST'
 'MA' 'EAST' 'MI' 'NORTH' 'MN' 'NORTH' 'MS' 'SOUTH' 'MT' 'WEST'
 'MO' 'SOUTH' 'NE' 'WEST' 'NV' 'WEST' 'NH' 'EAST' 'NJ' 'EAST'
 'NM' 'WEST' 'NY' 'EAST' 'NC' 'SOUTH' 'ND' 'NORTH' 'OH' 'NORTH'
 'OK' 'SOUTH' 'OR' 'WEST' 'PA' 'EAST' 'RI' 'EAST' 'SC' 'SOUTH'
 'SD' 'NORTH' 'TN' 'SOUTH' 'TX' 'SOUTH' 'UT' 'WEST' 'VT' 'EAST'
 'VA' 'SOUTH' 'WA' 'WEST' 'WV' 'SOUTH' 'WI' 'NORTH' 'WY' 'WEST'
 'NA' 'NORTH' 'ON' 'NORTH' ELSE ' ');,
 TITLE='Region:',
 DESCRIPTION=Region, $

CENTCOMP Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTCOMP ON 05/15/03 AT 10.20.49

 COMPINFO
 01 S1

 *STORE_CODE **I
 *STORENAME **
 *STATE **
 * **
 * **

A. Master Files and Diagrams

Developing Applications 577

CENTFIN Master File

FILE=CENTFIN, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=ROOT_SEG, SEGTYPE=S4, $
 FIELD=YEAR, ALIAS=YEAR, FORMAT=YY,
 WITHIN='*Time Period', $
 FIELD=QUARTER, ALIAS=QTR, FORMAT=Q,
 WITHIN=YEAR,
 TITLE=Quarter,
 DESCRIPTION=Quarter, $
 FIELD=MONTH, ALIAS=MONTH, FORMAT=M,
 TITLE=Month,
 DESCRIPTION=Month, $
 FIELD=ITEM, ALIAS=ITEM, FORMAT=A20,
 TITLE=Item,
 DESCRIPTION=Item, $
 FIELD=VALUE, ALIAS=VALUE, FORMAT=D12.2,
 TITLE=Value,
 DESCRIPTION=Value, $
 DEFINE ITYPE/A12=IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'E'
 THEN 'Expense' ELSE IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'R'
 THEN 'Revenue' ELSE 'Asset';,
 TITLE=Type,
 DESCRIPTION='Type of Financial Line Item',$
 DEFINE MOTEXT/MT=MONTH;,$

CENTFIN Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTFIN ON 05/15/03 AT 10.25.52

 ROOT_SEG
 01 S4

 *YEAR **
 *QUARTER **
 *MONTH **
 *ITEM **
 * **

Century Corp Data Sources

578

CENTHR Master File

FILE=CENTHR, SUFFIX=FOC
 SEGNAME=EMPSEG, SEGTYPE=S1, $
 FIELD=ID_NUM, ALIAS=ID#, FORMAT=I9,
 TITLE='Employee,ID#',
 DESCRIPTION='Employee Identification Number', $
 FIELD=LNAME, ALIAS=LN, FORMAT=A14,
 TITLE='Last,Name',
 DESCRIPTION='Employee Last Name', $
 FIELD=FNAME, ALIAS=FN, FORMAT=A12,
 TITLE='First,Name',
 DESCRIPTION='Employee First Name', $
 FIELD=PLANT, ALIAS=PLT, FORMAT=A3,
 TITLE='Plant,Location',
 DESCRIPTION='Location of the manufacturing plant',
 WITHIN='*Location', $
 FIELD=START_DATE, ALIAS=SDATE, FORMAT=YYMD,
 TITLE='Starting,Date',
 DESCRIPTION='Date of employment',$
 FIELD=TERM_DATE, ALIAS=TERM_DATE, FORMAT=YYMD,
 TITLE='Termination,Date',
 DESCRIPTION='Termination Date', $
 FIELD=STATUS, ALIAS=STATUS, FORMAT=A10,
 TITLE='Current,Status',
 DESCRIPTION='Job Status', $
 FIELD=POSITION, ALIAS=JOB, FORMAT=A2,
 TITLE=Position,
 DESCRIPTION='Job Position', $
 FIELD=PAYSCALE, ALIAS=PAYLEVEL, FORMAT=I2,
 TITLE='Pay,Level',
 DESCRIPTION='Pay Level',
 WITHIN='*Wages',$
 DEFINE POSITION_DESC/A17=IF POSITION EQ 'BM' THEN
 'Plant Manager' ELSE
 IF POSITION EQ 'MR' THEN 'Line Worker' ELSE
 IF POSITION EQ 'TM' THEN 'Line Manager' ELSE
 'Technician';
 TITLE='Position,Description',
 DESCRIPTION='Position Description',
 WITHIN='PLANT',$
 DEFINE BYEAR/YY=START_DATE;
 TITLE='Beginning,Year',
 DESCRIPTION='Beginning Year',
 WITHIN='*Starting Time Period',$

A. Master Files and Diagrams

Developing Applications 579

 DEFINE BQUARTER/Q=START_DATE;
 TITLE='Beginning,Quarter',
 DESCRIPTION='Beginning Quarter',
 WITHIN='BYEAR',
 DEFINE BMONTH/M=START_DATE;
 TITLE='Beginning,Month',
 DESCRIPTION='Beginning Month',
 WITHIN='BQUARTER',$
 DEFINE EYEAR/YY=TERM_DATE;
 TITLE='Ending,Year',
 DESCRIPTION='Ending Year',
 WITHIN='*Termination Time Period',$
 DEFINE EQUARTER/Q=TERM_DATE;
 TITLE='Ending,Quarter',
 DESCRIPTION='Ending Quarter',
 WITHIN='EYEAR',$
 DEFINE EMONTH/M=TERM_DATE;
 TITLE='Ending,Month',
 DESCRIPTION='Ending Month',
 WITHIN='EQUARTER',$
 DEFINE RESIGN_COUNT/I3=IF STATUS EQ 'RESIGNED' THEN 1
 ELSE 0;
 TITLE='Resigned,Count',
 DESCRIPTION='Resigned Count',$
 DEFINE FIRE_COUNT/I3=IF STATUS EQ 'TERMINAT' THEN 1
 ELSE 0;
 TITLE='Terminated,Count',
 DESCRIPTION='Terminated Count',$
 DEFINE DECLINE_COUNT/I3=IF STATUS EQ 'DECLINED' THEN 1
 ELSE 0;
 TITLE='Declined,Count',
 DESCRIPTION='Declined Count',$
 DEFINE EMP_COUNT/I3=IF STATUS EQ 'EMPLOYED' THEN 1
 ELSE 0;
 TITLE='Employed,Count',
 DESCRIPTION='Employed Count',$
 DEFINE PEND_COUNT/I3=IF STATUS EQ 'PENDING' THEN 1
 ELSE 0;
 TITLE='Pending,Count',
 DESCRIPTION='Pending Count',$
 DEFINE REJECT_COUNT/I3=IF STATUS EQ 'REJECTED' THEN 1
 ELSE 0;
 TITLE='Rejected,Count',
 DESCRIPTION='Rejected Count',$
 DEFINE FULLNAME/A28=LNAME||', '|FNAME;
 TITLE='Full Name',
 DESCRIPTION='Full Name: Last, First', WITHIN='POSITION_DESC',$

Century Corp Data Sources

580

 DEFINE SALARY/D12.2=IF BMONTH LT 4 THEN PAYLEVEL * 12321
 ELSE IF BMONTH GE 4 AND BMONTH LT 8 THEN PAYLEVEL * 13827
 ELSE PAYLEVEL * 14400;,
 TITLE='Salary',
 DESCRIPTION='Salary',$
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');$

CENTHR Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTHR ON 05/15/03 AT 10.40.34

 EMPSEG
 01 S1

 *ID_NUM **
 *LNAME **
 *FNAME **
 *PLANT **
 * **

A. Master Files and Diagrams

Developing Applications 581

CENTINV Master File

FILE=CENTINV, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=INVINFO, SEGTYPE=S1, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
 TITLE='Product,Number:',
 DESCRIPTION='Product Number', $
 FIELD=PRODNAME, ALIAS=PNAME, FORMAT=A30,
 WITHIN=PRODCAT,
 TITLE='Product,Name:',
 DESCRIPTION='Product Name', $
 FIELD=QTY_IN_STOCK, ALIAS=QIS, FORMAT=I7,
 TITLE='Quantity,In Stock:',
 DESCRIPTION='Quantity In Stock', $
 FIELD=PRICE, ALIAS=RETAIL, FORMAT=D10.2,
 TITLE='Price:',
 DESCRIPTION=Price, $
 FIELD=COST, ALIAS=OUR_COST, FORMAT=D10.2,
 TITLE='Our,Cost:',
 DESCRIPTION='Our Cost:', $
 DEFINE PRODCAT/A22 = IF PRODNAME CONTAINS 'LCD'
 THEN 'VCRs' ELSE IF PRODNAME
 CONTAINS 'DVD' THEN 'DVD' ELSE IF PRODNAME CONTAINS 'Camcor'
 THEN 'Camcorders'
 ELSE IF PRODNAME CONTAINS 'Camera' THEN 'Cameras' ELSE IF PRODNAME
 CONTAINS 'CD' THEN 'CD Players'
 ELSE IF PRODNAME CONTAINS 'Tape' THEN 'Digital Tape Recorders'
 ELSE IF PRODNAME CONTAINS 'Combo' THEN 'Combo Players'
 ELSE 'PDA Devices'; WITHIN=PRODTYPE, TITLE='Product Category:' ,$
 DEFINE PRODTYPE/A19 = IF PRODNAME CONTAINS 'Digital' OR 'DVD' OR 'QX'
 THEN 'Digital' ELSE 'Analog';,WITHIN='*Product Dimension',
 TITLE='Product Type:',$

CENTINV Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTINV ON 05/15/03 AT 10.43.35

 INVINFO
 01 S1

 *PROD_NUM **I
 *PRODNAME **
 *QTY_IN_STOCK**
 *PRICE **
 * **

Century Corp Data Sources

582

CENTORD Master File

FILE=CENTORD, SUFFIX=FOC
 SEGNAME=OINFO, SEGTYPE=S1, $
 FIELD=ORDER_NUM, ALIAS=ONUM, FORMAT=A5, INDEX=I,
 TITLE='Order,Number:',
 DESCRIPTION='Order Number', $
 FIELD=ORDER_DATE, ALIAS=ODATE, FORMAT=YYMD,
 TITLE='Date,Of Order:',
 DESCRIPTION='Date Of Order', $
 FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
 TITLE='Company ID#:',
 DESCRIPTION='Company ID#', $
 FIELD=PLANT, ALIAS=PLNT, FORMAT=A3, INDEX=I,
 TITLE='Manufacturing,Plant',
 DESCRIPTION='Location Of Manufacturing Plant',
 WITHIN='*Location',$
 DEFINE YEAR/YY=ORDER_DATE;,
 WITHIN='*Time Period',$
 DEFINE QUARTER/Q=ORDER_DATE;,
 WITHIN='YEAR',$
 DEFINE MONTH/M=ORDER_DATE;,
 WITHIN='QUARTER',$
 SEGNAME=PINFO, SEGTYPE=S1, PARENT=OINFO, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4,INDEX=I,
 TITLE='Product,Number#:',
 DESCRIPTION='Product Number#', $
 FIELD=QUANTITY, ALIAS=QTY, FORMAT=I8C,
 TITLE='Quantity:',
 DESCRIPTION=Quantity, $
 FIELD=LINEPRICE, ALIAS=LINETOTAL, FORMAT=D12.2MC,
 TITLE='Line,Total',
 DESCRIPTION='Line Total', $
 DEFINE LINE_COGS/D12.2=QUANTITY*COST;,
 TITLE='Line,Cost Of,Goods Sold',
 DESCRIPTION='Line cost of goods sold', $
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');
 SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PINFO, CRFILE=CENTINV,
 CRKEY=PROD_NUM, CRSEG=INVINFO,$
 SEGNAME=STOSEG, SEGTYPE=DKU, PARENT=OINFO, CRFILE=CENTCOMP,
 CRKEY=STORE_CODE, CRSEG=COMPINFO,$

A. Master Files and Diagrams

Developing Applications 583

CENTORD Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTORD ON 05/15/03 AT 10.17.52

 OINFO
 01 S1

 *ORDER_NUM **I
 *STORE_CODE **I
 *PLANT **I
 *ORDER_DATE **
 * **

 I
 +-----------------+
 I I
 I STOSEG I PINFO
 02 I KU 03 I S1
 **************
 :STORE_CODE :K *PROD_NUM **I
 :STORENAME : *QUANTITY **
 :STATE : *LINEPRICE **
 : : * **
 : : * **
 :............: ***************
 JOINED CENTCOMP **************
 I
 I
 I
 I INVSEG
 04 I KU

 :PROD_NUM :K
 :PRODNAME :
 :QTY_IN_STOCK:
 :PRICE :
 : :
 :............:
 JOINED CENTINV

Century Corp Data Sources

584

CENTQA Master File

FILE=CENTQA, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=PROD_SEG, SEGTYPE=S1, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
 TITLE='Product,Number',
 DESCRIPTION='Product Number', $
 SEGNAME=PROB_SEG, PARENT=PROD_SEG, SEGTYPE=S1, $
 FIELD=PROBNUM, ALIAS=PROBNO, FORMAT=I5,
 TITLE='Problem,Number',
 DESCRIPTION='Problem Number',
 WITHIN=PLANT,$
 FIELD=PLANT, ALIAS=PLT, FORMAT=A3, INDEX=I,
 TITLE=Plant,
 DESCRIPTION=Plant,
 WITHIN=PROBLEM_LOCATION,$
 FIELD=PROBLEM_DATE, ALIAS=PDATE, FORMAT=YYMD,
 TITLE='Date,Problem,Reported',
 DESCRIPTION='Date Problem Was Reported', $
 FIELD=PROBLEM_CATEGORY, ALIAS=PROBCAT, FORMAT=A20, $
 TITLE='Problem,Category',
 DESCRIPTION='Problem Category',
 WITHIN=*Problem,$
 FIELD=PROBLEM_LOCATION, ALIAS=PROBLOC, FORMAT=A10,
 TITLE='Location,Problem,Occurred',
 DESCRIPTION='Location Where Problem Occurred',
 WITHIN=PROBLEM_CATEGORY,$
 DEFINE PROB_YEAR/YY=PROBLEM_DATE;,
 TITLE='Year,Problem,Occurred',
 DESCRIPTION='Year Problem Occurred',
 WITHIN=*Time Period,$
 DEFINE PROB_QUARTER/Q=PROBLEM_DATE;
 TITLE='Quarter,Problem,Occurred',
 DESCRIPTION='Quarter Problem Occurred',
 WITHIN=PROB_YEAR,$
 DEFINE PROB_MONTH/M=PROBLEM_DATE;
 TITLE='Month,Problem,Occurred',
 DESCRIPTION='Month Problem Occurred',
 WITHIN=PROB_QUARTER,$
 DEFINE PROBLEM_OCCUR/I5 WITH PROBNUM=1;,
 TITLE='Problem,Occurrence'
 DESCRIPTION='# of times a problem occurs',$
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');$
 SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PROD_SEG, CRFILE=CENTINV,
 CRKEY=PROD_NUM, CRSEG=INVINFO,$

A. Master Files and Diagrams

Developing Applications 585

CENTQA Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTQA ON 05/15/03 AT 10.46.43

 PROD_SEG
 01 S1

 *PROD_NUM **I
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I INVSEG I PROB_SEG
 02 I KU 03 I S1
 **************
 :PROD_NUM :K *PROBNUM **
 :PRODNAME : *PLANT **I
 :QTY_IN_STOCK: *PROBLEM_DATE**
 :PRICE : *PROBLEM_CAT>**
 : : * **
 :............: ***************
 JOINED CENTINV **************

CENTGL Master File

FILE=CENTGL ,SUFFIX=FOC
 SEGNAME=ACCOUNTS, SEGTYPE=S1
 FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
 TITLE='Ledger,Account', FIELDTYPE=I, $
 FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
 TITLE=Parent,
 PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
 FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
 TITLE=Type,$
 FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
 TITLE=Op, $
 FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
 TITLE=Lev, $
 FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
 TITLE=Caption,
 PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
 FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
 TITLE='System,Account,Line', MISSING=ON, $

Century Corp Data Sources

586

CENTGL Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTGL ON 05/15/03 AT 15.18.48

 ACCOUNTS
 01 S1

 *GL_ACCOUNT **I
 *GL_ACCOUNT_>**
 *GL_ACCOUNT_>**
 *GL_ROLLUP_OP**
 * **

CENTSYSF Master File

FILE=CENTSYSF ,SUFFIX=FOC
 SEGNAME=RAWDATA ,SEGTYPE=S2
 FIELDNAME = SYS_ACCOUNT , ,A6 , FIELDTYPE=I,
 TITLE='System,Account,Line', $
 FIELDNAME = PERIOD , ,YYM , FIELDTYPE=I,$
 FIELDNAME = NAT_AMOUNT , ,D10.0 , TITLE='Month,Actual', $
 FIELDNAME = NAT_BUDGET , ,D10.0 , TITLE='Month,Budget', $
 FIELDNAME = NAT_YTDAMT , ,D12.0 , TITLE='YTD,Actual', $
 FIELDNAME = NAT_YTDBUD , ,D12.0 , TITLE='YTD,Budget', $

CENTSYSF Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTSYSF ON 05/15/03 AT 15.19.27

 RAWDATA
 01 S2

 *SYS_ACCOUNT **I
 *PERIOD **I
 *NAT_AMOUNT **
 *NAT_BUDGET **
 * **

A. Master Files and Diagrams

Developing Applications 587

CENTSTMT Master File

FILE=CENTSTMT, SUFFIX=FOC
 SEGNAME=ACCOUNTS, SEGTYPE=S1
 FIELD=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
 TITLE='Ledger,Account', FIELDTYPE=I, $
 FIELD=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
 TITLE=Parent,
 PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
 FIELD=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
 TITLE=Type,$
 FIELD=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
 TITLE=Op, $
 FIELD=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
 TITLE=Lev, $
 FIELD=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
 TITLE=Caption,
 PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
 SEGNAME=CONSOL, SEGTYPE=S1, PARENT=ACCOUNTS, $
 FIELD=PERIOD, ALIAS=MONTH, FORMAT=YYM, $
 FIELD=ACTUAL_AMT, ALIAS=AA, FORMAT=D10.0, MISSING=ON,
 TITLE='Actual', $
 FIELD=BUDGET_AMT, ALIAS=BA, FORMAT=D10.0, MISSING=ON,
 TITLE='Budget', $
 FIELD=ACTUAL_YTD, ALIAS=AYTD, FORMAT=D12.0, MISSING=ON,
 TITLE='YTD,Actual', $
 FIELD=BUDGET_YTD, ALIAS=BYTD, FORMAT=D12.0, MISSING=ON,
 TITLE='YTD,Budget', $

Century Corp Data Sources

588

CENTSTMT Structure Diagram

SECTION 01
 STRUCTURE OF FOCUS FILE CENTSTMT ON 05/15/03 AT 14.45.44

 ACCOUNTS
 01 S1

 *GL_ACCOUNT **I
 *GL_ACCOUNT_>**
 *GL_ACCOUNT_>**
 *GL_ROLLUP_OP**
 * **

 I
 I
 I
 I CONSOL
 02 I S1

 *PERIOD **
 *ACTUAL_AMT **
 *BUDGET_AMT **
 *ACTUAL_YTD **
 * **

A. Master Files and Diagrams

Developing Applications 589

Century Corp Data Sources

590

AppendixB
Error Messages

To see the text or explanation for any error message, you can display it online in your
FOCUS session or find it in a standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

For z/OS, the ddname is ERRORS.

In this appendix:

Accessing Error Files

Displaying Messages

Accessing Error Files

For z/OS, the error files are the following members in the ERRORS PDS:

FOT004

FOG004

FOM004

FOS004

FOA004

FSQLXLT

FOCSTY

FOB004

Displaying Messages

To display the text and explanation for any message, issue the following query command at the
FOCUS command level

? n

Developing Applications 591

where:

n

Is the message number.

The message number and text appear, along with a detailed explanation of the message (if
one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:
An alphabetic character has been found where all numerical digits are
required.

Displaying Messages

592

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 593

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2022. TIBCO Software Inc. All Rights Reserved.

594

Index

-? &\[string] command 251

-? &\[variablename] commands 210, 251

-? command 314

-? SET SETCOMMAND &myvar 210

-* command 208, 215, 314

-CLOSE command 208, 268, 314

-CLOSE ddname command 208

-CMS command 313

-CMS RUN command 300

-CRTCLEAR command 208, 315

-CRTFORM command 209, 236, 253, 277, 315

-DEFAULT command 209, 253, 257, 316

-EXIT command 209, 219, 221, 317

-GOTO command 209, 223–225, 317

-HTMLFORM command 209, 253

-IF ... GOTO command 225–228

-IF command 209, 223, 225, 226, 317

-IF tests 228, 282

compound 228

operators and functions 227

-INCLUDE command 209, 232–234, 318

nesting procedures 234

-label command 209, 319

-MVS command 313

-MVS RUN command 209, 300, 319

-PASS command 209, 217, 218, 320

-PROMPT command 209, 253, 276, 320

-QUIT command 209, 219, 222, 321

-QUIT FOCUS command 219, 222

-READ command 209, 253, 262, 263, 265, 322

-READFILE command 209, 267, 323

-REMOTE command 323

-REPEAT command 209, 228–230, 323

-RUN command 209, 219, 220, 324

-SET command 209, 223, 228, 231, 253, 257,

258, 260, 295, 299, 300, 325

-SET IN FILE phrase 257

-TSO command 313, 325

-TSO RUN command 209, 300, 326

-TYPE command 210, 216, 217, 326

-WINDOW command 210, 236, 253, 277, 327,

456

-WRITE command 210, 262, 264, 265, 328

? && command 360

? COMBINE command 336

? DEFINE command 336, 337

? FDT command 339, 340

? FILE command 342, 343

? FUNCTION command 344

? HOLD command 345

? JOIN command 345

? LET command 347, 385, 386

? LOAD command 347, 348, 394

? n command 348

? NLS command 346, 347

? PFKEY command 349

? RELEASE command 349, 350

? SET command 350

Developing Applications 595

? SET EUROFILE command 338, 449

? SET GRAPH command 352

? STAT command 354

? STYLE command 357

? SU command 359

? USE command 359, 360

?F command 338

?FF command 341

.EVAL operator 286

.EVAL suffix 282

.EXIST suffix 282

.LENGTH suffix 282

.TYPE suffix 282

&ACCEPTS variable 248

&BASEIO variable 248

&CHNGD variable 248

&CURSOR variable 251

&DATE variable 240, 246

&DATEfmt variable 434

&DELTD variable 249

&DMY variable 241

&DMYY variable 241, 247, 434

&DUPLS variable 249

&ECHO variable 251, 306, 307

&FOCCODEPAGE variable 242

&FOCCPU variable 242

&FOCDISORG variable 249

&FOCERRNUM variable 249

&FOCEXTTRM variable 242

&FOCFIELDNAME variable 242

&FOCFOCEXEC variable 242, 246

&FOCINCLUDE variable 243

&FOCMODE variable 243

&FOCNEXTPAGE variable 243

&FOCPRINT variable 243

&FOCPUTLVL variable 243

&FOCQUALCHAR variable 243

&FOCREL variable 243

&FOCSBORDER variable 244

&FOCTRMSD variable 244

&FOCTRMSW variable 244

&FOCTRMTYP variable 244

&FOCUSER variable 244

&FORMAT variable 249

&HIPERFOCUS variable 244

&INPUT variable 249

&INVALID variable 249

&IORETURN variable 244, 306

&LINES variable 249

&MDY variable 244

&MDYY variable 244, 247, 434

&myvar 210

&NOMATCH variable 249

&PFKEY variable 251, 481

&QUIT variable 223, 251

&READS variable 250

&RECORDS variable 250

&REJECTS variable 250

&RETCODE variable 245, 306, 312

&SETFILE variable 245

Index

596

&STACK variable 251, 306, 311

&TOD variable 246

&TRANS variable 250

&WINDOWNAME variable 251, 480

&WINDOWVALUE variable 251, 480

&YMD variable 246

&YYMD variable 246, 247, 434

A

Absolute File Integrity 140

ACCBLN parameter 29, 55

ACCEPT attribute 105

Access Files 393

loading 393

access to data 217

accessing APP directories on Windows 166

accessing data sources 398

accessing FOCUS data sources 398

ACROSSLINE parameter 43, 55

ACROSSPRT parameter 43, 55

ACROSSTITLE parameter 43, 56

ACRSVRBTITL parameter 57

activating currency data source 444

activating filters 99

AGGR[RATIO] parameter 28

aggregation 96

ALL parameter 38, 58

allocating data files 196

allocating temporary files 202

ALLOWCVTERR parameter 38, 58

ALTBACKPERLINE parameter 43

amper variables 210, 236, 281, 295–297

quote-delimited 291

return values 478

APP ? METALOCATION_SAME command 167

APP APPENDPATH command 164

APP application management commands 160

APP commands 159

APP ? METALOCATION_SAME 167

APP APPENDPATH 162, 164

APP COPY 170

APP COPYF 171

APP CREATE 160

APP DELETE 160, 174

APP DELETEF 174

APP FI 185

APP HELP 193

APP HOLD 183

APP LIST 187

APP MAP 165

APP MOVE 172

APP MOVEF 173

APP PATH 162

APP PREPENDPATH 162, 163

APP PROPERTY CODEPAGE 175

APP QUERY 188

APP RENAME 160, 176

APP RENAMEF 176

APP SET METALOCATION_SAME 167

APP SHOWPATH 167

Index

Developing Applications 597

APP commands 159

FI 181

file types 177

HOLD 181

HOLDDATA 181, 184

HOLDMETA 181, 184

APP COPY command 170

APP COPYF command 171, 177

APP DELETE command 174

APP DELETEF command 174, 177

APP FI command 181, 185

APP HELP command 161, 193

APP HOLD command 181, 183

APP HOLDDATA command 181, 184

APP HOLDMETA command 181, 184

APP LIST command 161, 187

APP MAP command 165

APP MOVE command 172

APP MOVEF command 173, 177

APP PATH command 162

configuring 162

search paths 162

APP PREPENDPATH command 163

APP PROPERTY CODEPAGE command 175

APP QUERY command 161, 188

APP RENAME command 176

APP RENAMEF command 176, 177

APP reporting and help commands 161

APP SET METALOCATION_SAME command 167

APP SHOWPATH command 167

appending applications to search path 164

application (APP) 158

physical location of 158

application components 157, 158

listing 188

application directories 165, 168

creating 168

mapping manually 165

application paths 162

APP PATH command 162

configuring 162

application repositories 157, 158

applications 174, 505

controlling memory 36

deleting 174

optimizing 36

running 505

approot parameter 158

ARCFGU parameter 60

AS phrase 60

ASNAMES parameter 29, 38, 60

AUTOFIT parameter 43, 61

AUTOINDEX parameter 36, 62

AUTOPATH parameter 37, 62

AUTOSTRATEGY parameter 37, 63

AUTOTABLEF parameter 38, 63

B

base dates 81

BASEURL parameter 43, 63

Index

598

BINS parameter 37, 64

blank field values 55

blank lines, suppressing 89

BLANKEMPTY parameter 38, 64

BLANKINDENT parameter 44, 65

BLKCALC parameter 29

BOTTOMMARGIN parameter 44, 66

branching 209, 223

conditional 225–228

unconditional 224, 225

buffering techniques 398

BUSDAYS parameter 33, 38, 66

BYDISPLAY parameter 44, 66

BYPANEL parameter 44, 67

BYSCROLL parameter 44

C

CACHE parameter 37, 68, 356

calculated values 428

MODIFY requests and 430, 431

sliding window 428, 429

calculations 28

controlling with SET parameters 28

canceling a procedure 222

CAR data source 550, 551

CARTESIAN parameter 39, 69

Cascading Style Sheets (CSS) 75, 108

CDN (Continental Decimal Notation) 449–451

punctuating large numbers 449, 450

CDN parameter 28, 39, 69

CENT-ZERO parameter 39, 44, 70

CENTFIN data source 576

CENTHR data source 576

CENTINV data source 576

CENTORD data source 576

CENTQA data source 576

Century Corp data sources 576

CHECK FILE command 411

CNOTATION parameter 70

codepage, application 175

collapsing PRINT with ACROSS 55

COLLATION parameter 39, 71

column notation 70

column spacing 143

columns, reporting on 364

COLUMNSCROLL parameter 44

COMASTER Master File 564

combining fields 146

comma-delimited files 130

command statistics 354

? STAT 354

commands 23, 407, 411

? LET 385

changing with variables 301

CHECK FILE 411

COMPUTE 428

DEFINE 407, 422

Dialogue Manager 208, 313

EXEC 219, 220

executing 219

Index

Developing Applications 599

commands 23, 407, 411

LET ECHO 386

LOAD 391

nesting 234

ON GRAPH SET 27

operating system 313

QUIT 223

RUN 220

stacked 211

testing results 306, 312

UNLOAD 391

WINDOW COMPILE 538

WINDOW PAINT 506

comments 215, 216

including in procedures 208, 216

COMPMISS parameter 72

compound -IF tests 228

COMPOUND parameter 44, 73

COMPUTE command 428

sliding window 428

COMPUTE parameter 28, 37, 39, 74

concatenating variables 289

conditional branching 225, 226

-IF ... GOTO command 225–227

compound -IF tests 228

IF ...GOTO command 282

screening values 282

configuration files 158

configuring application paths 162

Continental Decimal Notation (CDN) 449–451

punctuating large numbers 449, 450

controlling calculations 28

controlling memory 36

conversions 434

DATE NEW option 434

dates 434

converting currencies 438, 445, 447, 448

currency data source 438

error messages 447

converting currency 94

COUNT fields 74

COUNTWIDTH parameter 29, 74

COURSE data source 558, 559

COURSES data source 555

creating a currency data source 440

creating data files 196

creating procedure files 194

creating procedures 214

rules 214

startup profiles 218

with comments 215, 216, 218

cross-century dates 403, 407, 433

MODIFY requests and 407

CRTFORMs 210

CSS (Cascading Style Sheets) 75

CSSURL parameter 44, 75

currencies 437

converting 438

CURRENCY attribute 442, 443

Index

600

currency codes 440

currency conversion function 447

currency conversions 94, 438

currency data source 338, 438

activating 444

creating 439, 440, 442

CURRENCY attribute 442, 443

currency codes 439, 440, 442

querying 449

currency symbols 451

extended currency symbols 453

CURRENCY_DISPLAY parameter 75

CURRENCY_ISO_CODE parameter 76

CURRENCY_PRINT_ISO parameter 76

currency-denominated fields 443

currency-denominated values 442

CURRSYMB parameter 77

CURSYM_D parameter 77

CURSYM_E parameter 78

CURSYM_F parameter 78

CURSYM_G parameter 78

CURSYM_L parameter 79

CURSYM_Y parameter 79

D

data 29

processing 29

storing 29

date formats 407

date functions 82

DATE_ORDER parameter 79

DATE_SEPARATOR parameter 80

date-time parameters 82

DATEDISPLAY parameter 39, 81

DATEFNS parameter 33, 39, 82

DATEFORMAT parameter 29, 82

dates 33, 261, 404

converting 434

default display format 433

display options 434

displaying 247

functions and subroutines 434

setting 261

system 434

time stamp 435

validating 408

DATETIME parameter 33, 39, 82

DB_INFILE parameter 39, 83

DBA security rules 132

DBACSENSITIV parameter 83

DBAJOIN parameter 84

DBASOURCE parameter 49, 84

deactivating filters 99

debugging procedures 306

DECODE function 295, 296

default century 434

default file names 99

default format for HOLD files 106

default variable values 257, 316

-DEFAULT command and 257, 316

Index

Developing Applications 601

DEFCENT parameter 33, 39, 85, 404, 405, 407,

408

COMPUTE command 428, 430

DEFINE command 422

MODIFY requests and 407

querying 414

DEFECHO parameter 39, 86, 307

DEFINE command 407

sliding window 407, 422

DEFINE FUNCTIONs, reporting on 365

defined functions 344

DEFINES parameter 29, 37, 86

dense ranking 137

designating a network drive on Windows 166

Dialogue Manager 207

calling procedures 232

commands 208, 282, 313

comments 215

debugging procedures 306

looping procedures 228

messages 216

operating system commands 313

passwords 217

processing 211, 212

reading files 262

stacked commands 211, 221

uses 207

writing files 262

direct prompting 253, 276, 320

DIRECTHOLD parameter 87

DISPLAY parameter 49

displaying base dates 81

displaying command statistics 354

displaying currency data source 338

displaying data sources with USE 359

displaying dates 33

displaying defined functions 344

displaying Dialogue Manager values 360

displaying fields 336

? COMBINE command 336

? DEFINE command 336

?F command 338

displaying graph parameters 352

displaying grid for object placement evaluation

115

displaying information about loaded files 347

displaying leading zeros 70, 116

displaying LET substitutions 347

displaying parameter settings 350

displaying PF key assignments 349

displaying product release number 349

DISPLAYROUND parameter 45

DMH_LOOPLIM parameter 87

DMH_STACKLIM parameter 87

DMPRECISION parameter 28, 88

DMPRECSION parameter 260

rounding 260

DRILLFOCMISSING parameter 40, 88

drilling down remotely 101

DROPBLNKLINE parameter 89

Index

602

DTSTRICT parameter 30, 90

DUPLICATECOL parameter 46

DYNAM command 197

DYNAM SET LONGSNYM 204

dynamic window 406, 411, 412

E

ECHO variable 86, 241

EDAGET 269

EDAPUT 271

edaserve.cfg configuration file 158

EDIT function 296, 297

EDUCFILE data source 546, 547

EMBEDDABLE parameter 90

embedding images in .htm file 109

EMPDATA data source 555–557

EMPLOYEE data source 541, 543, 544

EMPTYCELLS parameter 40, 91

EMPTYREPORT parameter 40, 91

encoding HTML data 109

Entry Menu 506

EQTEST parameter 30, 92

error files 591

error files, reporting on 366

error messages 93, 348, 591

? n command 348

displaying explanations 348

ERROROUT parameter 40, 93

ESTRECORDS parameter 37, 40, 94

euro currency 437

converting 438, 445, 447, 448

EUROFILE parameter 30, 94, 444

error messages 444

restrictions 444

evaluating variables 285, 286

EX command 219

Excel requests 95

EXCELSRVURL parameter 40

EXEC command 219, 220, 234, 235, 253, 273,

274

calling procedures 234

execution windows 464

EXIST operator 284

exiting from FOCUS 222

EXITRC variable 241

EXL2K output 142

SHOWBLANKS 142

EXL2KLANG parameter 95

EXL2KTXTDATE parameter 33, 95

EXTAGGR parameter 40, 96

extended currency symbols 451, 453

formats 453

EXTENDNUM parameter 96

external Cascading Style Sheets 75

external files 262

closing 268

maximum record length 118

reading from 262, 263

writing to 262

Index

Developing Applications 603

external sorting 98

external sorts 96, 97, 147

EXTHOLD parameter 40, 97

EXTRACT parameter 97

EXTSORT parameter 40, 98

EXTTERM parameter 49

F

FDEFCENT attribute 405, 415

field name attributes 60

field names windows 461

field variables 301

field-level sliding window 415, 417

DEFCENT attribute 417

MODIFY requests and 419

YRTHRESH attribute 417

FIELDNAME parameter 30, 40, 98

fields 336

?FF command 341

displaying 336

file contents windows 462

file directory table 339

? FDT command 339

file names windows 460

creating 503

FILE parameter 99

file utilities 391

file-level sliding window 415

FDEFCENT attribute 415

FYRTHRESH attribute 415

FILEDEF command 196, 197, 201

FILEDEF

CONCAT 198

FILENAME parameter 40, 99

files 391

closing 208

displaying information for 394

loading 391, 392

reading from 265

unloading 391, 393

writing to 264, 265

FILTER parameter 41, 99

filters 113

maintaining across joins 113

FINANCE data source 553, 554

FIXRETRIEVE parameter 37, 100

FLOATMAPPING parameter 100

flow of control 209, 219

FMI 361

FML rows 103

FOC144 parameter 41, 101

FOC441 warnings 152

FOCALLOC parameter 30

FOCEXURL parameter 101

FOCFIRSTPAGE parameter 46, 102

FOCSTACK parameter 37, 102

FOCUS Database Server 359

FOCUS facilities 391

performance enhancement 391

FOCUS HOLD files 87

Index

604

FOCUS Metadata Interface 361

FOCUS Report Writer 135

format specifications 278

formatting currency 451

formatting report output 129

FORMULTIPLE parameter 41, 103

full-screen data entry 236, 277

function keys 481

assigning phrases to 388, 389

functions 281

calling 299–301

running 209

FYRTHRESH attribute 405, 415

G

GETUSER function 244

GGDEMOG data source 570

GGORDER data source 570

GGPRODS data source 570

GGSALES data source 570

GGSTORES data source 570

global sliding window 408, 409

global variable values 360

global variables 210, 236, 239, 240

naming 237, 238

querying 252

Gotham Grinds data sources 570

goto values 456, 479, 515

graph parameters 352

graph request 26

H

HDAY parameter 33, 103

HIDENULLACRS parameter 46, 104

HIPERFOCUS parameter 30

HIPERINSTALL parameter 30

HLDCOM_TRIMANV parameter 104

HLISUDUMP parameter 37

HLISUTRACE parameter 37

HNODATA parameter 41, 104

HOLD fields 345

HOLD files 97

comments 108

DBA information 108

default format 106

displaying fields 106

HOLD Master File 60, 105

HOLDATTR parameter 41, 105

HOLDFORMAT parameter 30, 106

HOLDLIST parameter 30, 106

HOLDMISS parameter 30, 107

HOLDSTAT parameter 30, 108

holiday file 103

horizontal menus 458

creating 467

HOTMENU parameter 49

HTML display page 108

HTML output 142

SHOWBLANKS 142

HTMLARCHIVE parameter 31, 108

HTMLCSS parameter 46, 108

Index

Developing Applications 605

HTMLEMBEDIMG parameter 109

HTMLENCODE parameter 109

I

IBMLE parameter 38

identifying currency values 442

images

embedding in .htm file 109

IMMEDTYPE parameter 38

impact analysis, reporting on 369

implicit prompting 253

implied prompting 236, 277

IN FILE in Dialogue Manager 257

Include component 232

INDEX parameter 31, 110

indexed variables 290

creating 290

indexes, reporting on 370

indexing 110

integrating euro currency 437

interactive data entry 236

internal blanks 142

internal Cascading Style Sheets 108

invalid date formats 58

ITEMS data source 568, 569

J

JOBFILE data source 544, 545

JOBHIST data source;sample data sources

JOBHIST 559

JOBLIST data source;sample data sources

JOBLIST 559

JOIN CLEAR command 113

JOIN command 112, 113

maintaining filters 113

join structures 345

displaying 345

JOIN_LENGTH_MODE parameter 41, 111

joining data sources 112

joining fields 112

JOINLM parameter 41, 111

JOINOPT parameter 41, 111

JSURL parameter 41

K

KEEPDEFINES parameter 31, 41, 112

KEEPFILTERS SET parameter 113

key fields 63

keyed retrieval 100

keys, reporting on 371

L

lagging values 111

LANG parameter 41, 113

LAYOUTGRID parameter 46, 115

leading blanks 142

leading zeros 70, 116

LEADZERO parameter 34, 41, 116

LEDGER data source 552, 553

LEFTMARGIN parameter 46, 116

Index

606

legacy dates 407

sliding window and 407

LET command 377–380, 382, 383, 385, 388,

389

LET ECHO command 386

LET substitutions 347, 377

debugging 386

displaying 385

limiting record retrieval 138

LINES parameter 46, 116

LIST requests 69

LOAD command 391, 392

LOAD facility 391

load procedures 541

loaded files 347, 394

loading files 391, 392

Access Files 393

Master Files 393

loading procedures 393

local variables 210, 236, 238

naming 237, 238

LOCATOR data source;sample data sources

LOCATOR 560

long field names 98

LONGSYNM 204

looped procedures 228

-REPEAT command 228–230

-SET command 228, 231

looping 209, 228–230

LRECL 124

M

Main Menu 508

manipulating dates 33

mapping application directories

manually 165

mask option of EDIT function 296, 297

Master Files 201, 415, 416, 541

comments 108

DBA information 108

defining sliding windows in 415–419

loading 393

parsing 395–397

running multiple requests 395, 396

SAVEDMASTERS parameter 139

saving 397

saving in memory 395, 396

TITLE parameter 148

virtual fields 426, 427

MASTER parameter 31

MATCHCOLUMNORDER parameter 117

maximum record length 118

maximum report panel line width 129

MAXLRECL parameter 31, 118

MDI builds 120

MDI files 119

MDICARDWARN parameter 31, 119

MDIENCODING parameter 31, 119

MDIPROGRESS parameter 31, 120

memory 36

controlling 36

Index

Developing Applications 607

menus 457

creating 455

horizontal 458, 467

pulldown 470

vertical 458

MESSAGE parameter 41, 42, 120

messages 216

displaying 209, 210, 216

metadata 29, 193

accessing 193

processing 29

storing 29

MINIO facility 391

MINIO parameter 31, 398–400

MISS_ON parameter 28

missing data characters 104

missing field values 72

missing report data 123

missing segment instances 58

MISSING=ON attribute 104

MISSINGTEST parameter 29, 121

MODCOMPUTE parameter 29

MODIFY requests 403

DEFCENT parameter 407

YRTHRESH parameter 407

MOVIES data source 568

multi-input windows 466

creating 472

MULTIPATH parameter 41, 122

N

National Language Support (NLS) 346

? NLS command 346

natural date literals 261

navigating procedures 223

branching 224, 225

calling another procedure 234

incorporating another procedure 232

looping 228

NEG-ZERO parameter 29

nesting procedures 234

NLS (National Language Support) 346

? NLS command 346

NODATA parameter 42, 123

non-data files 194

non-FOCUS files 209, 210

reading 209

NULL parameter 31, 124

numbering output pages 126

numeric amper variables in functions 302

numeric data types 112

numeric precision 88

numerical notation 69

O

OLDSTYRECLEN parameter 124

ON GRAPH SET command 27

ON TABLE SET command 94

ONFIELD parameter 42, 125

open-ended procedures 235, 236

Index

608

operating system commands 313

optimizing retrieval paths 62

ORIENTATION parameter 46, 125

output files 183, 184

creating 183, 184

output page numbering 102, 126

OVERFLOWCHAR parameter 47, 126

P

page numbering 102

page orientation 125

PAGE parameter 47

PAGE-NUM parameter 47, 126

PAGE-SCALE parameter 47

PAGESIZE parameter 47, 127

PANEL parameter 47, 129

PAPER parameter 47

parameter settings 350

parameter values 251

querying settings 251–253

parameters

querying value settings 253

PARTITION_ON parameter 29, 42

PASS parameter 49, 130

passwords 217

permanent 132

setting 209, 217

unchangeable 132

PAUSE parameter 42

PCHOLD file 106

displaying fields 106

PCOMMA parameter 32, 130

PCTFORMAT parameter 47, 131

PDFLINETERM parameter 132

PERMPASS parameter 49, 132

PERSINFO data source;sample data sources

PERSINFO 561

PF key assignments 349

PF keys 133, 481

PFnn command 481

PFnn parameter 42

PHONETIC_ALGORITHM parameter 133

physical file location 185

mapping to 165

positional variables 274, 275

PostScript reports 149

PREFIX parameter 32

prepending applications to search path 163

PRFTITLE parameter 47, 133

PRINT parameter 47, 134

PRINT requests 69

PRINTDST parameter 42, 134

printed output 116

PRINTPLUS parameter 47, 135

procedures 49, 194, 207, 393

branching 224, 225

calling 232–235

calling;EXEC command 220

canceling 222

Index

Developing Applications 609

procedures 49, 194, 207, 393

comments in 215, 216

creating 214, 235, 236

debugging 306

exiting 209, 221

including 209, 232

including comments 216

loading 393

looping 228

navigating 223–225

nesting 234

prompting 236

rules for creating 214

running 211, 212, 219, 220, 222

SAMPLE 485

sample in Window Painter 505

screening values in 282

security 217, 218, 223

startup 218

variables and 236, 282

processing data 29

processing Dialogue Manager procedures 211,

212

PROD data source 549, 550

product release number 349

profiles 162

applications and 162

prompting for variable values 236, 253, 276, 277

supplying text 280

PSPAGESETUP parameter 47, 135

pull-down menus 470

punctuating large numbers 449–451

Q

QUALCHAR parameter 32, 42, 136

qualified column titles 136

qualified field names 98, 136

QUALTITLES parameter 47, 136

query commands 334, 353, 414

? && 360

? COMBINE 336

? COMBINE command 336

? DEFINE 336, 337

? FDT 339, 340

? FILE 342, 343

? FUNCTION 344

? HOLD 345

? JOIN 345

? LET 347

? LOAD 347, 348, 394

? n 348

? NLS 346, 347

? PFKEY 349

? RELEASE 349, 350

? SET 350

? SET EUROFILE 338, 449

? SET GRAPH 352

? STAT 354

? STYLE 357

? SU 359

Index

610

query commands 334, 353, 414

? USE 359, 360

?F 338

?FF 341

SITECODE 353

querying procedure status 306, 312

QUIT command 223

quote-delimited 291

quote-delimited string 291

QUOTEDSTRING 291

R

RANK parameter 137

REBUILDMSG parameter 47

RECAP-COUNT parameter 48, 137

RECORDLIMIT parameter 138

records 209, 262

accessing 209

reading from a file 262

writing 210

writing to a file 262

REGION data source 554

release number 349

remote drill-downs 101

Reporting Server browser interface 162

application paths 162

reports 38

displaying 43

requests 380

translating 380

resizing graphs 61

resources 397

retrieval paths 62

retrieving comma-delimited files 130

retrieving records 138

return value display windows 462

return values 478

RIGHTMARGIN parameter 48, 138

rounding using DMPRECSION 260

RPAGESET parameter 138

rules for supplying values 254

S

SALES data source 547–549

SALHIST data source;sample data sources

SALHIST 562

sample data sources 541

CAR 550, 551

Century Corp 576

COMASTER Master File 564

COURSE 558, 559

COURSES 555

EDUCFILE 546, 547

EMPLOYEE 541, 543, 544

FINANCE 553, 554

Gotham Grinds 570

ITEMS 568, 569

JOBFILE 544, 545

LEDGER 552, 553

MOVIES 568

Index

Developing Applications 611

sample data sources 541

PROD 549, 550

REGION 554

SALES 547–549

TRAINING 557, 558, 562, 563

VIDEOTR2 569, 570

VideoTrk 565–567

SAVEDMASTERS parameter 32, 139, 395, 396

limitations 397

querying 396

saving in memory; resources 397

SAVEMATRIX parameter 42, 139

saving Master Files in memory 395–397

SBORDER parameter 49

SCREEN parameter 49

screening data sources 99

screening values with -IF tests 282–284

screens 208, 505

clearing 208

Entry Menu 506

Main Menu 508

Utilities Menu 527

Window Creation Menu 510

Window Design Screen 512

Window Options Menu 515

search paths 162

adding names to 163, 164

appending applications manually 164

commands 159

prepending applications manually 163

searching for key fields 63

security 49

SET command 23–27

parameters 27

SET DROPBLNKLINE 89

SET HIPERFOCUS facility 391

SET parameter types 27

SET parameters 23–27, 51

ACCBLN 55

ACROSSLINE 55

ACROSSPRT 55

ACROSSTITLE 56

ACRSVRBTITL 57

ALL 58

ALLOWCVTERR 58, 434

ARCFGU 60

ASNAMES 60

AUTOFIT 61

AUTOINDEX 62

AUTOPATH 62

AUTOSTRATEGY 63

AUTOTABLEF 63

BASEURL 63

BINS 64

BLANKEMPTY 64

BLANKINDENT 65

BOTTOMMARGIN 66

BUSDAYS 66

BYDISPLAY 66

BYPANEL 67

Index

612

SET parameters 23–27, 51

CACHE 68

CARTESIAN 69

CDN 69

CENT-ZERO 70

CNOTATION 70

COLLATION 71

COMPMISS 72

COMPOUND 73

COMPUTE 74

COUNTWIDTH 74

CSSURL 75

CURRENCY_DISPLAY 75

CURRENCY_ISO_CODE 76

CURRENCY_PRINT_ISO 76

CURRSYMB 77

CURSYM_D 77

CURSYM_E 78

CURSYM_F 78

CURSYM_G 78

CURSYM_L 79

CURSYM_Y 79

DATE_ORDER 79

DATE_SEPARATOR 80

DATEDISPLAY 81, 434

DATEFNS 82

DATEFORMAT 82

DATETIME 82

DB_INFILE 83

DBACSENSITIV 83

SET parameters 23–27, 51

DBAJOIN 84

DBASOURCE 84

DEFCENT 85, 408

DEFECHO 86, 307

DEFINES 86

DIRECTHOLD 87

displaying settings 350

DMH_LOOPLIM 87

DMH_STACKLIM 87

DMPRECISION 88

DRILLFOCMISSING 88

DTSTRICT 90

EMBEDDABLE 90

EMPTYCELLS 91

EMPTYREPORT 91

EQTEST 92

ERROROUT 93

ESTRECORDS 94

EUROFILE 94, 444

EXL2KLANG 95

EXL2KTXTDATE 95

EXTAGGR 96

EXTENDNUM 96

EXTHOLD 97

EXTRACT 97

EXTSORT 98

FIELDNAME 98

FILE 99

FILENAME 99

Index

Developing Applications 613

SET parameters 23–27, 51

FILTER 99

FIXRETRIEVE 100

FLOATMAPPING 100

FOC144 101

FOCEXURL 101

FOCFIRSTPAGE 102

FOCSTACK 102

FORMULTIPLE 41, 103

HDAY 103

HIDENULLACRS 104

HLDCOM_TRIMANV 104

HNODATA 104

HOLDATTR 105

HOLDFORMAT 106

HOLDLIST 106

HOLDMISS 107

HOLDSTAT 108

HTMLARCHIVE 108

HTMLCSS 108

HTMLEMBEDIMG 109

HTMLENCODE 109

INDEX 110

JOIN_LENGTH_MODE 41,

111

JOINLM 41, 111

JOINOPT 111

KEEPDEFINES 112

KEEPFILTERS 113

LANG 113

SET parameters 23–27, 51

LAYOUTGRID 115

LEADZERO 116

LEFTMARGIN 116

LINES 116

MATCHCOLUMNORDER

117

MAXLRECL 118

MDICARDWARN 119

MDIENCODING 119

MDIPROGRESS 120

MESSAGE 120

MINIO 398–400

MISSINGTEST 121

MULTIPATH 122

NODATA 123

NULL 124

OLDSTYRECLEN 124

ONFIELD 125

ORIENTATION 125

OVERFLOWCHAR 126

PAGE-NUM 126

PAGESIZE 127

PANEL 129

PASS 130

PCOMMA 130

PCTFORMAT 131

PDFLINETERM 132

PERMPASS 132

Index

614

SET parameters 23–27, 51

PHONETIC_ALGORITHM

133

PRFTITLE 133

PRINT 134

PRINTDST 134

PRINTPLUS 135

PSPAGESETUP 135

QUALCHAR 136

QUALTITLES 136

RANK 137

RECAPCOUNT 137

RECORDLIMIT 138

RIGHTMARGIN 138

RPAGESET 138

SAVEDMASTERS 139,

395–397

SAVEMATRIX 139

SHADOW 140

SHIFT 140

SHOWBLANKS 142

SPACES 143

SQLTOPTIF 144

SQUEEZE 144

STYLESHEET 145

SUBTOTAL 145

SUMMARYLINES 146

SUMPREFIX 147

TESTDATE 411

TIME_SEPARATOR 148

SET parameters 23–27, 51

TITLE 148

TITLELINE 148

TOPMARGIN 149

UNITS 149

USER 150

USERFCHK 150

USERFNS 151

WARNING 152

WEEKFIRST 152

XLSXPAGEBRKIGNORE

154

XRETRIEVAL 154

YRTHRESH 154

SET SAVEDMASTERS facility 391

SET SQUEEZE parameter 144

SET WPMINWIDTH 153

setting parameters 23–27

setting multiple parameters 25

SHADOW parameter 32, 140

SHIFT parameter 32, 140

SHORTPATH parameter 42, 141

SHOWBLANKS parameter 142

sink machine 201

SITECODE command 353

sliding window 403, 404

calculated value 428–431

date format 407

date options 433

DEFCENT parameter 407

Index

Developing Applications 615

sliding window 403, 404

defining in a Master File 415–418

defining with SET 408, 409, 411, 412

dynamic window 406, 411, 412

field-level 415, 417–420

file-level 415, 416, 420

global 408, 409

legacy dates 407

subroutines and 425, 432

YRTHRESH parameter 407

sort groups 66

sorting externally 98

sorting fields 66

sorting records 94

SORTLIB parameter 42

SORTMATRIX parameter 42

SORTMEMORY parameter 43

SPACES parameter 48, 143

sparse ranking 137

special variables 251

&CURSOR 251

&CURSORAT 251

&ECHO 251

&PFKEY 251

&QUIT 251

&STACK 251

&WINDOWNAME 251

&WINDOWVALUE 251

specifying business days 66

specifying currency symbols 77–79

specifying punctuation 69

specifying qualifying characters 136

specifying value ranges 279

SQL Translator 144

SQLTOPTTF parameter 38, 144

SQUEEZE parameter 48

stacked commands 211, 212, 227

executing 209, 220, 221

startup procedures 218

statistical variables 210, 236, 248, 250

querying 252

testing 227

stored procedures, reporting on 372

storing data 29

storing parsed Master Files in memory 395, 396

strict processing 90

strings 291

structure diagrams 541

structured HOLD files 97

StyleSheet bottom boundary 66

StyleSheet margins 116

STYLESHEET parameter 48, 145

StyleSheet parameters 138

StyleSheets 357

? STYLE 357

formatting 145

page orientation 125

SQUEEZE parameter 144

styling HTML reports 75

styling reports 125

Index

616

SU machine 359

subroutines 209

calling 299

running 209

substitutions 377–383

assigning to function keys 388, 389

debugging 386

SUBTOTAL parameter 48

SUBTOTAL SET parameter 145

SUMMARYLINES SET parameter 146

SUMPREFIX parameter 43, 147

supplying default variable values 257

supplying variable values 25, 253

suppressing blank lines 89

SUSI parameter 32

SUTABSIZE parameter 32

sync machines 359

synonym locations 167

synonyms 204

long names on z/OS 204

sysapps 363

syscolum 364

sysdeffn 365

syserr 366

sysfiles 367

sysimp 369

sysindex 370

syskeys 371

sysrpdir 372

sysset 373

syssqlop 373

systable 374

system date 434

system defaults 329

system tables 361

sysapps 363

syscolum 364

sysdeffn 365

syserr 366

sysfiles 367

sysimp 369

sysindex 370

syskeys 371

sysrpdir 372

sysset 373

syssqlop 373

systable 374

sysvdtp 375

system variables 210, 236, 240, 247, 306

&DATE 246

&DMY 241

&DMYY 241

&FOCBORDERS 244

&FOCCODEPAGE 241

&FOCCPU 242

&FOCEXTTRM 242

&FOCFIELDNAME 242

&FOCFOCEXEC 246

&FOCINCLUDE 243

&FOCMODE 243

Index

Developing Applications 617

system variables 210, 236, 240, 247, 306

&FOCNEXTPAGE 243

&FOCPRINT 243

&FOCPUTLVL 243

&FOCQUALCHAR 243

&FOCSUER 244

&FOCTRMSD 244

&FOCTRMSW 244

&FOCTRMTYP 244

&HIPERFOCUS 244

&MDYY 244

&RETCODE 245

&SETFILE 245

&TOD 246

&YYMD 246, 247

ECHO 241

EXITRC 241

testing 227

sysvdtp 375

T

TABLE requests 91

TABLEF commands 144

tables, reporting on 374

TED (text editor) 214

temporary files 202

TERMINAL parameter 48

TESTDATE parameter 34, 411

text display windows 460

creating 489, 493

text input windows 459

TIME_SEPARATOR parameter 148

TITLE attribute 105

TITLE parameter 43, 148

TITLELINE parameter 48, 148

TOPMARGIN parameter 48, 149

TRACKIO parameter 32

trailing blanks 297

deleting 298

TRAINING data source 557, 558, 562, 563

TRANTERM parameter 48

TRMOUT parameter 49

TRUNCATE function 297, 298

truncating leading zeros 116

U

unconditional branching 209, 224

-GOTO command 224, 225

UNITS parameter 48, 149

Universal Naming Convention (UNC) 166

UNLOAD command 391, 393

unloading files 391, 393

URL location 63

USE command 196, 201

USER parameter 49, 150

USERFCHK parameter 150

USERFNS parameter 151

Utilities Menu 527

Index

618

V

valid values 279, 280

values 295, 456

specifying ranges 279

default 329

defining 295, 296

goto 479, 515

prompting for 277, 280

querying 251, 252

screening 282–284

setting 300

supplying 236, 254, 260, 262, 273, 274,

276–278, 280

valid 279, 280

variable name length 254

variable types 210

amper 236

global 210, 236, 239

local 210, 236, 238

positional 274

special 251

statistical 210, 236, 248

system 210, 236, 240

variable values 273, 274

-DEFAULT command and 257, 316

? && 360

dates 261

length 254

querying 360

variable values 273, 274

supplying 25, 26, 253–255, 257, 258, 260,

262, 273, 274, 276, 278–280, 325

supplying default 257

verifying 253

variables 236, 281, 291

appending values 290

assigning values to 209, 300

changing commands 301

computing 295, 296

concatenating 289

evaluating 286

procedures and 236

querying 251, 252

quote-delimited 291

setting 209

substitution 236

supplying values 25, 26, 254, 260, 262, 273,

274, 276, 278, 280

vertical menus 458

creating 495, 501

VIDEOTR2 data source 569, 570

VideoTrk data source 565–567

viewing source code 120

virtual fields 86, 112, 336, 422

? DEFINE command 336

defining windows for 422, 424, 426, 427

displaying 336

visual overflow 96

Index

Developing Applications 619

W

warning message 119

MDICARDWARN 119

WARNING parameter 152

web archive documents 108

WEBARCHIVE parameter 32

WEBTAB parameter 48

WEEKFIRST parameter 32, 152

WIDTH parameter 33

window applications 476

WINDOW COMPILE command 538

Window Creation Menu 510

Window Design Screen 512

Window facility 476

window files 456, 457

creating 487

Window Options Menu 515

Display list 519

Heading 518

Help window 521, 526

Hide list 520

Line break 524

Multi-select 525

Popup 520

Quit 526

Show a window 518

Unshow a window 518

WINDOW PAINT command 506

Window Painter 210, 455

goto values 456

Window Painter 210, 455

invoking 506

main menu 489

screens 505

tutorial 484

window files 456

windows 457, 464

&WINDOWNAME variable 480

&WINDOWVALUE variable 480

accessing a network drive 166

creating 455, 467

field names 461

file contents 462

file names 460

horizontal 458, 467

multi-input 466, 472

procedures 475

return value display 462

returning to caller 480

running 482, 483

text display 460

text input 459

types 458

vertical menu 458

word substitutions 347, 377–383

assigning to function keys 388, 389

debugging 386

WPMINWIDTH parameter 33, 153

Index

620

X

XFOCUSBINS parameter 33

XLSXPAGEBRKIGNORE parameter 48, 154

XRETRIEVAL parameter 33, 154

Y

Y2K compliance 82

year-2000 compliance 82

YRTHRESH parameter 34, 154, 404, 405, 407,

408

COMPUTE command 428

YRTHRESH parameter 34, 154, 404, 405, 407,

408

DEFINE command 422

MODIFY requests and 407

querying 414

with COMPUTE 430

Z

zero field values 55

ZIIP parameter 38

Index

Developing Applications 621

Index

622

	Contents
	1. Customizing Your Environment
	When Do You Use the SET Command?
	Coding a SET Command
	Syntax: How to Set Parameters
	Example: Setting a Single Parameter
	Example: Setting Multiple Parameters

	Syntax: How to Set Parameters in a Report Request
	Example: Setting Parameters in a Report Request

	Syntax: How to Set Parameters in a Graph Request
	Example: Setting Parameters in a Graph Request

	Types of SET Parameters
	Calculations
	Data and Metadata
	Date Manipulation Tasks
	Graph Tasks
	Memory Setup and Optimization Tasks
	Report Code, Content, and Processing Tasks
	Report Layout and Display Tasks
	Security Tasks
	Terminal Tasks

	SET Parameter Syntax
	ACCBLN
	ACROSSLINE
	ACROSSPRT
	ACROSSTITLE
	ACRSVRBTITL
	ALL
	ALLOWCVTERR
	ALTBACKPERLINE
	ARCFGU
	ASNAMES
	AUTOFIT
	AUTOINDEX
	AUTOPATH
	AUTOSTRATEGY
	AUTOTABLEF
	BASEURL
	BINS
	BLANKEMPTY
	BLANKINDENT
	BOTTOMMARGIN
	BUSDAYS
	BYDISPLAY
	BYPANEL
	CACHE
	CARTESIAN
	CDN
	CENT-ZERO
	CNOTATION
	COLLATION
	COMPMISS
	COMPOUND
	COMPUTE
	COUNTWIDTH
	CSSURL
	CURRENCY_DISPLAY
	CURRENCY_ISO_CODE
	CURRENCY_PRINT_ISO
	CURRSYMB
	CURSYM_D
	CURSYM_E
	CURSYM_F
	CURSYM_G
	CURSYM_L
	CURSYM_Y
	DATE_ORDER
	DATE_SEPARATOR
	DATEDISPLAY
	DATEFNS
	DATEFORMAT
	DATETIME
	DB_INFILE
	DBACSENSITIV
	DBAJOIN
	DBASOURCE
	DEFCENT
	DEFECHO
	DEFINES
	DIRECTHOLD
	DMH_LOOPLIM
	DMH_STACKLIM
	DMPRECISION
	DRILLFOCMISSING
	DROPBLNKLINE
	DTSTRICT
	DUPLICATECOL
	EMBEDDABLE
	EMPTYCELLS
	EMPTYREPORT
	EQTEST
	ERROROUT
	ESTRECORDS
	EUROFILE
	EXCELSERVURL
	EXL2KLANG
	EXL2KTXTDATE
	EXTAGGR
	EXTENDNUM
	EXTHOLD
	EXTRACT
	EXTSORT
	FIELDNAME
	FILE[NAME]
	FILTER
	FIXRET[RIEVE]
	FLOATMAPPING
	FOC144
	FOCEXURL
	FOCFIRSTPAGE
	FOCSTACK
	FORMULTIPLE
	HDAY
	HIDENULLACRS
	HLDCOM_TRIMANV
	HNODATA
	HOLDATTR
	HOLDFORMAT
	HOLDLIST
	HOLDMISS
	HOLDSTAT
	HTMLARCHIVE
	HTMLCSS
	HTMLEMBEDIMG
	HTMLENCODE
	INDEX
	JOIN_LENGTH_MODE (JOINLM)
	JOINOPT
	KEEPDEFINES
	KEEPFILTERS
	LANG[UAGE]
	LAYOUTGRID
	LEADZERO
	LEFTMARGIN
	LINES
	MATCHCOLUMNORDER
	MAXDATAEXCPT
	MAXLRECL
	MDICARDWARN
	MDIENCODING
	MDIPROGRESS
	MESSAGE
	MISS_ON
	MISSINGTEST
	MULTIPATH
	NEG-ZERO
	NODATA
	NULL
	OLDSTYRECLEN
	ONFIELD
	ORIENTATION
	OVERFLOWCHAR
	PAGE[-NUM]
	PAGESIZE
	PANEL
	PARTITION_ON
	PASS
	PCOMMA
	PCTFORMAT
	PDFLINETERM
	PERMPASS
	PHONETIC_ALGORITHM
	PRFTITLE
	PRINT
	PRINTDST
	PRINTPLUS
	PSPAGESETUP
	QUALCHAR
	QUALTITLES
	RANK
	RECAP-COUNT
	RECORDLIMIT
	RIGHTMARGIN
	RPAGESET
	SAVEDMASTERS
	SAVEMATRIX
	SHADOW
	SHIFT
	SHORTPATH
	SHOWBLANKS
	SORTMATRIX
	SORTMEMORY
	SPACES
	SQLTOPTTF
	SQUEEZE
	STYLE[SHEET]
	SUBTOTALS
	SUMMARYLINES
	SUMPREFIX
	TESTDATE
	TIME_SEPARATOR
	TITLELINE
	TITLES
	TOPMARGIN
	UNITS
	USER
	USERFCHK
	USERFNS
	WARNING
	WEEKFIRST
	WPMINWIDTH
	XLSXPAGEBRKIGNORE
	XRETRIEVAL
	YRTHRESH

	2. Managing Applications
	What Is an Application?
	Application Commands Overview
	Reference: APP Commands Quick Reference
	Reference: Application Metadata Commands and Metadata Tables

	Search Path Management Commands
	APP PATH
	Syntax: How to Add an Application to the Search Path Manually

	APP PREPENDPATH
	Syntax: How to Add Application Names to the Beginning of a Search Path

	APP APPENDPATH
	Syntax: How to Add Application Names to the End of a Search Path

	APP MAP
	Syntax: How to Map a Physical File Location or Redirect an Application
	Syntax: How to Map DDNAME Allocations
	Example: Mapping DDNAME Allocations

	Reference: APP MAP With Universal Naming Convention (UNC)

	APP SET METALOCATION_SAME
	Syntax: How to Control the Location of Synonym Files

	APP ? METALOCATION_SAME
	Syntax: How to Query Whether Synonym Files Must Reside in the Same Location

	APP SHOWPATH
	Syntax: How to List Active Applications
	Example: Listing Active Applications in the Search Path

	Application and File Management Commands
	APP CREATE
	Syntax: How to Create an Application Manually
	Syntax: How to Change Default Characteristics of Component File Types (z/OS Only)
	Example: Changing Default Characteristics of an Application

	APP COPY
	Syntax: How to Copy an Application

	APP COPYF[ILE]
	Syntax: How to Copy an Application Component Manually

	APP MOVE
	Syntax: How to Move an Application

	APP MOVEF[ILE]
	Syntax: How to Move an Application Component Manually

	APP DELETE
	Syntax: How to Delete an Application Manually

	APP DELETEF[ILE]
	Syntax: How to Delete an Application Component Manually

	APP PROPERTY CODEPAGE
	Syntax: How to Specify a Code Page for an Application

	APP RENAME
	Syntax: How to Rename an Application
	Example: Renaming an Application

	APP RENAMEF[ILE]
	Syntax: How to Rename an Application Component

	Designating File Types for APP Commands

	Output Redirection Commands
	Reference: Interactions Among Output Redirection Commands
	APP HOLD
	Syntax: How to Designate a Storage Location for Temporary Files

	APP HOLDDATA
	Syntax: How to Designate a Storage Location for Data Files

	APP HOLDMETA
	Syntax: How to Designate a Storage Location for Master and Access Files

	APP FI[LEDEF]

	Application Metadata Commands and Catalog Metadata
	Retrieving Basic Information
	STATE
	Syntax: How to Check File Existence
	Example: Checking the Existence of a File With the STATE Command

	APP LIST
	Syntax: How to List the Applications in APPROOT
	Example: Using APP LIST to List and Work with Applications

	APP QUERY
	Syntax: How to List Components
	Example: Listing Application Files

	Retrieving Extended Catalog Information
	catalog/sysapps
	Example: Listing Files in an APP

	catalog/sysfiles
	Example: Listing APP MASTER Objects
	Example: Listing APP FOCEXEC Objects
	Example: Using the SYSFILES Table to Check File Existence

	APP HELP
	Syntax: How to Retrieve Information About APP Commands: APP HELP

	Accessing Metadata and Procedures
	Search Rules
	Example: Search Paths

	Creation Rules for Procedure Files
	Locating Master Files and Procedures
	Syntax: How to Locate Files
	Example: Locating Files

	Accessing Existing Data Files
	Creation Rules for Data Files
	Example: Sample Allocations by JCL
	Example: Sample DYNAM Commands
	Syntax: How to Issue a FILEDEF Command
	Syntax: How to Issue a FILEDEF Command to Concatenate Files
	Example: Concatenating Files Using FILEDEF

	Syntax: How to Issue a FILEDEF Command for a Native MVS Data Set
	Syntax: How to Issue a USE Command
	Example: Sample USE Commands

	Data Set Names
	Syntax: How to Define a Data Set

	Allocating Temporary Files
	Syntax: How to Allocate Temporary Files
	Reference: Usage Notes for Allocating Temporary Files
	Syntax: How to Allocate Temporary Files to MVS Data Sets
	Reference: System Defaults for Allocating Temporary Files to MVS Data Sets
	Syntax: How to Support Long Synonym Names Using DYNAM SET LONGSYNM
	Syntax: How to Pre-Allocate Temporary Files
	Syntax: How to Dynamically Allocate FOCUS Files on z/OS

	3. Managing Flow of Control in an Application
	Uses for Dialogue Manager
	Reference: Overview of Dialogue Manager Commands
	Dialogue Manager Variables Overview

	Dialogue Manager Processing
	Example: Processing a Procedure

	Creating a Procedure
	Reference: Rules for Creating Procedures
	Including Comments in a Procedure
	Syntax: How to Add a FOCUS-Style Comment in a Procedure
	Example: Placing a FOCUS-Style Comment in a Procedure
	Example: Placing C-Style Comments in a Procedure

	Sending a Message to the User
	Syntax: How to Send a Message to the User
	Example: Sending a Message

	Controlling User Access to Data
	Syntax: How to Set a Password in a Procedure

	Creating a Startup Procedure
	Example: Creating a Startup Profile

	Executing and Terminating a Procedure
	Executing Procedures
	Syntax: How to Execute a Procedure
	Example: Executing a Procedure

	Executing Stacked Commands and Continuing the Procedure
	Example: Executing Stacked Commands and Continuing the Procedure

	Executing Stacked Commands and Exiting the Procedure
	Example: Executing Stacked Commands and Exiting the Procedure

	Canceling the Execution of a Procedure
	Syntax: How to Cancel the Execution of a Procedure
	Syntax: How to Cancel the Execution of a Procedure and Exit FOCUS
	Example: Canceling the Execution of a Procedure

	Locking Procedure Users Out of FOCUS
	Syntax: How to Lock Procedure Users Out of FOCUS

	Navigating a Procedure
	Branching Unconditionally
	Syntax: How to Branch Unconditionally
	Example: Branching Unconditionally

	Branching Conditionally
	Syntax: How to Branch Conditionally
	Example: Performing Conditional Branching
	Example: Conditional Branching Based on Testing of System and Statistical Variables
	Example: Conditional Branching Based on User Input
	Example: Conditional Branching Based on a Compound -IF Test

	Looping in a Procedure
	Syntax: How to Specify a Loop
	Example: Repeating a Loop
	Example: Controlling Loops With -SET

	Incorporating Another Procedure With -INCLUDE
	Syntax: How to Incorporate a File
	Example: Incorporating Another Procedure With -INCLUDE
	Example: Incorporating a Procedure With a Heading
	Example: Incorporating a Procedure for a Virtual Field

	Nesting Procedures With -INCLUDE
	Calling Another Procedure With EXEC
	Syntax: How to Call a Procedure With the EXEC Command
	Example: Calling a Procedure With EXEC

	Developing an Open-Ended Procedure
	Example: Developing and Running an Open-Ended Procedure

	Using Variables in a Procedure
	Reference: Naming Conventions for Local and Global Variables
	Syntax: How to Specify a Variable Name
	Local Variables
	Example: Using Local Variables

	Global Variables
	Example: Using Global Variables

	System Variables
	Reference: Summary of System Variables
	Example: Retrieving the Date Using the System Variable &DATE
	Example: Retrieving the Procedure Name Using the System Variable &FOCFOCEXEC
	Example: Displaying a Date Using the System Variable &YYMD

	Statistical Variables
	Reference: Summary of Statistical Variables
	Example: Controlling Execution of a Request With the Statistical Variable &LINES

	Special Variables
	Reference: Summary of Special Variables

	Querying the Values of Variables and Parameters
	Syntax: How to Display the Value of a Variable
	Syntax: How to Store Parameter Value Settings
	Example: Storing a Parameter Value Setting

	Supplying and Verifying Values for Variables
	Reference: Rules for Supplying Variable Values
	Example: Supplying Variable Values in a Procedure

	Supplying a Default Variable Value
	Syntax: How to Supply a Default Value
	Example: Supplying a Default Value

	Supplying Variable Values in an Expression
	Syntax: How to Assign a Value in an Expression
	Reference: Usage Notes for IN FILE
	Syntax: How to Specify Precision for Dialogue Manager Calculations
	Example: Setting Precision for Dialogue Manager Calculations
	Example: Setting a Variable Value in an Expression
	Example: Setting a Literal Value
	Example: Setting the Difference Between Two Dates
	Example: Testing Whether a Variable Value Is in a File
	Example: Initializing a Variable to a Long String

	Reading Variable Values From and Writing Variable Values to an External File
	Syntax: How to Retrieve a Variable Value From an External File
	Example: Reading a Value From an External File

	Syntax: How to Write a Variable Value to an External File
	Example: Writing to a File
	Example: Reading From and Writing to an External File

	Syntax: How to Read Master File Fields Into Dialogue Manager Variables
	Reference: Usage Notes for -READFILE
	Example: Reading Fields From a Data Source Into Dialogue Manager Variables Using -READFILE

	Syntax: How to Close an External File

	Reading or Writing an Entire File
	EDAGET: Reading a File of a Specified Type
	Syntax: How to Read a File of a Specified Type
	Example: Reading a File Using EDAGET

	EDAPUT: Writing a File of a Specified Type
	Syntax: How to Write a File of a Specified Type
	Example: Writing a Master File to Disk

	Supplying Variable Values on the Command Line
	Syntax: How to Supply a Variable Value on the Command Line
	Reference: Rules for Using Named and Positional Variables With EXEC
	Example: Supplying Values on the Command Line
	Example: Using Positional Variables
	Example: Mixing Named and Positional Variables

	Prompting Directly for Values With -PROMPT
	Example: Prompting for Variable Values

	Prompting for Values on Screens With -CRTFORM
	Prompting for Values on Menus and Windows With -WINDOW
	Prompting for Values Implicitly
	Example: Automatically Prompting for Variable Values

	Verifying User-Supplied Values Against a Set of Format Specifications
	Reference: Format Specifications for Variables
	Example: Using a Format Specification to Verify User Input

	Verifying User Input Against a Pre-Defined List of Values
	Example: Providing a List of Valid Values With -PROMPT
	Syntax: How to Create a Reply List as a Variable
	Example: Using a Variable to Provide a Reply List
	Example: Supplying Text for Variable Prompting

	Manipulating and Testing Variables
	Testing Variables for Length, Type, and Existence
	Syntax: How to Screen a Variable Value for Length and TYPE
	Example: Testing for Variable Length
	Example: Storing the Length of a Variable
	Example: Testing for Variable Type

	Syntax: How to Test for the Presence of a Variable Value
	Example: Testing for the Presence of a Variable

	Replacing a Variable Immediately
	Reference: Usage Notes for .EVAL
	Syntax: How to Replace a Variable Immediately
	Example: Replacing a Variable Immediately
	Example: Using .EVAL to Interpret a Variable

	Validating Variable Values Without Data File Access: REGEX
	Syntax: How to Validate a Variable Value Using a REGEX Mask
	Example: Using a REGEX Mask to Validate a Social Security Number
	Example: Using REGEX With an Incorrect Value
	Example: Using REGEX With an Invalid Regular Expression

	Concatenating Variables
	Syntax: How to Concatenate Variables

	Creating an Indexed Variable
	Syntax: How to Create an Indexed Variable
	Example: Using an Indexed Variable in a Loop

	Creating a Standard Quote-Delimited String
	Syntax: How to Create a Standard Quote-Delimited Character String
	Example: Creating a Standard Quote-Delimited Character String
	Example: Converting User Input to a Standard Quote-Delimited Character String
	Example: Using Quote-Delimited Strings With Relational Data Adapters

	Reference: Usage Notes for Quote-Delimited Character Strings

	Performing a Calculation on a Variable
	Syntax: How to Perform a Calculation on a Variable
	Example: Altering a Variable Value

	Changing a Variable Value With the DECODE Function
	Example: Changing the Value of a Variable

	Extracting Characters From a Variable Value With the EDIT Function
	Example: Extracting a Character From a Variable

	Removing Trailing Blanks From Variables With the TRUNCATE Function
	Syntax: How to Remove Trailing Blanks From Variables
	Example: Removing Trailing Blanks

	Calling a Function
	Syntax: How to Set a Variable Value Based on the Result From a Function
	Example: Setting a Variable Value Based on the Result From a Function

	Syntax: How to Load and Execute a Function With -TSO/-MVS RUN
	Example: Loading and Executing a Function

	Using Variables to Alter Commands
	Example: Using a Variable to Control What the TABLE Command Prints

	Using Numeric Amper Variables in Functions
	Determining Amper Variable Data Type
	Manipulating Amper Variables
	Using an Amper Variable in an Expression
	Using Amper Variables as Subroutine Parameters
	Using a Numeric Amper Variable as a Numeric Subroutine Parameter
	Using a Numeric Amper Variable as an Alphanumeric Subroutine Parameter

	Debugging a Procedure
	Syntax: How to Display Command Lines as They Execute
	Syntax: How to Establish a Default Value for the &ECHO Variable
	Reference: Usage Notes for SET DEFECHO = NONE
	Example: Preventing Procedure Code From Being Displayed

	Syntax: How to Test Dialogue Manager Command Logic
	Example: Using the &RETCODE Variable to Test the Result of a Command

	Reference: Testing the Status of a Query

	Issuing an Operating System Command
	Syntax: How to Execute an Operating System Command

	Dialogue Manager Quick Reference
	-* Command
	? Command
	-CLOSE Command
	-CRTCLEAR Command
	-CRTFORM Command
	-DEFAULT[S|H] Command
	-EXIT Command
	-GOTO Command
	-IF Command
	-INCLUDE Command
	-label Command
	-MVS Command
	-MVS RUN Command
	-PASS Command
	-PROMPT Command
	-QUIT Command
	-READ Command
	-READFILE Command
	-REMOTE Command
	-REPEAT Command
	-RUN Command
	-SET Command
	-TSO Command
	-TSO RUN Command
	-TYPE Command
	-WINDOW Command
	-WRITE Command
	-" " Command
	Dialogue Manager Defaults and Limits

	4. Testing and Debugging With Query Commands
	Using Query Commands
	Syntax: How to Issue a Query Command
	Reference: Query Command Summary

	Displaying Combined Structures
	Syntax: How to Display Combined Structures
	Example: Displaying Combined Structures

	Displaying Virtual Fields
	Syntax: How to Display Virtual Fields
	Example: Displaying Virtual Fields

	Reference: ? DEFINE Query Information

	Displaying the Currency Data Source in Effect
	Syntax: How to Display the Currency Data Source in Effect

	Displaying Available Fields
	Syntax: How to Display Available Fields
	Example: Displaying Available Fields

	Displaying the File Directory Table
	Syntax: How to Display a File Directory Table
	Example: Displaying a File Directory Table

	Reference: ? FDT Query Information

	Displaying Field Information for a Master File
	Syntax: How to Display Field Information for a Master File
	Example: Displaying Field Information for a Master File

	Displaying Data Source Statistics
	Syntax: How to Display Data Source Statistics
	Example: Displaying Data Source Statistics

	Reference: ? FILE Query Information

	Displaying Defined Functions
	Syntax: How to Display DEFINE Functions
	Example: Displaying DEFINE Functions

	Displaying HOLD Fields
	Syntax: How to Display HOLD Fields
	Example: Displaying HOLD Fields

	Displaying JOIN Structures
	Syntax: How to Display JOIN Structures
	Example: Displaying JOIN Structures

	Reference: ? JOIN Query Information

	Displaying National Language Support
	Syntax: How to Display Information About National Language Support
	Example: Displaying Information About National Language Support

	Displaying LET Substitutions
	Syntax: How to Display LET Substitutions
	Example: Displaying LET Substitutions

	Displaying Information About Loaded Files
	Syntax: How to Display Information About Loaded Files
	Example: Displaying Information About Loaded Files

	Displaying Explanations of Error Messages
	Syntax: How to Display Explanations of Error Messages
	Example: Displaying Explanations of Error Messages

	Displaying PF Key Assignments
	Syntax: How to Display PF Key Assignments
	Example: Displaying PF Key Assignments

	Displaying the Release Number
	Syntax: How to Display the Release Number
	Example: Displaying the Release Number

	Displaying Parameter Settings
	Syntax: How to Display Parameter Settings
	Example: Displaying Parameter Settings
	Example: Displaying a Single Parameter Setting
	Example: Displaying Where a Parameter Can Be Set

	Displaying Graph Parameters
	Syntax: How to Display Graph Parameters
	Example: Displaying Graph Parameters

	Displaying the Site Code
	Syntax: How to Retrieve the Site Code
	Example: Querying the Site Code

	Displaying Command Statistics
	Syntax: How to Display Command Statistics
	Example: Displaying Command Statistics

	Reference: ? STAT Query Information

	Displaying StyleSheet Parameter Settings
	Syntax: How to Display StyleSheet Parameter Settings
	Example: Displaying StyleSheet Parameter Settings

	Reference: ? STYLE Query Information

	Displaying Information About the SU Machine
	Syntax: How to Display Information About the TIBCO FOCUS Database Server
	Example: Displaying Information About the TIBCO FOCUS Database Server

	Displaying Data Sources Specified With USE
	Syntax: How to Display Data Sources Specified With USE
	Example: Displaying Data Sources Specified With USE

	Displaying Global Variable Values
	Syntax: How to Display Global Variable Values
	Example: Displaying Global Variable Values

	Reporting Dynamically From System Tables
	Overview of System Table Synonyms
	SYSAPPS: Reporting on Applications and Application Files
	Example: Retrieving Application and File Information

	SYSCOLUM: Reporting on Tables and Their Columns
	Example: Retrieving Table and Column Information

	SYSDEFFN: Reporting on DEFINE FUNCTIONS
	Example: Retrieving DEFINE FUNCTION Information

	SYSERR: Reporting on Error Message Files
	Example: Retrieving Error Message File Information

	SYSFILES: Reporting on Metadata or Procedure Directory Information
	Example: Retrieving Master File Information

	SYSIMP: Reporting on Impact Analysis Information
	Example: Retrieving Impact Analysis Information

	SYSINDEX: Reporting on Index Information
	Example: Retrieving Index Information

	SYSKEYS: Reporting on Key Information
	Example: Retrieving Key Information

	SYSRPDIR: Reporting on Stored Procedures
	Example: Retrieving Stored Procedure Information

	SYSSET: Reporting on SET Parameters
	Example: Retrieving Information About SET Parameters

	SYSSQLOP: Reporting on Function Information
	Example: Retrieving Function Descriptions and Syntax

	SYSTABLE: Reporting on Table Information
	Example: Retrieving A List of FMI Synonyms

	Reporting on Data Types
	Example: Retrieving Data Types for the Adapter for MySQL

	5. Defining a Word Substitution
	The LET Command
	Syntax: How to Make a Substitution (Short Form)
	Example: Making a Substitution (Short Form)

	Syntax: How to Make a Substitution (Long Form)
	Example: Making a Single Substitution (Long Form)
	Example: Making Multiple Substitutions (Long Form)
	Example: Defining Substitutions for Translation

	Variable Substitution
	Example: Making a Variable Substitution
	Example: Making Multiple Variable Substitutions (Unnumbered)
	Example: Making Multiple Variable Substitutions (Numbered)
	Example: Making a Variable Substitution in a Phrase
	Example: Defining a System Command

	Null Substitution
	Syntax: How to Define a Null Word
	Example: Defining a Null Word

	Multiple-Line Substitution
	Example: Making Multiple-Line Substitutions

	Recursive Substitution
	Example: Making a Recursive Substitution
	Example: Abbreviating a Long Phrase

	Using a LET Substitution in a COMPUTE or DEFINE Command
	Example: Using a LET Substitution in a COMPUTE or DEFINE Command

	Checking Current LET Substitutions
	Syntax: How to Check Current LET Substitutions
	Example: Checking Selected LET Substitutions
	Example: Checking All Current LET Substitutions

	Interactive LET Query: LET ECHO
	Syntax: How to Activate the LET ECHO Facility
	Syntax: How to Deactivate the LET ECHO Facility
	Reference: Results of LET ECHO Commands

	Clearing LET Substitutions
	Syntax: How to Clear LET Substitutions
	Example: Clearing LET Substitutions

	Saving LET Substitutions in a File
	Syntax: How to Save LET Substitutions

	Assigning Phrases to Function Keys
	Syntax: How to Assign a Phrase to a Function Key
	Example: Assigning Phrases to Function Keys

	6. Enhancing Application Performance
	FOCUS Facilities
	Loading a File
	Syntax: How to Load a File
	Example: Loading Multiple Files

	Syntax: How to Unload a File
	Example: Unloading Multiple Files

	Loading Master Files, FOCUS Procedures, and Access Files
	Reference: Considerations for Loading a Master File, FOCUS Procedure, or Access File

	Displaying Information About Loaded Files
	Syntax: How to Display Information About Loaded Files
	Example: Displaying Information About Loaded Files

	Saving Master Files in Memory for Reuse
	Syntax: How to Save Parsed Master Files in Memory
	Syntax: How to Query the SAVEDMASTERS Setting
	Example: Saving and Querying Parsed Master Files

	Reference: Usage Notes for SET SAVEDMASTERS

	Accessing a FOCUS Data Source
	Syntax: How to Set MINIO
	Using MINIO
	Determining If a Previous Command Used MINIO
	Syntax: How to Determine If a Previous Command Used MINIO
	Example: Determining If a Previous Command Used MINIO

	Reference: Restrictions for Using MINIO

	7. Working With Cross-Century Dates
	When Do You Use the Sliding Window Technique?
	The Sliding Window Technique
	Defining a Sliding Window
	Creating a Dynamic Window Based on the Current Year

	Applying the Sliding Window Technique
	When to Supply Settings for DEFCENT and YRTHRESH
	Date Validation

	Defining a Global Window With SET
	Syntax: How to Define a Global Window With SET
	Example: Defining a Global Window With SET

	Defining a Dynamic Global Window With SET
	Example: Defining a Dynamic Global Window With SET

	Querying the Current Global Value of DEFCENT and YRTHRESH
	Syntax: How to Query the Current Global Value of DEFCENT and YRTHRESH
	Example: Querying the Current Global Value of DEFCENT and YRTHRESH

	Defining a File-Level or Field-Level Window in a Master File
	Syntax: How to Define a File-Level Window in a Master File
	Example: Defining a File-Level Window in a Master File

	Syntax: How to Define a Field-Level Window in a Master File
	Example: Defining a Field-Level Window in a Master File
	Example: Defining a Field-Level Window in a Master File Used With MODIFY
	Example: Defining Both File-Level and Field-Level Windows

	Defining a Window for a Virtual Field
	Syntax: How to Define a Window for a Virtual Field in a Request
	Example: Defining a Window for a Virtual Field in a Request
	Example: Defining a Window for Function Input in a DEFINE Command

	Syntax: How to Define a Window for a Virtual Field in a Master File
	Example: Defining a Window for a Virtual Field in a Master File

	Defining a Window for a Calculated Value
	Syntax: How to Define a Window for a Calculated Value in a Report
	Syntax: How to Define a Window for a Calculated Value in a MODIFY Request
	Example: Defining a Window for a Calculated Value
	Example: Defining a Window for Function Input in a COMPUTE Command

	Additional Support for Cross-Century Dates
	Default Date Display Format
	Date Display Options
	System Date Masking
	Date Functions
	Date Conversion
	Century and Threshold Information
	Date Time Stamp

	8. Euro Currency Support
	Integrating the Euro Currency
	Converting Currencies
	Reference: Currency Conversion Rules
	Example: Performing Triangulation

	Creating the Currency Data Source
	Syntax: How to Create a Currency Data Source
	Reference: Sample Currency Codes
	Example: Specifying Currency Codes and Rates in a Master File

	Identifying Fields That Contain Currency Data
	Syntax: How to Identify a Currency Value
	Example: Identifying a Currency-Denominated Field

	Activating the Currency Data Source
	Syntax: How to Activate Your Currency Data Source
	Reference: EUROFILE Error Messages and Notes

	Processing Currency Data
	Syntax: How to Process Currency Data
	Reference: Currency Calculation Error Messages
	Example: Using the Currency Conversion Function
	Example: Converting U.S. Dollars to Euros, French Francs, and Belgian Francs

	Querying the Currency Data Source in Effect
	Syntax: How to Determine the Currency Data Source in Effect
	Example: Determining the Currency Data Source in Effect

	Punctuating Numbers
	Syntax: How to Determine the Punctuation of Large Numbers
	Example: Displaying Numbers Using Continental Decimal Notation
	Example: Determining the Punctuation of Large Numbers

	Selecting an Extended Currency Symbol
	Reference: Extended Currency Symbol Formats

	9. Designing Windows With Window Painter
	Introduction
	How Do Window Applications Work?

	Window Files and Windows
	Types of Windows You Can Create
	Vertical Menus
	Horizontal Menus
	Text Input Windows
	Text Display Windows
	File Names Windows
	Field Names Windows
	File Contents Windows
	Return Value Display Windows
	Execution Windows
	Multi-Input Windows

	Creating Windows
	Creating a Horizontal Menu
	Pull-down Menus
	Creating a Multi-Input Window

	Integrating Windows and the FOCEXEC
	Syntax: How to Invoke the Window Facility
	Transferring Control in Window Applications
	Example: Window File in an Application FOCEXEC

	Return Values
	Example: Return Value in a Menu-Driven Application

	Goto Values
	Returning From a Window to Its Caller

	Window System Variables
	&WINDOWNAME
	&WINDOWVALUE

	Testing Function Key Values
	Executing a Window From the FOCUS Prompt
	Syntax: How to Execute a Window From the FOCUS Prompt

	Tutorial: A Menu-Driven Application
	Creating the Application FOCEXEC
	Creating the Window File
	Creating the Text Display Window Named BORDER
	Creating the Text Display Window Named BANNER
	Creating the Vertical Menu Window Named MAIN
	Creating the Vertical Menu Window Named EXECTYPE
	Creating the File Names Window Named EXECNAME

	Executing the Application

	Window Painter Screens
	Invoking Window Painter
	Syntax: How to Invoke Window Painter

	Entry Menu
	Main Menu
	Window Creation Menu
	Window Design Screen
	Window Options Menu
	Utilities Menu

	Transferring Window Files
	Creating a Transfer File
	Transferring the File to the New Environment
	Editing the Transfer File
	The Format of the Transfer File
	Reference: Transfer File Syntax: Window File Attributes
	Reference: Transfer File Syntax: Window Attributes
	Reference: Transfer File Syntax: Window Line Attributes

	Operating Environment Considerations
	Example: Sample Transfer File

	Compiling the Transfer File
	Syntax: How to Compile a Transfer File

	A. Master Files and Diagrams
	EMPLOYEE Data Source
	EMPLOYEE Master File
	EMPLOYEE Structure Diagram

	JOBFILE Data Source
	JOBFILE Master File
	JOBFILE Structure Diagram

	EDUCFILE Data Source
	EDUCFILE Master File
	EDUCFILE Structure Diagram

	SALES Data Source
	SALES Master File
	SALES Structure Diagram

	PROD Data Source
	PROD Master File
	PROD Structure Diagram

	CAR Data Source
	CAR Master File
	CAR Structure Diagram

	LEDGER Data Source
	LEDGER Master File
	LEDGER Structure Diagram

	FINANCE Data Source
	FINANCE Master File
	FINANCE Structure Diagram

	REGION Data Source
	REGION Master File
	REGION Structure Diagram

	COURSES Data Source
	COURSES Master File
	COURSES Structure Diagram

	EMPDATA Data Source
	EMPDATA Master File
	EMPDATA Structure Diagram

	EXPERSON Data Source
	EXPERSON Master File
	EXPERSON Structure Diagram

	TRAINING Data Source
	TRAINING Master File
	TRAINING Structure Diagram

	COURSE Data Source
	COURSE Master File
	COURSE Structure Diagram

	JOBHIST Data Source
	JOBHIST Master File
	JOBHIST Structure Diagram

	JOBLIST Data Source
	JOBLIST Master File
	JOBLIST Structure Diagram

	LOCATOR Data Source
	LOCATOR Master File
	LOCATOR Structure Diagram

	PERSINFO Data Source
	PERSINFO Master File
	PERSINFO Structure Diagram

	SALHIST Data Source
	SALHIST Master File
	SALHIST Structure Diagram

	PAYHIST File
	PAYHIST Master File
	PAYHIST Structure Diagram

	COMASTER File
	COMASTER Master File
	COMASTER Structure Diagram

	VIDEOTRK, MOVIES, and ITEMS Data Sources
	VIDEOTRK Master File
	VIDEOTRK Structure Diagram
	MOVIES Master File
	MOVIES Structure Diagram
	ITEMS Master File
	ITEMS Structure Diagram

	VIDEOTR2 Data Source
	VIDEOTR2 Master File
	VIDEOTR2 Structure Diagram

	Gotham Grinds Data Sources
	GGDEMOG Master File
	GGDEMOG Structure Diagram
	GGORDER Master File
	GGORDER Structure Diagram
	GGPRODS Master File
	GGPRODS Structure Diagram
	GGSALES Master File
	GGSALES Structure Diagram
	GGSTORES Master File
	GGSTORES Structure Diagram

	Century Corp Data Sources
	CENTCOMP Master File
	CENTCOMP Structure Diagram
	CENTFIN Master File
	CENTFIN Structure Diagram
	CENTHR Master File
	CENTHR Structure Diagram
	CENTINV Master File
	CENTINV Structure Diagram
	CENTORD Master File
	CENTORD Structure Diagram
	CENTQA Master File
	CENTQA Structure Diagram
	CENTGL Master File
	CENTGL Structure Diagram
	CENTSYSF Master File
	CENTSYSF Structure Diagram
	CENTSTMT Master File
	CENTSTMT Structure Diagram

	B. Error Messages
	Accessing Error Files
	Displaying Messages

	Legal and Third-Party Notices
	Index

