
TIBCO FOCUS®

Copyright © 2022. TIBCO Software Inc. All Rights Reserved.

Host Language Interface User's Manual

Release 8207.27.0 and Higher
August 2022
DN1000022.0822

Contents

1. Introduction to HLI .7

What is HLI? . 7

Why the Host Language Interface? . 8

How Can You Create HLI Applications? . 8

Navigating Through a FOCUS Data Source . 9

The Dummy SYSTEM Segment. 9

Reading the Data Source. 11

Test Relations. .11

The File Communication Block (FCB) . 13

Incorporating HLI Commands in the Application Program . 14

2. Preparing HLI Work Areas .15

Initializing the File Communication Block (FCB) .15

FCB Layout. .16

Defining the Record Work Area . 20

Internal Data Representation Formats. 20

Alignment of Data Offsets in the Work Area. .22

Size of the Work Area. .22

Defining the Work Area for a File With Descendant Segments . 23

Declaring Multiple FCBs . 24

3. Using HLI . 27

Writing HLI Programs .27

C Program Considerations. .27

Sample HLI Programs. 30

Initializing the FCB . 51

Opening the FOCUS Data Source . 53

Data Offsets in the Work Area. 55

Using a Show List . 56

Locating Records . 59

Expressing Test Relations. .60

Logical Reads. 62

Physical Reads. 67

Host Language Interface User's Manual 3

Indexed Reads. 70

Retrieving With a Backkey . 71

Altering the File . 73

Including New Segments. 73

Changing Information in the File. .76

Deleting Segments From a File. .80

4. Testing Status, Using Log Facilities, and Handling Errors . 83

Testing Status . 83

Using the Diagnostic Log Facility: ECHO and STAT .83

Using the ECHO Log Facility. 84

Using the STAT Log Facility. 85

Error Handling .87

5. Creating an Executable HLI Program .89

Constructing a DLL Under WebFOCUS . 89

Constructing a Load Module Under z/OS .90

6. HLI and Simultaneous Usage of FOCUS Databases . 93

Using the SU Profile . 93

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only) . 94

Multi-Threaded HLI/SU Reporting Under z/OS FOCUS. 95

7. HLI Command Summary .97

HLI Command Summary Chart .97

HLI Parameter Description Chart .98

Alphabetical List of HLI Commands . 100

CHA (Change) Command. .100

CLO (Close) Command. 102

DEL (Delete) Command. .103

FSP (First Physical) Command. 103

FST (First) Command. 104

INFO (Information) Command. 105

INP (Input) Command. .107

NEX (Next) Command. 109

NXD (Next Through Index) Command. 110

Contents

4

NXK (Next Through Backkey) Command. 111

NXP (Next Physical) Command. .112

OPN (Open) Command. .114

SAV (Save) Command. 115

SHO (Show) Command. 116

A. HLI Status Return Codes . 119

HLI Return Code Chart . 119

B. Using the GENCPGM Build Tool .123

Using GENCPGM . 123

C. Migrating CMS HLI Programs to UNIX or Linux . 135

Changes Needed to the CMS HLI Program . 135

Changes Needed to the FCB When Migrating a CMS HLI Program . 136

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux .137

Legal and Third-Party Notices . 141

Contents

Host Language Interface User's Manual 5

Contents

6

Chapter1
Introduction to HLI

The Host Language Interface (HLI) enables programs written in 3GL languages such as C,
C++, FORTAN, COBOL, Assembler, RPG, or PL/1 to access FOCUS or XFOCUS data
sources. Once created, programs must be compiled and linked. HLI consists of a series
of commands that you incorporate into your application programs.

Note: FOCUS and XFOCUS data sources can be accessed identically using HLI. In the
remainder of this manual, all references to FOCUS data sources all references to FOCUS
data sources also apply to XFOCUS data sources.

In this chapter:

What is HLI?

Why the Host Language Interface?

How Can You Create HLI Applications?

Navigating Through a FOCUS Data Source

The File Communication Block (FCB)

Incorporating HLI Commands in the Application Program

What is HLI?

The Host Language Interface (HLI) enables you to access FOCUS databases using simple calls
to the HLI from conventional programming languages. HLI commands allow the application
program to open and close one or more FOCUS files and input, change, and delete data in
these files. Records in the database can be located using logical, sequential, and indexed
reads, as well as reads according to a record's specific address within the file.

Your program incorporates HLI commands as calls to a subroutine. Application programs using
HLI can access both local FOCUS databases and FOCUS databases on a FOCUS Database
Server (FDS, also called a sink machine). It is, therefore, possible for HLI programs to access
FOCUS databases that are in use by other HLI programs as well as by FOCUS users who are
updating those same databases using MODIFY or MAINTAIN or writing reports and generating
graphs.

Host Language Interface User's Manual 7

Why the Host Language Interface?

HLI makes it possible to have FOCUS or WebFOCUS applications that interface with specialized
hardware and software, such as production control systems, in which data streams may be
automated from bar code readers, digital scales, or other devices. HLI is also useful in third
generation applications that require an underlying database. There are several other reasons
for using HLI:

You can use an existing application with a FOCUS data source.

You can create one application with access to both FOCUS and non-FOCUS data sources.

You can update a FOCUS data source and report from it in one pass.

Caution: HLI can enter and alter FOCUS data sources outside of normal FOCUS data source
processing and control. You must understand the structure and contents of your FOCUS data
source before you use HLI. Otherwise, you may seriously damage the file. If you want more
information about the structure of FOCUS files, consult the Describing Data manual.

How Can You Create HLI Applications?

To use HLI, you must create a Master File as you would for any FOCUS data source.

Your application program must do two things to use HLI:

Define the File Communication Block (FCB) and work areas.

The FCB is a reserved area containing information about the FOCUS database, including
its logical name (for example, on z/OS its ddname or, in UNIX, its filename). It monitors
your current position within the FOCUS database and keeps track of the actions your
application takes. HLI and your application both use the FCB.

One FCB is required for each FOCUS file accessed in an application program. You can
open a file several times concurrently by defining multiple FCBs for the file. You must
issue a close (CLO) command for each opened FCB.

Work areas are defined spaces where retrieved segments are held (see Preparing HLI
Work Areas on page 15).

Incorporate HLI commands.

Why the Host Language Interface?

8

Navigating Through a FOCUS Data Source

Your HLI application navigates through a FOCUS data source using HLI commands. The basic
command for moving from one segment instance to another is the NEX (Next) command.
Starting at an anchor segment representing the current position in the file, your application
proceeds to a target segment. (the target segment can be above the anchor in the segment
hierarchy.) Retrieved fields from the specified segments, including the anchor and target
segments, are placed in a record work area that you must define in your HLI application. You
can retrieve all fields in those segments or select fields to be retrieved by creating a show list.

Your HLI program can locate segment instances for retrieval by searching for an instance that
satisfies selection tests (a qualified move) or by looking for the next segment instance without
testing (an unqualified move).

The Dummy SYSTEM Segment

The instances in the root segment form one chain considered descended from a dummy
segment called the SYSTEM segment. The SYSTEM segment has a null value and is always
considered current. It cannot be retrieved or modified. It can never be named as the target
segment.

Consider the following Master File:

FILE=EXAMPLE1, SUFFIX=FOC,$
SEGNAME=A,$
 FIELD=.........,$
SEGNAME=B, PARENT=A, SEGTYPE=S1,$
 FIELD=.........,$
SEGNAME=C, PARENT=B, SEGTYPE=S1,$
 FIELD=.........,$

1. Introduction to HLI

Host Language Interface User's Manual 9

The following diagram represents the segment instances in the file, with the dummy SYSTEM
segment added:

The following table illustrates how a series of NEX commands will search this file. The NEX
command specifies the anchor segment (the position where your application starts), and the
target segment (the segment to which you want to move), using FOCUS pointers to move from
segment to segment. The anchor segment determines the target segment, as shown by the
following series of NEX commands.

Current Position Target Anchor Explanation

SYSTEM NEX C from SYSTEM Retrieves A1 B1 C1

A1 B1 C1 NEX C from A Retrieves A1 B1 C2

A1 B1 C2 NEX C from B Retrieves no segment

A1 B1 C2 NEX B from A Retrieves A1 B2

A1 B2 NEX A from SYSTEM Retrieves A2

A2 NEX B from A Retrieves A2 B3

Navigating Through a FOCUS Data Source

10

Current Position Target Anchor Explanation

A2 B3 NEX C from B Retrieves A2 B3 C4

A2 B3 C4 NEX C from B Retrieves A2 B3 C5

Reading the Data Source

There are three ways to read a FOCUS data source with HLI:

Logical reads.

Physical reads.

Indexed reads.

Logical Read Commands

The logical read commands are FST (First) and NEX (Next). They follow the logical pointers in
the database to search the segments in their logical sequence (see Using HLI on page 27).

Physical Read Commands

The FSP (First Physical) and NXP (Next Physical) commands read FOCUS files as if they were
sequential files. Segment instances are returned in the order in which they are stored, ignoring
hierarchical links and links between siblings. Physical read commands provide faster access if
the order of the segment instances returned is not significant.

The order in which data is stored is often quite different from the order that makes sense to a
user. For example, if the database has been modified extensively, it may require many I/Os to
retrieve the desired segments logically. In such cases, the physical read commands may
improve the speed of your application program (see Using HLI on page 27).

Indexed Read Commands

The NXD (Next through Index) command retrieves values using the index of a specified field.
This is particularly efficient when you are looking for a specific field value, since an index is an
internally stored and maintained table of data values and locations that speeds retrieval (see
Using HLI on page 27).

Test Relations

You can use test relations to control which instances you retrieve using HLI. The following test
relations are supported:

1. Introduction to HLI

Host Language Interface User's Manual 11

Test Relation Meaning

EQ Equal

NE Not equal

LT Less than

GT Greater than

LE Less than or equal

GE Greater than or equal

CO Contains

OM Omits

Contains and Omits tests are useful when screening alphanumeric data fields.

Since the test relations are interdependent, a segment instance is rejected as soon as any
test relation fails.

The tests are not necessarily performed in the order specified, but instead may be performed
segment by segment. However, tests are performed in the specified order within the same
segment. As soon as a test on a segment fails, the search continues with the next potential
target segment. The descendants of a segment that did not meet the conditions are not
examined.

Navigating Through a FOCUS Data Source

12

When the target is above the level of the anchor in the hierarchy, the search is abandoned as
soon as any test fails. For example, consider this diagram of segment instances:

Assume the current position is B1. From B1 (the anchor segment), the command

NEX A FROM B

will retrieve A1 (the target segment) if all conditions are met; if conditions are not met, the
search will cease. A2 will not be considered, because even if it met the necessary
qualifications, it would violate the definition of the current position because it is not linked to
current B.

Note: You must use the FST (First) command when you are trying to retrieve the parent of a
segment (see HLI Command Summary on page 97, for information on FST). If A1 were
already our current position on segment A, the NEX command would be unsuccessful even if
A1 met the qualifying conditions because there would be no change in the current position.

When the target segment is a descendant of the anchor segment, all segment instances along
the anchor to target path are tested until one meets the conditions.

The File Communication Block (FCB)

The File Communication Block is a 200 byte structure that monitors the file on which you are
working. One FCB is required for each FOCUS data source opened by an application program.
More than one FCB may be attached to a single FOCUS data source.

Each FCB is unique and is identified by its address. This address becomes an internal token
for manipulating multiple FCBs. You cannot copy an FCB to another location and use it to
access a file. When finish using an FCB, you must issue a CLO (close) command for it.

1. Introduction to HLI

Host Language Interface User's Manual 13

See Preparing HLI Work Areas on page 15, for a discussion of initializing the FCB.

Incorporating HLI Commands in the Application Program

You incorporate HLI commands as calls from your host application program. For example, to
use the HLI command INP (Input) on the segment named TOP, with an FCB declared as FCB1
and a work area declared as WKAREA, you would use the following syntax

In C:

edahliCall(hliHandle, 5, "INP ", &fcb, &wkarea, "TOP ", 0);

In FORTRAN:

CALL FOCUS ('INP ', FCB1, WKAREA, 'TOP ', 0)

In COBOL:

CALL 'FOCUS' USING INP FCB1 WKAREA TOP NUMB0.

In PL/1:

CALL FOCUS ('INP ', FCB1, WKAREA, 'TOP ', 0);

HLI commands, except for the INFO command, are three characters long. If you use an
argument in an HLI command as a literal string, as in the C, FORTRAN, and PL/1 examples,
you must pad it with trailing blanks to make the argument the correct number of characters.
For example, commands must be declared as 4 characters and segment names as 8
characters. If, instead, you supply an HLI argument as a variable, as is done in the COBOL
example, the variable format establishes the length.

All the variables and parameters used with HLI must be declared and initialized following the
conventions of the application language you are using.

Using HLI on page 27, illustrates HLI operations. It includes annotated examples of
applications written in C, FORTRAN, COBOL, and PL/1 that use HLI commands, as well as
sections that explain their syntax. HLI Command Summary on page 97, provides detailed
instructions for using the HLI commands.

Incorporating HLI Commands in the Application Program

14

Chapter2
Preparing HLI Work Areas

Each HLI program requires at least one File Communication Block to monitor its
operation and a work area in which retrieved segment instances can be placed and from
which new data can be taken before saving it in the FOCUS data source.

In this chapter:

Initializing the File Communication Block (FCB)

Defining the Record Work Area

Defining the Work Area for a File With Descendant Segments

Declaring Multiple FCBs

Initializing the File Communication Block (FCB)

The File Communication Block is a 200-byte array that internally monitors the file in which you
are working. It contains general file information, such as file name, as well as information
about your current position within that file.

Each FCB is unique and is identified by its address. This address becomes an internal token
for manipulating multiple FCBs.

You cannot copy an FCB to another location and use it to access a file.

When you are finished using an FCB, you must issue a CLO (close) command for it.

Initialize the FCB from byte 1 to 88 (which will contain file information) to blanks, file name, file
type, mode, and, optionally, ECHO. All alphanumeric parameters, except the password, must
be entered into the FCB using uppercase letters.

Host Language Interface User's Manual 15

FCB Layout

Each FCB is 200 bytes long and is organized as illustrated in the following diagram. Contents
of the FCB are described in the chart immediately following this diagram. Not all parts of the
FCB are used in all environments.

The following chart describes the contents of the various bytes in the FCB layout. See
Initializing the File Communication Block (FCB) on page 15, for an explanation of alignment
terms used in the FCB.

Starts
at Byte

Starts at
Word

Length in
Bytes

Description

1 1 8 Logical name of the database (for example,
ddname in z/OS).

9 3 8 File type (blank).

17 5 4 File mode (blank).

Initializing the File Communication Block (FCB)

16

Starts
at Byte

Starts at
Word

Length in
Bytes

Description

21 6 4 Simultaneous Usage flag. The value is

SU if running under a FOCUS Database Server
(sink machine).

SULO if running multi-threaded (z/OS only)

blank for direct access.

25 7 8 Procedure name. You can place information here
that will appear in the PROCNAME column of the
extended HLIPRINT trace (for information, see Using
HLI on page 27).

33 9 8 Name of FOCUS Database Server (for SU) on which
the database is located. This machine must be up
and running. On z/OS, this is the ddname of the
sink machine's communication data set, which
must be allocated. For the Reporting Server and
WebFOCUS, this is the FDS node (typically
FOCSU01 by default).

41 11 8 Reserved.

49 13 12 Reserved.

61 16 8 Backkey. Address key of the target segment. This
value changes each time you retrieve a target
segment, and can be used later in the NXK
command (for information, see Using HLI on page
27).

69 18 4 Logging option. If value is ECHO or STAT,
transaction is written to the HLIPRINT file (see
Using HLI on page 27). If value is blank, nothing
is written to HLIPRINT.

73 19 8 User access password. Required to access a file
protected by FOCUS DBA security restrictions.

2. Preparing HLI Work Areas

Host Language Interface User's Manual 17

Starts
at Byte

Starts at
Word

Length in
Bytes

Description

81 21 8 New segment name. Highest new segment
retrieved. (See NEX C from A.)

89 23 4 Segment number of the highest new segment
retrieved. Every segment is assigned a unique
number from top to bottom, left to right, as shown:

93 24 4 Status return code. Can be equal to 0 (normal) or 1
(end of chain). Any other number indicates an error
condition. You should test this condition in your
program after every HLI command is performed.
(HLI status codes are described in HLI Status
Return Codes on page 119.)

97 25 4 Number of database records returned. When the
repeat option is used, this is the number of records
retrieved.

101 26 4 Reserved.

105 27 8 Reserved.

113 29 4 Reserved.

117 30 4 Reserved.

121 31 4 Reserved.

Initializing the File Communication Block (FCB)

18

Starts
at Byte

Starts at
Word

Length in
Bytes

Description

125 32 4 Reserved.

129 33 4 Size of one returned work area (total length of
fields requested).

133 34 4 Total length of the work area returned (if you are
using the repeat option).

137 35 64 Reserved.

Example: NEX C from A

Reference: Definitions of FCB Terms

The following definitions describe alignment terms as used in the FCB:

Term Definition

Word Refers to a 4-byte word.

2. Preparing HLI Work Areas

Host Language Interface User's Manual 19

Term Definition

Word Alignment Means that the variable is on a full word boundary, which is a
multiple of four bytes from the beginning of the data structure.
The data structure must begin on a double word boundary.

Double-Word

Alignment

Means that the variable is on a double word boundary, which is a
multiple of eight bytes from the beginning of the data structure.

Defining the Record Work Area

The application program must provide an area into which a retrieved segment instance can be
placed, or from which new data can be taken. The size and layout of this data structure are
controlled by the data fields selected. In this document, this type of structure is variously
referred to as the work area, the changeliterals array, the inpliteral array, or the testliterals
array, depending on the way it is used. Fields can be selected by the SHO command.

The order in which the fields are named in the show list determines the order in which their
data values are placed in the work area. If no SHO command is issued, the default show list is
all the fields in the file. The usage formats of the data fields determine the size of this area.

Internal Data Representation Formats

All lengths are rounded up to multiples of 4 so that each data field starts on a full-word
boundary in this area, or a double-word boundary for double-precision, floating-point data.

The following table describes the internal formats of data stored in FOCUS data sources and
the representation of missing values for each format(in case your program needs to test for
missing data):

Defining the Record Work Area

20

Format Internal Representation Missing value stored as

Alpha (An or AnV) Stores alphanumeric data as entered.
Allocates one byte per character,
rounded to a full word boundary. If the
format is AnV, there are two additional
binary bytes for the number of non
blank characters in the character string.
For example, an A10V field with a value
of ITALY would require 12 bytes, where
the first 2 would have the value 5 in
binary, and the remaining 10 characters
would be

'ITALY '

Performs no translation of uppercase
and lowercase.

A left justified period (.)

Integer (In) Standard binary integer format, 4 bytes. -9998998

Floating Point (Fn) Full-word (4-byte) floating point. -9998998.

Floating
PointDouble Word
(Dn)

Double word (8-byte) floating point. -9998998.

Packed (Pn) Signed packed format. Size is:

8 bytes for n = 1 through 15

16 bytes for n = 16 through 31.

-9998998.

Note:

TX (text) fields are not supported for HLI.

FOCUS data sources support several formats for storing dates. Dates can be defined as:

I, P, or A format with date display options, for example I8YYMD.

Date format, for example YMD. In this case, the 4-byte integer stored is the number of
days from the base date of December 31, 1900.

2. Preparing HLI Work Areas

Host Language Interface User's Manual 21

1. • Date-Time format, for example HYYMDm. They are stored as 8 bytes, 12 bytes if
the time includes microseconds, or 16 bytes if the time includes nanoseconds.

Alignment of Data Offsets in the Work Area

The following diagram illustrates the alignment of data offsets in the work area:

Note:

In PL/1, you should not rely on PL/1 to align the bytes, as the algorithm it uses may not be
one that FOCUS uses.

In the diagram, unused filler bytes are represented by x.

Size of the Work Area

The size of the work area depends on the number of selected fields in the file. The length of
the standard work area is returned in the FCB, after a call to FOCUS with the OPN (Open)
command.

The length of the work area may differ from the size if the REPEAT option is used with the NEX
and FST commands.

Defining the Record Work Area

22

Defining the Work Area for a File With Descendant Segments

When you declare a work area, you must make it large enough to contain every field in the
show list, no matter how many fields are retrieved. This is particularly important when using
the REPEAT option to retrieve a root segment and its children. Issuing a REPEAT with a NEX or
FST command is, in effect, equivalent to reissuing the retrieval command. All the fields in the
show list, beginning with the first field, are retrieved. For example, assume you have a three
segment file:

If you use nrepeat in a NEX or FST command to retrieve all three instances of Segment C, HLI
retrieves all three segments three times. You must allocate your work space as shown:

When a single record is retrieved with NEX or FST, the backkey (address of the data record) is
placed in the FCB at word 16. However, when multiple records are retrieved in a single call, the
backkey is present for each record returned, as shown in the diagram (the length of each
backkey is eight bytes).

2. Preparing HLI Work Areas

Host Language Interface User's Manual 23

Declaring Multiple FCBs

You can declare up to 4096 FCBs. Files that will be open simultaneously must have separate
FCBs.

Multiple FCBs can be declared as elements in an array or as single arrays with unique names.
Each FCB requires 200 bytes and is identifiable either as an element within an array, such as
FCB(n), or by a unique name, such as FCB-fn.

FCBxxx(n)

where:

xxx

Is a number that uniquely identifies each separate FCB.

n

Represents the bytes in the array.

In COBOL, you can describe up to each FCB as a level 01 structure. You give each FCB a name
in the format

name-fcb

where:

name

Is a user-assigned name.

In PL/1, you declare multiple FCBs as part of the same structure in the format

FCB(n)

where:

n

Is the number of FCBs.

You then refer to individual FCBs in the format:

FCB(n).fieldname

In C, you can assign any name to the FCB structure. You then refer to the individual FCBs in
the format

fcbname.fieldname

Declaring Multiple FCBs

24

For example, for the filename field of the FCB named empfcb:

empfcb.filename

2. Preparing HLI Work Areas

Host Language Interface User's Manual 25

Declaring Multiple FCBs

26

Chapter3
Using HLI

This chapter illustrates the use of HLI with C, FORTRAN, COBOL, and PL/1.

HLI programs will generally work when the library path is adjusted to newer releases, or
they are linked to the latest FOCUS load library. However, it is always a good idea to test
thoroughly or consider rebuilding the application

In this chapter:

Writing HLI Programs

Initializing the FCB

Opening the FOCUS Data Source

Using a Show List

Locating Records

Retrieving With a Backkey

Altering the File

Writing HLI Programs

Reference: Properties of Master Files for Use With HLI

Field names can be a maximum of 12 characters.

File and segment names can be a maximum of 8 characters.

C Program Considerations

If your HLI program is written in C, you must declare variables required by the HLI Interface.

One session handle is required and one HLI handle for each machine that the program will
access. For local databases, only one HLI handle is needed. For programs that access data on
multiple FOCUS Database Servers, one HLI handle is required for each of the servers.

Host Language Interface User's Manual 27

In addition, your program must open the session connection and the HLI connection before
issuing HLI commands, and must close those connections before ending. Before opening
these connections, you must declare the following local variables:

The fcb name.

A session handle (pointer to the session connection).

An HLI handle (pointer to the HLI engine connection). You then reference this handle in all
HLI calls.

Syntax: How to Include the HLI Header File in a C Program

In addition to the standard header files, issue the following include command for the HLI
header file:

#include "edahli.h"

Syntax: How to Declare the Fcb Name Variable

t_edahli_fcb fcb;

where:

fcb

Is the name you assign to the fcb structure in your program. If your program uses multiple
FCBs, you need one declaration for each.

Syntax: How to Declare a Session Handle and Issue the Connection Call

Prior to issuing HLI commands, issue the following commands to declare the session handle,
open the session connection, and check whether the connection was made successfully.

t_eda_handle *sHandle = NULL;iwayHandle = edaOpen(trace_option);
 if(sHandle == NULL) {
printf("Failed to connect to session");
 return -1;
 }

where:

sHandle

Is the name you assign to the session handle.

Writing HLI Programs

28

trace_option

Can be one of the following:

EDA_TRACE_AUTO. Automatically determines whether the traces have been activated.

EDA_TRACE_ON. Turns tracing on.

EDA_TRACE_OFF. Turns tracing off.

Syntax: How to Declare an HLI Handle and Issue the Connection Call

Prior to issuing HLI commands, and after opening a session connection, issue the following
commands to declare an HLI handle, open a connection to the HLI engine, and check whether
the connection was made successfully.

t_edahli_handle *hliHandle = NULL;hliHandle = edahliOpen(sHandle,
 ac > 1 ? EDAHLI_DESTINATION_SINK : EDAHLI_DESTINATION_LOCAL);
 if(hliHandle == NULL) {
 printf("Failed to connect to session/HLI engine");
 goto L_cleanup;
 }

where:

hliHandle

Is the name you assign to the HLI handle. If your program uses multiple connections to
HLI, you need one handle for each connection.

sHandle

Is the name assigned to the session handle.

L_cleanup

Is the part of the program that closes the Reporting Server connection.

Syntax: How to Close the HLI Connection

After issuing all HLI calls, and prior to closing the Reporting Server connection, issue the
following command to close the HLI connection:

edahliClose(hliHandle);

hliHandle

Is the name assigned to the HLI handle.

3. Using HLI

Host Language Interface User's Manual 29

Syntax: How to Call to Close the Session Connection

After closing all HLI connections, issue the following command to close the session
connection:

edaClose(sHandle);

sHandle

Is the name assigned to the session handle.

Sample HLI Programs

Sample programs follow and are presented as simply as possible for ease of explanation.
Numbers to the left of the lines of code refer to notes in the sections that describe the
operations performed in the examples.

The sample programs perform the following basic HLI functions:

Initializing the FCB.

Opening the file.

Using a show list.

Locating records.

Retrieving segments with a backkey.

Changing, adding, and deleting data.

Closing the file.

Example: Master File Used With the Sample Programs

The Master File used in the examples follows:

FILENAME=EMP,SUFFIX=FOC
SEGNAME=ONE,SEGTYPE=S1
 FIELDNAME=EMPNO,ALIAS=EMPNUM,FORMAT=I5,$
 FIELDNAME=NAME,ALIAS=,FORMAT=A20,$
SEGNAME=TWO,PARENT=ONE,SEGTYPE=SH1
 FIELDNAME=DATE,ALIAS=,FORMAT=I6YMD,$
 FIELDNAME=SALARY,ALIAS=PAY,FORMAT=D12.2M,$

Writing HLI Programs

30

Example: Sample C Program

1. #include <stdlib.h>
2. #include <stdio.h>
3. #include <string.h>
4. #include "edahli.h"
 /**
 * Database record, as per MFD. SALARY data type has to be aligned
 * to 8-byte boundary, hence padding member has to be inserted
 * between date and salary fields.
 */
5. typedef struct {
6. int empno;
7. char name[20];
8. int date;
9. char padding[4];
10. double salary;
11. } t_record;
 /**
 * Symbolic definitions for database segment names: blank-padded 8-
 * char long.
 */
12. #define SEG_SYS "SYSTEM "
13. #define SEG_ONE "ONE "
14. #define SEG_TWO "TWO "
 /**
 * Symbolic definitions of the database field names: blank-padded
 * 12-char long.
 */
15. #define FLD_EMPNO "EMPNO "
16. #define FLD_NAME "NAME "
17. #define FLD_DATE "DATE "
18. #define FLD_SALARY "SALARY "
 /**
 * Local function prototypes.
 */
19. static void doInsert(t_edahli_handle *hli, t_edahli_fcb *pFcb);
20. static void doList(t_edahli_handle *hli, t_edahli_fcb *pFcb);
21. static void doDelete(t_edahli_handle *hli, t_edahli_fcb *pFcb);
22. static void doChange(t_edahli_handle *hli, t_edahli_fcb *pFcb);
23. int main(int ac, char **av) {
 /* Fieldname list for SHO command */
24. char *names = FLD_EMPNO FLD_NAME FLD_DATE FLD_SALARY;
25. int namesL = 4; /* How many fields we pass to SHO */

3. Using HLI

Host Language Interface User's Manual 31

26. t_eda_handle *edah;
27. t_edahli_handle *hli;
28. t_edahli_fcb fcb;
29. int rc;
 /* Standard initialization of the FCB */
30. memset(&fcb, '\0', sizeof(fcb));
31. memset(&fcb, ' ', EDAHLI_FCB_INIT_SIZE);
 /**
 * Put file name into FCB. filetype and
 * filemode should be left blank.
 */
32. memcpy(fcb.filename, "EMP", 3);
33. memcpy(fcb.filetype, " ", 5);
34. memcpy(fcb.filemode, " ", 1);
 /**
 * Open session handle
 */
35. edah = edaOpen(EDA_TRACE_AUTO);
36. if(edah == NULL) {
37. printf("Failed to open eda handle\n");
38. return -1;
39. }
 /**
 * Connect to the HLI engine.
 */
40. hli = edahliOpen(edah, EDAHLI_DESTINATION_LOCAL);
41. if(hli == NULL) {
42. printf("Failed to open hli handle\n");
43. edaClose(edah);
44. return -1;
45. }
 /**
 * Open file and check status.
 */
46. rc = edahliCall(hli, 2, "OPN ", &fcb);
47. if(rc != 0 || fcb.status != 0) {
48. printf("OPEN ERROR: rc=%ld, status=%ld\n", rc, fcb.status);
49. edahliClose(hli);
50. edaClose(edah);
51. return -1;
52. }

Writing HLI Programs

32

 /**
 * Set up show field names.
 */
53. rc = edahliCall(hli, 4, "SHO ", &fcb, names, &namesL);
54. if(rc != 0 || fcb.status != 0) {
55. printf("SHOW ERROR: rc=%ld, status=%ld\n", rc, fcb.status);
56. edahliCall(hli, 2, "CLO ", &fcb);
57. edahliClose(hli);
58. edaClose(edah);
59. return -1;
60. }
 /**
 * Main option menu.
 */
61. while(1) {
62. int ians = 0;
63. printf("Enter 1 to add a new date and salary\n");
64. printf("Enter 2 to change a salary\n");
65. printf("Enter 3 to delete a salary\n");
66. printf("Enter 4 to print salary information\n");
67. printf("Enter 0 to exit\n");
68. scanf("%d", &ians);
69. if(ians < 0 || ians > 4) {
70. printf("A bad code of %d was given - try again\n", ians);
71. continue;
72. }
73. if(ians == 0) break;
 /**
 * Enter employee number and check for existence which also
 * establishes position in the database
 */
74. while(1) {
75. t_record testlt, wkarea;
76. char testrl[4 * 4]; /* 4 bytes per SHO field */
77. int testL = 1; /* single test pass to FST */
78. printf("Enter the employee number or 0 for menu\n");
79. scanf("%d", &testlt.empno);
80. if(testlt.empno == 0) break;
81. memset(&testrl[0], ' ', sizeof(testrl));
82. memcpy(&testrl[0], "EQ ", 4);

3. Using HLI

Host Language Interface User's Manual 33

83. rc = edahliCall(hli, 8, "FST ", &fcb,
84. &wkarea, SEG_ONE, SEG_SYS, &testL, testrl, &testlt);
85. if(rc == 0 && fcb.status == 0) {
 /**
 * Branch according to option selected
 */
86. printf("Employee name is %-10.10s\n", wkarea.name);
87. switch(ians) {
88. case 1:
89. doInsert(hli, &fcb);
90. break;
91. case 2:
92. doChange(hli, &fcb);
93. break;
94. case 3:
95. doDelete(hli, &fcb);
96. break;
97. case 4:
98. doList(hli, &fcb);
99. break;
100. }
101. break;
102. }
103. printf("Employee %d not found\n", testlt.empno);
104. }
105. }
 /* Cleanup */
106. edahliCall(hli, 2, "CLO ", &fcb);
107. edahliClose(hli);
108. edaClose(edah);
109. }
 /**
 * Add a new date and salary.
 */
110. static void doInsert(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
111. t_record wkarea;
112. int c__2 = 2; /* Option 2 makes INP reject duplicate keys */
113. int rc;
114. while(1) {
115. printf("Enter date in form YYMMDD or 0 for menu\n");
116. scanf("%d", &wkarea.date);
117. if(wkarea.date == 0) break;
118. printf("Enter salary with decimal\n");
119. scanf("%lf9.2", &wkarea.salary);

Writing HLI Programs

34

120. rc = edahliCall(hli, 3, "INP ", pFcb, wkarea, "TWO ",
121. &c__2);
122. if(rc == 0 && pFcb->status == 0) {
123. break;
124. }
125. printf("***** ERROR ***** Date of %6d already exists\n");
126. }
127. }
 /**
 * Change a salary but first display existing salary.
 */
128. static void doChange(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
129. t_record testlt, wkarea, chalit;
130. char testrl[4 * 4]; /* 4 bytes per SHO field */
131. int testL = 1; /* just single test passed to NEX */
132. char charel[4 * 4]; /* 4 bytes per SHO field */
133. int chaL = 1; /* changing just one field */
134. int rc;
135. while(1) {
136. printf("Enter date in form YYMMDD or 0 for menu\n");
137. scanf("%d", &testlt.date);
138. if(testlt.date == 0) return;
139. memset(testrl, ' ', sizeof(testrl));
140. memcpy(&testrl[4 * 2], "EQ ", 4);
141. rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
142. SEG_TWO, SEG_ONE, &testL, testrl, &testlt);
143. if(rc == 0 && pFcb->status == 0) {
144. break;
145. }
146. printf("***** ERROR ***** Date of %6d not found\n");
147. }
148. printf("Existing salary is %12.2f. Enter new salary",
149. wkarea.salary);
150. scanf("%9.2lf", &chalit.salary);
151. memset(charel, ' ', sizeof(charel));
152. memcpy(&charel[16], "EQ ", 4);

3. Using HLI

Host Language Interface User's Manual 35

153. rc = edahliCall(hli, 7, "CHA ", pFcb,
154. &wkarea, SEG_TWO, SEG_ONE, charel, &chalit);
155. if(rc != 0 || pFcb->status != 0) {
156. printf("Error in change: rc=%d, status=%d\n", rc,
157. pFcb->status);
158. }
159. }
 /**
 * Delete a segment TWO instance given a date.
 */
160. static void doDelete(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
161. t_record teslit, wkarea;
162. char testrl[4 * 4]; /* 4 bytes per SHO field */
163. int testL = 1; /* just single test passed to NEX */
164. int rc;
165. while(1) {
166. printf("Enter date in form YYMMDD or 0 for menu\n");
167. scanf("%d", &teslit.date);
168. if(teslit.date == 0) return;
169. memset(testrl, ' ', sizeof(testrl));
170. memcpy(&testrl[8], "EQ ", 4);
171. rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
172. SEG_TWO, SEG_ONE, &testL, testrl, &teslit);
173. if(rc == 0 && pFcb->status == 0) {
174. break;
175. }
176. printf("***** ERROR ***** Date of %6d not found\n");
177. }
178. rc = edahliCall(hli, 3, "DEL", pFcb, SEG_TWO);
179. if(rc != 0 || pFcb->status != 0) {
180. printf("***** ERROR ***** Segment not deleted: rc=%d,
181. status=%d\n", rc, pFcb->status);
182. } else {
183. printf("Segment deleted\n");
184. }
185. }

Writing HLI Programs

36

 /**
 * Report by nexting thru segment TWO
 */
186. static void doList(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
187. t_record wkarea;
188. int c__0 = 0;
189. int rc;
190. while(1) {
191. rc = edahliCall(hli, 5, "NEX ", pFcb, wkarea, SEG_TWO,
192. SEG_ONE, &c__0);
193. if(rc != 0 || pFcb->status != 0) {
194. break;
195. }
196. printf(" %6d %12.2f\n", wkarea.date, wkarea.salary);
197. }
198. }

3. Using HLI

Host Language Interface User's Manual 37

Example: Sample FORTRAN Program

1. IMPLICIT INTEGER (A-Z)
2. DIMENSION FCB(50)
3. REAL*8 FN,FT,SALARY,SALNEW
4. INTEGER*4 STATUS, DATE, NAME(5)
5. EQUIVALENCE (FCB(1),FN), (FCB(3),FT), (FCB(5),FM),
6. * (FCB(24),STATUS)
7. DATA FCB /'EMP ', ' ', ' ', 17*' ', 28*0/
 C
 C SET UP NAMES AREA
 C
8. DIMENSION NAMES (3,4)
9. DATA NAMES /9*' '/
10. DATA NAMES(1,1)/'EMPN'/,NAMES(2,1)/'0 '/,NAMES(3,1)/' '/,
11. * NAMES(1,2)/'NAME'/,NAMES(2,2)/' '/,NAMES(3,2)/' '/,
12. * NAMES(1,3)/'DATE'/,NAMES(2,3)/' '/,NAMES(3,3)/' '/,
13. * NAMES(1,4)/'SALA'/,NAMES(2,4)/'RY '/,NAMES(3,4)/' '/
 C
 C SET UP WORK AREA
 C
14. DIMENSION WKAREA(10)
15. EQUIVALENCE (WKAREA(2),NAME(1)), (WKAREA(7),DATE),
16. * (WKAREA(9),SALARY)
 C
 C SET UP TEST ARRAY
 C
17. DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
18. EQUIVALENCE (CHALIT(9),SALNEW)
19. DATA TESTRL /4*' '/, CHAREL /4*' '/
 C
 C SET UP HLI COMMANDS
 C
20. DATA FST/'FST '/, NEXT/'NEX '/, EQ /'EQ '/, BLANK/' '/
21. DATA OPN/'OPN '/, SHO /'SHO '/, INP/'INP '/, CHA /'CHA '/
22. DATA DEL/'DEL '/, CLO /'CLO '/
 C
 C SET UP SEGMENT NAMES
 C
23. REAL*8 ONE/'ONE '/, TWO/'TWO '/, SYSTEM/'SYSTEM '/
 C
 C OPEN FILE AND CHECK STATUS
 C
24. CALL FOCUS (OPN,FCB)
25. IF (STATUS.EQ.0) GO TO 20
26. WRITE (6,10) STATUS
27. 10 FORMAT (1X, 'OPEN ERROR', I5)
28. RETURN
 C
 C SET UP SHOW FIELD NAMES
 C
29. 20 CALL FOCUS (SHO,FCB,NAMES,4)
30. IF (STATUS.EQ.0) GO TO 40
31. WRITE (6,30) STATUS
32. 30 FORMAT (1X, 'SHOW ERROR', I5)
33. RETURN

Writing HLI Programs

38

 C
 C MAIN OPTION MENU
 C
34. 40 WRITE (6,50)
35. 50 FORMAT (/1X,'ENTER 1 TO ADD A NEW DATE AND SALARY'/,
36. 1 1X,'ENTER 2 TO CHANGE A SALARY',/
37. 2 1X,'ENTER 3 TO DELETE A SALARY',/
38. 3 1X,'ENTER 4 TO PRINT SALARY INFORMATION',/
39. 4 1X,'ENTER <RETURN> TO EXIT')
40. READ (5,60,END=999) IANS
41. 60 FORMAT (I1)
42. IF(IANS.LT.1)IANS=5
43. IF(IANS.GT.4)IANS=5
44. GOTO(80,80,80,80,65),IANS
45. 65 WRITE (6,70) IANS
46. 70 FORMAT (1X,'A BAD CODE WAS GIVEN - TRY AGAIN')
47. GO TO 40
 C
 C ENTER EMPLOYEE NUMBER AND CHECK FOR EXISTENCE WHICH ALSO
 C ESTABLISHES POSITION IN THE DATABASE
 C
48. 80 WRITE (6,90)
49. 90 FORMAT (/,1X,'ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU')
50. READ (5,100,END=40) TESTLT(1)
51. 100 FORMAT (I5)
52. IF (TESTLT(1).EQ.0) GO TO 40
53. TESTRL(1)=EQ
54. CALL FOCUS (FST, FCB, WKAREA, ONE,SYSTEM , 1, TESTRL, TESTLT)
55. IF (STATUS.EQ.0) GO TO 120
56. WRITE (6,110) TESTLT(1)
57. 110 FORMAT (/,1X,'EMPLOYEE ',I5,' NOT FOUND')
58. GOTO 80
 C
 C BRANCH ACCORDING TO OPTION SELECTED
 C
59. 120 WRITE(6,130) NAME
60. 130 FORMAT (/1X, 'EMPLOYEE NAME IS ',5A4)
61. GO TO (1000,2000,3000,4000),IANS

3. Using HLI

Host Language Interface User's Manual 39

 C
 C ADD A NEW DATE AND SALARY
 C
62. 1000 WRITE (6,1100)
63. 1100 FORMAT (/,1X,'ENTER DATE IN FORM YYMMDD OR 0 FOR MENU')
64. READ (5,1200) DATE
65. 1200 FORMAT(I6)
66. IF (DATE.EQ.0) GO TO 40
67. WRITE (6,1300)
68. 1300 FORMAT (1X,'ENTER SALARY WITH DECIMAL')
69. READ (5,1400) SALARY
70. 1400 FORMAT(F9.2)
71. CALL FOCUS (INP,FCB,WKAREA,TWO,2)
72. IF (STATUS.EQ.0) GO TO 1000
73. WRITE (6,1500) DATE
74. 1500 FORMAT (1X,'***** ERROR ***** DATE OF ',I6,' ALREADY EXISTS')
75. GO TO 1000
 C
 C CHANGE A SALARY BUT FIRST DISPLAY EXISTING SALARY
 C
76. 2000 WRITE (6,1100)
77. READ (5,1200) TESTLT(7)
78. IF (TESTLT(7).EQ.0) GO TO 40
79. TESTRL(1)=BLANK
80. TESTRL(3)=EQ
81. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)
82. TESTRL(3)=BLANK
83. IF (STATUS.EQ.0) GO TO 2200
84. WRITE (6,2100)TESTLT(7)
85. 2100 FORMAT (1X, ' ***** ERROR ***** DATE OF ',I6, ' NOT FOUND')
86. GO TO 2000
87. 2200 WRITE (6,2300) SALARY
88. 2300 FORMAT (1X,'EXISTING SALARY IS ',F12.2/,' ENTER NEW SALARY')
89. READ (5,1400) SALNEW
90. CHAREL(4)=EQ
91. CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,1,CHAREL,CHALIT)
92. IF (STATUS.EQ.0) GO TO 80
93. WRITE (6,2400) STATUS
94. 2400 FORMAT (1X,'ERROR IN CHANGE STATUS IS ',I6)
95. GO TO 80

Writing HLI Programs

40

 C
 C DELETE A SEGMENT TWO INSTANCE GIVEN A DATE
 C
96. 3000 WRITE (6,1100)
97. READ (5,1200) TESTLT(7)
98. IF (TESTLT(7).EQ.0) GO TO 40
99. TESTRL(1)=BLANK
100. TESTRL(3)=EQ
101. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)
102. TESTRL(3)=BLANK
103. IF (STATUS.EQ.0) GO TO 3100
104. WRITE (6,2100)TESTLT(7)
105. GO TO 3000
106. 3100 CALL FOCUS (DEL,FCB,TWO)
107. IF (STATUS.EQ.0) GOTO 3300
108. WRITE (6,3200) STATUS
109. 3200 FORMAT (1X,'**** ERROR **** SEGMENT NOT DELETED STATUS=',I6)
110. GO TO 3000
111. 3300 WRITE (6,3400)
112. 3400 FORMAT (1X,'SEGMENT DELETED')
113. GO TO 3000
 C
 C REPORT BY NEXTING THROUGH SEGMENT TWO
 C
114. 4000 CALL FOCUS (NEXT, FCB, WKAREA,TWO,ONE,0)
115. IF (STATUS.NE.0) GOTO 80
116. WRITE (6,4100) DATE, SALARY
117. 4100 FORMAT (/,1X,I6,2X,F12.2)
118. GOTO 4000
 C
 C EXIT PROGRAM AND CLOSE DATABASE
 C
119. 999 CALL FOCUS (CLO,FCB)
120. IF(STATUS.EQ.0)GOTO 9999
121. WRITE(6,9990) STATUS
122. 9990 FORMAT(1X,'ERROR IN CLOSE IS ',I6)
123. 9999 RETURN
124. END

3. Using HLI

Host Language Interface User's Manual 41

Example: Sample COBOL Program

1. IDENTIFICATION DIVISION.
37. 05 OUT-REST.
38. 10 OUT-DATE PIC X(6).
39. 10 FILLER PIC XX.
40. 10 OUT-SALARY PIC ZZZ,ZZZ,ZZZ,ZZZ.99.
41. 10 FILLER PIC XX.
42. 10 OLD-SAL PIC ZZZ,ZZZ,ZZZ,ZZZ.99.
43. 10 FILLER PIC XX.
44. 10 OUT-MSG PIC X(50).

 * HLI WORK AREAS *

45. 01 LIST-OF-SEGNAMES.
46. 02 SYSSEG PIC X(8) VALUE 'SYSTEM'.
47. 02 ONESEG PIC X(8) VALUE 'ONE '.
48. 02 TWOSEG PIC X(8) VALUE 'TWO '.
49. 01 FCB.
50. 02 FCB-FN PIC X(8) VALUE 'EMP '.
51. 02 FCB-FT PIC X(8) VALUE ' '.
52. 02 FCB-FM PIC X(4) VALUE ' '.
53. 02 FILLER PIC X(48) VALUE SPACES.
54. 02 FCB-ECHO PIC X(4) VALUE 'ECHO'.
55. 02 FILLER PIC X(20) VALUE SPACES.
56. 02 FCB-STATUS PIC S9(5) COMP.
57. 02 FILLER PIC X(104) VALUE SPACES.
58. 01 CMDS.
59. 02 OPNCMD PIC X(4) VALUE 'OPN '.
60. 02 CLOCMD PIC X(4) VALUE 'CLO '.
61. 02 CHACMD PIC X(4) VALUE 'CHA '.
62. 02 NEXCMD PIC X(4) VALUE 'NEX '.
63. 02 FSTCMD PIC X(4) VALUE 'FST '.
64. 02 DELCMD PIC X(4) VALUE 'DEL '.
65. 02 SAVCMD PIC X(4) VALUE 'SAV '.
66. 02 SHOCMD PIC X(4) VALUE 'SHO '.
67. 02 INPCMD PIC X(4) VALUE 'INP '.
68. 01 NAMES-AREA.
69. 02 FIELD-0001 PIC X(12) VALUE 'EMPNO '.
70. 02 FIELD-0002 PIC X(12) VALUE 'NAME '.
71. 02 FIELD-0003 PIC X(12) VALUE 'DATE '.
72. 02 FIELD-0004 PIC X(12) VALUE 'SALARY '.
73. 01 NUMB0 PIC S9(9) COMP VALUE 0.
74. 01 NUMB1 PIC S9(9) COMP VALUE 1.
75. 01 NUMB2 PIC S9(9) COMP VALUE 2.
76. 01 NUMB3 PIC S9(9) COMP VALUE 3.
77. 01 NUMB4 PIC S9(9) COMP VALUE 4.
78. 01 NULL PIC X(8) VALUE SPACES.
79. 01 EOF-FLAG PIC S9 COMP VALUE 0.

Writing HLI Programs

42

80. 01 WRKAREA.
81. 02 EMPNO PIC S9(9) COMP.
82. 02 EMPNAME PIC X(20) VALUE SPACES.
83. 02 EMPDATE PIC S9(6) COMP.
84. 02 FILLER PIC X(4).
85. 02 SALARY COMP-2.
86. 01 TESTREL.
87. 02 REL-NO PIC X(04) VALUE SPACES.
88. 02 REL-NAME PIC X(04) VALUE SPACES.
89. 02 REL-DATE PIC X(04) VALUE SPACES.
90. 02 REL-SAL PIC X(04) VALUE SPACES.
91. 01 TESTLIT.
92. 02 LIT-EMPNO PIC S9(9) COMP.
93. 02 LIT-NAME PIC X(20) VALUE SPACES.
94. 02 LIT-DATE PIC S9(6) COMP.
95. 02 FILLER PIC X(4).
96. 02 LIT-SALARY COMP-2.
97. PROCEDURE DIVISION.
98. AAAA-MAIN-PROGRAM.
99. PERFORM A000-INIT THRU A999-EXIT.
100. IF FCB-STATUS EQUAL 0
101. PERFORM B100-READ THRU B999-EXIT
102. UNTIL EOF-FLAG EQUAL 9.
103. PERFORM ZZZZ-CLOSES.
104. STOP RUN.
105. A000-INIT.
106. OPEN INPUT TRANS OUTPUT OUTFI.
107. CALL 'FOCUS' USING OPNCMD FCB NUMB0.
108. IF FCB-STATUS NOT EQUAL 0
109. MOVE SPACES TO OUT-REC
110. MOVE 'ERROR IN OPEN' TO OUT-MSG
111. WRITE OUTREC FROM OUT-REC
112. GO TO A999-EXIT.
113. CALL 'FOCUS' USING SHOCMD FCB NAMES-AREA NUMB4.
114. IF FCB-STATUS NOT EQUAL 0
115. MOVE SPACES TO OUT-REC
116. MOVE 'ERROR IN SHOW' TO OUT-MSG
117. WRITE OUTREC FROM OUT-REC
118. GO TO A999-EXIT.
119. A999-EXIT. EXIT.

3. Using HLI

Host Language Interface User's Manual 43

120. B100-READ.
121. READ TRANS AT END MOVE 9 TO EOF-FLAG GO TO B999-EXIT.
122. IF TRANS-TYPE LESS THAN 1 OR TRANS-TYPE GREATER 4
123. MOVE SPACES TO OUT-REC
124. MOVE TRANS-REC TO OUT-REC
125. MOVE 'ERROR IN TRANSACTION CODE' TO OUT-MSG
126. WRITE OUTREC FROM OUT-REC
127. GO TO B999-EXIT.
128. MOVE SPACES TO OUT-REC MOVE TR-EMPNO TO OUT-EMPNO.
129. MOVE SPACES TO TESTREL. MOVE 'EQ' TO REL-NO.
130. MOVE TR-EMPNO TO LIT-EMPNO.
131. CALL 'FOCUS' USING FSTCMD FCB WRKAREA ONESEG SYSSEG
132. NUMB1 TESTREL TESTLIT.
133. IF FCB-STATUS EQUAL 1
134. MOVE 'NOT ON FILE' TO OUT-MSG
135. WRITE OUTREC FROM OUT-REC
136. GO TO B999-EXIT.
137. IF FCB-STATUS GREATER 0
138. MOVE 'ERROR IN READ' TO OUT-MSG
139. WRITE OUTREC FROM OUT-REC
140. MOVE ZERO TO FCB-STATUS
141. GO TO B999-EXIT.
142. MOVE LIT-NAME TO OUT-NAME.
143. IF TRANS-TYPE EQUAL 1
144. PERFORM C100-ADD THRU C999-EXIT
145. GO TO B999-EXIT
146. ELSE IF TRANS-TYPE EQUAL 2
147. PERFORM D100-CHG THRU D999-EXIT
148. GO TO B999-EXIT
149. ELSE IF TRANS-TYPE EQUAL 3
150. PERFORM E100-DEL THRU E999-EXIT
151. GO TO B999-EXIT
152. ELSE PERFORM F100-PRT THRU F999-EXIT UNTIL FCB-STATUS
153. GREATER 0 MOVE 0 TO FCB-STATUS.
154. B999-EXIT. EXIT.

Writing HLI Programs

44

155. C100-ADD.
156. MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO EMPDATE.
157. MOVE TR-EMP-DATE TO OUT-DATE.
158. MOVE TR-SALARY TO SALARY.
159. MOVE TR-SALARY TO OUT-SALARY.
160. CALL 'FOCUS' USING INPCMD FCB WRKAREA TWOSEG NUMB2.
161. IF FCB-STATUS NOT EQUAL 0
162. MOVE 'DATE ALREADY IN DATABASE' TO OUT-MSG
163. ELSE MOVE 'RECORD INCLUDED' TO OUT-MSG.
164. WRITE OUTREC FROM OUT-REC.
165. C999-EXIT. EXIT.
166. D100-CHG.
167. PERFORM G100-GET-DATE THRU G999-EXIT.
168. MOVE SALARY TO OLD-SAL.
169. MOVE TR-SALARY TO LIT-SALARY. MOVE 'EQ' TO REL-SAL.
170. MOVE SPACES TO REL-DATE.
171. CALL 'FOCUS' USING CHACMD FCB WRKAREA TWOSEG NULL NUMB1
172. TESTREL TESTLIT.
173. IF FCB-STATUS NOT EQUAL 0
174. MOVE 'ERROR CHANGING DATE' TO OUT-MSG
175. ELSE MOVE 'RECORD CHANGED' TO OUT-MSG.
176. WRITE OUTREC FROM OUT-REC.
177. D999-EXIT. EXIT.
178. E100-DEL.
179. PERFORM G100-GET-DATE THRU G999-EXIT.
180. MOVE SALARY TO OLD-SAL.
181. CALL 'FOCUS' USING DELCMD FCB TWOSEG.
182. IF FCB-STATUS NOT EQUAL 0
183. MOVE 'ERROR CHANGING DATE' TO OUT-MSG
184. ELSE MOVE 'SEGMENT DELETED' TO OUT-MSG.
185. WRITE OUTREC FROM OUT-REC.
186. E999-EXIT. EXIT.

3. Using HLI

Host Language Interface User's Manual 45

187. F100-PRT.
188. CALL 'FOCUS' USING NEXCMD FCB WRKAREA TWOSEG ONESEG NUMB0.
189. IF FCB-STATUS GREATER 1
190. MOVE 'ERROR READING FILE' TO OUT-MSG
191. WRITE OUTREC FROM OUT-REC
192. GO TO F999-EXIT.
193. IF FCB-STATUS EQUAL 1
194. GO TO F999-EXIT.
195. MOVE EMPDATE TO OUT-DATE. MOVE SALARY TO OUT-SALARY.
196. WRITE OUTREC FROM OUT-REC.
197. F999-EXIT. EXIT.
198. G100-GET-DATE.
199. MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
200. MOVE TR-EMP-DATE TO OUT-DATE.
201. MOVE TR-SALARY TO OUT-SALARY.
202. MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.
203. CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG
204. NUMB1 TESTREL TESTLIT.
205. IF FCB-STATUS NOT EQUAL 0
206. MOVE 'DATE NOT IN DATABASE' TO OUT-MSG
207. WRITE OUTREC FROM OUT-REC GO TO D999-EXIT.
208. G999-EXIT. EXIT.
209. ZZZZ-CLOSES.
210. CALL 'FOCUS' USING CLOCMD FCB.
211. IF FCB-STATUS NOT EQUAL 0
212. MOVE SPACES TO OUT-REC
213. MOVE 'ERROR IN CLOSE' TO OUT-MSG
214. WRITE OUTREC FROM OUT-REC.
215. CLOSE TRANS OUTFI.

Example: Sample PL/1 Program

1. BOBPLI: PROCEDURE OPTIONS(MAIN);
26. DCL 1 TESTLT STATIC,
27. 2 EMPTEST FIXED BIN(31),
28. 2 NAMETEST CHAR(20),
29. 2 DATETEST FIXED BIN(31),
30. 2 DUMMYT FIXED BIN(31),
31. 2 SALTEST FLOAT BIN(53);

Writing HLI Programs

46

32. DCL 1 TESTRL STATIC,
33. 2 EMPREL CHAR(4) INIT(' '),
34. 2 NAMEREL CHAR(4) INIT(' '),
35. 2 DATEREL CHAR(4) INIT(' '),
36. 2 SALREL CHAR(4) INIT(' ');
37. DCL 1 CHALIT STATIC,
38. 2 CEMPTEST FIXED BIN(31),
39. 2 CNAMETEST CHAR(20),
40. 2 CDATETEST FIXED BIN(31),
41. 2 CDUMMYT FIXED BIN(31),
42. 2 CSALTEST FLOAT BIN(53);
43. DCL 1 CHAREL STATIC,
44. 2 CEMPREL CHAR(4) INIT(' '),
45. 2 CNAMEREL CHAR(4) INIT(' '),
46. 2 CDATEREL CHAR(4) INIT(' '),
47. 2 CSALREL CHAR(4) INIT(' ');
 /*
 SET UP FOCUS COMMANDS
 */
48. DCL FST CHAR(4) INIT('FST'),
49. NEXT CHAR(4) INIT('NEX'),
50. EQ CHAR(4) INIT('EQ'),
51. BLANK CHAR(4) INIT(' '),
52. OPN CHAR(4) INIT('OPN'),
53. SHO CHAR(4) INIT('SHO'),
54. INP CHAR(4) INIT('INP'),
55. CHA CHAR(4) INIT('CHA'),
56. DEL CHAR(4) INIT('DEL'),
57. CLO CHAR(4) INIT('CLO');

3. Using HLI

Host Language Interface User's Manual 47

 /*
 SET UP SEGMENT NAMES
 */
58. DCL ONE CHAR(8) INIT('ONE'),
59. TWO CHAR(8) INIT('TWO'),
60. SYSTEM CHAR(8) INIT('SYSTEM');
 /*
 SET UP OTHER VARIABLES
 */
61. DCL FLAG BIT(1) INIT('1'B),
62. IANS FIXED BIN(15),
63. NUMBER FIXED BIN(31);
 /*
 OPEN FILE AND CHECK STATUS
 */
64. CALL FOCUS (OPN, FCB);
65. IF STATUS]= 0 THEN DO;
66. PUT LIST ('OPEN ERROR ',STATUS);
67. GO TO CLOSE;
68. END;
 /*
 SET UP SHOW FIELD NAMES
 */
69. NUMBER=4;
70. CALL FOCUS (SHO, FCB, NAMES, NUMBER);
71. IF STATUS]= 0 THEN DO;
72. PUT LIST ('SHOW ERROR ',STATUS);
73. GOTO CLOSE;
74. END;
 /*
 MAIN OPTION MENU
 */
75. DO WHILE(FLAG);
76. MENU:
77. PUT EDIT ('ENTER 1 TO ADD A NEW DATE AND SALARY',
78. 'ENTER 2 TO CHANGE A SALARY',
79. 'ENTER 3 TO DELETE A SALARY',
80. 'ENTER 4 TO PRINT SALARY INFORMATION
81. 'ENTER <RETURN> TO EXIT')
82. (SKIP(0),A(36),SKIP(0),A(26),SKIP(0),A(26),SKIP(0),
83. A(35),SKIP(0),A(22));
84. GET EDIT (IANS) (F(1));
85. IF IANS = 0 THEN GOTO CLOSE;
86. IF IANS < 1 [IANS 4 THEN DO;
87. PUT LIST ('A BAD CODE OF', IANS, ' WAS GIVEN - TRY AGAIN');
88. GOTO MENU;
89. END;

Writing HLI Programs

48

 /*
 ENTER EMPLOYEE NUMBER AND CHECK FOR EXISTENCE WHICH ALSO
 ESTABLISHES POSITION IN THE DATABASE
 */
90. EMPLOYEE:
91. PUT SKIP LIST ('ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU');
92. GET EDIT (EMPTEST) (F(5));
93. IF EMPTEST = 0 THEN GOTO MENU;
94. EMPREL=EQ;
95. NUMBER=1;
96. CALL FOCUS (FST,FCB,WKAREA,ONE,SYSTEM,NUMBER,TESTRL,TESTLT);
97. IF STATUS]= 0 THEN DO;
98. PUT SKIP LIST ('EMPLOYEE',EMPTEST,'NOT FOUND');
99. GOTO EMPLOYEE;
100. END;
 /*
 BRANCH ACCORDING TO OPTION SELECTED
 */
101. PUT LIST ('EMPLOYEE NAME IS ',NAME);
102. IF IANS = 1 THEN CALL ADD;
103. ELSE IF IANS = 2 THEN CALL CHANGE;
104. ELSE IF IANS = 3 THEN CALL DELETE;
105. ELSE IF IANS = 4 THEN CALL PRINT;
106. END;
 /*
 EXIT PROGRAM AND CLOSE DATABASE
 */
107. CLOSE: CALL FOCUS (CLO, FCB);
108. IF STATUS]= 0 THEN DO;
109. PUT LIST ('ERROR IN CLOSE IS', STATUS);
110. END;
 /*
 PROCEDURE TO ADD A NEW DATE AND SALARY
 */
111. ADD: PROC;
112. NUMBER=2;
113. DO WHILE (FLAG);
114. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR MENU');
115. GET EDIT (DATE) (F(6));
116. IF DATE = 0 THEN RETURN;
117. PUT LIST ('ENTER SALARY WITH DECIMAL');
118. GET EDIT (SALARY) (F(9,2));
119. CALL FOCUS (INP, FCB, WKAREA, TWO, NUMBER);
120. IF STATUS]= 0 THEN DO;
121. PUT LIST (' ***** ERROR ***** DATE ALREADY EXISTS', DATE);
122. END;
123. END;
124. RETURN;
125. END ADD;

3. Using HLI

Host Language Interface User's Manual 49

 /*
 PROCEDURE TO CHANGE A SALARY BUT FIRST DISPLAY EXISTING SALARY
 */
126. CHANGE: PROC;
127. NUMBER=1;
128. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR NEW EMPLOYEE');
129. GET EDIT (DATETEST) (F(6));
130. IF DATETEST = 0 THEN RETURN;
131. EMPREL = BLANK;
132. DATEREL=EQ;
133. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);
134. DATEREL=BLANK;
135. IF STATUS = 0 THEN DO;
136. PUT EDIT ('EXISTING SALARY IS ',SALARY,'ENTER NEW SALARY')
137. (A(19),F(9,2),SKIP(0),A(16));
138. GET EDIT (CSALTEST) (F(9,2));
139. CSALREL=EQ;
140. CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,NUMBER,CHAREL,CHALIT);
141. IF STATUS]= 0 THEN DO;
142. PUT LIST ('ERROR IN CHANGE STATUS IS ',STATUS);
143. END;
144. END;
145. ELSE DO;
146. PUT LIST ('***** ERROR ***** DATE NOT FOUND',DATETEST);
147. END;
148. RETURN;
149. END CHANGE;

Writing HLI Programs

50

 /*
 PROCEDURE TO DELETE A SEGMENT TWO INSTANCE GIVEN A DATE
 */
150. DELETE: PROC;
151. NUMBER=1;
152. DO WHILE (FLAG);
153. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR NEW EMPLOYEE');
154. GET EDIT (DATETEST) (F(6));
155. IF DATETEST = 0 THEN RETURN;
156. EMPREL=BLANK;
157. DATEREL=EQ;
158. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);
159. DATEREL=BLANK;
160. IF STATUS = 0 THEN DO;
161. CALL FOCUS (DEL,FCB,TWO);
162. IF STATUS]= 0 THEN PUT LIST ('SEGMENT NOT DELETED STATUS=',
163. STATUS); ELSE
164. PUT LIST ('SEGMENT DELETED');
165. END;
166. ELSE DO;
167. PUT LIST ('***** ERROR DATE NOT FOUND',DATETEST);
168. END;
169. END;
170. RETURN;
171. END DELETE;
 /*
 PROCEDURE TO REPORT BY NEXTING THROUGH SEGMENT TWO
 */
172. PRINT: PROC;
173. NUMBER=0;
174. DO WHILE (FLAG);
175. CALL FOCUS (NEXT, FCB, WKAREA, TWO, ONE, NUMBER);
176. IF STATUS]= 0 THEN RETURN;
177. PUT EDIT (DATE,SALARY) (SKIP(0),F(6),X(2),F(12,2));
178. END;
179. END PRINT;
 /*
 END MAIN PROGRAM
 */
180. END BOBPLI;

Initializing the FCB

HLI must have the location of the File Communication Block before it can open the file.

Your program must:

1. Define a 200-byte area of memory for the FCB.

2. Store the needed values in the correct bytes. For example, the file name must be in bytes 1
to 8. If you want ECHO logging, you must place the characters 'ECHO' in bytes 69 through
72.

3. Using HLI

Host Language Interface User's Manual 51

For information about FCB layout and contents, see Initializing the File Communication Block
(FCB).

Example: Initializing the FCB in a C Program

The following code (taken from Lines 30 through 34 of the C program shown in Sample HLI
Programs on page 30) declares a File Communication Block. The FCB structure is defined in
the header file edahli.h. The program initializes the file name to 'EMP'. No logging is requested
and the file is not on a sink machine, so those bytes are blank:

 memset(&fcb, '\0', sizeof(fcb));
 memset(&fcb, ' ', EDAHLI_FCB_INIT_SIZE);
 /**
 * Put file name into FCB. filetype and
 * filemode should be left blank.
 */
 memcpy(fcb.filename, "EMP", 3);
 memcpy(fcb.filetype, " ", 5);
 memcpy(fcb.filemode, " ", 1);

Example: Initializing the FCB in a FORTRAN Program

The following code (taken from Lines 2 through 7 of the FORTRAN program shown in Sample
HLI Programs on page 30) declares a File Communication Block. The FCB is declared as an
array of 50 four-byte words. The bytes that need to be initialized by the program are also given
individual names, FN for file name and STATUS for the status code. The file name is initialized
to 'EMP'. No logging is requested and the file is not on a sink machine, so those bytes are
blank:

 DIMENSION FCB(50)
 REAL*8 FN,FT,SALARY,SALNEW
 INTEGER*4 STATUS, DATE, NAME(5)
 EQUIVALENCE (FCB(1),FN), (FCB(24),STATUS)

 DATA FCB /'EMP ', ' ', ' ', 17*' ', 28*0/

Example: Initializing the FCB in a COBOL program

The following code (taken from Lines 49 through 57 of the COBOL program shown in Sample
HLI Programs on page 30) declares a File Communication Block. The FCB is declared as a
structure The file name (FCB-FN) is initialized to 'EMP'. ECHO logging is requested (FCB-ECHO).
The status bytes (FCB-STATUS) are binary and not initialized.The file is not on a sink machine,
so all other bytes are initialized to blanks:

Initializing the FCB

52

 01 FCB.
 02 FCB-FN PIC X(8) VALUE 'EMP '.
 02 FCB-FT PIC X(8) VALUE ' '.
 02 FCB-FM PIC X(4) VALUE ' '.
 02 FILLER PIC X(48) VALUE SPACES.
 02 FCB-ECHO PIC X(4) VALUE 'ECHO'.
 02 FILLER PIC X(20) VALUE SPACES.
 02 FCB-STATUS PIC S9(5) COMP.
 02 FILLER PIC X(104) VALUE SPACES.

Example: Initializing the FCB in a PL/I program

The following code (taken from Lines 2 through 13 of the PL/I program shown in Sample HLI
Programs on page 30) declares a File Communication Block. The FCB is declared as a
structure The file name (FN) is initialized to 'EMP'. The segment number, status, and error
number bytes (SEGNUM, STATUS, and ERRORNUM) are binary and not initialized. No logging is
requested, and the file is not on a sink machine, so those bytes are initialized to blanks:

DCL 1 FCB STATIC,
 2 FN CHAR(8) INIT ('EMP'),
 2 FT CHAR(8) INIT (' '),
 2 FM CHAR(4) INIT (' '),
 2 FILL1 CHAR(48) INIT (' '),
 2 ECHO CHAR(4) INIT (' '),1
 2 PASSCTL CHAR(8),
 2 NEWSEG CHAR(8),
 2 SEGNUM FIXED BIN(31),
 2 STATUS FIXED BIN(31),
 2 ERRORNUM FIXED BIN(31),
 2 FILL2 CHAR(100);

Opening the FOCUS Data Source

Before you use any HLI functions, you must open the FOCUS data source using the OPN
command. If your FOCUS file is protected by DBA security, you must have read/write access in
order to use HLI. Cross-referenced files are opened with read-only access.

Syntax: How to Open a FOCUS Data Source (OPN)

In C:

edahliCall(hliHandle, 2, opn, &fcb)
CALL FOCUS (opn, fcb, numb)
CALL 'FOCUS' USING opnfcbnumb.
CALL FOCUS (opn, fcb, numb);

In FORTRAN:

CALL FOCUS (opn, fcb, numb)

3. Using HLI

Host Language Interface User's Manual 53

In COBOL:

CALL 'FOCUS' USING opnfcbnumb.

In PL/1:

CALL FOCUS (opn, fcb, numb);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

2

Is the number of parameters remaining in the call sequence, 2 for the OPN command.

opn

(Open) may be a variable containing the OPN command, or, in languages that allow it, may
be the literal string 'OPN' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

numb

The database must have been created before executing the program, and the value of
numb should be 0.

This must be the first call to FOCUS to open each FOCUS file, or if multiple positions to the
same file are required, for each position.

When the file is opened, no data from the database has yet been retrieved. The Master File
has been read and interpreted (consult the Describing Data manual for more information about
Master Files for FOCUS databases).

Example: Opening a FOCUS Data Source in a C Program

The following code (taken from Line 46 of the C program shown in Sample HLI Programs on
page 30) opens the FOCUS database named EMP. The file name was initialized to 'EMP' in the
filename field of the FCB:

 rc = edahliCall(hli, 2, "OPN ", &fcb);

Opening the FOCUS Data Source

54

Example: Opening a FOCUS Data Source in a FORTRAN Program

The following code (taken from Line 24 of the FORTRAN program shown in Sample HLI
Programs on page 30) opens the FOCUS database named EMP . The file name was initialized
to 'EMP' in the FN field of the FCB:

 CALL FOCUS (OPN,FCB)

Example: Opening a FOCUS Data Source in a COBOL Program

The following code (taken from Line 107 of the COBOL program shown in Sample HLI Programs
on page 30) opens the FOCUS database named EMP. The file name was initialized to 'EMP' in
the FN field of the FCB:

 CALL 'FOCUS' USING OPNCMD FCB NUMB0.

Example: Opening a FOCUS Data Source in a PL/I Program

The following code (taken from Line 64 of the PL/I program shown in Sample HLI Programs on
page 30) opens the FOCUS database named EMP. The file name was initialized to 'EMP' in the
FN field of the FCB:

 CALL FOCUS (OPN, FCB);

Data Offsets in the Work Area

The work area is an area of memory for storing the FOCUS data source fields. The data offset
is the number of bytes from the beginning of the work area to the place where the data for
each of the fields will be located.

You can use the INFO command to obtain the offsets for each field (see HLI Command
Summary, for a description of INFO). However, if you want to calculate them yourself, you must
first determine the internal length of each field in the work area.

For example, in the Master File shown in Sample HLI Programs on page 30, EMPNO has a
format of I5; NAME, A20; DATE, I6; and SALARY, D12.2. The lengths are determined as
follows:

I5

Is an integer, and integers take four bytes of internal storage. The 5 expresses the display
length.

A20

Is a character. Since one byte is allocated for each character, 20 bytes of storage are
allocated.

3. Using HLI

Host Language Interface User's Manual 55

I6

Is an integer, and integers take four bytes of internal storage. The 6 expresses the display
length.

D12.2

Is a real number that uses eight bytes for storage. Again, the 12.2 is the display format.

Floating, integer, and alphanumeric fields always have to start on a word (4-byte) boundary; 8-
byte real numbers must start on a double-word (8-byte) boundary.

The byte offset of a field is the byte on which the field begins. In our example, the byte offset
of EMPNO is 0, since it starts on the first byte. EMPNO takes up four bytes; thus, the byte
offset of NAME is 4. NAME takes up 20 bytes, which means that the next available byte on
which to start a field is at offset 24. DATE is of type I, and must start on a word boundary. It
takes up four bytes, so byte 27 is the next available byte for a field to begin on. SALARY,
however, is of type D, which must begin on a double-word boundary. The next available double-
word boundary is at offset 32; thus, SALARY must begin there. You must supply a filler field for
the skipped bytes:

Note:

In C, these filler fields can be supplied in a work area structure. The work area can be a
structure or a character buffer.

In FORTRAN, if you define your work area as an array, you do not need to supply any field
locations to the compiler. Thus, the filler fields will automatically be included.

In COBOL, these filler fields must be supplied in your FD statements or you can use
JUSTIFY.

In PL/1, you should not depend on PL/1 to adjust your fields for you. This is because the
algorithm used may not be one that FOCUS uses.

Using a Show List

By default, all of the fields in the database are available when the file is open. If your
application program refers to a small number of fields, the SHO command selects the fields
you want to use.

Using a Show List

56

Syntax: How to Select a List of Fields in a FOCUS Data Source (SHO)

In C:

edahliCall(hlihandle, 4, sho, &fcb, showlist, &numb);
CALL FOCUS (sho, fcb, showlist, numb)
CALL 'FOCUS' USING shofcbshowlistnumb.
CALL FOCUS (sho, fcb, showlist, numb);

In FORTRAN:

CALL FOCUS (sho, fcb, showlist, numb)

In COBOL:

CALL 'FOCUS' USING shofcbshowlistnumb.

In PL/1:

CALL FOCUS (sho, fcb, showlist, numb);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

4

Is the number of parameters remaining in the call sequence, 4 for the SHO command.

sho

(Show) may be a variable with the value SHO or, in languages that allow it, may be the
literal string ' SHO' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program. An OPN
command must have been issued for this FCB.

showlist

Is the name of the array where the names of the desired fields are stored. Each entry in
this array contains one 12-byte field name, padded with blanks if necessary.

numb

Is the number of fields in the show list.

3. Using HLI

Host Language Interface User's Manual 57

If you do not issue a SHO command before the first retrieval command, FOCUS retrieves all
fields in the path from the anchor segment to the target. However, because SHO can be used
to organize your offsets to satisfy requirements such as beginning on a double word boundary.
Also, if additional fields are added to the file that are not required for this program, using SHO
isolates the program from such changes, so its use is recommended. Multiple SHOs for the
same file/FCB may also be issued depending on the needs of the application.

INFO, a related command, returns Master File information such as segment names, field
names, and formats. The field names are returned in the order of the show list. See HLI
Command Summary, for information on the INFO command.

Example: Using a Show List in a C Program

The following code (taken from Line 53 of the C program shown in Sample HLI Programs on
page 30) issues the SHO command:

 rc = edahliCall(hli, 4, "SHO ", &fcb, names, &namesL);

The names list contains the names of the fields that are to be made available. The following
code, taken from Lines 15 to 18 and 24 of the sample C program initialize this list with the
field names EMPNO, NAME, DATE, and SALARY:

#define FLD_EMPNO "EMPNO "
#define FLD_NAME "NAME "
#define FLD_DATE "DATE "
#define FLD_SALARY "SALARY "
 char *names = FLD_EMPNO FLD_NAME FLD_DATE FLD_SALARY;

Example: Using a Show List in a FORTRAN Program

The following code (taken from Line 29 of the FORTRAN program shown in Sample HLI
Programs on page 30) issues the SHO command:

 20 CALL FOCUS (SHO,FCB,NAMES,4)

The NAMES array contains the names of the fields that are to be made available. The following
code, taken from Lines 8 to 13 of the sample FORTRAN program initialize this array with the
field names EMPNO, NAME, DATE, and SALARY:

 DIMENSION NAMES (3,4)
 DATA NAMES /9*' '/
 DATA NAMES(1,1)/'EMPN'/,NAMES(2,1)/'0 '/,NAMES(3,1)/' '/,
 * NAMES(1,2)/'NAME'/,NAMES(2,2)/' '/,NAMES(3,2)/' '/,
 * NAMES(1,3)/'DATE'/,NAMES(2,3)/' '/,NAMES(3,3)/' '/,
 * NAMES(1,4)/'SALA'/,NAMES(2,4)/'RY '/,NAMES(3,4)/' '/

Using a Show List

58

Example: Using a Show List in a COBOL Program

The following code (taken from Line 113 of the COBOL program shown in Sample HLI Programs
on page 30) issues the SHO command:

 CALL 'FOCUS' USING SHOCMD FCB NAMES-AREA NUMB4.

The NAMES-AREA structure contains the names of the fields that are to be made available. The
following code, taken from Lines 68 to 72 of the sample COBOL program initialize this array
with the field names EMPNO, NAME, DATE, and SALARY:

 01 NAMES-AREA.
 02 FIELD-0001 PIC X(12) VALUE 'EMPNO '.
 02 FIELD-0002 PIC X(12) VALUE 'NAME '.
 02 FIELD-0003 PIC X(12) VALUE 'DATE '.
 02 FIELD-0004 PIC X(12) VALUE 'SALARY '.

Example: Using a Show List in a PL/I Program

The following code (taken from Line 70 of the PL/I program shown in Sample HLI Programs on
page 30) issues the SHO command:

 CALL FOCUS (SHO, FCB, NAMES, NUMBER);

The NAMES-AREA structure contains the names of the fields that are to be made available. The
following code, taken from Lines 15 to 19 of the sample PL/I program initialize this array with
the field names EMPNO, NAME, DATE, and SALARY:

DCL 1 NAMES STATIC,
 2 NAME1 CHAR(12) INIT('EMPNO'),
 2 NAME2 CHAR(12) INIT('NAME'),
 2 NAME3 CHAR(12) INIT('DATE'),
 2 NAME4 CHAR(12) INIT('SALARY');

Locating Records

Now that the file is open, and a work area has been established, the program can search for a
segment instance.

HLI offers three ways to read FOCUS files:

In logical sequence through the pointers.

In physical sequence as if it were a flat, sequential file.

Through values in an index that you specify.

3. Using HLI

Host Language Interface User's Manual 59

Expressing Test Relations

The work area is a series of bytes allocated to each field (see Data Offsets in the Work Area on
page 55, for information on byte offsets). There are also 4 bytes per field allocated for
expressing test conditions, as shown below:

You can identify the field to be tested by marking the appropriate full-word in the test relations
area. For example, suppose the test relation applies to the DATE field. You must mark the
third full-word in the test relation array and identify the condition to apply to the field. Do this
by entering eight blanks to indicate you want to skip the first eight bytes (which apply to the
first two fields) in the array. Then place the relation in the third full-word (for the third field).
Since this is only a two-byte relation (EQ), pad the second two bytes with blanks. Alternatively,
establish the test relations as an array of 4-byte fields, and move the required relation value
into the applicable element in the array.

Example: Expressing Test Relations in a C Program

The following code (taken from Lines 75 to 77 in the program shown in Sample HLI Programs
on page 30) creates the array for the test relations and the structure for the test literals:

 t_record testlt, wkarea;
 char testrl[4 * 4]; /* 4 bytes per SHO field */
 int testL = 1; /* single test pass to FST */

Example: Expressing Test Relations in a FORTRAN Program

The following code (taken from Lines 17 to 19 in the program shown in Sample HLI Programs
on page 30) creates the arrays for the test relations and test literals:

 DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
 EQUIVALENCE (CHALIT(9),SALNEW)
 DATA TESTRL /4*' '/, CHAREL /4*' '/

The following code (taken from Lines 48 to 53) prompts the user to enter the test literal (the
employee number for the record to be retrieved) and sets the test relation to 'EQ':

Locating Records

60

 80 WRITE (6,90)
 90 FORMAT (/,1X,'ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU')
 READ (5,100,END=40) TESTLT(1)
 100 FORMAT (I5)
 IF (TESTLT(1).EQ.0) GO TO 40
 TESTRL(1)=EQ

Additional examples of test relations are on Lines 76 to 80 and 96 to 100.

Example: Expressing Test Relations in a COBOL Program

The following code (taken from Lines 86 to 96 in the program shown in Sample HLI Programs
on page 30) creates the structures for the test relations and test literals:

 01 TESTREL.
 02 REL-NO PIC X(04) VALUE SPACES.
 02 REL-NAME PIC X(04) VALUE SPACES.
 02 REL-DATE PIC X(04) VALUE SPACES.
 02 REL-SAL PIC X(04) VALUE SPACES.
 01 TESTLIT.
 02 LIT-EMPNO PIC S9(9) COMP.
 02 LIT-NAME PIC X(20) VALUE SPACES.
 02 LIT-DATE PIC S9(6) COMP.
 02 FILLER PIC X(4).
 02 LIT-SALARY COMP-2.

The following code (taken from Lines 120 to 130) reads the test literal (the employee number
for the record to be retrieved) and sets the test relation to 'EQ':

 B100-READ.
 READ TRANS AT END MOVE 9 TO EOF-FLAG GO TO B999-EXIT.
 IF TRANS-TYPE LESS THAN 1 OR TRANS-TYPE GREATER 4
 MOVE SPACES TO OUT-REC
 MOVE TRANS-REC TO OUT-REC
 MOVE 'ERROR IN TRANSACTION CODE' TO OUT-MSG
 WRITE OUTREC FROM OUT-REC
 GO TO B999-EXIT.
 MOVE SPACES TO OUT-REC MOVE TR-EMPNO TO OUT-EMPNO.
 MOVE SPACES TO TESTREL. MOVE 'EQ' TO REL-NO.
 MOVE TR-EMPNO TO LIT-EMPNO.

Additional examples of test relations are on Lines 169 and 202.

Example: Expressing Test Relations in a PL/I Program

The following code (taken from Lines 26 to 36 in the program shown in Sample HLI Programs
on page 30) creates the structures for the test relations and test literals:

3. Using HLI

Host Language Interface User's Manual 61

 DCL 1 TESTLT STATIC,
 2 EMPTEST FIXED BIN(31),
 2 NAMETEST CHAR(20),
 2 DATETEST FIXED BIN(31),
 2 DUMMYT FIXED BIN(31),
 2 SALTEST FLOAT BIN(53);
 DCL 1 TESTRL STATIC,
 2 EMPREL CHAR(4) INIT(' '),
 2 NAMEREL CHAR(4) INIT(' '),
 2 DATEREL CHAR(4) INIT(' '),
 2 SALREL CHAR(4) INIT(' ');

The following code (taken from Lines 90 to 95) prompts the user to enter the test literal (the
employee number for the record to be retrieved) and sets the test relation to 'EQ':

 EMPLOYEE:
 PUT SKIP LIST ('ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU');
 GET EDIT (EMPTEST) (F(5));
 IF EMPTEST = 0 THEN GOTO MENU;
 EMPREL=EQ;
 NUMBER=1;

Additional examples of test relations are on Lines 128 to 132 and 153 to 157.

Logical Reads

Logical reads use the pointers in the FOCUS file as the means of advancing from segment
instance to segment instance.

The FST command is used to advance to the position of the first target segment instance
under the anchor. If the anchor is SYSTEM, the FST command advances to the position of the
first target segment instance in the file.

You use the FST command after you have issued several logical reads and want to return to
the first segment instance or when you are trying to move to a parent segment from a child
segment.

From within the file, issue NEX to get the next occurrence of a target segment.

Syntax: How to Move to the First Target Segment Instance Under the Anchor (FST)

In C:

edahliCall(hliHandle, 10, fst, &fcb, &workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

In FORTRAN:

Locating Records

62

CALL FOCUS (fst, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat)

In COBOL:

CALL 'FOCUS' USING fstfcbworkareatargetanchorntesttestrelations
testliteralsnullnrepeat.

In PL/1:

CALL FOCUS (fst, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

10

Is the number of parameters remaining in the call sequence, 10 for the FST command.

fst

(First) may be a variable that contains the FST command, or, in languages that allow it,
may be the literal string, 'FST' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is found.
An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is less than eight characters long. In the
sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

3. Using HLI

Host Language Interface User's Manual 63

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value you are searching for. Notice that in the sample programs four blanks are
provided before the EQ to mark the byte position of the field to be tested. The offsets in
the testliteral must match the offsets in the work area.

null

(Optional, only required if nrepeat is specified.) Is an 8-byte field used for positioning.

nrepeat

(Optional.) Specifies the number of records satisfying the test conditions you want returned
to you.

Syntax: How to Move to the Next Segment in a Logical Read (NEX)

The NEX command specifies that you want to look for the next segment in a logical read. You
can use the NEX command as the first logical read in your file.

In C:

edahliCall(hliHandle, 10, nex, &fcb, &workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

In FORTRAN:

CALL FOCUS (nex, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat)

In COBOL:

CALL 'FOCUS' USING nexfcbworkareatargetanchorntesttestrelations
testliteralsnullnrepeat.

In PL/1:

CALL FOCUS (nex, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat);

Locating Records

64

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

10

Is the number of parameters remaining in the call sequence, 10 for the NEX command.

nex

May be a variable that contains the NEX command, or, in languages that allow it, may be
the literal string 'NEX ' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is found.
An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is less than eight characters long. In the
sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value you are searching for. Notice that in the sample programs four blanks are
provided before the EQ to mark the byte position of the field to be tested. The offsets in
the testliteral must match the offsets in the work area.

3. Using HLI

Host Language Interface User's Manual 65

null

(Optional, only required if nrepeat is specified.) Is an 8-byte field used for positioning.

nrepeat

(Optional.) Specifies the number of records satisfying the test conditions you want returned
to you. If not specified, one instance will be returned.

If literals have been coded as constants in a call, you must pad each alphanumeric field with
blanks to fix the byte offsets. Numeric constants cannot usually be hard-coded in a call. If you
declare your literals as variables instead, the variables must be defined with the correct byte
offset.

Example: Using Logical Reads in a C Program

The following code (taken from Lines 83 to 84 in the program shown in Sample HLI Programs
on page 30) finds the first segment instance in segment ONE starting from SYSTEM that
matches the employee number read in as the test literal in Expressing Test Relations on page
60:

 rc = edahliCall(hli, 8, "FST ", &fcb,
 &wkarea, SEG_ONE, SEG_SYS, &testL, testrl, &testlt);

Additional examples of using logical reads are on Lines 141, 171, and 191.

Example: Using Logical Reads in a FORTRAN Program

The following code (taken from Line 54 in the program shown in Sample HLI Programs on page
30) finds the first segment instance in segment ONE starting from SYSTEM that matches the
employee number read in as the test literal in Expressing Test Relations on page 60:

 CALL FOCUS (FST, FCB, WKAREA, ONE,SYSTEM , 1, TESTRL, TESTLT)

Additional examples of using logical reads are on Lines 81, 101, and 114.

Example: Using Logical Reads in a COBOL Program

The following code (taken from Lines 131 and 132 in the program shown in Sample HLI
Programs on page 30) finds the first segment instance in segment ONE starting from SYSTEM
that matches the employee number read in as the test literal in Expressing Test Relations on
page 60:

 CALL 'FOCUS' USING FSTCMD FCB WRKAREA ONESEG SYSSEG
 NUMB1 TESTREL TESTLIT.

Additional examples of using logical reads are on Lines 188 and 203.

Locating Records

66

Example: Using Logical Reads in a PL/I Program

The following code (taken from Line 96 in the program shown in Sample HLI Programs on page
30) finds the first segment instance in segment ONE starting from SYSTEM that matches the
employee number read in as the test literal in Expressing Test Relations on page 60:

 CALL FOCUS (FST,FCB,WKAREA,ONE,SYSTEM,NUMBER,TESTRL,TESTLT);

Additional examples of using logical reads are on LInes 133, 158, and 175.

Physical Reads

You can also use HLI to read segment instances in their stored sequence (when included in
the file, regardless of pointer) using the FSP command. The syntax for a physical read is very
similar to that for a logical read, except you do not provide an anchor segment. It goes to the
first physical segment instance in the file that matches the test conditions (if any), without
using the logical pointers stored in the file.

Syntax: How to Move to the First Physical Segment Instance (FSP)

In C:

edahliCall(hliHandle, 7, fsp, &fcb, &workarea, target, ntest,
testrelations, testliterals);

In FORTRAN:

CALL FOCUS (fsp, fcb, workarea, target, ntest, testrelations,
testliterals)

In COBOL:

CALL 'FOCUS' USING fspfcbworkareatargetntesttestrelationstestliterals.

In PL/1:

CALL FOCUS (fsp, fcb, workarea, target, ntest, testrelations,
testliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

7

Is the number of parameters remaining in the call sequence, 7 for the FSP command.

3. Using HLI

Host Language Interface User's Manual 67

fsp

(First Physical) may be a variable that contains the FSP command, or, in languages that
allow it, may be the literal string 'FSP' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is found.
An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is less than eight characters long. In the
sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value you are searching for. Notice that in the sample programs four blanks are
provided before the EQ to mark the byte position of the field to be tested. The offsets in
the testliteral must match the offsets in the work area.

Syntax: How to Retrieve the Next Physical Occurrence of the Target Segment (NXP)

The NXP command is used to retrieve the next physically adjacent occurrence of the target
segment.

In C:

edahliCall(hliHandle, 7, nxp, &fcb, &workarea, target, ntest,
testrelations, testliterals);

In FORTRAN:

CALL FOCUS (nxp, fcb, workarea, target, ntest, testrelations,
testliterals)

In COBOL:

Locating Records

68

CALL 'FOCUS' USING nxpfcbworkareatargetntesttestrelationstestliterals.

In PL/1:

CALL FOCUS (nxp, fcb, workarea, target, ntest, testrelations,
testliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

7

Is the number of parameters remaining in the call sequence, 7 for the NXP command.

nxp

(Next Physical) may be a variable that contains the NXP command, or, in languages that
allow it, may be the literal string 'NXP' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is found.
An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is less than eight characters long. In the
sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

3. Using HLI

Host Language Interface User's Manual 69

testliterals

Is the value you are searching for. Notice that in the sample programs four blanks are
provided before the EQ to mark the byte position of the field to be tested. The offsets in
the testliteral must match the offsets in the work area.

Note: Physical searches of the database do not retrieve logically-related segments. Thus, you
will receive an error status code if you attempt to delete an instance that has been retrieved
physically, as all instances of a given parent must be logically chained together. After retrieving
an instance physically, the program may use logical retrieval commands to retrieve the parent
instance, and then re-retrieve the instance to be deleted.

Indexed Reads

HLI supports retrieval through a FOCUS file index for a specific key value. The NXD command
locates the first instance containing a key value of a specified indexed field.

Syntax: How to Retrieve a Segment Instance Using an Index (NXD)

In C:

edahliCall(hliHandle, 9, nxd, &fcb, &workarea, target, field, ntest,
testrelations,

In FORTRAN:

CALL FOCUS (nxd, fcb, workarea, target, field, ntest,
testrelations,testliterals, savearea)

In COBOL:

CALL 'FOCUS' USING nxdfcbworkareatargetfieldntesttestrelations
testliteralssavearea.

In PL/1:

CALL FOCUS (nxd, fcb, workarea, target, field, ntest,
testrelations,testliterals, savearea);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

9

Is the number of parameters remaining in the call sequence, 9 for the NXD command.

Locating Records

70

nxd

(Next through Index) may be a variable containing the NXD command, or, in languages that
allow it, may be the literal string 'NXD' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if the data is
found.

target

Is the segment to be retrieved using the index of the specified field.

field

Names the field whose index will be used to retrieve the target segment. The field must be
declared in the Master File Description with the FIELDTYPE=I.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test conditions to be applied.

testliterals

Is the value you are searching for.

savearea

Is a 32-byte area used to save information when the retrieval is requested. This should be
set to binary zeros for the first occurrence of a specific value, but left unchanged for
subsequent retrieval of instances with the same value for the indexed field.

Retrieving With a Backkey

The NXK command works through a direct address in the FCB (bytes 61-68), and retrieves a
previous target segment you have earmarked for this purpose. Following the retrieval, the
backkey in the FCB contains the address. This may be saved for future use.

Syntax: How to Retrieve a Previous Target Segment Using a Backkey (NXK)

In C:

edahliCall(hliHandle, 5, nxk, &fcb, &workarea, target,

3. Using HLI

Host Language Interface User's Manual 71

In FORTRAN:

CALL FOCUS (nxk, fcb, workarea, target, backkey)

In COBOL:

CALL 'FOCUS' USING nxkfcbworkareatargetbackkey.

In PL/1:

CALL FOCUS (nxk, fcb, workarea, target, backkey);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

5

Is the number of parameters remaining in the call sequence, 5 for the NXK command.

nxk

Next through Key may be a variable containing the NXK command, or, in languages that
allow it, may be the literal string 'NXK' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file, if any is found, will be placed.

target

Is the name of the segment you want to retrieve.

backkey

Is an address into the file that lets you move back to a previously retrieved segment. The
current segment address begins in byte 61 of the FCB. When multiple instances were
retrieved into an array with a single logical retrieval, address of each instance retrieved is
in the 8-byte field designated in the workarea for multiple retrievals. For additional
information, see Defining the Record Work Area on page 20. Defining the Work Area)

Retrieving With a Backkey

72

Altering the File

Once the segments are retrieved, you can:

Include new segment instances.

Change the information in segment instances.

Delete segment instances.

Note: You must have a logical position in the file to add or delete segments.

All changes to the database are written to a buffer. They are not permanently saved in the
database until the program either issues a SAV command or issues a CLO command.

When maintaining a file under the control of a sink machine, before accepting a maintenance
command, verification is made by the sink process that the instance has not changed by
another user since it was retrieved. If it was, the command is not processed, and a non-zero
return code is returned.

Including New Segments

You use the INP command to include new segment instances. The INP command creates new
segment instances that include the information contained in the inpliteral variable.

Syntax: How to Include New Segment Instances (INP)

In C:

edahliCall(hliHandle, 5, inp, &fcb, inpliteral, target, n);

In FORTRAN:

CALL FOCUS (inp, fcb, inpliteral, target, n)

In COBOL:

CALL 'FOCUS' USING inpfcbinpliteraltargetn.

In PL/1:

CALL FOCUS (inp, fcb, inpliteral, target, n);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

3. Using HLI

Host Language Interface User's Manual 73

5

Is the number of parameters remaining in the call sequence, 5 for the INP command.

inp

(Input) may be a variable that contains the INP command, or, in languages that allow it,
may be the literal string 'INP' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

inpliteral

Is an array that contains the new information you want to enter. The data to be included
must be assembled in a data structure that can be passed to HLI. This data structure is
contained in the inpliteral variable. The format of the inpliteral structure is the same as the
format of the work area.

target

Is the name of the segment to be added. It must be padded to eight characters. The target
is located using your current position in the file, established through logical reads.

n

Is a numeric code to control how the new segment is added. If the segment type is S0 or
blank, the possible values of n are:

0

Inserts the new segment after the current segment, providing the key fields are the
same.

1

Inserts the new segment before the current segment, providing the key fields are the
same.

If the segment type is Sn or SHn, the value of n must be:

0

Duplicate keys are allowed. This is not supported when the file is under the
control of a sink machine.

2

Rejects the new segment instance if the key already exists.

Altering the File

74

Example: Including New Segment Instances Using a C Program

The following code (taken from Lines 120 and 121 in the program shown in Sample HLI
Programs on page 30) inputs a new segment TWO instance after reading new date and salary
values into the work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the
last argument specifies that the transaction is rejected if the key (date value) already exists in
the data source:

 rc = edahliCall(hli, 3, "INP ", pFcb, wkarea, "TWO ",
 &c__2);

Example: Including New Segment Instances Using a FORTRAN Program

The following code (taken from Line 71 in the program shown in Sample HLI Programs on page
30) inputs a new segment TWO instance after reading new date and salary values into the
work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the last argument
specifies that the transaction is rejected if the key (date value) already exists in the data
source:

 CALL FOCUS (INP,FCB,WKAREA,TWO,2)

Example: Including New Segment Instances Using a COBOL Program

The following code (taken from Line 160 in the program shown in Sample HLI Programs on
page 30) inputs a new segment TWO instance after reading new date and salary values and
placing them in the work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for
the last argument specifies that the transaction is rejected if the key (date value) already
exists in the data source:

 CALL 'FOCUS' USING INPCMD FCB WRKAREA TWOSEG NUMB2.

Example: Including New Segment Instances Using a PL/I Program

The following code (taken from Line 119 in the program shown in Sample HLI Programs on
page 30) inputs a new segment TWO instance after reading new date and salary values into
the work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the last
argument specifies that the transaction is rejected if the key (date value) already exists in the
data source:

 CALL FOCUS (INP, FCB, WKAREA, TWO, NUMBER);

3. Using HLI

Host Language Interface User's Manual 75

Changing Information in the File

Use the CHA command to change information in a segment. All the new information must be
loaded into an array before the CHA command is issued. Then the CHA command specifies the
byte offset of the field you want to change. The changelist variable indicates what fields are to
be changed.

Syntax: How to Change Information in a Segment Instance (CHA)

In C:

edahliCall(hliHandle, 7, cha, &fcb, &workarea, target, anchor, n,
changelist, changeliterals);

In FORTRAN:

CALL FOCUS (cha, fcb, workarea, target, anchor, n, changelist,
changeliterals)

In COBOL:

CALL 'FOCUS' USING chafcbworkareatargetanchornchangelistchangeliterals.

In PL/1:

CALL FOCUS (cha, fcb, workarea, target, anchor, n, changelist,
changeliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

8

Is the number of parameters remaining in the call sequence, 8 for the CHA command.

cha

(Change) may be a variable that contains the CHA command or, in languages that allow it,
may be the literal string 'CHA' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is the previously defined work area.

Altering the File

76

target

Is the target segment on which you want the changes performed. The target instance
changed is the one at your current position in the file, established through logical reads.

anchor

Is the anchor segment. Although this parameter is required in the syntax, it is not used
and can be a null value (eight-byte field of blank spaces).

n

Is the number of fields you want to change.

changelist

Indicates which fields are to be changed. Its format is identical to that of testrelations. The
data fields whose corresponding changelist values are set to EQ are changed to the values
specified by the changeliterals value. A copy of the changed segment instance is returned
to the work area. The changeliterals area must correspond to the current SHO command
field layout. there are four bytes in the changelist area for each field in the showlist. Only
those fields that are in the target segment are changed.

changeliterals

Is the set of new values for the fields (declared by their byte offsets in the same format
that the work area is declared) that you want to change.

Example: Changing a Segment Instance in a C Program

The following code (taken from Lines 129 and 132 to 133 in the program shown in Sample HLI
Programs on page 30) establishes the charel array and chalit structure, which will contain the
field values to change (based on byte offsets in the work area):

 t_record testlt, wkarea, chalit;
 char charel[4 * 4]; /* 4 bytes per SHO field */
 int chaL = 1; /* changing just one field */

The following code (taken from Lines 141 and 142) establishes the current position of
segment TWO using the logical read command NEX:

 rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
 SEG_TWO, SEG_ONE, &testL, testrl, &testlt);

The following code (taken from Lines 150 to 154) reads the new salary into chalit, places the
value EQ in the fourth word of charel array (which indicates that the one field to be replaced is
the SALARY field in the current instance of segment TWO), and issues the CHA command:

3. Using HLI

Host Language Interface User's Manual 77

 scanf("%9.2lf", &chalit.salary);
 memset(charel, ' ', sizeof(charel));
 memcpy(&charel[16], "EQ ", 4);
 rc = edahliCall(hli, 7, "CHA ", pFcb,
 &wkarea, SEG_TWO, SEG_ONE, charel, &chalit);

Example: Changing a Segment Instance in a FORTRAN Program

The following code (taken from Lines 17 to 19 in the program shown in Sample HLI Programs
on page 30) establishes the CHAREL and CHALIT arrays, which will contain the field values to
change (based on byte offsets in the work area). CHALIT(9), where a new salary value will be
placed, corresponds to WKAREA(9):

 DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
 EQUIVALENCE (CHALIT(9),SALNEW)
 DATA TESTRL /4*' '/, CHAREL /4*' '/

The following code (taken from Line 81) establishes the current position of segment TWO using
the logical read command NEX:

 CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)

The following code (taken from Lines 89 to 91) reads the new salary into the CHALIT array,
places the value EQ in the fourth word of CHAREL array (which indicates that the one field to
be replaced is the SALARY field in the current instance of segment TWO), and issues the CHA
command:

 READ (5,1400) SALNEW
 CHAREL(4)=EQ
 CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,1,CHAREL,CHALIT)

Example: Changing a Segment Instance in a COBOL Program

The following code (taken from Lines 86 to 96 in the program shown in Sample HLI Programs
on page 30) establishes the TESTREL and TESTLIT structures, which will contain the field
values to change (based on byte offsets in the work area). LIT-SALARY, where a new salary
value will be placed, corresponds to SALARY in WRKAREA:

Altering the File

78

 01 TESTREL.
 02 REL-NO PIC X(04) VALUE SPACES.
 02 REL-NAME PIC X(04) VALUE SPACES.
 02 REL-DATE PIC X(04) VALUE SPACES.
 02 REL-SAL PIC X(04) VALUE SPACES.
 01 TESTLIT.
 02 LIT-EMPNO PIC S9(9) COMP.
 02 LIT-NAME PIC X(20) VALUE SPACES.
 02 LIT-DATE PIC S9(6) COMP.
 02 FILLER PIC X(4).
 02 LIT-SALARY COMP-2.

The following code (taken from Lines 199 to 204) establishes the current position of segment
TWO using the logical read command FST:

 MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
 MOVE TR-EMP-DATE TO OUT-DATE.
 MOVE TR-SALARY TO OUT-SALARY.
 MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.
 CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG
 NUMB1 TESTREL TESTLIT.

The following code (taken from Lines 169 to 172) places the new salary into LIT-SALARY,
places the value EQ in REL-DATE (which indicates that the one field to be replaced is the
SALARY field in the current instance of segment TWO), and issues the CHA command:

 MOVE TR-SALARY TO LIT-SALARY. MOVE 'EQ' TO REL-SAL.
 MOVE SPACES TO REL-DATE.
 CALL 'FOCUS' USING CHACMD FCB WRKAREA TWOSEG NULL NUMB1
 TESTREL TESTLIT.

Example: Changing a Segment Instance in a PL/I Program

The following code (taken from Lines 37 to 47 in the program shown in Sample HLI Programs
on page 30) establishes the CHAREL and CHALIT structures, which will contain the field values
to change (based on byte offsets in the work area). CSALTEST, where a new salary value will
be placed, corresponds to SALARY in WKAREA:

 DCL 1 CHALIT STATIC,
 2 CEMPTEST FIXED BIN(31),
 2 CNAMETEST CHAR(20),
 2 CDATETEST FIXED BIN(31),
 2 CDUMMYT FIXED BIN(31),
 2 CSALTEST FLOAT BIN(53);
 DCL 1 CHAREL STATIC,
 2 CEMPREL CHAR(4) INIT(' '),
 2 CNAMEREL CHAR(4) INIT(' '),
 2 CDATEREL CHAR(4) INIT(' '),
 2 CSALREL CHAR(4) INIT(' ');

3. Using HLI

Host Language Interface User's Manual 79

The following code (taken from Line 133) establishes the current position of segment TWO
using the logical read command NEX:

 CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);

The following code (taken from Lines 138 to 140) reads the new salary into CSALTEST, places
the value EQ in CSALREL (which indicates that the one field to be replaced is the SALARY field
in the current instance of segment TWO), and issues the CHA command:

 GET EDIT (CSALTEST) (F(9,2));
 CSALREL=EQ;
 CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,NUMBER,CHAREL,CHALIT);

Deleting Segments From a File

The DEL command deletes an instance of a target segment and all its descendants,
regardless of what is activated in the show list.

Syntax: How to Delete Segments From a File (DEL)

In C:

edahliCall(hliHandle, 3, del, &fcb, target);

In FORTRAN:

CALL FOCUS (del, fcb, target)

In COBOL:

CALL 'FOCUS' USING delfcbtarget.

In PL/1:

CALL FOCUS (del, fcb, target);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating the
HLI handle, see C Program Considerations on page 27.

3

Is the number of parameters remaining in the call sequence, 3 for the DEL command.

Altering the File

80

del

(Delete) may be a variable containing the DEL command, or, in languages that allow it, may
be the literal string 'DEL' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

target

Is the name of the segment you want to delete. The target instance deleted is the one at
your current position in the file, established through logical reads. All of the target's
descendants are also deleted.

Example: Deleting a Segment Instance in a C Program

The following code (taken from Lines 167 to 172 in the program shown in Sample HLI
Programs on page 30) reads a date into the test literal structure at the position for the DATE
field, sets the test relation to EQ, and uses the NEX command to establish a position at the
instance of segment TWO that matches the test date:

 scanf("%d", &teslit.date);
 if(teslit.date == 0) return;
 memset(testrl, ' ', sizeof(testrl));
 memcpy(&testrl[8], "EQ ", 4);
 rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
 SEG_TWO, SEG_ONE, &testL, testrl, &teslit);

The following code (taken from Line 178) deletes that segment instance:

 rc = edahliCall(hli, 3, "DEL", pFcb, SEG_TWO);

Example: Deleting a Segment Instance in a FORTRAN Program

The following code (taken from Lines 97 to 101 in the program shown in Sample HLI Programs
on page 30) reads a date into the test literal array at the position for the DATE field, sets the
test relation to EQ, and uses the NEX command to establish a position at the instance of
segment TWO that matches the test date:

 READ (5,1200) TESTLT(7)
 IF (TESTLT(7).EQ.0) GO TO 40
 TESTRL(1)=BLANK
 TESTRL(3)=EQ
 CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)

The following code (taken from Line 106) deletes that segment instance:

 3100 CALL FOCUS (DEL,FCB,TWO)

3. Using HLI

Host Language Interface User's Manual 81

Example: Deleting a Segment Instance in a COBOL Program

The following code (taken from Lines 199 to 204 in the program shown in Sample HLI
Programs on page 30) moves the transaction date into the LIT-DATE field of the test literal
structure, sets the test relation to EQ, and uses the FST command to establish a position at
the instance of segment TWO that matches the test date:

 MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
 MOVE TR-EMP-DATE TO OUT-DATE.
 MOVE TR-SALARY TO OUT-SALARY.
 MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.
 CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG
 NUMB1 TESTREL TESTLIT.

The following code (taken from Line 181) deletes that segment instance:

 CALL 'FOCUS' USING DELCMD FCB TWOSEG.

Example: Deleting a Segment Instance in a PL/I Program

See the appropriate sample (FORTRAN: Line 106; COBOL: Line 181; PL/1: Line 161).

The following code (taken from Lines 154 to 158 in the program shown in Sample HLI
Programs on page 30) reads a date into the DATETEST field of the test literal structure, sets
the test relation to EQ, and uses the NEX command to establish a position at the instance of
segment TWO that matches the test date:

 GET EDIT (DATETEST) (F(6));
 IF DATETEST = 0 THEN RETURN;
 EMPREL=BLANK;
 DATEREL=EQ;
 CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);

The following code (taken from Line 161) deletes that segment instance:

 CALL FOCUS (DEL,FCB,TWO);

Altering the File

82

Chapter4 Testing Status, Using Log Facilities, and
Handling Errors

This chapter describes facilities for testing the success of HLI calls, logging program
activity, and handling errors.

In this chapter:

Testing Status

Using the Diagnostic Log Facility: ECHO and STAT

Error Handling

Testing Status

Although HLI does check the status of your file after every command, it does not issue error
messages. Thus, you should build a status check after every HLI call in your program.

HLI Status Code Meaning

0 Execution ended normally.

1 Reached end of file or end of chain

Any other code indicates an error condition (see HLI Status Return Codes on page 119).

Using the Diagnostic Log Facility: ECHO and STAT

You can use the ECHO and STAT facilities to produce diagnostic logs of all calls to HLI. This is
useful in the development of new programs and tracking user access.

When the eighteenth word of the FCB (bytes 69-72) contains the string ECHO or STAT, each
HLI call is logged. The HLI function calls create the line displayed in the log file immediately
before returning from the call. Its presence does not affect the operation of user programs or
their logic.

Reference: Log File Locations

For Mainframe FOCUS, the trace line is written to ddname HLIPRINT. You must issue a FILEDEF
or ALLOCATE command for this ddname before running your program. When ECHO is specified,
the LRECL of the output file is 88. STAT requires an LRECL of 133.

Host Language Interface User's Manual 83

Under TSO, recommended ALLOCATE commands are:

When displaying on the terminal:

ALLOC F(HLIPRINT) DA(*)

When storing in a disk file:

ATTR HLIDCB LRECL(88) RECFM(F B) BLKSIZE(880)

ALLOC F(HLIPRINT) DA(dataset) USING (HLIDCB) SPACE (5,5)
TRACKS CATALOG

In z/OS batch, recommended JCL statements are:

When printing:

//HLIPRINT DD SYSOUT=*

When storing in a disk file:

//HLIPRINT DD DSN=dataset,DCB=(LRECL=88,RECFM=FB,BLKSIZE=880),
// UNIT=unit,VOL=SER=volume,SPACE=space,
// DISP=(NEW,CATLG)

For the Reporting Server and WebFOCUS, if FDS is active, the server configuration controls the
file location, and the file is written by the server. Without FDS, the HLIPRDIR variable specifies
the HLIPRINT output directory, and the file name is always hliprint.log.

For the Reporting Server and WebFOCUS, if FDS is active, the server configuration controls the
file location, and the file is written by the server. Without FDS, the HLIPRDIR variable specifies
the HLIPRINT output directory, and the file name is always hliprint.log.

Using the ECHO Log Facility

Your application program can turn the log facility on or off at any time during its execution. The
following is a sample ECHO log, produced when FCB word 18 contains the string ECHO:

CMD FILENAME STATUS NEWSEG TARGET ANCHOR NTEST USERID REFNUMB
OPN CAR FOCUS 00 00000001
OPN EMPLOYEE FOCUS 00 00000002
FST CAR FOCUS 00 ORIGIN CARREC SYSTEM 00 00000003
FST EMPLOYEE FOCUS 00 EMPINFO ADDRESS SYSTEM 00 00000004
NEX CAR FOCUS 00 CARREC CARREC SYSTEM 01 00000005
NEX EMPLOYEE FOCUS 00 EMPINFO ADDRESS SYSTEM 01 00000006
CLO EMPLOYEE FOCUS 00 00000007
CLO CAR FOCUS 00 00000008

Using the Diagnostic Log Facility: ECHO and STAT

84

The columns in the log file, have the following meanings:

Column Title Meaning

CMD Command that was issued.

FILENAME File name in the FCB.

STATUS Status return code, FCB word 24.

NEWSEG Name of the first segment of new information, FCB words 21 and 22.

TARGET Name of the target segment.

ANCHOR Name of the anchor segment.

NTEST Value of the numbtests argument.

USERID Blank for local HLI programs.

REFNUMB A sequentially assigned number equal to the transaction number in the ?
FILE file name command.

Using the STAT Log Facility

If word 18 contains the string STAT, the HLIPRINT file is 133 bytes wide and contains
additional fields showing access times and I/O information, which may be more useful in some
situations.

4. Testing Status, Using Log Facilities, and Handling Errors

Host Language Interface User's Manual 85

The following is an example of the HLIPRINT file using the STAT option:

The columns have the following meanings:

Column Title Meaning

CMD The command that was issued.

FILENAME The file name present in the FCB.

STATUS The status return code, FCB word 24.

NEWSEG The name of the first segment of new information, FCB words
21 and 22.

TARGET The name of the target segment.

ANCHOR The name of the anchor segment.

NTEST The value of the numbtests argument.

Using the Diagnostic Log Facility: ECHO and STAT

86

Column Title Meaning

USERID Blank for local HLI programs.

REFNUMB A sequentially assigned number equal to the transaction
number in the ? FILE file name command.

DATE The date on which the command was executed, in YYMMDD
format.

TIME The time at which the command finished executing, in HHMMSS
format.

VTIME Under z/OS: The amount of elapsed job step time required for
the command as indicated in the ASCBEJST field of the ASCB
for the sink machine.

TTIME Under z/OS: The value of this field is the same as that of
VTIME.

IOS The number of FOCUS database I/Os required to execute the
command.

PROC NAME The contents of FCB words 7 and 8.

CASE NAME Blank for HLI transactions. For MODIFY/SU, case name.

A Master File named HLIPRINT is provided on the distribution tape. You can use this Master
File to report on the STAT output file.

Error Handling

HLI returns an error status code in the FCB at word 24. Any code other than 0 or 1 indicates
an error. HLI does not, however, issue an error message; error handling is left to the
programmer (see HLI Status Return Codes on page 119).

An error message file is supplied with the Host Language Interface. The messages in the file
correspond to the status return code error numbers. You might use the error message file to
display an error message at the terminal when an error occurs.

4. Testing Status, Using Log Facilities, and Handling Errors

Host Language Interface User's Manual 87

The message file is called:

Member HLI000, HLI00FRE (for French), or HLI00SPA (for Spanish) in ERRORS.DATA under
z/OS.

hli0000.err under the Reporting Server and WebFOCUS.

In case of fatal errors, HLI writes error information to ddname HLIERROR or HLIPRINT for
Mainframe FOCUS or to the hliprint.log file under the Reporting Server and WebFOCUS.

Error Handling

88

Chapter5
Creating an Executable HLI Program

Before you can run HLI, you must link your program with the HLI routines needed to
execute the HLI commands. You do this by constructing a DLL under WebFOCUS or a
load module under z/OS. The result is a module that contains all of the programs
required to run your HLI application.

Note: If an existing HLI program is not LE compliant, it must be made so. Once an HLI
application is LE compliant, dynamic HLI programs run without change. Static HLI
programs should be re-linked.

In this chapter:

Constructing a DLL Under WebFOCUS

Constructing a Load Module Under z/OS

Constructing a DLL Under WebFOCUS

A script named gencpgm can assist in simple compilation of C programs. The script is located
in the bin directory of EDAHOME. Its basic function is to build a dynamically loadable library
program.

There is no requirement that gencpgm be used in actual program creation, only that a given
program be a properly compiled and linked as a loadable library program. In addition, the
physical name of the routine and the initial entry point must match. If the routine is to call
other routines, the called routines must either be included in the module, or the calling
routines must include loader logic. The results of the routine must also be passed back as the
last argument of the function call.

The gencpgm script is written for simple compilation cases. Complex cases such as multiple
sources, including library locations, ordering of libraries, special compilers, and linker options
are not handled and are up to the developer to create their own build scripts.

In complex cases, the gencpgm script may be used as a model for forming an application
specific script.

For more information about GENCPGM, see Using the GENCPGM Build Tool on page 123.

Host Language Interface User's Manual 89

Procedure: How to Compile and Link a C Program

1. Copy your .c sample and gencpgm.sh (if not using the full path name) to a working
directory.

2. Issue environment variables for the EDAHOME and EDACONF directories. For example:

export EDAHOME=/home/iadmin/ibi/srv77/home
export EDACONF=/home/iadmin/ibi/srv77/wfs

3. Compile the program using gencpgm with the -m hli switch.

gencpgm.sh -m hli programname.c

where:

programname

Is the name of your c program. An executable for programname will be created in your
current directory plus a DLL helper script (called programname.sh) that sets
environment variables for runtime and invokes the actual program.

4. Run the program with the following commands.

a. To run locally:

programname.sh

b. To run on a FOCUS Database Server (FDS):

programname.sh fdsname

If you want to see the linking options used, run gencpgm with the -x switch.

Constructing a Load Module Under z/OS

Under z/OS, to construct a load module for a new HLI application, you must link-edit your
program with HLI routines.

As of FOCUS Release 7.6, all HLI programs running under z/OS must be LE compliant and
linked with AMODE 31, RMODE ANY. Prior to exiting the program, HLIEND must be called.

The link-edit JCL should contain the following

INCLUDE FOCLIB(HLIFOCUS)
ENTRY mynameNAME myprog(R)

where:

FOCLIB

Must be allocated to the FOCUS load library.

Constructing a Load Module Under z/OS

90

myname

Is a user defined name for the entry point in the program.

myprog

Is a user defined name for the resulting load module. This module will replace any member
with the same name in the SYSLMOD library. This name can be the same as myname.

Note: If you receive an error message about duplicate entry points, you may have chosen a
reserved name (such as HLIMAIN) that is already used by FOCUS, and you must change it.

Example: Creating a Load Module Under z/OS

The following is sample link-edit JCL that creates a load module from a FORTRAN HLI program
called MYPROG:

//LINKIT EXEC PGM=IEWL,PARM='MAP,LET,LIST,SIZE=1024K'
//SYSLIB DD DISP=SHR,DSN=SYS1.FORTLIB <=FORTRAN run-time library
// DD DISP=SHR,DSN=CEE.SCEELKED
//OBJECT DD DISP=SHR,DSN=prefix.MY.OBJ <=HLI program object code
//SYSLMOD DD DISP=SHR,DSN=prefix.MY.LOAD <=Output library
//FOCLIB DD DISP=SHR,DSN=FOCLIB.LOAD <=FOCUS library
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,3)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
 INCLUDE OBJECT(MYPROG) <=Include HLI object code
 INCLUDE FOCLIB(HLIFOCUS) <=Include the HLI stub from FOCUS
 ENTRY MYPROG <=Declare entry point
 NAME MYPROG(R) <=Create member called MYPROG in SYSLMOD

Reference: HLI Allocations

At run time, you must have allocated the following ddnames, in addition to the file itself.

STEPLIB

Must be allocated to the library containing the linked load module.

FOCLIB

Must be allocated to the standard FOCUS load library.

SYSPRINT

Must be allocated to the output job stream.

MASTER

Must be allocated to a library containing the Master Files of all FOCUS databases
accessed by your HLI program.

5. Creating an Executable HLI Program

Host Language Interface User's Manual 91

ERRORS

Must be allocated to the standard FOCUS ERRORS.DATA library.

You should also allocate the following at run time:

HLIERROR

Must be allocated to a sequential data set with RECFM F and LRECL 80, or to the job
output stream. HLIERROR should be allocated if you want a log of any fatal internal FOCUS
errors that occur (for information, see HLI Status Return Codes on page 119.)

HLIPRINT

Must be allocated to a sequential data set or to the job output stream. HLIPRINT should
be allocated if you are using the ECHO or STAT options in your HLI program (for
information, see Using HLI on page 27), or if you would like a log of any fatal FOCUS errors
and you have not allocated HLIERROR.

HLIPRINT should be allocated with LRECL 88 if you are using the ECHO option, or LRECL
133 if you are using the STAT option. The RECFM should be FB.

If you are using HLIPRINT for diagnosing problems with your HLI program, the blocksize
should be equal to the LRECL, in which case, the RECFM is F.

If you are using the STAT option for performance analysis, you will want to specify a very
large HLIPRINT blocksize so that the HLIPRINT trace has a minimal impact on the
performance of your HLI program.

Note: Any databases you intend to access locally (that is, without the Simultaneous Usage
facility) should be allocated with the parameter DISP=OLD. You should not allocate databases
you intend to access through a central SU sink machine. If the database is to be used locally
but is under the control of a sink machine, it should be allocated with DISP=SHR.

Example: Sample HLI Batch Job

The following is sample JCL for a typical HLI batch run:

//JOBNAME EXECPGM=MYPROG
//STEPLIB DD DSN=prefix.MY.LOAD,DISP=SHR <=Previously linked lib
//FOCLIB DD FOCLIB.LOAD,DISP=SHR <=FOCUS load library
//SYSPRINT DD SYSOUT=A
//MASTER DD DSN=MASTER.DATA,DISP=SHR <=Master files to be used
//CARD DD DSN=CAR.FOCUS,DISP=OLD <=Database to be used
//HLIPRINT DD *,DCB=(LRECL=88,RECFM=FB,BLKSIZE=88)
//ERRORS DD DSN=ERRORS.DATA,DISP=SHR

Constructing a Load Module Under z/OS

92

Chapter6 HLI and Simultaneous Usage of FOCUS
Databases

When a FOCUS database is on a FOCUS Database Server (FDS or sink machine), the
Host Language Interface allows two or more programs to operate on that FOCUS
database at the same time (this is called Simultaneous Usage or SU). Each user is
unaware of other users and may retrieve, add, delete, or change data independently. All
users share one copy of the database and communicate to it through the usual HLI
routines. The only changes necessary are to place the characters 'SU ' (requires two
trailing blanks) in word 6 of the FCB and place the following in FCB words 9 and 10:

The ddname of the communication file under z/OS FOCUS.

The FDS node name, FOCSU001, under the Reporting Server and WebFOCUS.

For more information on using SU with HLI, see the version of the Simultaneous Usage
Manual for your operating system.

In this chapter:

Using the SU Profile

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)

Using the SU Profile

The Simultaneous Usage Profile (SU Profile) enables you to set several parameters for the
FOCUS Database Server (sink machine) in a profile. These parameters are also used to control
a local HLI program.

Under z/OS FOCUS, the profile is member HLIPROF in a PDS allocated to the ddname
FOCEXEC in the sink job. The DCBs for this PDS are the same as for any FOCEXEC PDS.

Under the Reporting Server and WebFOCUS, the HLI program processes the server profile,
edasprof.prf first. Then it processes the SU profile, suprof.prf. Most applications use edasprof
to customize parameters. Use suprof.prf if you need to override settings for HLI only, for
example, for application pathing to find files.

Note: Do not put USE commands in any profile.

You can include the following commands in the sink machine profile, although these settings
offer no advantage to normal processing in the Reporting Server and WebFOCUS:

Host Language Interface User's Manual 93

SET BINS = nn
SET CACHE = nn

where:

SET BINS = nn

Controls the number of I/O buffers for the sink machine. A maximum of 63 bins (which are
shared by all users) is allowed. Set BINS to the maximum for optimal performance. If BINS
are not set in the profile, the sink calculates how many BINS to allocate based on the
available storage.

SET CACHE = nn

Cache memory buffers FOCUS database pages between disk and BINS and reduces I/O to
disk. Using the SET CACHE command in the profile keeps the entire database in memory
and, therefore, improves performance. The default is no cache memory. See the for
information on how to use cache memory with FOCUS files.

Some of the commands useful for describing file search paths under the Reporting Server and
WebFOCUS include APP commands:

APP PATH
APP HOLDMETA

For information about these application commands, see the WebFOCUS Developing Reporting
Applications, the FOCUS Developing Applications manual, or the Server Administration manual.
HLI must be able to find the Master File and FOCUS database file for any file it attempts to
open, otherwise the OPN command fails.

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)

FOCUS for Mainframe includes the Multi-Threaded HLI/SU Reporting Facility, which enables
users to directly access a central database from an HLI program, thereby bypassing the sink
machine.

This feature is used in read-only mode, and all modifications to the database are routed
through the sink machine. In addition, a single Multi-Threaded HLI/SU program cannot open a
file simultaneously in both read-only and read/write mode. Separate FCBs must be declared for
local reporting from and updating the centrally controlled database.

When you use this feature, the database updates and read operations are handled separately,
without synchronization. So, for example, you may update a segment and then read it back and
not see the update reflected immediately.

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)

94

Multi-Threaded HLI/SU Reporting Under z/OS FOCUS

When using Multi-Threaded HLI/SU Reporting under FOCUS on z/OS, the central database is
accessed locally, bypassing the sink machine; for database modifications, the central
database is accessed through the sink machine. In the HLI environment, the FCB is modified
to denote the parallel configuration (in the FOCUS environment, a USE command accomplishes
this).

The specific steps follow (assume the sink job is running on user ID SINKMA):

1. Allocate the database and the communication data set in the sink job using DISP=SHR. For
example:

//CAR DD DSN=SINKMA.CAR.FOCUS,DISP=SHR
//FOCUS DD DSN=SINKMA.FOCSU.DATA,DISP=SHR

2. Allocate the database and the communication data set for the HLI program using
DISP=SHR. For example:

ALLOC F(CAR) DA(SINKMA.CAR.FOCUS) SHR
ALLOC F(FOCSU) DA(SINKMA.FOCSU.DATA) SHR

or

//CAR DD DSN=SINKMA.CAR.FOCUS,DISP=SHR
//FOCUS DD DSN=SINKMA.FOCSU.DATA,DISP=SHR

3. Set up the FCB according to the following steps:

a. Set FCB word 6 (SU) to SULO.

b. Set FCB word 9 (SINKID) to the ddname of the FOCUS communication dataset.

Example: Preparing an FCB for Multi-Threaded HLI/SU Reporting Under z/OS FOCUS

Assume FOCSU is the communication data set and the following is the COBOL HLI FCB:

01 FCB.
 05 FCB-FN PIC X(08) VALUE SPACES.
 05 FCB-FT PIC X(08) VALUE SPACES.
 05 FCB-FM PIC X(04) VALUE SPACES.
 05 FCB-SU PIC X(04) VALUE SPACES.
 05 FCB-DN PIC X(08) VALUE SPACES.
 05 FCB-SINKID PIC X(08) VALUE SPACES.
 05 FILLER PIC X(28) VALUE SPACES.
 05 FCB-ECHO PIC X(04) VALUE "ECHO".
 05 FILLER PIC X(20) VALUE SPACES.
 05 FCB-STATUS PIC S9(5) COMP-3 VALUE +0.
 05 FILLER PIC X(104) VALUE SPACES.

The FCB would be set up as follows:

6. HLI and Simultaneous Usage of FOCUS Databases

Host Language Interface User's Manual 95

105-SET-UP-FCB-HLI-SU-MVS.
 MOVE "CAR" TO FCB-FN.
 MOVE "SULO" TO FCB-SU.
 MOVE "FOCSU" TO FCB-SINKID.

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)

96

Chapter7
HLI Command Summary

This chapter provides summary charts of HLI commands and parameters followed by a
description of each HLI command in alphabetical order.

In this chapter:

HLI Command Summary Chart

HLI Parameter Description Chart

Alphabetical List of HLI Commands

HLI Command Summary Chart

HLI commands must be entered as 4-character operands. Since all HLI commands (except for
the INFO command) are three characters long, they must be padded with a trailing blank.

Command
Name

Meaning

CHA (Change) changes data values within one segment.

CLO (Close) closes the FOCUS database file. If there is more than one FCB per
file, closes the one that is open.

DEL (Delete) deletes a segment and all of its descendants.

FSP (First physical) retrieves the first physical qualified or unqualified segment
of the target segment in the file.

FST (First) retrieves the first logical qualified or unqualified occurrence of a
target segment within a parent segment.

INFO (Information) returns file description information such as segment names,
field names, and formats.

INP (Input) includes a new instance of the target segment.

Host Language Interface User's Manual 97

NEX (Next) retrieves the next logical qualified or unqualified occurrence of a
target segment within an anchor segment.

NXD (Next indexed) locates a segment instance directly based on an indexed
key value.

NXK (Next via key) goes back to a prior segment located by a saved address
key (the backkey).

NXP (Next physical) retrieves the next physical qualified or unqualified segment
instance of the target segment.

OPN (Open) opens the FOCUS database for use.

SAV (Save) saves changed values. Forces a write to the file of changes since
the last save.

SHO (Show) resets the order and number of fields currently activated.

HLI Parameter Description Chart

The following chart lists parameters used in HLI calls:

Parameter Meaning

workarea A buffer in the application program that receives data from HLI.

target The 8-character name of the segment sought, included, changed, or
deleted. This is a SEGNAME value in the Master File.

anchor The 8-character name of a segment to use as a base point from which
to search for another segment. This is a SEGNAME value in the Master
File or the word SYSTEM.

numb The number of non-blank test conditions needed to qualify a record for
retrieval, or the number of changes to be made.

backkey An address in the file that allows you to move back to a previously
retrieved segment with the NXK command.

HLI Parameter Description Chart

98

Parameter Meaning

testrelation
s

A structure or array of four bytes for each active field containing test
relations necessary to qualify a record. Test relations must always be
capital letters padded with blanks to four characters. The array should
contain one of the test relations below.

EQ. Equal.

NE. Not equal.

GE. Greater than or equal.

LE. Less than or equal.

GT. Greater than.

LT. Less than.

CO. Contains.

OM. Omits.

' '. Blank (everything qualifies).

testliterals Structure or array that contains the literal values necessary for a
qualifying record. The testliterals array is compared to the data in the
file with the relations specified in the testrelations array. When the test
is successful, the action of the command is executed.

changelist A structure or array of four characters per element in which the value of
an element is EQ for fields that should be changed or blank for
unchanged fields.

changelitera
ls

The new values that are to replace the values currently in the file.

savearea A 32-byte area used to save information when an indexed retrieval is
requested (NXD). This should be set to binary zero for the first
occurrence.

nrepeat The number of times to repeat the retrieval of a record (1 to 255).
Used only by the NEX or FST command.

7. HLI Command Summary

Host Language Interface User's Manual 99

Parameter Meaning

showlist A structure or array containing the names of the data fields to be
activated. There are 12 bytes for each field name.

showcount A 4-byte integer representing the number of fields in the show list.

option A 4-byte integer used by some commands.

inpliterals New data to be included in the database.

null Eight blank characters.

information
area

A record area in which information about the file is returned.

Note: The changeliterals, inputliterals, testliterals, and workarea arrays all have the same
format. This format is defined by the length and format of the fields in the show list.

Alphabetical List of HLI Commands

This section describes the use and function of each HLI command. Commands are listed in
alphabetical order.

CHA (Change) Command

C Syntax: edahliCall(hliHandle, 7, cha, &fcb, &workarea, target,
n, changelist, changeliterals);

FORTRAN
Syntax:

CALL FOCUS (cha, fcb, workarea, target, null, n,
changelist, changeliterals)

COBOL Syntax: CALL 'FOCUS' USING cha fcb
workareatargetnullnchangelistchangeliterals.

PL/1 Syntax: CALL FOCUS (cha, fcb, workarea, target, null, n,
changelist, changeliterals);

Alphabetical List of HLI Commands

100

Function: Changes fields that have EQ in the changelist array to the values in the
changeliterals array. Returns a copy of the changed segment image in
the work area. The changeliterals array must have the new data located
in the position of the field as described in the SHO field layout. n is the
number of EQs in the changelist array for this segment.

There are four bytes in the changelist array for each data field in the
show list. Only fields in the named target segment are changed. The
work area must be at least as large as one retrieved record.

When the CHA command is issued, the non-blank changelist array
entries indicate which fields are to be changed. Hence, different
changes can be accomplished by either supplying other changelist
arrays (such as CHALST1, CHALST2) or replacing the blank or non-blank
values in one area.

When the CHA command is used on a FOCUS Database Server (sink
machine), the server tests to see that the record is current before
applying changes. This ensures that no changes are made if another
user has already changed the record.

Note: null is an 8-byte field of spaces used for positioning.

7. HLI Command Summary

Host Language Interface User's Manual 101

The following diagram illustrates using the CHA command

Consider the following command:

CALL FOCUS (CHA , FCB, WKAREA, BODY , null, 2, CHALST, CHALIT)

The two fields named SEATS and DEALERCOST in the target segment are changed to the new
values provided in the changeliterals array.

The car is not changed to VW because it is not in the target segment.

Note that the 2 in the argument list represents the number of non-blank entries in changelist.
The fields corresponding to those entries are changed to the values specified in changeliterals.

CLO (Close) Command

C Syntax: edahliCall(hliHandle, 2, clo, &fcb);

FORTRAN
Syntax:

CALL FOCUS (clo, fcb)

Alphabetical List of HLI Commands

102

COBOL Syntax: CALL 'FOCUS' USING clofcb.

PL/1 Syntax: CALL FOCUS (clo, fcb);

Function: The FCB is removed from active use. Any outstanding changes to the
data are written to the disk, and all internal buffered storage space is
returned to the system pool.

If there is more than one FCB open for a file, a CLO command must be
issued for each open FCB.

DEL (Delete) Command

C Syntax: edahliCall(hliHandle, 3, del, &fcb, target);

FORTRAN
Syntax:

CALL FOCUS (del, fcb, target)

COBOL Syntax: CALL 'FOCUS' USING delfcbtarget.

PL/1 Syntax: CALL FOCUS (del, fcb, target);

Function: Deletes the target segment and all of its descendant segment
instances from the file.

FSP (First Physical) Command

C Syntax: edahliCall(hliHandle, 7, fsp, &fcb, &workarea, target,
ntest, testrelations, testliterals);

FORTRAN
Syntax:

CALL FOCUS (fsp, fcb, workarea, target, ntest,
testrelations, testliterals)

COBOL Syntax: CALL 'FOCUS' USING
fspfcbworkareatargetntesttestrelationstestliterals.

PL/1 Syntax: CALL FOCUS (fsp, fcb, workarea, target, ntest,
testrelations, testliterals);

7. HLI Command Summary

Host Language Interface User's Manual 103

Function: Locates and retrieves the first physical occurrence of the target
segment. After the command is executed, the parents can be retrieved
with the FST (First) command. Descendants can be retrieved with either
FST or NEX.

Unqualified Retrieval: No test conditions apply if the value of ntest is 0.
Therefore, the testrelations and testliterals arrays are ignored.

Qualified Retrievals: When ntest is not zero, it specifies the number of
non-blank test conditions in the testrelations array. These tests are
used to compare the values in the database to the values in the
testliterals array. The record is retrieved if it passes all the tests.

For information about the comparison between logical commands and
physical commands, see Introduction to HLI on page 7.

FST (First) Command

C Syntax: edahliCall(hliHandle, 10, fst, &fcb, &workarea,
target, anchor, ntest, testrelations, testliterals,
null, nrepeat);

FORTRAN
Syntax:

CALL FOCUS (fst, fcb, workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat)

COBOL Syntax: CALL 'FOCUS' USING
fstfcbworkareatargetanchorntesttestrelationstestlitera
lsnullnrepeat.

PL/1 Syntax: CALL FOCUS (fst, fcb, workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

Alphabetical List of HLI Commands

104

Function: Retrieves the first target segment within the anchor segment that
meets the qualifying conditions. (There is no change in the anchor
position.) When a record is retrieved, the status in the FCB is 0. If no
record is found, the status is 1.

If the anchor segment name is SYSTEM, the first logical target segment
in the file will be retrieved.

If the value of ntest is 0, the testrelations and testliterals parameters
are ignored.

The target segment may be below or above the anchor segment. When
a segment is retrieved directly, through a NXP (Next Physical) command
or through an NXD (Next through Index) command, the balance of the
attached segments can be obtained via the FST command.

The nrepeat option lets you retrieve multiple records in a single call.
(See the documentation for the NEX command for a description of
qualified and unqualified retrieval.)

INFO (Information) Command

C Syntax: edahliCall(hliHandle, 4, info, &fcb, &workarea,
option);

FORTRAN
Syntax:

CALL FOCUS (info, fcb, workarea, option)

COBOL Syntax: CALL 'FOCUS' USING infofcbworkareaoption.

PL/1 Syntax: CALL FOCUS (info, fcb, workarea, option);

7. HLI Command Summary

Host Language Interface User's Manual 105

Function: Returns information about the location, length, and format of each field
in the current SHO command.

Note: When a file is first opened, all fields are considered shown; by
issuing the INFO command immediately after the OPN command,
complete file information is available.

The field information returns the current show list (a list of names of
fields that are activated, in their order in the work area). The segment
information always returns the full list of segment names from the
Master File.

Option Data Returned

0 All field information in the show list.

1 All segment information.

Layout of Return Work Area in INFO Command When Option=0

The information returned in the work area contains 12 words (48 bytes) for each field. The
order of the fields is the order of the current SHO command.

Comment Word Description

1 Number of fields which
follow.

2-3 Name of segment.

Words 2 through 13

repeat for each field.

4-6 Name of data field.

7-9 Alias name of data field.

10-11 Usage format of data field.

12 Length of field in bytes
(binary integer).

13 Starting byte offset in
current work area (binary
integer).

Layout of Return Work Area in INFO Command When Option=1

Alphabetical List of HLI Commands

106

When the value of option is 1, returns information about the segments and file structure only.
This information is independent of the current SHO command. The information returned in the
work area contains 16 words per segment (643 bytes). Note that the size of this area differs
from the size when option=0.

Comment Word Description

Words 2 through 17

repeat for each field.

1 Number of segments.

2-3 Name of segment.

4-5 Name of parent of segment.

6 Starting byte in real
segment of first field.

7 Length of segment in bytes.

8 Segment type, alpha name.

9-11 Cross-reference key field
name.

12 Number of sequence keys.

13-17 Reserved.

The last argument in the INFO command must be either 0 or 1.

INP (Input) Command

C Syntax: edahliCall(hliHandle, 5, inp, &fcb, inputliterals,
target, n);

FORTRAN
Syntax:

CALL FOCUS (inp, fcb, inputliterals, target, option)

COBOL Syntax: CALL 'FOCUS' USING inpfcbinputliteralstargetoption.

PL/1 Syntax: CALL FOCUS (inp, fcb, inputliterals, target, option);

7. HLI Command Summary

Host Language Interface User's Manual 107

Function: Using the values in the inputliterals array that correspond to the fields
in the target segment, a new segment instance is created in the file.
Values not provided for the segment are given default values: blank if
alphanumeric and 0 if numeric.

If the segment type is S0 or blank, the possible values of n are:

0 Inserts the new segment after the current
segment, if the key fields are the same.

1 Inserts the new segment before the current
segment, if the key fields are the same.

If the segment type is Sn or SHn the value of n can be:

0 No test is made for duplicate values.

2 If the segment has a key, rejects the new
segment if the key already exists.

A segment cannot be inserted if it would break the sort sequence of existing segments. The
proper place for a keyed segment is found automatically regardless of the value of the option
parameter. Option 2 rejects duplicate keys. Using this option is much faster than locating a
segment and, if it does not exist, adding it.

Only the target segment is included. You must add descendant segments using separate INP
commands. The new segment becomes the current position. Unique child segments are not
automatically retrieved with their parent segment. To retrieve a unique segment instance,
issue a separate retrieval command with the unique segment as the target.

Prior to issuing an INP command for the unique segment instance, you must check for the
existence of a unique segment instance for the parent. The return code from this call (FST or
NEX with the unique instance as the target) determines if the INP is appropriate. If you issue
an INP command and a unique segment instance already exists for the specified parent, a
duplicate unique segment instance is created for that parent segment. (The REBUILD facility
eliminates the original unique segment instance.)

Alphabetical List of HLI Commands

108

NEX (Next) Command

C Syntax: edahliCall(hliHandle, 10, nex, &fcb, &workarea, target,
anchor, ntest,testrelations,testliterals, null, nrepeat);

FORTRAN
Syntax:

CALL FOCUS (nex, fcb, workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat)

COBOL
Syntax:

CALL 'FOCUS' USING
nexfcbworkareatargetanchorntesttestrelationstestliterals
nullnrepeat.

PL/1 Syntax: CALL FOCUS (nex, fcb, workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

Function: The next target segment instance within the anchor segment instance that
meets the qualifying conditions, if any, is retrieved. If a record is retrieved,
the status returned is 0. If there are no more target segments available
within the anchor segment, the status returned is 1. If an error occurred,
the status is greater than 1 and is returned with an error number. The
retrieved segment instances are placed in the work area as requested in
the SHO command.

Unqualified Retrieval: If the value of ntest is 0, there are no testing operations on the records
retrieved, and the contents of the testrelations and testliterals arrays are ignored.

Qualified Retrieval: A value of ntest greater than 0 specifies the number of non-blank test
conditions in the testrelations array. These tests are used to compare the values in the
database to the values in the testliterals array. Only records that pass all tests are retrieved.

Multiple Record Retrievals: The default, when nrepeat=1, retrieves only the next target or path
of segments meeting the test conditions, if any. One HLI call can retrieve up to 256 segment
instances depending on the nrepeat value. This argument must be a 4-byte binary integer from
1 to 255. The retrieved records are placed in the work area one after the other. They are
separated by eight bytes, where the backkey is placed. The effect of the nrepeat parameter is
the same as if nrepeat identical calls were issued, but is faster.

The number of records actually retrieved is placed in the FC B at word 25. For example, if 15
records were requested but only 12 were available, nreturned (FCB[25]) would equal 12. At the
conclusion of the call, the current position of the last record retrieved is placed in the backkey
in the FCB. The backkey for each record is also placed in an 8-byte area following each record.
It can be used to reposition the file pointer to the record it followed.

7. HLI Command Summary

Host Language Interface User's Manual 109

NXD (Next Through Index) Command

C Syntax: edahliCall(hliHandle, 9, nxd, &fcb, &workarea, target,
field, ntest, testrelations, testliterals, savearea);

FORTRAN
Syntax:

CALL
FOCUS
(nxd,fcb,workarea,target,field,ntest,testrelations,tes
tliterals,savearea)

COBOL Syntax: CALL
'FOCUS'
USINGnxdfcbworkareatargetfieldntesttestrelationstestli
teralssavearea.

PL/1 Syntax: CALL
FOCUS
(nxd,fcb,workarea,target,field,ntest,testrelations,tes
tliterals,savearea);

Alphabetical List of HLI Commands

110

Function: The target segment is the segment that contains the indexed field; it is
retrieved using the index of the field named in the field argument. The
value of ntest must be at least 1; the literal value of the indexed field
must be in the testliterals array, and the testrelations array must have
a value of EQ for the indexed field.

The first time the specific value of the key is provided, the save area
must be all binary zeros (the save area is 32 bytes long). When the
save area is binary zeros, the first occurrence of the key value is
retrieved, regardless of the current file position. Only the target
segment is retrieved, and it becomes the anchor point for obtaining
related parent or descendant segments.

If there are multiple segments matching the key value, the next match
is retrieved by another HLI call with the NXD command that has the
same save area as the last call. Do not clear the save area between
calls, as it contains the information necessary for processing all
occurrences. When a new key value is to be supplied, start with a
cleared save area.

There may be other qualifying test conditions on the target segment.
These are provided in the testrelations and testliterals arrays in the
manner specified in the NEX command.

Note: The field argument must be 12 characters in length and contain
the field name of a field whose index is to be used. If the field name is
less than 12 characters long, it should be padded with trailing blanks.

NXK (Next Through Backkey) Command

C Syntax: edahliCall(hliHandle, 5, nxk, &fcb, &workarea, target,
backkey);Commands (HLI):NXKNXK command

FORTRAN
Syntax:

CALL
FOCUS (nxk,fcb,workarea,target,key)

COBOL Syntax: CALL
'FOCUS' USINGnxkfcbworkareatargetkey.

PL/1 Syntax: CALL
FOCUS (nxk,fcb,workarea,target,key);

7. HLI Command Summary

Host Language Interface User's Manual 111

Function: After every successful HLI call (status code 0), the backkey containing
the database address of the target segment is stored in the FCB at
bytes 61 to 68.

If these eight bytes are saved and later provided as an argument to the
NXK command, the former target is returned. If this segment is a
descendant segment, its parent is also retrieved, if its position was
established logically by following pointers (using NEX or FST). If the
descendant segment was located with a NXD or NXP command, the
pointers are not available for inserting or deleting instances at the
target level or above.

The target segment in the call must correspond to the restored backkey
value, (that is, the target segment retrieved by the call that formed the
backkey). This target segment is associated with the backkey, and it
must be provided in the NXK call. It is the programmer's responsibility
to save the target segment name associated with the backkey (using
the SAV command).

NXK retrieval allows a program to work in several separate positions in a given file without
opening an FCB for each position. The processing sequence is:

1. Process current position.

2. Save current position.

3. Move to another position.

4. Save new position.

5. Restore previous position.

Users may construct their own index to a file and store the index value and key in another
FOCUS or external file. In this way, files may be interconnected, based on arbitrary rules, and
not require common data values as does the FOCUS cross- reference facility.

NXP (Next Physical) Command

C Syntax: edahliCall(hliHandle, 7, nxp, &fcb, &workarea, target,
ntest, testrelations, testliterals);Commands
(HLI):NXPNXP command

Alphabetical List of HLI Commands

112

FORTRAN
Syntax:

CALL
FOCUS
(nxp,fcb,workarea,target,ntest,testrelations,testliter
als)

COBOL Syntax: CALL
'FOCUS'
USINGnxpfcbworkareatargetntesttestrelationstestliteral
s.

PL/1 Syntax: CALL
FOCUS
(nxp,fcb,workarea,target,ntest,testrelations,testliter
als);

Function: The next physically adjacent occurrence of the target segment is
retrieved. The segments are not retrieved in sort sequence. Only the
target segment is retrieved. After the command is executed, the other
parents and descendants can be retrieved with the FST command.

Unqualified Retrieval: When the value of ntest is 0, no test conditions
apply. Therefore, the testrelations and testliterals parameters are
ignored.

Qualified Retrieval: A value of ntest greater than 0 specifies the
number of non-blank test conditions in the testrelations array. These
tests are used to compare the values in the database to the values in
the testliterals array. If all the tests pass, the record will be retrieved.

For example, consider the following file structure:

FIGURE12

You issue the NXP command to retrieve segment B. To retrieve the two related segments, A
(B's parent) and C (B's descendant) you use the FST command, as follows:

Command Target Anchor Current Position

NXP B At B1: New segment position.

FST A from B At A1: Parent of B. B1: Current position in
segment does not change because it is anchored
there.

7. HLI Command Summary

Host Language Interface User's Manual 113

FST or
NEX

C from B At A1: Parent does not change. B1: Current
position in segment does not change because it
is anchored there. C1: Get first child.

OPN (Open) Command

C Syntax: edahliCall(hliHandle, 2, opn, &fcb)

FORTRAN
Syntax:

CALL FOCUS (opn, fcb, option)

COBOL Syntax: CALL 'FOCUS' USING opnfcboption.

PL/1 Syntax: CALL FOCUS (opn, fcb, option);

Alphabetical List of HLI Commands

114

Function: The Master File and data files are located and opened.

This must be the first call to HLI in an application program for each
database to be processed.

The option argument must be a 4-byte integer value of either 0 or 1. If
the value is 0, the FOCUS file must already exist.

A status return code of 0 means the file has been successfully opened.
If the status return code is not 0, the file has not been successfully
opened and any subsequent calls for its use will be rejected. A total of
255 FOCUS files and their Master Files may be open simultaneously.

After this command is successfully issued and before any SHO
commands are issued, all the fields in the file are considered on the
show list.

Note:

Some compilers allow a variable number of arguments to be passed
in a subroutine call. If your compiler gives you errors, then all calls
to FOCUS must contain ten parameters, providing the unused
parameters are set to 0.

When you have declared multiple FCBs for a file, each FCB must be
opened.

Cross-referenced files are opened automatically with read-only
access. If you need to update values in a file, open the file before
you cross-reference it.

SAV (Save) Command

C Syntax: edahliCall(hliHandle, 2, sav, &fcb)

FORTRAN
Syntax:

CALL
FOCUS (sav,fcb)

COBOL Syntax: CALL
'FOCUS' USINGsavfcb.

7. HLI Command Summary

Host Language Interface User's Manual 115

PL/1 Syntax: CALL
FOCUS (sav,fcb,option);

Function: All data values which have been changed via the CHA, DEL, or INP
commands are written to disk storage. Current position is unchanged.

When a SAV command is issued for one file, all the changes for all the
files are saved. An implicit SAV is done when a CLO command is
issued.

Note: When FOCUS accepts transactions, it does not write the
transactions to the database immediately; rather, it collects them in a
buffer. FOCUS writes all the transactions from the buffer to the
database at the same time when any of the following occurs:

A program issues a SAV command.

A program closes down a FOCUS file by issuing a CLO command.

SHO (Show) Command

C Syntax: edahliCall(hlihandle, 4, sho, &fcb, showlist, &numb);

FORTRAN
Syntax:

CALL FOCUS (sho, fcb, names, numb)

COBOL Syntax: CALL
'FOCUS' USINGshofcbnamesnumb.

PL/1 Syntax: CALL
FOCUS (sho,fcb,names,numb);

Alphabetical List of HLI Commands

116

Function: The list of field names supplied in the area called names (the show list)
controls the layout of the work area, and subsequent records retrieved
will return the data to the work area in the new order.

When new field values are supplied for input, they are taken from the
work area record in the order set by this command. In addition, this
order is used when test conditions are supplied to qualify a record.

Each field name occupies 12 characters in the show list. The value of
numb is a 4-byte integer that specifies the number of field names
supplied in the show list.

It is highly recommended that a SHO command be issued after each
open to ensure the format of the work area.

The current fields defined by the show list are made available to an
application program by issuing the INFO command with the option for
field information.

Range checking can be accomplished by specifying a field in the show
list twice and applying an inequality test to these two fields.

If duplicate occurrences of a field exist in the show list, the data for the
last occurrence of the field is saved in the database on an input or
change if duplicate EQ conditions exist in the changelist array.

7. HLI Command Summary

Host Language Interface User's Manual 117

Alphabetical List of HLI Commands

118

AppendixA
HLI Status Return Codes

This appendix provides a list of status return codes and their explanations.

You can find the status code in word 24 of the FCB.

In this appendix:

HLI Return Code Chart

HLI Return Code Chart

Return Code Meaning

0 Command executed normally.

1 Command executed normally, but no segments were retrieved. The
current position is unchanged. Either the qualifying conditions failed to
locate the desired record, or an end-of-chain condition occurred (that is,
no more target segment instances exist within the anchor segment).

760 Command not recognized. An invalid HLI command was issued (for
example, NXT instead of the NEX command).

761 Too few arguments have been provided in the HLI command.

762 The command cannot be executed because the file has not yet been
opened (that is, no OPN command has been issued).

763 HLI requires more virtual storage to operate. Restart the HLI program in
a larger region.

764 The requested Master File cannot be found.

765 The requested Master File cannot be found by the sink machine.

766 No data found in the specified file. The file must first be initialized by
the CREATE command even if no data is entered.

Host Language Interface User's Manual 119

Return Code Meaning

767 An error was encountered in the Master File.

768 An invalid parameter was encountered in an HLI call (for example,
NTEST is less than zero).

769 The field name referenced on a SHO command does not exist in the
Master File. Check the spelling or the structure of the NAMES array
passed into the SHO command.

770 The file specified in the CLO CMD command is not open. The CLO CMD
command has been ignored.

771 Segment name not recognized. The segment specified as a TARGET or
an ANCHOR segment is not found in the Master File.

772 The HLI command is recognized but is not yet supported.

773 No current position has been established from which to execute the
command.

774 Test relation not recognized. An invalid test relation was used in an HLI
call. Possibly the number of tests was specified incorrectly. Valid test
conditions are LT, LE, GT, GE, EQ, NE, CO, and OM.

775 Improper use of virtual segment. An attempt was made to change or
improperly use a cross reference segment.

776 An attempt was made to include a second instance of a unique
segment for a particular parent instance. The transaction is ignored.

778 The ANCHOR and TARGET segments specified do not lie on the same
path in the file.

779 An error has occurred in the use of an indexed field, or a field named in
an NXD command is not indexed.

780 On an NXD call, no tests on the target segment were provided.

HLI Return Code Chart

120

Return Code Meaning

781 No parent position has been established for the retrieval of a cross-
reference segment. The key for the linked segment is not active, and no
retrieval can be performed.

782 The password does not provide file access rights. Check the password
provided in the FCB.

783 The command issued is not allowed with the current password. Check
the password provided in the FCB.

784 The segment instance identified by the key values is already in the
database. INP command does not allow duplicates. Analogous to
FOCURRENT = 1 in MODIFY/SU. The database has not been changed.

785 Segment instances obtained with NXK or NXD may not be deleted.

786 Attempt to change the instance has not been performed, because the
instance has been deleted by another user. (Analogous to
FOCURRENT=2 in MODIFY/SU.)

787 An OPN command was issued for an FCB which was already open.
Before reusing the FCB, it must be closed.

788 Too many files are open on the central database machine (limit 255) or
too many FCBs are open (limit 4096).

789 Attempt to change the instance has not been performed because it has
already been changed by another user. (Analogous to FOCURRENT=3 in
MODIFY/SU.)

790 SU cannot be used with more than 1500 fields in a FOCUS file,
including cross references.

792 Deprecated.

793 You cannot update, delete or include records for a file that has been
specified as read-only for use with Multi-Threaded HLI/SU Reporting.

A. HLI Status Return Codes

Host Language Interface User's Manual 121

Return Code Meaning

794 You cannot declare a file to be read via Multi-Threaded HLI/SU
Reporting if it has been opened by another FCB not operating Multi-
Threaded HLI/SU Reporting. You cannot open a file that will not be read
via Multi-Threaded HLI/SU Reporting if it has already been opened by
another FCB operating under Multi-Threaded HLI/SU Reporting.

798 The Master File read by the central data base machine is not the same
as the one used by the source or local machine.

800 The central SU database machine has terminated because of a fatal
error.

801 A communication error has occurred on the central SU database
machine.

802 The central database machine has not been started or the wrong name
has been used for the central SU database machine.

803 A communication error has occurred. Check to see that the sink
machine is still active and, if not, restart it.

804 The central data base is not active. Check to see if it has been
terminated, and restart it.

805 A fatal error has occurred on the sink machine. Check to see if the sink
machine is active and, if not, restart it.

806 A fatal error has occurred on the sink machine. Check to see if the sink
machine is active and, if not, restart it.

807 A limit of 64 sink machines can be accessed simultaneously by one
user.

HLI Return Code Chart

122

AppendixB
Using the GENCPGM Build Tool

The building and compilation of 3GL applications is platform-specific and sometimes
driven by standards with which a site must conform in terms of programming style or
managing programming source. Due to this wide variation, we only make
recommendations, test certain languages, and provide limited examples with a script
that minimally compiles the test examples.

The specific uses for 3GL programs and examples are documented elsewhere, but the
general purposes are:

To create and add a user written routine to the functions of the product (also known
as a FUSELIB).

To create and customize user exits that provide special functions.

To create CALLPGM programs that the server executes.

In this appendix:

Using GENCPGM

Using GENCPGM

GENCPGM is the general term for a series of platform specific scripts for compiling and linking
3GL programs (for example, C, COBOL, Fortran, Java, etc.) that interact with TIBCO® products.

The scripts and their associated platforms are:

gencpgm.sh (UNIX, Linux, z/OS and OS400)

gencpgm.bat (Windows)

The script for a given platform is located in the bin directory of the software installation
directory (EDAHOME), except on a z/OS PDS deployment, where it is it in the member
hlq.HOME.ETC(GENCPGM), and must be copied to and given execute privileges to be used
under HFS.

Examples of the types of programs that can be built are:

HLI applications to talk directly to FOCUS databases or servers using FDS access to FOCUS
databases

Host Language Interface User's Manual 123

Call Java Adapter (CALLJAVA) applications which use Java classes to retrieve row(s) data

Call Procedural Program Adapter (CALLPGM) applications which use a DDL to retrieve row(s)
data.

Subroutine applications which use a DLL to do specialized inline calculations for Dialogue
Manager, DEFINEs or COMPUTEs.

From a technical perspective, the above list breaks down into 3 classes of 3GL programs that
GENCPGM builds:

Dynamic link libraries.

Executables.

Java applications as a class in a jar.

A dynamic link library is also known as a DLL and is generally thought of as a Windows specific
term, however, there are equivalences on all other platforms. DLL libraries have an extension
of .dll on Windows. On UNIX and USS, the term for DLL is shared library with an extension
of .so. On OS400, a DLL is a service program (programs marked SRVPGM).

The GENCPGM scripts are solely supplied as an assist tool for building basic applications. The
GENCPGM scripts are not intended to support all languages and complex cases, like building
several objects all linked into a final program. The GENCPGM scripts actually depend on an
appropriate native compiler and linker being installed and accessible. Native refers to the
compiler of the operating system vendor (for example, Microsoft on Windows, IBM on AIX, and
so forth). Accessible means that it is known to the registry on Windows or is in the PATH for
other operating systems, and that it employs the normal program names used by the
originating vendors (for example, cl.exe on Windows, cc on many UNIX systems, gcc on Linux,
javac (and jar) for Java, and so forth). The compiler also needs to generate binaries that match
the bit requirements of the application software (32-bit servers require 32-bit compilers),
although some compilers control this using a switch (for example, -m32 and -m64).

Because of the widespread use of GNU GCC (which is free), the Windows and UNIX versions of
GENCPGM also recognize and allow gcc as a compiler specification, although they still depend
on gcc being in the path or, in the case of Windows, having the variable MINGWROOT set (see
the Windows section for more details). In short, GENPGM is a build assistant to access
existing compiler tools, but is not itself a compiler/linker and, as such, the user is responsible
for having the appropriate compilers and linkers installed and accessible if GENCPGM
compilation is needed. Note that many instances are strictly for build-time use, and the
resulting binaries may simply be deployed thereafter if the operating system and application bit
requirements match (32-bit or 64-bit), and the deployment machines do not have compiler/
linker requirements.

Using GENCPGM

124

The use of GENCPGM as a build tool is not actually required for applications when proper build
rules are followed, as implemented in GENCPGM and outlined in the build rules section. Since
complex cases that use other languages or multiple sources are a legitimate requirement, it is
left to the user to code and maintain their own build scripts for these cases and alternate
languages (possibly using GENCPGM as a template and following the rules outlined in the build
rules section).

It should also be noted that a subroutine is sometimes referred to by its former terminology of
Fuselib or Fuselib Routine. From an application perspective (that is, a focexec) they are one in
the same, however, TIBCO FOCUS® products used a single library to implement and store
multiple routines where TIBCO WebFOCUS® uses individual libraries for each routine. This
means older existing FOCUS® libraries are not directly usable with WebFOCUS®, but the
underlying 3GL sources are usable and simply need to be built using the current
methodologies documented here.

While there are a few platforms that need specific switch options, most switches and many
languages work on most platforms. Concerning specific 3GL languages, C is the officially
supported language on all platforms, other languages vary by platform as noted in the
samples. Theoretically, any 3GL language that is capable of being compiled and linked into a
DLL or executable and is capable of being used with TIBCO® products, however, GENCPGM is
only coded for certain commonly used languages that we have easy access to and expertise in
creating scripts and working samples. Requests for additional languages will be considered on
a case by case basis.

GENCPGM is also used dynamically in the server product for the COMPILED DEFINE feature
and as such the version in the EDAHOME directory should never be customized to prevent
changes from affecting the COMPILED DEFINE feature. If you have customizations that you feel
would be useful to others, they may be submitted via Customer Support for consideration as a
permanent change.

Reference: USAGE Chart (Typical Syntax Plus Extended Options)

UNIX®, Linux®, IBM® i, USS:

{path}gencpgm.sh [-h] [-x] [-q] [-v] [-e] [-n] [-s script]
 [-H EDAHOMELIB] [-p LOADLIB] [-d directory|-w directory] [-g]
 [-c language] [-m application type] [-b lib/srvprg] [-j jarname]
 {path}{program name}[.{extension}]

Windows:

B. Using the GENCPGM Build Tool

Host Language Interface User's Manual 125

{path}gencpgm.bat [-h] [-x] [-q] [-v] [-e] [-n] [-s script]
 [-d directory|-w directory] [-g] [-c language]
 [-m application type] [-j jarname]
 {path}{program name}[.{extension}]

where:

Switch/Option Description

-h Outputs this Help text.

-x Turns on set -x shell tracing to assist in debugging.

-q Turns on quiet mode to redirect Microsoft® compiler/linker output to nul: on Windows. The
switch does nothing on other platforms because the compliers and linkers on most other
platforms are already "quiet".

-v Turn on compiler/linker verbose options plus selective informational messages.

-e Extended trace/compiler/linker info from just before compiler/linker step.

-H EDAHOMELIB Server for z/OS® in a PDS deployment only. Indicates installation home {HLQ}.HOME of
ETC.H for picking up standard TIBCO C include files (needed for some samples).

-C EDACONFHLQ Server for z/OS in a PDS deployment only. Indicates installation configuration {HLQ} of ETC
for picking up standard TIBCO files (that is, server and communications configuration files).

-A APPROOTHLQ Server for z/OS in a PDS deployment. Indicates installation configuration {HLQ} of APPS
(APPROOT) for picking up application files for HLI applications.

-S SCRIPTSPDS Server for z/OS in a PDS deployment only. Indicates PDS to copy application build JCL and
run time execution scripts for batch JCL and interactive CLIST and REXX of the application.

-s SCRIPT For z/OS PDS Unified Environment deployment. Indicates generate only (no compile/link) to
a fully qualified PDS or dataset name.

-p LOADLIB Server for z/OS in a PDS deployment only. Indicates JCL type compilation and points to the
load lib to use. The load lib must be in run time STEPLIB.

-d directory Work in the given directory. The C file should be in this directory. All resulting files will be
generated in this directory. This is for COMPILED DEFINE purposes and not intended for
customer use.

-w directory Write final executable (and any helper scripts) in the given target directory.

Using GENCPGM

126

Switch/Option Description

-i directory Include directory. Multiple uses allowed.

-n No runner shell creation for api*, hli and odbc programs. Use to prevent overwrite of an
existing shell that may have been customized.

-g Generate a debuggable program by including debug switch in the compilation and link.

The -c option is described in the following chart:

Language Compiler to use for a given language source.

cc Use standard C compiler to compile "progname.c". C is the default compiler language.

assembler Use assembler compiler. Only implemented for z/OS currently. HFS usage requires source
to have a .s file extension.

fortran

for

f

Use default Fortran to compile Fortran with a .fortran extension.

Use default Fortran to compile Fortran with a .for extension.

Use default Fortran to compile Fortran with a .f extension.

Supply explicit extension to override extension. If default compiler is not available, GNU
g77 will be checked for availability and used.

f77

f90

f95

old_f77

Use a specific Fortran compiler to compile. Fortran implementation on UNIX is limited to
Sun SUNWspro f95 and GNU (g77/f77) as most UNIX OS vendors do not supply Fortran
compilers.

g77 Use the GNU Fortran (g77/f77) compiler to compile "progname.f". GNU is only selectively
supported as we do not have it installed on all platforms, but should work because GNU is
GNU.

gcc Use the GNU C (gcc) compiler to compile "progname.c". GNU is only selectively supported
as we do not have it installed on all platforms, but should work because GNU is GNU.

CC

CXX

cpp

Use the "C++" compiler to compile "progname.cpp" programs. C++ programs are expected
to have a .cpp suffix on all platforms except on MVS OE, which requires .C as an explicit
extension.

B. Using the GENCPGM Build Tool

Host Language Interface User's Manual 127

Language Compiler to use for a given language source.

rpg IBM i Only: Use RPG compiler to compile IFS "progname". Default extension is .rpg. Source
may alternately exist as member in *CURLIB/QRPGLESRC.

pl1 z/OS Only: PL/1

cobol

cob

cbl

Use COBOL compiler to compile progname.cobol, progname.cob, and progname.cbl. Supply
explicit extension to override.

java Dummy placeholder, -m cjava is the driving factor for Java source compilation.

The -m option is described in the following chart:

Application Type Type of Application to Build

hli Generate an HLI program linked to the EDA HLI library that opens and
modifies FOCUS data files.

odbc Generate an ODBC API client program linked to the ODBC API driver
w/o Visigenics Driver Manager (deprecated).

cpgm

dll

Generate a "callpgm" server program library or sub routine (also
known as a Fuselib routine). Default is a C source with .c extension
unless specified by explicit (known) extension or specific -c compiler
flag.

cjava Generate a class in a jar for "calljava" server program usage.
Multiple .java sources are allowed under this feature. Default jar file
name is the same as the first named java source (use -j to create
specific jar file names).

cl IBM i only: Compile CL command file. Default extension of .cl; LIB/
FILE(MBR) type of file specification allowed if quote enclosed to
prevent sub shell interpretation by the command line parser.

cmd IBM i Only: Compile CMD command file. Default extension of .cmd;
LIB/FILE(MBR) type of file specification allowed if quote enclosed to
prevent sub shell interpretation by the command line parser.

Using GENCPGM

128

Application Type Type of Application to Build

dds IBM i Only: Compile DDS screen file. Default extension is .dds.
Source may alternately exist as member in *CURLIB/QDDSSRC. DDS
is an IBM i only extension for compiling screen handling files for RPG
and other IBM i languages that use DDS.

-b lib/srvprg IBM i Only: Bind in additional IBM i service programs during the link
phase.

-j jarname Used solely in conjunction with -m cjava to specify a specific jar to
create. A .jar extension may be supplied, but extensions other
than .jar are ignored and automatically switched to .jar. If the switch
is not included, the first java source will be used to form the jar name
(that is, myapp.java yields myapp.jar).

[{path}]{program name}[[.extension}] Name of source program to build. Must be last argument. All
arguments after program name are ignored.

Extension is optional, but can serve to override a language default for
a -c language specification. A path to a source is allowed (that is,
source/foo.c), but non-system includes must be in current directory
or the -i option must be used.

On Server for z/OS in a PDS deployment, a dataset name or PDS
name may be specified if -p option is in use, however, the use of
parenthesis characters in the specification also requires the name to
be quoted to prevent sub shell interpretation by the command line
parser.

Procedure: How to Compile and Link a Procedure

This section outlines the steps required to compile and link a sample procedure provided with
the product:

1. Copy GENCPGM from the EDAHOME bin directory to your working directory, or use the full
path name to the location, and:

For a CALLPGM program or to build the CALLPGM sample program (CPT, SPG*.CBL, or
SPG*.RPG), copy the sample program and any required include files from the etc/
src3gl directory of EDAHOME to your working directory.

For user exits, copy the desired sample exit from the etc/src3gl directory of EDAHOME
to your working directory.

B. Using the GENCPGM Build Tool

Host Language Interface User's Manual 129

For user routines, write the routine or copy and modify an existing routine to your
working directory. (This document provides MTHNAME samples for C, COBOL, RPG, and
Fortran, which you can use for reference.)

2. Issue an EDAHOME environment variable pointing to the EDAHOME directory. For example:

Windows SET EDAHOME=C:\ibi\srv82\home

IBM i (formerly known as
i5/OS)

export EDAHOME=/home/iadmin/ibi/srv82/home

UNIX export EDAHOME=/home/iadmin/ibi/srv82/home

USS export EDAHOME=/home/iadmin/ibi/srv82/home

3. If building an API program, also issue an EDACONF environment variable pointing to the
EDACONF directory. For example:

Windows SET EDACONF=C:\ibi\srv82\wfs

IBM i export EDACONF=/home/iadmin/ibi/srv82/wfs

UNIX export EDACONF=/home/iadmin/ibi/srv82/wfs

USS export EDACONF=/home/iadmin/ibi/srv82/wfs

4. Run GENCPGM. For example, on UNIX:

gencpgm.sh -m cpgm mysub.c

Reference: GENCPGM Usage Notes

While there may not be a sample in every language for every application type, the first step is
to confirm that there is a working environment by building one of the standard samples for the
desired application type and confirming that it runs. If the samples do not work, there is little
hope that a custom program will work.

Switches function similarly on all implementations, although, some are platform/need specific.

Using GENCPGM

130

Programs generated for HLI will also have command file shell wrappers created with the
system variables used for run time execution (that is, EDAHOME, EDACONF, EDACS3 and the
library path needed for HLI to load) producing a self contained environment for runtime
execution. At runtime, all application setup needs are self-contained within the wrapper so that
the application simply runs. The explicit use of a GENCPGM-generated application wrapper is
not required if the settings within a given wrapper are issued elsewhere (such as in a system
or login profile) and the executable is directly used.

On IBM i CL and CMD, wrappers are also created in *CURLIB so applications can also be
called directly on the IBM i command line. On z/OS PDS deployment, JCL, CLIST, and REXX
wrappers are created as appnameJ, appnameC and appnameR (respectively), if the application
is 7 characters (or less) and the -S switch has been used to indicate a save PDS name. Since
the running interactive or batch and selecting a preferred language are strictly run time
choices, PDS mode creates all three scripts to be prepared for all situations.

Due to the numerous third party vendors of COBOL, Fortran and other languages, inconsistency
of switches between third party vendors and across platforms, GENCPGM has only limited
testing of third party compilers. The actual supplied COBOL and Fortran sample programs
themselves are known to work on several platforms where we do have compilers so if
GENCPGM for you platform doesn't support a particular language the sole question is of
figuring out how to compile and link them in order to work. Please also note that some
samples (particularly COBOL) have comments of specific platform related changes that must
be made for to accomplish proper compilation such as changing the PROGRAM-ID to a quoted
lowercase string to achieve a properly created program entry point.

For CALLJAVA applications (-m cjava) more than one source to compile is allowed and the
resulting classes are created into a single jar is supported. Java sources must have file
extension of .java and specifying the actual extension on the GENCPGM command line is
optional. If there are multiple source and no -j jar switch is supplied, the first source will be
used to form the jar name.

The language parameter value for -c drives the default extension for a given language (except
for Java), but supplying a full program name (ie mthname.cbl) will override a default.

If the compilation was for CALLPGM, a user exit, or a routine, the final step is to either copy
the resulting routine to the user directory of EDACONF or set the environment variable IBICPG
to the name of the actual working directory (and restart the server). This final step puts the
resulting routine in a path that the server searches for routines at run time. User exits are not
explicitly covered in this manual, but follow the same rules as a routine.

B. Using the GENCPGM Build Tool

Host Language Interface User's Manual 131

Reference: Language and Platform Notes

Theoretically any compiled 3GL language can be used to create an HLI, Call Procedural
Program, or Subroutine programs. C is generally considered the standard language and is
universally tested and implemented on all supported platforms with samples for all application
types. Other languages are more selective in terms of applications for which samples exist and
platforms in which they can be tested (usually due to complier availability on a given platform).

Java and JavaScript do not have options for generating Dynamic Load Libraries (DLLs), and, as
such, cannot be used for creating HLI, Call Procedural Program, or Subroutine programs.
However, in a language like C, it is possible to create a wrapper that loads and passes
parameters to Java and receives parameters back. Thus, while Java is feasible, it is not direct
and would present performance issues if done in this context and thus can not be
recommended or officially supported.

Fortran: It is possible to build DLLs and programs using Fortran on any platform, however, at
this time GENCPGM is only coded for Fortran on z/OS, UNIX GNU g77 and SunOS SUNWspro.
Additionally, there is only a sample for Subroutine usage. The -c fortran switch on SunOS
defaults to f77 usage on AMD64 and f90 on Sparc9, use the -c f77/f90/f95 switch to force
other specific levels. The -c fortran switch on UNIX's will attempt to use g77, if found on the
path.

COBOL: It is possible to build routines using Cobol on any platform. At this time gencpgm is
coded to do Cobol only on select platforms and using select Cobol vendors, specifically ... on
UNIX with MicroFOCUS Cobol (using the mf* switches), on IBM i using IBM ILE Cobol and IBM
z/OS using Enterprise Cobol in -p mode. MicroFOCUS Cobol use has some additional use
restrictions as described in the -c mfcobol section of the gencpgm chart.

On IBM i: Only ILE compilers are supported. Only the IBM i C compiler can directly compile files
on the IFS file system. GENCPGM on IBM i does this feat for other languages by checking the
default library location (for a given source type) for the existence of the desired file and if it
does not exist it does a CPYFRMSTMF to duplicate the file into the library for the compilation
process. If GENCPGM does a source file copy to a library, it will also remove the file afterwards
so extra copies aren't floating around. In this way, sources on IBM i can exist as either IFS or
library files.

On z/OS PDS Deployment: The script in hlq.HOME.ETC(GENCPGM) is an OMVS shell script
and is not JCL, so it cannot be directly run from the PDS. To use under PDS deployment, copy
the GENCPGM member to HFS, do a chmod +x to the script, and use as described below with
z/OS switches.

Using GENCPGM

132

Once the script is copied to an HFS directory, it is executed with the -L, -C, -A, -,S and -p
options, which creates and then submits a JCL compilation stack that is language- and
application-specific. If the JCL is successful, the resulting program will end up in the specified -
p PDS. Regardless of build success, the JCL stack is always left behind and is saved in the
current directory as the program name with a .jcl extension, as well as in the -S location if a -S
switch was used. Additionally the -s switch will allow you to directly generate JCL into an HFS
file or DSN, but not execute. The -s switch (lowercase s is required) is useful for sites where
standard IBM libraries locations are not used for compiler and link library updates (as is
commonly done at sites for add on features and updates), thus allowing a site to generate and
then "adjust" the JCL for site specific needs before submission. The -S switch (uppercase S is
required) does actual compilation plus saves build and run time scripts into the specified PDS
for later use.

Reference: Build Rules

Should you chose to write a build script instead of using GENCPGM, the rules are fairly simple.

DLLs for Subroutine and CALLPGM Usage: Library name (less extension and any prefix such as
lib) and entry point name must match. Some compilers are case sensitive on entry point name
usage and some are not or uppercase entry points automatically; thus some require special
coding to force lower case names as in mentioned COBOL cases. Specifically entry points
must be lowercase.

Executables for HLI Usage: Must link in edahli DLL and create an executable with a main.
Various environment variables must be set in order for application to run, the wrapper created
by building the appropriate test sample should be used as a template as it contains any
general and platform specific coding.

In both cases it is suggested that you use the standard test samples for your language of
choice with the -x switch to examine the precise build switches used in any particular
environment to assist in any custom built scripts.

Example: Generating a Subroutine Program From a C Source File

The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler.

Optionally, the explicit API switch could have been used:

gencpgm -g -m cpgm myprog

B. Using the GENCPGM Build Tool

Host Language Interface User's Manual 133

Example: Generating an HLI Program From a C Source File

Because the Standard C compiler and HLI mode are default options, the following example will
generate a debuggable HLI program from a sample C source file named myprog.c using the
standard C compiler.

Optionally, the explicit HLI switch could have been used:

gencpgm -g -m hli myprog

Example: Generating a CALLPGM Program From a C Source File

The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler.

gencpgm -g -m cpgm myprog

For actual CALLPGM code samples, see Writing a 3GL Compiled Stored Procedure Program.

Using GENCPGM

134

AppendixC Migrating CMS HLI Programs to UNIX or
Linux

FOCUS 7.7 does not support the CMS operating system. Customers running CMS FOCUS
and upgrading their FOCUS release to 7.7 must migrate their FOCUS applications to an
operating environment supported in Release 7.7. HLI programs that were compiled under
CMS must be migrated to a supported operating system, as well, and recompiled in that
operating environment. Typically, customers moving from CMS to another operating
sytem move to UNIX or Linux.

In this appendix:

Changes Needed to the CMS HLI Program

Changes Needed to the FCB When Migrating a CMS HLI Program

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux

Changes Needed to the CMS HLI Program

The following changes are needed when migrating a CMS HLI Program to UNIX or Linux.

The file naming conventions are different, so the file references must be change. For
example, any FILEDEF commands used in the FOCUS code will have to be changed.

The CMS file naming convention consists of three parts, a file name, a file type, and a
file mode.

fn ft [fm]

where:

fn

Is a name for the file, up to eight characters.

ft

Is the type of file. FOCUS uses a standard list of common file types.

fm

Identifies the disk that the file resides on and the type of access allowed. The
default filemode is A1.

The UNIX/Linux file naming convention consists of an optional path to the location of
the file, a file name, and a file extension.

[path/]fn.ext

Host Language Interface User's Manual 135

where:

path

Identifies how to traverse the directory structure to the directory in which the file
resides.

fn

Is a name for the file.

ext

Identifies the type of file. FOCUS uses a standard list of extensions.

Note: The entire file specification cannot be longer than 64 characters.

File names on UNIX and Linux are case sensitive, with lowercase file names recommended,
while file names in CMS are recommended to be all uppercase.

If multiple FOCUS Database Servers (sink machines) are required, a user ID should be
created on the UNIX box that controls these machines. Each sink machine should be set up
in its own directory, since SU creates temporary work files using the same names, and
these could override each other if all sinks were in the same directory.

The source code for the HLI routines and any user-written subroutines must be ported to
the new environment and re-compiled.

The FOCUS databases controlled by the SU need to be ported to the new environment.

If the FOCUS code uses any platform-specific options, such as operating system
commands, these must be changed to be compatible with the new environment.

Changes Needed to the FCB When Migrating a CMS HLI Program

Because the file naming conventions are different in CMS and UNIX/Linux, the FCB layout is
different.

Following are the relevant FCB words for CMS.

FCB Words Contents Description Number of Bytes

1-2 FN File Name 8

3-4 FT File Type 8

5 FM File Mode 4

Changes Needed to the FCB When Migrating a CMS HLI Program

136

FCB Words Contents Description Number of Bytes

7-8 PROCNAME Procedure Name
displayed on
HLIPRINT

8

25 ERRORNUM Detail error code
(integer)

4

Following are the relevant FCB words for UNIX/Linux.

FCB Words Contents Description Number of Bytes

1-2 blank Reserved 8

3-4 blank Reserved 8

5 blank Reserved 4

7-8 blank Reserved 8

25 RETURNUM Number of
instances returned
(integer)

4

50-66 FILENAME UNIX/Linux file
name (up to 64
bytes with or without
a full or relative
path)

64

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux

Using the Simultaneous Usage (SU) facility, multiple users can read and change a FOCUS or
XFOCUS database at the same time, using FOCUS and Host Language Interface (HLI)
commands.

C. Migrating CMS HLI Programs to UNIX or Linux

Host Language Interface User's Manual 137

Reference: SU Under CMS

With SU, a centrally controlled database is allocated to a background job called the FOCUS
Database Server or sink machine. TSO IDs, MSO sessions, and batch jobs running FOCUS, as
well as programs using HLI, that send database retrieval and update requests to the FOCUS
Database Server are all called source machines or clients. Source machines send requests
and transactions to the FOCUS Database Server, which processes their transactions and
transmits retrieved data and messages back to the source machines.

Without SU, only one user can update a database at a time, even databases that are allocated
for sharing (DISP=SHR).

Source machines communicate with the FOCUS Database Server through cross-memory
posting. Messages traveling between a source machine and the FOCUS Database Server are
placed in the z/OS Common Storage Area (CSA), which is accessible to both machines. When
the FOCUS Database Server receives a request from a source machine, it changes or retrieves
data from the centrally controlled database and transmits the results back to the source
machine.

CMS is case sensitive. Upper case is highly recommended for all filenames.

LISTFILE lists the names of files on any disk or SFS directory. COPY[FILE] copies a file to
another file.

COPYFILE fn1 ft1 fm1 fn2 ft2 fm (options

The following example copies HISTORY SCRIPT H to HISTORY SCRIPT A.

copy history script h history script a

Reference: SU Under UNIX or Linux

On UNIX or Linux, any file or directory can have multiple names because the operating system
uses inodes instead of names to identify files and directories. Additional names can be
provided by using the ln command to create one or more hard links to a file or directory.

UNIX is case sensitive. Lower case is highly recommended for all filenames. Some common
UNIX commands follow.

ls directory. List contents.

cd directory. Change to another directory.

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux

138

The following command copies the file myfile1 from the current directory and places a copy in

/priv/home/henry/myfile2.

cp myfile1 /priv/home/henry/myfile2

If multiple sink machines are required, a user ID to control them should be created on the
UNIX box to control them. Each sink machine should be set up in its own directory since each
one creates temporary work files using the same name, and these could overwrite each other
if all sinks were in the same directory.

COBOL subroutines need to be ported to the UNIX/Linux environment with source code and re-
compiled.

The actual FOCUS databases controlled by SU must be migrated to the UNIX/Linux
environment. in Release 7.6 or above, you can use Structured HOLD Files to extract the
FOCUS data with its structural information on CMS and recreate it on UNIX or LInux. In
releases prior to 7.6, you will have to HOLD each path separately and reassemble the FOCUS
structure on UNIX or Linux.

FOCUS code may or may not need to change, depending on whether platform-specific options
are used. Almost all platforms support the same core FOCUS code.

C. Migrating CMS HLI Programs to UNIX or Linux

Host Language Interface User's Manual 139

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux

140

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 141

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2022. TIBCO Software Inc. All Rights Reserved.

142

Index

3GL programs 123

A

Accessing a central database

From an HLI program 94, 95

Altering a file 73

Anchor segment 9, 10, 13

Application considerations

Declaring multiple FCBs 24

Defining a work area:For descendent

segments 23

Internal data formats 20

B

Backkey

Retrieval with 71

Batch run 92

Buffers 94

Bypassing the sink machine

Multi-Threaded HLI/SU 94

Multi-Threaded HLI/SU:Under MVS/TSO 95

C

Cache memory 94

Central database access

From an HLI program 94

CHA command 76, 100–102

Changing information in a file 76

Checking status 83

CLO command 102

COBOL sample program 42

Commands (FOCUS)

SET BINS 93, 94

SET CACHE 93, 94

USE 95

Commands (HLI)

CHA 76, 100–102

CLO 102

DEL 103

FSP 103

FST 104, 113

INFO 105–107

INP 107

NEX 109

NXD 110, 111

NXK 112

NXP 113

Parameters 98–100

SAV 116

Summary of 97

compiling and linking 3GL programs 123

Controlling local HLI programs 93

Controlling sink I/O buffers

SET BINS 94

Host Language Interface User's Manual 143

D

Data

Filler field 56

Internal formats 20

Offsets 55, 56

Declaring multiple FCBs 24

Defining the work area

For descendent segments 23

DEL command 80, 103

Deleting segments from a file 80

diagnostic traces 83, 85

Allocating 83

FILEDEF 83

Displaying error messages 87

Dummy segments

SYSTEM 9

E

ECHO facility 83

Error

Displaying messages 87

ERRORS file 87

Handling 87

HLIPRINT file 83

Status return codes 119

Storing in a trace file 83

F

FCB 8, 13

Byte chart 16–18

FCB 8, 13

Declaring multiple FCBs 24

Definitions of terms 19

Initializing 15, 51–53, 55, 58, 59

Layout 16–18

Monitoring position 8

Multiple FCBs with SU 94

Setting in HLI program:Under MVS/TSO 95

Specifying SU flag 17, 95

Filler field 56

FOCUS 5.5 and higher 24

FOCUS file

Moving within 9–11

FOCUS files

Changing information 76

Deleting segments 80

Including new segments 73, 74

Locating records 59

Moving within 9

Opening 53

Positions in 8

Supported languages 7

FOCUS SET commands

See Commands(FOCUS) 93

FSP command 67, 103

FST command 62, 104, 113

G

GENCPGM scripts 123

build rules 133

Index

144

GENCPGM scripts 123

CALLPGM Library from C source 134

HLI program from C source 134

language and platform notes 132

subroutine program from C source 133

usage chart 125

usage notes 130

generating CALLPGM programs 134

generating HLI programs 134

generating subroutine programs 133

H

HLI commands 8

As application calls 14

See also Commands(HLI) 8

HLI program

Setting FCB in:Under MVS/TSO 95

HLI

Control parameters from SU 93, 94

Profiles in SU 93, 94

HLIPRINT file 83–85, 87, 92

I

Improving sink performance

SET CACHE 94

Including new segments 73

Indexed reads 70

INFO command 55, 58, 105–107

INP command 73, 74, 107

Internal data representation 20

L

Languages supported by HLI 7

Limitations

FCBs for:COBOL 24

FCBs for:FORTRAN 24

FCBs for:PL/I 24

Load module

Constructing 89–92

JCL sample 91

Link-edit 89, 91, 92

Locating records 59, 60, 62–65, 67–72

Logical reads 60, 62, 64

logs 83, 85

M

Moving

Qualified 9–11, 109

Unqualified 9, 109

Within a FOCUS file 9

Within a FOCUS file:Using read commands 11

Multi-Threaded HLI/SU

Bypassing the sink machine:Under MVS/TSO

95

Setting FCB in HLI program:Under MVS/TSO

95

Multi-Threaded Reporting Facility 94, 95

Specifying in FCB 17, 95

N

NEX command 64, 65, 109

Index

Host Language Interface User's Manual 145

Null parameter 100

NXD command 70, 110, 111

NXK command 71, 72, 112

NXP command 68, 70, 113

O

Offsets

Data 55

Filler field 56

Opening files 53

P

Parallel configuration 95

Physical reads 67, 70

PL/1 sample program 46

Position

In a FOCUS file 8

procedures

compiling 129

linking 129

R

Reading data

Indexed reads 11, 70

Logical reads 11, 60, 62, 64

Physical reads 11, 67, 70

Records

Locating 59, 60, 62, 64, 67, 70–72

REPEAT option 23

Retrieval path

Using screen tests 12, 13

Retrieval

Logical file view 59

Logical with pointers 59

Path 9, 10

Path:Using screen tests 11

Physical sequence 59

With index 59

Root segment 9, 23

S

Sample programs

Batch JCL 92

COBOL 42

Link-edit JCL 91

PL/1 46

SAV command 116

Searching

For segment instances 59, 60, 62, 64, 67,

70

Segments

Adding 73, 74

Anchor 9

Changing information in 76, 77

Deleting 80, 81

Dummy 9

Root 9, 23

Target 9

Selecting records 9

Index

146

SET command

BINS 94

CACHE 93, 94

SET

BINS command 93

Setting FCB in HLI program

Under MVS/TSO 95

SHO command 56, 58

Show list 56, 58, 100

Default 20

INFO option 106, 107

Sink machine 93–95

Bypassing 94

Bypassing:Under MVS/TSO 95

Controlling buffers 94

Improving performance 94

Local HLI programs 93

Multi-threaded reporting 94, 95

SU profile 93

SU profile:Under MVS/TSO 93

Specifying Multi-Threaded HLI/SU

SULO 17

SULO:Under MVS/TSO 95

STAT option 83, 85

Status codes 83, 87, 119

SU 93–95

Controlling local HLI programs 93

Multi-threaded reporting 94, 95

SU 93–95

Multiple FCBs 94

Parallel configuration 95

Profile 93, 94

Profile:Under MVS/TSO 93

Sink machine parameters 93

Specifying flag in FCB 17, 95

Specifying multi-threaded reporting 17, 95

SYSTEM segment 9, 10

T

Target segment 9, 10

Test relations 99

Expressing 60

Screen tests 11

Testing status 83

trace facility 85

Trace facility 84, 85

traces 83

U

USE command 95

User-supplied variables 98–100

W

Work area 22

Defining:For descendent segments 23

Index

Host Language Interface User's Manual 147

Index

148

	Contents
	1. Introduction to HLI
	What is HLI?
	Why the Host Language Interface?
	How Can You Create HLI Applications?
	Navigating Through a FOCUS Data Source
	The Dummy SYSTEM Segment
	Reading the Data Source
	Test Relations

	The File Communication Block (FCB)
	Incorporating HLI Commands in the Application Program

	2. Preparing HLI Work Areas
	Initializing the File Communication Block (FCB)
	FCB Layout
	Example: NEX C from A
	Reference: Definitions of FCB Terms

	Defining the Record Work Area
	Internal Data Representation Formats
	Alignment of Data Offsets in the Work Area
	Size of the Work Area

	Defining the Work Area for a File With Descendant Segments
	Declaring Multiple FCBs

	3. Using HLI
	Writing HLI Programs
	Reference: Properties of Master Files for Use With HLI
	C Program Considerations
	Syntax: How to Include the HLI Header File in a C Program
	Syntax: How to Declare the Fcb Name Variable
	Syntax: How to Declare a Session Handle and Issue the Connection Call
	Syntax: How to Declare an HLI Handle and Issue the Connection Call
	Syntax: How to Close the HLI Connection
	Syntax: How to Call to Close the Session Connection

	Sample HLI Programs
	Example: Master File Used With the Sample Programs
	Example: Sample C Program
	Example: Sample FORTRAN Program
	Example: Sample COBOL Program
	Example: Sample PL/1 Program

	Initializing the FCB
	Example: Initializing the FCB in a C Program
	Example: Initializing the FCB in a FORTRAN Program
	Example: Initializing the FCB in a COBOL program
	Example: Initializing the FCB in a PL/I program

	Opening the FOCUS Data Source
	Syntax: How to Open a FOCUS Data Source (OPN)
	Example: Opening a FOCUS Data Source in a C Program
	Example: Opening a FOCUS Data Source in a FORTRAN Program
	Example: Opening a FOCUS Data Source in a COBOL Program
	Example: Opening a FOCUS Data Source in a PL/I Program

	Data Offsets in the Work Area

	Using a Show List
	Syntax: How to Select a List of Fields in a FOCUS Data Source (SHO)
	Example: Using a Show List in a C Program
	Example: Using a Show List in a FORTRAN Program
	Example: Using a Show List in a COBOL Program
	Example: Using a Show List in a PL/I Program

	Locating Records
	Expressing Test Relations
	Example: Expressing Test Relations in a C Program
	Example: Expressing Test Relations in a FORTRAN Program
	Example: Expressing Test Relations in a COBOL Program
	Example: Expressing Test Relations in a PL/I Program

	Logical Reads
	Syntax: How to Move to the First Target Segment Instance Under the Anchor (FST)
	Syntax: How to Move to the Next Segment in a Logical Read (NEX)
	Example: Using Logical Reads in a C Program
	Example: Using Logical Reads in a FORTRAN Program
	Example: Using Logical Reads in a COBOL Program
	Example: Using Logical Reads in a PL/I Program

	Physical Reads
	Syntax: How to Move to the First Physical Segment Instance (FSP)
	Syntax: How to Retrieve the Next Physical Occurrence of the Target Segment (NXP)

	Indexed Reads
	Syntax: How to Retrieve a Segment Instance Using an Index (NXD)

	Retrieving With a Backkey
	Syntax: How to Retrieve a Previous Target Segment Using a Backkey (NXK)

	Altering the File
	Including New Segments
	Syntax: How to Include New Segment Instances (INP)
	Example: Including New Segment Instances Using a C Program
	Example: Including New Segment Instances Using a FORTRAN Program
	Example: Including New Segment Instances Using a COBOL Program
	Example: Including New Segment Instances Using a PL/I Program

	Changing Information in the File
	Syntax: How to Change Information in a Segment Instance (CHA)
	Example: Changing a Segment Instance in a C Program
	Example: Changing a Segment Instance in a FORTRAN Program
	Example: Changing a Segment Instance in a COBOL Program
	Example: Changing a Segment Instance in a PL/I Program

	Deleting Segments From a File
	Syntax: How to Delete Segments From a File (DEL)
	Example: Deleting a Segment Instance in a C Program
	Example: Deleting a Segment Instance in a FORTRAN Program
	Example: Deleting a Segment Instance in a COBOL Program
	Example: Deleting a Segment Instance in a PL/I Program

	4. Testing Status, Using Log Facilities, and Handling Errors
	Testing Status
	Using the Diagnostic Log Facility: ECHO and STAT
	Reference: Log File Locations
	Using the ECHO Log Facility
	Using the STAT Log Facility

	Error Handling

	5. Creating an Executable HLI Program
	Constructing a DLL Under WebFOCUS
	Procedure: How to Compile and Link a C Program

	Constructing a Load Module Under z/OS
	Example: Creating a Load Module Under z/OS
	Reference: HLI Allocations
	Example: Sample HLI Batch Job

	6. HLI and Simultaneous Usage of FOCUS Databases
	Using the SU Profile
	Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)
	Multi-Threaded HLI/SU Reporting Under z/OS FOCUS
	Example: Preparing an FCB for Multi-Threaded HLI/SU Reporting Under z/OS FOCUS

	7. HLI Command Summary
	HLI Command Summary Chart
	HLI Parameter Description Chart
	Alphabetical List of HLI Commands
	CHA (Change) Command
	CLO (Close) Command
	DEL (Delete) Command
	FSP (First Physical) Command
	FST (First) Command
	INFO (Information) Command
	INP (Input) Command
	NEX (Next) Command
	NXD (Next Through Index) Command
	NXK (Next Through Backkey) Command
	NXP (Next Physical) Command
	OPN (Open) Command
	SAV (Save) Command
	SHO (Show) Command

	A. HLI Status Return Codes
	HLI Return Code Chart

	B. Using the GENCPGM Build Tool
	Using GENCPGM
	Reference: USAGE Chart (Typical Syntax Plus Extended Options)
	Procedure: How to Compile and Link a Procedure
	Reference: GENCPGM Usage Notes
	Reference: Language and Platform Notes
	Reference: Build Rules
	Example: Generating a Subroutine Program From a C Source File
	Example: Generating an HLI Program From a C Source File
	Example: Generating a CALLPGM Program From a C Source File

	C. Migrating CMS HLI Programs to UNIX or Linux
	Changes Needed to the CMS HLI Program
	Changes Needed to the FCB When Migrating a CMS HLI Program
	Migrating Simultaneous Usage Applications From CMS to UNIX or Linux
	Reference: SU Under CMS
	Reference: SU Under UNIX or Linux

	Legal and Third-Party Notices
	Index

