
Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

ibi™ FOCUS®
Developing Applications
Version 9.3.2 | November 2024

ibi™ FOCUS® Developing Applications

2 | Contents

Contents
Contents 2

Customizing Your Environment 32
When Do You Use the SET Command? 32

Coding a SET Command 32

Set Parameters 33
Setting a Single Parameter 33

Setting Multiple Parameters 34

Set Parameters in a Report Request 35
Setting Parameters in a Report Request 35

Set Parameters in a Graph Request 36
Setting Parameters in a Graph Request 36

Types of SET Parameters 38

Calculations 39

Data and Metadata 40

ibi Data Migrator Tasks 45

Date Manipulation Tasks 45

WebFOCUS-Specific Tasks 46

Graph Tasks 48

Graph Tasks 51

Memory Setup and Optimization Tasks 54

Report Code, Content, and Processing Tasks 56

Report Layout and Display Tasks 62

Security Tasks 68

Terminal Tasks 69

SET Parameter Syntax 69
ACCBLN 73

ibi™ FOCUS® Developing Applications

3 | Contents

ACROSSLINE 74

ACROSSPRT 74

ACROSSTITLE 75

ACRSVRBTITL 76

ALL 77

ALLOWCVTERR 78

ALTBACKPERLINE 79

ARCFGU 80

ASNAMES 80

AUTOFIT 81

AUTOINDEX 82

AUTOPATH 83

AUTOSTRATEGY 83

AUTOTABLEF 84

BASEURL 84

BINS 85

BLANKEMPTY 85

BLANKINDENT 86

BOTTOMMARGIN 87

BUSDAYS 87

BYDISPLAY 88

BYPANEL 89

CACHE 90

CARTESIAN 91

CDN 91

CENT-ZERO 92

CNOTATION 93

COLLATION 94

COMPMISS 95

COMPOUND 95

COMPUTE 97

COUNTWIDTH 97

ibi™ FOCUS® Developing Applications

4 | Contents

CSSURL 98

CURRENCY_DISPLAY 98

CURRENCY_ISO_CODE 99

CURRENCY_PRINT_ISO 100

CURRSYMB 100

CURSYM_D 101

CURSYM_E 101

CURSYM_F 102

CURSYM_G 102

CURSYM_L 103

CURSYM_Y 103

DATE_ORDER 104

DATE_SEPARATOR 105

DATEDISPLAY 105

DATEFNS 106

DATEFORMAT 107

DATETIME 107

DB_INFILE 108

DBACSENSITIV 109

DBAJOIN 109

DBASOURCE 110

DEFCENT 111

DEFECHO 112

DEFINES 112

DIRECTHOLD 113

DMH_LOOPLIM 113

DMH_STACKLIM 114

DMPRECISION 114

DRILLFOCMISSING 115

DROPBLNKLINE 115

DTSTRICT 116

DUPLICATECOL 117

ibi™ FOCUS® Developing Applications

5 | Contents

EMBEDDABLE 117

EMPTYCELLS 118

EMPTYREPORT 119

EQTEST 120

ERROROUT 120

ESTRECORDS 121

EUROFILE 122

EXCELSERVURL 122

EXL2KLANG 123

EXL2KTXTDATE 123

EXTAGGR 124

EXTENDNUM 124

EXTHOLD 125

EXTRACT 126

EXTSORT 127

FIELDNAME 127

FILE[NAME] 128

FILTER 128

FIXRET[RIEVE] 129

FLOATMAPPING 130

FOC144 130

FOCEXURL 131

FOCFIRSTPAGE 131

FOCSTACK 132

FORMULTIPLE 132

HDAY 133

HIDENULLACRS 134

HLDCOM_TRIMANV 134

HNODATA 135

HOLDATTR 136

HOLDFORMAT 137

HOLDLIST 137

ibi™ FOCUS® Developing Applications

6 | Contents

HOLDMISS 138

HOLDSTAT 139

HTMLARCHIVE 139

HTMLCSS 140

HTMLEMBEDIMG 140

HTMLENCODE 141

INDEX 142

JOIN_LENGTH_MODE (JOINLM) 142

JOINOPT 143

KEEPDEFINES 144

KEEPFILTERS 145

LANG[UAGE] 146

LAYOUTGRID 149

LEADZERO 149

LEFTMARGIN 150

LINES 150

MATCHCOLUMNORDER 151

MAXDATAEXCPT 152

MAXLRECL 152

MDICARDWARN 153

MDIENCODING 154

MDIPROGRESS 154

MESSAGE 155

MISS_ON 155

MISSINGTEST 156

MULTIPATH 157

NEG-ZERO 158

NODATA 159

NULL 159

OLDSTYRECLEN 160

ONFIELD 160

ORIENTATION 161

ibi™ FOCUS® Developing Applications

7 | Contents

OVERFLOWCHAR 161

PAGE[-NUM] 162

PAGESIZE 163

PANEL 165

PARTITION_ON 166

PASS 167

PCOMMA 167

PCTFORMAT 169

PDFLINETERM 169

PERMPASS 170

PHONETIC_ALGORITHM 171

PRFTITLE 172

PRINT 172

PRINTDST 173

PRINTPLUS 173

PSPAGESETUP 174

QUALCHAR 174

QUALTITLES 175

RANK 176

RECAP-COUNT 176

RECORDLIMIT 177

RIGHTMARGIN 177

RPAGESET 178

SAVEDMASTERS 178

SAVEMATRIX 179

SHADOW 179

SHIFT 180

SHORTPATH 181

SHOWBLANKS 182

SORTMATRIX 183

SORTMEMORY 183

SPACES 184

ibi™ FOCUS® Developing Applications

8 | Contents

SQLTOPTTF 184

SQUEEZE 185

STYLE[SHEET] 186

SUBTOTALS 186

SUMMARYLINES 187

SUMPREFIX 188

TESTDATE 189

TIME_SEPARATOR 189

TITLELINE 190

TITLES 190

TOPMARGIN 191

UNITS 192

USER 192

USERFCHK 192

USERFNS 194

WARNING 194

WEEKFIRST 195

WPMINWIDTH 196

XLSXLOCALZIP 197

XLSXPAGEBRKIGNORE 197

XRETRIEVAL 198

YRTHRESH 198

Managing Applications 200
What Is an Application? 200

Application Commands Overview 201
APP Commands Quick Reference 202

Application Metadata Commands and Metadata Tables 204

Search Path Management Commands 205
APP PATH 206

APP PREPENDPATH 207

APP APPENDPATH 207

ibi™ FOCUS® Developing Applications

9 | Contents

APP MAP 208

APP SET METALOCATION_SAME 211

APP ? METALOCATION_SAME 211

APP SHOWPATH 212

Application and File Management Commands 212
APP CREATE 213

APP COPY 216

APP COPYF[ILE] 216

APP MOVE 218

APP MOVEF[ILE] 219

APP DELETE 220

APP DELETEF[ILE] 221

APP PROPERTY CODEPAGE 222

APP RENAME 222

APP RENAMEF[ILE] 223

Designating File Types for APP Commands 224

Output Redirection Commands 229
Interactions Among Output Redirection Commands 229

APP HOLD 231

APP HOLDDATA 232

APP HOLDMETA 233

APP FI[LEDEF] 233

Application Metadata Commands and Catalog Metadata 233
Retrieving Basic Information 234

Retrieving Extended Catalog Information 240

APP HELP 243
Retrieve Information About APP Commands 243

Accessing Metadata and Procedures 243
Search Rules 243

Creation Rules for Procedure Files 244

Locating Master Files and Procedures 245

Accessing Existing Data Files 247

ibi™ FOCUS® Developing Applications

10 | Contents

Creation Rules for Data Files 247

Data Set Names 253

Allocating Temporary Files 254
Allocate Temporary Files 254

Usage Notes for Allocating Temporary Files 254

Allocate Temporary Files to MVS Data Sets 255

System Defaults for Allocating Temporary Files to MVS Data Sets 255

Support Long Synonym Names Using DYNAM SET LONGSYNM 256

Pre-Allocate Temporary Files 257

Dynamically Allocate FOCUS Files on z/OS 257

Managing Flow of Control in an Application 259
Uses for Dialogue Manager 259

Overview of Dialogue Manager Commands 260

Dialogue Manager Variables Overview 262

Dialogue Manager Processing 263
Processing a Procedure 265

Creating a Procedure 267

Rules for Creating Procedures 268

Including Comments in a Procedure 268

Add a FOCUS-Style Comment in a Procedure 268
Placing a FOCUS-Style Comment in a Procedure 269

Placing C-Style Comments in a Procedure 269

Sending a Message to the User 270

Send a Message to the User 270
Sending a Message 271

Controlling User Access to Data 271

Set a Password in a Procedure 272

Creating a Startup Procedure 272
Creating a Startup Profile 273

Executing and Terminating a Procedure 273

Executing Procedures 274

ibi™ FOCUS® Developing Applications

11 | Contents

Execute a Procedure 274
Executing a Procedure 274

Executing Stacked Commands and Continuing the Procedure 275
Executing Stacked Commands and Continuing the Procedure 275

Executing Stacked Commands and Exiting the Procedure 276
Executing Stacked Commands and Exiting the Procedure 276

Canceling the Execution of a Procedure 277

Cancel the Execution of a Procedure 277

Cancel the Execution of a Procedure and Exit FOCUS 277
Canceling the Execution of a Procedure 278

Locking Procedure Users Out of FOCUS 278

Lock Procedure Users Out of FOCUS 279

Navigating a Procedure 279

Branching Unconditionally 280

Branch Unconditionally 280
Branching Unconditionally 281

Branching Conditionally 281

Branch Conditionally 282
Performing Conditional Branching 283

Conditional Branching Based on Testing of System and Statistical Variables 283

Conditional Branching Based on User Input 284

Conditional Branching Based on a Compound -IF Test 285

Looping in a Procedure 285

Specify a Loop 286
Repeating a Loop 287

Controlling Loops With -SET 289

Incorporating Another Procedure With -INCLUDE 289

Incorporate a File 290
Incorporating Another Procedure With -INCLUDE 290

Incorporating a Procedure With a Heading 291

Incorporating a Procedure for a Virtual Field 292

ibi™ FOCUS® Developing Applications

12 | Contents

Nesting Procedures With -INCLUDE 292

Calling Another Procedure With EXEC 293

Call a Procedure With the EXEC Command 293
Calling a Procedure With EXEC 294

Developing an Open-Ended Procedure 294
Developing and Running an Open-Ended Procedure 295

Using Variables in a Procedure 295

Naming Conventions for Local and Global Variables 297

Specify a Variable Name 297

Local Variables 298
Using Local Variables 298

Global Variables 299
Using Global Variables 299

System Variables 300

Summary of System Variables 300
Retrieving the Date Using the System Variable &DATE 306

Retrieving the Procedure Name Using the System Variable &FOCFOCEXEC 307

Displaying a Date Using the System Variable &YYMD 308

Statistical Variables 308

Summary of Statistical Variables 309
Controlling Execution of a Request With the Statistical Variable &LINES 311

Special Variables 311

Summary of Special Variables 311

Querying the Values of Variables and Parameters 312

Display the Value of a Variable 313

Store Parameter Value Settings 314
Storing a Parameter Value Setting 314

Supplying and Verifying Values for Variables 314

Rules for Supplying Variable Values 316
Supplying Variable Values in a Procedure 316

Supplying a Default Variable Value 318

ibi™ FOCUS® Developing Applications

13 | Contents

Supply a Default Value 319
Supplying a Default Value 319

Supplying Variable Values in an Expression 319

Assign a Value in an Expression 320

Usage Notes for IN FILE 321

Specify Precision for Dialogue Manager Calculations 321
Setting Precision for Dialogue Manager Calculations 322

Setting a Variable Value in an Expression 323

Setting a Literal Value 323

Setting the Difference Between Two Dates 324

Testing Whether a Variable Value Is in a File 324

Initializing a Variable to a Long String 324

Reading Variable Values From and Writing Variable Values to an External File 325

Retrieve a Variable Value From an External File 326
Reading a Value From an External File 327

Write a Variable Value to an External File 327
Writing to a File 328

Reading From and Writing to an External File 328

Read Master File Fields Into Dialogue Manager Variables 332

Usage Notes for -READFILE 332
Reading Fields From a Data Source Into Dialogue Manager Variables Using -
READFILE 333

Close an External File 333

Reading or Writing an Entire File 334

EDAGET: Reading a File of a Specified Type 334

Read a File of a Specified Type 334
Reading a File Using EDAGET 336

EDAPUT: Writing a File of a Specified Type 336

Write a File of a Specified Type 337
Writing a Master File to Disk 339

Supplying Variable Values on the Command Line 339

ibi™ FOCUS® Developing Applications

14 | Contents

Supply a Variable Value on the Command Line 339

Rules for Using Named and Positional Variables With EXEC 340
Supplying Values on the Command Line 341

Using Positional Variables 341

Mixing Named and Positional Variables 342

Prompting Directly for Values With -PROMPT 342
Prompting for Variable Values 343

Prompting for Values on Screens With -CRTFORM 344

Prompting for Values on Menus and Windows With -WINDOW 344

Prompting for Values Implicitly 344
Automatically Prompting for Variable Values 344

Verifying User-Supplied Values Against a Set of Format Specifications 345

Format Specifications for Variables 345
Using a Format Specification to Verify User Input 346

Verifying User Input Against a Pre-Defined List of Values 347
Providing a List of Valid Values With -PROMPT 347

Create a Reply List as a Variable 347
Using a Variable to Provide a Reply List 348

Supplying Text for Variable Prompting 348

Manipulating and Testing Variables 349

Testing Variables for Length, Type, and Existence 350

Screen a Variable Value for Length and TYPE 350
Testing for Variable Length 351

Storing the Length of a Variable 352

Testing for Variable Type 352

Test for the Presence of a Variable Value 352
Testing for the Presence of a Variable 353

Replacing a Variable Immediately 353

Usage Notes for .EVAL 354

Replace a Variable Immediately 354
Replacing a Variable Immediately 354

ibi™ FOCUS® Developing Applications

15 | Contents

Using .EVAL to Interpret a Variable 355

Validating Variable Values Without Data File Access: REGEX 356

Validate a Variable Value Using a REGEX Mask 356
Using a REGEX Mask to Validate a Social Security Number 357

Using REGEX With an Incorrect Value 358

Using REGEX With an Invalid Regular Expression 358

Concatenating Variables 359

Concatenate Variables 359

Creating an Indexed Variable 359

Create an Indexed Variable 360
Using an Indexed Variable in a Loop 360

Creating a Standard Quote-Delimited String 361

Create a Standard Quote-Delimited Character String 362
Creating a Standard Quote-Delimited Character String 362

Converting User Input to a Standard Quote-Delimited Character String 363

Using Quote-Delimited Strings With Relational Data Adapters 364

Usage Notes for Quote-Delimited Character Strings 366

Performing a Calculation on a Variable 366

Perform a Calculation on a Variable 366
Altering a Variable Value 367

Changing a Variable Value With the DECODE Function 367
Changing the Value of a Variable 368

Extracting Characters From a Variable Value With the EDIT Function 369
Extracting a Character From a Variable 369

Removing Trailing Blanks From Variables With the TRUNCATE Function 370

Remove Trailing Blanks From Variables 370
Removing Trailing Blanks 371

Calling a Function 372

Set a Variable Value Based on the Result From a Function 372
Setting a Variable Value Based on the Result From a Function 373

Load and Execute a Function With -TSO/-MVS RUN 373

ibi™ FOCUS® Developing Applications

16 | Contents

Loading and Executing a Function 374

Using Variables to Alter Commands 375
Using a Variable to Control What the TABLE Command Prints 375

Using Numeric Amper Variables in Functions 375

Determining Amper Variable Data Type 375

Manipulating Amper Variables 376

Using an Amper Variable in an Expression 377

Using Amper Variables as Subroutine Parameters 379

Using a Numeric Amper Variable as a Numeric Subroutine Parameter 379

Using a Numeric Amper Variable as an Alphanumeric Subroutine Parameter 380

Debugging a Procedure 381

Display Command Lines as They Execute 382

Establish a Default Value for the &ECHO Variable 382

Usage Notes for SET DEFECHO = NONE 383
Preventing Procedure Code From Being Displayed 383

Test Dialogue Manager Command Logic 387
Using the &RETCODE Variable to Test the Result of a Command 387

Testing the Status of a Query 388

Issuing an Operating System Command 389

Execute an Operating System Command 389

Dialogue Manager Quick Reference 390

-* Command 390

? Command 390

-CLOSE Command 391

-CRTCLEAR Command 391

-CRTFORM Command 391

-DEFAULT[S|H] Command 393

-EXIT Command 393

-GOTO Command 394

-IF Command 395

-INCLUDE Command 396

ibi™ FOCUS® Developing Applications

17 | Contents

-label Command 396

-MVS Command 397

-MVS RUN Command 397

-PASS Command 397

-PROMPT Command 398

-QUIT Command 399

-READ Command 400

-READFILE Command 401

-REMOTE Command 401

-REPEAT Command 402

-RUN Command 403

-SET Command 404

-TSO Command 404

-TSO RUN Command 405

-TYPE Command 405

-WINDOW Command 406

-WRITE Command 407

-" " Command 408

Dialogue Manager Defaults and Limits 409

Testing and Debugging With Query Commands 411
Using Query Commands 411

Issue a Query Command 411

Query Command Summary 412

Displaying Combined Structures 414

Display Combined Structures 414
Displaying Combined Structures 414

? COMBINE Query Information 415

Displaying Virtual Fields 415

Display Virtual Fields 416
Displaying Virtual Fields 416

ibi™ FOCUS® Developing Applications

18 | Contents

? DEFINE Query Information 416

Displaying the Currency Data Source in Effect 417

Display the Currency Data Source in Effect 417

Displaying Available Fields 418

Display Available Fields 418
Displaying Available Fields 418

Displaying the File Directory Table 419

Display a File Directory Table 419
Displaying a File Directory Table 419

? FDT Query Information 420

Displaying Field Information for a Master File 421

Display Field Information for a Master File 421
Displaying Field Information for a Master File 421

Displaying Data Source Statistics 422

Display Data Source Statistics 422
Displaying Data Source Statistics 423

? FILE Query Information 423

Displaying Defined Functions 425

Display DEFINE Functions 425
Displaying DEFINE Functions 425

Displaying HOLD Fields 426

Display HOLD Fields 426
Displaying HOLD Fields 426

Displaying JOIN Structures 427

Display JOIN Structures 427
Displaying JOIN Structures 427

? JOIN Query Information 427

Displaying National Language Support 428

Display Information About National Language Support 429
Displaying Information About National Language Support 429

Displaying LET Substitutions 429

ibi™ FOCUS® Developing Applications

19 | Contents

Display LET Substitutions 429
Displaying LET Substitutions 430

Displaying Information About Loaded Files 430

Display Information About Loaded Files 430
Displaying Information About Loaded Files 430

Displaying Explanations of Error Messages 431

Display Explanations of Error Messages 431
Displaying Explanations of Error Messages 431

Displaying PF Key Assignments 432

Display PF Key Assignments 432
Displaying PF Key Assignments 432

Displaying the Release Number 433

Display the Release Number 433
Displaying the Release Number 433

Displaying Parameter Settings 433

Display Parameter Settings 434
Displaying Parameter Settings 434

Displaying a Single Parameter Setting 436

Displaying Where a Parameter Can Be Set 436

Displaying Graph Parameters 437

Display Graph Parameters 437
Displaying Graph Parameters 437

Displaying the Site Code 439

Retrieve the Site Code 439
Querying the Site Code 439

Displaying Command Statistics 439

Display Command Statistics 440
Displaying Command Statistics 440

? STAT Query Information 440

Displaying StyleSheet Parameter Settings 443

Display StyleSheet Parameter Settings 443

ibi™ FOCUS® Developing Applications

20 | Contents

Displaying StyleSheet Parameter Settings 444

? STYLE Query Information 444

Displaying Information About the SU Machine 445

Display Information About the ibi FOCUS Database Server 446
Displaying Information About the ibi FOCUS Database Server 446

Displaying Data Sources Specified With USE 446

Display Data Sources Specified With USE 447
Displaying Data Sources Specified With USE 447

Displaying Global Variable Values 447

Display Global Variable Values 448
Displaying Global Variable Values 448

Reporting Dynamically From System Tables 448

Overview of System Table Synonyms 449

SYSAPPS: Reporting on Applications and Application Files 451
Retrieving Application and File Information 451

SYSCOLUM: Reporting on Tables and Their Columns 452
Retrieving Table and Column Information 452

SYSDEFFN: Reporting on DEFINE FUNCTIONS 453
Retrieving DEFINE FUNCTION Information 453

SYSERR: Reporting on Error Message Files 454
Retrieving Error Message File Information 454

SYSFILES: Reporting on Metadata or Procedure Directory Information 455
Retrieving Master File Information 456

SYSIMP: Reporting on Impact Analysis Information 457
Retrieving Impact Analysis Information 457

SYSINDEX: Reporting on Index Information 458
Retrieving Index Information 458

SYSKEYS: Reporting on Key Information 459
Retrieving Key Information 459

SYSRPDIR: Reporting on Stored Procedures 460
Retrieving Stored Procedure Information 460

ibi™ FOCUS® Developing Applications

21 | Contents

SYSSET: Reporting on SET Parameters 461
Retrieving Information About SET Parameters 461

SYSSQLOP: Reporting on Function Information 462
Retrieving Function Descriptions and Syntax 462

SYSTABLE: Reporting on Table Information 463
Retrieving A List of FMI Synonyms 463

Reporting on Data Types 464
Retrieving Data Types for the Adapter for MySQL 464

Defining a Word Substitution 466
The LET Command 466

Make a Substitution (Short Form) 466
Making a Substitution (Short Form) 467

Make a Substitution (Long Form) 468
Making a Single Substitution (Long Form) 468

Making Multiple Substitutions (Long Form) 469

Defining Substitutions for Translation 469

Variable Substitution 469
Making a Variable Substitution 470

Making Multiple Variable Substitutions (Unnumbered) 470

Making Multiple Variable Substitutions (Numbered) 471

Making a Variable Substitution in a Phrase 472

Defining a System Command 472

Null Substitution 473

Define a Null Word 473
Defining a Null Word 473

Multiple-Line Substitution 474
Making Multiple-Line Substitutions 474

Recursive Substitution 474
Making a Recursive Substitution 475

Abbreviating a Long Phrase 475

Using a LET Substitution in a COMPUTE or DEFINE Command 476

ibi™ FOCUS® Developing Applications

22 | Contents

Using a LET Substitution in a COMPUTE or DEFINE Command 476

Checking Current LET Substitutions 477

Check Current LET Substitutions 477
Checking Selected LET Substitutions 477

Checking All Current LET Substitutions 477

Interactive LET Query: LET ECHO 478

Activate the LET ECHO Facility 478

Deactivate the LET ECHO Facility 478

Results of LET ECHO Commands 478

Clearing LET Substitutions 479

Clear LET Substitutions 479
Clearing LET Substitutions 479

Saving LET Substitutions in a File 480

Save LET Substitutions 480

Assigning Phrases to Function Keys 480

Assign a Phrase to a Function Key 480
Assigning Phrases to Function Keys 481

Enhancing Application Performance 482
FOCUS Facilities 482

Loading a File 482

Load a File 483
Loading Multiple Files 483

Unload a File 484
Unloading Multiple Files 484

Loading Master Files, FOCUS Procedures, and Access Files 484

Considerations for Loading a Master File, FOCUS Procedure, or Access File 485

Loading a Compiled MODIFY Request 486

Execute a Compiled Request 486

Loading a MODIFY Request 486

Displaying Information About Loaded Files 487

ibi™ FOCUS® Developing Applications

23 | Contents

Display Information About Loaded Files 487
Displaying Information About Loaded Files 488

Saving Master Files in Memory for Reuse 488

Save Parsed Master Files in Memory 489

Query the SAVEDMASTERS Setting 489
Saving and Querying Parsed Master Files 489

Usage Notes for SET SAVEDMASTERS 490

Accessing a FOCUS Data Source 491

Set MINIO 492

Using MINIO 492

Determining If a Previous Command Used MINIO 493

Determine If a Previous Command Used MINIO 493
Determining If a Previous Command Used MINIO 493

Restrictions for Using MINIO 494

Working With Cross-Century Dates 496
When Do You Use the Sliding Window Technique? 496

The Sliding Window Technique 497

Defining a Sliding Window 498

Creating a Dynamic Window Based on the Current Year 499

Applying the Sliding Window Technique 499

When to Supply Settings for DEFCENT and YRTHRESH 500

Restrictions With MODIFY 501

Date Validation 502

Defining a Global Window With SET 502

Define a Global Window With SET 502
Defining a Global Window With SET 503

Defining a Dynamic Global Window With SET 505
Defining a Dynamic Global Window With SET 505

Querying the Current Global Value of DEFCENT and YRTHRESH 508

Query the Current Global Value of DEFCENT and YRTHRESH 508

ibi™ FOCUS® Developing Applications

24 | Contents

Querying the Current Global Value of DEFCENT and YRTHRESH 508

Defining a File-Level or Field-Level Window in a Master File 509

Define a File-Level Window in a Master File 509
Defining a File-Level Window in a Master File 510

Define a Field-Level Window in a Master File 512
Defining a Field-Level Window in a Master File 513

Defining a Field-Level Window in a Master File Used With MODIFY 514

Defining Both File-Level and Field-Level Windows 516

Defining a Window for a Virtual Field 518

Define a Window for a Virtual Field in a Request 518
Defining a Window for a Virtual Field in a Request 519

Defining a Window for Function Input in a DEFINE Command 521

Define a Window for a Virtual Field in a Master File 522
Defining a Window for a Virtual Field in a Master File 523

Defining a Window for a Calculated Value 525

Define a Window for a Calculated Value in a Report 525

Define a Window for a Calculated Value in a MODIFY Request 527
Defining a Window for a Calculated Value 529

Defining a Window for Function Input in a COMPUTE Command 529

Additional Support for Cross-Century Dates 531

Default Date Display Format 531

Date Display Options 531

System Date Masking 532

Date Functions 532

Date Conversion 532

Century and Threshold Information 532

Date Time Stamp 533

Euro Currency Support 534
Integrating the Euro Currency 534

Converting Currencies 534

ibi™ FOCUS® Developing Applications

25 | Contents

Currency Conversion Rules 535
Performing Triangulation 535

Creating the Currency Data Source 536

Create a Currency Data Source 536

Sample Currency Codes 538
Specifying Currency Codes and Rates in a Master File 539

Identifying Fields That Contain Currency Data 540

Identify a Currency Value 540
Identifying a Currency-Denominated Field 542

Activating the Currency Data Source 542

Activate Your Currency Data Source 542

EUROFILE Error Messages and Notes 543

Processing Currency Data 543

Process Currency Data 544

Currency Calculation Error Messages 546
Using the Currency Conversion Function 546

Converting U.S. Dollars to Euros, French Francs, and Belgian Francs 547

Querying the Currency Data Source in Effect 548

Determine the Currency Data Source in Effect 549
Determining the Currency Data Source in Effect 549

Punctuating Numbers 549

Determine the Punctuation of Large Numbers 550
Displaying Numbers Using Continental Decimal Notation 550

Determining the Punctuation of Large Numbers 551

Selecting an Extended Currency Symbol 552

Extended Currency Symbol Formats 553

Select an Extended Currency Symbol 554

Designing Windows With Window Painter 556
Introduction 556

How Do Window Applications Work? 557

ibi™ FOCUS® Developing Applications

26 | Contents

Window Files and Windows 558

Types of Windows You Can Create 559

Vertical Menus 559

Horizontal Menus 559

Text Input Windows 560

Text Display Windows 560

File Names Windows 561

Field Names Windows 562

File Contents Windows 562

Return Value Display Windows 563

Execution Windows 564

Multi-Input Windows 566

Creating Windows 567

Creating a Horizontal Menu 567

Pull-down Menus 570

Creating a Multi-Input Window 571

Integrating Windows and the FOCEXEC 574

Invoke the Window Facility 574

Transferring Control in Window Applications 576
Window File in an Application FOCEXEC 576

Return Values 578
Return Value in a Menu-Driven Application 579

Goto Values 580

Returning From a Window to Its Caller 580

Window System Variables 580

&WINDOWNAME 581

&WINDOWVALUE 581

Testing Function Key Values 581

Executing a Window From the ibi FOCUS Prompt 583

Execute a Window From the ibi FOCUS Prompt 583

Tutorial: A Menu-Driven Application 584

ibi™ FOCUS® Developing Applications

27 | Contents

Creating the Application FOCEXEC 586

Creating the Window File 588

Creating the Text Display Window Named BORDER 590

Creating the Text Display Window Named BANNER 594

Creating the Vertical Menu Window Named MAIN 595

Creating the Vertical Menu Window Named EXECTYPE 601

Creating the File Names Window Named EXECNAME 604

Executing the Application 606

Window Painter Screens 606

Invoking Window Painter 607

Invoke Window Painter 607

Entry Menu 607

Main Menu 608

Window Creation Menu 611

Window Design Screen 613

Window Options Menu 616

Utilities Menu 627

Transferring Window Files 630

Creating a Transfer File 631

Transferring the File to the New Environment 632

Editing the Transfer File 632

The Format of the Transfer File 632

Transfer File Syntax: Window File Attributes 633

Transfer File Syntax: Window Attributes 634

Transfer File Syntax: Window Line Attributes 635

Operating Environment Considerations 636
Sample Transfer File 637

Compiling the Transfer File 638

Compile a Transfer File 639

Master Files and Diagrams 640

ibi™ FOCUS® Developing Applications

28 | Contents

EMPLOYEE Data Source 640

EMPLOYEE Master File 641

EMPLOYEE Structure Diagram 642

JOBFILE Data Source 643

JOBFILE Master File 643

JOBFILE Structure Diagram 643

EDUCFILE Data Source 644

EDUCFILE Master File 644

EDUCFILE Structure Diagram 645

SALES Data Source 645

SALES Master File 646

SALES Structure Diagram 646

PROD Data Source 647

PROD Master File 647

PROD Structure Diagram 648

CAR Data Source 648

CAR Master File 649

CAR Structure Diagram 650

LEDGER Data Source 650

LEDGER Master File 651

LEDGER Structure Diagram 651

FINANCE Data Source 651

FINANCE Master File 651

FINANCE Structure Diagram 652

REGION Data Source 652

REGION Master File 652

REGION Structure Diagram 653

COURSES Data Source 653

COURSES Master File 653

COURSES Structure Diagram 653

EMPDATA Data Source 654

ibi™ FOCUS® Developing Applications

29 | Contents

EMPDATA Master File 654

EMPDATA Structure Diagram 655

EXPERSON Data Source 655

EXPERSON Master File 655

EXPERSON Structure Diagram 656

TRAINING Data Source 656

TRAINING Master File 656

TRAINING Structure Diagram 657

COURSE Data Source 657

COURSE Master File 657

COURSE Structure Diagram 658

JOBHIST Data Source 658

JOBHIST Master File 658

JOBHIST Structure Diagram 659

JOBLIST Data Source 659

JOBLIST Master File 659

JOBLIST Structure Diagram 660

LOCATOR Data Source 660

LOCATOR Master File 660

LOCATOR Structure Diagram 661

PERSINFO Data Source 661

PERSINFO Master File 661

PERSINFO Structure Diagram 662

SALHIST Data Source 662

SALHIST Master File 662

SALHIST Structure Diagram 662

PAYHIST File 663

PAYHIST Master File 663

PAYHIST Structure Diagram 663

COMASTER File 664

COMASTER Master File 664

ibi™ FOCUS® Developing Applications

30 | Contents

COMASTER Structure Diagram 665

VIDEOTRK, MOVIES, and ITEMS Data Sources 666

VIDEOTRK Master File 666

VIDEOTRK Structure Diagram 667

MOVIES Master File 668

MOVIES Structure Diagram 668

ITEMS Master File 669

ITEMS Structure Diagram 669

VIDEOTR2 Data Source 670

VIDEOTR2 Master File 670

VIDEOTR2 Structure Diagram 670

Gotham Grinds Data Sources 671

GGDEMOG Master File 672

GGDEMOG Structure Diagram 673

GGORDER Master File 673

GGORDER Structure Diagram 673

GGPRODS Master File 674

GGPRODS Structure Diagram 675

GGSALES Master File 675

GGSALES Structure Diagram 676

GGSTORES Master File 676

GGSTORES Structure Diagram 677

Century Corp Data Sources 677

CENTCOMP Master File 678

CENTCOMP Structure Diagram 679

CENTFIN Master File 679

CENTFIN Structure Diagram 680

CENTHR Master File 680

CENTHR Structure Diagram 683

CENTINV Master File 683

CENTINV Structure Diagram 684

ibi™ FOCUS® Developing Applications

31 | Contents

CENTORD Master File 684

CENTORD Structure Diagram 685

CENTQA Master File 686

CENTQA Structure Diagram 687

CENTGL Master File 688

CENTGL Structure Diagram 689

CENTSYSF Master File 689

CENTSYSF Structure Diagram 689

CENTSTMT Master File 690

CENTSTMT Structure Diagram 690

CENTGLL Master File 691

CENTGLL Structure Diagram 692

Error Messages 693
Accessing Error Files 693

Displaying Messages 693

ibi Documentation and Support Services 695

Legal and Third-Party Notices 696

ibi™ FOCUS® Developing Applications

32 | Customizing Your Environment

Customizing Your Environment

You can use the SET command to change parameters that govern your FOCUS
environment.

When Do You Use the SET Command?
If you are an application developer, use the SET command to:

l Help you work efficiently and meet your testing and debugging needs.

l Provide a uniform and appropriate run-time environment for your end users with
desirable defaults that do not need customization.

If you are creating your own ad hoc reports, use SET commands when you need to tailor
the report presentation or content to meet your individual needs.

Coding a SET Command
The following guidelines apply to the SET command syntax:

l You can set several parameters in one command by separating each with a comma.

l You can include as many parameters as you can fit on one line. If you exceed one
line, repeat the SET command for each new line.

l You can set many, but not all, parameters using ON TABLE SET or ON GRAPH SET
within a request. Parameters that cannot be set in this way are specified in the
detailed description.

For the specific syntax of a parameter with its valid values, see SET Parameter Syntax.

ibi™ FOCUS® Developing Applications

33 | Customizing Your Environment

Set Parameters
SET parameter = option[, parameter = option,...]

where:

parameter

Is the setting you wish to change.

option

Is a valid value for the parameter.

Setting a Single Parameter
In the following example, the PAGE-NUM parameter suppresses default page numbering.

SET PAGE-NUM = OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

The output is:

LAST_NAME FIRST_NAME

STEVENS
SMITH
JONES
SMITH
BANNING
IRVING

ALFRED
MARY
DIANE
RICHARD
JOHN
JOAN

ibi™ FOCUS® Developing Applications

34 | Customizing Your Environment

ROMANS
MCCOY
BLACKWOOD
MCKNIGHT
GREENSPAN
CROSS

ANTHONY
JOHN
ROSEMARIE
ROGER
MARY
BARBARA

Setting Multiple Parameters
The following example sets two parameters in one command in a stored procedure. The
first parameter, NODATA, changes the default character for missing data from a period to
the word NONE. The second parameter, PAGE-NUM, suppresses default page numbering.

SET NODATA = NONE, PAGE-NUM = OFF
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

In the output, NONE appears when there is no salary information for a specific employee
because that employee does not work in the department that is referenced. There is no
page number at the top of the output.

The output is:

DEPARTMENT

EMP_IDMISPRODUCTION

071382660 NONE $11,000.00
112847612 $13,200.00 NONE
117593129 $18,480.00 NONE
119265415 NONE $9,500.00
119329144 NONE $29,700.00
123764317 NONE $26,862.00

ibi™ FOCUS® Developing Applications

35 | Customizing Your Environment

126724188 NONE $21,120.00
219984371 $18,480.00 NONE
326179357 $21,780.00 NONE
451123478 NONE $16,100.00
543729165 $9,000.00 NONE
818692173 $27,062.00 NONE

Set Parameters in a Report Request
ON TABLE SET parametervalue [AND parametervalue ...]

where:

parameter

Is the setting you wish to change.

value

Is a valid value for the parameter.

Setting Parameters in a Report Request
In the following example, the command ON TABLE SET changes the default character for
missing data from a period to the word NONE and suppresses default page numbering.

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT
ON TABLE SET NODATA NONE AND PAGE-NUM OFF
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
END

In the output, NONE appears when there is no salary information for a specific employee.
There is no page number at the top of the output.

The output is:

ibi™ FOCUS® Developing Applications

36 | Customizing Your Environment

DEPARTMENT

EMP_IDMISPRODUCTION

071382660 NONE $11,000.00
112847612 $13,200.00 NONE
117593129 $18,480.00 NONE
119265415 NONE $9,500.00
119329144 NONE $29,700.00
123764317 NONE $26,862.00
126724188 NONE $21,120.00
219984371 $18,480.00 NONE
326179357 $21,780.00 NONE
451123478 NONE $16,100.00
543729165 $9,000.00 NONE
818692173 $27,062.00 NONE

Set Parameters in a Graph Request
ON GRAPH SET parametervalue [AND parametervalue ...]

where:

parameter

Is the setting you wish to change.

value

Is a valid value for the parameter.

Setting Parameters in a Graph Request
In the following example, the command ON GRAPH SET changes the default setting for the
3D parameter to OFF.

ibi™ FOCUS® Developing Applications

37 | Customizing Your Environment

GRAPH FILE GGORDER
SUM QUANTITY
ACROSS PRODUCT_DESC
ON GRAPH SET 3D OFF
END

The output is:

O

r

d 400,000 +

e I

r I

e I ==

d I ==

, I ==

U 200,000 + == ==

ibi™ FOCUS® Developing Applications

38 | Customizing Your Environment

n I == ==

i I == == == ==

t I == == == == == ==

s I == == == == == == == == == ==

I == == == == == == == == == ==

0 +---

Biscotti French Roast Scone

Coffee Grinder Hazelnut
Thermos

Coffee Pot Kona

Croissant Mug

Product

Types of SET Parameters

This topic lists the types of tasks that can be accomplished, and the SET parameters that
allow you to perform these tasks. If a single parameter applies to more than one activity, it
appears in more than one category. For more detailed descriptions, as well as the syntax
for each parameter, see SET Parameter Syntax.

The following are the types of tasks performed with SET parameters.

Types of SET
Parameters

Affects the way calculations are performed in FOCUS.

Types of SET
Parameters

Determines the way data is stored and processed.

ibi™ FOCUS® Developing Applications

39 | Customizing Your Environment

Types of SET
Parameters

Controls the way dates are processed and displayed
on reports.

Types of SET
Parameters

Controls the processing and display of graphs.

Types of SET
Parameters

Affects the memory and optimization of your
application.

Types of SET
Parameters

Determines the content and processing of a request.

Types of SET
Parameters

Affects the display of a report.

Types of SET
Parameters

Controls user access to data sources and procedures.

Types of SET
Parameters

Specifies the options for display in your terminal.

Calculations
The following parameters control the behavior of calculations in FOCUS.

AGGR[RATIO]

Determines the ratio of aggregation based on retrieved records and the final size of the
answer set.

CDN

Specifies the punctuation used in numeric notation.

COMPUTE

Controls the compilation of expressions.

ibi™ FOCUS® Developing Applications

40 | Customizing Your Environment

DMPRECISION

Specifies precision of numeric values in Dialogue Manager -SET commands to calculate
accurate numeric variable values.

FLOATMAPPING

Takes advantage of decimal-based precision numbers for all numeric processing for
floating point numbers.

MISS_ON

Sets a default value, either SOME or ALL for MISSING ON in DEFINE and COMPUTE.

MISSINGTEST

Determines whether the IF expression in IF-THEN-ELSE tests is checked for missing
values.

MODCOMPUTE

Controls compilation of MODIFY calculations.

NEG-ZERO

Displays the value zero (0) as a negative number when it is the result of rounding a
negative decimal value.

PARTITION_ON

Sets the partition size for statistical functions.

USERFCHK

Controls the level of verification applied to DEFINE FUNCTION arguments and
WebFOCUS for WF, FOCUS for FOCUS-supplied function arguments.

USERFNS

Determines whether a WebFOCUS for WF, FOCUS for FOCUS-supplied function or a
locally-written function with the same name is used.

Data and Metadata
The following parameters determine the way data is stored and processed.

ibi™ FOCUS® Developing Applications

41 | Customizing Your Environment

ACCBLN

Accepts blank or zero values for fields with ACCEPT commands in the Master File.

ASNAMES

Controls the FIELDNAME attribute in a HOLD Master File.

BLKCALC

Enables system-determined blocking for HOLD files written to DASD.

COUNTWIDTH

Expands the default format of COUNT fields from a five byte integer to a nine byte
integer.

DATEFORMAT

Specifies the order of the date components (month/day/year) when date-time values are
entered in a formatted-string or translated-string format.

DEFINES

Compiles virtual fields into machine code to improve performance.

DIRECTHOLD

Controls whether HOLD Files in FOCUS format are created directly.

DTSTRICT

Controls the use of strict processing for date-time fields.

EQTEST

Controls whether the characters $ and $* are treated as wildcard characters or normal
characters in selection criteria.

EUROFILE

Activates the data source that contains information for the currency you want to
convert.

FIELDNAME

Controls the use of long and qualified field names.

ibi™ FOCUS® Developing Applications

42 | Customizing Your Environment

FOCALLOC

Automatically allocates FOCUS files.

HIPERFOCUS

Activates HiperFOCUS.

HIPERINSTALL

Installs or disables HiperFOCUS.

HLDCOM_TRIMANV

Controls whether trailing blanks are retained when the output is held in a delimited
format.

HNODATA

Controls missing values propagated to a HOLD file.

HOLDFORMAT

Determines the default format for HOLD files.

HOLDLIST

Determines what fields in a report request are included in the HOLD file.

HOLDMISS

Distinguishes between missing data and default data (zeros or blanks) in a HOLD file.

HOLDSTAT

Determines if comments and DBA information are included in HOLD Master Files.

HTMLARCHIVE

Packages HTML and DHTML reports together with image files into a single web archive
document (.mht file).

HTMLENCODE

Encodes data within HTML output.

INDEX

Is the indexing scheme used for indexes.

ibi™ FOCUS® Developing Applications

43 | Customizing Your Environment

KEEPDEFINES

Controls whether a virtual field created for a host or joined structure is retained after a
JOIN command is run.

MASTER

Enables use of blank delimited (Fusion) Master File syntax, and provides increased
enforcement of syntax rules in comma delimited Master File syntax.

MAXDATAEXCPT

Enables you to change the number of data exceptions allowed before the session is
terminated.

MAXLRECL

Specifies the maximum length of a record described with the Master File OCCURS
attribute.

MDICARDWARN

Displays a warning message when the cardinality of a dimension exceeds a specified
value.

MDIENCODING

Enables retrieval of output from an MDI file without reading the data source.

MDIPROGRESS

Displays messages about the progress of an MDI build.

MINIO

Determines whether a block is read more than once when reading or writing to a file.

NULL

Enables creation of a variable-length comma or tab delimited HOLD file that
differentiates between a missing value and a blank string or zero value.

OLDSTYRECLEN

Determines whether the record length, LRECL, is set to the current setting of LRECL=0,
or the older setting of LRECL=512.

ibi™ FOCUS® Developing Applications

44 | Customizing Your Environment

PCOMMA

Enables retrieval of comma delimited files created by a PC application or HOLD FORMAT
COM command.

PREFIX

Specifies the prefix of existing data sets automatically allocated by FOCUS.

QUALCHAR

Specifies the qualifying character to be used in qualified field names.

RANK

Determines how rank numbers are assigned in a request when multiple data values fall
into the same rank category.

SAVEDMASTERS

Saves a Master File to memory after it has been used in a request.

SHADOW

Activates the Absolute File Integrity feature.

SHIFT

Controls the use of shift strings.

SUSI

See Simultaneous Usage Reference Manual for z/OS .

SUTABSIZE

See Simultaneous Usage Reference Manual for z/OS .

TRACKIO

Gathers more pages to fill a track before reading or writing the pages to disk.

WEBARCHIVE

Packages multiple EXL2K files into a single file.

WEEKFIRST

Specifies what day of the week is the start of the week.

ibi™ FOCUS® Developing Applications

45 | Customizing Your Environment

WIDTH

Used for communication between 3270 terminals and the operating system.

WPMINWIDTH

Specifies a minimum width for format WP output files.

XRETRIEVAL

Controls the retrieval of data when previewing a report.

XFOCUSBINS

Defines the number of pages of memory to use as buffers for XFOCUS data sources.

ibi Data Migrator Tasks
The following parameters control data processing in a Data Flow.

CNVERR

Controls whether format conversion errors in a data flow are rejected or processed
using default values.

CNVERRLIMIT

Sets a limit for the number of format conversion errors allowed in a Data Flow.

Date Manipulation Tasks
The following parameters control the way dates are processed and displayed in reports.

BUSDAYS

Specifies which days are considered business days and which are not.

DATE_ORDER

Specifies the order of date components.

DATE_SEPARATOR

Specifies the separator for date components.

ibi™ FOCUS® Developing Applications

46 | Customizing Your Environment

DATEDISPLAY

Controls the display of a base date

DATEFNS

Activates year 2000-compliant versions of date subroutines.

DATETIME

Sets date and time in reports .

DEFCENT

Defines a default century for your application.

EXL2KTXTDATE

Controls whether translated dates are sent as date values with format masks instead of
text values.

HDAY

Specifies the holiday file from which to retrieve dates that are considered holidays.

LEADZERO

Avoids the truncation of leading zeros.

TIME_SEPARATOR

Specifies the separator for time components for the &TOD variable.

TESTDATE

Temporarily alters the system date in order to test a dynamic window.

YRTHRESH

Defines the start of a 100-year window.

WebFOCUS-Specific Tasks
The following parameters affect the behavior of web-specific tasks in WebFOCUS.

ibi™ FOCUS® Developing Applications

47 | Customizing Your Environment

&&APP_PERMIT

Enables you to create and update applications and files under the APPROOT directory.

BASEURL

Specifies a default location where your browser searches for relative URLs referenced in
the HTML documents created by WebFOCUS.

FOCEXURL

Runs and executes drill downs remotely.

WEBVIEWALLPG

Controls whether the WebFOCUS Viewer displays an All Pages button.

WEBVIEWCLOSE

Controls whether the WebFOCUS Viewer displays a Close button.

WEBVIEWCLMSG

Controls whether the WebFOCUS Viewer Close message displays when the Close option
is clicked

WEBVIEWER

In WebFOCUS, enables on-demand paging, and invokes the WebFOCUS Viewer.

WEBVIEWHELP

Controls whether the WebFOCUS Viewer displays a Help button.

WEBVIEWHOME

Allows an HTML page to be displayed when the WebFOCUS Viewer is closed.

WEBVIEWTARG

Allows the user to open the WebFOCUS Viewer in a target frame.

WEBVIEWTITLE

Defines the title text for the WebFOCUS Viewer window.

ibi™ FOCUS® Developing Applications

48 | Customizing Your Environment

Graph Tasks
The following parameters control the processing and display of graphs.

3D

Sets a chart to either three dimensions or two dimensions.

ARGRAPHENGIN

Sets the graph engine used for rendering graphs in active technologies reports. it only
has an effect when used with FORMAT AHTML or other active formats (APDF or FLEX).

AUTOFIT

Controls resizing of HTML5 graphs to fit their containers.

AUTOTICK

Sets the tick mark intervals for graphs.

BARNUMB

Places summary numbers at the end of bars on bar charts, or slices on pie charts.

BSTACK

Specifies whether bar chart bars are stacked or placed side by side.

EMBEDDABLE

Controls whether HTML5 graph output is generated with or without document-level
HTML tags, for inclusion in an HTML page.

EMBEDHEADING

Controls whether the heading or footing text is rendered within, or outside, the chart
image.

GRAPH-PPI

Controls the resolution with which server-side HTML5 charts are rendered.

GRAPHDEFAULT

Controls whether WebFOCUS default settings or the graph API default settings are in
effect.

ibi™ FOCUS® Developing Applications

49 | Customizing Your Environment

GRAPHEDIT

As of WebFOCUS 8.0, this parameter has been deprecated.

GRAPHENGINE

Determines the version of the WebFOCUS graph engine that is used.

GRAPHSERVURL

Creates a GIF file of the graph by sending an HTTP request to a servlet.

GRMERGE

Specifies whether to create multiple graphs or a single graph when a request has
multiple sort fields.

GRMULTIGRAPH

Specifies how many sort fields are used to generate multiple graphs when GRMERGE is
set to ADVANCED.

GRID

Draws a grid of parallel horizontal lines at the vertical class marks on the graph.

GRWIDTH

Places an output graph in an HTML table of a specified width, in cells.

GTREND

Specifies the use of basic linear regression to alter the X and Y axis values in a SCATTER
graph.

HAUTO

Performs automatic scaling of the horizontal axis for the given values.

HAXIS

Specifies the width, in characters, of the horizontal axis.

HCLASS

Specifies the horizontal interval mark when AUTOTICK is OFF.

ibi™ FOCUS® Developing Applications

50 | Customizing Your Environment

HISTOGRAM

Draws a histogram instead of a curve when the values on the horizontal axis are not
numeric.

HMAX

Sets the maximum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

HMIN

Sets the minimum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

HSTACK

Stacks the bars on a histogram instead of placing them side by side.

HTICK

Sets the horizontal axis interval mark when AUTOTICK is OFF.

LOOKGRAPH

Specifies a graph style.

VAUTO

Performs automatic scaling of the vertical axis for the given values.

VAXIS

Specifies the length of the vertical axis, in lines.

VCLASS

Specifies the vertical interval mark when AUTOTICK is OFF.

VGRID

Draws a grid at the horizontal and vertical class marks of the graph.

VMAX

Sets the maximum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

ibi™ FOCUS® Developing Applications

51 | Customizing Your Environment

VMIN

Sets the minimum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

VTICK

Sets the vertical axis interval mark when AUTOTICK is OFF.

VZERO

Treats missing values on the vertical axis as zeros.

Graph Tasks
The following parameters control the processing and display of graphs. For information
about these parameters, see the Creating Reports Manual.

AUTOTICK

Sets the tick mark intervals for graphs.

BARNUMB

Places summary numbers at the end of bars on bar charts, or slices on pie charts.

BARSPACE

Specifies the number of lines separating the bars on bar charts.

BARWIDTH

Specifies the number of lines per bar on bar charts.

BSTACK

Specifies whether bar chart bars are stacked or placed side by side.

DEVICE

Specifies the plotting device or terminal to be used.

FRAME

For GDDM graphics, indicates if you want a frame around your graph.

ibi™ FOCUS® Developing Applications

52 | Customizing Your Environment

GCOLOR (or GRIBBON)

Depending on device type, determines black and white or color patterns or ribbons
used.

GMISSING

Specifies whether variables with the value specified in GMISSVAL are to be ignored.

GMISSVAL

Specifies the variable value that represents missing data.

GPROMPT

Specified whether FOCUS should prompt for graph parameters.

GRIBBON

Same as GCOLOR.

GRID

Draws a grid of parallel horizontal lines at the vertical class marks on the graph.

GTREND

Specifies the use of basic linear regression to alter the X and Y axis values in a SCATTER
graph.

HAUTO

Performs automatic scaling of the horizontal axis for the given values.

HAXIS

Specifies the width, in characters, of the horizontal axis.

HCLASS

Specifies the horizontal interval mark when AUTOTICK is OFF.

HISTOGRAM

Draws a histogram instead of a curve when the values on the horizontal axis are not
numeric.

ibi™ FOCUS® Developing Applications

53 | Customizing Your Environment

HMAX

Sets the maximum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

HMIN

Sets the minimum value on the horizontal axis when automatic scaling is not used
(HAUTO=OFF).

PAUSE

Specifies whether there is a pause for paper adjustment on the plotter after the request
is executed.

PIE

Specifies a pie chart.

PLOT

Specifies the width and height settings for certain devices.

PRINT

Specifes whether the graph is printed or displayed on the terminal.

TERM[INAL]

Specifies the plotting device or terminal to be used.

VAUTO

Performs automatic scaling of the vertical axis for the given values.

VAXIS

Specifies the length of the vertical axis, in lines.

VCLASS

Specifies the vertical interval mark when AUTOTICK is OFF.

VGRID

Draws a grid at the horizontal and vertical class marks of the graph.

ibi™ FOCUS® Developing Applications

54 | Customizing Your Environment

VMAX

Sets the maximum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

VMIN

Sets the minimum value on the vertical axis when automatic scaling is not used
(VAUTO=OFF).

VTICK

Sets the vertical axis interval mark when AUTOTICK is OFF.

VZERO

Treats missing values on the vertical axis as zeros.

Memory Setup and Optimization Tasks
The following parameters control the memory and optimization of your application.

AUTOINDEX

Retrieves data faster by automatically taking advantage of indexed fields in a FOCUS
data source.

AUTOPATH

Dynamically selects an optimal retrieval path.

AUTOSTRATEGY

Determines when FOCUS stops the search for a key field specified in a WHERE or IF test.

BINS

Specifies the number of pages of memory used for data source buffers.

CACHE

Stores FOCUS data source pages in memory and buffers between the data source and
BINS.

COMPUTE

Controls the compilation of expressions.

ibi™ FOCUS® Developing Applications

55 | Customizing Your Environment

DEFINES

Compiles virtual fields into machine code to improve performance.

DMH_LOOPLIM

Controls the number of loop iterations allowed in Dialogue Manager.

DMH_STACKLIM

Controls the number of lines allowed in FOCSTACK.

ESTRECORDS

Passes the estimated number of records to be sorted in the request.

FIXRETRIEVE

Enables keyed retrieval from a fixed format sequential file, such as a HOLD file.

FOCSTACK

Specifies the amount of space, in thousands of bytes, used by FOCUS commands
waiting for execution.

HLISUTRACE

Records the last 20 events that the FOCUS Database Server performed.

HLISUDUMP

Is used for debugging FOCUS Database Server problems.

IBMLE

This parameter is no longer functional. FOCUS is fully LE compliant, and all FOCUS
applications must be LE compliant

IMMEDTYPE

Tells FOCUS where to send line mode output.

SQLTOPTTF

Enables the SQL Translator to generate TABLEF commands instead of TABLE commands.

SUWEDGE

Keeps Master Files on a FOCUS Database Server open between requests.

ibi™ FOCUS® Developing Applications

56 | Customizing Your Environment

ZIIP

Enables you to offload specific categories of FOCUS processing to a zIIP specialty
engine.

Report Code, Content, and Processing Tasks
The following parameters affect the content or processing of a report.

ALL

Handles missing segment instances in a report.

ALLOWCVTERR

Controls the display of a row of data that contains an invalid date format.

ARCFGU

Allows you to override the standard search path for the In-Documents Analytics (IDA)
configuration file.

ASNAMES

Controls the FIELDNAME attribute in a HOLD Master File.

AUTOTABLEF

Avoids creating the internal matrix based on the features used in the query.

BLANKEMPTY

Enables you to distinguish between a null value and a space value in a non-numeric
XLSX data cell. This applies to the XLSX output format only.

BUSDAYS

Specifies which days are considered business days.

CARTESIAN

Generates a report containing all combinations of non-related data instances in a multi-
path request containing a PRINT or LIST command.

CDN

Specifies punctuation used in numeric notation.

ibi™ FOCUS® Developing Applications

57 | Customizing Your Environment

CENT-ZERO

Displays a leading zero in decimal-only numbers.

COLLATION

Controls ordering of alphanumeric values.

COMPMISS

Controls whether the missing attribute is propagated to reformatted fields in a report
request.

COMPUTE

Controls the compile of expressions.

DATEDISPLAY

Controls the display of date format fields that contain the value zero.

DATEFNS

Activates year 2000-compliant versions of date subroutines.

DATETIME

Sets date and time in a report .

DBAJOIN

Controls whether DBA restrictions are treated as report filters or are added to the join
conditions.

DB_INFILE

Controls whether the expression generated by the DB_INFILE function for use against a
relational data source is optimized.

DEFCENT

Defines a default century for your application.

DEFECHO

Defines a default value for the &ECHO variable for your application.

ibi™ FOCUS® Developing Applications

58 | Customizing Your Environment

DRILLFOCMISSING

Enables you to control when to pass the _FOC_MISSING string or a period (.) as the drill-
down value for MISSING values.

EMPTYCELLS

For numeric fields, enables you to handle MISSING options for fields with the XLSX
output format to allow raw data displayed in the formula bar the value of 0 for MISSING,
instead of the absence of a value or empty cell.

EMPTYREPORT

Controls the output generated when a report request retrieves zero records.

ERROROUT

Terminates a request and returns a message when an error is encountered.

ESTRECORDS

Passes the estimated number of records to be sorted in the request.

EXCELSERVURL

Specifies the location to be used to zip the file components that comprise an EXCEL
2007 file (.xlsx).

EXL2KLANG

Specifies the language used for Microsoft® Excel requests. This language must be the
same as the language of Excel on the browser machine.

EXTAGGR

Enables aggregation in an external sort.

EXTHOLD

Enables you to use an external sort to create HOLD files.

EXTRACT

Activates Structured HOLD Files for a request.

EXTSORT

Activates the external sorting feature.

ibi™ FOCUS® Developing Applications

59 | Customizing Your Environment

FIELDNAME

Controls the use of long and qualified field names.

FILENAME

Specifies a file to be used, by default, in commands.

FILTER

Activates declared filters.

FOC144

Suppresses the warning message FOC144, which reads Warning Testing in Independent
sets of Data .

FORMULTIPLE

Allows you to include the same value of a FOR field in multiple rows of the FML matrix.

HNODATA

Controls missing values propagated to a HOLD file.

HOLDATTR

Includes the TITLE and ACCEPT attributes from the original Master File in the HOLD
Master File.

JOINLM

Controls whether strict equality is required or partial key joins are supported for record-
oriented adapters. JOINLM is a synonym for JOIN_LENGTH_MODE.

JOINOPT

Ensures proper alignment of report output by correcting for lagging (missing) values.
Also enables joins between fields with different numeric data types.

KEEPDEFINES

Controls whether a virtual field created for a host or joined structure is retained after a
JOIN command is run.

ibi™ FOCUS® Developing Applications

60 | Customizing Your Environment

LANG[UAGE]

The LANG[UAGE] parameter specifies the National Language Support (NLS) environment.
It sets the language of FOCUS error messages and can also be used to set the language
of report titles if the Master File Description contains alternate language TITLE
attributes.

LEADZERO

Avoids the truncation of leading zeros.

MESSAGE

Controls the display of informational messages.

MULTIPATH

Controls whether MATCH requests use grouped or ungrouped processing.

NODATA

Determines the character string that indicates missing data in a report.

ONFIELD

Controls whether ON phrases are ignored for fields not referenced in a request.

PAUSE

Pauses before displaying a FOCUS report on the terminal.

PARTITION_ON

Controls the partition size for statistical functions.

PFnn

Assigns a function to a PF key.

PDFLINETERM

Determines if an extra space is appended to each record of a PDF output file to facilitate
proper file transfer between Windows and UNIX.

PHONETIC_ALGORITHM

Sets the phonetic algorithm to use with the PHONETIC function.

ibi™ FOCUS® Developing Applications

61 | Customizing Your Environment

PRINTDST

Controls processing of reports that use the PRINT command in conjunction with
multiple DST operators.

QUALCHAR

Specifies the qualifying character to be used in qualified field names.

SAVEMATRIX

Saves the matrix from your request to protect it from being overwritten when using
Dialogue Manager commands.

SHORTPATH

Controls how tests against missing cross-referenced segment instances are processed in
a left outer join.

SORTLIB

Tells FOCUS which sort package is installed at your site.

SORTMATRIX

Controls whether to employ in-memory sorting with decreased use of external memory.

SORTMEMORY

Controls the amount of internal memory available for sorting.

SUMMARYLINES

Permits the combination of fields with and without prefix operators on summary lines in
one request.

SUMPREFIX

Allows users to choose the answer set display order when using an external sort to
perform aggregation of alphanumeric or smart date formats.

TITLES

Uses predefined column titles in the Master File as column titles in report output.

XLSXLOCALZIP

Activates the local C-based zip mode for zipping and unzipping EXCEL07 (XLSX) files.

ibi™ FOCUS® Developing Applications

62 | Customizing Your Environment

Report Layout and Display Tasks
The following parameters affect the layout and display of a report.

ACROSSLINE

Controls underlining of column titles on report output. TITLELINE is a synonym.

ACROSSPRT

Reduces the number of report lines within each sort group when a request uses the
PRINT command and an ACROSS phrase.

ACROSSTITLE

Controls whether ACROSS titles display above or to the left of ACROSS values.

ACRSVRBTITL

Controls the display of ACROSS column titles when there is only one displayed field for
an ACROSS group.

ALTBACKPERLINE

Alternates the background color by line for reports that use positioned drivers, for
example PDF, DHTML, PPT, and PPTX.

AUTOFIT

Controls resizing of HTML report output to fit its window.

BASEURL

Specifies a default location where your browser searches for relative URLs referenced in
the HTML documents created by FOCUS.

BLANKINDENT

Clarifies relationships within an FML hierarchy by indenting the captions (titles) of values
at each level.

BOTTOMMARGIN

Sets the bottom boundary for report contents on a page in a styled report.

BYDISPLAY

Displays a sort field on every row, column, or both in a report.

ibi™ FOCUS® Developing Applications

63 | Customizing Your Environment

BYPANEL

Controls the repetition of BY fields on panels.

BYSCROLL

Scrolls report headings and footings along with the report contents.

CENT-ZERO

Displays a leading zero in decimal-only numbers.

COLUMNSCROLL

Enables you to scroll by column within the panels of a report provided that the report is
wider than the screen width.

COMPOUND

Enables you to combine multiple reports into a single PDF or PS file to create a
compound report.

CSSURL

Links an HTML report to an external cascading style sheet (CSS) file in order to style the
report.

CURRENCY_DISPLAY

Defines the position of the currency symbol relative to the monetary number.

CURRENCY_ISO_CODE

Defines the ISO code for the currency symbol to use.

CURRENCY_PRINT_ISO

Defines what will happen when the currency symbol cannot be displayed by the code
page in effect.

CURRSYMB

Sets a currency symbol to display on the report output when a numeric format
specification uses the M or N display options.

ibi™ FOCUS® Developing Applications

64 | Customizing Your Environment

CURSYM_D

Sets the characters to display on the report output when a numeric format specification
uses the :D or :d display options.

CURSYM_E

Sets the characters to display on the report output when a numeric format specification
uses the :E or :e display options.

CURSYM_F

Sets the characters to display on the report output when a numeric format specification
uses the :F display option.

CURSYM_G

Sets the characters to display on the report output when a numeric format specification
uses the :G display option.

CURSYM_L

Sets the characters to display on the report output when a numeric format specification
uses the :L or :l display options.

CURSYM_Y

Sets the characters to display on the report output when a numeric format specification
uses the :Y or :y display options.

CUSTOM-PAGE-LENGTH

Sets the page length for PAGESIZE=CUSTOM.

CUSTOM-PAGE-WIDTH

Sets the page width for PAGESIZE=CUSTOM.

DISPLAYROUND

Adds a small number to floating point and double-precision numbers for display, in
order to correct rounding errors caused by conversion from binary to decimal.

DROPBLNKLINE

Eliminates blank lines from the report output.

ibi™ FOCUS® Developing Applications

65 | Customizing Your Environment

DUPLICATECOL

Controls whether columns for multiple display commands are spread out or stacked on
top of each other.

EXTENDNUM

Prevents visual overflow on reports.

FOCFIRSTPAGE

Assigns a page number to the first page of output.

HIDENULLACRS

Hides ACROSS columns containing only null values.

HTMLCSS

Creates an inline Cascading Style Sheet command in the HTML page that displays the
report output.

HTMLEMBEDIMG

Determines whether to embed images and graphs directly into an HTML or DHTML .htm
file.

LAN[GUAGE]

Specifies the National Language Support (NLS) environment. Sets the language of
FOCUS error messages. Can also be used to set the language of report titles if the
Master File Description contains alternate language TITLE attributes.

LAYOUTGRID

Displays a grid in the report output, which enables you to evaluate the correct
placement of data and objects during your report design. This option is applicable only
when using the PDF, PS, or DHTML report output.

LEFTMARGIN

Sets the left boundary for report contents on a page in a styled report.

LINES

Sets the maximum number of lines of printed output that appear on a page, from the
heading at the top to the footing on the bottom. The OFFLINE-FMT parameter

ibi™ FOCUS® Developing Applications

66 | Customizing Your Environment

determines the format of printed report output generated from a request.

ORIENTATION

Specifies the page orientation for styled reports.

OVERFLOWCHAR

Changes the character that displays in a numeric report column when the column does
not have enough space for the value.

PAGE[-NUM]

Controls the numbering of output pages.

PAGE-SCALE

Scales wide PDF report output to fit the width of the page.

PAGESIZE

Specifies the page size for StyleSheets.

PANEL

Sets the maximum line width of a report panel.

PAPER

Specifies the length of paper for printed output.

PCTFORMAT

Controls whether fields prefixed with PCT., RPCT., and PCT.CNT. display with the format
of the original field or with a percent sign.

PRFTITLE

Generates readable and translatable column titles for prefixed fields on reports.

PRINT

Specifies the report output destination.

PRINTPLUS

Specifies enhancements to display alternatives.

ibi™ FOCUS® Developing Applications

67 | Customizing Your Environment

PSPAGESETUP

Coordinates the paper source used by a PostScript printer with the PAGESIZE parameter
setting.

QUALTITLES

Uses qualified column titles in report output when duplicate field names exist in a
Master File.

REBUILDMSG

Allows direct control over the frequency with which REBUILD issues messages.

RECAP-COUNT

Includes lines containing a value created with RECAP when counting the number of lines
per page for printed output.

RIGHTMARGIN

Sets the right boundary for report contents on a page.

SHOWBLANKS

Preserves leading and internal blanks in HTML and EXL2K report output.

SPACES

Sets the number of spaces between columns in a report.

SQUEEZE

Determines the column width in report output.

STYLE[SHEET]

Controls the format of report output by accepting or rejecting StyleSheet parameters.

SUBTOTALS

Controls whether summary lines display above or below the data.

TERM[INAL]

Selects the terminal type.

TITLELINE

Controls underlining of column titles. ACROSSLINE is a synonym.

ibi™ FOCUS® Developing Applications

68 | Customizing Your Environment

TOPMARGIN

Sets the top boundary on a page for report output.

TRANTERM

Displays extended currency symbols on TSO.

UNITS

Specifies the unit of measure for page margins, column positions, and column widths.

WEBTAB

Encloses CRTFORM display fields in @ signs.

XLSXLOCALZIP

Activates the local C-based zip mode for zipping and unzipping EXCEL07 (XLSX) files.

XLSXPAGEBRKIGNORE

Synchronizes FOCUS page breaks with Excel page breaks for format XLSX.

Security Tasks
The following parameters specify user access to data sources and procedures.

DBACSENSITIV

Controls whether password validation is case-sensitive.

DBASOURCE

Controls the source of access restrictions in a multi-file structure.

PASS

Enables user access to a data source or stored procedure protected by DBA security.

PERMPASS

The PERMPASS parameter establishes a user password that remains in effect throughout
a session or connection.

ibi™ FOCUS® Developing Applications

69 | Customizing Your Environment

USER

In FOCUS, enables user access to a data source or stored procedure protected by DBA
security.

Terminal Tasks
The following parameters specify options for display in your terminal.

DISPLAY

Is the PC display mode selection.

EXTTERM

Enables the use of extended terminal attributes.

HOTMENU

Automatically displays the Hot Screen PF key legend at the bottom of the Hot Screen
report.

SBORDER

Generates a solid border on the screen for full-screen mode.

SCREEN

Selects the Hot Screen facility.

TRMOUT

Suppresses all output messages to the terminal.

SET Parameter Syntax
This topic alphabetically lists the SET parameters that control the environment with a
description and the syntax.

ibi™ FOCUS® Developing Applications

70 | Customizing Your Environment

A B C D

3D

ACCBLN

ACROSSLINE

ACROSSPRT

ACROSSTITLE

ACRSVRBTITL

ALL

ALLOWCVTERR

ALTBACKPERLINE

ARCFGU

ASNAMES

AUTOFIT

AUTOINDEX

AUTOPATH

AUTOSTRATEGY

AUTOTABLEF

BINS

BLANKEMPTY

BLANKINDENT

BOTTOMMARGIN

BUSDAYS

BYDISPLAY

BYPANEL

CACHE

CARTESIAN

CDN

CENT-ZERO

CNOTATION

CNVERR

CNVERRLIMIT

COLLATION

COMPMISS

COMPOUND

COMPUTE

COUNTWIDTH

CSSURL

CURRSYMB

CURSYM_D

CURSYM_E

CURSYM_F

CURSYM_G

CURSYM_L

CURSYM_Y

CUSTOM_PAGE _LENGTH

CUSTOM_PAGE _WIDTH

DATE_ORDER

DATE_SEPARATOR

DATEDISPLAY

DATEFORMAT

DATETIME

DB_INFILE

DBACSENSITIV

DBAJOIN

DBASOURCE

DEFCENT

DEFECHO

DEFINES

DIRECTHOLD

DISPLAYROUND

DMH_LOOPLIM

DMH_STACKLIM

DMPRECISION

DRILLFOCMISSING

DRILLMETHOD

DROPBLNKLINE

DTSTRICT

DUPLICATECOL

ibi™ FOCUS® Developing Applications

71 | Customizing Your Environment

E F G H

EMBEDDABLE

EMPTYCELLS

EMPTYREPORT

EQTEST

ERROROUT

ESTRECORDS

EUROFILE

EXCELSERVURL

EXL2KLANG

EXL2KTXTDATE

EXTAGGR

EXTENDNUM

EXTHOLD

EXTRACT

EXTSORT

FIELDNAME

FILECOMPRESS

FILENAME

FILTER

FIXRETRIEVE

FOC144

FOCEXURL

FOCFIRSTPAGE

FOCSTACK

FORMULTIPLE

HDAY

HIDENULLACRS

HLDCOM_TRIMANV

HNODATA

HOLDATTRS

HOLDFORMAT

HOLDLIST

HOLDMISS

HOLDSTAT

HTMLARCHIVE

HTMLCSS

HTMLEMBEDIMG

HTMLENCODE

I J K L

INDEX JOIN_LENGTH _MODE

JOINOPT

KEEPDEFINES

KEEPFILTERS

LANGUAGE

LAYOUTGRID

LEADZERO

LEFTMARGIN

LINES

LOOKGRAPH

ibi™ FOCUS® Developing Applications

72 | Customizing Your Environment

M N O P

MATCHCOLUMNORDER

MAXDATAEXCPT

MAXLRECL

MDICARDWARN

MDIENCODING

MDIPROGRESS

MESSAGE

MISS_ON

MISSINGTEST

MULTIPATH

NEG-ZERO

NODATA

NULL

OLDSTYRECLEN

ONFIELD

ORIENTATION

OVERFLOWCHAR

PAGE-NUM

PAGE-SCALE

PAGESIZE

PANEL

PARTITION_ON

PASS

PCOMMA

PCTFORMAT

PDFLINETERM

PERMPASS

PHONETIC _ALGORITHM

PRFTITLE

PRINT

PRINTDST

PRINTPLUS

PSPAGESETUP

Q R S T

QUALCHAR

QUALTITLES

RANK

RECAP-COUNT

RECORDLIMIT

RIGHTMARGIN

RPAGESET

SAVEDMASTERS

SAVEMATRIX

SHADOW

SHIFT

SHORTPATH

SHOWBLANKS

TESTDATE

TITLELINE

TITLES

TOPMARGIN

ibi™ FOCUS® Developing Applications

73 | Customizing Your Environment

Q R S T

SORTMATRIX

SORTMEMORY

SPACES

SQLTOPTTF

SQUEEZE

STYLEMODE

STYLESHEET

SUBTOTALS

SUMMARYLINES

SUMPREFIX

U V W X-Y-Z

UNITS

USER

USERCHK

USERFNS

WARNING

WEBARCHIVE

WEEKFIRST

WPMINWIDTH

XLSXLOCALZIP

XLSXPAGEBRK IGNORE

XRETRIEVAL

YRTHRESH

ACCBLN
The ACCBLN parameter accepts blank or zero values for fields with ACCEPT commands in
the Master File (see the Describing Data manual).

The syntax is:

SET ACCBLN = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

74 | Customizing Your Environment

ON

Accepts blank and zero values for fields with ACCEPT commands unless blank or zero
values are explicitly coded in the list of acceptable values. ON is the default value.

OFF

Does not accept blank and zero values for fields with ACCEPT commands unless blank
or zero values are explicitly coded in the list of acceptable values.

ACROSSLINE
The ACROSSLINE parameter controls underlining of column titles on report output.
TITLELINE is a synonym for ACROSSLINE.

The syntax is:

SET {ACROSSLINE|TITLELINE} = {ON|OFF|SKIP}

where:

ON

Underlines column titles on report output. ON is the default value.

OFF

Replaces the underline with a blank line.

SKIP

Specifies no underline and no blank line.

ACROSSPRT
The ACROSSPRT parameter reduces the number of report lines within each in a request
that uses the PRINT command and an ACROSS phrase.

The PRINT command generates a report that has a single line for each record retrieved
from the data source after screening out those that fail IF or WHERE tests. When PRINT is
used in conjunction with an ACROSS phrase, many of the generated columns may be
empty. Those columns display the missing data symbol.

ibi™ FOCUS® Developing Applications

75 | Customizing Your Environment

To avoid printing such a sparse report, you can use the SET ACROSSPRT command to
compress the lines in the report. The number of lines is reduced within each sort group by
swapping non-missing values from lower lines with missing values from higher lines, and
then eliminating any lines whose columns all have missing values.

Because data may be moved to different report lines, row-based calculations, such as
ROW-TOTAL and ACROSS-TOTAL in a compressed report are different from those in a non-
compressed report. Column calculations are not affected by compressing the report lines.

The syntax is:

SET ACROSSPRT = {NORMAL|COMPRESS}

where:

NORMAL

Does not compress report lines.

COMPRESS

Compresses report lines by promoting data values up within a sort group.

ACROSSTITLE
In a report that uses the ACROSS sort phrase to sort values horizontally across the page, by
default, two lines are generated on the report output for the ACROSS columns. The first
line displays the name of the sort field (ACROSS title), and the second line displays the
values for that sort field (ACROSS value). The ACROSS field name is left justified above the
first ACROSS value.

The ACROSSTITLE parameter enables you to display both the ACROSS title and the ACROSS
values on one line in PDF, HTML, EXL2K, or EXL07 report output. You can issue the SET
ACROSSTITLE = SIDE command. This command places ACROSS titles to the left of the
ACROSS values. The titles are right justified in the space above the BY field titles. The
heading line that is created, by default, to display the ACROSS title will not be generated.

This feature is designed for use in requests that have both ACROSS fields and BY fields. For
requests with ACROSS fields but no BY fields, the set command is ignored, and the ACROSS
titles are not moved.

The syntax is:

ibi™ FOCUS® Developing Applications

76 | Customizing Your Environment

SET ACROSSTITLE = {ABOVE|SIDE}

where:

ABOVE

Displays ACROSS titles above their ACROSS values. ABOVE is the default value.

SIDE

Displays ACROSS titles to the left of their ACROSS values, above the BY columns.

ACRSVRBTITL
Using the SET ACRSVRBTITL command, you can control the display of an ACROSS column
title in an ACROSS group. The behavior of the title is determined by the number of verb
columns in the ACROSS group. The field count is affected by the following features, which
add internal matrix columns to the report:

l Fields in a heading or footing.

l Fields whose display is suppressed with the NOPRINT phrase.

l Reformatted fields (which are normally counted twice).

l A COMPUTE command referencing multiple fields.

The syntax is:

SET ACRSVRBTITL = {HIDEONE|ON|OFF}

ON TABLE SET ACRSVRBTITL {HIDEONE|ON|OFF}

where:

HIDEONE

Suppresses the title when there is only one display field, or there is only one display
field and the request contains one or more of the features that add internal matrix
columns to the report. This value is the default.

ibi™ FOCUS® Developing Applications

77 | Customizing Your Environment

ON

Always displays the title even if there is only one display field.

OFF

Suppresses the title when there is only one display field. Displays the title when there is
only one display field and the request contains one or more of the features that add
internal matrix columns to the report. This is legacy behavior.

ALL

The ALL parameter handles missing segment instances in a report.

The command SET ALL = ON specifies a left outer join. With a left outer join, all records
from the host file display on the report output. If a cross-referenced segment instance does
not exist for a host segment instance, the report output displays missing values for the
fields from the cross-referenced segment.

If there is a screening condition on the dependent segment, those dependent segment
instances that do not satisfy the screening condition are omitted from the report output,
and so are their corresponding host segment instances.

The syntax is:

SET ALL = {ON|OFF|PASS}

where:

ON

Includes missing segment instances in a report when fields in the segment are not
screened by WHERE or IF criteria in the request. The missing field values are denoted by
the NODATA character, set with the NODATA parameter (for more information, see
NODATA).

OFF

Omits missing segment instances from a report. OFF is the default value.

ibi™ FOCUS® Developing Applications

78 | Customizing Your Environment

PASS

Includes missing segment instances in a report, regardless of WHERE or IF criteria in the
request.

This option is not supported when MULTIPATH = COMPOUND (see MULTIPATH).

ALLOWCVTERR

The ALLOWCVTERR parameter applies to non-FOCUS data sources when converting from
the way the date is stored (ACTUAL attribute) to the way it is formatted (FORMAT or USAGE
attribute).

It controls the display of a row of data that contains an invalid date format (formerly called
a smart date). When it is set to ON, the invalid date format is returned as the base date or
a blank, depending on the settings for the MISSING and DATEDISPLAY parameters.

Note: The ALLOWCVTERR parameter is not supported for virtual fields.

The syntax is:

SET ALLOWCVTERR = {ON|OFF}

where:

ON

Displays a row of data that contains an invalid date format. When ALLOWCVTERR is set
to ON, the display of invalid dates is determined by the settings of the MISSING attribute
and DATEDISPLAY command.

The results are explained in the following table:

ibi™ FOCUS® Developing Applications

79 | Customizing Your Environment

DATEDISPLAY MISSING RESULT

OFF OFF
A blank is returned.

ON
The value of the NODATA character (a period,
by default) is returned. (See NODATA).

ON OFF
The base date is returned (December 31, 1900,
for dates with YMD or YYMD format; or January
1901, for dates with YM, YYM, YQ, or YYQ
format).

ON
The value of the NODATA character (a period,
by default) is returned.

OFF

Does not display a row of data that contains an invalid date format and generates an
error message. OFF is the default value.

ALTBACKPERLINE
The ALTBACKPERLINE attribute alternates the background color by line for reports that use
positioned drivers, for example PDF, DHTML, PPT, and PPTX. This enables you to wrap a
long field value, and alternate the background color of each line for that value,
independent of borders. In order to apply alternating background color per line, you need
to explicitly add the SET ALTBACKPERLINE=ON command to procedures that use WRAP.

The syntax is:

SET ALTBACKPERLINE = {ON|OFF}

where:

ON

Alternates background color by line.

ibi™ FOCUS® Developing Applications

80 | Customizing Your Environment

OFF

Alternates background color by row. This is the default value.

ARCFGU
The SET ARCFGU command allows you to override the standard search path for the In-
Document Analytics (IDA) configuration file by finding and using the user-created
irpcfgu.json file. Using the SET command, you can set the search to look in all directories
(DEFAULT), in one specific directory (app_name), or to not look for this override (NONE).
SET ARCFGU=NONE provides the fastest search.

The syntax is:

SET ARCFGU={DEFAULT|app_name|NONE}

where:

DEFAULT

Searches all directories in the application path for the irpcfgu.json file. This is the
default value and the slowest execution.

app_name

Specifies the explicit name of the application, not necessarily from the APP PATH.

NONE

Does not use the user-customized version. If the value is NONE, the search does not
look for a user configuration file. This is the fastest execution.

ASNAMES

The ASNAMES parameter controls the FIELDNAME attribute in a HOLD Master File. When an
AS phrase is used in a TABLE request, the specified literal is used as a field name in a HOLD
file. It also controls how field names are specified for the values of an ACROSS field when a
HOLD file is created.

The syntax is:

ibi™ FOCUS® Developing Applications

81 | Customizing Your Environment

SET ASNAMES = {ON|OFF|MIXED|FOCUS|FLIP}

where:

OFF

Does not use the literal specified in an AS phrase as a field name in HOLD files, and does
not affect the way ACROSS fields are named.

ON

Uppercases the literal specified in an AS phrase and propagates it as the field name in
the HOLD Master File. Creates names for ACROSS fields that consist of the AS name
value concatenated to the beginning of the ACROSS field value and controls the way
ACROSS fields are named in HOLD files of any format.

MIXED

Uses the literal specified in an AS phrase for the field name, retaining the case of the AS
name, and creates names for ACROSS fields that consist of the AS name value
concatenated to the beginning of the ACROSS field value.

FOCUS

Uses the literal specified in an AS phrase as the field name and controls the way
ACROSS fields are named only in HOLD files in FOCUS format. FOCUS is the default
value.

FLIP

Propagates the field names in the original Master File to the alias names in the HOLD
Master File and the alias names in the original Master File to the field names in the
HOLD Master File.

AUTOFIT

The AUTOFIT parameter automatically resizes HTML report output to fit its window or
frame and HTML5 graphs to fit their containers.

The syntax is:

SET AUTOFIT = {OFF|ON|RESIZE}

ibi™ FOCUS® Developing Applications

82 | Customizing Your Environment

ON {GRAPH|TABLE} SET AUTOFIT {OFF|ON|RESIZE}

where:

OFF

Respects the dimensions specified by the data and styles for TABLE or by the HAXIS and
VAXIS parameters for HTML5 graphs.

ON

Always resizes HTML report output to fit its window or frame and HTML5 graph output
to fit its container.

RESIZE

Applies to HTML5 graphs only. Respects the dimensions specified by the HAXIS and
VAXIS parameters initially, but resizes the graph output if the container is resized.

AUTOINDEX

The AUTOINDEX parameter speeds data retrieval by automatically taking advantage of
indexed fields or multi-dimensional indexes (MDI) in most cases where TABLE requests
contain equality or range tests on those fields or dimensions. This applies only to FOCUS
and XFOCUS data sources.

AUTOINDEX is never performed when the TABLE request contains an alternate file view, for
example, TABLE FILE filename.fieldname. Indexed retrieval is not performed when the
TABLE request contains BY HIGHEST or BY LOWEST phrases and AUTOINDEX is ON.

The syntax is:

SET AUTOINDEX = {ON|OFF}

where:

ON

Uses indexed retrieval when possible. ON is the default value.

ibi™ FOCUS® Developing Applications

83 | Customizing Your Environment

OFF

Uses indexed retrieval only when explicitly specified using an indexed view, for example,
TABLE FILE filename.indexed-fieldname.

AUTOPATH

The AUTOPATH parameter dynamically selects an optimal retrieval path for accessing a
FOCUS data source by analyzing the data source structure and the fields referenced, and
choosing the lowest possible segment as the entry point. Use AUTOPATH only if your field
is not indexed.

The syntax is:

SET AUTOPATH = {ON|OFF}

where:

ON

Dynamically selects an optimal retrieval path. ON is the default value.

OFF

Uses sequential data retrieval. The end user controls the retrieval path through
filename.segname.

AUTOSTRATEGY

The AUTOSTRATEGY parameter determines when FOCUS stops the search for a key field
specified in a WHERE or IF test. When set to ON, the search ends when the key field is
found, optimizing retrieval speed. When set to OFF, the search continues to the end of the
data source.

The syntax is:

SET AUTOSTRATEGY = {ON|OFF}

ibi™ FOCUS® Developing Applications

84 | Customizing Your Environment

where:

ON

Stops the search when a match is found. ON is the default value.

OFF

Searches the entire data source.

AUTOTABLEF

The AUTOTABLEF parameter avoids creating the internal matrix based on the features used
in the query. Avoiding internal matrix creation reduces internal overhead costs and yields
better performance.

The syntax is:

SET AUTOTABLEF = {ON|OFF}

where:

ON

Does not create an internal matrix. ON is the default value.

OFF

Creates an internal matrix.

BASEURL

The BASEURL parameter specifies a default location where your browser searches for
relative URLs referenced in the HTML documents created by FOCUS. This allows you to
hyperlink to files, images, and Java files using only the file names rather than the full URLs.

The syntax is:

SET BASEURL = url

ibi™ FOCUS® Developing Applications

85 | Customizing Your Environment

where:

url

Is the fully qualified directory in which additional HTML files, graphics files, and Java
applet class files reside. If the URL represents a web server address, it must begin with
http:// and end with a slash (/).

BINS

The BINS parameter specifies the number of pages of memory (blocks of 4,096 bytes) used
for data source buffers.

The syntax is:

SET BINS = n

where:

n

Is the number of pages used for data source buffers. Valid values are 13 to 64. 64 is the
default value. This is the recommended value.

BLANKEMPTY
The BLANKEMPTY parameter enables you to distinguish between a null value and a space
value in a non-numeric XLSX data cell. This applies to XLSX output format only.

The syntax is:

SET BLANKEMPTY = {ON|OFF}
ON TABLE SET BLANKEMPTY {ON|OFF}

where:

ON

Considers a single space value to be an empty cell. This is legacy behavior.

ibi™ FOCUS® Developing Applications

86 | Customizing Your Environment

OFF

Handles a cell containing a space value as a single space. OFF is the default value.

Note:
l For non-numeric formatted fields, regular data fields that contain spaces

preserve the space in the cell. Cells that are flagged as MISSING continue
to generate empty cells in XLSX output.

l The EMPTYCELLS parameter handles MISSING options for fields with the
XLSX output format to allow raw data displayed in the formula bar the
value of 0 for MISSING, instead of the absence of a value or empty cell.

BLANKINDENT

To clarify relationships within an FML hierarchy, the captions (titles) of values are indented
at each level. You can use the BLANKINDENT parameter in an HTML, PDF, or PostScript
report to specify the indentation between each level the hierarchy. You can use the default
indentation for each hierarchy level or choose your own indentation value. To print
indented captions in an HTML report, you must set the BLANKINDENT parameter to ON or
to a number.

In PDF and PS reports, you may need to adjust the widths of columns to accommodate the
indentations.

The syntax is:

SET BLANKINDENT = {ON|OFF|n}

where:

ON

Indents FML hierarchy captions 0.125 units for each space normally displayed before the
caption. For child levels in an FML hierarchy, it indents 0.125 units for each space that
would normally display between this line and the line above it.

ibi™ FOCUS® Developing Applications

87 | Customizing Your Environment

OFF

Turns off indentations for FML hierarchy captions in an HTML report. For other formats,
uses the default indentation of two spaces. OFF is the default value.

n

Is an explicit measurement in the unit of measurement defined by the UNITS parameter.
This measurement is multiplied by the number of spaces that would normally display
before the caption. For child levels in an FML hierarchy, it indents n units for each space
that would normally display between this line and the line above it. The default number

of spaces is two. Zero (0) produces the same report output as OFF. Negative values for n
are not supported. They generate the following message, and the request processes as if
BLANKINDENT=OFF:

VALID VALUES ARE OFF, ON OR A POSITIVE NUMBER (IN CURRENT UNITS)

BOTTOMMARGIN
The BOTTOMMARGIN parameter sets the StyleSheet bottom boundary for report contents
on a page.

This parameter applies only to PostScript and PS report formats.

The syntax is:

SET BOTTOMMARGIN = {n|.250}

where:

n

Is the bottom margin, in inches, for report contents on a page. 0.25 inches is the default
value.

BUSDAYS

The BUSDAYS parameter specifies which days are considered business days and which days
are not if, your business does not follow the traditional Monday through Friday week.

ibi™ FOCUS® Developing Applications

88 | Customizing Your Environment

The syntax is:

SET BUSDAYS = {week|_MTWTF_}

where:

week

Is SMTWTFS, representing the days of the week. Any day that you do not want to
designate as a business day must be replaced with an underscore in the designated
place for that day.

If a letter is not in its correct position, or if you replace a letter with a character other
than an underscore, you receive an error message. _MTWTF_ is the default value.

BYDISPLAY

Within a sort group, the sort field value displays only on the first line of the rows or
leftmost column of the columns for its sort group. However, you can display the
appropriate BY or ACROSS field on every row in a report using the SET BYDISPLAY
command. Although SET BYDISPLAY is supported for all output formats, it is especially
important for making your report output more usable by Excel, which cannot sort columns
properly when they have blank values in some rows.

This feature may enable you to avoid specifying the sort field twice, once as a display field
and once for sorting (with the NOPRINT option).

The syntax is:

SET BYDISPLAY = {OFF|ON|BY|ACROSS|ALL}

where:

OFF

Displays a BY field value only on the first line or column of the report output for the sort
group and on the first line or column of a page. OFF is the default value.

ibi™ FOCUS® Developing Applications

89 | Customizing Your Environment

ON or BY

Displays the associated BY field value on every line of report output produced. BY is a
synonym for ON.

ACROSS

Displays the relevant ACROSS field value on every column of report output produced.

ALL

Displays the relevant BY field value on every line of report output and the relevant
ACROSS field value on every column of report output.

BYPANEL

The BYPANEL parameter applies only to HOTSCREEN.

It controls the repetition of BY fields on panels. When BYPANEL is specified, the maximum
number of panels is 99. When BYPANEL is OFF, the maximum number of panels is four.

The syntax is:

SET BYPANEL = option

where:

option

Is one of the following:

ON repeats the sort field values on each report panel.

OFF does not repeat sort field values on each report panel. Fields are displayed only on
the first panel, and columns may split between panels. This value is the default.

0 does not repeat sort field values on each report panel, and columns do not split
between panels.

n repeats n columns of sort fields on each report panel. The value for n can be equal to
or less than the total number of sort fields specified in the request.

ibi™ FOCUS® Developing Applications

90 | Customizing Your Environment

CACHE

The CACHE parameter controls the number of cache pages to be allocated. This command
cannot be used with ON TABLE SET.

Stores 4K FOCUS data source pages in memory and buffers them between the data source
and BINS.

When a procedure calls for a read of a data source page, FOCUS first searches BINS, then
cache memory, and then the data source on disk. If the page is found in cache, FOCUS
does not have to perform an I/O to disk.

When a procedure calls for a write of a data source page, the page is written from BINS to
disk. The updated page is also copied into cache memory so that the cache and disk
versions remain the same. Unlike reads, cache memory does not save disk I/Os for write
procedures.

FOCSORT pages are also written to the cache. When the cache becomes full, they are
written to disk. For optimal results, set the cache to hold the entire data source plus the
size of FOCSORT for the request. To estimate the size of FOCSORT for a given request, issue
the ? STAT command, then add the number of SORTPAGES listed to the number of data
source pages in memory. Issue a SET CACHE command for that amount. If cache is set to
50, 50 4K pages of contiguous storage are allocated to cache.

To clear the CACHE setting, issue a SET CACHE = n command. This command flushes the
buffer (everything in the cache memory is lost).

The syntax is:

SET CACHE = {0|n}

where:

0

Allocates no space to cache, which is inactive. 0 is the default value.

n

Is the number of 4K pages of contiguous storage allocated to cache memory. The
minimum is two pages. The maximum is determined by the amount of memory
available. If HiperFOCUS is activated, the default cache size is 256 pages (1MB) and the
cache is placed in a hiperspace.

ibi™ FOCUS® Developing Applications

91 | Customizing Your Environment

CARTESIAN

The CARTESIAN parameter applies to requests containing PRINT or LIST.

It generates a report containing all combinations of non-related data instances in a multi-
path request. ACROSS cancels this parameter.

The syntax is:

SET CARTESIAN = {ON|OFF}

where:

ON

Generates a report with non-related records.

OFF

Disables the Cartesian product. OFF is the default value.

CDN

The CDN parameter specifies the punctuation used in numeric notation.

Continental Decimal Notation (CDN) is supported for output in TABLE requests. It is not
supported in DEFINE or COMPUTE commands.

The syntax is:

SET CDN = option

where:

option

Is one of the following:

DOTS_COMMA or ON uses CDN. Sets the decimal separator as a comma and the thousands
separator as a period. For example, the number 3,045,000.76 is represented as
3.045.000,76. ON should be used for Germany, Denmark, Italy, Spain, and Brazil.

ibi™ FOCUS® Developing Applications

92 | Customizing Your Environment

Note: Numeric parameters that use CDN ON must be separated by a comma
followed by a space in calls to functions.

COMMAS_DOT or OFF turns CDN off. For example, the number 3,045,000.76 is represented
as 3,045,000.76. OFF is the default value. OFF should be used for the USA, Canada,
Mexico, and the United Kingdom.

SPACES_COMMA or SPACE sets the decimal point as a comma, and the thousands
separator as a space. For example, the number 3,045,000.76 is represented as 3 045
000,76. SPACE should be used for France, Norway, Sweden, and Finland.

SPACES_DOT or SPACEP sets the decimal point as a period and the thousands separator
as a space. For example, the number 3,045,000.76 is represented as 3 045 000.76.

QUOTES_COMMA or QUOTE sets the decimal point as a comma and the thousands separator
as an apostrophe. For example, the number 3,045,000.76 is represented as 3'045'000,76.
QUOTE should be used for Switzerland.

QUOTES_DOT or QUOTEP sets the decimal point as a period and the thousands separator
as an apostrophe. For example, the number 3,045,000.76 is represented as 3'045'000.76.

Note: If the display format of a report is Excel 2000 or later, Continental Decimal
Notation is controlled by the settings on the computer. That is, numbers in
report output are formatted according to the convention of the locale (location)
set in regional or browser language options.

CENT-ZERO

The CENT-ZERO parameter displays a leading zero in decimal-only numbers. The setting of
CDN determines whether a decimal point or comma is the decimal separator.

The syntax is:

SET CENT-ZERO = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

93 | Customizing Your Environment

ON

Displays fractions with a leading zero. The fraction is preceded by either a decimal point
or comma, depending on the CDN setting.

OFF

Does not display a leading zero. The fraction is preceded by either a decimal point or
comma, depending on the CDN setting. OFF is the default value.

CNOTATION

Column notation assigns a sequential column number to each column in the internal
matrix created for a report request. You can use column notation in COMPUTE and RECAP
commands to refer to these columns in your request.

Because column numbers refer to columns in the internal matrix, they are assigned after
retrieval and aggregation are completed. Columns not actually displayed on the report
output may exist in the internal matrix. For example, calculated values used in the request
generate one or more columns in the internal matrix. Fields with the NOPRINT option take
up a column in the internal matrix, and a reformatted field generates an additional column
for the reformatted value. Certain RECAP calculations, such as FORECAST or REGRESS
generate multiple columns in the internal matrix.

BY fields are not assigned column numbers but, by default, every other column in the
internal matrix is assigned a column number, which means that you have to account for all
of the internally generated columns if you want to refer to the appropriate column value in
your request. You can change this default column assignment behavior with the SET
CNOTATION=PRINTONLY command, which assigns column numbers only to columns that
display on the report output, or the SET CNOTATION=EXPLICIT command, which assigns
column numbers to columns that are referenced in the request.

The syntax is:

SET CNOTATION={ALL|PRINTONLY|EXPLICIT}

where:

ibi™ FOCUS® Developing Applications

94 | Customizing Your Environment

ALL

Assigns column reference numbers to every column in the internal matrix. ALL is the
default value.

PRINTONLY

Assigns column reference numbers only to columns that display on the report output.

EXPLICIT

Assigns column reference numbers to all fields referenced in the request, whether it is
displayed or not.

Note: This setting is not supported in an ON TABLE phrase.

COLLATION
The COLLATION parameter controls the ordering and matching of all language elements
that involve comparison of two alphanumeric values.

The syntax is:

SET COLLATION = {BINARY|SRV_CI|SRV_CS|CODEPAGE}

where:

BINARY

Bases the collation sequence on binary values.

SRV_CI

Bases collation sequence on the LANGUAGE setting, and is case-insensitive.

SRV_CS

Bases collation sequence on the LANGUAGE setting, and is case-sensitive.

CODEPAGE

Bases collation sequence on the code page in effect, and is case-sensitive. CODEPAGE is
the default value.

ibi™ FOCUS® Developing Applications

95 | Customizing Your Environment

In most cases, CODEPAGE is the same as BINARY. The only differences are for Danish,
Finnish, German, Norwegian, and Swedish in an EBCDIC environment.

COMPMISS

When a field is reformatted in a request (for example, SUM field/format), an internal
COMPUTE field is created to contain the reformatted field value and displayed on the
report output. If the original field has a missing value, that missing value can be
propagated to the internal field by setting the COMPMISS parameter ON. If the missing
value is not propagated to the internal field, it displays a zero (if it is numeric) or a blank (if
it is alphanumeric). If the missing value is propagated to the internal field, it displays the
missing data symbol on the report output.

The syntax is:

SET COMPMISS = {ON|OFF}

where:

ON

Propagates a missing value to a reformatted field.

OFF

Displays a blank or zero for a reformatted field. OFF is the default value.

COMPOUND
The COMPOUND parameter, which is used to create compound reports, combines multiple
reports into a single PDF or PostScript (PS) file. Using COMPOUND enables you to
concatenate reports with styled report formats (PDF, HTML, Power Point, Excel). You can
also embed image files, including graphs saved as images, in a compound report.

For more information about creating compound reports, see the ibi™ FOCUS® Creating
Reports manual.

For a compound report that may contain different report types, the syntax is:

ibi™ FOCUS® Developing Applications

96 | Customizing Your Environment

SET COMPOUND = {OPEN|CLOSE} [NOBREAK]

Or

ON TABLE SET COMPOUND {OPEN|CLOSE}

Note that when you are using this syntax, you must also include the following code to
identify the display format of each of the different reports to be concatenated:

ON TABLE {PCHOLD|HOLD|SAVE} [AS name] FORMAT formatname

If all of the reports in the compound set are of the same type, either PDF or PS, the syntax
is:

ON TABLE {PCHOLD|HOLD|SAVE} [AS name] FORMAT {PDF|PS} {OPEN|CLOSE}
[NOBREAK]

where:

name

Is the name of the generated file. The name is taken from the first request in the
compound report. If no name is specified in the first report, the name HOLD is used.

formatname

Is the name of the styled report format. Valid formats include PDF, PS, HTML, PPT, and
EXL2K.

OPEN

Is specified with the first report, and begins the concatenation process. A report that
contains the OPEN attribute must be in PDF or PS format.

CLOSE

Is specified with the last report, and ends the concatenation process.

NOBREAK

Is an optional phrase that suppresses page breaks. By default, each report is displayed
on a separate page. You can use NOBREAK selectively in a request to control which
reports are displayed on the same page.

ibi™ FOCUS® Developing Applications

97 | Customizing Your Environment

Note:
l You can save or hold the output from a compound report.

l Compound reports cannot be nested.

l Multi-pane reports cannot be used in a compound report.

COMPUTE
The COMPUTE parameter controls the compilation of calculations when a request is
executed.

The syntax is:

SET COMPUTE = {COMPILED|OLD}

where:

COMPILED

Implements expression compilation at request run time, compiling only those
expressions that are used in the request. COMPILED is the default value.

OLD

The value OLD has been deprecated and functions as COMPILED.

COUNTWIDTH

The COUNTWIDTH parameter expands the default format of COUNT fields from a five-byte
integer to a nine-byte integer or a specified integer format supported in your operating
environment.

The syntax is:

SET {COUNTWIDTH|LISTWIDTH} = {ON|OFF|n}

where:

ibi™ FOCUS® Developing Applications

98 | Customizing Your Environment

ON

Expands the default format of COUNT fields from a five-byte integer to a nine-byte
integer.

OFF

Does not expand the default format of COUNT fields from a five-byte integer to a nine-
byte integer. OFF is the default value.

n

Enables you to specify a width for the COUNT field up to the maximum integer format
supported in your operating environment.

CSSURL
The CSSURL parameter links an HTML report to an external cascading style sheet (CSS) file
in order to style the report.

The syntax is:

SET CSSURL = link

where:

link

Is the URL location of the CSS file. This can be an absolute or relative link.

CURRENCY_DISPLAY
This parameter defines the position of the currency symbol relative to the monetary
number.

The syntax is:

SET CURRENCY_DISPLAY = pos

where:

ibi™ FOCUS® Developing Applications

99 | Customizing Your Environment

pos

Defines the position of the currency symbol relative to a number. The default value is
default, which uses the position for the format and currency symbol in effect. Valid
values are:

l LEFT_FIXED. The currency symbol is left-justified preceding the number.

l LEFT_FIXED_SPACE. The currency symbol is left-justified preceding the number,
with at least one space between the symbol and the number.

l LEFT_FLOAT. The currency symbol precedes the number, with no space between
them.

l LEFT_FLOAT_SPACE. The currency symbol precedes the number, with one space
between them.

l TRAILING. The currency symbol follows the number, with no space between them.

l TRAILING_SPACE. The currency symbol follows the number, with one space
between them.

Note: This setting is not supported with FORMAT EXL2K report output.

CURRENCY_ISO_CODE
This parameter defines the ISO code for the currency symbol to use.

The syntax is:

SET CURRENCY_ISO_CODE = iso

where:

iso

Is a standard three-character currency code such as USD for US dollars or JPY for
Japanese yen. The default value is default, which uses the currency code for the
configured language code.

Note: This setting is not supported with FORMAT EXL2K report output.

ibi™ FOCUS® Developing Applications

100 | Customizing Your Environment

CURRENCY_PRINT_ISO
This parameter defines what will happen when the currency symbol cannot be displayed
by the code page in effect, if the format of the field to be displayed includes the !C or :C
extended currency symbol.

The syntax is:

SET CURRENCY_PRINT_ISO = {DEFAULT|ALWAYS|NEVER}

where:

DEFAULT

Replaces the currency symbol with its ISO code when the symbol cannot be displayed
by the code page in effect. This is the default value.

ALWAYS

Always replaces the currency symbol with its ISO code.

NEVER

Never replaces the currency symbol with its ISO code. If the currency symbol cannot be
displayed by the code page in effect, it will not be printed at all.

Note:
l Using a Unicode environment allows the printing of all currency symbols,

otherwise this setting is needed.

l This parameter is not supported with FORMAT EXL2K report output.

CURRSYMB

The CURRSYMB parameter specifies a symbol used to represent currency when a numeric
format specification uses the M or N display options. The default currency symbol depends
on the code page being used.

The syntax is:

ibi™ FOCUS® Developing Applications

101 | Customizing Your Environment

SET CURRSYMB = symbol

where:

symbol

Is any printable character or a supported currency code.

Note: Note: In order to specify a dollar sign as the character, you must
enclose it in single quotation marks (').

l USD or '$' specifies U.S. dollars.

l GBP specifies the British pound.

l JPY specifies the Japanese yen.

l EUR specifies the Euro.

l NIS specifies the Israeli new shekel.

CURSYM_D

The CURSYM_D parameter specifies the characters used to represent currency when a
numeric format specification uses the !D, :D, !d, or :d display options which, by default,
display a floating (D) or fixed (d) dollar sign to the left of the number.

The syntax is:

SET CURSYM_D = currsym

where:

currsym

Specifies up to four printable characters.

CURSYM_E

ibi™ FOCUS® Developing Applications

102 | Customizing Your Environment

The CURSYM_E parameter specifies the characters used to represent currency when a
numeric format specification uses the !E, :E, !e, or :e display options which, by default,
display a floating (E) or fixed (e) euro symbol to the left of the number.

The syntax is:

SET CURSYM_E = currsym

where:

currsym

Specifies up to four printable characters.

CURSYM_F

The CURSYM_F parameter specifies the characters used to represent currency when a
numeric format specification uses the !F or :F display option which, by default, places a
floating euro symbol to the right of the number. This command supports adding a blank
space between the number and the currency symbol.

The syntax is:

SET CURSYM_F = currsym

where:

currsym

Specifies up to four printable characters. If the characters include a blank space, they
must be enclosed in single quotation marks.

CURSYM_G

The CURSYM_G parameter specifies the characters used to represent currency when a
numeric format specification uses the !G or :G display option which, by default, places a
floating dollar sign to the right of the number. This command supports adding a blank
space between the number and the currency symbol.

ibi™ FOCUS® Developing Applications

103 | Customizing Your Environment

The syntax is:

SET CURSYM_G= currsym

where:

currsym

Specifies up to four printable characters. If the characters include a blank space, they
must be enclosed in single quotation marks.

CURSYM_L

The CURSYM_L parameter specifies the characters used to represent currency when a
numeric format specification uses the !L, :L, !l, or :l display options which, by default,
display a floating (L) or fixed (l) British pound symbol to the left of the number.

The syntax is:

SET CURSYM_L = currsym

where:

currsym

Specifies up to four printable characters.

CURSYM_Y

The CURSYM_Y parameter specifies the characters used to represent currency when a
numeric format specification uses the !Y, :Y, !y, or :y display options which, by default,
display a floating (Y) or fixed (y) Japanese yen or Chinese yuan symbol to the left of the
number.

The syntax is:

SET CURSYM_Y = currsym

ibi™ FOCUS® Developing Applications

104 | Customizing Your Environment

where:

currsym

Specifies up to four printable characters.

DATE_ORDER
This parameter defines the order of date components for display.

The syntax is:

SET DATE_ORDER = {DEFAULT|DMY|MDY|YMD}

where:

DEFAULT

Respects the original order of date components. This is the default value.

DMY

Displays all dates in day/month/year order.

MDY

Displays all dates in month/day/year order.

YMD

Displays all dates in year/month/day order.

Note:
l DATE_ORDER overrides the specified date order for all date and date-time

displays. To limit the scope to a request when using DATE_ORDER, use the
ON TABLE SET phrase.

l To use this setting with the Dialogue Manager system variables, (for
example, &DATE, &TOD, &YMD, &DATEfmt, and &DATXfmt) append the
suffix. DATE_LOCALE to the system variable. This allows system variables
that are localized to coexist with non-localized system variables.

l This parameter is not supported with FORMAT EXL2K report output.

ibi™ FOCUS® Developing Applications

105 | Customizing Your Environment

DATE_SEPARATOR
This parameter defines the separator for date components for display.

The syntax is:

SET DATE_SEPARATOR = separator

where:

separator

Can be one of the following values.

l DEFAULT, which respects the separator defined by the USAGE format of the field.

l SLASH, which uses a slash (/) to separate date components.

l DASH, which uses a dash (-) to separate date components.

l BLANK, which uses a blank to separate date components.

l DOT, which uses a dot (.) to separate date components.

l NONE, which does not separate date components.

Note:
l DATE_SEPARATOR overrides the date separator for all date and date-time

displays unless they include a translation display option (T,Tr, t, or tr), in
which case the specified separator is produced.

l To use this setting with the Dialogue Manager system variables, (for
example, &DATE, &TOD, &YMD, &DATEfmt, and &DATXfmt) append the
suffix. DATE_LOCALE to the system variable. This allows system variables
that are localized to coexist with non-localized system variables.

l This parameter is not supported with FORMAT EXL2K report output.

DATEDISPLAY

The DATEDISPLAY parameter controls the display of a base date. Previously, TABLE always
displayed a blank when a date read from a file matched the base date or a field with a

ibi™ FOCUS® Developing Applications

106 | Customizing Your Environment

smart date format had the value 0. The following shows the base date for each supported
date format:

Format Base Date

YMD and YYMD 1900/12/31

YM and YYM 1901/01

YQ and YYQ 1901/Q1

JUL and YYJUL 00/365 and 1900/365

Note: You cannot set DATEDISPLAY with the ON TABLE command.

The syntax is:

SET DATEDISPLAY = {ON|OFF}

where:

ON

Displays the base date if the data is the base date value.

OFF

Displays a blank if the date is the base date value. OFF is the default value.

DATEFNS

The DATEFNS parameter activates Year 2000-compliant versions of date functions.

The syntax is:

SET DATEFNS = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

107 | Customizing Your Environment

ON

Loads the year 2000-compliant versions of functions supplied by Information Builders.

OFF

This value is no longer functional, and operates as ON.

DATEFORMAT

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats. It
makes the input format of a value independent of the format of the variable to which it is
being assigned.

The syntax is:

SET DATEFORMAT = datefmt

where:

datefmt

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

DATETIME

The DATETIME parameter sets time and date in reports. This command is useful for
determining (statically or dynamically) exactly when your report was run. You can display
the DATETIME value using any FOCUS date variable (for example, YMD, MDY, TOD). If
DATETIME is not set, the behavior of the FOCUS date variables remains the same.

The syntax is:

SET DATETIME = option

where:

ibi™ FOCUS® Developing Applications

108 | Customizing Your Environment

option

Is one of the following:

l STARTUP, which is the time and date when you began your session. STARTUP is
the default value.

l CURRENT|NOW, which changes each time it is interrogated. For example, if your
batch job starts before midnight at 11:59 P.M., it will not complete until the next
day. If DATETIME is set to NOW|CURRENT, any reference to the variable gives the
current date, not the date when the job started.

l RESET, which freezes the date and time of the current run for the rest of the
session or until another SET DATETIME command is issued.

DB_INFILE

The SET DB_INFILE command controls whether the expression generated by the DB_INFILE
function for use against a relational data source is optimized.

The syntax is:

SET DB_INFILE = {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}

where:

DEFAULT

Enables DB_INFILE to create a subquery if its analysis determines that it is possible. This
is the default value.

EXPAND_ALWAYS

Prevents DB_INFILE from creating a subquery and, instead, expands the expression into
IF and WHERE clauses in memory.

EXPAND_NEVER

Prevents DB_INFILE from expanding the expression into IF and WHERE clauses in
memory and, instead, attempts to create a subquery. If this is not possible, a FOC32585
message is generated and processing halts.

ibi™ FOCUS® Developing Applications

109 | Customizing Your Environment

DBACSENSITIV

When a DBA or user issues the SET USER, SET PERMPASS or SET PASS command, this user
ID is validated before they are given access to any data source whose Master File has DBA
attributes. The password is also checked when encrypting or decrypting a FOCEXEC.

The SET DBACSENSITIV command determines whether the password is converted to
uppercase prior to validation.

The syntax is:

SET DBACSENSITIV = {ON|OFF}

where:

ON

Does not convert passwords to uppercase. All comparisons between the password set
by the user and the password in the Master File or FOCEXEC are case-sensitive.

OFF

Converts passwords to uppercase prior to validation. All comparisons between the
password set by the user and the password in the Master File or FOCEXEC are not case-
sensitive. OFF is the default value.

DBAJOIN

The DBAJOIN parameter controls where DBA restrictions are treated as WHERE conditions
in the report request or are added as join conditions.

SET DBAJOIN = {OFF|ON}

where:

OFF

Treats DBA restrictions as WHERE filters in the report request. OFF is the default value.

ibi™ FOCUS® Developing Applications

110 | Customizing Your Environment

ON

Treats DBA restrictions as join conditions.

DBASOURCE

The DBASOURCE parameter determines which security attributes are used to grant access
to multi-file structures. By default, access restrictions are based on the host file in a JOIN
structure or the last file in a COMBINE structure. If you set the DBASOURCE parameter to
ALL, access restrictions from all files in a JOIN or COMBINE structure will be enforced.

All files in the JOIN or COMBINE structure must have the same DBA password. If the DBA
attributes are not the same, there will be no way to access the structure.

The SET DBASOURCE command can only be issued one time in a session or connection.
Any attempt to issue the command additional times will be ignored. If the value is set in a
profile such as FOCPARM, no user can change it at any point in the session.

When DBASOURCE=ALL:

l In a TABLE request against a JOIN structure, access to a cross-reference file or
segment is allowed only if the user has at least read access to each file in the
structure.

l In a MODIFY COMBINE structure, the user must have a minimum of READ access to all
files in the structure. The user requires WRITE, UPDATE, or READ/WRITE access to a
file in the structure when an INCLUDE, DELETE, or UPDATE request is issued against
that file.

When DBASOURCE=HOST:

l In a TABLE request, the user needs read access to the host file in the JOIN structure.
All security limitations come from the host file. Note that you can create and activate
a DBAFILE in order to enforce security restrictions from all files in the structure.

l In a MODIFY procedure, the user needs write access to the last file in the COMBINE
structure. All security limitations come from the restrictions in the last file in the
structure. Note that you can create and activate a DBAFILE in order to enforce
security restrictions from all files in the structure.

The syntax is:

ibi™ FOCUS® Developing Applications

111 | Customizing Your Environment

SET DBASOURCE = {HOST|ALL}

where:

HOST

Enforces access restrictions only from the host file in a JOIN structure or the last file in a
COMBINE structure unless a DBAFILE is used to enforce access restrictions to other files
in the structure. HOST is the default value.

ALL

Requires the user to have read access to every file in a JOIN or COMBINE structure. The
user needs W, U, or RW access to a file in a COMBINE structure when an INCLUDE,
UPDATE, or DELETE command is issued against that file.

DEFCENT

The DEFCENT parameter defines a default century globally or on a field-level for an
application that does not contain an explicit century. DEFCENT is used in conjunction with
YRTHRESH to interpret the current century according to the given values. When assigned
globally, the time span created by these parameters applies to every 2-digit year used by
the application unless you specify file-level or field-level values. (See YRTHRESH.)

Note: This same result can be achieved by including the FDEFCENT and
FYRTHRESH attributes in the Master File.

The syntax is:

SET DEFCENT = {cc|19}

where:

cc

Is the default century. 19 is the default value if one is not supplied. The value cc defaults
to 19, for the twentieth century.

ibi™ FOCUS® Developing Applications

112 | Customizing Your Environment

DEFECHO

The DEFECHO parameter defines a default value for the &ECHO variable.

The syntax is:

SET DEFECHO = {OFF|ON|ALL|NONE}

where:

OFF

Establishes OFF as the default value for &ECHO. OFF is the default value.

ON

Establishes ON as the default value for &ECHO.

ALL

Establishes ALL as the default value for &ECHO.

NONE

Prevents procedure code from being displayed (echoed). Once the value of DEFECHO or
&ECHO has been set to NONE, it cannot be changed during the session or connection.

DEFINES

The DEFINES parameter increases the speed of calculations in virtual fields by compiling
virtual fields into machine code.

The syntax is:

SET DEFINES = {COMPILED|OLD}

where:

ibi™ FOCUS® Developing Applications

113 | Customizing Your Environment

COMPILED

Implements expression compilation at request run time, compiling only those DEFINEs
that are used in the request. COMPILED is the default value.

OLD

The value OLD has been deprecated and functions as COMPILED.

DIRECTHOLD

The DIRECTHOLD parameter creates a HOLD file in FOCUS format directly, without an
internally generated MODIFY procedure and an intermediate sequential file.

The syntax is:

SET DIRECTHOLD = {ON|OFF}

where:

ON

Creates a FOCUS HOLD file directly without an intermediate sequential file and MODIFY
procedure. ON is the default value and the only value supported. OFF is allowed for
backward syntax compatibility, but it operates the same way as ON.

OFF

OFF is allowed for backward syntax compatibility, but it operates the same way as ON.

DMH_LOOPLIM
The DMH_LOOPLIM parameter sets the maximum number of Dialogue Manager loop
iterations allowed, using -REPEAT or -GOTO commands.

The syntax is:

SET DMH_LOOPLIM = n

where:

ibi™ FOCUS® Developing Applications

114 | Customizing Your Environment

n

Sets the maximum number of loop iterations allowed. The default value is zero (0),
which does not limit the number of loop iterations.

DMH_LOOPLIM should be set high enough to run your existing reports and procedures
without error for your entire session. It is recommended that if you set this parameter,
you set it in a profile.

DMH_STACKLIM
The DMH_STACKLIM parameter sets the maximum number of lines allowed in FOCSTACK.

The syntax is:

SET DMH_STACKLIM = n

where:

n

Sets the maximum number of lines allowed in FOCSTACK. The default value is zero (0),
which does not limit the number of stacked commands.

DMH_STACKLIM should be set high enough to run your existing reports and procedures
without error for your entire session. It is recommended that if you set this parameter,
you set it in a profile.

DMPRECISION

The DMPRECISION parameter specifies numeric precision in Dialogue Manager -SET
commands.

Without this setting, results of numeric calculations are returned as integer numbers,
although the calculations themselves employ double-precision arithmetic. To return a
number with decimal precision without this setting, you have to enter the calculation as
input into subroutine FTOA, where you can specify the number of decimal places returned.

The syntax is:

ibi™ FOCUS® Developing Applications

115 | Customizing Your Environment

SET DMPRECISION = {OFF|n}

where:

OFF

Specifies truncation without rounding after the decimal point. OFF is the default value

n

Is a positive number from 0-9, indicating the point of rounding. Note that n=0 results in
a rounded integer value.

DRILLFOCMISSING
The DRILLFOCMISSING parameter enables you to control when to pass the _FOC_MISSING
string or a period (.) as the drill-down value for MISSING values.

The syntax is:

SET DRILLFOCMISSING = {ON|OFF}
ON TABLE SET DRILLFOCMISSING {ON|OFF}

where:

ON

Passes the _FOC_MISSING string as the drill-down value for MISSING data. ON is the
default value.

OFF

Passes the period (.) as the drill-down value for MISSING data.

DROPBLNKLINE

The DROPBLNKLINE parameter suppresses blank lines around subtotals, subheadings, and
subfootings when formatting a report for output. In addition, certain data lines may be
blank and appear as blank lines on the report output. You can eliminate these blank lines
from the report output using the SET DROPBLNKLINE=ON command.

ibi™ FOCUS® Developing Applications

116 | Customizing Your Environment

This setting does not apply to the following output formats: HOLD/PCHOLD/SAVE formats
ALPHA, INTERNAL, BINARY, COM, COMT, COMMA, TAB, TABT, FIX, DFIX, all DBMS, VSAM,
LOTUS, SYLK, DIF, FOCUS, and XFOCUS.

The syntax is:

SET DROPBLNKLINE = {OFF|ON|BODY|HEADING|ALL}

where:

OFF

Inserts system-generated blank lines as well as empty data lines. OFF is the default
value.

ON|BODY

Removes system-generated blank lines within the body of the report, for example,
before and after subheads. In addition, certain data lines that may be blank and appear
as blank lines on the report output will be removed from the output. BODY is a synonym
for ON.

HEADING

Removes the blank lines between headings and titles and between the report body and
the footing. Works in positioned formats (PDF, PS, DHTML, PPT, PPTX) when a request
has a border or backcolor StyleSheet attribute anywhere in the report.

ALL

Provides both the ON and HEADING behaviors.

DTSTRICT

The DTSTRICT parameter controls the use of strict processing. Strict processing checks
date-time values when they are input by an end user, read from a transaction file,
displayed, or returned by a subroutine to ensure that they represent a valid date and time.
For example, a numeric month must be between 1 and 12, and the day must be within the
number of days for the specified month.

The syntax is:

ibi™ FOCUS® Developing Applications

117 | Customizing Your Environment

SET DTSTRICT = {ON|OFF}

where:

ON

Invokes strict processing. ON is the default value.

OFF

Does not invoke strict processing. Date-time components can have any value within the
constraint of the number of decimal digits allowed in the field. For example, if the field
is a two-digit month, the value can be 12 or 99, but not 115.

DUPLICATECOL

The DUPLICATECOL parameter reformats report requests that use multiple display
commands, placing aggregated fields in the same column above the displayed field.

The syntax is:

SET DUPLICATECOL = {ON|OFF}

where:

ON

Displays the report with each field as a column. ON is the default value.

OFF

Displays the report with common fields as a row.

EMBEDDABLE
The EMBEDDABLE parameter controls the generation of document-level HTML tags (such
as, <html>, <head>, <body>) in HTML5 chart output. This enables multiple HTML5 charts to
be embedded in an HTML page.

The syntax is:

ibi™ FOCUS® Developing Applications

118 | Customizing Your Environment

SET EMBEDDABLE = {OFF|ON}

where:

OFF

Generates complete HTML report output with document-level HTML tags. This is the
default value.

ON

Generates report output in HTML format without document-level tags. This setting
should be used when creating HTML5 graph output to be used with -HTMLFORM.

Note: SET EMBEDDABLE=ON also affects HTML report output and Java-based
graph formats. For those formats, it is the equivalent of using HOLD FORMAT
HTMTABLE.

EMPTYCELLS
For numeric fields, the EMPTYCELLS parameter enables you to handle MISSING options for
fields with the XLSX output format to allow raw data displayed in the formula bar the value
of 0 for MISSING, instead of the absence of a value or empty cell.

The syntax is:

SET EMPTYCELLS = {ON|ZEROVALUE|XLSXOFF}
ON TABLE SET EMPTYCELLS {ON|ZEROVALUE|XLSXOFF}

where:

ON

For numeric fields, creates empty cells for cells with MISSING values. ON is the default
value.

ZEROVALUE

For numeric fields, inserts a 0 raw value in cells with MISSING values. This applies to
Excel 2007 and higher (.xlsx output format).

ibi™ FOCUS® Developing Applications

119 | Customizing Your Environment

XLSXOFF

For fields with MISSING values, generates an empty cell for alphanumeric fields and 0 in
cells for numeric.

EMPTYREPORT

The EMPTYREPORT parameter controls the output generated when a TABLE request
retrieves zero records.

EMPTYREPORT is not supported with TABLEF or Excel. When a TABLEF or Excel request
retrieves zero records, an empty report is generated.

Note: Using the IF TOTAL or WHERE TOTAL phrases when EMPTYREPORT is set
to OFF may produce an empty report if there is no data that satisfies the TOTAL
condition. This occurs because the test for report lines for EMPTYREPORT is
applied before the TOTAL condition is applied.

The syntax is:

SET EMPTYREPORT={ANSI|ON|OFF}

where:

ANSI

Produces a single-line report and displays the missing data character or a zero if a
COUNT is requested. In each case, &RECORDS will be 0, and &LINES will be 1.

If the SQL Translator is invoked, ANSI automatically replaces OFF as the default setting
for EMPTYREPORT.

ON

Produces an empty report (column headings with no content). This was the default
behavior in prior releases.

OFF

Produces no report output. OFF is the default value except for SQL Translator requests.
When the SQL Translator is invoked, ANSI replaces OFF as the default setting for the

ibi™ FOCUS® Developing Applications

120 | Customizing Your Environment

EMPTYREPORT parameter, so the results are the same as for the ANSI setting.

The command can also be issued from within a request using:

ON TABLE SET EMPTYREPORT ANSI

EQTEST

The EQTEST parameter controls whether the characters $ and $* are treated as wildcard
characters or normal characters in IF tests and WHERE tests that can be converted to one
or more IF tests.

The syntax is:

SET EQTEST = {WILDCARD|EXACT}

where:

WILDCARD

Treats the $ and $* characters as wildcard characters. WILDCARD is the default value.

EXACT

Treats the $ and $* characters as normal characters, not wildcards, in IF tests and in
WHERE tests that can be translated to IF tests.

ERROROUT

The ERROROUT parameter controls how a batch FOCUS job step responds to an error
condition encountered in a procedure. This parameter cannot be set with the ON TABLE
SET command.

When ERROROUT is set to ON, any error message generated terminates the job step and
issues a return code of 8. Warning messages do not invoke this behavior. When ERROROUT
is set to OFF, depending on the specific message, FOCUS determines whether FOCEXEC
processing continues. Users can check a Dialogue Manager variable, such as &FOCERRNUM
and issue the following command to terminate FOCUS and set n as the return code:

ibi™ FOCUS® Developing Applications

121 | Customizing Your Environment

-QUIT FOCUS n

exit rc

Note: The ERROROUT setting is ignored in an interactive session.

The syntax is:

SET ERROROUT = {ON|OFF}

where:

ON

When an error message is generated in a batch FOCUS job step, ON sets the return code
to 8 and terminates the job step.

In addition, the following message displays to inform the user why the program
terminated:

Exiting due to Exit on Error

OFF

Does not set a return code or automatically terminate a job step or procedure in
response to any error message. OFF is the default value.

ESTRECORDS

The ESTRECORDS parameter passes the estimated number of records to be sorted in the
request.

ESTRECORDS can only be set with the ON TABLE SET command within the TABLE, MATCH,
or GRAPH request.

The syntax is:

ibi™ FOCUS® Developing Applications

122 | Customizing Your Environment

ON TABLE SET ESTRECORDS n

where:

n

Is the estimated number of records to be sorted.

EUROFILE

The EUROFILE parameter activates the data source that contains information for the
currency you want to convert. This setting can be changed during a session to access a
different currency data source. This parameter cannot be issued in a report request.

Note: You cannot set any additional parameters on the same line as EUROFILE.
FOCUS ignores any other parameters specified on the same line.

The syntax is:

SET EUROFILE = {ddname|OFF}

where:

ddname

Is the name of the Master File for the currency data source you want to use. The
ddname must refer to a read-only data source accessible by FOCUS. There is no default
value.

OFF

Deactivates the current currency data source and removes it from memory.

EXCELSERVURL

The EXCELSERVURL parameter is needed for generating XLSX report output.

ibi™ FOCUS® Developing Applications

123 | Customizing Your Environment

The syntax is:

SET EXCELSERVURL = LOCAL

EXL2KLANG

When included in the member NLSCFG in the ERRNLS PDS, the EXL2KLANG parameter
specifies the language used for Microsoft® Excel requests. This language must be the same
as the language of Excel on the browser machine in order to correctly display output.

You can code the SET EXL2KLANG command in a profile or procedure to override the
setting in the errors file.

The syntax is:

EXL2KLANG = {language|ENG}

where:

language

Is the Excel language. Valid values are:

l ENG for English. ENG is the default value.

l FRE for French.

l GER for German.

l JPN for Japanese.

l KOR for Korean.

l SPA for Spanish.

EXL2KTXTDATE

The EXL2KTXTDATE parameter allows you to specify that translated dates should be sent
as date values with format masks instead of text values.

ibi™ FOCUS® Developing Applications

124 | Customizing Your Environment

The syntax is:

SET EXL2KTXTDATE = {TEXT|VALUE}

where:

TEXT

Passes date values that contain text to Excel 2000 as formatted text. TEXT is the default
value.

VALUE

Passes the types of translated date values that contain text and are supported in Excel
date formats to Excel 2000 as standard date values with text format masks applied.

EXTAGGR

The EXTAGGR parameter uses external sorts to perform aggregation.

The syntax is:

SET EXTAGGR = {ON|OFF|NOFLOAT}

where:

ON

Allows aggregation by an external sort. ON is the default.

OFF

Does not allow aggregation by an external sort.

NOFLOAT

Allows aggregation if there are no floating data fields present.

EXTENDNUM

ibi™ FOCUS® Developing Applications

125 | Customizing Your Environment

The EXTENDNUM parameter controls whether asterisks (*) display on report output when
the value to be displayed does not fit in the allotted space on report output or whether the
report column is extended to display the number.

The syntax is:

SET EXTENDNUM = {ON|OFF|AUTO}

where:

ON

Displays all numbers in full, regardless of the USAGE format defined.

OFF

Displays asterisks when the value does not fit in the space allotted by the USAGE
format. This is the legacy behavior.

AUTO

Applies an ON or OFF setting based on output format and SQUEEZE settings, as shown
in the following table.

Format SQUEEZE Setting EXTENDNUM

PDF, PS, DHTML, PPT,
PPTX

ON

OFF

ON

OFF

HTML, EXL2K, XLSX N/A ON

WP, other delimited
formats

N/A OFF

AUTO is the default value.

EXTHOLD

The EXTHOLD parameter enables you to create a HOLD file using an external sort.

ibi™ FOCUS® Developing Applications

126 | Customizing Your Environment

The syntax is:

SET EXTHOLD = {ON|OFF}

where:

ON

Creates HOLD files using an external sort. ON is the default value.

OFF

Does not create HOLD files using an external sort.

EXTRACT

The EXTRACT parameter activates Structured HOLD Files for a request.

This parameter is only supported in a TABLE or TABLEF request using an ON TABLE phrase.

The syntax is:

ON TABLE SET EXTRACT = {ON|*|OFF}

where:

ON

Activates Structured HOLD Files for this request and extracts all fields mentioned in the
request.

*

Activates Structured HOLD Files for this request and indicates that a block of extract
options follows. For example, you can exclude specific fields from the Structured HOLD
File.

OFF

Deactivates Structured HOLD files for this request. OFF is the default value.

ibi™ FOCUS® Developing Applications

127 | Customizing Your Environment

EXTSORT

The EXTSORT parameter activates an external sorting feature for use with the TABLE,
MATCH, and GRAPH commands.

If the report can be processed entirely in memory, external sorting does not occur.

In order to determine if the report can be processed in memory, issue the ? STAT query
after the TABLE, MATCH, or GRAPH command, and check the value of the SORT USED
parameter.

When StyleSheets are being used, an external sort does not work.

The syntax is:

SET EXTSORT = {ON|OFF}

where:

ON

Enables the selective use of an external sorting product to sort report. ON is the default
value.

OFF

Uses the internal sorting procedure to sort reports.

FIELDNAME
The FIELDNAME parameter controls whether long and qualified field names are supported.

This command cannot be used with ON TABLE SET.

The syntax is:

SET FIELDNAME = {NEW|NOTRUNC|OLD}

where:

ibi™ FOCUS® Developing Applications

128 | Customizing Your Environment

NEW

Supports long and qualified field names. NEW is the default value.

NOTRUNC

Supports long and qualified field names, but not unique truncations.

OLD

This parameter value is no longer operational. It now functions as the value NEW.

FILE[NAME]
The FILE[NAME] parameter specifies a file to be used, by default, in commands. When you
set a default file name, you can use that file without specifying its name.

The syntax is:

SET FILE[NAME] = filename

where:

filename

Is a default file to be used in commands.

FILTER
The FILTER parameter assigns screening conditions to a data source for reporting
purposes. It activates and deactivates filters.

The SET FILTER command is limited to one line. To activate more filters to fit on one line
repeat the SET FILTER command.

The syntax is:

SET FILTER= {*|xx[yy zz]} IN {file|*} {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

129 | Customizing Your Environment

*

Denotes all declared filters. * is the default value.

xx, yy, zz

Are the names of filters as declared in the NAME = syntax of the FILTER FILE command.

file

Is the name of the data source you are assigning screening conditions to.

ON

Activates all (*) or specifically named filters for the data source or all data sources (*).
The maximum number of filters you can activate for a data source is limited by the
number of WHERE/IF phrases the filters contain, not to exceed the limit of WHERE/IF
criteria in any single report request.

OFF

Deactivates (*) or specifically named filters for the data source or all data sources (*).
OFF is the default value.

FIXRET[RIEVE]

FOCUS HOLD files support keyed retrieval from a fixed-format sequential file, which can
greatly reduce the I/Os incurred in reading extract files. The performance gains are
accomplished by using the SEGTYPE= parameter in the Master File to specify that the BY
fields in the request be used as a logical key for sequential files. The FIXRETRIEVE
parameter allows you to stop the retrieval process when an equality test on this field holds
true. This changes the former behavior, as the interface previously read all of the records
from the QSAM file and then passed them to FOCUS to apply the screening conditions
when creating the final report.

The syntax is:

SET FIXRET[RIVE] = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

130 | Customizing Your Environment

ON

Enables keyed retrieval. ON is the default value.

OFF

Disables keyed retrieval.

FLOATMAPPING
SET FLOATMAPPING enables you to take advantage of decimal-based precision numbers
available in DB2 and Oracle, and extends that functionality to all numeric processing for
floating point numbers. With this processing, you gain both precision, including improved
rounding, and enhanced performance.

The syntax is

SET FLOATMAPPING = {D|M|X}

where:

D

Uses the standard double-precision processing. This is the default value.

M

Uses a new internal format that provides decimal precision for double-precision floating
point numbers up to 16 digits.

X

Uses a new internal format that provides decimal precision for double-precision floating
point numbers up to 34 digits.

Note: If the field is passed to a HOLD file, the internal data types X or M data
type will be propagated to the USAGE and ACTUAL formats in the HOLD Master
File.

FOC144

ibi™ FOCUS® Developing Applications

131 | Customizing Your Environment

The FOC144 parameter suppresses the warning message FOC144, which reads:

"Warning: Testing in Independent sets of Data."

The syntax is:

SET FOC144 = {NEW|OLD}

where:

NEW

Displays the FOC144 warning message. NEW is the default value.

OLD

Suppresses the FOC144 warning message.

FOCEXURL

The FOCEXURL parameter is used to generate HTML5 graph output from FOCUS

The syntax is:

SET FOCEXURL = path

where:

path

Is the location of the WebFOCUS Servlet. The default path for Servlet is /ibi_
apps/WFServlet.

FOCFIRSTPAGE
The FOCFIRSTPAGE parameter assigns a page number to the first page of output.

The syntax is:

ibi™ FOCUS® Developing Applications

132 | Customizing Your Environment

SET FOCFIRSTPAGE = {n|1|&FOCNEXTPAGE}

where:

n

Is the number to be assigned to the first page of output. Valid values are integers with
one to six characters. 1 is the default value.

&FOCNEXTPAGE

Is a variable whose value is determined by the last page number used by the last report.
Its value is one more than that number.

FOCSTACK

This setting is no longer needed, but has been left in the product so that existing
applications that still include it continue to work. The FOCSTACK parameter specified the
amount of memory, in thousands of bytes, used by FOCSTACK, the stack of FOCUS
commands awaiting execution.

This command cannot be used with ON TABLE SET.

The syntax is:

SET FOCSTACK [SIZE] = {n|8}

where:

n

Is the maximum amount, in thousands of bytes, that can be used by FOCSTACK. The
maximum value depends on your region size.

8

Allows 8000 bytes to be used by FOCSTACK. 8 is the default value.

FORMULTIPLE

ibi™ FOCUS® Developing Applications

133 | Customizing Your Environment

You can use the same value of a FOR field in many separate rows whether alone, as part of
a range, or in a calculation by including the following syntax before or within an FML
request:

The syntax is:

SET FORMULTIPLE = {ON|OFF}

where:

ON

Enables you to reference the same value of a FOR field in more than one row in an FML
request.

With FORMULTIPLE set to ON, a value retrieved from the data source is included on
every line in the report output for which it matches the tag references.

OFF

Does not enable you to include the same value in multiple rows. OFF is the default
value.

With FORMULTIPLE set to OFF, multiple tags referenced in any of these ways (OR, TO, *)
are evaluated first for an exact reference or for the end points of a range, then for a
mask, and finally within a range. For example, if a value is specified as an exact
reference and then as part of a range, the exact reference is displayed. Note that the
result is unpredictable if a value fits into more than one row whose tags have the same
priority (for example, an exact reference and the end point of a range.)

HDAY

The HDAY parameter specifies the holiday file from which to retrieve dates that are
designated as holidays for use with the date functions DATEDIF, DATEMOV, DATECVT, and
DATEADD. The file must be named HDAY, followed by two to four characters.

To clear the holiday file, use

SET HDAY = OFF

The syntax is:

ibi™ FOCUS® Developing Applications

134 | Customizing Your Environment

SET HDAY = xxxx

where:

xxxx

Are the letters in the name of the holiday file, named HDAYxxxx. This string must be
between two and four characters long.

The default is no setting for this parameter.

HIDENULLACRS

The HIDENULLACRS parameter hides the display of ACROSS groups containing only null
columns.

Hiding null ACROSS columns is supported for all styled output formats except for the
EXL2K PIVOT and EXL2K FORMULA options. It is not supported for Active Technologies.

The syntax is:

SET HIDENULLACRS = {ON|OFF}

where:

ON

Hides columns with missing data in ACROSS groups within a BY-generated page break.

OFF

Does not hide columns. OFF is the default value.

HLDCOM_TRIMANV
The HLDCOM_TRIMANV parameter controls whether trailing blanks are retained in AnV
fields in delimited output files.

The syntax is:

ibi™ FOCUS® Developing Applications

135 | Customizing Your Environment

SET HLDCOM_TRIMANV = {OFF|ON}

where:

OFF

Retains trailing blanks in AnV fields when the output is held in a delimited format. OFF is
the default value.

ON

Removes trailing blanks in AnV fields when the output is held in a delimited format.

HNODATA

The HNODATA parameter controls the missing data characters that are propagated to fields
with the MISSING=ON attribute in HOLD FORMAT ALPHA files. Missing values in fields that
do not have the MISSING=ON attribute are propagated to a HOLD file as blank (for
alphanumeric fields) or zero (for numeric fields).

The syntax is:

SET HNODATA = {charstring|,$}

where:

charstring

Is a string of up to 12 characters propagated to a HOLD FORMAT ALPHA file for missing
values in a field with the MISSING=ON attribute. A period (.) is the default value.

If the string is longer than the length of the field, the value stored in:

l An alphanumeric field is the leftmost character of the string.

l A numeric field is a blank string.

When an alphanumeric string other than the default value (the period) is used to
populate a missing numeric field, a blank is inserted in the held field to prevent a
format error when displaying the data. If you use the default HNODATA value, it is

ibi™ FOCUS® Developing Applications

136 | Customizing Your Environment

inserted in numeric fields. In this way, a request against the HOLD file can recognize
missing data that was propagated to the HOLD file.

If a number with decimal places is specified for HNODATA and the field with missing
data is integer, the value is rounded to a whole number and inserted. In a numeric field
that supports decimal places, it is rounded and inserted with the correct number of
decimal digits.

,$

Indicates that nothing should be placed in the field when there is missing data. This
setting can be used to support null values in non-FOCUS data sources.

HOLDATTR
The HOLDATTR parameter controls which attributes from the original Master File are used
in the HOLD Master File. This setting does not affect the way fields are named in the HOLD
Master File.

Note: HOLDATTRS is a synonym for HOLDATTR.

The syntax is:

SET HOLDATTR = {ON|OFF|FOCUS|CUBE}

where:

ON

Includes the TITLE attribute from the original Master File in HOLD Master Files for HOLD
files of any format. PROPERTY attributes are also propagated. The ACCEPT attribute is
included in the HOLD Master File when the HOLD file is in FOCUS format.

OFF

Does not include the TITLE or ACCEPT attributes from the original Master File in the
HOLD Master File.

FOCUS

Includes the TITLE and ACCEPT attributes in HOLD Master Files when the HOLD file is in
FOCUS format. PROPERTY attributes are also propagated. FOCUS is the default value.

ibi™ FOCUS® Developing Applications

137 | Customizing Your Environment

CUBE

Propagates folders and DV_ROLE attributes, as well as TITLE attributes to the HOLD
Master File. It also propagates the field name as the alias value.

HOLDFORMAT

The HOLDFORMAT parameter determines the default format for HOLD files. This value can
be overridden for an individual HOLD file by issuing the ON TABLE SET HOLD FORMAT
command in a request.

The syntax is:

SET HOLDFORMAT = {BINARY|ALPHA}

where:

BINARY

Creates HOLD files in binary format. BINARY is the default value.

ALPHA

Creates HOLD files in ALPHA format.

HOLDLIST

The HOLDLIST parameter controls whether only displayed fields or all fields are included in
the HOLD or PCHOLD file.

The syntax is:

SET HOLDLIST = {PRINTONLY|ALL|ALLKEYS|EXPLICIT}

where:

ibi™ FOCUS® Developing Applications

138 | Customizing Your Environment

PRINTONLY

Includes only those fields in the HOLD or PCHOLD file that are specified in the report
request.

ALL

Includes all fields referenced in a request in the HOLD or PCHOLD file, including both
computed fields and fields referenced in a COMPUTE command. ALL is the default value.
(OLD may be used as a synonym for ALL.)

Note: Vertical sort (BY) fields specified in the request with the NOPRINT
option are not included in the HOLD file, even with SET HOLDLIST=ALL.

ALLKEYS

Includes all fields in the HOLD or PCHOLD file, including NOPRINTed BY fields.

EXPLICIT

Includes fields in the HOLD or PCHOLD file that are explicitly omitted from the report
output using the NOPRINT option in the request, but does not include fields that are
implicitly NOPRINTed. For example, if a field is reformatted in the request, two versions
of the field exist, the one with the new format and the one with the original format,
which is implicitly NOPRINTed.

HOLDMISS

The HOLDMISS parameter enables you to distinguish between missing data and default
values of blank (for character data) or zero (for numeric data) in a HOLD file.

The syntax is:

SET HOLDMISS = {OFF|ON}

where:

OFF

Does not allow you to store missing data in a HOLD file. OFF is the default value.

ibi™ FOCUS® Developing Applications

139 | Customizing Your Environment

ON

Enables you to store missing data in a HOLD file. When TABLE generates a default value
for data not found, it generates missing values.

HOLDSTAT

The HOLDSTAT parameter includes comments and DBA information in HOLD Master Files.
This information can be from the HOLDSTAT ERRORS file, or a file specified by the user.

The syntax is:

SET HOLDSTAT = {ON|OFF|name}

where:

ON

Derives comments and DBA information from a HOLDSTAT file. In z/OS, this information
is derived from the member HOLDSTAT in the PDS allocated to the ddname MASTER or
ERRORS.

OFF

Does not include information from the HOLDSTAT file in the HOLD Master File. OFF is
the default value.

name

Specifies a HOLDSTAT file, created by the end user, whose information is included in the
HOLD Master File.

HTMLARCHIVE

The HTMLARCHIVE parameter packages HTML or DHTML reports together with image files
into a single web archive document (.mht file). The only browser that supports this format
for HTML is Internet Explorer.

The syntax is:

ibi™ FOCUS® Developing Applications

140 | Customizing Your Environment

SET HTMLARCHIVE = {ON|OFF}

where:

ON

Packages HTML or DHTML reports together with image files into a single web archive
document (.mht file).

OFF

Does not package multiple files into a single document. OFF is the default value.

HTMLCSS

The HTMLCSS parameter creates an internal Cascading Style Sheets command in the HTML
display page.

The syntax is:

SET HTMLCSS = {ON|OFF}

where:

ON

Creates an internal CSS command in the HTML page that displays the report output.

OFF

Does not create an internal CSS command in the HTML page that displays the report
output. OFF is the default value.

HTMLEMBEDIMG

The HTMLEMBEDIMG parameter activates an encoding mechanism that embeds images and
graphs directly into an HTML or DHTML .htm file to ensure that all FOCUS reports can be
accessed from any browser.

ibi™ FOCUS® Developing Applications

141 | Customizing Your Environment

The syntax is:

SET HTMLEMBEDIMG = {OFF|ON|AUTO}

where:

OFF

Does not affect the default behavior. If HTMLARCHIVE is set ON, .mht files are generated.

ON

Encodes images within the .htm file.

AUTO

Determines how to handle images based on the browser of the calling client. For clients
in Internet Explorer, HTMLARCHIVE will be used to embed the images into an .mht file.
For all other browsers, HTMLEMBEDIMG will encode the image information into an .htm
file. If the displaying browser is unknown, AUTO will use the HTMLARCHIVE setting that
is in effect.

HTMLENCODE

The HTMLENCODE parameter controls whether HTML tags are encoded when these tags
are stored within the actual data or created using a DEFINE or COMPUTE command.

In a FOCUS report, HTMLENCODE=ON causes any text set in a string to be encrypted for
transportation, and then decrypted to be displayed as written on a report. This is both for
security and to ensure that special characters are displayed correctly.

The syntax is:

SET HTMLENCODE {ON|OFF}

where:

ON

Encodes the HTML output that is data. This setting disables the rendering of HTML tags
within a browser when these tags are stored within the actual data or created using a

ibi™ FOCUS® Developing Applications

142 | Customizing Your Environment

DEFINE or COMPUTE command.

OFF

Disables HTML encoding. OFF is the default value.

Note: Because of the new format of the zipped XLSX files, native HTML symbols,
such as a caret (<), cannot be supported as tag characters. For XLSX, unlike
other output formats, HTMLENCODE defaults to ON. HTMLENCODE set to OFF
will cause any data containing HTML tag characters to be omitted from the cell.

INDEX
The INDEX parameter determines the indexing scheme used for indexes. Indexes are fields
specified with FIELDTYPE=I keywords in the Master Files. The OLD setting for INDEX is no
longer supported, but has been left in the product so that applications that included it
continue to work.

The syntax is:

SET INDEX[TYPE] = {NEW|OLD}

where:

NEW

Creates a binary tree index. NEW is the default value.

OLD

Creates a hash index.

JOIN_LENGTH_MODE (JOINLM)
The JOIN_LENGTH_MODE (JOINLM) parameter controls processing of equality joined field
pairs for the record- oriented Adapters (such as VSAM, DFIX, and FIX). There are two
supported modes of handling compatible but not identical joined fields:

l SQL compliance. The JOIN command processor assures strict value equality of

ibi™ FOCUS® Developing Applications

143 | Customizing Your Environment

joined fields. Detected truncation of significant characters during host to cross-
referenced conversion raises a target not found condition. A shorter host field value is
extended to the length of cross-referenced field with non-significant characters
according to the data type.

l FOCUS reporting. The JOIN command processor assures partial value equality of
joined fields.

o When joining a shorter to a longer field, a search range is created to find all
cross-referenced values that are prefixed with the host value (partial key join).

o When joining a longer to a shorter field, the host value is unconditionally
truncated to the cross-referenced field length.

The syntax is:

SET JOIN_LENGTH_MODE = {SQL|RANGE}

where:

SQL

Sets SQL compliant mode. Assures strict equality of host and cross-referenced fields.
This is the default value.

RANGE

Sets FOCUS reporting mode. Supports partial key joins.

JOINOPT

The JOINOPT parameter has two functions:

l Correcting for lagging values with a unique join. If a parent segment has two or
more unique child segments so that each has multiple children, the report may
incorrectly display a missing value. The remainder of the child values may then be
misaligned in the report. These misaligned values are called lagging values. The
JOINOPT parameter ensures proper alignment of your output by correcting for
lagging values.

l Enabling joins with data type conversion. You can join two or more data sources
containing different numeric data types. For example, you can join a field with a

ibi™ FOCUS® Developing Applications

144 | Customizing Your Environment

short packed decimal format to a field with a long packed decimal format, or a field
with an integer format to a field with a packed decimal format. This provides
enormous flexibility for creating reports from joined data sources.

The syntax is:

SET JOINOPT = {NEW|GNTINT|OLD}

where:

NEW

Corrects lagging values when a parent segment has multiple unique children. Also,
enables joins with data type conversion.

GNTINT

Corrects lagging values when a parent segment has multiple unique children. Also,
enables joins with data type conversion.

OLD

Does not correct lagging values or support joins with data type conversion. This is the
default value.

KEEPDEFINES

The KEEPDEFINES parameter controls whether a virtual field created for a host or joined
structure is retained after a JOIN command is run. This parameter applies when a DEFINE
command precedes the JOIN command.

The syntax is:

SET KEEPDEFINES = {ON|OFF|ALL}

where:

ON

Retains the virtual field after a JOIN command is run.

ibi™ FOCUS® Developing Applications

145 | Customizing Your Environment

OFF

Clears the virtual field after a JOIN command is run. OFF is the default value.

ALL

Retains all prior and subsequent virtual fields in the request after a JOIN command is
run.

KEEPFILTERS

By default, filters defined on the host data source are cleared by a JOIN command.
However, filters can be maintained when a JOIN command is issued, by issuing the SET
KEEPFILTERS=ON command.

Setting KEEPFILTERS to ON reinstates filter definitions and their individual declared status
after a JOIN command. The set of filters and virtual fields defined prior to each join is
called a context (see your documentation on SET KEEPDEFINES and on DEFINE FILE SAVE
for information about contexts as they relate to virtual fields). Each new JOIN or DEFINE
FILE command creates a new context.

If a new filter is defined after a JOIN command, it cannot have the same name as any
previously defined filter unless you issue the FILTER FILE command with the CLEAR option.
The CLEAR option clears all filter definitions for that data source in all contexts.

When a JOIN is cleared, each filter definition that was in effect prior to the JOIN command
and that was not cleared, is reinstated with its original status. Clearing a join by issuing the
JOIN CLEAR join_name command removes all of the contexts and filter definitions that
were created after the JOIN join_name command was issued.

The syntax is:

SET KEEPFILTERS = {OFF|ON}

where:

OFF

Does not preserve filters issued prior to a join. This is the default value.

ON

Preserves filters across joins.

ibi™ FOCUS® Developing Applications

146 | Customizing Your Environment

LANG[UAGE]
The LANG[UAGE] parameter specifies the National Language Support (NLS) environment. It
sets the language of error messages and can also be used to set the language of report
titles if the Master File contains alternate language TITLE attributes. For more information,
see the Describing Data manual and the Describing Data manual.

The syntax is:

SET LANG[UAGE] = [LNG|ln]

where:

LNG

Is the 3-letter abbreviation used to specify a language.

ln

Is the 2-letter ISO code used to specify a language.

The abbreviations and ISO codes used to specify a language are shown in the following
table.

Language Name
(Code)

Displayed Language
(GUI)

Language
Abbreviation

Language ISO
code

AMENGLISH or
ENGLISH or
UKENGLISH

English AME or
ENG or
UKE

en

ARABIC Arabic ARB ar

BALTIC Lithuanian BAL lt

CZECH Czech CZE cs

ibi™ FOCUS® Developing Applications

147 | Customizing Your Environment

Language Name
(Code)

Displayed Language
(GUI)

Language
Abbreviation

Language ISO
code

DANISH Danish DAN da

DUTCH Dutch DUT nl

FINNISH Finnish FIN fi

FRENCH French -
Standard
or Canadian

FRE fr
fc

GERMAN German -
Standard
or Austrian

GER de
at

GREEK Greek GRE el

HEBREW Hebrew HEB or
HEW

iw

ITALIAN Italian ITA it

JAPANESE Japanese-JIS
or EUC

JPN or
JPE

ja or je

ibi™ FOCUS® Developing Applications

148 | Customizing Your Environment

Language Name
(Code)

Displayed Language
(GUI)

Language
Abbreviation

Language ISO
code

KOREAN Korean KOR ko

POLISH Polish POL po

PORTUGUESE Portuguese-
Brazil or
Portugal

POR br
pt

RUSSIAN Russian RUS ru

S-CHINESE Chinese-
Simplified GB

PRC zh

SPANISH Spanish SPA es

SWEDISH Swedish SWE sv

T-CHINESE Chinese-
Traditional
Big-5

ROC tw

THAI Thai THA th

TURKISH Turkish TUR tr

ibi™ FOCUS® Developing Applications

149 | Customizing Your Environment

LAYOUTGRID

Displays a grid in the report output, which enables you to evaluate the correct placement
of data and objects during your report design. This option is applicable only when using
the PDF, PS, or DHTML report output.

The syntax is:

SET LAYOUTGRID = {ON|OFF}

where:

ON

Displays a grid in the report output.

OFF

Turns off the grid in the report output. OFF is the default value.

LEADZERO

Leading zeros are truncated in Dialogue Manager strings. The functions in FOCUS, when
called in Dialogue Manager, may return a numeric result. If the format of the result is YMD
and contains a 00 for the year, the 00 is truncated.

The syntax is:

SET LEADZERO = {ON|OFF}

where:

ON

Allows the display of leading zeros if present.

OFF

Truncates leading zeros if present. OFF is the default value.

ibi™ FOCUS® Developing Applications

150 | Customizing Your Environment

LEFTMARGIN
The LEFTMARGIN parameter sets the StyleSheet left boundary for report contents on a
page. This parameter applies to PostScript and PDF reports.

The syntax is:

SET LEFTMARGIN = {value|.250}

where:

value

Is the left boundary of report contents on a page. 0.250 inches is the default value.

LINES

The LINES parameter sets the maximum number of lines of printed output that appear on
a page, from the heading to the footing.

It sets the maximum number of lines that appear on a logical page, from the heading at
the top to the footing on the bottom. The value of LINES can range between 1 and 999999.
For styled output formats, specify 999 or higher to generate continuous forms. When
continuous forms are specified, but the output format has a physical page size (as is the
case with PDF output), the column titles repeat at the top of the physical page, without
page numbers. For unstyled output formats, specify 999999 for continuous forms.

If this value is less than the value set for PAPER, the difference provides a bottom margin.
FOCUS never puts more lines on a page than the LINES parameter specifies, but may put
less.

Note: When using SKIP-LINE in a report, always set LINES to at least one less
than the value for PAPER. This avoids unintentional page beaks at the bottom of
the page.

When the STYLESHEET parameter is in effect, the setting for LINES is ignored.

The syntax is:

ibi™ FOCUS® Developing Applications

151 | Customizing Your Environment

SET LINES = {n|57}

where:

n

Is the maximum number of lines of printed output that appear on a page.

MATCHCOLUMNORDER
The MATCHCOLUMNORDER parameter controls how fields in MATCH FILE requests are
sequenced in the MATCH output. The new default method groups fields across files with
their sort field values in the resulting HOLD file regardless of their position within the
MATCH request. The old legacy method appends them to the HOLD file record as they are
referenced in the request.

The syntax is:

SET MATCHCOLUMNORDER = {GROUPED|UNGROUPED}

where:

GROUPED

Groups verb objects with their highest-level common sort keys. This can result in the
fields being propagated to the HOLD file in a different order from the legacy process.
This can affect a subsequent request against the MATCH results if that request uses the
default alias names generated in the HOLD Master File. This typically occurred when
fields with the same name, not used as keys, were merged together with MATCH. The
advantage of the new technique is that it supports HOLD file formats such as FORMAT
FOCUS that generate an associated Master File.

UNGROUPED

Does not group verb objects with their sort keys across files when laying out the
resulting HOLD file record. Fields are appended to the HOLD file record as they are
referenced in the request.

ibi™ FOCUS® Developing Applications

152 | Customizing Your Environment

MAXDATAEXCPT

Data exceptions occur when data that is supposed to contain a numeric value is
manipulated in ways unsupported by the architecture of the operating environment. You
can change the number of data exceptions allowed before the session is terminated using
the SET MAXDATAEXCPT command.

Note: SET MAXDATAEXCPT is functional on mainframe platforms only. All other
platforms allow the syntax, but do not support the functionality.

If this command is issued in a TABLE request using the ON TABLE SET phrase, a new count
is established for that request. The running session count is saved and is restored after the
request executes.

The syntax is:

SET MAXDATAEXCPT={10|maxexcpt}

where:

maxexcpt

Is a one to four-digit number that represents how many data exceptions can occur
before the session is terminated. 10 is the default value. The value zero (0) allows an
unlimited number of data exceptions. The value one (1) terminates the session at the
first data exception.

If MAXDATAEXCPT is changed in a request, a new count is established and the session
counter is saved and then restored after the request executes. If you issue the command
outside of a TABLE request, the running counter is reset to zero.

MAXLRECL

The MAXLRECL parameter defines the maximum record length for an external file that can
be read. 0 is the default value. However, FOCUS can read a 12K lrecl by default. This may
be set to a maximum of 64K. Note that the maximum length of the internal memory area
for data fields is still 32K.

ibi™ FOCUS® Developing Applications

153 | Customizing Your Environment

Note: MAXLRECL is character-based, not byte-based. In a Unicode environment,
three bytes are used to represent each character on UNIX and Windows, and four
bytes are used to represent each character on z/OS. If you are using a double-
byte character set, each character uses two bytes.

The syntax is:

SET MAXLRECL = {n|0}

where:

n

Is the maximum record length for an external file with OCCURS segments. 0 is the
default value.

MDICARDWARN

The MDICARDWARN parameter displays a warning message every time the cardinality in a
dimension exceeds a specified value, offering you the chance to study the MDI build. When
the number of equal values of the data in a dimension reaches a specified percent, a
warning message is issued. In order for MDICARDWARN to be reliable, the data source
should contain at least 100,000 records.

Note: In addition to the warning message, a number displays in brackets. This
number is the least number of equal values for the dimension mentioned in the
warning message text.

The syntax is:

SET = MDICARDWARN = n

where:

n

Is a percentage value from 0 to 50.

ibi™ FOCUS® Developing Applications

154 | Customizing Your Environment

MDIENCODING

The MDIENCODING parameter enables retrieval of output from the MDI file without reading
the data source.

The following rules apply to fields in a TABLE request that uses MDIENCODING:

l Only one MDI can be referred to at a time.

l Only dimensions that are part of the same parent-child hierarchy can be used
simultaneously in a request. A dimension that is not part of a parent-child
relationship can be used as the field in a request if it has a MAXVALUES attribute.

The syntax is:

SET MDIENCODING = {ON|OFF}

where:

ON

Enables retrieval of output from the MDI file without reading the data source.

OFF

Requires access of the data source to allow retrieval of MDI values.

Note: This command can only be issued in an ON TABLE phrase. It has no
default value.

MDIPROGRESS

The MDIPROGRESS parameter displays messages about the progress of an MDI build. The
messages show the number of data records accumulated for every n records inserted into
the MDI as it is processed.

The syntax is:

SET MDIPROGRESS = {n|0}

ibi™ FOCUS® Developing Applications

155 | Customizing Your Environment

where:

n

Is an integer greater than 1000, which displays a progress message for every n records
accumulated in the MDI build. 100,000 is the default value.

0

Disables progress messages.

MESSAGE

The MESSAGE parameter displays or suppresses informational messages in the view source
of your web browser. This parameter cannot be used with ON TABLE SET.

The syntax is:

SET {MESSAGE|MSG} = {ON|OFF}

where:

ON

Displays informational messages. ON is the default value.

OFF

Suppresses both informational messages and carets that appear when FOCUS executes
commands in procedures. Error messages and the carets that prompt for input are still
displayed.

MISS_ON
When a virtual field or calculated value can have missing values, you can specify whether
all or some of the field values used in the expression that creates the DEFINE or COMPUTE
field must be missing to make the result field missing. If you do not specify ALL or SOME
for a DEFINE or COMPUTE with MISSING ON, the default value is SOME.

The SET parameter MISS_ON enables you to specify whether SOME or ALL should be used
for MISSING ON in a DEFINE or COMPUTE that does not specify which to use.

ibi™ FOCUS® Developing Applications

156 | Customizing Your Environment

The syntax is:

SET MISS_ON = {SOME|ALL}

where:

SOME

Indicates that if at least one field in the expression has a value, the temporary field has
a value (the missing values of the field are evaluated as 0 or blank in the calculation). If
all of the fields in the expression are missing values, the temporary field has a missing
value. SOME is the default value.

ALL

Indicates that if all the fields in the expression have values, the temporary field has a
value. If at least one field in the expression has a missing value, the temporary field has
a missing value.

MISSINGTEST
By default, when an IF-THEN-ELSE expression is used to calculate a result and the IF
expression evaluates to zero (for numeric expressions) or blank (for alphanumeric
expressions), the left-hand side is checked to see if it has MISSING ON. If it does, the result
of the expression will be MISSING, not true or false, and the outcome returned will be
MISSING, not the result of evaluating the THEN or ELSE expression, if the field only needs
some missing values. You can use the SET MISSINGTEST command to eliminate the missing
test for the IF expression so that either the THEN expression or the ELSE expression will be
evaluated and returned as the result.

The syntax is:

SET MISSINGTEST = {NEW|OLD|SPECIAL}

where:

NEW

Excludes the IF expression from the missing values evaluation so that it results in either
true or false, not MISSING. If it evaluates to true, the THEN expression is used to

ibi™ FOCUS® Developing Applications

157 | Customizing Your Environment

calculate the result. If it evaluates to false, the ELSE expression is used to calculate the
result. This is the default.

OLD

Includes the IF expression in the missing values evaluation. If the IF expression evaluates
to MISSING, the result is also MISSING, if the missing field only needs some missing
values.

SPECIAL

Is required for passing parameters to RStat.

MULTIPATH

The MULTIPATH parameter controls testing on independent paths.

The syntax is:

SET MULTIPATH = {SIMPLE|COMPOUND}

where:

SIMPLE

Includes a parent segment in the report output if:

l It has at least one child that passes its screening conditions.

l It lacks any referenced child on a path, but the child is optional (see the Creating
Reports manual).

The (FOC144) warning message is generated when a request screens data in a multi-
path report.

(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

COMPOUND

Includes a parent in the report output if it has all of its required children (see the
Creating Reports manual). The COMPOUND setting does not generate the (FOC144)
warning message. COMPOUND is the default value.

ibi™ FOCUS® Developing Applications

158 | Customizing Your Environment

The segment rule is applied level by level as FOCUS descends the data source/view
hierarchy. The existence of a parent segment depends on the existence of the child
segment and the child segment depends on the existence of the grandchild for the full data
source tree.

NEG-ZERO
The SET NEG-ZERO parameter displays the value zero (0) as a negative number when it is
the result of rounding a negative decimal value.

The syntax is:

SET NEG-ZERO = {OFF|ALWAYS|EXCEL}

where:

OFF

Does not display negative zero values. This is the default traditional behavior.

ALWAYS

Applies negative formats, including a minus sign, for zero when it is the result of
rounding a negative number.

EXCEL

Applies negative formats B, R, and CR for zero when it is the result of rounding a
negative number.

Excel always displays zero negative values using this schema, no matter what value is
set for NEG-ZERO.

Note:
l The NEG-ZERO parameter does not apply to exponential formats (for

example E10.2).

l The NEG-ZERO parameter does not apply when rounding is done for
purposes other than display. For example, it is not applied in conversion
from floating-point to packed decimal or integer as part of a computation.

ibi™ FOCUS® Developing Applications

159 | Customizing Your Environment

NODATA

The NODATA parameter determines the character string that indicates missing data in a
report.

The syntax is:

SET {NODATA|NA} = {string|.}

where:

string

Is the character string that indicates missing data in reports. A period (.) is the default
value.

NULL

The NULL parameter enables you to create a variable-length comma or tab delimited HOLD
file that differentiates between a missing value and a blank string or zero value.

The HOLD formats supported for SET NULL=ON are COM, COMT, TAB, and TABT. Missing
values in a record are denoted by two consecutive delimiters. A record that starts with a
missing value has a delimiter in the first position, and a record that ends with a missing
value has a delimiter in the last position.

The syntax is:

SET NULL = {ON|OFF}

where:

ON

Propagates missing values to a delimited HOLD file when the field has MISSING=ON in
the Master File.

ibi™ FOCUS® Developing Applications

160 | Customizing Your Environment

OFF

Propagates the value zero for a missing numeric value and blank ("") for a missing
alphanumeric value to a delimited HOLD file. OFF is the default value.

OLDSTYRECLEN

The OLDSTYRECLEN parameter determines whether the record length, LRECL, is set to the
current setting of LRECL=0, or the older setting of LRECL=512.

The syntax is:

SET OLDSTYRECLEN = {ON|OFF}

where:

ON

Determines that LRECL=512.

OFF

Determines that LRECL=0. OFF is the default value.

ONFIELD

The ONFIELD parameter determines whether ON phrases that refer to fields not present in
the request are ignored or cause the request to terminate. Allowing ON phrases for absent
fields enables user selections at run time to determine which elements are included in
each execution of the request.

Note that any field used must be present in the Master File for the data source or the
following message is generated and execution terminates:

The syntax is:

SET ONFIELD = {ALL|IGNORE}

ibi™ FOCUS® Developing Applications

161 | Customizing Your Environment

ON TABLE SET ONFIELD {ALL|IGNORE}

where:

ALL

Issues a message and terminates execution when a field referenced in an ON phrase is
not present in the request. ALL is the default value.

IGNORE

Ignores ON phrases that reference fields that are not present in the request as well as
ON phrases that include options not supported by the type of field specified.

ORIENTATION
The ORIENTATION parameter specifies the page orientation for reports styled with
StyleSheets.

The syntax is:

SET ORIENTATION = {PORTRAIT|LANDSCAPE}

where:

PORTRAIT

Displays the page in portrait style. PORTRAIT is the default value.

LANDSCAPE

Displays the page in landscape style.

OVERFLOWCHAR

The OVERFLOWCHAR parameter controls the characters displayed in a numeric report
column when the column does not provide enough space to display its value. The number
of overflow characters displayed is the same as the length assigned to the field. By default,
the displayed overflow character is the asterisk (*).

ibi™ FOCUS® Developing Applications

162 | Customizing Your Environment

The syntax is

SET OVERFLOWCHAR = 'char'

where:

char

Is a single byte displayable character. Depending on the character specified, it may not
need to be enclosed in single quotation marks (').

The following characters are not supported as the overflow character: numeric digits,
comma, period, apostrophe, percent sign, minus sign, space, current currency symbol,
dollar sign, Yen symbol, Pound Sterling sign, and Euro symbol. In addition, other
symbols may have significance in your operating environment.

PAGE[-NUM]
The PAGE[-NUM] parameter controls the numbering of output pages.

The syntax is:

SET PAGE[-NUM] = option

where:

option

Is one of the following:

ON displays the page number on the upper left-hand corner of the page. ON is the
default value.

OFF suppresses page numbering.

NOPAGE suppresses page breaks, causing the report to be printed as a continuous page.
When PAGE is set to NOPAGE, the LINES parameter controls where column headings are
printed. You can use NOLEAD in place of NOPAGE.

TOP omits the line at the top of each page of the report output for the page number
and the blank line that follows it. The first line of report output contains the heading, if
one was specified, or the column titles if there is no heading.

ibi™ FOCUS® Developing Applications

163 | Customizing Your Environment

Note: The settings ON, TOP, and OFF include the carriage control character 1
in the first column of each page.

PAGESIZE
The PAGESIZE parameter specifies the page size for StyleSheets. For optimal report
appearance, the actual paper size must match your setting for PAGESIZE. If it does not,
your report is cropped or contains extra blank spaces.

The syntax is:

SET PAGESIZE = size

where:

size

Specifies the page size. If the actual paper size does not match the PAGESIZE setting,
your report is either cropped or contains extra blank space.

The page size options are:

LETTER sets the page size to 8.5 x 11 inches.

ENVELOPE-PERSONAL sets the page size to 3.625 x 6.5 inches.

ENVELOPE-MONARCH sets the page size to 3.875 x 7.5 inches.

ENVELOPE-9 sets the page size to 3.875 x 8.875 inches.

ENVELOPE-10 sets the page size to 4.125 x 9.5 inches.

ENVELOPE-12 sets the page size to 4.5 x 11 inches.

ENVELOPE-DL sets the page size to 4.3 x 8.6 inches.

ibi™ FOCUS® Developing Applications

164 | Customizing Your Environment

ENVELOPE-ITALY sets the page size to 4.3 x 9.1 inches.

ENVELOPE-B4 sets the page size to 9.8 x 13.9 inches.

ENVELOPE-B5 sets the page size to 6.9 x 9.8 inches.

ENVELOPE-B6 sets the page size to 6.9 x 4.9 inches.

ENVELOPE-C3 sets the page size to 12.75 x 18 inches.

ENVELOPE-C4 sets the page size to 9 x 12.75 inches.

ENVELOPE-C5 sets the page size to 6.4 x 9 inches.

ENVELOPE-C6 sets the page size to 4.5 x 6.375 inches.

ENVELOPE-C65 sets the page size to 4.5 x 9 inches.

STATEMENT sets the page size to 5.5 x 8.5 inches.

EXECUTIVE sets the page size to 7.5 x 10.5 inches.

GERMAN-STANDARD-FANFOLD sets the page size to 8.5 x 12 inches.

GERMAN-LEGAL-FANFOLD sets the page size to 8.5 x 13 inches.

FOLIO sets the page size to 8.5 x 13 inches.

LEGAL sets the page size to 8.5 x 14 inches.

ibi™ FOCUS® Developing Applications

165 | Customizing Your Environment

10X14 sets the page size to 10 x 14 inches.

TABLOID sets the page size to 11 x 17 inches.

CUSTOM enables you to set a custom page size for a DHTML, PDF, or PPTX
report.

A3 sets the page size to 11.7 x 16.8 inches.

A4 sets the page size to 8.25 x 11.7 inches.

A5 sets the page size to 5.8 x 8.25 inches.

B4 sets the page size to 9.8 x 13.9 inches.

B5 sets the page size to 7.2 x 10.1 inches.

C sets the page size to 17 x 22 inches.

D sets the page size to 22 x 34 inches.

E sets the page size to 34 x 44 inches.

US-STANDARD-FANFOLD sets the page size to 14.875 x 11 inches.

LEDGER sets the page size to 17 x 11 inches.

QUARTO sets the page size to 8.5 x 10.8 inches.

PANEL

ibi™ FOCUS® Developing Applications

166 | Customizing Your Environment

The PANEL parameter sets the maximum line width, in characters, of a report panel for a
screen or printer. If the report output exceeds this value, the output is partitioned into
several panels. For example, if you set PANEL to 80, the first 80 characters of a record
appear on the first panel, the second 80 characters appear on the second panel, and so on.

When printing a report to your screen, the ideal value for the PANEL parameter is the width
of your screen (usually 80). When printing to your printer, the ideal value for PANEL is the
print width of your printer (usually 132). If PANEL is larger or set to 0, long report lines
wrap around the screen or page.

When the BYPANEL parameter is OFF, a report can be divided into a maximum of 4 panels.
If SET BYPANEL has a value other than OFF, the report may be divided into 99 panels.

When the STYLESHEET parameter is in effect, PANEL is ignored.

The syntax is:

SET PANEL = {0|n}

where:

n

Is the maximum line width, in characters, of a report panel.

0

Does not divide the report into panels. Long report lines wrap around the screen or
page. 0 is the default value.

PARTITION_ON
When using a statistical function, you must establish the size of the partition on which the
function will operate, if the request contains sort fields. You can do this using the
PARTITION_ON command.

The syntax is:

SET PARTITION_ON = {FIRST|PENULTIMATE|TABLE}

where:

ibi™ FOCUS® Developing Applications

167 | Customizing Your Environment

FIRST

Uses the first (also called the major) sort field in the request to partition the values.

PENULTIMATE

Uses the next to last sort field where the COMPUTE is evaluated to partition the values.
This is the default value.

TABLE

Uses the entire internal matrix to calculate the statistical function.

PASS

The PASS parameter enables user access to a data source or stored procedure protected
by DBA security.

This command cannot be used with ON TABLE SET.

The syntax is:

SET PASS = password [IN filename]

where:

password

Is the password that allows access to data sources protected by DBA database security.

filename

Is a specific FOCUS data source or stored procedure protected by security.

PCOMMA

The PCOMMA parameter controls the retrieval of comma-delimited files.

By default, when a Master File specifies SUFFIX=COM, incoming alphanumeric values are
not enclosed in double quotation marks, and each record is terminated with a comma and

ibi™ FOCUS® Developing Applications

168 | Customizing Your Environment

dollar sign (,$) character combination. This format does not support retrieval of most
comma-delimited files produced by a PC application.

The syntax is:

SET PCOMMA = option

where:

option

Can be one of the following:

l ON, which enables the retrieval of comma-delimited data sources created by a PC
application, in which alphanumeric data is enclosed in double quotation marks
and each record is completely contained on one line and is terminated with a
carriage return and line feed. It can also retrieve comma-delimited data sources in
which alphanumeric data is not enclosed in double quotation marks and each
record is terminated with a comma and dollar sign.

l OFF, which does not enable the retrieval of comma-delimited data sources
created by a PC application. It indicates that alphanumeric data is not enclosed in
double quotation marks and each record is terminated with a comma and dollar
sign. OFF is the default value.

l DFIX, which causes delimited files with SUFFIX=COM, COMT, TAB, and TABT to be
processed through the Adapter for DFIX. This processing provides more complete
and meaningful messages and some changes to the processing of missing values
when two delimiters in a row are encountered. With DFIX processing, a missing
value is assigned to the field.

In order to be eligible for DFIX processing, the delimited file must satisfy the
following requirements.

o Each record must be completely contained on one line and terminated with
the crlf (carriage return/linefeed) character combination.

o The ENCLOSURE can be only in the first position after the delimiter for COM
(new) and COMT records. Otherwise, it will not be recognized.

o The number of fields on a line cannot exceed the number of fields defined in
the Master File.

ibi™ FOCUS® Developing Applications

169 | Customizing Your Environment

PCTFORMAT
The PCTFORMAT parameter controls whether fields are prefixed with the operators PCT.,
RPCT., and PCT.CNT. display with a percent sign or with the format associated with the
original field.

The syntax is:

SET PCTFORMAT = {OLD|PERCENT}

where:

OLD

Displays columns prefixed with PCT., RPCT., and PCT.CNT. with the format associated
with the original field.

PERCENT

Displays columns prefixed with PCT., RPCT., and PCT.CNT. with a percent sign. It also
allows the prefixed fields to be reformatted. This is the default value.

PCT.CNT.field will always display with two decimal places, unless reformatted. For PCT.field
and RPCT.field, with SET PCTFORMAT = PERCENT, if the original field has a:

l Precision-based format (F, D, M, X), the column will display with length 7 and two
decimal places.

l Packed format, the column will display with its original number of decimal places.

l Integer format, the column will display with no decimal places.

PDFLINETERM

The PDFLINETERM parameter determines if an extra space is appended to each record of a
PDF output file to facilitate proper file transfer between Windows and UNIX.

In Windows systems, the end of each PDF file has a table containing the byte offset,
including two line termination characters, a carriage return, and a line feed. In UNIX, files
are terminated by only one character, a line feed. Transferring files between Windows and
UNIX systems requires the proper use of the PDFLINETERM parameter.

The syntax is:

ibi™ FOCUS® Developing Applications

170 | Customizing Your Environment

SET PDFLINETERM = {STANDARD|SPACE}

where:

STANDARD

Creates a PDF file without any extra characters. This file will be a valid PDF file if
transferred in text mode to a Windows machine, but not to a UNIX machine. If
subsequently transferred from a UNIX machine to a Windows machine in text mode, it
will be a valid PDF file on the Windows machine.

SPACE

Creates a PDF file with an extra space character appended to each record. This file will
be a valid PDF file if transferred in text mode to a UNIX machine, but not to a Windows
machine. If subsequently transferred from an ASCII UNIX machine to a Windows
machine in binary mode, it will be a valid PDF file on the Windows machine.

PERMPASS

The PERMPASS parameter establishes a user password that remains in effect throughout a
session or connection. You can issue this setting in any supported profile but it is most
useful when established for an individual user by setting it in a user profile. It cannot be set
in an ON TABLE phrase. It is recommended that it not be set in FOCPARM or FOCPROF
because it would then apply to all users. In a FOCUS session, SET PERMPASS can be issued
in PROFILE, a FOCEXEC, or at the command prompt.

All security rules established in the DBA sections of existing Master Files are respected
when PERMPASS is in effect. The user cannot issue the SET PASS or SET USER command to
change to a user password with different security rules. Any attempt to do so generates the
following message:

permanent PASS is in effect. Your PASS will not be honored.
VALUE WAS NOT CHANGED

Only one permanent password can be established in a session. After it is set, it cannot be
changed within the session.

The syntax is:

ibi™ FOCUS® Developing Applications

171 | Customizing Your Environment

SET PERMPASS=userpass

where:

userpass

Is the user password used for all access to data sources with DBA security rules
established in their associated Master Files.

PHONETIC_ALGORITHM
The PHONETIC_ALGORITHM parameter sets a phonetic algorithm to use with the PHONETIC
function, which calculates an index for alphanumeric values such as names, based on their
pronunciation, so that words that have variations in spelling can be grouped together.

The syntax is:

SET PHONETIC_ALGORITHM = {METAPHONE|SOUNDEX}

where:

METAPHONE

Uses the Metaphone algorithm for indexing. Metaphone is suitable for use with most
English words, not just names. Metaphone algorithms are the basis for many popular
spell checkers. METAPHONE is the default algorithm, except on z/OS.

Note: Metaphone is not optimized in the SQL sent to a relational DBMS.
Therefore, if you need to optimize the request for an SQL DBMS, the
SOUNDEX value should be used.

SOUNDEX

Soundex is a legacy phonetic algorithm for indexing names by sound, as pronounced in
English. SOUNDEX is the default algorithm on z/OS.

ibi™ FOCUS® Developing Applications

172 | Customizing Your Environment

PRFTITLE
The PRFTITLE parameter generates descriptive column titles for prefixed fields. These
column titles have readable and translatable descriptions of the prefix operators.

The syntax is:

SET PRFTITLE = {SHORT|LONG}

where:

SHORT

Places the prefix operator name above the field name to generate the column title.

LONG

Generates descriptive column titles for prefixed fields that can be translated to other
languages.

PRINT
The PRINT parameter specifies the report output destination.

It determines whether report output is sent to your screen or to the printer.

You can enter ONLINE and OFFLINE as separate commands that have the same effect as
specifying ONLINE and OFFLINE as PRINT settings.

The syntax is:

SET PRINT = {ONLINE|OFFLINE}

where:

ONLINE

Sends report output to the terminal. ONLINE is the default value.

OFFLINE

Sends report output to the system printer.

ibi™ FOCUS® Developing Applications

173 | Customizing Your Environment

PRINTDST

The handling of DST operators has been improved to support multiple DST operators in the
same request, and the ability to use DST with ACROSS.

With these improvements, you can control the behavior of requests that use the PRINT
command with multiple DST operators to achieve independent DST values. To implement
this functionality, set the PRINTDST parameter to NEW.

The syntax is:

SET PRINTDST = {OLD|NEW}

where:

OLD

Processes multiple DST operators in a PRINT request as nested BY fields, making them
dependent on each other. OLD is the default value.

NEW

Processes multiple DST operators in a PRINT request as totally independent objects.

PRINTPLUS

The PRINTPLUS parameter introduces enhancements to the display alternatives offered by
the FOCUS Report Writer. To force a break at a specific spot, you must use NOSPLIT.
PRINTPLUS is not supported with StyleSheets. Problems may be encountered if
HOTSCREEN is set to OFFLINE.

The syntax is:

SET {PRINTPLUS|PRTPLUS} = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

174 | Customizing Your Environment

ON

Handles the PAGE-BREAK internally to provide the correct spacing of pages, NOSPLIT is
handled internally and you can perform RECAPs in cases where pre-specified conditions
are met. Additionally, a Report SUBFOOT now prints above the footing instead of below
it.

OFF

Does not support StyleSheets. OFF is the default value.

PSPAGESETUP

The PSPAGESETUP parameter causes the paper source used by a PostScript printer to
match the PAGESIZE parameter setting.

The syntax is:

SET PSPAGESETUP = {OFF|ON}

where:

OFF

Does not include PostScript code for the selection of a PostScript printer paper source.
OFF is the default value.

ON

Includes PostScript code that automatically tells a PostScript printer to set its paper
source to the size specified by PAGESIZE.

QUALCHAR

The QUALCHAR parameter specifies the qualifying character to be used in qualified field
names.

The syntax is:

ibi™ FOCUS® Developing Applications

175 | Customizing Your Environment

SET QUALCHAR = {character|.}

where:

character

Is a valid qualifying character. They include:

. period (hex 4B)

: colon (hex 7A)

! exclamation point (hex 5A)

% percent sign (hex 6C)

¦ broken vertical bar (hex 6A)

\ backslash (hex E0)

A period (.) is the default value. The use of the other qualifying characters listed above is
restricted and should not be used with 66-character field names.

If the qualifying character is a period, you can use any of the other characters listed
above as part of a field name. If you change the default qualifying character to a
character other than the period, then you cannot use that character in a field name.

QUALTITLES

The QUALTITLES parameter uses qualified column titles in report output when duplicate
field names exist in a Master File. A qualified column title distinguishes between identical
field names by including the segment name.

The syntax is:

SET QUALTITLES = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

176 | Customizing Your Environment

ON

Uses qualified column titles when duplicate field names exist and FIELDNAME is set to
NEW.

OFF

Disables qualified column titles. OFF is the default value.

RANK
The RANK parameter determines how rank numbers are assigned when a request contains
the [RANKED] BY [HIGHEST|LOWEST] n phrase and multiple data values fall into the same
rank category. If the rank number for the next group of values is the next sequential
integer, the ranking method is called dense. If the rank number for the next group of values
is the previous rank number plus the number of multiples, the ranking method is called
sparse.

The syntax is:

SET RANK = {DENSE|SPARSE}

where:

DENSE

Specifies dense ranking. With this method, each rank number is the next sequential
integer, even when the same rank is assigned to multiple data values. DENSE is the
default value.

SPARSE

Specifies sparse ranking. With this method, if the same rank number is assigned to
multiple data values, the next rank number will be the previous rank number plus the
number of multiples.

RECAP-COUNT

The RECAP-COUNT parameter includes lines containing a value created with RECAP when
counting the number of lines per logical page for printed output.

ibi™ FOCUS® Developing Applications

177 | Customizing Your Environment

The number of lines per page is determined by the LINES parameter.

The syntax is:

SET RECAP-COUNT = {ON|OFF}

where:

ON

Counts lines containing a value created with RECAP.

OFF

Does not count lines containing a value created with RECAP. OFF is the default value.

RECORDLIMIT
The RECORDLIMIT parameter limits the number of records retrieved or displayed.

The syntax is:

SET RECORDLIMIT = {RECORDLIMIT|OUTPUTLIMIT}

where:

RECORDLIMIT

In a request with a RECORDLIMIT filter (WHERE RECORDLIMIT EQ n or IF RECORDLIMIT
EQ n), limits the records displayed on the report output to the number of reads
specified in the filter. RECORDLIMIT is the default.

OUTPUTLIMIT

In a request with a RECORDLIMIT filter (WHERE RECORDLIMIT EQ n or IF RECORDLIMIT
EQ n), applies the RECORDLIMIT filter to the number of records displayed in the final
output.

RIGHTMARGIN
The RIGHTMARGIN parameter sets the StyleSheet right boundary for report contents on a
page. This parameter applies to PostScript and PDF reports.

ibi™ FOCUS® Developing Applications

178 | Customizing Your Environment

The syntax is:

SET RIGHTMARGIN = {value|.250}

where:

value

Is the right boundary of report contents on a page. 0.250 inches is the default value.

RPAGESET

The RPAGESET parameter controls how the number of lines per logical page are
determined when output contains text created with SUBFOOT and a field value created
with RECAP.

The syntax is:

SET RPAGESET = {NEW|OLD}

where:

NEW

Sets the number of lines per logical page equal to the LINES value plus two plus the
number of the highest BY field with a SUBFOOT.

OLD

Sets the number of lines per logical page equal to the value of the LINES parameter. See
LINES for details. OLD is the default.

SAVEDMASTERS

The SAVEDMASTERS parameter saves a Master File in memory after it is used in a request.
Saving a Master File prevents re-parsing the Master File when referenced in subsequent
requests, resulting in performance improvement.

Up to 99 Master Files can be saved to memory.

ibi™ FOCUS® Developing Applications

179 | Customizing Your Environment

This parameter cannot be set in the ON TABLE SET command.

The syntax is:

SET SAVEDMASTERS = n

where:

n

Is an integer between 0 and 99 that specifies the maximum number of Master Files on
the SAVEDMASTERS list. 10 is the default value.

Note that the most recently used Master File is always stored in memory, even with
SAVEDMASTERS set to zero. However, the zero setting does not generate the list of
saved Master Files.

SAVEMATRIX

The SAVEMATRIX parameter saves the matrix from your request to protect it from being
overwritten when using Dialogue Manager commands.

The syntax is:

SET SAVEMATRIX = {ON|OFF}

where:

ON

Saves the internal matrix from the last report request, preventing it from being
overwritten.

OFF

Overwrites the internal matrix for each request. OFF is the default.

SHADOW

ibi™ FOCUS® Developing Applications

180 | Customizing Your Environment

The SHADOW parameter activates the Absolute File Integrity feature for FOCUS files (but
not XFOCUS files).

The syntax is:

SET SHADOW [PAGE] = {ON|OFF|OLD}

where:

ON

Activates the Absolute File Integrity feature. The maximum number of pages shadowed
is 256K.

OFF

Deactivates the Absolute File Integrity feature. OFF is the default value.

OLD

Indicates that your FOCUS file was created before Version 7.0. This means that the
maximum number of pages shadowed is 63,551.

SHIFT

The SHIFT parameter controls the use of shift strings.

The syntax is:

SET SHIFT = {ON|OFF}

where:

ON

Specifies a shift string for Hebrew or DBCS (double-byte character support).

OFF

Indicates that SHIFT is not in effect. OFF is the default value.

ibi™ FOCUS® Developing Applications

181 | Customizing Your Environment

SHORTPATH

The SHORTPATH parameter controls how screening conditions against missing cross-
referenced segment instances are processed in a left outer join.

In FOCUS, the command SET ALL = ON or JOIN LEFT_OUTER specifies a left outer join. With
a left outer join, all records from the host file display on the report output. If a cross-
referenced segment instance does not exist for a host segment instance (called a short
path), the report output displays missing values for the fields from the cross-referenced
segment. However, the fields are not assigned missing values for testing purposes.

If there is a screening condition on the dependent segment, those dependent segment
instances that do not satisfy the screening condition are omitted from the report output,
and so are their corresponding host segment instances. With missing segment instances,
tests for missing values fail because the fields in the segment have not been assigned
missing values.

When a relational engine performs a left outer join, it processes host records with missing
cross-referenced segment instances slightly differently from the way FOCUS processes
those records when both of the following conditions apply:

l There is a screening condition on the cross-referenced segment.

l A host segment instance does not have a corresponding cross-referenced segment
instance.

When these two conditions are true, FOCUS omits the host record from the report output,
while relational engines supply null values for the fields from the dependent segment and
then apply the screening condition. If the missing values pass the screening condition, the
entire record is retained on the report output. This type of processing is useful for finding
or counting all host records that do not have matching records in the cross-referenced file
or for creating a DEFINE-based join from the cross-referenced segment with the missing
instance to another dependent segment.

If you want FOCUS to assign null values to the fields in a missing segment instance when a
left outer join is in effect, you can issue the command SET SHORTPATH=SQL.

SET SHORTPATH = {FOCUS|SQL}

where:

ibi™ FOCUS® Developing Applications

182 | Customizing Your Environment

FOCUS

Omits a host segment from the report output when it has no corresponding cross-
referenced segment and the report has a screening condition on the cross-referenced
segment.

SQL

Supplies missing values for the fields in a missing cross-referenced segment in an outer
join. Applies screening conditions against this record and retains the record on the
report output if it passes the screening test.

Note: There must be an outer join in effect, either as a result of the SET
ALL=ON command or a JOIN LEFT_OUTER command (either inside or outside
of the Master File).

SHOWBLANKS

The SHOWBLANKS parameter preserves leading and internal blanks in HTML and EXL2K
report output.

The syntax is:

SET SHOWBLANKS = {OFF|ON}

where:

OFF

Removes leading and internal blanks in HTML and EXL2K report output. OFF is the
default value.

ON

Preserves leading and internal blanks in HTML and EXL2K report output.

ibi™ FOCUS® Developing Applications

183 | Customizing Your Environment

SORTMATRIX
The SORTMATRIX parameter controls whether to employ in-memory sorting with decreased
use of external memory. The syntax is

SET SORTMATRIX = {SMALL|LARGE}

where:

SMALL

Creates a single sort matrix of up to 2048 rows, and uses a binary search-based insertion
sort with aggregation during retrieval. The maximum number of rows in this matrix has
been determined to provide the best performance for this type of sort. If the sort matrix
becomes full, it is written to a file called FOCSORT on disk, the in-memory matrix is
emptied, and retrieval continues, writing to FOCSORT as many times as necessary. When
the end of data is detected, the remaining rows are written to FOCSORT and the merge
routine merges all of the sort strings in FOCSORT (which, in extreme cases, may require
multiple merge phases), while also completing the aggregation.

LARGE

Creates a large matrix or multiple small matrices in memory, when adequate memory is
available as determined by the SORTMEMORY parameter. LARGE is the default value.
The goal of this strategy is to do as much sorting as possible in internal memory before
writing any records to disk. Whether disk I/O is necessary at all in the sorting process
depends on the amount of memory allocated for sorting and the size of the request
output. If the amount of SORTMEMORY is not large enough to meaningfully make use of
the LARGE strategy, the sort will default to the SMALL strategy. The LARGE strategy
greatly reduces the need for disk I/O and, if disk I/O is required after all (for very large
output), it virtually eliminates the need for multiple merge phases.

SORTMEMORY
The SORTMEMORY parameter controls the amount of internal memory available for sorting.
The syntax is:

SET SORTMEMORY = {n|512}

where:

ibi™ FOCUS® Developing Applications

184 | Customizing Your Environment

n

Is the positive number of megabytes of memory available for sorting. The default value
is 512.

SPACES

The SPACES parameter sets the number of spaces between columns in a report.

This parameter does not work with HTML, PDF, or styled reports.

The syntax is:

SET SPACES = {AUTO|n}

where:

AUTO

Automatically places either one to two spaces between columns. AUTO is the default
value.

n

Is the number of spaces to place between columns of a report. Valid values are integers
between one and eight.

SQLTOPTTF

The SQLTOPTTF parameter enables the SQL Translator to generate TABLEF commands
instead of TABLE commands.

The syntax is:

SET SQLTOPTTF = {ON|OFF}

where:

ibi™ FOCUS® Developing Applications

185 | Customizing Your Environment

ON

Generates TABLEF commands when possible. For example, a TABLEREF command is
generated if there is no JOIN or GROUP BY command. ON is the default value. ON is the
default value.

OFF

Always generates TABLE commands.

SQUEEZE
The SQUEEZE parameter applies only to the StyleSheet feature.

It determines the column width in the report output. The column width is based on the
size of the data value or column title, or on the field format defined in the Master File.

The syntax is:

SET SQUEEZE = {ON|OFF|n}

where:

ON

Assigns column widths based on the widest data value or widest column title, whichever
is longer.

OFF

Assigns column widths based on the field format specified in the Master File. This value
pads the column width to the length of the column title or field format descriptions,
whichever is greater. OFF is the default value.

n

Represents a specific numeric value, based on the UNITS parameter setting, to which
the column width can be set (valid only in PDF and PS).

ibi™ FOCUS® Developing Applications

186 | Customizing Your Environment

STYLE[SHEET]
The STYLE[SHEET] parameter controls the format of report output by accepting or rejecting
StyleSheet parameters. The parameters specify formatting options, such as page size,
orientation, and margins.

The syntax is:

SET STYLE[SHEET] = {stylesheet|ON|OFF}

where:

stylesheet

Is the name of the StyleSheet file. For UNIX and Windows, this is the name of the
StyleSheet file without the file extension .sty. For z/OS, this is the member name in the
PDS allocated to ddname FOCSTYLE.

For a PDF or PostScript report, it uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE.
The settings for LINES, PAPER, PANEL, and WIDTH are ignored.

ON

Uses the page layout settings for UNITS, TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE. The settings for LINES, PAPER,
PANEL, and WIDTH are ignored.

For a PDF or PostScript report, uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE;
the settings for LINES and WIDTH are ignored.

OFF

This uses the settings for LINES, PAPER, PANEL, and WIDTH. The settings for UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION,
and SQUEEZE are ignored. OFF is the default value.

SUBTOTALS

ibi™ FOCUS® Developing Applications

187 | Customizing Your Environment

The SUBTOTALS parameter specifies whether summary lines are displayed above or below
the detail lines in a report. The summary commands affected include SUBTOTAL, SUB-
TOTAL, RECOMPUTE, SUMMARIZE, COMPUTE, RECAP, and COLUMN-TOTAL.

The syntax is:

SET SUBTOTALS {ABOVE|BELOW}

where:

ABOVE

Places summary lines above the detail lines and displays the sort field values on every
detail line of the report output.

BELOW

Places summary lines below the detail lines. BELOW is the default value.

SUMMARYLINES

The SUMMARYLINES parameter allows users to combine fields with and without prefix
operators on summary lines in one request. Prefix operator processing is used for all
summary lines. Fields without prefix operators are processed as though they were specified
with the operator SUM.

This command cannot be used with ON TABLE SET.

The syntax is:

SET SUMMARYLINES = {NEW|OLD|EXPLICIT}

where:

NEW

Propagates all summary operations to the grand total line. Uses prefix operator
processing for all summary commands (all summary fields without prefix operators are
processed as though they had a SUM. operator). Fields listed in a summary command
are populated only on summary lines created by that summary command and on

ibi™ FOCUS® Developing Applications

188 | Customizing Your Environment

summary lines created by propagation of that summary command. Supports display of
alphanumeric fields on summary lines. NEW is the default value.

OLD

This value is no longer supported. It processes as NEW.

EXPLICIT

Does not propagate SUBTOTAL and RECOMPUTE to the grand total line. Uses prefix
operator processing for all summary commands (all summary fields without prefix
operators are processed as though they had a SUM. operator). Fields listed in a
summary command are populated only on summary lines created by that summary
command and on summary lines created by propagation of that summary command.
Supports display of alphanumeric fields on summary lines.

Note: This command is not supported in a request using the ON TABLE SET
syntax.

SUMPREFIX

The SUMPREFIX parameter allows users to choose the answer set display order when using
an external sort to perform aggregation on alphanumeric or smart date formats.

The syntax is:

SET SUMPREFIX = {FST|LST|MIN|MAX}

where:

FST

Displays the first value when alphanumeric or smart date data types are aggregated.

LST

Displays the last value when alphanumeric or smart date data types are aggregated. LST
is the default value.

ibi™ FOCUS® Developing Applications

189 | Customizing Your Environment

MIN

Displays the minimum value in the sort order set by your FOCUS code page and
configuration when alphanumeric or smart date data types are aggregated.

MAX

Displays the maximum value in the sort order set by your FOCUS code page and
configuration when alphanumeric or smart date data types are aggregated.

TESTDATE

The TESTDATE parameter temporarily alters the system date in order to test a dynamic
window allowing you to simulate clock settings to determine the behavior of your program.

The syntax is:

SET TESTDATE = {yyyymmdd|TODAY}

where:

yyyymmdd

Is an 8-digit date in the format YYYYMMDD.

TODAY

Is the current date. TODAY is the default value.

TIME_SEPARATOR
This parameter defines the separator for time components for the&TOD system variable.

The syntax is:

SET TIME_SEPARATOR = {DOT|COLON}

where:

ibi™ FOCUS® Developing Applications

190 | Customizing Your Environment

DOT

Uses a dot (.) to separate time components. This is the default value.

COLON

Uses a colon (:) to separate time components.

TITLELINE

The TITLELINE parameter controls underlining of column titles on report output.

The syntax is:

SET {TITLELINE|ACROSSLINE} = {ON|OFF|SKIP}

where:

ON

Underlines column titles on report output. ON is the default value.

OFF

Replaces the underline with a blank line.

SKIP

Specifies no underline and no blank line.

TITLES

The TITLES parameter controls whether to use pre-defined column titles in the Master File
as column titles in report output.

The syntax is:

SET TITLES = {ON|OFF|NOPREFIX}

ibi™ FOCUS® Developing Applications

191 | Customizing Your Environment

ON TABLE SET TITLES {ON|OFF|NOPREFIX}

where:

ON

Displays the value of the TITLE attribute as the column heading on the report output, if
a TITLE attribute exists in the Master File. If the field has a prefix operator in the report
request, creates the column heading using both the prefix operator and the TITLE
attribute. If there is no TITLE attribute, the field name is used instead. ON is the default
value.

OFF

Displays the field name as the column heading on the report output. If the field has a
prefix operator in the report request, creates the column heading using both the prefix
operator and the field name.

NOPREFIX

Displays the value of the TITLE attribute as the column heading on the report output, if
a TITLE attribute exists in the Master File. If there is no TITLE attribute, the field name is
used instead. If the field has a prefix operator in the report request, creates the column
heading using both the prefix operator and the field name.

TOPMARGIN
The TOPMARGIN parameter sets the top StyleSheet boundary for report contents on a
page.

This parameter applies to PostScript and PDF reports.

The syntax is:

SET TOPMARGIN = {value|.250}

where:

value

Is the top boundary on a page for report output. 0.250 inches is the default value.

ibi™ FOCUS® Developing Applications

192 | Customizing Your Environment

UNITS
The UNITS parameter applies to PostScript and PDF reports.

It specifies the unit of measure for page margins, column positions, and column widths.

The syntax is:

SET UNITS = {INCHES|CM|PTS}

where:

INCHES

Uses inches as the unit of measure. INCHES is the default value.

CM

Uses centimeters as the unit of measure.

PTS

Uses points as the unit of measurement. (One inch = 72 points, one cm = 28.35 points).

USER
The USER parameter enables user access to a data source or stored procedure protected
by DBA security.

The syntax is:

SET USER = user

where:

user

Is the user name that, with a password, enables access to a data source or stored
procedure protected by DBA security.

USERFCHK

ibi™ FOCUS® Developing Applications

193 | Customizing Your Environment

The USERFCHK parameter controls the level of verification applied to DEFINE FUNCTION
arguments and FOCUS-supplied function arguments. It does not affect verification of the
number of parameters. The correct number must always be supplied.

Note that the USERFNS=SYSTEM setting must be in effect. For details, see USERFNS.

Issue the following command in FOCPARM, FOCPROF, on the command line, in a
procedure, or in an ON TABLE command.

SET USERFCHK = setting

where:

setting

Can be one of the following:

ON verifies parameters in requests, but does not verify parameters for functions used in
Master File DEFINEs. If a parameter has an incorrect length, an attempt is made to fix
the problem. If such a problem cannot be fixed, a message is generated and the
evaluation of the affected expression is terminated. ON is the default value.

Because parameters are not verified for functions specified in a Master File, no errors
are reported for those functions until the DEFINE field is used in a subsequent request
when, if a problem occurs, the following message is generated:

(FOC003) THE FIELDNAME IS NOT RECOGNIZED

OFF does not verify parameters except in the following cases:

l If a parameter that is too long would overwrite the memory area in which the
computational code is stored, the size is automatically reduced without issuing a
message.

Note: The OFF setting will be deprecated in a future release.

l If an alphanumeric parameter is too short, it is padded with blanks to the correct
length.

Note: We strongly recommend that you not use this option, as disabling
parameter checking can lead to unexpected issues.

ibi™ FOCUS® Developing Applications

194 | Customizing Your Environment

FULL is the same as ON, but also verifies parameters for functions used in Master File
DEFINEs.

ALERT verifies parameters in a request without halting execution when a problem is
detected. It does not verify parameters for functions used in Master File DEFINEs. If a
parameter has an incorrect length and an attempt is made to fix the problem behind
the scenes, the problem is corrected with no message. If such a problem cannot be
fixed, a warning message is generated. Execution then continues as though the setting
were OFF.

USERFNS

If your site has a locally written function with the same name as an Information Builders-
supplied function, the USERFNS parameter determines which function is used.

Parameter verification can be enabled for DEFINE FUNCTIONs and functions supplied by
FOCUS.

The syntax is:

SET USERFNS= {SYSTEM|LOCAL}

where:

SYSTEM

Gives precedence to functions supplied by FOCUSand to those created with the DEFINE
FUNCTION command. SYSTEM is the default value.

This setting is required to enable parameter verification. For details, see USERFCHK.

LOCAL

Gives precedence to locally written functions. Parameter verification is not performed
with this setting in effect.

WARNING

ibi™ FOCUS® Developing Applications

195 | Customizing Your Environment

The WARNING parameter suppresses (FOC441) warnings. The file exists already. Create will
overwrite it.

The syntax is:

SET WARNING = {ON|OFF}

where:

ON

Turns on warning messages. On is the default.

OFF

Turns off warning messages.

WEEKFIRST
The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used
in week computations by the HDIFF, HNAME, HPART, HYYWD, and HSETPT functions,
described in the ibi™ WebFOCUS® Using Functions manual.

The HPART and HNAME subroutines can extract a week number from a date-time value. To
determine a week number, they can use ISO 8601 standard week numbering, which defines
the first week of the year as the first week in January with four or more days. Any
preceding days in January belong to week 52 or 53 of the preceding year.

Depending on the value of WEEKFIRST, these functions can also define the first week of the
year as the first week in January with seven days.

The WEEKFIRST parameter does not change the day of the month that corresponds to each
day of the week, but only specifies which day is considered the start of the week.

The syntax is:

SET WEEKFIRST = {value|7}

where:

value

Can be:

ibi™ FOCUS® Developing Applications

196 | Customizing Your Environment

1 through 7, representing Sunday through Saturday with non-standard week numbering.

or

ISO1 through ISO7, representing Sunday through Saturday with ISO standard week
numbering.

Note: ISO is a synonym for ISO2.

The ISO standard establishes Monday as the first day of the week, so to be fully ISO
compliant, the WEEKFIRST parameter should be set to ISO or ISO2.

WPMINWIDTH

If you need the report width for a format WP output file to remain fixed across releases for
later processing of the output file, you can set the width you need using the SET
WPMINWIDTH command. This parameter specifies the minimum width of the output file. It
will be automatically increased if the width you set cannot accommodate the fields
propagated to the output file in the request. On z/OS, the LRECL of the output file will be
four bytes more than the report width because the file is variable length and needs an
additional four bytes to hold the actual length of each record instance. In other operating
environments, the length of the record is the value of WPMIDWIDTH.

The syntax is:

SET WPMINWIDTH = {0|nnn}

ON TABLE SET WPMINWIDTH {0|nnn}

where:

nnn

Is the minimum width of the output file. On z/OS, the LRECL will automatically be nnn +
4 bytes. If you specify zero (0) for nnn, the width will be calculated automatically based
on the report request. If the width you specify cannot accommodate the fields
propagated to the output file, it will be automatically increased enough to
accommodate them.

ibi™ FOCUS® Developing Applications

197 | Customizing Your Environment

XLSXLOCALZIP
The XLSXLOCALZIP parameter activates the local C-based zip mode for zipping and
unzipping EXCEL07 (XLSX) files.

The XLSXLOCALZIP setting:

l Only applies to XLSX output format.

l Overrules the EXCELSERVURL setting.

l Is not supported for the following features:

o Bursting and Distribution

o Charts

o Templates

l The WebFOCUS Servlet and JSCOM3 modes will continue to be used for PPTX output
format.

The syntax is:

SET XLSXLOCALZIP = {ON|OFF}

where:

ON

Activates the local C-based zip mode for EXCEL07 (XLSX) files.

OFF

Does not activate the local C-based mode for EXCEL07 (XLSX) files. OFF is the default
value.

XLSXPAGEBRKIGNORE
The XLSXPAGEBRKIGNORE parameter controls whether page breaks in FOCUS format XLSX
report output insert Excel page breaks at the same location in the output.

The syntax is:

ibi™ FOCUS® Developing Applications

198 | Customizing Your Environment

SET XLSXPAGEBRKIGNORE = {OFF|ON}

where:

OFF

Synchronizes FOCUS page breaks with Excel page breaks in format XLSX report output.
This is the default value.

ON

Does not synchronize FOCUS page breaks with Excel page breaks in format XLSX report
output. This value conforms to behavior in prior releases.

XRETRIEVAL

The XRETRIEVAL parameter previews the format of a report without actually accessing any
data. This parameter enables you to perform TABLE, TABLEF, or MATCH requests and
produce HOLD Master Files without processing the report.

The syntax is:

SET XRETRIEVAL = {ON|OFF}

where:

ON

Performs retrieval when previewing a report. ON is the default value.

OFF

Specifies that no retrieval is to be performed.

YRTHRESH

The YRTHRESH parameter defines the start of a 100-year window globally or on a field-
level. Used with DEFCENT, interprets the current century according to the given values.
Two-digit years greater than or equal to YRTHRESH assume the value of the default

ibi™ FOCUS® Developing Applications

199 | Customizing Your Environment

century. Two-digit years less than YRTHRESH assume the value of one more than the
default century. (See DEFCENT.)

Note: This same result can be achieved by including the FDEFCENT and
FYRTHRESH attributes in the Master File.

The syntax is:

SET YRTHRESH = {[-]yy|0}

where:

yy

Is the year threshold for the window. 0 is the default value.

If yy is a positive number, that number is the start of the 100-year window. Any 2-digit
years greater than or equal to the threshold assume the value of the default century.
Two-digit years less than the threshold assume the value of one more than the default
century.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and the default century is automatically calculated.
The start date is automatically incremented by one at the beginning of each successive
year.

ibi™ FOCUS® Developing Applications

200 | Managing Applications

Managing Applications
An application is a platform-independent repository for a group of related components,
such as procedures, Master and Access Files, data files, HTML files, PDF files, and image
files.

You can use a variety of application (APP) commands to control the application
environment, including the application itself, its component files, and its search paths.

What Is an Application?

An application is a platform-independent repository for a group of related components,
such as procedures, Master and Access Files, data files, HTML files, PDF files, and image
files. It provides a way to confer a unique identity on the application components and
facilitates the sharing of components across applications in an organized manner. This
construct also simplifies the process of moving a user application from one platform to
another.

These components are physically grouped together on an application-by-application basis
for run-time execution. This physical grouping can be within an application under a
common root or a mapping to an application anywhere in the file system. The physical
application or mapped name is referred to as the application name in this document. A
comprehensive set of application (APP) commands are provided to control/manipulate the
application components, as well as to facilitate applications that can be written and
deployed to any platform.

The physical location of an application and its components is determined by a
configuration parameter called approot. This parameter is set at installation time and
stored in the configuration file, edaserve.cfg. On z/OS, the EDASERVE configuration file
must be a member in a PDS allocated to DDNAME ERRORS. The default value is dependent
on the platform, relative to the install ID home directory, where applicable.

Application directories can be nested, except on z/OS. A nested application directory is an
application created within a higher-level application. For more information. see h3_
Nested_App_Dirs.htm#WS376cda1d0d48fca6ea505e712db52bbe07-7ded.

../../../../../Content/focus-develope-app/h3_Nested_App_Dirs.htm#WS376cda1d0d48fca6ea505e712db52bbe07-7ded
../../../../../Content/focus-develope-app/h3_Nested_App_Dirs.htm#WS376cda1d0d48fca6ea505e712db52bbe07-7ded

ibi™ FOCUS® Developing Applications

201 | Managing Applications

On z/OS, data sets are created for each component type using the approot value as the
high-level qualifier.

On z/OS, the following is a list of all application data sets automatically created for an
application, where the approot is USERID.APPS and the application name is BASEAPP:

APP CREATE BASEAPP
USERID.APPS.BASEAPP.ACCESS.DATA
USERID.APPS.BASEAPP.ETG.DATA
USERID.APPS.BASEAPP.FOCCOMP.DATA
USERID.APPS.BASEAPP.FOCEXEC.DATA
USERID.APPS.BASEAPP.FOCSTYLE.DATA
USERID.APPS.BASEAPP.GIF.DATA
USERID.APPS.BASEAPP.HTML.DATA
USERID.APPS.BASEAPP.MAINTAIN.DATA
USERID.APPS.BASEAPP.MASTER.DATA
USERID.APPS.BASEAPP.SQL.DATA
USERID.APPS.BASEAPP.WINFORMS.DATA

To reference an application file in a FOCUS command, use the syntax appname/filename if
the file is not first in the application path. For example:

TABLE FILE baseapp/GGSALES
...

No allocation or definition is needed for referencing the standard file types. Other types of
files that you may create within an application must be allocated or defined before being
used. FOCUS files can be defined with a USE command.

Application Commands Overview
This topic lists the platform-independent application (APP) commands that enable you to
control the application environment.

You can use the following wildcard characters in the file name and file type references for
the APP commands COPYFILE, MOVEFILE, DELETEFILE, and RENAMEFILE.

l An asterisk (*) replaces any combination of characters of any length (including zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

ibi™ FOCUS® Developing Applications

202 | Managing Applications

l A question mark (?) replaces zero or one character.

APP Commands Quick Reference
Click any command in the following charts to access detailed information, including the
required syntax.

Search Path Management Commands

Command Description

APP PATH Sets or resets the application search path.

APP PREPENDPATH Temporarily adds application names to the beginning
of an existing APP PATH search path.

APP APPENDPATH Temporarily adds application names to the end of an
existing APP PATH search path.

APP MAP Defines a virtual application that points to a physical
location outside of the approot structure or redirects
an application to another application. This command
makes the virtual or redirected application available
for addition to the search path. It does not
automatically add it to the APP PATH.

APP SET
METALOCATION_
SAME

Indicates whether corresponding Master and Access
files must be in the same application directory.

APP ?
METALOCATION_
SAME

Retrieves the value of APP SET METALOCATION_SAME.

APP SHOWPATH Lists all the currently active applications in the search
path.

Application Management Commands

ibi™ FOCUS® Developing Applications

203 | Managing Applications

Command Description

APP COPY Copies the contents of one application to a second
application.

APP CREATE Creates an application under the approot location.

APP DELETE Deletes an application.

APP MOVE Moves the contents of one application to a second
application.

APP PROPERTY
CODEPAGE

Specifies a code page for files in an application.

APP RENAME Renames an application.

File Management Commands

Command Description

APP COPYF[ILE] *Copies a single component or component type from
one application to another.

APP MOVEF[ILE] *Moves a single component or component type from
one application to another.

APP RENAMEF[ILE] *Renames a single component or component type in
an application.

APP DELETEF[ILE] *Deletes a single component or component type from
an application.

* The shortened form of the APP commands is used in the remainder of this document.

Output Redirection Commands

ibi™ FOCUS® Developing Applications

204 | Managing Applications

Command Description

APP HOLD Controls where output files are created for any HOLD,
SAVE, SAVB, CREATE SYNONYM, or APP QUERY HOLD
process in the application, unless a FILEDEF command
has been used to allocate data files.

APP HOLDDATA Designates an application as the location for
temporary data files created with the HOLD, SAVE, or
SAVB command.

APP HOLDMETA Designates an application as the location for
temporary Master and Access Files created with the
HOLD command.

APP FI[LEDEF] This command has been deprecated and aliased to
FILEDEF.

Help Commands

Command Description

APP HELP Displays a list of APP commands with a brief
description of each.

Application Metadata Commands and Metadata
Tables
Click any command in the following chart to access detailed information, including the
required syntax.

Command Description

STATEapp/file.extension Checks file existence.

ibi™ FOCUS® Developing Applications

205 | Managing Applications

Command Description

APP LISTapp [HOLD] Lists the applications under approot.

If the HOLD option is used, it lists the applications
under approot and writes the output to a
temporary file called focappl.ftm, which you can
then use in a report request.

APP QUERYapp [HOLD] Lists all files in the application.

If the HOLD option is used, it lists all files in the
application and writes the output to a temporary
file called focappq.ftm, which you can then use in
a report request.

catalog/sysfiles Table, list of accessible app name objects on the
path for a given type (default MASTER).

catalog/sysdirs Table, recursive list of physical files under a
physical directory.

catalog/sysapps Table, metadata for physical objects on the path.

catalog/systables Table, app name of tables (and related metadata)
on the path.

For information about reporting from system tables, see the ibi™ WebFOCUS® Developing
Reporting Applications manual.

Search Path Management Commands
FOCUS has a default search path for application and system components. You can
supplement this search path by using one or more of the following APP commands:

l APP PATH

l APP PREPENDPATH

l APP APPENDPATH

ibi™ FOCUS® Developing Applications

206 | Managing Applications

l APP SET METALOCATION_SAME

l APP ? METALOCATION_SAME

Generally, these commands add applications to the beginning of the default search path.
The exception is temporary components that are created in the current session. These
temporary components are searched first, before the user-defined path.

APP PATH

The APP PATH command sets the search path to a designated list of application names
that refer to applications under the approot value. You can specify multiple application
names to extend the search path.

Add an Application to the Search Path Manually
APP PATH app1[/] [app2[/] ...]

[appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter in the edaserve.cfg file determines whether nested applications are searched
for files referenced in a procedure, and to what level. If you need to specify more
application names than can fit on one line, add the continuation character (-) at the end
of the first line, and code more application names on the next line.

Note:
l You can use the APP PATH command without an application name to reset

the search path to the initial list.

l APP PATH does not validate the application list.

ibi™ FOCUS® Developing Applications

207 | Managing Applications

APP PREPENDPATH

The APP PREPENDPATH command enables you to temporarily add application names to
the beginning of an existing APP PATH search path.

If you wish to use this command to alter the search path, you must code it manually in
your application.

Add Application Names to the Beginning of a Search Path

APP PREPENDPATH app1[/] [app2[/]] ...
[appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter determines whether nested applications are searched for files referenced in a
procedure, and to what level. If you need to specify more application names than can fit
on one line, add the continuation character (-) at the end of the first line, and code
more application names on the next line.

APP APPENDPATH

The APP APPENDPATH command enables you to temporarily add application names to the
end of an existing APP PATH search path.

If you wish to use this command to alter the search path, you must code it manually in
your application.

ibi™ FOCUS® Developing Applications

208 | Managing Applications

Add Application Names to the End of a Search Path

APP APPENDPATH app1[/] [app2[/]] ... [appn[/]]

where:

app1...appn

Are application names. If you follow an application name with a slash (/), nested
applications (the subtree of applications below the named application) will not be in the
search path. If you do not follow the application name with a slash, the nested_app
parameter determines whether nested applications are searched for files referenced in a
procedure, and to what level. If you need to specify more application names than can fit
on one line, add the continuation character (-) at the end of the first line, and code
more application names on the next line.

APP MAP

The APP MAP command allows you to assign an application name to a non-approot
application anywhere in the file system or to redirect an application. The application name
becomes a virtual application under approot, which can be referenced in an APP PATH
command and any other APP command that takes an application name as a parameter.

Note that mapping does not automatically add a directory to the path, it simply makes it
available for addition to the search path.

Map a Physical File Location or Redirect an Application
To map a physical file location outside of approot, the syntax is:

APP MAP virtualname real_location

where:

ibi™ FOCUS® Developing Applications

209 | Managing Applications

virtualname

Is an application name of up to 64 characters that can later be used in an APP PATH
command.

real_location

Is a real full path name or DDNAME in the native style of the given operating system. On
UNIX and Linux, the location may be a mixed case name, but the MAP virtualname itself
is always handle insensitive when used (that is, EX mymap/mytest).

Note that if the real location contains spaces, it must be surrounded by double
quotation marks.

To redirect an approot or non-approot application to a different name, the syntax is:

APP MAP app1app2/dir1/dir2/../dirn

where:

app1

Can be an existing physical, mapped or linked app. It can also be a new app.

app2

Can be a physical, mapped or linked or non-existent app.

dir1 ... dirn

Are application directory names.

Map DDNAME Allocations
The syntax for this type of mapping is

APP MAP appname file_extension=//dd:ddname;file_
extension=//dd:ddname;...

where:

ibi™ FOCUS® Developing Applications

210 | Managing Applications

appname

Is the name of the application used to reference this mapping in an APP PATH, APP
APPENDPATH, or APP PREPENDPATH command.

file_extension

Is one of the following valid FOCUS file extensions:

.mas

.fex

.acx

.htm

.sty

.gif

.psb

ddname

Is the ddname of the allocation you wish to map. The allocation can be performed using
JCL code or a DYNAM command.

Mapping DDNAME Allocations

DYNAM ALLOC FILE MYMAS DA EDAARH.MASTER.DATA SHR REU
APP MAP APP1 MAS=//DD:MYMAS;
APP APPENDPATH APP1

By default, FOCUS has an APP MAP command in the EDASPROF file to map the application
MVSAPP to the allocations FOCEXEC, MASTER, ACCESS, HTML, FOCSTYLE, GIF, FOCPSB.
While allocations of these ddnames are not required for the APP MAP command to be valid,
once the ddnames are allocated by JCL or DYNAM commands, they become available for
use.

APP MAP With Universal Naming Convention (UNC)
On platforms that support the Universal Naming Convention (UNC), you must use the UNC
to designate a network drive to access APP directories. The UNC must:

l Be at least one folder below the initial shared location.

ibi™ FOCUS® Developing Applications

211 | Managing Applications

l Not contain spaces unless enclosed in double quotation marks. For example,

\\mynode\myshare\accnting
"\\mynode\my share\accnting"

APP SET METALOCATION_SAME

The APP SET METALOCATION_SAME command identifies whether Master Files and their
corresponding Access Files must be in the same location.

Control the Location of Synonym Files
APP SET METALOCATION_SAME {ON|OFF}

where:

ON

Specifies that Master Files and their corresponding Access Files must reside in the same
application directory. ON is the default value.

OFF

Specifies that once the Master File for a request is located, FOCUS will use the active
search path to find the corresponding Access File.

APP ? METALOCATION_SAME

The APP ? METALOCATION_SAME command queries whether Master Files and their
corresponding Access Files must be in the same location.

ibi™ FOCUS® Developing Applications

212 | Managing Applications

Query Whether Synonym Files Must Reside in the Same
Location
APP ? METALOCATION_SAME

If the result of this query command is ON, FOCUS expects to find corresponding Master and
Access Files in the same application directory. If the result is OFF, FOCUS uses the active
search path to find the Access File that corresponds to a given Master File.

APP SHOWPATH

The APP SHOWPATH command lists all the currently active applications in the search path,
including baseapp, which is always last.

List Active Applications
APP SHOWPATH

Listing Active Applications in the Search Path
FOCUS is generally installed with two default applications: ibisamp (contains sample files),
and baseapp (which can contain any files you create).

The APP SHOWPATH command generates the following output is:

ibisamp
baseapp

Application and File Management Commands
The APP commands in this section provide management options for applications and their
component files.

ibi™ FOCUS® Developing Applications

213 | Managing Applications

APP CREATE
In general, the APP CREATE command creates an application under the approot high-level
qualifier.

The APP CREATE command can create any number of applications with one command.

Create an Application Manually

APP CREATE app1[/app1a...] [app2[/app2a...] ...
[appn[/appna...]] [DROP]

where:

app1...appn

Are application names under approot. The application name can be up to 64 characters.

app1a...appna

Are nested application directories, allowed when nested applications are configured. In
order to create a nested application, the parent application must already exist.

DROP

Deletes an application if one already exists with the same name as the one to be
created, and then creates a new application with that name. Note that any files in the
pre-existing application are deleted. Without the DROP option, a message will be
generated, and the pre-existing application will not be deleted or changed.

The application name may not contain spaces. If the name contains spaces, each section is
understood to be a separate application. If you require a name with spaces, you must
create it using another mechanism, such as Windows Explorer. You can then use the APP
MAP command to add it to APPROOT.

If you need to specify more application names than can fit on one line, add the
continuation character (-) at the end of the first line, and code more application names on
the next line.

The word HOLD cannot be used as an application name.

ibi™ FOCUS® Developing Applications

214 | Managing Applications

Change Default Characteristics of Component File Types
(z/OS Only)
You can change the default characteristics of individual component file types by issuing a
DYNAM SET APP command. This command controls the types of component files that are
generated for the application when an APP CREATE command is issued. By default, all
component file types are generated.

The syntax is

DYNAM SET APP FOR filetype [SKIP|CREATE] [POSTFIX aaa.bbb] [parms]

where:

filetype

Are the component types that may be affected by this command, in uppercase:
FOCEXEC, MASTER, ACCESS, HTML, GIF, FOCSTYLE, MAINTAIN, ETG. You must issue a
separate command for each component type you wish to affect.

SKIP

Indicates that the designated file type should not be created when the APP CREATE
command is issued.

CREATE

Creates the designated file type when the APP CREATE command is issued. This is the
default setting.

POSTFIX

Specifies the lower level qualifier of the DSN (data set name) for the component type.
The APPROOT value is used to complete the full DSN, which is expressed as

approotvalue.appname.component_type

The default value for component_type is filetype.DATA.

parms

Are the allocation parameters you can set. The default parameter values are:

ibi™ FOCUS® Developing Applications

215 | Managing Applications

File Type Parameter

FOCEXEC
RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE
50 50 DIR 50

MASTER
RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50
50 DIR 50

ACCESS
RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50
50 DIR 50

HTML
RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE
50 50 DIR 50

GIF
RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE
50 50 DIR 50

The GIF file type creates libraries for GIF and JPG files.

FOCSTYLE
RECFM FB TRKS LRECL 1024 BLKSIZE 27648 SPACE
50 50 DIR 50

MAINTAIN
RECFM VB TRKS LRECL 4096 BLKSIZE 27998 SPACE
50 50 DIR 50

ETG
RECFM FB TRKS LRECL 80 BLKSIZE 22000 SPACE 50
50 DIR 50

ibi™ FOCUS® Developing Applications

216 | Managing Applications

Changing Default Characteristics of an Application
The following command indicates that GIF files should not be created when the APP
CREATE command is issued.

DYNAM SET APP FOR GIF SKIP

The following command indicates that Procedures (FOCEXECs) should be created when
APP CREATE is issued.

DYNAM SET APP FOR FOCEXEC TRKS SP 10 20 DIR 30

APP COPY
The APP COPY command copies the entire contents of one application to another. The
target application must already exist.

Copy an Application
APP COPY app1[/app1a...] app2[/app2a...]

where:

app1[/app1a...]

Is the application being copied. It can be a nested application name.

app2[/app2a...]

Is the application to which the contents of the first application are being copied. It can
be a nested application name.

APP COPYF[ILE]

The APP COPYF[ILE] command copies one or more components or component types from
one application to another.

ibi™ FOCUS® Developing Applications

217 | Managing Applications

Note that if you copy a component manually, you can, optionally, rename it in the process.

If you copy a Master File, the corresponding Access File is also copied. However, copying an
Access File (file type FOCSQL) does not automatically copy the corresponding Master File.

Copy an Application Component Manually
APP COPYF[ILE] app1[/app1a...]

{filename1|*} filetype1 app2 [/app2a...]
{filename2|*} {filetype2|*} [IFEXIST] DROP

where:

app1[/app1a...]

Is the application that contains the component to be copied. It can be a nested
application name.

filename1

Are the components to be copied. Use an asterisk (*) to copy all components of file type
filetype1.

You can use the following wildcard characters in the file name and file type references.

l An asterisk (*) replaces any combination of characters of any length (including
zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

l A question mark (?) replaces zero or one character.

filetype1

Is the file type, in uppercase, of the component to be copied.

app2[/app2a...]

Is the application to which the named component is being copied. It can be a nested
application name.

ibi™ FOCUS® Developing Applications

218 | Managing Applications

filename2

Is the component name in the target application, after the copy process. Use an asterisk
(*) to propagate the file names from the source application to the target application.

filetype2

Is the component type, in uppercase, in the target application after the copy process.
Use an asterisk (*) to propagate the file types from the source application to the target
application.

IFEXIST

Ignores any component in the source application that does not exist.

DROP

Overwrites any component already in the target application with the same name and
file type as a component being copied.

For a full list of the types of files you can copy with APP commands, see Designating File
Types for APP Commands.

APP MOVE
The APP MOVE command moves the entire contents of one application to another. The
target application must already exist.

Move an Application
APP MOVE app1[/app1a...] app2[/app2a...]

where:

app1[/app1a...]

Is the application being moved. It can be a nested application name.

app2[/app2a...]

Is the application to which the contents of the first application are being moved. It can
be a nested application name.

ibi™ FOCUS® Developing Applications

219 | Managing Applications

APP MOVEF[ILE]

The APP MOVEF[ILE] command moves one or more components or component types from
one application to another.

Note that if you move a component manually, you can, optionally, rename it in the
process.

If you move a Master File, the corresponding Access File is also moved. However, moving
an Access File (file type FOCSQL) does not automatically move the corresponding Master
File.

Move an Application Component Manually
APP MOVEF[ILE] app1[/app1a...]

{filename1|*} filetype1 app2 [/app2a...]
{filename2|*} {filetype2|*} [IFEXIST] [DROP]

where:

app1[/app1a...]

Is the application that contains the component to be moved. It can be a nested
application name.

filename1

Is the name of the component to be moved. Use an asterisk (*) to move all components
of file type filetype1.

You can use the following wildcard characters in the file name and file type references.

l An asterisk (*) replaces any combination of characters of any length (including
zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

l A question mark (?) replaces zero or one character.

filetype1

Is the file type, in uppercase, of the component to be moved.

ibi™ FOCUS® Developing Applications

220 | Managing Applications

app2[/app2a...]

Is the application to which the named component is being moved. It can be a nested
application name.

filename2

Is the component name in the target application, after the move process. Use an
asterisk (*) to propagate the file names from the source application to the target
application.

filetype2

Is the component type, in uppercase, in the target application after the move process.
Use an asterisk (*) to propagate the file types from the source application to the target
application.

IFEXIST

Ignores any component in the source application that does not exist.

DROP

Overwrites any component already in the target application with the same name and
file type as a component being moved.

For a full list of the types of files you can move with APP commands, see Designating File
Types for APP Commands.

APP DELETE
The APP DELETE command deletes applications under approot.

Delete an Application Manually
APP DELETE app1[/app1a...] [app2[/app2a...] ...

[appn[/appna...]]

where:

ibi™ FOCUS® Developing Applications

221 | Managing Applications

app1[/app1a...] ... [appn[/appna...]

Are application names. Nested application names are supported. If you need to specify
more application names than can fit on one line, add the continuation character (-) at
the end of the first line, and enter additional application names on the next line.

APP DELETEF[ILE]

The APP DELETEF[ILE] command deletes one or more components or component types
from an application.

If you delete a Master File, the corresponding Access File is also deleted. However, deleting
an Access File (file type FOCSQL) does not automatically delete the corresponding Master
File.

Delete an Application Component Manually
APP DELETEF[ILE] app[/appna...] {filename|*} filetype

where:

appn[/appa...]

Is the application from which the component or component type is being deleted.
Nested application names are supported.

filename

Is the name of the component to be deleted. Use an asterisk (*) to delete all files of type
filetype.

You can use the following wildcard characters in the file name and file type references.

l An asterisk (*) replaces any combination of characters of any length (including
zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

l A question mark (?) replaces zero or one character.

ibi™ FOCUS® Developing Applications

222 | Managing Applications

filetype

Is the component type, in uppercase, of the component to be deleted.

For a full list of the types of files you can use with APP commands, see Designating File
Types for APP Commands.

APP PROPERTY CODEPAGE

The APP PROPERTY appname CODEPAGE command identifies the codepage to be used for
non-data files in the application directory.

Specify a Code Page for an Application
APP PROPERTY app[/appa...] CODEPAGE number

where:

app[/appa...]

Is an application name. Nested application names are supported.

number

Is the code page number for non-data files in the application.

APP RENAME
The APP RENAME command renames an existing application.

Note: You cannot rename an application if it is active in the search path.

Rename an Application
APP RENAME app1[/app1a...] app2[/app2a...]

ibi™ FOCUS® Developing Applications

223 | Managing Applications

where:

app1[/app1a...]

Is the application name to be renamed. It can be a nested application name.

app2[/app2a...]

Is the new application name of up to 64 characters. It can be a nested application name.

Renaming an Application
The following shows app1 being renamed to app2.

APP RENAME app1 app2

APP RENAMEF[ILE]

The APP RENAMEF[ILE] command renames one or more components in an application.

If you rename a Master File, the corresponding Access File is also renamed. However,
renaming an Access File (file type FOCSQL) does not automatically rename the
corresponding Master File.

Rename an Application Component
APP RENAMEF[ILE] app[/appa...] filename1
filename2 filetype [DROP]

where:

app[/appa...]

Is the name of the application that contains the component being renamed. It can be a
nested application name

filename1

Is the file name of the component to be renamed.

ibi™ FOCUS® Developing Applications

224 | Managing Applications

You can use the following wildcard characters in the file name and file type references.

l An asterisk (*) replaces any combination of characters of any length (including
zero).

Note that an asterisk can also be used to replace the entire filename or filetype
parameter.

l A question mark (?) replaces zero or one character.

filename2

Is the new name for the component. The component name may be up to 64 characters.

filetype

Is the file type, in uppercase, of the component to be renamed.

DROP

Overwrites an existing component with the same file name and file type.

For a full list of the types of files you can use with APP commands, see Designating File
Types for APP Commands.

Designating File Types for APP Commands
The APP COPYF, APP MOVEF, APP DELETEF, and APP RENAMEF commands enable you to
perform their actions on a wide variety of file types.

The following is a comprehensive list of the file types you can use with APP commands and
the file extensions associated with the on-disk names for hierarchical file systems.

Note that the file types must be coded in uppercase in any APP command that requires it.

Note: This list reflects file types supported across all products and release levels.
Particular file types may not be supported in particular releases or with every
product.

ibi™ FOCUS® Developing Applications

225 | Managing Applications

File Type File Extension

ACX .acx

ADR .adr

AFM .afm

BMP .bmp

BST .bst

cascading style sheet .css

CONTROL .ctl

DATA .dat

DDS .DDS

DEFAULT The APP filename value is used to
derive the physical extension for the
APP command, so that unknown
user-defined extensions may be
supported in an APP command (for
example, APP COPYFILE BASEAPP
MYFILE.FOO DEFAULT BASEAPP
MYFILE FOCEXEC).

DTD .dtd

EDANLS .nls

EDAPRFU .prf

EDAPROF .prf

EDAPSB .psb

ibi™ FOCUS® Developing Applications

226 | Managing Applications

File Type File Extension

EPS .eps

ERRORS .err

ETG .etg

ETL .etl

EXCEL .xls

FMU .fmu

FOCCOMP .fcm

FOCDEF .def

FOCEXEC OR FEX .fex

FOCFTMAP .fmp

FOCPSB .psb

FOCSQL .acx

FOCSTYLE .sty

FOCTEMP .ftm

FOCUS .foc

GIF .gif

HLI .hli

HTML .htm

IBICPG .sl

ibi™ FOCUS® Developing Applications

227 | Managing Applications

File Type File Extension

JPG .jpg

JS .js

LSN .lsn

MAINTAIN .mnt

MASTER OR MAS .mas

MASTER has a special behavior that
any matching Access File (.acx) is
also operated upon by the APP
command. This is so metadata is
operated upon as a matched pair.
Use MAS if it is strictly desired to
only operate on the Master File and
not the Access File.

MHT .mht

Microsoft Access database .mdb

MNTPAINT .mpt

OMI .omi

PDF .pdf

PFA .pfa

PFB .pfb

PNG .png

PS .ps

ibi™ FOCUS® Developing Applications

228 | Managing Applications

File Type File Extension

SMARTLIB .knb

SQL .sql

SVG .svg

TABS .txt

TDL .tdl

TRF .trf

TTEDIT .tte

TXT .txt

WINFORMS .wfm

WSDL .wsd

XHT .xht

XLSM .xlsm

XLSX .xlsx

XLTM .xltm

XLTX .xltx

XML .xml

XSD .xsd

XSL .xsl

ibi™ FOCUS® Developing Applications

229 | Managing Applications

Output Redirection Commands
Three APP commands (APP HOLD, APP HOLDDATA, and APP HOLDMETA) along with the
FILEDEF and DYNAM commands comprise a class of commands that control where output
is stored. In order to redirect output as you wish, it is important to understand the
interactions among these commands.

Note: When the same behavior applies for APP HOLD, APP HOLDDATA, and APP
HOLDMETA, these commands are referred to collectively as APP HOLD*. Note
also that although DYNAM (USS only) and FILEDEF are not members of the APP
family of commands, these file allocation commands interact with the APP
HOLD* commands. Therefore, where appropriate, these commands are also
included in this discussion. APP FI[LEDEF] has been deprecated and aliased to
FILEDEF.

The most straightforward of these commands is APP HOLD, which allows you to relocate all
output to a particular application. You can use this command with operations that produce
output files, such as HOLD, SAVE and SAVB, as well as with CREATE SYNONYM and APP
QUERY HOLD. (For details about HOLD, SAVE, and SAVB commands, see the ibi™
FOCUS®Creating Reportsmanual.)

The APP HOLD* commands are particularly helpful when you are creating permanent files
for other applications to use. However, if a command is used at an inappropriate point in
the application or if it remains in effect when further steps are performed within the
application, the target application may be flooded with intermediate and unintended files.
Understanding the behavior of each command and the interactions among them will help
you avoid this situation.

Interactions Among Output Redirection Commands
This chart describes the behavior associated with each redirection command and the
interactions among them if multiple commands are used.

ibi™ FOCUS® Developing Applications

230 | Managing Applications

Command Stand Alone Notes

APP HOLD
Redirects all output from
HOLD, SAVE, SAVB, CREATE
SYNONYM, and APP QUERY
HOLD commands to the
designated application.

When issued
without a specific
appname, APP
HOLD has the
effect of turning off
the command.

APP HOLDDATA
Redirects the data from
HOLD, SAVE, and SAVB
operations to the designated
application, but does not
redirect the associated
metadata (see Note 1 after
chart).

Overrides APP
HOLD.

APP HOLDMETA
Redirects the metadata from
HOLD, SAVE, and SAVB
operations to the designated
application, but does not
redirect the associated data
(see Note 1 after chart).

Overrides APP
HOLD.

FILEDEF ddname
DYNAM ALLOC
ddname

Redirects the data from
specific HOLD, SAVE, and
SAVB operations to the
designated target, but does
not redirect the associated
metadata (see Note 1 after
chart).

The AS phrase must match
the ddname. When there is
no AS phrase, the ddname
must match a predefined
default name: HOLD for
HOLD output files; SAVE for
SAVE output files; and SAVB
for SAVB output files.

Overrides APP
HOLD and APP
HOLDDATA.

ibi™ FOCUS® Developing Applications

231 | Managing Applications

Command Stand Alone Notes

DYNAM ALLOC
HOLDMAST

Redirects the metadata from
HOLD, SAVE, and SAVB
operations to the designated
target (using the HOLDMAST
ddname), but does not
redirect the associated data
(see Note 1 after chart).

The recommended practice is
to use this command on a
request-by-request basis to
avoid overriding previous
output. If used as a global
setting, previously held
output will be overwritten
with the same name.

Overrides APP
HOLD and APP
HOLDMETA.

Note:
l Not all formats have associated metadata. For example, the HOLD FORMAT

PDF command does not produce metadata, therefore, there is no
metadata to redirect.

l The use of the APP HOLD command to redirect CREATE SYNONYM output
is neither necessary nor desirable since the CREATE SYNONYM command
directly supports application names using the syntax:

CREATE SYNONYM appname/synonym ...

APP HOLD
The APP HOLD command defines an application in which to hold output data files (and
associated Master and Access Files, if applicable) created by a HOLD, SAVE, or SAVB process
in the application.

APP HOLD is intended to be used to refresh files that are common for all users of the
application. It should not be used for private files since it points to an application area that

ibi™ FOCUS® Developing Applications

232 | Managing Applications

is used by multiple users. If the same hold name (HOLD or AS name, for example) is used,
conflicts between users could result.

For related information, see Interactions Among Output Redirection Commands.

Designate a Storage Location for Temporary Files
APP HOLD appname[/appnamea...]

where:

appname[/appnamea...]

Is the application in which you wish to store output files. It can be a nested application
name.

Note: Issuing APP HOLD without an appname turns off the effects of the
command.

APP HOLDDATA

The APP HOLDDATA command designates an application as the location for storing data
files created with the HOLD command. For related information, see Interactions Among
Output Redirection Commands.

Designate a Storage Location for Data Files
APP HOLDDATA appname[/appnamea...]

where:

ibi™ FOCUS® Developing Applications

233 | Managing Applications

appname[/appnamea...]

Is the name of the location for the data files created by any write process in the
application. It can be a nested application name

APP HOLDMETA

The APP HOLDMETA command designates an application directory as the location for
storing Master and Access Files created in the application. For related information, see
Interactions Among Output Redirection Commands.

Designate a Storage Location for Master and Access Files

APP HOLDMETA appname[/appnamea...]

where:

appname[/appnamea...]

Is the name of the location for the Master and Access Files created in the application. It
can be a nested application name.

APP FI[LEDEF]

The APP FI[LEDEF] command has been deprecated and aliased to FILEDEF.

Application Metadata Commands and Catalog
Metadata
Developers may want to write applications that check application metadata and decide a
course of action. For example, they may want to check the existence of a file or a file date,
and decide on the need for another step, such as recreation of the file. There are multiple

ibi™ FOCUS® Developing Applications

234 | Managing Applications

ways to accomplish a simple check for file existence or some other attribute, that have
evolved over the release history of the product. However, some of these methods have
limitations. A good example of this is the STATE command, which uses a native path name
for UNIX. This type of path name would not match a Windows file path and, therefore,
would require IF THEN ELSE or GOTO logic to issue the correct version of the command for
the operating environment, that might be quite cumbersome, depending on how often it is
needed.

To solve part of this problem, commands such as STATE, FILEDEF, and DYNAM have been
extended to support APP names (that is, issue APP MAP then use STATE
mymap/myproc.fex). To deal with more complex issues, such as retrieving a list of available
applications (APP names) and files within a particular application, a series of APP
commands were developed (APP LIST and APP QUERY). However, as features such as
nested applications (sub-directories) were implemented, it became apparent that a much
more extended ecosystem for accessing application metadata was needed.

To satisfy this need for extended information, various internal tables were extended or
created. Today the catalog/sysapps table is the primary method for accessing application
metadata using standard TABLE or SELECT syntax. This is what is used in most internal
applications. That is not to say that the prior methods are no longer supported. At times
they can provide quick and simple coding for a specific need, but they have limitations (as
noted). More complex situations require the use of the newer methods to access
information. Additionally, tables such as catalog/systables and catalog/syscolum can
provide additional information that is table specific, such as what DBMS a table is using
and the data specification of particular columns, but they are beyond the scope of this
section. It should also be noted that the newer methods occasionally overlap on how to
accomplish a task. For example, a number of the catalog/sys* tables can be used to answer
the question of whether a file exists. However, the tables differ from each other in the more
detailed information, such as physical or application locations and attributes.

Retrieving Basic Information
The following commands return basic information about files and applications.

STATE
The STATE command allows you to check for the existence of a file. The file reference you
supply can be the full path native operating system file name, or a file name prefaced with
an APP name. This section only described the use of APP-name prefaced files. When an APP

ibi™ FOCUS® Developing Applications

235 | Managing Applications

name is used, it does not matter if the name was natively created under APPROOT or as an
APP MAP name.

If the file does not exist, the STATE command displays a message to that effect. After
issuing the STATE command, the &RETCODE system variable contains the value zero (0) if
the file exists, or a non-zero value if the file does not exist.

Check File Existence

STATE appname/filename.filetype -TYPE RETCODE &RETCODE

where:

appname

Is the application under which the file is stored.

filename

Is the name of the file.

filetype

Is the file type or extension of the file.

If the file exists, the &RETCODE value will be 0 (zero). Otherwise, it will be non-zero and can
be used to further direct the logic of the application, typically in a -SET or a -IF command.
The STATE command will also output a not found message. To suppress this message, use
the SET TRMOUT={OFF|ON} command.

For example, the following STATE command checks the existence of the file myproc.fex in
the baseapp application. The STATE command displays a message if the file does not exist.
The -TYPE command displays the value zero (0) if the file exists or the value -1 if the file
does not exist.

STATE baseapp/myproc.fex
-TYPE RETCODE &RETCODE

Checking the Existence of a File With the STATE Command
The following partial example suppresses the message returned by the STATE command,
issues the STATE command to check if the file myproc.fex exists in the baseapp application,

ibi™ FOCUS® Developing Applications

236 | Managing Applications

checks the return code, and creates the file if it does not exist, before continuing with the
next step in the application. If the file does exist, the code immediately transfers to the
next step in the application, (-RESUME label):

SET TRMOUT=OFF
STATE baseapp/myproc.fex
SET TRMOUT=ON
-IF &RETCODE EQ 0 THEN GOTO RESUME;
...
* Some code to create the file goes here
...
-RESUME

APP LIST
The APP LIST command alphabetically lists the applications available under the application
root, APPROOT, or under an APP MAPped location. It does not care if the APP is on the
current application map or not, as it is a raw list of available applications.

List the Applications in APPROOT

APP LIST [HOLD]

If the HOLD option is used, the output is written to a temporary file called focappl.ftm,
(FOCAPPL on z/OS), which can, in turn, be used in a request to drive a report or take an
action using the catalog/focappl Master File.

Limitations:

l APP LIST does not display nested application names.

l On operating systems that use case-sensitive file names (such as UNIX), uppercase
physical directory names are not valid (so are not returned by APP LIST). APP names
are case insensitive, but they are created on disk as lowercase, which may in turn be
upper-cased by the native operating system. However, APP LIST returns them in
lowercase, to be homogenous across operating systems.

ibi™ FOCUS® Developing Applications

237 | Managing Applications

Using APP LIST to List and Work with Applications
The following request lists applications

APP LIST

The APP LIST output is:

BEGIN-APP-LIST
15/02/2000 13.36.38 baseapp
15/02/2000 13.36.38 ggdemo
15/02/2000 13.36.38 ncp
15/02/2000 13.36.38 template
END-APP-LIST

The following request lists applications that have been stored using the HOLD option

APP LIST HOLD
SQL SELECT DATE, TIME, APPNAME FROM FOCAPPL;
END

The APP LIST output is:

DATE TIME APPNAME
---- ---- -------
15/02/2000 13.36.38 baseapp
15/02/2000 13.36.38 ggdemo
15/02/2000 13.36.38 ncp
15/02/2000 13.36.38 template

The following practical example of using the APP LIST HOLD command issues a TABLE
request against the HOLD file to check if any files exist in the application myapp. If no lines
are returned, the application does not exist, so it is created, and the application continues.
Otherwise, the application continues without creating the application.

APP LIST HOLD
TABLE FILE FOCAPPL
PRINT * ON TABLE HOLD WHERE APPNAME = 'myapp'
END
-IF &LINES GT 0 THEN GOTO RESUME

ibi™ FOCUS® Developing Applications

238 | Managing Applications

APP CREATE myapp
-RESUME

APP QUERY
The APP QUERY command lists files within a given application. Applications and specific
nested applications can be queried.

List Components

APP QUERY app1[/app1a...] [app2[/app2a]...] ...
[appn[/appna]] [HOLD]

where:

app1[/app1a...appn[/appna]

Are application names. They can be nested application names. If you need to specify
more application names than can fit on one line, add the continuation character (-) at
the end of the first line, and continue more application names on the next line.

If the HOLD option is used, the output is written to a temporary file called focappq.ftm
(FOCAPPQ on z/OS), which can, in turn, be used in a request to drive a report or take an
action using the catalog/focappq Master File.

Limitations: All files within an APP are listed. On systems like UNIX, this may include files
of any case, so files such as MYPROC.FEX and myproc.fex may appear in a listing, but only
the lowercase version would be accessed in a request.

Listing Application Files
The following request lists application files.

APP QUERY abc

The APP QUERY output is:

ibi™ FOCUS® Developing Applications

239 | Managing Applications

BEGIN-APP-QUERY: abc
24/10/2014 21.38.28 4 F myproc1.fex
24/10/2014 21.38.35 4 F myproc1.fex
24/10/2014 21.37.49 4 F myapp1
24/10/2014 21.32.36 0 D myapp2
END-APP-QUERY

The following request lists files that have been stored using the HOLD option.

APP QUERY ABC HOLD
SQL SELECT DATE, TIME, GMTTIME, SIZE, OTYPE, FILENAME, APPNAME FROM
FOCAPPQ ;
END

The APP QUERY output is:

DATE TIME GMTTIME SIZE OTYPE FILENAME APPNAME
---- ---- ------- ---- ----- -------- -------
24/10/2014 21.38.28 1414201108 4 F myproc1.fex abc
24/10/2014 21.38.35 1414201115 4 F myproc2.fex abc
24/10/2014 21.37.49 1414201069 4 D myapp1 abc
24/10/2014 21.32.36 1414200756 0 D myapp2 abc

Note that APP QUERY … HOLD returns a slightly extended type of information. Whitespace
has selectively been removed from the above output for readability (the FILENAME column
is actually 70 characters wide).

The following practical example of using the APP QUERY HOLD command checks the
existence of the file myproc1.fex in application abc. If the file does not exist, the procedure
exits. If the file does exist, the procedure continues.

APP QUERY abc HOLD
TABLE FILE FOCAPPQ
PRINT * ON TABLE HOLD
WHERE APPNAME = 'abc'
WHERE FILENAME = 'myproc1.fex'
END
-IF &LINES GT 0 THEN GOTO RESUME
-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

ibi™ FOCUS® Developing Applications

240 | Managing Applications

Retrieving Extended Catalog Information
This section provides basic information about querying the FOCUS catalogs.

For more information, see Reporting Dynamically From System Tables.

catalog/sysapps
The catalog/sysapps table contains metadata for physical objects on the path.

This section only touches on the basic uses typically needed by a developer. The Master
File on disk robustly describes more attributes than are described here. You can directly
study the Master File in order to understand other uses. The catalog/sys* group of files are
subject to change (and are usually upwardly compatible). You should never write
applications that have specific dependencies (typically on object size), which tend to cause
upward compatibility issues.

Listing Files in an APP
The following request lists the application name, application location, file names, and file
extensions in the application named abc.

TABLE FILE SYSAPPS
PRINT APPNAME APPLOC FNAME FEXT
WHERE APPNAME EQ 'abc' ;
END

The output (with whitespace selectively removed for readability) is:

APPNAME APPLOC FNAME FEXT
------- ------ ----- ----
abc /usr/wf/ibi/apps/abc myproc1 fex
abc /usr/wf/ibi/apps/abc myproc2 fex

The following practical example of using the SYSAPPS table to check file existence checks
the existence of the file myproc1.fex in the application abc. If it does not exist, the
procedure exits. If the file does exist, the procedure transfers to the next step in order to
continue:

ibi™ FOCUS® Developing Applications

241 | Managing Applications

TABLE FILE SYSAPPS
PRINT * ON TABLE HOLD
WHERE APPNAME = 'abc' ;
WHERE FNAME = 'myproc1' ;
WHERE FEXT = 'fex' ;
END
-IF &LINES GT 0 THEN GOTO RESUME
-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

catalog/sysfiles
The catalog/sysapps table contains metadata for app name objects on a path for a select
object type. The default is for file type MASTER (Master Files), but is settable for other
types. Unless limited in some way, all objects (of the selected type) are displayed.

This section only touches on the basic uses typically needed by a developer. The Master
File on disk robustly describes more attributes than are described here. You can directly
study it in order to understand other uses. The catalog/sys* group of files are subject to
change (and are usually upwardly compatible). You should never write applications that
have specific dependencies (typically on object size), which tend to cause upward
compatibility issues.

Listing APP MASTER Objects
The following request lists file names, file names with their application paths, and
extensions of files with file type MASTER (the default):

TABLE FILE SYSFILES
PRINT FILENAME LGNAME PHNAME EXTENSION
END

The output (with some records and whitespace selectively removed for readability) is:

FILENAME LGNAME PHNAME EXTENSION
-------- ------ ------ ---------
...
mydata MASTER baseapp/mydata.mas mas
mdschema MASTER _edahome/catalog/mdschema.mas mas

ibi™ FOCUS® Developing Applications

242 | Managing Applications

Listing APP FOCEXEC Objects
The following request sets the file type to FOCEXEC and then prints the file names, file
names with their application paths, and extensions of files with file type FOCEXEC:

SQL FMI SET SYSFILES FOCEXEC
TABLE FILE SYSFILES
PRINT FILENAME LGNAME PHNAME EXTENSION
END

The output (with some records and whitespace selectively removed for readability) is:

FILENAME LGNAME PHNAME EXTENSION
-------- ------ ------ ---------
...
myproc1 FOCEXEC baseapp/myproc1 fex
myproc2 FOCEXEC baseapp/myproc2 fex
...

Note: The value for LGNAME will switch to DEFAULT if the data is limited and
only one object returns.

A valid value for the SQL FMI SET SYSFILES command is any valid FOCUS file type. Some
examples are FOCUS, FOCEXEC, STY, PDF, or ACCESS. For a full list of valid file types, see
Designating File Types for APP Commands.

Using the SYSFILES Table to Check File Existence
The following practical example of using the SYSFILES table to check file existence prints
the filename myproc1 with extension fex (with the file type set to FOCEXEC). If no lines are
returned, the file does not exist and the procedure exits. If the file exists, the procedure
transfers to the point at which processing continues.

SQL FMI SET SYSFILES FOCEXEC
TABLE FILE SYSFILES
PRINT FILENAME ON TABLE HOLD
WHERE FILENAME = 'myproc1' ;
WHERE EXTENSION = 'fex' ;
END
-IF &LINES GT 0 THEN GOTO RESUME

ibi™ FOCUS® Developing Applications

243 | Managing Applications

-TYPE Procedure Not Found ... exiting!
-EXIT
-RESUME

APP HELP
The APP HELP command provides help information for all of the APP commands.

Retrieve Information About APP Commands

APP HELP command parameters

where:

command

Is any valid APP command.

parameters

Are parameters that are available to or required by the command.

Accessing Metadata and Procedures
Permanent files include metadata and procedures that were either created before the
session by another application or remain after the session is over for use by another
application.

Search Rules
Unless a file name is fully qualified with the application name, the search sequence is:

1. Applications set using APP HOLDMETA for metadata files, and APP HOLDDATA for

ibi™ FOCUS® Developing Applications

244 | Managing Applications

hold data files.

2. Applications set in APP PATH (including MVSAPP for z/OS).

3. The baseapp application.

4. The EDAHOME/catalog.

5. For stored procedures only: if the file is not found, FOCUS checks to see if the file
was allocated with a FILEDEF or DYNAM command, and if so, tries to execute it.

Search Paths
The following commands follow the search path, starting with the application set by the
APP HOLDMETA command:

APP HOLDMETA APP1

When a procedure is executed, and referred to by a one-part name

EX ABC

the following is executed

profile.fex in APP1 application

followed by

EX APP1/ABC

If the procedure ABC is not found in APP1, FOCUS follows the standard search path for
procedures to find and execute it.

Creation Rules for Procedure Files
Unless a file name is fully qualified or redirected to another location using an APP HOLD,
APP HOLDMETA, APP HOLDDATA, FILEDEF, or DYNAM command, it is created in the
temporary application area of the agent and disappears after the agent is released.

ibi™ FOCUS® Developing Applications

245 | Managing Applications

For example, on z/OS if DYNAM allocation for HOLDMAST or HOLDACC is present, the
metadata files are created in the corresponding PDSs (for example, for a CREATE SYNONYM
or TABLE FILE file with HOLD).

For related information, see Output Redirection Commands.

Locating Master Files and Procedures
Once your path is set, you can locate Master Files and procedures using the WHENCE
command.

Locate Files
You can issue the WHENCE command to return the fully qualified path to the first
occurrence of a file in your application path. On z/OS, WHENCE will return the location of
the file if it is in an allocated DDNAME, or, if FOCUS is APP-enabled, WHENCE will return the
name of the APP PDS. You can issue the APP WHENCE command to return the name of the
first application on your application path in which the file resides.

To return the location of the first occurrence of a Master File, procedure, or other FOCUS
file type on your application path, issue the following command

WHENCE filename filetype

To return the name of the first application on your application path that contains a Master
File, procedure, or other FOCUS file type, issue the following command

APP WHENCE filename filetype

where:

filename

Is the name of the file you are trying to locate.

filetype

Is the type of file you are trying to locate.

ibi™ FOCUS® Developing Applications

246 | Managing Applications

Locating Files
The following command returns the location of the first occurrence of the Excel file named
pivot_demo.xlsx on the application path.

WHENCE pivot_demo xlsx

The output is:

C:\ibi\apps\retail909192\uploads\pivot_demo.xlsx

The following command returns the location of the first occurrence of the Master File
GGSALES on z/OS:

WHENCE GGSALES MASTER

The output is:

DD:MASTER(GGSALES)

If the command is run in an APP-enabled environment, returns the name of the APP PDS
that contains the file. For example:

APP PATH IBISAMP
WHENCE GGSALES MASTER

The output is:

USER1.APPS.IBISAMP.MASTER.DATA(GGSALES)

The following command returns the name of the application that contains the first
occurrence of the Excel file named pivot_demo.xlsx on the application path.

APP WHENCE pivot_demo xlsx

The output is:

ibi™ FOCUS® Developing Applications

247 | Managing Applications

APPNAME: retail

Accessing Existing Data Files
You can allocate existing data files using the following methods:

l DATASET keyword in the Master File.

l FILEDEF command for non-FOCUS data sources (FIXED, RMS, VSAM, XML).

l USE command for FOCUS data sources.

l For z/OS, native operating system services, when supported.

l DYNAM command.

l Superseded by JCL DD card.

It is recommended that you use only one method for each allocation.

Creation Rules for Data Files
For a newly created data file, the location is determined as follows:

1. An application set by APP HOLDDATA applies to all HOLD files.

2. For FILEDEF command, one for each data file.

3. For z/OS, native operating system allocations when supported.

The request that caused the file to be created determines the file DCB parameters, such as
record length, record format, and so on.

For related information, see Output Redirection Commands.

Sample Allocations by JCL
The following table contains sample allocations by JCL.

ibi™ FOCUS® Developing Applications

248 | Managing Applications

VSAM
//VSAM01 DD DISP=SHR, DSN=qualif.DATA.VSAM

This type of allocation requires the szero = y parameter in the
edaserve.cfg file to support sharing of BufferPool Zero.

Fixed
//FIX01 DD DISP=SHR,DSN=qualif.FIXED.DATA

PDS
//MASTER DD DISP=SHR,DSN=qualif.MASTER.DATA

FOCUS
//CAR DD DISP=SHR,DSN=qualif.CAR.FOCUS

Sample DYNAM Commands
The following table contains samples of the DYNAM command.

VSAM
DYNAM ALLOC FILE QVASM DA qualif.QVSAM.VSAM SHR
REUSE

Fixed
DYNAM ALLOC FILE FILE1 DA qualif.FILE1.DATA SHR
REUSE

PDS
DYNAM ALLOC FILE MASTER DA qualif.MASTER.DATA SHR
REUSE

FOCUS
DYNAM ALLOC FILE CAR DA qualif.CAR.FOCUS SHR REU

ibi™ FOCUS® Developing Applications

249 | Managing Applications

Issue a FILEDEF Command

FI[LEDEF] filedes DISK app/[appa.../]physfile.ftm

where:

filedes

Is a file designation (ddname).

app/[appa...]

Is an application name. It can be a nested application name.

physfile.ftm

Is a physical file located in the application.

Issue a FILEDEF Command to Concatenate Files
FI[LEDEF] concatname DISK [app1/]filename1.ext
FI[LEDEF] name2 DISK [app2/]filename2.ext
...
FI[LEDEF] namen DISK [appn/]filenamen.ext
FI[LEDEF] concatname CONCAT name2 ... namen

where:

concatname

Is the ddname for one of the files and the name for the concatenated files. Use this
name in a request. The individual ddnames will not be available once they are used in a
FILEDEF CONCAT command.

name2 ... namen

Are ddnames for the files that will be added to the concatenation.

app1 ... appn

Are application names. They can be nested application names.

ibi™ FOCUS® Developing Applications

250 | Managing Applications

filename1.ext ...filenamen.ext

Are the physical file names.

Concatenating Files Using FILEDEF
The following request creates three files, file1.ftm, file2.ftm, and file3.ftm.

APP HOLD app1
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME LE 'F'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file1 FORMAT ALPHA
END
-RUN
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME GT 'F' AND STATE_PROV_NAME LE 'M'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file2 FORMAT ALPHA
END
-RUN
TABLE FILE WF_RETAIL_LITE
SUM COGS_US REVENUE_US
BY STATE_PROV_NAME
WHERE STATE_PROV_NAME GT 'M'
WHERE COUNTRY_NAME EQ 'United States'
ON TABLE HOLD AS file3 FORMAT ALPHA
END

The following commands concatenate the three files.

FILEDEF FILE1 DISK app1/file1.ftm
FILEDEF FILE2 DISK app1/file2.ftm
FILEDEF FILE3 DISK app1/file3.ftm
FILEDEF FILE1 CONCAT FILE2 FILE3

The following procedure issues a request against the concatenated files.

TABLE FILE FILE1
SUM COGS_US REVENUE_US

ibi™ FOCUS® Developing Applications

251 | Managing Applications

BY STATE_PROV_NAME
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF, SIZE=8,$
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

252 | Managing Applications

Issue a FILEDEF Command for a Native MVS Data Set

FI filedes DISK "//'NATIVE.MVS.DATASET'"

where:

filedes

Is a file designation.

NATIVE.MVS.DATASET

Is a Native MVS data set. It can contain any number of qualifiers, up to 44 characters
long.

Issue a USE Command
The USE command can be issued instead of an allocation command for FOCUS data
sources. The USE command is the only mechanism for accessing files on the sink machine.

Sample USE Commands
The USE command supports renaming of Master Files and concatenation of data sets. The
USE command is the only mechanism for accessing files on the sink machine.

Renaming a Master File

USE
CAR1 AS CAR

END

Concatenating Master Files

USE
CAR1 AS CAR
CAR2 AS CAR

END

Accessing Files on a Sink Machine

ibi™ FOCUS® Developing Applications

253 | Managing Applications

USE
CAR1 ON FOCSU01

END

Data Set Names
If a data set name satisfies one of the following conditions, FOCUS assumes that it is an
MVS file name:

l Data set name starts with "//".

l Data set name contains no "/" and contains at least one "."

Define a Data Set
The following syntax is supported:

DATASET=APP1/physfile.ftm
DATASET='qualif.car.data'
DATASET=qualif.car.data

In addition, on z/OS, you can use the following:

GDG files
FILENAME=CARGDG,SUFFIX=FOCUS,
DATASET='qualif.CARGDG.FOCUS(0)'

PDS members
FILENAME=CARMEMB,SUFFIX=FOCUS,
DATASET=qualif.CARPDS.DATA(CARMEMB)

FOCUS, VSAM,
Fixed

FILENAME=CAR,SUFFIX=FOCUS,
DATASET=//'qualif.CAR.FOCUS'

ibi™ FOCUS® Developing Applications

254 | Managing Applications

Allocating Temporary Files
Temporary files are transient files that disappear after you end a session

For z/OS, you can control the size and location of these temporary metadata files and data
files. You can specify that the temporary files reside in MVS data sets, or in hiperspace.

Allocate Temporary Files
To specify the allocation of your temporary files, issue the following command

DYNAM SET TEMP[ALLOC] {MVS|HIPER}

where:

MVS

Allocates temporary files to MVS data sets.

HIPER

Allocates temporary files to hiperspace.

Usage Notes for Allocating Temporary Files
For z/OS, temporary metadata files can be allocated using a similar procedure to allocating
permanent metadata files:

l If DYNAM allocation for HOLDMAST or HOLDACC is present, temporary files are stored
in the designated PDSs.

l If DYNAM SET TEMP[ALLOC] MVS is issued; in the default temporary PDSs.

l If DYNAM SET TEMP[ALLOC] HIPER is issued; in the HIPERSPACE.

ibi™ FOCUS® Developing Applications

255 | Managing Applications

Allocate Temporary Files to MVS Data Sets
To alter the default allocation parameters for temporary files for MVS data sets, issue the
following command

DYNAM SET TEMP[ALLOC] FOR typedynam_parms

where:

type

Is one of the following: HOLDACC, HOLDMAST, HOLD SAVE, REBUILD, FOCUS, FOCSORT,
OFFLINE, or FOC$HOLD.

dynam_parms

Are regular DYNAM ALLOC parameters to be used as default for that type. Note that DCB
parameters, if provided here, will be ignored, since they must be compatible with the
file type being written.

This is similar to the functionality of IBITABLA in the SSCTL Server. The defaults should be
overwritten for all cases when, in older versions, a private copy of IBITABLA existed
containing different values.

System Defaults for Allocating Temporary Files to
MVS Data Sets
System defaults for HOLDMAST and HOLDACC are:

TRKS 5 5 DSORG PO DIR 36 NEW REU

System defaults for all other types are:

CYLS 5 10 DSORG PS NEW REU

ibi™ FOCUS® Developing Applications

256 | Managing Applications

Support Long Synonym Names Using DYNAM SET
LONGSYNM
FOCUS supports synonym names up to 64 characters. However, PDS member names
cannot exceed eight characters. FOCUS accounts for this operating environment limitation
with the command DYNAM SET LONGSYNM.

A synonym comprises a Master File and, usually, an Access File. When you create a
synonym with a name exceeding eight characters, the LONGSYNM setting currently in effect
determines how the long name of the Master File and of the Access File will be handled.

You can issue DYNAM SET LONGSYNM anywhere SET commands are valid, including the
global profile (EDASPROF) and a stored procedure (FOCEXEC).

The syntax is

DYNAM SET LONGSYNM {MVS|MATCH}

where:

MVS

Specifies that when you save a synonym with a name exceeding eight characters,
FOCUS truncates the name, preserving up to the first six characters, followed by a left
curly brace ({) and a suffix number that ensures the name is unique. (FOCUS preserves
the original long name within the synonym files.)

For example, if you create a Master File named VERYLONGNAMETEST, it will be saved as
VERYLO{0. If you then create a Master File named VERYLONGNAMEPROD, it will be saved
as VERYLO{1.

FOCUS chooses a suffix number by taking the next unused number in the sequence for
that truncation of a Master File or Access File name. If the next number available for the
Master File is different than that available for the Access File, the files will be created
with different numbers. For example, if the highest Master File name truncated to
VERYLO is VERYLO{8, and the highest Access File name truncated to VERYLO is VERYLO{5,
and you create a synonym specifying the name VERYLONGNAMEAGAIN, the new Master
File will be saved as VERYLO{9, and the new Access File will be saved as VERYLO{6.

ibi™ FOCUS® Developing Applications

257 | Managing Applications

MATCH

Works the same as the MVS setting, except that it ensures that the truncated names of a
Master File and Access File synonym will always match. That is, they will be named
using the same suffix number.

In the example provided for the MVS setting, if SET LONGSYNM had instead been set to
MATCH, both the new Master File and the new Access File would have been named
VERYLO{9.

Matching names may be a convenience for some people if they manually manage
synonym files. It is less efficient than the MVS setting, however.

Pre-Allocate Temporary Files
You can pre-allocate an individual file for a user, using the following techniques:

l For UNIX and Linux or to allocate a file stored under USS from FOCUS for
Mainframe:

FILEDEF XXX DISK /u/another/area/xxx.dat

where:

/u/another/area

Has enough free space to hold the file.

l For FOCUS files:

You can use the FILEDEF and USE commands to create a FOCUS file.

FILEDEF NAME DISK /{pathname}{filename}.foc
USE NAME NEW
END

Dynamically Allocate FOCUS Files on z/OS
You can dynamically allocate FOCUS files on z/OS with the USE command. The command is

ibi™ FOCUS® Developing Applications

258 | Managing Applications

DYNAM ALLOC FILE ddname SPACE
USE ddname AS masterfile
END

where:

ddname

Is the DDNAME.

masterfile

Is the Master File name.

If the DDNAME and Master File name are the same, use just the command:

DYNAM ALLOC

ibi™ FOCUS® Developing Applications

259 | Managing Flow of Control in an Application

Managing Flow of Control in an Application
Dialogue Manager is the part of the FOCUS language that controls the execution of your
application's components. You can add flexibility to your application design by dynamically
managing the flow or control in procedures using Dialogue Manager commands and
variables whose values are supplied at run time.

Uses for Dialogue Manager
The following are ways to use Dialogue Manager to control the flow of your application:

l Control the execution of a procedure. Use Dialogue Manager control commands to
determine the sequence in which FOCUS commands execute and when and how
procedures terminate. For details, see Executing and Terminating a Procedure.

l Navigate a procedure. You can conditionally execute requests, repeat execution
with program loops, or call another procedure. For details, see Navigating a
Procedure.

l Customize a procedure with variables. Dynamically change a procedure's
execution by including variables whose values depend on user input, developer
settings, or system information. You can also test a variable's value, the result of a
calculation, the existence of a file, or an operating system condition, and execute or
not based on the results of the test. For details, see Using Variables in a Procedure,
Supplying and Verifying Values for Variables, and Manipulating and Testing Variables.

l Issue operating system commands. You can issue an operating system command to
query the environment or load a function and run it. For details on issuing operating
system commands, see Issuing an Operating System Command.

You can also use Dialogue Manager commands and variables to:

l Control passwords. You can directly assign and change passwords. For details, see
Creating a Procedure.

l Send a message to an application user. You can send a message to the user while
a procedure is processing to explain the purpose of the procedure, display results, or
present other useful information. For details, see Creating a Procedure.

ibi™ FOCUS® Developing Applications

260 | Managing Flow of Control in an Application

l Test and debug the application. You can use variables to display command lines as
they execute and to test Dialogue Manager command logic. See Debugging a
Procedure.

Overview of Dialogue Manager Commands
For descriptions and syntax, see Dialogue Manager Quick Reference.

Command Meaning

-*
Is a comment line; it has no action.

-CLOSE ddname
Closes the specified -READ or -WRITE file.

-CLOSE *
Closes all -READ and -WRITE files currently open.

-CRTCLEAR
Clears the screen display.

-CRTFORM
Initiates full-screen variable data entry.

-DEFAULT
-DEFAULTS

Presets initial values for variable substitution.

-EXIT
Executes stacked commands and returns to the
FOCUS prompt.

-GOTO
Establishes an unconditional branch.

ibi™ FOCUS® Developing Applications

261 | Managing Flow of Control in an Application

Command Meaning

-HTMLFORM
For use with the Web Interface to FOCUS.

-IF
Tests and branches control based on test results.

-INCLUDE
Dynamically incorporates one procedure in another.

-label
User-supplied name identifying the target for -GOTO
or -IF.

-MVS RUN
Same as -TSO RUN.

-PASS
Sets password directly.

-PROMPT
Types a prompt message on the screen and reads a
reply.

-QUIT
Exits the procedure without executing stacked
commands.

-READ
Reads records from a sequential file.

-READFILE
Reads fields based on a Master File into Dialogue
Manager variables.

-REPEAT
Executes a loop.

ibi™ FOCUS® Developing Applications

262 | Managing Flow of Control in an Application

Command Meaning

-RUN
Executes all stacked FOCUS commands and returns to
the procedure for further processing.

-SET
Assigns a value to a variable.

-TSO RUN
In MVS/TSO, loads and executes a user-written
function.

-TYPE
Types informative messages to the screen or other
output device.

-WINDOW
Invokes Window Painter, transferring control from the
procedure to the specified window file.

-WRITE
Writes a record to a sequential file.

-"..."
Brackets contents for -CRTFORM display line.

-? SET
parameter
&myvar

Captures the value of a settable parameter in &myvar.

-? &
[variablename]

Displays the values of currently defined amper
variables.

Dialogue Manager Variables Overview
You can write procedures containing variables which values are unknown until run time,
allowing a user to customize the procedure by supplying different values each time it
executes. Variables fall into two categories:

ibi™ FOCUS® Developing Applications

263 | Managing Flow of Control in an Application

l Local and global variables. Local and global variable values must be supplied at run
time. Local variables retain the values only for one procedure. Global variables retain
the values across procedures unless you explicitly clear them. They lose the values
when you exit from FOCUS. You create a local variable by choosing a name that
starts with a single ampersand (&); you create a global variable by choosing a name
that starts with a double ampersand (&&).

l System and statistical variables. System and statistical variable values are
automatically supplied by the system when a procedure references them. System and
statistical variables have names that begin with a single ampersand (&). For example,
the variable &LINES indicates how many lines of output were produced, and the
variable &DATE indicates the current date.

For complete information, see Using Variables in a Procedure, Supplying and Verifying
Values for Variables, and Manipulating and Testing Variables.

Dialogue Manager Processing
Modify your application at run time with user input and environment conditions by using
Dialogue Manager stored procedures, which include commands and variables.

In the FOCUS community, stored procedures are often referred to as FOCEXECs. In this
document they are referred to as procedures.

The following diagram illustrates how a Dialogue Manager procedure is processed.

ibi™ FOCUS® Developing Applications

264 | Managing Flow of Control in an Application

1. Processing begins from the command processor when a procedure is invoked for
execution at the FOCUS prompt (for example, EX SLRPT).

2. The FOCEXEC Processor reads each line of the procedure. Any variables on the line
are assigned the current values.

3. If a variable is missing a value, FOCUS issues a prompt. The user then supplies the
missing value.

All Dialogue Manager commands execute as soon as Dialogue Manager reads them.

4. When a command line containing no Dialogue Manager commands is fully expanded
with any variables resolved (through either a -SET command or prompting), it is
placed onto the command execution stack (FOCSTACK).

5. Dialogue Manager execution commands (for example, -RUN) and statistical variables
flush the FOCSTACK and route all currently stacked commands to the FOCUS
Command Processor.

By the time your FOCSTACK is ready for execution, this has happened:

l All variables have received values and these values have been integrated into the
command lines containing variables.

l Dialogue Manager commands have been used to place FOCUS commands into proper

ibi™ FOCUS® Developing Applications

265 | Managing Flow of Control in an Application

sequential order for execution.

l At this point the FOCUS Command Processor no longer sees any Dialogue Manager
commands. It only sees FOCUS command lines in the stack.

For an illustration, see Dialogue Manager Processing, where the FOCUS Command
Processor routes execution to the TABLE module and executes the TABLE request that was
stacked.

Note: Any FOCUS command can be placed in a procedure, including the EXEC
command. When an EXEC command is processed in a procedure, the commands
from the new procedure are first stacked and then executed.

Processing a Procedure
The following example traces the execution process of a procedure. The numbers at the
left refer to explanatory notes that follow the example.

1. -TOP
2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.
3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;
4. TABLE FILE SALES

SUM UNIT_SOLD
BY PROD_CODE
IF CITY IS &WHICHCITY
END

5. -RUN
6. -GOTO TOP
7. -QUIT

Assume this procedure is stored in a file named SLRPT. To execute it, the user types either
of the following:

EXEC SLRPT

Or

EX SLRPT

The following describes the individual steps of the procedure:

ibi™ FOCUS® Developing Applications

266 | Managing Flow of Control in an Application

1. -TOP

This is a label, which serves as a target to which -IF ... GOTO or -GOTO commands
transfer processing control. Labels call for no special processing, so control passes to
the next command.

2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.

The prompt "ENTER NAME OF CITY OR DONE" appears on the terminal. Assume the
user types "STAMFORD" and the variable value is stored for later use. Processing
continues with the next line.

3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;

Had DONE been entered, control would pass to -QUIT at the bottom of the
procedure. This would end processing, cause an immediate exit from this procedure,
and return control to the FOCUS prompt. Since STAMFORD was entered, processing
continues with the next line.

4. TABLE FILE SALES

.

.

.

Without a leading hyphen, this is interpreted as a FOCUS command. Only Dialogue
Manager commands execute immediately, so the next five lines are placed in the
stack where FOCUS commands are kept until executed; this is referred to as
FOCSTACK. Note that the value STAMFORD, entered in response to the prompt, is
inserted into the FOCUS command line as the value for &WHICHCITY.

At this point the FOCSTACK looks like:

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
IF CITY IS STAMFORD
END

Control passes to the next Dialogue Manager command.

5. -RUN

This command sends the stack to FOCUS, which executes the stored request and
returns control to the next Dialogue Manager command.

6. -GOTO TOP

ibi™ FOCUS® Developing Applications

267 | Managing Flow of Control in an Application

Control is now routed back to -TOP, thus establishing a loop. Execution continues
from -TOP with the -PROMPT command.

7. -QUIT

This command is reached when the user types DONE in response to the prompt. The
procedure is exited and the FOCUS prompt appears.

Creating a Procedure
You can use the FOCUS integrated text editor, TED, or invoke your system editor from
FOCUS with the IEDIT command to create procedures that contain Dialogue Manager
functionality. IEDIT is especially useful with variable-length files or those whose record
lengths are greater than 80 characters.

TED and IEDIT have two valuable features for creating and editing procedures:

l If you issue the TED command, or invoke your system editor using the IEDIT
command without specifying a procedure name, the last executed procedure is
automatically selected. This is convenient when developing and testing new
procedures.

l Test the execution of the procedure by typing RUN on the command line in TED or in
a system editor accessed with the IEDIT command. RUN automatically saves the
procedure and executes it. If there is an error in your procedure, type TED or IEDIT to
bring you back to the editor. It places you directly on the line in which the error was
detected.

For details, see Editing Files With TED and Invoking Your System Editor With IEDIT in the
Overview and Operating Environments manual.

These options complement the FILE and SAVE options that are common to other editors.

In addition to Dialogue Manager commands and variables that directly affect an
application's flow of control, you can use commands to:

l Add comments to a procedure. See Creating a Procedure.

l Send messages to the terminal. See Creating a Procedure.

l Control user access to data. See Creating a Procedure.

You can also create a profile procedure that defines startup conditions and can include
Dialogue Manager commands. See Creating a Procedure.

ibi™ FOCUS® Developing Applications

268 | Managing Flow of Control in an Application

Rules for Creating Procedures
Follow these general rules when creating procedures:

l Dialogue Manager commands must begin in the first position of the line.

l At least one space must be inserted between the Dialogue Manager command and
other text.

l If a Dialogue Manager command exceeds one line, the following line must begin with
a hyphen (-). The continuation line must have a space between the hyphen and the
rest of the line.

l Procedure names cannot contain special characters.

Including Comments in a Procedure
It is good practice to include comments in a procedure for the benefit of others who may
use it. It is particularly recommended that you use comments in a procedure heading to
supply the date, the version, and other relevant information. Two styles of comments are
available:

l FOCUS-Style Comments. A hyphen and an asterisk (-*) mark the beginning of a
comment, which can be on a single line.

l C-Style Comments. The comment is enclosed within an opening /* tag (slash
followed by asterisk) and a closing */ tag (asterisk followed by slash). A C-style
comment can appear anywhere and span multiple lines.

Comments do not appear on the terminal nor do they trigger processing. They are visible
only when viewing the contents of the procedure through the editor and are strictly for the
benefit of the developer. However, you can view comments on the terminal by using the
&ECHO variable. For details, see Debugging a Procedure.

Add a FOCUS-Style Comment in a Procedure
1. Begin the comment line with the command:

ibi™ FOCUS® Developing Applications

269 | Managing Flow of Control in an Application

-*

2. Type the comment text after the command, optionally with a space before the text.

You can place a comment at the beginning or end of a procedure or in between
commands. A comment cannot be on the same line as a command.

The following entry is valid:

.

.

.
-*Version 2 06/10/00
-RUN

The following is invalid:

-RUN -*Version 2 06/10/00

Placing a FOCUS-Style Comment in a Procedure
The following example places a comment at the beginning of a procedure.

-* Version 1 08/26/02 HRINFO Procedure
TABLE FILE CENTHR

.

.

.

Placing C-Style Comments in a Procedure
The following example places C-style comments in a procedure.

TABLE FILE GGSALES /* this is a multi-line comment
that will not interfere with processing and will be ignored
until the comment is closed with */
SUM /* Another comment */ DOLLARS

ibi™ FOCUS® Developing Applications

270 | Managing Flow of Control in an Application

.

.

.

Sending a Message to the User
You can use the -TYPE command to send a message to the terminal while a procedure is
processing. Typically, the message serves the following purposes:

l Explains the purpose of the procedure.

l Displays the results of a procedure or calculation during testing of a procedure.

l Presents other useful information.

l Indicates what type of information to supply in response to a prompt.

Send a Message to the User
-TYPE sends the message to the terminal as soon as it is encountered in the processing of a
procedure. The syntax is

-TYPE[+|0|1] text

Or

-label TYPE text

where:

text

Is the message to be sent. The message is sent to the screen, followed by a line feed. It
remains on the screen until scrolled off or replaced by a new screen.

If you include quotation marks around the text, they are displayed as part of the
message. (This differs from the use of TYPE in MODIFY, where quotation marks are used
as delimiters and must enclose informative text.)

ibi™ FOCUS® Developing Applications

271 | Managing Flow of Control in an Application

-label

Is the target of a -GOTO or -IF.

+|0|1

Are optional entries that pass printer control characters to the output device. They are
particularly useful for character printers. Options + and 1 do not work on IBM 3270-type
terminals.

+ suppresses the line feed following the printing of text.

0 forces a line feed before the message text is displayed.

1 forces a page eject before the message text is printed.

If supplied, these values must follow -TYPE without a space.

Sending a Message
The following example illustrates the use of -TYPE to inform a user about the content of a
report:

-* Version 1 06/26/00 SLRPT Procedure
-* Component of Retail Sales Reporting Module
-TYPE This report calculates percentage of returns.
TABLE FILE SALES
.
.
.

END

Controlling User Access to Data
You can issue and control passwords with the -PASS command. This is especially useful for
specifying a password for a particular file or set of files that a given user can read from or
write to. Passwords have detailed sets of functions associated with them through the DBA
facility.

The procedure that sets passwords can be encrypted so that it and the passwords that it
sets cannot be typed and made known.

ibi™ FOCUS® Developing Applications

272 | Managing Flow of Control in an Application

A variable can also be associated with -PASS so that you can prompt for and assign a
password value. You can also check the value of the password and skip or execute a
portion of the procedure depending on the value.

Set a Password in a Procedure
-PASS password

where:

password

Is a password or a variable containing a password.

Since -PASS is a Dialogue Manager command, it executes immediately and is not sent to
the FOCSTACK. This means that the user need not issue the password with the SET
command.

Creating a Startup Procedure
You can establish startup conditions in a profile that executes its content immediately
upon entry into FOCUS. Using this procedure you can:

l Establish standard conditions that apply throughout the subsequent working session.
For example, you can predefine environment parameters or automatically compute

variables and make them available for later use.

l Provide a menu of subsequent user options.

l Control use of an application.

You can create a profile using any text editor or the FOCUS editor TED. The file is a
procedure (FOCEXEC) named PROFILE.

Note: It is possible to use an alternate procedure as a profile or not to execute a
profile at all. For more information, see the Overview and Operating
Environments manual.

ibi™ FOCUS® Developing Applications

273 | Managing Flow of Control in an Application

Creating a Startup Profile
The following example creates a startup profile):

USE
SALES
EMPLOYEE
END
DYNAM ALLOC DD MYSAV DA USER1.SAVE.TEMP SHR REU
DEFINE FILE SALES
RATIO/D5.2 = (RETURNS/UNIT_SOLD);
END
-TYPE FOCUS SESSION ON &DATE MDYY &TOD

LET WORKREPORT=TABLE FILE EMPLOYEE
SET LINES=57, PAPER=66, PAGE=OFF
OFFLINE

Upon entering FOCUS, the profile is executed and a message, introduced by the -TYPE
command, displays the current date and time.

Executing and Terminating a Procedure
You can use Dialogue Manager commands to manage the execution and termination of a
procedure. The commands used for these purposes are EXEC, -RUN, -EXIT, -QUIT, and -
QUIT FOCUS.

l EXEC executes the named procedure.

l -RUN causes immediate execution of all stacked commands, closes any external files,
and continues the procedure. See Executing and Terminating a Procedure for more
information.

l -EXIT forces the execution of stacked commands, and closes the procedure. For more
information, see Executing and Terminating a Procedure.

l -QUIT cancels execution of any stacked commands and causes an immediate exit
from the procedure. For more information, see Executing and Terminating a
Procedure.

l -QUIT FOCUS terminates a procedure and exits FOCUS. For more information, see

ibi™ FOCUS® Developing Applications

274 | Managing Flow of Control in an Application

Executing and Terminating a Procedure.

Executing Procedures
Procedures are generally initiated from the FOCUS prompt (>). Type the EXEC command
followed by the name of the procedure to run.

If you wish to supply arguments for the procedure, see Supplying and Verifying Values for
Variables.

You can execute a single procedure or call and execute one procedure from within another
one. For details, see Navigating a Procedure.

Execute a Procedure
EX[EC] procedure

where:

procedure

Is the name of the procedure.

Executing a Procedure
To summon a procedure named SLRPT for execution, enter either:

EXEC SLRPT

Or

EX SLRPT

ibi™ FOCUS® Developing Applications

275 | Managing Flow of Control in an Application

Executing Stacked Commands and Continuing
the Procedure
You can execute stacked commands and continue the procedure with the -RUN command.

The -RUN command causes immediate execution of all stacked commands and closes any
external files opened with -READ or -WRITE. For related information, see Supplying and
Verifying Values for Variables.

Following execution of the stacked commands, processing of the procedure continues with
the line that follows -RUN.

Executing Stacked Commands and Continuing the
Procedure
The following illustrates the use of -RUN to execute stacked code and then return to the
procedure. The numbers to the left correspond to the notes explaining the code.

1. TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
BY CITY

END
2. -RUN

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
BY DEPARTMENT

END

The procedure processes as follows:

1. The first four lines are the report request. Each line is placed on a stack to be
executed later.

2. -RUN causes the stacked commands to be executed and the output returned to the
terminal. Processing continues with the line following -RUN.

ibi™ FOCUS® Developing Applications

276 | Managing Flow of Control in an Application

Executing Stacked Commands and Exiting the
Procedure
You can execute stacked commands then exit a procedure with the -EXIT command. -EXIT
forces the execution of stacked commands as soon as it is encountered.

-EXIT closes all external files, terminates the procedure, and returns to the FOCUS prompt
unless the procedure was called by another procedure, in which case control returns to the
calling procedure. For related information, see Navigating a Procedure.

Executing Stacked Commands and Exiting the
Procedure
In this example, the first report request or the second report request executes, but not
both.

1. -SET &PROC = 'SALES';
2. -IF &PROC EQ 'EMPLOYEE' GOTO EMPLOYEE;

-SALES
3. TABLE FILE SALES

SUM UNIT_SOLD
BY PROD_CODE

END
4. -EXIT

-EMPLOYEE
TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY DEPARTMENT

END

The procedure processes as follows:

1. Dialogue Manager assigns SALES to &PROC.

2. An -IF test is done, and since the value for &PROC is not EMPLOYEE, the test fails and
control is passed to the next line, -SALES.

If the value for &PROC had been EMPLOYEE, control would pass to -EMPLOYEE.

3. The FOCUS code is processed, and stacked to be executed later.

ibi™ FOCUS® Developing Applications

277 | Managing Flow of Control in an Application

4. -EXIT executes the stacked commands. The output is sent to the terminal and the
procedure is terminated.

The request under the label -EMPLOYEE is not executed.

This example also illustrates an implicit exit. If the value of &PROC was EMPLOYEE, control
would pass to the label -EMPLOYEE after the -IF test, and the procedure would never
encounter -EXIT. The TABLE FILE EMPLOYEE request would execute and the procedure
would automatically terminate.

Canceling the Execution of a Procedure
You can cancel the execution of a procedure with the -QUIT command. -QUIT cancels
execution of any stacked commands and causes an immediate exit from the procedure.
Control returns directly to the application regardless of whether the procedure was called
by another procedure.

This command is useful if tests or computations generate results that make additional
processing unnecessary.

You can use a variation, -QUIT FOCUS, to cancel the execution of a procedure and
terminate the FOCUS session. It returns you to the operating system and sets a return
code.

Cancel the Execution of a Procedure
-QUIT

Cancel the Execution of a Procedure and Exit
FOCUS
-QUIT FOCUS [n|8]

where:

ibi™ FOCUS® Developing Applications

278 | Managing Flow of Control in an Application

n

Is the operating system return code number. It can be a constant or variable. A variable
should be an integer. If you do not supply a value or if you supply a non-integer value,
the return code posted to the operating system is 8 (the default).

A major function of user-controlled return codes is to detect processing problems. The
return code value determines whether to continue or terminate processing. This is
particularly useful for batch processing. For related information, see Debugging a
Procedure.

Canceling the Execution of a Procedure
The following example illustrates the use of -QUIT to cancel execution based on the results
of an -IF test:

1. -DEFAULT &CODE='B11';
2. -IF &CODE EQ '0' OR &CODE EQ 'DONE' GOTO QUIT;
3. TABLE FILE SALES

SUM UNIT_SOLD
WHERE PROD_CODE EQ &CODE
END

4. -QUIT

The procedure processes as follows:

1. The -DEFAULT command sets the default value for &CODE to B11.

2. The value B11 is passed to &CODE.

3. The FOCUS code is processed, and stacked to be executed later.

4. -QUIT cancels the execution of stacked commands and exits the procedure.

Locking Procedure Users Out of FOCUS
Users can respond to a Dialogue Manager value request with QUIT and return to the FOCUS
command level or the prior procedure. In situations where it is important to prevent users
from entering native FOCUS or QUIT from a particular procedure, the environment can be
locked and QUIT deactivated.

ibi™ FOCUS® Developing Applications

279 | Managing Flow of Control in an Application

Lock Procedure Users Out of FOCUS
Enter the following command within the procedure:

-SET &QUIT=OFF;

With QUIT deactivated, any attempt to return to native FOCUS produces an error message
indicating that "quit" is not a valid value. The user is prompted for another value.

A user can terminate the FOCUS session from inside a locked procedure by responding to a
prompt with

QUIT FOCUS

to return to the operating system, not the FOCUS command level.

Note: The default value for &QUIT is ON.

Navigating a Procedure
You can navigate a procedure in the following ways:

l Unconditional branching. Transfers control to a label. For details, see Navigating a
Procedure.

l Conditional branching. Transfers control to a label depending on the outcome of a
test. For details, see Navigating a Procedure.

l Looping. Performs a function repeatedly in your procedure. For details, see
Navigating a Procedure.

l Calling another procedure. Incorporates a whole or partial procedure into your
procedure. For details, see Navigating a Procedure and Navigating a Procedure.

ibi™ FOCUS® Developing Applications

280 | Managing Flow of Control in an Application

Branching Unconditionally
You can perform unconditional branching, which transfers control to a label with the -
GOTO command.

The first time through a procedure, Dialogue Manager notes the addresses of all the labels
so they can be found immediately if needed again. If Dialogue Manager hasn't stored the
address of the label in the -GOTO command, it searches forward through the procedure for
the target label. If no label is found, it begins searching at the top of the procedure.

Dialogue Manager takes no action on labels that do not have a corresponding -GOTO. If a
-GOTO does not have a corresponding label, execution halts and an error message is
displayed.

Branch Unconditionally
-GOTO label

.

.

.
-label [TYPE text]

where:

-label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the name
of any other Dialogue Manager command except -QUIT or -EXIT. Do not use arithmetic
or logical operations, words that can be confused with functions, or reserved words.

Note: The word CONTINUE can be used as a label in a -GOTO that is not part
of a -IF command, but CONTINUE will not be recognized as a label in a -IF
command, where it always transfers to the command immediately following
the -IF.

The label text may precede or follow the -GOTO command in the procedure.

ibi™ FOCUS® Developing Applications

281 | Managing Flow of Control in an Application

Note: When the label is specified in the -GOTO command, a dash does not
precede it.

TYPE text

Sends a message to the terminal.

Branching Unconditionally
The following example "comments out" all the FOCUS code using an unconditional branch.
This is more efficient that placing -* in front of every line:

-GOTO DONE
TABLE FILE SALES
PRINT UNIT_SOLD RETURNS
BY PROD_CODE,CITY
END
-RUN
-DONE

Branching Conditionally
Conditional branching performs a test of the values of variables and, based on the test,
transfers control to a label in the procedure with the -IF... GOTO command. This helps
control the execution of requests and builds a dynamic procedure by choosing to execute
or not execute parts of a procedure.

For example, you can check whether an extract file was created from a production data
source. If the extract file exists, the program runs a set of reports against the extract. If it
does not exist, the program branches around the reports and writes a message to a log file.

Note: Generally, an -IF test does not require that each test specify a target label.
However, in a compound IF test, where a series of tests are nested within each
other, a specified target label is required for each test.

ibi™ FOCUS® Developing Applications

282 | Managing Flow of Control in an Application

Branch Conditionally
-IF expression [THEN] {GOTO label1|CONTINUE} [ELSE IF...] [ELSE {GOTO
label2|CONTINUE}] ;

where:

expression

Is a valid expression. Literals do not need to be enclosed in single quotation marks
unless they contain embedded blanks or commas.

THEN

Is an optional word that increases readability of the command.

label1

Is a user-defined name of up to 12 characters to which to pass control if the -IF test is
true. Do not use embedded blanks or the name of any other Dialogue Manager
command except -QUIT or -EXIT. Do not use arithmetic or logical operations, words that
can be confused with functions, or reserved words. The word CONTINUE can be used as
a label in a -GOTO that is not part of a -IF command, but CONTINUE will not be
recognized as a label in a -IF command, where it always transfers to the command
immediately following the -IF.

The label text may precede or follow the -IF criteria in the procedure.

CONTINUE

Continues to the command that follows the semicolon of the -IF command.

Note: CONTINUE cannot be used as a label in a -IF statement.

ELSE IF

Specifies a compound -IF test. The command -IF must end with a semicolon to signal
that all logic has been specified. For more information, see Navigating a Procedure.

ELSE GOTO label2

Passes control to label2 when the -IF test fails.

If a command spans more than one line, continuation lines must begin with a hyphen and
one or more spaces.

ibi™ FOCUS® Developing Applications

283 | Managing Flow of Control in an Application

Performing Conditional Branching
The following example passes control to the label -PRODSALES if &OPTION is equal to S.
Otherwise, the control passes to the label -PRODRETURNS, the next line in the procedure.

-IF &OPTION EQ 'S' GOTO PRODSALES;
-PRODRETURNS
TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
BY STORE_CODE
END
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
END
-EXIT

The following command specifies both transfers explicitly:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE
- GOTO PRODRETURNS;

Notice that the continuation line begins with a hyphen and includes a space after the
hyphen.

Conditional Branching Based on Testing of System
and Statistical Variables
In the following example, if data (&LINES) is retrieved with the request, then the procedure
branches to the label -PRODSALES; otherwise, it terminates.

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE BY CITY
WHERE TOTAL UNIT_SOLD GE 50
ON TABLE HOLD
END
-RUN

ibi™ FOCUS® Developing Applications

284 | Managing Flow of Control in an Application

-IF &LINES NE 0 GOTO PRODSALES;
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE ACROSS CITY
END

Conditional Branching Based on User Input
In the following example, the first report request or the second report request, but not
both, executes. Suppose that for the procedure to run a user must supply a value for a
variable named &PROC. The user may enter SALES or EMPLOYEE.

1. -IF &PROC EQ 'EMPLOYEE' GOTO EMPLOYEE;
2. -SALES

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE

END
3. -EXIT

-EMPLOYEE
TABLE FILE EMPLOYEE
PRINT PLANT_NAME
BY DEPARTMENT

END

The procedure processes as follows:

1. The user enters the value SALES for &PROC. An -IF test is done, and since the value
for &PROC is not EMPLOYEE, the test fails and control is passed to the next line, -
SALES

If the value for &PROC had been EMPLOYEE, control would pass to -EMPLOYEE.

2. The FOCUS code is processed, and stacked to be executed later.

3. -EXIT executes the stacked commands. The output is sent to the terminal and the
procedure is terminated.

The request under the label -EMPLOYEE is not executed.

ibi™ FOCUS® Developing Applications

285 | Managing Flow of Control in an Application

Conditional Branching Based on a Compound -IF
Test
A compound -IF test is a series of nested -IF tests nested. In a compound -IF test, each test
must specify a target label.

In this example, if the value of &OPTION is neither R nor S, the procedure terminates (-
GOTO QUIT). -QUIT serves both as a target label for the GOTO and as an executable
command. For the procedure to run, a user must supply a value for a variable named
&OPTION.

-IF &OPTION EQ 'R' THEN GOTO PRODRETURNS ELSE IF
- &OPTION EQ 'S' THEN GOTO PRODSALES ELSE
- GOTO QUIT;
-PRODRETURNS
TABLE FILE SALES
PRINT PROD_CODE UNIT_CODE
BY STORE_CODE
END
-EXIT
-PRODSALES
TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
END
-RUN
-QUIT

Looping in a Procedure
You can perform an action repeatedly by looping in your procedure with the -REPEAT
command. Looping can be used for many tasks. For example, you can populate an indexed
variable using a loop or use the output of a request in a second request.

A process loop can be executed a designated number of times or until a condition is met. A
loop ends when any of the following occurs:

l It is executed in its entirety.

l A -QUIT or -EXIT command is issued.

ibi™ FOCUS® Developing Applications

286 | Managing Flow of Control in an Application

l A -GOTO is issued to a label outside of the loop.

Note: If you issue another -GOTO later in the procedure to return to the
loop, the loop proceeds from the point at which it left off.

Note that the -SET command provides another method for implementing loops. See
Navigating a Procedure.

Tip: During loop processing, the search for labels that indicate the target of a -
REPEAT or a -GOTO command takes longer in a procedure with variable, rather
than fixed (80 character), record lengths. To speed execution in this situation,
consider replacing loops with EX or -INCLUDE commands. See Navigating a
Procedure and Navigating a Procedure.

Specify a Loop
-REPEAT label n TIMES

or

-REPEAT label WHILE condition;

Or

-REPEAT label FOR &variable [FROM fromval] [TO toval] [STEP s]

where:

label

Identifies the code to be repeated (the loop). A label can include another loop if the
label for the second loop has a different name than the first.

n TIMES

Specifies the number of times to execute the loop. The value of n can be a local
variable, a global variable, or a constant. If it is a variable, it is evaluated only once, so

ibi™ FOCUS® Developing Applications

287 | Managing Flow of Control in an Application

you cannot change the number of times to execute the loop. The loop can only be
ended early using -QUIT or -EXIT.

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that can be true or false. The loop executes if the condition is true.

&variable

Is a variable that is tested at the start of each execution of the loop and incremented by
s with each execution. It is compared with the value of fromval and toval, if supplied.
The loop is executed only if &variable is greater than or equal to fromval or less than or
equal to toval.

fromval

Is a constant that is compared with &variable at the start of the execution of the loop.
The default value is 1.

toval

Is a value that is compared with &variable at the start of the execution of the loop. The
default value is 1,000,000.

STEP s

Is a constant used to increment &variable at the end of the execution of the loop. It may
be positive or negative. The default increment is 1.

Note: The parameters FROM, TO, and STEP can appear in any order.

Repeating a Loop
These examples illustrate each syntactical element of -REPEAT.

-REPEAT label n TIMES

For example:

ibi™ FOCUS® Developing Applications

288 | Managing Flow of Control in an Application

-REPEAT LAB1 2 TIMES
-TYPE INSIDE
-LAB1 TYPE OUTSIDE

The output is:

INSIDE
INSIDE
OUTSIDE

-REPEAT label WHILE condition;

For example:

-SET &A = 1;
-REPEAT LABEL WHILE &A LE 2;
-TYPE &A
-SET &A = &A + 1;
-LABEL TYPE END: &A

The output is:

1
2
END: 3

-REPEAT label FOR &variable FROM fromval TO toval STEP s

For example:

-REPEAT LABEL FOR &A STEP 2 TO 4
-TYPE INSIDE &A
-LABEL TYPE OUTSIDE &A

The output is:

INSIDE 1
INSIDE 3
OUTSIDE 5

ibi™ FOCUS® Developing Applications

289 | Managing Flow of Control in an Application

Controlling Loops With -SET
The following example illustrates the use of -SET to control a loop:

1. -DEFAULT &N=0
2. -START
3. -SET &N=&N+1;
4. EX SLRPT

-RUN
5. -IF &N GT 5 GOTO NOMORE;
6. -GOTO START
5. -NOMORE TYPE EXCEEDING REPETITION LIMIT

-EXIT

The procedure executes as follows:

1. The -DEFAULT command gives &N the initial value of 0.

2. -START begins the loop. This is also the target of an unconditional -GOTO.

3. The -SET command increments the value of &N by one each time the loop executes.

4. The FOCUS command EX SLRPT is stacked. -RUN then executes the stacked
command.

5. The -IF command tests the current value of the variable &N. If the value is greater
than 5, the control passes to the label -NOMORE, which displays a message for the
end user and forces an exit. If the value of &N is 5 or less, control goes to the next
Dialogue Manager command.

6. -GOTO passes control to the -START label, and the loop continues.

Incorporating Another Procedure With -
INCLUDE
You can insert a whole or partial procedure in another procedure with the -INCLUDE
command. A partial procedure might contain heading text, or code that should be included
at run time based on a test in the calling procedure. It executes immediately when
encountered.

ibi™ FOCUS® Developing Applications

290 | Managing Flow of Control in an Application

A calling procedure cannot branch to a label in a called procedure, and vice versa. When a
procedure is included using the -INCLUDE command, the procedure being included has full
access to variables defined in the calling procedure.

The -INCLUDE command can be used for the following:

l Controlling the environment. For example, the included procedure may set variables
such as server name or user name before the calling procedure continues execution.

l As a security mechanism. The included procedure can be encrypted and a direct
password set.

l Shortening the code when there are several possible procedures that may be called.
For example, the command -INCLUDE &NEWLINES could be used to determine the
called procedure, reducing the number of GOTO commands.

l Continuing sections of code used throughout the application such as standard
headings and footings. This enables changes made in a single module effect the
entire application.

Incorporate a File
-INCLUDE filename [filetype]

where:

filename

Is the name of a FOCUS procedure.

filetype

Is the procedure's DDNAME. If none is included, FOCEXEC is assumed.

Incorporating Another Procedure With -INCLUDE
In the following example, Dialogue Manager searches for a procedure named DATERPT as
specified by the -INCLUDE command.

ibi™ FOCUS® Developing Applications

291 | Managing Flow of Control in an Application

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
.
.
.

-PRODRETURNS
-INCLUDE DATERPT
-RUN

.

.

.

Assume that DATERPT contains the following code, which Dialogue Manager incorporates
into the original procedure. Dialogue Manager substitutes a value for the variable
&PRODUCT as soon as the -INCLUDE is encountered. -RUN executes the request.

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
WHERE PROD_CODE EQ '&PRODUCT';
END

Incorporating a Procedure With a Heading
The following incorporates a heading, which is stored as a procedure:

TABLE FILE SALES
-INCLUDE SALEHEAD
SUM UNIT_SOLD AND RETURNS AND COMPUTE

.

.

.

The file SALEHEAD contains:

HEADING
"THE ABC CORPORATION"
"RETAIL SALES DIVISION"
"MONTHLY SALES REPORT"

This heading is included in the report request.

ibi™ FOCUS® Developing Applications

292 | Managing Flow of Control in an Application

Incorporating a Procedure for a Virtual Field
The following incorporates a virtual field from a procedure:

-INCLUDE DEFRATIO
TABLE FILE SALES

-INCLUDE SALEHEAD
SUM UNIT_SOLD AND RETURNS AND RATIO
BY CITY
.
.
.

The file DEFRATIO creates a virtual field:

DEFINE FILE SALES
RATIO/D5.2=(RETURNS/UNIT_SOLD);
END

This virtual field is dynamically included before the report request executes.

Nesting Procedures With -INCLUDE
Any number of different procedures can be invoked from a single calling procedure.

You can also nest a procedure within itself, or recursively. Recursive -INCLUDE commands
cannot exceed four levels. For non-recursive -INCLUDE commands, the level of nesting is
limited only by the available memory.

ibi™ FOCUS® Developing Applications

293 | Managing Flow of Control in an Application

Files 1 through 4 are incorporated into the original procedure. All of the included files are
viewed as part of the original procedure.

A procedure cannot branch to a label in an included file.

Calling Another Procedure With EXEC
You can call a procedure from another procedure with the EXEC command. The called
procedure must be fully executable. It behaves as a completely separate procedure with its
own content. It cannot use any local variables (&variables) defined by the calling procedure
(unless they are explicitly passed to the called procedure on the command line). However,

the executed (called) procedure can use any global variables (&&variables) that have been
defined in the calling procedure.

When an EXEC command is encountered, it is stacked and executed when the appropriate
Dialogue Manager command is encountered.

Call a Procedure With the EXEC Command
EX[EC] procedure

where:

ibi™ FOCUS® Developing Applications

294 | Managing Flow of Control in an Application

procedure

Is the name of the procedure.

You can include arguments for the procedure. See Supplying and Verifying Values for
Variables.

Note: This syntax is identical to the execution syntax for any stored procedure.
However, in this context the EXEC command is included within another
procedure.

Calling a Procedure With EXEC
In the following example, a procedure calls DATERPT:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
.
.
.

-PRODRETURNS
EX DATERPT
.
.
.

-RUN

Note: If the last executable command in the called procedure is a -CRTFORM,
control is not returned to the calling procedure unless another Dialogue
Manager command is included to terminate the -CRTFORM, such as -RUN or a -
label.

Developing an Open-Ended Procedure
A file of stored FOCUS commands without variables looks and executes exactly as though it
had been typed interactively into FOCUS from the terminal. However, if there is an error in
your procedure file, it will be rejected. If you make an error while typing interactively from
the terminal, FOCUS issues prompts to help you correct the error.

ibi™ FOCUS® Developing Applications

295 | Managing Flow of Control in an Application

If you store a procedure without the END command, you can execute all of the procedure
lines. The terminal opens to allow interactive completion of the procedure. You can add
additional command lines and enter the END command from the terminal to complete the
procedure.

Note that you cannot use amper variables when typing online at a terminal. Open-ended
procedures do not support variable substitution in lines entered after the terminal is
opened. Variable substitution is supported in the stored portion of the procedure.

Developing and Running an Open-Ended Procedure
Assume the following open-ended procedure is stored as SLRPT:

-TYPE ENTER REST OF PROCEDURE
TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;

You can invoke the procedure by typing EX SLRPT. It executes normally but fails to
encounter an END command in the file. It then opens up the terminal displaying the FOCUS
prompt. You could supply:

BY STORE_CODE
END

Or, alternatively:

IF CITY IS STAMFORD
BY STORE_CODE
END

Using Variables in a Procedure
Interactive variable substitution is at the heart of Dialogue Manager. You can create
procedures that include variables (also called amper variables) and supply values for them
at run time. These variables store a string of text or numbers and can be placed anywhere

ibi™ FOCUS® Developing Applications

296 | Managing Flow of Control in an Application

in a procedure. A variable can refer to a field, a command, descriptive text, a file name—
literally anything.

Note: A Dialogue Manager variable contains only alphanumeric data. If a
function or expression returns a numeric value to a Dialogue Manager variable,
the value is truncated to an integer and converted to alphanumeric format
before being stored in the variable, unless you specify the precision to use as
described in Supplying and Verifying Values for Variables.

Variables fall into two categories:

l Local and global variables have values supplied at run time. Local variable values
remain in effect for the respective procedure, while global variable values remain in
effect for all procedures executed during an entire FOCUS session (that is, from the
time you enter FOCUS until you exit with the FIN command).

Leading double ampersands (&&) denote global variables. All other Dialogue Manager
variables begin with a single ampersand (&). For this reason, in the FOCUS
community they are known as amper variables.

For details, see Using Variables in a Procedure and Using Variables in a Procedure.

l System, statistical, and special variables have values that the system automatically
resolves whenever you request them.

For details, see Using Variables in a Procedure, Using Variables in a Procedure, and
Using Variables in a Procedure.

The maximum number of local, global, system, statistical, special, and index variables
available in a procedure is 1024. Approximately 40 are reserved for use by FOCUS.

Variables can be used only in procedures. They are ignored if you use them while creating
reports live at the terminal.

You can query the values of each type of variable you use. For details, see Using Variables
in a Procedure.

The values for variables may be supplied in a variety of ways. For details, see Supplying
and Verifying Values for Variables.

ibi™ FOCUS® Developing Applications

297 | Managing Flow of Control in an Application

Naming Conventions for Local and Global
Variables
Local and global variable names are user-defined, while system and statistical variables
have predefined names. The following rules apply to the naming of local and global
variables:

l A local variable name is always preceded by an ampersand (&). The variable can be
named or positional.

A positional variable consists of a single ampersand followed by a numeric string (for
example, &1). The value of a positional variable is passed to a procedure when it is
executed.

l A global variable name is always preceded by a double ampersand (&&).

l Embedded blanks are not permitted in a variable name.

l If a value for a variable might contain an embedded blank, comma, or equal sign,
enclose the variable in single quotation marks when referred to.

l A variable name may be any combination of the characters A through Z, 0 through 9,
and the underscore. The first character of the name should be a letter.

l You can assign a number instead of a name to a variable to create a positional
variable.

l The underscore may be included in a variable name, but the following special
characters are not permitted: plus sign, minus sign, asterisk, slash, period,
ampersand, and semicolon.

Specify a Variable Name
&[&]name

where:

ibi™ FOCUS® Developing Applications

298 | Managing Flow of Control in an Application

&

Denotes a local variable. A single ampersand followed by a numeric string denotes a
positional variable.

&&

Denotes a global variable.

name

Is the variable name. The name you assign must follow the rules outlined in Using
Variables in a Procedure.

Local Variables
Local variables are identified by a single ampersand (&) preceding the name of the
variable. They remain in effect throughout a single procedure.

Using Local Variables
Consider the following procedure, SALESREPORT, in which &CITY, &CODE1, and &CODE2
are local variables:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END

Assume you supply the following values when you call the procedure:

EX SLRPT CITY = STAMFORD, CODE1=B10, CODE2=B20

ibi™ FOCUS® Developing Applications

299 | Managing Flow of Control in an Application

Dialogue Manager substitutes the values for the variables as follows:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ STAMFORD
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
END

After the procedure executes and terminates, the values STAMFORD, B10, and B20 are lost.

Global Variables
Global variables differ from local variables in that once a value is supplied, it remains
current throughout the FOCUS session unless set to another value with -SET or cleared by
the LET CLEAR command. For information on LET CLEAR, see Defining a Word Substitution.
Global variables are useful for gathering values at the start of a work session for use by

several subsequent procedures. All procedures that use a particular global variable receive
the current value until you exit from FOCUS.

Global variables are specified through the use of a double ampersand (&&) preceding the
variable name. It is possible to have a local and global variable with the same name. They
are distinct and may have different values.

Using Global Variables
The following example illustrates the use of three global variables: &&CITY, &&CODE1,
&&CODE2. The values are substituted in the first procedure, PROC1, and the values are
retained and passed to the second procedure, PROC2.

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &&CITY"

ibi™ FOCUS® Developing Applications

300 | Managing Flow of Control in an Application

SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &&CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &&CODE1 TO &&CODE2
END
EX PROC2

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &&CITY AND PRODUCT &&CODE1"
PRINT UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &&CITY
IF PROD_CODE EQ &&CODE1
END

System Variables
FOCUS automatically substitutes values for system variables encountered in a Dialogue
Manager request. For example, you can use the system variable &DATE to automatically
incorporate the system date in your request.

System-supplied variables should not be overridden. To avoid this possibility, user-supplied
variables should not be given system variables names.

Summary of System Variables
A list of Dialogue Manager system variables follows:

Variable Format or Value Description

&DATE MM/DD/YY
Returns the current date.

ibi™ FOCUS® Developing Applications

301 | Managing Flow of Control in an Application

Variable Format or Value Description

&DATEfmt

&DATXfmt

Returns the current date or
date-time value, where fmt
can be any valid date or
date-time format. &DATEfmt
retains trailing blanks in the
returned value. &DATXfmt
suppresses trailing blanks in
the returned value.

Note: Using the
concatenation symbol (|)
to remove punctuation
between components is
not supported. To return
a value without
punctuation between the
components, use &YYMD
or &DATEHYYMDN.

For information about date
and date-time formats, see
Chapter 4, Describing an
Individual Field, in the
Describing Data manual.

Returns the current date or date-
time value, where fmt can be any
valid date or date-time format.
Because many date format
options can be appended to the
prefix DATE to form one of these
variable names, you should avoid
using DATE as the prefix when
creating a variable name.

&DMY DDMMYY
Returns the current date.

&DMYY DDMMCCYY
Returns the current (four-digit
year) date.

&ECHO ON,OFF, ALL, or NONE
Displays command lines as they
execute in order to test and debug
procedures.

&EXITRC
Any value returned by a
command is valid, but zero is
considered normal

Return code value from execution
of an operating system command.

ibi™ FOCUS® Developing Applications

302 | Managing Flow of Control in an Application

Variable Format or Value Description

(successful) execution.

&FOCCODEPAGE
Returns the code page being used
by FOCUS.

&FOCCPU milliseconds
Calculates the OS CPU time.

&FOCEXTTRM ON
OFF

Indicates the availability of
extended terminal attributes.

&FOCFEXNAME
Returns the name of the FOCEXEC
running even if it was executed

using an EX command or a
-INCLUDE command from within
another FOCEXEC. This variable
differs from the &FOCFOCEXEC
variable because &FOCFOCEXEC
returns the name of the calling
FOCEXEC only.

&FOCFIELDNAME NEW
OLD
NOTRUNC

Returns a string indicating
whether long and qualified field
names are supported. A value of
OLD means that they are not
supported; NEW means that they
are supported; and NOTRUNC
means that they are supported,
but unique truncations of field
names cannot be used.

&FOCFOCEXEC
Manages reporting operations
involving many similarly named
requests that are executed using
EX. &FOCFOCEXEC enables you to

ibi™ FOCUS® Developing Applications

303 | Managing Flow of Control in an Application

Variable Format or Value Description

&FOCINCLUDE
Manages reporting operations
involving many similarly named
requests that are included using -
INCLUDE. &FOCINCLUDE can be
specified within a request or in a
Dialogue Manager command to
display the name of the current
included procedure.

&FOCMODE CRJE
MSO
OS
TSO

Identifies the operating
environment.

&FOCNEXTPAGE
Establishes consecutive page
numbering across multiple
reports. When a report is
processed, the variable
&FOCNEXTPAGE is set to the
number following the last page
number in the report. This value
can then be used as the first page
number in a subsequent report,
making the report output from
multiple requests more useful and
readable.

&FOCPRINT ONLINE
OFFLINE

Returns the current print setting.

&FOCPUTLVL FOCUS PUT level
number.

(For example, 9306 or 9310.)
&FOCPUTLVL is no longer
supported.

ibi™ FOCUS® Developing Applications

304 | Managing Flow of Control in an Application

Variable Format or Value Description

&FOCQUALCHAR .
:
!
%
|
\

Returns the character used to
separate the components of
qualified field names.

&FOCREL release number
Identifies the FOCUS Release
number (for example, 6.5 or 6.8).

&FOCSBORDER ON
OFF

Whether solid borders are used in
full-screen mode.

&FOCTRMSD 24
27
32
43

Indicates terminal height. (This
can be any value; the examples
shown are common settings.)

&FOCTRMSW 80
132

Indicates terminal width. (This can
be any value; the examples shown
are common settings.)

&FOCTRMTYP 3270
TTY
UNKNOWN

Identifies the terminal type.

&FOCUSER
Returns the connected user ID.
Similar to the GETUSER function.

&HIPERFOCUS ON
OFF

Returns a string showing whether
HiperFOCUS is on.

ibi™ FOCUS® Developing Applications

305 | Managing Flow of Control in an Application

Variable Format or Value Description

&IORETURN
Returns the code set by the last
Dialogue Manager -READ or -
WRITE operation. (0 = successful;
1= unsuccessful.)

&MDY MMDDYY
Returns the current date. The
format makes this variable useful
for numerical comparisons.

&MDYY MMDDCCYY
Returns the current (four-digit
year) date.

&RETCODE
Any value defined by the
FOCUS command.

Any value returned by a
command is valid, but zero is
considered normal
(successful) execution.

The one exception is the
&RETCODE value of dash
operating system commands,
such as -DOS, -UNIX, and -
WINNT, represent the
success, not of the command
they are running, but of the
ability of the server to spawn
out to the OS and run the
command. In this case, the
&RETCODE value is normally
zero because it reflects that
the spawn executes normally
regardless of the results of
the specific command. For
this case, the amper variable
&EXITRC should be used to
check the command result or

numeric

&RETCODE executes all stacked
commands, like the command -
RUN.

ibi™ FOCUS® Developing Applications

306 | Managing Flow of Control in an Application

Variable Format or Value Description

the non-dash version of the
command should be used.

&SETFILE alphanumeric
Contains the value from the SET
FILE command.

&TOD HH.MM.SS
Returns the current time. When
you enter FOCUS, this variable is
updated to the current system
time only when you execute a
MODIFY, SCAN, or FSCAN
command. To obtain the exact
time during any process, use the
HHMMSS function.

&YMD YYMMDD
Returns the current date.

&YYMD CCYYMMDD
Returns the current (four-digit
year) date.

Retrieving the Date Using the System Variable
&DATE
The following example incorporates the system variable &DATE into a request. The footing
uses the system variable &DATE to insert the current system date at the bottom of the
report.

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
FOOTING
"CALCULATED AS OF &DATE"
END

ibi™ FOCUS® Developing Applications

307 | Managing Flow of Control in an Application

Retrieving the Procedure Name Using the System
Variable &FOCFOCEXEC
This example illustrates how to use the system variable &FOCFOCEXEC in a request to
display the name of the currently running procedure:

TABLE FILE EMPLOYEE
"REPORT: &FOCFOCEXEC -- EMPLOYEE SALARIES"
PRINT CURR_SAL BY EMP_ID
END

If the request is stored as a procedure called SALPRINT, when executed it produces the
following:

REPORT: SALPRINT -- EMPLOYEE SALARIES
EMP_ID CURR_SAL
------ --------
071382660 $11,000.00
112847612 $13,200.00
117593129 $18,480.00
119265415 $9,500.00
119329144 $29,700.00
123764317 $26,862.00
126724188 $21,120.00
219984371 $18,480.00
326179357 $21,780.00
451123478 $16,100.00
543729165 $9,000.00
818692173 $27,062.00

&FOCFOCEXEC and &FOCINCLUDE can also be used in -TYPE commands. For example, you
have a procedure named EMPNAME that contains the following:

-TYPE &|FOCFOCEXEC is: &FOCFOCEXEC

When EMPNAME is executed, the following output is produced:

&FOCFOCEXEC IS: EMPNAME

ibi™ FOCUS® Developing Applications

308 | Managing Flow of Control in an Application

Displaying a Date Using the System Variable &YYMD
You can display a date variable containing a 4-digit year without separators. The variables
are &YYMD, &MDYY, and &DMYY.

The following example shows a report using &YYMD:

TABLE FILE EMPLOYEE
HEADING
"SALARY REPORT RUN ON DATE &YYMD"
" "
PRINT DEPARTMENT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

The resulting output for May 19, 1999 is:

Statistical Variables
FOCUS posts many statistics concerning overall operations while a procedure executes in
the form of statistical variables. As with system variables, FOCUS automatically supplies
values for these variables on request.

ibi™ FOCUS® Developing Applications

309 | Managing Flow of Control in an Application

Summary of Statistical Variables
A list of Dialogue Manager statistical variables follows:

Variable Description

&ACCEPTS
Indicates the number of transactions accepted.
This variable applies only to MODIFY requests.

&BASEIO
Indicates the number of input/output operations
performed.

&CHNGD
Indicates the number of segments updated. This
variable applies only to MODIFY requests.

&DELTD
Indicates the number of segments deleted. This
variable applies only to MODIFY requests.

&DUPLS
Indicates the number of transactions rejected as a
result of duplicate values in the data source. This
variable applies only to MODIFY requests.

&FOCDISORG
Indicates the percentage of disorganization for a
FOCUS file. You can use the ? FILE command to
display or test this variable, even if the value is
less than 30% (the level at which ? FILE displays
the amount of disorganization).

&FOCERRNUM
Indicates the last error number, in the format
FOCnnnn, displayed after the execution of a
procedure. If more than one occurred,
&FOCERRNUM holds the number of the most
recent error. If no error occurred, &FOCERRNUM
has a value of 0. This value can be passed to the
operating system with the line -QUIT FOCUS
&FOCERRNUM. It can also be used to control
branching from a procedure to execute an error-
handling routine.

ibi™ FOCUS® Developing Applications

310 | Managing Flow of Control in an Application

Variable Description

&FORMAT
Indicates the number of transactions rejected as a
result of a format error. This variable applies only
to MODIFY requests.

&INPUT
Indicates the number of segments added to the
data source. This variable applies only to MODIFY
requests.

&INVALID
Indicates the number of transactions rejected as a
result of an invalid condition. This variable applies
only to MODIFY requests.

&LINES
Indicates the number of lines printed in the last
report. This variable applies only to report
requests.

&NOMATCH
Indicates the number of transactions rejected as a
result of not matching a value in the data source.
This variable applies only to MODIFY requests.

&READS
Indicates the number of records read from a non-
FOCUS file.

&RECORDS
Indicates the number of records retrieved in the
last report. This variable applies only to report
requests.

&REJECTS
Indicates the number of transactions rejected for
reasons other than the ones specifically tracked
by other statistical variables. This variable applies
only to MODIFY requests.

&TRANS
Indicates the number of transactions processed.
This variable applies only to MODIFY requests.

ibi™ FOCUS® Developing Applications

311 | Managing Flow of Control in an Application

Controlling Execution of a Request With the
Statistical Variable &LINES
In the following example, the system calculates the value of the statistical variable &LINES.
If &LINES is 0, the control passes to the TABLE FILE EMPLOYEE request identified by the
label -RPT2. If the value is not 0, control passes to the label -REPTDONE, and processing is
terminated.

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END
-RUN
-IF &LINES EQ 0 GOTO RPT2 ELSE GOTO REPTDONE;
-RPT2
TABLE FILE EMPLOYEE

.

.

.
END
-RUN
-QUIT
-REPTDONE
-EXIT

Special Variables
FOCUS provides special variables that apply to the cursor, function keys, windows, and
other features.

Summary of Special Variables
A list of special variables follow:

ibi™ FOCUS® Developing Applications

312 | Managing Flow of Control in an Application

Variable Description

&CURSOR
Holds the cursor position.

&CURSORAT
Reads the cursor position.

&ECHO
Controls the display of commands for debugging purposes.

&PFKEY
Holds the PF Key function that was pressed or entered.

&QUIT
Controls whether the response QUIT, or PF1 in - CRTFORM, to
a prompt causes an exit from the procedure.

&STACK
Controls whether the entire procedure, or only the Dialogue
Manager commands are executed.

&WINDOWNAME
Holds the name of the last window activated by the most
recently executed -WINDOW command (see Designing
Windows With Window Painter).

&WINDOWVALUE
Holds the return value of the last window activated by the
most recently executed -WINDOW command (see Designing
Windows With Window Painter).

Querying the Values of Variables and
Parameters
Two Dialogue Manager commands enable you to:

l Display the values of all types of local, global, and system variables. See Using
Variables in a Procedure.

l Store the value of a parameter in a variable. The stored value can then be queried

ibi™ FOCUS® Developing Applications

313 | Managing Flow of Control in an Application

with the ? SET command. See Using Variables in a Procedure.

In addition, you can issue two QUERY (?) commands from the FOCUS prompt to display the
values of:

l Global variables. Since global variable values remain current throughout the FOCUS
session, it is helpful to be able to display the values on demand. The syntax is

? &&

l Statistics stored in variables. You can query the current value of all statistical
variables (except &FOCDISORG and &FOCERRNUM). The syntax is:

? STAT

For details about these commands, see Testing and Debugging With Query Commands.

Display the Value of a Variable
You can query all Dialogue Manager variables (local, global, system, and statistical) from a
stored procedure. The syntax is

-? &[&variablename]

where:

&

Issued alone, displays variables of all types.

variablename

Is a complete amper variable or a partial string of up to 12 characters. Only amper
variables starting with the specified string are displayed.

The command displays the following message, followed by a list of currently defined
amper variables and the values:

CURRENTLY DEFINED & VARIABLES:

ibi™ FOCUS® Developing Applications

314 | Managing Flow of Control in an Application

Since local variables do not exist outside a procedure, no similar query is available from
the FOCUS command line.

Store Parameter Value Settings
You can store the current value of a SET parameter in a variable and use the value in a
procedure. The syntax is

-? SET parameter &[&]variablename

where:

parameter

Is any valid FOCUS setting that may be queried with the ? SET or ? SET ALL command.
For details about these commands, see Customizing Your Environment.

variablename

Is the name of the variable where the value is to be stored.

Storing a Parameter Value Setting
If you enter

-? SET ASNAMES &ABC
-TYPE &ABC

the value stored in &ABC becomes the value of ASNAMES. If you omit &ABC from the
command, then a variable called &ASNAMES is created that contains the value of
ASNAMES.

Supplying and Verifying Values for Variables
When you design a Dialogue Manager procedure with variables, you must decide how the
variables in the procedure acquires values at run time. You can use and/or combine the
following techniques.

ibi™ FOCUS® Developing Applications

315 | Managing Flow of Control in an Application

You can supply variable values directly in procedures, without prompting users for input,
using the following methods:

l -DEFAULT[S] or -DEFAULTH to supply default variable values. See Supplying and
Verifying Values for Variables.

l -SET to compute a variable value in an expression or to assign a literal value. See
Supplying and Verifying Values for Variables.

l -READ to supply variable values from an external file. See Supplying and Verifying
Values for Variables.

l EXEC to supply values on the command line when running a procedure. See
Supplying and Verifying Values for Variables.

You can prompt users for variable values using the following methods:

l -PROMPT to prompt directly for user input. You can request a set of values before
they are needed. You can write your own text for these prompts and validate the
entered values to confirm that they fit a preset list of acceptable items or match a
predefined format. See Supplying and Verifying Values for Variables.

l -CRTFORM to prompt for user input on screens. The -CRTFORM command gathers
variable values through full-screen data entry. Many values can be input and
manipulated at the same time. Several screens can be included in a single procedure
and used for a variety of purposes, including the development of menu-driven
applications. See Supplying and Verifying Values for Variables.

-CRTFORM invokes FIDEL, the FOCUS Interactive Data Entry Language, and
incorporates most of its functions. You can also use Screen Painter to design and
paint -CRTFORM data entry screens directly on your terminal screen.

Note that the Dialogue Manager command -CRTFORM is used for entering Dialogue
Manager amper variable values. The equivalent MODIFY command, CRTFORM
(without a hyphen), is used in MODIFY requests to enter field values.

l -WINDOW to prompt for user input in windows you design. You can create a series of
menus and windows using the Window Painter facility and display them on the
screen using the -WINDOW command. When displayed, the menus and windows can
collect data by prompting users to select a value, enter a value, or press a program
function (PF) key. See Supplying and Verifying Values for Variables.

l Implicit prompting. FOCUS recognizes variables in a procedure by the leading
ampersand (&). If a value has not been provided by some other means, FOCUS
automatically requests a value from the terminal when needed. See Supplying and

ibi™ FOCUS® Developing Applications

316 | Managing Flow of Control in an Application

Verifying Values for Variables.

Verifying user input: For values supplied by users, you can also verify input by comparing
it against:

l Format specifications. See Supplying and Verifying Values for Variables.

l A pre-defined list of acceptable values. See Supplying and Verifying Values for
Variables.

Rules for Supplying Variable Values
The following rules apply to values for variables:

l If a value contains an embedded comma, equal sign, or blank, you must enclose the
variable name in single quotation marks when you use it in an expression. For
example, if the value for &LOCATION is BOS, MA, you must refer to the variable as
'&LOCATION' in any expression.

l Once a value is supplied for a local variable, it is used throughout the procedure,
unless it is changed by -CRTFORM, -PROMPT, -READ, -SET, or -WINDOW.

l Once a value is supplied for a global variable, it is used throughout the FOCUS
session in all procedures, unless it is changed by -CRTFORM, -PROMPT, -READ, -SET,
or -WINDOW, or cleared by LET CLEAR.

l Dialogue Manager automatically prompts the terminal if a value has not been
supplied for a variable.

l The lengths of values stored in Dialogue Manager (amper) variables vary by context:

o When used with the commands -READ, -TYPE, and WRITE, the maximum length
of a variable is approximately 32,000 characters (32K).

o When used with other Dialogue Manager commands or the EX command, a
variable value cannot exceed 4,096 characters (4K).

Supplying Variable Values in a Procedure
This example illustrates the use of the -DEFAULT and -SET commands to supply values for
variables. The end user supplies the value B10 for &CODE1, B20 for &CODE2, and SMITH for

ibi™ FOCUS® Developing Applications

317 | Managing Flow of Control in an Application

®IONMGR, as prompted by Dialogue Manager.

The numbers to the left of the example apply to the notes that follow:

1. -DEFAULT &VERB=SUM
2. -SET &CITY=IF &CODE1 GT 'B09' THEN 'STAMFORD' ELSE 'UNIONDALE';
3. -TYPE REGIONAL MANAGER FOR &CITY

SET PAGE=OFF
5. TABLE FILE SALES

HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
&VERB UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER

4. "REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

6. -RUN

The procedure executes as follows:

1. The -DEFAULT command sets the value of &VERB to SUM.

2. The -SET command supplies the value for &CITY depending on the value the end user
entered in the form for &CODE1. Because the end user entered B10 as the value for

&CODE1, &CITY becomes STAMFORD.

3. When the user runs the report, FOCUS writes a message that incorporates the value
for &CITY:

REGIONAL MANAGER FOR STAMFORD

4. The user supplied the value for ®IONMGR in response to an implicit prompt.
FOCUS supplies the current data at run time.

5. The FOCUS stack contains the following lines:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"

ibi™ FOCUS® Developing Applications

318 | Managing Flow of Control in an Application

"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
FOOTING CENTER
"REGION MANAGER: SMITH"
"CALCULATED AS OF 06/11/03"
END

6. The -RUN command causes execution of all commands in the stack. The output from
the report request is as follows:

MONTHLY REPORT FOR STAMFORD
PRODUCT CODES FROM B10 TO B20

PROD_CODE UNIT_SOLD RETURNS RATIO
--------- --------- ------- -----
B10 103 13 12.6
B12 69 4 5.8
B17 49 4 8.2
B20 40 1 2.5

REGION MANAGER: SMITH
CALCULATED AS OF 06/11/03

Supplying a Default Variable Value
-DEFAULT commands set default values for local or global variables. This technique
ensures that a value is passed to a variable so that the user is not prompted for the value.

You can issue multiple -DEFAULT commands for a variable. If the variable is global, these -
DEFAULT commands can be issued in separate FOCEXECs. At any point before another
method is used to establish a value for the variable, the most recently issued -DEFAULT
command will be in effect.

However, as soon as a value for the variable is established using any other method (for
example, by issuing a -SET command, retrieving a value input by the user, or reading a
value from a file), subsequent -DEFAULT commands issued for that variable are ignored.

Note that -DEFAULTS and -DEFAULTH are synonyms for -DEFAULT.

ibi™ FOCUS® Developing Applications

319 | Managing Flow of Control in an Application

Supply a Default Value
-DEFAULT[S|H] &[&]name=value [...] [;]

where:

name

Is the name of the variable.

value

Is the default value assigned to the variable.

;

Is an optional punctuation character.

Note: -DEFAULTS and -DEFAULTH are synonyms for -DEFAULT.

Supplying a Default Value
In the following example, -DEFAULT sets the default value for &PLANT to Boston (BOS):

-DEFAULT &PLANT=BOS
TABLE FILE CENTHR

.

.

.

Supplying Variable Values in an Expression
You can assign a variable's value by computing the value in an expression or assigning a
literal value to a variable with the -SET command. You can also use the IN FILE phrase to
test whether a character value exists in a file and populate a variable with the result. The
value of the variable is set to 1 if the test value exists in the file and 0 (zero) if it does not.

ibi™ FOCUS® Developing Applications

320 | Managing Flow of Control in an Application

You can use this technique to supply dates to Dialogue Manager as variable values. A date
supplied to Dialogue Manager in a variable cannot be more than 20 characters long,
including spaces. Dialogue Manager variables only accept full-format dates (that is, MDY or
MDYY, in any order).

If you are working with cross-century dates that do not include a four-digit year, you can
use the SET parameters DEFCENT and YRTHRESH variables to identify the century. For
details, see Working With Cross-Century Dates.

If you want to set a variable value to a number, the only supported characters you can use
are numeric digits, a leading minus sign, and a period to represent the following decimal
places. These are the only valid characters that Dialogue Manager supports in a number,
regardless of EDIT options or the value of CDN.

Assign a Value in an Expression
-SET &[&]name= {expression|value};

-SET &[&]var3= &var1 IN FILE filename1 [OR &var2 IN FILE filename2 ...];

where:

name

Is the name of the variable.

expression

Is a valid expression. Expressions can occupy several lines, so you must end the
command with a semicolon.

value

Is a literal value, or arithmetic or logical expression assigned to the variable. If the literal
value contains commas or embedded blanks, you must enclose the value in single
quotation marks.

&[&]var3

Is a variable that is populated with the value 1 if the result of the expression on the right
side of the equal sign is true, or with the value 0 if the result is false.

ibi™ FOCUS® Developing Applications

321 | Managing Flow of Control in an Application

&var1

Is the variable that contains the value to be searched for in filename1.

&var2

Is the variable that contains the value to be searched for in filename2.

Usage Notes for IN FILE
l The result of the IN FILE phrase is an alphanumeric value (1 or 0) that can be used in

a logical expression connected with AND and OR operators within the same –SET
command. This value cannot be used as an argument in an alphanumeric operation
such as concatenation within the same -SET command.

l In order for IN FILE to return the value 1, the values in the file and the search string
must match exactly, starting with the leftmost byte in the file.

l The file can be in any order and have duplicate values. The search stops when either
the first match is found or the end of the file is reached. If the file is allocated but
does not exist, the value 0 is returned. If the file is not allocated, a FOC351 message
displays.

l The length of the variable used in the IN FILE phrase determines the number of bytes
from the beginning of each record in the file used for comparison. Only an exact
match on that number of bytes will return a 1. Trailing blanks in the variable will
require the same number of trailing blanks in the file in order to match. For example,
the following will match only the value 'ABC ' (ABC with three trailing blanks):

-SET &VAR1 = 'ABC ';
-SET &VAR2 = &VAR1 IN FILE FILE1;

Specify Precision for Dialogue Manager
Calculations
The DMPRECISION setting enables Dialogue Manager -SET commands to calculate accurate
numeric variable values without using the FTOA function.

ibi™ FOCUS® Developing Applications

322 | Managing Flow of Control in an Application

Without this setting, results of numeric calculations are returned as integer numbers,
although the calculations themselves employ double-precision arithmetic. To return a
number with decimal precision without this setting, you have to enter the calculation as
input into subroutine FTOA, where you can specify the number of decimal places returned.

The SET DMPRECISION command gives users the option of either accepting the default
truncation of the decimal portion of output from arithmetic calculations, or specifying up
to nine decimal places for rounding.

SET DMPRECISION = {OFF|n}

where:

OFF

Specifies truncation without rounding after the decimal point. OFF is the default value.

n

Is a positive number from 0-9, indicating the point of rounding. Note that n=0 results in
a rounded integer value.

l When using SET DMPRECISION, you must include -RUN after the SET DMPRECISION
command to ensure that it is set prior to any numeric -SET commands.

l As the actual conversion to double precision follows the rules for the operating
system, the values may vary from platform to platform.

Setting Precision for Dialogue Manager Calculations
The following table below shows the result of dividing 20 by 3 with varying DMPRECISION
(DMP) settings:

SET DMPRECISION = Result

OFF 6

0 7

ibi™ FOCUS® Developing Applications

323 | Managing Flow of Control in an Application

SET DMPRECISION = Result

1 6.7

2 6.67

9 6.666666667

Setting a Variable Value in an Expression
In the following example, -SET assigns the value 14Z or 14B to the variable &STORECODE,
as determined by the logical IF expression. The value of &CODE is supplied by the user.

-SET &STORECODE = IF &CODE GT C2 THEN '14Z' ELSE '14B';
TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
BY PROD_CODE
IF PROD_CODE GE &CODE
BY STORE_CODE
IF STORE_CODE IS &STORECODE
END

Setting a Literal Value
The use of single quotation marks around a literal is optional unless the literal contains
embedded blanks, commas, or equal signs. In these cases, you must include them as
illustrated below:

-SET &NAME='JOHN DOE';

In prior releases, to assign a literal value that included a single quotation mark, you had to
place two single quotation marks where you wanted one to appear:

-SET &NAME='JOHN O''HARA';

Although this technique still works, it is no longer required. However, to start or end a
string with a single quotation mark, you must specify two single quotation marks.

ibi™ FOCUS® Developing Applications

324 | Managing Flow of Control in an Application

Setting the Difference Between Two Dates
This example supplies dates to Dialogue Manager as variables. The variable &DELAY is set
to the difference in days between &LATER and &NOW and the result is returned to your
terminal.

-SET &NOW = 'JUN 30 2002';
-SET &LATER = '2002 25 AUG';
-SET &DELAY = &LATER - &NOW;
-TYPE &DELAY

Testing Whether a Variable Value Is in a File
The following FOCEXEC creates an alphanumeric HOLD file called COUNTRY1 with the
names of countries from the CAR file. It then sets the variable &C equal to FRANCE. The IN
FILE phrase returns the value 1 to &IN1 if FRANCE is in the HOLD file and 0 if it is not:

TABLE FILE CAR
PRINT COUNTRY
ON TABLE HOLD AS COUNTRY1 FORMAT ALPHA
END
-RUN
-SET &C = 'FRANCE';
-SET &IN1 = &C IN FILE COUNTRY1;
-TYPE THE VALUE IS &IN1

The output shows that FRANCE is in the file COUNTRY1:

THE VALUE IS 1

Initializing a Variable to a Long String
To set the value of a variable with -SET, you need to specify a character string on the right
side of the SET command. Since the character string cannot span multiple lines, if
necessary, you can concatenate shorter strings or variables to compose the long string.

The following procedure creates a variable named &LONG that contains a long string:

ibi™ FOCUS® Developing Applications

325 | Managing Flow of Control in an Application

-SET &LONG = 'THIS IS A LONG AMPER VARIABLE. NOTE THAT IN ORDER '
- |'TO SET ITS VALUE USING -SET, YOU MUST CONCATENATE SHORTER STRINGS, '
- |'EACH OF WHICH MUST FIT ON ONE LINE.';
-TYPE &LONG
END

The output is:

THIS IS A LONG AMPER VARIABLE.NOTE THAT IN ORDER TO SET ITS VALUE USING
-SET, YOU MUST CONCATENATE SHORTER STRINGS, EACH OF WHICH MUST FIT ON
ONE LINE.

Reading Variable Values From and Writing
Variable Values to an External File
You can read variable values from an external file, or write variable values to an external
file with the -READ and -WRITE commands.

l You can supply variable values with the -READ command. For example, an external
file may contain the start and end dates of a reporting period. Dialogue manager can
read these values from an external file and use them in a variable in a WHERE
command that limits the range of data selected in a report request.

l You can save variable values in an external file with the -WRITE command. For
example, a request can store the summed total of sales for the day in an external file
so that it can be compared to the following day's total sales.

The external file can be a fixed-format file (in which the data is in fixed columns) or a free-
format file (in which the data is comma delimited).

You can also read a file using the -READFILE command. The -READFILE command reads a
file by first reading its Master File and creating Dialogue Manager amper variables based on
the ACTUAL formats for each field in the Master File. It then reads the file and, if necessary,
converts the fields from numeric values to alphanumeric strings before returning them to

the created variables. Display options in the USAGE formats are not propagated to the
variables. The names of the amper variables are the field names prefixed with an
ampersand (&).

ibi™ FOCUS® Developing Applications

326 | Managing Flow of Control in an Application

Retrieve a Variable Value From an External File
-READ ddname[,] [NOCLOSE] &name[.format.][,] ...

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM
ALLOCATE.

A space after the ddname denotes a fixed-format file while a comma denotes a comma-
delimited file.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is
closed upon completion of the procedure or when a -CLOSE or subsequent -WRITE
command is encountered.

name

Is the variable name. You may specify more than one variable. Using commas to
separate variables is optional.

If the list of variables is longer than one line, end the first line with a comma and begin
the next line with a dash followed by a blank (-) for comma-delimited files or a dash
followed by a comma followed by a blank (-,) for fixed format files. For example:

Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,
- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,
-, &CODE2.A3

format

Is the format of the variable. It may be Alphanumeric (A) or Numeric (I). Note that the
format must be delimited by periods. The format is ignored for comma-delimited files.

ibi™ FOCUS® Developing Applications

327 | Managing Flow of Control in an Application

Note:
-SET provides an alternate method for defining the length of a variable using
the corresponding number of characters enclosed in single quotation marks
('). For example, the following command defines the length of &CITY as 8:

-SET &CITY=' ';

Reading a Value From an External File
Assume that EXTFILE is a fixed-format file containing the following data:

STAMFORDB10B20

To detect the end of a file, the following code tests the system variable &IORETURN. When
no records remain to be read, a value equal to zero is not found.

-READ EXTFILE &CITY.A8. &CODE1.A3. &CODE2.A3.
-IF &IORETURN NE 0 GOTO RESUME;

TABLE FILE SALES
SUM UNIT_SOLD
BY CITY
IF CITY IS &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END

-RESUME
.
.
.

Write a Variable Value to an External File
-WRITE ddname [NOCLOSE] text

where:

ibi™ FOCUS® Developing Applications

328 | Managing Flow of Control in an Application

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM
ALLOCATE. For information about file allocations, see the Overview and Operating
Environments manual.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is
closed upon completion of the procedure or when a -CLOSE or subsequent -READ
command is encountered.

text

Is any combination of variables and text. To write more than one line, end the first line
with a comma (,) and begin the next line with a hyphen followed by a space (-).

-WRITE opens the file to receiving the text and closes it upon exit from the procedure.
When the file is reopened for writing, the new material overwrites the old. To reopen to
add new records instead of overwriting existing ones, use the attribute DISP MOD when
you define the file to the operating system.

Writing to a File
The following example reopens the file PASS to add new text:

DYNAM ALLOC DD PASS DA USER1.PASS.DATA MOD
-WRITE PASS &DIV &RED &TEST RESULT IS,
- &RECORDS AT END OF RUN

Reading From and Writing to an External File
The following example illustrates reading from and writing to sequential files. It also
illustrates the use of operating system commands. The numbers in the margin refer to
notes that follow the example.

SET HOLDLIST=PRINTONLY
-RUN

1. -TOP

ibi™ FOCUS® Developing Applications

329 | Managing Flow of Control in an Application

2. -PROMPT &CITY.ENTER NAME OF CITY -- TYPE QUIT WHEN DONE.
3. DYNAM ALLOC DD PASS DA USER1.PASS.DATA LRECL 80 RECFM FB

-RUN
4. -WRITE PASS &CITY

TABLE FILE SALES
HEADING CENTER
"LOWEST MONTHLY SALES FOR &CITY"
" "
PRINT DATE PROD_CODE
BY LOWEST 1 UNIT_SOLD
BY STORE_CODE
BY CITY
IF CITY EQ &CITY
FOOTING CENTER
"CALCULATED AS OF &DATE"
ON TABLE SAVE AS INFO
END

5. -RUN
6. DYNAM ALLOC DD LOG DA USER1.LOG.DATA LRECL 80 RECFM FB

-RUN
MODIFY FILE SALES
COMPUTE
TODAY/I6=&YMD;
CITY='&CITY';
FIXFORM X5 STORE_CODE/A3 X15 DATE/A4 PROD_CODE/A3
MATCH STORE_CODE DATE PROD_CODE
ON MATCH TYPE ON LOG
"<STORE_CODE><DATE><PROD_CODE><TODAY>"
ON MATCH DELETE
ON NOMATCH REJECT
DATA ON INFO
END

7. -RUN
EX SLRPT3

8. -RUN
11. -GOTO TOP
12. -QUIT

The procedure SLRPT3, which is invoked from the calling procedure, contains the following
lines:

9. -READ PASS &CITY.A8.
TABLE FILE SALES
HEADING CENTER

ibi™ FOCUS® Developing Applications

330 | Managing Flow of Control in an Application

"MONTHLY REPORT FOR &CITY"
"LOWEST SALES DELETED"
" "
PRINT PROD_CODE UNIT_SOLD RETURNS DAMAGED
BY STORE_CODE
BY CITY
IF CITY EQ &CITY
FOOTING CENTER
"CALCULATED AS OF &DATE"
END

10. -RUN

The following annotations explain the logic and show the dialogue between the user and
the screen. User entries are in lowercase:

1. -TOP marks the beginning of the procedure.

2. -PROMPT sends the following prompt to the screen after the procedure is executed:

ENTER NAME OF CITY -- TYPE QUIT WHEN DONE<STAMFORD

3. DYNAM defines and opens a file named PASS.

4. -WRITE writes the value of &CITY to the sequential file named PASS. In this case the
value written is STAMFORD.

5. -RUN executes the stacked TABLE request. In this case, a sequential file named INFO
is created with the SAVE command. This is a sequential file, containing the result of
the report request as shown below.

NUMBER OF RECORDS IN TABLE= 8 LINES= 8

ALPHANUMERIC RECORD NAMED INFO
FIELDNAME ALIAS FORMAT
LENGTH

UNIT_SOLD SOLD I5 5
STORE_CODE SNO A3 3
CITY CTY A15 15
DATE DTE A4MD 4
PROD_CODE PCODE A3 3

ibi™ FOCUS® Developing Applications

331 | Managing Flow of Control in an Application

TOTAL 30
SAVED...

6. DYNAM defines a log file for the subsequent MODIFY request.

7. -RUN executes the stacked MODIFY request. The data comes directly from the INFO
file created in the prior TABLE request and is entered using FIXFORM. Hence, the
product with the lowest UNIT_SOLD is deleted from the file, and logged to a log file.

SALES FOCUS A1 ON 09/04/2003 AT 10.04.35

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED=
0
SEGMENTS: INPUT = 0 UPDATED = 0 DELETED =
1

8. The next -RUN executes another procedure called SLRPT3.

9. -READ reads the value for &CITY from the sequential file PASS. In this case the value
passed is STAMFORD.

10. The -RUN executes the TABLE request and control is routed back to the calling
procedure.

MONTHLY REPORT FOR STAMFORD
LOWEST SALES DELETED

STORE_CODE CITY PROD_CODE UNIT_SOLD RETURNS DAMAGED
---------- ---- --------- --------- ------- -------
14B STAMFORD B10 60 10 6

B12 40 3 3
B17 29 2 1
C7 45 5 4
D12 27 0 0
E2 80 9 4
E3 70 8 9

CALCULATED AS OF 09/04/03

11. -GOTO TOP routes control to the top.

12. When the user types QUIT, processing ends.

ibi™ FOCUS® Developing Applications

332 | Managing Flow of Control in an Application

Read Master File Fields Into Dialogue Manager
Variables
-READFILE mastername

where:

mastername

Is the name of the Master File to be read.

Usage Notes for -READFILE
l A -RUN command does not close the file. You must issue a -CLOSE command to close

the file. You must be careful not to delete, change, or re-allocate the file before
closing it.

l If multiple fields have the same field name, only one variable is created, and it
contains the value of the last field in the Master File.

l -READFILE does not work if the Master File contains DBA restrictions. The following
message is generated:

(FOC339) DIALOGUE MANAGER -READ FAILED: CHECK FILEDEF OR ALLOCATION
FOR: -READFILE filename

l -READFILE is not supported with text fields. The following message is generated:

(FOC702) THE OPTION SPECIFIED IS NOT AVAILABLE WITH TEXT FIELDS:
fieldname

l -READFILE cannot read XFOCUS data sources. The file to be read must have an
associated Master File.

ibi™ FOCUS® Developing Applications

333 | Managing Flow of Control in an Application

Reading Fields From a Data Source Into Dialogue
Manager Variables Using -READFILE
The following request creates a binary HOLD file, then uses -READFILE to read the first
record from the HOLD file and type the values that were retrieved into Dialogue Manager
variables. Note that the names of the variables are the field names prefixed with an
ampersand:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME DEPARTMENT CURR_SAL
BY EMP_ID
ON TABLE HOLD AS READF1 FORMAT BINARY
END
-RUN
-READFILE READF1
-TYPE LAST_NAME IS &LAST_NAME
-TYPE FIRST_NAME IS &FIRST_NAME
-TYPE DEPARTMENT IS &DEPARTMENT
-TYPE CURR_SAL IS &CURR_SAL
-TYPE EMP_ID IS &EMP_ID

The output is:

> NUMBER OF RECORDS IN TABLE= 12 LINES= 12
HOLDING BINARY FILE...

LAST_NAME IS STEVENS
FIRST_NAME IS ALFRED
DEPARTMENT IS PRODUCTION
CURR_SAL IS 11000.00
EMP_ID IS 071382660

Close an External File
The -CLOSE command closes an external file opened with the -READ or -WRITE command.
The NOCLOSE option keeps a file open even when -RUN is encountered.

-CLOSE {ddname|*}

where:

ibi™ FOCUS® Developing Applications

334 | Managing Flow of Control in an Application

ddname

Is the ddname of the open file described to FOCUS via an allocation.

*

Closes all -READ and -WRITE files that are currently open.

Reading or Writing an Entire File
Using the EDAGET and EDAPUT commands, you can read or write an entire file of a
specified type.

EDAGET: Reading a File of a Specified Type
Using the EDAGET command, you can retrieve and display an entire file.

The -READ command only reads one line at a time, so this is a way to avoid issuing
repeated commands for reading a single file.

Read a File of a Specified Type
EX EDAGET filetype,[app/]filename,content-type

where:

filetype

Is the type of file. On z/OS, this is a DDNAME. The following table lists some of the most
common FOCUS file types. Other FOCUS-readable files use the standard extensions, and
the file types match the extensions:

ibi™ FOCUS® Developing Applications

335 | Managing Flow of Control in an Application

File Type Extension

MASTER .mas

ACCESS .acx

FOCEXEC .fex

FOCSQL .acx

FOCSTYLE .sty

DATA .dat

FOCCOMP .fcm

FOCTEMP .ftm

FOCUS .foc

HOLDMAST .mas

HOLDACC .acx

HTML .htm

EXCEL .xls

MAINTAIN .mnt

FOCPSB .psb

TTEDIT .tte

app

Is an optional application name where the file resides. On z/OS, you can specify an app
if you have enabled application logic in the EDASERVE configuration file and created the
data sets associated with the application.

ibi™ FOCUS® Developing Applications

336 | Managing Flow of Control in an Application

filename

Is the file name.

content-type

Is the type of data in the file. Valid values are:

l T, which means a text file.

l B, which means a binary file.

Note: EDAGET cannot retrieve a file that was written to memory by EDAPUT.

Reading a File Using EDAGET
The following EDAGET command reads a Master File named tempmas.mas in the app1
application. The content type is text:

EX EDAget MASTER,app1/tempmast,T

Using the tempmas.mas file created in Supplying and Verifying Values for Variables, the
output is:

FILENAME=TEMPMAST, SUFFIX=FIX,$ SEGNAME=ONE, SEGTYPE=S1 ,$ FIELD=FIELD1
,ALIAS= ,A10 ,A10 ,$ FIELD=FIELD2 ,ALIAS= ,P18 ,A18 ,$

EDAPUT: Writing a File of a Specified Type
Using the EDAPUT command, you can write any number of lines and save them as
common FOCUS file types, either in memory or on disk.

The -WRITE command only writes one line at a time, so this is a way to avoid issuing
repeated commands for writing a single file.

ibi™ FOCUS® Developing Applications

337 | Managing Flow of Control in an Application

Write a File of a Specified Type
EX -LINES n EDAPUT filetype,[app/]filename,type,location

where:

n

Is the number of lines that will be written, including the EDAPUT line.

filetype

Is the type of file. You specify the file type and, on Windows and UNIX, the file is saved
with the associated extension. On z/OS, this is a DDNAME and the file is stored in the
PDS associated with the DDNAME. The following table lists some of the most common
FOCUS file types. Other FOCUS-readable files use the standard extensions, and the file
types match the extensions:

File Type Extension

MASTER .mas

ACCESS .acx

FOCEXEC .fex

FOCSQL .acx

FOCSTYLE .sty

DATA .dat

FOCCOMP .fcm

FOCTEMP .ftm

FOCUS .foc

HOLDMAST .mas

ibi™ FOCUS® Developing Applications

338 | Managing Flow of Control in an Application

File Type Extension

HOLDACC .acx

HTML .htm

EXCEL .xls

MAINTAIN .mnt

FOCPSB .psb

WINFORMS .wfm

TTEDIT .tte

app

Is an optional application name under which to store the file. On z/OS, you can specify
an app if you have enabled application logic in the EDASERVE configuration file and
created the data sets associated with the application.

filename

Is the file name.

type

Is the creation type. Valid values are:

l CV, create variable.

l C, create fixed

l A, append to file.

location

Is the location for the created file. Valid values are:

l FILE, write to current location (this will overwrite an existing file of the same
name and extension in the same location).

l MEM, write to memory only (this will not overwrite an existing file on disk). Files

ibi™ FOCUS® Developing Applications

339 | Managing Flow of Control in an Application

written to memory are first in the path.

Writing a Master File to Disk
The following EDAPUT command writes a Master File named tempmast.mas to the app1
application directory in variable format. On z/OS, it writes member TEMPMAST to the
APP1.MASTER.DATA data set under the high-level qualifier assigned as approot in the
EDASERVE configuration file:

EX -LINES 5 EDAPUT MASTER,app1/tempmast,CV,FILE,
FILENAME=TEMPMAST, SUFFIX=FIX,$
SEGNAME=ONE, SEGTYPE=S1 ,$

FIELD=FIELD1 ,ALIAS= ,A10 ,A10 ,$
FIELD=FIELD2 ,ALIAS= ,P18 ,A18 ,$

Supplying Variable Values on the Command
Line
When a user knows the values required by a procedure, some or all of the values can be
typed on the command line using the EXEC command following the name of the
procedure. This saves time since FOCUS now has values to pass to each local or global
variable so the user is not prompted to supply them.

Supply a Variable Value on the Command Line
EX[EC] procedure [[&&][variable=]value, ...]

where:

procedure

Is the name of the procedure that contains the name/value values.

ibi™ FOCUS® Developing Applications

340 | Managing Flow of Control in an Application

variable

Is the name of the variable for which you are supplying a value. Omit for a positional
variable.

For a local variable, do not include the ampersand in the variable name.

For a global amper variable, you must supply the double ampersand in the variable
name:

EX SLRPT &&GLOBAL=value, CITY = STAMFORD, CODE1=B10, CODE2=B20

value

Is the value you are giving to the variable.

Name/value pairs must be separated by commas.

When the list of values to be supplied exceeds the width of the terminal, insert a comma
as the last character on the line and enter the balance of the list on the following line(s),
as shown:

EX SLRPT AREA=S, CITY = STAMFORD, VERB=COUNT, FIELDS = UNIT_SOLD,
CODE1=B10, CODE2=B20

Rules for Using Named and Positional Variables
With EXEC
You can mix named and positional variables freely in the EXEC command. Positional
variables are unnamed values passed to a procedure when it is invoked.

Follow these rules:

l Names must be associated with values for named variables.

It is not necessary to enter the name=value pairs in the order encountered in the
procedure.

l Values for positional variables must be supplied in the order that those variables are
numbered within the procedure.

If the variable is positional (it is a numbered variable), you do not need to specify the

ibi™ FOCUS® Developing Applications

341 | Managing Flow of Control in an Application

variable name in the EXEC command. FOCUS matches the EXEC values to the
positional variables as they are encountered in the procedure. For an example, see
Supplying and Verifying Values for Variables.

Supplying Values on the Command Line
Consider the following procedure named SLRPT:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
BY CITY
IF CITY EQ &CITY
END

You can supply values for the variables as parameters using the EX command as follows:

EX SLRPT CITY=STAMFORD, CODE1=B10, CODE2=B20

Using Positional Variables
Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &1"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &2 TO &3
BY CITY
IF CITY EQ &1
END

The EX command that calls the procedure is as follows:

ibi™ FOCUS® Developing Applications

342 | Managing Flow of Control in an Application

EX SLRPT STAMFORD, B10, B20

This command substitutes STAMFORD for the first positional variable, B10 for the second,
and B20 for the third.

Mixing Named and Positional Variables
The report request SLRPT includes named and positional variables:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
&VERB UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &1 TO &2
BY CITY
IF CITY EQ &CITY
END

The following EX command executes SLRPT and populates the named and positional
variables:

EX SLRPT CITY=STAMFORD, B10, B20, VERB=COUNT

&CITY is a named variable whose value is STAMFORD.

&1 is a positional variable whose value is B10.

&2 is a positional variable whose value is B20.

&VERB is a named variable whose value is COUNT.

Prompting Directly for Values With -PROMPT
The Dialogue Manager command -PROMPT solicits values before the variables to which
they refer are used in the procedure. The user is prompted for a value as soon as -PROMPT
is encountered. If a looping condition is present, -PROMPT requests a new value for the

ibi™ FOCUS® Developing Applications

343 | Managing Flow of Control in an Application

variable, even if a value exists already. Thus, each time through the loop, the user is
prompted for a new value.

With -PROMPT you can specify format, text, and lists in the same way as all other variables.

Prompting for Variable Values
The following is an example of the use of -PROMPT:

-PROMPT &CODE1
-PROMPT &CODE2
-SET &CITY = IF &CODE1 GT B09 THEN STAMFORD ELSE UNION;
-TYPE REGIONAL MANAGER FOR &CITY
-PROMPT ®IONMGR

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

-PROMPT sends the following prompts to the screen. User input is shown in lowercase:

PLEASE SUPPLY VALUES REQUESTED

CODE1= > b10
CODE2= > b20
REGIONAL MANAGER FOR STAMFORD
REGIONMGR= > smith

Note how the sequence of supplied values determines the overall flow of the procedure.
The value of &CODE1 determines the value of &CITY that gives meaning to the -TYPE
command. -TYPE gives the user the necessary information to make the correct choice when
supplying the value for ®IONMGR.

By default, all user input is automatically converted to uppercase.

ibi™ FOCUS® Developing Applications

344 | Managing Flow of Control in an Application

Prompting for Values on Screens With -
CRTFORM
-CRTFORM sets up full-screen menus for entering values. The -CRTFORM command in
Dialogue Manager and the CRTFORM command in MODIFY are two versions of FIDEL for use
in different contexts. The syntax, functions and features are fully outlined in the
Maintaining Databases manual.

Prompting for Values on Menus and Windows
With -WINDOW
You can create a series of menus and windows using Window Painter, and then display
those menus and windows on the screen using the -WINDOW command. When displayed,
the menus and windows collect data by prompting a user to select a value, to enter a
value, or to press a program function (PF) key For details, see Designing Windows With
Window Painter.

Prompting for Values Implicitly
If a value for a variable is not supplied by any other means, FOCUS automatically prompts
the user for the value. This is known as an implicit prompt. These prompts occur
sequentially as each variable is encountered in the procedure.

Automatically Prompting for Variable Values
Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
.
.
.

ibi™ FOCUS® Developing Applications

345 | Managing Flow of Control in an Application

BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
.
.
.
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

When you execute the procedure, FOCUS prompts for the values for the variables one at a
time. The terminal dialogue is as follows. User input is in lowercase:

PLEASE SUPPLY VALUES REQUESTED

CODE1= > b10
CODE2= > b20
REGIONAL MANAGER FOR STAMFORD
REGIONMGR= > smith

At the point when all variables have values, FOCUS processed the report request.

Verifying User-Supplied Values Against a Set of
Format Specifications
You can specify variables with format conditions against which entered values can be
compared. If the entered values do not have the specified format, FOCUS prints error
messages and prompts the user again for the value(s).

Format Specifications for Variables
Alphanumeric formats are described by the letter A followed by the number of characters.
The number of characters can be from 1 to 3968.

Numeric formats are described by the letter I, followed by the number of digits to be
entered. The number of digits can be from 1 to 10 (the value must be less than 231-1), and
the value supplied for the number can contain a decimal point.

ibi™ FOCUS® Developing Applications

346 | Managing Flow of Control in an Application

The description of the format must be enclosed by periods.

If you test field names against input variable values, specify the formats of the input
variables. If you do not, and the supplied value exceeds the format specification from the
Master File, the procedure is ended and error messages are displayed. To continue, the
procedure must be executed again. However, if you do include the format, and the
supplied value exceeds the format, Dialogue Manager rejects the value and the user is
prompted again.

Note: FOCUS internally stores all Dialogue Manager variables as alphanumeric
codes. To perform arithmetic operations, Dialogue Manager converts the variable
value to double-precision floating point decimal and then converts the result
back to alphanumeric codes, dropping the decimal places. For this reason, do
not perform tests that look for the decimal places in the numeric codes.

Using a Format Specification to Verify User Input
Consider the following format specification:

&STORECODE.A3.

No special message is sent to the screen detailing the specified format. However, if in the
above example the user enters more than three alphanumeric characters, the value is
rejected, the error message FOC291 is displayed and the user is prompted again.

Note the following example detailing the dialogue between FOCUS and the user:

PLEASE SUPPLY VALUES REQUESTED

STORECODE= > cc14
(FOC291) THE VALUE IN THE PROMPT REPLY EXCEEDS THE MAXIMUM LENGTH: 03
CHARS:CC14
STORECODE=

ibi™ FOCUS® Developing Applications

347 | Managing Flow of Control in an Application

Verifying User Input Against a Pre-Defined List
of Values
You can define values that constitute acceptable responses to prompts. If the user does not
enter one of the available options, the terminal displays the list and re-prompts the user.
This is an excellent way to limit the values supplied and to provide help information to the
screen while prompting.

In addition, you can supply text that either explains what type of value is needed or lists
choices of acceptable values on the screen.

Providing a List of Valid Values With -PROMPT
The following lists acceptable responses for &CITY:

-PROMPT &CITY.(STAMFORD,UNIONDALE,NEWARK).

A message is printed if the user does not respond with one of the values on the list. This is
followed by a display of the values list. Then, another prompt is issued for the needed
value. For example:

PLEASE SUPPLY VALUES REQUESTED

CITY= > union
PLEASE CHOOSE ONE OF THE FOLLOWING:
STAMFORD,UNIONDALE,NEWARK

CITY= >

Create a Reply List as a Variable
You can provide a reply list as a variable, then prompt for the values you have defined for
that variable. The syntax is

-SET &list='value,...';
-PROMPT &variable.(&list)[.text.]

ibi™ FOCUS® Developing Applications

348 | Managing Flow of Control in an Application

where:

list

Is the name of the reply list variable. Note that in the -PROMPT command, the value is
substituted between the parentheses and delimited by periods. If the prompt text has
parentheses, enclose that text in single quotation marks (').

value

Is the desired value. You may list more than one value, separated by commas. Enclose
the value(s) in single quotation marks ('). A semicolon is required when using -SET.

variable

Is the name of the variable for which you are prompting the user for values.

.text

Optionally provides prompting text.

Using a Variable to Provide a Reply List
In this example, three acceptable values are defined for &CITY:

-SET &CITIES='STAMFORD,UNIONDALE,NEWARK';
-PROMPT &CITY.(&CITIES).'(ENTER CITY)'.

The resulting screen is exactly the same as when the list itself is provided in the
parentheses. See Supplying and Verifying Values for Variables.

You can also create more complex combinations. For example:

-SET &CITIES=IF &CODE1 IS B10 THEN 'STAMFORD, NEWARK'
- ELSE 'STAMFORD, UNIONDALE, NEWARK';

Supplying Text for Variable Prompting
This example uses customized text to prompt for values for &CITY, &CODE1, &CODE2, and
®IONMGR:

ibi™ FOCUS® Developing Applications

349 | Managing Flow of Control in an Application

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY.ENTER CITY. "

.

.

.
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1.A3.BEGINNING CODE. TO

&CODE2.A3.ENDING CODE.
.
.
.

"REGION MANAGER: ®IONMGR.REGIONAL SUPERVISOR."
"CALCULATED AS OF &DATEMDYY"
END

Notice that text has been specified for &CITY and ®IONMGR without specification of a
format.

Based on the example, the terminal displays the following prompts one by one:

ENTER CITY
stamford
BEGINNING CODE
b10
ENDING CODE
b20
REGIONAL SUPERVISOR
smith

Manipulating and Testing Variables
You can use a variety of techniques to manipulate and test Dialogue Manager variables.

l You can screen a value by adding a suffix to the variable value:

o The .LENGTH suffix tests the length of a value.

o The .TYPE suffix tests the type of a value.

o The .EXIST suffix tests the presence of a value.

o The .EVAL suffix replaces a variable with its value.

ibi™ FOCUS® Developing Applications

350 | Managing Flow of Control in an Application

l You can use the -SET command alone or in conjunction with other commands and
functions to manipulate the values for variables in order to:

o Concatenate variables and/or literals. See Manipulating and Testing Variables.

o Create an index for variables. See Manipulating and Testing Variables.

o Perform calculations on a variable. See Manipulating and Testing Variables.

o Change variable values. See Manipulating and Testing Variables.

o Extract and insert characters. See Manipulating and Testing Variables.

o Remove trailing blanks. See Manipulating and Testing Variables.

o Call other functions. See Manipulating and Testing Variables.

l You can determine the command structure of a procedure based on the value of a
variable. See Manipulating and Testing Variables.

Testing Variables for Length, Type, and
Existence
To ensure that a supplied value is valid and being used properly in a procedure, you can
test it for presence, type, and length. For example, you would not want to perform a
numerical computation on a variable for which alphanumeric data has been supplied.

Screen a Variable Value for Length and TYPE
-IF &name{.LENGTH|TYPE} rest_of_expression GOTO label...;

where:

&name

Is a user-supplied variable.

ibi™ FOCUS® Developing Applications

351 | Managing Flow of Control in an Application

.LENGTH

Tests for the length of a value. If a value is not present, a zero (0) is passed to the
expression. Otherwise, the number of characters in the value is passed.

.TYPE

Tests for the type of a value. The letter N (numeric) is passed to the expression if the
value can be interpreted as a number up to 231-1 and stored in four bytes as a floating
point format. In Dialogue Manager, the result of an arithmetic operation with numeric
fields is truncated to an integer after the whole result of an expression is calculated. If
the value could not be interpreted as numeric, the letter A (alphanumeric) is passed to
the expression. If the value is not defined, the letter U is passed to the expression.

rest_of_expression

Is the remainder of an expression that uses &name with the specified suffix.

GOTO label

Specifies a label to branch to.

Testing for Variable Length
If the length of &OPTION is more than one character, the control passes to the label -
FORMAT, which informs the client application that only a single character is allowed.

-IF &OPTION.LENGTH GT 1 GOTO FORMAT ELSE
-GOTO PRODSALES;

.

.

.
-PRODSALES

TABLE FILE SALES
.
.
.

END
-EXIT
-FORMAT
-TYPE ONLY A SINGLE CHARACTER IS ALLOWED.

ibi™ FOCUS® Developing Applications

352 | Managing Flow of Control in an Application

Storing the Length of a Variable
The following example sets the variable &WORDLEN to the length of the string contained in
the variable &WORD.

-PROMPT &WORD.ENTER WORD.
-SET &WORDLEN = &WORD.LENGTH;

You can use this technique when you want to use one variable to populate another.

Testing for Variable Type
If &OPTION is not alphanumeric, control passes to the label -NOALPHA, which informs the
client application that only alphanumeric characters are allowed.

-IF &OPTION.TYPE NE A GOTO NOALPHA ELSE
- GOTO PRODSALES;

.

.

.
-PRODSALES

TABLE FILE SALES
.
.
.

END
-EXIT
-NOALPHA
-TYPE ENTER A LETTER ONLY.

Test for the Presence of a Variable Value
-IF &name.EXIST GOTO label...;

where:

ibi™ FOCUS® Developing Applications

353 | Managing Flow of Control in an Application

&name

Is a user-supplied variable.

.EXIST

Tests for the presence of a value. If a value is not present, a zero (0) is passed to the
expression. Otherwise, a non-zero value is passed.

GOTO label

Specifies a label to branch to.

Testing for the Presence of a Variable
If no value is supplied, &OPTION.EXIST is equal to zero and control is passed to the label
-CANTRUN. The procedure sends a message to the client application and then exits. If a
value is supplied, control passes to the label -PRODSALES.

-IF &OPTION.EXIST GOTO PRODSALES ELSE GOTO CANTRUN;
.
.
.

-PRODSALES
TABLE FILE SALES

.

.

.

END
-EXIT
-CANTRUN
-TYPE TOTAL REPORT CAN'T BE RUN WITHOUT AN OPTION.
-EXIT

Replacing a Variable Immediately
The .EVAL operator enables you to replace a variable with its value immediately, making it
possible to change a procedure dynamically. The .EVAL operator is particularly useful in
modifying code at run time.

ibi™ FOCUS® Developing Applications

354 | Managing Flow of Control in an Application

Usage Notes for .EVAL
A Dialogue Manager variable is a placeholder for a value that will be substituted at run
time. In some situations, the value of the variable may not be resolved at the point where
the command containing the variable is encountered, unless evaluation is forced by using
the .EVAL operator. One example where .EVAL Is required is in a -IF statement, when the
variable is embedded in a label (for example, GOTO AB&label.EVAL). The .EVAL operator is
also required any time a variable is included within single quotation marks (').

Replace a Variable Immediately
[&]&variable.EVAL

where:

variable

Is a local or global variable.

When the command procedure is executed, the expression is replaced with the value of the
specified variable before any other action is performed. The command that contains this
value is then re-evaluated.

Without the .EVAL operator, a variable cannot be used in place of some commands.

Replacing a Variable Immediately
The following example illustrates how to use the .EVAL operator in a record selection
expression. The numbers to the left apply to the notes that follow the procedure:

1. -SET &R='IF SALARY GT 100000';
2. -IF &Y EQ 'YES' THEN GOTO START;
3. -SET &R = '-*';

-START
4. TABLE FILE CENTHR

SUM SALARY
BY PLANT

ibi™ FOCUS® Developing Applications

355 | Managing Flow of Control in an Application

5. &R.EVAL
END

The procedure executes as follows:

1. The procedure sets the value of &R to 'IF SALARY GT 100000'.

2. If &Y is YES, the procedure branches to the START label, bypassing the second -SET
command.

3. If &Y is NO, the procedure continues to the second -SET command, which sets &R to
'-*', which is a comment.

The report request is stacked.

4. The procedure evaluates the value of &R. If the end user wanted a record selection
test, the value of &R is 'IF SALARY GT 100000' and this line is stacked.

5. If the end user does not want a record selection test, the value of &R is '-*' and this
line is ignored.

Using .EVAL to Interpret a Variable
Without .EVAL, Dialogue Manager interprets a variable only once. Therefore, in the
following example,

-SET &A='-TYPE';
&A HELLO

Dialogue Manager does not recognize that &A is the -TYPE command so it does not display
the word HELLO and generates the error message:

UNKNOWN FOCUS COMMAND -TYPE

Appending the .EVAL operator to the &A variable enables Dialogue Manager to interpret the
variable correctly. The code

-SET &A='-TYPE';
&A.EVAL HELLO

produces the following output:

ibi™ FOCUS® Developing Applications

356 | Managing Flow of Control in an Application

HELLO
>>

Validating Variable Values Without Data File
Access: REGEX
You can validate a parameter value without accessing the data by using the REGEX mask.
The REGEX mask specifies a regular expression to be used as the validation string. A regular
expression is a sequence of special characters and literal characters that you can combine
to form a search pattern.

Many references for regular expressions exist on the web. For a basic summary, see the
section Summary of Regular Expressions in Chapter 2, Security, of the Server Administration
manual.

The following messages display in case of an error:

(FOC2909) INVALID REGULAR EXPRESSION:
(FOC2910) RESPONSE DOES NOT MATCH THE REGULAR EXPRESSION:

Validate a Variable Value Using a REGEX Mask
&variable.(|VALIDATE=REGEX,REGEX='regexpression').

where:

&variable

Is the variable to validate.

regexpression

Is the regular expression that specifies the acceptable values.

ibi™ FOCUS® Developing Applications

357 | Managing Flow of Control in an Application

Using a REGEX Mask to Validate a Social Security
Number
The following request validates a Social Security number in either xxxxxxxxx or xxx-xx-
xxxx format:

-REPEAT NEXTFMT FOR &FMTCNT FROM 1 TO 2
-SET &EMPID1=DECODE &FMTCNT(1 '071382660' 2 '818-69-2173');
-SET &EMPID=IF

&EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\-?\d{2}\-?\d{4}$').Employee
ID. CONTAINS '-'
- THEN EDIT(&EMPID1,'999$99$9999') ELSE &EMPID1;
TABLE FILE EMPLOYEE
HEADING
" "
"Testing EMPID = &EMPID1</1"

PRINT EID CSAL
WHERE EID EQ '&EMPID.EVAL'
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
END
-RUN
-NEXTFMT

The output is

Testing EMPID = 071382660

EMP_ID CURR_SAL
071382660 $11,000.00

Testing EMPID = 818-69-2173

EMP_ID CURR_SAL
818692173 $27,062.00

ibi™ FOCUS® Developing Applications

358 | Managing Flow of Control in an Application

Using REGEX With an Incorrect Value
In the following request, the second value for &EMPID1 is invalid because it does not
conform to the REGEX mask:

-REPEAT NEXTFMT FOR &FMTCNT FROM 1 TO 2
-SET &EMPID1=DECODE &FMTCNT(1 '071382660' 2 '818-69-2173');
-TYPE EMPID1 = &EMPID1
-SET &EMPID=&EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\d{2}\d{4}$').Employee
ID.;
-TYPE EMPID = &EMPID
-NEXTFMT

The FOC2910 message in the output shows that the second value for &EMPID1 was
rejected:

EMPID1 = 071382660
EMPID = 071382660
EMPID1 = 818-69-2173
ERROR AT OR NEAR LINE 7 IN PROCEDURE __WCFEX FOCEXEC *

(FOC2910) RESPONSE DOES NOT MATCH THE REGULAR EXPRESSION: 818-69-2173
ERROR AT OR NEAR LINE 7 IN PROCEDURE __WCFEX FOCEXEC *

(FOC295) A VALUE IS MISSING FOR: &EMPID1

Using REGEX With an Invalid Regular Expression
In the following request, the REGEX mask is not a valid regular expression:

-SET &EMPID1='071382660';
-SET &EMPID=&EMPID1.(|VALIDATE=REGEX,REGEX='^\d{3}\d{2)}\d
{4}$').Employee ID.;

The FOC2909 message in the output shows that the regular expression is not valid:

ERROR AT OR NEAR LINE 5 IN PROCEDURE __WCFEX FOCEXEC *
(FOC2909) INVALID REGULAR EXPRESSION: ^\d{3}\d{2)}\d{4}$
ERROR AT OR NEAR LINE 5 IN PROCEDURE __WCFEX FOCEXEC *

(FOC295) A VALUE IS MISSING FOR: &EMPID1

ibi™ FOCUS® Developing Applications

359 | Managing Flow of Control in an Application

Concatenating Variables
You can append a variable to a character string or combine two or more variables and/or
literals. See the Creating Reports manual for complete information on concatenation. When
using variables, it is important to separate each variable from the concatenation symbol (||)
with a space.

Concatenate Variables
-SET &name3 = &name1 || &name2;

where:

&name3

Is the name of the concatenated variable.

&name1 || &name2

Are the variables, separated by a space and the concatenation symbol.

Note: The example shown uses strong concatenation, indicated by the || symbol.
Strong concatenation moves any trailing blanks from &name1 to the end of the

result. Conversely, weak concatenation, indicated by the symbol |, preserves any
trailing blanks in &name1.

Creating an Indexed Variable
You can append the value of one variable to the value of another variable, creating an
indexed variable. This feature applies to both local and global variables.

If the indexed value is numeric, the effect is similar to that of an array in traditional
computer programming languages. For example, if the value of index &K varies from 1 to
10, the variable &AMOUNT.&K refers to one of ten variables, from &AMOUNT1 to
&AMOUNT10.

ibi™ FOCUS® Developing Applications

360 | Managing Flow of Control in an Application

A numeric index can be used as a counter; it can be set, incremented, and tested in a
procedure.

Create an Indexed Variable
-SET &name.&index[.&index...] = expression;

where:

&name

Is a variable.

.&index

Is a numeric or alphanumeric variable whose value is appended to &name. The period is
required.

When more than one index is used, all index values are concatenated and the string
appends to the name of the variable.

For example, &V.&I.&J.&K is equivalent to &V1120 when &I=1, &J=12, and &K=0.

expression

Is a valid expression. For information on the kinds of expressions you can write, see the
Creating Reports manual.

Using an Indexed Variable in a Loop
An indexed variable can be used in a loop. The following example creates the equivalent of
a DO loop used in traditional programming languages:

-SET &N = 0;
-LOOP
-SET &N = &N+1;
-IF &N GT 12 GOTO OUT;
-SET &MONTH.&N=&N;
-TYPE &MONTH.&N

ibi™ FOCUS® Developing Applications

361 | Managing Flow of Control in an Application

-GOTO LOOP
-OUT

In this example, &MONTH is the indexed variable and &N is the index. The value of the
index is supplied through the command -SET; the first -SET initializes the index to 0, and
the second -SET increments the index each time the procedure goes through the loop.

If the value of an index is not defined prior to reference, a blank value is assumed. As a
result, the name and value of the indexed variable do not change.

Indexed variables are included in the system limit of 1024, which includes variables
reserved by FOCUS.

Creating a Standard Quote-Delimited String
Character strings must be enclosed in single quotation marks to be handled by most
database engines. In addition, embedded single quotation marks are indicated by two
contiguous single quotation marks. FOCUS, WebFOCUS, and iWay require quotes around
variables containing delimiters, which include spaces and commas.

The QUOTEDSTRING suffix on a Dialogue Manager variable applies the following two
conversions to the contents of the variable:

l Any single quotation mark embedded within a string is converted to two single
quotation marks.

l Single quotation marks are added around the string.

Dialogue Manager commands differ in their ability to handle character strings that are not
enclosed in single quotation marks and contain embedded blanks. An explicit or implied
-PROMPT command can read such a string. The entire input string is then enclosed in
single quotation marks when operated on by .QUOTEDSTRING.

Note: When using the -SET command to reference a character string, ensure the
character string is enclosed in single quotes to prevent errors.

ibi™ FOCUS® Developing Applications

362 | Managing Flow of Control in an Application

Create a Standard Quote-Delimited Character
String
&var.QUOTEDSTRING

where:

&var

Is a Dialogue Manager variable.

Creating a Standard Quote-Delimited Character
String
The following example shows the results of the QUOTEDSTRING suffix on input strings.

-SET &A = ABC;
-SET &B = 'ABC';
-SET &C = O'BRIEN;
-SET &D = 'O'BRIEN';
-SET &E = 'O''BRIEN';
-SET &F = O''BRIEN;
-SET &G = OBRIEN';
-TYPE ORIGINAL = &A QUOTED = &A.QUOTEDSTRING
-TYPE ORIGINAL = &B QUOTED = &B.QUOTEDSTRING
-TYPE ORIGINAL = &C QUOTED = &C.QUOTEDSTRING
-TYPE ORIGINAL = &D QUOTED = &D.QUOTEDSTRING
-TYPE ORIGINAL = &E QUOTED = &E.QUOTEDSTRING
-TYPE ORIGINAL = &F QUOTED = &F.QUOTEDSTRING
-TYPE ORIGINAL = &G QUOTED = &G.QUOTEDSTRING

The output is:

ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'

ibi™ FOCUS® Developing Applications

363 | Managing Flow of Control in an Application

ORIGINAL = O''BRIEN QUOTED = 'O''''BRIEN'
ORIGINAL = OBRIEN' QUOTED = 'OBRIEN'''

ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = ABC QUOTED = 'ABC'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O'BRIEN QUOTED = 'O''BRIEN'
ORIGINAL = O''BRIEN QUOTED = 'O''''BRIEN'
ORIGINAL = OBRIEN' QUOTED = 'OBRIEN'''

Note: The -SET command will remove single quotes around a string. Notice in
the example above that the result of -SET &B = 'ABC' was changed to ORIGINAL =
ABC (as shown in the output), prior to the QUOTEDSTRING conversion.

Converting User Input to a Standard Quote-
Delimited Character String
The following -TYPE command accepts quoted or unquoted input and displays quoted
output.

-TYPE THE QUOTED VALUE IS: &E.QUOTEDSTRING

The output is:

PLEASE SUPPLY VALUES REQUESTED
E=
O'BRIEN
THE QUOTED VALUE IS: 'O''BRIEN'

ibi™ FOCUS® Developing Applications

364 | Managing Flow of Control in an Application

Using Quote-Delimited Strings With Relational Data
Adapters
The following procedure creates an Oracle table named SQLVID from the VIDEOTRK data
source.

TABLE FILE VIDEOTRK
SUM CUSTID EXPDATE PHONE STREET CITY STATE ZIP

TRANSDATE PRODCODE TRANSCODE QUANTITY TRANSTOT
BY LASTNAME BY FIRSTNAME
WHERE LASTNAME NE 'NON-MEMBER'
ON TABLE HOLD
END
-RUN
CREATE FILE SQLVID
-RUN
MODIFY FILE SQLVID
FIXFORM FROM HOLD
DATA ON HOLD
END

Consider the following SQL Translator request:

SET TRACEUSER = ON
SET TRACEON = STMTRACE//CLIENT
SQL
SELECT *
FROM SQLVID WHERE LASTNAME = &1.QUOTEDSTRING;
END

When this request is executed, you must enter a last name, in this case O'BRIEN:

PLEASE SUPPLY VALUES REQUESTED
1=
O'BRIEN

In the generated SQL request, the character string used for the comparison is correctly
enclosed in single quotation marks, and the embedded single quote is doubled:

ibi™ FOCUS® Developing Applications

365 | Managing Flow of Control in an Application

SELECT SQLCOR01.CIN , SQLCOR01.LN , SQLCOR01.FN ,
SQLCOR01.EXDAT , SQLCOR01.TEL , SQLCOR01.STR , SQLCOR01.CITY ,
SQLCOR01.PROV , SQLCOR01.POSTAL_CODE , SQLCOR01.OUTDATE ,
SQLCOR01.PCOD , SQLCOR01.TCOD , SQLCOR01.NO , SQLCOR01.TTOT
FROM SQLVID SQLCOR01 WHERE SQLCOR01.LN = 'O''BRIEN';

The output is:

CIN LN FN ...
--- -- -- ...
5564 O'BRIEN DONALD ...

The following input variations are translated to the correct form of the quoted string
demonstrated in the trace.

'O'BRIEN'
'O''BRIEN'

Any other variation results in:

l A valid string that does not match the database value and does not return any rows.
For example, O''''BRIEN becomes 'O''''''''BRIEN' in the WHERE predicate.

l An invalid string that produces one of the following messages:

Error - Semi-colon or END expected

Error - Missing or Misplaced quotes

Error - (value entered) is not a valid column

Error - Syntax error on line ... Unbalanced quotes

Strings without embedded single quotation marks can be entered without quotes or
embedded in single quotation marks, either SMITH or 'SMITH'.

If you use &1 without the QUOTEDSTRING suffix in the request, the acceptable input strings
that retrieve O'Brien's record are:

'''O'''BRIEN'''
'''O''''BRIEN'''

Using &1 without the QUOTEDSTRING suffix, the acceptable form of a string without
embedded single quotation marks is '''SMITH'''.

ibi™ FOCUS® Developing Applications

366 | Managing Flow of Control in an Application

To make a string enclosed in single quotation marks acceptable without the
QUOTEDSTRING suffix, use '&1' in the request. In this case, in order to retrieve O'Brien's
record, you must enter the string that would have resulted from the QUOTEDSTRING suffix:

'O''''BRIEN'

To enter a string without embedded single quotation marks using '&1', you can either omit
the surrounding single quotation marks or include them: SMITH or 'SMITH'.

Note: The form '&1.QUOTEDSTRING' is not supported.

Usage Notes for Quote-Delimited Character
Strings
An unmatched single quotation mark at the beginning of a character string is treated as
invalid input and generates the following message:

(FOC257) MISSING QUOTE MARKS: value;

Performing a Calculation on a Variable
You can use -SET to define a value for a substituted variable based on the results of a
logical or arithmetic expression or a combination.

Perform a Calculation on a Variable
-SET &name = expression;

where:

ibi™ FOCUS® Developing Applications

367 | Managing Flow of Control in an Application

&name

Is a user-supplied variable that has its value assigned with the expression.

expression

Is an expression following the rules outlined in the Creating Reports manual, but with
limitations as defined in this topic. The semicolon after the expression is required to
terminate the -SET command. For information about setting a precision for Dialogue
Manager calculations, see Supplying and Verifying Values for Variables.

Altering a Variable Value
The following example demonstrates the use of -SET to alter variable values based on
tests.

-START
-TYPE RETAIL PRICE ABOVE OR BELOW $1.00 IN THIS REPORT?
-PROMPT &CHOICE.ENTER A OR B.
-SET &REL = IF &CHOICE EQ A THEN 'GT' ELSE 'LT';

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD RETAIL_PRICE
BY STORE_CODE BY DATE
IF RETAIL_PRICE &REL 1.00
END

In the example, the &CHOICE variable receives either A or B as the value supplied through -
PROMPT. Assuming the user enters the letter A, -SET assigns the string value GT to &REL.
Then, the value GT is passed to the &REL variable in the procedure, so that the expanded
FOCUS command at execution time is:

IF RETAIL_PRICE GT 1.00

Changing a Variable Value With the DECODE
Function
You can use the DECODE function to change a variable to an associated value.

ibi™ FOCUS® Developing Applications

368 | Managing Flow of Control in an Application

Changing the Value of a Variable
In this example the variable refers to a label:

1. -PROMPT &SELECT. ENTER CHOICE (A,B,C,D,E).
2. -SET &GO=DECODE &SELECT (A ONE B TWO C THREE

- D FOUR E FIVE ELSE EXIT);
3. -GOTO &GO

-ONE
.
.
.
-TWO
.
.
.

The example processes as follows:

1. -PROMPT prompts the user at the terminal for a value for the variable &SELECT.
Assume the user enters A.

2. -SET defines the variable &GO in terms of the DECODE function. Depending on the
value input for &SELECT, DECODE associates a substitution. In this case, ONE is
substituted for A.

3. -GOTO &GO transfers control to the label -ONE.

In the example, &GO can be another procedure (see Dialogue Manager Quick Reference)
that is executed, depending on the value that is decoded:

-TOP
-TYPE
-PROMPT &SELECT.ENTER 1, 2, 3, 4, 5, OR EXIT TO END.
-SET &GO=DECODE &SELECT (1 ONE 2 TWO 3 THREE
- 4 FOUR 5 FIVE ELSE EXIT);
-IF &GO IS EXIT GOTO EXIT;
EX &GO
-RUN
-GOTO TOP
-EXIT

For more information on DECODE, see the Using Functions manual.

ibi™ FOCUS® Developing Applications

369 | Managing Flow of Control in an Application

Extracting Characters From a Variable Value
With the EDIT Function
You can use the mask option of the EDIT function with amper variables. You can insert
characters into an alphanumeric value, or extract certain characters from the value.

Extracting a Character From a Variable
In this example, EDIT extracts a particular character, in this case the J, for comparison in
order to branch to the appropriate label. Assume there are nested menus and the user
must supply a number to branch to a particular menu. If the first character is a J, the
branch is to the label JUMP that enables the user to jump in nested menus (the numbers
refer to the explanation below):

1. -TYPE CHOOSE 1 for Edit, 2 for Print, 3 for Math
1. -TYPE TO JUMP LEVELS OF MENUS TYPE J1.3 ETC.
2. -PROMPT &OPTION.A4.Please enter selection:.
3. -SET &XYZ = EDIT(&OPTION, '9$$$');
4. -IF &XYZ EQ J THEN GOTO JUMP;

.

.

.
5. -JUMP

.

.

.

The example processes as follows:

1. -TYPE send messages to the screen explaining the options to the user.

2. -PROMPT asks the user to enter a value for the variable &OPTION. It can have as
many as four characters.

3. -SET calculates the variable &XYZ, which is the &OPTION variable, using the mask
option of EDIT. The first character is screened.

4. -IF determines the branch. If the variable &XYZ is equal to J, processing continues to
the label JUMP. Otherwise, processing continues to the next command in the
procedure.

ibi™ FOCUS® Developing Applications

370 | Managing Flow of Control in an Application

5. -JUMP is a label. The coding that follows contains the necessary FOCUS commands
to enable the user to jump to the various menus.

Removing Trailing Blanks From Variables With
the TRUNCATE Function
The Dialogue Manager TRUNCATE function removes trailing blanks from Dialogue Manager
amper variables and adjusts the length accordingly.

The Dialogue Manager TRUNCATE function has only one argument, the string or variable to
be truncated. If you attempt to use the Dialogue Manager TRUNCATE function with more
than one argument, the following error message is generated:

(FOC03665) Error loading external function 'TRUNCATE'

This function can only be used in Dialogue Manager commands that support function calls,
such as -SET and -IF commands. It cannot be used in -TYPE or -CRTFORM commands or in
arguments passed to stored procedures.

Note: A user-written function of the same name can exist without conflict.

Remove Trailing Blanks From Variables
-SET &var2 = TRUNCATE(&var1);

where:

&var2

Is the Dialogue Manager variable to which the truncated string is returned. The length of
this variable is the length of the original string or variable minus the trailing blanks. If
the original string consisted of only blanks, a single blank, with a length of one is
returned.

ibi™ FOCUS® Developing Applications

371 | Managing Flow of Control in an Application

&var1

Is a Dialogue Manager variable or a literal string enclosed in single quotation marks.
System variables and statistical variables are allowed as well as user-created local and
global variables.

Removing Trailing Blanks
The following example shows the result of truncating trailing blanks:

-SET &LONG = 'ABC ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABC LENGTH = 03

The following example shows the result of truncating a string that consists of all blanks:

-SET &LONG = ' ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = LENGTH = 06
RESULT = LENGTH = 01

The following example uses the TRUNCATE function as an argument for EDIT:

-SET &LONG = 'ABC ' ;
-SET &RESULT = EDIT(TRUNCATE(&LONG)|'Z','9999');
-SET &LL = &LONG.LENGTH;

ibi™ FOCUS® Developing Applications

372 | Managing Flow of Control in an Application

-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABCZ LENGTH = 04

Calling a Function
Any function name encountered in a Dialogue Manager expression that is not recognized as
a system standard name or FOCUS function is assumed to be a function. These functions
are externally programmed by users and stored in a library that is available at the time
referenced. One or more arguments are passed to the user program, which performs an
operation or calculation and returns a single value or character string.

Dialogue Manager variables can receive the values from functions through the -SET
command.

Set a Variable Value Based on the Result From
a Function
-SET &name = routine(argument,...,'format');

where:

name

Is the name of the variable in which the result is stored.

routine

Is the name of the function.

ibi™ FOCUS® Developing Applications

373 | Managing Flow of Control in an Application

argument

Represents the argument(s) that must be passed to the function. Numeric arguments
are converted to double-precision (D) format.

format

Is the predefined format of the result. This is used to convert numeric results back to
character representation. It must be enclosed in single quotation marks.

Setting a Variable Value Based on the Result From a
Function
In the following example, FOCUS invokes the function RATE, adds 0.5 to the calculated
value, and then formats the result as a double precision number. This result is then stored
in the variable &COST:

-PROMPT &COMPANY.WHAT COMPANY ARE YOU USING?.
-PROMPT &DEST.WHERE ARE YOU SENDING THE PACKAGE TO?.
-PROMPT &WEIGHT.HOW HEAVY IS THE PACKAGE IN POUNDS?.
-SET &COST = RATE(&COMPANY,&DEST,&WEIGHT,'D6.2') + 0.5;
-TYPE THE COST TO SEND A &WEIGHT pound PACKAGE
-TYPE TO &DEST BY &COMPANY IS &COST

Load and Execute a Function With -TSO/-MVS
RUN
These Dialogue Manager commands cause a function to be loaded and executed.

The commands provide an alternative to -SET, which is generally the preferred method for
calling user-supplied functions (see Manipulating and Testing Variables).

However,-TSO/-MVS RUN must be used for this purpose when the function being called:

l Does not have arguments.

l Has no return argument.

l Does not accept numeric arguments in double precision format. In this case it is the

ibi™ FOCUS® Developing Applications

374 | Managing Flow of Control in an Application

user's responsibility to do the appropriate conversion.

The syntax is

{-TSO|-MVS} RUN routine[, argument,...]

where:

routine

Is the name of the function.

argument

Represents the argument(s) being passed to the function. Arguments that are variables
must have sizes predefined in prior -SET commands.

If you use this syntax, please note the foIlowing:

l If the function returns a value that is not alphanumeric, Dialogue Manager is not able
to display or interpret the value correctly.

l You must convert all numeric arguments to double precision before they are passed
to the function. (You can use the ATODBL function to convert them.) However, if any
portion of the double precision number can be interpreted as an EBCDIC comma,
Dialogue Manager incorrectly interprets this argument as two arguments.

l A user-written function may employ an argument for both input and output
purposes. It is the responsibility of the user program to move the correct number of
characters into the output variables.

Loading and Executing a Function
In this example, the function is CODENAME. The arguments that are variables are either
prompted for or set at the beginning of the procedure and values are then supplied for the
arguments.

-PROMPT &MYCODE.A3.
-SET &MYNAME = '';
-SET &MYFACTOR = '' ;
-TSO RUN CODENAME,&MYCODE,&MYNAME,&MYFACTOR

ibi™ FOCUS® Developing Applications

375 | Managing Flow of Control in an Application

Using Variables to Alter Commands
A variable can refer to a FOCUS command or to a particular field. Therefore, the command
structure of a procedure can be determined by the value of the variable.

Using a Variable to Control What the TABLE
Command Prints
In this example, the variable &FIELD determines the field to print in the TABLE request.

In the file named SALES, the variable &FIELD can display the values RETURNS, DAMAGED,
or UNIT_SOLD.

TABLE FILE SALES
.
.
.

PRINT &FIELD
BY PROD_CODE
.
.
.

Using Numeric Amper Variables in Functions
FOCUS stores all amper variables as strings in alphanumeric format whether they contain
alphanumeric or numeric data or a mixture of the two. There are only two data types
available to amper variables: alphanumeric and numeric.

Determining Amper Variable Data Type
Data typing for amper variables is determined by the data content only. As a result, using
quotation marks around a numeric value in a -SET command has no effect on the data
type of the amper variable.

For example, the following request stores numeric data in variables &A, &B, and &C:

ibi™ FOCUS® Developing Applications

376 | Managing Flow of Control in an Application

-SET &A=12345;
-SET &B='12345';
-SET &C=123.45
-TYPE &A &B &C
-TYPE &A.TYPE &B.TYPE &C.TYPE

The output shows that &A, &B, and &C all have the numeric data type:

12345 12345 123.45
N N N

Manipulating Amper Variables
When an amper variable is displayed, substituted, concatenated, or appended, there is no
transformation of the value contained in the amper variable.

Substitution

-SET &C=123.45
IF RETAIL_COST EQ &C

becomes

IF RETAIL_COST EQ 123.45

Also, consider the following:

-SET &D= &C;
-TYPE &D &D.TYPE

The output shows that &D has the same value as &C and is also numeric:

123.45 N

Concatenation

The amper variable &F is created by concatenating &A and &C:

ibi™ FOCUS® Developing Applications

377 | Managing Flow of Control in an Application

-SET &F = &A | &C;
-TYPE &F &F.TYPE

The output shows that the value of &F is the value of &A followed by the value of &C, and
that the type is numeric:

12345123.45 N

The following example creates the amper variable &E by embedding an ampersand in the
string. The ampersand is not recognized as the start of a variable name and is treated as
an alphanumeric symbol in a string:

-SET &E = 1234&C;
-TYPE &E &E.TYPE

The output shows that the variable is of type alphanumeric, not numeric. It is not the
concatenation of the string '1234' with the variable &C:

1234&C A

This same behavior can be produced with concatenation:

-SET &G = AT&|T;
-TYPE &G &G.TYPE

The output is:

AT&T A

Using an Amper Variable in an Expression
When an amper variable is used in an expression, conversion may be required in order to
process the expression. The amper variable used in the expression is generally seen as a
literal, and its value is substituted in before the expression is processed. Under these
circumstances, data conversion necessary to process the expression is performed.
Numerics contained in amper variables are seen as integers. If the expression can be
evaluated as integer, it will be.

ibi™ FOCUS® Developing Applications

378 | Managing Flow of Control in an Application

In the following example, &C is set to 123.55. Then an expression creates &D by adding 100
to &C :

-SET &C=123.55;
-SET &D=&C + 100;
-TYPE &D &D.TYPE

The output shows that &D is numeric and its value is 123.55+100 truncated to the integer
223 because integer arithmetic is used:

223 N

The following expression requires conversion to double precision, as the numeric literal
(100.49) in the expression is not an integer:

-SET &C=123.55;
-SET &D=&C + 100.49;
-TYPE &D &D.TYPE

The output shows that while the arithmetic was done by converting the value of &C to
double precision, the result is truncated before being returned to &D:

224 N

If you want the result to retain the decimal places, you can set the DMPRECISION
parameter to the number of decimal places you want returned to the resulting amper
variable.

For example:

SET DMPRECISION=2
-RUN
-SET &C=123.55;
-SET &D=&C + 100.49;

Now the result retains the decimal places:

224.04 N

ibi™ FOCUS® Developing Applications

379 | Managing Flow of Control in an Application

Using Amper Variables as Subroutine
Parameters
How you treat numeric amper variables when passing them to a subroutine depends on
the data type of the subroutine parameter.

Using a Numeric Amper Variable as a Numeric
Subroutine Parameter
When using a numeric amper variable as a numeric parameter in a subroutine call, the
amper variable is treated as a field. Since as a field, it has no specified type in either the
Master File or the FOCEXEC, it takes the default data type of double precision.

Note that when the result is returned to an output variable, its type is determined by its
content. If it has only numbers and a decimal point, it is numeric. If it contains other
symbols, it is alphanumeric.

For example, the FTOA subroutine converts a double or single precision number (D or F) to
an alphanumeric string with the format specified within the parentheses of the second
parameter:

FTOA (number_to_convert, '(format)', 'alpha_output_format')

The following example sets &C to 123.55 and passes it to the FTOA subroutine to be
converted to an alphanumeric string with a dollar sign:

-SET &C=123.55;
-SET &G=FTOA(&C,'(D7.2M)','A11');
-TYPE &G &G.TYPE

The output shows that the string $123.55 has been returned to &G. Since it has a symbol
other than numeric digits and a decimal point, its type is alphanumeric:

$123.55 A

In the following example, the format returned does not specify a dollar sign:

ibi™ FOCUS® Developing Applications

380 | Managing Flow of Control in an Application

-SET &A=12345;
-SET &G=FTOA(&A/100,'(D7.2)','A11');
-TYPE &G &G.TYPE

Since the returned string contains only numeric digits and a decimal point, its type is
numeric:

123.45 N

Note that if the number had another digit, it would be returned with a comma, and its type
would be alphanumeric:

-SET &A=123456;
-SET &G=FTOA(&A/100,'(D7.2)','A11');
-TYPE &G &G.TYPE

The output is:

1,234.56 A

Using a Numeric Amper Variable as an
Alphanumeric Subroutine Parameter
When using a numeric amper variable as an alphanumeric parameter in a subroutine call,
you must convert the numeric value to an alphanumeric string before using it in order to
avoid failure due to a format error. You can do this using one of the subroutines designed
to convert numerics to alphanumeric, or you can concatenate an alphanumeric character
to the numeric value in order to assign it an alphanumeric data type.

For example, the following converts &C to a string and returns the string to the variable
&G. It then passes &G to the RJUST subroutine, which right justifies the value and returns it
to the variable &H:

-SET &C=123.55;
-SET &G=FTOA(&C,'(D7.2M)','A11');
-SET &H = RJUST(11,&G,'A11');

ibi™ FOCUS® Developing Applications

381 | Managing Flow of Control in an Application

-TYPE &G &G.TYPE
-TYPE &H &H.TYPE

The output is:

$123.55 A
$123.55 A

Debugging a Procedure
You can test and debug your procedure with the following.

l The &ECHO variable controls the display of command lines as they execute so you
can test and debug procedure.

l The &STACK variable enables you to test the logic of Dialogue Manager commands.
Setting this variable to OFF lets you run the procedure while preventing the
execution of stacked (non-Dialogue Manager) commands. This gives you the ability to
view the sequence of commands and see how the variable values are resolved.

l The &RETCODE variable returns a code after a procedure is executed. If the
procedure results in normal output or no records are retrieved, the value of
&RETCODE is 1. If an error occurs while parsing the procedure, the value of
&RETCODE is 8.

&RETCODE can be used to test the result of an operating system command. This
retrieves the return code from the operating system.

l The &IORETURN variable tests the result of Dialogue Manager -READ and -WRITE
commands. After a -READ or -WRITE operation, a non-zero return code indicates an
error such as end-of-file being reached.

&IORETURN can be used to test the result of the following:

o A -READ command. If &IORETURN equals zero, a value was successfully read
from the external file.

o A -WRITE command. If &IORETURN equals zero, a value was successfully written
to the external file.

ibi™ FOCUS® Developing Applications

382 | Managing Flow of Control in an Application

Display Command Lines as They Execute
{-DEFAULT|-SET|EX} &ECHO = {ON|ALL|OFF|NONE}

where:

ON

Displays FOCUS commands that are expanded and stacked for execution.

ALL

Displays Dialogue Manager commands and FOCUS commands that are expanded and
stacked for execution.

OFF

Suppresses the display of both stacked commands and Dialogue Manager commands.
This value is the default.

NONE

Prevents procedure code from being displayed (echoed). Once the value of &ECHO has
been set to NONE, it cannot be changed during the session or connection.

By default, any procedure that does not explicitly set the &ECHO variable executes with the
value OFF. You can change this default value for &ECHO with the SET DEFECHO command,
as described in Debugging a Procedure.

Establish a Default Value for the &ECHO
Variable
SET DEFECHO = {OFF|ON|ALL|NONE}

where:

OFF

Establishes OFF as the default value for &ECHO. OFF is the default value.

ibi™ FOCUS® Developing Applications

383 | Managing Flow of Control in an Application

ON

Establishes ON as the default value for &ECHO. Displays FOCUS commands that are
expanded and stacked for execution.

ALL

Establishes ALL as the default value for &ECHO. ALL displays Dialogue Manager
commands and FOCUS commands that are expanded and stacked for execution.

NONE

Prevents procedure code from being displayed (echoed). Once the value of DEFECHO or
&ECHO has been set to NONE, it cannot be changed during the session or connection.

Usage Notes for SET DEFECHO = NONE
l If you issue the SET DEFECHO=NONE command in a FOCEXEC, the setting does not

affect &ECHO in that routine. It takes effect as the value of &ECHO in the next
executed (EX) procedure after which it may not be changed.

l If you attempt to reset &ECHO within the duration of its NONE value, the value you
attempted to set will display if you issue a -TYPE command, but the value will not
actually change.

Preventing Procedure Code From Being Displayed
The following procedure queries the value of the DEFECHO parameter and issues a TABLE
request against the EMPLOYEE data source:

? SET DEFECHO
-RUN
-TYPE ECHO = &ECHO
TABLE FILE EMPLOYEE
PRINT CURR_SAL CURR_JOBCODE
BY LAST_NAME BY FIRST_NAME
END
-RUN

The query command output shows that DEFECHO is OFF (the default value):

ibi™ FOCUS® Developing Applications

384 | Managing Flow of Control in an Application

DEFECHO OFF

The -TYPE command shows that the value of &ECHO is OFF (the default):

ECHO = OFF

Because &ECHO is OFF the TABLE commands do not display as the procedure executes:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14

RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

END OF REPORT

Now, set DEFECHO=ON and re-run the procedure.

The query command output shows that DEFECHO is ON:

DEFECHO ON

The -TYPE command shows that the value of &ECHO has been changed to ON:

ibi™ FOCUS® Developing Applications

385 | Managing Flow of Control in an Application

ECHO = ON

Because &ECHO is ON, the TABLE commands display as the procedure executes:

TABLE FILE EMPLOYEE
PRINT CURR_SAL CURR_JOBCODE
BY LAST_NAME BY FIRST_NAME
END

The output displays next:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14

RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

END OF REPORT

Now, issue the SET DEFECHO = NONE command and rerun the procedure:

SET DEFECHO = NONE

The query command output shows that the value of DEFECHO has been changed to NONE:

ibi™ FOCUS® Developing Applications

386 | Managing Flow of Control in an Application

DEFECHO NONE

The -TYPE command shows that the value of &ECHO is NONE:

ECHO = NONE

Because DEFECHO has the value NONE, the TABLE commands do not display as the
procedure executes. The output is:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY
PAGE 1

LAST_NAME FIRST_NAME CURR_SAL CURR_JOBCODE
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 A17
BLACKWOOD ROSEMARIE $21,780.00 B04
CROSS BARBARA $27,062.00 A17
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $26,862.00 A15
JONES DIANE $18,480.00 B03
MCCOY JOHN $18,480.00 B02
MCKNIGHT ROGER $16,100.00 B02
ROMANS ANTHONY $21,120.00 B04
SMITH MARY $13,200.00 B14

RICHARD $9,500.00 A01
STEVENS ALFRED $11,000.00 A07

END OF REPORT

Once the value of DEFECHO has been set to NONE, it cannot be changed. The following
SET command attempts to change the value to ON, but the query command output shows
that it is still NONE:

ibi™ FOCUS® Developing Applications

387 | Managing Flow of Control in an Application

SET DEFECHO=ON
? SET DEFECHO
DEFECHO NONE

Test Dialogue Manager Command Logic
{-DEFAULT|-SET|EX procname} &STACK = {ON|OFF}

where:

procname

Is the procedure to execute.

ON

Executes stacked commands normally. This value is the default.

OFF

Prevents the execution of stacked commands. In addition, system variables (for
example, &RECORDS or &LINES) are not set. Dialogue Manager commands are executed
so you can test the logic of the procedure.

Note: &STACK is usually used with &ECHO = ALL for debugging purposes. The
terminal displays both the Dialogue Manager commands, as well as the FOCUS
commands with the supplied values. You can view the logic of the procedure.

Using the &RETCODE Variable to Test the Result of a
Command
If you are using Simultaneous Usage (SU), you must know if the FOCUS Database Server is
available before beginning a particular procedure. The following procedure tests whether
SINK1 is available before launching PROC1.

ibi™ FOCUS® Developing Applications

388 | Managing Flow of Control in an Application

? SU SINK1
-RUN
-IF &RETCODE EQ 16 GOTO BAD;
-INCLUDE PROC1
-BAD
-EXIT

Testing the Status of a Query
The system variable &RETCODE returns a code after a query is executed. If the query
results in a normal display, the value of &RETCODE is 0. If a display error occurs, or no
display results (as can happen when the query finds no data), the value of &RETCODE is 8.
(If the error occurs on a ? SU, the value of &RETCODE is 16.)

The value of &RETCODE is set following the execution of any of these queries:

NORMAL NODISPLAY ERROR

? HOLD
0 8

? SU*
0 8 16

? JOIN
0 8

? COMBINE
0 8

? DEFINE
0 8

? USE
0 8

ibi™ FOCUS® Developing Applications

389 | Managing Flow of Control in an Application

NORMAL NODISPLAY ERROR

? LOAD
0 8

*The &RETCODE value of ? SU means: 0 indicates that the FOCUS Database Server
(formerly called the sink machine) is up with one or more users; 8 indicates that the FOCUS
Database Server is up with no users; 16 indicates that there is an error in communicating
to the FOCUS Database Server.

You can test the status of any of these queries by checking the &RETCODE variable and
providing branching instructions in your procedure.

Issuing an Operating System Command
You can issue an operating system command to set up an environment in which a request
must run. For example, a program may allocate files, rename files, copy files, or perform
other operations before executing a request.

Execute an Operating System Command
op_system command

where:

op_system

Specifies the operating system.

-MVS specifies the z/OS operating system.

-TSO specifies the z/OS operating system.

command

Is an operating system command.

ibi™ FOCUS® Developing Applications

390 | Managing Flow of Control in an Application

Dialogue Manager Quick Reference
This topic provides an alphabetical list of all Dialogue Manager commands, including a
description of functions and syntax.

It also provides a grouped list of Dialogue Manager defaults and limits.

Note that this information is also presented throughout the chapter in the context of the
task to which it applies.

-* Command
The command -* signals the beginning of a comment line.

Any number of comment lines can follow one another, but each must begin with -*. A
comment line may be placed at the beginning or end of a procedure, or in between
commands. However, it cannot be on the same line as a command.

Use comment lines liberally to document a procedure so that its purpose and history are
clear to others.

The syntax is

-* text

where:

text

Is a comment. A space is not required between -* and text.

? Command
The command -? displays the current value of a local variable.

The syntax is

-? &[variablename]

where:

ibi™ FOCUS® Developing Applications

391 | Managing Flow of Control in an Application

variablename

Is a variable name of up to 12 characters. If this parameter is not specified, the current
values of all local, global, and defined system and statistical variables are displayed.

-CLOSE Command
-CLOSE closes an external file opened with the -READ or -WRITE NOCLOSE option. The
NOCLOSE option keeps a file open until the -READ or -WRITE operation is complete.

The syntax is

-CLOSE {ddname|*}

where:

ddname

Is the ddname of the open file described to FOCUS via an allocation.

*

Closes all -READ and -WRITE files that are currently open.

-CRTCLEAR Command
-CRTCLEAR clears the current screen display.

The syntax is

-CRTCLEAR

-CRTFORM Command
-CRTFORM creates forms that prompt the user for values for variables.

ibi™ FOCUS® Developing Applications

392 | Managing Flow of Control in an Application

All lines following a -CRTFORM command that begin with a hyphen and enclose text in
double quotation marks (") are part of a single-screen form. Pressing ENTER passes all
input data to associated variables.

With -CRTFORM, the first line that does not begin with a -" signals the end of the form. With
-CRTFORM BEGIN, the command -CRTFORM END signals the end of the form.

All FIDEL facilities are available to -CRTFORM except HEIGHT, WIDTH, and LINE.

CRTFORM in MODIFY functions identically to -CRTFORM in Dialogue Manager.

For additional information, see Dialogue Manager Quick Reference.

The syntax is

-CRTFORM [TYPE n] [BEGIN|END [LOWER|UPPER]]

where:

-CRTFORM

Invokes FIDEL and signals the beginning of the screen form.

TYPE n

Enables you to define the number of lines (n) to reserve for messages. You can specify a
number from 1 to 4. The default is 4.

BEGIN

Supports the use of other Dialogue Manager commands to help build the form.

END

Signals the end of the -CRTFORM. Used with -CRTFORM BEGIN.

LOWER

Reads lowercase data from the screen. Once you specify LOWER, every screen thereafter
is a lowercase screen until you specify otherwise.

UPPER

Translates lowercase letters to uppercase. This is the default.

ibi™ FOCUS® Developing Applications

393 | Managing Flow of Control in an Application

-DEFAULT[S|H] Command
DEFAULT commands set default values for local or global variables. -DEFAULT guarantees
that the variables are always given a value and helps ensure that it executes correctly.

You can issue multiple -DEFAULT commands for a variable. If the variable is global, these
-DEFAULT commands can be issued in separate FOCEXECs. At any point before another
method is used to establish a value for the variable, the most recently issued -DEFAULT
command will be in effect.

However, as soon as a value for the variable is established using any other method,
subsequent -DEFAULT commands issued for that variable are ignored.

You can override -DEFAULT values by supplying values for the variables on the command
line, by specifically prompting for values with -PROMPT or -CRTFORM, or by supplying a
value with -SET subsequent to -DEFAULT.

Default values are provided in other FOCUS modules to anticipate user needs and reduce
the need for keystrokes in situations where most users desire a predefined outcome. For
additional information, see also Dialogue Manager Quick Reference.

The syntax is

-DEFAULT[S|H] &[&]name=value [...]

where:

&name

Is the name of the variable.

value

Is the default value assigned to the variable.

-EXIT Command
-EXIT forces a procedure to end. All stacked commands are executed and the procedure
exits. If the procedure was called by another one, the calling procedure continues
processing.

ibi™ FOCUS® Developing Applications

394 | Managing Flow of Control in an Application

Use -EXIT for terminating a procedure after processing a final branch that completes the
desired task. The last line of a procedure is an implicit -EXIT.

The syntax is

-EXIT

-GOTO Command
-GOTO transfers control to a specified label.

If Dialogue Manager finds the label, processing continues with the line following it. If
Dialogue Manager does not find the label, processing ends and an error message is
displayed.

The syntax is

-GOTO label

.

.

.
-label [TYPE text]

where:

label

The label in the -label command Is a user-defined name of up to 12 characters that
specifies the target of the -GOTO action.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic
and logical operations, and so on.

TYPE text

Optionally sends a message to the client application.

ibi™ FOCUS® Developing Applications

395 | Managing Flow of Control in an Application

-IF Command
-IF routes execution of a procedure based on the evaluation of the specified expression.

An -IF without an explicitly specified ELSE whose expression is false continues processing
with the line immediately following it.

The syntax is

-IF expression [THEN] GOTO label1
[- ELSE GOTO label2]
[- ELSE IF...];

where:

label

Is a user-defined name of up to 12 characters that specifies the target of the GOTO
action.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic
or logical operations, and so on.

expression

Is a valid expression. Literals need not be enclosed in single quotation marks unless
they contain embedded blanks or commas.

THEN

Is an optional keyword that increases readability of the command.

ELSE GOTO

Passes control to label2 when the -IF test fails.

ELSE IF

Specifies a compound -IF test.

The semicolon is required at the end of the command, and continuation lines must
begin with a hyphen.

ibi™ FOCUS® Developing Applications

396 | Managing Flow of Control in an Application

-INCLUDE Command
-INCLUDE specifies another procedure to be incorporated and executed at run time, as if it
were part of the calling procedure. The specified procedure may comprise either a fully
developed or partial procedure. Note that a partial procedure does not execute if called
outside of the procedure containing -INCLUDE.

When using -INCLUDE, you may not branch to a label outside of the specified procedure.

A procedure may contain more than one -INCLUDE. Any number of -INCLUDEs may be
nested, but recursive -INCLUDEs are limited to four levels.

You may use any valid command in a -INCLUDE.

EXEC may also be used to execute a procedure inside another procedure.

The syntax is

-INCLUDE filename [filetype]

where:

filename

Is the procedure to be incorporated in the calling procedure.

filetype

Is the procedure's DDNAME. If none is included, FOCEXEC is assumed.

-label Command
The label specified in the -label command Is the target of a -GOTO command or -IF criteria.

The syntax is

-label [TYPE message]

where:

ibi™ FOCUS® Developing Applications

397 | Managing Flow of Control in an Application

label

Is a user-supplied name of up to 12 characters that identifies the target for a branch.

Do not use embedded blanks or the name of any other Dialogue Manager command
except -QUIT or -EXIT. Do not use words that can be confused with functions, arithmetic
or logical operations, and so on.

TYPE message

Sends a message to the client application.

-MVS Command
-MVS executes a z/OS command. -MVS is a synonym for -TSO. It is only supported with the
RUN command.

-MVS RUN Command
This command is the same as -TSO RUN.

The syntax is

-MVS RUN

-PASS Command
-PASS directly issues and controls passwords. This feature is especially useful for specifying
a particular file or set of files that a given user can read or write. Passwords have detailed
sets of functions associated with them through DBA module.

The procedure that sets passwords should be encrypted so that it and the passwords that
it sets cannot be typed and made known.

A variable can be associated with -PASS so that you can prompt for and assign a password
value.

ibi™ FOCUS® Developing Applications

398 | Managing Flow of Control in an Application

The PASS command provides the same function at the command level, as does the PASS
parameter of the SET command.

The syntax is

-PASS password

where:

password

Is a literal FOCUS password or a variable containing a password.

-PROMPT Command
Types a message to the terminal and reads the reply from the user. This reply assigns a
value to the variable named.

If a format is specified and the supplied value does not conform, FOCUS displays an error
message and prompts the user again for the value.

If a (list) is specified and the user does not reply with a value on the list, FOCUS reprompts
and prints the list of acceptable values.

Note: You cannot use format and list together.

In MODIFY, PROMPT specifies additional data input needs.

In GRAPH, when it is set on, GPROMPT automatically prompts for all parameters needed to
execute the graph request. This is quite a different function from -PROMPT in Dialogue
Manager.

For additional information, see Dialogue Manager Quick Reference.

The syntax is

-PROMPT &name [[.format|.(list)] [.text].]

where:

ibi™ FOCUS® Developing Applications

399 | Managing Flow of Control in an Application

&name

Is a user-defined variable.

format

Optionally specifies alphanumeric or integer data type and length.

text

Optionally specifies prompting text that appears on the screen. Must be delimited by
periods.

list

Optionally specifies a range of acceptable responses. Must be enclosed in parentheses.

-QUIT Command
-QUIT forces an immediate exit from the procedure. Stacked lines are not executed. This
differs from an -EXIT, which executes all lines that are currently on the stack.

Like -EXIT, -QUIT returns the user to the FOCUS prompt.

-QUIT FOCUS takes the user out of FOCUS altogether and returns the user to the operating
system level.

-QUIT can be made the target of a branch, with the same results as those already
described.

QUIT can be entered in response to -PROMPT or -CRTFORM to force an exit from the
procedure. The QUIT command can, however, be turned off from within Dialogue Manager
to prevent the user from exiting FOCUS prompt.

The QUIT command can also be used to exit from MODIFY and TABLE requests as well as
Dialogue Manager procedures.

The principle of QUIT remains consistent throughout FOCUS, namely that the exited
request or procedure is not executed and the user is returned to the FOCUS prompt.

For additional information, see also Dialogue Manager Quick Reference and Dialogue
Manager Quick Reference.

The syntax is

ibi™ FOCUS® Developing Applications

400 | Managing Flow of Control in an Application

-QUIT or -QUIT FOCUS [n]

where:

n

Is the operating system return code. It can be a constant or an integer variable up to
4095. If you do not supply a value or if you supply a non-integer value for n, the return
code is 8 (the default value).

-READ Command
Reads data from an external (non-FOCUS) file. -READ can access data in either fixed or free
form.

For additional information, see Dialogue Manager Quick Reference.

The syntax is

-READ ddname[,] [NOCLOSE] &name[.format.][,] ...

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM
ALLOCATE. A space after the ddname denotes a fixed format file while a comma denotes
a comma-delimited file.

NOCLOSE

Indicates that the ddname should be kept open even after a -RUN is executed. The
ddname is closed upon completion of the procedure or when a -CLOSE or subsequent -
WRITE command is encountered.

name

Is the variable name. You may specify more than one variable. Using a comma to
separate variables is optional.

ibi™ FOCUS® Developing Applications

401 | Managing Flow of Control in an Application

If the list of variables is longer than one line, end the first line with a comma and begin
the next line with a dash followed by a blank (-) for comma-delimited files or a dash
followed by a comma followed by a blank (-,) for fixed format files. For example:

Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,-, &CODE2.A3

format

Is the format of the variable. It may be Alphanumeric (A) or Integer (I). Note that format
must be delimited by periods. The format is ignored for comma-delimited files.

-READFILE Command
-READFILE reads a Master File, then reads values from a file into variables based on the
fields listed in the Master File.

-READFILE mastername

where:

mastername

Is the name of the Master File to be read.

-REMOTE Command
-REMOTE passes execution of the commands within a -REMOTE BEGIN and -REMOTE END
command to a server.

For more information, see the Overview and Operating Environments Manual.

The syntax is

ibi™ FOCUS® Developing Applications

402 | Managing Flow of Control in an Application

-REMOTE BEGIN
commands
-REMOTE END

-REPEAT Command
-REPEAT allows looping in a procedure.

A loop ends when any of the following occurs:

l It is executed in its entirety.

l A -QUIT or -EXIT is issued.

l A -GOTO is issued to a label outside of the loop. If a -GOTO is later issued to return to
the loop, the loop proceeds from the point it left off.

The syntax is

-REPEAT label n TIMES
-REPEAT label WHILE condition
-REPEAT label FOR &variable

[FROM fromval] [TO toval] [STEP s]

where:

label

Identifies the code to be repeated (the loop). A label can include another loop if the
label for the second loop has a different name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of n can be a local
variable, a global variable, or a constant. If it is a variable, it is evaluated only once, so
you cannot change the number of times to execute the loop. The loop can only be
ended early using -QUIT or -EXIT.

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that can be true or false. The loop is run if the condition is true.

ibi™ FOCUS® Developing Applications

403 | Managing Flow of Control in an Application

&variable

Is a variable that is tested at the start of each execution of the loop and incremented by
s with each execution. It is compared with the value of fromval and toval, if supplied.
The loop is executed only if &variable is greater than or equal to fromval or less than or
equal to toval.

fromval

Is a constant that is compared with &variable at the start of the execution of the loop.
The default value is 1.

toval

Is a value that is compared with &variable at the start of the execution of the loop. The
default value is 1,000,000.

STEP s

Is a constant used to increment &variable at the end of the execution of the loop. It may
be positive or negative. The default increment is 1.

Note: The parameters FROM, TO, and STEP can appear in any order.

-RUN Command
-RUN causes immediate execution of all stacked FOCUS commands.

Following execution, processing of the procedure continues with the line that follows -RUN.

-RUN is commonly used to do the following:

l Generate results from a request that can then be used in testing and branching.

l Close an external file opened with -READ or -WRITE. When a file is closed, the line
pointer is placed at the beginning of the file for a -READ. The line pointer for -WRITE
is positioned depending on the allocation and definition of the file.

The syntax is

-RUN

ibi™ FOCUS® Developing Applications

404 | Managing Flow of Control in an Application

-SET Command
-SET assigns a literal value, or a value that is computed in an arithmetic or logical
expression, to a variable.

Single quotation marks around a literal value are optional unless it contains an embedded
blank, comma, or equal sign, in which case you must include them.

The syntax is

-SET &[&]name= {expression|value};

where:

&name

Is the name of the variable.

expression

Is a valid expression. Expressions can occupy several lines, so you should end the
command with a semicolon.

value

Is a literal value, or arithmetic or logical expression assigned to the variable. If the literal
value contains commas or embedded blanks, you must enclose the value in single
quotation marks.

-TSO Command
-TSO executes a TSO operating system command from within Dialogue Manager. It is only
supported with the RUN command.

The syntax is

-TSO command

where:

ibi™ FOCUS® Developing Applications

405 | Managing Flow of Control in an Application

command

Is a TSO RUN command.

-TSO RUN Command
In TSO, loads and executes the specified user-written function.

Note that the preferred way to execute user-written programs is with the -SET command.

The syntax is

-TSO RUN function

where:

function

Is the name of a user-written function.

-TYPE Command
Transmits informative messages to the user at the terminal. Any number of -TYPE lines may
follow one another but each must begin with -TYPE.

Substitutable variables may be embedded in text. The values currently assigned to each
variable is displayed in the assigned position in the text.

-TYPE1 and TYPE+ are not supported by IBM 3270-type terminals.

TYPE is used in a variety of ways in FOCUS to send informative messages to the screen. A
TYPE command may appear on the same line as a label in Dialogue Manager. In MODIFY,
TYPE is used to print messages at the start and end of processes, at selected positions in
MATCH or NOMATCH, NEXT or NONEXT, and to send a message after an INVALID data
condition.

The syntax is

ibi™ FOCUS® Developing Applications

406 | Managing Flow of Control in an Application

-TYPE[+] text
-TYPE[0] text
-TYPE[1] text

where:

-TYPE1

Sends the text after issuing a page eject.

-TYPE0

Sends the text after skipping a line.

-TYPE+

Sends the text but does not add a line feed.

text

Is a character string that fits on a line.

-WINDOW Command
-WINDOW executes a window file. When the command is encountered, control is
transferred from the procedure to the specified window file. The window specified in the
command becomes the first active window. Control remains within the window file until a
menu option is chosen, or a window is activated, for which there is no goto value.

The window file, and the windows in it, are created using Window Painter.

The syntax is

-WINDOW windowfile windowname [PFKEY|NOPFKEY]
[GETHOLD][BLANK|NOBLANK][CLEAR|NOCLEAR]

where:

windowfile

Identifies the file in which the windows are stored. This is a member name. The member
must belong to a PDS allocated to ddname FMU.

ibi™ FOCUS® Developing Applications

407 | Managing Flow of Control in an Application

windowname

Identifies which window in the file is displayed first.

PFKEY

Enables you to test for function key values during window execution.

NOPFKEY

You are unable to test for function key values during window execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select window.

BLANK

Clears all previously set amper variable values when -WINDOW is encountered. This is
the default setting.

NOBLANK

When -WINDOW is encountered, the values of previously set amper variables are
retained.

CLEAR

Clears the screen before displaying the first window. This is the default behavior. When
specified in conjunction with the Terminal Operator Environment (TOE), the TOE screen
is redisplayed when control is transferred back to the procedure.

NOCLEAR

Displays the specified window directly over the current screen.

-WRITE Command
-WRITE writes data to a sequential file.

If the command continues over several lines, put a comma at the end of the line and a
hyphen at the beginning of each subsequent line.

Unless you specify the NOCLOSE option, an opened file is closed upon termination of the
procedure with -RUN, -EXIT, or -QUIT.

In TABLE, WRITE is a synonym for SUM; functionally it is quite different from -WRITE.

ibi™ FOCUS® Developing Applications

408 | Managing Flow of Control in an Application

For additional information, see Dialogue Manager Quick Reference.

The syntax is

-WRITE ddname [NOCLOSE] text

where:

ddname

Is the logical name of the file as defined to FOCUS using ALLOCATE or DYNAM
ALLOCATE.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is
closed upon completion of the procedure or when a -CLOSE or subsequent -READ
command is encountered.

text

Is any combination of variables and text. To write more than one line, end the first line
with a comma (,) and begin the next line with a hyphen followed by a space (-).

-" " Command
The -" " syntax is associated with the FIDEL -CRTFORM command. All textual data enclosed
by the double quotation marks is printed to the screen. You can use position markers and
specify variable fields within double quotation marks.

When -CRTFORM is processed, the screen displays a form and the cursor stops at each
amper variable date entry field. If a variable has not been declared prior to the -CRTFORM,
FOCUS prompts the user for a value to assign to the variable.

In MODIFY, enclosing data in double quotation marks (" ") without the leading hyphen is
used with CRTFORM, or for headings, footings, subheads, and subfoots within a TABLE
request.

For additional information, see Dialogue Manager Quick Reference.

The syntax is

-" "

ibi™ FOCUS® Developing Applications

409 | Managing Flow of Control in an Application

where:

" "

Enclose textual information, fields and spot markers.

Dialogue Manager Defaults and Limits
This topic provides you with an easier way of locating default values, operating system and
FOCUS limits, summary tables, general rules, and tips for ease-of-use.

General rules to follow when you are creating procedures are:

l If a Dialogue Manager command exceeds one line, the following line must begin with
a hyphen (-).

l The hyphen (-) must be placed at the first position of the command line.

l The command is usually attached to the hyphen (-), but you may leave space
between the hyphen and the Dialogue Manager command.

l At least one space must be inserted between the Dialogue Manager command and
other text.

General rules for supplying values for variables:

l The lengths of values stored in Dialogue Manager (amper) variables vary by context:

o When used with the commands -READ, -TYPE, and WRITE, the maximum length
of a variable is approximately 32,000 characters (32K).

o When used with other Dialogue Manager commands or the EX command, a
variable value cannot exceed 4,096 character (4K).

l If a value contains an embedded comma (,) or embedded equal sign (=) the value
must be enclosed between single quotation marks. For example:

EX SLRPT AREA=S, LOCATION='NY, NY'

l Once a value is supplied for a local variable, it is used for that variable throughout
the procedure, unless it is changed through a -PROMPT, -SET, or -READ.

ibi™ FOCUS® Developing Applications

410 | Managing Flow of Control in an Application

l Once a value is supplied for a global variable, it is used for that global variable
throughout the FOCUS session in all procedures, unless it is changed through a -
PROMPT, -SET, or -READ.

l Dialogue Manager automatically sends a prompt to the terminal if a value has not
been supplied for a variable. Automatic prompts (implied prompting) are identical in
syntax and function to the direct prompts created with -PROMPT.

Operating system default values, limits, and format specifications.

l The default value for the operating system return code value is 8.

l Literals must be surrounded by single quotation marks if they contain embedded
blanks or commas. To produce a literal that starts or ends with a single quotation
mark, place two single quotation marks where you want one to appear.

l Alphanumeric formats are described by the letter A followed by the number of
characters. The number of characters can be from 1 to 3968.

l Integer formats are described by the letter I followed by the number of digits to be
entered. The number can be from one to 10 digits in length, value must be less than
231-1.

l A label is a user-defined name of up to 12 characters. You cannot use blanks and
should not use the name of any other Dialogue Manager command except QUIT and
EXIT. The label may precede or follow GOTO in the procedure.

l A date supplied to Dialogue Manager cannot exceed 20 characters, including spaces.

l The level of nested -INCLUDE files is limited only by available memory. However,
recursive -INCLUDE commands are limited to four levels.

l The default setting for &QUIT is ON.

l When using Window Painter:

o Screens should not begin in row 0, column 0, or column 1.

o The maximum screen size is 22 rows by 77 columns.

o A File Contents window has a limit of 12K worth of data. This is approximately
150 lines.

o The maximum number of menu items is 41.

o File Name windows must have a WIDTH of 24 or greater, or meaningless
characters will appear.

ibi™ FOCUS® Developing Applications

411 | Testing and Debugging WithQuery Commands

Testing and Debugging With Query
Commands
You can debug a FOCUS application by querying your environment to display information,
such as release, FOCUS information, and joins, as well as by identifying files you are using.

Using Query Commands
Query commands display information about your metadata, physical data sources,
language environment, and development and run-time environment.

Issue a Query Command
? query [filename]

where:

query

Is the subject of the query.

filename

Is the name of the file that is the subject of the query. This parameter applies to only
some queries.

To list the query commands, type a question mark in a procedure or at the command
prompt.

ibi™ FOCUS® Developing Applications

412 | Testing and Debugging WithQuery Commands

Query Command Summary
The following is a list of query commands. This topic contains a detailed description of
each.

Query
Command

Description

? COMBINE
Displays a list of combined file structures.

? DEFINE
Displays currently active virtual fields created by the
DEFINE command or attribute.

?F
Lists fields currently available.

? FDT
Displays the physical attributes of a FOCUS data source.

?FF
Lists field names, aliases, and format information for an
active Master File.

? FILE
Displays the number of segment instances in a FOCUS data
source and the last time the data sources was changed.

? FUNCTION
Displays functions created with the DEFINE command.

? HOLD
Displays fields described in a HOLD Master File.

? JOIN
Displays JOIN structures that exist between data sources.

ibi™ FOCUS® Developing Applications

413 | Testing and Debugging WithQuery Commands

Query
Command

Description

? LANG
Displays information about National Language Support.

? LET
Displays word substitutions created with the LET
command.

? LOAD
Provides information about all loaded files: the file type,
file name, and resident size.

? MDI
Generates statistics and descriptions for multi-dimensional
indexes.

? n
Displays an explanation of an error message (n represents
the number of the error message).

? PFKEY
Displays the PF key assignments.

? RELEASE
Displays the release number of your product.

? SET
Displays parameter settings that control FOCUS.

? SET
GRAPH

Displays parameter settings that control graphs produced
with the GRAPH command.

? SET NOT
Produces a list of SET commands that cannot be set in a
specific area.

? SITECODE
Retrieves the site code.

ibi™ FOCUS® Developing Applications

414 | Testing and Debugging WithQuery Commands

Query
Command

Description

? STAT
Displays statistics about the last command executed.

? STYLE
Displays the current settings for StyleSheet parameters.

? SU
Is communication available to the SU machine.

? USE
Displays data sources specified with the USE command.

? &&
Displays values of global variables.

Displaying Combined Structures
The ? COMBINE command displays files that are in the current combined structures.

Display Combined Structures
? COMBINE

Displaying Combined Structures
Issuing the command

? COMBINE

ibi™ FOCUS® Developing Applications

415 | Testing and Debugging WithQuery Commands

produces information similar to the following:

COMBINE EDUCFILE AND JOBFILE AS EDJOB
>
? COMBINE
FILE=EDJOB TAG PREFIX

EDUCFILE
JOBFILE

>

? COMBINE Query Information
The list of file structures has the following form

FILE=combine_name COMBINED FROM
file_1
file_2

.

.

.
file_n

where:

combine_name

Is the name of the COMBINE structure.

file_1...file_n

Are the names of FOCUS data sources that comprise the combined structure.

Displaying Virtual Fields
The? DEFINE command lists the active virtual fields used in a request. The fields can be
created by either the DEFINE command or DEFINE attribute in the Master File. The
command displays field names of up to 32 characters. If a name exceeds 32 characters, an
ampersand (&) in the 32nd position indicates a longer field name.

ibi™ FOCUS® Developing Applications

416 | Testing and Debugging WithQuery Commands

Display Virtual Fields
? DEFINE [appname/][filename]

where:

appname

Is the application directory.

filename

Is the data source containing the virtual fields. If the filename is omitted, the command
displays all virtual fields.

Displaying Virtual Fields
Assume that you created a virtual field named FULLNAME in a request against the
EMPLOYEE database.

Issuing

? DEFINE

produces the following information:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
EMPLOYEE PROJECTEDSAL D12.2
EMPLOYEE FULLNAME A26
>

? DEFINE Query Information
The following information is listed for each virtual field created with DEFINE:

ibi™ FOCUS® Developing Applications

417 | Testing and Debugging WithQuery Commands

Option Description

FILE
Is the name of the data source containing the virtual field.

FIELD
NAME

Is the name of the virtual field.

FORMAT
Is the format of the virtual field. The notation is the same as
that used for the FORMAT attribute in a Master File.

SEGMENT
Is the number of the segment in the Master File containing the
virtual field. During reporting, your application treats the virtual
field as a field in this segment. To relate segment numbers to
segment names, use ? FDT.

VIEW
Is the root segment of DEFINE that specifies an alternate view.
For example:

DEFINE FILE EMPLOYEE.JOBCODE

TYPE
Indicates whether the virtual field is created by the DEFINE
attribute in the Master File, or by a DEFINE command, identified
by MASTER or a blank, respectively.

Displaying the Currency Data Source in Effect
The ? SET EUROFILE command displays the currency data source in effect.

Display the Currency Data Source in Effect
To display the currency data source in effect, issue the command:

? SET EUROFILE

ibi™ FOCUS® Developing Applications

418 | Testing and Debugging WithQuery Commands

Displaying Available Fields
The ?F command displays the fields that are currently available.

?F displays entire 66 character field names.

Display Available Fields
?F filename

where:

filename

Is the name of a data source.

Displaying Available Fields
Issuing the command

?F EMPLOYEE

produces the following information:

FILENAME = EMPLOYEE
EMP_INFO EMP_ID LAST_NAME FIRST_NAME HIRE_DATE
DEPARTMENT CURR_SAL CURR_JOBCODE ED_HRS
BANK_NAME BANK_CODE BANK_ACCT EFFECT_DATE
DAT_INC PCT_INC SALARY PAYINFO JOBCODE
TYPE ADDRESS_LN1ADDRESS_LN2 ADDRESS_LN3 ACCTNUMBER
PAY_DATE GROSS
DED_CODE DED_AMT
JOBSEG JOBCODE JOB_DESC
SEC_CLEAR
SKILLS SKILLS_DESC
DATE_ATTEND ATTENDSEG.EMP_ID
COURSE_CODE COURSE_NAME

ibi™ FOCUS® Developing Applications

419 | Testing and Debugging WithQuery Commands

Displaying the File Directory Table
The ? FDT command displays the file directory table, which lists the physical characteristics
of a FOCUS data source.

Each segment and index (those fields designated by the keyword FIELDTYPE=I in the Master
File) occupies an integral number of pages. The file directory table shows the amount of
space occupied by each segment instance in a page, the starting and ending page
numbers, and the number of pages in between for each segment and index.

Display a File Directory Table
? FDT filename

where:

filename

Is the name of the data source.

Displaying a File Directory Table
Issuing the command

? FDT EMPLOYEE

produces the following information:

DIRECTORY:EMPLOYEEFOCUS F ON 09/25/1997 AT 09.50.28
DATE/TIME OF LAST CHANGE: 03/30/1999 16.19.22

SEGNAME LENGTH PARENT START END PAGES LINKS TYPE

1 EMPINFO 22 1 1 1 6
2 FUNDTRAN 10 1 2 2 1 2
3 PAYINFO 8 1 3 3 1 3
4 JOBSEG 11 3 4
5 SECSEG 4 4 2

ibi™ FOCUS® Developing Applications

420 | Testing and Debugging WithQuery Commands

6 SKILLSEG 11 4 2
7 ADDRESS 19 1 4 4 1 2
8 SALINFO 6 1 5 5 1 3
9 DEDUCT 5 8 6 8 3 2

10 ATTNDSEG 7 1 3
11 COURSEG 11 10 2
>

? FDT Query Information
The following information is listed in the file directory table:

SEGNAME
Is the name of each segment in the file. The segments are also
numbered consecutively down the left of the table.
Unnumbered entries at the foot of the table are indexes, which
belong to fields having the attribute FIELDTYPE=I in the Master
File.

LENGTH
Is the length in words (units of four bytes) of each segment
instance. Divide this number into 992 to get the number of
instances that fit on a page.

PARENT
Is the parent segment. Each number refers to a segment name
in the SEGNAME column.

START
Is the page number on which the segment or index begins.

END
Is the page number on which the segment or index ends.

PAGES
Is the number of pages occupied by the segment or index.

LINKS
Is the length, in words, of the pointer portion in each segment
instance. Every segment instance consists of two parts, data

ibi™ FOCUS® Developing Applications

421 | Testing and Debugging WithQuery Commands

and pointers. Pointers are internal numbers used to find other
instances.

TYPE
Is the type of index. NEW indicates a binary index. OLD
indicates a hash index. Segments of type KU, LM, DKU, DKM,
KL, and KLU are not physically in this file. Therefore, this
information is omitted from the table.

Displaying Field Information for a Master File
The ?FF command displays field names, aliases, and format information for an active
Master File.

Display Field Information for a Master File
?FF filename [string]

where:

filename

Is the name of the Master File.

string

Is a character string up to 66 characters long. The command displays information only
for fields beginning with the specified character string. If you omit this parameter, the
command displays information for all fields in the Master File.

Displaying Field Information for a Master File
Issuing the command

?FF EMPLOYEE

produces the following information:

ibi™ FOCUS® Developing Applications

422 | Testing and Debugging WithQuery Commands

FILENAME= EMPLOYEE
EMP_INFO
EMP_ID EID A9
LAST_NAME LN A15
FIRST_NAME FN A10
HIRE_DATE HDT 16YMD
DEPARTMENT DPT A10
CURR_SAL CSAL D12.2M
CURR_JOBCODE CJC A3
ED_HRS OJT F6.2

BANK_NAME BN A20
BANK_CODE BC I6S
BANK_ACCT BA I9S
EFFECT_DATE EDATE 16YMD

DAT_INC DI I6YMD
PCT_INC PI F6.2
SALARY SAL D12.2M
PAY_INFOJOBCODEJBC A3

Displaying Data Source Statistics
The ? FILE command displays information, such as the number of segment instances in a
FOCUS data source and when the data source was last changed.

Display Data Source Statistics
? FILE filename

where:

filename

Is the name of the data source.

ibi™ FOCUS® Developing Applications

423 | Testing and Debugging WithQuery Commands

Displaying Data Source Statistics
Issuing the command

? FILE EMPLOYEE

produces statistics similar to the following:

STATUS OF FOCUS FILE: EMPLOYEEFOCUS A1 ON 03/12/99 AT 12.29.51
ACTIVE DELETED DATE OF TIME OF LAST TRANS

SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER

EMPINFO 12 12/21/93 11.01.32 1
FUNDTRAN 6 11/16/89 16.19.19 12
PAYINFO 19 11/16/89 16.19.20 19
ADDRESS 21 11/16/89 16.19.21 21
SALINFO 70 11/16/89 16.19.22 448
DEDUCT 448 11/16/89 16.19.22 448
TOTAL SEGS 576
TOTAL CHARS 8984
TOTAL PAGES 8
LAST CHANGE 01/29/96 11.01.32 1

? FILE Query Information
The following data source statistics are listed:

SEGNAME
Is the name of each segment in the data source. After the
segments, the indexes are listed, if applicable.

Indexes are those fields specified by the attribute FIELDTYPE=I in
the Master File.

ACTIVE COUNT
Is the number of instances of each segment.

DELETED COUNT
Is the number of segment instances deleted, for which the space
is not reused.

ibi™ FOCUS® Developing Applications

424 | Testing and Debugging WithQuery Commands

DATE OF LAST CHG
Is the date on which data in a segment instance or index was last
changed.

TIME OF LAST CHG
Is the time of day, on a 24-hour clock, when the last update of a
file was made for that segment or index.

LAST TRANS NUMBER
Is the number of transactions performed by the last update
request to access the segment. If the data source was changed
under Simultaneous Usage mode, this column refers to the REF
NUMB column of the CR HLIPRINT file.

TOTAL SEGS
Is the total number of segment instances in the file (shown under
ACTIVE COUNT), and the number of segments deleted when the
file was last changed (shown under DELETED COUNT).

TOTAL CHARS
Is the number of characters of data in the file.

TOTAL PAGES
Is the number of pages in the data source. Pages are physical
records in FOCUS data sources.

LAST CHANGE
Is the date and time the data source was last changed.

If a data source is disorganized by more than 29%, that is, the physical placement of data
in the data source is considerably different from its logical or apparent placement, the
following message appears

FILE APPEARS TO NEED THE -REBUILD- UTILITY
REORG PERCENT IS A MEASURE OF FILE DISORGANIZATION
0 PCT IS PERFECT -- 100 PCT IS BAD
REORG PERCENT IS x%

where:

x

Is a percentage between 30 and 100.

ibi™ FOCUS® Developing Applications

425 | Testing and Debugging WithQuery Commands

The variable &FOCDISORG also indicates the level of disorganization. Following is an
example of how to use &FOCDISORG in a Dialogue Manager -TYPE command:

-TYPE THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: &FOCDISORG

This command, depending on the amount of disorganization, produces a message similar
to the following:

THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: 10

When using a -TYPE command with &FOCDISORG, a message is displayed even if the
percentage of disorganization is less than 30%.

Displaying Defined Functions
The ? FUNCTION command displays all defined functions and the parameters.

Display DEFINE Functions
To display defined functions, issue the command:

? FUNCTION

Displaying DEFINE Functions
Issuing the command

? FUNCTION

produces information similar to the following:

ibi™ FOCUS® Developing Applications

426 | Testing and Debugging WithQuery Commands

NameFormatParameterFormat
DIFF D8 VAL1 D8

VAL2 D8

Displaying HOLD Fields
The ? HOLD command lists fields described in a Master File created by the ON TABLE HOLD
command. The list displays the field names, the aliases, and the formats as defined by the
FORMAT (USAGE) attribute. The ? HOLD command displays field names up to 32 characters.
If a field name exceeds 32 characters, an ampersand (&) in the 32nd position indicates a
longer field name.

The ? HOLD command displays fields of a HOLD Master File created by the current request.

Display HOLD Fields
? HOLD [filename]

where:

filename

Is the name assigned in the AS phrase in the ON TABLE HOLD command. If you omit the
file name, it defaults to HOLD.

Displaying HOLD Fields
Issuing the command

? HOLD

produces information similar to the following:

ibi™ FOCUS® Developing Applications

427 | Testing and Debugging WithQuery Commands

DEFINITION OF CURRENT HOLD FILE FIELDNAME ALIAS FORMAT COUNTRY E01 A10
CAR E02 A16

Displaying JOIN Structures
The ? JOIN command lists the JOIN structures currently in effect. The command displays
field names up to 12 characters. If a field name exceeds 12 characters, an ampersand in the
twelfth position indicates a longer field name.

Display JOIN Structures
To display JOIN structures, issue the command:

? JOIN

Displaying JOIN Structures
Issuing the command

? JOIN

produces information similar to the following:

JOINS CURRENTLY ACTIVE
HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
JOBCODE EMPLOYEE JOBCODE JOBFILE N N

? JOIN Query Information
The following JOIN information is listed:

ibi™ FOCUS® Developing Applications

428 | Testing and Debugging WithQuery Commands

HOST FIELD
Is the name of the host field that is joining the data
sources.

FILE
Is the name of the host data source.

TAG
Is a tag name used as a unique qualifier for field names in
the host data source.

CROSSREFERENCE
FIELD

Is the name of the cross-referenced field used to join the
data sources.

FILE
Is the name of the cross-referenced data source.

TAG
Is a tag name used as a unique qualifier for field names in
the cross-referenced data source.

AS
Is the name of the joined structure.

ALL
Displays Y for a non-unique join and N for a unique join.

WH
Specifies whether the join is a conditional join or an equi-
join.

Displaying National Language Support
The ? LANG command displays information about National Language Support.

ibi™ FOCUS® Developing Applications

429 | Testing and Debugging WithQuery Commands

Display Information About National Language
Support
To display information about National Language Support:

? LANG

Displaying Information About National Language
Support
Issuing the command

? LANG

produces information similar to the following:

LANGUAGE AND DBCS STATUS

Language 01/AMENGLISH ()
Code Page 00037
Dollar value 5B($)
DBCS Flag OFF(SBCS)

Displaying LET Substitutions
The ? LET command lists the active word substitutions created by the LET command. A
word in the left column is used in a report request to represent the word or phrase in the
right column. For more information on the LET command, see Defining a Word
Substitution.

Display LET Substitutions
To display word substitutions, issue the command:

ibi™ FOCUS® Developing Applications

430 | Testing and Debugging WithQuery Commands

? LET

Displaying LET Substitutions
Issuing the command

? LET

produces information similar to the following:

PR PRINT
TF TABLE FILE EMPLOYEE

Displaying Information About Loaded Files
The ? LOAD command displays the file type, file name, and resident size of currently loaded
files.

Display Information About Loaded Files
? LOAD [filetype]

where:

filetype

Specifies the type of file (MASTER, FOCEXEC, Access File, FOCCOMP, or MODIFY) on
which information displays. To display information on all memory-resident files, omit
file type.

Displaying Information About Loaded Files
Issuing the command

ibi™ FOCUS® Developing Applications

431 | Testing and Debugging WithQuery Commands

? LOAD

produces information similar to the following:

FILES CURRENTLY LOADED
CARCRYPTMODIFY 00213548 BYTES
CAR MASTER
VIDEOACXFOCSQL
CARCRYPTFOCEXEC
RTEST FOCEXEC 8400 BYTES

Displaying Explanations of Error Messages
The ? n command displays a detailed explanation of an error message, providing assistance
in correcting the error.

Error messages generated by certain data adapters, such as the DB2 and MODEL 204 data
adapters, are also accessible through this feature.

Display Explanations of Error Messages
? n

where:

n

Is the error message number.

Displaying Explanations of Error Messages
If you receive the message

(FOC125) RECAP CALCULATIONS MISSING

issuing the command

ibi™ FOCUS® Developing Applications

432 | Testing and Debugging WithQuery Commands

? 125

produces the following message:

(FOC125) RECAP CALCULATIONS MISSING
The word RECAP is not followed by a calculation. Either the RECAP
should be removed, or a calculation provided.

Displaying PF Key Assignments
The ? PFKEY command displays the PF key assignments.

Display PF Key Assignments
To display the PF key assignments, issue the command:

? PFKEY

Displaying PF Key Assignments
Issuing the command

? PFKEY

produces results similar to the following:

PF01 = HX PF02 = CANCEL PF03 = END PF04 = RETURN
PF05 = RETURN PF06 = SORT PF07 = BACKWARD PF08 = FORWARD
PF09 = RETURN PF10 = LEFT PF11 = RIGHT PF12 = UNDO
PF13 = RETURN PF14 = RETURN PF15 = END PF16 = RETURN
PF17 = RETURN PF18 = RETURN PF19 = BACKWARD PF20 = FORWARD
PF21 = RETURN PF22 = RETURN PF23 = RETURN PF24 = UNDO

ibi™ FOCUS® Developing Applications

433 | Testing and Debugging WithQuery Commands

Displaying the Release Number
The ? RELEASE command displays the number of the currently installed release of your
product.

Display the Release Number
To display the release number, issue the command:

? RELEASE

Displaying the Release Number
Issuing the command

? RELEASE

produces information similar to the following:

FOCUS 7.2.0 created 11/07/2001 11.38.32

Displaying Parameter Settings
The ? SET command lists the parameter settings that control your FOCUS environment.
Your application sets default values for these parameters, but you can change them with
the SET command.

SET parameters are described in Customizing Your Environment.

ibi™ FOCUS® Developing Applications

434 | Testing and Debugging WithQuery Commands

Display Parameter Settings
? SET [ALL|[FOR] parameter]

where:

ALL

Displays all possible parameter settings.

parameter

Is a SET parameter. This displays the setting for the specific parameter.

FOR

Includes where the parameter can be set from in addition to the parameter setting.

Displaying Parameter Settings
Issuing the command

? SET

produces information similar to the following:

PARAMETER SETTINGS
ALL. OFF FOCSTACK SIZE 8 QUALCHAR

.
ASNAMES FOCUS FOC2GIGDB OFF QUALTITLES

OFF
AUTOINDEX ON HDAY REBUILDMSG
1000

AUTOPATH ON HIPERFOCUS OFF RECAP-COUNT
OFF

BINS 64 HOLDATTRS FOCUS SAVEMATRIX
OFF

BLKCALC NEW HOLDLIST ALL SCREEN
ON

BUSDAYS _MTWTF_ HOLDSTAT OFF SHADOW PAGE
OFF

BYPANELING OFF HOTMENU OFF SPACES

ibi™ FOCUS® Developing Applications

435 | Testing and Debugging WithQuery Commands

AUTO
CACHE 0 IBMLE OFF SQLENGINE
CARTESIAN OFF INDEX TYPE NEW SUMPREFIX

LST
CDN OFF LANGUAGE AMENGLISH TCPIPINT

OFF
COLUMNSCROLL OFF LINES/PAGE 66 TEMP DISK

A
DATEDISPLAY OFF LINES/PRINT 57 TERMINAL
IBM3270
DATEFNS ON MESSAGE ON TESTDATE
TODAY
DATETIME STARTUP/RESET MODE TITLES

ON
DEFCENT 19 MULTIPATH SIMPLE VIEWNAMESIZE

18
EMPTYREPORT OFF NODATA . WIDTH

80
EXL2KLANG 1 PAGE-NUM ON WINPFKEY

OLD
EXTAGGR ON PANEL 0 XFBINS 16
(passive)
EXTHOLD ON PAUSE ON XFOCUS

OFF
EXTSORT ON XRETRIEVAL ON
FIELDNAME NEW PRINT ONLINE YRTHRESH

0
FOCALLOC OFF PRINTPLUS OFF

Some parameters are listed differently from the way you specify them in the SET
command. These include:

SET Parameters Description

FOCSTACK SIZE
Is the same as the FOCSTACK parameter.

INDEX TYPE
Is the same as the INDEX parameter.

ibi™ FOCUS® Developing Applications

436 | Testing and Debugging WithQuery Commands

SET Parameters Description

LINES/PAGE
Is the same as the PAPER parameter.

LINES/PRINT
Is the same as the LINES parameter.

SHADOW PAGES
Is the same as the SHADOW parameter.

Displaying a Single Parameter Setting
Issuing the command

? SET PAGESIZE

produces the following if the parameter is set to its default value:

PAGESIZE Letter

Displaying Where a Parameter Can Be Set
Issuing the command

? SET FOR EXTSORT

produces the following information:

EXTSORT ON

SETTABLE FROM COMMAND LINE : YES
SETTABLE ON TABLE : YES

ibi™ FOCUS® Developing Applications

437 | Testing and Debugging WithQuery Commands

SETTABLE FROM SYSTEM-WIDE PROFILE : YES
SETTABLE FROM HLI PROFILE : YES

Displaying Graph Parameters
The ? SET GRAPH command lists the parameter settings that control graphs produced with
the GRAPH command. These parameters are described further in Customizing Your
Environment.

Display Graph Parameters
To display graph parameters, issue the command:

? SET GRAPH

Displaying Graph Parameters
Issuing the command

? SET GRAPH

produces information similar to the following:

ibi™ FOCUS® Developing Applications

438 | Testing and Debugging WithQuery Commands

GRAPH PARAMETER SETTINGS
AUTOTICK ON HISTOGRAM ON
BARNUMB OFF HMAX .00
BARSPACE 0 HMIN .00
BARWIDTH 1 HSTACK OFF
BSTACK OFF HTICK .00
DEVICE IBM3270 PIE OFF
GMISSING OFF VAUTO ON
GMISSVAL .00 VAXIS 66
GPROMPT OFF VCLASS .00
GRIBBON(GCOLOR) OFF VGRID OFF
GRID OFF VMAX .00
GTREND OFF VMIN .00
HAUTO ON VTICK .00
HAXIS 130 VZERO OFF
HCLASS .00

>

If you change the PLOT parameter settings, a small table appears at the end of the list:

PLOT TABLE (EBCDIC):

ENTER PLOT MODE 0050 (FOR 3284 WIDTH)
EXIT PLOT MODE 0018 (FOR 3284 HEIGHT)
LEFT 0000
RIGHT 0000
UP 0000
DOWN 0000

The entries in the table at the bottom are:

ENTER PLOT MODE
Width of graph on IBM 3284 or 3287
printer.

EXIT PLOT MODE
Height of graph on IBM 3284 or
3287 printer.

Ignore the parameters LEFT, RIGHT, UP, and DOWN.

ibi™ FOCUS® Developing Applications

439 | Testing and Debugging WithQuery Commands

Displaying the Site Code
The FOCUS site code is installed as part of the License Management facility.

Once the site code has been installed, you can retrieve its value by issuing the ? SITECODE
query command. If the site code has not been installed, you will get a message indicating
that the site code is not available.

Retrieve the Site Code
? SITECODE

Querying the Site Code
Assume you installed the License Management facility with site code A52709b.

Issue the following query command in a FOCEXEC:

? SITECODE

The output is:

SITE CODE A527O9b

If the site code is not installed, the ? SITECODE query returns the following message:

SITE CODE NOT AVAILABLE

Displaying Command Statistics
The ? STAT command lists statistics for the most recently executed command.

Each statistic applies only to a certain command. If another command is executed, the
statistic is either 0 or does not appear in the list at all. When you execute commands in

ibi™ FOCUS® Developing Applications

440 | Testing and Debugging WithQuery Commands

stored procedures, these statistics are automatically stored in Dialogue Manager statistical
variables. See your Dialogue Manager documentation for details.

Display Command Statistics
To display command statistics, issue the command:

? STAT

Displaying Command Statistics
Issuing the command

? STAT

produces information similar to the following:

STATISTICS OF LAST COMMAND
RECORDS = 0 SEGS DELTD = 0
LINES = 0 NOMATCH = 0
BASEIO = 0 DUPLICATES = 0
SORTIO = 47 FORMAT ERRORS = 0
SORT PAGES = 0 INVALID CONDTS = 0
READS = 0 OTHER REJECTS = 0
TRANSACTIONS = 0 CACHE READS = 0
ACCEPTED = 0 MERGES = 0
SEGS INPUT = 0 SORT STRINGS = 0
SEGS CHNGD = 0 INDEXIO = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
AGGREGATION BY EXT.SORT: NO HOLD FROM EXTERNAL SORT: NO

? STAT Query Information
The following information displays:

ibi™ FOCUS® Developing Applications

441 | Testing and Debugging WithQuery Commands

RECORDS

Is for TABLE, TABLEF, and MATCH commands. It indicates the number of data source
records used in the report. The meaning of a record depends on the type of data source
used.

LINES

Is for TABLE and TABLEF commands. It indicates the number of lines displayed in a
report.

BASEIO

Is for TABLE, TABLEF, GRAPH, MODIFY, and FSCAN command. It indicates the number of
I/O operations performed on the data source.

SORTIO

Is for TABLE, TABLEF, GRAPH, and MATCH commands. It indicates the number of I/O
operations performed on the FOCSORT file, which is a work file invisible to the end user.

SORTPAGES

Is for TABLE and TABLEF commands. It indicates the number of physical records in the
FOCSORT file.

READS

Is for the MODIFY and FSCAN commands. It indicates the number of fixed-format records
read in external files by the FIXFORM command.

TRANSACTIONS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
processed.

ACCEPTED

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
accepted.

SEGS INPUT

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
accepted in the data source.

ibi™ FOCUS® Developing Applications

442 | Testing and Debugging WithQuery Commands

SEGS CHNGD

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
updated in the data source.

SEGS DELTD

Is for the MODIFY and FSCAN commands. It indicates the number of segment instances
deleted from the data source.

NOMATCH

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
rejected for lack of matching values in the data source. This occurs on an ON NOMATCH
REJECT condition.

DUPLICATES

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
rejected because the matching field values already exist in the data source. This occurs
on an ON MATCH REJECT condition.

FORMAT ERRORS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
rejected because field values for data fields do not conform to the field formats defined
in the Master File.

INVALID CONDTS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
rejected because field values for data fields do not conform to the field formats defined
in the Master File.

OTHER REJECTS

Is for the MODIFY and FSCAN commands. It indicates the number of transactions
rejected for reasons other than those listed above.

CACHE READS

Is the number of cache reads performed. For details, see CACHE.

MERGES

Is the number of times that merge routines were invoked.

ibi™ FOCUS® Developing Applications

443 | Testing and Debugging WithQuery Commands

SORT STRINGS

Is the number of times that the sort capacity was exceeded.

INTERNAL MATRIX CREATED

Indicates how report sorting was handled. If an external sort handled it entirely, the
value is NO. If both the application and an external sort handled it, the value is Y.

SORT USED

Is the type of sort facility used. It can have a value of FOCUS, EXTERNAL, SQL, or NONE.
NONE means that the report did not require sorting.

AGGREGATION BY EXT. SORT

Uses external sorts to perform aggregation.

AUTOINDEX USED

Automatically takes advantage of indexed fields to speed data retrieval.

AUTOPATH USED

Selects an optimal retrieval path for accessing a data source.

HOLD FROM EXTERNAL SORT

Creates hold files with an external sort.

Displaying StyleSheet Parameter Settings
The ? STYLE command displays the current settings for StyleSheet parameters.

Display StyleSheet Parameter Settings
? [SET] STYLE

ibi™ FOCUS® Developing Applications

444 | Testing and Debugging WithQuery Commands

Displaying StyleSheet Parameter Settings
Issuing the command

? STYLE

produces information similar to the following:

ONLINE-FMT
OFFLINE-FMT STANDARD
STYLESHEET ON
SQUEEZE OFF
PAGESIZE LETTER
ORIENTATION PORTRAIT
UNITS INCHES
LABELPROMPT OFF
LEFTMARGIN .250
RIGHTMARGIN .250
TOPMARGIN .250
BOTTOMMARGIN .250
STYLEMODE FULL
TARGETFRAME
FOCEXURL
BASEURL

Note: OFFLINE-FMT is not supported. ONLINE-FMT and FOCEXURL apply to
WebFOCUS.

? STYLE Query Information
The following StyleSheet information is listed:

STYLESHEET
Rejects or accepts StyleSheet parameters that specify
formatting options, such as page size, orientation, and
margins.

ibi™ FOCUS® Developing Applications

445 | Testing and Debugging WithQuery Commands

LABELPROMPT
Specifies on which label of the first page to begin
printing a multi-pane report, such as a mailing label
report.

STYLEMODE
Speeds the retrieval of large report output by
displaying output in multiple HTML tables where each
table is a separate report page.

ORIENTATION
Is the page orientation for styled reports. Can be
either portrait or landscape.

UNITS
Is the unit of measure for PostScript and PDF report
output, as inches, centimeters, or points.

TOPMARGIN
Is the top boundary for a page of report output.

BOTTOMMARGIN
Is the bottom boundary for a page of report output.

LEFTMARGIN
Is the left boundary for a page of report output.

RIGHTMARGIN
Is the right boundary for a page of report output.

TARGETFRAME
Is a frame to which all drill-down hyperlinks are
directed.

BASEURL
Is the default location where the browser searches for
relative URLs specified in the HTML documents
created by your application.

Displaying Information About the SU Machine
The ? SU command displays the communication available to the FOCUS Database Server.

ibi™ FOCUS® Developing Applications

446 | Testing and Debugging WithQuery Commands

Display Information About the ibi FOCUS
Database Server
? SU [userid|ddname]

where:

userid

Is a sync machine user ID.

ddname

Is a valid ddname.

Displaying Information About the ibi FOCUS
Database Server
Issuing the command

? SU SYNCA

produces the following information:

USERID FILEID QUEUE
WIBMLH QUERY
WIBJBP CAR

Displaying Data Sources Specified With USE
The ? USE command displays data sources specified with the USE command.

ibi™ FOCUS® Developing Applications

447 | Testing and Debugging WithQuery Commands

Display Data Sources Specified With USE
To display data sources specified with the USE, issue the command:

? USE

Displaying Data Sources Specified With USE
Issuing the command

? USE

produces information similar to the following:

DIRECTORIES IN USE ARE:
CAR FOCUS F
EMPLOYEE FOCUS F
LEDGER FOCUS F

Displaying Global Variable Values
The ? && command lists Dialogue Manager global variables and the current values. Global
variables maintain the values for all procedures executed during a FOCUS session.

Note:
You can query all Dialogue Manager variables (local, global, system, and
statistical) from a stored procedure by issuing:

-? &

See your Dialogue Manager documentation for details.

ibi™ FOCUS® Developing Applications

448 | Testing and Debugging WithQuery Commands

Display Global Variable Values
? &&

Your site may replace the ampersand (& or &&) indicating Dialogue Manager variables, with
another symbol. In that case, use the replacement symbol in your query command. For
example, if your installation uses the percent sign (%) to indicate Dialogue Manager
variables, list global variables by issuing:

? %%

Displaying Global Variable Values
Issuing the command

? &&

produces information similar to the following:

&&STORECODE 001
&&STORENAME MACYS

Reporting Dynamically From System Tables
You can issue report requests against a set of synonyms that dynamically gather
information about your environment, including its applications, files, columns, directories,
tables, indexes, and keys. You can also retrieve information about functions, SET
parameters, and error files. These synonyms reside in the MASTER.DATA data set and have
the suffix FMI (FOCUS Metadata Interface).

ibi™ FOCUS® Developing Applications

449 | Testing and Debugging WithQuery Commands

Overview of System Table Synonyms
Each FMI synonym retrieves information about a specific set of files in your environment. If
you examine an FMI Master File, the REMARKS and DESCRIPTION attributes document what
data will be returned by each system table and each column within the system table.

Note: The system table synonyms may change in future releases. Therefore, you
should not design applications that depend on the structure of the system table
synonyms.

For example, the following is a version of the SYSFILES Master File, which, by default,
retrieves information about Master Files in your application path.

$---
-------------$
$ Copyright (c) 2013 TIBCO, Inc. All rights reserved. @MFSM_NOPROLOG@ $
$---
-------------$
$--CAN BE USED TO RETRIEVE DIRECTORY INFO - USE THE FOLLOWING TO DEFINE
DIRECTORY
$--SQL FMI SET SYSFILES EDASYNM
$--SQL FMI SET SYSFILES FOCEXEC
FILE=SYSFILES, SUFFIX=FMI, REMARKS='Metadata: Directory information', $
SEGMENT=FILE,SEGTYPE=S0,$

FIELD=FILENAME , ,A64 ,A64B, DESC='MEMBER NAME
',$

FIELD=LGNAME , ,A8 ,A8B , DESC='LOGICAL NAME
',$

FIELD=PHNAME , ,A80 ,A80B, DESC='PHYSICAL NAME 1ST PART
',$

FIELD=PHNAME2 , ,A80 ,A80B, DESC='PHYSICAL NAME 2ND PART
',$

FIELD=PHNAME3 , ,A80 ,A80B, DESC='PHYSICAL NAME ETC..
',$

FIELD=PHNAME4 , ,A80 ,A80B, DESC='PHYSICAL NAME The whole
length up to 512 bytes ',$

FIELD=PHNAME5 , ,A80 ,A80B, DESC='PHYSICAL NAME The last
part is 32 but can be up ',$

FIELD=PHNAME6 , ,A80 ,A80B, DESC='PHYSICAL NAME to 44
because of nlscut of ',$

FIELD=PHNAME7 , ,A80 ,A80B, DESC='PHYSICAL NAME previous 6
parts (2 bytes per part)',$

FIELD=VERSION , ,I4 ,I1, DESC='MF:VERSION
',$

ibi™ FOCUS® Developing Applications

450 | Testing and Debugging WithQuery Commands

FIELD=MOD , ,I4 ,I1, DESC='MF:MODIFICATION NUMBER
',$

FIELD=LINECNT , ,I4 ,I2, DESC='MF:CURRENT LINE COUNTER.
',$

FIELD=DATE , ,A8 ,A8B, DESC='IBI DATE (DD/MM/YY)
',$

FIELD=TIME , ,A8 ,A8B, DESC='IBI TIME (HH.MM.SS)
',$

FIELD=USERID , ,A100 ,A100B, DESC='MF: LAST USER WHO
CHANGED. UNIX/NT:owner',$

FIELD=SIZE , ,I11 ,I4, DESC='UNIX/NT:SIZE IN BYTES.
',$

FIELD=EXTENSION , ,A3 ,A3B, DESC='ACCEPTED SHORT EXTENSION
FOR FILE ',$

A list of some of the most useful FMI synonyms follows. You can generate a list of system
table synonyms by issuing a request against the systable synonym.

l SYSAPPS. Retrieves information about applications and the files within them.

l SYSCOLUM. Retrieves information about tables and their columns.

l SYSDEFFN. Retrieves DEFINE FUNCTION information.

l SYSERR. Retrieves information about error message files.

l SYSFILES. Retrieves directory information.

l SYSIMP. Retrieves impact analysis information.

l SYSINDEX. Retrieves index information.

l SYSKEYS. Retrieves information about keys.

l SYSRPDIR. Retrieves information about all available FOCEXECs in your application
path.

l SYSSET. Retrieves information about SET commands and global Dialogue Manager
variables.

l SYSSQLOP. Retrieves function information.

l SYSTABLE. Retrieves table information.

l SYSVDTP. Retrieves data type information for Relational Adapters.

ibi™ FOCUS® Developing Applications

451 | Testing and Debugging WithQuery Commands

SYSAPPS: Reporting on Applications and
Application Files
The sysapps synonym retrieves information about applications and the files within them.

Retrieving Application and File Information
The following request retrieves the application name and path and the file name,
extension, suffix, keys, and number of segments for Master Files in the ibisamp application,
where the file names start with the letters a through g.

TABLE FILE SYSAPPS
PRINT APPNAME AS App APPLOC AS Path
FNAME AS 'File,Name' SUFFIX AS 'File,Type' KEYS
NUMSEG AS '# of,Segments'
WHERE APPNAME EQ 'ibisamp'
WHERE FEXT EQ 'mas'
WHERE FQNAME LT 'C:\ibi\apps\ibisamp\hday'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

452 | Testing and Debugging WithQuery Commands

SYSCOLUM: Reporting on Tables and Their
Columns
The syscolum synonym retrieves table information, including table names creator names,
segment names and numbers, segment roles in a dimension view or business view, column
names, and column data types. Use it to report on data sources referenced in a Master File.

Retrieving Table and Column Information
The following request retrieves table and column information from tables whose table
names start with the characters wf_.

TABLE FILE SYSCOLUM
PRINT TBNAME AS Table TBTYPE AS Suffix NAME AS Field,Name COLTYPE AS
Data,Type ACTUAL AS Format
WHERE TBNAME LIKE 'wf_%'
WHERE RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

453 | Testing and Debugging WithQuery Commands

SYSDEFFN: Reporting on DEFINE FUNCTIONS
The sysdeffn synonym retrieves information about DEFINE FUNCTIONs, including function
names, arguments, argument formats, function fields, and descriptions.

Retrieving DEFINE FUNCTION Information
The following request retrieves DEFINE FUNCTION names, arguments, and argument
formats.

TABLE FILE SYSDEFFN
PRINT DFNAME AS Function,Name ARGNAME AS Argument,Name ARGFORMAT AS
Argument,Format
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$

ibi™ FOCUS® Developing Applications

454 | Testing and Debugging WithQuery Commands

ENDSTYLE
END

The output is shown in the following image.

SYSERR: Reporting on Error Message Files
The syserr synonym retrieves error file names, the lowest and highest message numbers in
each file, message and explanation text, message number, whether the message is a
warning, whether the message is informational, and whether the line number is displayed
in a procedure.

Retrieving Error Message File Information
The following request retrieves message text and explanations.

TABLE FILE SYSERR
BY ERRNUM NOPRINT SUBHEAD
" <ERRTEXT "
"<ERRLINE1 "
"<ERRLINE2 "
"<ERRLINE3 "
"<ERRLINE4 "

WHERE RECORDLIMIT EQ 7
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

455 | Testing and Debugging WithQuery Commands

SYSFILES: Reporting on Metadata or Procedure
Directory Information
The sysfiles synonym retrieves Master Files or FOCEXEC files in your application path. By
default, sysfiles retrieves a list of Master Files and their properties. The SET SYSFILES
command determines which type of files are retrieved.

The syntax is

SQL FMI SET SYSFILES {EDASYNM|FOCEXEC}

ibi™ FOCUS® Developing Applications

456 | Testing and Debugging WithQuery Commands

where:

EDASYNM

Retrieves information about Master Files. This is the default value.

FOCEXEC

Retrieves information about procedure files.

Retrieving Master File Information
The following request retrieves the file name, extension, and path for the Master File
names that start with the letters a through h in the ibisamp application directory.

TABLE FILE SYSFILES
PRINT FILENAME AS File
EXTENSION AS Extension
PHNAME AS Path
WHERE PHNAME LIKE 'ibisamp/%'
WHERE FILENAME LT 'i'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

457 | Testing and Debugging WithQuery Commands

SYSIMP: Reporting on Impact Analysis
Information
The sysimp synonym retrieves information about where files reside and where they are
referenced. Sysimp contains a segment for caller information and a child segment for the
files called by each caller.

Retrieving Impact Analysis Information
The following request retrieves the names, types, and descriptions of caller files whose
names start with the letters s through z in the ibisamp application and the names, types,
and descriptions of the files they called.

ibi™ FOCUS® Developing Applications

458 | Testing and Debugging WithQuery Commands

TABLE FILE SYSIMP
PRINT CTYPE AS Caller,Type CDESCRIPTION AS Description
RFILE AS Called,Name
RPT_TYPE AS Called,Type
RLINENUM AS Line RUSAGE AS 'Used In'
REXTENSION AS Extension RDESCRIPTION AS Description
BY CFILE/A15 AS Caller,Name
WHERE CAPPLICATION EQ 'ibisamp'
WHERE CFILE GE 's'
ON TABLE SET PAGE NOLEAD
ON TABLE SET SHOWBLANKS ON
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The partial output is shown in the following image.

SYSINDEX: Reporting on Index Information
The sysindex synonym retrieves information about indexes defined in a synonym.

Retrieving Index Information
The following request retrieves index field names for files that start with the characters gg.

ibi™ FOCUS® Developing Applications

459 | Testing and Debugging WithQuery Commands

TABLE FILE SYSINDEX
PRINT NAME AS Index
BY TBNAME AS File
WHERE TBNAME LIKE 'gg%'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

SYSKEYS: Reporting on Key Information
The syskeys synonym retrieves information about keys defined in a synonym.

Retrieving Key Information
The following request retrieves key field names and sort order for files that start with the
characters gg.

TABLE FILE SYSKEYS
PRINT IXNAME AS Key ORDERING AS Order
BY TBNAME AS File
WHERE TBNAME LIKE 'gg%'
ON TABLE SET PAGE NOLEAD

ibi™ FOCUS® Developing Applications

460 | Testing and Debugging WithQuery Commands

ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

SYSRPDIR: Reporting on Stored Procedures
The sysrpdir synonym retrieves all available FOCEXECs in your application path.

Retrieving Stored Procedure Information
The following request retrieves procedures that start with the characters wf_.

TABLE FILE SYSRPDIR
PRINT RPC_TYPE AS Procedure,Type
BY RPC_NAME AS Procedure,Name
WHERE RPC_NAME LIKE 'wf_%'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

461 | Testing and Debugging WithQuery Commands

SYSSET: Reporting on SET Parameters
The sysset synonym retrieves information about SET parameters, their allowed values, and
their default values.

Retrieving Information About SET Parameters
The following request displays SET parameters that start with the letter D, along with their
descriptions and values.

TABLE FILE SYSSET
PRINT SETDESC CURR_VALUE VALUE IS_DEFAULT
BY SETNAME AS Set,Name
WHERE SETNAME GE 'D' AND SETNAME LT 'E'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The partial output is shown in the following image.

ibi™ FOCUS® Developing Applications

462 | Testing and Debugging WithQuery Commands

SYSSQLOP: Reporting on Function Information
The syssqlop synonym retrieves information about functions, their descriptions,
parameters, syntax, and adapter category.

Retrieving Function Descriptions and Syntax
The following request retrieves the names, descriptions, and syntax for the legacy functions
whose names begin with the letters A and B.

TABLE FILE SYSSQLOP
SUM FUNCTION_DESC FUNCTION_SYNTAX
BY FUNCTION
WHERE CATEGORY LIKE 'L%'
WHERE FUNCTION LE 'C'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

463 | Testing and Debugging WithQuery Commands

SYSTABLE: Reporting on Table Information
The systable synonym retrieves information about synonyms in your path, including type of
synonym, creator, number of columns, keys, record length, and description.

Retrieving A List of FMI Synonyms
The following request retrieves the names, descriptions, and attributes of the system table
synonyms.

TABLE FILE SYSTABLE
PRINT TBTYPE REMARKS COLCOUNT RECLENGTH KEYCOLUMNS
BY NAME
WHERE NAME LIKE 'sys%'
WHERE TBTYPE EQ 'FMI'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

464 | Testing and Debugging WithQuery Commands

Reporting on Data Types
The sysvdtp synonym retrieves data types and their corresponding USAGE and ACTUAL
formats for the SQL Adapters and for fixed sequential data sources. It is not an FMI
synonym, but retrieves the data type information from a delimited sequential file.

Note: In order to access the data file containing the data types for each adapter,
you must allocate DDNAME SYSVDTP to the SYSVDTP member of your
FUSELIB.DATA data set.

DYNAM ALLOC DD SYSVDTP DA hlq.FUSELIB.DATA MEMBER SYSVDTP SHR REU

Retrieving Data Types for the Adapter for MySQL
The following request retrieves data type information for the Adapter for MySQL

TABLE FILE SYSVDTP
PRINT DATA_TYPE_CATEGORY

ibi™ FOCUS® Developing Applications

465 | Testing and Debugging WithQuery Commands

VENDOR_DATA_TYPES
TYPE_RANGE
SERVER_USAGE_CATEGORY
SERVER_USAGE
SERVER_ACTUAL
REMARKS
BY ADAPTER
WHERE SUFFIX EQ 'SQLMYSQL'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

ibi™ FOCUS® Developing Applications

466 | Defining a Word Substitution

Defining a Word Substitution
A LET substitution enables you to define a word to represent other words and phrases. By
substituting words for phrases, you can reduce the typing necessary to enter requests
(especially when entering phrases repeatedly) and make requests easier to understand.

The LET Command
The LET command enables you to represent a word or phrase with another word. This
reduces the amount of typing necessary for issuing requests, and makes the requests
easier to understand. A substitution is especially useful when you use the same phrase
repeatedly. Note that you cannot use LET substitutions in Dialogue Manager commands,
and substitutions cannot be used in a MODIFY or Maintain request.

The LET command has a short form and a long form. Use the short form for one or two LET
definitions that fit on one line. Otherwise, use the long form.

When you define a word with LET then use that word in a request, the word is translated
into the word or phrase it represents. The result is the same as if you entered the original
word or phrase directly. You can substitute any phrase that you enter online unless you are
entering a MODIFY request.

A LET substitution lasts until it is cleared or until the request terminates. To clear active
LET substitutions, issue the LET CLEAR command. To use the same substitutions in many
requests, place the LET commands in a stored procedure. If you want to save currently
active LET substitutions, use the LET SAVE facility. These substitutions can then be
executed later with one short command.

Make a Substitution (Short Form)
LET word = phrase [;word = phrase...]

where:

ibi™ FOCUS® Developing Applications

467 | Defining a Word Substitution

word

Is a string of up to 80 characters with no embedded blanks.

phrase

Is a string of up to 256 characters, which can include embedded blanks. The phrase can
also include other special characters, but semicolons and pound signs need special
consideration. If the word you are defining appears in the phrase you are replacing, you
must enclose it in single quotation marks.

More than one substitution can be defined on the same line by placing a semicolon
between definitions.

Making a Substitution (Short Form)
The LET command defines the word WORKREPORT as a substitute for the phrase TABLE
FILE EMPLOYEE:

LET WORKREPORT = TABLE FILE EMPLOYEE

Issuing the following

WORKREPORT
PRINT LAST_NAME
END

results in this request:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
END

The next command includes TABLE as both the word you are defining and as part of the
phrase it is replacing. It is enclosed in single quotation marks in the phrase:

LET TABLE = 'TABLE' FILE EMPLOYEE

More than one word is defined in the following command. The definitions are separated by
a semicolon:

ibi™ FOCUS® Developing Applications

468 | Defining a Word Substitution

LET WORKREPORT=TABLE FILE EMPLOYEE; PR=PRINT

Make a Substitution (Long Form)
LET
word = phrase
.
.
.
END

where:

word

Is a string of up to 80 characters with no embedded blanks.

phrase

Is a string of up to 256 characters, and can include embedded blanks.

END

Is required to terminate the command.

As shown, LET and END must each be on a separate line.

As with the short form, you can define several words on one line by separating the
definitions with a semicolon.

Making a Single Substitution (Long Form)
The following example illustrates a single substitution.

LET
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES' OR 'BANNING' OR 'MCCOY' OR
'MCKNIGHT'
END

ibi™ FOCUS® Developing Applications

469 | Defining a Word Substitution

Making Multiple Substitutions (Long Form)
The following example illustrates substitutions that span more than one line. Notice that
there is no semicolon after the definition PR = PRINT:

LET
WORKREPORT = TABLE FILE EMPLOYEE; PR = PRINT
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES'
END

Defining Substitutions for Translation
Non-English speakers can use LET commands to translate a request into another language.
For example, this request

TABLE FILE CAR
SUM AVE.RCOST OVER AVE.DCOST
BY CAR ACROSS COUNTRY
END

can be translated into French as:

CHARGER FICHIER CAR
SOMMER AVE.RCOST SUR AVE.DCOST
PAR CAR TRAVERS COUNTRY
FIN

Variable Substitution
Using the LET command, you can define a word that represents a variable phrase. A
variable phrase contains placeholder symbols (carets) to indicate missing elements in the
phrase. This allows you to give a phrase different meanings in different requests.
Placeholders can be parts of words within phrases. They can also be used to represent
system commands.

Placeholders can be numbered or unnumbered. If the placeholders are not numbered, then
they are filled from left to right: the first word in the request after the LET-defined word
fills the first placeholder, the second word fills the second placeholder, and so on to the

ibi™ FOCUS® Developing Applications

470 | Defining a Word Substitution

last placeholder. If they are numbered, the placeholders are filled in numerical order. If you
do not supply enough words to fill all the placeholders, the extra placeholders are null.

Making a Variable Substitution
The command

LET UNDERSCORE = ON < > UNDER-LINE

contains one placeholder. After issuing this command, you can use the word UNDERSCORE
in a request:

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID BY HIRE_DATE
UNDERSCORE EMP_ID
END

The field name following the LET-defined word supplies the missing value to the
placeholder. In the example, EMP_ID follows the defined word UNDERSCORE. This field
name is inserted in the placeholder and translates UNDERSCORE EMP_ID as:

ON EMP_ID UNDER-LINE

Making Multiple Variable Substitutions
(Unnumbered)
Issuing the LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR < >

and then including the following line in a request

TESTNAME 'MCKNIGHT' 'STEVENS' 'BLACKWOOD'

translates the line as:

ibi™ FOCUS® Developing Applications

471 | Defining a Word Substitution

WHERE LAST_NAME IS 'MCKNIGHT' OR 'STEVENS' OR 'BLACKWOOD'

Notice that the variable phrase needs no placeholder at the end, and could also be code as
WHERE LAST_NAME IS <> OR <>. Once all the placeholders are filled, the rest of the
definition follows. In this example, the words MCKNIGHT and STEVENS would fill the two
placeholders. BLACKWOOD would be left over, so it would follow the variable phrase.

If you do not supply enough words to fill in all the placeholders, the extra placeholders are
null. For example, issuing this LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR

and then entering this command

TESTNAME 'MCCOY'

translates the statement into:

WHERE LAST_NAME IS 'MCCOY' OR OR

This statement is illegal and produces an error message.

Making Multiple Variable Substitutions (Numbered)
The following LET command contains numbered placeholders:

LET TESTNAME = WHERE LAST_NAME IS <1> OR <2> OR <3>

Therefore, the following line

TESTNAME 'STEVENS' 'MCKNIGHT' 'BLACKWOOD'

is translated as follows:

WHERE LAST_NAME IS 'STEVENS' OR 'MCKNIGHT' OR 'BLACKWOOD'

If two placeholders have the same number, both placeholders are filled with the same
word. For example, if you issue this LET command

ibi™ FOCUS® Developing Applications

472 | Defining a Word Substitution

LET RANGE = SUM MAX.<1> AND MIN.<1>

and this line

RANGE SALARY

the translated statement is:

SUM MAX.SALARY AND MIN.SALARY

Making a Variable Substitution in a Phrase
Issuing the following LET command

LET BIGGEST = MAX.< >

and entering the line

WRITE BIGGEST SALARY

translates the statement as:

WRITE MAX.SALARY

Defining a System Command
Each of the following LET commands define a system command:

LET ALFOC = TSO ALLOC F(< >) DA(< >.FOCUS) SHR
LET LISTMEM = TSO LISTDS < > MEMBERS

ibi™ FOCUS® Developing Applications

473 | Defining a Word Substitution

Null Substitution
With a null substitution, you can use more than one word to represent a phrase. By using
more than one word in a request instead of a single word, you can make the request more
readable.

You can define a null word using LET. A null word is ignored by the application.

Define a Null Word
To define a null word, issue the command

LET word=;

Defining a Null Word
This LET command defines DISPLAY as a null word:

LET
DISPLAY=;
AVESAL = SUM AVE.SALARY BY DEPARTMENT
END

In the following request, the word DISPLAY is used in the code DISPLAY AVESAL, for
readability, to make clear that the request prints the value represented by AVESAL:

TABLE FILE EMPLOYEE
DISPLAY AVESAL
WHERE DEPARTMENT IS 'PRODUCTION'
END

The word DISPLAY is ignored and the request is translated as:

TABLE FILE EMPLOYEE
SUM AVE.SALARY BY DEPARTMENT

ibi™ FOCUS® Developing Applications

474 | Defining a Word Substitution

WHERE DEPARTMENT IS 'PRODUCTION'
END

Multiple-Line Substitution
Many commands, such as END, must appear on a separate line in a report request. To
include such a command in a LET definition, place a number sign (#) and a space before
the command to indicate a new line. This allows you to substitute one word for several
lines of code.

Making Multiple-Line Substitutions
This LET command uses the number sign and a space to indicate that a new line is
required for the END command:

LET HOLDREP = ON TABLE HOLD # END

The following request

TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
HOLDREP

is translated as:

TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
ON TABLE HOLD
END

Recursive Substitution
Recursive substitution allows a phrase in one LET definition to contain a word defined in
another LET definition. Recursive substitution can also be used to abbreviate long phrases
within LET commands.

ibi™ FOCUS® Developing Applications

475 | Defining a Word Substitution

Making a Recursive Substitution
In the following LET command

LET
TESTNAME=IF LAST_NAME IS RIGHTNAME
RIGHTNAME = STEVENS OR MCKNIGHT OR MCCOY
END

the word RIGHTNAME in the phrase in the first definition is defined in the second definition.
(Note that the two phrases in the LET command could be reversed.) This LET command is
equivalent to:

LET
TESTNAME = IF LAST_NAME IS STEVENS OR MCKNIGHT OR MCCOY
END

Abbreviating a Long Phrase
Consider the following LET command, which illustrates recursive substitution:

LET
TESTNAME = STEVENS OR SMITH OR MCCOY OR CONT1
CONT1 = BANNING OR IRVING OR ROMANS OR CONT2
CONT2 = JONES OR BLACKWOOD
END

You can use TESTNAME in this request:

TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS TESTNAME
END

This is the equivalent of:

TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS STEVENS OR SMITH OR MCCOY OR

ibi™ FOCUS® Developing Applications

476 | Defining a Word Substitution

BANNING OR IRVING OR ROMANS
OR JONES OR BLACKWOOD
END

Using a LET Substitution in a COMPUTE or
DEFINE Command
A semicolon must follow an expression in a COMPUTE or DEFINE command. To use a LET
substitution in a DEFINE or COMPUTE, you must include two semicolons in the LET syntax.
You cannot create a LET substitution for a phrase that contains a semicolon.

Using a LET Substitution in a COMPUTE or DEFINE
Command
The following LET syntax includes two semicolons, since the substitution will be made in a
COMPUTE command:

LET
SALTEST = LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;;
END

Issuing the command

AND COMPUTE SALTEST

translates the line into

AND COMPUTE LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;

with one semicolon after the word LOW, as required by the expression in the COMPUTE.

ibi™ FOCUS® Developing Applications

477 | Defining a Word Substitution

Checking Current LET Substitutions
The ? LET command displays the currently active LET substitutions.

Check Current LET Substitutions
? LET [word1word2 ... wordn]

where:

word1 word 2...wordn

Are the LET-defined words you want to check. If you omit these parameters, ? LET
displays a two-column list of all active LET substitutions. The left column contains the
LET-defined words; the right column contains the phrases the words represent.

Checking Selected LET Substitutions
Issuing

? LET CHART TESTNAME RIGHTNAME

displays a two-column list of the LET substitutions for CHART, TESTNAME, and RIGHTNAME.

Checking All Current LET Substitutions
Issuing

? LET

displays a list of all current LET substitutions.

ibi™ FOCUS® Developing Applications

478 | Defining a Word Substitution

Interactive LET Query: LET ECHO
The LET ECHO facility shows how FOCUS interprets FOCUS statements. This facility is a
diagnostic tool you can use when statements containing LET-defined words are not being
interpreted the way you expect them to.

When the LET ECHO facility is activated, when you enter a FOCUS statement, LET ECHO
displays the statement as interpreted by FOCUS.

Activate the LET ECHO Facility
To activate the LET ECHO facility, issue the command:

LET ECHO

Deactivate the LET ECHO Facility
ENDECHO

Results of LET ECHO Commands
The following explains the results of a LET ECHO command:

l If you enter a statement containing no LET-defined words, LET ECHO displays the
statement as you entered it.

l If you enter a statement containing LET-defined words, LET ECHO displays the
statement with the substitutions made.

l If the statement contains variable substitutions, LET ECHO displays the substitutions
with the placeholders filled in.

l If the statement contains multiple-line substitutions, LET ECHO displays the
statement with the substitutions on multiple lines.

ibi™ FOCUS® Developing Applications

479 | Defining a Word Substitution

l If the statement contains null substitutions, LET ECHO displays the statement with
the LET-defined words deleted.

l If the statement contains recursive substitutions, the substitutions appear as they are
finally resolved.

l LET ECHO may be coded as the first line of a FOCEXEC and ENDECHO as the last line.

Note: If you enter a statement containing a variable substitution, you must enter
as many words after the LET-defined word as there are placeholders in the

phrase; otherwise, LET ECHO will wait for additional input.

Clearing LET Substitutions
Use the LET CLEAR command to clear LET substitutions.

Clear LET Substitutions
LET CLEAR {*|word1 [word2...wordn]}

where:

*

Clears all substitutions.

word1...wordn

Are the LET-defined words that you want to clear.

Clearing LET Substitutions
Issuing the following command

LET CLEAR CHART TESTNAME RIGHTNAME

ibi™ FOCUS® Developing Applications

480 | Defining a Word Substitution

clears substitutions for CHART, TESTNAME, and RIGHTNAME. If there are no additional LET
substitutions in effect, the following command would have the same effect:

LET CLEAR *

Saving LET Substitutions in a File
Since LET substitutions only last the duration of a session, saving them is helpful if you
need the same substitutions for another request.

To save LET substitutions currently in effect, use the LET SAVE command.

Save LET Substitutions
LET SAVE [filename]

where:

filename

Is the eight-character name of the file in which you want to save the substitutions. If you
do not supply a file name, the default file name is LETSAVE.

Assigning Phrases to Function Keys
You can assign a phrase to a function key. Then when you have a blank line and press a
function key, that phrase appears as if you actually typed it. This process works only in
situations where the LET facility is operative.

Assign a Phrase to a Function Key
LET !n= [.]phrase

ibi™ FOCUS® Developing Applications

481 | Defining a Word Substitution

where:

n

Is a function key number from 1 to 24.

.

Suppresses the echo of the phrase when you press the function key.

phrase

Is the phrase that the specified function key represents.

Assigning Phrases to Function Keys
The following assigns values to function keys:

LET !4 = EX DAILYRPT
LET !6 = END
LET !20 = IF RECORDLIMIT EQ 10
LET !21 = .EX MYREPORT

ibi™ FOCUS® Developing Applications

482 | Enhancing Application Performance

Enhancing Application Performance
This topic covers FOCUS facilities that are available across command environment
boundaries. These facilities are easy to use and, in many cases, step-by-step instructions
are provided.

FOCUS Facilities
The FOCUS facilities discussed in this topic are classified as file utilities for FOCUS and
external files. They are summarized in the following table:

Command Description

LOAD
Loads FOCUS procedures and Master Files into memory (see
Loading a File).

MINIO
Improves performance by reducing I/O operations when
accessing FOCUS data sources (see Accessing a FOCUS Data
Source).

SET
SAVEDMASTERS

Improves performance by saving Master Files in memory.

Loading a File
Use the LOAD command to load the following types of files into memory for use within a
FOCUS session:

l Master Files (MASTER).

l Access Files.

ibi™ FOCUS® Developing Applications

483 | Enhancing Application Performance

l FOCUS procedures (FOCEXEC).

Using memory-resident files decreases execution time because the files do not have to be
read from the disk. Use the UNLOAD command to remove the files from memory.

The LOAD command loads unparsed Master Files into memory. To store parsed Master Files
in memory, use the SET SAVEDMASTERS command described in Saving Master Files in
Memory for Reuse.

Load a File
LOAD filetype filename1... [filename2...]

where:

filetype

Specifies the type of file to be loaded (MASTER, FOCEXEC, or Access File). For a list of
Access File Types, see Loading a File.

filename1...

Specifies one or more files to be loaded. Separate the file type and file name(s) with a
space.

Loading Multiple Files
The following command loads four FOCEXECs—CARTEST, FOCMAP1, FOCMAP2, and
FOCMAP3—into memory:

>LOAD FOCEXEC CARTEST FOCMAP1 FOCMAP2 FOCMAP3

A subsequent reference to one of these files during the current FOCUS session will use the
loaded, rather than the disk version.

ibi™ FOCUS® Developing Applications

484 | Enhancing Application Performance

Unload a File
UNLOAD [*|filetype] [*| filename1... [filename2...]]

where:

filetype

Specifies the type of file to be unloaded (MASTER, FOCEXEC, or Access File). For a list of
Access File Types, see Loading a File.

To unload all files of all types, use an asterisk.

filename1...

Specifies one or more files to be unloaded. Separate the file type and file name(s) with a
space. To unload all files of that file type, use an asterisk.

Unloading Multiple Files
The following command unloads two memory-resident FOCEXECs— CARTEST and
FOCMAP3:

>UNLOAD FOCEXEC CARTEST FOCMAP3

Any subsequent reference to one of these files will use the disk version.

Loading Master Files, FOCUS Procedures, and
Access Files
Loading Master Files, Access Files, and FOCEXECs into memory eliminates the I/Os required
to read each time they are referenced. Whenever FOCUS requires a Master File, Access File,
or executes a FOCEXEC, it first looks for a memory-resident MASTER, Access File, or
FOCEXEC file. If FOCUS cannot find the file in memory, it then searches for a disk version in
the normal way.

ibi™ FOCUS® Developing Applications

485 | Enhancing Application Performance

Considerations for Loading a Master File,
FOCUS Procedure, or Access File
The following are considerations for loading a Master File, FOCUS procedure, and Access
File:

l If you load a Master File, Access File, or a FOCEXEC that has already been loaded into
memory, the new copy replaces the old copy.

l Do not load a Master File, Access File, or a FOCEXEC that you are developing because
FOCUS will always use the memory-resident copy of the file (until you reload it),
rather than the one you are developing. The copy that you are developing on TED or
your system editor is the disk copy, not the memory-resident copy.

l A loaded Master File, Access File, or FOCEXEC requires a maximum of 80 bytes of
memory for each of its records plus a small amount of control information, rounded
up to a multiple of 4200 bytes.

l The following are the file types for the various Access Files:

Access File File Type

ADABAS FOCADBS

CA-DATACOM FOCDTCM

DB2 FOCSQL

FOCUS ACCESS

CA-IDMS FOCIDMS

IDMS/SQL FOCSQL

IMS/DB ACCESS

Model 204 ACCESS

ORACLE FOCSQL

TERADATA FOCDBC

ibi™ FOCUS® Developing Applications

486 | Enhancing Application Performance

Loading a Compiled MODIFY Request
When you load a compiled MODIFY request, FOCUS loads the FOCCOMP file from disk into
memory, then reads and parses the Master File and binds the description to the FOCCOMP
file. You may then run the request by issuing the RUN command. The RUN command
causes FOCUS to search for a memory-resident FOCCOMP file. If FOCUS cannot find the file,
it searches for a disk version in the normal way.

Loading FOCCOMP files not only eliminates the I/Os required to read large FOCCOMP files
and the associated Master Files, but also causes another, more subtle effect. When issuing
the RUN command to execute a FOCCOMP file from disk, virtual storage must be paged in
to accommodate it. If the FOCCOMP file is large, it may require many pages (and a large
virtual storage area) in a very short time. If you load the FOCCOMP file first, the initial surge
of paging occurs only once at LOAD time. After that, each execution of the loaded file
requires a lower paging rate.

Execute a Compiled Request
RUN request

where:

request

Is the name of the compiled request stored in memory.

Loading a MODIFY Request
The LOAD MODIFY command is similar to the COMPILE command (described in the
Maintaining Databases manual) except that instead of writing the compiled output to a
FOCCOMP file on disk, FOCUS writes the output into memory as a pre-loaded, compiled
MODIFY. FOCUS then reads the Master File associated with the MODIFY command from disk
and translates it into an internal table that is tightly bound with the compiled MODIFY.
Thus the command

>LOAD MODIFY NEWTAX

ibi™ FOCUS® Developing Applications

487 | Enhancing Application Performance

has substantially the same effect as

>COMPILE NEWTAX
>LOAD FOCCOMP NEWTAX

except that the compiled code is never written to disk.

After you enter a LOAD MODIFY command, the resulting compiled MODIFY is
indistinguishable from code loaded with LOAD FOCCOMP. Thus the UNLOAD MODIFY and ?
LOAD MODIFY commands produce exactly the same results as the UNLOAD FOCCOMP and ?
LOAD FOCCOMP commands. Note that the UNLOAD FOCCOMP and UNLOAD MODIFY
commands unload the bound Master File as well.

When you issue the RUN command to invoke a MODIFY procedure, FOCUS looks for a
memory-resident compiled procedure (created by a LOAD FOCCOMP or LOAD MODIFY
command) of that name. If the procedure cannot be found, FOCUS then searches for a disk
version of the FOCCOMP file in the normal way.

The benefits of the LOAD MODIFY command are that disk space is not used to store the
FOCCOMP file, disk I/Os are reduced, the FOCEXEC cannot get out of step with the
compiled version, and the paging rate is reduced as it is with FOCCOMP files.

Displaying Information About Loaded Files
The ? LOAD command displays the file type, file name, and resident size of currently loaded
files.

Display Information About Loaded Files
? LOAD [filetype]

where:

filetype

Specifies the type of file (MASTER, Access File, FOCEXEC, or MODIFY) on which
information will be displayed. For a list of Access File Types, see Loading a File.

ibi™ FOCUS® Developing Applications

488 | Enhancing Application Performance

To display information on all memory-resident files, omit the file type.

Displaying Information About Loaded Files
Issuing the command

? LOAD

produces information similar to the following:

FILES CURRENTLY LOADED

CAR MASTER 4200 BYTES
EXPERSON MASTER 4200 BYTES
CARTEST FOCEXEC 8400 BYTES

Saving Master Files in Memory for Reuse
You can save up to 99 Master Files in memory after they have been used in a request. The
saved Master Files are not re-parsed when referenced in subsequent requests, resulting in a
significant performance improvement. The greatest improvement occurs in Master Files
with a great many fields, where parsing is slowest.

Saving Master Files in memory is particularly helpful when running multiple requests
against several Master Files. The most recently used Master File is stored in memory
regardless of this setting. With each request that specifies a new Master File, the prior
Master File is moved down on the saved list and the new Master File is placed at the top of
the list. Once all of the slots on the list are full, parsing a new Master File causes the one at
the bottom to drop off the list. If an already saved Master File is used in a request, it moves
to the top of the list.

Only one occurrence of a Master File name is maintained on the list. Therefore, if you use
an already saved Master File as the host file in a JOIN, in a HOLD command (with the same
AS name), in a USE...AS command, or in a COMBINE command without specifying a unique
name, the new version of the Master File replaces the previous version on the list. A JOIN
CLEAR or USE CLEAR command purges the parsed Master File from memory.

If a Master File will be re-parsed multiple times, you can save the I/O needed to retrieve it
from disk by loading it into memory using the LOAD command described in Loading a File.

ibi™ FOCUS® Developing Applications

489 | Enhancing Application Performance

Note: SAVEDMASTERS is not an effective technique to use with massive amounts
of data because the amount of time saved by not re-parsing is small in
comparison to the time for processing the data.

Save Parsed Master Files in Memory
SET SAVEDMASTERS = n

where:

n

Is an integer between 0 and 99 that specifies the maximum number of Master Files on
the SAVEDMASTERS list. The default value is 0. Note that the most recently used Master
File is always stored in memory, even with SAVEDMASTERS set to zero. However, the
zero setting does not generate the list of saved Master Files.

Query the SAVEDMASTERS Setting
The following query command indicates the number of Master Files allowed on the list of
saved Master Files and lists the names of the Master Files on the list.

? SET SAVEDMASTERS

Saving and Querying Parsed Master Files
The following command specifies that up to three parsed Master Files can be saved:

SET SAVEDMASTERS = 3

Issue the Query command:

ibi™ FOCUS® Developing Applications

490 | Enhancing Application Performance

? SET SAVEDMASTERS

The output of the query command indicates that the list can contain up to three Master
Files, but none are currently saved:

SAVEDMASTERS 3

The following procedure parses two Master Files, EMPLOYEE and MOVIES:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME BY EMP_ID
END
-RUN
TABLE FILE MOVIES
PRINT TITLE BY DIRECTOR
END
-RUN

? SET SAVEDMASTERS

In this example, the output of the query command indicates that the list can contain up to
three Master Files and that the list currently consists of MOVIES and EMPLOYEE:

SAVEDMASTERS 3

MOVIES
EMPLOYEE

Usage Notes for SET SAVEDMASTERS
l Memory resources are used to store the parsed Master Files, reducing the amount of

memory available for other processes.

l You cannot selectively purge Master Files from the list.

l The SAVEDMASTERS parameter is not supported in a request (ON TABLE SET) or in
FOCPARM.

ibi™ FOCUS® Developing Applications

491 | Enhancing Application Performance

l The SAVEDMASTERS setting is not supported on a FOCUS Database Server or with a
Maintain procedure.

l The SAVEDMASTERS setting is not supported with SCAN or FSCAN.

l Issuing the CHECK FILE or REBUILD command causes the specified Master File to be
re-parsed.

l The ?F and ?FF commands only re-parse the Master File when issued outside of a
request for a Master File other than the most recently used Master File.

l Using an alternate file view (TABLE FILE filename.fieldname) or the AUTOPATH=ON
setting re-parses the Master File.

l If the SAVEDMASTERS value is changed between requests:

o Raising the number allows more Master Files to be saved as they are parsed.

o Lowering the number drops the oldest saved Master Files.

l If changes are made to a Master File that is saved, the changes will not be
implemented until the Master File is re-parsed.

l When only one Master File has been used, it is not placed on the SAVEDMASTERS list.

l DEFINE expressions are not stored and, therefore, are re-parsed every time they are
used.

l Creating a HOLD file erases the Master File name from the list if it is there, and the
HOLD command does not place the new Master File on the list.

l SAVEDMASTERS is most effective when a Master File has a lot of fields.

l The FML Hierarchy LOAD CHART command does not add the Master File to the
SAVEDMASTERS list.

Accessing a FOCUS Data Source
MINIO is a new I/O buffering technique that improves performance by reducing I/O
operations when accessing FOCUS data sources. With MINIO set on, no block is ever read
more than once, and therefore the number of reads performed is the same as the number
of tracks present. This results in an overall reduction in elapsed times when reading and
writing.

With FOCUS data sources that are not disorganized, MINIO can greatly reduce the number
of I/O operations for TABLE and MODIFY commands. I/O reductions of up to 50% are

ibi™ FOCUS® Developing Applications

492 | Enhancing Application Performance

achievable with MINIO. The actual reduction varies depending on data source structure and
average numbers of children segments per parent segment. By reducing I/O operations,

elapsed times for TABLE and MODIFY commands also drop.

Set MINIO
SET MINIO = {ON|OFF}

where:

ON

Does not read a block more than once; the number of reads performed will be the same
as the number of tracks present. This results in an overall reduction in elapsed times
when reading and writing. This value is the default.

OFF

Disables MINIO.

Using MINIO
MINIO reduces CPU time slightly while slightly raising memory utilization. MINIO requires
one track I/O buffer per referenced segment type. Between 40K and 48K of above-the-line
virtual memory is needed per referenced segment.

When MINIO is enabled, FOCUS decides for each command whether or not to employ it,
and which data sources to use it with. It is possible in executing a single command
referencing several data sources that MINIO might be used for some but not for others.
Data sources accessed via indexes, or physically disordered through online updates, are not
candidates for MINIO buffering. Physical disorganization, in this case, means that the
sequence of selected records jumps all over the data source, as opposed to progressing
steadily forward. When disorganization occurs, MINIO abandons its buffering techniques
and resorts to the standard I/O methodology.

When reading data sources, MINIO is used with TABLE, TABLEF, GRAPH, MATCH and during
the DUMP phase of the REBUILD command, provided the target data source is not accessed
via an index or is physically disorganized.

ibi™ FOCUS® Developing Applications

493 | Enhancing Application Performance

When writing to data sources, MINIO is used with MODIFY but never with MAINTAIN,
provided there is no CRTFORM or COMMIT subcommand. CRTFORMs indicate online
transaction processing, which requires that completed transactions be written out to the
data source. COMMITs are explicit orders to do so. These events are incompatible with
MINIO minimization logic and therefore rule out its use.

As with reads, using MINIO with MODIFY also requires that a data source be accessed
sequentially. Attempts to access an index, or to update physically disorganized data
sources can cause MINIO to be disabled. In addition, frequent repositioning to previously
accessed records, even within well-organized data sources, will cause MINIO to be disabled.

Determining If a Previous Command Used
MINIO
The ? STAT command is used to determine whether the previous data source access
command employed MINIO.

Determine If a Previous Command Used MINIO
To determine if a previous command used MINIO, issue the command:

? STAT

Determining If a Previous Command Used MINIO
Typing ? STAT generates a screen similar to the following:

STATISTICS OF LAST COMMAND

RECORDS = 0 SEGS CHNGD = 0
LINES = 0 SEGS DELTD = 0
BASEIO = 87 NOMATCH = 0
TRACKIO = 16 DUPLICATES = 0
SORTIO = 0 FORMAT ERRORS = 0

ibi™ FOCUS® Developing Applications

494 | Enhancing Application Performance

SORT PAGES = 0 INVALID CONDTS = 0
READS = 1 OTHER REJECTS = 0
TRANSACTIONS = 1500 CACHE READS = 0
ACCEPTED = 1500 MERGES = 0
SEGS INPUT = 1500 SORT STRINGS = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
MINIO USED: YES

In the preceding example MINIO USED is displayed as YES. It may also display NO or
DISABLED.

l YES means that MINIO buffering has taken place reducing the number of tracks
read/written to the FOCUS data source.

l NO means that MINIO buffering has not taken place.

l DISABLED means that MINIO buffering was started but terminated as no performance
gains could be made. This does not mean that the command did not complete

successfully. It only indicates that MINIO buffering began and ended during the
read/write.

Restrictions for Using MINIO
Note the following restrictions when you are using the MINIO command:

l When MINIO is used with MODIFY, all CHECK subcommands are ignored. If a MODIFY
command terminates abnormally, the condition of the data source is unpredictable,
and it should be restored from a backup copy and the update repeated. Since MINIO
is designed to minimize I/O during large data source loads and updates, it has no
checkpoint or restart facility. If this is unacceptable, set MINIO off.

l MINIO is not used to access data sources through FOCUS Database Servers (formerly
called sink machines) or HLI programs.

l MINIO requires the presence of the TRACKIO feature. Meaning, TRACKIO must be set
to ON which is the default setting. If TRACKIO is set to OFF, then MINIO is
deactivated.

l MINIO buffering starts when the FOCUS data source exceeds 64 pages in size. If this
size is never reached, MINIO is never activated.

ibi™ FOCUS® Developing Applications

495 | Enhancing Application Performance

l If the file being modified UPDATEs, INCLUDEs, or DELETEs a field that is indexed,
MINIO is disabled. In other words, FIELDTYPE=I or INDEX=I is coded in the Master File
for this field.

l CRTFORM and COMMIT commands disable MINIO.

l MAINTAIN procedures will not use MINIO buffering techniques.

l MINIO is not enabled if the data source is physically disorganized by transaction
processing.

ibi™ FOCUS® Developing Applications

496 | Working With Cross-Century Dates

Working With Cross-Century Dates
Many existing business applications use two digits to designate a year, instead of four
digits. When they receive a value for a year, such as 00, they typically interpret it as 1900,
assuming that the first two digits are 19, for the twentieth century. These applications
require a way to handle dates when the century changes (for example, from the twentieth
to the twenty-first), or when they need to perform comparisons or arithmetic on dates that
span more than one century.

The cross-century date feature described in this topic enables the correct interpretation of
the century if it is not explicitly provided, or is assumed to be the twentieth. The feature is
application-based, that is, it involves modifications to procedures or metadata so that
dates are accurately interpreted and processed. The feature is called the sliding window
technique.

When Do You Use the Sliding Window
Technique?
If your application accesses dates that contain an explicit century, the century is accepted
as is. Your application can run correctly across centuries, and you do not need to use the
sliding window technique.

If your application accesses dates without explicit centuries, they assume the default value
19. Your application will require remediation, such as the sliding window technique, to
ensure the correct interpretation of the century if the default is not valid, and to run as
expected in the next century.

This topic does not cover remediation options such as date expansion, which requires that
data be changed in the data source to accommodate explicit century values. For a list of
Information Builders documentation on remediation, see your latest Publications Catalog.

This topic covers the use of the sliding window technique in reporting applications. Details
on when to use the sliding window technique are provided later in this topic. It also
includes reference information on the use of the technique with FOCUS MODIFY requests.
For additional information on implementing this technique with Maintain, see your

ibi™ FOCUS® Developing Applications

497 | Working With Cross-Century Dates

database maintenance documentation the Maintaining Databases manual. References to
MODIFY and Maintain apply only to Developer Studio.

The Sliding Window Technique
With the sliding window technique, you do not need to change stored data from a 2-digit
year format to a 4-digit year format in order to determine the century. Instead, you can
continue storing 2-digit years and expand them when accessed.

The sliding window technique recognizes that the earliest and latest values for a single
date field in most business applications are within 100 years of one another. For example,
a human resources application typically contains a field for the birth date of each active
employee. The difference in the birth date (or age) of the oldest active employee and the
youngest active employee is not likely to be more than 100.

The technique is implemented as follows:

l You define the start of a 100-year sliding window by supplying two values: one for the
default century (DEFCENT) and one for the year threshold (YRTHRESH). For example,
a value of 19 for the century, combined with a value of 60 for the threshold, creates a
window that starts in 1960 and ends in 2059.

l The threshold provides a way to assign a value to the century of a 2-digit year:

o A year greater than or equal to the threshold assumes the value of the default
century (DEFCENT). Using the sample value 19 for the default century and 60
for the threshold, a 2-digit year of 70 is interpreted as 1970 (70 is greater than
60).

o A year less than the threshold assumes the value of the default century plus 1
(DEFCENT + 1). Using the same sample values (19 and 60), a 2-digit year of 50 is
interpreted as 2050 (50 is less than 60), and a 2-digit year of 00 is interpreted as
2000 (00 is also less than 60).

The conversion rule for this example is illustrated as follows:

Any 2-digit year is assumed to fall within the window. You must handle dates that fall

ibi™ FOCUS® Developing Applications

498 | Working With Cross-Century Dates

outside the defined window by coding.

Each file or each date field used in an application can have its own conversion rule,
which provides the flexibility required by most applications.

Defining a Sliding Window
You can define a sliding window in several ways, depending on the specific requirements of
your application:

l Globally. The SET DEFCENT and SET YRTHRESH commands define a window on a
global level.

l On a file level. The FDEFCENT and FYRTHRESH attributes in a Master File define a
window on a file level, allowing the correct interpretation of date fields from multiple
files that span different time periods.

l On a field level. The DEFCENT and YRTHRESH attributes in a Master File define a
window on a field level, allowing the correct interpretation of date fields, within a
single file, that span different time periods.

l For a virtual field. The DEFCENT and YRTHRESH parameters on a DEFINE command,
in either a request or a Master File, define a window for a virtual field.

l For a calculated value. The DEFCENT and YRTHRESH parameters on a COMPUTE
command define a window for a calculated value.

If you define more than one window using any of the preceding methods, the precedence
is as follows:

1. DEFCENT and YRTHRESH on a DEFINE or COMPUTE command.

2. DEFCENT and YRTHRESH field-level attributes in a Master File.

3. FDEFCENT and FYRTHRESH file-level attributes in a Master File.

4. SET DEFCENT and SET YRTHRESH on a global level; if you do not specify values, the
defaults are used (DEFCENT = 19, YRTHRESH = 0).

ibi™ FOCUS® Developing Applications

499 | Working With Cross-Century Dates

Creating a Dynamic Window Based on the
Current Year
An optional feature of the sliding window technique enables you to create a dynamic
window, defining the start of a 100-year span based on the current year. The start year and
threshold for the window automatically change at the beginning of each new year.

If an application requires that a window's start year change when a new year begins, use of
this feature avoids the necessity of manually re-coding it.

To implement this feature, YRTHRESH or FYRTHRESH is offset from the current year, or
given a negative value.

For example, if the current year is 1999 and YRTHRESH is set to -38, a window from 1961 to
2060 is created. The start year 1961 is derived by subtracting 38 (the value of YRTHRESH)
from 1999 (the current year). To interpret dates that fall within this window, the threshold
61 is used.

At the beginning of the year 2000, a new window from 1962 to 2061 is automatically
created; for dates that fall within this window, the threshold 62 is used. In the year 2001,
the window becomes 1963 to 2062, and the threshold is 63, and so on.

With each new year, the start year for the window is incremented by one.

When using this feature, do not code a value for DEFCENT or FDEFCENT, since the feature
is designed to automatically calculate the value for the default century. Be aware of the
following:

l If you do code a value for DEFCENT on the field level in a Master File, or for
FDEFCENT on the file level in a Master File, the feature will not work as intended. The
value for the century, which is automatically calculated by YRTHRESH by design, will
be reset to the value you code for DEFCENT or FDEFCENT.

l If you code a value for DEFCENT anywhere other than the field level in a Master File
(for example, on the global level), and YRTHRESH is negative, the coded value will be
ignored. The default century will be automatically calculated as designed.

Applying the Sliding Window Technique
To apply the sliding window technique correctly, you need to understand the difference
between a date format (formerly called a smart date) and a legacy date:

ibi™ FOCUS® Developing Applications

500 | Working With Cross-Century Dates

l A date format refers to an internally stored integer that represents the number of
days between a real date value and a base date (either December 31, 1900, for dates
with YMD or YYMD format; or January 1901, for dates with YM, YYM, YQ, or YYQ
format). A Master File does not specify a data type or length for a date format;
instead, it specifies display options such as D (day), M (month), Y (2-digit year), or YY
(4-digit year). For example, MDYY in the USAGE (also known as FORMAT) attribute of a
Master File is a date format. A real date value such as March 5, 1999, displays as
03/05/1999, and is internally stored as the offset from December 31, 1900.

l A legacy date refers to an integer, packed decimal, double precision, floating point,
or alphanumeric format with date edit options, such as I6YMD, A6MDY, I8YYMD, or
A8MDYY. For example, A6MDY is a 6-byte alphanumeric string; the suffix MDY
indicates how Information Builders will return the data in the field. The sample value
030599 displays as 03/05/99.

For details on date fields, see the Describing Data manual.

When to Supply Settings for DEFCENT and
YRTHRESH
The rest of this topic refers simply to DEFCENT when either DEFCENT or FDEFCENT applies,
and to YRTHRESH when either YRTHRESH or FYRTHRESH applies.

Supply settings for DEFCENT and YRTHRESH in the following cases:

l When you issue a DEFINE or COMPUTE command to convert a legacy date without
century digits to a date format with century digits (for example, to convert the format
I6YMD to YYMD). With DEFINE and COMPUTE, DEFCENT and YRTHRESH do not work
directly on legacy dates; for example, you cannot use them to convert the legacy
date format I6YMD to the legacy date format I8YYMD.

l When a DEFINE command, COMPUTE command, or Dialogue Manager -SET command
calls a function, supplied by Information Builders, that uses legacy dates, the input
date does not contain century digits.

On input, the function will use the window defined for an 16 legacy date field (with
edit options). The output format may be 18 (again, with edit options), which includes
a 4-digit year.

l When data is entered or changed in a date format field in a FOCUS data source, or a

ibi™ FOCUS® Developing Applications

501 | Working With Cross-Century Dates

SQL date is entered or changed in a Relational Database Management System
(RDBMS), and the input date does not contain century digits.

For example, you can use the sliding window technique in applications that use
FIXFORM or CRTFORM with MODFIY.

l When a data source is read, and the ACTUAL attribute in the Master File is non-date
specific (for example, A6, I6, or P6), without century digits, and the FORMAT or USAGE
attribute specifies a date format. This case does not apply to FOCUS data sources.

Follow these rules when implementing the sliding window technique:

l Specify values for both DEFCENT and YRTHRESH to ensure consistent coding and
accurate results, except when YRTHRESH has a negative value. In that case, specify a
value for YRTHRESH only; do not code a value for DEFCENT.

l Do not use DEFCENT and YRTHRESH with ON TABLE SET.

Finally, keep in mind that the sliding window technique does not change the way existing
data is stored. Rather, it accurately interprets data during application processing.

Restrictions With MODIFY
The following results occur when you use the sliding window technique with a MODIFY
request or FOCCOMP procedure:

l A MODIFY request compiled prior to Version 7.0 Release 6, when run with global SET
DEFCENT and SET YRTHRESH settings, or with file-level or field-level settings, yields a
FOC1886 error message. You must recompile the MODIFY request.

l A MODIFY request compiled in Version 7.0 Release 6, when run with global SET
DEFCENT and SET YRTHRESH settings, or with file-level or field-level settings, yields a
FOC1885 warning message.

l A FOCCOMP procedure, compiled with global SET DEFCENT and SET YRTHRESH
settings, and run in releases prior to Version 7.0 Release 6, yields a FOC548 invalid
version message. You must recompile the MODIFY request.

l A FOCCOMP procedure that contains DEFCENT/YRTHRESH or FDEFCENT/FYRTHRESH
attributes in the associated Master File, and run in releases prior to Version 7.0
Release 6, yields a FOC306 description error message.

ibi™ FOCUS® Developing Applications

502 | Working With Cross-Century Dates

Date Validation
Date formats are validated on input. For example, 11/99/1999 is rejected as input to a date
field formatted as MDYY, because 99 is not a valid day. Information Builders generates an
error message.

Legacy dates are not validated. The date 11991999, described with the format A8MDYY, is
accepted, even though it, too, contains the invalid day 99.

Defining a Global WindowWith SET
The SET DEFCENT and SET YRTHRESH commands define a window on a global level. The
time span created by the SET commands applies to every 2-digit year used by the
application unless you specify file-level or field-level windows elsewhere.

For details on specifying the parameters that govern the environment, see Customizing
Your Environment.

Define a Global WindowWith SET
To define a global window, issue two SET commands.

The first command is

SET DEFCENT = {cc|19}

where:

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

The second command is

SET YRTHRESH = {[-]yy|0}

where:

../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926
../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926

ibi™ FOCUS® Developing Applications

503 | Working With Cross-Century Dates

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of FDEFCENT for the century. Two-digit years less than the threshold
assume the value of FDEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and FDEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

Defining a Global Window With SET
In the following request, the SET command defines a global window from 1983 to 2082.

As SET syntax allows, the command is entered on one line, with the parameters separated
by a comma. You do not need to repeat the keyword SET for YRTHRESH.

The DEFINE command converts the legacy date EFFECT_DATE into the date format NEW_
DATE. It creates NEW_DATE as a virtual field, derived from the existing field EFFECT_DATE.
The format of EFFECT_DATE is I6YMD, which is a 2-digit year. NEW_DATE is formatted as
YYMD, which is a 4-digit year. For details on DEFINE, see the Creating Reports manual.

The request is:

SET DEFCENT = 19, YRTHRESH = 83

DEFINE FILE EMPLOYEE
NEW_DATE/YYMD = EFFECT_DATE;
END

TABLE FILE EMPLOYEE
PRINT EFFECT_DATE NEW_DATE BY EMP_ID
END

In the report, the value of the 2-digit year 82 is less than the threshold 83, so it assumes
the value 20 for the century (DEFCENT + 1) and is returned as 2082 in the NEW_DATE
column. The other year values (83 and 84) are greater than or equal to the threshold 83, so
the century defaults to the value 19 (DEFCENT); they are returned as 1983 and 1984 under
NEW_DATE.

The output is:

ibi™ FOCUS® Developing Applications

504 | Working With Cross-Century Dates

PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660
112847612
117593129 82/11/01 2082/11/01
119265415
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188
219984371
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165
818692173 83/05/01 1983/05/01

In the example, missing date values appear as blanks by default. To retrieve the base date
value for the NEW_DATE field instead of blanks, issue the command

SET DATEDISPLAY = ON

before running the request.

The base date value for NEW_DATE, which is formatted as YYMD, is returned as 1900/12/31:

PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660 1900/12/31
112847612 1900/12/31
117593129 82/11/01 2082/11/01
119265415 1900/12/31
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188 1900/12/31
219984371 1900/12/31
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165 1900/12/31
818692173 83/05/01 1983/05/01

If NEW_DATE had a YYM format, the base date would appear as 1901/01. If it had a YYQ
format, it would appear as 1901 Q1.

ibi™ FOCUS® Developing Applications

505 | Working With Cross-Century Dates

If the value of NEW_DATE is 0 and SET DATEDISPLAY = OFF (the default), blanks are
displayed. With SET DATEDISPLAY = ON, the base date is displayed instead of blanks. Zero
(0) is treated as an offset from the base date, which results in the base date.

For details on SET DATEDISPLAY, see Customizing Your Environment.

Defining a Dynamic Global WindowWith SET
This topic illustrates the creation of a dynamic window using the global command SET
YRTHRESH. You can also implement this feature on the file and field level, and on a DEFINE
or COMPUTE.

With this option of the sliding window technique, the start year and threshold for the
window automatically changes at the beginning of each new year. The default century
(DEFCENT) is automatically calculated.

You can use SET TESTDATE to alter the system date when testing a dynamic window (that
is, when YRTHRESH has a negative value). However, when testing a dynamic window
defined in a Master File, you must issue a CHECK FILE command each time you issue a SET
TESTDATE command. CHECK FILE reloads the Master File into memory and ensures the
correct recalculation of the start date of the dynamic window. For details on SET
TESTDATE, see your documentation on the SET command. For details on CHECK FILE, see
the Describing Data manual.

Defining a Dynamic Global Window With SET
In the following request, the COMPUTE command calls the function AYMD, supplied by
Information Builders. AYMD adds one day to the input field, HIRE_DATE; the output field,
HIRE_DATE_PLUS_ONE, contains the result. HIRE_DATE is formatted as I6YMD, which is a
legacy date with a 2-digit year. HIRE_DATE_PLUS_ONE is formatted as I8YYMD, which is a
legacy date with a 4-digit year.

The function uses the YRTHRESH value set at the beginning of the request to create a
dynamic window for the input field HIRE_DATE. The start date of the window is
incremented by one at the beginning of each new year. Notice that DEFCENT is not coded,
since the default century is automatically calculated whenever YRTHRESH has a negative
value.

../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926

ibi™ FOCUS® Developing Applications

506 | Working With Cross-Century Dates

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

Sample values are shown in the reports for 1999, 2000, and 2018, which follow the request.

For details on AYMD, see the Using Functions manual.

The request is:

SET YRTHRESH = -18

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE

HIRE_DATE_PLUS_ONE/I8YYMD = AYMD
(HIRE_DATE, 1, HIRE_DATE_PLUS_ONE);

END

In 1999, the window spans the years 1981 to 2080. The threshold is 81 (1999 - 18). In the
report, the 2-digit year 80 is less than the threshold 81, so it assumes the value 20 for the
century (DEFCENT + 1), and is returned as 2080 in the HIRE_DATE_PLUS_ONE column. The
other year values (81 and 82) are greater than or equal to the threshold 81, so the century
defaults to the value of DEFCENT (19); they are returned as 1981 and 1982.

The output is:

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
80/06/02 2080/06/03
81/07/01 1981/07/02
82/05/01 1982/05/02
82/01/04 1982/01/05
82/08/01 1982/08/02
82/01/04 1982/01/05
82/07/01 1982/07/02
81/07/01 1981/07/02
82/04/01 1982/04/02
82/02/02 1982/02/03
82/04/01 1982/04/02
81/11/02 1981/11/03

In 2000, the window spans the years 1982 to 2081. The threshold is 82 (2000 - 18). In the
report, the 2-digit years 80 and 81 are less than the threshold; for the century, they assume

ibi™ FOCUS® Developing Applications

507 | Working With Cross-Century Dates

the value 20 (DEFCENT + 1). The 2-digit year 82 is equal to the threshold; for the century, it
defaults to the value 19 (DEFCENT).

The output is:

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
80/06/02 2080/06/03
81/07/01 2081/07/02
82/05/01 1982/05/02
82/01/04 1982/01/05
82/08/01 1982/08/02
82/01/04 1982/01/05
82/07/01 1982/07/02
81/07/01 2081/07/02
82/04/01 1982/04/02
82/02/02 1982/02/03
82/04/01 1982/04/02
81/11/02 2081/11/03

Running the report in 2018 illustrates the automatic recalculation of DEFCENT from 19 to
20. In 2018, the window spans the years 2000 to 2099. The threshold is 0 (2018 - 18). A 2-
digit year greater than or equal to 0 defaults to the recalculated value 20 (DEFCENT).

Since all the values for the HIRE_DATE year are greater than 0, the century defaults to 20.

The output is:

PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
80/06/02 2080/06/03
81/07/01 2081/07/02
82/05/01 2082/05/02
82/01/04 2082/01/05
82/08/01 2082/08/02
82/01/04 2082/01/05
82/07/01 2082/07/02
81/07/01 2081/07/02
82/04/01 2082/04/02
82/02/02 2082/02/03
82/04/01 2082/04/02
81/11/02 2081/11/03

ibi™ FOCUS® Developing Applications

508 | Working With Cross-Century Dates

Querying the Current Global Value of DEFCENT
and YRTHRESH
You can query the current global value of DEFCENT and YRTHRESH.

Query the Current Global Value of DEFCENT
and YRTHRESH
? SET DEFCENT
? SET YRTHRESH

where:

DEFCENT

Returns the value for the DEFCENT parameter.

YRTHRESH

Returns the value for the YRTHRESH parameter.

Querying the Current Global Value of DEFCENT and
YRTHRESH
Enter

? SET DEFCENT
? SET YRTHRESH

to query the current global value of DEFCENT and YRTHRESH.

The following is a response to the query:

DEFCENT 19
YRTHRESH 0

ibi™ FOCUS® Developing Applications

509 | Working With Cross-Century Dates

Defining a File-Level or Field-Level Window in a
Master File
In this implementation of the sliding window technique, you change the metadata used by
an application. Two pairs of Master File attributes enable you to define a window on a file
or field level:

l The FDEFCENT and FYRTHRESH attributes define a window on a file level. They
enable the correct interpretation of legacy date fields from multiple files that span
different time periods.

A file-level window takes precedence over a global window for the dates associated
with that file.

l The DEFCENT and YRTHRESH attributes define a window on a field level, enabling the
correct interpretation of legacy date fields, within a single file, that span different

time periods. Each legacy date field in a file can have its own window. For example,
in an insurance application, the range of dates for date of birth may be from 1910 to
2009, and the range of dates for expected death may be from 1990 to 2089.

A field-level window takes precedence over a file-level or global window for the dates
associated with that field.

For details on Master Files, see the Describing Data manual.

Define a File-Level Window in a Master File
To define a window that applies to all legacy date fields in a file, add the FDEFCENT and
FYRTHRESH attributes to the Master File on the file declaration.

The syntax for the first attribute is

{FDEFCENT|FDFC} = {cc|19}

where:

ibi™ FOCUS® Developing Applications

510 | Working With Cross-Century Dates

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

The syntax for the second attribute is

{FYRTHRESH|FYRT} = {[-]yy|0}

where:

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

Defining a File-Level Window in a Master File

Tip: Use the abbreviated forms of FDEFCENT/FYRTHRESH or
DEFCENT/YRTHRESH to reduce keystrokes. The examples in this topic use the
abbreviated forms where available (for instance, FDFC instead of FDEFCENT).
Maintain supports only the abbreviated forms in certain command syntax (for
example, on a COMPUTE or DECLARE command). For details, see the Maintaining
Databases manual.

In the following example, the FDEFCENT and FYRTHRESH attributes define a window from
1982 to 2081. The window is applied to all legacy date fields in the file, including HIRE_
DATE, DAT_INC, and others, if they are converted to a date format.

The Master File is:

ibi™ FOCUS® Developing Applications

511 | Working With Cross-Century Dates

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $

.

.

.
FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $

.

.

.

The DEFINE command in the following request creates two virtual fields named NEW_HIRE_
DATE, which is derived from the existing field HIRE_DATE; and NEW_DAT_INC, which is
derived from DAT_INC. The format of HIRE_DATE and DAT_INC is I6YMD, which is a legacy
date with a 2-digit year. NEW_HIRE_DATE and NEW_DAT_INC are date formats with 4-digit
years (YYMD). For details on DEFINE, see the Creating Reports manual.

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

The window created in the Master File applies to both legacy date fields. In the report, the
year 82 (which is equal to the threshold), for both HIRE_DATE and DAT_INC, defaults to the
century value 19 and is returned as 1982 in the NEW_HIRE_DATE and NEW_DAT_INC
columns. The year 81, for both HIRE_DATE and DAT_INC, is less than the threshold 82 and
assumes the century value 20 (FDEFCENT + 1).

The partial output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
80/06/02 2080/06/02 82/01/01 1982/01/01
80/06/02 2080/06/02 81/01/01 2081/01/01

ibi™ FOCUS® Developing Applications

512 | Working With Cross-Century Dates

81/07/01 2081/07/01 82/01/01 1982/01/01
82/05/01 1982/05/01 82/06/01 1982/06/01
82/05/01 1982/05/01 82/05/01 1982/05/01

.

.

.

Define a Field-Level Window in a Master File
To define a window that applies to a specific legacy date field, add the DEFCENT and
YRTHRESH attributes to the Master File on the field declaration.

The syntax for the first attribute is

{DEFCENT|DFC} = {cc|19}

where:

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

The syntax for the second attribute is

{YRTHRESH|YRT} = {[-]yy|0}

where:

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

ibi™ FOCUS® Developing Applications

513 | Working With Cross-Century Dates

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

Defining a Field-Level Window in a Master File
In this example, the application requires a different window for two legacy date fields in
the same file.

The DEFCENT and YRTHRESH attributes in the Master File define a window for HIRE_DATE
from 1982 to 2081, and a window for DAT_INC from 1983 to 2082.

The Master File is:

FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $

.

.

.
FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, DFC=19, YRT=83, $

.

.

.

The request is the same one used in the previous example (defining a file-level window in a
Master File):

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

However, the report illustrates the use of two different windows for the two legacy date
fields. For example, the year 82 for HIRE_DATE defaults to the century value 19, since 82 is

ibi™ FOCUS® Developing Applications

514 | Working With Cross-Century Dates

equal to the threshold for the window for this field. The date returned for NEW_HIRE_DATE
is 1982.

The year 82 for DAT_INC assumes the century value 20 (DEFCENT + 1), since 82 is less than
the threshold for the window for this field (83). The date returned for NEW_DAT_INC is
2082.

The partial output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
80/06/02 2080/06/02 82/01/01 2082/01/01
80/06/02 2080/06/02 81/01/01 2081/01/01
81/07/01 2081/07/01 82/01/01 2082/01/01
82/05/01 1982/05/01 82/06/01 2082/06/01
82/05/01 1982/05/01 82/05/01 2082/05/01

.

.

Defining a Field-Level Window in a Master File Used
With MODIFY
This example illustrates the use of field-level DEFCENT and YRTHRESH attributes to define
a window used with MODIFY. To run this example yourself, you need to create a Master File
named DATE and a procedure named DATELOAD.

The Master File describes a segment with 12 date fields of different formats. The first field
is a date format field. The DEFCENT and YRTHRESH attributes included on this field create
a window from 1990 to 2089. The window is required because the input data for the first
date field does not contain century digits, and the default value 19 cannot be assumed.

The Master File looks like this:

FILENAME=DATE, SUFFIX=FOC
SEGNAME=ONE, SEGTYPE=S1
FIELDNAME=D1_YYMD, ALIAS=D1, FORMAT=YYMD, DFC=19, YRT=90, $
FIELDNAME=D2_I6YMD, ALIAS=D2, FORMAT=I6YMD, $
FIELDNAME=D3_I8YYMD, ALIAS=D3, FORMAT=I8, $
FIELDNAME=D4_A6YMD, ALIAS=D4, FORMAT=A6YMD, $

ibi™ FOCUS® Developing Applications

515 | Working With Cross-Century Dates

FIELDNAME=D5_A8YYMD, ALIAS=D5, FORMAT=A8YYMD, $
FIELDNAME=D6_I4YM, ALIAS=D6, FORMAT=I4YM, $
FIELDNAME=D7_YQ, ALIAS=D7, FORMAT=YQ, $
FIELDNAME=D8_YM, ALIAS=D8, FORMAT=YM, $
FIELDNAME=D9_JUL, ALIAS=D9, FORMAT=JUL, $
FIELDNAME=D10_Y, ALIAS=D10, FORMAT=Y, $
FIELDNAME=D11_YY, ALIAS=D11, FORMAT=YY, $
FIELDNAME=D12_MDYY, ALIAS=D12, FORMAT=MDYY, $

The procedure (DATELOAD) creates a FOCUS data source named DATE and loads two
records into it. The first field of the first record contains the 2-digit year 92. The first field of
the second record contains the 2-digit year 88. For details on commands such as CREATE
and MODIFY, and others used in this file, see the Maintaining Databases manual.

The procedure looks like this:

CREATE FILE DATE
MODIFY FILE DATE
FIXFORM D1/8 D2/6 D3/8 D4/6 D5/8 D6/4 D7/4 D8/4 D9/5 D10/2 D11/4 D12/8
MATCH D1

ON NOMATCH INCLUDE
ON MATCH REJECT

DATA
92022900022920000229000229200002290002000100020006000200002292000
88022900022920000229000229200002290002000100020006000200002292000

END

The following request accesses all the fields in the new data source:

TABLE FILE DATE
PRINT *
END

In the report, the year 92 for D1_YYMD defaults to the century value 19, since 92 is greater
than the threshold for the window for this field (90). It is returned as 1992 in the D1_YYMD
column. The year 88 assumes the century value 20 (DEFCENT + 1), because 88 is less than
the threshold. It is returned as 2088 in the D1_YYMD column.

The partial output is:

PAGE 1

D1_YYMD D2_I6YMD D3_I8YYMD D4_A6YMD D5_A8YYMD D6_I4YM D7_YQ

ibi™ FOCUS® Developing Applications

516 | Working With Cross-Century Dates

D8_YM ...
------- -------- --------- -------- --------- ------- ----- --

1992/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1
00/02 ...
2088/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1
00/02 ...

Defining Both File-Level and Field-Level Windows
The following Master File defines windows at both the file and field level:

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=83
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $

.

.

.
FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $

.

.

.

FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
.
.
.

The request is:

DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_EFFECT_DATE/YYMD = EFFECT_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC

ibi™ FOCUS® Developing Applications

517 | Working With Cross-Century Dates

NEW_DAT_INC
END

When the field HIRE_DATE is accessed, the time span 1982 to 2081 is applied. For all other
legacy date fields in the file, such as EFFECT_DATE and DAT_INC, the time span specified at
the file level is applied, that is, 1983 to 2082.

For example, the year 82 for HIRE_DATE is returned as 1982 in the NEW_HIRE_DATE
column, since 82 is equal to the threshold of the window for that particular field. The year
82 for EFFECT_DATE and DAT_INC is returned as 2082 in the columns NEW_EFFECT_DATE
and NEW_DAT_INC, since 82 is less than the threshold of the file-level window (83).

The partial output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC NEW_DAT_
INC
--------- ------------- ----------- --------------- ------- -------

80/06/02 2080/06/02 82/01/01

2082/01/01
80/06/02 2080/06/02 81/01/01

2081/01/01
81/07/01 2081/07/01 82/01/01

2082/01/01
82/05/01 1982/05/01 82/11/01 2082/11/01 82/06/01

2082/06/01
82/05/01 1982/05/01 82/11/01 2082/11/01 82/05/01

2082/05/01
.

Missing date values for NEW_EFFECT_DATE appear as blanks by default. To retrieve the
base date value for NEW_EFFECT_DATE instead of blanks, issue the command

SET DATEDISPLAY = ON

before running the request. The base date value is returned as 1900/12/31. See Defining a
Global Window With SET for sample results.

ibi™ FOCUS® Developing Applications

518 | Working With Cross-Century Dates

Defining a Window for a Virtual Field
The DEFCENT and YRTHRESH parameters on a DEFINE command create a window for a
virtual field. The window is used to interpret date values for the virtual field when the
century is not supplied. You can issue a DEFINE command in either a request or a Master
File.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; the values are always taken from the left side of the DEFINE syntax (that is,
from the left side of the equal sign). If the expression in the DEFINE contains a function
call, the function uses the DEFCENT and YRTHRESH values for the input field. The standard
order of precedence (field level/file level/global level) applies to the DEFCENT and
YRTHRESH values for the input field.

Define a Window for a Virtual Field in a Request
Use standard DEFINE syntax for a request, as described in the Creating Reports manual.
Partial DEFINE syntax is shown here.

On the line that specifies the name of the virtual field, include the DEFCENT and YRTHRESH
parameters and values. The parameters must immediately follow the field format

information.

DEFINE FILE filename
fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =

expression;
.
.
.
END

where:

filename

Is the name of the file for which you are creating the virtual field.

fieldname

Is the name of the virtual field.

ibi™ FOCUS® Developing Applications

519 | Working With Cross-Century Dates

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the
value of the virtual field.

END

Is required to terminate the DEFINE command.

Defining a Window for a Virtual Field in a Request
In the following request, the DEFINE command creates two virtual fields, GLOBAL_HIRE_
DATE and WINDOWED_HIRE_DATE. Both virtual fields are derived from the existing field
HIRE_DATE. The format of HIRE_DATE is I6YMD, which is a legacy date with a 2-digit year.
The virtual fields are date formats with a 4-digit year (YYMD).

ibi™ FOCUS® Developing Applications

520 | Working With Cross-Century Dates

The second virtual field, WINDOWED_HIRE_DATE, has the additional parameters DEFCENT
and YRTHRESH, which define a window from 1982 to 2081. Notice that both DEFCENT and
YRTHRESH are coded, as required.

The request is:

DEFINE FILE EMPLOYEE
GLOBAL_HIRE_DATE/YYMD = HIRE_DATE;
WINDOWED_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
END

Assuming that there are no FDEFCENT and FYRTHRESH file-level settings in the Master File
for EMPLOYEE, the global default settings (DEFCENT = 19, YRTHRESH = 0) are used to
interpret 2-digit years for HIRE_DATE when deriving the value of GLOBAL_HIRE_DATE. For
example, the value of all years for HIRE_DATE (80, 81, and 82) is greater than 0;
consequently they default to 19 for the century and are returned as 1980, 1981, and 1982 in
the GLOBAL_HIRE_DATE column.

For WINDOWED_HIRE_DATE, the window created specifically for that field (1982 to 2081) is
used. The 2-digit years 80 and 81 for HIRE_DATE are less than the threshold for the window
(82); consequently, they are returned as 2080 and 2081 in the WINDOWED_HIRE_DATE
column.

The output is:

PAGE 1

HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
--------- ---------------- ------------------
80/06/02 1980/06/02 2080/06/02
81/07/01 1981/07/01 2081/07/01
82/05/01 1982/05/01 1982/05/01
82/01/04 1982/01/04 1982/01/04
82/08/01 1982/08/01 1982/08/01
82/01/04 1982/01/04 1982/01/04
82/07/01 1982/07/01 1982/07/01
81/07/01 1981/07/01 2081/07/01
82/04/01 1982/04/01 1982/04/01
82/02/02 1982/02/02 1982/02/02

ibi™ FOCUS® Developing Applications

521 | Working With Cross-Century Dates

82/04/01 1982/04/01 1982/04/01
81/11/02 1981/11/02 2081/11/02

Defining a Window for Function Input in a DEFINE
Command
The following sample request illustrates a call to the function AYMD in a DEFINE command.
AYMD adds 60 days to the input field, HIRE_DATE; the output field, SIXTY_DAYS, contains
the result. HIRE_DATE is formatted as I6YMD, which is a legacy date with a 2-digit year.
SIXTY_DAYS is formatted as I8YYMD, which is a legacy date with a 4-digit year.

For details on AYMD, see the Using Functions manual.

DEFINE FILE EMPLOYEE
SIXTY_DAYS/I8YYMD = AYMD(HIRE_DATE, 60, 'I8YYMD');
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE SIXTY_DAYS
END

The function uses the DEFCENT and YRTHRESH values for the input field HIRE_DATE. In this
example, they are set on the field level in the Master File:

FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $

.

.

.

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

ibi™ FOCUS® Developing Applications

522 | Working With Cross-Century Dates

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the
century.

The output is:

PAGE 1

HIRE_DATE SIXTY_DAYS
--------- ----------
80/06/02 2080/08/01
81/07/01 2081/08/30
82/05/01 1982/06/30
82/01/04 1982/03/05
82/08/01 1982/09/30
82/01/04 1982/03/05
82/07/01 1982/08/30
81/07/01 2081/08/30
82/04/01 1982/05/31
82/02/02 1982/04/03
82/04/01 1982/05/31
81/11/02 2082/01/01

Define a Window for a Virtual Field in a Master
File
Use the standard DEFINE syntax for a Master File, as discussed in your documentation on
describing data in the Describing Data manual. Partial DEFINE syntax is shown here.

The parameters DEFCENT and YRTHRESH must immediately follow the field format
information.

DEFINE fieldname/[format] [{DEFCENT|DFC} {cc|19}
{YRTHRESH|YRT} {[-]yy|0}] = expression;$

where:

fieldname

Is the name of the virtual field.

ibi™ FOCUS® Developing Applications

523 | Working With Cross-Century Dates

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the
value of the virtual field.

Defining a Window for a Virtual Field in a Master File
In the following example, the DEFINE command in a Master File creates a virtual field
named NEW_HIRE_DATE. It is derived from the existing field HIRE_DATE. The format of
HIRE_DATE is I6YMD, which is a legacy date with a 2-digit year. NEW_HIRE_DATE is a date
format with a 4-digit year (YYMD).

The parameters DEFCENT and YRTHRESH on the DEFINE command create a window from
1982 to 2081, which is used to interpret all 2-digit years for the virtual field. Notice that
both DEFCENT and YRTHRESH are coded, as required.

ibi™ FOCUS® Developing Applications

524 | Working With Cross-Century Dates

The field-level window takes precedence over any global settings in effect. There is no file-
level setting in the Master File.

The Master File is:

FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $

.

.

.
DEFINE NEW_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;$

The following request generates the values in the sample report:

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
END

Since the 2-digit years 80 and 81 are less than the threshold 82, the century assumes the
value of DEFCENT + 1 (20), and they are returned as 2080 and 2081 in the NEW_HIRE_DATE
column. The 2-digit year 82 is equal to the threshold and therefore defaults to the value of
DEFCENT (19). It is returned as 1982.

The output is:

PAGE 1

HIRE_DATE NEW_HIRE_DATE
--------- -------------
80/06/02 2080/06/02
81/07/01 2081/07/01
82/05/01 1982/05/01
82/01/04 1982/01/04
82/08/01 1982/08/01
82/01/04 1982/01/04
82/07/01 1982/07/01
81/07/01 2081/07/01
82/04/01 1982/04/01
82/02/02 1982/02/02

ibi™ FOCUS® Developing Applications

525 | Working With Cross-Century Dates

82/04/01 1982/04/01
81/11/02 2081/11/02

Defining a Window for a Calculated Value
Use the DEFCENT and YRTHRESH parameters on a COMPUTE command in a report request
to create a window for a temporary field that is calculated from the result of a PRINT, LIST,
SUM, or COUNT command. The window is used to interpret a date value for that field when
the century is not supplied.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; the values are always taken from the left side of the COMPUTE syntax (that is,
from the left side of the equal sign). If the expression in the COMPUTE contains a function
call, the function uses the DEFCENT and YRTHRESH values for the input field. The standard
order of precedence (field level/file level/global level) applies to the DEFCENT and
YRTHRESH values for the input field.

You can also use the parameters on a COMPUTE command in a MODIFY or Maintain
procedure, or on a DECLARE command in Maintain. For details on the use of the
parameters in Maintain, see the Maintaining Databases manual.

Define a Window for a Calculated Value in a
Report
Use standard COMPUTE syntax, as described in the Creating Reports manual. Partial
COMPUTE syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field
format information.

TABLE FILE filename
command
[AND] COMPUTE fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT}
{[-]yy|0}] =

expression;

ibi™ FOCUS® Developing Applications

526 | Working With Cross-Century Dates

.

.

.
END

where:

filename

Is the name of the file for which you are creating the calculated value.

command

Is a command such as PRINT, LIST, SUM, or COUNT.

fieldname

Is the name of the calculated value.

format

Is a date format such as DMY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

ibi™ FOCUS® Developing Applications

527 | Working With Cross-Century Dates

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the
value of the temporary field.

END

Is required to terminate the request.

Define a Window for a Calculated Value in a
MODIFY Request
Use standard MODIFY and COMPUTE syntax, as described in the Maintaining Databases
manual; partial syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field
format information.

MODIFY FILE filename
.
.
.
COMPUTE

fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
expression;

.

.

.
[END]

where:

filename

Is the name of the file you are modifying.

ibi™ FOCUS® Developing Applications

528 | Working With Cross-Century Dates

fieldname

Is the name of the field being set to the value of the expression.

format

Is a date format such as MDY or YYMD.

DEFCENT

Is the parameter for the default century.

cc

Is the century for the start date of the window. If you do not supply a value, cc defaults
to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT and
YRTHRESH unless YRTHRESH is negative. In that case, only code a value for YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold default
to the value of DEFCENT for the century. Two-digit years less than the threshold assume
the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by subtracting
that number from the current year, and DEFCENT is automatically calculated. The start
date is automatically incremented by one at the beginning of each successive year.

expression

Is a valid arithmetic or logical expression, function, or function that determines the
value of fieldname.

END

Terminates the request. Do not add this command if the request contains PROMPT
statements.

ibi™ FOCUS® Developing Applications

529 | Working With Cross-Century Dates

Defining a Window for a Calculated Value
In the following request, the parameters DEFCENT and YRTHRESH on the COMPUTE
command define a window from 1999 to 2098. Notice that both DEFCENT and YRTHRESH
are coded, as required. The window is applied to the field created by the COMPUTE
command, LATEST_DAT_INC.

DAT_INC is formatted as I6YMD, which is a legacy date with a 2-digit year. LATEST_DAT_INC
is a date format with a 4-digit year (YYMD). The prefix MAX retrieves the highest value of
DAT_INC.

The request is:

TABLE FILE EMPLOYEE
SUM SALARY AND COMPUTE

LATEST_DAT_INC/YYMD DFC 19 YRT 99 = MAX.DAT_INC;
END

The highest value of DAT_INC is 82/08/01. Since the year 82 is less than the threshold 99, it
assumes the value 20 for the century (DEFCENT + 1).

The output is:

PAGE 1

SALARY LATEST_DAT_INC
------ --------------

$332,929.00 2082/08/01

Defining a Window for Function Input in a COMPUTE
Command
The following sample request illustrates a call to the function JULDAT in a COMPUTE
command. JULDAT converts dates from Gregorian format (year/month/day) to Julian
format (year/day). For century display, dates in Julian format are 7-digit numbers. The first
4 digits are the century. The last three digits represent the number of days, counting from
January 1.

For details on JULDAT, see the Using Functions manual.

ibi™ FOCUS® Developing Applications

530 | Working With Cross-Century Dates

In the request, the input field is HIRE_DATE. The function converts it to Julian format and
returns it as JULIAN_DATE. HIRE_DATE is formatted as I6YMD, which is a legacy date with a
2-digit year. JULIAN_DATE is formatted as I7, which is a legacy date with a 4-digit year.

TABLE FILE EMPLOYEE
PRINT DEPARTMENT HIRE_DATE
AND COMPUTE

JULIAN_DATE/I7 = JULDAT(HIRE_DATE, JULIAN_DATE);
BY LAST_NAME BY FIRST_NAME
END

The function uses the FDEFCENT and FYRTHRESH values for the input field HIRE_DATE. In
this example, they are set on the file level in the Master File:

FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $

.

.

.

The function inputs a 2-digit year, which is windowed. It then outputs a 4-digit year that
includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the
century.

The output follows. By default, the second occurrence of the last name SMITH displays as
blanks.

PAGE 1

LAST_NAME FIRST_NAME DEPARTMENT HIRE_DATE JULIAN_DATE
--------- ---------- ---------- --------- -----------
BANNING JOHN PRODUCTION 82/08/01 1982213
BLACKWOOD ROSEMARIE MIS 82/04/01 1982091
CROSS BARBARA MIS 81/11/02 2081306
GREENSPAN MARY MIS 82/04/01 1982091
IRVING JOAN PRODUCTION 82/01/04 1982004
JONES DIANE MIS 82/05/01 1982121

ibi™ FOCUS® Developing Applications

531 | Working With Cross-Century Dates

MCCOY JOHN MIS 81/07/01 2081182
MCKNIGHT ROGER PRODUCTION 82/02/02 1982033
ROMANS ANTHONY PRODUCTION 82/07/01 1982182
SMITH MARY MIS 81/07/01 2081182

RICHARD PRODUCTION 82/01/04 1982004
STEVENS ALFRED PRODUCTION 80/06/02 2080154

Additional Support for Cross-Century Dates
The following features apply to the use of dates in your applications.

Default Date Display Format
The default date display format is MM/DD/CCYY, where MM is the month; DD is the day of
the month; CC is the first two digits of a 4-digit year, indicating the century; and YY is the
last two digits of a 4-digit year.

For example:

02/11/1999

For a table that fully describes the display of a date based on the specified format and user
input, see the Describing Data manual.

Date Display Options
The following date display options are available:

l You can display a row of data, even though it contains an invalid date field, using the
command SET ALLOWCVTERR. The invalid date field is returned as the base date or
as blanks, depending on other settings. For details, see your documentation on the
SET command. This feature applies to non-FOCUS data sources when converting
from the way data is stored (ACTUAL attribute) to the way it is formatted (FORMAT or
USAGE attribute).

ibi™ FOCUS® Developing Applications

532 | Working With Cross-Century Dates

l If a date format field contains the value zero (0), you can display its base date using
the command SET DATEDISPLAY = ON. By default, the value zero in a date format
field such as YYMD is returned as a blank. For details, see Customizing Your
Environment.

l You can display the current date with a 4-digit year using the Dialogue Manager
system variables &YYMD, &MDYY, and &DMYY. The system variable &DATEfmt displays
the current date as specified by the value of fmt, which is a combination of allowable
date options, including a 4-digit year (for example, &DATEYYMD). For details, see
Managing Flow of Control in an Application.

System Date Masking
You can temporarily alter the system date for application testing and debugging using the
command SET TESTDATE. With this feature, you can simulate clock settings beyond the
year 1999 to determine the way your program will behave. For details, see Customizing
Your Environment.

Date Functions
The date functions supplied with your software work across centuries. Many of them
facilitate date manipulation. For details, see the Using Functions manual.

Date Conversion
You can convert a legacy date to a date format in a FOCUS data source using the option
DATE NEW on the REBUILD command. For details, see the Maintaining Databases manual.

Century and Threshold Information
The ALL option, in conjunction with the HOLD option, on the CHECK FILE command
includes file-level and field-level default century and year thresholds as specified in a
Master File. For details, see the Describing Data manual.

../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926
../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926
../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926
../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926

ibi™ FOCUS® Developing Applications

533 | Working With Cross-Century Dates

Date Time Stamp
The year in the time stamp for a FOCUS data source is physically written to page one of the
file in the format CCYY.

ibi™ FOCUS® Developing Applications

534 | Euro Currency Support

Euro Currency Support
The following topics describe how to create and use a currency data source to convert to
and from the new euro currency.

Integrating the Euro Currency
With the introduction of the euro currency, businesses need to maintain books in two
currencies, add new fields to the data source designs, and perform new types of currency
conversions. You can perform currency conversions according to the rules specified by the
European Union. To do this:

1. Create a currency data source with the currency IDs and exchange rates you will use.
See Creating the Currency Data Source.

2. Identify fields in your data sources that represent currency data. See Identifying
Fields That Contain Currency Data.

3. Activate your currency data source. See Activating the Currency Data Source.

4. Perform currency conversions. See Processing Currency Data.

Converting Currencies
Euro currency was introduced in Euroland on January 1, 2002, and on July 1, 2002 it
became the only legal tender. All monetary transactions now occur in euro currency.

The European Union has set fixed exchange rates between the euro and the traditional
national currency in each of the 12 adopting member nations. Although 12 or more
currencies in the European Union use the euro, more than 100 currencies have a
recognized status worldwide. In addition, you may need to define custom currencies for
other applications.

While the exchange rates within Euroland remain fixed, exchange rates between the euro
and non-euro countries continue to vary freely and, in fact, several rates may be in use at
one time (for example, actual and budgeted rates).

ibi™ FOCUS® Developing Applications

535 | Euro Currency Support

You identify your currency codes and rates by creating a currency data source. For more
information, see Creating the Currency Data Source.

Currency Conversion Rules
The European Union has established the following rules for currency conversions:

l The exchange rate must be specified as a decimal value, r, with six significant digits.

This rate will establish the following relationship between the euro and the particular
national currency:

1 euro = r national units

l To convert from the euro to the national unit, multiply by r and round the result to
two decimal places.

l To convert from the national currency to the euro, divide by r and round the result to
two decimal places.

l To convert from one national currency to another, first convert from one national
unit to the euro, rounding the result to three decimal places (your application rounds
to exactly three decimal places). Then convert from the euro to the second national
unit, rounding the result to two decimal places. This two-step conversion process is
triangulation.

Performing Triangulation
The following example illustrates triangulation. In this case, 10 US dollars (USD) are
converted to French francs (FRF). The exchange rate for USD to euros (EUR) is 1.17249. The
exchange rate for FRF to euros is 6.55957.

l The 10 USD are converted to EUR by dividing the 10 USD by the EUR exchange rate of
0.8840:

EUR = 10 / 0.8840

This results in 11.3122 euros.

l The euros are converted to FRF by multiplying the above result by the exchange rate

ibi™ FOCUS® Developing Applications

536 | Euro Currency Support

of FRF for euros (6.55957):

FRF = 11.3122 * 6.55957

The result is 74.26. FRF. This means 74.26 FRF are equivalent to 10 USD.

Creating the Currency Data Source
Supply values for each type of currency you need.

You must supply the following values in your currency data source:

l A three-character code to identify the currency, such as USD for US dollars or BEF for
Belgian francs. (For a partial list of recognized currency codes, see Creating the
Currency Data Source.)

l One or more exchange rates for the currency.

There is no limit to the number of currencies you can add to your currency data source,
and the currencies you can define are not limited to official currencies. Therefore, the
currency data source can be fully customized for your applications.

The currency data source can be any type of data source your application can access (for
example, FOCUS, FIX, DB2, or VSAM). The currency Master File must have one field that
identifies each currency ID you will use and one or more fields to specify the exchange
rates.

We strongly recommend that you create a separate data source for the currency data
rather than adding the currency fields to another data source. A separate currency data
source enhances performance and minimizes resource utilization because the currency
data source is loaded into memory before you perform currency conversions.

Create a Currency Data Source
FILE = name, SUFFIX = suffix,$
FIELD = CURRENCY_ID,, FORMAT = A3, [ACTUAL = A3 ,]$
FIELD = rate_1,, FORMAT = {D12.6|numeric_format1},[ACTUAL = A12,]$

.

ibi™ FOCUS® Developing Applications

537 | Euro Currency Support

.

.
FIELD = rate_n,, FORMAT = {D12.6|numeric_formatn}, [ACTUAL =
A12,]$

where:

name

Is the name of the currency data source.

suffix

Is the suffix of the currency data source. The currency data source can be any type of
data source your application can access.

CURRENCY_ID

Is the required field name. The values stored in this field are the three-character codes
that identify each currency, such as USD for U.S. dollars. Each currency ID can be a
universally recognized code or a user-defined code.

Note: The code EUR is automatically recognized. You should not store this
code in your currency data source. See Creating the Currency Data Source for
a list of common currency codes.

rate_1...rate_n

Are types of rates (such as BUDGET, FASB, ACTUAL) to be used in currency conversions.
Each rate is the number of national units that represent one euro.

numeric_format1...numeric_formatn

Are the display formats for the exchange rates. Each format must be numeric. The
recommended format, D12.6, ensures that the rate is expressed with six significant digits
as required by the European Union conversion rules. Do not use Integer format (I).

ACTUAL An

Is required only for non-FOCUS data sources.

ibi™ FOCUS® Developing Applications

538 | Euro Currency Support

Note: The maximum number of fields in the currency data source must not
exceed 255 (that is, the CURRENCY_ID field plus 254 currency conversion
fields).

Sample Currency Codes
On January 1, 1999, Euroland set exchange rates between the euro and other currencies.
Countries included in Euroland as of that date are marked with an asterisk (*). The rates
are fixed and will not change, although the rates for other countries change over time.

Currency Name Currency Code Rate

American dollar USD .974298

Austrian schilling ATS 13.7603

Belgian franc* BEF 40.3399

British pound GBP .625152

Canadian dollar CAD 1.54504

Danish krone DKK 7.42659

Dutch guilder* NLG 2.20371

Deutsche mark* DEM 1.95583

Euro EUR 1

Finnish markka FIM 5.94573

French franc* FRF 6.55957

Greek drachma* GRD 340.750

ibi™ FOCUS® Developing Applications

539 | Euro Currency Support

Currency Name Currency Code Rate

Irish pound* IEP 0.787564

Italian lira* ITL 1936.27

Japanese yen or Chinese
yuan

JPY 118.377

Luxembourg franc* LUF 40.3399

Norwegian kroner NOK 7.34864

Portuguese escudo* PTE 200.482

Spanish peseta* ESP 166.386

Swedish krona SEK 9.20906

Swiss franc CHF 1/4634

Specifying Currency Codes and Rates in a Master
File
The following Master File for a comma-delimited currency data source specifies two rates
for each currency, ACTUAL and BUDGET:

FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID,, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

The following is sample data for the currency data source defined by this Master File:

FRF, 6.55957, 6.50000,$
USD, 0.974298, 1.00000,$
BEF, 40.3399, 41.00000,$

ibi™ FOCUS® Developing Applications

540 | Euro Currency Support

Identifying Fields That Contain Currency Data
After you have created your currency data source, you must identify the fields in your data
sources that represent currency values. To designate a field as a currency-denominated
value (a value that represents a number of units in a specific type of currency) add the
CURRENCY attribute to one of the following:

l The FIELD specification in the Master File.

l The left side of a DEFINE or COMPUTE.

Identify a Currency Value
Use the following syntax to identify a currency-denominated value.

In a Master File

FIELD = currfield,, FORMAT = numeric_format, ..., CURR =
{curr_id|codefield} ,$
DEFINE currfield/numeric_format CURR curr_id = expression ;$
DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END
COMPUTE currfield/numeric_format CURR curr_id = expression ;

In a DEFINE in the Master File

DEFINE currfield/numeric_format CURR curr_id = expression ;$

In a DEFINE FILE command

DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END

In a COMPUTE command

COMPUTE currfield/numeric_format CURR curr_id = expression ;

where:

ibi™ FOCUS® Developing Applications

541 | Euro Currency Support

currfield

Is the name of the currency-denominated field.

numeric_format

Is a numeric format. Depending on the currency denomination involved, the
recommended number of decimal places is either two or zero. Do not use I or F format.

CURR

Indicates that the field value represents a currency-denominated value. CURR is an
abbreviation of CURRENCY, which is the full attribute name.

curr_id

Is the three-character currency ID associated with the field. In order to perform currency
conversions, this ID must either be the value EUR or match a CURRENCY_ID value in
your currency data source.

codefield

Is the name of a field, qualified if necessary, that contains the currency ID associated
with currfield. The code field should have a format A3 or longer and is interpreted as
containing the currency ID value in its first three bytes. For example:

FIELD = PRICE,, FORMAT = P12.2C, ..., CURR = TABLE.FLD1,$
.
.
.

FIELD = FLD1,, FORMAT = A3, ...,$

The field named FLD1 contains the currency ID for the field named PRICE.

filename

Is the name of the file for which this field is defined.

expression

Is a valid expression.

ibi™ FOCUS® Developing Applications

542 | Euro Currency Support

Identifying a Currency-Denominated Field
The following Master File contains the description of a field named PRICE that is
denominated in U.S. dollars.

FILE=CURRDATA,SUFFIX=COM,$
FIELD=PRICE, FORMAT=P17.2 , ACTUAL=A5, CURR=USD,$
.
.
.

Activating the Currency Data Source
Before you can perform currency conversions, you must specify the currency data source
by setting the EUROFILE parameter with the SET command. By default, the EUROFILE
parameter is not set.

The SET command can be issued at the FOCUS command prompt, in a procedure, or in any
supported profile. It cannot be set within a report request.

After a data source is activated, you can access a different currency data source by
reissuing the SET command.

Note: The EUROFILE parameter must be set alone. For example, appending an
additional SET parameter will cause the additional parameter setting to be lost.

Activate Your Currency Data Source
SET EUROFILE = {ddname|OFF}

where:

ibi™ FOCUS® Developing Applications

543 | Euro Currency Support

ddname

Is the name of the Master File for the currency data source. The ddname must refer to a
data source known to and accessible by your application in read-only mode.

OFF

Deactivates the currency data source and removes it from memory.

EUROFILE Error Messages and Notes
l Issuing the SET EUROFILE command when the currency data source Master File does

not exist generates the following error message:

(FOC205) THE DESCRIPTION CANNOT BE FOUND FOR FILE NAMED: ddname

l Issuing the SET EUROFILE command when the currency Master File specifies a FOCUS
data source and the associated FOCUS data source does not exist generates the

following error message:

(FOC036) NO DATA FOUND FOR THE FOCUS FILE NAMED: name

Processing Currency Data
After you have created your currency data source, identified the currency-denominated
fields in your data sources, and activated your currency data source, you can perform
currency conversions.

Each currency ID in your currency data source generates a virtual conversion function
whose name is the same as its currency ID. For example, if you added BEF to your currency
data source, a virtual BEF currency conversion function will be generated.

The euro function, EUR, is supplied automatically with your application. You do not need to
add the EUR currency ID to your currency data source.

The result of a conversion is calculated with very high precision, 31 to 36 significant digits,
depending on platform. The precision of the final result is always rounded to two decimal
places. In order to display the result to the proper precision, its format must allow at least
two decimal places.

ibi™ FOCUS® Developing Applications

544 | Euro Currency Support

Process Currency Data
In a procedure

DEFINE FILE filename
result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);
END

or

COMPUTE result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);

In a Master File

DEFINE result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);$

where:

filename

Is the name of the file for which this field is defined.

result

Is the converted currency value.

format

Is a numeric format. Depending on the currency denomination involved, the
recommended number of decimal places is either two or zero. The result will always be
rounded to two decimal places, which will display if the format allows at least two
decimal places. Do not use an Integer or Floating Point format.

curr_id

Is the currency ID of the result field. This ID must be the value EUR or match a currency
ID in your currency data source. Any other value generates the following message:

(FOC263) EXTERNAL FUNCTION OR LOAD MODULE NOT FOUND: curr_id

ibi™ FOCUS® Developing Applications

545 | Euro Currency Support

Note: The CURR attribute on the left side of the DEFINE or COMPUTE
identifies the result field as a currency-denominated value which can be
passed as an argument to a currency function in subsequent currency
calculations. Adding this attribute to the left side of the DEFINE or COMPUTE
does not invoke any format or value conversion on the calculated result.

infield

Is a currency-denominated value. This input value will be converted from its original
currency to the curr_id denomination. If the infield and result currencies are the same,
no calculation is performed and the result value is the same as the infield value.

rate1

Is the name of a rate field from the currency data source. The infield value is divided by
the rate1 value of the currency to produce the equivalent number of euros.

If rate2 is not specified in the currency calculation and triangulation is required, this
intermediate result is then multiplied by the result currency rate1 value to complete the
conversion.

In certain cases, you may need to provide different rates for special purposes. In these
situations you can specify any field or numeric constant for rate1 as long as it indicates
the number of units of the infield currency denomination that equals one euro.

rate2

Is the name of a rate field from the currency data source. This argument is only used for
those cases of triangulation in which you need to specify different rate fields for the
infield and result currencies. It is ignored if the euro is one of the currencies involved in
the calculation.

The number of euros that was derived using rate1 is multiplied by the result currency
rate2 value to complete the conversion.

In certain cases, you may need to provide different rates for special purposes. In these
situations you can specify any field or numeric constant for rate2 as long as it indicates
the number of units of the result currency denomination that equals one euro.

ibi™ FOCUS® Developing Applications

546 | Euro Currency Support

Currency Calculation Error Messages
Issuing a report request against a Master File that specifies a currency code not listed in
the active currency data source generates the following message:

(FOC1911) CURRENCY IN FILE DESCRIPTION NOT FOUND IN DATA

A syntax error or undefined field name in a currency conversion expression generates the
following message:

(FOC1912) ERROR IN PARSING CURRENCY STATEMENT

Using the Currency Conversion Function
Assume that the currency data source contains the currency IDs USD and BEF, and that
PRICE is denominated in Belgian francs as follows:

FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

l The following example converts PRICE to euros and stores the result in PRICE2 using
the BUDGET conversion rate for the BEF currency ID:

COMPUTE PRICE2/P17.2 CURR EUR = EUR(PRICE, BUDGET);

l This example converts PRICE from Belgian francs to US dollars using the triangulation
rule:

DEFINE PRICE3/P17.2 CURR USD = USD(PRICE, ACTUAL);$

First PRICE is divided by the ACTUAL rate for Belgian francs to derive the number of
euros rounded to three decimal places. Then this intermediate value is multiplied by
the ACTUAL rate for US dollars and rounded to two decimal places.

l The following example uses a numeric constant for the conversion rate:

DEFINE PRICE4/P17.2 CURR EUR = EUR(PRICE,5);$

ibi™ FOCUS® Developing Applications

547 | Euro Currency Support

l The next example uses the ACTUAL rate for Belgian francs in the division and the
BUDGET rate for US dollars in the multiplication:

DEFINE PRICE5/P17.2 CURR USD = USD(PRICE, ACTUAL, BUDGET);$

Converting U.S. Dollars to Euros, French Francs, and
Belgian Francs
The following is an example of converting U.S. dollars to Euros, French Francs, and Belgian
Francs.

1. Create a currency data source that identifies the currency and one or more exchange
rates. (See Creating the Currency Data Source for details.) The following sample data
source is named CURRCODE:

FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID,, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

2. Create a data source that contains the values to be converted. (See Identifying Fields
That Contain Currency Data for details.) The following sample data source is named
CURRDATA:

FILE=CURRDATA,SUFFIX=COM,$
FIELD=PRICE, FORMAT=P17.2 , ACTUAL=A5, CURR=USD,$

3. Create a request that uses the currency data source to convert the currency values
contained in the data source containing these values. The following procedure
converts PRICE to euros, French francs, and Belgian francs. The numbers on the left
correspond to the notes explaining the code.

-* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER z/OS
1. -* DYNAM ALLOC FILE CURRCODE DA USER1.FOCEXEC.DATA(CURRCODE) SHR REU
2. -* DYNAM ALLOC FILE CURRDATA DA USER1.FOCEXEC.DATA(CURRDATA) SHR REU

-* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER WINDOWS NT
1. FILEDEF CURRCODE DISK GGDEMO/CURRCODE.COM
2. FILEDEF CURRCODE DISK GGDEMO/CURRDATA.COM

ibi™ FOCUS® Developing Applications

548 | Euro Currency Support

3. SET EUROFILE = CURRCODE
DEFINE FILE CURRDATA

4. PRICEEUR/P17.2 CURR EUR = EUR(PRICE, ACTUAL);
END
TABLE FILE CURRDATA
PRINT PRICE PRICEEUR AND COMPUTE

5. PRICEFRF/P17.2 CURR FRF = FRF(PRICE, ACTUAL);
PRICEBEF/P17.2 CURR BEF = BEF(PRICE, ACTUAL);
END

The report request executes as follows:

1. The FILEDEF or DYNAM command informs the operating system of the location of the
CURRCODE data source.

2. The FILEDEF command informs the operating system of the location of the
CURRDATA data source.

3. The SET command specifies the currency data source as CURRCODE.

4. This line calls the EUR function, which converts U.S. dollars to euros.

5. The next two lines are the conversion functions that convert euros into the
equivalent in French and Belgian Francs.

The output is:

PRICE PRICEEUR PRICEFRF PRICEBEF
----- -------- -------- --------
5.00 4.26 27.97 172.01
6.00 5.12 33.57 206.42

40.00 34.12 223.78 1376.20
10.00 8.53 55.95 344.06

You cannot use the derived euro value PRICEEUR in a conversion from USD to BEF.
PRICEEUR has two decimal places (P17.2), not three, as the triangulation rules require.

Querying the Currency Data Source in Effect
You can issue a query to determine what currency data source is in effect. To do this, issue
? SET ALL or ? SET EUROFILE.

ibi™ FOCUS® Developing Applications

549 | Euro Currency Support

Determine the Currency Data Source in Effect
? SET EUROFILE

Determining the Currency Data Source in Effect
Assume the currency data source is named CURRCODE.

If you issue the following commands

SET EUROFILE = CURRCODE
? SET EUROFILE

the output is:

EUROFILE CURRCODE

Punctuating Numbers
Countries differ in how they punctuate numbers, and you can reflect these differences in
your reports using Continental Decimal Notation (CDN) which is specified with the CDN SET
parameter. The CDN SET allows you to choose to punctuate numbers with a combination
of commas, decimals, spaces, and single quotation marks.

The CDN SET parameter can be used in a report request but is not supported in DEFINE or
COMPUTE commands.

Note: The punctuation specified by the CDN parameter also determines the
punctuation used in numbers affected by the CENT-ZERO SET parameter.

ibi™ FOCUS® Developing Applications

550 | Euro Currency Support

Determine the Punctuation of Large Numbers
SET CDN = option

where:

option

Determines the punctuation used in numeric notation. The options are:

l ON, which uses CDN. For example, the number 3,045,000.76 is represented as
3.045.000,76.

l OFF, which turns CDN off. For example, the number 3,045,000.76 is represented as
3,045,000.76. This value is the default.

l SPACE, which separates groups of three significant digits with a space instead of a
comma, and marks a decimal position with a comma instead of a period. For
example, the number 3,045,000.76 is represented as 3 045 000,76.

l QUOTE, which separates groups of three significant digits with a single quotation
mark (') instead of a comma, and marks a decimal position with a comma instead
of a period. For example, the number 3,045,000.76 is represented as 3'045'000,76.

l QUOTEP, which separates groups of three significant digits with a single quotation
mark (') instead of a comma, and marks a decimal position with a period. For

example, the number 3,045,000.76 is represented as 3'045'000.76.

Displaying Numbers Using Continental Decimal
Notation
The following table shows how 1234.56 is displayed, depending on the setting of CDN.

CDN Setting Result

OFF 1,234.56

ibi™ FOCUS® Developing Applications

551 | Euro Currency Support

CDN Setting Result

ON 1.234,56

SPACE 1 234,56

QUOTE 1'234,56

QUOTEP 1'234.56

Determining the Punctuation of Large Numbers
In the following request, CDN is set to ON which punctuates numbers using a period to
separate thousands, and a comma to separate decimals.

SET CDN = ON
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME CURR_SALEND

The output is:

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------

STEVENS ALFRED $11.000,00
SMITH MARY $13.200,00
JONES DIANE $18.480,00
JONES DIANE $17.750,00
BANNING JOHN $29.700,00
IRVING JOAN $26.862,00
IRVING JOAN $24.420,00
ROMANS ANTHONY $21.120,00
MCCOY JOHN $18.480,00
BLACKWOOD ROSEMARIE $21.780,00
MCKNIGHT ROGER $16.100,00
MCKNIGHT ROGER $15.000,00
CROSS BARBARA $27.062,00
CROSS BARBARA $25.775,00

ibi™ FOCUS® Developing Applications

552 | Euro Currency Support

Selecting an Extended Currency Symbol
You can select a currency symbol for display in report output regardless of the default
currency symbol configured for National Language Support (NLS). Use the extended
currency symbol format in place of the floating dollar (M) or non-floating dollar (N) display
option. When you use the floating dollar (M) or non-floating dollar (N) display option, the
currency symbol associated with the default code page is displayed. For example, when
you use an American English code page, the dollar sign is displayed.

Note: You can use the SET CURRSYMB command to control which symbol
displays for the M and N options.

The extended currency symbol format allows you to display a symbol other than the dollar
sign. For example, you can display the symbol for a United States dollar, a British pound, a
Japanese yen, or the euro. Extended currency symbol support is available for numeric
formats (I, D, F, and P).

Use the following character combinations as the final two characters in any numeric
display format:

Display Option Description Example

!d Fixed dollar sign. D12.2!d

:d Fixed dollar sign. D12.2:d

!D Floating dollar sign. D12.2!D

:D Floating dollar sign. D12.2:D

!e Fixed euro symbol. F9.2!e

:e Fixed euro symbol. F9.2:e

!E Floating euro symbol on the
left side.

F9.2!E

:E Floating euro symbol on the
left side.

F9.2:E

ibi™ FOCUS® Developing Applications

553 | Euro Currency Support

Display Option Description Example

!F Floating euro symbol on the
right side.

F9.2!F

:F Floating euro symbol on the
right side.

F9.2:F

!l Fixed British pound sign. D12.1!l

:l Fixed British pound sign. D12.1:l

!L Floating British pound sign. D12.1!L

:L Floating British pound sign. D12.1:L

!y Fixed Japanese yen symbol. I9!y

:y Fixed Japanese yen symbol. I9:y

!Y Floating Japanese yen
symbol.

I9!Y

:Y Floating Japanese yen
symbol.

I9:Y

Note: The colon (:) is equivalent to the exclamation point (!), however, only the
colon is invariant across code pages, so using the colon is recommended.

Extended Currency Symbol Formats
The following guidelines apply:

l A format specification cannot be longer than eight characters.

l The extended currency option must be the last option in the format.

l The extended currency symbol format cannot include the floating (M) or non-floating

ibi™ FOCUS® Developing Applications

554 | Euro Currency Support

(N) display option.

l A non-floating currency symbol is displayed only on the first row of a report page. If
you use field-based reformatting (as in the example that follows) to display multiple
currency symbols in a report column, only the symbol associated with the first row is
displayed. In this case, do not use non-floating currency symbols.

l Lowercase letters are transmitted as uppercase letters by the terminal I/O
procedures. Therefore, the fixed extended currency symbols can only be specified in
a procedure.

l Extended currency symbol formats can be used with fields in floating point, decimal,
packed, and integer formats. Alphanumeric, dynamic, and variable character formats
cannot be used.

Select an Extended Currency Symbol
numeric_format{:|!}option

where:

numeric_format

Is a valid numeric format (data type I, D, F, or P).

{:|!}

Either : or ! is required, but only the colon is invariant across code pages.

option

Determines the currency symbol that is displayed, and whether the symbol is floating or
non-floating. Possible values are:

d displays a non-floating dollar sign.

D displays a floating dollar sign.

e displays a non-floating euro symbol.

E displays a floating euro symbol on the left side.

F displays a floating euro symbol on the right side.

l displays a non-floating British pound sterling symbol.

ibi™ FOCUS® Developing Applications

555 | Euro Currency Support

L displays a floating British pound sterling symbol.

y displays a non-floating Japanese yen symbol.

Y displays a floating Japanese yen symbol.

ibi™ FOCUS® Developing Applications

556 | Designing Windows With Window Painter

Designing WindowsWith Window Painter
The following topics describe how to create FOCUS menus and windows that work with
FOCEXECs.

Introduction
FOCUS Window Painter is a tool that helps you design and create your own menus and
screens for attractive and easy-to-use applications.

Many window types and features are available, and you can implement horizontal menus
and multi-input windows as part of your FOCUS application. Horizontal menus can also
have pull-down menus associated with each menu item.

You can perform a string search in an active window by entering any pattern followed by a
blank and pressing Enter. Within the pattern:

l An asterisk (*) is a multiple character wildcard.

l A question mark (?) is a single character wildcard.

l An equal sign (=) repeats the last string.

FOCUS tries to locate the line matching the pattern starting from the line following the
current line. The search concludes at the line preceding the current line. If no match is
found, a beep sounds and the cursor remains at the current position.

The windows you can design with FOCUS Window Painter look just like the menus and
screens you see in the FOCUS Talk Technologies, such as TableTalk and PlotTalk, but you
can customize each to fit your application. You can design user-friendly menus and display
convenient and eye-catching instructions onscreen.

FOCUS Window Painter itself guides you step by step, using windows like those you
created.

On the windows you create, you can prompt users to:

l Select menu items from a list.

l Enter data.

ibi™ FOCUS® Developing Applications

557 | Designing Windows With Window Painter

l Select from automatically generated lists of available files and field names.

l Register a choice by pressing a function key.

You can also simply display explanations and instructions.

Window Painter is flexible enough to design the many different types of windows you
might need for any application written with FOCUS.

You can also upload window files from FOCUS running in one operating environment, such
as PC/FOCUS, and edit them using Window Painter for use on another operating
environment, such as z/OS.

How Do Window Applications Work?
Window Painter stores the windows you design in window files. Window files work in
conjunction with FOCEXEC procedures that use Dialogue Manager.

There are two major parts in any window application, each of which is a step for the
developer:

l The windows, created with Window Painter, which users see.

l The Dialogue Manager FOCEXEC.

You can invoke Window Painter to create and edit windows by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

You can invoke the Window facility in your FOCEXEC by including the Dialogue Manager
command -WINDOW in the FOCEXEC. The -WINDOW command provides the name of the
window file, and the name of the individual window that should be displayed first. When
the -WINDOW command is executed by Dialogue Manager, control in the FOCEXEC passes
to the Window facility.

The user is moved through the window file by goto values. A goto value tells the Window
facility which window to display next.

You specify goto values when creating the windows with Window Painter. When your
window is a menu with several items, you may assign a different goto value for each menu
item, so that the next window depends on the user's selection.

ibi™ FOCUS® Developing Applications

558 | Designing Windows With Window Painter

When you create the windows, you also specify return values. As with goto values, you may
assign a different return value to each item on a menu. Return values are collected as the
user moves through the windows, and are substituted for "amper variables" which can be
used later in the window file or in the FOCEXEC when control passes back. (Amper
variables are Dialogue Manager variables of the format &variablename.)

When the selected value is inserted in the FOCEXEC, you may test it with a Dialogue
Manager IF...THEN command and branch accordingly to a label in the FOCEXEC. In this
way, you move the user through a series of windows, collecting return values for amper
variables, using only one command in your FOCEXEC.

You can use windows to collect amper variable values in place of any other method of
prompting available through Dialogue Manager.

For a complete discussion of the Dialogue Manager facility, see Managing Flow of Control in
an Application. For details of integrating a FOCEXEC with the Window facility using return
and goto values, see Integrating Windows and the FOCEXEC.

Window Files and Windows
Windows—that is, menus and screens—are stored in window files. Windows are included in
a specified window file as you create and save them during a Window Painter session.

Window files are contained in a partitioned data set (PDS) allocated to ddname FMU.
Before any window files can be created, a PDS must be created and ddname FMU must be
allocated to it.

Note, however, that creating a PDS is not necessary if you are creating window files to be
used only in the current FOCUS session: Window Painter temporarily allocates the PDS. For
a full description of allocation requirements, see the appropriate Guide to Operations topic
in the FOCUS Overview and Operating Environments manual

A window file can contain a maximum of 384 windows, and a number of windows may be
displayed on the screen at once. All the windows in a single application may be stored
together in one window file, or you may create separate window files for different parts of
the application such as Help Windows.

You can make an application more attractive by presenting menus in windows containing
titles and other design elements, and can make an application easier to use by displaying
function key definitions or other useful information.

ibi™ FOCUS® Developing Applications

559 | Designing Windows With Window Painter

Types of Windows You Can Create
Window Painter creates 10 different types of windows, each with its own special uses.
These windows are described in the following topics.

Vertical Menus
This is a vertical menu:

A menu is a window that lets users select an option from a list. These options are called
menu items. A vertical menu lists its menu items one below the other. A user can select an
item by moving the cursor down the list with the arrow keys and pressing Enter when the
cursor is on the line of the desired item. A user can select more than one item if the
window includes the Multi-Select option, which is part of the Window Options Menu. Help
information can be specified for each item in the menu by using the menu-item help
feature of help windows. For additional information on Multi-Select and Help windows, see
Window Painter Screens.

Horizontal Menus
This is a horizontal menu:

A horizontal menu displays its menu items on a line, from left to right. You select an item
by using PF11 or the Tab key to move right and PF10 or Shift+Tab to move left across the
line, and pressing Enter when the cursor is at the desired item. You can also select an item

ibi™ FOCUS® Developing Applications

560 | Designing Windows With Window Painter

by employing the search techniques available for FOCUS windows. (Search techniques are
not available with pull-down windows).

If you use PF11 at the last item on the menu, the cursor moves to the first item on the
menu. If you use PF10 at the first item on the menu, the cursor moves to the last item on
the menu, unless there is another screen to scroll to.

An application can display an associated pull-down menu for an item on a horizontal menu
when the cursor is on that item. Choose the pull-down option from the Window Options
menu as discussed in Window Files and Windows. An option to display descriptive text
above or below the horizontal menu is also available from the Window Options menu.

You can assign any return value to each item on the menu. When you select a menu item,
the corresponding return value is collected.

In a horizontal or vertical menu, you can assign a goto value to each menu item.

Text Input Windows
This is a text input window:

Amper variables can be used in a Windows application. A text input window prompts the
user to supply information needed in a FOCEXEC. It is also possible to display an existing
value to be edited. Each text input window accepts one line of input up to 76 characters
long. You assign the length and format of the field when you create the window. Additional
information about creating a text input window is found in Window Painter Screens.

Text Display Windows
This is a text display window:

ibi™ FOCUS® Developing Applications

561 | Designing Windows With Window Painter

A text display window lets you present information such as instructions or messages. No
selections can be made from a text display window, and no data can be entered in it.

File Names Windows
This is a file names window:

A File Names window presents a list of names of up to 1023 PDS members. The user can
select one of these names by moving the cursor and pressing Enter when the cursor is on
the line of the desired file name. You can specify selection criteria for the displayed file
names when the window is created. A user can select more than one file if the window
includes the Multi-Select option, which is available on the Window Options Menu.

Note that the maximum number of file (or member) names which can be displayed
decreases as the width of the window increases. Narrow windows can display a greater
number of names.

ibi™ FOCUS® Developing Applications

562 | Designing Windows With Window Painter

Field Names Windows
This is a field names window:

A field names window presents a list of all field names from a Master File; the user can
select one by moving the cursor and pressing Enter when the cursor is on the line of the
desired field name. A user can select more than one field if the window includes the Multi-
Select option, which is available on the Window Options Menu.

You can use a field names window as the next step after a file names window. That way,
you can present a selection of files first, followed by the fields in a selected file.

The field names are qualified when duplicates exist. You can use PF10 and PF11 to scroll
left and right if a field name exceeds the maximum number of characters allowed on a line
in a data field window.

Use PF6 as a three-way toggle to sort the fields in one of the following ways:

1. Display field names in the order in which they appear in the Master File.

2. Display field names in alphabetical order.

3. Display the fully qualified field names in the order in which they appear in the Master
File.

File Contents Windows
This is a file contents window:

ibi™ FOCUS® Developing Applications

563 | Designing Windows With Window Painter

The file contents window displays the contents of a file. There is no limit on the size of a
file contents window. The user can select a line of contents by moving the cursor to it and
pressing Enter. Each line can be up to 77 characters long. A user can select more than one
line if the window includes the Multi-Select option, which is described as part of the
Window Options Menu in Window Painter Screens.

The contents of any member of a PDS (except as noted below) can be displayed.
Sequential files can also be displayed in TSO. You are prompted for a file name (the
ddname) and a file type (the member name). This information should be entered as
"member name ddname".

Note: You cannot display a file with unprintable characters in a file contents
window. This includes files such as FOCUS files, HOLD files, SAVB files, FOCCOMP
files, and encrypted files.

Return Value Display Windows
This is a return value display window:

The return value display window displays amper variables that have been collected from
other windows. No selections can be made from a return value display window, and no
data can be entered into it.

ibi™ FOCUS® Developing Applications

564 | Designing Windows With Window Painter

Return value display windows are very useful for constructing a command (or any string of
words or terms) by working through a series of windows. An example of this type of
application is seen when you construct a TABLE request using TableTalk.

Each line of the return value display window is stored in a variable called &windownamexx,
where windowname is the name of the window and xx is a line number.

Unless you use the Line-break option to place return values on separate lines, all collected
return values are placed on the same line until the end of the line is reached. The length of
the line is determined by the size of the window created. A description of the Line-break
option on the Window Options Menu can be found in Window Painter Screens.

Only one return value display window may be displayed at a time on the screen. It collects
a value from any active window (that is, a window from which a selection is being made or
to which text is being entered, or an active text display window) if it is on that window's
display list. A description of the Display lists option on the Window Options Menu can be
found in Window Painter Screens.

You can clear the collected values from a return value display window by including it on
the hide list of a window that is being used. A description of the Hide lists option on the
Window Options Menu can be found in Window Painter Screens.

For a Multi-Select window, the return value display window gives the number of selections,
not the values selected. The values can be retrieved by using the -WINDOW command with
the GETHOLD option.

Execution Windows
This is an execution window:

ibi™ FOCUS® Developing Applications

565 | Designing Windows With Window Painter

The execution window contains FOCUS commands such as Dialogue Manager commands,
and TABLE requests.

You can create an execution window by choosing its option on the Window Creation menu.

When this window is first displayed, it has a width of 77 characters, and no heading. You
can place FOCUS commands within it. Note that the commands in an execution window
appear just as you type them; commands are not automatically converted to uppercase.

The Window Painter Main Menu contains an option that enables you to run a window in
order to see any return values collected. If you were to run (not execute) the execution
window from the Window Painter Main Menu, you would see the execution window
contents, then any windows called, and finally any return values collected by running the
windows.

Note the following rules when using execution windows:

l When you GOTO an execution window, the contents of the window are executed. In
all cases, execution begins at the top of the window.

l An execution window is not displayed when executed, although the commands it
contains may generate a display.

l An execution window can use an amper variable as a goto value.

l An execution window clears the screen and the Return Value display window.

l Execution windows have no return values.

l Execution windows can contain up to 22 lines.

ibi™ FOCUS® Developing Applications

566 | Designing Windows With Window Painter

l Execution windows can use local variables.

l Goto values for execution windows should be assigned at line 1.

l Windows called from within execution windows preempt window goto values. For
example, a -WINDOW command issued from within an execution window preempts
an assigned goto value.

l The FOCUS commands within an execution window follow normal Dialogue Manager
execution (that is, FOCUS commands are stacked, Dialogue Manager commands are
executed immediately). Any windows called from the execution window follow the
logic determined by the windows themselves. This substantially affects the
application's transfer of control.

l Use -RUN for immediate execution; otherwise requests are performed after leaving
the window application.

Normally, FOCUS returns to the window designated by the assigned goto value after the
contents of the execution window have been executed. However, when a jump is made to
a window from inside an execution window, the commands in the execution window
following the jump are skipped (along with any attached gotos). This differs from initiating
a window from inside Dialogue Manager, which when finished returns you to the command
following the GOTO.

Multi-Input Windows
This is a multi-input window:

ibi™ FOCUS® Developing Applications

567 | Designing Windows With Window Painter

A multi-input window prompts you for information used in the application. A multi-input
window may include up to 50 input fields, each of which can be up to 76 characters long.
You assign the length, name, and format of the field when you create the window.

Use the Tab key to move the cursor between the fields on a multi-input window.

You can supply help information for each field in a multi-input window by using the Help
window option. For information on Help windows, see Window Painter Screens.

For a multi-input window, the return value is the name of the input field occupied by the
cursor when you pressed Enter or a function key. The name that you supply for each input
field is assigned to an amper variable with the same name as the field (each input field has
a unique name). The variable &WINDOWVALUE contains the value of the input field
occupied by the cursor when you pressed Enter or a function key.

Use a unique name for each field on a multi-input window. To display the field names
specified, use the Input Fields option on the Window Options menu.

Creating Windows
The process of creating windows begins with choosing the type of window you want to
create from the Window Creation menu. Each type of window requires slightly different
instructions. The tutorial in Tutorial: A Menu-Driven Application describes how to create
and implement text display window, vertical menu, and file names windows. This topic
describes how to create horizontal menus (with or without associated pull-down menus)
and multi-input windows.

Creating a Horizontal Menu
To create a horizontal menu, begin by placing the cursor at the Menu (horizontal) option
on the Window Creation menu:

ibi™ FOCUS® Developing Applications

568 | Designing Windows With Window Painter

You are prompted to enter a name and brief description for the window, after which you
reach the creation screen. On this screen:

1. Move the cursor to the location in which you want the top left corner of the menu to
be displayed. Press Enter.

2. Next, use the arrow keys to move the cursor down (enough spaces to leave a line for
each item you want to display as a menu choice) and to the right (enough spaces to
just fit the longest menu item). Press PF4. You see two windows: one is for entering
information and the other is the corresponding horizontal menu.

3. Enter the menu items in the window containing the cursor. Press Enter after each
item; the item automatically appears on the horizontal menu.

The following is an example of a completed creation screen:

ibi™ FOCUS® Developing Applications

569 | Designing Windows With Window Painter

Once you have entered the items on your menu, there are several options you can select
for each item. Move the cursor to any item and press PF2 to display the Window Options
menu:

Position the cursor on any option you want to select and press Enter.

Two features available for horizontal menus are Menu text and Text line. Menu text is a line
of text displayed when the cursor is on a menu item. The line on which the text is
displayed is called the text line. You can position the text line one or two lines either above
or below the horizontal menu.

The following example illustrates Menu text and Text line. When the cursor is positioned on
vertical in the example below, the following is displayed:

In this example, the Menu text VERTICAL MENU TESTS is positioned at Text line x-1, one
line above the menu. To place the Text line two lines above the Menu text, change x-1 to x-
2. For Text lines below the menu text, use x+1 or x+2.

You can also select the Pull-down option for a horizontal menu. With this option, you can
assign a pull-down menu to be displayed for a horizontal menu item whenever the cursor
is positioned on that item.

ibi™ FOCUS® Developing Applications

570 | Designing Windows With Window Painter

Pull-down Menus
When you set the Pull-down option ON, you can display an associated pull-down menu for
an item in a horizontal menu by positioning the cursor on that item. The default is OFF. To
change the setting to ON, position the cursor on the Pull-down option and press Enter.
Note that when Pull-down is set ON, Menu Text is automatically set OFF.

The associated pull-down menu must be a vertical menu. When creating the horizontal
menu, you must assign a Goto value to point to the pull-down menu. To do so, position the
cursor on the goto value, press Enter, and enter the name of the pull-down menu you
want to display in the space provided:

You must create the vertical menu, rpts, as you would any other vertical menu. See
Tutorial: A Menu-Driven Application for examples.

The following example shows a horizontal menu with the Reporting pull-down menu
displayed:

The following screen shows the same menu with the Ad hoc pull-down menu displayed:

ibi™ FOCUS® Developing Applications

571 | Designing Windows With Window Painter

The following screen shows the same menu with the Maintenance pull-down menu
displayed:

Note: To move from item to item in a horizontal menu, use PF10 and PF11.

Creating a Multi-Input Window
To create a multi-input window, begin by placing the cursor at the Multi-Input window
option on the Window Creation menu and press Enter. You are then prompted for a name,
description and heading. Place the window on the screen and size it as desired.

ibi™ FOCUS® Developing Applications

572 | Designing Windows With Window Painter

To place entries on the window:

1. Type the text for display.

2. Press PF6 at the point where the field begins.

3. Space along for the length of the field.

4. Press PF6 again to signify the end of the input area.

5. Enter name and information for the field.

The following example shows a multi-input window, with Name: entered as display text.

This is what the developer's screen looks like after several fields have been included in the
multi-input window:

ibi™ FOCUS® Developing Applications

573 | Designing Windows With Window Painter

Note: Text fields may be supplied without headings or instructions. For example,
see the city and state portion of the address line.

This is how the window appears when run as part of the application:

The following screen shows what is returned from the window when it is run inside the
Window Painter:

ibi™ FOCUS® Developing Applications

574 | Designing Windows With Window Painter

Note: To move from field to field in a multi-input window, use the Tab key.

Integrating Windows and the FOCEXEC
The windows created with Window Painter are designed for use within an application
FOCEXEC. This topic discusses how to integrate the windows into your FOCEXEC.

Invoke the Window Facility
To invoke the Window facility, insert the following Dialogue Manager command in your
FOCEXEC

-WINDOW windowfile windowname [PFKEY|NOPFKEY] [GETHOLD] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

where:

ibi™ FOCUS® Developing Applications

575 | Designing Windows With Window Painter

windowfile

Identifies the file in which the windows are stored. This is a member name. The member
must belong to a PDS allocated to ddname FMU.

windowname

Identifies which window in the file to display first. Can be set in Window Painter or in
the first window displayed. This is optional.

PFKEY

Enables testing for function key values during window execution.

NOPFKEY

Prevents testing for function key values during window execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select window. Does not cause
window to be displayed.

BLANK

Clears all previously set amper variable values when the -WINDOW command is
encountered. This is the default setting.

NOBLANK

No amper variable values are cleared when the -WINDOW command is encountered.

CLEAR

When FOCUS is being used with the Terminal Operator Environment (described in the
Overview and Operating Environments manual), the -WINDOW command clears the
screen before displaying the first window. The Terminal Operator Environment screen is
redisplayed when control is transferred from the Window facility back to the FOCEXEC.
This is the default setting.

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the window file's
windows are displayed directly over the Terminal Operator Environment screens.

ibi™ FOCUS® Developing Applications

576 | Designing Windows With Window Painter

Note: NOBLANK is particularly important in applications that use more than one
-WINDOW command.

Transferring Control in Window Applications
When the -WINDOW command is encountered, control in the FOCEXEC is transferred to the
Window facility. Control remains with the Window facility until one of the following occurs:

l The user makes a selection for which you have assigned no goto value.

l The PFKEY option is in effect and the user presses a function key (the function key
must be set to RETURN, HX, CANCEL, or END, as described in the Integrating
Windows and the FOCEXEC.)

Once control passes back to the FOCEXEC, control only returns to the Window facility if
another WINDOW command is encountered.

Window File in an Application FOCEXEC
This example shows an application FOCEXEC and a window file named REPORT which
contains three windows: R1, R2, and R3.

The numbers at the left of the example refer to the flow of execution (that is, the order in
which the commands and windows are executed).

1. -START
2. -WINDOW REPORT R1 PFKEY

-*
3. -*Control is transferred from the above command

-*to window R1 in window file REPORT.
-*

4. -IF &PFKEY EQ PF05 GOTO LABEL1;
-*
-*Control returns to the above command from
-*window R2 in window file REPORT.
.
.
-LABEL1

5. -WINDOW REPORT R3

ibi™ FOCUS® Developing Applications

577 | Designing Windows With Window Painter

-*
6. -*Control is transferred from the above command

-*to window R3 in window file REPORT.
-*

7. -IF &R3 EQ EXIT GOTO EXIT;
-*
-*Control returns to the above command from
-*WINDOW R3 in window file REPORT.
.
.
-EXIT

Note:
l At Step 3, the user selects an option from Window R1. This option's goto

value is R2. Control is transferred to Window R2.

l The user presses a function key in Window R2. Control is transferred to the
FOCEXEC, to the command following the -WINDOW command (Step 4).

l At Step 6, the user selects the option to exit; no goto value was set for that
option. Control is transferred to the FOCEXEC, to the command following

the -WINDOW command (Step 7).

The flow of control has certain implications for the design of your window applications:

l Any time you pass control back to the FOCEXEC, the window or menu option must
have no goto value, or else must prompt the user to press a function key (as
described in Integrating Windows and the FOCEXEC).

l At some point in the window session, control should return to the FOCEXEC so that
the accumulated return values can be substituted for amper variables, and the
variables then used in the FOCEXEC.

l Any time you pass control from the FOCEXEC to the Window facility you must insert
the -WINDOW command in the FOCEXEC.

l Note that it is not necessary to create a new window file for each -WINDOW
command; you can simply enter the same file again at any window.

l To test for a function key value in the middle of a series of windows, remember that
pressing the function key automatically returns control to the FOCEXEC; an -IF test
command should follow the -WINDOW command, and a second -WINDOW command
should be placed after the -IF command to transfer control back to the window file.

ibi™ FOCUS® Developing Applications

578 | Designing Windows With Window Painter

l If you want to clear an existing set of variable values, return control to the FOCEXEC
and execute another -WINDOW command with the BLANK option in effect.

To back up a step during window execution, the user may press PF12 or PF24. This does
not cause control to pass to the FOCEXEC. However, you can force Dialogue Manager to
return control to a FOCEXEC by a PF key setting as described in Integrating Windows and
the FOCEXEC.

Return Values
When the user responds to your window prompt by entering text, selecting an item from a
menu, or pressing a function key, this response is the return value that fills in an amper
variable in your FOCEXEC.

There are two ways in which amper variables are most commonly used in FOCEXECs:

l To collect values to plug into a FOCUS procedure such as a TABLE or GRAPH request
so it can run.

l To test the value returned in a variable, and branch accordingly to a different part of
the FOCEXEC or to another FOCEXEC.

The return value collected can be a character string, a number, the name of a file, a
procedure name, or part of a FOCUS command.

A return value amper variable in the FOCEXEC has the same name as the window in which
it is collected; that is:

&windowname

For example, the return value collected by the window MAIN supplies a value for the
variable &MAIN.

l In vertical menu and horizontal menu windows, you assign any return value to each
item on the menu. If the user selects that option, that return value is collected.

l In text input windows, the return value is the text that the user types.

l In text display windows, you can assign one return value to the entire window. Unlike
other return values, a text display window return value is collected as soon as control
passes to the window, without the user selecting anything.

ibi™ FOCUS® Developing Applications

579 | Designing Windows With Window Painter

l Return value display windows display return values collected from other types of
windows. These return values can be displayed one per line, or several together on a
single line. Although this type of window does not have a return value, each line has
a corresponding amper variable (&windownamexx, where xx is the line number).

l For a multi-input window, the return value is the name of the input field on which
the cursor is positioned when you press Enter or a PF key.

l In windows with the Multi-Select option, the return value is the number of items
selected.

l In file names, field names, and file contents windows, the return value is,
respectively, the file name, field name, or line of file contents that the user selects
from the display.

Return Value in a Menu-Driven Application
Assume that you have written a menu-driven application that enables a user to report from
any one of a list of files. You have created a series of windows for this application, one of
which is a file names window named FILE designed to collect a return value for &FILE. The
window displays a list of all the user's files that meet certain file-identification criteria
specified when you created the window.

Your FOCEXEC contains these lines:

-START
-WINDOW EXAMPLE FILE
.
.
.
TABLE FILE &FILE

When the user moves the cursor to SALES and presses ENTER, SALES is collected to be
substituted for &FILE in the FOCEXEC:

TABLE FILE SALES

ibi™ FOCUS® Developing Applications

580 | Designing Windows With Window Painter

Goto Values
When creating your windows, you also assign goto values telling the Window facility which
window to display next. These values allow you to move the user through a series of
windows, collecting return values for amper variables, without adding lines to your
FOCEXEC.

l In vertical menu and horizontal menu windows, you assign a goto value for each
menu item.

l In all other windows, you assign a single goto value.

l You can use an amper variable as a GOTO value.

As described in Integrating Windows and the FOCEXEC, if you assign no goto value to a
menu option or window, control passes back to the FOCEXEC when the user selects that
option or presses Enter at that window.

It is important not to confuse these goto values with the Dialogue Manager -GOTO
command. The goto value points your application to a new window in the window file; the
-GOTO command transfers control to a label in your FOCEXEC.

Returning From a Window to Its Caller
You can return from a window to its caller via the <ESCAPE> option. If you enter this string
as the goto value of a window, control returns to the previous window upon completion of
the current window, you must enter the right and left carets as part of the goto value.

Window System Variables
We have already discussed return values: these are specific to each window. Two other
Window facility variables, &WINDOWNAME and &WINDOWVALUE, are specific to the -
WINDOW session (not to each window) and receive values when the Window facility passes
control from a window file back to the FOCEXEC.

ibi™ FOCUS® Developing Applications

581 | Designing Windows With Window Painter

&WINDOWNAME
&WINDOWNAME is an amper variable containing the name of the last window that was
displayed before the Window facility transferred control back to the FOCEXEC.

This variable can be used in many ways. For example, if the goto values/function key
prompts in a window file allow a user to leave the window file from several different
windows, you can test &WINDOWNAME in the FOCEXEC to determine which window the
user was in last (and, therefore, which path the user navigated through the window file).

&WINDOWVALUE
&WINDOWVALUE is an amper variable containing the return value from the last window
that was displayed before the Window facility transferred control back to the FOCEXEC. If
the user selected a line for which no return value was set (for example, a blank line
between two menu options in a vertical menu window), then &WINDOWVALUE contains the
line number of the line that was selected.

This variable can be used in many ways. For example, if the goto values/function key
prompts allow a user to leave the window file from several different windows, and you
need to know the return value of the last window the user was in before she or he left the
file by pressing a function key, you can test &WINDOWVALUE.

Testing Function Key Values
To test for function key values, you must specify the PFKEY option on the -WINDOW
command line. When the PFKEY option is set and a user presses a function key during
window execution, the name of that key is stored in the amper variable &PFKEY.

For example, if the user presses PF1, the 4-character value of &PFKEY is PF01. If PF2, the
value is PF02, and so forth. If the user presses Enter, the value is ENTR. The value of
&PFKEY is reset each time the user presses a function key.

Note that if the PFKEY option is specified, the Window facility's default PF key actions are
overridden by the general FOCUS PF key settings. This means that when you specify the
PFKEY option, if you still want the standard Window facility PF key actions to be available
to window users (for example, PF1 = HELP, PF3 = UNDO), you must use the SET command
in your application FOCEXEC, followed by a -RUN command, to explicitly set those actions.

ibi™ FOCUS® Developing Applications

582 | Designing Windows With Window Painter

For example, if you specify the PFKEY option but you want to retain all of the Window
facility's default PF key actions using the same PF keys, you need to include the following
commands before the -WINDOW command in your application FOCEXEC:

SET PF01=HELP
SET PF03=UNDO
SET PF04=TOP
SET PF05=BOTTOM
SET PF06=SORT
SET PF07=BACKWARD
SET PF08=FORWARD
SET PF09=SELECT
SET PF10=LEFT
SET PF11=RIGHT
SET PF12=UNDO
-RUN

When you specify the PFKEY option, any PF key which you want to test for in the
application FOCEXEC must be set to RETURN. (HX, CANCEL, and END also function as
RETURN within the Window facility, and can be used in place of it.)

For example, if you design your application so that a user can press PF2 to choose an
additional menu option, and therefore you want to test &PFKEY for the value PF02 in your
application FOCEXEC, then you must include the following SET command before the -
WINDOW command in your application FOCEXEC:

SET PF02=RETURN

The SET PF command is discussed in Customizing Your Environment, and in the
Maintaining Databases manual.

You can list the current general FOCUS PF key settings by issuing the ? PFKEY command.
The ? PFKEY command is discussed in Testing and Debugging With Query Commands.

The variable &PFKEY can be tested just like any other amper variable. Note that the name
of the variable is always &PFKEY; it is not linked to a window name like other amper
variables collected through windows.

You may test the PFKEY variable repeatedly throughout the FOCEXEC. Additional SET
commands are not required.

One of the advantages of using the &PFKEY variable is that it enables you to collect two
return values from a single menu. You might, for example, create a window called FILES,
which prompts the user to enter the name of a file, then press PF7 to produce a graph or

../../../../../Content/focus-develope-app/setcore111_1.htm#dsetcore1064926
../../../../../Content/focus-develope-app/testing65_1.htm#dtesting1738775

ibi™ FOCUS® Developing Applications

583 | Designing Windows With Window Painter

PF8 to produce a report. Both the file name as &FILES and the function key value as
&PFKEY would be collected as return values.

It is always important to remember that pressing a function key immediately returns
control to the FOCEXEC if that key was set to RETURN (or to HX, CANCEL, or END).

Note: If the cursor is on a menu that has a FOCEXEC associated with it, the
FOCEXEC is executed and the GOTO value associated with the menu choice is
assumed. The PFKEY is ignored.

In the example above, if the user presses a function key before typing the file name, the
&FILES variable is not collected. If the key was set to something other than RETURN, HX,
CANCEL, or END, then the action it was set to is invoked, and control remains within the
Window facility.

Executing a Window From the ibi FOCUS
Prompt
You can execute a window directly from the FOCUS command prompt.

Execute a Window From the ibi FOCUS Prompt
EX 'windowfile FMU' [windowname] [PFKEY|NOPFKEY] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

where:

windowfile

Is the file containing the windows. It must have the ddname FMU, and appear within
single quotation marks.

windowname

Identifies the first window to be executed. If a window name is not specified, FOCUS
executes the default start window, or the first window created.

ibi™ FOCUS® Developing Applications

584 | Designing Windows With Window Painter

PFKEY

Tells FOCUS you will test for function key values during execution.

NOPFKEY

Tells FOCUS you will not test for function key values during execution.

BLANK

Clears previously set amper variables when the window is called. This is the default
setting.

NOBLANK

Retains previously set amper variables.

CLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is
cleared when the EX command is encountered. The Terminal Operator Environment
screen is restored when the last window in the chain has been executed. This is the
default setting.

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is not
cleared when the EX command is encountered, and any windows are displayed within
the Terminal Operator Environment screens.

For example, to execute the window MAIN in the window file REPORT, you could issue EX
'REPORT FMU' MAIN from the FOCUS command prompt, which is equivalent to issuing -
WINDOW REPORT MAIN from Dialogue Manager.

Tutorial: A Menu-Driven Application
This tutorial describes a menu-driven system that clerical personnel can use to produce
sales reports and graphs at your chain of retail stores. The system must fulfill three major
requirements:

l Ease of use. Your system must let employees be productive without extensive
training.

l Functionality. The system has to work properly with only a few steps.

ibi™ FOCUS® Developing Applications

585 | Designing Windows With Window Painter

l Appearance. There should be continuity between screens, and a general unity of
design. The reports and graphs produced must be attractive and easy to read.

The application prompts the user to select reporting or creating a graph.

Then, the user may opt to execute an existing FOCUS request or to create a new one. A
user who chooses to execute an existing request is shown an automatically generated list
of FOCEXECs from which to pick. A user who chooses to create a new request is placed in
either TableTalk or PlotTalk, depending on whether reporting or creating a graph was
chosen in the first step.

While the report or graph is being generated, a corresponding message is displayed on the
terminal screen. And, after the output is displayed, the user can choose to generate
another report or graph, or else to exit.

The following figure illustrates the logic of the application FOCEXEC.

-START
-WINDOW SAMPLE MAIN
-*
-*Control is transferred from the above command
-*to window MAIN in window file SAMPLE.
-*
-IF &MAIN ...
-*
-*Control returns to the above command
-*from option "Exit?" in window MAIN,
-*from option "New Request?" in window EXECTYPE,
-*and from every selection in window EXECNAME.
-*
.
.
.
-GOTO START
-EXIT

Window If option selected is... Then go to:

MAIN Report? Graph?Exit? window EXECTYPEwindow
EXECTYPEback to FOCEXEC

EXECTYPE Existing Request?New Request? window EXECNAMEback to
FOCEXEC

ibi™ FOCUS® Developing Applications

586 | Designing Windows With Window Painter

Window If option selected is... Then go to:

EXECNAME The options in this window are
a list of report and graph
requests from which the user
can select.

Control is transferred back to
the FOCEXEC.

Creating the Application FOCEXEC
A FOCEXEC called SAMPLE drives this application.

Begin by using the TED editor to create the FOCEXEC file SAMPLE. At the FOCUS prompt,
type

TED SAMPLE

Type in the following FOCEXEC. Note that the numbers on the left refer to explanatory
notes. Do not type them in your FOCEXEC file, but read the notes as you go along. All
commands that begin with a hyphen, such as -WINDOW, are Dialogue Manager commands,
and must begin in the first column. Dialogue Manager is discussed in Managing Flow of
Control in an Application.

Notice that this application determines variable values in two ways: there are variables for
which values are collected by windows, and variables which are set within the FOCEXEC
using the -SET command.

-START
1. -WINDOW SAMPLE MAIN
2. -IF &MAIN EQ XXIT GOTO EXIT;

-IF &MAIN EQ RPT GOTO GENERATE;
-IF &MAIN EQ GRPH GOTO GENERATE;
-GOTO START
-***************** GENERATE ********************

3. -GENERATE
4. -IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
5. -RPTEX
6. EX &EXECNAME
7. -SET &FORMAT=IF &MAIN EQ RPT THEN REPORT

-ELSE IF &MAIN EQ GRPH THEN GRAPH;
8. -TYPE GENERATING &FORMAT

ibi™ FOCUS® Developing Applications

587 | Designing Windows With Window Painter

9. -RUN
10. -GOTO START
11. -NEWRPT
12. -SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK

-ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
13. &PROCNAME
14. -RUN
15. -GOTO START

-********************** EXIT **********************
16. -EXIT

1. The -WINDOW command transfers control to the Window facility. SAMPLE is the name
of the window file this application uses and we will create it in this tutorial. MAIN is
the window where the procedure begins.

Control does not return to the next line of the FOCEXEC until a window is processed
for which no goto value has been assigned, in this case, EXECTYPE or EXECNAME.

2. The return value collected for &MAIN----collected from the window MAIN----is tested.
The FOCEXEC branches to a label depending on its value.

If the return value for &MAIN is RPT or GRPH, the FOCEXE branches to -GENERATE; if
XXIT, to -EXIT. Each return value corresponds to a selection on the menu window
MAIN.

3. This label beings to GENERATE section of the FOCEXEC

4. The value collected for &EXECTYPE (from window EXECTYPE) is tested and the
FOCEXEC branches accordingly. Note that this value was collected from the window
EXECTYPE while the Window facility was in control, without a prompt from Dialogue
Manager.

5. This label begins the RPTEX section of the FOCEXEC.

6. The FOCUS command that executes an existing report is stacked. The value of
&EXECNAME----the name of the existing report----was collected while the window file
was in control. The single quotation marks around &EXECNAME tell FOCUS to treat
the value----which may contain more than one word----as part of a single file
identification.

7. The value of the variable &FORMAT is set according to the return value from the MAIN
window. If the value was RPT, &FORMAT is set to REPORT; if the value is GRPH,
&FORMAT is set to GRAPH.

8. A message containing the value of &FORMAT is displayed for the user while the

ibi™ FOCUS® Developing Applications

588 | Designing Windows With Window Painter

stacked FOCUS request is executing.

9. -RUN executes the stacked command(s).

10. When the request output has been displayed, the FOCEXEC branches back to -START,
where the user can choose to exit or to create another report or graph. All amper
variable values collected in the previous round are cleared when the -WINDOW
command is encountered.

11. This label begins the section NEWRPT.

12. This command sets the value of &PROCNAME to TABLETALK if the value of &MAIN is
RPT, to PLOTTALK if the value is GRPH.

13. This line stacks the command TABLETALK or PLOTTALK.

14. -RUN executes the stacked command.

15. This commands returns to -START, as in note 10.

16. This command ends FOCEXEC execution.

Creating the Window File
The -WINDOW command SAMPLE FOCEXEC tells FOCUS to look for a window file named
SAMPLE and a window named MAIN. The complete list of windows used in this application
is:

BORDER A text display window used as a background display for the
other windows.

BANNER A text display window that introduces the application.

MAIN A vertical menu from which the user can choose to create a
graph or a report, or exit the application.

EXECTYPE A vertical menu from which the user chooses to execute an
existing procedure or create a new one.

EXECNAME A file names window displaying all FOCEXEC files, from which
the user can select one to execute. This window is seen only
if the user opts to execute an existing report in EXECTYPE.

ibi™ FOCUS® Developing Applications

589 | Designing Windows With Window Painter

All these windows are included in the window file named SAMPLE. Start by building that
window file.

Before you can use Window Painter to create a window file, a PDS must be allocated with
ddname FMU, LRECL 4096, and RECFM F. BLKSIZE 4096 is recommended.

You can reach the FOCUS Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

The Entry Menu is the first screen you see:

Since you are creating a new window file, choose NEW FILE, and press Enter. The next
screen you see prompts you to name the window file.

Since the FOCEXEC looks for a window file named SAMPLE, type

SAMPLE

and press Enter.

A screen appears to ask for a description of the window file.

Type

Sample file for Window Painter tutorial

and press Enter.

ibi™ FOCUS® Developing Applications

590 | Designing Windows With Window Painter

Creating the Text Display Window Named
BORDER
Now you are ready to create the first window. The Window Painter Main Menu screen
appears. Select

Create a new window

and press Enter.

The Window Creation Menu asks what kind of window you want to create.

ibi™ FOCUS® Developing Applications

591 | Designing Windows With Window Painter

The BORDER window is the first window you create for the application. BORDER supplies a
background border for other windows. It is a text display window, so select

Text display

and press Enter.

Next, you are asked to name the window. Type

BORDER

and press Enter.

The Window Description Screen appears next. This description does not appear when the
window is displayed, but becomes part of the document file that Window Painter creates
describing all windows in the file. Since the document file is very useful when writing your
FOCEXEC, it is a good idea to enter a functional description here. To describe this window,
type

ibi™ FOCUS® Developing Applications

592 | Designing Windows With Window Painter

This window borders all my screens.

and press Enter. The ability to annotate screens in this manner is very useful when
selecting windows to edit.

The Window Heading Screen comes next. Since you do not want a heading displayed on
this window, simply press Enter to bypass it.

The Window Design Screen displayed now is nearly blank, with a cursor for you to position
where you want the upper left-hand corner of BORDER to be. Leave the cursor where it is
and press Enter.

A small box appears around the cursor: this is the window. Make the window larger. Using
the arrow keys, move the cursor to the right edge of the screen, on the line just above the
status line: this is the new lower right corner of the window. Now press PF4 to resize the
window. (PF4 functions as the SIZE key in the Window Design Screen.) The window has
been resized so that its lower right corner is where you positioned the cursor: the window
now fills the entire screen.

When resizing a window, remember that the window's lower right corner refers to the
lower right corner of the window border, which is shown as a plus sign (+) on the screen. It
is this corner that you are moving when you resize the window. On the other hand, the last
row of the window refers to the last row that can contain data or text: this is the row
immediately above the bottom border.

This window's border forms the background border for the other windows in this
application.

If you need help with using the keyboard while in the Window Design Screen, press PF1
(the Window Painter Help key) to see the following display:

ibi™ FOCUS® Developing Applications

593 | Designing Windows With Window Painter

Press Enter to continue.

Now that the window is complete. Press PF3 and save the window.

Press Enter to select Save. You return to the Main Menu.

ibi™ FOCUS® Developing Applications

594 | Designing Windows With Window Painter

Creating the Text Display Window Named
BANNER
BANNER is also a text display window, but is smaller than BORDER and contains text that
identifies this application.

From the Window Painter Main Menu, select

Create a new window

and press Enter. Select

Text Display

and press Enter. The name of this window is

BANNER

and its description is:

Banner for application MAIN menu.

Enter this name and description just as you did for the BORDER window. When prompted
for a heading, press Enter.

At the Window Design Screen, use the arrow keys to move the cursor two spaces to the
right, and press Enter. Now position the cursor 64 more spaces to the right and two rows
down, and press PF4 to resize the window.

Enter text to be displayed in the window. Reposition the cursor on the first line within the
window, 10 spaces to the right of the window's left border, and type:

The Milkmore Farms Weekly Reporting System

Type a line of asterisks (*) across the window's second line. (Begin at the second column
within the window, because the first column of every window is protected.)

Center the banner in the width of the screen. Estimate where the upper left corner of the
window would be if the window were centered. Position the cursor there, and then press

ibi™ FOCUS® Developing Applications

595 | Designing Windows With Window Painter

PF9. The window moves to its new location. Repeat the process if you need to center it
more precisely.

The window should look like this:

Press PF3 and save the window.

Creating the Vertical Menu Window Named
MAIN
You will now create the MAIN vertical menu window, which collects the amper variable
&MAIN. Select

Create a new window

and press Enter.

BORDER and BANNER are text display windows, from which no options may be selected.
Since MAIN, however, is a menu from which a selection must be made, choose

Menu (vertical)

ibi™ FOCUS® Developing Applications

596 | Designing Windows With Window Painter

and press Enter. Name the window:

MAIN

On the Description screen, type

User can report, graph, or exit.

and press Enter.

When prompted for a heading, type 10 spaces, then

Would you like to:

and press Enter.

On the Window Design Screen, move the cursor five rows from the top and 20 columns
from the left, and press Enter. The window is created wide enough to contain the heading.
Now position the cursor six rows below the window's bottom edge, and 10 columns to the
right of its right edge. Press PF4 and the window is resized.

Type the following menu options as they appear below:

You assign goto and return values for each menu option. To assign either value to an
option, the cursor must first be on that option.

Move your cursor back to

ibi™ FOCUS® Developing Applications

597 | Designing Windows With Window Painter

Create a report?

and press PF2 to display the pop-up Window Options Menu.

Assigning a goto value tells the Window facility to display another window when this item
is selected during execution.

In the next window of this application, the user is prompted to either execute an existing
report or create a new one. The window that displays the prompt is called EXECTYPE, so
the goto value of the first two menu options is EXECTYPE.

Move the cursor to

Goto value

and press Enter.

In the space provided, type

EXECTYPE

and press Enter.

ibi™ FOCUS® Developing Applications

598 | Designing Windows With Window Painter

The return value collected by this window—&MAIN—is tested in the FOCEXEC:

-START
-WINDOW SAMPLE MAIN
-IF &MAIN EQ XXIT GOTOEXIT;
-IF &MAIN EQ RPT GOTO GENERATE;
-IF &MAIN EQ GRPH GOTO GENERATE;
.
.
.

Now move the cursor to

Return value

and press Enter.

Type the value

RPT

as shown, and press Enter.

ibi™ FOCUS® Developing Applications

599 | Designing Windows With Window Painter

Exit the Window Options Menu by moving the cursor to

Exit this menu

and pressing Enter.

Set the values for:

Create a graph?

Move the cursor to the second menu item, and press PF2.

Repeat the steps you just performed, assigning the goto value

EXECTYPE

and the return value:

GRPH

Leave the Window Options menu and move the cursor to

EXIT?

For this option, you do not assign a goto value. Since it exits to the FOCEXEC, there is no
other window to be displayed.

ibi™ FOCUS® Developing Applications

600 | Designing Windows With Window Painter

Repeat the steps to assign the return value:

XXIT

With the Window Options Menu still on the screen, move the cursor to

Display list

and press Enter.

The display list may specify up to 16 windows to be displayed when this window is visible
during execution. Since you want BORDER and BANNER to be displayed with MAIN, you
must add each to the list.

Select:

Add to the list

A list of windows appears, from which you select by moving the cursor and pressing Enter.
The windows must be selected in the order in which they should appear, because they are
overlaid one on top of another when displayed. Select BORDER and BANNER for MAIN's
display list, being certain to select BORDER first so that it is displayed behind BANNER.

When you have finished, choose Quit to return to the Window Options Menu.

Quit the Window Options Menu and press PF3 to save MAIN.

ibi™ FOCUS® Developing Applications

601 | Designing Windows With Window Painter

Before moving on, look at what you have done so far. Select

Run the window file

and press Enter.

Select

MAIN

as the starting screen. Press Enter, and the following appears:

Position the cursor on the "Create a report" line. When you press Enter to continue the
display, you see an error message because EXECTYPE—the goto value—has not been
created yet. Ignore it, and press Enter to continue. You see a screen displaying amper
variables for this window and the values. Press Enter to return to the Main Menu.

Creating the Vertical Menu Window Named
EXECTYPE
So far you have created two text display windows and a vertical menu. The next window
we create is also a vertical menu.

Select

ibi™ FOCUS® Developing Applications

602 | Designing Windows With Window Painter

Create a new window

from the Main Menu, and choose

Menu (vertical)

from the Window Creation Menu. Enter

EXECTYPE

as the window name.

When prompted for a description, type

Create a new FOCEXEC or run existing one

and press Enter. When prompted for a heading, press Enter.

When the Window Design Screen appears, move the cursor 12 rows down the screen and
22 columns to the right, and press Enter. Now reposition the cursor four rows beneath the
bottom edge of the window and 32 columns to the right of the right edge of the window,
and press PF4 to resize it.

Type the following two menu options as they appear below:

When you created the MAIN window, you used the Window Options Menu to set each
return value and goto value. There is an easier way to set return and goto values using the
PF6 and PF5 keys.

ibi™ FOCUS® Developing Applications

603 | Designing Windows With Window Painter

Pressing PF5 prompts you successively for a Return value, a GOTO value, and a FOCEXEC
name. When prompted for the Return value, enter EXIST and press PF5. You are prompted
for A GOTO value. Press Enter, and you are prompted for a FOCEXEC name. Press Enter.

If you select

... using an existing request.

from the EXECTYPE menu, the file names window EXECNAME displays next. EXECNAME
contains a list of existing FOCEXEC files from which you may choose.

Move the cursor to the second menu item.

Consider the return and goto values for this option.

If you choose to create a new report or graph request, EXECNAME is not displayed. Rather,
control must pass back to the FOCEXEC, which executes these lines:

.

.

.
-IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
.
.
.
-NEWRPT
-SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK
ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
&PROCNAME
-RUN

For control to pass to the FOCEXEC if this option is chosen, do not assign a goto value to it.
Remember that during execution, control passes to the FOCEXEC when an option without a
goto value is selected.

The return value may be anything other than EXIST. For now, press PF6, and enter

NEXIST

Rather than create display and hide lists for EXECTYPE, make a pop-up window. A pop-up
window is displayed like any other window, but disappears when the user presses Enter.
EXECTYPE pops up in front of MAIN.

Press PF2 to display the Window Options Menu, move the cursor to

ibi™ FOCUS® Developing Applications

604 | Designing Windows With Window Painter

Popup(Off)

and press Enter. (Off) changes to (On).

Exit the Window Options Menu, press PF3, and save the window.

Creating the File Names Window Named
EXECNAME
Your final window is the file names window that displays a list of existing FOCUS report
requests. On the Window Creation Menu, select:

File names

Name the window

EXECNAME

and type in the description:

Select an existing FOCEXEC from list.

Enter an explanatory heading:

Select the request you want to execute and press ENTER:

You are prompted for file-identification criteria. Type

* FOCEXEC

and press Enter.

ibi™ FOCUS® Developing Applications

605 | Designing Windows With Window Painter

When the application is executed, this selects all members of ddname FOCEXEC.

On the Window Design Screen, move the cursor two rows down and press Enter. Use PF9
to center the window on the screen. Resize the window: reposition the cursor two columns
to the right of the window's right edge and 10 rows below the window's bottom edge, and
press PF4.

Since only BORDER should be displayed with this window, add BANNER, MAIN, and
EXECTYPE to the hide list and add BORDER to the display list.

When the user selects a file name from this window during execution, that file name is
automatically collected as the return value. You cannot set the return value any other way
for this type of window.

In the FOCEXEC, that return value is plugged into the line

EX &EXECNAME

and the report or graph request is executed.

In order for this to happen, you must return control to the FOCEXEC assigning no goto
value to this window.

To change the file identification criteria of a file names window (or of a field names or file
contents window) after it has been created, change the "return value." Although these two
window types cannot have actual return values set when the window is created or edited,
the "return value" that can be set is actually the window's file identification criteria. You
can change the file identification criteria just as you would change the actual return value
of a vertical menu window.

Exit from the Window Options Menu, press PF3, and save the window. The window file is
complete. Exit from Window Painter.

ibi™ FOCUS® Developing Applications

606 | Designing Windows With Window Painter

Executing the Application
To execute the SAMPLE FOCEXEC, at the FOCUS prompt, type

EX SAMPLE

and press Enter. When prompted to choose a new or existing FOCEXEC, select

... using a new request.

unless you have created one in an earlier FOCUS session. The application executes PlotTalk
or TableTalk. If you save the request you create, you can try the SAMPLE FOCEXEC again,
and execute the new request by selecting:

... using an existing request.

This completes the tutorial.

Window Painter Screens
The creation of windows is itself an automated window-driven process. There are six major
screens:

l The Entry Menu

l The Main Menu

l The Window Creation Menu

l The Window Design Screen

l The Window Options Menu

l The Utilities Menu

These screens assist you whenever you create or edit windows.

ibi™ FOCUS® Developing Applications

607 | Designing Windows With Window Painter

Invoking Window Painter
To invoke Window Painter, type the WINDOW PAINT command at the FOCUS prompt and
press Enter.

Invoke Window Painter
WINDOW [PAINT [filename]]

where:

PAINT

Is optional.

filename

Is the name of the window file that you want to work with. This is a member name. The
member must belong to ddname FMU.

If you do not specify file name, you begin your Window Painter session at the Entry Menu
where you can choose a window file to use or create a new window file. If you do specify
file name, you skip the Entry Menu and begin your Window Painter session at the Main
Menu working with the window file you specified.

If the file name does not exist, you are asked if you want to create a new file. If not, the
Window Painter Entry Menu is displayed.

Entry Menu
You can reach the Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

The Entry Menu is the first screen you see:

ibi™ FOCUS® Developing Applications

608 | Designing Windows With Window Painter

The Entry Menu invites you to choose a window file in which to work. If you are creating
windows for a new application, you should start a new window file. If you are maintaining
or creating windows for an existing application, use the window file that corresponds to
your application.

When you become comfortable working with windows, you can write FOCEXECs that
include branching between window files. Refer to Integrating Windows and the FOCEXEC
for a detailed discussion on branching and transferring control.

Main Menu
Once you have selected a window file from the Entry Menu, or entered the WINDOW PAINT
command with the file name option, the Main Menu appears:

ibi™ FOCUS® Developing Applications

609 | Designing Windows With Window Painter

The following table summarizes the options on the Main Menu, along with illustrations of
screens that appear when you select the options:

Menu Option Description

Create a new
window

Brings up the Window Creation Menu. You can select the
type of window to create.

Edit an existing
window

Brings up a list of windows in your current window file. You
can select the one to edit.

ibi™ FOCUS® Developing Applications

610 | Designing Windows With Window Painter

Menu Option Description

Delete an
existing
window

Brings up a list of windows in your current window file. You
can select the one to delete.

Menu Option Description

Run the
window file

Brings up a list of windows in your current window file. You

ibi™ FOCUS® Developing Applications

611 | Designing Windows With Window Painter

Menu Option Description

can select the one from which to start running the window
file.

After the window file is run, the windows' amper variable
values are displayed. The display includes the first 20
characters of each value.

This option shows you how your windows work without
executing the FOCEXEC. Use this option to test your
window file.

Switch Window
files

Returns you to the Window Painter Entry Menu, from which
you can select another window file. The previous window
file is saved whenever you switch window files.

Utilities Brings up the Utilities Menu, which is discussed in Window
Painter Screens.

End Returns you to native FOCUS. All work saved during the
Window Painter session is kept.

Quit without
saving

Returns you to native FOCUS. All work saved during the
Window Painter session is discarded.

Window Creation Menu
You can reach the Window Creation Menu by selecting

Create a New Window

from the Main Menu. The following screen appears:

ibi™ FOCUS® Developing Applications

612 | Designing Windows With Window Painter

You need to select the type of window to create. You are asked to enter an 8-character
name and an optional 40-character description. These are for your use only and do not
appear in the window during execution.

For a vertical menu, horizontal menu, text input, text display, file names, field names, file
contents, multi-input, or return value display window, you are prompted to supply a 60-
character heading.

For a text input window, you are prompted to choose the format of the text entry field
(alphanumeric, with all text translated to uppercase; alphanumeric, with no case
translation; or numeric). Later, in the Window Design Screen, you can make the length of
the text entry field shorter than the window's header length by typing a single character in
the window immediately following the last desired field position, or by typing characters
continuously from the first field position to the last desired field position.

For a file names, field names, or file contents window, you are prompted to produce file-
identification criteria that can consist of an amper variable, a complete file identification,
or (for file names windows) a file specification which includes an asterisk (for example, *
MASTER).

The asterisk is used as a wildcard character indicating that any character or sequence of
characters can occupy that position. The asterisk can be used as the member name but not
in the ddname.

If an amper variable is used, you can prompt for the file identification criteria at run time.

File-identification criteria must specify the member name first and the ddname second.

If you are creating a field names window, your file-identification criterion is the name of a
Master File.

ibi™ FOCUS® Developing Applications

613 | Designing Windows With Window Painter

In addition, you can create execution windows containing FOCUS commands such as
Dialogue Manager commands or TABLE requests. You are prompted for the window name
and heading. Once a window has been specified, the Window Design screen opens.

For complete information about the types of windows you can create in Window Painter,
see Window Files and Windows.

The next screen displayed is the Window Design Screen, discussed in the next section. This
screen enables you to enter information, and position and size your window.

Window Design Screen
In this screen you design the appearance and functionality of your windows. It appears
during the window creation process, when you press Enter after typing the heading of your
window.

The Window Design Screen consists of a blank screen, a cursor, and text asking you to
move the cursor to the starting position for the window. This starting position becomes the
upper left corner of the window. Use the cursor arrow keys to move the cursor to the place
where you want the upper left corner of the window to be, and press Enter.

The window appears with its heading at the top. You can enlarge it, type text in it, and
move it around the screen.

ibi™ FOCUS® Developing Applications

614 | Designing Windows With Window Painter

The Window Design Screen allows you to use the keyboard to manipulate the window you
are creating.

The following chart summarizes Window Design Screen key functions in all window types.

PF Key Function

PF1 Displays a window of help information.

PF2 Displays the Window Options menu. This menu is discussed in
Window Painter Screens.

PF3 Displays the exit menu. You can select:

l Exiting from the Window Design Screen while saving your
work.

l Quitting from the Screen without saving your work.

l Continuing your work.

PF4 Resizes the window. First move the cursor to the desired
position of the window's lower right corner. When you press
PF4, the window's upper left corner remains in the same
position; the window's lower right corner moves to the current
cursor position.

If the window size is reduced, nothing in the window is deleted;
all window contents beyond the window border can be seen by
scrolling the window.

PF5 Gets the Return value, the GOTO value, and the FOCEXEC name
for the active window.

PF6 Sets the return value of the line that the cursor is on.

PF7 Scrolls the window up if the window contents extend beyond
the top border.

PF8 Scrolls the window down if the window contents extend beyond
the bottom border.

ibi™ FOCUS® Developing Applications

615 | Designing Windows With Window Painter

PF Key Function

PF9 Moves the window. First move the cursor to the desired position
of the window's upper left corner. When you press PF9, the
window's upper left corner (the + in the border) moves to the
current cursor position. The rest of the window moves
accordingly.

PF10 Deletes the line of window contents identified by the current
cursor position. If the window contents do not extend beyond
the window borders, the window itself is reduced by one line.

PF11 Adds one line of window contents beneath the line identified by
the current cursor position. If the window contents do not
extend beyond the window borders, the window itself increases
by one line.

PF12 Provides the same function as the PF3 key.

PF13 -
PF24

These keys provide the same functions as the corresponding
keys PF1 - PF12.

If a window's contents extend beyond a top or bottom border, then the message

(MORE)

is displayed on that border to remind you of more lines of contents hidden beyond that
border. You can view these lines by scrolling toward the border. When the window is used
in an application, the user can also scroll the window to see all of the contents.

The display line at the bottom of the Window Design Screen shows instructions or
information. When you first see the Window Design Screen, the display line tells you to
move the cursor and press Enter. The display line shows the name of the window file, and
the name and type of window being created; it also tells which keys to press for the HELP
function, the SIZE function, and the Window Options Menu.

ibi™ FOCUS® Developing Applications

616 | Designing Windows With Window Painter

Window Options Menu
When the Window Design Screen is displayed, pressing PF2 brings up the following Window
Options Menu:

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option Description

Goto value Selecting this option allows you to specify the next
window in the path from this selection field or window.
You are asked to supply the name of the window. (It
does not matter whether or not this window exists. You
can create it later, but remember the name chosen.)

In menu windows, goto values are assigned to each
menu item. In other windows, there is a single goto value
for the entire window.

To assign a goto value, your cursor must be on the
proper line when the Window Options Menu is brought
up. Select Goto value from the Window Options Menu.

ibi™ FOCUS® Developing Applications

617 | Designing Windows With Window Painter

Menu Option Description

You are prompted to enter the name of the window that
is the target of the goto. Type the name in the space
provided and press Enter again. The goto value is
assigned.

Menu Option Description

Return value The return value supplies a value for an amper variable.
If the user selects this field during execution, the return
value you have assigned is plugged into the amper
variable in your FOCEXEC. Return values are assigned to
each menu item in menu windows, and one per window
for other window types. The only exceptions are the
multi-input window, where the return value is the name
of the input field occupied by the cursor when you
pressed Enter or a PF key, and the return value display
window, which does not have a return value but instead
displays other windows' return values. The return value
for a Multi-Select window is the number of selections.

ibi™ FOCUS® Developing Applications

618 | Designing Windows With Window Painter

Menu Option Description

To assign a return value, your cursor must be on the
proper line. Select Return value from the Window
Options Menu and you are prompted to enter a return
value. Note that for file names, field names, and file
contents windows, the value that you enter is the file-
identification criterion for that window. Type the value
in the space provided and press Enter again to assign
the return value .

Menu Option Description

FOCEXEC name Attaches a FOCEXEC to each menu selection of the
window. The FOCEXEC is executed when the menu item
is selected.

Heading Changes the heading of any window you are working on.
You can also add or remove a heading.

Description Changes the description of any window you are working

ibi™ FOCUS® Developing Applications

619 | Designing Windows With Window Painter

Menu Option Description

on.

Show a window Used only during window editing, brings another
window onto the screen for reference. You cannot edit
the second window.

Unshow a window Removes the shown window from the display.

Menu Option Description

Display list Enables you to specify a list of up to 16
windows that are visible when this window is
displayed during execution. Note that if part of
a window on the display list extends beyond the
window border or does not fit on the screen, it
cannot be scrolled.

As many as 16 windows can be displayed on the
screen at one time. This applies to all windows
on the screen (that is, a window displayed
during execution, windows displayed when
executed previously and not hidden afterward,
and windows displayed because specified on a
display list). The window facility interprets each
window heading as a separate window: if all of
the windows have headings, 16 can be
displayed on the screen at one time.

ibi™ FOCUS® Developing Applications

620 | Designing Windows With Window Painter

Menu Option Description

Hide list Allows you to specify windows that do not appear when
this window is displayed during execution. You can
specify up to 16 specific windows or all windows in the
window file. If you select "All", all the windows are
hidden except those in the display list. If you do not hide
a window that was displayed, it remains on the screen
until another window that includes it on a hide list is
displayed during execution.

ibi™ FOCUS® Developing Applications

621 | Designing Windows With Window Painter

Menu Option Description

Popup (Off/On) Makes the window disappear when the user presses Enter
during execution. Defaults to OFF, which leaves the window
on screen. Set Popup to OFF with text display windows as
they do not work even if set to ON.

Help window Allows you display information about a window or a menu
item when a user presses PF1 (the Window facility HELP
key) during execution. The information displayed is text
within a specified Help window.

Note that if the PFKEY option is specified in the -WINDOW
command, you have to explicitly set a PF key as the HELP
key, as described in Integrating Windows and the FOCEXEC.

When selecting the Help window option, you are asked to
supply the name of the Help window file that contains the
Help window. Next, you are asked to supply the name of
the Help window itself. The Help window can be an
existing window, or one that you created.

ibi™ FOCUS® Developing Applications

622 | Designing Windows With Window Painter

Menu Option Description

If the Help window displays field names, it qualifies
duplicates with the segment name.

You can use any window type for a Help window. A text
display window is easiest, except when supplying different
help information for each item in a vertical menu,
horizontal menu (that is, item-specific help).

To assign item-specific help, use a file contents window
that displays a file containing text in the following format

=>HELPFILE
=> menu item
this is the Help message you want the user to
see.

where:

=>

Is entered with an equal sign (=) and a greater-than sign
(>).

HELPFILE

Must be uppercase.

menu item

Is the exact text of the menu item. Any blank spaces
that precede this text in the menu must also precede
this text here in the Help file. Note that at least one
blank space always precedes the menu item text in a
vertical menu, horizontal menu, or multi-input window.

Help window
(continued)

For example, if the first three lines of a vertical menu are

(1) Generate a sales report
(2) Generate a stock report

and there are three blank spaces between the left border

ibi™ FOCUS® Developing Applications

623 | Designing Windows With Window Painter

Menu Option Description

of the window and the beginning of the text, the file
containing help text could look like this:

=>HELPFILE
=> (1) Generate a sales report
This option displays a list of existing sales
report
requests, and lets you select one of these
requests
to execute.
=> (2) Generate a stock report
This option displays a list of existing stock
report
requests, and lets you select one of these
requests
to execute.

The lines immediately following the menu item text are
displayed when the user positions the cursor on the menu
item and presses PF1.

In some cases you may assign topic-specific help, but want
the help text for some of the topics to be contained in a
separate file. In this case, on the line following the menu
item text, replace the help message with the file
identification of the file containing that menu item's help
message.

Use this file-identification format:

FILENAME= membername ddname

Help window
(continued)

To assign one set of instructions that can be used for
multiple menu items, use the following syntax:

=>DEFAULT
This text appears when you have not written
topic-specific help.

ibi™ FOCUS® Developing Applications

624 | Designing Windows With Window Painter

Menu Option Description

The DEFAULT text must be the last section in the Help file.

Lines beginning with an asterisk (*) are comment lines that
are not displayed.

What follows is an example of a topic-specific Help file for
the Main Menu used in the tutorial.

=>HELPFILE
*Help file for tutorial/Main Menu
=> Create a report?
Choose this option if you wish to create a
new report.
=> Create a graph?Select this option if you
wish to create pie charts, bar charts or
other graphics.
=> Exit?
If you wish to leave the application, choose
this option.

Line-break Formats the contents of the return value display window.
This option is set when designing the windows from which
you collect the return value(s) to be displayed.

When you select this option, you see:

None
New line before value
New line after value
Both

where:

None

Places return value directly after preceding value. If
there is not enough room on this line, return value is
placed on the next line.

New line before value

ibi™ FOCUS® Developing Applications

625 | Designing Windows With Window Painter

Menu Option Description

Places return value on the next line.

New line after value

Places return value on the same line as preceding value.
Places next return value on next line.

Both

Places return value on a line by itself.

Multi-Select Enables you to select multiple items from one window. The
number of items you select is collected as the return value
from that window; each selected item's return value is
stored in a temporary file in memory. You can later retrieve
these stored values for use in a FOCEXEC. Values for up to
8 windows can be stored at one time.

When you select this option, you see:

-Select Multi(On)

During execution, the user selects individual values by
pressing PF9. After all selections have been made, the user
presses Enter.

Note that when the -WINDOW command is issued with the
PFKEY option, the PF9 key cannot be used to make
selections unless a SET command is issued before the -
WINDOW command. For example:

SET PF09=SELECT

You can also set a different PF key for selecting multiple
items.

A Multi-Select window can have no more than one goto
value. Although in a vertical menu window you can assign
a different goto value to each menu item, only the value
assigned to the first item is effective.

ibi™ FOCUS® Developing Applications

626 | Designing Windows With Window Painter

Menu Option Description

The return value collected for a window using the Multi-
Select option is the number of values selected by the user.

To retrieve the individual values, issue a special WINDOW
call, as follows

-WINDOW windowfile windowname GETHOLD

where:

windowfile

Is the name of the window file.

windowname

Is the name of the Multi-Select window.

GETHOLD

Is the special parameter that retrieves one value at a
time from the temporary file.

Multi-Select
(continued)

The value is assigned to the variable &windowname.

The GETHOLD option requires at least two -WINDOW
commands in your FOCEXEC. The first -WINDOW command
(without the GETHOLD option) transfers control to the
Window facility where a Multi-Select window is used. The
second and subsequent -WINDOW commands use the
GETHOLD option to retrieve the stored amper variables
collected in a particular Multi-Select window.

For each value to be retrieved, you need a -WINDOW
command with the GETHOLD option. Each value is stored
in &windowname. To use this value, assign it to another
variable. For example, if the return value has the value 4,
issue the special -WINDOW command four times; each time
you would collect the value from &windowname.
Alternatively, you could perform a loop.

ibi™ FOCUS® Developing Applications

627 | Designing Windows With Window Painter

Menu Option Description

Note that -WINDOW with the GETHOLD option does not
transfer control from the FOCEXEC to the Window facility.

Quit Returns you to the Window Painter Entry Menu.

Input fields Input fields pertain to Multi Input Windows. Selecting the
field takes you to that field.

Menu text Specifies a line of descriptive text, up to 60 characters long,
for items on a horizontal menu. Use the Text line option to
position the text.

Text line (x+1) On a horizontal menu, position descriptive text one or two
lines above or below the menu. Valid values are x+1 or x+2
to place the text above the horizontal menu, x-1 or x-2 to
place the text below the horizontal menu. Use the Menu
text option to define the descriptive text.

Pulldown
(off/on)

If the setting is ON, placing the cursor on an item in a
horizontal menu can display an associated pull-down
menu. The default setting is OFF. Turn the setting ON by
positioning the cursor on this option and pressing Enter.
The pull-down menu must be a vertical menu and must be
assigned as the goto value for the horizontal menu item.
Note that setting Pull-down ON automatically shuts off
Menu Text.

Switch window Enables you to work on and move between two windows.
When you select this option, you can create a new window
or edit an existing window without returning to the Main
Menu.

Utilities Menu
If you select the Utilities option from the Window Painter Main Menu, the Utilities Menu is
displayed:

ibi™ FOCUS® Developing Applications

628 | Designing Windows With Window Painter

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option Description

Document the file When you select this utility, Window Painter creates
documentation of the window file. You can display the
document on the screen using TED or another system
editor, or send it to a printer or disk file.

This option creates a member of the TRF PDS; that PDS
must have already been allocated. However, creating a
PDS is not necessary if you are only going to use the
documentation file during the current FOCUS session:
Window Painter temporarily allocates the PDS.

This document contains detailed information about all
the windows in the window file. It shows you the kinds
of windows, the structure and format, and any options
you have assigned from the Window Options Menu,
including return and goto values. The text you enter
when prompted for a window file description or
individual window description is part of this document.

ibi™ FOCUS® Developing Applications

629 | Designing Windows With Window Painter

Menu Option Description

The document is especially useful when creating a
FOCEXEC, since it provides return and goto values in
addition to other information.

Note: If you create another file with the same name, the
file is not overwritten. It is appended.

Menu Option Description

Change the file
description

Changes the description of the current window.

Compress the
file

This utility is provided to help you save space in memory. It
allows space made available by deleted or edited windows
to be reused.

Rename a
window

When you select this utility, you see a list of the windows
in the current window file. You can change the name of any
of these windows.

Copy a window This function copies a window from one window file to
another, or duplicates it within the same file.

The copy function is useful when you create a new

ibi™ FOCUS® Developing Applications

630 | Designing Windows With Window Painter

Menu Option Description

application, or need to add windows to an existing
application, and want the windows to look like those you
have already created. You can copy any window and edit it
to conform to the new application.

Select the start
window

Enables you to choose a default start window. This window
is the first to be entered if a specific window is not selected
upon startup. If a default start window is not explicitly
chosen, FOCUS selects the first window created to be the
start window.

Create a
transfer file

Creates a file to be transferred for use with the Window
facility in another FOCUS environment.

This option creates a member of the TRF PDS; that PDS
must have already been allocated.

Quit the
utilities menu

Returns you to the Main Menu.

Transferring Window Files
If you use FOCUS in more than one operating environment, you can transfer an existing
window file from one environment to be used in another environment. For example, if you
have a fully-developed window application in PC/FOCUS, and you want to develop a
similar application in mainframe FOCUS, you can transfer the PC/FOCUS window file to
mainframe FOCUS.

You can transfer a window file to a new environment in four simple steps:

1. Create a transfer file from the original window file using Window Painter.

2. Transfer the new file to the new environment using FTP.

3. Edit the transferred file in TED, if necessary.

4. Compile the transferred file using the WINDOW COMPILE command.

These steps are described in the following topics.

ibi™ FOCUS® Developing Applications

631 | Designing Windows With Window Painter

Creating a Transfer File
The window files that you design in Window Painter are compiled files; before a window
file can be transferred to another environment, a user-readable source code version must
be created. This user-readable file is called a transfer file, and is created using the transfer
file option of Window Painter.

l This Window Painter option automatically creates a new member of the PDS
allocated to ddname TRF; the PDS must already have been allocated (with LRECL
between 80 and 132 and RECFM FB). However, it is not necessary to create the PDS if
you use the transfer file during the current FOCUS session: Window Painter
temporarily allocates the PDS.

l For information about the transfer files created by FOCUS Window Painter in other
operating environments, see the appropriate FOCUS Users Manual for those
environments.

To convert a window file to a transfer file, go to the Window Painter Utilities Menu and
select:

Create a transfer file

You are prompted for the name of the new transfer file. Enter a member name; it can have
the same name as the window file, or an entirely new name.

Note that you should not give the transfer file a name already assigned to a window
documentation file. Also, you should not give the transfer file a name already assigned to
an existing transfer file unless you want to merge the two files. See the appropriate
operating environment topic in the Overview and Operating Environments manual for more
information about duplicate window transfer and window documentation file names.

You are asked to select which window(s) you want to transfer. Select

All

to transfer all of the windows in the current window file, or select any single window in the
file. This is the last step in creating a transfer file.

Note that you can merge transfer files: if a transfer file already exists for your window file,
and you only need to add a new window to it, you can give the new transfer file the same
name as the old one, and select the new window. Window Painter merges the source code
for the new window into the existing file, so that you have a single complete transfer file.

ibi™ FOCUS® Developing Applications

632 | Designing Windows With Window Painter

Transferring the File to the New Environment
Once the transfer file exists, it can be transferred to the new environment using FTP.

Editing the Transfer File
Window facility features introduced in one FOCUS release may not be fully supported in
earlier releases. Because different operating environments may be running different
releases of FOCUS, the transfer file created by the FOCUS Window facility in one
environment may contain features not fully supported by the Window facility in another
environment.

If your transfer file contains Window facility features not fully supported in the new
environment, you may need to remove or fine-tune those features. If the new environment
supports features are not supported in the original environment, you can add those
features to the transfer file. Adding, removing, and fine-tuning features can be done by
simply editing the transfer file.

The Format of the Transfer File
The transfer file is a user-readable source code listing of all of the windows and features
that were included from the original window file. You can remove or fine-tune an
unsupported feature by simply editing or deleting the appropriate line in the transfer file.
You can accomplish this by using TED or any other editor.

Each transfer file contains:

l One set of window file attributes describing the file.

l For each window defined in the file, one set of window attributes describing that
window.

l For each line in each window, one set of attributes describing that line.

If any attribute is not specified in the transfer file, it defaults to a value of zero or blank
(depending on whether the value is normally numeric or alphanumeric).

ibi™ FOCUS® Developing Applications

633 | Designing Windows With Window Painter

Transfer File Syntax: Window File Attributes

Attribute Description

FILENAME The name of the original window file.

DESCRIPTION A comment field describing the file.

WINDOWNAME The name of the window.

TYPE The type of window:

1. Vertical menu

2. Text input window

3. Text display window

4. Horizontal menu

5. File names window

6. Field names window

7. File contents window

8. Return value display window

9. Execution window

10. Multi-input window

COMMENT A comment field describing the window.

TRANSLATE Type of input for text input windows (Type 2).

0 Allow mixed-case input.

1 Allow numeric input only.

2 Translate input to uppercase.

ROW The row number of the upper left corner of the window.

COLUMN The column number of the upper left corner of the
window.

ibi™ FOCUS® Developing Applications

634 | Designing Windows With Window Painter

Attribute Description

HEIGHT The height of the window data (the number of lines of
window data, not the height of the actual window frame).

If there are more data lines than what fits in the window
frame, use the PF7 and PF8 keys to scroll the window.

TEXT LINE Position of menu text. Values are: +1, +2, -1, -2.

WIDTH The width of the window frame, not including the border.

INPUT FIELDS Fields for multi-input windows.

WINDOW The number of lines in the actual window frame (not the
number of lines of window data). This does not include
borders.

POPUP Sets the pop-up feature.

0 This is not be a pop-up window.

1 This is a pop-up window.

Transfer File Syntax: Window Attributes

Attribute Description

BORDER Sets the window border.

0 There is no window border.

1 There is a window border.

2 There is a window border.

Options 1 and 2 both result in a basic window border.

HEADLEN Length of the window heading. If this value is 0, there is no
heading.

ibi™ FOCUS® Developing Applications

635 | Designing Windows With Window Painter

Attribute Description

RETURN Sets the line break feature for use with return value display
windows.

0 Line break is not used.

1 New line before this return value.

2 New line after this return value.

3 New line before and after this value.

MULTI Sets the multi-select feature.

0 This is not a multi-select window.

1 This is a multi-select window.

HEADING The text of the window heading.

HELP The name of the help window for this window.

HELPFILE The name of the window file that contains the help
window.

DISPLAY The name of a window to be displayed at the same time
this one is displayed. There can be up to 16 DISPLAY values
for each window. This attribute is optional.

HIDE The name of a window to be hidden when this one is
displayed. There can be up to 16 HIDE values for each
window. This attribute is optional.

Transfer File Syntax: Window Line Attributes

Attribute Description

DATA A line to be displayed in the window (for example, a menu

ibi™ FOCUS® Developing Applications

636 | Designing Windows With Window Painter

Attribute Description

choice in a vertical menu Window, or a line of text in a text
display window). The data can include amper variables
(including &windowname).

GOTO The name of the window to go to if this line is selected by
the user. The value can be an amper variable (including
&windowname). If the value is blank, and this line is
selected, Windows returns to Dialogue Manager.

VALUE The return value supplied if this line is selected by the user.
This value is placed in the amper variable &windowname,
where windowname is the name of the window.

For file names windows (TYPE = 5), this is the file selection
criteria (including asterisks) of the file names to be
displayed.

For field names windows (TYPE = 6), this is the name of the
Master File whose fields are displayed.

For file contents windows (TYPE = 7), this is the name of
the file whose contents are to be displayed.

Operating Environment Considerations
When you transfer a window file to a mainframe operating environment from a different
environment, differences in hardware and operating software may require that you make
changes to the file. These changes are discussed below.

l Screen position. Windows should not begin in row 1 or in column 1. If you transfer a
window with these row or column positions, truncation occurs. Adjust the ROW and
COLUMN attributes if necessary.

l Screen size. Windows should not have more than 22 rows or 77 columns. Windows
that extend beyond the end of the terminal screen is automatically truncated without
any warning message.

This is important to note if you are transferring a window file from an environment
where the screen size differs from that in the mainframe environment. Adjust the

ibi™ FOCUS® Developing Applications

637 | Designing Windows With Window Painter

ROW and COLUMN attributes if necessary.

l Window Position. Column 1 of vertical menu, horizontal menu, multi-input and text
display windows cannot be used. Window text must begin to the right of column 1.

l Function keys. Windows transferred from other environments may refer to function
keys not present in the mainframe environment. Change function key references if
necessary.

l Blank lines. Blank line are acknowledged by Window Painter.

l Colors and Border Types. The use of colored windows and background and multiple
border types is not supported.

l File Naming Conventions. File naming conventions differ in different operating
environments. When transferring a file from some environments, the Window facility
automatically translates references to FOCEXECs, Master Files, and error files, as
shown below. You must change other file references yourself when you edit the
transfer file.

PC or UNIX Extension Mainframe ddname

.FEX FOCEXEC

.MAS MASTER

.ERR ERRORS

Sample Transfer File
To illustrate the transfer file format, part of the transfer file for the SAMPLE window file is
shown below (SAMPLE is described in the tutorial). The MAIN and EXECNAME windows from
the file are included in the example.

FILENAME=SAMPLE
DESCRIPTION='Sample file for windows tutorial'
WINDOWNAME=MAIN,TYPE=1
COMMENT='User can report, graph, or exit.'
ROW= 6,COLUMN=23,HEIGHT= 7,WIDTH=38,WINDOW= 7,POPUP= 0,BORDER=
2,HEADLEN=28

ibi™ FOCUS® Developing Applications

638 | Designing Windows With Window Painter

RETURN=0
MULTI=0
HEADING='Would you like to:'
DATA=' '
$
DATA=' Create a report?'
GOTO='EXECTYPE',VALUE='RPT '
$
DATA=' '
$
DATA=' Create a graph?'
GOTO='EXECTYPE',VALUE='GRPH'
$
DATA=' '
$
DATA=' Exit?'
GOTO=' ',VALUE='XXIT'
$
DATA=' '
$
DISPLAY=BORDER ,$
DISPLAY=BANNER ,$
WINDOWNAME=EXECNAME,TYPE=5
COMMENT='Select an existing FOCEXEC from list.'
ROW= 4,COLUMN=11,HEIGHT=11,WIDTH=57,WINDOW=11,POPUP= 0,BORDER=
2,HEADLEN=55,
RETURN=0
MULTI=0
HEADING='Select the request you want to execute and press ENTER:'
DATA=' '
GOTO=' ',VALUE='* FOCEXEC'
$
DISPLAY=BORDER,$
HIDE=BANNER,$
HIDE=MAIN,$
HIDE=EXECTYPE,$

Compiling the Transfer File
The transfer file can be executed in its current format, but it may execute slowly, and uses
a large amount of memory. You can make your window application more efficient,
requiring less time and memory for execution, by compiling it.

ibi™ FOCUS® Developing Applications

639 | Designing Windows With Window Painter

You can compile a transfer file using the WINDOW COMPILE command. This produces a
new compiled window file, in the same format as the window files produced by Window
Painter.

Note that before you can issue this command, a PDS with LRECL 4096 and RECFM F must
have already been allocated to ddname FMU. However, you do not need to create this PDS
if you are only going to use the transfer file during the current FOCUS session: Window
Painter temporarily allocates the PDS.

Compile a Transfer File
WINDOW COMPILE windowfile

where:

windowfile

Is the name of the transfer file.

This must be a member name of a member of a PDS allocated to ddname TRF.

The command creates a new member of the PDS allocated to ddname FMU, with the
same member name specified in the command.

When a Dialogue Manager -WINDOW command is encountered in a FOCEXEC, FOCUS
searches for a compiled window file (an FMU file) with the specified file name. If the
compiled file is not found, the transfer file (TRF file) with the same file name is used.

Note that if you compile a transfer file and later make changes to it, you need to recompile
the updated transfer file: otherwise, FOCUS continues to use the older, unchanged
compiled file.

ibi™ FOCUS® Developing Applications

640 | Master Files and Diagrams

Master Files and Diagrams
This appendix contains descriptions and structure diagrams for the sample data sources
used throughout the documentation.

EMPLOYEE Data Source
EMPLOYEE contains sample data about company employees. Its segments are:

EMPINFO

Contains employee IDs, names, and positions.

FUNDTRAN

Specifies employee direct deposit accounts. This segment is unique.

PAYINFO

Contains the employee salary history.

ADDRESS

Contains employee home and bank addresses.

SALINFO

Contains data on employee monthly pay.

DEDUCT

Contains data on monthly pay deductions.

EMPLOYEE also contains cross-referenced segments belonging to the JOBFILE and
EDUCFILE files, also described in this appendix. The segments are:

JOBSEG (from JOBFILE)

Describes the job positions held by each employee.

ibi™ FOCUS® Developing Applications

641 | Master Files and Diagrams

SKILLSEG (from JOBFILE)

Lists the skills required by each position.

SECSEG (from JOBFILE)

Specifies the security clearance needed for each job position.

ATTNDSEG (from EDUCFILE)

Lists the dates that employees attended in-house courses.

COURSEG (from EDUCFILE)

Lists the courses that the employees attended.

EMPLOYEE Master File
FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $
FIELDNAME=CURR_SAL, ALIAS=CSAL, FORMAT=D12.2M, $
FIELDNAME=CURR_JOBCODE, ALIAS=CJC, FORMAT=A3, $
FIELDNAME=ED_HRS, ALIAS=OJT, FORMAT=F6.2, $

SEGNAME=FUNDTRAN, SEGTYPE=U, PARENT=EMPINFO
FIELDNAME=BANK_NAME, ALIAS=BN, FORMAT=A20, $
FIELDNAME=BANK_CODE, ALIAS=BC, FORMAT=I6S, $
FIELDNAME=BANK_ACCT, ALIAS=BA, FORMAT=I9S, $
FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $

SEGNAME=PAYINFO, SEGTYPE=SH1, PARENT=EMPINFO
FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
FIELDNAME=PCT_INC, ALIAS=PI, FORMAT=F6.2, $
FIELDNAME=SALARY, ALIAS=SAL, FORMAT=D12.2M, $
FIELDNAME=JOBCODE, ALIAS=JBC, FORMAT=A3, $

SEGNAME=ADDRESS, SEGTYPE=S1, PARENT=EMPINFO
FIELDNAME=TYPE, ALIAS=AT, FORMAT=A4, $
FIELDNAME=ADDRESS_LN1, ALIAS=LN1, FORMAT=A20, $
FIELDNAME=ADDRESS_LN2, ALIAS=LN2, FORMAT=A20, $
FIELDNAME=ADDRESS_LN3, ALIAS=LN3, FORMAT=A20, $
FIELDNAME=ACCTNUMBER, ALIAS=ANO, FORMAT=I9L, $

SEGNAME=SALINFO, SEGTYPE=SH1, PARENT=EMPINFO

ibi™ FOCUS® Developing Applications

642 | Master Files and Diagrams

FIELDNAME=PAY_DATE, ALIAS=PD, FORMAT=I6YMD, $
FIELDNAME=GROSS, ALIAS=MO_PAY, FORMAT=D12.2M, $

SEGNAME=DEDUCT, SEGTYPE=S1, PARENT=SALINFO
FIELDNAME=DED_CODE, ALIAS=DC, FORMAT=A4, $
FIELDNAME=DED_AMT, ALIAS=DA, FORMAT=D12.2M, $

SEGNAME=JOBSEG, SEGTYPE=KU, PARENT=PAYINFO, CRFILE=JOBFILE,
CRKEY=JOBCODE,$

SEGNAME=SECSEG, SEGTYPE=KLU, PARENT=JOBSEG, CRFILE=JOBFILE, $
SEGNAME=SKILLSEG, SEGTYPE=KL, PARENT=JOBSEG, CRFILE=JOBFILE, $
SEGNAME=ATTNDSEG, SEGTYPE=KM, PARENT=EMPINFO, CRFILE=EDUCFILE,
CRKEY=EMP_ID,$

SEGNAME=COURSEG, SEGTYPE=KLU, PARENT=ATTNDSEG, CRFILE=EDUCFILE,$

EMPLOYEE Structure Diagram
The EMPLOYEE structure follows:

ibi™ FOCUS® Developing Applications

643 | Master Files and Diagrams

JOBFILE Data Source
JOBFILE contains sample data about company job positions. Its segments are:

JOBSEG

Describes what each position is. The field JOBCODE in this segment is indexed.

SKILLSEG

Lists the skills required by each position.

SECSEG

Specifies the security clearance needed, if any. This segment is unique.

JOBFILE Master File
FILENAME=JOBFILE, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
FIELDNAME=JOBCODE, ALIAS=JC, FORMAT=A3, INDEX=I,$
FIELDNAME=JOB_DESC, ALIAS=JD, FORMAT=A25 ,$

SEGNAME=SKILLSEG, SEGTYPE=S1, PARENT=JOBSEG
FIELDNAME=SKILLS, ALIAS=, FORMAT=A4 ,$
FIELDNAME=SKILL_DESC, ALIAS=SD, FORMAT=A30 ,$

SEGNAME=SECSEG, SEGTYPE=U, PARENT=JOBSEG
FIELDNAME=SEC_CLEAR, ALIAS=SC, FORMAT=A6 ,$

JOBFILE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBFILE ON 05/15/03 AT 14.40.06

JOBSEG
01 S1

*JOBCODE **I
*JOB_DESC **
* **

ibi™ FOCUS® Developing Applications

644 | Master Files and Diagrams

* **
* **

I
+-----------------+
I I
I SECSEG I SKILLSEG

02 I U 03 I S1
************** *************
*SEC_CLEAR * *SKILLS **
* * *SKILL_DESC **
* * * **
* * * **
* * * **
************** **************

EDUCFILE Data Source
EDUCFILE contains sample data about company in-house courses. Its segments are:

COURSEG

Contains data on each course.

ATTNDSEG

Specifies which employees attended the courses. Both fields in the segment are key
fields. The field EMP_ID in this segment is indexed.

EDUCFILE Master File
FILENAME=EDUCFILE, SUFFIX=FOC
SEGNAME=COURSEG, SEGTYPE=S1
FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, $
FIELDNAME=COURSE_NAME, ALIAS=CD, FORMAT=A30, $

SEGNAME=ATTNDSEG, SEGTYPE=SH2, PARENT=COURSEG
FIELDNAME=DATE_ATTEND, ALIAS=DA, FORMAT=I6YMD, $
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, INDEX=I, $

ibi™ FOCUS® Developing Applications

645 | Master Files and Diagrams

EDUCFILE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EDUCFILE ON 05/15/03 AT
14.45.44

COURSEG
01 S1

*COURSE_CODE **
*COURSE_NAME **
* **
* **
* **

I
I
I
I ATTNDSEG

02 I SH2

*DATE_ATTEND **
*EMP_ID **I
* **
* **
* **

SALES Data Source
SALES contains sample data about a dairy company with an affiliated store chain. Its
segments are:

STOR_SEG

Lists the stores buying the products.

DAT_SEG

Contains the dates of inventory.

ibi™ FOCUS® Developing Applications

646 | Master Files and Diagrams

PRODUCT

Contains sales data for each product on each date. The PROD_CODE field is indexed.
The RETURNS and DAMAGED fields have the MISSING=ON attribute.

SALES Master File
FILENAME=KSALES, SUFFIX=FOC
SEGNAME=STOR_SEG, SEGTYPE=S1
FIELDNAME=STORE_CODE, ALIAS=SNO, FORMAT=A3, $
FIELDNAME=CITY, ALIAS=CTY, FORMAT=A15, $
FIELDNAME=AREA, ALIAS=LOC, FORMAT=A1, $

SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=SH1,
FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, $

SEGNAME=PRODUCT, PARENT=DATE_SEG, SEGTYPE=S1,
FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I,$
FIELDNAME=UNIT_SOLD, ALIAS=SOLD, FORMAT=I5, $
FIELDNAME=RETAIL_PRICE,ALIAS=RP, FORMAT=D5.2M,$
FIELDNAME=DELIVER_AMT, ALIAS=SHIP, FORMAT=I5, $
FIELDNAME=OPENING_AMT, ALIAS=INV, FORMAT=I5, $
FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I3, MISSING=ON,$
FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=I3, MISSING=ON,$

SALES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE SALES ON 05/15/03 AT 14.50.28

STOR_SEG
01 S1

*STORE_CODE **
*CITY **
*AREA **
* **
* **

I
I

ibi™ FOCUS® Developing Applications

647 | Master Files and Diagrams

I
I DATE_SEG

02 I SH1

*DATE **
* **
* **
* **
* **

I
I
I
I PRODUCT

03 I S1

*PROD_CODE **I
*UNIT_SOLD **
*RETAIL_PRICE**
*DELIVER_AMT **
* **

PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one segment,
PRODUCT. The field PROD_CODE is indexed.

PROD Master File
FILE=KPROD, SUFFIX=FOC
SEGMENT=PRODUCT, SEGTYPE=S1,
FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I, $
FIELDNAME=PROD_NAME, ALIAS=ITEM, FORMAT=A15, $
FIELDNAME=PACKAGE, ALIAS=SIZE, FORMAT=A12, $
FIELDNAME=UNIT_COST, ALIAS=COST, FORMAT=D5.2M, $

ibi™ FOCUS® Developing Applications

648 | Master Files and Diagrams

PROD Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE PROD ON 05/15/03 AT 14.57.38
PRODUCT

01 S1

*PROD_CODE **I
*PROD_NAME **
*PACKAGE **
*UNIT_COST **
* **

CAR Data Source
CAR contains sample data about specifications and sales information for rare cars. Its
segments are:

ORIGIN

Lists the country that manufactures the car. The field COUNTRY is indexed.

COMP

Contains the car name.

CARREC

Contains the car model.

BODY

Lists the body type, seats, dealer and retail costs, and units sold.

SPECS

Lists car specifications. This segment is unique.

WARANT

Lists the type of warranty.

ibi™ FOCUS® Developing Applications

649 | Master Files and Diagrams

EQUIP

Lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

CAR Master File
FILENAME=CAR,SUFFIX=FOC
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$

SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$

SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
FIELDNAME=MODEL,MODEL,A24,$

SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC
FIELDNAME=BODYTYPE,TYPE,A12,$
FIELDNAME=SEATS,SEAT,I3,$
FIELDNAME=DEALER_COST,DCOST,D7,$
FIELDNAME=RETAIL_COST,RCOST,D7,$
FIELDNAME=SALES,UNITS,I6,$

SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
FIELDNAME=LENGTH,LEN,D5,$
FIELDNAME=WIDTH,WIDTH,D5,$
FIELDNAME=HEIGHT,HEIGHT,D5,$
FIELDNAME=WEIGHT,WEIGHT,D6,$
FIELDNAME=WHEELBASE,BASE,D6.1,$
FIELDNAME=FUEL_CAP,FUEL,D6.1,$
FIELDNAME=BHP,POWER,D6,$
FIELDNAME=RPM,RPM,I5,$
FIELDNAME=MPG,MILES,D6,$
FIELDNAME=ACCEL,SECONDS,D6,$

SEGNAME=WARANT,SEGTYPE=S1,PARENT=COMP
FIELDNAME=WARRANTY,WARR,A40,$

SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
FIELDNAME=STANDARD,EQUIP,A40,$

ibi™ FOCUS® Developing Applications

650 | Master Files and Diagrams

CAR Structure Diagram

LEDGER Data Source
LEDGER contains sample accounting data. It consists of one segment, TOP. This data
source is specified primarily for FML examples. Aliases do not exist for the fields in this
Master File, and the commas act as placeholders.

ibi™ FOCUS® Developing Applications

651 | Master Files and Diagrams

LEDGER Master File
FILENAME=LEDGER, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S2,$
FIELDNAME=YEAR , , FORMAT=A4, $
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=AMOUNT , , FORMAT=I5C,$

LEDGER Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE LEDGER ON 05/15/03 AT 15.17.08

TOP
01 S2

*YEAR **
*ACCOUNT **
*AMOUNT **
* **
* **

FINANCE Data Source
FINANCE contains sample financial data for balance sheets. It consists of one segment,
TOP. This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

FINANCE Master File
FILENAME=FINANCE, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S2,$

ibi™ FOCUS® Developing Applications

652 | Master Files and Diagrams

FIELDNAME=YEAR , , FORMAT=A4, $
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=AMOUNT , , FORMAT=D12C,$

FINANCE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE FINANCE ON 05/15/03 AT 15.17.08

TOP
01 S2

*YEAR **
*ACCOUNT **
*AMOUNT **
* **
* **

REGION Data Source
REGION contains sample account data for the eastern and western regions of the country.
It consists of one segment, TOP. This data source is specified primarily for FML examples.
Aliases do not exist for the fields in this Master File, and the commas act as placeholders.

REGION Master File
FILENAME=REGION, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S1,$
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=E_ACTUAL, , FORMAT=I5C,$
FIELDNAME=E_BUDGET, , FORMAT=I5C,$
FIELDNAME=W_ACTUAL, , FORMAT=I5C,$
FIELDNAME=W_BUDGET, , FORMAT=I5C,$

ibi™ FOCUS® Developing Applications

653 | Master Files and Diagrams

REGION Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE REGION ON 05/15/03 AT 15.18.48

TOP
01 S1

*ACCOUNT **
*E_ACTUAL **
*E_BUDGET **
*W_ACTUAL **
* **

COURSES Data Source
COURSES contains sample data about education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

COURSES Master File
FILENAME=COURSES, SUFFIX=FOC,$
SEGNAME=CRSESEG1, SEGTYPE=S1, $
FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, FIELDTYPE=I, $
FIELDNAME=COURSE_NAME, ALIAS=CN, FORMAT=A30, $
FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=I3, $
FIELDNAME=DESCRIPTION, ALIAS=CDESC, FORMAT=TX50, $

COURSES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE COURSES ON 05/15/03 AT

ibi™ FOCUS® Developing Applications

654 | Master Files and Diagrams

12.26.05

CRSESEG1
01 S1

*COURSE_CODE **I
*COURSE_NAME **
*DURATION **
*DESCRIPTION **T
* **

EMPDATA Data Source
EMPDATA contains sample data about company employees. It consists of one segment,
EMPDATA. The PIN field is indexed. The AREA field is a temporary field.

EMPDATA Master File
FILENAME=EMPDATA, SUFFIX=FOC
SEGNAME=EMPDATA, SEGTYPE=S1
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=MIDINITIAL, ALIAS=MI, FORMAT=A1, $
FIELDNAME=DIV, ALIAS=CDIV, FORMAT=A4, $
FIELDNAME=DEPT, ALIAS=CDEPT, FORMAT=A20, $
FIELDNAME=JOBCLASS, ALIAS=CJCLAS, FORMAT=A8, $
FIELDNAME=TITLE, ALIAS=CFUNC, FORMAT=A20, $
FIELDNAME=SALARY, ALIAS=CSAL, FORMAT=D12.2M, $
FIELDNAME=HIREDATE, ALIAS=HDAT, FORMAT=YMD, $

$
DEFINE AREA/A13=DECODE DIV (NE 'NORTH EASTERN' SE 'SOUTH EASTERN'
CE 'CENTRAL' WE 'WESTERN' CORP 'CORPORATE' ELSE 'INVALID AREA');$

ibi™ FOCUS® Developing Applications

655 | Master Files and Diagrams

EMPDATA Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EMPDATA ON 05/15/03 AT 14.49.09

EMPDATA
01 S1

*PIN **I
*LASTNAME **
*FIRSTNAME **
*MIDINITIAL **
* **

EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It consists
of one segment, ONESEG.

EXPERSON Master File
FILE=EXPERSON ,SUFFIX=FOC
SEGMENT=ONESEG, $
FIELDNAME=SOC_SEC_NO ,ALIAS=SSN ,USAGE=A9 ,$
FIELDNAME=FIRST_NAME ,ALIAS=FN ,USAGE=A9 ,$
FIELDNAME=LAST_NAME ,ALIAS=LN ,USAGE=A10 ,$
FIELDNAME=AGE ,ALIAS=YEARS ,USAGE=I2 ,$
FIELDNAME=SEX ,ALIAS= ,USAGE=A1 ,$
FIELDNAME=MARITAL_STAT ,ALIAS=MS ,USAGE=A1 ,$
FIELDNAME=NO_DEP ,ALIAS=NDP ,USAGE=I3 ,$
FIELDNAME=DEGREE ,ALIAS= ,USAGE=A3 ,$
FIELDNAME=NO_CARS ,ALIAS=CARS ,USAGE=I3 ,$
FIELDNAME=ADDRESS ,ALIAS= ,USAGE=A14 ,$
FIELDNAME=CITY ,ALIAS= ,USAGE=A10 ,$
FIELDNAME=WAGE ,ALIAS=PAY ,USAGE=D10.2SM ,$
FIELDNAME=CATEGORY ,ALIAS=STATUS ,USAGE=A1 ,$
FIELDNAME=SKILL_CODE ,ALIAS=SKILLS ,USAGE=A5 ,$

ibi™ FOCUS® Developing Applications

656 | Master Files and Diagrams

FIELDNAME=DEPT_CODE ,ALIAS=WHERE ,USAGE=A4 ,$
FIELDNAME=TEL_EXT ,ALIAS=EXT ,USAGE=I4 ,$
FIELDNAME=DATE_EMP ,ALIAS=BASE_DATE ,USAGE=I6YMTD ,$
FIELDNAME=MULTIPLIER ,ALIAS=RATIO ,USAGE=D5.3 ,$

EXPERSON Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EXPERSON ON 05/15/03 AT 14.50.58

ONESEG
01 S1

*SOC_SEC_NO **
*FIRST_NAME **
*LAST_NAME **
*AGE **
* **

TRAINING Data Source
TRAINING contains sample data about training courses for employees. It consists of one
segment, TRAINING. The PIN field is indexed. The EXPENSES, GRADE, and LOCATION fields
have the MISSING=ON attribute.

TRAINING Master File
FILENAME=TRAINING, SUFFIX=FOC
SEGNAME=TRAINING, SEGTYPE=SH3
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=COURSESTART, ALIAS=CSTART, FORMAT=YMD, $
FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, $
FIELDNAME=EXPENSES, ALIAS=COST, FORMAT=D8.2, MISSING=ON $

ibi™ FOCUS® Developing Applications

657 | Master Files and Diagrams

FIELDNAME=GRADE, ALIAS=GRA, FORMAT=A2, MISSING=ON, $
FIELDNAME=LOCATION, ALIAS=LOC, FORMAT=A6, MISSING=ON, $

TRAINING Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE TRAINING ON 05/15/03 AT 14.51.28

TRAINING
01 SH3

*PIN **I
*COURSESTART **
*COURSECODE **
*EXPENSES **
* **

COURSE Data Source
COURSE contains sample data about education courses. It consists of one segment,
CRSELIST.

COURSE Master File
FILENAME=COURSE, SUFFIX=FOC
SEGNAME=CRSELIST, SEGTYPE=S1
FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, INDEX=I, $
FIELDNAME=CTITLE, ALIAS=COURSE, FORMAT=A35, $
FIELDNAME=SOURCE, ALIAS=ORG, FORMAT=A35, $
FIELDNAME=CLASSIF, ALIAS=CLASS, FORMAT=A10, $
FIELDNAME=TUITION, ALIAS=FEE, FORMAT=D8.2, MISSING=ON, $
FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=A3, MISSING=ON, $
FIELDNAME=DESCRIPTN1, ALIAS=DESC1, FORMAT=A40, $

ibi™ FOCUS® Developing Applications

658 | Master Files and Diagrams

FIELDNAME=DESCRIPTN2, ALIAS=DESC2, FORMAT=A40, $
FIELDNAME=DESCRIPTN2, ALIAS=DESC3, FORMAT=A40, $

COURSE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE COURSE ON 05/15/03 AT 12.26.05

CRSELIST
01 S1

*COURSECODE **I
*CTITLE **
*SOURCE **
*CLASSIF **
* **

JOBHIST Data Source
JOBHIST contains information about employee jobs. Both the PIN and JOBSTART fields are
keys. The PIN field is indexed.

JOBHIST Master File
FILENAME=JOBHIST, SUFFIX=FOC
SEGNAME=JOBHIST, SEGTYPE=SH2
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I ,$
FIELDNAME=JOBSTART, ALIAS=SDAT, FORMAT=YMD, $
FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, $
FIELDNAME=FUNCTITLE, ALIAS=FUNC, FORMAT=A20, $

ibi™ FOCUS® Developing Applications

659 | Master Files and Diagrams

JOBHIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBHIST ON 01/22/08 AT 16.23.46
JOBHIST

01 SH2

*PIN **I
*JOBSTART **
*JOBCLASS **
*FUNCTITLE **
* **

JOBLIST Data Source
JOBLIST contains information about jobs. The JOBCLASS field is indexed.

JOBLIST Master File
FILENAME=JOBLIST, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, INDEX=I ,$
FIELDNAME=CATEGORY, ALIAS=JGROUP, FORMAT=A25, $
FIELDNAME=JOBDESC, ALIAS=JDESC, FORMAT=A40, $
FIELDNAME=LOWSAL, ALIAS=LSAL, FORMAT=D12.2M, $
FIELDNAME=HIGHSAL, ALIAS=HSAL, FORMAT=D12.2M, $

DEFINE GRADE/A2=EDIT (JCLASS,'$$$99');$
DEFINE LEVEL/A25=DECODE GRADE (08 'GRADE 8' 09 'GRADE 9' 10
'GRADE 10' 11 'GRADE 11' 12 'GRADE 12' 13 'GRADE 13' 14 'GRADE 14');$

ibi™ FOCUS® Developing Applications

660 | Master Files and Diagrams

JOBLIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBLIST ON 01/22/08 AT
16.24.52

JOBSEG
01 S1

*JOBCLASS **I
*CATEGORY **
*JOBDESC **
*LOWSAL **
* **

LOCATOR Data Source
JOBHIST contains information about employee location and phone number. The PIN field
is indexed.

LOCATOR Master File
FILENAME=LOCATOR, SUFFIX=FOC
SEGNAME=LOCATOR, SEGTYPE=S1,
FIELDNAME=PIN, ALIAS=ID_NO, FORMAT=A9, INDEX=I, $
FIELDNAME=SITE, ALIAS=SITE, FORMAT=A25, $
FIELDNAME=FLOOR, ALIAS=FL, FORMAT=A3, $
FIELDNAME=ZONE, ALIAS=ZONE, FORMAT=A2, $
FIELDNAME=BUS_PHONE, ALIAS=BTEL, FORMAT=A5, $

ibi™ FOCUS® Developing Applications

661 | Master Files and Diagrams

LOCATOR Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE LOCATOR ON 01/22/08 AT
16.26.55

LOCATOR
01 S1

*PIN **I
*SITE **
*FLOOR **
*ZONE **
* **

PERSINFO Data Source
PERSINFO contains employee personal information. The PIN field is indexed.

PERSINFO Master File
FILENAME=PERSINFO, SUFFIX=FOC
SEGNAME=PERSONAL, SEGTYPE=S1
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=INCAREOF, ALIAS=ICO, FORMAT=A35, $
FIELDNAME=STREETNO, ALIAS=STR, FORMAT=A20, $
FIELDNAME=APT, ALIAS=APT, FORMAT=A4, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=POSTALCODE, ALIAS=ZIP, FORMAT=A10, $
FIELDNAME=COUNTRY, ALIAS=CTRY, FORMAT=A15, $
FIELDNAME=HOMEPHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=EMERGENCYNO, ALIAS=ENO, FORMAT=A10, $
FIELDNAME=EMERGCONTACT, ALIAS=ENAME, FORMAT=A35, $
FIELDNAME=RELATIONSHIP, ALIAS=REL, FORMAT=A8, $
FIELDNAME=BIRTHDATE, ALIAS=BDAT, FORMAT=YMD, $

ibi™ FOCUS® Developing Applications

662 | Master Files and Diagrams

PERSINFO Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE PERSINFO ON 01/22/08 AT 16.27.24
PERSONAL
01 S1

*PIN **I
*INCAREOF **
*STREETNO **
*APT **
* **

SALHIST Data Source
SALHIST contains information about employee salary history. The PIN field is indexed. Both
the PIN and EFFECTDATE fields are keys.

SALHIST Master File
FILENAME=SALHIST, SUFFIX=FOC
SEGNAME=SLHISTRY, SEGTYPE=SH2
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=EFFECTDATE, ALIAS=EDAT, FORMAT=YMD, $
FIELDNAME=OLDSALARY, ALIAS=OSAL, FORMAT=D12.2, $

SALHIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE SALHIST ON 01/22/08 AT 16.28.02
SLHISTRY

01 SH2

ibi™ FOCUS® Developing Applications

663 | Master Files and Diagrams

*PIN **I
*EFFECTDATE **
*OLDSALARY **
* **
* **

PAYHIST File
The PAYHIST data source contains the employees' salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

PAYHIST Master File
FILENAME=PAYHIST, SUFFIX=FIX
SEGMENT=PAYSEG,$
FIELDNAME=SOC_SEC_NO, ALIAS=SSN, USAGE=A9, ACTUAL=A9, $
FIELDNAME=DATE_OF_IN, ALIAS=INCDATE, USAGE=I6YMTD, ACTUAL=A6, $
FIELDNAME=AMT_OF_INC, ALIAS=RAISE, USAGE=D6.2, ACTUAL=A10,$
FIELDNAME=PCT_INC, ALIAS=, USAGE=D6.2, ACTUAL=A6, $
FIELDNAME=NEW_SAL, ALIAS=CURR_SAL, USAGE=D10.2, ACTUAL=A11,$
FIELDNAME=FILL, ALIAS=, USAGE=A38, ACTUAL=A38,$

PAYHIST Structure Diagram
SECTION 01

STRUCTURE OF FIX FILE PAYHIST ON 05/15/03 AT 14.51.59

PAYSEG
01 S1

*SOC_SEC_NO **

ibi™ FOCUS® Developing Applications

664 | Master Files and Diagrams

*DATE_OF_IN **
*AMT_OF_INC **
*PCT_INC **
* **

COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in a
data source. Since COMASTER is used for debugging other Master Files, a corresponding
FOCEXEC does not exist for the COMASTER file. Its segments are:

l FILEID, which lists file information.

l RECID, which lists segment information.

l FIELDID, which lists field information.

l DEFREC, which lists a description record.

l PASSREC, which lists read/write access.

l CRSEG, which lists cross-reference information for segments.

l ACCSEG, which lists DBA information.

COMASTER Master File
SUFFIX=COM,SEGNAME=FILEID
FIELDNAME=FILENAME ,FILE ,A8 , ,$
FIELDNAME=FILE SUFFIX ,SUFFIX ,A8 , ,$
FIELDNAME=FDEFCENT ,FDFC ,A4 , ,$
FIELDNAME=FYRTHRESH ,FYRT ,A2 , ,$

SEGNAME=RECID
FIELDNAME=SEGNAME ,SEGMENT ,A8 , ,$
FIELDNAME=SEGTYPE ,SEGTYPE ,A4 , ,$
FIELDNAME=SEGSIZE ,SEGSIZE ,I4 , A4,$
FIELDNAME=PARENT ,PARENT ,A8 , ,$
FIELDNAME=CRKEY ,VKEY ,A66, ,$

SEGNAME=FIELDID

ibi™ FOCUS® Developing Applications

665 | Master Files and Diagrams

FIELDNAME=FIELDNAME ,FIELD ,A66, ,$
FIELDNAME=ALIAS ,SYNONYM ,A66, ,$
FIELDNAME=FORMAT ,USAGE ,A8 , ,$
FIELDNAME=ACTUAL ,ACTUAL ,A8 , ,$
FIELDNAME=AUTHORITY ,AUTHCODE ,A8 , ,$
FIELDNAME=FIELDTYPE ,INDEX ,A8 , ,$
FIELDNAME=TITLE ,TITLE ,A64, ,$
FIELDNAME=HELPMESSAGE ,MESSAGE ,A256, ,$
FIELDNAME=MISSING ,MISSING ,A4 , ,$
FIELDNAME=ACCEPTS ,ACCEPTABLE ,A255, ,$
FIELDNAME=RESERVED ,RESERVED ,A44 , ,$
FIELDNAME=DEFCENT ,DFC ,A4 , ,$
FIELDNAME=YRTHRESH ,YRT ,A4 , ,$

SEGNAME=DEFREC
FIELDNAME=DEFINITION ,DESCRIPTION ,A44, ,$

SEGNAME=PASSREC,PARENT=FILEID
FIELDNAME=READ/WRITE ,RW ,A32, ,$

SEGNAME=CRSEG,PARENT=RECID
FIELDNAME=CRFILENAME ,CRFILE ,A8 , ,$
FIELDNAME=CRSEGNAME ,CRSEGMENT ,A8 , ,$
FIELDNAME=ENCRYPT ,ENCRYPT ,A4 , ,$

SEGNAME=ACCSEG,PARENT=DEFREC
FIELDNAME=DBA ,DBA ,A8 , ,$
FIELDNAME=DBAFILE , ,A8 , ,$
FIELDNAME=USER ,PASS ,A8 , ,$
FIELDNAME=ACCESS ,ACCESS ,A8 , ,$
FIELDNAME=RESTRICT ,RESTRICT ,A8 , ,$
FIELDNAME=NAME ,NAME ,A66, ,$
FIELDNAME=VALUE ,VALUE ,A80, ,$

COMASTER Structure Diagram
SECTION 01

STRUCTURE OF EXTERNAL FILE COMASTER ON 05/15/03 AT 14.53.38

ibi™ FOCUS® Developing Applications

666 | Master Files and Diagrams

VIDEOTRK, MOVIES, and ITEMS Data Sources
VIDEOTRK contains sample data about customer, rental, and purchase information for a
video rental business. It can be joined to the MOVIES or ITEMS data source. VIDEOTRK and
MOVIES are used in examples that illustrate the use of the Maintain Data facility.

VIDEOTRK Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1

ibi™ FOCUS® Developing Applications

667 | Master Files and Diagrams

FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $

SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $

SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $

SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

VIDEOTRK Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/15/03 AT 12.25.19

CUST
01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

ibi™ FOCUS® Developing Applications

668 | Master Files and Diagrams

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
************** **************

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

MOVIES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE MOVIES ON 05/15/03 AT 12.26.05

ibi™ FOCUS® Developing Applications

669 | Master Files and Diagrams

MOVINFO
01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

ITEMS Master File
FILENAME=ITEMS, SUFFIX=FOC
SEGNAME=ITMINFO, SEGTYPE=S1
FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=PRODNAME, ALIAS=PROD, FORMAT=A20, $
FIELDNAME=OURCOST, ALIAS=WCOST, FORMAT=F6.2, $
FIELDNAME=RETAILPR, ALIAS=PRICE, FORMAT=F6.2, $
FIELDNAME=ON_HAND, ALIAS=NUM, FORMAT=I5, $

ITEMS Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE ITEMS ON 05/15/03 AT 12.26.05

ITMINFO
01 S1

*PRODCODE **I
*PRODNAME **
*OURCOST **
*RETAILPR **
* **

ibi™ FOCUS® Developing Applications

670 | Master Files and Diagrams

VIDEOTR2 Data Source
VIDEOTR2 contains sample data about customer, rental, and purchase information for a
video rental business. It consists of four segments.

VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $

SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $

SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $

SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

VIDEOTR2 Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE VIDEOTR2 ON 05/15/03 AT 16.45.48

CUST
01 S1

ibi™ FOCUS® Developing Applications

671 | Master Files and Diagrams

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*TRANSCODE ** *MOVIECODE **I
*QUANTITY ** *COPY **
*TRANSTOT ** *RETURNDATE **
* ** *FEE **
* ** * **
*************** ***************
************** **************

Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain sample data about a specialty items
company.

l GGDEMOG contains demographic information about the customers of Gotham Grinds,
a company that sells specialty items like coffee, gourmet snacks, and gifts. It consists
of one segment, DEMOG01.

l GGORDER contains order information for Gotham Grinds. It consists of two segments,

ibi™ FOCUS® Developing Applications

672 | Master Files and Diagrams

ORDER01 and ORDER02.

l GGPRODS contains product information for Gotham Grinds. It consists of one
segment, PRODS01.

l GGSALES contains sales information for Gotham Grinds. It consists of one segment,
SALES01.

l GGSTORES contains information for each of Gotham Grinds 12 stores in the United
States. It consists of one segment, STORES01.

GGDEMOG Master File
FILENAME=GGDEMOG, SUFFIX=FOC
SEGNAME=DEMOG01, SEGTYPE=S1
FIELD=ST, ALIAS=E02, FORMAT=A02, INDEX=I,TITLE='State',
DESC='State',$
FIELD=HH, ALIAS=E03, FORMAT=I09, TITLE='Number of Households',
DESC='Number of Households',$
FIELD=AVGHHSZ98,ALIAS=E04, FORMAT=I09, TITLE='Average Household Size',
DESC='Average Household Size',$
FIELD=MEDHHI98, ALIAS=E05, FORMAT=I09, TITLE='Median Household

Income',
DESC='Median Household Income',$
FIELD=AVGHHI98, ALIAS=E06, FORMAT=I09, TITLE='Average Household

Income',
DESC='Average Household Income',$
FIELD=MALEPOP98,ALIAS=E07, FORMAT=I09, TITLE='Male Population',
DESC='Male Population',$
FIELD=FEMPOP98, ALIAS=E08, FORMAT=I09, TITLE='Female Population',
DESC='Female Population',$
FIELD=P15TO1998,ALIAS=E09, FORMAT=I09, TITLE='15 to 19',
DESC='Population 15 to 19 years old',$
FIELD=P20TO2998,ALIAS=E10, FORMAT=I09, TITLE='20 to 29',
DESC='Population 20 to 29 years old',$
FIELD=P30TO4998,ALIAS=E11, FORMAT=I09, TITLE='30 to 49',
DESC='Population 30 to 49 years old',$
FIELD=P50TO6498,ALIAS=E12, FORMAT=I09, TITLE='50 to 64',
DESC='Population 50 to 64 years old',$
FIELD=P65OVR98, ALIAS=E13, FORMAT=I09, TITLE='65 and over',
DESC='Population 65 and over',$

ibi™ FOCUS® Developing Applications

673 | Master Files and Diagrams

GGDEMOG Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGDEMOG ON 05/15/03 AT 12.26.05

GGDEMOG
01 S1

*ST **I
*HH **
*AVGHHSZ98 **
*MEDHHI98 **
* **

GGORDER Master File
FILENAME=GGORDER, SUFFIX=FOC,$
SEGNAME=ORDER01, SEGTYPE=S1,$
FIELD=ORDER_NUMBER, ALIAS=ORDNO1, FORMAT=I6, TITLE='Order,Number',
DESC='Order Identification Number',$
FIELD=ORDER_DATE, ALIAS=DATE, FORMAT=MDY, TITLE='Order,Date',
DESC='Date order was placed',$
FIELD=STORE_CODE, ALIAS=STCD, FORMAT=A5, TITLE='Store,Code',
DESC='Store Identification Code (for order)',$
FIELD=PRODUCT_CODE, ALIAS=PCD, FORMAT=A4, TITLE='Product,Code',
DESC='Product Identification Code (for order)',$
FIELD=QUANTITY, ALIAS=ORDUNITS, FORMAT=I8, TITLE='Ordered,Units',
DESC='Quantity Ordered',$

SEGNAME=ORDER02, SEGTYPE=KU, PARENT=ORDER01, CRFILE=GGPRODS, CRKEY=PCD,
CRSEG=PRODS01 ,$

GGORDER Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGORDER ON 05/15/03 AT 16.45.48

ibi™ FOCUS® Developing Applications

674 | Master Files and Diagrams

GGORDER
01 S1

*ORDER_NUMBER**
*ORDER_DATE **
*STORE_CODE **
*PRODUCT_CODE**
* **

I
I
I
I ORDER02

02 I KU
..............
:PRODUCT_ID :K
:PRODUCT_DESC:
:VENDOR_CODE :
:VENDOR_NAME :
: :
:............:

GGPRODS Master File
FILENAME=GGPRODS, SUFFIX=FOC
SEGNAME=PRODS01, SEGTYPE=S1
FIELD=PRODUCT_ID, ALIAS=PCD, FORMAT=A4, INDEX=I, TITLE='Product,Code',
DESC='Product Identification Code',$
FIELD=PRODUCT_DESCRIPTION, ALIAS=PRODUCT, FORMAT=A16, TITLE='Product',
DESC='Product Name',$
FIELD=VENDOR_CODE, ALIAS=VCD, FORMAT=A4, INDEX=I, TITLE='Vendor ID',
DESC='Vendor Identification Code',$
FIELD=VENDOR_NAME, ALIAS=VENDOR, FORMAT=A23, TITLE='Vendor Name',
DESC='Vendor Name',$
FIELD=PACKAGE_TYPE, ALIAS=PACK, FORMAT=A7, TITLE='Package',
DESC='Packaging Style',$
FIELD=SIZE, ALIAS=SZ, FORMAT=I2, TITLE='Size',
DESC='Package Size',$
FIELD=UNIT_PRICE, ALIAS=UNITPR, FORMAT=D7.2, TITLE='Unit,Price',
DESC='Price for one unit',$

ibi™ FOCUS® Developing Applications

675 | Master Files and Diagrams

GGPRODS Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGPRODS ON 05/15/03 AT 12.26.05

GGPRODS
01 S1

*PRODUCT_ID **I
*PRODUCT_DESC**I
*VENDOR_CODE **
*VENDOR_NAME **
* **

GGSALES Master File
FILENAME=GGSALES, SUFFIX=FOC
SEGNAME=SALES01, SEGTYPE=S1
FIELD=SEQ_NO, ALIAS=SEQ, FORMAT=I5, TITLE='Sequence#',
DESC='Sequence number in database',$
FIELD=CATEGORY, ALIAS=E02, FORMAT=A11, INDEX=I, TITLE='Category',
DESC='Product category',$
FIELD=PCD, ALIAS=E03, FORMAT=A04, INDEX=I, TITLE='Product ID',
DESC='Product Identification code (for sale)',$
FIELD=PRODUCT, ALIAS=E04, FORMAT=A16, TITLE='Product',
DESC='Product name',$
FIELD=REGION, ALIAS=E05, FORMAT=A11, INDEX=I, TITLE='Region',
DESC='Region code',$
FIELD=ST, ALIAS=E06, FORMAT=A02, INDEX=I, TITLE='State',
DESC='State',$
FIELD=CITY, ALIAS=E07, FORMAT=A20, TITLE='City',
DESC='City',$
FIELD=STCD, ALIAS=E08, FORMAT=A05, INDEX=I, TITLE='Store ID',
DESC='Store identification code (for sale)',$
FIELD=DATE, ALIAS=E09, FORMAT=I8YYMD, TITLE='Date',
DESC='Date of sales report',$
FIELD=UNITS, ALIAS=E10, FORMAT=I08, TITLE='Unit Sales',
DESC='Number of units sold',$
FIELD=DOLLARS, ALIAS=E11, FORMAT=I08, TITLE='Dollar Sales',
DESC='Total dollar amount of reported sales',$

ibi™ FOCUS® Developing Applications

676 | Master Files and Diagrams

FIELD=BUDUNITS, ALIAS=E12, FORMAT=I08, TITLE='Budget Units',
DESC='Number of units budgeted',$
FIELD=BUDDOLLARS, ALIAS=E13, FORMAT=I08, TITLE='Budget Dollars',
DESC='Total sales quota in dollars',$

GGSALES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGSALES ON 05/15/03 AT 12.26.05

GGSALES
01 S1

*SEQ_NO **
*CATEGORY **I
*PCD **I
*PRODUCT **I
* **

GGSTORES Master File
FILENAME=GGSTORES, SUFFIX=FOC
SEGNAME=STORES01, SEGTYPE=S1
FIELD=STORE_CODE, ALIAS=E02, FORMAT=A05, INDEX=I, TITLE='Store ID',
DESC='Franchisee ID Code',$
FIELD=STORE_NAME, ALIAS=E03, FORMAT=A23, TITLE='Store Name',
DESC='Store Name',$
FIELD=ADDRESS1, ALIAS=E04, FORMAT=A19, TITLE='Contact',
DESC='Franchisee Owner',$
FIELD=ADDRESS2, ALIAS=E05, FORMAT=A31, TITLE='Address',
DESC='Street Address',$
FIELD=CITY, ALIAS=E06, FORMAT=A22, TITLE='City',
DESC='City',$
FIELD=STATE, ALIAS=E07, FORMAT=A02, INDEX=I, TITLE='State',
DESC='State',$
FIELD=ZIP, ALIAS=E08, FORMAT=A06, TITLE='Zip Code',
DESC='Postal Code',$

ibi™ FOCUS® Developing Applications

677 | Master Files and Diagrams

GGSTORES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGSTORES ON 05/15/03 AT 12.26.05

GGSTORES
01 S1

*STORE_CODE **I
*STORE_NAME **
*ADDRESS1 **
*ADDRESS2 **
* **

Century Corp Data Sources
Century Corp is a consumer electronics manufacturer that distributes products through
retailers around the world. Century Corp has thousands of employees in plants,
warehouses, and offices worldwide. Their mission is to provide quality products and
services to their customers.

Century Corp is a group of data sources that contain financial, human resources, inventory,
and order information. The last three data sources are designed to be used with chart of
accounts data.

l CENTCOMP Master File contains location information for stores. It consists of one
segment, COMPINFO.

l CENTFIN Master File contains financial information. It consists of one segment,
ROOT_SEG.

l CENTHR Master File contains human resources information. It consists of one
segment, EMPSEG.

l CENTINV Master File contains inventory information. It consists of one segment,
INVINFO.

l CENTORD Master File contains order information. It consists of four segments, OINFO,
STOSEG, PINFO, and INVSEG.

ibi™ FOCUS® Developing Applications

678 | Master Files and Diagrams

l CENTQA Master File contains problem information. It consists of three segments,
PROD_SEG, INVSEG, and PROB_SEG.

l CENTGL Master File contains a chart of accounts hierarchy. The field GL_ACCOUNT_
PARENT is the parent field in the hierarchy. The field GL_ACCOUNT is the hierarchy
field. The field GL_ACCOUNT_CAPTION can be used as the descriptive caption for the
hierarchy field.

l CENTSYSF Master File contains detail-level financial data. CENTSYSF uses a different
account line system (SYS_ACCOUNT), which can be joined to the SYS_ACCOUNT field
in CENTGL. Data uses "natural" signs (expenses are positive, revenue negative).

l CENTSTMT Master File contains detail-level financial data and a cross-reference to
the CENTGL data source.

CENTCOMP Master File
FILE=CENTCOMP, SUFFIX=FOC, FDFC=19, FYRT=00

SEGNAME=COMPINFO, SEGTYPE=S1, $
FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
TITLE='Store Id#:',
DESCRIPTION='Store Id#', $
FIELD=STORENAME, ALIAS=SNAME, FORMAT=A20,
WITHIN=STATE,
TITLE='Store,Name:',
DESCRIPTION='Store Name', $
FIELD=STATE, ALIAS=STATE, FORMAT=A2,
WITHIN=PLANT,
TITLE='State:',
DESCRIPTION=State, $
DEFINE REGION/A5=DECODE STATE ('AL' 'SOUTH' 'AK' 'WEST' 'AR' 'SOUTH'
'AZ' 'WEST' 'CA' 'WEST' 'CO' 'WEST' 'CT' 'EAST'
'DE' 'EAST' 'DC' 'EAST' 'FL' 'SOUTH' 'GA' 'SOUTH' 'HI' 'WEST'
'ID' 'WEST' 'IL' 'NORTH' 'IN' 'NORTH' 'IA' 'NORTH'
'KS' 'NORTH' 'KY' 'SOUTH' 'LA' 'SOUTH' 'ME' 'EAST' 'MD' 'EAST'
'MA' 'EAST' 'MI' 'NORTH' 'MN' 'NORTH' 'MS' 'SOUTH' 'MT' 'WEST'
'MO' 'SOUTH' 'NE' 'WEST' 'NV' 'WEST' 'NH' 'EAST' 'NJ' 'EAST'
'NM' 'WEST' 'NY' 'EAST' 'NC' 'SOUTH' 'ND' 'NORTH' 'OH' 'NORTH'
'OK' 'SOUTH' 'OR' 'WEST' 'PA' 'EAST' 'RI' 'EAST' 'SC' 'SOUTH'
'SD' 'NORTH' 'TN' 'SOUTH' 'TX' 'SOUTH' 'UT' 'WEST' 'VT' 'EAST'
'VA' 'SOUTH' 'WA' 'WEST' 'WV' 'SOUTH' 'WI' 'NORTH' 'WY' 'WEST'
'NA' 'NORTH' 'ON' 'NORTH' ELSE ' ');,

ibi™ FOCUS® Developing Applications

679 | Master Files and Diagrams

TITLE='Region:',
DESCRIPTION=Region, $

CENTCOMP Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTCOMP ON 05/15/03 AT 10.20.49

COMPINFO
01 S1

*STORE_CODE **I
*STORENAME **
*STATE **
* **
* **

CENTFIN Master File
FILE=CENTFIN, SUFFIX=FOC, FDFC=19, FYRT=00

SEGNAME=ROOT_SEG, SEGTYPE=S4, $
FIELD=YEAR, ALIAS=YEAR, FORMAT=YY,
WITHIN='*Time Period', $
FIELD=QUARTER, ALIAS=QTR, FORMAT=Q,
WITHIN=YEAR,
TITLE=Quarter,
DESCRIPTION=Quarter, $
FIELD=MONTH, ALIAS=MONTH, FORMAT=M,
TITLE=Month,
DESCRIPTION=Month, $
FIELD=ITEM, ALIAS=ITEM, FORMAT=A20,
TITLE=Item,
DESCRIPTION=Item, $
FIELD=VALUE, ALIAS=VALUE, FORMAT=D12.2,
TITLE=Value,
DESCRIPTION=Value, $
DEFINE ITYPE/A12=IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'E'

ibi™ FOCUS® Developing Applications

680 | Master Files and Diagrams

THEN 'Expense' ELSE IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'R'
THEN 'Revenue' ELSE 'Asset';,
TITLE=Type,
DESCRIPTION='Type of Financial Line Item',$
DEFINE MOTEXT/MT=MONTH;,$

CENTFIN Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTFIN ON 05/15/03 AT 10.25.52

ROOT_SEG
01 S4

*YEAR **
*QUARTER **
*MONTH **
*ITEM **
* **

CENTHR Master File
FILE=CENTHR, SUFFIX=FOC

SEGNAME=EMPSEG, SEGTYPE=S1, $
FIELD=ID_NUM, ALIAS=ID#, FORMAT=I9,
TITLE='Employee,ID#',
DESCRIPTION='Employee Identification Number', $
FIELD=LNAME, ALIAS=LN, FORMAT=A14,
TITLE='Last,Name',
DESCRIPTION='Employee Last Name', $
FIELD=FNAME, ALIAS=FN, FORMAT=A12,
TITLE='First,Name',
DESCRIPTION='Employee First Name', $
FIELD=PLANT, ALIAS=PLT, FORMAT=A3,
TITLE='Plant,Location',
DESCRIPTION='Location of the manufacturing plant',
WITHIN='*Location', $

ibi™ FOCUS® Developing Applications

681 | Master Files and Diagrams

FIELD=START_DATE, ALIAS=SDATE, FORMAT=YYMD,
TITLE='Starting,Date',
DESCRIPTION='Date of employment',$
FIELD=TERM_DATE, ALIAS=TERM_DATE, FORMAT=YYMD,
TITLE='Termination,Date',
DESCRIPTION='Termination Date', $
FIELD=STATUS, ALIAS=STATUS, FORMAT=A10,
TITLE='Current,Status',
DESCRIPTION='Job Status', $
FIELD=POSITION, ALIAS=JOB, FORMAT=A2,
TITLE=Position,
DESCRIPTION='Job Position', $
FIELD=PAYSCALE, ALIAS=PAYLEVEL, FORMAT=I2,
TITLE='Pay,Level',
DESCRIPTION='Pay Level',
WITHIN='*Wages',$
DEFINE POSITION_DESC/A17=IF POSITION EQ 'BM' THEN
'Plant Manager' ELSE
IF POSITION EQ 'MR' THEN 'Line Worker' ELSE
IF POSITION EQ 'TM' THEN 'Line Manager' ELSE
'Technician';
TITLE='Position,Description',
DESCRIPTION='Position Description',
WITHIN='PLANT',$
DEFINE BYEAR/YY=START_DATE;
TITLE='Beginning,Year',
DESCRIPTION='Beginning Year',
WITHIN='*Starting Time Period',$

DEFINE BQUARTER/Q=START_DATE;
TITLE='Beginning,Quarter',
DESCRIPTION='Beginning Quarter',
WITHIN='BYEAR',
DEFINE BMONTH/M=START_DATE;
TITLE='Beginning,Month',
DESCRIPTION='Beginning Month',
WITHIN='BQUARTER',$
DEFINE EYEAR/YY=TERM_DATE;
TITLE='Ending,Year',
DESCRIPTION='Ending Year',
WITHIN='*Termination Time Period',$
DEFINE EQUARTER/Q=TERM_DATE;
TITLE='Ending,Quarter',
DESCRIPTION='Ending Quarter',
WITHIN='EYEAR',$
DEFINE EMONTH/M=TERM_DATE;

ibi™ FOCUS® Developing Applications

682 | Master Files and Diagrams

TITLE='Ending,Month',
DESCRIPTION='Ending Month',
WITHIN='EQUARTER',$
DEFINE RESIGN_COUNT/I3=IF STATUS EQ 'RESIGNED' THEN 1
ELSE 0;
TITLE='Resigned,Count',
DESCRIPTION='Resigned Count',$
DEFINE FIRE_COUNT/I3=IF STATUS EQ 'TERMINAT' THEN 1
ELSE 0;
TITLE='Terminated,Count',
DESCRIPTION='Terminated Count',$
DEFINE DECLINE_COUNT/I3=IF STATUS EQ 'DECLINED' THEN 1
ELSE 0;
TITLE='Declined,Count',
DESCRIPTION='Declined Count',$
DEFINE EMP_COUNT/I3=IF STATUS EQ 'EMPLOYED' THEN 1
ELSE 0;
TITLE='Employed,Count',
DESCRIPTION='Employed Count',$
DEFINE PEND_COUNT/I3=IF STATUS EQ 'PENDING' THEN 1
ELSE 0;
TITLE='Pending,Count',
DESCRIPTION='Pending Count',$
DEFINE REJECT_COUNT/I3=IF STATUS EQ 'REJECTED' THEN 1
ELSE 0;
TITLE='Rejected,Count',
DESCRIPTION='Rejected Count',$
DEFINE FULLNAME/A28=LNAME||', '|FNAME;
TITLE='Full Name',
DESCRIPTION='Full Name: Last, First', WITHIN='POSITION_DESC',$

DEFINE SALARY/D12.2=IF BMONTH LT 4 THEN PAYLEVEL * 12321
ELSE IF BMONTH GE 4 AND BMONTH LT 8 THEN PAYLEVEL * 13827
ELSE PAYLEVEL * 14400;,
TITLE='Salary',
DESCRIPTION='Salary',$
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');$

ibi™ FOCUS® Developing Applications

683 | Master Files and Diagrams

CENTHR Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTHR ON 05/15/03 AT 10.40.34

EMPSEG
01 S1

*ID_NUM **
*LNAME **
*FNAME **
*PLANT **
* **

CENTINV Master File
FILE=CENTINV, SUFFIX=FOC, FDFC=19, FYRT=00
SEGNAME=INVINFO, SEGTYPE=S1, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
TITLE='Product,Number:',
DESCRIPTION='Product Number', $
FIELD=PRODNAME, ALIAS=PNAME, FORMAT=A30,
WITHIN=PRODCAT,
TITLE='Product,Name:',
DESCRIPTION='Product Name', $
FIELD=QTY_IN_STOCK, ALIAS=QIS, FORMAT=I7,
TITLE='Quantity,In Stock:',
DESCRIPTION='Quantity In Stock', $
FIELD=PRICE, ALIAS=RETAIL, FORMAT=D10.2,
TITLE='Price:',
DESCRIPTION=Price, $
FIELD=COST, ALIAS=OUR_COST, FORMAT=D10.2,
TITLE='Our,Cost:',
DESCRIPTION='Our Cost:', $
DEFINE PRODCAT/A22 = IF PRODNAME CONTAINS 'LCD'
THEN 'VCRs' ELSE IF PRODNAME
CONTAINS 'DVD' THEN 'DVD' ELSE IF PRODNAME CONTAINS 'Camcor'
THEN 'Camcorders'
ELSE IF PRODNAME CONTAINS 'Camera' THEN 'Cameras' ELSE IF PRODNAME
CONTAINS 'CD' THEN 'CD Players'

ibi™ FOCUS® Developing Applications

684 | Master Files and Diagrams

ELSE IF PRODNAME CONTAINS 'Tape' THEN 'Digital Tape Recorders'
ELSE IF PRODNAME CONTAINS 'Combo' THEN 'Combo Players'
ELSE 'PDA Devices'; WITHIN=PRODTYPE, TITLE='Product Category:' ,$
DEFINE PRODTYPE/A19 = IF PRODNAME CONTAINS 'Digital' OR 'DVD' OR 'QX'
THEN 'Digital' ELSE 'Analog';,WITHIN='*Product Dimension',
TITLE='Product Type:',$

CENTINV Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTINV ON 05/15/03 AT 10.43.35

INVINFO
01 S1

*PROD_NUM **I
*PRODNAME **
*QTY_IN_STOCK**
*PRICE **
* **

CENTORD Master File
FILE=CENTORD, SUFFIX=FOC
SEGNAME=OINFO, SEGTYPE=S1, $
FIELD=ORDER_NUM, ALIAS=ONUM, FORMAT=A5, INDEX=I,
TITLE='Order,Number:',
DESCRIPTION='Order Number', $
FIELD=ORDER_DATE, ALIAS=ODATE, FORMAT=YYMD,
TITLE='Date,Of Order:',
DESCRIPTION='Date Of Order', $
FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
TITLE='Company ID#:',
DESCRIPTION='Company ID#', $
FIELD=PLANT, ALIAS=PLNT, FORMAT=A3, INDEX=I,
TITLE='Manufacturing,Plant',
DESCRIPTION='Location Of Manufacturing Plant',

ibi™ FOCUS® Developing Applications

685 | Master Files and Diagrams

WITHIN='*Location',$
DEFINE YEAR/YY=ORDER_DATE;,
WITHIN='*Time Period',$
DEFINE QUARTER/Q=ORDER_DATE;,
WITHIN='YEAR',$
DEFINE MONTH/M=ORDER_DATE;,
WITHIN='QUARTER',$

SEGNAME=PINFO, SEGTYPE=S1, PARENT=OINFO, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4,INDEX=I,
TITLE='Product,Number#:',
DESCRIPTION='Product Number#', $
FIELD=QUANTITY, ALIAS=QTY, FORMAT=I8C,
TITLE='Quantity:',
DESCRIPTION=Quantity, $
FIELD=LINEPRICE, ALIAS=LINETOTAL, FORMAT=D12.2MC,
TITLE='Line,Total',
DESCRIPTION='Line Total', $
DEFINE LINE_COGS/D12.2=QUANTITY*COST;,
TITLE='Line,Cost Of,Goods Sold',
DESCRIPTION='Line cost of goods sold', $
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');

SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PINFO, CRFILE=CENTINV,
CRKEY=PROD_NUM, CRSEG=INVINFO,$

SEGNAME=STOSEG, SEGTYPE=DKU, PARENT=OINFO, CRFILE=CENTCOMP,
CRKEY=STORE_CODE, CRSEG=COMPINFO,$

CENTORD Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTORD ON 05/15/03 AT 10.17.52

OINFO
01 S1

*ORDER_NUM **I
*STORE_CODE **I
*PLANT **I
*ORDER_DATE **
* **

ibi™ FOCUS® Developing Applications

686 | Master Files and Diagrams

I
+-----------------+
I I
I STOSEG I PINFO

02 I KU 03 I S1
.............. **************
:STORE_CODE :K *PROD_NUM **I
:STORENAME : *QUANTITY **
:STATE : *LINEPRICE **
: : * **
: : * **
:............: ***************
JOINED CENTCOMP **************

I
I
I
I INVSEG

04 I KU
..............
:PROD_NUM :K
:PRODNAME :
:QTY_IN_STOCK:
:PRICE :
: :
:............:
JOINED CENTINV

CENTQA Master File
FILE=CENTQA, SUFFIX=FOC, FDFC=19, FYRT=00
SEGNAME=PROD_SEG, SEGTYPE=S1, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
TITLE='Product,Number',
DESCRIPTION='Product Number', $

SEGNAME=PROB_SEG, PARENT=PROD_SEG, SEGTYPE=S1, $
FIELD=PROBNUM, ALIAS=PROBNO, FORMAT=I5,
TITLE='Problem,Number',
DESCRIPTION='Problem Number',
WITHIN=PLANT,$
FIELD=PLANT, ALIAS=PLT, FORMAT=A3, INDEX=I,
TITLE=Plant,
DESCRIPTION=Plant,
WITHIN=PROBLEM_LOCATION,$

ibi™ FOCUS® Developing Applications

687 | Master Files and Diagrams

FIELD=PROBLEM_DATE, ALIAS=PDATE, FORMAT=YYMD,
TITLE='Date,Problem,Reported',
DESCRIPTION='Date Problem Was Reported', $
FIELD=PROBLEM_CATEGORY, ALIAS=PROBCAT, FORMAT=A20, $
TITLE='Problem,Category',
DESCRIPTION='Problem Category',
WITHIN=*Problem,$
FIELD=PROBLEM_LOCATION, ALIAS=PROBLOC, FORMAT=A10,
TITLE='Location,Problem,Occurred',
DESCRIPTION='Location Where Problem Occurred',
WITHIN=PROBLEM_CATEGORY,$
DEFINE PROB_YEAR/YY=PROBLEM_DATE;,
TITLE='Year,Problem,Occurred',
DESCRIPTION='Year Problem Occurred',
WITHIN=*Time Period,$
DEFINE PROB_QUARTER/Q=PROBLEM_DATE;
TITLE='Quarter,Problem,Occurred',
DESCRIPTION='Quarter Problem Occurred',
WITHIN=PROB_YEAR,$
DEFINE PROB_MONTH/M=PROBLEM_DATE;
TITLE='Month,Problem,Occurred',
DESCRIPTION='Month Problem Occurred',
WITHIN=PROB_QUARTER,$
DEFINE PROBLEM_OCCUR/I5 WITH PROBNUM=1;,
TITLE='Problem,Occurrence'
DESCRIPTION='# of times a problem occurs',$
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');$

SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PROD_SEG, CRFILE=CENTINV,
CRKEY=PROD_NUM, CRSEG=INVINFO,$

CENTQA Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTQA ON 05/15/03 AT 10.46.43

PROD_SEG
01 S1

*PROD_NUM **I
* **
* **

ibi™ FOCUS® Developing Applications

688 | Master Files and Diagrams

* **
* **

I
+-----------------+
I I
I INVSEG I PROB_SEG

02 I KU 03 I S1
.............. **************
:PROD_NUM :K *PROBNUM **
:PRODNAME : *PLANT **I
:QTY_IN_STOCK: *PROBLEM_DATE**
:PRICE : *PROBLEM_CAT>**
: : * **
:............: ***************
JOINED CENTINV **************

CENTGL Master File
FILE=CENTGL ,SUFFIX=FOC
SEGNAME=ACCOUNTS, SEGTYPE=S1
FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
TITLE='Ledger,Account', FIELDTYPE=I, $
FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$
FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $
FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $
FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
TITLE='System,Account,Line', MISSING=ON, $

ibi™ FOCUS® Developing Applications

689 | Master Files and Diagrams

CENTGL Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTGL ON 05/15/03 AT 15.18.48

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

CENTSYSF Master File
FILE=CENTSYSF ,SUFFIX=FOC
SEGNAME=RAWDATA ,SEGTYPE=S2
FIELDNAME = SYS_ACCOUNT , ,A6 , FIELDTYPE=I,
TITLE='System,Account,Line', $
FIELDNAME = PERIOD , ,YYM , FIELDTYPE=I,$
FIELDNAME = NAT_AMOUNT , ,D10.0 , TITLE='Month,Actual', $
FIELDNAME = NAT_BUDGET , ,D10.0 , TITLE='Month,Budget', $
FIELDNAME = NAT_YTDAMT , ,D12.0 , TITLE='YTD,Actual', $
FIELDNAME = NAT_YTDBUD , ,D12.0 , TITLE='YTD,Budget', $

CENTSYSF Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTSYSF ON 05/15/03 AT 15.19.27

RAWDATA
01 S2

*SYS_ACCOUNT **I
*PERIOD **I

ibi™ FOCUS® Developing Applications

690 | Master Files and Diagrams

*NAT_AMOUNT **
*NAT_BUDGET **
* **

CENTSTMT Master File
FILE=CENTSTMT, SUFFIX=FOC
SEGNAME=ACCOUNTS, SEGTYPE=S1
FIELD=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
TITLE='Ledger,Account', FIELDTYPE=I, $
FIELD=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
FIELD=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$
FIELD=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $
FIELD=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $
FIELD=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $

SEGNAME=CONSOL, SEGTYPE=S1, PARENT=ACCOUNTS, $
FIELD=PERIOD, ALIAS=MONTH, FORMAT=YYM, $
FIELD=ACTUAL_AMT, ALIAS=AA, FORMAT=D10.0, MISSING=ON,
TITLE='Actual', $
FIELD=BUDGET_AMT, ALIAS=BA, FORMAT=D10.0, MISSING=ON,
TITLE='Budget', $
FIELD=ACTUAL_YTD, ALIAS=AYTD, FORMAT=D12.0, MISSING=ON,
TITLE='YTD,Actual', $
FIELD=BUDGET_YTD, ALIAS=BYTD, FORMAT=D12.0, MISSING=ON,
TITLE='YTD,Budget', $

CENTSTMT Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTSTMT ON 05/15/03 AT 14.45.44

ibi™ FOCUS® Developing Applications

691 | Master Files and Diagrams

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

I
I
I
I CONSOL

02 I S1

*PERIOD **
*ACTUAL_AMT **
*BUDGET_AMT **
*ACTUAL_YTD **
* **

CENTGLL Master File
FILE=CENTGLL ,SUFFIX=FOC
SEGNAME=ACCOUNTS ,SEGTYPE=S01
FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,

TITLE='Ledger,Account', FIELDTYPE=I, $
FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,

TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $

FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$

FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $

FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $

FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $

ibi™ FOCUS® Developing Applications

692 | Master Files and Diagrams

FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
TITLE='System,Account,Line', MISSING=ON, $

CENTGLL Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTGLL ON 05/15/03 AT 14.45.44

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

ibi™ FOCUS® Developing Applications

693 | Error Messages

Error Messages
To see the text or explanation for any error message, you can display it online in your
FOCUS session or find it in a standard FOCUS ERRORS file. All of the FOCUS error messages
are stored in eight system ERRORS files.

l For z/OS, the ddname is ERRORS.

Accessing Error Files
For z/OS, the error files are the following members in the ERRORS PDS:

l FOT004

l FOG004

l FOM004

l FOS004

l FOA004

l FSQLXLT

l FOCSTY

l FOB004

Displaying Messages
To display the text and explanation for any message, issue the following query command
at the FOCUS command level

? n

where:

ibi™ FOCUS® Developing Applications

694 | Error Messages

n

Is the message number.

The message number and text appear, along with a detailed explanation of the message (if
one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:
An alphabetic character has been found where all numerical digits are
required.

ibi™ FOCUS® Developing Applications

695 | ibi Documentation and Support Services

ibi Documentation and Support Services
For information about this product, you can read the documentation, contact Support, and
join Community.

How to Access ibi Documentation

Documentation for ibi products is available on the Product Documentation website, mainly
in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the ibi™ FOCUS® Documentation page.

How to Contact Support for ibi Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join ibi Community

ibi Community is the official channel for ibi customers, partners, and employee subject
matter experts to share and access their collective experience. ibi Community offers access
to Q&A forums, product wikis, and best practices. It also offers access to extensions,
adapters, solution accelerators, and tools that extend and enable customers to gain full
value from ibi products. For a free registration, go to ibi Community.

https://docs.tibco.com/
https://docs.tibco.com/
http://docs.tibco.com/products/ibi-focus
https://support.tibco.com/
https://support.tibco.com/
https://community.ibi.com/

ibi™ FOCUS® Developing Applications

696 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

ibi, the ibi logo, FOCUS, iWay, WebFOCUS, RStat, Information Builders, Studio, and TIBCO are either
registered trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or other
countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

ibi™ FOCUS® Developing Applications

697 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Customizing Your Environment
	When Do You Use the SET Command?
	Coding a SET Command
	Set Parameters
	Setting a Single Parameter
	Setting Multiple Parameters

	Set Parameters in a Report Request
	Setting Parameters in a Report Request

	Set Parameters in a Graph Request
	Setting Parameters in a Graph Request

	Types of SET Parameters
	Calculations
	Data and Metadata
	ibi Data Migrator Tasks
	Date Manipulation Tasks
	WebFOCUS-Specific Tasks
	Graph Tasks
	Graph Tasks
	Memory Setup and Optimization Tasks
	Report Code, Content, and Processing Tasks
	Report Layout and Display Tasks
	Security Tasks
	Terminal Tasks
	SET Parameter Syntax
	ACCBLN
	ACROSSLINE
	ACROSSPRT
	ACROSSTITLE
	ACRSVRBTITL
	ALL
	ALLOWCVTERR
	ALTBACKPERLINE
	ARCFGU
	ASNAMES
	AUTOFIT
	AUTOINDEX
	AUTOPATH
	AUTOSTRATEGY
	AUTOTABLEF
	BASEURL
	BINS
	BLANKEMPTY
	BLANKINDENT
	BOTTOMMARGIN
	BUSDAYS
	BYDISPLAY
	BYPANEL
	CACHE
	CARTESIAN
	CDN
	CENT-ZERO
	CNOTATION
	COLLATION
	COMPMISS
	COMPOUND
	COMPUTE
	COUNTWIDTH
	CSSURL
	CURRENCY_DISPLAY
	CURRENCY_ISO_CODE
	CURRENCY_PRINT_ISO
	CURRSYMB
	CURSYM_D
	CURSYM_E
	CURSYM_F
	CURSYM_G
	CURSYM_L
	CURSYM_Y
	DATE_ORDER
	DATE_SEPARATOR
	DATEDISPLAY
	DATEFNS
	DATEFORMAT
	DATETIME
	DB_INFILE
	DBACSENSITIV
	DBAJOIN
	DBASOURCE
	DEFCENT
	DEFECHO
	DEFINES
	DIRECTHOLD
	DMH_LOOPLIM
	DMH_STACKLIM
	DMPRECISION
	DRILLFOCMISSING
	DROPBLNKLINE
	DTSTRICT
	DUPLICATECOL
	EMBEDDABLE
	EMPTYCELLS
	EMPTYREPORT
	EQTEST
	ERROROUT
	ESTRECORDS
	EUROFILE
	EXCELSERVURL
	EXL2KLANG
	EXL2KTXTDATE
	EXTAGGR
	EXTENDNUM
	EXTHOLD
	EXTRACT
	EXTSORT
	FIELDNAME
	FILE[NAME]
	FILTER
	FIXRET[RIEVE]
	FLOATMAPPING
	FOC144
	FOCEXURL
	FOCFIRSTPAGE
	FOCSTACK
	FORMULTIPLE
	HDAY
	HIDENULLACRS
	HLDCOM_TRIMANV
	HNODATA
	HOLDATTR
	HOLDFORMAT
	HOLDLIST
	HOLDMISS
	HOLDSTAT
	HTMLARCHIVE
	HTMLCSS
	HTMLEMBEDIMG
	HTMLENCODE
	INDEX
	JOIN_LENGTH_MODE (JOINLM)
	JOINOPT
	KEEPDEFINES
	KEEPFILTERS
	LANG[UAGE]
	LAYOUTGRID
	LEADZERO
	LEFTMARGIN
	LINES
	MATCHCOLUMNORDER
	MAXDATAEXCPT
	MAXLRECL
	MDICARDWARN
	MDIENCODING
	MDIPROGRESS
	MESSAGE
	MISS_ON
	MISSINGTEST
	MULTIPATH
	NEG-ZERO
	NODATA
	NULL
	OLDSTYRECLEN
	ONFIELD
	ORIENTATION
	OVERFLOWCHAR
	PAGE[-NUM]
	PAGESIZE
	PANEL
	PARTITION_ON
	PASS
	PCOMMA
	PCTFORMAT
	PDFLINETERM
	PERMPASS
	PHONETIC_ALGORITHM
	PRFTITLE
	PRINT
	PRINTDST
	PRINTPLUS
	PSPAGESETUP
	QUALCHAR
	QUALTITLES
	RANK
	RECAP-COUNT
	RECORDLIMIT
	RIGHTMARGIN
	RPAGESET
	SAVEDMASTERS
	SAVEMATRIX
	SHADOW
	SHIFT
	SHORTPATH
	SHOWBLANKS
	SORTMATRIX
	SORTMEMORY
	SPACES
	SQLTOPTTF
	SQUEEZE
	STYLE[SHEET]
	SUBTOTALS
	SUMMARYLINES
	SUMPREFIX
	TESTDATE
	TIME_SEPARATOR
	TITLELINE
	TITLES
	TOPMARGIN
	UNITS
	USER
	USERFCHK
	USERFNS
	WARNING
	WEEKFIRST
	WPMINWIDTH
	XLSXLOCALZIP
	XLSXPAGEBRKIGNORE
	XRETRIEVAL
	YRTHRESH

	Managing Applications
	What Is an Application?
	Application Commands Overview
	APP Commands Quick Reference
	Application Metadata Commands and Metadata Tables

	Search Path Management Commands
	APP PATH
	Add an Application to the Search Path Manually

	APP PREPENDPATH
	Add Application Names to the Beginning of a Search Path

	APP APPENDPATH
	Add Application Names to the End of a Search Path

	APP MAP
	Map a Physical File Location or Redirect an Application
	Map DDNAME Allocations
	Mapping DDNAME Allocations

	APP MAP With Universal Naming Convention (UNC)

	APP SET METALOCATION_SAME
	Control the Location of Synonym Files

	APP ? METALOCATION_SAME
	Query Whether Synonym Files Must Reside in the Same Location

	APP SHOWPATH
	List Active Applications
	Listing Active Applications in the Search Path

	Application and File Management Commands
	APP CREATE
	Create an Application Manually
	Change Default Characteristics of Component File Types (z/OS Only)
	Changing Default Characteristics of an Application

	APP COPY
	Copy an Application

	APP COPYF[ILE]
	Copy an Application Component Manually

	APP MOVE
	Move an Application

	APP MOVEF[ILE]
	Move an Application Component Manually

	APP DELETE
	Delete an Application Manually

	APP DELETEF[ILE]
	Delete an Application Component Manually

	APP PROPERTY CODEPAGE
	Specify a Code Page for an Application

	APP RENAME
	Rename an Application
	Renaming an Application

	APP RENAMEF[ILE]
	Rename an Application Component

	Designating File Types for APP Commands

	Output Redirection Commands
	Interactions Among Output Redirection Commands
	APP HOLD
	Designate a Storage Location for Temporary Files

	APP HOLDDATA
	Designate a Storage Location for Data Files

	APP HOLDMETA
	Designate a Storage Location for Master and Access Files

	APP FI[LEDEF]

	Application Metadata Commands and Catalog Metadata
	Retrieving Basic Information
	STATE
	Check File Existence
	Checking the Existence of a File With the STATE Command

	APP LIST
	List the Applications in APPROOT
	Using APP LIST to List and Work with Applications

	APP QUERY
	List Components
	Listing Application Files

	Retrieving Extended Catalog Information
	catalog/sysapps
	Listing Files in an APP

	catalog/sysfiles
	Listing APP MASTER Objects
	Listing APP FOCEXEC Objects
	Using the SYSFILES Table to Check File Existence

	APP HELP
	Retrieve Information About APP Commands

	Accessing Metadata and Procedures
	Search Rules
	Search Paths

	Creation Rules for Procedure Files
	Locating Master Files and Procedures
	Locate Files
	Locating Files

	Accessing Existing Data Files
	Creation Rules for Data Files
	Sample Allocations by JCL
	Sample DYNAM Commands
	Issue a FILEDEF Command
	Issue a FILEDEF Command to Concatenate Files
	Concatenating Files Using FILEDEF

	Issue a FILEDEF Command for a Native MVS Data Set
	Issue a USE Command
	Sample USE Commands

	Data Set Names
	Define a Data Set

	Allocating Temporary Files
	Allocate Temporary Files
	Usage Notes for Allocating Temporary Files
	Allocate Temporary Files to MVS Data Sets
	System Defaults for Allocating Temporary Files to MVS Data Sets
	Support Long Synonym Names Using DYNAM SET LONGSYNM
	Pre-Allocate Temporary Files
	Dynamically Allocate FOCUS Files on z/OS

	Managing Flow of Control in an Application
	Uses for Dialogue Manager
	Overview of Dialogue Manager Commands
	Dialogue Manager Variables Overview
	Dialogue Manager Processing
	Processing a Procedure

	Creating a Procedure
	Rules for Creating Procedures
	Including Comments in a Procedure
	Add a FOCUS-Style Comment in a Procedure
	Placing a FOCUS-Style Comment in a Procedure
	Placing C-Style Comments in a Procedure

	Sending a Message to the User
	Send a Message to the User
	Sending a Message

	Controlling User Access to Data
	Set a Password in a Procedure
	Creating a Startup Procedure
	Creating a Startup Profile

	Executing and Terminating a Procedure
	Executing Procedures
	Execute a Procedure
	Executing a Procedure

	Executing Stacked Commands and Continuing the Procedure
	Executing Stacked Commands and Continuing the Procedure

	Executing Stacked Commands and Exiting the Procedure
	Executing Stacked Commands and Exiting the Procedure

	Canceling the Execution of a Procedure
	Cancel the Execution of a Procedure
	Cancel the Execution of a Procedure and Exit FOCUS
	Canceling the Execution of a Procedure

	Locking Procedure Users Out of FOCUS
	Lock Procedure Users Out of FOCUS
	Navigating a Procedure
	Branching Unconditionally
	Branch Unconditionally
	Branching Unconditionally

	Branching Conditionally
	Branch Conditionally
	Performing Conditional Branching
	Conditional Branching Based on Testing of System and Statistical Variables
	Conditional Branching Based on User Input
	Conditional Branching Based on a Compound -IF Test

	Looping in a Procedure
	Specify a Loop
	Repeating a Loop
	Controlling Loops With -SET

	Incorporating Another Procedure With -INCLUDE
	Incorporate a File
	Incorporating Another Procedure With -INCLUDE
	Incorporating a Procedure With a Heading
	Incorporating a Procedure for a Virtual Field

	Nesting Procedures With -INCLUDE
	Calling Another Procedure With EXEC
	Call a Procedure With the EXEC Command
	Calling a Procedure With EXEC

	Developing an Open-Ended Procedure
	Developing and Running an Open-Ended Procedure

	Using Variables in a Procedure
	Naming Conventions for Local and Global Variables
	Specify a Variable Name
	Local Variables
	Using Local Variables

	Global Variables
	Using Global Variables

	System Variables
	Summary of System Variables
	Retrieving the Date Using the System Variable &DATE
	Retrieving the Procedure Name Using the System Variable &FOCFOCEXEC
	Displaying a Date Using the System Variable &YYMD

	Statistical Variables
	Summary of Statistical Variables
	Controlling Execution of a Request With the Statistical Variable &LINES

	Special Variables
	Summary of Special Variables
	Querying the Values of Variables and Parameters
	Display the Value of a Variable
	Store Parameter Value Settings
	Storing a Parameter Value Setting

	Supplying and Verifying Values for Variables
	Rules for Supplying Variable Values
	Supplying Variable Values in a Procedure

	Supplying a Default Variable Value
	Supply a Default Value
	Supplying a Default Value

	Supplying Variable Values in an Expression
	Assign a Value in an Expression
	Usage Notes for IN FILE
	Specify Precision for Dialogue Manager Calculations
	Setting Precision for Dialogue Manager Calculations
	Setting a Variable Value in an Expression
	Setting a Literal Value
	Setting the Difference Between Two Dates
	Testing Whether a Variable Value Is in a File
	Initializing a Variable to a Long String

	Reading Variable Values From and Writing Variable Values to an External File
	Retrieve a Variable Value From an External File
	Reading a Value From an External File

	Write a Variable Value to an External File
	Writing to a File
	Reading From and Writing to an External File

	Read Master File Fields Into Dialogue Manager Variables
	Usage Notes for -READFILE
	Reading Fields From a Data Source Into Dialogue Manager Variables Using -READ...

	Close an External File
	Reading or Writing an Entire File
	EDAGET: Reading a File of a Specified Type
	Read a File of a Specified Type
	Reading a File Using EDAGET

	EDAPUT: Writing a File of a Specified Type
	Write a File of a Specified Type
	Writing a Master File to Disk

	Supplying Variable Values on the Command Line
	Supply a Variable Value on the Command Line
	Rules for Using Named and Positional Variables With EXEC
	Supplying Values on the Command Line
	Using Positional Variables
	Mixing Named and Positional Variables

	Prompting Directly for Values With -PROMPT
	Prompting for Variable Values

	Prompting for Values on Screens With -CRTFORM
	Prompting for Values on Menus and Windows With -WINDOW
	Prompting for Values Implicitly
	Automatically Prompting for Variable Values

	Verifying User-Supplied Values Against a Set of Format Specifications
	Format Specifications for Variables
	Using a Format Specification to Verify User Input

	Verifying User Input Against a Pre-Defined List of Values
	Providing a List of Valid Values With -PROMPT

	Create a Reply List as a Variable
	Using a Variable to Provide a Reply List
	Supplying Text for Variable Prompting

	Manipulating and Testing Variables
	Testing Variables for Length, Type, and Existence
	Screen a Variable Value for Length and TYPE
	Testing for Variable Length
	Storing the Length of a Variable
	Testing for Variable Type

	Test for the Presence of a Variable Value
	Testing for the Presence of a Variable

	Replacing a Variable Immediately
	Usage Notes for .EVAL
	Replace a Variable Immediately
	Replacing a Variable Immediately
	Using .EVAL to Interpret a Variable

	Validating Variable Values Without Data File Access: REGEX
	Validate a Variable Value Using a REGEX Mask
	Using a REGEX Mask to Validate a Social Security Number
	Using REGEX With an Incorrect Value
	Using REGEX With an Invalid Regular Expression

	Concatenating Variables
	Concatenate Variables
	Creating an Indexed Variable
	Create an Indexed Variable
	Using an Indexed Variable in a Loop

	Creating a Standard Quote-Delimited String
	Create a Standard Quote-Delimited Character String
	Creating a Standard Quote-Delimited Character String
	Converting User Input to a Standard Quote-Delimited Character String
	Using Quote-Delimited Strings With Relational Data Adapters

	Usage Notes for Quote-Delimited Character Strings
	Performing a Calculation on a Variable
	Perform a Calculation on a Variable
	Altering a Variable Value

	Changing a Variable Value With the DECODE Function
	Changing the Value of a Variable

	Extracting Characters From a Variable Value With the EDIT Function
	Extracting a Character From a Variable

	Removing Trailing Blanks From Variables With the TRUNCATE Function
	Remove Trailing Blanks From Variables
	Removing Trailing Blanks

	Calling a Function
	Set a Variable Value Based on the Result From a Function
	Setting a Variable Value Based on the Result From a Function

	Load and Execute a Function With -TSO/-MVS RUN
	Loading and Executing a Function

	Using Variables to Alter Commands
	Using a Variable to Control What the TABLE Command Prints

	Using Numeric Amper Variables in Functions
	Determining Amper Variable Data Type
	Manipulating Amper Variables
	Using an Amper Variable in an Expression
	Using Amper Variables as Subroutine Parameters
	Using a Numeric Amper Variable as a Numeric Subroutine Parameter
	Using a Numeric Amper Variable as an Alphanumeric Subroutine Parameter
	Debugging a Procedure
	Display Command Lines as They Execute
	Establish a Default Value for the &ECHO Variable
	Usage Notes for SET DEFECHO = NONE
	Preventing Procedure Code From Being Displayed

	Test Dialogue Manager Command Logic
	Using the &RETCODE Variable to Test the Result of a Command

	Testing the Status of a Query
	Issuing an Operating System Command
	Execute an Operating System Command
	Dialogue Manager Quick Reference
	-* Command
	? Command
	-CLOSE Command
	-CRTCLEAR Command
	-CRTFORM Command
	-DEFAULT[S|H] Command
	-EXIT Command
	-GOTO Command
	-IF Command
	-INCLUDE Command
	-label Command
	-MVS Command
	-MVS RUN Command
	-PASS Command
	-PROMPT Command
	-QUIT Command
	-READ Command
	-READFILE Command
	-REMOTE Command
	-REPEAT Command
	-RUN Command
	-SET Command
	-TSO Command
	-TSO RUN Command
	-TYPE Command
	-WINDOW Command
	-WRITE Command
	- Command
	Dialogue Manager Defaults and Limits

	Testing and Debugging With Query Commands
	Using Query Commands
	Issue a Query Command
	Query Command Summary
	Displaying Combined Structures
	Display Combined Structures
	Displaying Combined Structures

	? COMBINE Query Information
	Displaying Virtual Fields
	Display Virtual Fields
	Displaying Virtual Fields

	? DEFINE Query Information
	Displaying the Currency Data Source in Effect
	Display the Currency Data Source in Effect
	Displaying Available Fields
	Display Available Fields
	Displaying Available Fields

	Displaying the File Directory Table
	Display a File Directory Table
	Displaying a File Directory Table

	? FDT Query Information
	Displaying Field Information for a Master File
	Display Field Information for a Master File
	Displaying Field Information for a Master File

	Displaying Data Source Statistics
	Display Data Source Statistics
	Displaying Data Source Statistics

	? FILE Query Information
	Displaying Defined Functions
	Display DEFINE Functions
	Displaying DEFINE Functions

	Displaying HOLD Fields
	Display HOLD Fields
	Displaying HOLD Fields

	Displaying JOIN Structures
	Display JOIN Structures
	Displaying JOIN Structures

	? JOIN Query Information
	Displaying National Language Support
	Display Information About National Language Support
	Displaying Information About National Language Support

	Displaying LET Substitutions
	Display LET Substitutions
	Displaying LET Substitutions

	Displaying Information About Loaded Files
	Display Information About Loaded Files
	Displaying Information About Loaded Files

	Displaying Explanations of Error Messages
	Display Explanations of Error Messages
	Displaying Explanations of Error Messages

	Displaying PF Key Assignments
	Display PF Key Assignments
	Displaying PF Key Assignments

	Displaying the Release Number
	Display the Release Number
	Displaying the Release Number

	Displaying Parameter Settings
	Display Parameter Settings
	Displaying Parameter Settings
	Displaying a Single Parameter Setting
	Displaying Where a Parameter Can Be Set

	Displaying Graph Parameters
	Display Graph Parameters
	Displaying Graph Parameters

	Displaying the Site Code
	Retrieve the Site Code
	Querying the Site Code

	Displaying Command Statistics
	Display Command Statistics
	Displaying Command Statistics

	? STAT Query Information
	Displaying StyleSheet Parameter Settings
	Display StyleSheet Parameter Settings
	Displaying StyleSheet Parameter Settings

	? STYLE Query Information
	Displaying Information About the SU Machine
	Display Information About the ibi FOCUS Database Server
	Displaying Information About the ibi FOCUS Database Server

	Displaying Data Sources Specified With USE
	Display Data Sources Specified With USE
	Displaying Data Sources Specified With USE

	Displaying Global Variable Values
	Display Global Variable Values
	Displaying Global Variable Values

	Reporting Dynamically From System Tables
	Overview of System Table Synonyms
	SYSAPPS: Reporting on Applications and Application Files
	Retrieving Application and File Information

	SYSCOLUM: Reporting on Tables and Their Columns
	Retrieving Table and Column Information

	SYSDEFFN: Reporting on DEFINE FUNCTIONS
	Retrieving DEFINE FUNCTION Information

	SYSERR: Reporting on Error Message Files
	Retrieving Error Message File Information

	SYSFILES: Reporting on Metadata or Procedure Directory Information
	Retrieving Master File Information

	SYSIMP: Reporting on Impact Analysis Information
	Retrieving Impact Analysis Information

	SYSINDEX: Reporting on Index Information
	Retrieving Index Information

	SYSKEYS: Reporting on Key Information
	Retrieving Key Information

	SYSRPDIR: Reporting on Stored Procedures
	Retrieving Stored Procedure Information

	SYSSET: Reporting on SET Parameters
	Retrieving Information About SET Parameters

	SYSSQLOP: Reporting on Function Information
	Retrieving Function Descriptions and Syntax

	SYSTABLE: Reporting on Table Information
	Retrieving A List of FMI Synonyms

	Reporting on Data Types
	Retrieving Data Types for the Adapter for MySQL

	Defining a Word Substitution
	The LET Command
	Make a Substitution (Short Form)
	Making a Substitution (Short Form)

	Make a Substitution (Long Form)
	Making a Single Substitution (Long Form)
	Making Multiple Substitutions (Long Form)
	Defining Substitutions for Translation

	Variable Substitution
	Making a Variable Substitution
	Making Multiple Variable Substitutions (Unnumbered)
	Making Multiple Variable Substitutions (Numbered)
	Making a Variable Substitution in a Phrase
	Defining a System Command

	Null Substitution
	Define a Null Word
	Defining a Null Word

	Multiple-Line Substitution
	Making Multiple-Line Substitutions

	Recursive Substitution
	Making a Recursive Substitution
	Abbreviating a Long Phrase

	Using a LET Substitution in a COMPUTE or DEFINE Command
	Using a LET Substitution in a COMPUTE or DEFINE Command

	Checking Current LET Substitutions
	Check Current LET Substitutions
	Checking Selected LET Substitutions
	Checking All Current LET Substitutions

	Interactive LET Query: LET ECHO
	Activate the LET ECHO Facility
	Deactivate the LET ECHO Facility
	Results of LET ECHO Commands
	Clearing LET Substitutions
	Clear LET Substitutions
	Clearing LET Substitutions

	Saving LET Substitutions in a File
	Save LET Substitutions
	Assigning Phrases to Function Keys
	Assign a Phrase to a Function Key
	Assigning Phrases to Function Keys

	Enhancing Application Performance
	FOCUS Facilities
	Loading a File
	Load a File
	Loading Multiple Files

	Unload a File
	Unloading Multiple Files

	Loading Master Files, FOCUS Procedures, and Access Files
	Considerations for Loading a Master File, FOCUS Procedure, or Access File
	Loading a Compiled MODIFY Request
	Execute a Compiled Request
	Loading a MODIFY Request
	Displaying Information About Loaded Files
	Display Information About Loaded Files
	Displaying Information About Loaded Files

	Saving Master Files in Memory for Reuse
	Save Parsed Master Files in Memory
	Query the SAVEDMASTERS Setting
	Saving and Querying Parsed Master Files

	Usage Notes for SET SAVEDMASTERS
	Accessing a FOCUS Data Source
	Set MINIO
	Using MINIO
	Determining If a Previous Command Used MINIO
	Determine If a Previous Command Used MINIO
	Determining If a Previous Command Used MINIO

	Restrictions for Using MINIO

	Working With Cross-Century Dates
	When Do You Use the Sliding Window Technique?
	The Sliding Window Technique
	Defining a Sliding Window
	Creating a Dynamic Window Based on the Current Year
	Applying the Sliding Window Technique
	When to Supply Settings for DEFCENT and YRTHRESH
	Restrictions With MODIFY
	Date Validation
	Defining a Global Window With SET
	Define a Global Window With SET
	Defining a Global Window With SET

	Defining a Dynamic Global Window With SET
	Defining a Dynamic Global Window With SET

	Querying the Current Global Value of DEFCENT and YRTHRESH
	Query the Current Global Value of DEFCENT and YRTHRESH
	Querying the Current Global Value of DEFCENT and YRTHRESH

	Defining a File-Level or Field-Level Window in a Master File
	Define a File-Level Window in a Master File
	Defining a File-Level Window in a Master File

	Define a Field-Level Window in a Master File
	Defining a Field-Level Window in a Master File
	Defining a Field-Level Window in a Master File Used With MODIFY
	Defining Both File-Level and Field-Level Windows

	Defining a Window for a Virtual Field
	Define a Window for a Virtual Field in a Request
	Defining a Window for a Virtual Field in a Request
	Defining a Window for Function Input in a DEFINE Command

	Define a Window for a Virtual Field in a Master File
	Defining a Window for a Virtual Field in a Master File

	Defining a Window for a Calculated Value
	Define a Window for a Calculated Value in a Report
	Define a Window for a Calculated Value in a MODIFY Request
	Defining a Window for a Calculated Value
	Defining a Window for Function Input in a COMPUTE Command

	Additional Support for Cross-Century Dates
	Default Date Display Format
	Date Display Options
	System Date Masking
	Date Functions
	Date Conversion
	Century and Threshold Information
	Date Time Stamp

	Euro Currency Support
	Integrating the Euro Currency
	Converting Currencies
	Currency Conversion Rules
	Performing Triangulation

	Creating the Currency Data Source
	Create a Currency Data Source
	Sample Currency Codes
	Specifying Currency Codes and Rates in a Master File

	Identifying Fields That Contain Currency Data
	Identify a Currency Value
	Identifying a Currency-Denominated Field

	Activating the Currency Data Source
	Activate Your Currency Data Source
	EUROFILE Error Messages and Notes
	Processing Currency Data
	Process Currency Data
	Currency Calculation Error Messages
	Using the Currency Conversion Function
	Converting U.S. Dollars to Euros, French Francs, and Belgian Francs

	Querying the Currency Data Source in Effect
	Determine the Currency Data Source in Effect
	Determining the Currency Data Source in Effect

	Punctuating Numbers
	Determine the Punctuation of Large Numbers
	Displaying Numbers Using Continental Decimal Notation
	Determining the Punctuation of Large Numbers

	Selecting an Extended Currency Symbol
	Extended Currency Symbol Formats
	Select an Extended Currency Symbol

	Designing Windows With Window Painter
	Introduction
	How Do Window Applications Work?
	Window Files and Windows
	Types of Windows You Can Create
	Vertical Menus
	Horizontal Menus
	Text Input Windows
	Text Display Windows
	File Names Windows
	Field Names Windows
	File Contents Windows
	Return Value Display Windows
	Execution Windows
	Multi-Input Windows
	Creating Windows
	Creating a Horizontal Menu
	Pull-down Menus
	Creating a Multi-Input Window
	Integrating Windows and the FOCEXEC
	Invoke the Window Facility
	Transferring Control in Window Applications
	Window File in an Application FOCEXEC

	Return Values
	Return Value in a Menu-Driven Application

	Goto Values
	Returning From a Window to Its Caller
	Window System Variables
	&WINDOWNAME
	&WINDOWVALUE
	Testing Function Key Values
	Executing a Window From the ibi FOCUS Prompt
	Execute a Window From the ibi FOCUS Prompt
	Tutorial: A Menu-Driven Application
	Creating the Application FOCEXEC
	Creating the Window File
	Creating the Text Display Window Named BORDER
	Creating the Text Display Window Named BANNER
	Creating the Vertical Menu Window Named MAIN
	Creating the Vertical Menu Window Named EXECTYPE
	Creating the File Names Window Named EXECNAME
	Executing the Application
	Window Painter Screens
	Invoking Window Painter
	Invoke Window Painter
	Entry Menu
	Main Menu
	Window Creation Menu
	Window Design Screen
	Window Options Menu
	Utilities Menu
	Transferring Window Files
	Creating a Transfer File
	Transferring the File to the New Environment
	Editing the Transfer File
	The Format of the Transfer File
	Transfer File Syntax: Window File Attributes
	Transfer File Syntax: Window Attributes
	Transfer File Syntax: Window Line Attributes
	Operating Environment Considerations
	Sample Transfer File

	Compiling the Transfer File
	Compile a Transfer File

	Master Files and Diagrams
	EMPLOYEE Data Source
	EMPLOYEE Master File
	EMPLOYEE Structure Diagram
	JOBFILE Data Source
	JOBFILE Master File
	JOBFILE Structure Diagram
	EDUCFILE Data Source
	EDUCFILE Master File
	EDUCFILE Structure Diagram
	SALES Data Source
	SALES Master File
	SALES Structure Diagram
	PROD Data Source
	PROD Master File
	PROD Structure Diagram
	CAR Data Source
	CAR Master File
	CAR Structure Diagram
	LEDGER Data Source
	LEDGER Master File
	LEDGER Structure Diagram
	FINANCE Data Source
	FINANCE Master File
	FINANCE Structure Diagram
	REGION Data Source
	REGION Master File
	REGION Structure Diagram
	COURSES Data Source
	COURSES Master File
	COURSES Structure Diagram
	EMPDATA Data Source
	EMPDATA Master File
	EMPDATA Structure Diagram
	EXPERSON Data Source
	EXPERSON Master File
	EXPERSON Structure Diagram
	TRAINING Data Source
	TRAINING Master File
	TRAINING Structure Diagram
	COURSE Data Source
	COURSE Master File
	COURSE Structure Diagram
	JOBHIST Data Source
	JOBHIST Master File
	JOBHIST Structure Diagram
	JOBLIST Data Source
	JOBLIST Master File
	JOBLIST Structure Diagram
	LOCATOR Data Source
	LOCATOR Master File
	LOCATOR Structure Diagram
	PERSINFO Data Source
	PERSINFO Master File
	PERSINFO Structure Diagram
	SALHIST Data Source
	SALHIST Master File
	SALHIST Structure Diagram
	PAYHIST File
	PAYHIST Master File
	PAYHIST Structure Diagram
	COMASTER File
	COMASTER Master File
	COMASTER Structure Diagram
	VIDEOTRK, MOVIES, and ITEMS Data Sources
	VIDEOTRK Master File
	VIDEOTRK Structure Diagram
	MOVIES Master File
	MOVIES Structure Diagram
	ITEMS Master File
	ITEMS Structure Diagram
	VIDEOTR2 Data Source
	VIDEOTR2 Master File
	VIDEOTR2 Structure Diagram
	Gotham Grinds Data Sources
	GGDEMOG Master File
	GGDEMOG Structure Diagram
	GGORDER Master File
	GGORDER Structure Diagram
	GGPRODS Master File
	GGPRODS Structure Diagram
	GGSALES Master File
	GGSALES Structure Diagram
	GGSTORES Master File
	GGSTORES Structure Diagram
	Century Corp Data Sources
	CENTCOMP Master File
	CENTCOMP Structure Diagram
	CENTFIN Master File
	CENTFIN Structure Diagram
	CENTHR Master File
	CENTHR Structure Diagram
	CENTINV Master File
	CENTINV Structure Diagram
	CENTORD Master File
	CENTORD Structure Diagram
	CENTQA Master File
	CENTQA Structure Diagram
	CENTGL Master File
	CENTGL Structure Diagram
	CENTSYSF Master File
	CENTSYSF Structure Diagram
	CENTSTMT Master File
	CENTSTMT Structure Diagram
	CENTGLL Master File
	CENTGLL Structure Diagram

	Error Messages
	Accessing Error Files
	Displaying Messages

	ibi Documentation and Support Services
	Legal and Third-Party Notices

