
Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

ibi™ FOCUS®
Host Language Interface User Guide
Version 9.3.2 | November 2024

ibi™ FOCUS® Host Language Interface User Guide

2 | Contents

Contents
Contents 2

Introduction to HLI 8
What is HLI? 8

Why the Host Language Interface? 8

How Can You Create HLI Applications? 9

Navigating Through a FOCUS Data Source 9

The Dummy SYSTEM Segment 10

Reading the Data Source 12

Test Relations 13

The File Communication Block (FCB) 15

Incorporating HLI Commands in the Application Program 15

Preparing HLI Work Areas 17
Initializing the File Communication Block (FCB) 17

FCB Layout 17
NEX C from A 21

Definitions of FCB Terms 22

Defining the Record Work Area 22

Internal Data Representation Formats 22

Alignment of Data Offsets in the Work Area 24

Size of the Work Area 25

Defining the Work Area for a File With Descendant Segments 25

Declaring Multiple FCBs 26

Using HLI 28
Writing HLI Programs 28

Properties of Master Files for Use With HLI 28

ibi™ FOCUS® Host Language Interface User Guide

3 | Contents

C Program Considerations 28

Include the HLI Header File in a C Program 29

Declare the Fcb Name Variable 29

Declare a Session Handle and Issue the Connection Call 29

Declare an HLI Handle and Issue the Connection Call 30

Close the HLI Connection 31

Call to Close the Session Connection 31

Sample HLI Programs 31
Master File Used With the Sample Programs 32

Sample C Program 32

Sample FORTRAN Program 38

Sample COBOL Program 42

Sample PL/1 Program 46

Initializing the FCB 51
Initializing the FCB in a C Program 51

Initializing the FCB in a FORTRAN Program 51

Initializing the FCB in a COBOL program 52

Initializing the FCB in a PL/I program 52

Opening the FOCUS Data Source 53

Open a FOCUS Data Source (OPN) 53
Opening a FOCUS Data Source in a C Program 54

Opening a FOCUS Data Source in a FORTRAN Program 55

Opening a FOCUS Data Source in a COBOL Program 55

Opening a FOCUS Data Source in a PL/I Program 55

Data Offsets in the Work Area 55

Using a Show List 57

Select a List of Fields in a FOCUS Data Source (SHO) 57
Using a Show List in a C Program 59

Using a Show List in a FORTRAN Program 59

Using a Show List in a COBOL Program 60

Using a Show List in a PL/I Program 60

ibi™ FOCUS® Host Language Interface User Guide

4 | Contents

Locating Records 61

Expressing Test Relations 61
Expressing Test Relations in a C Program 61

Expressing Test Relations in a FORTRAN Program 62

Expressing Test Relations in a COBOL Program 62

Expressing Test Relations in a PL/I Program 63

Logical Reads 64

Move to the First Target Segment Instance Under the Anchor (FST) 64

Move to the Next Segment in a Logical Read (NEX) 66
Using Logical Reads in a C Program 68

Using Logical Reads in a FORTRAN Program 69

Using Logical Reads in a COBOL Program 69

Using Logical Reads in a PL/I Program 69

Physical Reads 69

Move to the First Physical Segment Instance (FSP) 70

Retrieve the Next Physical Occurrence of the Target Segment (NXP) 71

Indexed Reads 73

Retrieve a Segment Instance Using an Index (NXD) 74

Retrieving With a Backkey 75

Retrieve a Previous Target Segment Using a Backkey (NXK) 76

Altering the File 77

Including New Segments 78

Include New Segment Instances (INP) 78
Including New Segment Instances Using a C Program 80

Including New Segment Instances Using a FORTRAN Program 80

Including New Segment Instances Using a COBOL Program 80

Including New Segment Instances Using a PL/I Program 81

Changing Information in the File 81

Change Information in a Segment Instance (CHA) 81
Changing a Segment Instance in a C Program 83

Changing a Segment Instance in a FORTRAN Program 84

ibi™ FOCUS® Host Language Interface User Guide

5 | Contents

Changing a Segment Instance in a COBOL Program 84

Changing a Segment Instance in a PL/I Program 85

Deleting Segments From a File 86

Delete Segments From a File (DEL) 86
Deleting a Segment Instance in a C Program 87

Deleting a Segment Instance in a FORTRAN Program 88

Deleting a Segment Instance in a COBOL Program 88

Deleting a Segment Instance in a PL/I Program 89

Testing Status, Using Log Facilities, and Handling Errors 90
Testing Status 90

Using the Diagnostic Log Facility: ECHO and STAT 90

Log File Locations 91

Using the ECHO Log Facility 92

Using the STAT Log Facility 93

Error Handling 96

Creating an Executable HLI Program 97
Constructing a DLL Under ibi WebFOCUS 97

Compile and Link a C Program 98

Constructing a Load Module Under z/OS 99
Creating a Load Module Under z/OS 99

HLI Allocations 100
Sample HLI Batch Job 101

HLI and Simultaneous Usage of FOCUS Databases 102
Using the SU Profile 102

Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only) 103

Multi-Threaded HLI/SU Reporting Under z/OS FOCUS 104
Preparing an FCB for Multi-Threaded HLI/SU Reporting Under z/OS FOCUS 105

HLI Command Summary 106
HLI Command Summary Chart 106

ibi™ FOCUS® Host Language Interface User Guide

6 | Contents

HLI Parameter Description Chart 107

Alphabetical List of HLI Commands 110

CHA (Change) Command 110

CLO (Close) Command 112

DEL (Delete) Command 112

FSP (First Physical) Command 113

FST (First) Command 114

INFO (Information) Command 115

INP (Input) Command 118

NEX (Next) Command 119

NXD (Next Through Index) Command 121

NXK (Next Through Backkey) Command 122

NXP (Next Physical) Command 124

OPN (Open) Command 125

SAV (Save) Command 127

SHO (Show) Command 128

HLI Status Return Codes 130
HLI Return Code Chart 130

Using the GENCPGM Build Tool 135
Using GENCPGM 135

USAGE Chart (Typical Syntax Plus Extended Options) 137

Compile and Link a Procedure 142

GENCPGM Usage Notes 144

Language and Platform Notes 145

Build Rules 146
Generating a Subroutine Program From a C Source File 147

Generating an HLI Program From a C Source File 147

Generating a CALLPGM Program From a C Source File 147

Migrating CMS HLI Programs to UNIX or Linux 149

ibi™ FOCUS® Host Language Interface User Guide

7 | Contents

Changes Needed to the CMS HLI Program 149

Changes Needed to the FCB When Migrating a CMS HLI Program 151

Migrating Simultaneous Usage Applications From CMS to UNIX or Linux 152

SU Under CMS 152

SU Under UNIX or Linux 153

ibi Documentation and Support Services 154

Legal and Third-Party Notices 155

ibi™ FOCUS® Host Language Interface User Guide

8 | Introduction to HLI

Introduction to HLI
The Host Language Interface (HLI) enables programs written in 3GL languages such as C,
C++, FORTAN, COBOL, Assembler, RPG, or PL/1 to access FOCUS® or XFOCUS data sources.
Once created, programs must be compiled and linked. HLI consists of a series of
commands that you incorporate into your application programs.

Note: FOCUSand XFOCUS data sources can be accessed identically using HLI. In
the remainder of this manual, all references to FOCUS data sources and all
references to FOCUS data sources also apply to XFOCUS data sources.

What is HLI?
The Host Language Interface (HLI) enables you to access FOCUS databases using simple
calls to the HLI from conventional programming languages. HLI commands allow the
application program to open and close one or more FOCUS files and input, change, and
delete data in these files. Records in the database can be located using logical, sequential,
and indexed reads, as well as reads according to a record's specific address within the file.

Your program incorporates HLI commands as calls to a subroutine. Application programs
using HLI can access both local FOCUS databases and FOCUS databases on a FOCUS
Database Server (FDS, also called a sink machine). It is, therefore, possible for HLI
programs to access FOCUS databases that are in use by other HLI programs as well as by
FOCUS users who are updating those same databases using MODIFY or MAINTAIN or writing
reports and generating graphs.

Why the Host Language Interface?
HLI makes it possible to have FOCUS or ibi™ WebFOCUS® applications that interface with
specialized hardware and software, such as production control systems, in which data
streams may be automated from bar code readers, digital scales, or other devices. HLI is
also useful in third-generation applications that require an underlying database. There are
several other reasons for using HLI:

ibi™ FOCUS® Host Language Interface User Guide

9 | Introduction to HLI

l You can use an existing application with a FOCUS data source.

l You can create one application with access to both FOCUS and non-FOCUS data
sources.

l You can update a FOCUS data source and report from it in one pass.

Caution: HLI can enter and alter FOCUS data sources outside of normal FOCUS
data source processing and control. You must understand the structure and
contents of your FOCUS data source before you use HLI. Otherwise, you may
seriously damage the file. If you want more information about the structure of
FOCUS files, consult the Describing Data manual.

How Can You Create HLI Applications?
To use HLI, you must create a Master File as you would for any FOCUS data source.

Your application program must do two things to use HLI:

l Define the File Communication Block (FCB) and work areas.

o The FCB is a reserved area containing information about the FOCUS database,
including its logical name (for example, on z/OS its ddname or, in UNIX, its
filename). It monitors your current position within the FOCUS database and
keeps track of the actions your application takes. HLI and your application both
use the FCB.

One FCB is required for each FOCUS file accessed in an application program.
You can open a file several times concurrently by defining multiple FCBs for the
file. You must issue a close (CLO) command for each opened FCB.

o Work areas are defined spaces where retrieved segments are held (see
Preparing HLI Work Areas).

l Incorporate HLI commands.

Navigating Through a FOCUS Data Source
Your HLI application navigates through a ibi™ FOCUS® data source using HLI commands.
The basic command for moving from one segment instance to another is the NEX (Next)

ibi™ FOCUS® Host Language Interface User Guide

10 | Introduction to HLI

command. Starting at an anchor segment representing the current position in the file, your
application proceeds to a target segment. (The target segment can be above the anchor in
the segment hierarchy.) Retrieved fields from the specified segments, including the anchor
and target segments, are placed in a record work area that you must define in your HLI
application. You can retrieve all fields in those segments or select fields to be retrieved by
creating a show list.

Your HLI program can locate segment instances for retrieval by searching for an instance
that satisfies selection tests (a qualified move) or by looking for the next segment instance
without testing (an unqualified move).

The Dummy SYSTEM Segment
The instances in the root segment form one chain considered descended from a dummy
segment called the SYSTEM segment. The SYSTEM segment has a null value and is always
considered current. It cannot be retrieved or modified. It can never be named as the target
segment.

Consider the following Master File:

FILE=EXAMPLE1, SUFFIX=FOC,$
SEGNAME=A,$
FIELD=.........,$

SEGNAME=B, PARENT=A, SEGTYPE=S1,$
FIELD=.........,$

SEGNAME=C, PARENT=B, SEGTYPE=S1,$
FIELD=.........,$

The following diagram represents the segment instances in the file, with the dummy
SYSTEM segment added:

ibi™ FOCUS® Host Language Interface User Guide

11 | Introduction to HLI

The following table illustrates how a series of NEX commands will search this file. The NEX
command specifies the anchor segment (the position where your application starts), and
the target segment (the segment to which you want to move), using FOCUS® pointers to
move from segment to segment. The anchor segment determines the target segment, as
shown by the following series of NEX commands.

Current
Position

Target Anchor Explanation

SYSTEM NEX C from
SYSTEM

Retrieves A1 B1 C1

A1 B1 C1 NEX C from A
Retrieves A1 B1 C2

A1 B1 C2 NEX C from B
Retrieves no segment

A1 B1 C2 NEX B from A
Retrieves A1 B2

A1 B2 NEX A from
Retrieves A2

ibi™ FOCUS® Host Language Interface User Guide

12 | Introduction to HLI

Current
Position

Target Anchor Explanation

SYSTEM

A2 NEX B from A
Retrieves A2 B3

A2 B3 NEX C from B
Retrieves A2 B3 C4

A2 B3 C4 NEX C from B
Retrieves A2 B3 C5

Reading the Data Source
There are three ways to read a FOCUS data source with HLI:

l Logical reads.

l Physical reads.

l Indexed reads.

Logical Read Commands

The logical read commands are FST (First) and NEX (Next). They follow the logical pointers
in the database to search the segments in their logical sequence (see Using HLI).

Physical Read Commands

The FSP (First Physical) and NXP (Next Physical) commands read FOCUS files as if they
were sequential files. Segment instances are returned in the order in which they are stored,
ignoring hierarchical links and links between siblings. Physical read commands provide
faster access if the order of the segment instances returned is not significant.

The order in which data is stored is often quite different from the order that makes sense
to a user. For example, if the database has been modified extensively, it may require many
I/Os to retrieve the desired segments logically. In such cases, the physical read commands
may improve the speed of your application program (see Using HLI).

ibi™ FOCUS® Host Language Interface User Guide

13 | Introduction to HLI

Indexed Read Commands

The NXD (Next through Index) command retrieves values using the index of a specified
field. This is particularly efficient when you are looking for a specific field value, since an
index is an internally stored and maintained table of data values and locations that speeds
retrieval (see Using HLI).

Test Relations
You can use test relations to control which instances you retrieve using HLI. The following
test relations are supported:

Test Relation Meaning

EQ
Equal

NE
Not equal

LT
Less than

GT
Greater than

LE
Less than or equal

GE
Greater than or equal

CO
Contains

OM
Omits

ibi™ FOCUS® Host Language Interface User Guide

14 | Introduction to HLI

Contains and Omits tests are useful when screening alphanumeric data fields.

Since the test relations are interdependent, a segment instance is rejected as soon as any
test relation fails.

The tests are not necessarily performed in the order specified, but instead may be
performed segment by segment. However, tests are performed in the specified order within
the same segment. As soon as a test on a segment fails, the search continues with the next
potential target segment. The descendants of a segment that did not meet the conditions
are not examined.

When the target is above the level of the anchor in the hierarchy, the search is abandoned
as soon as any test fails. For example, consider this diagram of segment instances:

Assume the current position is B1. From B1 (the anchor segment), the command

NEX A FROM B

will retrieve A1 (the target segment) if all conditions are met; if conditions are not met, the
search will cease. A2 will not be considered, because even if it met the necessary
qualifications, it would violate the definition of the current position because it is not linked
to current B.

Note: You must use the FST (First) command when you are trying to retrieve the
parent of a segment (see HLI Command Summary, for information on FST). If A1
were already our current position on segment A, the NEX command would be
unsuccessful even if A1 met the qualifying conditions because there would be no
change in the current position.

ibi™ FOCUS® Host Language Interface User Guide

15 | Introduction to HLI

When the target segment is a descendant of the anchor segment, all segment instances
along the anchor to target path are tested until one meets the conditions.

The File Communication Block (FCB)
The File Communication Block is a 200-byte structure that monitors the file on which you
are working. One FCB is required for each FOCUS data source opened by an application
program. More than one FCB may be attached to a single FOCUS data source.

Each FCB is unique and is identified by its address. This address becomes an internal token
for manipulating multiple FCBs. You cannot copy an FCB to another location and use it to
access a file. When finish using an FCB, you must issue a CLO (close) command for it.

See Preparing HLI Work Areas, for a discussion of initializing the FCB.

Incorporating HLI Commands in the Application
Program
You incorporate HLI commands as calls from your host application program. For example,
to use the HLI command INP (Input) on the segment named TOP, with an FCB declared as
FCB1 and a work area declared as WKAREA, you would use the following syntax

In C:

edahliCall(hliHandle, 5, "INP ", &fcb, &wkarea, "TOP ", 0);

In FORTRAN:

CALL FOCUS ('INP ', FCB1, WKAREA, 'TOP ', 0)

In COBOL:

CALL 'FOCUS' USING INP FCB1 WKAREA TOP NUMB0.

In PL/1:

ibi™ FOCUS® Host Language Interface User Guide

16 | Introduction to HLI

CALL FOCUS ('INP ', FCB1, WKAREA, 'TOP ', 0);

HLI commands, except for the INFO command, are three characters long. If you use an
argument in an HLI command as a literal string, as in the C, FORTRAN, and PL/1 examples,
you must pad it with trailing blanks to make the argument the correct number of
characters. For example, commands must be declared as 4 characters and segment names
as 8 characters. If, instead, you supply an HLI argument as a variable, as is done in the
COBOL example, the variable format establishes the length.

All the variables and parameters used with HLI must be declared and initialized following
the conventions of the application language you are using.

Using HLI, illustrates HLI operations. It includes annotated examples of applications written
in C, FORTRAN, COBOL, and PL/1 that use HLI commands, as well as sections that explain
their syntax. HLI Command Summary, provides detailed instructions for using the HLI
commands.

ibi™ FOCUS® Host Language Interface User Guide

17 | Preparing HLI Work Areas

Preparing HLI Work Areas
Each HLI program requires at least one File Communication Block to monitor its operation
and a work area in which retrieved segment instances can be placed and from which new
data can be taken before saving it in the FOCUS data source.

Initializing the File Communication Block (FCB)
The File Communication Block is a 200-byte array that internally monitors the file in which
you are working. It contains general file information, such as file name, as well as
information about your current position within that file.

Each FCB is unique and is identified by its address. This address becomes an internal token
for manipulating multiple FCBs.

You cannot copy an FCB to another location and use it to access a file.

When you are finished using an FCB, you must issue a CLO (close) command for it.

Initialize the FCB from byte 1 to 88 (which will contain file information) to blanks, file
name, file type, mode, and, optionally, ECHO. All alphanumeric parameters, except the
password, must be entered into the FCB using uppercase letters.

FCB Layout
Each FCB is 200 bytes long and is organized as illustrated in the following diagram.
Contents of the FCB are described in the chart immediately following this diagram. Not all
parts of the FCB are used in all environments.

ibi™ FOCUS® Host Language Interface User Guide

18 | Preparing HLI Work Areas

The following chart describes the contents of the various bytes in the FCB layout. See
Initializing the File Communication Block (FCB), for an explanation of alignment terms used
in the FCB.

Starts at
Byte

Starts at
Word

Length in
Bytes

Description

1 1 8 Logical name of the database (for example,
ddname in z/OS).

9 3 8 File type (blank).

17 5 4 File mode (blank).

21 6 4 Simultaneous Usage flag. The value is

l SU if running under a FOCUS
Database Server (sink machine).

l SULO if running multi-threaded (z/OS
only)

l Blank for direct access.

25 7 8 Procedure name. You can place information

ibi™ FOCUS® Host Language Interface User Guide

19 | Preparing HLI Work Areas

Starts at
Byte

Starts at
Word

Length in
Bytes

Description

here that will appear in the PROCNAME
column of the extended HLIPRINT trace (for
more information, see Using HLI).

33 9 8 Name of FOCUS Database Server (for SU) on
which the database is located. This machine
must be up and running. On z/OS, this is the
ddname of the sink machine's
communication data set, which must be
allocated. For the WebFOCUS® and
WebFOCUS, this is the FDS node (typically
FOCSU01 by default).

41 11 8 Reserved.

49 13 12 Reserved.

61 16 8 Backkey. Address a key of the target
segment. This value changes each time you
retrieve a target segment, and can be used
later in the NXK command (for information,
see Using HLI).

69 18 4 Logging option. If the value is ECHO or
STAT, transaction is written to the HLIPRINT
file (see Using HLI). If value is blank, nothing
is written to HLIPRINT.

73 19 8 User access password. Required to access a
file protected by the FOCUS DBA security
restrictions.

81 21 8 New segment name. Highest new segment
retrieved. (See Initializing the File
Communication Block (FCB).)

ibi™ FOCUS® Host Language Interface User Guide

20 | Preparing HLI Work Areas

Starts at
Byte

Starts at
Word

Length in
Bytes

Description

89 23 4 Segment number of the highest new
segment retrieved. Every segment is
assigned a unique number from top to
bottom, left to right, as shown:

93 24 4 Status return code. Can be equal to 0
(normal) or 1 (end of chain). Any other
number indicates an error condition. You
should test this condition in your program
after every HLI command is performed. (HLI
status codes are described in HLI Status
Return Codes.)

97 25 4 Number of database records returned. When
the repeat option is used, this is the number
of records retrieved.

101 26 4 Reserved.

105 27 8 Reserved.

113 29 4 Reserved.

117 30 4 Reserved.

ibi™ FOCUS® Host Language Interface User Guide

21 | Preparing HLI Work Areas

Starts at
Byte

Starts at
Word

Length in
Bytes

Description

121 31 4 Reserved.

125 32 4 Reserved.

129 33 4 Size of one returned work area (total length
of fields requested).

133 34 4 Total length of the work area returned (if
you are using the repeat option).

137 35 64 Reserved.

NEX C from A

ibi™ FOCUS® Host Language Interface User Guide

22 | Preparing HLI Work Areas

Definitions of FCB Terms
The following definitions describe alignment terms as used in the FCB:

Term Definition

Word Refers to a 4-byte word.

Word Alignment Means that the variable is on a full word boundary,
which is a multiple of four bytes from the beginning of
the data structure. The data structure must begin on
a double word boundary.

Double-Word
Alignment

Means that the variable is on a double word boundary,
which is a multiple of eight bytes from the beginning
of the data structure.

Defining the Record Work Area
The application program must provide an area into which a retrieved segment instance can
be placed, or from which new data can be taken. The size and layout of this data structure
are controlled by the data fields selected. In this document, this type of structure is
variously referred to as the work area, the change literals array, the inpliteral array, or the
testliterals array, depending on the way it is used. Fields can be selected by the SHO
command.

The order in which the fields are named in the show list determines the order in which
their data values are placed in the work area. If no SHO command is issued, the default
show list is all the fields in the file. The usage formats of the data fields determine the size
of this area.

Internal Data Representation Formats
All lengths are rounded up to multiples of 4 so that each data field starts on a full-word
boundary in this area, or a double-word boundary for double-precision, floating-point data.

ibi™ FOCUS® Host Language Interface User Guide

23 | Preparing HLI Work Areas

The following table describes the internal formats of data stored in FOCUS data sources
and the representation of missing values for each format(in case your program needs to
test for missing data):

Format Internal Representation Missing value stored
as

Alpha (An or
AnV)

Stores alphanumeric data as
entered. Allocates one byte per
character, rounded to a full word
boundary. If the format is AnV,
there are two additional binary
bytes for the number of non-blank
characters in the character string.
For example, an A10V field with a
value of ITALY would require 12
bytes, where the first 2 would
have the value 5 in binary, and
the remaining 10 characters
would be

'ITALY '

Performs no translation of
uppercase and lowercase.

A left-justified period
(.)

Integer (In) Standard binary integer format, 4
bytes.

-9998998

Floating Point
(Fn)

Full-word (4 bytes) floating point. -9998998.

Floating
PointDouble
Word (Dn)

Double word (8-byte) floating
point.

-9998998.

Packed (Pn) Signed packed format. Size is:

l 8 bytes for n = 1 through 15

l 16 bytes for n = 16 to 31.

-9998998.

ibi™ FOCUS® Host Language Interface User Guide

24 | Preparing HLI Work Areas

Note:
l TX (text) fields are not supported for HLI.

l FOCUS data sources support several formats for storing dates. Dates can
be defined as:

o I, P, or A format with date display options, for example I8YYMD.

o Date format, for example YMD. In this case, the 4-byte integer stored
is the number of days from the base date of December 31, 1900.

o 1. • Date-Time format, for example HYYMDm. They are stored as 8
bytes, 12 bytes if the time includes microseconds, or 16 bytes if
the time includes nanoseconds.

Alignment of Data Offsets in the Work Area
The following diagram illustrates the alignment of data offsets in the work area:

ibi™ FOCUS® Host Language Interface User Guide

25 | Preparing HLI Work Areas

Note:
l In PL/1, you should not rely on PL/1 to align the bytes, as the algorithm it

uses may not be one that FOCUS uses.

l In the diagram, unused filler bytes are represented by x.

Size of the Work Area
The size of the work area depends on the number of selected fields in the file. The length
of the standard work area is returned in the FCB, after a call to FOCUS with the OPN
(Open) command.

The length of the work area may differ from the size if the REPEAT option is used with the
NEX and FST commands.

Defining the Work Area for a File With
Descendant Segments
When you declare a work area, you must make it large enough to contain every field in the
show list, no matter how many fields are retrieved. This is particularly important when
using the REPEAT option to retrieve a root segment and its children. Issuing a REPEAT with
a NEX or FST command is, in effect, equivalent to reissuing the retrieval command. All the
fields in the show list, beginning with the first field, are retrieved. For example, assume you
have a three-segment file:

ibi™ FOCUS® Host Language Interface User Guide

26 | Preparing HLI Work Areas

If you use nrepeat in a NEX or FST command to retrieve all three instances of Segment C,
HLI retrieves all three segments three times. You must allocate your work space as shown:

When a single record is retrieved with NEX or FST, the backkey (address of the data record)
is placed in the FCB at word 16. However, when multiple records are retrieved in a single
call, the backkey is present for each record returned, as shown in the diagram (the length
of each back key is eight bytes).

Declaring Multiple FCBs
You can declare up to 4096 FCBs. Files that will be open simultaneously must have
separate FCBs.

Multiple FCBs can be declared as elements in an array or as single arrays with unique
names. Each FCB requires 200 bytes and is identifiable either as an element within an
array, such as FCB(n), or by a unique name, such as FCB-fn.

FCBxxx(n)

ibi™ FOCUS® Host Language Interface User Guide

27 | Preparing HLI Work Areas

where:

xxx

Is a number that uniquely identifies each separate FCB.

n

Represents the bytes in the array.

In COBOL, you can describe up to each FCB as a level 01 structure. You give each FCB a
name in the format

name-fcb

where:

name

Is a user-assigned name.

In PL/1, you declare multiple FCBs as part of the same structure in the format

FCB(n)

where:

n

Is the number of FCBs.

You then refer to individual FCBs in the format:

FCB(n).fieldname

In C, you can assign any name to the FCB structure. You then refer to the individual FCBs in
the format

fcbname.fieldname

For example, for the filename field of the FCB named empfcb:

empfcb.filename

ibi™ FOCUS® Host Language Interface User Guide

28 | Using HLI

Using HLI
This chapter illustrates the use of HLI with C, FORTRAN, COBOL, and PL/1.

HLI programs will generally work when the library path is adjusted to newer releases, or
they are linked to the latest FOCUS load library. However, it is always a good idea to test
thoroughly or consider rebuilding the application

Writing HLI Programs

Properties of Master Files for Use With HLI
l Field names can be a maximum of 12 characters.

l File and segment names can be a maximum of 8 characters.

C Program Considerations
If your HLI program is written in C, you must declare the variables required by the HLI
Interface.

One session handle is required and one HLI handle for each machine that the program will
access. For local databases, only one HLI handle is needed. For programs that access data
on multiple FOCUS Database servers, one HLI handle is required for each of the servers.

In addition, your program must open the session connection and the HLI connection before
issuing HLI commands, and must close those connections before ending. Before opening
these connections, you must declare the following local variables:

l The fcb name.

l A session handle (pointer to the session connection).

l An HLI handle (pointer to the HLI engine connection). You then reference this handle

ibi™ FOCUS® Host Language Interface User Guide

29 | Using HLI

in all HLI calls.

Include the HLI Header File in a C Program
In addition to the standard header files, issue the following include command for the HLI
header file:

#include "edahli.h"

Declare the Fcb Name Variable
t_edahli_fcb fcb;

where:

fcb

Is the name that you assign to the fcb structure in your program. If your program uses
multiple FCBs, you need one declaration for each.

Declare a Session Handle and Issue the
Connection Call
Prior to issuing HLI commands, issue the following commands to declare the session
handle, open the session connection, and check whether the connection was made
successfully.

t_eda_handle *sHandle = NULL;iwayHandle = edaOpen(trace_option);
if(sHandle == NULL) {

printf("Failed to connect to session");
return -1;

}

ibi™ FOCUS® Host Language Interface User Guide

30 | Using HLI

where:

sHandle

Is the name that you assign to the session handle.

trace_option

Can be one of the following:

l EDA_TRACE_AUTO. Automatically determines whether the traces have been
activated.

l EDA_TRACE_ON. Turns tracing on.

l EDA_TRACE_OFF. Turns tracing off.

Declare an HLI Handle and Issue the
Connection Call
Prior to issuing HLI commands, and after opening a session connection, issue the following
commands to declare an HLI handle, open a connection to the HLI engine, and check
whether the connection was made successfully.

t_edahli_handle *hliHandle = NULL;hliHandle = edahliOpen(sHandle,
ac > 1 ? EDAHLI_DESTINATION_SINK : EDAHLI_DESTINATION_LOCAL);

if(hliHandle == NULL) {
printf("Failed to connect to session/HLI engine");
goto L_cleanup;

}

where:

hliHandle

Is the name that you assign to the HLI handle. If your program uses multiple
connections to HLI, you need one handle for each connection.

sHandle

Is the name assigned to the session handle.

ibi™ FOCUS® Host Language Interface User Guide

31 | Using HLI

L_cleanup

Is the part of the program that closes the WebFOCUS Reporting Server connection.

Close the HLI Connection
After issuing all HLI calls, and prior to closing the WebFOCUS Reporting Server connection,
issue the following command to close the HLI connection:

edahliClose(hliHandle);

hliHandle

Is the name assigned to the HLI handle.

Call to Close the Session Connection
After closing all HLI connections, issue the following command to close the session
connection:

edaClose(sHandle);

sHandle

Is the name assigned to the session handle.

Sample HLI Programs
Sample programs follow and are presented as simply as possible for ease of explanation.
Numbers to the left of the lines of code refer to notes in the sections that describe the
operations performed in the examples.

The sample programs perform the following basic HLI functions:

l Initializing the FCB.

ibi™ FOCUS® Host Language Interface User Guide

32 | Using HLI

l Opening the file.

l Using a show list.

l Locating records.

l Retrieving segments with a backkey.

l Changing, adding, and deleting data.

l Closing the file.

Master File Used With the Sample Programs
The Master File used in the examples follows:

FILENAME=EMP,SUFFIX=FOC
SEGNAME=ONE,SEGTYPE=S1

FIELDNAME=EMPNO,ALIAS=EMPNUM,FORMAT=I5,$
FIELDNAME=NAME,ALIAS=,FORMAT=A20,$

SEGNAME=TWO,PARENT=ONE,SEGTYPE=SH1
FIELDNAME=DATE,ALIAS=,FORMAT=I6YMD,$
FIELDNAME=SALARY,ALIAS=PAY,FORMAT=D12.2M,$

Sample C Program
1. #include <stdlib.h>
2. #include <stdio.h>
3. #include <string.h>
4. #include "edahli.h"

/**
* Database record, as per MFD. SALARY data type has to be aligned
* to 8-byte boundary, hence padding member has to be inserted
* between date and salary fields.

*/
5. typedef struct {
6. int empno;
7. char name[20];
8. int date;
9. char padding[4];
10. double salary;
11. } t_record;

ibi™ FOCUS® Host Language Interface User Guide

33 | Using HLI

/**
* Symbolic definitions for database segment names: blank-padded

8-
* char long.
*/

12. #define SEG_SYS "SYSTEM "
13. #define SEG_ONE "ONE "
14. #define SEG_TWO "TWO "

/**
* Symbolic definitions of the database field names: blank-padded
* 12-char long.
*/

15. #define FLD_EMPNO "EMPNO "
16. #define FLD_NAME "NAME "
17. #define FLD_DATE "DATE "
18. #define FLD_SALARY "SALARY "

/**
* Local function prototypes.
*/

19. static void doInsert(t_edahli_handle *hli, t_edahli_fcb *pFcb);
20. static void doList(t_edahli_handle *hli, t_edahli_fcb *pFcb);
21. static void doDelete(t_edahli_handle *hli, t_edahli_fcb *pFcb);
22. static void doChange(t_edahli_handle *hli, t_edahli_fcb *pFcb);
23. int main(int ac, char **av) {

/* Fieldname list for SHO command */
24. char *names = FLD_EMPNO FLD_NAME FLD_DATE FLD_SALARY;
25. int namesL = 4; /* How many fields we pass to SHO */

26. t_eda_handle *edah;
27. t_edahli_handle *hli;
28. t_edahli_fcb fcb;
29. int rc;

/* Standard initialization of the FCB */
30. memset(&fcb, '\0', sizeof(fcb));
31. memset(&fcb, ' ', EDAHLI_FCB_INIT_SIZE);

/**
* Put file name into FCB. filetype and
* filemode should be left blank.
*/

32. memcpy(fcb.filename, "EMP", 3);
33. memcpy(fcb.filetype, " ", 5);
34. memcpy(fcb.filemode, " ", 1);

/**
* Open session handle
*/

35. edah = edaOpen(EDA_TRACE_AUTO);
36. if(edah == NULL) {

ibi™ FOCUS® Host Language Interface User Guide

34 | Using HLI

37. printf("Failed to open eda handle\n");
38. return -1;
39. }

/**
* Connect to the HLI engine.
*/

40. hli = edahliOpen(edah, EDAHLI_DESTINATION_LOCAL);
41. if(hli == NULL) {
42. printf("Failed to open hli handle\n");
43. edaClose(edah);
44. return -1;
45. }

/**
* Open file and check status.
*/

46. rc = edahliCall(hli, 2, "OPN ", &fcb);
47. if(rc != 0 || fcb.status != 0) {
48. printf("OPEN ERROR: rc=%ld, status=%ld\n", rc, fcb.status);
49. edahliClose(hli);
50. edaClose(edah);
51. return -1;
52. }

/**
* Set up show field names.
*/

53. rc = edahliCall(hli, 4, "SHO ", &fcb, names, &namesL);
54. if(rc != 0 || fcb.status != 0) {
55. printf("SHOW ERROR: rc=%ld, status=%ld\n", rc, fcb.status);
56. edahliCall(hli, 2, "CLO ", &fcb);
57. edahliClose(hli);
58. edaClose(edah);
59. return -1;
60. }

/**
* Main option menu.
*/

61. while(1) {
62. int ians = 0;
63. printf("Enter 1 to add a new date and salary\n");
64. printf("Enter 2 to change a salary\n");
65. printf("Enter 3 to delete a salary\n");
66. printf("Enter 4 to print salary information\n");
67. printf("Enter 0 to exit\n");
68. scanf("%d", &ians);
69. if(ians < 0 || ians > 4) {
70. printf("A bad code of %d was given - try again\n", ians);

ibi™ FOCUS® Host Language Interface User Guide

35 | Using HLI

71. continue;
72. }
73. if(ians == 0) break;

/**
* Enter employee number and check for existence which also
* establishes position in the database
*/

74. while(1) {
75. t_record testlt, wkarea;
76. char testrl[4 * 4]; /* 4 bytes per SHO field */
77. int testL = 1; /* single test pass to FST */
78. printf("Enter the employee number or 0 for menu\n");
79. scanf("%d", &testlt.empno);
80. if(testlt.empno == 0) break;
81. memset(&testrl[0], ' ', sizeof(testrl));
82. memcpy(&testrl[0], "EQ ", 4);

83. rc = edahliCall(hli, 8, "FST ", &fcb,
84. &wkarea, SEG_ONE, SEG_SYS, &testL, testrl, &testlt);
85. if(rc == 0 && fcb.status == 0) {

/**
* Branch according to option selected
*/

86. printf("Employee name is %-10.10s\n", wkarea.name);
87. switch(ians) {
88. case 1:
89. doInsert(hli, &fcb);
90. break;
91. case 2:
92. doChange(hli, &fcb);
93. break;
94. case 3:
95. doDelete(hli, &fcb);
96. break;
97. case 4:
98. doList(hli, &fcb);
99. break;
100. }
101. break;
102. }
103. printf("Employee %d not found\n", testlt.empno);
104. }
105. }

/* Cleanup */
106. edahliCall(hli, 2, "CLO ", &fcb);
107. edahliClose(hli);
108. edaClose(edah);

ibi™ FOCUS® Host Language Interface User Guide

36 | Using HLI

109. }
/**
* Add a new date and salary.
*/

110. static void doInsert(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
111. t_record wkarea;
112. int c__2 = 2; /* Option 2 makes INP reject duplicate keys */
113. int rc;
114. while(1) {
115. printf("Enter date in form YYMMDD or 0 for menu\n");
116. scanf("%d", &wkarea.date);
117. if(wkarea.date == 0) break;
118. printf("Enter salary with decimal\n");
119. scanf("%lf9.2", &wkarea.salary);

120. rc = edahliCall(hli, 3, "INP ", pFcb, wkarea, "TWO ",
121. &c__2);
122. if(rc == 0 && pFcb->status == 0) {
123. break;
124. }
125. printf("***** ERROR ***** Date of %6d already exists\n");
126. }
127. }

/**
* Change a salary but first display existing salary.
*/

128. static void doChange(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
129. t_record testlt, wkarea, chalit;
130. char testrl[4 * 4]; /* 4 bytes per SHO field */
131. int testL = 1; /* just single test passed to NEX */
132. char charel[4 * 4]; /* 4 bytes per SHO field */
133. int chaL = 1; /* changing just one field */
134. int rc;
135. while(1) {
136. printf("Enter date in form YYMMDD or 0 for menu\n");
137. scanf("%d", &testlt.date);
138. if(testlt.date == 0) return;
139. memset(testrl, ' ', sizeof(testrl));
140. memcpy(&testrl[4 * 2], "EQ ", 4);
141. rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
142. SEG_TWO, SEG_ONE, &testL, testrl, &testlt);
143. if(rc == 0 && pFcb->status == 0) {
144. break;
145. }
146. printf("***** ERROR ***** Date of %6d not found\n");
147. }
148. printf("Existing salary is %12.2f. Enter new salary",

ibi™ FOCUS® Host Language Interface User Guide

37 | Using HLI

149. wkarea.salary);
150. scanf("%9.2lf", &chalit.salary);
151. memset(charel, ' ', sizeof(charel));
152. memcpy(&charel[16], "EQ ", 4);

153. rc = edahliCall(hli, 7, "CHA ", pFcb,
154. &wkarea, SEG_TWO, SEG_ONE, charel, &chalit);
155. if(rc != 0 || pFcb->status != 0) {
156. printf("Error in change: rc=%d, status=%d\n", rc,
157. pFcb->status);
158. }
159. }

/**
* Delete a segment TWO instance given a date.
*/

160. static void doDelete(t_edahli_handle *hli, t_edahli_fcb *pFcb) {
161. t_record teslit, wkarea;
162. char testrl[4 * 4]; /* 4 bytes per SHO field */
163. int testL = 1; /* just single test passed to NEX */
164. int rc;
165. while(1) {
166. printf("Enter date in form YYMMDD or 0 for menu\n");
167. scanf("%d", &teslit.date);
168. if(teslit.date == 0) return;
169. memset(testrl, ' ', sizeof(testrl));
170. memcpy(&testrl[8], "EQ ", 4);
171. rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
172. SEG_TWO, SEG_ONE, &testL, testrl, &teslit);
173. if(rc == 0 && pFcb->status == 0) {
174. break;
175. }
176. printf("***** ERROR ***** Date of %6d not found\n");
177. }
178. rc = edahliCall(hli, 3, "DEL", pFcb, SEG_TWO);
179. if(rc != 0 || pFcb->status != 0) {
180. printf("***** ERROR ***** Segment not deleted: rc=%d,
181. status=%d\n", rc, pFcb->status);
182. } else {
183. printf("Segment deleted\n");
184. }
185. }

/**
* Report by nexting thru segment TWO
*/

186. static void doList(t_edahli_handle *hli, t_edahli_fcb *pFcb) {

ibi™ FOCUS® Host Language Interface User Guide

38 | Using HLI

187. t_record wkarea;
188. int c__0 = 0;
189. int rc;
190. while(1) {
191. rc = edahliCall(hli, 5, "NEX ", pFcb, wkarea, SEG_TWO,
192. SEG_ONE, &c__0);
193. if(rc != 0 || pFcb->status != 0) {
194. break;
195. }
196. printf(" %6d %12.2f\n", wkarea.date, wkarea.salary);
197. }
198. }

Sample FORTRAN Program
1. IMPLICIT INTEGER (A-Z)
2. DIMENSION FCB(50)
3. REAL*8 FN,FT,SALARY,SALNEW
4. INTEGER*4 STATUS, DATE, NAME(5)
5. EQUIVALENCE (FCB(1),FN), (FCB(3),FT), (FCB(5),FM),
6. * (FCB(24),STATUS)
7. DATA FCB /'EMP ', ' ', ' ', 17*' ', 28*0/

C
C SET UP NAMES AREA
C

8. DIMENSION NAMES (3,4)
9. DATA NAMES /9*' '/
10. DATA NAMES(1,1)/'EMPN'/,NAMES(2,1)/'0 '/,NAMES(3,1)/' '/,
11. * NAMES(1,2)/'NAME'/,NAMES(2,2)/' '/,NAMES(3,2)/' '/,
12. * NAMES(1,3)/'DATE'/,NAMES(2,3)/' '/,NAMES(3,3)/' '/,
13. * NAMES(1,4)/'SALA'/,NAMES(2,4)/'RY '/,NAMES(3,4)/' '/

C
C SET UP WORK AREA
C

14. DIMENSION WKAREA(10)
15. EQUIVALENCE (WKAREA(2),NAME(1)), (WKAREA(7),DATE),
16. * (WKAREA(9),SALARY)

C
C SET UP TEST ARRAY
C

17. DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
18. EQUIVALENCE (CHALIT(9),SALNEW)
19. DATA TESTRL /4*' '/, CHAREL /4*' '/

ibi™ FOCUS® Host Language Interface User Guide

39 | Using HLI

C
C SET UP HLI COMMANDS
C

20. DATA FST/'FST '/, NEXT/'NEX '/, EQ /'EQ '/, BLANK/' '/
21. DATA OPN/'OPN '/, SHO /'SHO '/, INP/'INP '/, CHA /'CHA '/
22. DATA DEL/'DEL '/, CLO /'CLO '/

C
C SET UP SEGMENT NAMES
C

23. REAL*8 ONE/'ONE '/, TWO/'TWO '/, SYSTEM/'SYSTEM '/
C
C OPEN FILE AND CHECK STATUS
C

24. CALL FOCUS (OPN,FCB)
25. IF (STATUS.EQ.0) GO TO 20
26. WRITE (6,10) STATUS
27. 10 FORMAT (1X, 'OPEN ERROR', I5)
28. RETURN

C
C SET UP SHOW FIELD NAMES
C

29. 20 CALL FOCUS (SHO,FCB,NAMES,4)
30. IF (STATUS.EQ.0) GO TO 40
31. WRITE (6,30) STATUS
32. 30 FORMAT (1X, 'SHOW ERROR', I5)
33. RETURN

C
C MAIN OPTION MENU
C

34. 40 WRITE (6,50)
35. 50 FORMAT (/1X,'ENTER 1 TO ADD A NEW DATE AND SALARY'/,
36. 1 1X,'ENTER 2 TO CHANGE A SALARY',/
37. 2 1X,'ENTER 3 TO DELETE A SALARY',/
38. 3 1X,'ENTER 4 TO PRINT SALARY INFORMATION',/
39. 4 1X,'ENTER <RETURN> TO EXIT')
40. READ (5,60,END=999) IANS
41. 60 FORMAT (I1)
42. IF(IANS.LT.1)IANS=5
43. IF(IANS.GT.4)IANS=5
44. GOTO(80,80,80,80,65),IANS
45. 65 WRITE (6,70) IANS
46. 70 FORMAT (1X,'A BAD CODE WAS GIVEN - TRY AGAIN')
47. GO TO 40

C

ibi™ FOCUS® Host Language Interface User Guide

40 | Using HLI

C ENTER EMPLOYEE NUMBER AND CHECK FOR EXISTENCE WHICH ALSO
C ESTABLISHES POSITION IN THE DATABASE
C

48. 80 WRITE (6,90)
49. 90 FORMAT (/,1X,'ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU')
50. READ (5,100,END=40) TESTLT(1)
51. 100 FORMAT (I5)
52. IF (TESTLT(1).EQ.0) GO TO 40
53. TESTRL(1)=EQ
54. CALL FOCUS (FST, FCB, WKAREA, ONE,SYSTEM , 1, TESTRL,
TESTLT)
55. IF (STATUS.EQ.0) GO TO 120
56. WRITE (6,110) TESTLT(1)
57. 110 FORMAT (/,1X,'EMPLOYEE ',I5,' NOT FOUND')
58. GOTO 80

C
C BRANCH ACCORDING TO OPTION SELECTED
C

59. 120 WRITE(6,130) NAME
60. 130 FORMAT (/1X, 'EMPLOYEE NAME IS ',5A4)
61. GO TO (1000,2000,3000,4000),IANS

C
C ADD A NEW DATE AND SALARY
C

62. 1000 WRITE (6,1100)
63. 1100 FORMAT (/,1X,'ENTER DATE IN FORM YYMMDD OR 0 FOR MENU')
64. READ (5,1200) DATE
65. 1200 FORMAT(I6)
66. IF (DATE.EQ.0) GO TO 40
67. WRITE (6,1300)
68. 1300 FORMAT (1X,'ENTER SALARY WITH DECIMAL')
69. READ (5,1400) SALARY
70. 1400 FORMAT(F9.2)
71. CALL FOCUS (INP,FCB,WKAREA,TWO,2)
72. IF (STATUS.EQ.0) GO TO 1000
73. WRITE (6,1500) DATE
74. 1500 FORMAT (1X,'***** ERROR ***** DATE OF ',I6,' ALREADY
EXISTS')
75. GO TO 1000

C
C CHANGE A SALARY BUT FIRST DISPLAY EXISTING SALARY
C

76. 2000 WRITE (6,1100)
77. READ (5,1200) TESTLT(7)
78. IF (TESTLT(7).EQ.0) GO TO 40

ibi™ FOCUS® Host Language Interface User Guide

41 | Using HLI

79. TESTRL(1)=BLANK
80. TESTRL(3)=EQ
81. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)
82. TESTRL(3)=BLANK
83. IF (STATUS.EQ.0) GO TO 2200
84. WRITE (6,2100)TESTLT(7)
85. 2100 FORMAT (1X, ' ***** ERROR ***** DATE OF ',I6, ' NOT FOUND')
86. GO TO 2000
87. 2200 WRITE (6,2300) SALARY
88. 2300 FORMAT (1X,'EXISTING SALARY IS ',F12.2/,' ENTER NEW SALARY')
89. READ (5,1400) SALNEW
90. CHAREL(4)=EQ
91. CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,1,CHAREL,CHALIT)
92. IF (STATUS.EQ.0) GO TO 80
93. WRITE (6,2400) STATUS
94. 2400 FORMAT (1X,'ERROR IN CHANGE STATUS IS ',I6)
95. GO TO 80

C
C DELETE A SEGMENT TWO INSTANCE GIVEN A DATE
C

96. 3000 WRITE (6,1100)
97. READ (5,1200) TESTLT(7)
98. IF (TESTLT(7).EQ.0) GO TO 40
99. TESTRL(1)=BLANK
100. TESTRL(3)=EQ
101. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)
102. TESTRL(3)=BLANK
103. IF (STATUS.EQ.0) GO TO 3100
104. WRITE (6,2100)TESTLT(7)
105. GO TO 3000
106. 3100 CALL FOCUS (DEL,FCB,TWO)
107. IF (STATUS.EQ.0) GOTO 3300
108. WRITE (6,3200) STATUS
109. 3200 FORMAT (1X,'**** ERROR **** SEGMENT NOT DELETED STATUS=',I6)
110. GO TO 3000
111. 3300 WRITE (6,3400)
112. 3400 FORMAT (1X,'SEGMENT DELETED')
113. GO TO 3000

C
C REPORT BY NEXTING THROUGH SEGMENT TWO
C

114. 4000 CALL FOCUS (NEXT, FCB, WKAREA,TWO,ONE,0)
115. IF (STATUS.NE.0) GOTO 80
116. WRITE (6,4100) DATE, SALARY
117. 4100 FORMAT (/,1X,I6,2X,F12.2)

ibi™ FOCUS® Host Language Interface User Guide

42 | Using HLI

118. GOTO 4000
C
C EXIT PROGRAM AND CLOSE DATABASE
C

119. 999 CALL FOCUS (CLO,FCB)
120. IF(STATUS.EQ.0)GOTO 9999
121. WRITE(6,9990) STATUS
122. 9990 FORMAT(1X,'ERROR IN CLOSE IS ',I6)
123. 9999 RETURN
124. END

Sample COBOL Program
1. IDENTIFICATION DIVISION. 37. 05 OUT-REST.
38. 10 OUT-DATE PIC X(6).
39. 10 FILLER PIC XX.
40. 10 OUT-SALARY PIC ZZZ,ZZZ,ZZZ,ZZZ.99.
41. 10 FILLER PIC XX.
42. 10 OLD-SAL PIC ZZZ,ZZZ,ZZZ,ZZZ.99.
43. 10 FILLER PIC XX.
44. 10 OUT-MSG PIC X(50).

* HLI WORK AREAS *

45. 01 LIST-OF-SEGNAMES.
46. 02 SYSSEG PIC X(8) VALUE 'SYSTEM'.
47. 02 ONESEG PIC X(8) VALUE 'ONE '.
48. 02 TWOSEG PIC X(8) VALUE 'TWO '.
49. 01 FCB.
50. 02 FCB-FN PIC X(8) VALUE 'EMP '.
51. 02 FCB-FT PIC X(8) VALUE ' '.
52. 02 FCB-FM PIC X(4) VALUE ' '.
53. 02 FILLER PIC X(48) VALUE SPACES.
54. 02 FCB-ECHO PIC X(4) VALUE 'ECHO'.
55. 02 FILLER PIC X(20) VALUE SPACES.
56. 02 FCB-STATUS PIC S9(5) COMP.
57. 02 FILLER PIC X(104) VALUE SPACES.
58. 01 CMDS.
59. 02 OPNCMD PIC X(4) VALUE 'OPN '.
60. 02 CLOCMD PIC X(4) VALUE 'CLO '.
61. 02 CHACMD PIC X(4) VALUE 'CHA '.
62. 02 NEXCMD PIC X(4) VALUE 'NEX '.
63. 02 FSTCMD PIC X(4) VALUE 'FST '.
64. 02 DELCMD PIC X(4) VALUE 'DEL '.

ibi™ FOCUS® Host Language Interface User Guide

43 | Using HLI

65. 02 SAVCMD PIC X(4) VALUE 'SAV '.
66. 02 SHOCMD PIC X(4) VALUE 'SHO '.
67. 02 INPCMD PIC X(4) VALUE 'INP '.
68. 01 NAMES-AREA.
69. 02 FIELD-0001 PIC X(12) VALUE 'EMPNO '.
70. 02 FIELD-0002 PIC X(12) VALUE 'NAME '.
71. 02 FIELD-0003 PIC X(12) VALUE 'DATE '.
72. 02 FIELD-0004 PIC X(12) VALUE 'SALARY '.
73. 01 NUMB0 PIC S9(9) COMP VALUE 0.
74. 01 NUMB1 PIC S9(9) COMP VALUE 1.
75. 01 NUMB2 PIC S9(9) COMP VALUE 2.
76. 01 NUMB3 PIC S9(9) COMP VALUE 3.
77. 01 NUMB4 PIC S9(9) COMP VALUE 4.
78. 01 NULL PIC X(8) VALUE SPACES.
79. 01 EOF-FLAG PIC S9 COMP VALUE 0.

80. 01 WRKAREA.
81. 02 EMPNO PIC S9(9) COMP.
82. 02 EMPNAME PIC X(20) VALUE SPACES.
83. 02 EMPDATE PIC S9(6) COMP.
84. 02 FILLER PIC X(4).
85. 02 SALARY COMP-2.
86. 01 TESTREL.
87. 02 REL-NO PIC X(04) VALUE SPACES.
88. 02 REL-NAME PIC X(04) VALUE SPACES.
89. 02 REL-DATE PIC X(04) VALUE SPACES.
90. 02 REL-SAL PIC X(04) VALUE SPACES.
91. 01 TESTLIT.
92. 02 LIT-EMPNO PIC S9(9) COMP.
93. 02 LIT-NAME PIC X(20) VALUE SPACES.
94. 02 LIT-DATE PIC S9(6) COMP.
95. 02 FILLER PIC X(4).
96. 02 LIT-SALARY COMP-2.
97. PROCEDURE DIVISION.
98. AAAA-MAIN-PROGRAM.
99. PERFORM A000-INIT THRU A999-EXIT.
100. IF FCB-STATUS EQUAL 0
101. PERFORM B100-READ THRU B999-EXIT
102. UNTIL EOF-FLAG EQUAL 9.
103. PERFORM ZZZZ-CLOSES.
104. STOP RUN.
105. A000-INIT.
106. OPEN INPUT TRANS OUTPUT OUTFI.
107. CALL 'FOCUS' USING OPNCMD FCB NUMB0.
108. IF FCB-STATUS NOT EQUAL 0
109. MOVE SPACES TO OUT-REC
110. MOVE 'ERROR IN OPEN' TO OUT-MSG

ibi™ FOCUS® Host Language Interface User Guide

44 | Using HLI

111. WRITE OUTREC FROM OUT-REC
112. GO TO A999-EXIT.
113. CALL 'FOCUS' USING SHOCMD FCB NAMES-AREA NUMB4.
114. IF FCB-STATUS NOT EQUAL 0
115. MOVE SPACES TO OUT-REC
116. MOVE 'ERROR IN SHOW' TO OUT-MSG
117. WRITE OUTREC FROM OUT-REC
118. GO TO A999-EXIT.
119. A999-EXIT. EXIT.

120. B100-READ.
121. READ TRANS AT END MOVE 9 TO EOF-FLAG GO TO B999-EXIT.
122. IF TRANS-TYPE LESS THAN 1 OR TRANS-TYPE GREATER 4
123. MOVE SPACES TO OUT-REC
124. MOVE TRANS-REC TO OUT-REC
125. MOVE 'ERROR IN TRANSACTION CODE' TO OUT-MSG
126. WRITE OUTREC FROM OUT-REC
127. GO TO B999-EXIT.
128. MOVE SPACES TO OUT-REC MOVE TR-EMPNO TO OUT-EMPNO.
129. MOVE SPACES TO TESTREL. MOVE 'EQ' TO REL-NO.
130. MOVE TR-EMPNO TO LIT-EMPNO.
131. CALL 'FOCUS' USING FSTCMD FCB WRKAREA ONESEG SYSSEG
132. NUMB1 TESTREL TESTLIT.
133. IF FCB-STATUS EQUAL 1
134. MOVE 'NOT ON FILE' TO OUT-MSG
135. WRITE OUTREC FROM OUT-REC
136. GO TO B999-EXIT.
137. IF FCB-STATUS GREATER 0
138. MOVE 'ERROR IN READ' TO OUT-MSG
139. WRITE OUTREC FROM OUT-REC
140. MOVE ZERO TO FCB-STATUS
141. GO TO B999-EXIT.
142. MOVE LIT-NAME TO OUT-NAME.
143. IF TRANS-TYPE EQUAL 1
144. PERFORM C100-ADD THRU C999-EXIT
145. GO TO B999-EXIT
146. ELSE IF TRANS-TYPE EQUAL 2
147. PERFORM D100-CHG THRU D999-EXIT
148. GO TO B999-EXIT
149. ELSE IF TRANS-TYPE EQUAL 3
150. PERFORM E100-DEL THRU E999-EXIT
151. GO TO B999-EXIT
152. ELSE PERFORM F100-PRT THRU F999-EXIT UNTIL FCB-STATUS
153. GREATER 0 MOVE 0 TO FCB-STATUS.
154. B999-EXIT. EXIT.

ibi™ FOCUS® Host Language Interface User Guide

45 | Using HLI

155. C100-ADD.
156. MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO EMPDATE.
157. MOVE TR-EMP-DATE TO OUT-DATE.
158. MOVE TR-SALARY TO SALARY.
159. MOVE TR-SALARY TO OUT-SALARY.
160. CALL 'FOCUS' USING INPCMD FCB WRKAREA TWOSEG NUMB2.
161. IF FCB-STATUS NOT EQUAL 0
162. MOVE 'DATE ALREADY IN DATABASE' TO OUT-MSG
163. ELSE MOVE 'RECORD INCLUDED' TO OUT-MSG.
164. WRITE OUTREC FROM OUT-REC.
165. C999-EXIT. EXIT.
166. D100-CHG.
167. PERFORM G100-GET-DATE THRU G999-EXIT.
168. MOVE SALARY TO OLD-SAL.
169. MOVE TR-SALARY TO LIT-SALARY. MOVE 'EQ' TO REL-SAL.
170. MOVE SPACES TO REL-DATE.
171. CALL 'FOCUS' USING CHACMD FCB WRKAREA TWOSEG NULL NUMB1
172. TESTREL TESTLIT.
173. IF FCB-STATUS NOT EQUAL 0
174. MOVE 'ERROR CHANGING DATE' TO OUT-MSG
175. ELSE MOVE 'RECORD CHANGED' TO OUT-MSG.
176. WRITE OUTREC FROM OUT-REC.
177. D999-EXIT. EXIT.
178. E100-DEL.
179. PERFORM G100-GET-DATE THRU G999-EXIT.
180. MOVE SALARY TO OLD-SAL.
181. CALL 'FOCUS' USING DELCMD FCB TWOSEG.
182. IF FCB-STATUS NOT EQUAL 0
183. MOVE 'ERROR CHANGING DATE' TO OUT-MSG
184. ELSE MOVE 'SEGMENT DELETED' TO OUT-MSG.
185. WRITE OUTREC FROM OUT-REC.
186. E999-EXIT. EXIT.

187. F100-PRT.
188. CALL 'FOCUS' USING NEXCMD FCB WRKAREA TWOSEG ONESEG NUMB0.
189. IF FCB-STATUS GREATER 1
190. MOVE 'ERROR READING FILE' TO OUT-MSG
191. WRITE OUTREC FROM OUT-REC
192. GO TO F999-EXIT.
193. IF FCB-STATUS EQUAL 1
194. GO TO F999-EXIT.
195. MOVE EMPDATE TO OUT-DATE. MOVE SALARY TO OUT-SALARY.
196. WRITE OUTREC FROM OUT-REC.
197. F999-EXIT. EXIT.
198. G100-GET-DATE.
199. MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
200. MOVE TR-EMP-DATE TO OUT-DATE.

ibi™ FOCUS® Host Language Interface User Guide

46 | Using HLI

201. MOVE TR-SALARY TO OUT-SALARY.
202. MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.
203. CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG
204. NUMB1 TESTREL TESTLIT.
205. IF FCB-STATUS NOT EQUAL 0
206. MOVE 'DATE NOT IN DATABASE' TO OUT-MSG
207. WRITE OUTREC FROM OUT-REC GO TO D999-EXIT.
208. G999-EXIT. EXIT.
209. ZZZZ-CLOSES.
210. CALL 'FOCUS' USING CLOCMD FCB.
211. IF FCB-STATUS NOT EQUAL 0
212. MOVE SPACES TO OUT-REC
213. MOVE 'ERROR IN CLOSE' TO OUT-MSG
214. WRITE OUTREC FROM OUT-REC.
215. CLOSE TRANS OUTFI.

Sample PL/1 Program
1. BOBPLI: PROCEDURE OPTIONS(MAIN); 26. DCL 1 TESTLT STATIC,
27. 2 EMPTEST FIXED BIN(31),
28. 2 NAMETEST CHAR(20),
29. 2 DATETEST FIXED BIN(31),
30. 2 DUMMYT FIXED BIN(31),
31. 2 SALTEST FLOAT BIN(53);

32. DCL 1 TESTRL STATIC,
33. 2 EMPREL CHAR(4) INIT(' '),
34. 2 NAMEREL CHAR(4) INIT(' '),
35. 2 DATEREL CHAR(4) INIT(' '),
36. 2 SALREL CHAR(4) INIT(' ');
37. DCL 1 CHALIT STATIC,
38. 2 CEMPTEST FIXED BIN(31),
39. 2 CNAMETEST CHAR(20),
40. 2 CDATETEST FIXED BIN(31),
41. 2 CDUMMYT FIXED BIN(31),
42. 2 CSALTEST FLOAT BIN(53);
43. DCL 1 CHAREL STATIC,
44. 2 CEMPREL CHAR(4) INIT(' '),
45. 2 CNAMEREL CHAR(4) INIT(' '),
46. 2 CDATEREL CHAR(4) INIT(' '),
47. 2 CSALREL CHAR(4) INIT(' ');

/*

ibi™ FOCUS® Host Language Interface User Guide

47 | Using HLI

SET UP FOCUS COMMANDS
*/

48. DCL FST CHAR(4) INIT('FST'),
49. NEXT CHAR(4) INIT('NEX'),
50. EQ CHAR(4) INIT('EQ'),
51. BLANK CHAR(4) INIT(' '),
52. OPN CHAR(4) INIT('OPN'),
53. SHO CHAR(4) INIT('SHO'),
54. INP CHAR(4) INIT('INP'),
55. CHA CHAR(4) INIT('CHA'),
56. DEL CHAR(4) INIT('DEL'),
57. CLO CHAR(4) INIT('CLO');

/*
SET UP SEGMENT NAMES

*/
58. DCL ONE CHAR(8) INIT('ONE'),
59. TWO CHAR(8) INIT('TWO'),
60. SYSTEM CHAR(8) INIT('SYSTEM');

/*
SET UP OTHER VARIABLES

*/
61. DCL FLAG BIT(1) INIT('1'B),
62. IANS FIXED BIN(15),
63. NUMBER FIXED BIN(31);

/*
OPEN FILE AND CHECK STATUS

*/
64. CALL FOCUS (OPN, FCB);
65. IF STATUS]= 0 THEN DO;
66. PUT LIST ('OPEN ERROR ',STATUS);
67. GO TO CLOSE;
68. END;

/*
SET UP SHOW FIELD NAMES

*/
69. NUMBER=4;
70. CALL FOCUS (SHO, FCB, NAMES, NUMBER);
71. IF STATUS]= 0 THEN DO;
72. PUT LIST ('SHOW ERROR ',STATUS);
73. GOTO CLOSE;
74. END;

/*
MAIN OPTION MENU

*/
75. DO WHILE(FLAG);

ibi™ FOCUS® Host Language Interface User Guide

48 | Using HLI

76. MENU:
77. PUT EDIT ('ENTER 1 TO ADD A NEW DATE AND SALARY',
78. 'ENTER 2 TO CHANGE A SALARY',
79. 'ENTER 3 TO DELETE A SALARY',
80. 'ENTER 4 TO PRINT SALARY INFORMATION
81. 'ENTER <RETURN> TO EXIT')
82. (SKIP(0),A(36),SKIP(0),A(26),SKIP(0),A(26),SKIP(0),
83. A(35),SKIP(0),A(22));
84. GET EDIT (IANS) (F(1));
85. IF IANS = 0 THEN GOTO CLOSE;
86. IF IANS < 1 [IANS 4 THEN DO;
87. PUT LIST ('A BAD CODE OF', IANS, ' WAS GIVEN - TRY AGAIN');
88. GOTO MENU;
89. END;

/*
ENTER EMPLOYEE NUMBER AND CHECK FOR EXISTENCE WHICH ALSO
ESTABLISHES POSITION IN THE DATABASE

*/
90. EMPLOYEE:
91. PUT SKIP LIST ('ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU');
92. GET EDIT (EMPTEST) (F(5));
93. IF EMPTEST = 0 THEN GOTO MENU;
94. EMPREL=EQ;
95. NUMBER=1;
96. CALL FOCUS (FST,FCB,WKAREA,ONE,SYSTEM,NUMBER,TESTRL,TESTLT);
97. IF STATUS]= 0 THEN DO;
98. PUT SKIP LIST ('EMPLOYEE',EMPTEST,'NOT FOUND');
99. GOTO EMPLOYEE;
100. END;

/*
BRANCH ACCORDING TO OPTION SELECTED

*/
101. PUT LIST ('EMPLOYEE NAME IS ',NAME);
102. IF IANS = 1 THEN CALL ADD;
103. ELSE IF IANS = 2 THEN CALL CHANGE;
104. ELSE IF IANS = 3 THEN CALL DELETE;
105. ELSE IF IANS = 4 THEN CALL PRINT;
106. END;

/*
EXIT PROGRAM AND CLOSE DATABASE

*/
107. CLOSE: CALL FOCUS (CLO, FCB);
108. IF STATUS]= 0 THEN DO;
109. PUT LIST ('ERROR IN CLOSE IS', STATUS);
110. END;

ibi™ FOCUS® Host Language Interface User Guide

49 | Using HLI

/*
PROCEDURE TO ADD A NEW DATE AND SALARY

*/
111. ADD: PROC;
112. NUMBER=2;
113. DO WHILE (FLAG);
114. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR MENU');
115. GET EDIT (DATE) (F(6));
116. IF DATE = 0 THEN RETURN;
117. PUT LIST ('ENTER SALARY WITH DECIMAL');
118. GET EDIT (SALARY) (F(9,2));
119. CALL FOCUS (INP, FCB, WKAREA, TWO, NUMBER);
120. IF STATUS]= 0 THEN DO;
121. PUT LIST (' ***** ERROR ***** DATE ALREADY EXISTS', DATE);
122. END;
123. END;
124. RETURN;
125. END ADD;

/*
PROCEDURE TO CHANGE A SALARY BUT FIRST DISPLAY EXISTING SALARY

*/
126. CHANGE: PROC;
127. NUMBER=1;
128. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR NEW
EMPLOYEE');
129. GET EDIT (DATETEST) (F(6));
130. IF DATETEST = 0 THEN RETURN;
131. EMPREL = BLANK;
132. DATEREL=EQ;
133. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);
134. DATEREL=BLANK;
135. IF STATUS = 0 THEN DO;
136. PUT EDIT ('EXISTING SALARY IS ',SALARY,'ENTER NEW SALARY')
137. (A(19),F(9,2),SKIP(0),A(16));
138. GET EDIT (CSALTEST) (F(9,2));
139. CSALREL=EQ;
140. CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,NUMBER,CHAREL,CHALIT);
141. IF STATUS]= 0 THEN DO;
142. PUT LIST ('ERROR IN CHANGE STATUS IS ',STATUS);
143. END;
144. END;
145. ELSE DO;
146. PUT LIST ('***** ERROR ***** DATE NOT FOUND',DATETEST);
147. END;
148. RETURN;

ibi™ FOCUS® Host Language Interface User Guide

50 | Using HLI

149. END CHANGE;

/*
PROCEDURE TO DELETE A SEGMENT TWO INSTANCE GIVEN A DATE

*/
150. DELETE: PROC;
151. NUMBER=1;
152. DO WHILE (FLAG);
153. PUT SKIP LIST ('ENTER DATE IN FORM YYMMDD OR 0 FOR NEW
EMPLOYEE');
154. GET EDIT (DATETEST) (F(6));
155. IF DATETEST = 0 THEN RETURN;
156. EMPREL=BLANK;
157. DATEREL=EQ;
158. CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);
159. DATEREL=BLANK;
160. IF STATUS = 0 THEN DO;
161. CALL FOCUS (DEL,FCB,TWO);
162. IF STATUS]= 0 THEN PUT LIST ('SEGMENT NOT DELETED
STATUS=',
163. STATUS); ELSE
164. PUT LIST ('SEGMENT DELETED');
165. END;
166. ELSE DO;
167. PUT LIST ('***** ERROR DATE NOT FOUND',DATETEST);
168. END;
169. END;
170. RETURN;
171. END DELETE;

/*
PROCEDURE TO REPORT BY NEXTING THROUGH SEGMENT TWO

*/
172. PRINT: PROC;
173. NUMBER=0;
174. DO WHILE (FLAG);
175. CALL FOCUS (NEXT, FCB, WKAREA, TWO, ONE, NUMBER);
176. IF STATUS]= 0 THEN RETURN;
177. PUT EDIT (DATE,SALARY) (SKIP(0),F(6),X(2),F(12,2));
178. END;
179. END PRINT;

/*
END MAIN PROGRAM

*/
180. END BOBPLI;

ibi™ FOCUS® Host Language Interface User Guide

51 | Using HLI

Initializing the FCB
HLI must have the location of the File Communication Block before it can open the file.

Your program must:

1. Define a 200-byte area of memory for the FCB.

2. Store the needed values in the correct bytes. For example, the file name must be in
bytes 1 to 8. If you want ECHO logging, you must place the characters 'ECHO' in bytes
69 through 72.

For more information about FCB layout and contents, see Initializing the File
Communication Block (FCB).

Initializing the FCB in a C Program
The following code (taken from Lines 30 through 34 of the C program shown in Writing HLI
Programs) declares a File Communication Block. The FCB structure is defined in the header
file edahli.h. The program initializes the file name to 'EMP'. No logging is requested and the
file is not on a sink machine, so those bytes are blank:

memset(&fcb, '\0', sizeof(fcb));
memset(&fcb, ' ', EDAHLI_FCB_INIT_SIZE);
/**
* Put file name into FCB. filetype and
* filemode should be left blank.
*/
memcpy(fcb.filename, "EMP", 3);
memcpy(fcb.filetype, " ", 5);
memcpy(fcb.filemode, " ", 1);

Initializing the FCB in a FORTRAN Program
The following code (taken from Lines 2 through 7 of the FORTRAN program shown in
Writing HLI Programs) declares a File Communication Block. The FCB is declared as an
array of 50 four-byte words. The bytes that need to be initialized by the program are also
given individual names, FN for the file name and STATUS for the status code. The file name

ibi™ FOCUS® Host Language Interface User Guide

52 | Using HLI

is initialized to 'EMP'. No logging is requested and the file is not on a sink machine, so
those bytes are blank:

DIMENSION FCB(50)
REAL*8 FN,FT,SALARY,SALNEW
INTEGER*4 STATUS, DATE, NAME(5)
EQUIVALENCE (FCB(1),FN), (FCB(24),STATUS)

DATA FCB /'EMP ', ' ', ' ', 17*' ', 28*0/

Initializing the FCB in a COBOL program
The following code (taken from Lines 49 through 57 of the COBOL program shown in
Writing HLI Programs) declares a File Communication Block. The FCB is declared as a
structure . The file name (FCB-FN) is initialized to 'EMP'. ECHO logging is requested (FCB-
ECHO). The status bytes (FCB-STATUS) are binary and not initialized. The file is not on a
sink machine, so all other bytes are initialized to blanks:

01 FCB.
02 FCB-FN PIC X(8) VALUE 'EMP '.
02 FCB-FT PIC X(8) VALUE ' '.
02 FCB-FM PIC X(4) VALUE ' '.
02 FILLER PIC X(48) VALUE SPACES.
02 FCB-ECHO PIC X(4) VALUE 'ECHO'.
02 FILLER PIC X(20) VALUE SPACES.
02 FCB-STATUS PIC S9(5) COMP.
02 FILLER PIC X(104) VALUE SPACES.

Initializing the FCB in a PL/I program
The following code (taken from Lines 2 through 13 of the PL/I program shown in Sample
PL/1 Program) declares a File Communication Block. The FCB is declared as a structure .
The file name (FN) is initialized to 'EMP'. The segment number, status, and error number
bytes (SEGNUM, STATUS, and ERRORNUM) are binary and not initialized. No logging is
requested, and the file is not on a sink machine, so those bytes are initialized to blanks:

DCL 1 FCB STATIC,
2 FN CHAR(8) INIT ('EMP'),

ibi™ FOCUS® Host Language Interface User Guide

53 | Using HLI

2 FT CHAR(8) INIT (' '),
2 FM CHAR(4) INIT (' '),
2 FILL1 CHAR(48) INIT (' '),
2 ECHO CHAR(4) INIT (' '),1
2 PASSCTL CHAR(8),
2 NEWSEG CHAR(8),
2 SEGNUM FIXED BIN(31),
2 STATUS FIXED BIN(31),
2 ERRORNUM FIXED BIN(31),
2 FILL2 CHAR(100);

Opening the FOCUS Data Source
Before you use any HLI functions, you must open the FOCUS data source using the OPN
command. If your FOCUS file is protected by DBA security, you must have read/write access
in order to use HLI. Cross-referenced files are opened with read-only access.

Open a FOCUS Data Source (OPN)
In C:

edahliCall(hliHandle, 2, opn, &fcb)
CALL FOCUS (opn, fcb, numb)
CALL 'FOCUS' USING opnfcbnumb.
CALL FOCUS (opn, fcb, numb);

In FORTRAN:

CALL FOCUS (opn, fcb, numb)

In COBOL:

CALL 'FOCUS' USING opnfcbnumb.

In PL/1:

CALL FOCUS (opn, fcb, numb);

ibi™ FOCUS® Host Language Interface User Guide

54 | Using HLI

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

2

Is the number of parameters remaining in the call sequence, 2 for the OPN command.

opn

(Open) may be a variable containing the OPN command, or, in languages that allow it,
may be the literal string 'OPN' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

numb

The database must have been created before executing the program, and the value of
numb should be 0.

This must be the first call to FOCUS to open each FOCUS file, or if multiple positions to the
same file are required, for each position.

When the file is opened, no data from the database has yet been retrieved. The Master File
has been read and interpreted (consult the Describing Data manual for more information
about Master Files for FOCUS databases).

Opening a FOCUS Data Source in a C Program
The following code (taken from Line 46 of the C program shown in Writing HLI Programs)
opens the FOCUS database named EMP. The file name was initialized to 'EMP' in the
filename field of the FCB:

rc = edahliCall(hli, 2, "OPN ", &fcb);

ibi™ FOCUS® Host Language Interface User Guide

55 | Using HLI

Opening a FOCUS Data Source in a FORTRAN
Program
The following code (taken from Line 24 of the FORTRAN program shown in Writing HLI
Programs) opens the FOCUS database named EMP . The file name was initialized to 'EMP'
in the FN field of the FCB:

CALL FOCUS (OPN,FCB)

Opening a FOCUS Data Source in a COBOL Program
The following code (taken from Line 107 of the COBOL program shown in Writing HLI
Programs) opens the FOCUS database named EMP. The file name was initialized to 'EMP' in
the FN field of the FCB:

CALL 'FOCUS' USING OPNCMD FCB NUMB0.

Opening a FOCUS Data Source in a PL/I Program
The following code (taken from Line 64 of the PL/I program shown in Sample PL/1
Program) opens the FOCUS database named EMP. The file name was initialized to 'EMP' in
the FN field of the FCB:

CALL FOCUS (OPN, FCB);

Data Offsets in the Work Area
The work area is an area of memory for storing the FOCUS data source fields. The data
offset is the number of bytes from the beginning of the work area to the place where the
data for each of the fields will be located.

ibi™ FOCUS® Host Language Interface User Guide

56 | Using HLI

You can use the INFO command to obtain the offsets for each field (see HLI Command
Summary, for a description of INFO). However, if you want to calculate them yourself, you
must first determine the internal length of each field in the work area.

For example, in the Master File shown in Writing HLI Programs, EMPNO has a format of I5;
NAME, A20; DATE, I6; and SALARY, D12.2. The lengths are determined as follows:

I5

Is an integer, and integers take four bytes of internal storage. The 5 expresses the
display length.

A20

Is a character. Since one byte is allocated for each character, 20 bytes of storage are
allocated.

I6

Is an integer, and integers take four bytes of internal storage. The 6 expresses the
display length.

D12.2

Is a real number that uses eight bytes for storage. Again, the 12.2 is the display format.

Floating, integer, and alphanumeric fields always have to start on a word (4-byte)
boundary; 8-byte real numbers must start on a double-word (8-byte) boundary.

The byte offset of a field is the byte on which the field begins. In our example, the byte
offset of EMPNO is 0, since it starts on the first byte. EMPNO takes up four bytes; thus, the
byte offset of NAME is 4. NAME takes up 20 bytes, which means that the next available byte
on which to start a field is at offset 24. DATE is of type I, and must start on a word
boundary. It takes up four bytes, so byte 27 is the next available byte for a field to begin
on. SALARY, however, is of type D, which must begin on a double-word boundary. The next
available double-word boundary is at offset 32; thus, SALARY must begin there. You must
supply a filler field for the skipped bytes:

ibi™ FOCUS® Host Language Interface User Guide

57 | Using HLI

Note:
l In C, these filler fields can be supplied in a work area structure. The work

area can be a structure or a character buffer.

l In FORTRAN, if you define your work area as an array, you do not need to
supply any field locations to the compiler. Thus, the filler fields will
automatically be included.

l In COBOL, these filler fields must be supplied in your FD statements or you
can use JUSTIFY.

l In PL/1, you should not depend on PL/1 to adjust your fields for you. This
is because the algorithm used may not be one that FOCUS uses.

Using a Show List
By default, all the fields in the database are available when the file is open. If your
application program refers to a small number of fields, the SHO command selects the fields
you want to use.

Select a List of Fields in a FOCUS Data Source
(SHO)
In C:

edahliCall(hlihandle, 4, sho, &fcb, showlist, &numb);
CALL FOCUS (sho, fcb, showlist, numb)
CALL 'FOCUS' USING shofcbshowlistnumb.
CALL FOCUS (sho, fcb, showlist, numb);

In FORTRAN:

CALL FOCUS (sho, fcb, showlist, numb)

In COBOL:

ibi™ FOCUS® Host Language Interface User Guide

58 | Using HLI

CALL 'FOCUS' USING shofcbshowlistnumb.

In PL/1:

CALL FOCUS (sho, fcb, showlist, numb);

where:

hliHandle

Is a pointer to a memory control area for the HLI interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

4

Is the number of parameters remaining in the call sequence, 4 for the SHO command.

sho

(Show) may be a variable with the value SHO or, in languages that allow it, may be the
literal string ' SHO' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program. An OPN
command must have been issued for this FCB.

showlist

Is the name of the array where the names of the desired fields are stored. Each entry in
this array contains one 12-byte field name, padded with blanks if necessary.

numb

Is the number of fields in the show list.

If you do not issue a SHO command before the first retrieval command, FOCUS retrieves all
fields in the path from the anchor segment to the target. However, because SHO can be
used to organize your offsets to satisfy requirements such as beginning on a double word
boundary. Also, if additional fields are added to the file that are not required for this
program, using SHO isolates the program from such changes, so its use is recommended.
Multiple SHOs for the same file/FCB may also be issued depending on the needs of the
application.

ibi™ FOCUS® Host Language Interface User Guide

59 | Using HLI

INFO, a related command, returns Master File information such as segment names, field
names, and formats. The field names are returned in the order of the show list. See HLI
Command Summary, for information on the INFO command.

Using a Show List in a C Program
The following code (taken from Line 53 of the C program shown in Writing HLI Programs)
issues the SHO command:

rc = edahliCall(hli, 4, "SHO ", &fcb, names, &namesL);

The names list contains the names of the fields that are to be made available. The
following code, taken from Lines 15 to 18 and 24 of the sample C program initialize this list
with the field names EMPNO, NAME, DATE, and SALARY:

#define FLD_EMPNO "EMPNO "
#define FLD_NAME "NAME "
#define FLD_DATE "DATE "
#define FLD_SALARY "SALARY "

char *names = FLD_EMPNO FLD_NAME FLD_DATE FLD_SALARY;

Using a Show List in a FORTRAN Program
The following code (taken from Line 29 of the FORTRAN program shown in Writing HLI
Programs) issues the SHO command:

20 CALL FOCUS (SHO,FCB,NAMES,4)

The NAMES array contains the names of the fields that are to be made available. The
following code, taken from Lines 8 to 13 of the sample FORTRAN program initialize this
array with the field names EMPNO, NAME, DATE, and SALARY:

DIMENSION NAMES (3,4)
DATA NAMES /9*' '/
DATA NAMES(1,1)/'EMPN'/,NAMES(2,1)/'0 '/,NAMES(3,1)/' '/,
* NAMES(1,2)/'NAME'/,NAMES(2,2)/' '/,NAMES(3,2)/' '/,

ibi™ FOCUS® Host Language Interface User Guide

60 | Using HLI

* NAMES(1,3)/'DATE'/,NAMES(2,3)/' '/,NAMES(3,3)/' '/,
* NAMES(1,4)/'SALA'/,NAMES(2,4)/'RY '/,NAMES(3,4)/' '/

Using a Show List in a COBOL Program
The following code (taken from Line 113 of the COBOL program shown in Writing HLI
Programs) issues the SHO command:

CALL 'FOCUS' USING SHOCMD FCB NAMES-AREA NUMB4.

The NAMES-AREA structure contains the names of the fields that are to be made available.
The following code, taken from Lines 68 to 72 of the sample COBOL program initialize this
array with the field names EMPNO, NAME, DATE, and SALARY:

01 NAMES-AREA.
02 FIELD-0001 PIC X(12) VALUE 'EMPNO '.
02 FIELD-0002 PIC X(12) VALUE 'NAME '.
02 FIELD-0003 PIC X(12) VALUE 'DATE '.
02 FIELD-0004 PIC X(12) VALUE 'SALARY '.

Using a Show List in a PL/I Program
The following code (taken from Line 70 of the PL/I program shown in Sample PL/1
Program) issues the SHO command:

CALL FOCUS (SHO, FCB, NAMES, NUMBER);

The NAMES-AREA structure contains the names of the fields that are to be made available.
The following code, taken from Lines 15 to 19 of the sample PL/I program initialize this
array with the field names EMPNO, NAME, DATE, and SALARY:

DCL 1 NAMES STATIC,
2 NAME1 CHAR(12) INIT('EMPNO'),
2 NAME2 CHAR(12) INIT('NAME'),
2 NAME3 CHAR(12) INIT('DATE'),
2 NAME4 CHAR(12) INIT('SALARY');

ibi™ FOCUS® Host Language Interface User Guide

61 | Using HLI

Locating Records
Now that the file is open, and a work area has been established, the program can search
for a segment instance.

HLI offers three ways to read FOCUS files:

l In logical sequence through the pointers.

l In physical sequence as if it were a flat, sequential file.

l Through values in an index that you specify.

Expressing Test Relations
The work area is a series of bytes allocated to each field (see Opening the FOCUS Data
Source, for information on byte offsets). There are also 4 bytes per field allocated for
expressing test conditions, as shown below:

You can identify the field to be tested by marking the appropriate full-word in the test
relations area. For example, suppose the test relation applies to the DATE field. You must
mark the third full-word in the test relation array and identify the condition to apply to the
field. Do this by entering eight blanks to indicate you want to skip the first eight bytes
(which apply to the first two fields) in the array. Then place the relation in the third full-
word (for the third field). Since this is only a two-byte relation (EQ), pad the second two
bytes with blanks. Alternatively, establish the test relations as an array of 4-byte fields, and
move the required relation value into the applicable element in the array.

Expressing Test Relations in a C Program
The following code (taken from Lines 75 to 77 in the program shown in Writing HLI
Programs) creates the array for the test relations and the structure for the test literals:

ibi™ FOCUS® Host Language Interface User Guide

62 | Using HLI

t_record testlt, wkarea;
char testrl[4 * 4]; /* 4 bytes per SHO field */
int testL = 1; /* single test pass to FST */

Expressing Test Relations in a FORTRAN Program
The following code (taken from Lines 17 to 19 in the program shown in Writing HLI
Programs) creates the arrays for the test relations and test literals:

DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
EQUIVALENCE (CHALIT(9),SALNEW)
DATA TESTRL /4*' '/, CHAREL /4*' '/

The following code (taken from Lines 48 to 53) prompts the user to enter the test literal
(the employee number for the record to be retrieved) and sets the test relation to 'EQ':

80 WRITE (6,90)
90 FORMAT (/,1X,'ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU')

READ (5,100,END=40) TESTLT(1)
100 FORMAT (I5)

IF (TESTLT(1).EQ.0) GO TO 40
TESTRL(1)=EQ

Additional examples of test relations are on Lines 76 to 80 and 96 to 100.

Expressing Test Relations in a COBOL Program
The following code (taken from Lines 86 to 96 in the program shown in Writing HLI
Programs) creates the structures for the test relations and test literals:

01 TESTREL.
02 REL-NO PIC X(04) VALUE SPACES.
02 REL-NAME PIC X(04) VALUE SPACES.
02 REL-DATE PIC X(04) VALUE SPACES.
02 REL-SAL PIC X(04) VALUE SPACES.

01 TESTLIT.
02 LIT-EMPNO PIC S9(9) COMP.
02 LIT-NAME PIC X(20) VALUE SPACES.

ibi™ FOCUS® Host Language Interface User Guide

63 | Using HLI

02 LIT-DATE PIC S9(6) COMP.
02 FILLER PIC X(4).
02 LIT-SALARY COMP-2.

The following code (taken from Lines 120 to 130) reads the test literal (the employee
number for the record to be retrieved) and sets the test relation to 'EQ':

B100-READ.
READ TRANS AT END MOVE 9 TO EOF-FLAG GO TO B999-EXIT.
IF TRANS-TYPE LESS THAN 1 OR TRANS-TYPE GREATER 4

MOVE SPACES TO OUT-REC
MOVE TRANS-REC TO OUT-REC
MOVE 'ERROR IN TRANSACTION CODE' TO OUT-MSG
WRITE OUTREC FROM OUT-REC
GO TO B999-EXIT.

MOVE SPACES TO OUT-REC MOVE TR-EMPNO TO OUT-EMPNO.
MOVE SPACES TO TESTREL. MOVE 'EQ' TO REL-NO.
MOVE TR-EMPNO TO LIT-EMPNO.

Additional examples of test relations are on Lines 169 and 202.

Expressing Test Relations in a PL/I Program
The following code (taken from Lines 26 to 36 in the program shown in Sample PL/1
Program) creates the structures for the test relations and test literals:

DCL 1 TESTLT STATIC,
2 EMPTEST FIXED BIN(31),
2 NAMETEST CHAR(20),
2 DATETEST FIXED BIN(31),
2 DUMMYT FIXED BIN(31),
2 SALTEST FLOAT BIN(53);

DCL 1 TESTRL STATIC,
2 EMPREL CHAR(4) INIT(' '),
2 NAMEREL CHAR(4) INIT(' '),
2 DATEREL CHAR(4) INIT(' '),
2 SALREL CHAR(4) INIT(' ');

The following code (taken from Lines 90 to 95) prompts the user to enter the test literal
(the employee number for the record to be retrieved) and sets the test relation to 'EQ':

ibi™ FOCUS® Host Language Interface User Guide

64 | Using HLI

EMPLOYEE:
PUT SKIP LIST ('ENTER THE EMPLOYEE NUMBER OR 0 FOR MENU');
GET EDIT (EMPTEST) (F(5));
IF EMPTEST = 0 THEN GOTO MENU;
EMPREL=EQ;
NUMBER=1;

Additional examples of test relations are on Lines 128 to 132 and 153 to 157.

Logical Reads
Logical reads use the pointers in the FOCUS file as the means of advancing from segment
instance to segment instance.

The FST command is used to advance to the position of the first target segment instance
under the anchor. If the anchor is SYSTEM, the FST command advances to the position of
the first target segment instance in the file.

You use the FST command after you have issued several logical reads and want to return
to the first segment instance or when you are trying to move to a parent segment from a
child segment.

From within the file, issue NEX to get the next occurrence of a target segment.

Move to the First Target Segment Instance
Under the Anchor (FST)
In C:

edahliCall(hliHandle, 10, fst, &fcb, &workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

In FORTRAN:

CALL FOCUS (fst, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat)

ibi™ FOCUS® Host Language Interface User Guide

65 | Using HLI

In COBOL:

CALL 'FOCUS' USING fstfcbworkareatargetanchorntesttestrelations
testliteralsnullnrepeat.

In PL/1:

CALL FOCUS (fst, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat);

where:

hliHandle

Is a pointer to a memory control area for the HLI interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

10

Is the number of parameters remaining in the call sequence, 10 for the FST command.

fst

(First) may be a variable that contains the FST command, or, in languages that allow it,
may be the literal string, 'FST' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is
found. An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is fewer than eight characters long. In
the sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

ibi™ FOCUS® Host Language Interface User Guide

66 | Using HLI

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value that you are searching for. Notice that in the sample programs four blanks
are provided before the EQ to mark the byte position of the field to be tested. The
offsets in the testliteral must match the offsets in the work area.

null

(Optional, only required if nrepeat is specified.) Is an 8-byte field used for positioning.

nrepeat

(Optional.) Specifies the number of records satisfying the test conditions that you want
returned to you.

Move to the Next Segment in a Logical Read
(NEX)
The NEX command specifies that you want to look for the next segment in a logical read.
You can use the NEX command as the first logical read in your file.

In C:

edahliCall(hliHandle, 10, nex, &fcb, &workarea, target, anchor, ntest,
testrelations, testliterals, null, nrepeat);

In FORTRAN:

ibi™ FOCUS® Host Language Interface User Guide

67 | Using HLI

CALL FOCUS (nex, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat)

In COBOL:

CALL 'FOCUS' USING nexfcbworkareatargetanchorntesttestrelations
testliteralsnullnrepeat.

In PL/1:

CALL FOCUS (nex, fcb, workarea, target, anchor, ntest, testrelations,
testliterals, null, nrepeat);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

10

Is the number of parameters remaining in the call sequence, 10 for the NEX command.

nex

May be a variable that contains the NEX command, or, in languages that allow it, may
be the literal string 'NEX ' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is
found. An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is fewer than eight characters long. In
the sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

ibi™ FOCUS® Host Language Interface User Guide

68 | Using HLI

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value that you are searching for. Notice that in the sample programs four blanks
are provided before the EQ to mark the byte position of the field to be tested. The
offsets in the testliteral must match the offsets in the work area.

null

(Optional, only required if nrepeat is specified.) Is an 8-byte field used for positioning.

nrepeat

(Optional.) Specifies the number of records satisfying the test conditions that you want
returned to you. If not specified, one instance will be returned.

If literals have been coded as constants in a call, you must pad each alphanumeric field
with blanks to fix the byte offsets. Numeric constants cannot usually be hard coded in a
call. If you declare your literals as variables instead, the variables must be defined with the
correct byte offset.

Using Logical Reads in a C Program
The following code (taken from Lines 83 to 84 in the program shown in Writing HLI
Programs) finds the first segment instance in segment ONE starting from SYSTEM that
matches the employee number read in as the test literal in Locating Records:

rc = edahliCall(hli, 8, "FST ", &fcb,
&wkarea, SEG_ONE, SEG_SYS, &testL, testrl, &testlt);

Additional examples of using logical reads are on Lines 141, 171, and 191.

ibi™ FOCUS® Host Language Interface User Guide

69 | Using HLI

Using Logical Reads in a FORTRAN Program
The following code (taken from Line 54 in the program shown in Writing HLI Programs)
finds the first segment instance in segment ONE starting from SYSTEM that matches the
employee number read in as the test literal in Locating Records:

CALL FOCUS (FST, FCB, WKAREA, ONE,SYSTEM , 1, TESTRL, TESTLT)

Additional examples of using logical reads are on Lines 81, 101, and 114.

Using Logical Reads in a COBOL Program
The following code (taken from Lines 131 and 132 in the program shown in Writing HLI
Programs) finds the first segment instance in segment ONE starting from SYSTEM that
matches the employee number read in as the test literal in Locating Records:

CALL 'FOCUS' USING FSTCMD FCB WRKAREA ONESEG SYSSEG
NUMB1 TESTREL TESTLIT.

Additional examples of using logical reads are on Lines 188 and 203.

Using Logical Reads in a PL/I Program
The following code (taken from Line 96 in the program shown in Sample PL/1 Program)
finds the first segment instance in segment ONE starting from SYSTEM that matches the
employee number read in as the test literal in Expressing Test Relations in a PL/I Program:

CALL FOCUS (FST,FCB,WKAREA,ONE,SYSTEM,NUMBER,TESTRL,TESTLT);

Additional examples of using logical reads are on LInes 133, 158, and 175.

Physical Reads
You can also use HLI to read segment instances in their stored sequence (when included in
the file, regardless of pointer) using the FSP command. The syntax for a physical read is

ibi™ FOCUS® Host Language Interface User Guide

70 | Using HLI

very similar to that for a logical read, except you do not provide an anchor segment. It
goes to the first physical segment instance in the file that matches the test conditions (if
any), without using the logical pointers stored in the file.

Move to the First Physical Segment Instance
(FSP)
In C:

edahliCall(hliHandle, 7, fsp, &fcb, &workarea, target, ntest,
testrelations, testliterals);

In FORTRAN:

CALL FOCUS (fsp, fcb, workarea, target, ntest, testrelations,
testliterals)

In COBOL:

CALL 'FOCUS' USING fspfcbworkareatargetntesttestrelationstestliterals.

In PL/1:

CALL FOCUS (fsp, fcb, workarea, target, ntest, testrelations,
testliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

7

Is the number of parameters remaining in the call sequence, 7 for the FSP command.

ibi™ FOCUS® Host Language Interface User Guide

71 | Using HLI

fsp

(First Physical) may be a variable that contains the FSP command, or, in languages that
allow it, may be the literal string 'FSP' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is
found. An OPN command must have been issued for this FCB.

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is fewer than eight characters long. In
the sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value that you are searching for. Notice that in the sample programs four blanks
are provided before the EQ to mark the byte position of the field to be tested. The
offsets in the testliteral must match the offsets in the work area.

Retrieve the Next Physical Occurrence of the
Target Segment (NXP)
The NXP command is used to retrieve the next physically adjacent occurrence of the target
segment.

In C:

ibi™ FOCUS® Host Language Interface User Guide

72 | Using HLI

edahliCall(hliHandle, 7, nxp, &fcb, &workarea, target, ntest,
testrelations, testliterals);

In FORTRAN:

CALL FOCUS (nxp, fcb, workarea, target, ntest, testrelations,
testliterals)

In COBOL:

CALL 'FOCUS' USING nxpfcbworkareatargetntesttestrelationstestliterals.

In PL/1:

CALL FOCUS (nxp, fcb, workarea, target, ntest, testrelations,
testliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

7

Is the number of parameters remaining in the call sequence, 7 for the NXP command.

nxp

(Next Physical) may be a variable that contains the NXP command, or, in languages that
allow it, may be the literal string 'NXP' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if data is
found. An OPN command must have been issued for this FCB.

ibi™ FOCUS® Host Language Interface User Guide

73 | Using HLI

target

Is the name of the segment to be retrieved. Notice that the segment name must take up
the full eight characters allocated to it, even if it is less than eight characters long. In the
sample programs, segment names have been declared as variables in order to avoid
padding them with blanks.

anchor

Is the segment from which you start reading. In our example, SYSTEM is an imaginary
segment that sits above all segments. Internally, SYSTEM is represented as segment #0.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test condition to be applied. (See testliterals.)

testliterals

Is the value that you are searching for. Notice that in the sample programs four blanks
are provided before the EQ to mark the byte position of the field to be tested. The
offsets in the testliteral must match the offsets in the work area.

Note: Physical searches of the database do not retrieve logically related
segments. Thus, you will receive an error status code if you attempt to delete an
instance that has been retrieved physically, as all instances of a given parent
must be logically chained together. After retrieving an instance physically, the
program may use logical retrieval commands to retrieve the parent instance,
and then re-retrieve the instance to be deleted.

Indexed Reads
HLI supports retrieval through a FOCUS file index for a specific key value. The NXD
command locates the first instance containing a key value of a specified indexed field.

ibi™ FOCUS® Host Language Interface User Guide

74 | Using HLI

Retrieve a Segment Instance Using an Index
(NXD)
In C:

edahliCall(hliHandle, 9, nxd, &fcb, &workarea, target, field, ntest,
testrelations,

In FORTRAN:

CALL FOCUS (nxd, fcb, workarea, target, field, ntest,
testrelations,testliterals, savearea)

In COBOL:

CALL 'FOCUS' USING nxdfcbworkareatargetfieldntesttestrelations
testliteralssavearea.

In PL/1:

CALL FOCUS (nxd, fcb, workarea, target, field, ntest,
testrelations,testliterals, savearea);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

9

Is the number of parameters remaining in the call sequence, 9 for the NXD command.

nxd

(Next through Index) may be a variable containing the NXD command, or, in languages
that allow it, may be the literal string 'NXD' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

ibi™ FOCUS® Host Language Interface User Guide

75 | Using HLI

workarea

Is a location where the data retrieved from the FOCUS file will be placed, if the data is
found.

target

Is the segment to be retrieved using the index of the specified field.

field

Names the field whose index will be used to retrieve the target segment. The field must
be declared in the Master File Description with the FIELDTYPE=I.

ntest

Is the number of test conditions to be applied.

testrelations

Specifies the test conditions to be applied.

testliterals

Is the value you are searching for.

savearea

Is a 32-byte area used to save information when the retrieval is requested. This should
be set to binary zeros for the first occurrence of a specific value, but left unchanged for
subsequent retrieval of instances with the same value for the indexed field.

Retrieving With a Backkey
The NXK command works through a direct address in the FCB (bytes 61-68), and retrieves a
previous target segment you have earmarked for this purpose. Following the retrieval, the
backkey in the FCB contains the address. This may be saved for future use.

ibi™ FOCUS® Host Language Interface User Guide

76 | Using HLI

Retrieve a Previous Target Segment Using a
Backkey (NXK)
In C:

edahliCall(hliHandle, 5, nxk, &fcb, &workarea, target,

In FORTRAN:

CALL FOCUS (nxk, fcb, workarea, target, backkey)

In COBOL:

CALL 'FOCUS' USING nxkfcbworkareatargetbackkey.

In PL/1:

CALL FOCUS (nxk, fcb, workarea, target, backkey);

where:

hliHandle

Is a pointer to a memory control area for the HLI interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

5

Is the number of parameters remaining in the call sequence, 5 for the NXK command.

nxk

Next through the Key may be a variable containing the NXK command, or, in languages
that allow it, may be the literal string 'NXK' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

ibi™ FOCUS® Host Language Interface User Guide

77 | Using HLI

workarea

Is a location where the data retrieved from the FOCUS file, if any is found, will be
placed.

target

Is the name of the segment you want to retrieve.

backkey

Is an address into the file that lets you move back to a previously retrieved segment.
The current segment address begins in byte 61 of the FCB. When multiple instances
were retrieved into an array with a single logical retrieval, the address of each instance
retrieved is in the 8-byte field designated in the work area for multiple retrievals. For
additional information, see Defining the Record Work Area

Altering the File
Once the segments are retrieved, you can:

l Include new segment instances.

l Change the information in segment instances.

l Delete segment instances.

Note: You must have a logical position in the file to add or delete segments.

All changes to the database are written to a buffer. They are not permanently saved in the
database until the program either issues a SAV command or issues a CLO command.

When maintaining a file under the control of a sink machine, before accepting a
maintenance command, verification is made by the sink process that the instance has not
changed by another user since it was retrieved. If it was, the command is not processed,
and a non-zero return code is returned.

ibi™ FOCUS® Host Language Interface User Guide

78 | Using HLI

Including New Segments
You use the INP command to include new segment instances. The INP command creates
new segment instances that include the information contained in the inpliteral variable.

Include New Segment Instances (INP)
In C:

edahliCall(hliHandle, 5, inp, &fcb, inpliteral, target, n);

In FORTRAN:

CALL FOCUS (inp, fcb, inpliteral, target, n)

In COBOL:

CALL 'FOCUS' USING inpfcbinpliteraltargetn.

In PL/1:

CALL FOCUS (inp, fcb, inpliteral, target, n);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

5

Is the number of parameters remaining in the call sequence, 5 for the INP command.

inp

(Input) may be a variable that contains the INP command, or, in languages that allow it,
may be the literal string 'INP' (padded with one trailing blank).

ibi™ FOCUS® Host Language Interface User Guide

79 | Using HLI

fcb

Is the File Communication Block initialized in the beginning of the program.

inpliteral

Is an array that contains the new information you want to enter. The data to be
included must be assembled in a data structure that can be passed to HLI. This data
structure is contained in the inpliteral variable. The format of the inpliteral structure is
the same as the format of the work area.

target

Is the name of the segment to be added. It must be padded to eight characters. The
target is located using your current position in the file, established through logical
reads.

n

Is a numeric code to control how the new segment is added. If the segment type is S0 or
blank, the possible values of n are:

0

Inserts the new segment after the current segment, providing the key fields are the
same.

1

Inserts the new segment before the current segment, providing the key fields are the
same.

If the segment type is Sn or SHn, the value of n must be:

0

Duplicate keys are allowed. This is not supported when the file is under the control of
a sink machine.

2

Rejects the new segment instance if the key exists.

ibi™ FOCUS® Host Language Interface User Guide

80 | Using HLI

Including New Segment Instances Using a C
Program
The following code (taken from Lines 120 and 121 in the program shown in Writing HLI
Programs) inputs a new segment TWO instance after reading the new date and salary
values into the work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the
last argument specifies that the transaction is rejected if the key (date value) exists in the
data source:

rc = edahliCall(hli, 3, "INP ", pFcb, wkarea, "TWO ",
&c__2);

Including New Segment Instances Using a FORTRAN
Program
The following code (taken from Line 71 in the program shown in Writing HLI Programs)
inputs a new segment TWO instance after reading the new date and salary values into the
work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the last argument
specifies that the transaction is rejected if the key (date value) exists in the data source:

CALL FOCUS (INP,FCB,WKAREA,TWO,2)

Including New Segment Instances Using a COBOL
Program
The following code (taken from Line 160 in the program shown in Writing HLI Programs)
inputs a new segment TWO instance after reading the new date and salary values and
placing them in the work area. Because the SEGTYPE of segment TWO is SHI, the value 2
for the last argument specifies that the transaction is rejected if the key (date value) exists
in the data source:

CALL 'FOCUS' USING INPCMD FCB WRKAREA TWOSEG NUMB2.

ibi™ FOCUS® Host Language Interface User Guide

81 | Using HLI

Including New Segment Instances Using a PL/I
Program
The following code (taken from Line 119 in the program shown in Sample PL/1 Program)
inputs a new segment TWO instance after reading the new date and salary values into the
work area. Because the SEGTYPE of segment TWO is SHI, the value 2 for the last argument
specifies that the transaction is rejected if the key (date value) exists in the data source:

CALL FOCUS (INP, FCB, WKAREA, TWO, NUMBER);

Changing Information in the File
Use the CHA command to change information in a segment. All the new information must
be loaded into an array before the CHA command is issued. Then the CHA command
specifies the byte offset of the field that you want to change. The changelist variable
indicates what fields are to be changed.

Change Information in a Segment Instance
(CHA)
In C:

edahliCall(hliHandle, 7, cha, &fcb, &workarea, target, anchor, n,
changelist, changeliterals);

In FORTRAN:

CALL FOCUS (cha, fcb, workarea, target, anchor, n, changelist,
changeliterals)

In COBOL:

CALL 'FOCUS' USING chafcbworkareatargetanchornchangelistchangeliterals.

ibi™ FOCUS® Host Language Interface User Guide

82 | Using HLI

In PL/1:

CALL FOCUS (cha, fcb, workarea, target, anchor, n, changelist,
changeliterals);

where:

hliHandle

Is a pointer to a memory control area for the HLI interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

8

Is the number of parameters remaining in the call sequence, 8 for the CHA command.

cha

(Change) may be a variable that contains the CHA command or, in languages that allow
it, may be the literal string 'CHA' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

workarea

Is the previously defined work area.

target

Is the target segment on which you want the changes performed. The target instance
changed is the one at your current position in the file, established through logical reads.

anchor

Is the anchor segment. Although this parameter is required in the syntax, it is not used
and can be a null value (eight-byte field of blank spaces).

n

Is the number of fields that you want to change.

changelist

Indicates which fields are to be changed. Its format is identical to that of testrelations.
The data fields whose corresponding changelist values are set to EQ are changed to the

ibi™ FOCUS® Host Language Interface User Guide

83 | Using HLI

values specified by the changeliterals value. A copy of the changed segment instance is
returned to the work area. The changeliterals area must correspond to the current SHO
command field layout. there are four bytes in the changelist area for each field in the
showlist. Only those fields that are in the target segment are changed.

changeliterals

Is the set of new values for the fields (declared by their byte offsets in the same format
that the work area is declared) that you want to change.

Changing a Segment Instance in a C Program
The following code (taken from Lines 129 and 132 to 133 in the program shown in Writing
HLI Programs) establishes the charel array and chalit structure, which will contain the field
values to change (based on byte offsets in the work area):

t_record testlt, wkarea, chalit;
char charel[4 * 4]; /* 4 bytes per SHO field */
int chaL = 1; /* changing just one field */

The following code (taken from Lines 141 and 142) establishes the current position of
segment TWO using the logical read command NEX:

rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,
SEG_TWO, SEG_ONE, &testL, testrl, &testlt);

The following code (taken from Lines 150 to 154) reads the new salary into chalit, places
the value EQ in the fourth word of a charel array (which indicates that the one field to be
replaced is the SALARY field in the current instance of segment TWO), and issues the CHA
command:

scanf("%9.2lf", &chalit.salary);
memset(charel, ' ', sizeof(charel));
memcpy(&charel[16], "EQ ", 4);
rc = edahliCall(hli, 7, "CHA ", pFcb,

&wkarea, SEG_TWO, SEG_ONE, charel, &chalit);

ibi™ FOCUS® Host Language Interface User Guide

84 | Using HLI

Changing a Segment Instance in a FORTRAN
Program
The following code (taken from Lines 17 to 19 in the program shown in Writing HLI
Programs) establishes the CHAREL and CHALIT arrays, which will contain the field values to
change (based on byte offsets in the work area). CHALIT(9), where a new salary value will
be placed, corresponds to WKAREA(9):

DIMENSION TESTRL(4),TESTLT(10),CHAREL(4),CHALIT(10)
EQUIVALENCE (CHALIT(9),SALNEW)
DATA TESTRL /4*' '/, CHAREL /4*' '/

The following code (taken from Line 81) establishes the current position of segment TWO
using the logical read command NEX:

CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)

The following code (taken from Lines 89 to 91) reads the new salary into the CHALIT array,
places the value EQ in the fourth word of CHAREL array (which indicates that the one field
to be replaced is the SALARY field in the current instance of segment TWO), and issues the
CHA command:

READ (5,1400) SALNEW
CHAREL(4)=EQ
CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,1,CHAREL,CHALIT)

Changing a Segment Instance in a COBOL Program
The following code (taken from Lines 86 to 96 in the program shown in Writing HLI
Programs) establishes the TESTREL and TESTLIT structures, which will contain the field
values to change (based on byte offsets in the work area). LIT-SALARY, where a new salary
value will be placed, corresponds to SALARY in WRKAREA:

01 TESTREL.
02 REL-NO PIC X(04) VALUE SPACES.
02 REL-NAME PIC X(04) VALUE SPACES.
02 REL-DATE PIC X(04) VALUE SPACES.

ibi™ FOCUS® Host Language Interface User Guide

85 | Using HLI

02 REL-SAL PIC X(04) VALUE SPACES.
01 TESTLIT.

02 LIT-EMPNO PIC S9(9) COMP.
02 LIT-NAME PIC X(20) VALUE SPACES.
02 LIT-DATE PIC S9(6) COMP.
02 FILLER PIC X(4).
02 LIT-SALARY COMP-2.

The following code (taken from Lines 199 to 204) establishes the current position of
segment TWO using the logical read command FST:

MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
MOVE TR-EMP-DATE TO OUT-DATE.
MOVE TR-SALARY TO OUT-SALARY.
MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.
CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG

NUMB1 TESTREL TESTLIT.

The following code (taken from Lines 169 to 172) places the new salary into LIT-SALARY,
places the value EQ in REL-DATE (which indicates that the one field to be replaced is the
SALARY field in the current instance of segment TWO), and issues the CHA command:

MOVE TR-SALARY TO LIT-SALARY. MOVE 'EQ' TO REL-SAL.
MOVE SPACES TO REL-DATE.
CALL 'FOCUS' USING CHACMD FCB WRKAREA TWOSEG NULL NUMB1

TESTREL TESTLIT.

Changing a Segment Instance in a PL/I Program
The following code (taken from Lines 37 to 47 in the program shown in Sample PL/1
Program) establishes the CHAREL and CHALIT structures, which will contain the field values
to change (based on byte offsets in the work area). CSALTEST, where a new salary value
will be placed, corresponds to SALARY in WKAREA:

DCL 1 CHALIT STATIC,
2 CEMPTEST FIXED BIN(31),
2 CNAMETEST CHAR(20),
2 CDATETEST FIXED BIN(31),
2 CDUMMYT FIXED BIN(31),
2 CSALTEST FLOAT BIN(53);

ibi™ FOCUS® Host Language Interface User Guide

86 | Using HLI

DCL 1 CHAREL STATIC,
2 CEMPREL CHAR(4) INIT(' '),
2 CNAMEREL CHAR(4) INIT(' '),
2 CDATEREL CHAR(4) INIT(' '),
2 CSALREL CHAR(4) INIT(' ');

The following code (taken from Line 133) establishes the current position of segment TWO
using the logical read command NEX:

CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);

The following code (taken from Lines 138 to 140) reads the new salary into CSALTEST,
places the value EQ in CSALREL (which indicates that the one field to be replaced is the
SALARY field in the current instance of segment TWO), and issues the CHA command:

GET EDIT (CSALTEST) (F(9,2));
CSALREL=EQ;
CALL FOCUS (CHA,FCB,WKAREA,TWO,ONE,NUMBER,CHAREL,CHALIT);

Deleting Segments From a File
The DEL command deletes an instance of a target segment and all its descendants,
regardless of what is activated in the show list.

Delete Segments From a File (DEL)
In C:

edahliCall(hliHandle, 3, del, &fcb, target);

In FORTRAN:

CALL FOCUS (del, fcb, target)

In COBOL:

ibi™ FOCUS® Host Language Interface User Guide

87 | Using HLI

CALL 'FOCUS' USING delfcbtarget.

In PL/1:

CALL FOCUS (del, fcb, target);

where:

hliHandle

Is a pointer to a memory control area for the HLI Interface. For instructions on creating
the HLI handle, see Writing HLI Programs.

3

Is the number of parameters remaining in the call sequence, 3 for the DEL command.

del

(Delete) may be a variable containing the DEL command, or, in languages that allow it,
may be the literal string 'DEL' (padded with one trailing blank).

fcb

Is the File Communication Block initialized in the beginning of the program.

target

Is the name of the segment you want to delete. The target instance deleted is the one at
your current position in the file, established through logical reads. All of the target's
descendants are also deleted.

Deleting a Segment Instance in a C Program
The following code (taken from Lines 167 to 172 in the program shown in Writing HLI
Programs) reads a date into the test literal structure at the position for the DATE field, sets
the test relation to EQ, and uses the NEX command to establish a position at the instance
of segment TWO that matches the test date:

scanf("%d", &teslit.date);
if(teslit.date == 0) return;
memset(testrl, ' ', sizeof(testrl));

ibi™ FOCUS® Host Language Interface User Guide

88 | Using HLI

memcpy(&testrl[8], "EQ ", 4);
rc = edahliCall(hli, 8, "NEX ", pFcb, &wkarea,

SEG_TWO, SEG_ONE, &testL, testrl, &teslit);

The following code (taken from Line 178) deletes that segment instance:

rc = edahliCall(hli, 3, "DEL", pFcb, SEG_TWO);

Deleting a Segment Instance in a FORTRAN Program
The following code (taken from Lines 97 to 101 in the program shown in Writing HLI
Programs) reads a date into the test literal array at the position for the DATE field, sets the
test relation to EQ, and uses the NEX command to establish a position at the instance of
segment TWO that matches the test date:

READ (5,1200) TESTLT(7)
IF (TESTLT(7).EQ.0) GO TO 40
TESTRL(1)=BLANK
TESTRL(3)=EQ
CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,1,TESTRL,TESTLT)

The following code (taken from Line 106) deletes that segment instance:

3100 CALL FOCUS (DEL,FCB,TWO)

Deleting a Segment Instance in a COBOL Program
The following code (taken from Lines 199 to 204 in the program shown in Writing HLI
Programs) moves the transaction date into the LIT-DATE field of the test literal structure,
sets the test relation to EQ, and uses the FST command to establish a position at the
instance of segment TWO that matches the test date:

MOVE SPACES TO TESTLIT MOVE TR-EMP-DATE TO LIT-DATE.
MOVE TR-EMP-DATE TO OUT-DATE.
MOVE TR-SALARY TO OUT-SALARY.
MOVE SPACES TO TESTREL MOVE 'EQ' TO REL-DATE.

ibi™ FOCUS® Host Language Interface User Guide

89 | Using HLI

CALL 'FOCUS' USING FSTCMD FCB WRKAREA TWOSEG ONESEG
NUMB1 TESTREL TESTLIT.

The following code (taken from Line 181) deletes that segment instance:

CALL 'FOCUS' USING DELCMD FCB TWOSEG.

Deleting a Segment Instance in a PL/I Program
See the appropriate sample (FORTRAN: Line 106; COBOL: Line 181; PL/1: Line 161).

The following code (taken from Lines 154 to 158 in the program shown in Sample PL/1
Program) reads a date into the DATETEST field of the test literal structure, sets the test
relation to EQ, and uses the NEX command to establish a position at the instance of
segment TWO that matches the test date:

GET EDIT (DATETEST) (F(6));
IF DATETEST = 0 THEN RETURN;
EMPREL=BLANK;
DATEREL=EQ;
CALL FOCUS (NEXT,FCB,WKAREA,TWO,ONE,NUMBER,TESTRL,TESTLT);

The following code (taken from Line 161) deletes that segment instance:

CALL FOCUS (DEL,FCB,TWO);

ibi™ FOCUS® Host Language Interface User Guide

90 | Testing Status, Using Log Facilities, and Handling Errors

Testing Status, Using Log Facilities, and
Handling Errors
This chapter describes facilities for testing the success of HLI calls, logging program
activity, and handling errors.

Testing Status
Although HLI does check the status of your file after every command, it does not issue
error messages. Thus, you should build a status check after every HLI call in your program.

HLI Status Code Meaning

0
Execution ended normally.

1
Reached end of file or end of chain

Any other code indicates an error condition (see HLI Status Return Codes).

Using the Diagnostic Log Facility: ECHO and
STAT
You can use the ECHO and STAT facilities to produce diagnostic logs of all calls to HLI. This
is useful in the development of new programs and tracking user access.

When the eighteenth word of the FCB (bytes 69-72) contains the string ECHO or STAT, each
HLI call is logged. The HLI function calls create the line displayed in the log file
immediately before returning from the call. Its presence does not affect the operation of
user programs or their logic.

ibi™ FOCUS® Host Language Interface User Guide

91 | Testing Status, Using Log Facilities, and Handling Errors

Log File Locations
For Mainframe FOCUS, the trace line is written to ddname HLIPRINT. You must issue a
FILEDEF or ALLOCATE command for this ddname before running your program. When ECHO
is specified, the LRECL of the output file is 88. STAT requires an LRECL of 133.

Under TSO, the recommended that ALLOCATE commands are:

l When displaying on the terminal:

ALLOC F(HLIPRINT) DA(*)

l When storing in a disk file:

ATTR HLIDCB LRECL(88) RECFM(F B) BLKSIZE(880)

ALLOC F(HLIPRINT) DA(dataset) USING (HLIDCB) SPACE (5,5)
TRACKS CATALOG

In the z/OS batch, the recommended JCL statements are:

l When printing:

//HLIPRINT DD SYSOUT=*

l When storing in a disk file:

//HLIPRINT DD DSN=dataset,DCB=(LRECL=88,RECFM=FB,BLKSIZE=880),
// UNIT=unit,VOL=SER=volume,SPACE=space,
// DISP=(NEW,CATLG)

For the WebFOCUS Reporting Server and WebFOCUS, if FDS is active, the server
configuration controls the file location, and the file is written by the server. Without FDS,
the HLIPRDIR variable specifies the HLIPRINT output directory, and the file name is always
hliprint.log.

For the WebFOCUS Reporting Server and WebFOCUS, if FDS is active, the server
configuration controls the file location, and the file is written by the server. Without FDS,
the HLIPRDIR variable specifies the HLIPRINT output directory, and the file name is always
hliprint.log.

ibi™ FOCUS® Host Language Interface User Guide

92 | Testing Status, Using Log Facilities, and Handling Errors

Using the ECHO Log Facility
Your application program can turn the log facility on or off at any time during its execution.
The following is a sample ECHO log, produced when a FCB word 18 contains the string
ECHO:

CMD FILENAME STATUS NEWSEG TARGET ANCHOR NTEST USERID
REFNUMB
OPN CAR FOCUS 00
00000001
OPN EMPLOYEE FOCUS 00
00000002
FST CAR FOCUS 00 ORIGIN CARREC SYSTEM 00
00000003
FST EMPLOYEE FOCUS 00 EMPINFO ADDRESS SYSTEM 00
00000004
NEX CAR FOCUS 00 CARREC CARREC SYSTEM 01
00000005
NEX EMPLOYEE FOCUS 00 EMPINFO ADDRESS SYSTEM 01
00000006
CLO EMPLOYEE FOCUS 00
00000007
CLO CAR FOCUS 00
00000008

The columns in the log file, have the following meanings:

Column Title Meaning

CMD
Command that was issued.

FILENAME
File name in the FCB.

STATUS
Status return code, FCB word 24.

NEWSEG
Name of the first segment of new information, FCB words 21
and 22.

ibi™ FOCUS® Host Language Interface User Guide

93 | Testing Status, Using Log Facilities, and Handling Errors

Column Title Meaning

TARGET
Name of the target segment.

ANCHOR
Name of the anchor segment.

NTEST
Value of the numbtests argument.

USERID
Blank for local HLI programs.

REFNUMB
A sequentially assigned number equal to the transaction
number in the ? FILE file name command.

Using the STAT Log Facility
If a word 18 contains the string STAT, the HLIPRINT file is 133 bytes wide and contains
additional fields showing access times and I/O information, which may be more useful in
some situations.

The following is an example of the HLIPRINT file using the STAT option:

ibi™ FOCUS® Host Language Interface User Guide

94 | Testing Status, Using Log Facilities, and Handling Errors

The columns have the following meanings:

Column Title Meaning

CMD
The command that was issued.

FILENAME
The file names present in the FCB.

STATUS
The status return code, FCB word 24.

NEWSEG
The name of the first segment of new information, FCB words 21
and 22.

TARGET
The name of the target segment.

ANCHOR
The name of the anchor segment.

ibi™ FOCUS® Host Language Interface User Guide

95 | Testing Status, Using Log Facilities, and Handling Errors

Column Title Meaning

NTEST
The value of the numbtests argument.

USERID
Blank for local HLI programs.

REFNUMB
A sequentially assigned number equal to the transaction number
in the ? FILE file name command.

DATE
The date on which the command was executed, in YYMMDD
format.

TIME
The time at which the command finished executing, in HHMMSS
format.

VTIME
Under z/OS: The amount of elapsed job-step time required for
the command as indicated in the ASCBEJST field of the ASCB for
the sink machine.

TTIME
Under z/OS: The value of this field is the same as that of VTIME.

IOS
The number of FOCUS database I/Os required to execute the
command.

PROC NAME
The contents of FCB words 7 and 8.

CASE NAME
Blank for HLI transactions. For MODIFY/SU, case name.

A Master File named HLIPRINT is provided on the distribution tape. You can use this Master
File to report on the STAT output file.

ibi™ FOCUS® Host Language Interface User Guide

96 | Testing Status, Using Log Facilities, and Handling Errors

Error Handling
HLI returns an error status code in the FCB at word 24. Any code other than 0 or 1 indicates
an error. HLI does not, however, issue an error message; error handling is left to the
programmer (see HLI Status Return Codes).

An error message file is supplied with the Host Language Interface. The messages in the file
correspond to the status return code error numbers. You might use the error message file
to display an error message at the terminal when an error occurs.

The message file is called:

l Member HLI000, HLI00FRE (for French), or HLI00SPA (for Spanish) in ERRORS.DATA
under z/OS.

l hli0000.err under the WebFOCUS Reporting Server and WebFOCUS.

In case of fatal errors, HLI writes error information to ddname HLIERROR or HLIPRINT for
Mainframe FOCUS or to the hliprint.log file under the WebFOCUS Reporting Server and
WebFOCUS.

ibi™ FOCUS® Host Language Interface User Guide

97 | Creating an Executable HLI Program

Creating an Executable HLI Program
Before you can run HLI, you must link your program with the HLI routines needed to
execute the HLI commands. You do this by constructing a DLL under WebFOCUS or a load
module under z/OS. The result is a module that contains all of the programs required to
run your HLI application.

Note: If an existing HLI program is not LE-compliant, it must be made so. Once
an HLI application is LE-compliant, dynamic HLI programs run without change.
Static HLI programs should be re-linked.

Constructing a DLL Under ibi WebFOCUS
A script named gencpgm can assist in simple compilation of C programs. The script is
located in the bin directory of EDAHOME. Its basic function is to build a dynamically
loadable library program.

There is no requirement that gencpgm is used in actual program creation, only that a given
program be a properly compiled and linked as a loadable library program. In addition, the
physical name of the routine and the initial entry point must match. If the routine is to call
other routines, the called routines must either be included in the module, or the calling
routines must include loader logic. The results of the routine must also be passed back as
the last argument of the function call.

The gencpgm script is written for simple compilation cases. Complex cases such as
multiple sources, including library locations, ordering of libraries, special compilers, and
linker options are not handled and are up to the developer to create their own build
scripts.

In complex cases, the gencpgm script may be used as a model for forming an application-
specific script.

For more information about GENCPGM, see Using the GENCPGM Build Tool

ibi™ FOCUS® Host Language Interface User Guide

98 | Creating an Executable HLI Program

Compile and Link a C Program

Procedure
1. Copy your .c sample and gencpgm.sh (if not using the full path name) to a working

directory.

2. Issue environment variables for the EDAHOME and EDACONF directories. For
example:

export EDAHOME=/home/iadmin/ibi/srv77/home
export EDACONF=/home/iadmin/ibi/srv77/wfs

3. Compile the program using gencpgm with the -m hli switch.

gencpgm.sh -m hli programname.c

Where:

programname

Is the name of your c program. An executable for programname will be created in
your current directory plus a DLL helper script (called programname.sh) that sets
environment variables for runtime and invokes the actual program.

4. Run the program with the following commands.

a. To run locally:

programname.sh

b. To run on a FOCUS Database Server (FDS):

programname.sh fdsname

Result
If you want to see the linking options used, run gencpgm with the -x switch.

ibi™ FOCUS® Host Language Interface User Guide

99 | Creating an Executable HLI Program

Constructing a Load Module Under z/OS
Under z/OS, to construct a load module for a new HLI application, you must link-edit your
program with HLI routines.

As of FOCUS Release 7.6, all HLI programs running under z/OS must be LE-compliant and
linked with AMODE 31, RMODE ANY. Prior to exiting the program, HLIEND must be called.

The link-edit JCL should contain the following:

INCLUDE FOCLIB(HLIFOCUS)
ENTRY mynameNAME myprog(R)

where:

FOCLIB

Must be allocated to the FOCUS load library.

myname

Is a user-defined name for the entry point in the program.

myprog

Is a user-defined name for the resulting load module. This module will replace any
member with the same name in the SYSLMOD library. This name can be the same as
myname.

Note: If you receive an error message about duplicate entry points, you may
have chosen a reserved name (such as HLIMAIN) that is already used by FOCUS,
and you must change it.

Creating a Load Module Under z/OS
The following is sample link-edit JCL that creates a load module from a FORTRAN HLI
program called MYPROG:

//LINKIT EXEC PGM=IEWL,PARM='MAP,LET,LIST,SIZE=1024K'
//SYSLIB DD DISP=SHR,DSN=SYS1.FORTLIB <=FORTRAN run-time
library

ibi™ FOCUS® Host Language Interface User Guide

100 | Creating an Executable HLI Program

// DD DISP=SHR,DSN=CEE.SCEELKED
//OBJECT DD DISP=SHR,DSN=prefix.MY.OBJ <=HLI program object code
//SYSLMOD DD DISP=SHR,DSN=prefix.MY.LOAD <=Output library
//FOCLIB DD DISP=SHR,DSN=FOCLIB.LOAD <=FOCUS library
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,3)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *

INCLUDE OBJECT(MYPROG) <=Include HLI object code
INCLUDE FOCLIB(HLIFOCUS) <=Include the HLI stub from FOCUS
ENTRY MYPROG <=Declare entry point
NAME MYPROG(R) <=Create member called MYPROG in

SYSLMOD

HLI Allocations
At run time, you must have allocated the following ddnames, in addition to the file itself.

STEPLIB

Must be allocated to the library containing the linked load module.

FOCLIB

Must be allocated to the standard FOCUS load library.

SYSPRINT

Must be allocated to the output job stream.

MASTER

Must be allocated to a library containing the Master Files of all FOCUS databases
accessed by your HLI program.

ERRORS

Must be allocated to the standard FOCUS ERRORS.DATA library.

You should also allocate the following at run time:

HLIERROR

Must be allocated to a sequential data set with RECFM F and LRECL 80, or to the job
output stream. HLIERROR should be allocated if you want a log of any fatal internal
FOCUS errors that occur (for information, see HLI Status Return Codes.)

ibi™ FOCUS® Host Language Interface User Guide

101 | Creating an Executable HLI Program

HLIPRINT

Must be allocated to a sequential data set or to the job output stream. HLIPRINT should
be allocated if you are using the ECHO or STAT options in your HLI program (for
information, see Using HLI), or if you would like a log of any fatal FOCUS errors and you
have not allocated HLIERROR.

HLIPRINT should be allocated with LRECL 88 if you are using the ECHO option, or LRECL
133 if you are using the STAT option. The RECFM should be FB.

If you are using HLIPRINT for diagnosing problems with your HLI program, the blocksize
should be equal to the LRECL, in which case, the RECFM is F.

If you are using the STAT option for performance analysis, you will want to specify a
very large HLIPRINT blocksize so that the HLIPRINT trace has a minimal impact on the
performance of your HLI program.

Note: Any databases you intend to access locally (that is, without the
Simultaneous Usage facility) should be allocated with the parameter DISP=OLD.
You should not allocate databases you intend to access through a central SU
sink machine. If the database is to be used locally but is under the control of a
sink machine, it should be allocated with DISP=SHR.

Sample HLI Batch Job
The following is a sample JCL for a typical HLI batch run:

//JOBNAME EXECPGM=MYPROG
//STEPLIB DD DSN=prefix.MY.LOAD,DISP=SHR <=Previously linked lib
//FOCLIB DD FOCLIB.LOAD,DISP=SHR <=FOCUS load library
//SYSPRINT DD SYSOUT=A
//MASTER DD DSN=MASTER.DATA,DISP=SHR <=Master files to be used
//CARD DD DSN=CAR.FOCUS,DISP=OLD <=Database to be used
//HLIPRINT DD *,DCB=(LRECL=88,RECFM=FB,BLKSIZE=88)
//ERRORS DD DSN=ERRORS.DATA,DISP=SHR

ibi™ FOCUS® Host Language Interface User Guide

102 | HLI and Simultaneous Usage of FOCUS Databases

HLI and Simultaneous Usage of FOCUS
Databases
When a FOCUS database is on a FOCUS Database Server (FDS or sink machine), the Host
Language Interface allows two or more programs to operate on that FOCUS database at
the same time (this is called Simultaneous Usage or SU). Each user is unaware of other
users and may retrieve, add, delete, or change data independently. All users share one
copy of the database and communicate to it through the usual HLI routines. The only
changes necessary are to place the characters 'SU ' (requires two trailing blanks) in word 6
of the FCB and place the following in FCB words 9 and 10:

l The ddname of the communication file under z/OS FOCUS.

l The FDS node name, FOCSU001, under the WebFOCUS Reporting Server and
WebFOCUS.

For more information on using SU with HLI, see the version of the Simultaneous Usage
Manual for your operating system.

Using the SU Profile
The Simultaneous Usage Profile (SU Profile) enables you to set several parameters for the
FOCUS Database Server (sink machine) in a profile. These parameters are also used to
control a local HLI program.

Under z/OS FOCUS, the profile is member HLIPROF in a PDS allocated to the ddname
FOCEXEC in the sink job. The DCBs for this PDS are the same as for any FOCEXEC PDS.

Under the WebFOCUS Reporting Server and WebFOCUS, the HLI program processes the
server profile, edasprof.prf first. Then it processes the SU profile, suprof.prf. Most
applications use edasprof to customize parameters. Use suprof.prf if you need to override
settings for HLI only, for example, for application pathing to find files.

Note: Do not put USE commands in any profile.

ibi™ FOCUS® Host Language Interface User Guide

103 | HLI and Simultaneous Usage of FOCUS Databases

You can include the following commands in the sink machine profile, although these
settings offer no advantage to normal processing in the WebFOCUS Reporting Server and
WebFOCUS:

SET BINS = nn
SET CACHE = nn

where:

SET BINS = nn

Controls the number of I/O buffers for the sink machine. A maximum of 63 bins (which
are shared by all users) are allowed. Set BINS to the maximum for optimal performance.
If BINS is not set in the profile, the sink calculates how many BINS to allocate based on
the available storage.

SET CACHE = nn

Cache memory buffers FOCUS database pages between disk and BINS and reduces I/O
to disk. Using the SET CACHE command in the profile keeps the entire database in
memory and, therefore, improves performance. The default is no cache memory. See for
information on how to use cache memory with FOCUS files.

Some of the commands useful for describing file search paths under the WebFOCUS
Reporting Server and WebFOCUS include APP commands:

APP PATH
APP HOLDMETA

For information about these application commands, see the WebFOCUS Developing
Reporting Applications, the FOCUS Developing Applications manual, or the Server
Administration manual. HLI must be able to find the Master File and FOCUS database file
for any file it attempts to open, otherwise the OPN command fails.

Multi-Threaded HLI/SU Reporting Facility
(Mainframe FOCUS Only)
FOCUS for Mainframe includes the Multi-Threaded HLI/SU Reporting Facility, which enables
users to directly access a central database from an HLI program, thereby bypassing the
sink machine.

ibi™ FOCUS® Host Language Interface User Guide

104 | HLI and Simultaneous Usage of FOCUS Databases

This feature is used in read-only mode, and all modifications to the database are routed
through the sink machine. In addition, a single Multi-Threaded HLI/SU program cannot
open a file simultaneously in both read-only and read/write mode. Separate FCBs must be
declared for local reporting from and updating the centrally controlled database.

When you use this feature, the database updates and read operations are handled
separately, without synchronization. So, for example, you may update a segment and then
read it back and not see the update reflected immediately.

Multi-Threaded HLI/SU Reporting Under z/OS
FOCUS
When using Multi-Threaded HLI/SU Reporting under FOCUS on z/OS, the central database
is accessed locally, bypassing the sink machine; for database modifications, the central
database is accessed through the sink machine. In the HLI environment, the FCB is
modified to denote the parallel configuration (in the FOCUS environment, a USE command
accomplishes this).

The specific steps follow (assume the sink job is running on user ID SINKMA):

1. Allocate the database and the communication data set in the sink job using
DISP=SHR. For example:

//CAR DD DSN=SINKMA.CAR.FOCUS,DISP=SHR
//FOCUS DD DSN=SINKMA.FOCSU.DATA,DISP=SHR

2. Allocate the database and the communication data set for the HLI program using
DISP=SHR. For example:

ALLOC F(CAR) DA(SINKMA.CAR.FOCUS) SHR
ALLOC F(FOCSU) DA(SINKMA.FOCSU.DATA) SHR

or

//CAR DD DSN=SINKMA.CAR.FOCUS,DISP=SHR
//FOCUS DD DSN=SINKMA.FOCSU.DATA,DISP=SHR

3. Set up the FCB according to the following steps:

ibi™ FOCUS® Host Language Interface User Guide

105 | HLI and Simultaneous Usage of FOCUS Databases

a. Set FCB word 6 (SU) to SULO.

b. Set FCB word 9 (SINKID) to the ddname of the FOCUS communication dataset.

Preparing an FCB for Multi-Threaded HLI/SU
Reporting Under z/OS FOCUS
Assume FOCSU is the communication data set and the following is the COBOL HLI FCB:

01 FCB.
05 FCB-FN PIC X(08) VALUE SPACES.
05 FCB-FT PIC X(08) VALUE SPACES.
05 FCB-FM PIC X(04) VALUE SPACES.
05 FCB-SU PIC X(04) VALUE SPACES.
05 FCB-DN PIC X(08) VALUE SPACES.
05 FCB-SINKID PIC X(08) VALUE SPACES.
05 FILLER PIC X(28) VALUE SPACES.
05 FCB-ECHO PIC X(04) VALUE "ECHO".
05 FILLER PIC X(20) VALUE SPACES.
05 FCB-STATUS PIC S9(5) COMP-3 VALUE +0.
05 FILLER PIC X(104) VALUE SPACES.

The FCB would be set up as follows:

105-SET-UP-FCB-HLI-SU-MVS.
MOVE "CAR" TO FCB-FN.
MOVE "SULO" TO FCB-SU.
MOVE "FOCSU" TO FCB-SINKID.

ibi™ FOCUS® Host Language Interface User Guide

106 | HLI Command Summary

HLI Command Summary
This chapter provides summary charts of HLI commands and parameters followed by a
description of each HLI command in alphabetical order.

HLI Command Summary Chart
HLI commands must be entered as 4-character operands. Since all HLI commands (except
for the INFO command) are three characters long, they must be padded with a trailing
blank.

Command
Name

Meaning

CHA
(Change) changes data values within one segment.

CLO
(Close) closes the FOCUS database file. If there is more than one
FCB per file, closes the one that is open.

DEL
(Delete) deletes a segment and all of its descendants.

FSP
(First physical) retrieves the first physical qualified or
unqualified segment of the target segment in the file.

FST
(First) retrieves the first logical qualified or unqualified
occurrence of a target segment within a parent segment.

INFO
(Information) returns file description information such as
segment names, field names, and formats.

ibi™ FOCUS® Host Language Interface User Guide

107 | HLI Command Summary

INP
(Input) includes a new instance of the target segment.

NEX
(Next) retrieves the next logical qualified or unqualified
occurrence of a target segment within an anchor segment.

NXD
(Next indexed) locates a segment instance directly based on an
indexed key value.

NXK
(Next via key) goes back to a prior segment located by a saved
address key (the backkey).

NXP
(Next physical) retrieves the next physical qualified or
unqualified segment instance of the target segment.

OPN
(Open) opens the FOCUS database for use.

SAV
(Save) saves changed values. Forces a write to the file of
changes since the last save.

SHO
(Show) resets the order and number of fields currently
activated.

HLI Parameter Description Chart
The following chart lists the parameters used in HLI calls:

Parameter Meaning

workarea
A buffer in the application program that receives data from
HLI.

ibi™ FOCUS® Host Language Interface User Guide

108 | HLI Command Summary

Parameter Meaning

target
The 8-character name of the segment sought, included,
changed, or deleted. This is a SEGNAME value in the Master
File.

anchor
The 8-character name of a segment to use as a base point
from which to search for another segment. This is a
SEGNAME value in the Master File or the word SYSTEM.

numb
The number of non-blank test conditions needed to qualify
a record for retrieval, or the number of changes to be
made.

backkey
An address in the file that allows you to move back to a
previously retrieved segment with the NXK command.

testrelations
A structure or array of four bytes for each active field
containing test relations necessary to qualify a record. Test
relations must always be capital letters padded with blanks
to four characters. The array should contain one of the
test relations below.

l EQ. Equal.

l NE. Not equal.

l GE. Greater than or equal.

l LE. Less than or equal.

l GT. Greater than.

l LT. Less than.

l CO. Contains.

l OM. Omits.

l ' '. Blank (everything qualifies).

testliterals
Structure or array that contains the literal values necessary
for a qualifying record. The testliterals array is compared to
the data in the file with the relations specified in the

ibi™ FOCUS® Host Language Interface User Guide

109 | HLI Command Summary

Parameter Meaning

testrelations array. When the test is successful, the action
of the command is executed.

changelist
A structure or array of four characters per element in which
the value of an element is EQ for fields that should be
changed or blank for unchanged fields.

changeliterals
The new values that are to replace the values currently in
the file.

savearea
A 32-byte area used to save information when an indexed
retrieval is requested (NXD). This should be set to binary
zero for the first occurrence.

nrepeat
The number of times to repeat the retrieval of a record (1
to 255). Used only by the NEX or FST command.

showlist
A structure or array containing the names of the data fields
to be activated. There are 12 bytes for each field name.

showcount
A 4-byte integer representing the number of fields in the
show list.

option
A 4-byte integer used by some commands.

inpliterals
New data to be included in the database.

null
Eight blank characters.

information area
A record area in which information about the file is
returned.

ibi™ FOCUS® Host Language Interface User Guide

110 | HLI Command Summary

Note: The changeliterals, inputliterals, testliterals, and workarea arrays all have
the same format. This format is defined by the length and format of the fields in
the show list.

Alphabetical List of HLI Commands
This section describes the use and function of each HLI command. Commands are listed in
alphabetical order.

CHA (Change) Command

C Syntax:
edahliCall(hliHandle, 7, cha, &fcb, &workarea,
target, n, changelist, changeliterals);

FORTRAN
Syntax:

CALL FOCUS (cha, fcb, workarea, target, null,
n, changelist, changeliterals)

COBOL
Syntax:

CALL 'FOCUS' USING cha fcb
workareatargetnullnchangelistchangeliterals.

PL/1 Syntax:
CALL FOCUS (cha, fcb, workarea, target, null,
n, changelist, changeliterals);

Function: Changes fields that have EQ in the changelist array to the
values in the changeliterals array. Returns a copy of the
changed segment image in the work area. The changeliterals
array must have the new data located in the position of the
field as described in the SHO field layout. n is the number of
EQs in the changelist array for this segment.

ibi™ FOCUS® Host Language Interface User Guide

111 | HLI Command Summary

There are four bytes in the changelist array for each data field
in the show list. Only fields in the named target segment are
changed. The work area must be at least as large as one
retrieved record.

When the CHA command is issued, the non-blank changelist
array entries indicate which fields are to be changed. Hence,
different changes can be accomplished by either supplying
other changelist arrays (such as CHALST1, CHALST2) or
replacing the blank or non-blank values in one area.

When the CHA command is used on a FOCUS Database Server
(sink machine), the server tests to see that the record is
current before applying changes. This ensures that no
changes are made if another user has already changed the
record.

Note: null is an 8-byte field of spaces used for positioning.

The following diagram illustrates using the CHA command

Consider the following command:

CALL FOCUS (CHA , FCB, WKAREA, BODY , null, 2, CHALST, CHALIT)

ibi™ FOCUS® Host Language Interface User Guide

112 | HLI Command Summary

The two fields named SEATS and DEALERCOST in the target segment are changed to the
new values provided in the changeliterals array.

The car is not changed to VW because it is not in the target segment.

Note that the 2 in the argument list represents the number of non-blank entries in the
changelist. The fields corresponding to those entries are changed to the values specified in
changeliterals.

CLO (Close) Command

C Syntax:
edahliCall(hliHandle, 2, clo, &fcb);

FORTRAN
Syntax:

CALL FOCUS (clo, fcb)

COBOL
Syntax:

CALL 'FOCUS' USING clofcb.

PL/1 Syntax:
CALL FOCUS (clo, fcb);

Function: The FCB is removed from active use. Any outstanding changes
to the data are written to the disk, and all internal buffered
storage space is returned to the system pool.

If there is more than one FCB open for a file, a CLO command
must be issued for each open FCB.

DEL (Delete) Command

C Syntax:
edahliCall(hliHandle, 3, del, &fcb, target);

ibi™ FOCUS® Host Language Interface User Guide

113 | HLI Command Summary

FORTRAN
Syntax:

CALL FOCUS (del, fcb, target)

COBOL
Syntax:

CALL 'FOCUS' USING delfcbtarget.

PL/1 Syntax:
CALL FOCUS (del, fcb, target);

Function: Deletes the target segment and all of its descendant segment
instances from the file.

FSP (First Physical) Command

C Syntax:
edahliCall(hliHandle, 7, fsp, &fcb, &workarea,
target, ntest, testrelations, testliterals);

FORTRAN
Syntax:

CALL FOCUS (fsp, fcb, workarea, target, ntest,
testrelations, testliterals)

COBOL
Syntax:

CALL 'FOCUS' USING
fsp
fcb
workareatargetntesttestrelationstestliterals.

PL/1 Syntax:
CALL FOCUS (fsp, fcb, workarea, target, ntest,
testrelations, testliterals);

Function: Locates and retrieves the first physical occurrence of the
target segment. After the command is executed, the parents
can be retrieved with the FST (First) command. Descendants
can be retrieved with either FST or NEX.

ibi™ FOCUS® Host Language Interface User Guide

114 | HLI Command Summary

Unqualified Retrieval: No test conditions apply if the value
of ntest is 0. Therefore, the testrelations and testliterals arrays
are ignored.

Qualified Retrievals: When ntest is not zero, it specifies the
number of non-blank test conditions in the testrelations array.
These tests are used to compare the values in the database to
the values in the testliterals array. The record is retrieved if it
passes all the tests.

For information about the comparison between logical
commands and physical commands, see Introduction to HLI.

FST (First) Command

C Syntax:
edahliCall(hliHandle, 10, fst, &fcb, &workarea,
target, anchor, ntest, testrelations,
testliterals, null, nrepeat);

FORTRAN
Syntax:

CALL FOCUS (fst, fcb, workarea, target, anchor,
ntest, testrelations, testliterals, null,
nrepeat)

COBOL
Syntax:

CALL 'FOCUS' USING
fst
fcb
workarea
target
anchor
ntesttestrelationstestliteralsnullnrepeat.

PL/1 Syntax:
CALL FOCUS (fst, fcb, workarea, target, anchor,
ntest, testrelations, testliterals, null,
nrepeat);

ibi™ FOCUS® Host Language Interface User Guide

115 | HLI Command Summary

Function: Retrieves the first target segment within the anchor segment
that meets the qualifying conditions. (There is no change in
the anchor position.) When a record is retrieved, the status in
the FCB is 0. If no record is found, the status is 1.

If the anchor segment name is SYSTEM, the first logical target
segment in the file will be retrieved.

If the value of ntest is 0, the testrelations and testliterals
parameters are ignored.

The target segment may be below or above the anchor
segment. When a segment is retrieved directly, through a NXP
(Next Physical) command or through an NXD (Next through
Index) command, the balance of the attached segments can
be obtained via the FST command.

The nrepeat option lets you retrieve multiple records in a
single call. (See the documentation for the NEX command for
a description of qualified and unqualified retrieval.)

INFO (Information) Command

C Syntax:
edahliCall(hliHandle, 4, info, &fcb, &workarea,
option);

FORTRAN
Syntax:

CALL FOCUS (info, fcb, workarea, option)

COBOL
Syntax:

CALL 'FOCUS' USING infofcbworkareaoption.

PL/1 Syntax:
CALL FOCUS (info, fcb, workarea, option);

Function: Returns information about the location, length, and format of
each field in the current SHO command.

ibi™ FOCUS® Host Language Interface User Guide

116 | HLI Command Summary

Note: When a file is first opened, all fields are considered
shown; by issuing the INFO command immediately after
the OPN command, complete file information is available.

The field information returns the current show list (a list of
names of fields that are activated, in their order in the work
area). The segment information always returns the full list of
segment names from the Master File.

Option Data Returned

0 All field information in the show list.

1 All segment information.

Layout of Return Work Area in INFO Command When Option=0

The information returned in the work area contains 12 words (48 bytes) for each field. The
order of the fields is the order of the current SHO command.

Comment Word Description

1 Number of fields
which follow.

2-3 Name of segment.

Words 2 through 13

repeat for each field.

4-6 Name of data field.

7-9 Alias name of data
field.

10-11 Usage format of data
field.

12 Length of field in
bytes (binary integer).

13 Starting byte offset in
current work area
(binary integer).

ibi™ FOCUS® Host Language Interface User Guide

117 | HLI Command Summary

Layout of Return Work Area in INFO Command When Option=1

When the value of option is 1, returns information about the segments and file structure
only. This information is independent of the current SHO command. The information
returned in the work area contains 16 words per segment (643 bytes). Note that the size of
this area differs from the size when option=0.

Comment Word Description

Words 2 through 17

repeat for each field.

1 Number of segments.

2-3 Name of segment.

4-5 Name of parent of
segment.

6 Starting byte in real
segment of first field.

7 Length of segment in
bytes.

8 Segment type, alpha
name.

9-11 Cross-reference key
field name.

12 Number of sequence
keys.

13-17 Reserved.

The last argument in the INFO command must be either 0 or 1.

ibi™ FOCUS® Host Language Interface User Guide

118 | HLI Command Summary

INP (Input) Command

C Syntax:
edahliCall(hliHandle, 5, inp, &fcb,
inputliterals, target, n);

FORTRAN
Syntax:

CALL FOCUS (inp, fcb, inputliterals, target,
option)

COBOL
Syntax:

CALL 'FOCUS' USING
inpfcbinputliteralstargetoption.

PL/1 Syntax:
CALL FOCUS (inp, fcb, inputliterals, target,
option);

Function: Using the values in the inputliterals array that correspond to
the fields in the target segment, a new segment instance is
created in the file. Values not provided for the segment are
given default values: blank if alphanumeric and 0 if numeric.

If the segment type is S0 or blank, the possible values of n are:

0
Inserts the new segment after the
current segment, if the key fields are
the same.

1
Inserts the new segment before the
current segment, if the key fields are
the same.

If the segment type is Sn or SHn the value of n can be:

0
No test is made for duplicate values.

ibi™ FOCUS® Host Language Interface User Guide

119 | HLI Command Summary

2
If the segment has a key, rejects the
new segment if the key already exists.

A segment cannot be inserted if it would break the sort sequence of existing segments. The
proper place for a keyed segment is found automatically regardless of the value of the
option parameter. Option 2 rejects duplicate keys. Using this option is much faster than
locating a segment and, if it does not exist, adding it.

Only the target segment is included. You must add descendant segments using separate
INP commands. The new segment becomes the current position. Unique child segments
are not automatically retrieved with their parent segment. To retrieve a unique segment
instance, issue a separate retrieval command with the unique segment as the target.

Prior to issuing an INP command for the unique segment instance, you must check for the
existence of a unique segment instance for the parent. The return code from this call (FST
or NEX with the unique instance as the target) determines if the INP is appropriate. If you
issue an INP command and a unique segment instance already exists for the specified
parent, a duplicate unique segment instance is created for that parent segment. (The
REBUILD facility eliminates the original unique segment instance.)

NEX (Next) Command

C Syntax:
edahliCall(hliHandle, 10, nex, &fcb, &workarea,
target, anchor, ntest,testrelations,testliterals,
null, nrepeat);

FORTRAN
Syntax:

CALL FOCUS (nex, fcb, workarea, target, anchor,
ntest, testrelations, testliterals, null,
nrepeat)

COBOL
Syntax:

CALL 'FOCUS' USING
nex
fcb
workarea

ibi™ FOCUS® Host Language Interface User Guide

120 | HLI Command Summary

target
anchorntesttestrelationstestliteralsnullnrepeat.

PL/1
Syntax:

CALL FOCUS (nex, fcb, workarea, target, anchor,
ntest, testrelations, testliterals, null,
nrepeat);

Function: The next target segment instance within the anchor segment
instance that meets the qualifying conditions, if any, is retrieved.
If a record is retrieved, the status returned is 0. If there are no
more target segments available within the anchor segment, the
status returned is 1. If an error occurred, the status is greater
than 1 and is returned with an error number. The retrieved
segment instances are placed in the work area as requested in
the SHO command.

Unqualified Retrieval: If the value of ntest is 0, there are no testing operations on the
records retrieved, and the contents of the testrelations and testliterals arrays are ignored.

Qualified Retrieval: A value of ntest greater than 0 specifies the number of non-blank test
conditions in the testrelations array. These tests are used to compare the values in the
database to the values in the testliterals array. Only records that pass all tests are
retrieved.

Multiple Record Retrievals: The default, when nrepeat=1, retrieves only the next target or
path of segments meeting the test conditions, if any. One HLI call can retrieve up to 256
segment instances depending on the nrepeat value. This argument must be a 4-byte binary
integer from 1 to 255. The retrieved records are placed in the work area one after the
other. They are separated by eight bytes, where the backkey is placed. The effect of the
nrepeat parameter is the same as if nrepeat identical calls were issued, but is faster.

The number of records actually retrieved is placed in the FC B at word 25. For example, if
15 records were requested but only 12 were available, nreturned (FCB[25]) would equal 12.
At the conclusion of the call, the current position of the last record retrieved is placed in
the backkey in the FCB. The backkey for each record is also placed in an 8-byte area
following each record. It can be used to reposition the file pointer to the record it followed.

ibi™ FOCUS® Host Language Interface User Guide

121 | HLI Command Summary

NXD (Next Through Index) Command

C Syntax:
edahliCall(hliHandle, 9, nxd, &fcb, &workarea,
target, field, ntest, testrelations,
testliterals, savearea);

FORTRAN
Syntax:

CALL FOCUS
(
nxd
,
fcb
,
workarea
,
target
,
field,ntest,testrelations,testliterals,savearea)

COBOL
Syntax:

CALL 'FOCUS'
USING
nxd

fcb

workarea

target

field ntest testrelations testliterals savearea.

PL/1 Syntax: CALL FOCUS
(
nxd
,
fcb
,
workarea
,
target
,
field
,ntest,testrelations,testliterals,savearea);

ibi™ FOCUS® Host Language Interface User Guide

122 | HLI Command Summary

Function: The target segment is the segment that contains the indexed
field; it is retrieved using the index of the field named in the
field argument. The value of ntest must be at least 1; the
literal value of the indexed field must be in the testliterals
array, and the testrelations array must have a value of EQ for
the indexed field.

The first time the specific value of the key is provided, the
save area must be all binary zeros (the save area is 32 bytes
long). When the save area is binary zeros, the first occurrence
of the key value is retrieved, regardless of the current file
position. Only the target segment is retrieved, and it becomes
the anchor point for obtaining related parent or descendant
segments.

If there are multiple segments matching the key value, the
next match is retrieved by another HLI call with the NXD
command that has the same save area as the last call. Do not
clear the save area between calls, as it contains the
information necessary for processing all occurrences. When a
new key value is to be supplied, start with a cleared save
area.

There may be other qualifying test conditions on the target
segment. These are provided in the testrelations and
testliterals arrays in the manner specified in the NEX
command.

Note: The field argument must be 12 characters in length
and contain the field name of a field whose index is to be
used. If the field name is less than 12 characters long, it
should be padded with trailing blanks.

NXK (Next Through Backkey) Command

C Syntax:
edahliCall(hliHandle, 5, nxk, &fcb, &workarea,
target, backkey);Commands (HLI):NXKNXK command

ibi™ FOCUS® Host Language Interface User Guide

123 | HLI Command Summary

FORTRAN
Syntax:

CALL FOCUS (nxk,fcb,workarea,target,key)

COBOL
Syntax:

CALL 'FOCUS' USINGnxk fcb workarea target key.

PL/1 Syntax:
CALL FOCUS (nxk,fcb,workarea,target,key);

Function: After every successful HLI call (status code 0), the backkey
containing the database address of the target segment is
stored in the FCB at bytes 61 to 68.

If these eight bytes are saved and later provided as an
argument to the NXK command, the former target is returned.
If this segment is a descendant segment, its parent is also
retrieved, if its position was established logically by following
pointers (using NEX or FST). If the descendant segment was
located with a NXD or NXP command, the pointers are not
available for inserting or deleting instances at the target level
or above.

The target segment in the call must correspond to the
restored backkey value, (that is, the target segment retrieved
by the call that formed the backkey). This target segment is
associated with the backkey, and it must be provided in the
NXK call. It is the programmer's responsibility to save the
target segment name associated with the backkey (using the
SAV command).

NXK retrieval allows a program to work in several separate positions in a given file without
opening an FCB for each position. The processing sequence is:

1. Process current position.

2. Save current position.

3. Move to another position.

4. Save new position.

5. Restore previous position.

ibi™ FOCUS® Host Language Interface User Guide

124 | HLI Command Summary

Users may construct their own index to a file and store the index value and key in another
FOCUS or external file. In this way, files may be interconnected, based on arbitrary rules,
and not require common data values as does the FOCUS cross- reference facility.

NXP (Next Physical) Command

C Syntax:
edahliCall(hliHandle, 7, nxp, &fcb, &workarea,
target, ntest, testrelations,
testliterals);Commands (HLI):NXPNXP command

FORTRAN
Syntax:

CALL FOCUS
(
nxp
,
fcb
,
workarea
,target,ntest,testrelations,testliterals)

COBOL
Syntax:

CALL 'FOCUS'
USING
nxp

fcb

workarea
target ntest testrelations testliterals.

PL/1 Syntax: CALL FOCUS
(
nxp
,
fcb
,
workarea
,target,ntest,testrelations,testliterals);

Function: The next physically adjacent occurrence of the target segment

ibi™ FOCUS® Host Language Interface User Guide

125 | HLI Command Summary

Unqualified Retrieval: When the value of ntest is 0, no test
conditions apply. Therefore, the testrelations and testliterals
parameters are ignored.

Qualified Retrieval: A value of ntest greater than 0 specifies
the number of non-blank test conditions in the testrelations
array. These tests are used to compare the values in the
database to the values in the testliterals array. If all the tests
pass, the record will be retrieved.

For example, consider the following file structure:

FIGURE12

You issue the NXP command to retrieve segment B. To retrieve the two related segments, A
(B's parent) and C (B's descendant) you use the FST command, as follows:

Command Target Anchor Current Position

NXP B
At B1: New segment position.

FST A from B
At A1: Parent of B. B1: Current position in
the segment does not change because it
is anchored there.

FST or
NEX

C from B
At A1: Parent does not change. B1:
Current position in the segment does not
change because it is anchored there. C1:
Get first child.

OPN (Open) Command

C Syntax:
edahliCall(hliHandle, 2, opn, &fcb)

ibi™ FOCUS® Host Language Interface User Guide

126 | HLI Command Summary

FORTRAN
Syntax:

CALL FOCUS (opn, fcb, option)

COBOL
Syntax:

CALL 'FOCUS' USING opnfcboption.

PL/1 Syntax:
CALL FOCUS (opn, fcb, option);

Function: The Master File and data files are located and opened.

This must be the first call to HLI in an application program for
each database to be processed.

The option argument must be a 4-byte integer value of either
0 or 1. If the value is 0, the FOCUS file must already exist.

A status return code of 0 means the file has been successfully
opened. If the status return code is not 0, the file has not
been successfully opened and any subsequent calls for its use
will be rejected. A total of 255 FOCUS files and their Master
Files may be open simultaneously.

After this command is successfully issued and before any SHO
commands are issued, all the fields in the file are considered
on the show list.

Note:
l Some compilers allow a variable number of

arguments to be passed in a subroutine call. If your
compiler gives you errors, then all calls to FOCUS
must contain ten parameters, providing the unused
parameters are set to 0.

l When you have declared multiple FCBs for a file,
each FCB must be opened.

l Cross-referenced files are opened automatically with
read-only access. If you need to update values in a
file, open the file before you cross-reference it.

ibi™ FOCUS® Host Language Interface User Guide

127 | HLI Command Summary

SAV (Save) Command

C Syntax:
edahliCall(hliHandle, 2, sav, &fcb)

FORTRAN
Syntax:

CALL FOCUS (sav,fcb)

COBOL
Syntax:

CALL 'FOCUS' USINGsav fcb.

PL/1 Syntax:
CALL FOCUS (sav,fcb,option);

Function: All data values which have been changed via the CHA, DEL, or
INP commands are written to disk storage. Current position is
unchanged.

When a SAV command is issued for one file, all the changes
for all the files are saved. An implicit SAV is done when a CLO
command is issued.

Note: When FOCUS accepts transactions, it does not write
the transactions to the database immediately; rather, it
collects them in a buffer. FOCUS writes all the transactions
from the buffer to the database at the same time when
any of the following occurs:

l A program issues a SAV command.

l A program closes down a FOCUS file by issuing a CLO
command.

ibi™ FOCUS® Host Language Interface User Guide

128 | HLI Command Summary

SHO (Show) Command

C Syntax:
edahliCall(hlihandle, 4, sho, &fcb, showlist,
&numb);

FORTRAN
Syntax:

CALL FOCUS (sho, fcb, names, numb)

COBOL
Syntax:

CALL 'FOCUS' USINGsho fcb names numb.

PL/1 Syntax:
CALL FOCUS (sho,fcb,names,numb);

Function: The list of field names supplied in the area called names (the
show list) controls the layout of the work area, and
subsequent records retrieved will return the data to the work
area in the new order.

When new field values are supplied for input, they are taken
from the work area record in the order set by this command.
In addition, this order is used when test conditions are
supplied to qualify a record.

Each field name occupies 12 characters in the show list. The
value of numb is a 4-byte integer that specifies the number of
field names supplied in the show list.

It is highly recommended that a SHO command be issued
after each open to ensure the format of the work area.

The current fields defined by the show list are made available
to an application program by issuing the INFO command with
the option for field information.

Range checking can be accomplished by specifying a field in
the show list twice and applying an inequality test to these
two fields.

If duplicate occurrences of a field exist in the show list, the

ibi™ FOCUS® Host Language Interface User Guide

129 | HLI Command Summary

data for the last occurrence of the field is saved in the
database on an input or change if duplicate EQ conditions
exist in the changelist array.

ibi™ FOCUS® Host Language Interface User Guide

130 | HLI Status Return Codes

HLI Status Return Codes
This appendix provides a list of status return codes and their explanations.

You can find the status code in word 24 of the FCB.

HLI Return Code Chart

Return Code Meaning

0
Command executed normally.

1
Command executed normally, but no segments were retrieved. The
current position is unchanged. Either the qualifying conditions failed to
locate the desired record, or an end-of-chain condition occurred (that
is, no more target segment instances exist within the anchor segment).

760
Command not recognized. An invalid HLI command was issued (for
example, NXT instead of the NEX command).

761
Too few arguments have been provided in the HLI command.

762
The command cannot be executed because the file has not yet been
opened (that is, no OPN command has been issued).

763
HLI requires more virtual storage to operate. Restart the HLI program in
a larger region.

764
The requested Master File cannot be found.

ibi™ FOCUS® Host Language Interface User Guide

131 | HLI Status Return Codes

Return Code Meaning

765
The requested Master File cannot be found by the sink machine.

766
No data is found in the specified file. The file must first be initialized by
the CREATE command even if no data is entered.

767
An error was encountered in the Master File.

768
An invalid parameter was encountered in an HLI call (for example,
NTEST is less than zero).

769
The field name referenced on a SHO command does not exist in the
Master File. Check the spelling or the structure of the NAMES array
passed into the SHO command.

770
The file specified in the CLO CMD command is not open. The CLO CMD
command has been ignored.

771
Segment name not recognized. The segment specified as a TARGET or
an ANCHOR segment is not found in the Master File.

772
The HLI command is recognized but is not yet supported.

773
No current position has been established from which to execute the
command.

774
Test relation not recognized. An invalid test relation was used in an HLI
call. Possibly the number of tests was specified incorrectly. Valid test
conditions are LT, LE, GT, GE, EQ, NE, CO, and OM.

775
Improper use of virtual segment. An attempt was made to change or
improperly use a cross reference segment.

ibi™ FOCUS® Host Language Interface User Guide

132 | HLI Status Return Codes

Return Code Meaning

776
An attempt was made to include a second instance of a unique
segment for a particular parent instance. The transaction is ignored.

778
The ANCHOR and TARGET segments specified do not lie on the same
path in the file.

779
An error has occurred in the use of an indexed field, or a field named in
an NXD command is not indexed.

780
On an NXD call, no tests on the target segment were provided.

781
No parent position has been established for the retrieval of a cross-
reference segment. The key for the linked segment is not active, and no
retrieval can be performed.

782
The password does not provide file access rights. Check the password
provided in the FCB.

783
The command issued is not allowed with the current password. Check
the password provided in the FCB.

784
The segment instance identified by the key values is already in the
database. INP command does not allow duplicates. Analogous to
FOCURRENT = 1 in MODIFY/SU. The database has not been changed.

785
Segment instances obtained with NXK or NXD may not be deleted.

786
Attempt to change the instance has not been performed, because the
instance has been deleted by another user. (Analogous to
FOCURRENT=2 in MODIFY/SU.)

787
An OPN command was issued for an FCB which was already open.
Before reusing the FCB, it must be closed.

ibi™ FOCUS® Host Language Interface User Guide

133 | HLI Status Return Codes

Return Code Meaning

788
Too many files are open on the central database machine (limit 255) or
too many FCBs are open (limit 4096).

789
Attempt to change the instance has not been performed because it has
already been changed by another user. (Analogous to FOCURRENT=3 in
MODIFY/SU.)

790
SU cannot be used with more than 1500 fields in a FOCUS file,
including cross references.

792
Deprecated.

793
You cannot update, delete or include records for a file that has been
specified as read-only for use with Multi-Threaded HLI/SU Reporting.

794
You cannot declare a file to be read via Multi-Threaded HLI/SU
Reporting if it has been opened by another FCB not operating Multi-
Threaded HLI/SU Reporting. You cannot open a file that will not be
read via Multi-Threaded HLI/SU Reporting if it has already been opened
by another FCB operating under Multi-Threaded HLI/SU Reporting.

798
The Master File read by the central data base machine is not the same
as the one used by the source or local machine.

800
The central SU database machine has terminated because of a fatal
error.

801
A communication error has occurred on the central SU database
machine.

802
The central database machine has not been started or the wrong name
has been used for the central SU database machine.

ibi™ FOCUS® Host Language Interface User Guide

134 | HLI Status Return Codes

Return Code Meaning

803
A communication error has occurred. Check to see that the sink
machine is still active and, if not, restart it.

804
The central data base is not active. Check to see if it has been
terminated, and restart it.

805
A fatal error has occurred on the sink machine. Check to see if the sink
machine is active and, if not, restart it.

806
A fatal error has occurred on the sink machine. Check to see if the sink
machine is active and, if not, restart it.

807
A limit of 64 sink machines can be accessed simultaneously by one
user.

ibi™ FOCUS® Host Language Interface User Guide

135 | Using the GENCPGM Build Tool

Using the GENCPGM Build Tool
The building and compilation of 3GL applications is platform-specific and sometimes driven
by standards with which a site must conform in terms of programming style or managing
programming source. Due to this wide variation, we only make recommendations, test
certain languages, and provide limited examples with a script that minimally compiles the
test examples.

The specific uses for 3GL programs and examples are documented elsewhere, but the
general purposes are:

l To create and add a user-written routine to the functions of the product (also known
as a FUSELIB).

l To create and customize user exits that provide special functions.

l To create CALLPGM programs that the server executes.

Using GENCPGM
GENCPGM is the general term for a series of platform specific scripts for compiling and
linking 3GL programs (for example, C, COBOL, Fortran, Java, etc.) that interact with ibi®
products.

The scripts and their associated platforms are:

l gencpgm.sh (UNIX, Linux, z/OS and OS400)

l gencpgm.bat (Windows)

The script for a given platform is located in the bin directory of the software installation
directory (EDAHOME), except on a z/OS PDS deployment, where it is it in the member
hlq.HOME.ETC(GENCPGM), and must be copied to and given execute privileges to be used
under HFS.

Examples of the types of programs that can be built are:

l HLI applications to talk directly to FOCUS databases or servers using FDS access to
FOCUS databases

ibi™ FOCUS® Host Language Interface User Guide

136 | Using the GENCPGM Build Tool

l Call Java Adapter (CALLJAVA) applications which use Java classes to retrieve row(s)
data

l Call Procedural Program Adapter (CALLPGM) applications which use a DDL to retrieve
row(s) data.

l Subroutine applications which use a DLL to do specialized inline calculations for
Dialogue Manager, DEFINEs or COMPUTEs.

From a technical perspective, the above list breaks down into 3 classes of 3GL programs
that GENCPGM builds:

l Dynamic link libraries.

l Executables.

l Java applications as a class in a jar.

A dynamic link library is also known as a DLL and is generally thought of as a Windows
specific term, however, there are equivalences on all other platforms. DLL libraries have an
extension of .dll on Windows. On UNIX and USS, the term for DLL is shared library with an
extension of .so. On OS400, a DLL is a service program (programs marked SRVPGM).

The GENCPGM scripts are solely supplied as an assist tool for building basic applications.
The GENCPGM scripts are not intended to support all languages and complex cases, like
building several objects all linked into a final program. The GENCPGM scripts actually
depend on an appropriate native compiler and linker being installed and accessible. Native
refers to the compiler of the operating system vendor (for example, Microsoft on Windows,
IBM on AIX, and so forth). Accessible means that it is known to the registry on Windows or
is in the PATH for other operating systems, and that it employs the normal program names
used by the originating vendors (for example, cl.exe on Windows, cc on many UNIX
systems, gcc on Linux, javac (and jar) for Java, and so forth). The compiler also needs to
generate binaries that match the bit requirements of the application software (32-bit
servers require 32-bit compilers), although some compilers control this using a switch (for
example, -m32 and -m64).

Because of the widespread use of GNU GCC (which is free), the Windows and UNIX versions
of GENCPGM also recognize and allow gcc as a compiler specification, although they still
depend on gcc being in the path or, in the case of Windows, having the variable
MINGWROOT set (see the Windows section for more details). In short, GENPGM is a build
assistant to access existing compiler tools, but is not itself a compiler/linker and, as such,
the user is responsible for having the appropriate compilers and linkers installed and
accessible if GENCPGM compilation is needed. Note that many instances are strictly for
build-time use, and the resulting binaries may simply be deployed thereafter if the

ibi™ FOCUS® Host Language Interface User Guide

137 | Using the GENCPGM Build Tool

operating system and application bit requirements match (32-bit or 64-bit), and the
deployment machines do not have compiler/linker requirements.

The use of GENCPGM as a build tool is not actually required for applications when proper
build rules are followed, as implemented in GENCPGM and outlined in the build rules
section. Since complex cases that use other languages or multiple sources are a legitimate
requirement, it is left to the user to code and maintain their own build scripts for these
cases and alternate languages (possibly using GENCPGM as a template and following the
rules outlined in the build rules section).

It should also be noted that a subroutine is sometimes referred to by its former
terminology of Fuselib or Fuselib Routine. From an application perspective (that is, a
focexec) they are one in the same, however, FOCUS products used a single library to
implement and store multiple routines where WebFOCUS uses individual libraries for each
routine. This means older existing FOCUS libraries are not directly usable with WebFOCUS,
but the underlying 3GL sources are usable and simply need to be built using the current
methodologies documented here.

While there are a few platforms that need specific switch options, most switches and many
languages work on most platforms. Concerning specific 3GL languages, C is the officially
supported language on all platforms, other languages vary by platform as noted in the
samples. Theoretically, any 3GL language that is capable of being compiled and linked into
a DLL or executable and is capable of being used with ibi® products, however, GENCPGM is
only coded for certain commonly used languages that we have easy access to and
expertise in creating scripts and working samples. Requests for additional languages will be
considered on a case by case basis.

GENCPGM is also used dynamically in the server product for the COMPILED DEFINE feature
and as such the version in the EDAHOME directory should never be customized to prevent
changes from affecting the COMPILED DEFINE feature. If you have customizations that you
feel would be useful to others, they may be submitted via Customer Support for
consideration as a permanent change.

USAGE Chart (Typical Syntax Plus Extended
Options)
UNIX®, Linux®, IBM® i, USS:

ibi™ FOCUS® Host Language Interface User Guide

138 | Using the GENCPGM Build Tool

{path}gencpgm.sh [-h] [-x] [-q] [-v] [-e] [-n] [-s script]
[-H EDAHOMELIB] [-p LOADLIB] [-d directory|-w directory] [-g]
[-c language] [-m application type] [-b lib/srvprg] [-j jarname]
{path}{program name}[.{extension}]

Windows:

{path}gencpgm.bat [-h] [-x] [-q] [-v] [-e] [-n] [-s script]
[-d directory|-w directory] [-g] [-c language]
[-m application type] [-j jarname]
{path}{program name}[.{extension}]

where:

Switch/Option Description

-h Outputs this Help text.

-x Turns on set -x shell tracing to assist in debugging.

-q Turns on quiet mode to redirect Microsoft® compiler/linker output to nul:
on Windows. The switch does nothing on other platforms because the
compliers and linkers on most other platforms are already "quiet".

-v Turn on compiler/linker verbose options plus selective informational
messages.

-e Extended trace/compiler/linker info from just before compiler/linker step.

-H EDAHOMELIB Server for z/OS® in a PDS deployment only. Indicates installation home
{HLQ}.HOME of ETC.H for picking up standard C include files (needed for
some samples).

-C EDACONFHLQ Server for z/OS in a PDS deployment only. Indicates installation
configuration {HLQ} of ETC for picking up standard ibi files (that is, server
and communications configuration files).

-A APPROOTHLQ Server for z/OS in a PDS deployment. Indicates installation configuration
{HLQ} of APPS (APPROOT) for picking up application files for HLI
applications.

ibi™ FOCUS® Host Language Interface User Guide

139 | Using the GENCPGM Build Tool

Switch/Option Description

-S SCRIPTSPDS Server for z/OS in a PDS deployment only. Indicates PDS to copy
application build JCL and run time execution scripts for batch JCL and
interactive CLIST and REXX of the application.

-s SCRIPT For z/OS PDS Unified Environment deployment. Indicates generate only
(no compile/link) to a fully qualified PDS or dataset name.

-p LOADLIB Server for z/OS in a PDS deployment only. Indicates JCL type compilation
and points to the load lib to use. The load lib must be in run time
STEPLIB.

-d directory Work in the given directory. The C file should be in this directory. All
resulting files will be generated in this directory. This is for COMPILED
DEFINE purposes and not intended for customer use.

-w directory Write final executable (and any helper scripts) in the given target
directory.

-i directory Include directory. Multiple uses allowed.

-n No runner shell creation for api*, hli and odbc programs. Use to prevent
overwrite of an existing shell that may have been customized.

-g Generate a debuggable program by including debug switch in the
compilation and link.

The -c option is described in the following chart:

Language Compiler to use for a given language source.

cc Use standard C compiler to compile "progname.c". C is the default
compiler language.

assembler Use assembler compiler. Only implemented for z/OS currently. HFS usage
requires source to have a .s file extension.

ibi™ FOCUS® Host Language Interface User Guide

140 | Using the GENCPGM Build Tool

Language Compiler to use for a given language source.

fortran

for

f

Use default Fortran to compile Fortran with a .fortran extension.

Use default Fortran to compile Fortran with a .for extension.

Use default Fortran to compile Fortran with a .f extension.

Supply explicit extension to override extension. If default compiler is not
available, GNU g77 will be checked for availability and used.

f77

f90

f95

old_f77

Use a specific Fortran compiler to compile. Fortran implementation on
UNIX is limited to Sun SUNWspro f95 and GNU (g77/f77) as most UNIX OS
vendors do not supply Fortran compilers.

g77 Use the GNU Fortran (g77/f77) compiler to compile "progname.f". GNU is
only selectively supported as we do not have it installed on all platforms,
but should work because GNU is GNU.

gcc Use the GNU C (gcc) compiler to compile "progname.c". GNU is only
selectively supported as we do not have it installed on all platforms, but
should work because GNU is GNU.

CC

CXX

cpp

Use the "C++" compiler to compile "progname.cpp" programs. C++
programs are expected to have a .cpp suffix on all platforms except on MVS
OE, which requires .C as an explicit extension.

rpg IBM i Only: Use RPG compiler to compile IFS "progname". Default
extension is .rpg. Source may alternately exist as member in
*CURLIB/QRPGLESRC.

pl1 z/OS Only: PL/1

cobol

cob

cbl

Use COBOL compiler to compile progname.cobol, progname.cob, and
progname.cbl. Supply explicit extension to override.

ibi™ FOCUS® Host Language Interface User Guide

141 | Using the GENCPGM Build Tool

Language Compiler to use for a given language source.

java Dummy placeholder, -m cjava is the driving factor for Java source
compilation.

The -m option is described in the following chart:

Application Type Type of Application to Build

hli Generate an HLI program linked to the EDA HLI library
that opens and modifies FOCUS data files.

odbc Generate an ODBC API client program linked to the
ODBC API driver w/o Visigenics Driver Manager
(deprecated).

cpgm

dll

Generate a "callpgm" server program library or sub
routine (also known as a Fuselib routine). Default is a C
source with .c extension unless specified by explicit
(known) extension or specific -c compiler flag.

cjava Generate a class in a jar for "calljava" server program
usage. Multiple .java sources are allowed under this
feature. Default jar file name is the same as the first
named java source (use -j to create specific jar file
names).

cl IBM i only: Compile CL command file. Default extension
of .cl; LIB/FILE(MBR) type of file specification allowed if
quote enclosed to prevent sub shell interpretation by
the command line parser.

cmd IBM i Only: Compile CMD command file. Default
extension of .cmd; LIB/FILE(MBR) type of file
specification allowed if quote enclosed to prevent sub
shell interpretation by the command line parser.

dds IBM i Only: Compile DDS screen file. Default extension is

ibi™ FOCUS® Host Language Interface User Guide

142 | Using the GENCPGM Build Tool

Application Type Type of Application to Build

.dds. Source may alternately exist as member in
*CURLIB/QDDSSRC. DDS is an IBM i only extension for
compiling screen handling files for RPG and other IBM i
languages that use DDS.

-b lib/srvprg IBM i Only: Bind in additional IBM i service programs
during the link phase.

-j jarname Used solely in conjunction with -m cjava to specify a
specific jar to create. A .jar extension may be supplied,
but extensions other than .jar are ignored and
automatically switched to .jar. If the switch is not
included, the first java source will be used to form the
jar name (that is, myapp.java yields myapp.jar).

[{path}]{program name}
[[.extension}]

Name of source program to build. Must be last
argument. All arguments after program name are
ignored.

Extension is optional, but can serve to override a
language default for a -c language specification. A path
to a source is allowed (that is, source/foo.c), but non-
system includes must be in current directory or the -i
option must be used.

On Server for z/OS in a PDS deployment, a dataset name
or PDS name may be specified if -p option is in use,
however, the use of parenthesis characters in the
specification also requires the name to be quoted to
prevent sub shell interpretation by the command line
parser.

Compile and Link a Procedure
This section outlines the steps required to compile and link a sample procedure provided
with the product:

ibi™ FOCUS® Host Language Interface User Guide

143 | Using the GENCPGM Build Tool

Procedure
1. Copy GENCPGM from the EDAHOME bin directory to your working directory, or use

the full path name to the location, and:

l For a CALLPGM program or to build the CALLPGM sample program (CPT,
SPG*.CBL, or SPG*.RPG), copy the sample program and any required include
files from the etc/src3gl directory of EDAHOME to your working directory.

l For user exits, copy the desired sample exit from the etc/src3gl directory of
EDAHOME to your working directory.

l For user routines, write the routine or copy and modify an existing routine to
your working directory. (This document provides MTHNAME samples for C,
COBOL, RPG, and Fortran, which you can use for reference.)

2. Issue an EDAHOME environment variable pointing to the EDAHOME directory. For
example:

Windows SET EDAHOME=C:\ibi\srv82\home

IBM i (formerly known
as i5/OS)

export EDAHOME=/home/iadmin/ibi/srv82/home

UNIX export EDAHOME=/home/iadmin/ibi/srv82/home

USS export EDAHOME=/home/iadmin/ibi/srv82/home

3. If building an API program, also issue an EDACONF environment variable pointing to
the EDACONF directory. For example:

Windows SET EDACONF=C:\ibi\srv82\wfs

IBM i export EDACONF=/home/iadmin/ibi/srv82/wfs

UNIX export EDACONF=/home/iadmin/ibi/srv82/wfs

USS export EDACONF=/home/iadmin/ibi/srv82/wfs

4. Run GENCPGM. For example, on UNIX:

ibi™ FOCUS® Host Language Interface User Guide

144 | Using the GENCPGM Build Tool

gencpgm.sh -m cpgm mysub.c

GENCPGM Usage Notes
While there may not be a sample in every language for every application type, the first step
is to confirm that there is a working environment by building one of the standard samples
for the desired application type and confirming that it runs. If the samples do not work,
there is little hope that a custom program will work.

Switches function similarly on all implementations, although, some are platform/need
specific.

Programs generated for HLI will also have command file shell wrappers created with the
system variables used for run time execution (that is, EDAHOME, EDACONF, EDACS3 and
the library path needed for HLI to load) producing a self contained environment for
runtime execution. At runtime, all application setup needs are self-contained within the
wrapper so that the application simply runs. The explicit use of a GENCPGM-generated
application wrapper is not required if the settings within a given wrapper are issued
elsewhere (such as in a system or login profile) and the executable is directly used.

On IBM i CL and CMD, wrappers are also created in *CURLIB so applications can also be
called directly on the IBM i command line. On z/OS PDS deployment, JCL, CLIST, and REXX
wrappers are created as appnameJ, appnameC and appnameR (respectively), if the
application is 7 characters (or less) and the -S switch has been used to indicate a save PDS
name. Since the running interactive or batch and selecting a preferred language are strictly
run time choices, PDS mode creates all three scripts to be prepared for all situations.

Due to the numerous third party vendors of COBOL, Fortran and other languages,
inconsistency of switches between third party vendors and across platforms, GENCPGM has
only limited testing of third party compilers. The actual supplied COBOL and Fortran
sample programs themselves are known to work on several platforms where we do have
compilers so if GENCPGM for you platform doesn't support a particular language the sole
question is of figuring out how to compile and link them in order to work. Please also note
that some samples (particularly COBOL) have comments of specific platform related
changes that must be made for to accomplish proper compilation such as changing the
PROGRAM-ID to a quoted lowercase string to achieve a properly created program entry
point.

ibi™ FOCUS® Host Language Interface User Guide

145 | Using the GENCPGM Build Tool

For CALLJAVA applications (-m cjava) more than one source to compile is allowed and the
resulting classes are created into a single jar is supported. Java sources must have file
extension of .java and specifying the actual extension on the GENCPGM command line is
optional. If there are multiple source and no -j jar switch is supplied, the first source will be
used to form the jar name.

The language parameter value for -c drives the default extension for a given language
(except for Java), but supplying a full program name (ie mthname.cbl) will override a
default.

If the compilation was for CALLPGM, a user exit, or a routine, the final step is to either copy
the resulting routine to the user directory of EDACONF or set the environment variable
IBICPG to the name of the actual working directory (and restart the server). This final step
puts the resulting routine in a path that the server searches for routines at run time. User
exits are not explicitly covered in this manual, but follow the same rules as a routine.

Language and Platform Notes
Theoretically any compiled 3GL language can be used to create an HLI, Call Procedural
Program, or Subroutine programs. C is generally considered the standard language and is
universally tested and implemented on all supported platforms with samples for all
application types. Other languages are more selective in terms of applications for which
samples exist and platforms in which they can be tested (usually due to complier
availability on a given platform).

Java and JavaScript do not have options for generating Dynamic Load Libraries (DLLs),
and, as such, cannot be used for creating HLI, Call Procedural Program, or Subroutine
programs. However, in a language like C, it is possible to create a wrapper that loads and
passes parameters to Java and receives parameters back. Thus, while Java is feasible, it is
not direct and would present performance issues if done in this context and thus can not
be recommended or officially supported.

Fortran: It is possible to build DLLs and programs using Fortran on any platform, however,
at this time GENCPGM is only coded for Fortran on z/OS, UNIX GNU g77 and SunOS
SUNWspro. Additionally, there is only a sample for Subroutine usage. The -c fortran switch
on SunOS defaults to f77 usage on AMD64 and f90 on Sparc9, use the -c f77/f90/f95 switch
to force other specific levels. The -c fortran switch on UNIX's will attempt to use g77, if
found on the path.

COBOL: It is possible to build routines using Cobol on any platform. At this time gencpgm
is coded to do Cobol only on select platforms and using select Cobol vendors, specifically

ibi™ FOCUS® Host Language Interface User Guide

146 | Using the GENCPGM Build Tool

... on UNIX with MicroFOCUS Cobol (using the mf* switches), on IBM i using IBM ILE Cobol
and IBM z/OS using Enterprise Cobol in -p mode. MicroFOCUS Cobol use has some
additional use restrictions as described in the -c mfcobol section of the gencpgm chart.

On IBM i: Only ILE compilers are supported. Only the IBM i C compiler can directly compile
files on the IFS file system. GENCPGM on IBM i does this feat for other languages by
checking the default library location (for a given source type) for the existence of the
desired file and if it does not exist it does a CPYFRMSTMF to duplicate the file into the
library for the compilation process. If GENCPGM does a source file copy to a library, it will
also remove the file afterwards so extra copies aren't floating around. In this way, sources
on IBM i can exist as either IFS or library files.

On z/OS PDS Deployment: The script in hlq.HOME.ETC(GENCPGM) is an OMVS shell script
and is not JCL, so it cannot be directly run from the PDS. To use under PDS deployment,
copy the GENCPGM member to HFS, do a chmod +x to the script, and use as described
below with z/OS switches.

Once the script is copied to an HFS directory, it is executed with the -L, -C, -A, -,S and -p
options, which creates and then submits a JCL compilation stack that is language- and
application-specific. If the JCL is successful, the resulting program will end up in the
specified -p PDS. Regardless of build success, the JCL stack is always left behind and is
saved in the current directory as the program name with a .jcl extension, as well as in the -
S location if a -S switch was used. Additionally the -s switch will allow you to directly
generate JCL into an HFS file or DSN, but not execute. The -s switch (lowercase s is
required) is useful for sites where standard IBM libraries locations are not used for compiler
and link library updates (as is commonly done at sites for add on features and updates),
thus allowing a site to generate and then "adjust" the JCL for site specific needs before
submission. The -S switch (uppercase S is required) does actual compilation plus saves
build and run time scripts into the specified PDS for later use.

Build Rules
Should you chose to write a build script instead of using GENCPGM, the rules are fairly
simple.

DLLs for Subroutine and CALLPGM Usage: Library name (less extension and any prefix such
as lib) and entry point name must match. Some compilers are case sensitive on entry point
name usage and some are not or uppercase entry points automatically; thus some require
special coding to force lower case names as in mentioned COBOL cases. Specifically entry
points must be lowercase.

ibi™ FOCUS® Host Language Interface User Guide

147 | Using the GENCPGM Build Tool

Executables for HLI Usage: Must link in edahli DLL and create an executable with a main.
Various environment variables must be set in order for application to run, the wrapper
created by building the appropriate test sample should be used as a template as it
contains any general and platform specific coding.

In both cases it is suggested that you use the standard test samples for your language of
choice with the -x switch to examine the precise build switches used in any particular
environment to assist in any custom built scripts.

Generating a Subroutine Program From a C Source
File
The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler.

Optionally, the explicit API switch could have been used:

gencpgm -g -m cpgm myprog

Generating an HLI Program From a C Source File
Because the Standard C compiler and HLI mode are default options, the following example
will generate a debuggable HLI program from a sample C source file named myprog.c using
the standard C compiler.

Optionally, the explicit HLI switch could have been used:

gencpgm -g -m hli myprog

Generating a CALLPGM Program From a C Source
File
The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler.

ibi™ FOCUS® Host Language Interface User Guide

148 | Using the GENCPGM Build Tool

gencpgm -g -m cpgm myprog

For actual CALLPGM code samples, see Writing a 3GL Compiled Stored Procedure Program.

../../../../../Content/host-language/04stp27.htm

ibi™ FOCUS® Host Language Interface User Guide

149 | Migrating CMS HLI Programs to UNIX or Linux

Migrating CMS HLI Programs to UNIX or
Linux
FOCUS 7.7 does not support the CMS operating system. Customers running CMS FOCUS
and upgrading their FOCUS release to 7.7 must migrate their FOCUS applications to an
operating environment supported in Release 7.7. HLI programs that were compiled under
CMS must be migrated to a supported operating system, as well, and recompiled in that
operating environment. Typically, customers moving from CMS to another operating
system move to UNIX or Linux.

Changes Needed to the CMS HLI Program
The following changes are needed when migrating a CMS HLI Program to UNIX or Linux.

l The file naming conventions are different, so the file references must be change. For
example, any FILEDEF commands used in the FOCUS code will have to be changed.

o The CMS file naming convention consists of three parts, a file name, a file type,
and a file mode.

fnft [fm]

where:

fn

Is a name for the file, up to eight characters.

ft

Is the type of file. FOCUS uses a standard list of common file types.

fm

Identifies the disk that the file resides on and the type of access allowed.

ibi™ FOCUS® Host Language Interface User Guide

150 | Migrating CMS HLI Programs to UNIX or Linux

The default filemode is A1.

o The UNIX/Linux file naming convention consists of an optional path to the
location of the file, a file name, and a file extension.

[path/]fn.ext

where:

path

Identifies how to traverse the directory structure to the directory in which
the file resides.

fn

Is a name for the file.

ext

Identifies the type of file. FOCUS uses a standard list of extensions.

Note: The entire file specification cannot be longer than 64 characters.

l File names on UNIX and Linux are case sensitive, with lowercase file names
recommended, while file names in CMS are recommended to be all uppercase.

l If multiple FOCUS Database Servers (sink machines) are required, a user ID should be
created on the UNIX box that controls these machines. Each sink machine should be
set up in its own directory, since SU creates temporary work files using the same
names, and these could override each other if all sinks were in the same directory.

l The source code for the HLI routines and any user-written subroutines must be
ported to the new environment and re-compiled.

l The FOCUS databases controlled by the SU need to be ported to the new
environment.

l If the FOCUS code uses any platform-specific options, such as operating system
commands, these must be changed to be compatible with the new environment.

ibi™ FOCUS® Host Language Interface User Guide

151 | Migrating CMS HLI Programs to UNIX or Linux

Changes Needed to the FCB When Migrating a
CMS HLI Program
Because the file naming conventions are different in CMS and UNIX/Linux, the FCB layout is
different.

Following are the relevant FCB words for CMS.

FCB Words Contents Description Number of Bytes

1-2 FN File Name 8

3-4 FT File Type 8

5 FM File Mode 4

7-8 PROCNAME Procedure Name displayed on HLIPRINT 8

25 ERRORNUM Detail error code (integer) 4

Following are the relevant FCB words for UNIX/Linux.

FCB
Words

Contents Description Number of
Bytes

1-2 blank Reserved 8

3-4 blank Reserved 8

5 blank Reserved 4

7-8 blank Reserved 8

25 RETURNUM Number of instances returned (integer) 4

50-66 FILENAME UNIX/Linux file name (up to 64 bytes with or
without a full or relative path)

64

ibi™ FOCUS® Host Language Interface User Guide

152 | Migrating CMS HLI Programs to UNIX or Linux

Migrating Simultaneous Usage Applications
From CMS to UNIX or Linux
Using the Simultaneous Usage (SU) facility, multiple users can read and change a FOCUS or
XFOCUS database at the same time, using FOCUS and Host Language Interface (HLI)
commands.

SU Under CMS
With SU, a centrally controlled database is allocated to a background job called the FOCUS
Database Server or sink machine. TSO IDs, MSO sessions, and batch jobs running FOCUS,
as well as programs using HLI, that send database retrieval and update requests to the
FOCUS Database Server are all called source machines or clients. Source machines send
requests and transactions to the FOCUS Database Server, which processes their
transactions and transmits retrieved data and messages back to the source machines.

Without SU, only one user can update a database at a time, even databases that are
allocated for sharing (DISP=SHR).

Source machines communicate with the FOCUS Database Server through cross-memory
posting. Messages traveling between a source machine and the FOCUS Database Server are
placed in the z/OS Common Storage Area (CSA), which is accessible to both machines.
When the FOCUS Database Server receives a request from a source machine, it changes or
retrieves data from the centrally controlled database and transmits the results back to the
source machine.

CMS is case sensitive. Upper case is highly recommended for all filenames.

LISTFILE lists the names of files on any disk or SFS directory. COPY[FILE] copies a file to
another file.

COPYFILE fn1ft1fm1fn2ft2fm (options

The following example copies HISTORY SCRIPT H to HISTORY SCRIPT A.

copy history script h history script a

ibi™ FOCUS® Host Language Interface User Guide

153 | Migrating CMS HLI Programs to UNIX or Linux

SU Under UNIX or Linux
On UNIX or Linux, any file or directory can have multiple names because the operating
system uses inodes instead of names to identify files and directories. Additional names can
be provided by using the ln command to create one or more hard links to a file or
directory.

UNIX is case sensitive. Lower case is highly recommended for all filenames. Some common
UNIX commands follow.

ls directory. List contents.

cd directory. Change to another directory.

The following command copies the file myfile1 from the current directory and places a
copy in

/priv/home/henry/myfile2.

cp myfile1 /priv/home/henry/myfile2

If multiple sink machines are required, a user ID to control them should be created on the
UNIX box to control them. Each sink machine should be set up in its own directory since
each one creates temporary work files using the same name, and these could overwrite
each other if all sinks were in the same directory.

COBOL subroutines need to be ported to the UNIX/Linux environment with source code
and re-compiled.

The actual FOCUS databases controlled by SU must be migrated to the UNIX/Linux
environment. in Release 7.6 or above, you can use Structured HOLD Files to extract the
FOCUS data with its structural information on CMS and recreate it on UNIX or LInux. In
releases prior to 7.6, you will have to HOLD each path separately and reassemble the
FOCUS structure on UNIX or Linux.

FOCUS code may or may not need to change, depending on whether platform-specific
options are used. Almost all platforms support the same core FOCUS code.

ibi™ FOCUS® Host Language Interface User Guide

154 | ibi Documentation and Support Services

ibi Documentation and Support Services
For information about this product, you can read the documentation, contact Support, and
join Community.

How to Access ibi Documentation

Documentation for ibi products is available on the Product Documentation website, mainly
in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the ibi™ FOCUS® Documentation page.

How to Contact Support for ibi Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join ibi Community

ibi Community is the official channel for ibi customers, partners, and employee subject
matter experts to share and access their collective experience. ibi Community offers access
to Q&A forums, product wikis, and best practices. It also offers access to extensions,
adapters, solution accelerators, and tools that extend and enable customers to gain full
value from ibi products. For a free registration, go to ibi Community.

https://docs.tibco.com/
https://docs.tibco.com/
http://docs.tibco.com/products/ibi-focus
https://support.tibco.com/
https://support.tibco.com/
https://community.ibi.com/

ibi™ FOCUS® Host Language Interface User Guide

155 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

ibi, the ibi logo, FOCUS, iWay, WebFOCUS, RStat, Information Builders, Studio, and TIBCO are either
registered trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or other
countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

ibi™ FOCUS® Host Language Interface User Guide

156 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Introduction to HLI
	What is HLI?
	Why the Host Language Interface?
	How Can You Create HLI Applications?
	Navigating Through a FOCUS Data Source
	The Dummy SYSTEM Segment
	Reading the Data Source
	Test Relations
	The File Communication Block (FCB)
	Incorporating HLI Commands in the Application Program

	Preparing HLI Work Areas
	Initializing the File Communication Block (FCB)
	FCB Layout
	d02HLI1030418

	Definitions of FCB Terms
	Defining the Record Work Area
	Internal Data Representation Formats
	Alignment of Data Offsets in the Work Area
	Size of the Work Area
	Defining the Work Area for a File With Descendant Segments
	Declaring Multiple FCBs

	Using HLI
	Writing HLI Programs
	Properties of Master Files for Use With HLI
	C Program Considerations
	Include the HLI Header File in a C Program
	Declare the Fcb Name Variable
	Declare a Session Handle and Issue the Connection Call
	Declare an HLI Handle and Issue the Connection Call
	Close the HLI Connection
	Call to Close the Session Connection
	Sample HLI Programs
	Master File Used With the Sample Programs
	Sample C Program
	Sample FORTRAN Program
	Sample COBOL Program
	Sample PL/1 Program

	Initializing the FCB
	Initializing the FCB in a C Program
	Initializing the FCB in a FORTRAN Program
	Initializing the FCB in a COBOL program
	Initializing the FCB in a PL/I program

	Opening the FOCUS Data Source
	Open a FOCUS Data Source (OPN)
	Opening a FOCUS Data Source in a C Program
	Opening a FOCUS Data Source in a FORTRAN Program
	Opening a FOCUS Data Source in a COBOL Program
	Opening a FOCUS Data Source in a PL/I Program

	Data Offsets in the Work Area
	Using a Show List
	Select a List of Fields in a FOCUS Data Source (SHO)
	Using a Show List in a C Program
	Using a Show List in a FORTRAN Program
	Using a Show List in a COBOL Program
	Using a Show List in a PL/I Program

	Locating Records
	Expressing Test Relations
	Expressing Test Relations in a C Program
	Expressing Test Relations in a FORTRAN Program
	Expressing Test Relations in a COBOL Program
	Expressing Test Relations in a PL/I Program

	Logical Reads
	Move to the First Target Segment Instance Under the Anchor (FST)
	Move to the Next Segment in a Logical Read (NEX)
	Using Logical Reads in a C Program
	Using Logical Reads in a FORTRAN Program
	Using Logical Reads in a COBOL Program
	Using Logical Reads in a PL/I Program

	Physical Reads
	Move to the First Physical Segment Instance (FSP)
	Retrieve the Next Physical Occurrence of the Target Segment (NXP)
	Indexed Reads
	Retrieve a Segment Instance Using an Index (NXD)
	Retrieving With a Backkey
	Retrieve a Previous Target Segment Using a Backkey (NXK)
	Altering the File
	Including New Segments
	Include New Segment Instances (INP)
	Including New Segment Instances Using a C Program
	Including New Segment Instances Using a FORTRAN Program
	Including New Segment Instances Using a COBOL Program
	Including New Segment Instances Using a PL/I Program

	Changing Information in the File
	Change Information in a Segment Instance (CHA)
	Changing a Segment Instance in a C Program
	Changing a Segment Instance in a FORTRAN Program
	Changing a Segment Instance in a COBOL Program
	Changing a Segment Instance in a PL/I Program

	Deleting Segments From a File
	Delete Segments From a File (DEL)
	Deleting a Segment Instance in a C Program
	Deleting a Segment Instance in a FORTRAN Program
	Deleting a Segment Instance in a COBOL Program
	Deleting a Segment Instance in a PL/I Program

	Testing Status, Using Log Facilities, and Handling Errors
	Testing Status
	Using the Diagnostic Log Facility: ECHO and STAT
	Log File Locations
	Using the ECHO Log Facility
	Using the STAT Log Facility
	Error Handling

	Creating an Executable HLI Program
	Constructing a DLL Under ibi WebFOCUS
	Compile and Link a C Program
	Constructing a Load Module Under z/OS
	Creating a Load Module Under z/OS

	HLI Allocations
	Sample HLI Batch Job

	HLI and Simultaneous Usage of FOCUS Databases
	Using the SU Profile
	Multi-Threaded HLI/SU Reporting Facility (Mainframe FOCUS Only)
	Multi-Threaded HLI/SU Reporting Under z/OS FOCUS
	Preparing an FCB for Multi-Threaded HLI/SU Reporting Under z/OS FOCUS

	HLI Command Summary
	HLI Command Summary Chart
	HLI Parameter Description Chart
	Alphabetical List of HLI Commands
	CHA (Change) Command
	CLO (Close) Command
	DEL (Delete) Command
	FSP (First Physical) Command
	FST (First) Command
	INFO (Information) Command
	INP (Input) Command
	NEX (Next) Command
	NXD (Next Through Index) Command
	NXK (Next Through Backkey) Command
	NXP (Next Physical) Command
	OPN (Open) Command
	SAV (Save) Command
	SHO (Show) Command

	HLI Status Return Codes
	HLI Return Code Chart

	Using the GENCPGM Build Tool
	Using GENCPGM
	USAGE Chart (Typical Syntax Plus Extended Options)
	Compile and Link a Procedure
	GENCPGM Usage Notes
	Language and Platform Notes
	Build Rules
	Generating a Subroutine Program From a C Source File
	Generating an HLI Program From a C Source File
	Generating a CALLPGM Program From a C Source File

	Migrating CMS HLI Programs to UNIX or Linux
	Changes Needed to the CMS HLI Program
	Changes Needed to the FCB When Migrating a CMS HLI Program
	Migrating Simultaneous Usage Applications From CMS to UNIX or Linux
	SU Under CMS
	SU Under UNIX or Linux

	ibi Documentation and Support Services
	Legal and Third-Party Notices

