
Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

ibi™ FOCUS®
Maintaining Databases
Version 9.3.2 | November 2024

ibi™ FOCUS® Maintaining Databases

2 | Contents

Contents
Contents 2

Modifying Data Sources With MODIFY 25
Introduction 25

Examples of MODIFY Processing 26

Adding Data to a Data Source 27

Updating Data in a Data Source 27

Deleting Data From a Data Source 29

Additional MODIFY Facilities 29

Notes on Using JOIN Syntax With MODIFY 30

Multiple User Access 31

SU Features 33

Managing Your Data: Advanced Features 34

MODIFY Command Syntax 36

Executing MODIFY Requests 38

Execute a Request as a Stored Procedure 38

Execute MODIFY Requests Online 40

Other Ways of Maintaining FOCUS Data Sources 42

The EMPLOYEE Data Source 42

Describing Incoming Data 43

Reading Fixed-Format Data: The FIXFORM Statement 45

Use a FIXFORM Statement 46

Skip Columns in the Record 49

Move Backward Through a Record 50

Specify Field Formats With FIXFORM 52

Controlling Whether FIXFORM Input Fields Are Conditional 56

Control Whether FIXFORM Input Fields Are Conditional 56

ibi™ FOCUS® Maintaining Databases

3 | Contents

Usage Notes for SET FIXFRMINPUT 57
Controlling Whether FIXFORM Transaction Fields Are Conditional 57

Describing Date Fields 59

Describe Repeating Groups 61

Using Date Format Fields 63
Conditional Fields 63

FIXFORM Phrases in MATCH and NEXT Statements 65

Reading in Comma-delimited Data: The FREEFORM Statement 66

Use a FREEFORM Statement 66

Identifying Values in a Comma-delimited Data Source 68
Missing Values in Comma-delimited Data Sources 71

FREEFORM Phrases in MATCH and NEXT Statements 72

Prompting for Data One Field at a Time: The PROMPT Statement 73

Use a PROMPT Statement 73

Prompt for Repeating Groups 76

Prompt Text 78

Special Responses 79

Canceling a Transaction 79

Ending Execution 80

Correcting Field Values 80

Typing Ahead 81

Repeating a Previous Response 82

Entering No Data 82

Breaking Out of Repeating Groups 82

PROMPT Phrases in MATCH and NEXT Statements 83

Using PROMPT and FREEFORM Statements in One Request 84

Invoking the FIDEL Facility: The CRTFORM Statement 85

Entering Text Data Using TED 86

Entering Text Field Data 88

Defining a Text Field 88

Displaying Text Fields 89

ibi™ FOCUS® Maintaining Databases

4 | Contents

Specifying the Source of Data: The DATA Statement 90

Use a DATA Statement 90

Reading Selected Portions of Transaction Data Sources: The START and STOP
Statements 91

Use a START Statement 91

Modifying Data: MATCH and NEXT 93

The MATCH Statement 93

Use a MATCH Statement 94

Specify Actions With the ON MATCH/NOMATCH Phrase 96

MATCH Statement Defaults 98

Adding, Updating, and Deleting Segment Instances 99
Adding Segment Instances 100

Updating Segment Instances 102

Deleting Segment Instances 103

Performing Other Tasks Using MATCH 104

Reading Data 105

Computations, Validations, and Messages 105

Controlling Case Logic 106

Controlling Multiple Record Processing 106

Activating and Deactivating Fields 107
Using MATCH Actions in a Request 107

Modifying Segments in FOCUS Structures 108

Modifying Unique Segments 108

Modify Segment Instances Using the CONTINUE TO Method 109

Process Unique Instances Using the WITH-UNIQUES Method 111

Modifying Segments 113
Modifying Descendant Segments 113

Modifying FOCUS Structures of Three or More Levels 118

Modifying Sibling Segments (Multi-Path Data Sources) 119

Modify Segments With No Keys 119
Storing Data With Type S0 Segments 120

ibi™ FOCUS® Maintaining Databases

5 | Contents

Type Blank Segments 121
Modifying Segments With Multiple Keys 121

Use Alternate File Views 123

Selecting the Instance After the Current Position: The NEXT Statement 125

Use a NEXT Statement 126
Selecting Instances 127

Displaying Unique Segments 128

Use the CONTINUE TO Method 129

Use the WITH-UNIQUES Method 129

Computations: COMPUTE and VALIDATE 130

Computing Values: The COMPUTE Statement 130

Use a COMPUTE Statement 134

Using the COMPUTE Statement 136
Placing COMPUTE Phrases in MATCH and NEXT Statements 136

Changing Incoming Data 137

Define Non-Data Source Transaction Fields 137

Compiling MODIFY Expressions Using Native Arithmetic 138

Control Compilation of MODIFY Expressions 139

Usage Notes for SET MODCOMPUTE 139

Validating Transaction Values: The VALIDATE Statement 139

Use a VALIDATE Statement 141

Using VALIDATE to Test Incoming Data 142
Using Logical Expressions 143

Using the DECODE Function 143

Using the FIND Function 143

Take Action on Invalid Data: The ON INVALID Phrase 144

VALIDATE Phrases in MATCH and NEXT Statements 145
Testing for the Presence of Transaction Data 146

Validate Values From a List: The DECODE Function 147

Special Functions 149

Test for the Existence of Indexed Values in FOCUS Data Sources: The FIND 149

ibi™ FOCUS® Maintaining Databases

6 | Contents

Function
Using the FIND Function in VALIDATE Statements 151

Reading Cross-Referenced FOCUS Data Sources: The LOOKUP Function 151

Use an Extended Syntax With LOOKUP 156

Using the LOOKUP Function in VALIDATE Statements 158

Messages: TYPE, LOG, and HELPMESSAGE 158

Displaying Specific Messages: The TYPE Statement 159

Use a TYPE Statement 160

Embedding Data Fields 162

Embedding Spot Markers 164

Screen Attributes 167

Logging Transactions: The LOG Statement 168

Log Transactions in Sequential Files 168

Control the Printing of Rejection Messages 171

Displaying Messages: The HELPMESSAGE Attribute 174

Specify a HELPMESSAGE Attribute 174

Displaying Messages: Setting PF Keys to HELP 175

Case Logic 176

Use a Case Statement 176

Rules Governing Cases 178

Executing a Case at the Beginning of a Request Only: The START Case 180

Branching to Different Cases: The GOTO, PERFORM, and IF Statements 181

Branch to Another Case With GOTO 181

Use a PERFORM Statement 182
Using the PERFORM Statement 183

Rules for PERFORM Statements 185

Branch to Another Case With IF 185
IF Statement 187

Rules Governing Branching 188

GOTO, PERFORM, and IF Phrases in MATCH Statements 189
Using Case Logic and Validation Tests 191

ibi™ FOCUS® Maintaining Databases

7 | Contents

Case Logic Applications 192

Loop Through a Segment Chain With the NEXT Statement 193
Modifying Multiple Unique Segments 195

Use Case Logic to Offer User Selections 197

Use Case Logic to Process Transaction Data Sources 198

Use Case Logic to Process Transactions Based on the Values of Their Fields 200

Use Case Logic to Process Transactions With Bad Values 201

Tracing Case Logic: The TRACE Facility 202

Multiple Record Processing 203

The REPEAT Method 204

The Selection Phase: Selecting the Parent Instance 205

The Collection Phase: Storing Instances in a Buffer 206

Use a REPEAT Statement 206

Store Instances With the HOLD Phrase 209

The REPEATCOUNT and HOLDCOUNT Variables 210

The Display Phase: Displaying Instances in One CRTFORM 211

Position the Cursor on Specific Field Values 212

The Modification Phase 214
Using Multiple Record Processing (REPEAT Method) 215

Manual Methods 216

Initialization 217

The Collection Phase: The HOLDINDEX Field 217

The Display Phase: The SCREENINDEX Field 221

The Modification Phase: The GETHOLD Statement 223

Manual Methods: Two Examples 226
First Example: Processing Segments on Two Different Paths 226

Second Example: Modifying Segments on the Same Path 229

Sort the Scratch Pad Area With SORTHOLD 232

Advanced Facilities 234

Modifying Multiple Data Sources in One Request: The COMBINE Command 235

Combine Data Sources 236

ibi™ FOCUS® Maintaining Databases

8 | Contents

COMBINE Command 237

Support Long and Qualified Field Names 238

Referring to Fields in Combined Structures: The TAG Parameter 239

Referring to Fields in Combined Structures: The PREFIX Parameter 240

How Data Source Structures Are Combined 242

Differences Between COMBINE and JOIN Commands 243

Use the ? COMBINE Query 243

Error Messages for COMBINE 245

Active and Inactive Fields 245

When Fields Are Active and Inactive 245

Activate Fields With the ACTIVATE Statement 246

Deactivate Fields With the DEACTIVATE Statement 252

Protecting Against System Failures 254

Safeguard Transactions With the Checkpoint Facility 254

Safeguarding FOCUS Data Sources: Absolute File Integrity 255

Safeguarding Transactions: COMMIT and ROLLBACK Subcommands 256

Displaying MODIFY Request Logic: The ECHO Facility 256

Dialogue Manager Statistical Variables 260

MODIFY Query Commands 261

Managing MODIFY Transactions: COMMIT and ROLLBACK 261

The COMMIT and ROLLBACK Subcommands 262

Coding With COMMIT and ROLLBACK 262

MODIFY Syntax Summary 265

MODIFY Request Syntax 265

Transaction Statement Syntax 267

MATCH and NEXT Statement Actions 267

Designing Screens With FIDEL 270
Introduction 270

Using FIDEL With MODIFY 270

Using FIDEL With Dialogue Manager 272

ibi™ FOCUS® Maintaining Databases

9 | Contents

Screen Management Concepts and Facilities 274

Using FIDEL Screens: Operating Conventions 275

Describing the CRT Screen 275

Specifying Elements of the CRTFORM 277

Invoking FIDEL: CRTFORM and -CRTFORM 277

Defining a Field 278

Define a Field in FIDEL 278
Defining a Field 279

Difference in FIDEL When Used With MODIFY and Dialogue Manager 280

Using Spot Markers for Text and Field Positioning 281

Specifying Lowercase Entry: UPPER/LOWER 284

Data Entry, Display and Turnaround Fields 284

Use Data Entry Fields (for Data Entry Only) 285

Use Display Fields (for Information Only) 285

Use Turnaround Fields (for Display and Change) 286

Using Data Entry, Display, and Turnaround Fields 287
Using Data Entry, Display, and Turnaround Fields With MODIFY 287

Using Data Entry, Display, and Turnaround Fields With Dialogue Manager 290

Controlling the Use of PF Keys 291

Default Settings for PF Keys 292

Resetting PF Key Controls 293

Setting PF Key Fields for Branching Purposes 294

Specifying Screen Attributes 296

Using Background Effects 299

Using Labeled Fields 300
Using a Labeled Field With MODIFY 301

Using a Labeled Field With Dialogue Manager 301

Dynamically Changing Screen Attributes 302

Specifying Cursor Position 305

Determining Current Cursor Position for Branching Purposes 308

Annotated Example: MODIFY 310

ibi™ FOCUS® Maintaining Databases

10 | Contents

Annotated Example: Dialogue Manager 312

Using FIDEL in MODIFY 314

Conditional and Non-Conditional Fields 315
Conditional and Non-Conditional Display and Turnaround Fields 316

Using FIXFORM and FIDEL in a Single MODIFY 319

Generating Automatic CRTFORMs 321

Using Multiple CRTFORMs: LINE 325

CRTFORMs and Case Logic 332

Specifying Groups of Fields 334

Specifying Groups of Fields for Input 334

Using REPEAT to Display Multiple Records 335

Using Groups of Fields With Case Logic 339
Case Logic, Groups, CURSORINDEX and VALIDATE 339

Handling Errors 342

Handling Format Errors 343

VALIDATE and CRTFORM Display Logic 343

Handling Errors With Repeating Groups 344

Rejecting NOMATCH or Duplicate Data 346

Logging Transactions 347

Additional Screen Control Options 348

Clearing the Screen: CLEAR/NOCLEAR 348

Specifying Screen Size: WIDTH/HEIGHT 349

Changing the Size of the Message Area: TYPE 350

Using FIDEL in Dialogue Manager 351

Allocating Space on the Screen for Variable Fields 352

Starting and Ending CRTFORMS: BEGIN/END 352
Using Indexed Variables With -CRTFORM BEGIN and -CRTFORM END 353

Clearing the Screen in Dialogue Manager 354

Changing the Size of the Message Area: -CRTFORM TYPE 355

Annotated Example: -CRTFORM 355

Using the ibi FOCUS Screen Painter 358

ibi™ FOCUS® Maintaining Databases

11 | Contents

Entering Screen Painter 358

PF Keys in PAINT 360

Entering Data Onto the Screen 362

Editing Functions 363

Sample PAINT Screen 364

Defining a Box on the Screen 366

Identifying Fields: ASSIGN 367

Viewing the Screen: FIDEL 369

Generating CRTFORMs Automatically 370

Terminating Screen Painter 371

Creating and Rebuilding a Data Source 374
Creating a New Data Source: The CREATE Command 374

Use the CREATE Command 375
Creating a FOCUS Data Source 376

Rebuilding a Data Source: The REBUILD Command 377

Before You Use REBUILD: Prerequisites 377

Use the REBUILD Facility 378

Controlling the Frequency of REBUILD Messages 379

Control the Frequency of REBUILD Messages 380
Controlling the Display of REBUILD Messages 380

Optimizing File Size: The REBUILD Subcommand 381

Use the REBUILD Subcommand 381

Using the REBUILD Subcommand 383
Using the REBUILD Subcommand 383

Changing Data Source Structure: The REORG Subcommand 384

Use the REORG Subcommand 385

Using the REORG Subcommand 387
Using the REORG Subcommand 388

Indexing Fields: The INDEX Subcommand 389

Use the INDEX Subcommand 390

ibi™ FOCUS® Maintaining Databases

12 | Contents

Using the INDEX Subcommand 391
Using the INDEX Subcommand 391

Creating an External Index: The EXTERNAL INDEX Subcommand 392

Use the EXTERNAL INDEX Subcommand 393
External Index Statistics 395

Special Considerations for REBUILD EXTERNAL INDEX 395

Concatenating Index Databases 396

Positioning Indexed Fields 397

Activating an External Index 397

Activate an External Index 398

Checking Data Source Integrity: The CHECK Subcommand 399

Use the CHECK Subcommand 399

Using the CHECK Option 400
Using the Check Option (File Undamaged) 400

Confirming Structural Integrity Using ? FILE and TABLEF 401

Verify REBUILD CHECK Using ? FILE and TABLEF 401
Checking the Integrity of the EMPLOYEE Data Source 402

Changing the Data Source Creation Date and Time: The TIMESTAMP
Subcommand 403

Use the TIMESTAMP Subcommand 404

Converting Legacy Dates: The DATE NEW Subcommand 405
Using the DATE NEW Subcommand 405

How DATE NEW Converts Legacy Dates 406

DATE NEW Usage Notes 407

What DATE NEW Does Not Convert 408

Using the New Master File Created by DATE NEW 408
Sample Master File: Before and After Conversion by DATE NEW 409

Action Taken on a Date Field During REBUILD/DATE NEW 410

Creating a Multi-Dimensional Index: The MDINDEX Subcommand 410

Directly Editing FOCUS Databases With SCAN 411

ibi™ FOCUS® Maintaining Databases

13 | Contents

Introduction 411

SCAN vs. MODIFY, HLI, and FSCAN 412

Entering SCAN Mode 413

Moving Through the Database and Locating Records 413

What You See in SCAN Display Lines 414

Identifying Data Fields in Scan 415

Ways to Move Through Databases 415

TOP 417

LOCATE 417

TLOCATE 417

NEXT 418

JUMP 419

UP 420

Displaying Field Names and Field Contents 420

TYPE Subcommand 421

DISPLAY Subcommand 421

Suppressing the Display 421

Show Lists and Short-Path Records 421

Adding Segment Instances 423

Moving Segment Instances 424

Changing Field Contents 424

Deleting Fields and Segments 424

Saving Changes Made in SCAN Sessions 425

Ending the Session 425

Exiting and Saving the Changes 425

Exiting Without Saving the Changes 425

Auxiliary SCAN Functions 426

Displaying a Previous SCAN Subcommand 426

Preset X or Y to Execute a SCAN Subcommand 426

Subcommand Summary 427

AGAIN Command 429

ibi™ FOCUS® Maintaining Databases

14 | Contents

Use the AGAIN Command 429
Using the AGAIN Command 429

Commands Similar to Again 430

BACK Command 430

Use the BACK Command 430
Using the BACK Command 430

Commands Similar to BACK 431

CHANGE Command 431

Use the CHANGE Command 431

Using the CHANGE Command 432
Single-Field Change With the CHANGE Command 432

Sequential Changes With the CHANGE Command 432

Match Logic Changes With the CHANGE Command 433

Commands Similar to CHANGE 433

CRTFORM Command 434

Use the CRTFORM Command 434

Using the CRTFORM Command 434
Specifying Individual Fields With CRTFORM 434

Specifying All Fields Between Two Named Fields With CRTFORM 435

Commands Similar to CRTFORM 435

DELETE Command 435

Use the DELETE Command 436
Using DELETE 436

Commands Similar to DELETE 436

DISPLAY Command 437

Use the DISPLAY Command 437
Using DISPLAY 437

Commands Similar to DISPLAY 438

END Command 438

Use the END Command 438
Using the END Command 438

ibi™ FOCUS® Maintaining Databases

15 | Contents

Commands Similar to END 438

FILE Command 439

Use the FILE Command 439
Using the FILE Command 439

Commands Similar to FILE 439

INPUT Command 439

Use the INPUT Command 440
Using the INPUT Command 440

Commands Similar to INPUT 441

JUMP Command 441

Use the JUMP Command 441
Using the JUMP Command 441

Commands Similar to JUMP 442

LOCATE Command 442

Use the LOCATE Command 442
Using the LOCATE Command 444

Commands Similar to LOCATE 444

MARK Command 444

Use the MARK Command 445
Using the MARK Command 445

Commands Similar to MARK 445

MOVE Command 445

Use the MOVE Command 446
Using the MOVE Command 446

Commands Similar to MOVE 446

NEXT Command 446

Use the NEXT Command 446
Using the NEXT Command 447

Commands Similar to NEXT 447

QUIT Command 447

Use the QUIT Command 448

ibi™ FOCUS® Maintaining Databases

16 | Contents

Using the QUIT Command 448

Commands Similar to QUIT 448

REPLACE Command 449

Use the REPLACE Command 449

Using the REPLACE Command 450
Replacing a Field Value With REPLACE 450

Replacing Multiple Field Values With REPLACE 450

Replacing a Key Field Value With REPLACE 450

Commands Similar to REPLACE 451

SAVE Command 451

Use the SAVE Command 452
Using the SAVE Command 452

Commands Similar to SAVE 452

SHOW Command 452

Use the SHOW Command 452

Using the SHOW Command 453
Selecting a Logical View (a Show List) 453

Selecting All Fields Between Two Named Fields 454

Selecting All Fields 454

Commands Similar to SHOW 454

TLOCATE Command 455

Use the TLOCATE Command 455
Using the TLOCATE Command 457

Commands Similar to TLOCATE 457

TOP Command 457

Use the TOP Command 457
Using the TOP Command 457

Commands Similar to TOP 458

TYPE Command 458

Use the TYPE Command 458
Using the TYPE Command 459

ibi™ FOCUS® Maintaining Databases

17 | Contents

Commands Similar to TYPE 459

UP Command 459

Use the UP Command 459
Using the UP Command 460

Commands Similar to UP 460

X and Y Commands 460

Use the X and Y Commands 460
Using the X and Y Commands 461

Commands Similar to X and Y 461

? Command 461

Use the ? Command 461
Using the ? Command 462

Commands Similar to ? 462

Directly Editing ibi FOCUS Databases With FSCAN 463
Introduction 463

Databases on Which FSCAN Can Operate 463

Segments on Which FSCAN Can Operate 464

Fields That FSCAN Can Display 465

Database Integrity Considerations 465

DBA Considerations 466

Entering FSCAN 466

Entering FSCAN With a SHOW List 467

Enter FSCAN With a SHOW List 467
Entering FSCAN With a SHOW List 467

Allowing Uppercase and Lowercase Alpha Fields 468

Specify Case Sensitivity in FSCAN 469

Using FSCAN 469

The FSCAN Facility and ibi FOCUS Structures 471

Scrolling the Screen 475

Scroll the Screen Forward 475

ibi™ FOCUS® Maintaining Databases

18 | Contents

Scrolling Forward 476

Scroll the Screen Backward 477

Scroll the Screen to the Right and the Left 477
Scrolling the Screen 478

Selecting a Specific Instance by Defining a Current Instance 479

Define a Current Instance 479
Defining a Current Instance: The "/" Prefix 479

Define the First and Last Instances of a Segment on Display: The FIRST, LAST,
and TOP Commands 480

Defining the Last Instance as the Current Instance With LAST 481

Locate an Instance Based on Field Values: The LOCATE Command 482
Locating an Instance Based on Field Values 483

Find an Instance in a Group: The FIND Command 485
Finding an Instance in a Group 487

Displaying Descendant Segments: The CHILD, PARENT, and JUMP Commands 488

Display a Child Segment 488
Displaying a Child Segment 489

Display the Parent Segment 491

Display the First Child of the Next Parent Instance 491
Displaying the First Child of the Next Parent Instance 491

Displaying a Single Instance on One Screen: The SINGLE and MULTIPLE
Commands 491

Using SINGLE Mode 492

Modifying the Database 493

Adding New Segment Instances: The "I" Prefix 493
Adding New Segment Instances 494

Updating Non-Key Field Values 495

Type Over Field Values 496
Typing Over Field Values 496

Replace Field Values: The REPLACE Command 497
Using REPLACE 497

ibi™ FOCUS® Maintaining Databases

19 | Contents

Change Character Strings Within Field Values: The CHANGE Command 498
Using CHANGE 499

Changing Key Field Values 499

Type Over Key Field Values: The KEY Command 500
Using KEY 501

Change Key Field Values Using the REPLACE KEY Command 502
Using REPLACE KEY 503

Deleting Segment Instances: The DELETE Command 503

Delete Segment Instances 503
Using DELETE 504

Repeating a Command: ? and = 505

Display Previous Commands: The ? Command 505

Executing the Previous Command: The = Command 506

Saving Changes: The SAVE Without Exiting FSCAN Command 506

Exiting FSCAN: The END, FILE, QQUIT, and QUIT Commands 506

The FSCAN HELP Facility 507

Syntax Summary 508

Summary of Commands 508

Backward 508

CHAnge 509

CHIld 509

DElete 510

DOwn [n] 510

DIsplay Field Name 510

End 510

FILe 511

FINd 511

FIrst 513

FOrward 513

Help 513

Input 513

ibi™ FOCUS® Maintaining Databases

20 | Contents

Jump 513

LAst 514

LEft 514

LOcate 514

Key 516

Multiple 516

Next [n] 516

Parent 516

QUit 517

QQuit 517

REPlace 517

REPlace KEY 517

RESet 518

RIght 518

SAve 519

SIngle 519

Top 519

? 519

= 519

Summary of PF Keys 519

Summary of Prefix Area Commands 520

Master Files and Diagrams 522
Creating Sample Data Sources 522

EMPLOYEE Data Source 524

EMPLOYEE Master File 526

EMPLOYEE Structure Diagram 527

JOBFILE Data Source 527

JOBFILE Master File 528

JOBFILE Structure Diagram 528

EDUCFILE Data Source 529

ibi™ FOCUS® Maintaining Databases

21 | Contents

EDUCFILE Master File 529

EDUCFILE Structure Diagram 529

SALES Data Source 530

SALES Master File 531

SALES Structure Diagram 531

PROD Data Source 532

PROD Master File 532

PROD Structure Diagram 533

CAR Data Source 533

CAR Master File 534

CAR Structure Diagram 535

LEDGER Data Source 535

LEDGER Master File 536

LEDGER Structure Diagram 536

FINANCE Data Source 536

FINANCE Master File 536

FINANCE Structure Diagram 537

REGION Data Source 537

REGION Master File 537

REGION Structure Diagram 538

COURSES Data Source 538

COURSES Master File 538

COURSES Structure Diagram 538

EMPDATA Data Source 539

EMPDATA Master File 539

EMPDATA Structure Diagram 540

EXPERSON Data Source 540

EXPERSON Master File 540

EXPERSON Structure Diagram 541

TRAINING Data Source 541

TRAINING Master File 541

ibi™ FOCUS® Maintaining Databases

22 | Contents

TRAINING Structure Diagram 542

COURSE Data Source 542

COURSE Master File 542

COURSE Structure Diagram 543

JOBHIST Data Source 543

JOBHIST Master File 543

JOBHIST Structure Diagram 544

JOBLIST Data Source 544

JOBLIST Master File 544

JOBLIST Structure Diagram 545

LOCATOR Data Source 545

LOCATOR Master File 545

LOCATOR Structure Diagram 546

PERSINFO Data Source 546

PERSINFO Master File 546

PERSINFO Structure Diagram 547

SALHIST Data Source 547

SALHIST Master File 547

SALHIST Structure Diagram 547

PAYHIST File 548

PAYHIST Master File 548

PAYHIST Structure Diagram 548

COMASTER File 549

COMASTER Master File 549

COMASTER Structure Diagram 550

VIDEOTRK, MOVIES, and ITEMS Data Sources 551

VIDEOTRK Master File 551

VIDEOTRK Structure Diagram 552

MOVIES Master File 553

MOVIES Structure Diagram 553

ITEMS Master File 554

ibi™ FOCUS® Maintaining Databases

23 | Contents

ITEMS Structure Diagram 554

VIDEOTR2 Data Source 555

VIDEOTR2 Master File 555

VIDEOTR2 Structure Diagram 555

Gotham Grinds Data Sources 556

GGDEMOG Master File 557

GGDEMOG Structure Diagram 558

GGORDER Master File 558

GGORDER Structure Diagram 558

GGPRODS Master File 559

GGPRODS Structure Diagram 560

GGSALES Master File 560

GGSALES Structure Diagram 561

GGSTORES Master File 561

GGSTORES Structure Diagram 562

Century Corp Data Sources 562

CENTCOMP Master File 563

CENTCOMP Structure Diagram 564

CENTFIN Master File 564

CENTFIN Structure Diagram 565

CENTHR Master File 565

CENTHR Structure Diagram 568

CENTINV Master File 568

CENTINV Structure Diagram 569

CENTORD Master File 569

CENTORD Structure Diagram 570

CENTQA Master File 571

CENTQA Structure Diagram 572

CENTGL Master File 573

CENTGL Structure Diagram 574

CENTSYSF Master File 574

ibi™ FOCUS® Maintaining Databases

24 | Contents

CENTSYSF Structure Diagram 574

CENTSTMT Master File 575

CENTSTMT Structure Diagram 575

CENTGLL Master File 576

CENTGLL Structure Diagram 577

Error Messages 578
Accessing Error Files 578

Displaying Messages 578

ibi Documentation and Support Services 580

Legal and Third-Party Notices 581

ibi™ FOCUS® Maintaining Databases

25 | Modifying Data Sources With MODIFY

Modifying Data Sources With MODIFY
These topics describe how to maintain FOCUS-supported data sources using the FOCUS
MODIFY facility. MODIFY requests can add, update, and delete data from FOCUS data
sources, including HOLD files converted to FOCUS format (see the Creating Reports
manual).

The MODIFY facility is also used to maintain data in relational structures, Adabas data
sources, and VSAM data sources. See documentation for specific data adapters for details
about using MODIFY in those environments.

MODIFY can also be used to load fixed-format sequential data sources that consist of a
single segment. Data is loaded in the order in which it is input. Update and delete
operations are not supported with this type of data source. If the file already exists, new
data is loaded at the end. In order to append data to a sequential data source with
HiperFOCUS ON, the record format must be fixed.

Introduction
A MODIFY request processes a transaction in three steps:

1. It reads a transaction for incoming data values. Transactions can come from external
data sources, may be supplied by the user in screens or in response to prompts, or
can be included as part of the request itself.

2. It selects a segment instance for changing or deleting, or confirms that a segment
instance does not exist yet in the data source.

3. It changes or deletes the segment instance it selected, or adds a new segment
instance.

This is shown graphically in the following diagram:

ibi™ FOCUS® Maintaining Databases

26 | Modifying Data Sources With MODIFY

The request first reads a transaction (that is, a related collection of incoming data values).
Describing Incoming Data describes the FIXFORM, FREEFORM, PROMPT, and CRTFORM
statements that describe transactions read by the request.

After it reads a transaction, the request selects a segment instance in the data source to
modify. It does this in either of two ways:

l It searches the data source for segment instances containing the same values as the
transaction. This is done with a MATCH statement.

l It selects the next segment instance after the current position. This is done with a
NEXT statement.

The MATCH and NEXT statements are discussed in Modifying Data: MATCH and NEXT.

The request then either adds, updates, or deletes data source values using the incoming
values, or it rejects the transaction.

Examples of MODIFY Processing
This section provides examples of MODIFY processing that add, update and delete data
from a data source.

Each request indicates the data source it is modifying, the method of reading data, the
transaction values it searches for in the data source, and the actions it takes depending on
whether the values are in the data source or not. If it is reading a transaction data source,
the request must indicate the name of the data source.

#d09modifydatasources1086863

ibi™ FOCUS® Maintaining Databases

27 | Modifying Data Sources With MODIFY

Adding Data to a Data Source
The following sample MODIFY request adds new employee data to the EMPLOYEE data
source. When you run the request, it prompts you for an employee ID number, last name,
and first name. After you enter these three values, the request adds the information to the
data source and prompts you for three more values for the same fields. When you are
finished entering data, end the execution by entering the word END to any prompt.

The request is as follows:

1. MODIFY FILE EMPLOYEE
2. PROMPT EMP_ID LAST_NAME FIRST_NAME
3. MATCH EMP_ID
4. ON MATCH REJECT
5. ON NOMATCH INCLUDE
6. DATA

The parts of the request are as follows:

1. The MODIFY FILE EMPLOYEE statement indicates that the request modifies the
EMPLOYEE data source.

2. The PROMPT statement indicates that the request will prompt you for the employee's
ID (EMP_ID), last name, and first name on the terminal.

3. The MATCH EMP_ID statement searches the data source for the employee ID that you
entered.

4. If the ID is already in the data source (that is, an ID in the data source matches the ID
you entered), the MATCH statement rejects your transaction.

5. If the ID is not yet in the data source, the MATCH statement adds your transaction to
the data source.

6. The DATA statement begins prompting for data.

Updating Data in a Data Source
MODIFY requests can update data in a data source, replacing data source values with
transaction (incoming data) values. The following sample request updates employee
department assignments and salaries. When you run the request, it reads the data from a

ibi™ FOCUS® Maintaining Databases

28 | Modifying Data Sources With MODIFY

separate data source called EMPDEPT. Each record in the data source consists of three
fields:

l The EMP_ID field contains the employee ID number. It is the first nine characters on
the record.

l The DEPARTMENT field contains the new department assignment, and is the next ten
characters.

l The CURR_SAL field contains the new salary, and is the last eight characters.

This is the EMPDEPT data source:

* * * TOP OF FILE * * *
071382660PRODUCTION27500.00
112847612SALES 24800.75
451123478MARKETING 26950.00
* * * END OF FILE * * *

The request is as follows:

MODIFY FILE EMPLOYEE
1. FIXFORM EMP_ID/9 DEPARTMENT/10 CURR_SAL/8
2. MATCH EMP_ID
2. ON NOMATCH REJECT
2. ON MATCH UPDATE DEPARTMENT CURR_SAL
3. DATA ON EMPDEPT
4. END

The parts of the request are as follows:

1. The FIXFORM statement indicates that the transaction records are in fixed positions
in the EMPDEPT data source and describes the positions of the fields in each record.

2. The MATCH EMP_ID statement searches the data source for the employee ID in each
record. If the ID is not in the data source, the request rejects the record. If the ID is in
the data source, the request replaces the DEPARTMENT and CURR_SAL values in the
data source with the values on the record.

3. The DATA statement indicates that the data is contained in the data source
EMPDEPT. EMPDEPT is the ddname to which the data file is allocated, and can be
different from the system file name.

4. The END statement completes the request and initiates processing.

ibi™ FOCUS® Maintaining Databases

29 | Modifying Data Sources With MODIFY

Deleting Data From a Data Source
This sample request deletes information on employees from the data source. When you run
the request, it prompts you for an employee ID. When you enter the ID, it deletes all
information relating to that employee from the data source.

MODIFY FILE EMPLOYEE
1. PROMPT EMP_ID
2. MATCH EMP_ID

ON MATCH DELETE
ON NOMATCH REJECT

3. DATA

The parts of the request are as follows:

1. The PROMPT statement indicates that the request will prompt you for the employee's
ID.

2. The MATCH statement searches for the employee ID in the data source. If the ID is in
the data source, the request deletes all information relating to the employee from
the data source.

3. The DATA statement begins prompting for data.

Additional MODIFY Facilities
You can also instruct the request to perform other tasks:

l Test transaction values to determine whether they are acceptable. You do this using
the VALIDATE statement, described in Computations: COMPUTE and VALIDATE.

l Perform calculations and store the results in either transaction or temporary fields.
You do this using the COMPUTE statement, described in Computations: COMPUTE
and VALIDATE.

l Display messages that contain values from transaction fields, temporary fields, or
data source fields. You do this using the TYPE statement, discussed in Messages:
TYPE, LOG, and HELPMESSAGE.

l Record transactions processed by the request using the TYPE and LOG statements
described in Messages: TYPE, LOG, and HELPMESSAGE. These statements can sort

#d09modifydatasources1087886
#d09modifydatasources1087886
#d09modifydatasources1087886
#d09modifydatasources1088627
#d09modifydatasources1088627
#d09modifydatasources1088627

ibi™ FOCUS® Maintaining Databases

30 | Modifying Data Sources With MODIFY

accepted transactions from rejected transactions and can sort rejected transactions
by reason for rejection.

You can design MODIFY requests using Case Logic, a method which divides requests into
sections called "cases." The request can branch to the beginning of a case during
execution. Case Logic, discussed in Case Logic, makes it possible for requests to offer the
terminal operator selections and to process transactions in different ways.

You can design MODIFY requests that process multiple segment instances at one time.
Multiple Record Processing is described in Multiple Record Processing, including the
modification of several segment instances on one FIDEL screen.

Notes on Using JOIN Syntax With MODIFY
For software that supports the MODIFY facility, note the following:

l The JOIN command allows you to read (but not to modify) data in a second FOCUS
data source using the MODIFY LOOKUP function. To modify multiple FOCUS data
sources in one request, use the COMBINE command.

l The LOOKUP function in MODIFY requests cannot be used on a DEFINE-based JOIN;
DEFINE is not evaluated during a MODIFY procedure.

l The MODIFY LOOKUP function cannot retrieve data in a cross-referenced segment
using concatenated fields (a multi-field join).

FOCUS offers a variety of other advanced features that facilitate use of the MODIFY
command in more complex applications. These features are listed below and described in
Advanced Facilities:

l The COMBINE command for modifying multiple FOCUS data sources in one MODIFY
request.

l The ACTIVATE and DEACTIVATE statements for activating and deactivating fields.

l The Checkpoint and Absolute File Integrity facilities and the COMMIT and ROLLBACK
Subcommands for protecting FOCUS data sources from system failures.

l The ECHO facility for displaying the logical structure of MODIFY requests.

l Dialogue Manager system variables that record execution statistics every time a
MODIFY request is run.

l FOCUS query commands that display statistical information on MODIFY request

ibi™ FOCUS® Maintaining Databases

31 | Modifying Data Sources With MODIFY

executions and FOCUS data sources.

The rest of this introduction contains:

l The basic syntax of MODIFY requests.

l Instructions for executing MODIFY requests.

l A summary of facilities other than MODIFY that can be used to maintain FOCUS data
sources.

l A short description of the parts of the EMPLOYEE data source most used in the
examples.

Multiple User Access
Suppose you need to update a particular data source, but three other users have been
assigned to work on the data source at the same time. How can you be sure that one
user's changes will not override or overwrite another user's changes? MODIFY, used in
conjunction with the Simultaneous Usage (SU) facility, ensures data integrity under those
circumstances.

To enter SU mode, you initiate a background job process called a FOCUS Database Server.
The user ids running FOCUS or Host Language Interface programs are called source
machines. The users (using their source machines) send requests and transactions to the
FOCUS Database Server, which processes the transactions and transmits the retrieved data
or messages back to the source machine. The following diagram illustrates the process:

ibi™ FOCUS® Maintaining Databases

32 | Modifying Data Sources With MODIFY

Under SU, when you run a MODIFY request

1. The request identifies the instance to be changed with MATCH or NEXT commands.

2. The source machine forwards the transaction values to the FOCUS Database Server,
which uses the values to retrieve the correct instance.

3. The FOCUS Database Server retrieves the original data source instance, holds one
copy, and sends another to the source (user id) that requested the data.

4. The source machine updates its copy of the instance with the new field values, or
marks the copy for deletion and sends the updated copy back to the FOCUS
Database Server. The FOCUS Database Server compares the copy of the instance that
it saved with the instance stored in the data source to check whether the data source
instance has since been updated by another user.

At this point, two courses of action are possible:

l If the copy and the current instance in the data source are the same, FOCUS
changes the instance using the copy from the source machine.

l If the original and the current instance in the data source are different, SU
signals a conflict and rejects the source machine copy.

Notice that a source machine may work on separate, locally controlled data sources.

ibi™ FOCUS® Maintaining Databases

33 | Modifying Data Sources With MODIFY

SU Features
With SU you can display a list of the active source machine userids and the fields of the
FOCUS Database Server data sources from your source machine, and record all user
actions in a sequential data source called HLIPRINT. The HLIPRINT data source records
each user action, the data source on which the action took place, the segment read or
modified by the action, and the user id that issued the action. It can also include the:

l Date and time of the action.

l CPU time it took to execute the action.

l Number of I/O operations required to execute the action.

l Name of the FOCUS stored procedure executing the action, and the name of the case
executing the action (for MODIFY requests using Case Logic).

Another SU feature is the FOCURRENT variable that alerts users to transaction conflicts.
When you submit a MODIFY transaction in SU, FOCUS stores a value in a variable called
FOCURRENT to indicate what happened to the transaction. You can design your MODIFY
requests to test FOCURRENT and take different actions, depending on whether the
transaction was accepted or rejected. The following request tests the FOCURRENT variable:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL
CASE NEWSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL
ON MATCH IF FOCURRENT EQ 0 GOTO TOP;
ON MATCH TYPE

"VALUE CHANGED. NEW VALUE <D.CURR_SAL>"
ENDCASE
DATA

The request prompts for an employee ID and then branches to the case NEWSAL. If the ID
is in the data source, you are prompted for the current salary of the employee; the current
salary is updated on the source machine copy. The transaction is submitted.

Next, the request tests the values of the variable FOCURRENT:

l If FOCURRENT is 0, the transaction is accepted and the request prompts you for the

ibi™ FOCUS® Maintaining Databases

34 | Modifying Data Sources With MODIFY

next EMP_ID.

l If FOCURRENT is not 0, the transaction is rejected. The request branches back to the
top of the procedure. If the instance is found, FOCUS prompts for the current salary
and resubmits the transaction. If the instance was deleted, the request reports back a
NOMATCH condition and prompts you for the next transaction.

By testing the FOCURRENT variable, MODIFY requests can process transactions after they
have been rejected because of conflicts.

Managing Your Data: Advanced Features
In addition to the basic operations of the MODIFY facility, many other features are available
to help you refine your MODIFY requests. This section describes them briefly.

Feature Description

Absolute File
Integrity

Causes FOCUS to write changes to the data source to
another section of the disk rather than overwriting the
data source. If the request executes normally, the new
section of the disk becomes part of the data source. If
the system fails, the original data source is preserved.

ACTIVATE Activates an inactive transaction field. It declares a
transaction field to be present so the transaction field
can be used for matching, including, and updating. The
MOVE option equates the transaction value of the
transaction field to the corresponding data source field.
The RETAIN option does not move the data source value
to the transaction field.

DEACTIVATE
(RETAIN)

Deactivates a transaction field. The DEACTIVATE
command changes a transaction value to blank if
alphanumeric, to zero if numeric, or to the MISSING
transaction value for transaction fields described by the
MISSING=ON attribute. It also deactivates the
corresponding data source field. The RETAIN option
deactivates the field without changing its value.

ibi™ FOCUS® Maintaining Databases

35 | Modifying Data Sources With MODIFY

Feature Description

CHECK Limits the number of transactions lost if the system fails
when you are modifying a data source by identifying a
checkpoint. CHECK activates the Checkpoint facility that
enables FOCUS to write more frequently to the data
source. (The point at which the transactions are written
is called the "checkpoint.") The Checkpoint Facility is
useful in cases when a system failure occurs while
MODIFY requests are executing.

COMBINE Enables you to modify multiple FOCUS, relational, or
Adabas data sources in one MODIFY request.

COMMIT and
ROLLBACK

Control the changes made to data sources and protect
the data sources from system failures. COMMIT and
ROLLBACK improve SU performance; here the ability to
group individual transactions as one logical transaction
reduces the number of individual transactions and the
amount of communication needed between the FOCUS
Database Server and source userids. COMMIT and
ROLLBACK are used in lieu of CHECK.

COMPUTE Enables you to modify incoming data field values and to
define temporary fields.

DECODE Enables you to compare transaction values against a list
of acceptable and unacceptable values.

LOOKUP Tests for the existence of non-indexed values in cross-
referenced FOCUS, relational, or Adabas data sources
and makes these values available for other
computations.

ECHO Displays the logical structure of MODIFY requests. This
feature is a good debugging tool for analyzing a MODIFY
request, especially if the logic is complex and MATCH
and NEXT defaults are used.

ibi™ FOCUS® Maintaining Databases

36 | Modifying Data Sources With MODIFY

Feature Description

FIND Searches another FOCUS, relational, or Adabas data
source for the presence of the transaction value.

LOG Enables you to record transactions and error messages
in separate files automatically, and to control the display
of rejection messages at the terminal.

MULTIPLE RECORD
PROCESSING
COMMANDS

Enable you to process multiple segment instances at one
time and are often used with CRTFORM. A few of the
important commands used in multiple record processing
are GETHOLD and REPEAT. GETHOLD retrieves
transaction records from memory and uses them to
modify a data source; GETHOLD collects and retrieves
segment instances. REPEAT does re-iterative processing.

TYPE Displays or stores messages in a separate file that you
prepare.

VALIDATE Enables you to reject transactions that contain
unacceptable values.

MODIFY Command Syntax
The general syntax of the MODIFY command is

MODIFY FILE filename [ECHO|TRACE]
.
.

statements .
.

DATA [ON ddname|VIA program]
.

incoming data .
.

[END]

where:

ibi™ FOCUS® Maintaining Databases

37 | Modifying Data Sources With MODIFY

MODIFY FILE

Begins the request.

filename

Is the name of the FOCUS, relational, fixed format sequential, VSAM, or Adabas data
source you are modifying. This name must be the same as the Master File of the data
source. For information about modifying non-FOCUS data sources, see the appropriate
data adapter documentation.

Note: Although you can use MODIFY to load a fixed-format sequential file, the
sequential data source must consist of a single segment, and data is loaded
in the order in which it is input. Update and delete operations are not
supported. To append data to an existing sequential data source with
HiperFOCUS ON, the record format must be fixed.

ECHO

Invokes the ECHO facility, which displays the request logic (see Displaying MODIFY
Request Logic: The ECHO Facility).

TRACE

Invokes the TRACE facility, which displays the name of each case that is entered during
the execution of the request if the request uses Case Logic (see Tracing Case Logic: The
TRACE Facility).

statements

Are the MODIFY statements in the request. Each statement must begin on a separate
line.

DATA

Specifies the source of incoming data. Note that nothing should come between this
statement and the END statement, unless you are supplying the incoming data in the
request itself. In that case, place the data after the DATA statement.

ON ddname

Is a DATA statement parameter. See Specifying the Source of Data: The DATA Statement.

#d09modifydatasources1090937
#d09modifydatasources1090937
#d09modifydatasources1089603
#d09modifydatasources1089603
#d09modifydatasources1086816

ibi™ FOCUS® Maintaining Databases

38 | Modifying Data Sources With MODIFY

VIA program

Is a DATA statement parameter.

incoming data

Is the data you are using to modify the data source if you are supplying the data in the
request itself.

END

Concludes the request. Do not add this statement if the request contains PROMPT
statements (PROMPT statements are discussed in Prompting for Data One Field at a
Time: The PROMPT Statement).

Executing MODIFY Requests
You can enter and run a MODIFY request either by entering it at the terminal or by running
it as a stored procedure (stored procedures are discussed in the Developing Applications
manual). When you start execution of the request, FOCUS executes the request for each
transaction until:

l There is no more data to be read in the incoming transaction data source (the file
containing the incoming data).

l The user signals a halt (if the request is prompting the user for data).

l The STOP statement signals a halt to the processing of transactions in an incoming
data source (see Reading Selected Portions of Transaction Data Sources: The START
and STOP Statements).

l The request encounters a GOTO EXIT statement.

Execute a Request as a Stored Procedure
To enter a MODIFY request as a stored procedure, type the request in a procedure file
(procedures are discussed in the Developing Applications manual). If you are including the
incoming data in the request (which you might do for testing purposes), place the data
after the DATA statement in the stored procedure. End the request with the END statement
unless the request contains PROMPT statements.

#d09modifydatasources1086380
#d09modifydatasources1086380
#d09modifydatasources1086836
#d09modifydatasources1086836

ibi™ FOCUS® Maintaining Databases

39 | Modifying Data Sources With MODIFY

After saving the file, enter at the FOCUS prompt

EX focexec

where focexec is the name of the stored procedure.

FOCUS responds with an echo of the file name, date, and time as follows:

filename ON date AT time

The request then either begins prompting you for data or starts reading the stored
transactions.

When the request finishes execution, it displays the following statistics

TRANSACTIONS: TOTAL = n ACCEPTED = n REJECTED = n
SEGMENTS: INPUT = n UPDATED = n DELETED = n

where:

n

Is an integer.

TRANSACTIONS

Are the transactions processed by the request.

TOTAL

Is the total number of transactions processed.

ACCEPTED

Is the number of transactions accepted by the request and used to maintain the data
source.

REJECTED

Is the number of transactions rejected by the request.

SEGMENTS

Is the number of segment instances modified by the request.

ibi™ FOCUS® Maintaining Databases

40 | Modifying Data Sources With MODIFY

INPUT

Is the number of new segment instances.

UPDATED

Is the number of instances updated.

DELETED

Is the number of instances deleted.

To suppress this message, include the following command in the procedure before the
MODIFY request:

SET MESSAGE = OFF

Execute MODIFY Requests Online
To execute a MODIFY request online, enter

MODIFY FILE filename

where

filename

is the FOCUS name of the data source you are modifying.

FOCUS responds with an echo of the data source name, date, and time as follows:

filename ON date AT time
ENTER SUBCOMMANDS:

Enter each MODIFY statement in the request (such as FIXFORM, MATCH, COMPUTE, TYPE)
followed by a DATA statement and the incoming data (if the data is not coming from
another data source or from the terminal). Then enter the END statement (unless the
request contains PROMPT statements).

The request can then start prompting you for data, read from an external data source, or
accept transaction records from the terminal (if the request contains FIXFORM or
FREEFORM statements but does not specify the ddname of an external data source).

ibi™ FOCUS® Maintaining Databases

41 | Modifying Data Sources With MODIFY

If it accepts transaction records from the terminal, the request appears:

START:

Start entering the data, one record at a time. Every time you enter a record, the request
processes it and displays a message if it rejects the record. After you have entered the
data, enter the END statement. This ends execution.

If you are entering a MODIFY request online and you want to cancel the request and start
over, enter QUIT. This returns you to the FOCUS prompt.

If you enter a statement online that FOCUS considers an error, it will prompt you for a
correction. This error correction facility is described in the Creating Reports manual.

You should not enter MODIFY requests online unless the requests are short. If you enter a
statement you want to change, you must quit the request and start over.

The example below shows a sample MODIFY request being entered online:

>
modify file employee

EMPLOYEEFOCUS A1 ON 08/15/85 AT 16.36.05
ENTER SUBCOMMANDS:

freeform emp_id curr_sal
match emp_id
on nomatch reject
on match update curr_sal
data
START:

emp_id=071382660, curr_sal=21400.50, $
emp_id=112847612, curr_sal=20350.00, $
emp_id=117593129, curr_sal=22600.34, $
end

Notice that when the request finishes execution, it displays the following statistics:

TRANSACTIONS: TOTAL= 3 ACCEPTED= 3 REJECTED= 0
SEGMENTS: INPUT= 0 UPDATED= 3 DELETED= 0

These statistics are explained in the preceding section.

ibi™ FOCUS® Maintaining Databases

42 | Modifying Data Sources With MODIFY

Other Ways of Maintaining FOCUS Data Sources
Although the MODIFY command is one of the primary methods of maintaining FOCUS data
sources, there are four other facilities for changing data in FOCUS data sources:

l The Maintain facility allows you to maintain data sources (including FOCUS, DB2,
SQL/DS, Oracle, Teradata, and VSAM data sources) using event-driven and set-based
processing in with a Graphical User Interface. The Maintain facility is described in
01intro8.htm#d01intro1084474Introduction to Maintain, through Expressions
Reference.

l The FSCAN and SCAN facility allows you to edit FOCUS data sources interactively on
a field-by-field basis. You enter a subcommand to make each change. The facility can
update key fields. The FSCAN facility is the subject of Directly Editing ibi FOCUS
Databases With FSCAN. SCAN is the subject of Directly Editing FOCUS Databases With
SCAN.

l The Host Language Interface (HLI) allows you to maintain FOCUS data sources from
computer programs written in BAL, FORTRAN, COBOL, and PL/1. HLI is covered in the
Host Language Interface Users Manual.

Unlike the FSCAN facility mentioned above, the MODIFY command allows you to make
many changes with one execution. It can run in both interactive and batch modes. It will
prompt you for the values it needs to make the changes, or it may read the values from a
transaction data source. However, it cannot update key fields.

Note that although the FOCUS Report Writer can write reports from many kinds of non-
FOCUS data sources (such as ISAM, VSAM, and IMS data sources), the MODIFY command
maintains only FOCUS data sources, and with the proper interface, VSAM data sources, and
SQL and Teradata tables.

You can only MODIFY one partition of a partitioned FOCUS data source at one time. You
must explicitly allocate the partition to be modified. Alternatively, you can create separate
Master Files for each partition for use in MODIFY procedures. For more information about
partitioned FOCUS data sources, see the Describing Data manual.

The EMPLOYEE Data Source
The examples in this chapter use the EMPLOYEE data source, a data source used to record
employee information for a company. The Master File and the diagram of the entire data

../../../../../Content/maintain-databases/01intro8.htm#d01intro1084474
../../../../../Content/maintain-databases/01intro8.htm#d01intro1084474

ibi™ FOCUS® Maintaining Databases

43 | Modifying Data Sources With MODIFY

source structure are shown in Master Files and Diagrams. Most of the examples use three
segments in the EMPLOYEE data source:

l The EMPINFO segment contains information directly relating to employees in a
company: employee ID, last name, first name, hire date, department assignment,
current salary, job code, and classroom hours.

l The SALINFO segment contains information relating to employees' monthly pay: the
pay date and the amount of pay.

l The DEDUCT segment contains information about the deductions taken off each
monthly pay check: the type of deduction and the amount of the deduction.

Describing Incoming Data
This section describes the statements that read and describe transactions. These are the
FIXFORM, FREEFORM, PROMPT, and CRTFORM statements. The last part of the section
discusses the DATA, START, and STOP statements.

To modify a data source, the MODIFY request first reads incoming data. It then uses this
data to select the segment instances that must be changed or deleted, or to confirm that
the instances have not been entered yet and to add them. The data may be in fixed or
comma-delimited format, it may be stored in sequential data sources or within the request
itself, and it may be entered directly by users on terminals.

There are four MODIFY statements that read and describe incoming data. Some read data
from sequential data sources and the request itself; some prompt users on terminals for
data. They are:

FIXFORM
Reads data in fixed format. That is, the fields occupy fixed
positions in each record.

FREEFORM
Reads data in comma-delimited format. That is, the fields
in each record are separated by a comma (,). Each record is
terminated by a comma and a dollar sign (,$).

PROMPT
Prompts users on terminals for data values one field at a
time. This statement works on all terminals.

ibi™ FOCUS® Maintaining Databases

44 | Modifying Data Sources With MODIFY

CRTFORM
Displays formatted screens (called CRTFORMs) on terminals
and allows users to enter multiple data values at one time.

Note: PROMPT, FREEFORM, FIXFORM, and CRTFORM statements accept data that
includes numbers expressed in scientific notation. For more information on the
use of scientific notation in expressions, refer to the Creating Reports manual.

If a request does not have one of these statements, it defaults to FREEFORM and reads
data from a comma-delimited list.

These statements can be placed in requests in two ways:

l The statements can stand by themselves. These statements read data every time the
request repeats.

l The statements can be phrases in MATCH or NEXT statements (discussed in Modifying
Data: MATCH and NEXT). These phrases only read data when the MATCH or NEXT

statement is executed.

A request may have an unlimited number of statements of one type (for example, 10
PROMPT statements), except for CRTFORM where up to 255 such statements are allowed.
You may also mix the following statements in one request:

l FREEFORM statements and PROMPT statements.

l One FIXFORM statement with up to 255 CRTFORMs.

If you are reading data from a data source or user program, you must allocate the source
of the data to a ddname.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn,
where n is any numeric value. This applies to fields in the Master File and
computed fields.

FOCUS allows the use of up to 3,072 fields in each MODIFY request. This total includes both
data source fields and temporary fields.

The last part of the section discusses several other features related to reading transactions.
They are:

l The DATA statement that marks the end of the executable portion of the request and

#d09modifydatasources1086863
#d09modifydatasources1086863

ibi™ FOCUS® Maintaining Databases

45 | Modifying Data Sources With MODIFY

specifies the source of the transactions (the request itself, a data source, the
terminal, or a user program).

l The START and STOP statements that limit the request to reading a portion of the
transaction data source.

Reading Fixed-Format Data: The FIXFORM
Statement
The FIXFORM statement reads data in fixed format. That is, each field has a fixed position
in each record. The FIXFORM statement can read data from sequential data sources,
including HOLD, SAVE, and SAVB files generated by TABLE requests.

The FIXFORM statement reads in one logical record at a time starting from column one and
divides the record into transaction fields. Subsequent FIXFORM statements may redefine
the record, dividing it into different sets of fields.

Note: Multiple FIXFORM statements in a request can function as a single
statement.

For example, you are adding the names of five new employees to the EMPLOYEE data
source. The data is stored in a sequential data source called NEWEMP.

This is how the data source appears on a text editor such as TED:

|....+....1....+....2....+....3....+....4
* * * TOP OF FILE * * *
222333444BLACK SUSAN 27500.00
456456456NEWMAN JERRY 24800.75
999888777HUNTINGTON LAWRENCE 26950.00
246246246LINDQUIST DEBRA 19300.40
666888222MCINTYRE GEORGE 31900.60
* * * END OF FILE * * *

Each record in the data source consists of four fields, each field in a fixed position on the
record:

l The EMP_ID field (employee ID numbers) occupies the first nine bytes of each record
(columns 1 through 9).

ibi™ FOCUS® Maintaining Databases

46 | Modifying Data Sources With MODIFY

l The LAST_NAME field occupies the next ten bytes (columns 10 through 19).

l The FIRST_NAME field occupies the next ten bytes (columns 20 through 29).

l The CURR_SAL field (current salaries) occupies the last eight bytes in each record
(columns 30 through 37).

You can describe the record format with this FIXFORM statement:

FIXFORM EMP_ID/9 LAST_NAME/10 FIRST_NAME/10 CURR_SAL/8

To add the records to the FOCUS data source, include the preceding statement in this
MODIFY request:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 LAST_NAME/10 FIRST_NAME/10 CURR_SAL/8

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA ON NEWEMP
END

Use a FIXFORM Statement
The syntax of the FIXFORM statement is

FIXFORM [ON ddname] fld-1/form-1 ... fld-n/form-n

or

FIXFORM FROM master [ALIAS]

where:

fld-1 ...

Are the names of the incoming data fields that the FIXFORM statement is reading or
redefining. If the name has an embedded blank, enclose it within single quotation
marks.

ibi™ FOCUS® Maintaining Databases

47 | Modifying Data Sources With MODIFY

Any field being read by the FIXFORM statement that does not appear in the Master File
of the data source being modified must be predefined in a COMPUTE field/format=;
statement. This COMPUTE must appear in the MODIFY before the FIXFORM.

The list of fields must fit on one line. If the list is too long to fit on one line, use a
FIXFORM statement for each line. For example:

FIXFORM EMP_ID/9 LAST_NAME/15
FIXFORM CURR_SAL/8 ED_HRS/4

The two FIXFORM statements act as one statement and read one record into the buffer.

form-1 ...

Are the formats of the incoming data fields, as described in Describing Incoming Data.
The formats specify the format type (alphanumeric, integer, floating point, and so on)
and the length of the field in bytes.

Note: No length is specified for the text field format that is variable in length.
A FIXFORM statement can describe up to 12,288 bytes, exclusive of repeating
values.

To specify an alphanumeric format, type the length of the field in bytes. For example, a
record contains two alphanumeric fields:

The EMP_ID field, nine bytes long.

The DEPARTMENT field, ten bytes long.

The FIXFORM statement that describes this record is:

FIXFORM EMP_ID/9 DEPARTMENT/10

Note that alphanumeric transaction fields can modify any data source field regardless of
internal format. Specifying the formats of binary, packed, and zoned transaction fields is
discussed in Describing Incoming Data.

Remember that a transaction field can contain numbers and still be alphanumeric. If
you display a transaction data source on a system editor, alphanumeric data appears
normally; numeric data appears as unprintable hexadecimal characters.

ibi™ FOCUS® Maintaining Databases

48 | Modifying Data Sources With MODIFY

ON ddname

Is an option that specifies the ddname of the transaction data source containing the
incoming data. You use this option most often when the request is reading data from
two different sources: one source is specified by the DATA statement, the other by the
ON ddname option.

Note that if there is more than one FIXFORM statement without the ON ddname option,
the request keeps track of the last column of the physical record read by the last
FIXFORM statement. If the last column is in the middle of the record, the next FIXFORM
statement begins to read from the next column. If the last column is at the end of the
record, the next FIXFORM statement begins to read from column 1 of the next record.

To break a FIXFORM statement having the ON ddname option into smaller statements,
specify the ON ddname option only in the first statement. All the statements must be
together in one block. For example:

FIXFORM ON EMPFILE EMP_ID/9 LAST_NAME/15
FIXFORM FIRST_NAME/10 DEPARTMENT/10
FIXFORM CURR_SAL/8 ED_HRS/4

FROM master

Indicates that the incoming data fields have the same names and formats as the Master
File (named master). If you use this option, do not specify the field names and formats
in the FIXFORM statement itself. Use this option only if the Master File specifies a single
segment SUFFIX=FIX data source. All the fields in the Master File specified by the FROM
phrase must also appear in the Master File specified by the MODIFY command, or an
error will result.

You use this option most often to load data from a HOLD file. For example:

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ON TABLE HOLD
END
MODIFY FILE SALARY
FIXFORM FROM HOLD
DATA ON HOLD
END

ibi™ FOCUS® Maintaining Databases

49 | Modifying Data Sources With MODIFY

The TABLE request stores employee IDs and salaries in a HOLD file. The MODIFY request
loads the IDs and salaries into a new FOCUS data source called SALARY. Note that all
the fields in the HOLD Master File must also appear in the SALARY Master File.

Text fields are supported with FIXFORM from HOLD; only one text field can be read from
a HOLD file and it must be the last field on the HOLD FIXFORM. The representation of
missing text depends on whether MISSING=ON in the Master File or the FIXFORM format
is C for conditional, or a combination of the two.

When duplicate field names exist in a HOLD file, a MODIFY request that includes
FIXFORM FROM HOLD should specify an AS name.

Note: FIXFORM FROM Master File automatically assumes that all fields on the
FIXFORM are conditional fields. Because of this a value of blank does not
update the database to a value of blank. If blank (or spaces) is a valid value,
and the update should take place, you must issue an ACTIVATE RETAIN
fieldname fieldname fieldname... or ACTIVATE RETAIN SEG.fieldname.

ALIAS

Indicates that the alias names from the Master File are to be used to build the FIXFORM
statements.

Note: If the transaction file has a null (missing data) value for a file, and you
want to input this value as a blank, the Master Files for both the transaction file
and the data source being modified must have MISSING=ON for that field.

Skip Columns in the Record
Often, an incoming transaction contains filler or data you do not need. To skip over
characters or information in the incoming record, type

Xn

where:

n

Is the number of columns you want to skip.

ibi™ FOCUS® Maintaining Databases

50 | Modifying Data Sources With MODIFY

This does not cause the statement to ignore the skipped columns. The statement reads the
entire record; it just does not place the skipped data in any transaction field. Later in the
request, you can place this data into transaction fields by adding a second FIXFORM
statement (see the following section, Describing Incoming Data).

For example, a transaction record consists of two fields: EMP_ID and CURR_SAL. Two "A"s
separate the fields:

071382660AA23540.35

You describe this record with this FIXFORM statement:

FIXFORM EMP_ID/9 X2 CURR_SAL/8

The X2 notation prevents the two "A"s from being placed in the transaction fields.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn,
where n is any numeric value. This applies to fields in the Master File and
computed fields.

Move Backward Through a Record
After a FIXFORM statement reads a record into the buffer, it places the data into
transaction fields, starting from the beginning of the record and moving toward the end.
You can specify that FIXFORM back up a number of columns to process the data more than
once. This enables you to place the same data into two fields simultaneously. To do this,
use the notation

X-n

where n is the number of columns that the statement is to move backward. For example,
the first three digits of employee IDs are a special code that you wish to use later in the
request. Each employee ID is nine digits long. You type this FIXFORM statement:

FIXFORM EMP_ID/9 X-9 EMP_CODE/3 X6 CURR_SAL/8

A record in the transaction data source is:

ibi™ FOCUS® Maintaining Databases

51 | Modifying Data Sources With MODIFY

07138266023500.35

The statement interprets the record this way:

EMP_ID/9
Reads the first nine bytes as the employee ID (071382660).

X-9
Goes back nine bytes to the beginning of the record.

EMP_
CODE/3

Reads the first three bytes as the employee code (071).

X6
Moves forward six bytes.

CURR_
SAL/8

Reads the next eight bytes as the employee salary (23500.35).

This defines three incoming fields, all of which you can use later in the request.

Note: Since the EMP_CODE field is not defined in the Master File, you must
define the field with the COMPUTE statement before the FIXFORM statement (see
Computing Values: The COMPUTE Statement).

You may replace any FIXFORM statement with two smaller statements so that the second
statement redefines all or part of the record read by the first statement. For example, you
may replace this FIXFORM statement

FIXFORM EMP_ID/9 X-9 EMP_CODE/3 X6 CURR_SAL/8

with these two smaller FIXFORM statements:

FIXFORM EMP_ID/9 CURR_SAL/8
FIXFORM X-17 EMP_CODE/3 X14

#d09modifydatasources1087929

ibi™ FOCUS® Maintaining Databases

52 | Modifying Data Sources With MODIFY

The first FIXFORM statement reads one record and divides the record into the EMP_ID field
(nine bytes) and the CURR_SAL field (eight bytes).

The second FIXFORM statement moves 17 bytes back to the beginning of the record and
declares the first three bytes to be the EMP_CODE field. It then skips over the last 14 bytes.

Note that you cannot place the X-n notation at the end of a FIXFORM statement. The
following statement is an error:

FIXFORM EMP_ID/9 CURR_SAL/8 X-17

FIXFORM statements that redefine records in the buffer are especially useful in Case Logic
requests (see Case Logic).

Specify Field Formats With FIXFORM
This section lists the data formats that may be specified in FIXFORM statements. In
addition to alphanumeric format, there are date (DATE), text field (TX), and conditional text
field (CTX) formats, and numeric formats of fields in HOLD and SAVB files and of fields
generated by user-written programs. The formats are

[A]n[YQMDWV] In[YQMD] F4 D8 Pn[.m][YQMD] DATE /TX /CTX Zn[.m]

where:

[A]n[YQMD]

Specifies an alphanumeric character string n bytes long, where n is an integer.

Date component options (YY, Y, Q, M, D) are included as necessary for a date field.

The V and W options are for AnV fields that were propagated to a HOLD file.

l W indicates that the length of the input field is n+6 bytes. The first six bytes
contain the length of the character data within the subsequent n bytes. Use for
inputting data from HOLD FORMAT ALPHA files.

l V indicates that the length of the input is n+2 bytes. The first two bytes are binary
and contain the length of the character data within the subsequent n bytes. Use
for inputting data from binary HOLD files.

ibi™ FOCUS® Maintaining Databases

53 | Modifying Data Sources With MODIFY

In[YQMD]

Specifies a binary integer n bytes long, where n is 1, 2, or 4. Date component options
(YY, Y, Q, M, D) are included as necessary for a date field.

F4

Specifies a 4-byte binary floating point number.

D8

Specifies an 8-byte binary double precision number.

Pn[.m][YQMD]

Specifies a packed number n bytes long with m digits after an implied decimal point. n
is an integer between 1 and 16 and m is an integer between 0 and 33. Date component
options (YY, Y, Q, M, D) are included as necessary for a date field.

DATE

Specifies a date field in 4-byte integer format, to be copied to the data source without
date translation or validation. Date format fields can also be read without these
restrictions by specifying alphanumeric, integer, or packed format, as described later in
this section.

/TX|/CX

Specifies a text field format for transaction and conditional transaction fields. Each
FIXFORM statement can include multiple text fields. However, they must appear as the
last fields in the statement, they may not be conditional, and, in the data file, each text
field must be terminated with the %$ character combination on a line by itself. Note
that you do not specify the length when using FIXFORM to read text fields; the length is
for display purposes only (see the Describing Data manual).

See Entering Text Data Using TED for general rules.

ibi™ FOCUS® Maintaining Databases

54 | Modifying Data Sources With MODIFY

Note:
l Text fields must be the last fields listed in the FIXFORM statement. If

they are being loaded from a HOLD file, they must also be the last fields
in the HOLD file.

l If the word END appears on a line by itself, FOCUS interprets it as a quit
action, stops the procedure, and discards everything entered up to that
point for a particular record.

l To end a transaction and exit MODIFY, first enter the end-of-text
character (%$) on a line by itself, then enter END on the next line.

l If data is read from an external data source, the record format must be
fixed.

l If a text field is not mentioned in the FIXFORM statement, but it is
present in the Master File, the value of the text field is determined
based on the setting of the MISSING attribute. That is, if MISSING=ON,
the text will be entered as a dot (.). If MISSING=OFF, the text will be
entered as a blank.

Zn[.m]

Specifies a zoned decimal number n bytes long with m digits after an implied decimal
point. n is an integer between 1 and 16 and m is an integer between 0 and 9.

For example, this FIXFORM statement

FIXFORM EMP_ID/9 HIRE_DATE/I4 CURR_SAL/D8 ED_HRS/P4.2

defines each record as the following:

l The first nine bytes as the character string EMP_ID.

l The next four bytes as the binary integer HIRE_DATE.

l The next eight bytes as the binary double precision number CURR_SAL.

l The next four bytes as the packed number ED_HRS. The last two digits of the number
follow an implied decimal point.

The FIXFORM statement specifies the field formats of transaction data sources, not the data
source being updated. A transaction field can modify a data source field if the transaction

ibi™ FOCUS® Maintaining Databases

55 | Modifying Data Sources With MODIFY

field has one of the following format types (the format type is the type of field, such as
alphanumeric or floating point):

l The same format type as the data source field.

l Alphanumeric format.

l Zoned format (if the data source field is packed).

If you specify any other format type for the transaction field (for example, an integer
transaction field to modify a floating point data source field), the request may terminate
and generate an error message. To read such a transaction value into a data source field,
do the following:

1. Before the FIXFORM statement, use the COMPUTE statement to define a name for the
incoming data field that is different from the data source field (the COMPUTE
statement is discussed in Computations: COMPUTE and VALIDATE). The statement
also specifies the field format, showing the format type and the number of digits in
the field.

2. In the FIXFORM statement, read the incoming data field using the name you defined
in the COMPUTE statement. The field format in the FIXFORM statement shows the
field length in bytes in the transaction data source.

3. After the FIXFORM statement, use the COMPUTE statement to set a field with the
same name as the data source field equal to the value of the field you defined in step
1.

Note: If the incoming field is numeric and the data source field is
alphanumeric, use the EDIT function to do this. The EDIT function is
described in the Creating Reports manual.

The following request reads a floating point field called FLOATSAL into the data source
double-precision field CURR_SAL:

MODIFY FILE EMPLOYEE
COMPUTE FLOATSAL/F8=;
FIXFORM EMP_ID/12 FLOATSAL/F4
COMPUTE CURR_SAL = FLOATSAL;
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

#d09modifydatasources1087886

ibi™ FOCUS® Maintaining Databases

56 | Modifying Data Sources With MODIFY

DATA ON FLOAFILE
END

Notice that the FLOATSAL field is defined with a format of F8 in the first COMPUTE
statement and a format of F4 in the FIXFORM statement. FLOATSAL is an eight-digit field
that takes up four bytes in the transaction data source.

Controlling Whether FIXFORM Input Fields Are
Conditional
In MODIFY, by default, FIXFORM FROM mastername treats all transaction data as
conditional, meaning that space-filled fields are considered not present, and as such
cannot be updated or used in updates.

The SET FIXFRMINPUT command enables you to specify how to handle FIXFORM input
fields as either conditional (field/format C) or non-conditional fields. Thus, spaces in a
transaction field can be used for updating database fields.

Control Whether FIXFORM Input Fields Are
Conditional
SET FIXFRMINPUT = {COND|NONCOND}

where:

COND

Treats all transaction fields generated by FIXFORM FROM mastername as conditional
(format C) fields. COND is the default value.

NONCOND

Treats all transaction fields as present in the transaction, and their contents are treated
as real values.

ibi™ FOCUS® Maintaining Databases

57 | Modifying Data Sources With MODIFY

Note that if you have not changed the value of the FIXFRMINPUT parameter and you query
its value, the value displays as DEFAULT.

Usage Notes for SET FIXFRMINPUT
l The FIXFRMINPUT setting does not affect a FIXFORM command that does not have a

FROM phrase.

Controlling Whether FIXFORM Transaction Fields Are
Conditional
The following procedure establishes a transaction file, defining LN1 in HOLD file TRANS to
be blank for PIN 000000040.

SET ASNAMES = ON
DEFINE FILE EMPDATA
LN1/A15 = IF PIN EQ '000000040' THEN '' ELSE LN;
END
TABLE FILE EMPDATA
PRINT PIN LN1 AS LN
IF PIN FROM '000000010' TO '000000100'
ON TABLE HOLD AS TRANS
END

The following procedure, sets the FIXFORM FROM input fields as conditional (the default)
and reports on the output from the MODIFY:

SET FIXFRMINPUT = COND
-? SET FIXFRMINPUT &FIXF

MODIFY FILE EMPDATA
FIXFORM FROM TRANS
MATCH PIN
ON MATCH UPDATE LN
ON NOMATCH REJECT

DATA ON TRANS
END

ibi™ FOCUS® Maintaining Databases

58 | Modifying Data Sources With MODIFY

TABLE FILE EMPDATA
HEADING
" "
"VALUE OF FIXFRMINPUT IS &FIXF "
" "
PRINT PIN LN
IF PIN FROM '000000010' TO '000000100'

END

The output shows that the blank in the transaction file was not used to update the last
name in the data source:

VALUE OF FIXFRMINPUT IS COND

PIN LASTNAME
--- --------
000000010 VALINO
000000020 BELLA
000000030 CASSANOVA
000000040 ADAMS
000000050 ADDAMS
000000060 PATEL
000000070 SANCHEZ
000000080 SO
000000090 PULASKI
000000100 ANDERSON

The following procedure sets the FIXFORM FROM input fields as non-conditional and
reports on the output from the MODIFY:

SET FIXFRMINPUT = NONCOND
-? SET FIXFRMINPUT &FIXF

MODIFY FILE EMPDATA
FIXFORM FROM TRANS
MATCH PIN
ON MATCH UPDATE LN
ON NOMATCH REJECT

DATA ON TRANS
END

TABLE FILE EMPDATA
HEADING
" "

ibi™ FOCUS® Maintaining Databases

59 | Modifying Data Sources With MODIFY

"VALUE OF FIXFRMINPUT IS &FIXF "
" "
PRINT PIN LN
IF PIN FROM '000000010' TO '000000100'

END

The output shows that the last name for PIN 000000040 has been updated to contain
blanks:

VALUE OF FIXFRMINPUT IS NONCOND

PIN LASTNAME
--- --------
000000010 VALINO
000000020 BELLA
000000030 CASSANOVA
000000040
000000050 ADDAMS
000000060 PATEL
000000070 SANCHEZ
000000080 SO
000000090 PULASKI
000000100 ANDERSON

Describing Date Fields
This section discusses using date format fields in FIXFORM statements. Alphanumeric and
integer format fields with date edit options are not discussed here; they are treated by
FIXFORM like standard alphanumeric and integer fields.

When you use a FIXFORM statement to modify a data source date field, the corresponding
data in the transaction data source can be one of the following three types:

l A numeric date literal. For example, August 17 1989 can be represented in the
transaction data source as 081789. The transaction field format can be An, In, or Pn.

l A natural date literal. For example, August 17 1989 can be represented in the
transaction data source as AUG 17 1989. The transaction field format must be An.

Note that all names of days and months in the transaction data source must be in
uppercase, even if the translation option is t or tr. All abbreviated names of days and

ibi™ FOCUS® Maintaining Databases

60 | Modifying Data Sources With MODIFY

months in the transaction data source must consist of the first three letters of the
name. Commas cannot be included in the date.

l A date in internal FOCUS date format. This format is used for date fields in SAVB and
unformatted HOLD files. The date is stored as a 4-byte integer representing the
elapsed time since the standard FOCUS base date, as described in the Describing
Data manual. The transaction field format must be DATE.

For example, assume that you have changed the format of the HIRE_DATE field in the
EMPLOYEE Master File from I6YMD to YMDT. You then write a request that creates a
new EMPLOYEE data source. The request begins with this FIXFORM statement:

FIXFORM EMP_ID/11 FIRST_NAME/10 LAST_NAME/10 HIRE_DATE/9

Both of these records are valid input:

444555666 DOROTHY TAILOR 860613
444555666 DOROTHY TAILOR 86 JUN 13

To describe date fields in FIXFORM statements, you can use the following transaction field
formats.

l DATE. This specifies a transaction field stored in FOCUS internal date format, which is
a 4-byte integer representing the time elapsed from the standard FOCUS base date,
as described in the Describing Data manual. The transaction field will be copied
directly to the data source without date validation.

For example:

FIXFORM SALEDATE/DATE

l An, In, Pn. These specify a date field stored in alphanumeric, integer, or packed
decimal format respectively. Numeric date literals and natural date literals are
translated as necessary to suit the data source field's USAGE specification and edit
options.

For example, if a data source contains the date field NEWSDATE, and USAGE=MDYY,
the following FIXFORM statements can be used to update NEWSDATE:

FIXFORM NEWSDATE/A8YYMD
FIXFORM NEWSDATE/A6DMY
FIXFORM NEWSDATE/I4MDY
FIXFORM NEWSDATE/I2YMD

ibi™ FOCUS® Maintaining Databases

61 | Modifying Data Sources With MODIFY

FIXFORM NEWSDATE/P3DMY
FIXFORM NEWSDATE/A8

Note that the last FIXFORM statement does not specify any date components.
Because it is alphanumeric and has the same length specified by the data source
field's USAGE attribute, it defaults to the USAGE format (which in this case is MDYY).

For all date transaction field formats, the date components (year, quarter, month, day) do
not need to be in the order specified in the USAGE attribute in the Master File; they can be
in any order.

Note, however, that you cannot extract date components from a date field (for example,
you cannot write a YMD transaction field to a YM data source field), and you cannot convert
one component to another (for example, you cannot convert a YM transaction field to a YQ
data source field). The only exceptions are the YY and Y date components, which can be
substituted for each other.

Describe Repeating Groups
You may use a fixed-format transaction record to modify multiple segment instances. The
set of transaction fields that modify the instances is called a repeating group because the
fields repeat for each instance. Instead of explicitly specifying each field, you specify the
repeating group once with a multiplying factor in front.

The syntax is

FIXFORM factor (group)

where:

factor

Is the number of times that the group repeats.

group

Is the repeating group consisting of a list of fields and formats.

For example, assume you design a request that records the last 12 months of employees'
monthly pay in the EMPLOYEE data source. Each transaction record contains the

ibi™ FOCUS® Maintaining Databases

62 | Modifying Data Sources With MODIFY

employee's ID and 12 pairs of fields: the first field in each pair is the pay date, the second
is the monthly pay (GROSS). The request is:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 12 (PAY_DATE/6 GROSS/7)
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA ON EMPGROSS
END

Each incoming record that the request reads contains one EMP_ID field and 12 groups of
fields, each group consisting of a pay date field and a monthly pay field. The request reads
a record, then splits the record into 12 smaller logical records, each consisting of the
employee ID of the original record and one group. FOCUS then executes the request for
each logical record, processing each group separately.

You may specify more than one group in a FIXFORM statement, but they cannot be nested.

Note:
To process repeating groups in a Case Logic request, place each repeating group
in a FIXFORM statement in a separate case. The case should include the
following:

l A counter that counts the group being processed.

l An IF statement that branches out of the case after all the groups are
processed.

l GOTO phrases that branch back to the beginning of the case after each
group is processed.

The following request adds and updates information on employees' monthly pay. Note the
ON INVALID phrase that branches back to the beginning of the case if a monthly pay entry
is greater than $2500. The request is:

MODIFY FILE EMPLOYEE
COMPUTE

COUNTER/I3 = 0;

ibi™ FOCUS® Maintaining Databases

63 | Modifying Data Sources With MODIFY

FIXFORM EMP_ID/9
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO NEWPAY

GOTO NEWPAY

CASE NEWPAY
COMPUTE

COUNTER/I1 = COUNTER + 1;
IF COUNTER GT 3 GOTO TOP;
FIXFORM 3 (PAY_DATE/6 GROSS/7)
VALIDATE

PAYTEST = IF GROSS GT 2500 THEN 0 ELSE 1;
ON INVALID GOTO NEWPAY

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWPAY
ON MATCH UPDATE GROSS
ON MATCH GOTO NEWPAY

ENDCASE
DATA ON PAYFILE
END

Using Date Format Fields
The following examples show how to use date format fields.

Conditional Fields
MODIFY requests can process records in which alphanumeric field values may be present in
one input record but absent in another. Such fields are called conditional fields. When the
value of a conditional field is blank, the request does not use the field to modify the data
source and the field remains inactive (active and inactive fields are discussed in Advanced
Facilities).

To indicate to FOCUS that a field is conditional, precede the field format with the letter C.
For example:

FIXFORM FIRST_NAME/C10 LAST_NAME/C15

ibi™ FOCUS® Maintaining Databases

64 | Modifying Data Sources With MODIFY

Another example: You design a MODIFY request that updates employees' departments and
job codes. If an employee's department or job code has not changed, the corresponding
field in the transaction data source is blank.

The request is:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 DEPARTMENT/C10 X1 CURR_JOBCODE/C3
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE

DATA
071382660 SALES B13
112847612 A08
117593129 MARKETING
END

The request contains three incoming records after the DATA statement:

l The first incoming record contains all three fields. The request updates both the
DEPARTMENT and CURR_JOBCODE fields.

l The next record has the EMP_ID and CURR_JOBCODE fields but no DEPARTMENT
field. The request updates the employee's CURR_JOBCODE value in the data source,
but leaves the DEPARTMENT value the same.

l The last record has the EMP_ID and DEPARTMENT fields but no CURR_JOBCODE field.
The request updates the employee's DEPARTMENT value in the data source, but

leaves the CURR_JOBCODE value the same.

If you did not describe the DEPARTMENT and CURR_JOBCODE fields as conditional, the
request would change an employee's department or job code to blank whenever these
fields in the incoming records were blank.

If you are adding segment instances, and several fields are conditional, values that are
blank go into the new instances as:

l Blank, if the instance fields are alphanumeric.

l Zero, if the instance fields are numeric.

l The MISSING symbol, if the fields are described with the MISSING=ON attribute in the
Master File (see the Describing Data manual).

ibi™ FOCUS® Maintaining Databases

65 | Modifying Data Sources With MODIFY

FIXFORM Phrases in MATCH and NEXT Statements
You may use FIXFORM statements as phrases in MATCH and NEXT statements. These
phrases are useful if you want to read records selectively only if a particular segment
instance exists in the data source (or is confirmed not to be in the data source).

For example, you design a MODIFY request that adds records of employees' monthly pay to
the data source:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 PAY_DATE/6
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH FIXFORM ON MONTHPAY GROSS/7
ON NOMATCH INCLUDE

DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The EMPPAY
data source contains the employee IDs and the date each employee was paid. The
MONTHPAY data source contains the amount each employee was paid (GROSS). The
request must confirm for every EMPPAY transaction that:

l The employee ID is recorded in the data source. This is confirmed by the MATCH
EMP_ID statement.

l The date the employee was paid has not yet been recorded in the data source. This
is confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY data
source

ON NOMATCH FIXFORM ON MONTHPAY GROSS/7

and record it in the data source:

ibi™ FOCUS® Maintaining Databases

66 | Modifying Data Sources With MODIFY

ON NOMATCH INCLUDE

Reading in Comma-delimited Data: The
FREEFORM Statement
The FREEFORM statement reads comma-delimited data, where field values in each record
are separated by commas, and records are terminated by comma-dollar signs (,$). The data
may be stored in the request itself or in separate sequential data sources.

If the MODIFY request does not provide a statement reading transactions (FIXFORM,
FREEFORM, PROMPT, or CRTFORM), FREEFORM is the default.

The following request updates employee salaries by reading employee IDs and new salaries
from comma-delimited records. The records follow the DATA statement:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA
EMP_ID=071382660, CURR_SAL=21400.50, $
EMP_ID=112847612, CURR_SAL=20350.00, $
EMP_ID=117593129, CURR_SAL=22600.34, $
END

Use a FREEFORM Statement
The syntax of the FREEFORM statement is

FREEFORM [ON ddname] [field-1field-2 ... field-n]

where:

ibi™ FOCUS® Maintaining Databases

67 | Modifying Data Sources With MODIFY

ON ddname

Is an option that specifies the ddname of the transaction data source containing the
incoming data. Use this option only when the DATA statement does not specify a
ddname or specifies a ddname of a different data source.

field-1 ...

Are the names of the fields in the order that they appear in the record.

Note: FREEFORM follows the same rules as FIXFORM when dealing with TEXT
fields. For more information see Reading Fixed-Format Data: The FIXFORM
Statement.

If the order of fields is specified in the data, you do not need it in the syntax and if the
order of fields is specified in the syntax, you do not need it in the data.

The list of fields must fit on one line. If the list is too long for a single line, use a FREEFORM
statement for each line. For example:

FREEFORM EMP_ID LAST_NAME FIRST_NAME
FREEFORM DEPARTMENT CURR_SAL

These two FREEFORM statements act as one statement and read one record into the
buffer.

Each time a FREEFORM statement is executed, it reads one record up to the comma-dollar
sign (,$). It does not read beyond that. If the FREEFORM command is used with incoming
data having embedded commas, the data must be enclosed in single quotation marks in
the input data source.

If a MODIFY request has a FREEFORM statement, the statement must specify all the fields in
the transaction data source. If the transaction data source has fields not specified in the
FREEFORM statement, the request terminates and generates an error message.

If you do not include a transaction statement in your MODIFY request, the request assumes
the default FREEFORM and expects to read comma-delimited data. The request reads one
record every time it executes the first statement in the request. Nevertheless, you should
include a FREEFORM statement to make clear that the request is reading comma-delimited
data, to show when the request reads the data, and to allow greater flexibility in entering
data into comma-delimited data sources.

#d09modifydatasources1085860
#d09modifydatasources1085860

ibi™ FOCUS® Maintaining Databases

68 | Modifying Data Sources With MODIFY

If the Master File lists a date format with a translation option (see the Describing Data
manual), you can type the date values in the transaction data source as they appear in
reports generated by TABLE requests (but do not type the commas in the dates). Note the
following conditions:

l The date format must have had the translation option before the FOCUS data source
was created.

l All names of months must be in uppercase, even if the translation option is t or tr.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE
Master File from I6YMD to YMDT. You then write a request that creates a new EMPLOYEE
data source. The request begins with this FREEFORM statement:

FREEFORM EMP_ID FIRST_NAME LAST_NAME HIRE_DATE/9

Both these records are valid input:

444555666, DOROTHY, TAILOR, 860613, $
444555666, DOROTHY, TAILOR, 86 JUN 13, $

Identifying Values in a Comma-delimited Data
Source
This section discusses how MODIFY requests identify the values in comma-delimited data
sources and determine what fields they belong to. (For more information on comma-
delimited data sources, see the Describing Data manual.) There are two types of values in
comma-delimited data sources:

l Identified values are identified explicitly in the data source.

l Positional values exist by themselves without any identification.

Identified values have the form

identifier = value

where identifier identifies the field to which the value belongs.

Identifiers can be one of two types:

ibi™ FOCUS® Maintaining Databases

69 | Modifying Data Sources With MODIFY

l Field names or unique truncations of field names. For example:

DEPARTMENT=SALES, CURR_SAL=25000, $

l Aliases. For example:

DPT=SALES, CSAL=25000, $

If the request has a FREEFORM statement, the statement must specify all identified fields.
However, the request identifies the values by their identifiers, not by the order of field
names in the FREEFORM list.

Positional values exist by themselves without any identification in the data source. For
example:

SALES, 25000, $

The MODIFY request identifies positional values by the order of field names specified in the
FREEFORM statement list. If a record consists only of positional values, the request assigns
the first field name in the list to the first value, the second field name in the list to the
second value, and so on. For example, if a request has the statement:

FREEFORM EMP_ID DEPARTMENT CURR_SAL

Then the record

071382660, SALES, 25000, $

is interpreted this way:

EMP_ID: 071382660
DEPARTMENT: SALES
CURR_SAL: 25000

If a record has both identified and positional values, the MODIFY request identifies the
positional values in the following way: it notes the last explicitly identified value to precede
the positional values in the record. It then identifies the positional values by the order of
field names that follow the name of the explicitly identified field in the FREEFORM list.

For example, a MODIFY request has this FREEFORM statement:

ibi™ FOCUS® Maintaining Databases

70 | Modifying Data Sources With MODIFY

FREEFORM EMP_ID FIRST_NAME LAST_NAME CURR_SAL

The transaction data source contains this record:

FIRST_NAME=DAVID, MCHENRY, 21300.45, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request identifies
the next value, MCHENRY, as the LAST_NAME field because LAST_NAME follows FIRST_
NAME on the FREEFORM list. Similarly, the request identifies 21300.45 as the CURR_SAL
field. The EMP_ID field retains the value it was last given.

If the MODIFY request has no FREEFORM statement, it identifies positional values by the
order of field names declared in the Master File. If a record consists of only positional
values, the request assigns the first field name in the Master File to the first value, the
second field name to the second value, and so on. For example, a transaction data source
contains this record:

071382660, MCHENRY, DAVID, $

The request identifies the first value, 071382660, as the EMP_ID field because EMP_ID is the
first field in the Master File. The next value, MCHENRY, is the LAST_NAME field (the second
field in the Master File). DAVID becomes the FIRST_NAME field, the third field in the Master
File (the EMPLOYEE Master File is shown in Master Files and Diagrams).

If a record has both identified values and positional values, the MODIFY request identifies
the positional values the following way: it notes the last explicitly identified value to
precede the positional values in the record. It then identifies the positional values by the
order of field names that follow the name of the explicitly identified field in the Master File.
For example, the transaction data source contains this record:

FIRST_NAME=DAVID, 820406, PRODUCTION, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request identifies
the next value, 820406, as the HIRE_DATE field because HIRE_DATE follows FIRST_NAME in
the Master File. Similarly, the request identifies PRODUCTION as the DEPARTMENT field.

ibi™ FOCUS® Maintaining Databases

71 | Modifying Data Sources With MODIFY

Missing Values in Comma-delimited Data Sources
If a field value is missing for a particular record, you must explicitly identify the name of
the next field in the record. For instance, a FREEFORM statement specifies the following:

FREEFORM EMP_ID CURR_SAL DEPARTMENT

One record lacks a CURR_SAL value. Type the record this way

071382660, DEPARTMENT=PRODUCTION, $

where 071382660 is an EMP_ID value. The CURR_SAL field remains inactive and will not
change any CURR_SAL values in the data source.

If you are adding segment instances to the data source, the instance fields not receiving a
value become:

l Blank, if the instance fields are alphanumeric.

l Zero, if the instance fields are numeric.

l The MISSING symbol, if the fields are described with the MISSING=ON attribute in the
Master File (see the Describing Data manual).

An important exception: If you omit fields from the beginning of a record, the fields retain
the values last assigned to them from a previous record. For example, a transaction data
source contains these two records:

EMP_ID=071382660, PAY_DATE=820831, GROSS=1045.60, $
PAY_DATE=820831, GROSS=1047.20, $

The second record is lacking an EMP_ID value. Nevertheless, since EMP_ID is at the
beginning of the record, it retains its value of 071382660 for the second record and remains
active.

If you use double commas to mark an absent value, the value becomes a blank character
string if alphanumeric, and zero if numeric. Note that the request can use this value to
modify the data source. For example, in the record

071382660,, PRODUCTION, $

ibi™ FOCUS® Maintaining Databases

72 | Modifying Data Sources With MODIFY

the two commas mark the position of the absent CURR_SAL field. The CURR_SAL field
becomes active and can change an employee salary to $0.00.

FREEFORM Phrases in MATCH and NEXT Statements
You may use FREEFORM statements as phrases in MATCH and NEXT statements. These
phrases are useful if you want to read records selectively if a particular segment instance
exists in the data source (or is confirmed not to be in the data source).

For example, the following MODIFY request adds records of employees' monthly pay to the
data source:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID PAY_DATE
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH FREEFORM ON MONTHPAY GROSS
ON NOMATCH INCLUDE

DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The EMPPAY
data source contains the employee IDs and the date each employee was paid. The
MONTHPAY data source contains the amount each employee was paid (GROSS). The
request must confirm for every EMPPAY transaction that:

l The employee ID is recorded in the data source. This is confirmed by the MATCH
EMP_ID statement.

l The date the employee was paid has not yet been recorded in the data source. This
is confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY data
source

ON NOMATCH FREEFORM ON MONTHPAY GROSS

and record it in the data source:

ibi™ FOCUS® Maintaining Databases

73 | Modifying Data Sources With MODIFY

ON NOMATCH INCLUDE

Prompting for Data One Field at a Time: The
PROMPT Statement
The PROMPT statement prompts the user on a terminal for incoming data one field at a
time. Use this statement for requests that may be run on line terminals or by users having
no access to the FIDEL facility. If the requests will be run exclusively by users on full-screen
terminals with access to FIDEL, use the CRTFORM statement instead. The FIDEL facility and
the CRTFORM statement are the subjects of Designing Screens With FIDEL.

Use a PROMPT Statement
The syntax of the PROMPT statement is

PROMPT {field-1[.text.] field-2[.text.] ... field-n[.text.]|*}

where:

field-1 ...

Are the names of the fields for which you are prompting. An asterisk * instead of field
names prompts for all fields described in the Master File in the order that they are
declared.

The list of fields must fit on one line. If the list is too long to fit on one line, use a
PROMPT statement for each line. For example:

PROMPT EMP_ID LAST_NAME FIRST_NAME
PROMPT DEPARTMENT CURR_SAL

Each field in the Master File with a text field format must appear in a separate PROMPT
statement as the last field in the statement. When prompted for text, note that the
length of the text entry is limited only by the amount of virtual storage space. The last
line of text data that you enter must be followed by the end-of-text mark (%$) on a line

ibi™ FOCUS® Maintaining Databases

74 | Modifying Data Sources With MODIFY

by itself. For additional guidelines regarding fields with a text field format, see Entering
Text Data Using TED.

text

Is optional prompting text, up to 38 characters per field.

Do not place an END statement at the end of the request. Conclude the request with the
DATA statement.

The following request updates information about employees' department assignments,
salaries, and job codes:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT CURR_SAL CURR_JOBCODE
MATCH EMP_ID

ON MATCH UPDATE DEPARTMENT CURR_SAL CURR_JOBCODE
ON NOMATCH REJECT

DATA

When you execute the command, the following appears on your screen

> EMPLOYEE ON 06/19/98 AT 14.38.27
DATA FOR TRANSACTION 1

MP_ID= >

where:

EMPLOYEE

Is the system name of the data source (in this case, the TSO name).

ON 06/19/98 AT 14.38.27

Is the date and time that FOCUS opened the data source: June 19, 1998 at 2:38:27 p.m.

DATA FOR TRANSACTION 1

Notifies the user that the request is prompting for the first transaction. Each cycle of
prompts constitutes one transaction. When the next transaction begins, the request
prompts again for the first field in the cycle. In this request, the EMP_ID, DEPARTMENT,
CURR_SAL, and CURR_JOBCODE prompts constitute one transaction. When the next
transaction begins, the request prompts for the EMP_ID field again.

ibi™ FOCUS® Maintaining Databases

75 | Modifying Data Sources With MODIFY

EMP_ID = >

Is the default prompt for the EMP_ID field (the field name).

As each prompt appears, enter the value for the field requested. When you finish entering
values, end execution by entering End or Quit at any prompt. The following is a sample
execution of the request shown above (user input is shown in lowercase; computer
responses are in uppercase):

> EMPLOYEE ON 06/19/98 AT 14.38.27
DATA FOR TRANSACTION 1

EMP_ID = > 071382660
DEPARTMENT = > mis
CURR_SAL = > 22500.35
CURR_JOBCODE = > b12
DATA FOR TRANSACTION 2

EMP_ID = > end
TRANSACTIONS: TOTAL= 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT= 0 UPDATED= 1 DELETED= 0

When you design a request that prompts for fields and validates them, we recommend that
validating the field values after every prompt is recommended. This saves extra typing if
one of the field values proves invalid. Validation tests are discussed in Validating
Transaction Values: The VALIDATE Statement.

If the Master File lists a date format with a translation option (see the Describing Data
manual), you may type the date as it appears in reports generated by TABLE requests (but
do not type the commas in the dates). Note that the date format must have had the
translation option before the FOCUS data source was created.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE
Master File from I6YMD to YMDT. You then write a request that creates a new EMPLOYEE
data source. The request begins with this FIXFORM statement:

PROMPT EMP_ID FIRST_NAME LAST_NAME HIRE_DATE

When you execute the request, a sample transaction might appear like this:

DATA FOR TRANSACTION 2

EMP_ID = > 444555666

#d09modifydatasources1088081
#d09modifydatasources1088081

ibi™ FOCUS® Maintaining Databases

76 | Modifying Data Sources With MODIFY

FIRST_NAME = > dorothy
LAST_NAME = > tailor
HIRE_DATE (YMDT) = > 98 jun 13

Note that you can also respond to the HIRE_DATE prompt with the value 980613.

Prompt for Repeating Groups
You may prompt for the same group of fields repeatedly. This is convenient when you want
to modify a child segment chain. You prompt once for the key field of the parent instance
and prompt repeatedly for the values of the child instances. Without repeating groups, you
must prompt for the key field of the parent instance each time you prompt for a child
instance.

For example, a MODIFY request updates employees' monthly pay. It first prompts for an
employee ID, then for 12 pairs of fields: the first field in each pair is a pay date, the second
field is the updated pay. The pay date and updated pay fields are a repeating group.

To specify a repeating group, use the following syntax

PROMPT factor (group)

where:

factor

Is the number of times the group repeats.

group

Is the repeating group of fields.

Note that the transaction counter that appears during prompting counts each repeating
group cycle of prompts as one transaction.

For example, the following request adds three instances of monthly pay (GROSS) for each
employee:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID 3 (PAY_DATE GROSS)

ibi™ FOCUS® Maintaining Databases

77 | Modifying Data Sources With MODIFY

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

This request prompts you for an employee ID, then a pay date, a monthly pay, a pay date,
a monthly pay, and so on until it prompts you for three pay dates and three monthly pays.
It then prompts you for the next employee ID.

The following is a sample execution of the previous request:

> EMPLOYEE ON 09/19/98 AT 15.01.38
DATA FOR TRANSACTION 1

EMP_ID = > 071382660
PAY_DATE = > 860131
GROSS = > 1360.50
DATA FOR TRANSACTION 2

PAY_DATE = > 860228
GROSS = > 1360.85
DATA FOR TRANSACTION 3

PAY_DATE = > 860331
GROSS = > 1360.50
DATA FOR TRANSACTION 4

EMP_ID = >

You can place multiple repeating groups in the same statement. This PROMPT statement
contains two repeating groups:

PROMPT EMP_ID 3 (PAY_DATE GROSS) 2 (DAT_INC SALARY)

The statement prompts for:

1. An employee ID.

2. A pay date and a monthly pay, three times.

3. A salary raise date (DAT_INC) and a new salary, two times.

ibi™ FOCUS® Maintaining Databases

78 | Modifying Data Sources With MODIFY

4. The next employee ID.

You can nest repeating groups. For example, this prompt statement

PROMPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED_AMT))

prompts for:

1. An employee ID.

2. A pay date.

3. A deduction code and deduction amount, seven times.

4. Steps 2 and 3 repeat for a total of six times.

5. The next employee ID.

Prompt Text
When you run a request containing PROMPT statements, the request prompts you for each
field by displaying the field name and an equal sign (=). However, you may specify your
own prompt. The syntax is

PROMPT fieldname.text.

where:

fieldname

Is the name of the field you are prompting for.

text

Is the text you want to appear as the prompt, up to 38 characters. Text must be
enclosed within periods.

Note the following rules regarding prompt text:

l The text must be delimited by a period (.) on either side, with no space between the
field name and the first period.

l The text cannot contain apostrophes or single quotation marks (').

ibi™ FOCUS® Maintaining Databases

79 | Modifying Data Sources With MODIFY

l The text must be typed on one line.

l A single MODIFY request can contain up to 4000 characters of prompt text.

This request adds new employees to the EMPLOYEE data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID.ENTER THE EMPLOYEE ID NUMBER:.
PROMPT FIRST_NAME.ENTER FIRST NAME:.
PROMPT LAST_NAME.ENTER LAST NAME:.
PROMPT HIRE_DATE.WHAT DATE WAS EMPLOYEE HIRED?.
PROMPT CURR_SAL.WHAT IS THE STARTING SALARY?.

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Special Responses
This section discusses special responses to prompts. It covers:

l Canceling a transaction

l Ending execution

l Correcting a field value

l Typing ahead

l Repeating the last response

l Entering no data

l Breaking out of repeating groups

l Invoking the FIDEL Facility

Canceling a Transaction
To cancel a transaction, enter a dollar sign ($) after any prompt. The request displays the
following message

ibi™ FOCUS® Maintaining Databases

80 | Modifying Data Sources With MODIFY

(FOC309) TRANSACTION INCOMPLETE:

and will prompt you for the next transaction. Canceling a transaction clears the buffer of
data and causes the PROMPT statement to re-prompt you for the fields, allowing you to
clear a bad transaction and start over.

Ending Execution
To end execution of the request, enter either Quit or End after any prompt. The request
displays the execution statistics and returns you to the FOCUS command level. The data
source will be updated to the last completed transaction.

Correcting Field Values
If you entered an incorrect field value, you can correct it at the next prompt. Type the
value for the next prompt, but do not press Enter. Instead, type a comma and then type

fieldname = corrected-value

where:

fieldname

Is the field name of the corrected value. Then press Enter. Note that the fieldname must
be separated from the previous value by a comma.

The example below shows a user correcting a DEPARTMENT value after the CURR_
JOBCODE prompt.

> DATA FOR TRANSACTION 1

EMP_ID = > 071382660
DEPARTMENT = > production
CURR_SAL = > 19350.67
CURR_JOBCODE = > a03, department=sales
DATA FOR TRANSACTION 2

EMP_ID = >

ibi™ FOCUS® Maintaining Databases

81 | Modifying Data Sources With MODIFY

Note: If you enter an incorrect field value at the last prompt of a transaction,
you cannot correct the value in that transaction.

Typing Ahead
You can enter several values at one prompt by typing ahead. Enter

value-1, value-2, ... value-n

where:

value-1

Is the value of the field for which you are being prompted.

value-2 ...

Are the values of fields you have not yet been prompted for by the PROMPT statement.
The values must be in the order of fields specified by the PROMPT statement, from the
field being prompted for onwards. Separate the values with commas.

For example, a MODIFY request has this PROMPT statement:

PROMPT EMP_ID DEPARTMENT CURR_SAL CURR_JOBCODE

When you run the request, you enter an employee ID, a department, salary, and job code
at the EMP_ID prompt, as shown below.

> DATA FOR TRANSACTION 1

EMP_ID = > 071382660, sales, 23800, b04
DATA FOR TRANSACTION 2

EMP_ID = >

ibi™ FOCUS® Maintaining Databases

82 | Modifying Data Sources With MODIFY

Repeating a Previous Response
If you are going to respond to a prompt with the same value as the previous prompt, you
may enter a double quotation mark (") instead to save typing.

Entering No Data
If you run a request that prompts you for a field that should not contain data, enter a
period (.) after the prompt. The field becomes inactive and does not change any values in
the data source.

If you are adding segments to the data source, the field in the new instance becomes:

l Blank, if the instance field is alphanumeric.

l Zero, if the instance field is numeric.

l The MISSING symbol, if the field is described with the MISSING=ON attribute in the
Master File (see the Describing Data manual).

Breaking Out of Repeating Groups
To break out of a repeating group, enter an exclamation point (!) after any prompt. The
request will immediately prompt you for the first field outside the repeating group.

For example, you run this request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID 3 (PAY_DATE GROSS)
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Every time you enter an employee ID, the request prompts you for a pay date and a
monthly pay (GROSS) three times. If you enter an exclamation point at one of these
prompts, the request prompts you for the next employee ID.

ibi™ FOCUS® Maintaining Databases

83 | Modifying Data Sources With MODIFY

Each cycle of prompts within a repeating group counts as one transaction. The repeating
group of data you entered before the transaction where you broke out remains active and
modifies the data source.

If you break out of one repeating group nested in another repeating group, the request
next prompts you for the fields of the outer group. For example, a request contains this
PROMPT statement:

PROMPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED_AMT))

You run the request. If you enter an exclamation point at a DED_CODE or DED_AMT
prompt, the request next prompts you for the next PAY_DATE value.

PROMPT Phrases in MATCH and NEXT
Statements
You can use PROMPT statements as phrases in MATCH or NEXT statements. By doing so,
you avoid prompting the user for data that will be rejected anyway. The following
examples illustrate the differences.

Consider the following request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

This request prompts the user for the EMP_ID and CURR_SAL fields. The MATCH statement
searches the data source for the EMP_ID value the user enters (MATCH EMP_ID). If it finds
the value, it updates the CURR_SAL value; otherwise it rejects the transaction. The user
must enter both an EMP_ID and a CURR_SAL value every transaction, whether the
transaction is accepted or not.

However, when the request prompts for the CURR_SAL value in the MATCH statement, the
user enters a CURR_SAL value only if the corresponding EMP_ID value is in the data source.
This request shows how this is done:

ibi™ FOCUS® Maintaining Databases

84 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
PROMPT EMP_ID

MATCH EMP_ID
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

The request prompts you for an EMP_ID value. It then searches the data source for the ID
you entered. If it does not find the value, it rejects the ID and prompts you for another ID.
Only if it finds the ID in the data source does it prompt you for a CURR_SAL value.

Using PROMPT and FREEFORM Statements in
One Request
You may use PROMPT and FREEFORM statements together in one request. This feature is
useful when key field values are difficult to read and type, such as large numbers or
complex codes. For example, a request might read employee ID numbers from a comma-
delimited data source, use those IDs to locate segment instances, and then prompt the
user for the data to update the employee information.

To use FREEFORM and PROMPT together, follow these rules:

l Place all FREEFORM statements before the PROMPT statements.

l Place the data in a separate data source. Specify the data source with the ON
ddname option.

l Do not end the comma-delimited records with dollar signs ($).

Note that when you use FREEFORM together with PROMPT, the transaction counter does
not appear before the prompts.

This request updates employee salaries:

MODIFY FILE EMPLOYEE
FREEFORM ON EMPNO EMP_ID

ibi™ FOCUS® Maintaining Databases

85 | Modifying Data Sources With MODIFY

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH TYPE "ENTER SALARY FOR EMPLOYEE #<EMP_ID"
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL

DATA

Note the TYPE phrase in the MATCH statement that informs the user what employee ID the
request is processing. The TYPE statement is described in Displaying Specific Messages: The
TYPE Statement.

Invoking the FIDEL Facility: The CRTFORM
Statement
This section is a brief description of the CRTFORM statement, which is discussed fully in
Designing Screens With FIDEL.

The CRTFORM statement invokes the FIDEL facility, which generates a formatted screen.
You type the transaction values in the designated areas of the screen and press Enter.

To use the FIDEL facility, you must be on a full-screen terminal running FOCUS in
interactive mode, not batch. Note that FIDEL is separate from the MODIFY facility, so your
installation may have MODIFY but not FIDEL. Consult your systems manager or database
administrator.

Beneath the CRTFORM statement, you specify the layout of the screen. Enclose each line of
the screen in double quotation marks. On each line, you can type free text instructing the
user and designate data entry areas where the user enters data for specific fields.

You may also display messages to the user in the TYPE area of the CRTFORM using the
HELPMESSAGE attribute (see Displaying Messages: Setting PF Keys to HELP and in the
Describing Data manual).

The following request updates employees' department assignments, salaries, job codes,
and classroom hours:

MODIFY FILE EMPLOYEE
CRTFORM
" ***** EMPLOYEE INFORMATION UPDATE *****"

#d09modifydatasources1088671
#d09modifydatasources1088671
#d09modifydatasources1089035

ibi™ FOCUS® Maintaining Databases

86 | Modifying Data Sources With MODIFY

" "
"ENTER EMPLOYEE'S ID: <EMP_ID"
"ENTER EMPLOYEE'S DEPARTMENT: <DEPARTMENT"
"ENTER CURRENT SALARY: <CURR_SAL"
"ENTER JOB CODE: <CURR_JOBCODE"
"ENTER CLASS HOURS: <ED_HRS"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH UPDATE CURR_JOBCODE ED_HRS

DATA VIA FI3270
END

A request may have up to 255 CRTFORM statements, and may also have one FIXFORM
statement preceding the CRTFORM statements. You may place CRTFORM phrases in MATCH
and NEXT statements.

The FIDEL facility has several features that enhance its usability:

l Turnaround fields display field values as they exist in the data source, which you can
then change.

l Display fields display field values that you cannot change. You can use these fields to
design CRTFORM screens for data source inquiry.

l Screen attributes display different parts of the screen in different colors, highlighted,
underlined, or flashing.

l Multiple-record processing allows you to modify several segment instances on one
screen.

Please refer to Designing Screens With FIDEL, to learn how to use FIDEL.

Entering Text Data Using TED
While in MODIFY, TED can be used to enter text field data. When TED is used to enter text,
a new temporary file is opened in memory for data input; this file is never written to disk
permanently. The name of this file is the same as the name of the text field. The ddname
for the text field will be TXTFLD. For example

DESCRPT TXTFLD

is the file name and file type of the file opened for the text field DESCRIPT.

ibi™ FOCUS® Maintaining Databases

87 | Modifying Data Sources With MODIFY

All TED rules and functions apply, including the ability to edit other files. The RUN function
in TED is ignored for text fields and is treated as the FILE command instead.

There are six ways to use the syntax for entering text format data using TED:

TED textfield
ON MATCH TED textfield
ON NOMATCH TED textfield
ON MATCH/NOMATCH TED textfield
ON NEXT TED textfield
ON NONEXT TED textfield

For example:

MODIFY FILE COURSES
PROMPT COURSE_CODE
MATCH COURSE_CODE

ON NOMATCH TED DESCRIPTION
ON NOMATCH INCLUDE
ON MATCH TED DESCRIPTION
ON MATCH UPDATE DESCRIPTION

DATA

TED will always edit the most recent version of the text field. The first time, this will be the
current data source text field value; the next time that TED is used on the same text field,
data from the previous text transaction will be available for editing.

As a rule, TED will always look for text data in the transaction area first. If no text exists
there, TED looks for text present as a result of MATCH. If there is no data there, TED
assumes that the field is new and brings up a new (empty) file.

After one transaction involving TED is complete, data areas are blanked out before
proceeding with the next transactions (as when DEACTIVATE is used). This means that all
text instances will be newly created (therefore, one course description will not carry over
and accidentally be used for the next course number).

Text fields must always end with the end-of-text mark (%$). Although you may enter this
mark directly in the TED file as the first two characters on the last line, TED will test for the
presence of the end-of-text mark; if it is missing, TED automatically inserts it.

Note: You must supply the end-of-text mark when using PROMPT or FIXFORM.

If you wish to use TED to input data for more than one text field, specify a separate action
for each field:

ibi™ FOCUS® Maintaining Databases

88 | Modifying Data Sources With MODIFY

ON MATCH TED TXFIELD1
ON MATCH TED TXFIELD2

The size of the file is limited only by the amount of available storage space.

Entering Text Field Data
The following rules apply to text field data entry using TED, FIXFORM, FREEFORM, or
PROMPT:

l You can begin entering text data at any position on a line.

l Leading blanks on a line are preserved.

A line will be treated as the start of a new paragraph if it starts with three or more
blanks. To prevent the concatenation of lines when a text field is displayed, insert at
least three blanks at the beginning of each line.

l Blank lines are permitted.

Defining a Text Field
The syntax for defining a text field in a Master File is:

FIELD=fieldname, ALIAS=aliasname, FORMAT=TXnn,$

or

FIELD=fieldname, ALIAS=aliasname,FORMAT=TXnnF,$

where:

fieldname

Is the name you assign to the text field.

aliasname

Is an alternate name for the field name.

ibi™ FOCUS® Maintaining Databases

89 | Modifying Data Sources With MODIFY

nn

Is the output display length in TABLE for the text field.

F

Is used to format the text field for redisplay when TED is called using ON MATCH or ON
NOMATCH. When F is specified, the text field is formatted as TX80 and is displayed.
When F is not specified, the field is redisplayed exactly as entered.

Displaying Text Fields
FOCUS includes a format option in the text field of the Master File. Use of this determines
whether text will display in the format in which it was entered.

For example, below is a Master File and the sample data that was entered into the field
TXTFLD using TED.

FILE=TEXT,SUFFIX=FOC
SEGNAME=SEGA,SEGTYPE=S1
FIELD=KEYFLD,,A1,$
FIELD=TXTFLD,,TX20,$

Sample data entered:

THIS IS A TEST OF THE NEW TED OPTION 'F'. REMEMBER THAT TED DISPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADING BLANKS ARE USED TO INDICATE A
NEW PARAGRAPH. TEXT FIELD DATA IS ALWAYS STORED EXACTLY AS ENTERED.
WHEN
F IS INCLUDED IN THE FORMAT AND THE TEXT FIELD IS REDISPLAYED, BLANKS
ARE
OMITTED AND THE FIELD IS CONDENSED.
WHEN F IS NOT INCLUDED, THE FIELD IS REDISPLAYED AS ENTERED.

Since the text field in the Master File does not include the F option, the data will be
redisplayed exactly as entered using TED (ON MATCH TED TXTFLD).

For the next example, the text field includes the F option:

FILE=TEXT,SUFFIX=FOC
SEGNAME=SEGA,SEGTYPE=S1

ibi™ FOCUS® Maintaining Databases

90 | Modifying Data Sources With MODIFY

FIELD=KEYFLD,,A1,$
FIELD=TXTFLD,,TX20F,$

Note: The same data is entered as in the previous example.

In this case, since the text field does include the F option, when the field is redisplayed,
blanks are omitted and the field is condensed as shown below:

THIS IS A TEST OF THE NEW TED OPTION 'F'. REMEMBER THAT TED DISPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADING BLANKS ARE USED TO INDICATE A
NEW PARAGRAPH. TEXT FIELD DATA IS ALWAYS STORED EXACTLY AS ENTERED.
WHEN F IS INCLUDED IN THE FORMAT AND THE TEXT FIELD IS REDISPLAYED,
BLANKS ARE OMITTED AND THE FIELD IS CONDENSED. WHEN F IS NOT INCLUDED,
THE FIELD IS REDISPLAYED AS ENTERED.

Specifying the Source of Data: The DATA
Statement
The DATA statement marks the end of the executable statements in a request. It also
specifies the source of the data.

Use a DATA Statement
DATA [ON ddname|VIA program]

where:

ON ddname

Indicates that the data is in a data source allocated to ddname.

VIA program

Indicates that the data is supplied directly from another computer program.

Type the DATA statement without parameters if:

ibi™ FOCUS® Maintaining Databases

91 | Modifying Data Sources With MODIFY

l The data comes from the request itself.

l The request contains only PROMPT statements to read data.

l The request does not read any data (this occurs when you use a request to browse
through a data source using the NEXT statement).

Reading Selected Portions of Transaction Data
Sources: The START and STOP Statements
MODIFY requests read and process transaction data sources from the first record to the
last. The START statement signals requests to read starting from a particular record in the
data source. The STOP statement signals requests to stop reading at a particular record in
the data source. You may use START and STOP statements to process transaction data
sources in sections, to resume processing a transaction data source after a system crash,
and to test a new request on a limited number of transactions.

Use a START Statement
START n

where:

n

Is the number of the first physical record to be processed by the request.

The syntax for the STOP statement is

STOP n

where:

n

Is the number of the last physical record to be processed by the request.

The START and STOP statements may appear anywhere in the request.

ibi™ FOCUS® Maintaining Databases

92 | Modifying Data Sources With MODIFY

For example, the following request reads 300 records from a transaction data source
(ddname SALDATE) starting from the 201st record until the 500th.

MODIFY FILE EMPLOYEE
START 201
STOP 500

FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA ON FIXSAL
END

Note that the numbers are that of physical records, not logical records, and that a request
reads four physical records as one logical record. Assume each input record consists of four
physical records. For example, if you want the request to read the data source starting

from after the first ten transactions, type the START statement as

START 41

because 10 transactions are made up of 40 physical records.

If you are processing a large transaction data source, you may divide the processing into
steps using the START and STOP statements. At the completion of each step, make a back-
up copy of the data source. If a step is aborted for any reason, you can use the last backup
to restore the data source.

These two requests are the same. The first processes transactions 1 to 100,000. The second
processes transactions 100,001 to 200,000:

MODIFY FILE EMPLOYEE
START 1
STOP 100000
FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON FIXSAL
END

ibi™ FOCUS® Maintaining Databases

93 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
START 100001
STOP 200000
FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON FIXSAL
END

Modifying Data: MATCH and NEXT
The MATCH and NEXT statements are the core of MODIFY requests; they are the statements
that determine which data source records are added, changed, or deleted. They work by
selecting a particular segment instance, then updating or deleting it. They may also add
new segment instances.

The MATCH statement selects specific segment instances based on their values. The NEXT
statement selects the next segment instance after the current position.

The MATCH Statement
The MATCH statement selects specific segment instances based on their values. It
compares one or more field values in the instances with corresponding incoming data
values. The action it performs depends on whether there is a segment instance with
matching field values.

For example, suppose a MODIFY request was processing this incoming data record in
comma-delimited format

EMP_ID = 123456789, CURR_SAL = 20000, $

and that the request contained this MATCH statement:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH INCLUDE

ibi™ FOCUS® Maintaining Databases

94 | Modifying Data Sources With MODIFY

This MATCH statement compares the EMP_ID value of an incoming data record to the EMP_
ID values in segment instances:

l If a segment instance has EMP_ID value 123456789, the MATCH statement replaces
the CURR_SAL value in the instance with the incoming CURR_SAL value of 20000.

l If there is no instance with the EMP_ID value of 123456789, the MATCH statement
creates a new segment instance with the EMP_ID value of 123456789 and a CURR_
SAL value of 20000.

Notice that the MATCH statement used each of the two incoming data fields differently. It
used the EMP_ID field (specified after the word MATCH) to locate the segment instance (or
to prove that it did not exist); it never altered the EMP_ID value in the segment. If it did
locate the instance, it replaced the CURR_SAL value in the instance with the value in the
incoming data field.

To identify the correct segment instance, the field values that the MATCH statement is
searching for must be unique to the instance within its segment chain. For the most
common types of segments, types S1 and SH1, the key field value is unique to each
instance within its segment chain. This is the value you will usually be searching for.

Note that the MODIFY command cannot update key fields. To update key fields, use the
FSCAN facility as described in Directly Editing ibi FOCUS Databases With FSCAN.

Remember from the introduction that FOCUS executes a MODIFY request for every
transaction.

Use a MATCH Statement
MATCH {* [KEYS] [SEG n]|field1 [field2 field3 ... field-n]}

ON MATCH action-1
ON NOMATCH action-2
[ON MATCH/NOMATCH action-3]

where:

field1 ...

Are the names of incoming data fields to be compared with similarly named data source
fields. The names may be full field names, aliases, or truncations. If a field value is
missing, the value is treated as zeros for numeric fields and blanks for alphanumeric

ibi™ FOCUS® Maintaining Databases

95 | Modifying Data Sources With MODIFY

fields.

These fields are segment key fields unless the MATCH statement is modifying a segment
of type S0 or blank. If the segment is type Sn or SHn and you do not specify the
segment keys, the request adds the keys to the list automatically and displays a warning
message.

If the list of fields is too long to fit on one line, begin each line with the word MATCH.
For example:

MATCH EMP_ID DAT_INC TYPE
MATCH PAY_DATE DED_CODE

To compare the values of all fields in the data source with incoming values, enter:

MATCH *

To compare the values of all key fields in the data source with incoming values, enter:

MATCH * KEYS

To compare the values of all key fields in a particular segment, type

MATCH * KEYS SEG n

where n is either the segment name or number as determined by the ? FDT query
(described in the Developing Applications manual).

action-1

If the MATCH statement locates a segment instance with a data value matching the
incoming data value (ON MATCH), it performs this action.

action-2

If the MATCH statement cannot locate a segment instance with a value matching the
incoming data value (ON NOMATCH), it performs this action.

action-3

Whether or not the MATCH statement locates a segment instance with a value matching
the incoming data value (ON MATCH/NOMATCH), it performs this action.

ibi™ FOCUS® Maintaining Databases

96 | Modifying Data Sources With MODIFY

Note that you may include many ON MATCH and ON NOMATCH phrases in one MATCH
statement. MATCH phrases can precede or follow NOMATCH phrases. The actions you may
use in MATCH statements are listed in the section below. They fall into seven groups:

l Actions that modify segments.

l Actions that control MATCH processing.

l Actions that read incoming data fields.

l Actions that perform computations and validations or type messages to the terminal.

l Actions that control Case Logic.

l Actions that control multiple-record processing.

l Actions that activate and deactivate fields.

Please note the following rules regarding the MATCH statement:

l Each phrase of the MATCH statement must start on a separate line.

l The ON MATCH and ON NOMATCH phrases may be reversed.

l If an action has a list of fields, but the list of fields is too long to fit on one line, you
may break the list into two or more lines. Begin each line with the ON MATCH or ON
NOMATCH phrase, followed by the action. For example:

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH UPDATE CURR_JOBCODE ED_HRS

Specify Actions With the ON MATCH/NOMATCH
Phrase
The MATCH statement has an ON MATCH/NOMATCH phrase. This phrase specifies an action
to be taken regardless of whether the field value for which the MATCH statement is
searching exists in the data source. This phrase is especially useful when you are using
CRTFORMs with display or turnaround fields (see Designing Screens With FIDEL). For
example:

ibi™ FOCUS® Maintaining Databases

97 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE'S ID: <EMP_ID"

MATCH EMP_ID
ON MATCH/NOMATCH CRTFORM LINE 3

"ENTER DEPARTMENT: <T.DEPARTMENT"
"ENTER NEW SALARY: <T.CURR_SAL"

ON MATCH UPDATE DEPARTMENT CURR_SAL
ON NOMATCH INCLUDE

DATA VIA FI3270
END

This request prompts you for an employee's ID. It then searches for the ID in the data
source. It prompts you for the employee's new department and salary, whether the ID is in
the data source or not. If the ID is in the data source, it updates the employee's
department and salary; otherwise, it adds a new segment instance with the information.

You could not have placed the CRTFORM statement before the MATCH statement, because
the CRTFORM statement contains turnaround fields.

You can specify the following actions in an ON MATCH/NOMATCH phrase:

l PROMPT

l TED

l CRTFORM

l GOTO

l IF

l ACTIVATE

l DEACTIVATE

l REPEAT

l HOLD

Note: TED in MODIFY can be used only with fields that have a text (TX) format
(see Entering Text Data Using TED for entering and editing text fields with TED).

ibi™ FOCUS® Maintaining Databases

98 | Modifying Data Sources With MODIFY

MATCH Statement Defaults
The following are defaults affecting the MATCH statement:

l If a MODIFY request has neither MATCH nor NEXT statements, it defaults to:

MATCH *
ON NOMATCH INCLUDE

It adds the instance even if another instance has the same key values. Since key
values uniquely identify segments, you should avoid doing this unless you are
loading data into a newly created data source, the incoming data is in a data source,
and you know that there are no duplicate key values in the data.

The following request reads in data from a fixed-format data source, ddname
EMPDATA, to load in data into the segments EMPINFO and SALINFO in the EMPLOYEE
data source:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 LAST_NAME/15 FIRST_NAME/10
FIXFORM PAY_DATE/I6 GROSS/D12.2
DATA ON EMPDATA
END

l If a MATCH statement has neither an ON MATCH nor an ON NOMATCH phrase, the
MATCH statement defaults to:

ON MATCH CONTINUE
ON NOMATCH INCLUDE

l If a MATCH statement has an ON NOMATCH phrase but no ON MATCH phrase, the ON
MATCH phrase defaults to:

ON MATCH CONTINUE

l If a MATCH statement has a MATCH phrase but no NOMATCH phrase, the ON
NOMATCH phrase defaults to:

ON NOMATCH REJECT

ibi™ FOCUS® Maintaining Databases

99 | Modifying Data Sources With MODIFY

Note: If a MATCH statement has the phrase

ON NOMATCH TYPE

and no other ON NOMATCH phrases, the request automatically adds the phrase:

ON NOMATCH REJECT

Adding, Updating, and Deleting Segment
Instances
The most important function of the MATCH statement is the adding, updating, and deleting
of segment instances. The MATCH statement does this by first searching a particular
segment chain within a segment for specific instances (segment chains are groups of
segment instances associated with an instance in the parent segment). The root segment
contains just one segment chain; descendant segments are composed of many segment
chains. How the MATCH statement selects segment chains in descendant segments is
explained in Modifying Data: MATCH and NEXT.

The process can be summarized as follows:

1. The MODIFY request reads a transaction. The transaction contains values that identify
a particular segment instance. Usually, these are key field values.

2. The MATCH statement searches the segment for an instance containing the key field
values:

If it is adding a new instance, it must confirm that the instance is not yet in the
segment. Otherwise, it would be adding a duplicate instance.

If it is updating or deleting an instance, it must first find the instance in the segment.

3. The MATCH statement takes action depending on whether it found the instance or
not. These actions are as follows:

ON NOMATCH
The instance is not yet in the segment. Therefore,
the request creates a new instance using values in

#d09modifydatasources1086863

ibi™ FOCUS® Maintaining Databases

100 | Modifying Data Sources With MODIFY

INCLUDE
the transaction.

ON MATCH
REJECT

The new instance already exists in the segment.
Therefore, the request does not add the instance to
the data source. Rather, it rejects the transaction.

ON MATCH
UPDATE
list

The instance exists in the segment. Therefore, the
request changes the values of the data source fields
named in the list to the values in the transaction.

ON MATCH
DELETE

The instance exists in the segment. Therefore, the
request deletes the instance, all its descendants,
and any references to the deleted instances in the
indexes.

ON NOMATCH
REJECT

The instance cannot be found in the segment.
Therefore, it cannot be changed or deleted. The
request rejects the transaction.

Adding Segment Instances
The syntax of a MATCH statement that adds segment instances is:

MATCH keyfield
ON MATCH REJECT
ON NOMATCH INCLUDE

When you include a new instance, the request fills the instance with the transaction field
values. If some segment fields are absent in the transaction, they become blank or zeros in
the instance, or the MISSING symbol if the field is described with the MISSING=ON attribute
(discussed in the Describing Data manual).

FOCUS determines the placing of the instance within a segment chain based on the current
position. The current position is the position of the instance you last added to the chain.

When FOCUS adds the next instance to a keyed segment, it determines whether the
instance goes before or after the current position based on the sort order of the segment. If

ibi™ FOCUS® Maintaining Databases

101 | Modifying Data Sources With MODIFY

the instance goes after the current position, FOCUS matches field values from the current
position forward until it finds the proper place for the new instance. If the instance goes
before the current position, FOCUS matches field values from the beginning of the chain
forward until it finds the place for the new instance.

To increase efficiency, submit your transactions in the same sorted order as the segment
(ascending order for Sn segments, descending order for SHn segments). This causes FOCUS
to move through the chain in one direction only.

If you do not submit the transactions in sorted order, you may get this message:

WARNING..TRANSACTIONS ARE NOT IN SAME SORT ORDER AS FOCUS FILE
PROCESSING EFFICIENCY MAY BE DEGRADED

This condition indicates that data will not be loaded in an optimal manner.

The following request adds new instances to the root segment of the EMPLOYEE data
source. The fields EMP_ID (the key field), LAST_NAME, and FIRST_NAME in the new
instances are filled with incoming data values; the other fields are left zero or blank:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

A sample execution might go as follows:

1. The request prompts you for an employee's ID, last name, and first name.

2. You enter ID 071382660, last name SMITH, and first name HENRY.

3. The request determines whether ID 071382660 is in the segment. It is there, so the
request rejects the transaction, displaying a message telling you so.

4. The request prompts you again for an employee's ID, last name, and first name.

5. You enter ID 123456789, last name SMITH, and first name HENRY.

6. The request determines whether ID 123456789 is in the segment. It is not there, so
the request adds a new segment instance, with 123456789 as the key value, SMITH in
the LAST_NAME field, and HENRY in the FIRST_NAME field. All other fields in the
instance are blanks and zeros.

ibi™ FOCUS® Maintaining Databases

102 | Modifying Data Sources With MODIFY

Updating Segment Instances
The syntax of a MATCH statement to update segment instances is

MATCH keyfield
ON MATCH UPDATE list
ON NOMATCH REJECT

where list is a list of data source fields to be updated using the values in the transaction. If
the list of fields is too large to fit on one line, begin each line with the ON MATCH UPDATE
phrase. For example:

ON MATCH UPDATE EMP_ID LN FN
ON MATCH UPDATE HDT DPT CSAL
ON MATCH UPDATE CJC OJT

To update all fields in a matched segment (except the key fields), type:

ON MATCH UPDATE * [SEG n]

Note: You cannot update key fields. To change key fields, use the FSCAN facility
as described in Directly Editing ibi FOCUS Databases With FSCAN.

The following request updates the salary (CURR_SAL field) for employees you specify:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

A sample execution might go as follows:

1. The request prompts you for an employee's ID and a new salary.

2. You enter ID 123123123 and a salary of $20,000.

3. The request searches the segment for ID 123123123 but cannot find the value. It

ibi™ FOCUS® Maintaining Databases

103 | Modifying Data Sources With MODIFY

rejects the transaction.

4. The request prompts you again for an employee ID and a new salary.

5. You enter ID 071382660 and a salary of $20,000.

6. The request finds ID 071382660 in the segment and changes the employee's salary to
$20,000.

You can combine adding and updating operations in one MATCH statement:

MATCH keyfield
ON MATCH UPDATE field-1 field-2 ... field-n
ON NOMATCH INCLUDE

This statement searches for a segment instance with a key field value the same as the
similarly named incoming field value. If it finds the instance, it updates the instance. If it
cannot find the instance, it adds a new instance. For example:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH INCLUDE

Deleting Segment Instances
The syntax of the MATCH statement for deleting a segment instance is:

MATCH keyfield
ON MATCH DELETE
ON NOMATCH REJECT

Note that the UPDATE action only updates fields when the transaction fields have values
present.

This request deletes records of employees who have left the company:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON MATCH DELETE

ibi™ FOCUS® Maintaining Databases

104 | Modifying Data Sources With MODIFY

ON NOMATCH REJECT
DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID.

2. You enter ID 987654321.

3. The request cannot find ID 987654321 in the segment, so it rejects the transaction,
displaying a message telling you so.

4. The request prompts you for another employee ID.

5. You enter ID 119329144.

6. The request finds ID 1193291and so on44 and deletes all record of the employee from
the data source. This includes the employee's instance in the root segment and all

descendant instances (such as pay dates, addresses, and so on).

Performing Other Tasks Using MATCH
You may specify actions in MATCH statements that can stand alone as statements
elsewhere in the MODIFY request. These actions are: read incoming data, perform
computations and validations, type messages, control Case Logic and multiple record
processing, and activate and deactivate fields.

Note that the MATCH statement can perform several actions if the ON MATCH or ON
NOMATCH condition occurs. To specify this, assign each action a separate ON MATCH or
ON NOMATCH phrase. For example:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE "EMPLOYEE ID NOT FOUND"
ON NOMATCH REJECT

There are two ON NOMATCH phrases in this request: one specifies the TYPE action, the
other the REJECT action. If you include a REJECT action, it must appear last; otherwise the
request will terminate and generate an error message.

ibi™ FOCUS® Maintaining Databases

105 | Modifying Data Sources With MODIFY

Reading Data
The following actions read incoming data. They work just as FIXFORM, FREEFORM,
PROMPT, and CRTFORM statements:

FIXFORM
list

Where list is a list of fields and formats. Reads in data from a
fixed-format data source.

FREEFORM
list

Where list is a list of incoming data fields. Reads in data from
a comma-delimited data source.

PROMPT
list

Prompts the user for data in fields named in the list one field
at a time.

CRTFORM
Prompts the user for data using the full-screen FIDEL facility.
FIDEL is described in Designing Screens With FIDEL.

TED
Opens a temporary file for text field data entry using TED.

Computations, Validations, and Messages
The following actions perform calculations and validations and type messages. These
actions work the same as the COMPUTE, VALIDATE, and TYPE statements:

COMPUTE
Performs computations.

VALIDATE
Performs validations.

ibi™ FOCUS® Maintaining Databases

106 | Modifying Data Sources With MODIFY

TYPE [ON
ddname]

Types messages to the terminal. When the ON ddname
option is used, the messages are sent to a file defined by
ddname.

Controlling Case Logic
The following actions control Case Logic. They are discussed in Branching to Different
Cases: The GOTO, PERFORM, and IF Statements:

GOTO casename
Branches to another case named by casename.

PERFORM casename
Branches to another case named by casename,
then returns to the PERFORM.

IF expression
[THEN]
GOTO case1
[ELSE GOTO
case2];

If the expression is true, the request branches to
the case named by case1; otherwise the request
branches to the case named by case2.

Controlling Multiple Record Processing
These actions control multiple-record processing and are described in Multiple Record
Processing:

REPEAT
Begins a REPEAT statement that
executes a group of MODIFY
statements repeatedly.

HOLD list
Where list is a list of data fields.
Stores field values in a buffer.

#d09modifydatasources1089198
#d09modifydatasources1089198

ibi™ FOCUS® Maintaining Databases

107 | Modifying Data Sources With MODIFY

Activating and Deactivating Fields
These actions activate and deactivate fields as described in Advanced Facilities:

ACTIVATE
list

Activates fields named in the list.

DEACTIVATE
list

Deactivates fields named in the list.

Place these statements within a MATCH statement if you want to run them only when the
request can locate incoming values in the data source (or confirm that incoming values are
not in the data source). This improves efficiency and makes the request logic more flexible.

Using MATCH Actions in a Request
For example, assume you are designing a request to update employee salaries. Those
employees who have spent more than 100 hours in class (the ED_HRS field) are granted an
extra 3% bonus.

The particular data source you are updating only contains the records of a small number of
company employees, but the transaction data source contains records for every employee
in the company. If you place the COMPUTE statement calculating the bonuses by itself, it
will calculate the bonus for every record in the transaction data source, whether or not the
record will be accepted into the data source. Instead, use the COMPUTE statement as an
ON MATCH option in a MATCH statement. COMPUTE will then calculate the bonus only for
employees in the data source. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

CURR_SAL = IF D.ED_HRS GT 100 THEN CURR_SAL*1.03
ELSE CURR_SAL;

ibi™ FOCUS® Maintaining Databases

108 | Modifying Data Sources With MODIFY

ON MATCH UPDATE CURR_SAL
DATA

Note the use of a D. prefixed field in the COMPUTE expression (D.ED_HRS). This field refers
only to ED_HRS values in the data source. You may refer to data source fields when using
statements in MATCH and NEXT statements or after them. The data source fields must
either be in the segment instance you are modifying or in a parent instance along the
segment path.

Modifying Segments in FOCUS Structures
This section discusses how the MATCH command modifies segments other than the root
segment. The section covers:

l Modifying unique segments.

l Modifying descendant segments.

l Modifying sibling segments (multi-path data sources).

l Modifying segments with no keys.

l Modifying segments with multiple keys.

l Using alternate views.

Modifying Unique Segments
Unique segments are segments that consist of only one instance for every parent instance.
They are always descended from other segments, but may not have descendants
themselves. Because unique segment instances are extensions of their parent instances,
they have no key fields.

There are two methods of modifying unique segments:

l The CONTINUE TO method allows you to add, update, and delete unique segment
instances.

l The WITH-UNIQUES method allows you to add and update unique segment instances,
but not to delete them. However, the WITH-UNIQUES method is easier to use.

ibi™ FOCUS® Maintaining Databases

109 | Modifying Data Sources With MODIFY

Modify Segment Instances Using the CONTINUE
TO Method
The CONTINUE TO method first locates the parent instance, then proceeds to the unique
instance. The syntax of the MATCH command to modify unique segment instances using
the CONTINUE TO method is:

MATCH keyfield
ON NOMATCH action-1
ON MATCH CONTINUE TO u-field
ON MATCH action-2
ON NOMATCH action-3

where:

keyfield

Is the key field of the parent segment instance.

action-1

Is the action the request performs if the parent instance cannot be found.

u-field

Is the name of any field in the unique child segment.

action-2

Is the action the request performs if a unique child instance exists.

action-3

Is the action the request performs if a unique child instance does not exist.

The actions that the request can perform are the same as those described in Adding,
Updating, and Deleting Segment Instances and Modifying Data: MATCH and NEXT. The
MATCH and NOMATCH phrases that follow the ON MATCH CONTINUE TO phrase can be in
either order.

This example illustrates how the request selects unique segment instances. The root
segment of the EMPLOYEE data source, called EMPINFO, which contains employee IDs, has
a unique child segment called FUNDTRAN that contains information on employee bank
accounts where pay checks are to be directly deposited. Every EMPINFO instance that

#d09modifydatasources1087037
#d09modifydatasources1087037

ibi™ FOCUS® Maintaining Databases

110 | Modifying Data Sources With MODIFY

describes an employee with a direct deposit bank account has one child instance in the
FUNDTRAN segment.

You could prepare the following MODIFY request to enter information on employees that
just opened a direct-deposit account:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

A sample execution might go as follows:

1. The request prompts for an employee ID, bank name, and bank account number.

2. You enter employee ID 456456456, bank name BEST BANK, and bank account no.
235532.

3. The request does not find employee ID 456456456, so it rejects the transaction.

4. The request prompts you for another employee ID, bank name, and bank account
number.

5. You enter employee ID 071382660, bank name BEST BANK, and bank account no.
235532.

6. The request finds ID 071382660. This employee has a segment recorded in the
FUNDTRAN segment, meaning that the employee already has a direct-deposit bank
account. The request rejects the transaction.

7. The request prompts you for another employee ID, bank name, and bank account
number.

8. You enter employee ID 112847612, bank name BEST BANK, and bank account 235532.

9. The request finds employee ID 112847612 but finds no instance recorded for the
employee in the FUNDTRAN segment.

10. The request records the bank name and bank account number in a new instance in
the unique segment.

The following request updates direct-deposit account information:

ibi™ FOCUS® Maintaining Databases

111 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME
ON MATCH UPDATE BANK_NAME BANK_ACCT
ON NOMATCH REJECT

DATA

The following request deletes account information for employees who have closed their
direct-deposit accounts:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME
ON MATCH DELETE
ON NOMATCH REJECT

DATA

To modify multiple unique children of one instance using the CONTINUE TO method, use
Case Logic as explained in Case Logic.

Process Unique Instances Using the WITH-
UNIQUES Method
The WITH-UNIQUES method processes unique instances as extensions of their parents; that
is, it considers a parent instance and its unique child as one instance. This method first
searches for the parent instance. If it finds the parent, it can update the parent instance
and create or update the unique child at the same time. If it does not find the parent, it
can create the parent instance and the unique child at the same time.

The syntax for the MATCH statement using the WITH-UNIQUES method is

MATCH WITH-UNIQUES keyfield
ON MATCH action1
ON NOMATCH action2

ibi™ FOCUS® Maintaining Databases

112 | Modifying Data Sources With MODIFY

where:

keyfield

Is the key field in the parent segment.

action1

Is the action performed if the MATCH statement locates the parent instance.

action2

Is the action performed if the MATCH statement does not locate the parent instance.

The MATCH statement can specify these actions:

l The INCLUDE action, which creates a new parent instance and unique children
instances for which there is incoming data.

l The UPDATE action, which updates a parent instance and its unique children. If a
child instance does not exist, FOCUS creates one.

l The DELETE action, which deletes the parent instance and all children instances.

l Actions that perform the functions listed in Modifying Data: MATCH and NEXT.

Note that the WITH-UNIQUES method can add and update unique instances, but it cannot
delete them without deleting the parent instance. To delete unique instances, use the
CONTINUE TO method described in Modifying Data: MATCH and NEXT.

This MODIFY request adds information on new employees, including information on direct-
deposit bank accounts. If an employee is already recorded in the data source, the request
rejects the entire transaction. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID FIRST_NAME LAST_NAME
PROMPT BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

This MODIFY request updates employees' account information. If an employee just opened
a direct-deposit account, the request automatically creates a new unique instance to
record the information. The request is:

ibi™ FOCUS® Maintaining Databases

113 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE BANK_NAME BANK_ACCT

DATA

This request adds and updates employees' account information, whether or not the
employees are new:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME
PROMPT BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON NOMATCH INCLUDE
ON MATCH UPDATE BANK_NAME BANK_ACCT

DATA

Note that the WITH-UNIQUES method allows you to include and update the multiple
unique children of one instance in one MATCH statement.

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each computed field
must have its own ON MATCH COMPUTE statement.

Modifying Segments
The following examples show how to modify segements.

Modifying Descendant Segments
Modifying descendant segments is similar to modifying the root segment, with one
difference: when a MATCH statement searches a root segment for a key field value, it
searches every instance of the segment. When the MATCH statement searches a
descendant segment, however, it searches only the segment chain belonging to a particular
parent instance. If the MATCH statement cannot find the key field value in this chain, it
executes the ON NOMATCH phrase. To modify the chain, you must first identify the parent
instance using a previous MATCH statement.

ibi™ FOCUS® Maintaining Databases

114 | Modifying Data Sources With MODIFY

The following example illustrates this. The EMPLOYEE data source contains two segments:
An EMPINFO segment containing employee IDs, and a child segment called SALINFO that
keeps track of each employee's monthly pay. Each of these IDs has an instance in the
SALINFO segment for each month that the employee worked (for example, an employee
working for eight months has eight instances in the SALINFO segment).

To modify a June instance in the SALINFO segment, you must first identify which employee
was paid in June. If the MODIFY request cannot find the June instance for one employee, it
will execute the ON NOMATCH phrase even though a June instance exists for another
employee.

This request adds a new monthly pay instance for each employee in the company. Note
the word CONTINUE, which causes the request to proceed to the next MATCH statement
(which adds the instances to the descendant segment) without taking any action. Also note
that the phrase ON NOMATCH CONTINUE is illegal:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

An execution might go as follows:

1. The request prompts you for an employee ID, the date the employee was paid, and
the gross earnings paid.

2. You enter an employee ID 159159159, pay date 820831 (August 31, 1982), and gross
earnings of $916.67.

3. The request cannot find ID 159159159, so it rejects the transaction.

4. The request prompts you for another employee ID, pay date, and gross earnings.

5. You enter employee ID 071382660, pay date 820831, and gross earnings of $916.67.

6. The request finds ID 071382660, and searches the SALINFO segment chain belonging
to 071382660 for the pay date 820831.

7. The request finds the pay date 820831 in the segment chain. Since the instance
already exists, the request rejects the transaction.

ibi™ FOCUS® Maintaining Databases

115 | Modifying Data Sources With MODIFY

8. You enter employee ID 071382660, pay date 820930 (September 30, 1982), and gross
earnings of $916.67.

9. The request finds ID 071382660, and searches the SALINFO segment chain belonging
to 071382660 for the pay date 820930.

10. The request does not find pay date 820930 in the segment chain, so it includes a new
instance in the SALINFO segment chain for pay date 820930 with gross earnings of
$916.67.

If your request prompts for data (using either PROMPT or CRTFORM), it is better to prompt
for the child key field values after the request locates the parent key field values. This
spares the user from typing the child key if the request cannot locate the parent key. You
can rewrite the previous request as:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

You can also write the request to include a new EMPINFO segment instance and a new
SALINFO instance if the employee's ID is not already there:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON NOMATCH INCLUDE
ON MATCH CONTINUE

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA

The first MATCH statement searches the EMPINFO statement for the employee ID that you
entered. If it does not find the ID, the request creates a new EMPINFO segment instance
with the new ID, and a descendant SALINFO instance with the pay date and monthly pay
you entered.

ibi™ FOCUS® Maintaining Databases

116 | Modifying Data Sources With MODIFY

Note that when an INCLUDE action creates a new segment instance, it also creates all
descendant instances for which data is present.

If the employee ID is already in the data source, the second MATCH statement searches the
SALINFO segment for the pay date you entered. If it does not find the ID, the request
creates a new SALINFO instance with the pay date. If the pay date is already in the
segment, the request rejects the transaction.

This request updates monthly pay instances:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS

MATCH PAY_DATE
ON MATCH UPDATE GROSS
ON NOMATCH REJECT

DATA

This request deletes monthly pay instances:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE

MATCH PAY_DATE
ON MATCH DELETE
ON NOMATCH REJECT

DATA

You may combine the MATCH statements in the request into one statement. This is called
matching across segments. To match across segments, specify the key fields that the
request must search for from the root segment down to the descendant segment (in that
order) after the MATCH keyword. For example, the request above that updates employee's
monthly pay can be rewritten this way:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID PAY_DATE

ON NOMATCH REJECT

ibi™ FOCUS® Maintaining Databases

117 | Modifying Data Sources With MODIFY

ON MATCH UPDATE GROSS
DATA

This is the request shown earlier in this section that adds data on new employees and
employees' monthly pay:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON MATCH CONTINUE
ON NOMATCH INCLUDE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

This request can be rewritten this way:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID PAY_DATE

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Note: When a MATCH statement matches across segments, the explicit ON
MATCH and ON NOMATCH phrases in the statement are only executed for the
last descendant segment (key field PAY_DATE in the example). For the other
segments, the request executes default phrases. If you are updating or deleting
instances, these phrases are:

ON MATCH CONTINUE
ON NOMATCH REJECT

If, for example, you include an ON NOMATCH TYPE phrase in the MATCH statement, the
phrase only types a message when there is an ON NOMATCH condition on the last
segment.

If you are adding new instances, the default phrases are:

ibi™ FOCUS® Maintaining Databases

118 | Modifying Data Sources With MODIFY

ON MATCH CONTINUE
ON NOMATCH INCLUDE

Because of these defaults, use this technique only when you are confident that you
understand the logic of the request.

Modifying FOCUS Structures of Three or More Levels
What has been said for two-level FOCUS structures is true for three or more levels. To
modify a descendant segment instance, you must first identify the parent instances to
which the descendant instance belongs, from the root segment down to the immediate
parent segment (the descendant segment instance belongs to a parent instance, that
instance belongs to grandparent instance, and so on up the FOCUS structure to one of the
root instances).

The following request illustrates this. The SALINFO segment has a child segment called
DEDUCT that records all the different deductions that are taken from each monthly wage. If
four deductions are taken from a monthly pay, that pay has four instances in the DEDUCT
segment. The key field in the DEDUCT segment is DED_CODE; it specifies the type of
deduction, such as certain taxes. The amount of the deduction is contained in the field
DED_AMT.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE DED_CODE DED_AMT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DED_CODE
ON NOMATCH REJECT
ON MATCH UPDATE DED_AMT

DATA

ibi™ FOCUS® Maintaining Databases

119 | Modifying Data Sources With MODIFY

Modifying Sibling Segments (Multi-Path Data
Sources)
If you are modifying sibling segments (segments that have a common parent), place the
MATCH statements modifying the siblings in any order after the MATCH statement
identifying the parent instance. Each sibling must have a separate MATCH statement. If you
are modifying descendants of one of the siblings, the MATCH statements that modify the
children should follow immediately after the MATCH statement that identifies the sibling.

The following request updates the SALINFO and ADDRESS segments, both children of the
EMPINFO segment. The ADDRESS segment contains both home and bank addresses of the
employees; its key field is TYPE, which indicates whether the address is a home address or
a bank address.

The request is as follows:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS TYPE ADDRESS_LN1

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH UPDATE GROSS

MATCH TYPE
ON NOMATCH REJECT
ON MATCH UPDATE ADDRESS_LN1

DATA

Modify Segments With No Keys
Segments of types S0 and blank (SEGTYPE= ,) have no key fields. Segments of type blank
are always descendant segments; they can never be root segments. Segments of type S0
can be root segments.

To modify these segments, the MATCH statement selects instances by comparing the
values of one or more fields in the segment to a similarly named transaction field. The
MATCH statement has the form

ibi™ FOCUS® Maintaining Databases

120 | Modifying Data Sources With MODIFY

MATCH {* [SEG n]|field-1 field-2 ... field-n}
ON MATCH action-1
ON NOMATCH action-2

where:

field-1 ...

Are any fields in the segment you are modifying.

* SEG n

Matches all fields in the segment, where n is either the segment name or number as
determined by the ? FDT query (described in the Developing Applications manual).

The difference between segment type S0 and blank is in the way FOCUS adds new
instances to the segments.

Storing Data With Type S0 Segments
When you add a segment instance to a type S0 segment, FOCUS matches field values in the
segment chain from the current position forward through the chain, inserting the instance
in the chain based on ascending order. FOCUS does not search the chain from the
beginning; therefore, if the instance belongs before the current position, FOCUS inserts the
instance at the end of the chain (this means that if you are adding instances to a new
segment chain, FOCUS stores the instances in the order of submission). It may insert the
instance even if another instance has the same field values and you specified ON MATCH
REJECT. If, however, you sort the transactions in ascending sequence before submitting
them, you will preserve the correct sequence in the chain. You will also prevent adding
duplicate segments unless you specify ON MATCH INCLUDE.

Because it is difficult to ensure that segments of type S0 do not have instances with
duplicate field values, they are difficult to maintain. You should only use them for data that
needs to be loaded in once and does not need to be changed or deleted.

This is a sample FOCUS data source that stores memos, called MEMO. The Master File is:

FILE=MEMO ,SUFFIX=FOC ,$
SEGMENT=MEMOSEG ,SEGTYPE=S1 ,$
FIELD=MEMO_NAME ,ALIAS=MEMO ,FORMAT=A25 ,$

ibi™ FOCUS® Maintaining Databases

121 | Modifying Data Sources With MODIFY

SEGMENT=TEXTSEG ,SEGTYPE=S0 ,PARENT=MEMOSEG ,$
FIELD=LINE ,ALIAS=LN ,FORMAT=A70 ,$

The following request enters ten-line memos into the data source:

MODIFY FILE MEMO
PROMPT MEMO_NAME 10 (LINE)
MATCH MEMO_NAME

ON MATCH REJECT
ON NOMATCH INCLUDE

MATCH LINE
ON MATCH INCLUDE
ON NOMATCH INCLUDE

DATA

Note: The INCLUDE action in both ON MATCH and ON NOMATCH phrases adds a
line of text even if the line is the same as another line in the memo (which
would happen if you have more than one blank line in the memo) in all
circumstances.

Type Blank Segments
When you add an instance to a type blank segment, the MODIFY request compares the
instance you are adding to every instance in the segment chain, based on the fields you
specify in the MATCH statement. Thus, if you specified the ON MATCH REJECT phrase in the
MATCH statement, the request does not allow you to add an instance that has the same
field values you are matching on as another instance.

You modify type blank segments the same way you modify other segments. Be careful,
however, that the fields you are matching on uniquely identify the segment instances, or
you may not be able to select the instance you want to modify. (MODIFY requests always
select the first instance that fulfills the match conditions.)

Modifying Segments With Multiple Keys
Segments may have multiple keys. These segments are types Sn or SHn where n is the
number of keys. For example, a segment in ascending order that has two keys is type S2;

ibi™ FOCUS® Maintaining Databases

122 | Modifying Data Sources With MODIFY

that is, it has the attribute SEGTYPE=S2 in the Master File. Multiple keys are necessary
when the first field alone cannot uniquely identify a segment instance. For example, a
segment has three fields as described by the Master File:

FILE=ADDRESS ,SUFFIX=FOC ,$
SEGMENT=ADDRSEG ,SEGTYPE=S2 ,$
FIELD=LAST_NAME ,ALIAS=LNAME ,FORMAT=A15 ,$
FIELD=FIRST_NAME ,ALIAS=FNAME ,FORMAT=A15 ,$
FIELD=ADDRESS ,ALIAS=ADDR ,FORMAT=A80 ,$

Since the LAST_NAME field is not enough to identify individual segment instances (some
people share the same last name), the segment uses the first two fields, LAST_NAME and
FIRST_NAME, as keys.

Note that multiple keys must always be the first fields in the segment, and they must be
next to each other; that is, a non-key field cannot be between two key fields.

Modifying segments with multiple key fields is the same as modifying segments with one
key field. The one difference is that you must specify all the key fields in the MATCH
phrase.

To enter data into the ADDRESS data source, you prepare the following MODIFY request:

MODIFY FILE ADDRESS
PROMPT LAST_NAME FIRST_NAME ADDRESS
MATCH LAST_NAME FIRST_NAME

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

A sample execution might go as follows:

1. The request prompts you for the last name, first name, and address.

2. You enter the last name FOX, first name GEORGE, and the address 2365 N. HAMPTON
ST. HAMILTON, MN 55473.

3. The request searches the segment for an instance with both last name FOX and first
name GEORGE.

4. The request does not find such an instance, so it creates a new instance for George
Fox.

Note that you cannot update any of the key fields.

ibi™ FOCUS® Maintaining Databases

123 | Modifying Data Sources With MODIFY

Use Alternate File Views
To modify descendant segments, you must first specify the parent segments using a series
of MATCH statements. You can modify a descendant segment directly by declaring the
segment to be the root segment of an alternate file view. To do this, the segment must
fulfill three conditions:

l The segment must be type S1 or SH1.

l The key field must be indexed.

l The key field values should be unique throughout the data source.

To declare an alternate file view, you begin the MODIFY request this way

MODIFY FILE filename.field

where:

filename

Is the name of the FOCUS data source you are modifying.

field

Is the name of the indexed key field in the root segment of the alternate file view.

Note that you can only update the root segment of the alternate file view; you cannot add
or delete segment instances. However, you can add, update, and delete segment instances
in the descendants of this segment. In addition, you may make use of external indices only
using the FIND and LOOKUP functions. Be aware that an external index cannot be used as
an entry point. For example,

MODIFY FILE filename.field

will be ineffective. FIND and LOOKUP are described in Computations: COMPUTE and
VALIDATE.

This sample FOCUS data source, called BANK, contains information on bank accounts. The
Master File is:

FILE=BANK ,SUFFIX=FOC ,$
SEGMENT=CUSTSEG ,$

ibi™ FOCUS® Maintaining Databases

124 | Modifying Data Sources With MODIFY

FIELD=SOC SEC NUM ,ALIAS=SSN ,FORMAT=A9 ,$
FIELD=NAME ,ALIAS=NAME ,FORMAT=A30 ,$

SEGMENT=ACCTSEG ,SEGTYPE=S1 ,PARENT=CUSTSEG ,$
FIELD=ACCT NUM ,ALIAS=ACCOUNT ,FORMAT=A10 ,
FIELDTYPE=I ,$

FIELD=AMOUNT ,ALIAS=AMOUNT ,FORMAT=D10.2,$
SEGMENT=TRANSSEG ,SEGTYPE=S1 ,PARENT=ACCTSEG ,$

FIELD=TRANSNUM ,ALIAS=TNUM ,FORMAT=I5 ,$
FIELD=TRANTYPE ,ALIAS=TTYPE ,FORMAT=A1 ,$
FIELD=TR_AMOUNT ,ALIAS=TAMOUNT ,FORMAT=D8.2 ,$

This Description contains three segments:

l The CUSTSEG segment contains social security numbers and names of bank
depositors.

l The ACCTSEG segment, child of CUSTSEG, contains account numbers and the amount
of money in each account. Note that the field ACCT_NUM is indexed and that each

account number is unique throughout the data source.

l The TRANSSEG segment, child of ACCTSEG, contains information on individual bank
account transactions: the transaction serial number (TRANSNUM), the type of
transaction (TRANTYPE, which contains a D for deposits and a W for withdrawals),
and the amount of the transaction (TR_AMOUNT).

To add new account information in the BANK data source, prepare the following MODIFY
request:

MODIFY FILE BANK
PROMPT SSN NAME ACCT_NUM AMOUNT
MATCH SSN

ON NOMATCH INCLUDE
ON MATCH CONTINUE

MATCH ACCT_NUM
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA

The MODIFY request above first specifies the parent segment CUSTSEG (MATCH SSN) before
the child segment ACCTSEG (MATCH ACCT_NUM). Since ACCTSEG is an S1 segment with an
indexed key field (ACCT_NUM), you can modify the ACCTSEG directly with this request:

ibi™ FOCUS® Maintaining Databases

125 | Modifying Data Sources With MODIFY

MODIFY FILE BANK.ACCT_NUM
PROMPT ACCT_NUM AMOUNT
MATCH ACCT_NUM

ON NOMATCH REJECT
ON MATCH UPDATE AMOUNT

DATA

You may modify the root segment of the alternate file view and its descendants in the
original data source structure, but not its parents. In the BANK data source, you may
modify the TRANSSEG segment using the above alternate file view but not the CUSTSEG
segment.

This request adds information on new bank account transactions to the data source:

MODIFY FILE BANK.ACCT_NUM
PROMPT ACCT_NUM AMOUNT PROMPT TRANSNUM TRANTYPE TR_AMOUNT
MATCH ACCT_NUM

ON NOMATCH REJECT
ON MATCH UPDATE AMOUNT

MATCH TRANSNUM
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Selecting the Instance After the Current
Position: The NEXT Statement
The NEXT statement selects the next segment instance after the current position, making
the instance the new current position. The current position depends on the execution of
MATCH and NEXT statements:

l If a MATCH or NEXT statement selects a segment instance, the instance becomes the
current position within the segment.

l If a MATCH or NEXT statement selects a parent instance of a segment chain, the
current position is before the first instance in the chain.

l At the beginning of a request, the current position in the root segment is before the
first instance.

ibi™ FOCUS® Maintaining Databases

126 | Modifying Data Sources With MODIFY

The NEXT statement can modify segment instances similarly to the MATCH statement and
follows the same rules (see Modifying Data: MATCH and NEXT). However, the NEXT
statement is most often used for displaying data source values.

Use a NEXT Statement
The syntax of the NEXT statement is

NEXT field
ON NEXT action-1
ON NONEXT action-2

where:

field

Is any field in the segment whose instances are being selected.

action-1

Is the action the request takes if there is a next instance to select.

action-2

Is the action the request takes if it has reached the end of the segment chain.

There can be many ON NEXT and ON NONEXT phrases in a single NEXT statement. Each
phrase specifies one action.

An action can be any action that is legal in the MATCH statement (see Adding, Updating,
and Deleting Segment Instances and Modifying Data: MATCH and NEXT). However, use ON
NEXT INCLUDE and ON NONEXT INCLUDE phrases only to add instances to segments of
type S0 or blank. If you use these phrases to modify other segments, you may duplicate
what is already there. The difference between the two phrases is:

l ON NEXT INCLUDE adds a new segment instance after the current position.

l ON NONEXT INCLUDE adds a new instance at the end of the segment chain. The
phrase ON NEXT INCLUDE is only valid for segments with type S0 or blank.

The following phrases are always illegal:

#d09modifydatasources1087037
#d09modifydatasources1087037

ibi™ FOCUS® Maintaining Databases

127 | Modifying Data Sources With MODIFY

ON NONEXT UPDATE
ON NONEXT DELETE
ON NONEXT CONTINUE
ON NONEXT CONTINUE TO

This phrase is legal even in requests that do not involve Case Logic:

ON NONEXT GOTO EXIT

The phrase terminates the request when the NEXT statement reaches the end of the
segment chain.

Note that a NEXT statement can have multiple ON NEXT and ON NONEXT phrases. For
example, the following statement displays the salaries of every employee in the data
source and shows what their salaries would be if they are granted a 5% increase:

NEXT EMP_ID
ON NEXT COMPUTE NEWSAL = 1.05 * D.CURR_SAL;
ON NEXT TYPE

"EMPLOYEE <D.EMP_ID SALARY NOW:<D.CURR_SAL"
"SALARY PLUS 5% INCREASE: <NEWSAL"

ON NONEXT TYPE
"END OF EMPLOYEE FILE"

ON NONEXT GOTO EXIT

Selecting Instances
You can use NEXT statements in non-Case Logic requests to modify or display the data in:

l The entire root segment.

l The first instances of segment chains in descendant segments.

To modify or display data in entire descendant segment chains, you must use Case Logic as
described in Case Logic.

The NEXT statement can modify and display data in the root segment. This request
displays all the employee IDs in the employee ID segment:

MODIFY FILE EMPLOYEE
NEXT EMP_ID

ibi™ FOCUS® Maintaining Databases

128 | Modifying Data Sources With MODIFY

ON NEXT TYPE "EMPLOYEE ID: <D.EMP_ID"
ON NONEXT GOTO EXIT

DATA

When a NEXT statement modifies or displays data in a descendant segment, it can do so
only to the first instance in a segment chain. Consider the following request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH TYPE "YOU ENTERED ID <EMP_ID"

NEXT PAY_DATE
ON NEXT TYPE

"THIS EMPLOYEE'S LAST PAY DATE"
"WAS <D.PAY_DATE"

ON NONEXT GOTO EXIT
DATA

The MATCH statement selects an instance with a particular employee ID. The NEXT
statement selects the instance with the employee's last pay date (the pay dates are
organized in the data source from high to low). The PAY_DATE segment is a child of the
EMP_ID segment.

The NEXT statement is at its most powerful when it is used to browse through an entire
chain. To browse through a chain in a descendant segment, you must use Case Logic, as
described in Case Logic.

Displaying Unique Segments
You can use the NEXT statement to display and modify the contents of unique segments
using two methods (see Modifying Data: MATCH and NEXT):

l The CONTINUE TO method.

l The WITH-UNIQUES method.

ibi™ FOCUS® Maintaining Databases

129 | Modifying Data Sources With MODIFY

Use the CONTINUE TO Method
The syntax of the CONTINUE TO method is

NEXT field
ON NONEXT action-1
ON NEXT CONTINUE TO u-field

ON NEXT action-2
ON NONEXT action-3

where:

field

Is the first field in the parent instance.

action-1

Is the action the request performs if there are no more instances in the parent segment
chain.

u-field

Is the name of any field in the unique child segment.

action-2

Is the action the request performs if the parent instance has a unique child instance.

action-3

Is the action the request performs if the parent instance does not have a unique child
instance.

Use the WITH-UNIQUES Method
The syntax of the WITH-UNIQUES method is

NEXT WITH-UNIQUES field
ON NONEXT action1
ON NEXT action2

ibi™ FOCUS® Maintaining Databases

130 | Modifying Data Sources With MODIFY

where:

field

Is the name of any field in the parent segment.

action1

Is the action the request performs if there are no more instances in the chain.

action2

Is the action the request performs if there is a next instance in the chain. This action can
be performed on either the parent instance or the unique instance. If an UPDATE action
updates a unique instance that does not exist yet, FOCUS creates the instance.

Computations: COMPUTE and VALIDATE
The MODIFY command provides two facilities that perform calculations on incoming data
fields, data source fields, and temporary fields. These are:

l The COMPUTE statement. This statement allows you to modify incoming data field
values and to define temporary fields.

l The VALIDATE statement. This statement allows you to reject transactions that
contain unacceptable values.

FIND and LOOKUP functions can be used only in COMPUTE and VALIDATE statements. For
more information, see Computations: COMPUTE and VALIDATE.

Computing Values: The COMPUTE Statement
The COMPUTE statement allows you to modify incoming data field values and to define
temporary fields.

A transaction data source (whether stored on the computer or typed on paper) used to
modify a data source often does not contain the same data that is to go into the data
source fields. There are many reasons for this:

l The incoming data contains short codes representing the alphanumeric data that is

ibi™ FOCUS® Maintaining Databases

131 | Modifying Data Sources With MODIFY

to go into the data source. For example, incoming records contain the code P for
PRODUCTION and M for MIS. The PRODUCTION and MIS values update the
DEPARTMENT field.

l The incoming data is repetitive: the same value is used to update each instance or
the same series of values is used to update each segment chain. For example, all
employees are to receive a pay increase of 5%.

l The incoming data values are calculable from other values. For example, an
employee's percentage salary increase is equal to the new salary divided by the old
salary minus 1.

l Some values vary in predictable ways depending on other values. For example,
employee salary increases depend on the employees' department assignment.

The COMPUTE statement gives you control over the data that modifies the data source.
Using COMPUTE you can:

l Translate codes into data to modify the data source.

l Adjust the values of transaction fields.

l Define a data value or a series of data values to modify the data source repeatedly.

l Calculate data values from other sources and use these new values to modify the
data source.

The COMPUTE statement works by setting either an incoming data field or a temporary
field to the value of an expression. The expression may involve existing data source fields,
other temporary fields, and constants.

Note that there are three different types of fields:

l Incoming data fields (also called transaction fields) contain data read from
transaction data sources or a terminal. These fields are specified by the FIXFORM,
FREEFORM, PROMPT, and CRTFORM statements. They remain incoming data fields
even if their values are changed by COMPUTE statements.

l Data source fields contain data stored in the data source. Their field names are
prefaced by the D. prefix.

l Temporary fields are created by and receive their values from COMPUTE statements.

The following request uses all three types of fields. The request awards a bonus of $150 to
employees who received salary raises:

ibi™ FOCUS® Maintaining Databases

132 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
1. PROMPT EMP_ID CURR_SAL

COMPUTE
2. BONUSAL/D8.2 = CURR_SAL + 150;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH COMPUTE

3. CURR_SAL = IF CURR_SAL GT D.CURR_SAL
THEN BONUSAL
ELSE CURR_SAL;

ON MATCH UPDATE CURR_SAL
DATA

The numbers above refer to these fields:

1. The EMP_ID and CURR_SAL fields are incoming data fields, because they are read by
a PROMPT statement.

2. The BONUSAL field is a temporary field, because it is created by and receives its
value from a COMPUTE statement.

3. The D.CURR_SAL field is a data source field, since its field name is prefaced with the
D. prefix.

You may use COMPUTE statements to adjust the values of incoming data fields. For
example, your MODIFY request reads salary values from a data source and places them into
the field SALARY. You want to increase all these values by 10%. To do so, add this
statement to the request:

COMPUTE SALARY = SALARY * 1.1;

In cases where the same field name exists in more than one segment, and that field must
be redefined, the REDEFINES command should be used.

You may use the COMPUTE statement to define an unlimited number of temporary fields.
For example, you define a temporary field TEMPSAL to contain the number 25000 if an
employee is in the MIS department and the number 18000 if an employee is in the
PRODUCTION department:

COMPUTE
TEMPSAL =IF DEPARTMENT IS 'MIS' THEN 25000

ELSE IF DEPARTMENT IS 'PRODUCTION' THEN 18000;

ibi™ FOCUS® Maintaining Databases

133 | Modifying Data Sources With MODIFY

Note that MODIFY requests allow the use of up to 3,072 fields within the request. The
number includes:

l Data source fields referred to in the request.

l Temporary fields created by COMPUTE and VALIDATE statements.

l Temporary fields are created automatically by FOCUS. These include:

o FOCURRENT for MODIFY requests run in Simultaneous Usage mode. FOCUS
creates one FOCURRENT variable per request.

o REPEATCOUNT for MODIFY requests containing REPEAT statements. FOCUS
creates one REPEATCOUNT variable per request regardless of the number of
REPEAT statements.

o HOLDCOUNT and HOLDINDEX for MODIFY requests containing HOLD
statements. FOCUS creates one HOLDCOUNT and one HOLDINDEX variable per
request regardless of the number of HOLD statements.

Each field referred to or created in a MODIFY request counts as one field toward the 3,072
total, regardless of how often its value is changed by COMPUTE and VALIDATE statements.
However, if a data source field is read by a FIXFORM, FREEFORM, PROMPT, or CRTFORM
statement and also has its value changed by COMPUTE and VALIDATE statements, it counts
as two fields.

FOCUS compiles most COMPUTE and DEFINE calculations when the request is parsed.
Typically, the new compilation logic executes the compiled calculations in about one-fifth
the time required by uncompiled calculations. However, the compiled form requires more
memory. For this reason, very large MODIFY procedures may require more virtual storage
to run and, should the MODIFY procedures be compiled, they will occupy more disk space.

There are two places in the MODIFY request where you can use COMPUTE statements:

l At the beginning of the request. COMPUTE statements here define temporary field
values for every transaction. Note that these statements may not perform
calculations on data source field values (D. fields).

l In the following MATCH and NEXT statements. COMPUTE statements here define
temporary field values for transactions depending whether or not the MATCH or NEXT
statement selected a particular segment instance. These statements may perform
calculations using data source field values.

This section covers:

l The syntax of COMPUTE statements.

ibi™ FOCUS® Maintaining Databases

134 | Modifying Data Sources With MODIFY

l Use of COMPUTE statements in MATCH and NEXT statements.

l Modifying transaction fields.

l Defining non-data source transaction fields.

Use a COMPUTE Statement
The syntax of the COMPUTE statement is as follows (note that you can place several
COMPUTE statements after the COMPUTE keyword):

COMPUTE
field[/format] = expression;
field[/format] = expression;
.
.
.

where:

field

Is the name of the field being set to the value of the expression. The field can be an
incoming data field or it can be a temporary field (whose name must be different from
the incoming field names). Fields can only modify data source fields with the same
name.

format

Is the format of the field if the field is temporary. Specify the format when defining the
temporary field for the first time. Field formats are described in the Describing Data
manual.

You can specify the MISSING option to declare temporary field values missing if values
in the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

You can specify the YRTHRESH and DEFCENT options to handle cross-century dates.
Using these options, and working with cross-century dates, is discussed in the
Developing Applications manual.

ibi™ FOCUS® Maintaining Databases

135 | Modifying Data Sources With MODIFY

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement. In addition, you may
use the FIND and LOOKUP functions, described in Computations: COMPUTE and
VALIDATE.

Note: The expression can be null; that is, the COMPUTE statement can have
the form

COMPUTE field/format=;

where format is the format of the field. This form is used to define transaction fields that
are not listed in the Master File.

Note that you must terminate the expression with a semi-colon (;). You may type a
COMPUTE statement over as many lines as you need, terminating the expression with a
semi-colon. The COMPUTE command supports other attributes such as DFC, YRT, and
MISSING. See the Creating Reports manual for details.

For example:

COMPUTE
CURR_SAL = IF CURR_JOBCODE IS A02 THEN 15000

ELSE IF CURR_JOBCODE IS B02 THEN 17000
ELSE IF CURR_JOBCODE IS B12 THEN 18000
ELSE 20000;

In the preceding example, the temporary field CURR_SAL will contain 15000, 17000, 18000,
or 20000, depending on the value of CURR_JOBCODE. CURR_SAL will then be used later in
the MODIFY request.

You can also place an expression on the same line as a COMPUTE keyword, and several
expressions on one line (ending each expression with a semicolon). For example:

COMPUTE CURR_SAL=CURR_SAL*1.2; ED_HRS = ED_HRS-5;

You can specify the MISSING option to declare temporary field values missing if values in
the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

ibi™ FOCUS® Maintaining Databases

136 | Modifying Data Sources With MODIFY

Using the COMPUTE Statement
The following examples show how to use the COMPUTE statement.

Placing COMPUTE Phrases in MATCH and NEXT
Statements
You may place COMPUTE statements in MATCH and NEXT statements. The request only
performs the computation if the MATCH or NEXT condition is met. These COMPUTE phrases
may perform calculations on data source field values if these fields are either in the
segment instance being modified or in a parent instance along the segment path (the
parent instance, the parent's parent, and so on until the root segment). To specify data
source field values (as opposed to values in the transaction field with the same name), affix
the D. prefix to the front of the field name.

Note that COMPUTE statements that follow a MATCH or NEXT statement may also perform
calculations on data source field values if these fields are in the instance selected by the
previous statement (or are in the segment path).

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each computed field
must have its own ON MATCH COMPUTE statement.

The following request calculates employees' new salaries giving them a 10% increase over
their present salaries. It only performs this calculation for employees whose IDs are stored
in the data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

CURR_SAL = D.CURR_SAL * 1.1;
ON MATCH UPDATE CURR_SAL

DATA

ibi™ FOCUS® Maintaining Databases

137 | Modifying Data Sources With MODIFY

Changing Incoming Data
You can use the COMPUTE statement to change incoming data. For example, assume you
are preparing a MODIFY request to input new salaries into the data source. Just recently,
the company granted employees in the MIS department an extra 3% pay raise. Rather than
manually recalculating the new salaries for MIS employees, you can include a COMPUTE
statement to do it for you:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL DEPARTMENT
COMPUTE
CURR_SAL = IF DEPARTMENT IS 'MIS'

THEN CURR_SAL * 1.03
ELSE CURR_SAL;

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

The new salary of employees who work in the MIS department will be 1.03 times more
what they would have received ordinarily. Everybody else gets a normal raise.

Define Non-Data Source Transaction Fields
If the names of incoming data fields are not listed in the Master File describing the data
source, you must define them to FOCUS before they are read in by a FIXFORM, FREEFORM,
PROMPT, or CRTFORM statement. Otherwise, FOCUS rejects the fields as unidentifiable and
terminates the request.

To define the fields to FOCUS, specify them with the COMPUTE statement using the
notation

COMPUTE field/format=;

where:

field

Is the incoming data field you want to define to FOCUS.

ibi™ FOCUS® Maintaining Databases

138 | Modifying Data Sources With MODIFY

format

Is the format of the field. Field formats are described in the Describing Data manual.

Because there is no expression after the equal sign (=), the request reads the statement
before it reads the incoming data. All COMPUTE statements having expressions are
executed after the request reads the incoming data.

For example, you want to record promotions to the MIS and Production Departments in the
data source. However, the transaction data source you are working with lists the
departments by code, not by name: a 1 for MIS and a 2 for Production. You prepare the
following MODIFY request:

MODIFY FILE EMPLOYEE
COMPUTE DEPCODE/I1=;
PROMPT EMP_ID DEPCODE
COMPUTE

DEPARTMENT = IF DEPCODE IS 1 THEN 'MIS' ELSE 'PRODUCTION';
MATCH EMP_ID

ON MATCH UPDATE DEPARTMENT
ON NOMATCH REJECT

DATA

The first COMPUTE statement defines the incoming DEPCODE field to FOCUS. The second
COMPUTE statement sets the value of the transaction field DEPARTMENT depending on the
value of DEPCODE. This DEPARTMENT field then updates the DEPARTMENT field in the data
source.

Compiling MODIFY Expressions Using Native
Arithmetic
The native compiler for MODIFY processes COMPUTE, IF, and VALIDATE expressions using
the arithmetic operations built into the underlying operating system. This native compiler
eliminates internal format conversions and speeds up expression processing. It significantly
enhances the speed of expressions that use long packed fields and date fields.

Note: Expression compilers for MODIFY are supported only in Mainframe
environments. Linux on the Mainframe does not support these compilers.

ibi™ FOCUS® Maintaining Databases

139 | Modifying Data Sources With MODIFY

Control Compilation of MODIFY Expressions
SET MODCOMPUTE={NATV|NEW|OLD}

where:

NATV

Activates the native compiler for MODIFY expressions. NATV is the default value.

NEW

Compiles MODIFY expressions using the standard FOCUS compilation routines, which
use high-precision floating point format for all arithmetic operations.

OLD

Does not compile MODIFY expressions.

Usage Notes for SET MODCOMPUTE
The following are usage notes for SET MODCOMPUTE:

l SET MODCOMPUTE can be issued in a user or system profile or on the command line.

l Expressions using the following features are not compiled by the native compiler:

LIKE operator.

DEFINE functions.

LAST function.

Validating Transaction Values: The VALIDATE
Statement
Most applications require that data be checked for accuracy before it is accepted into the
data source. The VALIDATE statement checks values against certain conditions. If the value
fails the test, the request rejects the transaction and displays a warning to the user.

ibi™ FOCUS® Maintaining Databases

140 | Modifying Data Sources With MODIFY

For example, assume you are preparing a MODIFY request to update MIS and Production
Department salaries in the data source. No one in those departments is ever paid less than
$6,000 per year or more than $50,000. You can use the VALIDATE statement to reject those
values that fall outside this range, such as a $700 or a $75,000 salary.

VALIDATE statements work the same way as COMPUTE statements: they set the value of a
temporary field to the value of an expression. The only difference is that if the field value is
set to 0, FOCUS rejects the transaction being processed and displays this message

(FOC421) TRANS n REJECTED INVALID rcode

where:

n

Is the number of the transaction being tested.

rcode

Is the variable receiving the test value.

The simplest way to use VALIDATE statements is to have them test the values of incoming
data fields. If an incoming value is unacceptable, assign the temporary field a value of 0.
Otherwise, assign the field a non-zero value. Note that the temporary field retains its value
after the VALIDATE statement, and you may use this value in other calculations.

Tests provided by the DBA functions, which control access to data sources, function as
involuntary VALIDATE tests and produce similar error messages.

You can place VALIDATE statements in two places in MODIFY requests:

l At the beginning of the request. VALIDATE statements here test every transaction,
discarding those containing invalid values. Expressions in these VALIDATE statements
cannot use data source field values (D. fields).

l In MATCH and NEXT statements. VALIDATE statements here test the transaction
depending whether or not the MATCH or NEXT statement selected a particular
segment instance. Expressions in these VALIDATE statements can use data source
field values.

If you are validating fields in a repeating group and one field is rejected, all fields in the
repeating group are rejected. However, if you are validating the fields in a MATCH or NEXT
statement and one field is rejected, the other fields are not rejected.

If the MODIFY request prompts for data (the PROMPT statement), it is a good idea to
validate each field after prompting. If you validate several fields at once, users must enter

ibi™ FOCUS® Maintaining Databases

141 | Modifying Data Sources With MODIFY

data for all the fields before the values they enter are tested. If one data value is invalid,
they must reenter all the data values. If you validate each field, users will be warned as
soon as they enter an invalid value, and the request will reprompt them for the correct
value.

This section describes:

l VALIDATE statement syntax.

l Using the VALIDATE statement to validate incoming data.

l Use of the ON INVALID phrase.

l Use of VALIDATE statements in MATCH and NEXT statements.

l Testing for the presence of incoming data.

l Use of the DECODE function in VALIDATE statements.

If you validate data entered on a CRTFORM, invalid values cause the CRTFORM screen to be
redisplayed along with the data you entered. This allows you to correct the data and re-
enter it. You can deactivate this feature using the DEACTIVATE INVALID feature described in
Advanced Facilities.

Use a VALIDATE Statement
The syntax of the VALIDATE statement is as follows (note that you may include several
VALIDATE statements after the VALIDATE keyword)

VALIDATE
field[/format] = expression;
field[/format] = expression;

.

.

.

where:

field

Is the name of the temporary field. If this field is set to 0, FOCUS rejects the transaction
being processed. Do not use an incoming field name or data source field name for this

ibi™ FOCUS® Maintaining Databases

142 | Modifying Data Sources With MODIFY

name.

format

Is the format of the field. The format type must be numeric (I, F, D, or P. Formats are
described in the Describing Data manual). You need to specify the format only if you will
use the field elsewhere in the request.

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement (see the Creating
Reports manual). Also, you may use the LOOKUP and FIND function described in
Computations: COMPUTE and VALIDATE. If the value of the expression is 0, FOCUS
rejects the transaction being processed. Note that you must terminate the expression
with a semicolon (;).

You may specify the MISSING option to declare temporary field values missing if values
in the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

Using VALIDATE to Test Incoming Data
You use VALIDATE statements most often to test incoming data values, assigning the
temporary field a value of 0 if a value is not acceptable. The test expression can span
several lines, but it must end with a semi-colon (;). Tests you can use in VALIDATE
expressions are:

l IF...THEN...ELSE statements.

l Arithmetic expressions.

l Logical expressions.

l User functions and subroutines.

l DECODE functions.

l FIND and LOOKUP functions (see Computations: COMPUTE and VALIDATE).

You can use IF...THEN...ELSE statements in VALIDATE expressions (up to 16 statements per
expression), such as:

SALTEST = IF SALARY LT 50000 THEN 1 ELSE 0;

ibi™ FOCUS® Maintaining Databases

143 | Modifying Data Sources With MODIFY

If the incoming SALARY value is less than $50,000, the SALTEST temporary field is set to 1.
If SALARY is $50,000 or greater, SALTEST is set to 0 and the transaction is rejected. Note
that you may use all operations in VALIDATE IFºTHENºELSE statements that you use in
COMPUTE and DEFINE statements (see the Creating Reports manual). Also note that all
alphanumeric literals must be enclosed in single quotation marks.

Using Logical Expressions
If an expression is evaluated as true, the temporary field is set to 1. Otherwise, the field is
set to 0. For example:

SALTEST = SALARY LT 50000;

Note that you can use AND and OR operands in logical expressions, as discussed in the
Creating Reports manual. For example:

SALTEST = (SALARY LT 50000) AND (JOB EQ 'B12');

If the incoming salary value is less than $50,000 and the job code is B12, SALTEST is set to
1. Otherwise, SALTEST is set to 0.

Using the DECODE Function
This function allows you to compare an incoming field value against a list of acceptable
and unacceptable values. For example:

SALTEST = DECODE JOBCODE (A03 0 B07 0 B12 0 ELSE 1);

If the incoming job code is A03, B07, or B12, SALTEST is set to 0.

Using the FIND Function
This function searches another FOCUS data source for the presence of the incoming field
value. If the value is there, the temporary field is set to a non-zero value; otherwise the
field is set to 0. For example:

ibi™ FOCUS® Maintaining Databases

144 | Modifying Data Sources With MODIFY

SALTEST = FIND(EMP_ID IN EDUCFILE);

If the incoming employee ID value is not present in the EDUCFILE data source, SALTEST is
set to 0. The FIND function is discussed in Computations: COMPUTE and VALIDATE.

The following MODIFY request validates the DEPARTMENT and CURR_SAL fields:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT CURR_SAL
VALIDATE

DEPTEST = IF DEPARTMENT IS 'MIS' THEN 1 ELSE 0;
SALTEST = CURR_SAL LT 50000;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

This request will only accept your transactions if you enter MIS for the DEPARTMENT field
and a value less than 50,000 for the CURR_SAL field.

Take Action on Invalid Data: The ON INVALID
Phrase
If a VALIDATE statement invalidates a transaction, you may take action using the ON
INVALID phrase. This phrase allows you to:

l Branch to another case using Case Logic. Case Logic is discussed in Case Logic.

l Type a message. Typing messages are discussed in Messages: TYPE, LOG, and
HELPMESSAGE.

The ON INVALID phrase immediately follows the validate statement. The syntax is

ON INVALID GOTO casename
ON INVALID PERFORM casename
ON INVALID TYPE [ON ddname]

where:

#d09modifydatasources1088627
#d09modifydatasources1088627

ibi™ FOCUS® Maintaining Databases

145 | Modifying Data Sources With MODIFY

GOTO casename

Branches to another case called casename. GOTO also takes other options described in
Branching to Different Cases: The GOTO, PERFORM, and IF Statements.

PERFORM casename

Branches to another case called casename. Execution then continues with the next
statement after ON INVALID. PERFORM also takes other options discussed in Branching
to Different Cases: The GOTO, PERFORM, and IF Statements.

TYPE [ON ddname]

Displays a message of up to four lines on the terminal. If you use the ON ddname
option, the request writes the message to a sequential data source allocated to ddname.

This request updates employee salaries. It warns you when you have entered a salary that
fails its validation test:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE

"YOU ENTERED A SALARY HIGHER THAN $50,000"
"THIS SALARY IS TOO HIGH"
"PLEASE REENTER THE EMPLOYEE ID AND SALARY"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

VALIDATE Phrases in MATCH and NEXT
Statements
You may place VALIDATE statements in MATCH and NEXT statements. The request only
performs the validation if the MATCH or NEXT condition is met. These VALIDATE phrases
may use data source fields if these fields are either in the segment instance being modified
or in a parent instance along the segment path (the parent instance, the parent's parent,

and so on until the root segment). To specify data source field values, affix the D. prefix to
the front of the field name.

#d09modifydatasources1089198
#d09modifydatasources1089198
#d09modifydatasources1089198

ibi™ FOCUS® Maintaining Databases

146 | Modifying Data Sources With MODIFY

Note that VALIDATE statements that follow a MATCH or NEXT statement may also use data
source fields if these fields are in the instance selected by the previous statement (or are in
the segment path).

This request makes sure that an employee's new salary is not less than the present salary
after it ascertains that the employee's ID is recorded in the data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH VALIDATE

SALTEST = IF CURR_SAL GE D.CURR_SAL THEN 1
ELSE 0;

ON MATCH UPDATE CURR_SAL
DATA

Testing for the Presence of Transaction Data
You may test for missing data values in transactions using the MISSING feature in IF and
WHERE phrases, described in the Creating Reports manual. These features determine
whether an incoming field is present in the transaction or not, and are especially useful
when the transactions are in a transaction data source.

This request rejects transactions without a job code:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID CURR_JOBCODE CURR_SAL
VALIDATE

JOBTEST = IF CURR_JOBCODE IS NOT MISSING THEN 1
ELSE 0;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_JOBCODE CURR_SAL

DATA
EMP_ID=071382660, CURR_JOBCODE=A13, CURR_SAL=18500.00, $
EMP_ID=112847612, CURR_SAL=19200.50, $
END

ibi™ FOCUS® Maintaining Databases

147 | Modifying Data Sources With MODIFY

Validate Values From a List: The DECODE
Function
The DECODE function allows you to compare incoming data values against a list of
acceptable and unacceptable values. This function is described in the Creating Reports
manual. This section discusses how best to use the DECODE function to validate data.

The syntax of the DECODE function is

field = DECODE fieldname (code1 result1...[ELSE default])

where:

field

Is the name of the temporary field. If the field is set to 0, the transaction is rejected. Do
not use an incoming field name or data source field name for this name.

fieldname

Is the incoming data field being tested.

code1 ...

Is the list of possible values.

result1

Is the number that the temporary field is set to if the incoming field has the preceding
value. Place a 0 after invalid values; place a non-zero number after valid values.

ELSE

Indicates what the temporary field is set to if the incoming field does not have a value
on the list. This list may have up to 32,767 literals.

For example, you want to record promotions to various company departments in the data
source. There are five possible departments: Marketing, Accounting, Shipping, Sales, and
Data Processing. You prepare this MODIFY request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT
VALIDATE

ibi™ FOCUS® Maintaining Databases

148 | Modifying Data Sources With MODIFY

DEPTEST = DECODE DEPARTMENT (MARKETING 1
ACCOUNTING 1 SHIPPING 1 SALES 1 MIS 1
ELSE 0);

MATCH EMP_ID
ON MATCH UPDATE DEPARTMENT
ON NOMATCH REJECT

DATA

This request accepts MARKETING, ACCOUNTING, SHIPPING, SALES, and MIS as valid
incoming values for the field DEPARTMENT, but rejects all other values.

You may also store the values in a separate file. The file must consist of stacked pairs of
values, the values in each pair separated by a comma or spaces (you may want to arrange
them in columns, see the example below). The left member of each pair is a possible value
and the right member is the value that the temporary field is set to should the incoming
data field have the value on the left.

The syntax of this form of the DECODE command is

field = DECODE infield (ddname ELSE m)

where:

field

Is the name of the temporary field. If the field is set to 0, the transaction is rejected. Do
not use an incoming or data source field name for this name.

infield

Is the incoming field being tested.

ddname

Is the ddname of the file containing the list of possible values. The file may contain up
to 32,767 bytes.

m

Is the value of field if the incoming data value is not in the list.

Below is a sample DECODE file.

ibi™ FOCUS® Maintaining Databases

149 | Modifying Data Sources With MODIFY

MARKETING 1
ACCOUNTING 1
SHIPPING 1
SALES 1
MIS 1

Special Functions
There are two functions that you can use only in MODIFY COMPUTE and VALIDATE
statements. They are:

l The FIND function, which tests for the existence of indexed values in FOCUS,
relational, or Adabas data sources.

l The LOOKUP function, which tests for the existence of non-indexed values in cross-
referenced FOCUS, relational, or Adabas data sources and makes these values
available for other computations.

Note: The LAST function in MODIFY can be used in COMPUTEs and VALIDATEs, in
combination with FREEFORM or FIXFORM, to test incoming transaction values
against those from a previously read record. For further information on the LAST
function see the Creating Reports manual.

Test for the Existence of Indexed Values in
FOCUS Data Sources: The FIND Function
The FIND function verifies if an incoming data value is in a FOCUS data source field,
whether the field is in the data source you are modifying or in another data source. The
function sets a temporary field to a non-zero value if the incoming value is in the data
source field and 0 if it is not. Note that a value greater than zero confirms the presence of
the data value, not the number of instances in the data source field. You can then test and
branch on this field using Case Logic, described in Case Logic.

Note that the data source field you are searching must be indexed, and that the FIND
function does not work on data sources with different DBA passwords.

ibi™ FOCUS® Maintaining Databases

150 | Modifying Data Sources With MODIFY

The syntax of the FIND function is

field = FIND(fieldname [AS dbfield] IN file);

where:

field

Is the name of the temporary field.

fieldname

Is the full name (not the alias or a truncation) of the incoming field being tested.

AS dbfield

Is the full name (not the alias or a truncation) of the data source field containing values
to be compared with the incoming data field. This field must be indexed. If the incoming
field and the data source field have the same name, you can omit this phrase.

file

Is the name of the data source.

Note that there can be no space between FIND and the left parenthesis.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the
incoming value is not in the data source and 0 if the incoming value is in the data source.
Its syntax is

field = NOT FIND(infield [AS dbfield] IN file)

where field, infield, dbfield, and file were explained previously.

You can use any number of FIND functions in COMPUTE and VALIDATE statements.
However more FIND functions increase processing time and require more buffer space in
the core.

This request tests if each employee ID entered is also in the EDUCFILE data source. It then
displays a message informing you whether it found the ID in the data source or not.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
COMPUTE

EDTEST = FIND(EMP_ID IN EDUCFILE);

ibi™ FOCUS® Maintaining Databases

151 | Modifying Data Sources With MODIFY

MSG/A40 = IF EDTEST IS 1 THEN
'STUDENT LISTED IN EDUCATION FILE' ELSE
'STUDENT NOT LISTED IN EDUCATION FILE';

MATCH EMP_ID
ON NOMATCH TYPE "<MSG"
ON MATCH TYPE "<MSG"

DATA

Using the FIND Function in VALIDATE Statements
You may use the FIND function in a VALIDATE statement to test if a transaction field value
exists in another FOCUS data source. If the field value is not in that data source, the
function returns a value of 0, causing the validation to fail and the request to reject the
transaction.

This request updates the number of hours spent by employees in class. It rejects
employees not listed in the EDUCFILE data source, which records class attendance:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE

EDTEST = FIND(EMP_ID IN EDUCFILE);
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE ED_HRS

DATA

This VALIDATE statement will discard any incoming EMP_ID value not found in the
EDUCFILE data source.

Reading Cross-Referenced FOCUS Data Sources:
The LOOKUP Function
The LOOKUP function retrieves data values from cross-referenced data sources, both data
sources cross-referenced statically in the Master File and data sources joined dynamically
by the JOIN command. The LOOKUP function is necessary because, unlike TABLE requests,
MODIFY requests cannot read cross-referenced data sources freely. With the LOOKUP
function, the requests can use the data in computations and in messages but cannot

ibi™ FOCUS® Maintaining Databases

152 | Modifying Data Sources With MODIFY

modify cross-referenced data sources; to modify more than one data source in one request,
use the COMBINE command discussed in Modifying Multiple Data Sources in One Request:
The COMBINE Command.

The LOOKUP function can read cross-referenced segments that are linked directly to a
segment in the host data source (the host segment). This means that the cross-referenced
segments must have segment types of KU, KM, DKU, or DKM (but not KL or KLU) or contain
the cross-referenced field specified by the JOIN command (see the Describing Data
manual).

The cross-referenced segment contains two fields of interest:

l The field containing the values you want. This is the field the LOOKUP function
specifies. For example, this LOOKUP function retrieves values from the DATE_ATTEND
field:

RTN = LOOKUP(DATE_ATTEND);

l The cross-referenced field. This field shares values with a field in the host segment
called the host field. These two fields link the host segment to the cross-referenced
segment. The LOOKUP function uses the cross-referenced field, which is indexed, to
locate a specific segment instance.

To use the LOOKUP function, the MODIFY request reads a transaction value for the host
field. The LOOKUP function then searches the cross-referenced segment for an instance
containing this value in the cross-referenced field:

l If there are no such instances, the function sets a return variable to 0. If you use the
field specified by the LOOKUP function in the request, the field assumes a value of
blank if alphanumeric and 0 if numeric.

l If there are instances (there can be more than one if the cross-referenced segment
type is KM, DKM, or if you specified the ALL keyword in the JOIN command), the
function sets the return variable to one and retrieves the value of the specified field
from the first instance it finds.

The syntax of the LOOKUP function is

rcode = LOOKUP(field);

where:

#d09modifydatasources1090303
#d09modifydatasources1090303

ibi™ FOCUS® Maintaining Databases

153 | Modifying Data Sources With MODIFY

rcode

Is a variable you specify to receive a return code value. This value is 1 if the LOOKUP
function can locate a cross-referenced segment instance, 0 if the function cannot.

field

Is the field that you want to retrieve in the cross-referenced data source. Note that this
field name cannot exist in the host data source, and that the LOOKUP function may
specify only one field at a time. Each field you wish to retrieve requires a separate
LOOKUP function. To look up all fields in the cross-referenced segment, use LOOKUP
(SEG.field).

Note that there may be no space between LOOKUP and the left parenthesis. The LOOKUP
function can exist by itself or as part of a larger expression. If it exists by itself, it must
terminate with a semicolon.

For example, you wish to update the number of classroom hours employees have spent.
Because of a new system of accounting, employees taking classes after January 1, 1985 are
to be credited with 10% more classroom hours than their records indicate.

The employee IDs (EMP_ID) and classroom hours (ED_HRS) are located in the host
segment. The class dates (DATE_ATTEND) are located in the cross-referenced segment. The
shared field is the employee ID field.

The data source structure is shown in this diagram:

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
COMPUTE

ibi™ FOCUS® Maintaining Databases

154 | Modifying Data Sources With MODIFY

EDTEST = LOOKUP(DATE_ATTEND);
COMPUTE
ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1

ELSE ED_HRS;
MATCH EMP_ID

ON MATCH UPDATE ED_HRS
ON NOMATCH REJECT

DATA

A sample execution of this request might go as follows:

1. The request prompts you for an employee ID and number of class hours. You enter
the ID 117593129 and 10 class hours.

2. The LOOKUP function locates the first instance in the cross-referenced segment
containing the employee ID 117593129. Since the instance exists, the function returns
a 1 to the EDTEST variable. This instance lists the class date as 821028 (October 28,
1982).

3. The LOOKUP function retrieves the value 821028 for the DATE_ATTEND field.

4. The COMPUTE statement tests the value of the DATE_ATTEND field. Since October 28,
1982 is after January 1, 1982, the statement increases the incoming ED_HRS value

from 10 to 11 hours.

5. The request updates the classroom hours for employee 117593129 using the new ED_
HRS value.

You may also use a data source value in a specific host segment instance to search the
cross-referenced segment. To do this, prepare the request this way:

l In the MATCH statement that selects the host segment instance, activate the host
field. This can be done with the ACTIVATE phrase (discussed in Advanced Facilities).

l In the same MATCH statement, place the LOOKUP function after the ACTIVATE
phrase.

This request displays the employee IDs, dates of salary raises, employee names, and the
position each employee held after the raise was granted:

l The employee IDs and names (EMP_ID) are in the root segment.

l The date of raise (DAT_INC) is in the descendant host segment.

l The job titles are in the cross-referenced segment.

ibi™ FOCUS® Maintaining Databases

155 | Modifying Data Sources With MODIFY

l The shared field is JOBCODE. You never enter any job codes; the values are all stored
in the data source.

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DAT_INC
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DAT_INC
ON NOMATCH REJECT
ON MATCH ACTIVATE JOBCODE
ON MATCH COMPUTE

RTN = LOOKUP(JOB_DESC);
ON MATCH TYPE

"EMPLOYEE ID: <EMP_ID"
"DATE INCREASE: <DAT_INC"
"NAME: <D.FIRST_NAME <D.LAST_NAME"
"POSITION: <JOB_DESC"

DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID and date of pay raise. You enter
employee ID 071382660 and date of raise 820101 (January 1, 1982).

2. The request locates the instance containing the ID 071382660, then locates the child
instance containing the date of raise 820101.

3. This child instance contains the job code A07. The ACTIVATE statement activates this
value, making it available to the LOOKUP function.

4. The LOOKUP function locates the job code A07 in the cross-referenced segment. It
returns a 1 into the RTN variable and retrieves the corresponding job description of
SECRETARY.

5. The request displays the values using a TYPE statement:

EMPLOYEE ID: 071382660
DATE INCREASE: 82/01/01
NAME: ALFRED STEVENS
POSITION: SECRETARY

ibi™ FOCUS® Maintaining Databases

156 | Modifying Data Sources With MODIFY

Note: You may also need to activate the host field if you are using the LOOKUP
function within a NEXT statement. This request, similar to the previous one
except for the NEXT statement, displays the latest position held by a particular
employee.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

NEXT DAT_INC
ON NONEXT REJECT
ON NEXT ACTIVATE JOBCODE
ON NEXT COMPUTE

RTN = LOOKUP(JOB_DESC);
ON MATCH TYPE

"EMPLOYEE ID: <EMP_ID"
"DATE OF POSITION: <DAT_INC"
"NAME: <D.FIRST_NAME <D.LAST_NAME"
"POSITION: <JOB_DESC"

DATA

Use an Extended Syntax With LOOKUP
If the function cannot locate a value of the host field in the cross-referenced segment, you
may specify that the LOOKUP function locate the next highest or lowest cross-referenced
field value in the cross-referenced segment by using an extended syntax.

To use this LOOKUP feature, the index must have been created on FOCUS Release 4.5 or
later with the INDEX parameter set to NEW (the binary tree scheme). To determine what
type of index your data source uses, enter the ? FDT command (see the Developing
Applications manual).

Note that a field retrieved by the LOOKUP function does not require the D. prefix to be
displayed in TYPE statements. FOCUS treats the field value as a transaction value.

The extended syntax of the LOOKUP function is

COMPUTE
rcode = LOOKUP(field operator);

ibi™ FOCUS® Maintaining Databases

157 | Modifying Data Sources With MODIFY

where:

rcode

Is a variable you specify to receive a return code value. (The value the variable receives
depends on the outcome of the function below.)

field

Is the name of the field you want to use in MODIFY computations. Note that this cannot
be the cross-referenced field.

operator

These parameters specify the action the request takes if there is no cross-referenced
segment instance corresponding to the host field value. The actions can be one of the
following:

EQ causes the LOOKUP function to take no further action if an exact match is not found.
If a match is found, the value of rcode is set to 1; otherwise, it is set to 0. This is the
default.

GE causes the LOOKUP function to locate the instance with the exact or next highest
value of the cross-referenced field.

LE causes the LOOKUP function to locate the instance with the exact or next lowest
value of the indexed field.

Note that there can be no space between LOOKUP and the left parenthesis.

This table summarizes the value of rcode depending on which instance the LOOKUP
function locates:

Action rcode value

Exact cross-referenced value located 1

Next highest cross-referenced value located 2

Next lowest cross-referenced value located -2

Cross-referenced field value not located 0

ibi™ FOCUS® Maintaining Databases

158 | Modifying Data Sources With MODIFY

Using the LOOKUP Function in VALIDATE
Statements
When you use the LOOKUP function, you may want to reject transactions containing values
for which there is no corresponding instance in the cross-reference segment. To do this,
place the function in a VALIDATE statement. If the function cannot locate the instance in
the cross-referenced segment, it sets the value of the return variable to 0. This causes the
request to reject the transaction.

The following request updates an employee's classroom hours (ED_HRS). If the employee
attended classes on or after January 1, 1982, the request increases the number of
classroom hours by 10%. The classroom attendance dates are stored in a cross-referenced
segment (field DATE_ATTEND). The shared field is the employee ID.

The request is:

MODIFY FIELD EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE

TEST_DATE = LOOKUP(DATE_ATTEND);
COMPUTE

ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1
ELSE ED_HRS;

MATCH EMP_ID
ON MATCH UPDATE ED_HRS
ON NOMATCH REJECT

DATA

If the employee is not recorded in the cross-referenced segment, then the employee has
never attended a class. This means that a transaction recording the employee's classroom
hours is an error, and should be rejected.

This is the purpose of the LOOKUP function in the VALIDATE statement. If the function
cannot locate an employee's record in the cross-referenced segment, it returns a 0 to the
TEST_DATE field. This causes the request to reject the transaction.

Messages: TYPE, LOG, and HELPMESSAGE
This section describes how MODIFY requests handle messages. There are four types:

ibi™ FOCUS® Maintaining Databases

159 | Modifying Data Sources With MODIFY

l Messages written into requests.

l Messages indicating the rejection of transactions.

l Messages originating from the Master File with the HELPMESSAGE attribute.

l Messages that echo transactions.

These messages are helpful in debugging MODIFY requests, locating rejected transactions,
and instructing the operator. There are two statements and one attribute that control the
display of messages:

l The TYPE statement enables you to write messages to the terminal and to sequential
files.

l The LOG statement stores incoming or rejected transactions in sequential files and
controls the display of rejection messages.

l The HELPMESSAGE attribute is a field attribute included in the Master File (of FOCUS
data sources). Text messages specified in the Master are displayed in the TYPE area
of MODIFY CRTFORMs.

Displaying Specific Messages: The TYPE
Statement
The TYPE statement either appears on the terminal or stores in a sequential file messages
that you prepare. This section describes:

l The syntax of the TYPE statement.

l Use of embedded data fields.

l Use of spot markers.

l Use of extended attributes.

Note: Text fields cannot be used with the TYPE statement.

ibi™ FOCUS® Maintaining Databases

160 | Modifying Data Sources With MODIFY

Use a TYPE Statement
The syntax of the TYPE statement is

TYPE [AT START|AT END] [ON ddname]
"message"
["message"]

where:

AT START

Displays a message at the beginning of execution only.

AT END

Displays a message at the end of execution only. If you are using Case Logic, the TYPE
AT END statement must be in the case that generates the end-of-file condition. Either
the case must include a FIXFORM or FREEFORM statement that will reach the end of the
transaction data source; or a PROMPT statement, at which the user will type END or
QUIT; or a CRTFORM statement, at which the user will type END or press the PF3 key.

ON ddname

Writes the message to a sequential file allocated to ddname. The TYPE statement can
write lines of up to 256 characters each, including blanks and embedded field values. If
you omit this phrase, the request displays the message on the terminal.

message

Is any message. Enclose each line in double quotation marks (except when you want to
display two lines as one line, as described later in this section in Messages: TYPE, LOG,
and HELPMESSAGE.) If you are displaying messages at the terminal, the lines begin in
column 2 on the screen. If you are writing the message to a file, the lines begin in
column 3 in the file. You may embed spot markers and data fields in the message.

Note that you can type the TYPE statement on one line. For example:

TYPE "THIS IS A ONE LINE MESSAGE"

TYPE statements can stand by themselves, they can be part of MATCH and NEXT
statements, and they can follow VALIDATE statements. For example:

ibi™ FOCUS® Maintaining Databases

161 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
TYPE

" "
"PLEASE ENTER THE FOLLOWING DATA"
" "

PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

This request asks the user to enter data at the beginning of every transaction. Note that
there is a blank message line both before and after the message "PLEASE ENTER THE
FOLLOWING DATA:" This enhances readability and appearance.

TYPE statements may be part of MATCH and NEXT statements. For example, this request
warns the user when an employee ID that the user has entered is not in the data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE

" "
"NO SUCH EMPLOYEE IN THE DATABASE"
"PLEASE RETYPE THE EMPLOYEE ID"

ON NOMATCH REJECT
DATA

TYPE statements can display messages when incoming data values fail validation tests, as
discussed in Validating Transaction Values: The VALIDATE Statement. For example, this
request warns the user when a salary higher than $50,000 is entered:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL LE 50000 THEN 1 ELSE 0;
ON INVALID TYPE

" "
"THE CURR_SAL VALUE IS OVER 50000"
"AND THEREFORE CANNOT BE ENTERED INTO THE"
"DATABASE. PLEASE NOTIFY YOUR SUPERVISOR."

MATCH EMP_ID

#d09modifydatasources1088081

ibi™ FOCUS® Maintaining Databases

162 | Modifying Data Sources With MODIFY

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Note that ON INVALID TYPE phrases can occur after VALIDATE statements that stand by
themselves or are part of MATCH statements. For example:

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH VALIDATE

GROSS_TEST = IF GROSS LT 1500 THEN 1 ELSE 0;
ON INVALID TYPE

"GROSS OVER $1500. PLEASE REENTER"

Embedding Data Fields
You can embed data fields in the middle of messages. Embedded data fields are described
in the Creating Reports manual. The kind of field you may embed depends on the position
of the TYPE statement:

l TYPE statements preceding MATCH or NEXT statements only accept incoming data
fields in messages, not data source fields.

l This request contains a TYPE statement before the MATCH statement:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 CURR_SAL/8
TYPE

"EMPLOYEE ID: <EMP_ID SALARY: <CURR_SAL"
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON EMPSAL
END

l TYPE phrases in or following a MATCH or NEXT statement accept both incoming data
fields and data source fields in messages. The data source field must either be in the
segment instance that the MATCH or NEXT statement is modifying or in a parent
instance along the segment path (the parent instance, the parent's parent, and so on
to the root segment). To specify a data source field, affix the prefix D. to the field

ibi™ FOCUS® Maintaining Databases

163 | Modifying Data Sources With MODIFY

name.

This TYPE phrase displays both the incoming value of CURR_SAL and the data source value:

ON MATCH TYPE
"SALARY ENTERED IS: <CURR_SAL"
"OLD SALARY WAS: <D.CURR_SAL"

You can use embedded fields together in a statement to display a total. This request totals
all salaries updated:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

TOTAL_SAL/D10.2 = TOTAL_SAL + CURR_SAL;
ON MATCH UPDATE CURR_SAL

TYPE AT END
"TOTAL OF ALL NEW SALARIES IS <TOTAL_SAL"

DATA

Every time the user enters a salary, the request adds it to the running total TOTAL_SAL.
After the user enters the last salary, the request displays the TOTAL_SAL value embedded
in the message.

Note: Each line of text can contain up to 256 characters. This includes the
lengths of the embedded fields as defined by the display field formats (for
example, the CURR_SAL field, having the format D12.2M, takes up 15 characters,
including decimal point, commas, and dollar sign).

Embedded fields enable you to design your own log files to record transactions, replacing
the automatic log file facility activated by the LOG statement. This request logs accepted
transactions into the file ACCFILE and logs rejected transactions into the file REJFILE:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH TYPE ON ACCFILE
"<EMP_ID <12 <CURR_SAL"

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE ON REJFILE

ibi™ FOCUS® Maintaining Databases

164 | Modifying Data Sources With MODIFY

"<EMP_ID <12 <CURR_SAL"
ON NOMATCH REJECT

DATA

This request records in the ACCFILE file the employee ID and new salary entered by the
user if the ID is in the data source and records the ID and salary in the REJFILE file if the ID
is not in the data source. Note that the spot markers in both TYPE messages ensure that
the fields will be aligned in the files, making the files fixed sequential files. If the request
logged the transactions using the MODIFY LOG facility, the files would have been comma-
delimited because the request uses PROMPT to input data. Note that you must issue an
allocation for each log file prior to using it in the MODIFY request.

Embedding Spot Markers
You can embed spot markers in TYPE statement messages. Spot markers are devices that
place message text at different places on the screen. Spot markers are described in the
Tutorial: Painting a Procedure. Some common spot markers are shown below (where n is
an integer):

<n

Places text starting at the nth column.

<+n

Places text n columns to the right.

</n

Places text n lines down.

<0X

Positions the next character immediately to the right of the last character (skip zero
columns). This is used when you have two or more lines between the double quotation
marks in a procedure that make up a single line of information on a FIDEL screen. No
spaces are inserted between the spot marker and the start of a continuation line.

For example, the statement

04tutpainting35.htm#d04tutpainting1084474
04tutpainting35.htm#d04tutpainting1084474

ibi™ FOCUS® Maintaining Databases

165 | Modifying Data Sources With MODIFY

TYPE
"THE DOLLAR SIGN IS IN COLUMN 40: <40 $"
"TEN SPACES ARE EMBEDDED <+10 IN THIS LINE"
"</1 THIS LINE SKIPS A LINE <0X
AND PROVIDES AN EXAMPLE OF THE USE <0X
OF A COLUMN MARKER"

produces the following output:

Note: The spot marker to skip a line, </n, can appear on the same line with
other text in a TYPE statement. However, in a CRTFORM, this spot marker must
appear on a line by itself (see Designing Screens With FIDEL).

Sometimes, a line of text you want displayed cannot fit on one line within the TYPE
command. This can occur because you are indenting lines or because there are non-
printable characters in the message, such as spot markers and field prefixes. To have two
lines in the TYPE statement displayed as one line, do the following:

l End the first line without an end quotation mark.

l Do not begin the second line with a quotation mark. Instead, begin the line with a
<+n spot marker where n is any number greater than or equal to zero.

This TYPE statement demonstrates how this feature can be used:

TYPE
"<D.FIRST_NAME <D.LAST_NAME EMP. #<EMP_ID
<+1 SALARY: <CURR_SAL"

If you enter in the employee ID 123764317 and a salary of $27,000, the request displays this
message:

JOAN IRVING EMP. #123764317 SALARY: $27,000.00

You may write a message of several lines this way. Begin the first line of the message with
a quotation mark and end the last line with a quotation mark. Begin alternating lines with
the <+1 spot marker. This causes the request to display every two lines of text as one line.

ibi™ FOCUS® Maintaining Databases

166 | Modifying Data Sources With MODIFY

For example, if you type this statement in the request:

TYPE
"SALARY UPDATE PROCEDURE
<+1 WRITTEN JUNE 26, 1985"
"ENTER EACH EMPLOYEE ID AND SALARY
<+1 AFTER THE PROMPTS"

The request displays the message as:

SALARY UPDATE PROCEDURE WRITTEN JUNE 26, 1985
ENTER EACH EMPLOYEE ID AND SALARY AFTER THE PROMPTS

The following request employs both spot markers and embedded fields in messages:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH TYPE
"</1 EMPLOYEE <EMP_ID NOT IN THE DATABASE"
"PLEASE RETYPE NUMBER OR NOTIFY SUPERVISOR"

ON NOMATCH REJECT
ON MATCH TYPE

"</1 EMPLOYEE <15 LAST_NAME <30 FIRST_NAME <45 SALARY"
"</1 <EMP_ID <15 <D.LAST_NAME
"<+1 <30 <D.FIRST_NAME <40 <D.CURR_SAL"
"</1 ENTER SALARY FOR EMPLOYEE <EMP_ID"
" "

ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL

DATA

When you run this request, the session looks like this:

> EMPLOYEE ON 10/10/98 AT 19.44.47
DATA FOR TRANSACTION 1

EMP_ID = > 451123478

EMPLOYEE LAST_NAME FIRST_NAME SALARY
451123478 MCKNIGHT ROGER $16,100.00

ENTER SALARY FOR EMPLOYEE 451123478

ibi™ FOCUS® Maintaining Databases

167 | Modifying Data Sources With MODIFY

CURR_SAL = > 18500
DATA FOR TRANSACTION 2

EMP_ID = >

Screen Attributes
If your request includes CRTFORMs, you can enhance TYPE statements with screen
attributes, devices that display a line, part of a line, or an embedded field in color, in
reverse video, flashing, or underlined. Screen attributes are discussed in Designing Screens
With FIDEL, in connection with the FIDEL facility.

Note the following when using screen attributes in TYPE statements:

l You may use screen attributes only in TYPE statements that follow a CRTFORM and
will appear on the screen beneath the CRTFORM during execution.

l Extended attributes in TYPE statements only work on terminals that can process all
screen attributes. To use screen attributes in TYPE statements, you must issue the
command:

SET EXTTERM = ON

l When you add an attribute to a line, whether you place the attribute before a field or
before text, the attribute remains in effect until the end of the line or until the next
attribute, whichever comes first.

l Attributes for TYPE statements are cleared at the end of each line. To apply an
attribute to a block of text, type the attribute at the beginning of each line.

This request uses attributes in TYPE statements:

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"
"ENTER SALARY: <CURR_SAL"

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE

"<.WHITE. EMPLOYEE #<.AQUA.EMP_ID"

ibi™ FOCUS® Maintaining Databases

168 | Modifying Data Sources With MODIFY

"<.WHITE. IS <.RED. NOT <.WHITE. IN THE DATABASE"
"<.WHITE. PLEASE NOTIFY SUPERVISOR"

ON NOMATCH REJECT
DATA
END

The request displays the employee ID in aquamarine and the EMPLOYEE IS NOT IN THE
DATABASE message in white, except for the word NOT, which is in red.

Logging Transactions: The LOG Statement
The LOG statement enables you to record transactions in sequential files automatically and
to control the display of rejection messages at the terminal. You may use the LOG
statement to record transactions in files, one file for each type of transaction: all
transactions, accepted transactions, and different types of rejected transactions. The
statement can also shut off MODIFY command rejection messages, enabling you to
substitute your own.

Log Transactions in Sequential Files
The LOG statement enables you to record transactions processed by a MODIFY request in
sequential files. You can record all transactions or only transactions accepted into the data
source. You can record in separate files transactions rejected because of an ON MATCH
REJECT or ON NOMATCH REJECT phrase, transactions rejected because of validation tests,
and transactions rejected because of format errors.

Note that you can design your own log files by using the TYPE ON ddname statement
described in Displaying Specific Messages: The TYPE Statement instead of the LOG facility.

You add a LOG statement for each file in which you are storing transactions. The syntax for
the LOG statement is

LOG category [ON ddname] [MSG {ON|OFF}]

where:

#d09modifydatasources1088671

ibi™ FOCUS® Maintaining Databases

169 | Modifying Data Sources With MODIFY

category

Is the type of transaction to be logged. The types are:

TRANS are all transactions processed by the request.

ACCEPT are transactions accepted into the data source.

DUPL are transactions rejected because of an ON MATCH REJECT phrase (the
transactions have field values that match those in the data source).

NOMATCH are transactions rejected because of an ON NOMATCH REJECT phrase (the
transactions have field values that do not match values in the data source).

INVALID are transactions rejected because of data values that failed validation tests.

FORMAT are transactions rejected because of data values that have invalid formats (for
example: a numeric field containing letters; an alphanumeric field with more characters
than allowed by the format). Any non-CRTFORM transaction that fails an ACCEPT test
can also be logged to this file.

ddname

The ddname of the file to which you are writing.

MSG

Controls the display of rejection messages (messages displayed on the terminal when a
transaction is rejected). The default setting is ON, except for ACCEPT where the default
is OFF. The ON setting enables the display of rejection messages.

You can log messages on six files in one request. If the files existed before the user
executed the request, the logged transactions replace the file contents.

How the request stores transactions depends on the statement used to read them in.

FIXFORM
The request stores the transactions in a fixed format. Each FIXFORM
statement retrieving data from the data source logs one transaction.
Each transaction consists of the fields defined by the FIXFORM
statement plus the fields to the end of the physical record.

FREEFORM
The request stores the transactions in comma-delimited format. Each
FREEFORM statement logs one transaction. Each transaction consists of
one physical record delimited by a comma-dollar sign (,$).

ibi™ FOCUS® Maintaining Databases

170 | Modifying Data Sources With MODIFY

Note: Unless FREEFORM is explicitly included in the syntax, only the
last line entered will be logged.

PROMPT
The request stores the transactions in comma-delimited format. Each
PROMPT statement logs one transaction. Each transaction consists of
data collected from the first PROMPT statement in the request to the
PROMPT statement logging the transaction.

CRTFORM
The request stores the transactions in fixed format. Each CRTFORM logs
one transaction. Each transaction consists of data collected from the
first CRTFORM in the request to the CRTFORM logging the transaction.

When you allocate the files, you must assign each file a record length just large enough to
hold the transaction. How you determine the length depends on how the request reads
transactions:

FIXFORM and
FREEFORM

Define the record length as the length of the longest logical
transaction record, including blanks and commas between the
fields. Remember that a logical transaction record can extend over
more than one line in the transaction data source (but is recorded
as one line in the log file).

PROMPT
Define the record length as the sum of the lengths of the fields as
defined by the FORMAT attribute (for example, a field having a
format of D12.2 has a length of 12), plus one byte for each field,
plus one more byte.

CRTFORM
Define the record length as the sum of the lengths of the fields as
defined by the FORMAT attribute (for example, a field having a
format of D12.2 has a length of 12), plus one byte for each
CRTFORM, plus one more byte.

The sample request below updates employee salaries and logs the transactions on five
separate files. The original transaction data source was stored in the file ddname SALFILE.
Note the VALIDATE statement that determines whether the salary in each transaction
exceeds $50,000.

ibi™ FOCUS® Maintaining Databases

171 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE

LOG TRANS ON ALLTRANS
LOG ACCEPT ON GOODTRAN
LOG NOMATCH ON NOEMPL
LOG INVALID ON BIGSAL
LOG FORMAT ON BADFORM

PROMPT EMP_ID CURR_SAL
VALIDATE

SAL_TEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Note the five files specified in the LOG statements:

l The ALLTRANS file records all transactions.

l The GOODTRAN file records transactions accepted into the data source.

l The NOEMPL file records transactions with employee IDs that do not exist in the data
source.

l The BIGSAL file records transactions with salaries that are too big (over $50,000).

l The BADFORM file records transactions with salaries having invalid characters.

Control the Printing of Rejection Messages
The MSG option on a LOG statement allows you to control the display of FOCUS automatic
rejection messages. You can replace these messages by shutting them off and displaying
your own messages using the TYPE command. The FOCUS messages are the following:

l For transactions rejected because of an ON MATCH REJECT phrase (the transactions
have values that match values in the data source)

(FOC405)TRANS n REJECTED DUPL: segment

where n is the transaction number and segment is the data source segment

ibi™ FOCUS® Maintaining Databases

172 | Modifying Data Sources With MODIFY

containing the data value that matched the transaction value.

l For transactions rejected because of an ON NOMATCH REJECT phrase (the
transactions have values that do not match values in the data source)

(FOC415) TRANS n REJECTED NOMATCH segment

where n is the transaction number and segment is the data source segment
containing the data field that failed to match the transaction value.

l For transactions rejected because of values that failed validation tests

(FOC421)TRANS n REJECTED INVALID field

where n is the transaction number and field is the return code field.

l For transactions read in using FIXFORM that were rejected because of values with
format errors or ACCEPT errors

(FOC428)TRANS n REJECTED FORMAT COL m FLD field

where n is the transaction number, m is the first column of the field having the error,
and field is the data field containing the error.

l For transactions read in using FREEFORM and PROMPT that were rejected because of
values with format errors

(FOC210) THE DATA VALUE HAS A FORMAT ERROR: v

where v is the data value.

l For transactions read in using CRTFORM that were rejected because of values with
format errors

SCREEN REJECTED.. FORMAT ERROR IN FIELD field

where field is the data field with the format error.

l For transactions read in using CRTFORM or PROMPT that were rejected because a
value failed in an ACCEPT test

ibi™ FOCUS® Maintaining Databases

173 | Modifying Data Sources With MODIFY

(FOC534) Data Value is not among the acceptable values for: field

where field is the data field containing the error.

In addition, FOCUS displays the rejected transaction after each rejection message (except
for format error transactions read in using PROMPT and CRTFORM).

You may want to replace these messages with your own. To do so, use the TYPE statement
described in Displaying Specific Messages: The TYPE Statement. To turn off the FOCUS
messages, use the LOG statement with this syntax

LOG category [ON ddname] MSG {ON|OFF}

where:

category

Is the type of transaction that triggers the rejection message: DUPL, NOMATCH, INVALID,
and FORMAT. These types are described previously in Messages: TYPE, LOG, and
HELPMESSAGE.

ON ddname

Logs the transaction in a file defined by ddname. This option is described previously in
Messages: TYPE, LOG, and HELPMESSAGE.

MSG

Is the parameter that turns FOCUS rejection messages ON (the default) or OFF.

For example, this request shuts off the automatic NOMATCH message and replaces it with
another message:

MODIFY FILE EMPLOYEE
LOG NOMATCH MSG OFF
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE

"THIS EMPLOYEE IS NOT RECORDED IN THE DATABASE"
"DID YOU ENTER THE ID NUMBER CORRECTLY?"
"THE NUMBER YOU ENTERED WAS: <EMP_ID"

ON NOMATCH REJECT
DATA

#d09modifydatasources1088671

ibi™ FOCUS® Maintaining Databases

174 | Modifying Data Sources With MODIFY

Note that you may combine logging and the display of rejection messages in one LOG
statement. For example, to both log transactions rejected because of the ON NOMATCH
REJECT phrase and shut off the FOCUS message that results from those transactions, you
can use this LOG statement:

LOG NOMATCH ON NOEMPL MSG OFF

Adding the logging facility enables the end user to deal with problem transactions after
entering all the data.

Displaying Messages: The HELPMESSAGE
Attribute
The HELPMESSAGE attribute enables you to specify a text message in the Master File of
FOCUS data sources. The message is displayed in the TYPE area of MODIFY CRTFORMs.

Specify a HELPMESSAGE Attribute
The syntax for specifying the HELPMESSAGE attribute in the Master File is

FIELDNAME=name, ALIAS=alias, FORMAT=format,
HELPMESSAGE= text...,$

where:

text

Is a one-line text message up to 78 characters, which may include all characters and
digits. Text containing a comma must be enclosed in single quotation marks; leading
blanks are ignored.

For example:

FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A10,
ACCEPT = SMITH JONES,
HELPMESSAGE = 'LAST_NAME MUST BE SMITH, OR JONES',$

ibi™ FOCUS® Maintaining Databases

175 | Modifying Data Sources With MODIFY

The field for LAST_NAME has an ACCEPT attribute that tests values entered for that field. If
a value other than Smith or Jones is entered, the following messages will be displayed:

(FOC534) DATA VALUE IS NOT AMONG ACCEPTABLE VALUES FOR LAST_NAME
LAST_NAME MUST BE SMITH, OR JONES

The HELPMESSAGE attribute can be used with a field that has an ACCEPT test (see the
Describing Data manual), or any other field in the Master File.

Messages specified with the HELPMESSAGE attribute are displayed when:

l The value entered for a data source field is invalid according to the ACCEPT test for
that field.

l The value entered for a data source field causes a format error.

l The user places the cursor in the data entry area for a particular field and presses a
predefined PF key.

Regardless of the condition that triggers display of the message specified with the
HELPMESSAGE attribute, the same message will appear.

Displaying Messages: Setting PF Keys to HELP
In order to see the HELPMESSAGE text for a field on the CRTFORM, set a PF key to HELP
before executing the MODIFY procedure. To set a PF key, enter

SET PFnn = HELP

where:

nn

Is the number of the PF key you want to define as your HELP key.

To display a message for a particular field, position the cursor on the data entry area for
that field on the CRTFORM and press the defined PF Key. If no message has been specified
for the field, the following message will be displayed:

NO HELP AVAILABLE FOR THIS FIELD.

ibi™ FOCUS® Maintaining Databases

176 | Modifying Data Sources With MODIFY

Case Logic
Case Logic allows you to branch to different parts of MODIFY requests during execution.
This enables you to construct more complex MODIFY requests. For example, Case Logic
requests can offer the terminal operator the choice of different procedures, process
different transaction records differently, or update multiple segment instances with a single
transaction.

Case Logic also extends the use of the NEXT statement to process segment chains and
facilitates modifying multiple unique child segments.

To prepare a request using Case Logic, you divide the request into sections called cases.
Each case is labeled, allowing you to branch to the case from elsewhere in the request.

Use a Case Statement
Each case begins with the statement

CASE {AT START|casename}

where:

AT START

Indicates that the case is to be executed only at the beginning of the request. This case
is called the START case.

casename

Is a label of up to 12 characters that does not contain embedded blanks or the
characters:

+ - * / & $ ' "

Each case ends with the statement:

ENDCASE

The CASE and ENDCASE statements must both be on lines by themselves.

ibi™ FOCUS® Maintaining Databases

177 | Modifying Data Sources With MODIFY

The first case in the request, the one immediately following the MODIFY command, needs
neither a beginning nor an ending statement. It is automatically assigned the label TOP.
Note, however, that if the request contains only one case, you may want to begin the case
with the statement CASE TOP and end it with ENDCASE. This allows you to branch to the
beginning of the request from its middle.

The following request updates employee salaries in the EMPLOYEE data source. If the
salary is above $50,000, the request has the user retype the value to confirm it:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO CONFIRM ELSE GOTO NEWSAL;

CASE NEWSAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE CONFIRM
TYPE

"THE SALARY YOU ENTERED EXCEEDS $50,000"
"PLEASE REENTER THE SALARY TO CONFIRM IT"
"OR ENTER A NEW SALARY"

PROMPT CURR_SAL
GOTO NEWSAL
ENDCASE
DATA

This request consists of three cases: the TOP case, the NEWSAL case, and the CONFIRM
case. (The blank lines between cases are there to enhance readability and are not
required.)

The TOP case contains the first two statements in the request:

PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO CONFIRM

The TOP case prompts you for an employee ID and new salary. It then tests the salary
value you entered. If the salary is more than $50,000, it branches to the CONFIRM case.
Otherwise, the request proceeds with the next case.

ibi™ FOCUS® Maintaining Databases

178 | Modifying Data Sources With MODIFY

The next case is the NEWSAL case. This case updates the employee salaries. After the
update, the request automatically returns to the beginning of the TOP case to prompt for
the next employee ID and salary.

The third case is the CONFIRM case. This is where the request branches if you enter a
salary higher than $50,000. The case asks you to reenter the salary. It then branches to the
NEWSAL case to enter the salary into the data source.

This is the order of cases executed if you enter a salary lower than $50,000:

1. The TOP case.

2. The NEWSAL case.

3. Back to the TOP case.

This is the order of cases executed if you enter a salary higher than $50,000:

1. The TOP case.

2. The CONFIRM case.

3. The NEWSAL case.

4. Back to the TOP case.

Rules Governing Cases
The following rules apply to these cases:

l Each case (except for the TOP case) must begin with a CASE statement and end with
an ENDCASE statement; both statements must appear on separate lines.

l Each case must have a unique name within the MODIFY request.

l The TOP case is always the first case in the procedure. It has no beginning or ending
case statements. No other case may be labeled TOP.

l If the TOP case has both CRTFORM and COMPUTE commands, the CRTFORM (data
entry) is processed before the computation.

l There can be only one START case. If you include a START case, it must come after
the TOP case. The START case is discussed in Executing a Case at the Beginning of a
Request Only: The START Case.

#d09modifydatasources1089185
#d09modifydatasources1089185

ibi™ FOCUS® Maintaining Databases

179 | Modifying Data Sources With MODIFY

l No case may be named EXIT. The label EXIT refers to the end of the request.

l Except for the TOP case, which must come first, and the START case, which follows
after, the cases may appear in the request in any order.

l Except for the TOP and START cases, you can execute a case only by using a GOTO,
PERFORM, or IF statement to branch to it.

l At the end of a case, the request branches back to the TOP case unless a GOTO or IF
statement states otherwise.

l You cannot branch to the middle of a case, only to its beginning.

Each case must contain complete MODIFY statements, not phrases or fragments. For
example, the following case is illegal because ON NOMATCH REJECT is a phrase
belonging to the MATCH statement.

CASE REJECT
ON NOMATCH REJECT
ENDCASE

l Cases cannot be nested; that is, you cannot put a case within another case. Each
case must end before another can begin.

l You cannot have a statement between two cases except for comments. As soon as
one case ends, the next case must begin.

l Certain MODIFY statements are global and apply to the request as a whole. We
recommend that these statements follow the last case:

START
STOP
LOG
DATA
CHECK

l Cases do not allow you to use either the FREEFORM or the PROMPT statement in
requests with FIXFORM or CRTFORM statements. You also cannot use more than one
FIXFORM statement with CRTFORMs. For using FIXFORM statements with CRTFORMs,
see Designing Screens With FIDEL. You can mix FREEFORM statements with PROMPT
statements in one request, and one FIXFORM statement with CRTFORM statements.

l There is no limit to the number of cases you can use in a MODIFY request.

l If a request repeatedly executes a case that has a CRTFORM, the case can produce up

ibi™ FOCUS® Maintaining Databases

180 | Modifying Data Sources With MODIFY

to 75 TYPE messages. If it produces more, FOCUS aborts the request.

l If you use fields with D. and T. prefixes in TYPE statements and CRTFORMs, a MATCH
or NEXT statement must precede the fields, either in the same case or in a previously
executed case (but not before the TOP case).

Executing a Case at the Beginning of a Request
Only: The START Case
You can have your request begin execution with an initial case that is never executed
afterwards. This case is called the START case and begins with the label:

CASE AT START

You cannot branch from other cases to the START case, but you can branch from the
START case to other cases. If you do not branch to another case, the START case passes
control to the TOP case. Note that the START case comes after the TOP case in the text of
the request.

The following request counts how many employee salaries it updates. However, it starts
counting from three:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

SALCOUNT/I4 = SALCOUNT + 1;
ON MATCH UPDATE CURR_SAL

TYPE AT END
"<SALCOUNT SALARIES PROCESSED"

CASE AT START
COMPUTE

SALCOUNT = 3;
ENDCASE
DATA

The START case initializes the SALCOUNT counter to 3. After that, the request does not
need to refer to the case again.

ibi™ FOCUS® Maintaining Databases

181 | Modifying Data Sources With MODIFY

Note that temporary fields used in the START case that appear earlier in the request must
have their formats defined there.

Branching to Different Cases: The GOTO,
PERFORM, and IF Statements
Three statements branch to other cases:

l The GOTO statement, which branches unconditionally to another case. After the case
executes, control returns to the TOP case.

l The PERFORM statement, which branches unconditionally to another case. When the
case called by the PERFORM reaches ENDCASE, control returns to the statement
following the PERFORM.

l The IF statement, which branches to GOTO or PERFORM as above, depending on the
value of a logical expression.

Branch to Another Case With GOTO
GOTO statements unconditionally branch to another case. The syntax is

GOTO location

where:

location

Is one of the following:

TOP branches to the beginning of the TOP case.

ENDCASE branches to the end of the case. If the case was called by a PERFORM
statement either directly or indirectly (for example, a PERFORM statement called a case
that branched to this case), then control returns to the statement after the most
recently executed PERFORM statement. Otherwise, the request branches back to the
TOP case.

ibi™ FOCUS® Maintaining Databases

182 | Modifying Data Sources With MODIFY

casename branches to the beginning of the specified case.

variable branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.

EXIT terminates the request. This is useful when you want to halt execution before the
last transaction in a data source or the transaction specified by the STOP command.
Note that the statement GOTO EXIT is legal even in MODIFY requests without cases.

If a case does not have a GOTO statement, it branches to the TOP case upon completion
unless a PERFORM or IF statement branches somewhere else.

Use a PERFORM Statement
The PERFORM statement causes the request to branch to another case, executes that case,
then returns control to the statement after the most recently executed PERFORM
statement. The syntax is

PERFORM location

where:

location

Is one of the following:

TOP branches to the beginning of the TOP case. All return points are cleared and the
procedure continues as if no PERFORM statement had executed.

ENDCASE branches to the end of the case. If the case was called by another PERFORM
statement, either directly or indirectly (for example, a PERFORM statement called a case
that branched to this case), then control returns to the statement after the most
recently executed PERFORM statement. Otherwise, the request branches back to the
TOP case.

casename branches to the beginning of a specified case.

variable branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.

EXIT terminates the request.

ibi™ FOCUS® Maintaining Databases

183 | Modifying Data Sources With MODIFY

A PERFORM statement can branch to a case containing a GOTO or IF statement that
branches to a second case. The second case can branch to a third case, and so on until the
request encounters an ENDCASE statement at the end of a case. Control then returns to
the statement after the most recently executed PERFORM statement.

A PERFORM statement can branch to a case containing a PERFORM statement that leads to
other cases. When the request encounters an ENDCASE statement at the end of a case,

control returns to the statement after the most recently executed PERFORM statement.
Control eventually returns to the original PERFORM.

If a case branches to the TOP case, control does not return to the last PERFORM. Rather,
the request begins a new cycle starting from the TOP case. All PERFORM return points are
cleared.

Using the PERFORM Statement
This sample request updates employee salaries. If a user enters a salary greater than
$50,000, the request checks the employee ID against a list of IDs in the sequential data
source EMPLIST. If the employee is listed, the request updates the salary; otherwise, it asks
the user to re-enter the information. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
PERFORM EMPCHECK
PERFORM UPSAL
TYPE

"SALARY OF EMPLOYEE <EMP_ID UPDATED"

CASE EMPCHECK
IF CURR_SAL LE 50000 GOTO ENDCASE;
COMPUTE

RAISE_OK/A3 = DECODE EMP_ID (EMPLIST ELSE 'NO');
IF RAISE_OK IS 'NO' THEN PERFORM TOP;
ENDCASE

CASE UPSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE
DATA

ibi™ FOCUS® Maintaining Databases

184 | Modifying Data Sources With MODIFY

Supposing the data source EMPLIST contained the following data:

071382660 YES
451123478 YES

A sample execution might go as follows:

1. The request prompts you for an employee ID and a salary. You enter ID 818692173
and a salary of $35,000.

2. The PERFORM EMPCHECK statement branches to the EMPCHECK case.

3. Since the salary is less than $50,000, the PERFORM ENDCASE phrase returns control
to the statement after the PERFORM EMPCHECK statement (PERFORM UPSAL).

4. The PERFORM UPSAL statement branches to the UPSAL case.

5. The case updates the salary and passes control to the TYPE statement (the statement
after the most recently executed PERFORM statement).

6. The TYPE statement displays the message:

SALARY FOR EMPLOYEE 8188692173 UPDATED

7. Control goes to the beginning of the TOP case.

8. The TOP case prompts you for an employee ID and a salary.

9. You enter an ID Of 119329144 and a salary of $65,000.

10. The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since
employee 119329144 is not listed in the EMPLIST data source, the IF...GOTO TOP
phrase branches to the TOP case.

11. The TOP case prompts you for an employee ID and a salary. You enter an ID of
071382660 and a salary of $65,000.

12. The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since
employee 071382660 is listed in the EMPLIST data source, control returns to the
statement after the most recently executed PERFORM statement (PERFORM UPSAL).

13. The PERFORM UPSAL statement branches to the UPSAL case, which updated the
salary. Control then passes to the TYPE statement (the statement after the most
recently executed PERFORM statement).

14. The TYPE statement displays a message:

ibi™ FOCUS® Maintaining Databases

185 | Modifying Data Sources With MODIFY

SALARY FOR EMPLOYEE 071382660 UPDATED

15. Control goes to the beginning of the TOP case.

Rules for PERFORM Statements
l PERFORM statements can be nested; that is, one PERFORM statement can call a case

containing a second PERFORM statement. PERFORM statements can be nested to any
depth, limited only by available memory. If memory runs out, FOCUS displays the
message:

(FOC187) PERFORMS NESTED TOO DEEPLY

l REPEAT statements can contain PERFORM statements. When control returns to the
statement after the most recently executed PERFORM statement, the REPEAT
statement resumes execution. For example:

REPEAT 5 TIMES
PERFORM ANALYSIS
COMPUTE AMOUNT/D8.2 = RECEIPTS + AWARDS;

ENDREPEAT

Each pass of this REPEAT statement executes the ANALYSIS case, then computes the
value of the AMOUNT field.

l When a PERFORM statement branches to a case, you can return control to the
PERFORM before the end of the case by including the GOTO ENDCASE or PERFORM
ENDCASE statement in the case.

Branch to Another Case With IF
The IF statement branches to another case depending on how an expression is evaluated.
The syntax is

IF expr [THEN] {GOTO|PERFORM} location1 [ELSE {GOTO|PERFORM} location2]

ibi™ FOCUS® Maintaining Databases

186 | Modifying Data Sources With MODIFY

where:

expr

Is any logical expression legal in a DEFINE or COMPUTE IF statement (see the Creating
Reports manual). For example:

IF CURR_SAL GT 50000
IF SALARY/12 LT GROSS
IF LAST_NAME CONTAINS 'BLACK'
IF (CURR_SAL GT SALARY) OR

(CURR_JOB CONTAINS 'B')

Note that literals must be enclosed in single quotation marks. Parentheses are
necessary if the expression is compound.

IF expressions cannot compare data source fields unless they are used in or following
MATCH or NEXT statements (see Branching to Different Cases: The GOTO, PERFORM, and
IF Statements).

location1, location2

The options are:

TOP branches to the TOP case.

ENDCASE branches to the end of the case (the request then branches to the TOP case or
to the statement after the most recently executed PERFORM statement).

case1 branches to the case named case1.

var branches to the case whose name is contained in the temporary field var.

EXIT terminates the request.

The word THEN is optional and is there to enhance readability.

An IF statement can extend over several lines, but must end with a semicolon (;).

Like IF statements in TABLE requests and Dialogue Manager control statements, Case Logic
IF statements can be nested. You can nest IF statements so that if the outer IF expression is
true, the inner IF is executed. Place the inner IF phrase within parentheses following the
THEN phrase.

#d09modifydatasources1089198
#d09modifydatasources1089198

ibi™ FOCUS® Maintaining Databases

187 | Modifying Data Sources With MODIFY

IF Statement
IF expression1
THEN (IF expression2
THEN (IF expression3 GOTO case4 ELSE GOTO case3)
ELSE GOTO case2)
ELSE GOTO case1;

You can also nest IF statements so that if the outer IF expression is false, the inner IF is
executed. You place the inner IF statement after the ELSE phrase. The inner IF does not
need parentheses:

IF expression1 THEN GOTO case1
ELSE IF expression2 THEN GOTO case2
ELSE IF expression3 THEN GOTO case3
ELSE...;

The following request offers the user a choice between deleting a segment instance and
including a new one:

MODIFY FILE EMPLOYEE
COMPUTE CHOICE/A6=;
TYPE

"ENTER 'UPDATE' TO UPDATE A SALARY"
"ENTER 'DELETE' TO DELETE AN EMPLOYEE"

PROMPT CHOICE

IF CHOICE IS 'UPDATE' THEN GOTO UPDSEG
ELSE IF CHOICE IS 'DELETE' THEN GOTO DELSEG
ELSE GOTO TOP;

CASE UPDSEG
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

ibi™ FOCUS® Maintaining Databases

188 | Modifying Data Sources With MODIFY

CASE DELSEG
PROMPT EMP_ID
MATCH EMP_ID

ON MATCH DELETE
ON NOMATCH REJECT

ENDCASE
DATA

This request has three cases:

l The TOP case defines a variable called CHOICE, which will contain your response to
its menu:

If you enter UPDATE, the request branches to the UPDSEG case.

If you enter DELETE, the request branches to the DELSEG case.

If you enter neither, it reprompts you for another response by branching back to the
beginning of the case.

l The UPDSEG case prompts you for the employee ID and new salary, and updates the
employee's salary.

l The DELSEG case prompts you for the employee ID, and deletes that ID from the data
source.

Rules Governing Branching
The following rules govern the sequence of case execution and branching:

l The request first executes the START case, if there is one. It then executes the TOP
case, unless the START case branches to another case.

l If a case does not execute a GOTO statement, a PERFORM statement, or an IF
statement to branch to another case, it branches to the TOP case by default. This is
true of both the START and TOP cases. However, if the case was called by a
PERFORM statement either directly or indirectly (for example, a PERFORM statement
called a case that branched to a case that branched to this case), then control
returns to the statement after the most recently executed PERFORM statement.

l A case can branch to itself.

l Branching to the TOP case, whether by a GOTO TOP statement, PERFORM TOP
statement or by default, deactivates all data fields (field activation and deactivation

ibi™ FOCUS® Maintaining Databases

189 | Modifying Data Sources With MODIFY

are described in Advanced Facilities) and increments the transaction counter by one.

l When you branch to a case, you always branch to the beginning of the case. You can
never branch into the middle of a case.

l If one case contains a MATCH or NEXT statement that selects a particular segment
instance, it can branch to another case that modifies the child segment chain
belonging to the same instance. The second case need not reselect the parent
instance, but it must contain at least one MATCH statement. For example, the
segment EMPINFO (key field EMP_ID) has the child segment SALINFO (key field PAY_
DATE). You can include a new SALINFO segment with this request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO NEWPAY

CASE NEWPAY
MATCH PAY_DATE

ON NOMATCH INCLUDE
ON MATCH REJECT

ENDCASE
DATA

The second case, NEWPAY, modifies the segment chain descended from the segment
instance selected in the TOP case.

GOTO, PERFORM, and IF Phrases in MATCH
Statements
You can use GOTO, PERFORM, and IF statements in MATCH and NEXT statements, where
they form part of ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT phrases. IF phrases
in MATCH and NEXT statements can use data source fields in expressions. To do this, affix
the D. prefix to the field name. For example, the phrase

ON MATCH IF CURR_SAL LT D.CURR_SAL ...

ibi™ FOCUS® Maintaining Databases

190 | Modifying Data Sources With MODIFY

tests whether the incoming value of CURR_SAL is less than the data source value of CURR_
SAL. The data source value must either be in the segment instance that the MATCH or
NEXT statement is processing or in a parent instance along the segment path (the parent,
the parent's parent, and so on, up to the root segment).

For example, this request does not accept a new salary for an employee if it is less than the
employee's present salary:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH IF CURR_SAL LT D.CURR_SAL GOTO ERROR;
ON MATCH UPDATE CURR_SAL

CASE ERROR
TYPE

"YOU ENTERED A NEW SALARY"
"LESS THAN THE EMPLOYEE'S PRESENT SALARY"
"PLEASE REENTER DATA"

ENDCASE
DATA

This request consists of two cases:

l The TOP case prompts you for an employee ID and new salary. If the employee ID is
in the data source, the case tests whether the new salary is less than the present
one. If the new salary is lower, it branches to the ERROR case. Otherwise, it updates
the salary and branches back to the TOP case.

l The ERROR case warns you that the salary you entered is unacceptable and branches
back to the TOP case.

If the MATCH statement specifies fields in multiple segments (the technique of matching
across segments, described in Modifying Data: MATCH and NEXT), the GOTO, PERFORM and
IF phrases in the statement are only executed when the MATCH statement modifies the last
segment. For example, this request adds instances to the EMPINFO, SALINFO, and DEDUCT
segments:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE DED_CODE
GOTO ADD

ibi™ FOCUS® Maintaining Databases

191 | Modifying Data Sources With MODIFY

CASE ADD
MATCH EMP_ID PAY_DATE DED_CODE

ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

ENDCASE

CASE MESSAGE
TYPE

"NEW INSTANCE ADDED"
ENDCASE
DATA

The ADD case branches to the MESSAGE case only when it includes a new instance in the
segment containing the DED_CODE field. If you want the case to branch to the MESSAGE
case when it includes a new instance in any of the segments, then write the case with a
separate MATCH statement for each segment it searches:

CASE ADD
MATCH EMP_ID

ON MATCH CONTINUE
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

MATCH PAY_DATE
ON MATCH CONTINUE
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

MATCH DED_CODE
ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

ENDCASE

Using Case Logic and Validation Tests
You can also branch to other cases when an incoming field value fails a validation test. Do
this by including GOTO, PERFORM, and IF statements as part of the ON INVALID phrase. For
example, this request processes transactions with salaries higher than $50,000 in a
separate case:

ibi™ FOCUS® Maintaining Databases

192 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL

CASE NEWSAL
PROMPT CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID GOTO HIGHSAL

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE HIGHSAL
TYPE

"SALARY ABOVE $50,000 NOT ALLOWED"
"RETYPE SALARY BELOW"

GOTO NEWSAL
ENDCASE
DATA

Case Logic Applications
This section discusses some examples of applications for Case Logic that extend the
capabilities of MODIFY requests. The applications are:

l Looping through segment chains using the NEXT statement.

l Modifying multiple unique segments.

l Using Case Logic to offer user choices.

l Using Case Logic to process transaction data sources.

l Using Case Logic to process transactions based on the values of their fields.

l Using Case Logic to process transactions with bad values.

ibi™ FOCUS® Maintaining Databases

193 | Modifying Data Sources With MODIFY

Loop Through a Segment Chain With the NEXT
Statement
The NEXT statement, discussed in Selecting the Instance After the Current Position: The
NEXT Statement, modifies or displays the next segment instance after the current position
in the data source. Using Case Logic, you can use NEXT statements to process entire
segment chains.

For an entire segment chain to be displayed, the request must branch back to the
beginning of the NEXT statement. Put the NEXT statement in a separate case, as shown
below:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH TYPE

"WAGES PAID TO EMPLOYEE #<EMP_ID"
ON MATCH GOTO SALHIST

CASE SALHIST
NEXT DAT_INC

ON NEXT TYPE "<D.DAT_INC <D.SALARY"
ON NEXT GOTO SALHIST
ON NONEXT GOTO TOP

ENDCASE
DATA

This request consists of two cases:

l The TOP case prompts you for an employee ID and branches to the SALHIST case.

l The SALHIST case contains one NEXT statement that displays the next instance of the
employee's salary chain. The case then branches back to its beginning to display the
next instance. When it reaches the end of the chain, it branches back to the TOP
case.

To return to the beginning of a segment chain, use the REPOSITION statement. The syntax
is

REPOSITION field

#d09modifydatasources1087723
#d09modifydatasources1087723

ibi™ FOCUS® Maintaining Databases

194 | Modifying Data Sources With MODIFY

where field is any field of the segment. The REPOSITION statement allows you to return to
the beginning of the segment chain you are now modifying, or to the beginning of the
chain of any of the parent instances along the segment path (that is, the parent instance,
the parent's parent, and so on to the root segment). You can then search the segment
chain from the beginning.

The following request allows you to allocate a new monthly pay for a selected employee
for each pay date. The request accumulates each pay in a total. If this total pay exceeds
the employee's yearly salary, the request returns to the first pay date to permit you to
enter new values for the entire chain:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO PAYLOOP

CASE PAYLOOP
NEXT PAY_DATE

ON NONEXT GOTO TOP
ON NEXT TYPE

"EMPLOYEE ID: <EMP_ID"
"PAY DATE: <D.PAY_DATE MONTHLY PAY: <D.GROSS"

ON NEXT PROMPT GROSS.ENTER MONTHLY PAY:.
ON NEXT COMPUTE

TOTAL_PAY/D10.2 = TOTAL_PAY + GROSS;
ON NEXT IF TOTAL_PAY GT D.CURR_SAL GOTO ERROR;
ON NEXT UPDATE GROSS
ON NEXT GOTO PAYLOOP

ENDCASE

CASE ERROR
TYPE

"TOTAL MONTHLY PAY EXCEEDS YEARLY SALARY"
"REENTER PROPOSED PAY STARTING FROM"
"THE FIRST PAY DATE"

REPOSITION PAY_DATE
COMPUTE TOTAL_PAY = 0;
GOTO PAYLOOP
ENDCASE
DATA

Note that the ERROR case in the example warns you that the sum of the figures you
entered exceeds the employee's yearly salary. It then repositions the current position of the

ibi™ FOCUS® Maintaining Databases

195 | Modifying Data Sources With MODIFY

PAY_DATE field at the beginning of the segment chain and branches back to the PAYLOOP
case, allowing you to reenter pay figures for the entire chain.

When you use INCLUDE, UPDATE, and DELETE actions in looping NEXT statements, note the
following:

l Use the ON NEXT INCLUDE and ON NONEXT INCLUDE phrases only to add instances
to segments of type S0 or blank. If you use these phrases to modify other segments,
you will duplicate what is already there. The difference between the two phrases is:

ON NEXT INCLUDE adds a new segment instance after the current position.

ON NONEXT INCLUDE adds a new instance at the end of the segment chain.

l Use the ON NEXT UPDATE phrase without restriction. The phrase updates the
segment instance at the current position. If you are looping with the NEXT statement,
the phrase updates the entire chain.

l Use the ON NEXT DELETE phrase to delete entire segment chains. This phrase deletes
the segment instance at the current position. If you are looping with the NEXT

statement, the phrase deletes the entire chain, but only if you start at the beginning
of a chain. Otherwise, the phrase deletes every second instance.

Note that the phrases ON NONEXT UPDATE and ON NONEXT DELETE are illegal and will
generate error messages.

Modifying Multiple Unique Segments
Modifying unique segments is described in Modifying Data: MATCH and NEXT. This section
describes how to modify several unique segments descended from one parent using the
CONTINUE TO method.

To modify multiple unique segments, prepare separate cases containing a MATCH or NEXT
statement for each segment you are modifying. The sample request below illustrates this.
The request loads data into the SUBSCRIBE data source, which records magazine
subscribers, their mailing addresses, and expiration dates. The Master File is:

FILE=SUBSCRIB ,SUFFIX=FOC,$
SEGMENT=SUBSEG ,$
FIELD=SUBSCRIBER ,ALIAS=NAME ,FORMAT=A35 ,$

SEGMENT=ADDRSEG,SEGTYPE=U,PARENT=SUBSEG ,$
FIELD=ADDRESS ,ALIAS=ADDR ,FORMAT=A40 ,$

ibi™ FOCUS® Maintaining Databases

196 | Modifying Data Sources With MODIFY

SEGMENT=EXPRSEG,SEGTYPE=U,PARENT=SUBSEG ,$
FIELD=EXPR_DATE ,ALIAS=EXDATE ,FORMAT=I6DMYT ,$

The following MODIFY request loads the data:

MODIFY FILE SUBSCRIB
PROMPT SUBSCRIBER
MATCH SUBSCRIBER

ON NOMATCH INCLUDE
ON MATCH CONTINUE

GOTO NEWADDR

CASE NEWADDR
PROMPT ADDRESS
MATCH SUBSCRIBER

ON NOMATCH REJECT
ON MATCH CONTINUE TO ADDRESS

ON MATCH REJECT
ON MATCH GOTO NEWDATE
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWDATE

ENDCASE

CASE NEWDATE
PROMPT EXPR_DATE
MATCH SUBSCRIBER

ON NOMATCH REJECT
ON MATCH CONTINUE TO EXPR_DATE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

Note the last two cases in the request:

l The NEWADDR case loads subscriber addresses into the unique segment ADDRSEG.
The case examines the ADDRSEG segment. Does the subscriber have a mailing
address listed? If not, the request includes the new address. In either event, the
request continues to the NEWDATE case.

l The NEWDATE case loads expiration dates into the sibling unique segment EXPRSEG.
It examines the EXPRSEG segment with the EXPR_DATE field. Does the subscriber
have a magazine expiration date? If not, the request includes the new expiration
date. If the subscriber has an expiration date, the request checks to determine

ibi™ FOCUS® Maintaining Databases

197 | Modifying Data Sources With MODIFY

whether it gave the subscriber a new address.

If the request gave the subscriber a new address, the request does not reject the
transaction.

If the request did not give the subscriber a new address, the request rejects the
transaction.

If you were to include the MATCH statements in one case, the request would reject a
transaction if the subscriber already had either an address or an expiration date. Since you
want the transaction rejected only if the subscriber already has both, separate the MATCH
statements into separate cases.

Use Case Logic to Offer User Selections
You can use Case Logic to offer users a selection of options. The request below offers a
choice between updating employee salaries, monthly pay, or addresses:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO MENU

CASE MENU
TYPE
"TO UPDATE THE EMPLOYEE'S SALARY, TYPE 'SALARY' "
"TO UPDATE THE EMPLOYEE'S MONTHLY PAY, TYPE 'PAY' "
"TO UPDATE THE EMPLOYEE'S ADDRESS, TYPE 'ADDRESS' "
COMPUTE CHOICE/A7=;
PROMPT CHOICE

IF CHOICE IS 'SALARY' THEN GOTO SALARY
ELSE IF CHOICE IS 'PAY'THEN GOTO PAY
ELSE IF CHOICE IS 'ADDRESS'THEN GOTO ADDRESS;

TYPE "ILLEGAL CHOICE, PLEASE TYPE ENTRY AGAIN"
GOTO MENU
ENDCASE
CASE SALARY
PROMPT CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE

ibi™ FOCUS® Maintaining Databases

198 | Modifying Data Sources With MODIFY

CASE PAY
PROMPT PAY_DATE GROSS
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH UPDATE GROSS

ENDCASE
CASE ADDRESS
PROMPT TYPE ADDRESS_LN1 ADDRESS_LN2
MATCH TYPE

ON NOMATCH REJECT
ON MATCH UPDATE ADDRESS_LN1 ADDRESS_LN2

ENDCASE
DATA

Use Case Logic to Process Transaction Data
Sources
You can use Case Logic to process records in a transaction data source in different ways.
For example, each transaction record contains a field that defines what type of record it is.
The MODIFY request can use these record types to branch to the appropriate case and
process the transaction.

The following request processes two record types: type A updates employee department
assignments and job codes; type B updates salaries and classroom hours. The record type
field (called RTYPE) is the last field in each record. It contains either the letter A or B,
depending on the record type.

MODIFY FILE EMPLOYEE
COMPUTE RTYPE/A1=;
FIXFORM X26 RTYPE/1

IF RTYPE IS 'A' THEN GOTO TYPE_A
ELSE IF RTYPE IS 'B'THEN GOTO TYPE_B;

TYPE "BAD RECTYPE VALUE"
GOTO TOP

CASE TYPE_A
FIXFORM X-27 EMP_ID/9 X1 DEPARTMENT/10
FIXFORM X1 CURR_JOBCODE/3 X3
MATCH EMP_ID

ON NOMATCH REJECT

ibi™ FOCUS® Maintaining Databases

199 | Modifying Data Sources With MODIFY

ON MATCH UPDATE DEPARTMENT CURR_JOBCODE
ENDCASE

CASE TYPE_B
FIXFORM X-27 EMP_ID/9 X1 CURR_SAL/8 X1 ED_HRS/6 X2
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL ED_HRS

ENDCASE
DATA ON FIXTYPE
END

Notice the three FIXFORM statements: one in each of the cases. Only the statement in the
TOP case reads a record from disk or tape. The other two statements redefine the record
for the case.

Also note that each of these two statements begins with X-27, which allows the case to
redefine the 27-byte record from the beginning. Always place the notation X-n at the
beginning of the FIXFORM statement that is redefining the record, not at the end of the
previous FIXFORM statement.

A FIXFORM statement reads a new record from disk or tape if one of these conditions are
met:

l The statement is the first FIXFORM statement in the request.

l The statement defines records to be longer than they were defined before. For
instance, if one FIXFORM statement defines a record of 80 bytes, and the next
FIXFORM statement defines a record from the same data source as being 90 bytes,
the second FIXFORM statement reads a new record.

l The statement reads records from a different data source than the one read
previously. This is possible if the statement has the form

FIXFORM ON ddname

where ddname is the ddname of the second transaction data source. If the next
FIXFORM statement does not have the ON ddname option, it too reads another
record.

ibi™ FOCUS® Maintaining Databases

200 | Modifying Data Sources With MODIFY

Use Case Logic to Process Transactions Based
on the Values of Their Fields
You can use Case Logic to process transactions depending on their field values. The
following request updates employee salaries. If the user enters a salary higher than
$50,000, the request checks the employee ID against a list of employees authorized for
large salaries:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL

CASE NEWSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH IF CURR_SAL GT 50000 THEN GOTO HIGHSAL;
ON MATCH UPDATE CURR_SAL

ENDCASE

CASE HIGHSAL
COMPUTE

SALTEST = DECODE EMP_ID (HIGHPAY);
IF SALTEST NE 1 THEN GOTO WRONGSAL;
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE

CASE WRONGSAL
TYPE

"EMPLOYEE NOT AUTHORIZED FOR SALARY INCREASE"
"PLEASE REENTER THE DATA"

ENDCASE
DATA

ibi™ FOCUS® Maintaining Databases

201 | Modifying Data Sources With MODIFY

Use Case Logic to Process Transactions With
Bad Values
You can use Case Logic to process transactions with values that would otherwise cause the
transactions to be rejected. You do this by combining GOTO and IF phrases with:

l The ON MATCH phrase, if you are adding new segment instances.

l The ON NOMATCH phrase, if you are updating or deleting instances.

l The ON INVALID phrase, if you are validating incoming data fields.

This request updates employee salaries. If it cannot find an employee record, it queries the
user whether to include the transaction as a new employee record:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH GOTO QUERY

CASE QUERY
COMPUTE CHOICE/A1=;
TYPE

"EMPLOYEE ID NOT FOUND IN THE DATABASE"
"INCLUDE THE TRANSACTION ANYWAY (Y/N)?"

PROMPT CHOICE
IF CHOICE IS 'Y' THEN GOTO INCLUDE

ELSE IF CHOICE IS 'N'THEN GOTO REJECT;
TYPE "PLEASE TYPE EITHER Y OR N"
GOTO QUERY
ENDCASE

CASE INCLUDE
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE REJECT
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH REJECT

ENDCASE
DATA

ibi™ FOCUS® Maintaining Databases

202 | Modifying Data Sources With MODIFY

Tracing Case Logic: The TRACE Facility
The TRACE facility displays the name of each case that is entered during the execution of a
MODIFY request. This is a useful tool for debugging large Case Logic requests.

You can allocate the output to a file or to your terminal. Then, add the word TRACE to the
end of the MODIFY command line

MODIFY FILE filename TRACE

where:

filename

is the name of the FOCUS data source you are modifying.

When the TRACE facility is on, it lists in the HLIPRINT file the name of the case about to run

TRACE ===> AT CASE case

where:

case

Is the name of the case.

Note that if you are using FIDEL and displaying the TRACE output on the terminal, the
following happens. When you enter a CRTFORM screen, the screen clears and displays the
name of the next case. Clear the screen, and the next CRTFORM screen appears.

The request and sample execution below illustrate the use of the TRACE facility:

MODIFY FILE EMPLOYEE TRACE
PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO HIGHSAL
ELSE GOTO UPDATE;

CASE UPDATE
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE HIGHSAL
TYPE

ibi™ FOCUS® Maintaining Databases

203 | Modifying Data Sources With MODIFY

" "
"YOU ENTERED A SALARY ABOVE $50,000"
" "

PROMPT CURR_SAL.PLEASE REENTER THE SALARY.
IF CURR_SAL GT 50000 GOTO HIGHSAL
ELSE GOTO UPDATE;
ENDCASE
DATA

The following is a sample execution of the previous request:

> EMPLOYEE ON 10/04/98 AT 14.02.33
**** START OF TRACE ****
TRACE ===> AT CASE TOP
DATA FOR TRANSACTION 1

EMP_ID = > 112847612
CURR_SAL = > 67000
TRACE ===> AT CASE HIGHSAL

YOU ENTERED A SALARY ABOVE $50,000

PLEASE REENTER THE SALARY > 27000
TRACE ===> AT CASE UPDATE
TRACE ===> AT CASE TOP
DATA FOR TRANSACTION 2

EMP_ID = 0

Multiple Record Processing
Multiple record processing enables you to process multiple segment instances at one time.
One important application is the use of multiple record processing with the FIDEL facility to
enable the terminal operator to add, update, or delete several segment instances on one
screen. This section discusses multiple record processing based on this application.
However, you can apply the principles stated here to other applications as well.

Usually, a MODIFY request using FIDEL prompts you for a key field value, then uses the
value to retrieve one segment instance. After you modify the instance, you enter the key
field value to retrieve the next instance. This way, you modify segment instances one at a
time.

ibi™ FOCUS® Maintaining Databases

204 | Modifying Data Sources With MODIFY

Multiple record processing causes the request to retrieve multiple segment instances
before FIDEL displays instance values. Each time the request retrieves an instance, it stores
the instance values in a work area in memory called the Scratch Pad Area. The request
continues to retrieve instances until it reaches a specified number.

After the request has retrieved the instances, FIDEL reads the instance values from the
Scratch Pad Area and displays them all on one screen. The user can update these values
and transmit the updated values back to the data source with one press of the Enter key.

Note: Text fields cannot be put into the Scratch Pad (HOLD).

You may also design a request that adds several instances at one time, or a request that
both updates existing instances and adds new ones all on the same screen.

Multiple Record Processing describes multiple record processing using the REPEAT
statement. This method requires only that you know the fields you want to process.
However, it only enables you to process instances from one segment at a time.

Multiple Record Processing discusses manual methods that require you to know how
instances are stored in the Scratch Pad Area. These methods are more powerful and enable
you to process multiple segments at one time.

The REPEAT Method
One REPEAT statement collects segment instances and loads them into the Scratch Pad
Area; another REPEAT statement retrieves the instances from the Area and uses them to
modify the data source. This method does not require you to know how the instances are
stored in the Area; however, you must process the instances sequentially, and you can
process only one segment at one time.

Multiple record processing has four phases. They are:

1. Selection. The request selects the parent instance of the instances to be processed.

2. Collection. The request retrieves multiple segment instances and stores their data
values in the Scratch Pad Area.

3. Display. The FIDEL facility displays the data on one screen for editing.

4. Modification. The request uses the edited data values to modify the data source.

ibi™ FOCUS® Maintaining Databases

205 | Modifying Data Sources With MODIFY

The Selection Phase: Selecting the Parent
Instance
To modify multiple instances in a segment, you must first identify the parent instance. (If
you are modifying the root segment, skip this phase and start with The Collection Phase:
Storing Instances in a Buffer.) Do this as you would any other request.

For example, the beginning of this request identifies an employee ID in the EMPLOYEE data
source, allowing you to modify the employee's child segment instances:

MODIFY FILE EMPLOYEE
CRTFORM LINE 2
"**************************************"
"* MONTHLY PAY UPDATE *"
"**************************************"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

If you are using multiple record processing only to create new instances, skip the collection
phase and proceed directly to the display phase. The following MATCH statement adds a
new employee ID to the data source. It then branches to the case NEWADDRESS where the
display phase prompts the user for all the employees' addresses:

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE'S ID: <EMP_ID"
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWADDRESS

#d09modifydatasources1089778
#d09modifydatasources1089778

ibi™ FOCUS® Maintaining Databases

206 | Modifying Data Sources With MODIFY

The Collection Phase: Storing Instances in a
Buffer
During the collection phase, the request retrieves multiple segment instances and stores
their values in the Scratch Pad Area.

After identifying the parent instance, read the child instances into the Scratch Pad Area (if
you are modifying the root segment, reading the instances into the Area is your first step).
You do this using the REPEAT statement, which the request executes repeatedly. Each time
the request executes a REPEAT statement, the phrases in the statement retrieve one
segment instance and store its data values in the Area.

Use a REPEAT Statement
The syntax of the REPEAT statement is

REPEAT {*|count}[TIMES] [MAX limit] [NOHOLD]
.
.

phrases
.
.

ENDREPEAT

where:

count

Is an integer or temporary integer field determining the number of times the request
executes the REPEAT. This value can be between 0 and 32,767, but should be no smaller
than the number of segment instances you want to display on the FIDEL screen.

If this value is 0, the request does not execute the REPEAT (this allows you to skip a
REPEAT if you are using a temporary field for this parameter). If the value is an asterisk,
the REPEAT is executed 65,535 times. Once the REPEAT begins execution, the value
cannot be changed.

TIMES

Is an optional word, which you can add to enhance readability.

ibi™ FOCUS® Maintaining Databases

207 | Modifying Data Sources With MODIFY

limit

Is an integer specifying the maximum number of times the request can execute the
REPEAT. Specify this parameter only if you are using a temporary field for the count
parameter.

NOHOLD

Is an option that enables you to use REPEAT as a simple loop that executes any group of
MODIFY statements repeatedly.

phrases

Are the MODIFY statements to be executed within the REPEAT statement. Each phrase
must begin on a new line.

ENDREPEAT

Ends the statement. This phrase must be on a line by itself.

There are three types of REPEAT statements:

l Stacking REPEAT statements. These statements contain HOLD phrases that stack
data into the Scratch Pad Area. They appear in the collection phase of multiple
record processing.

l Retrieving REPEAT statements. These statements retrieve data placed in the Scratch
Pad Area by the stacking REPEAT statements. They usually appear in the modification
phase and in validation routines in multiple record processing.

l Simple REPEAT statements. These statements consist of any combination of MODIFY
statements to be executed repeatedly. You indicate a simple repeat statement by
specifying the NOHOLD option in the REPEAT phrase. Simple REPEAT statements
neither stack data nor retrieve data from the Scratch Pad Area.

FOCUS determines the type of REPEAT statement in the following manner:

l If the statement specifies the NOHOLD option, it is a simple REPEAT statement.

l If the statement contains a HOLD phrase, it is a stacking REPEAT statement.

l If the statement neither specifies the NOHOLD option nor contains a HOLD phrase, it
is a retrieving REPEAT statement.

The REPEAT statement can stand by itself, or it can be part of an ON MATCH, ON
NOMATCH, ON NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. For example:

ibi™ FOCUS® Maintaining Databases

208 | Modifying Data Sources With MODIFY

REPEAT 12 TIMES

ON MATCH REPEAT 6

ON NEXT REPEAT BUFCOUNT MAX 10

Note: You cannot nest REPEAT statements; one statement must end before
another can begin.

Two GOTO phrases especially apply to REPEAT statements. They are:

l GOTO ENDREPEAT. This phrase branches processing to the end of the REPEAT
statement, increments the counter by 1, and executes the request REPEAT again.

l GOTO EXITREPEAT. This phrase branches processing to the first executable statement
following the REPEAT loop.

This REPEAT saves the first five pay dates and monthly pay amounts in the EMPLOYEE data
source in the Scratch Pad Area:

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO EXITREPEAT

ENDREPEAT
GOTO DISPLAY
ENDCASE

Note the ON NONEXT GOTO EXITREPEAT phrase. This specifies that if there are less than
five employee IDs in the segment chain, the request will branch to the next statement after
the REPEAT. If the ON NONEXT phrase was not included, the request would automatically
branch back to the beginning of the request.

ibi™ FOCUS® Maintaining Databases

209 | Modifying Data Sources With MODIFY

Store Instances With the HOLD Phrase
The REPEAT statement retrieves instances using MATCH and NEXT statements. Each time
the REPEAT retrieves an instance, you may store the instance values in the Scratch Pad
Area. Do this with the phrase

HOLD [SEG.]field-1 field-2 ... field-n

where field-1 through field-n are the data fields whose values you want to save in the
Scratch Pad Area. The specified fields can be data source fields or temporary fields. The
data source fields must exist either in the instance or in a parent instance along the
segment path (the parent of the instance, the parent's parent, and so on to the root
segment). For example, the phrase

HOLD EMP_ID FIRST_NAME LAST_NAME CURR_SAL

stores the employee IDs, first and last names, and salaries of each retrieved instance in the
Scratch Pad Area.

If you want to save the values of all the data fields in the instance, specify just one field
with the SEG. prefix affixed to the front of the field name.

HOLD stores the fields whether they are active or inactive. To ensure that the fields placed
in the Scratch Pad Area are active, use the ACTIVATE phrase described in Advanced
Facilities.

The HOLD phrase can stand by itself, or it can be part of an ON MATCH, ON NOMATCH, ON
NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. If you use HOLD in ON
NOMATCH and ON NONEXT phrases, you may specify only temporary fields and fields in
parent instances along the segment path. If the list of fields is too long to fit on one line,
repeat the word HOLD for each line you need. Some examples are:

HOLD EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
HOLD CURR_JOBCODE ED_HRS

ON MATCH HOLD EMP_ID DEPARTMENT CURR_SAL

ON NONEXT HOLD DEPCODE

When a REPEAT statement containing a HOLD phrase begins execution, FOCUS clears the
Scratch Pad Area of data stored from previous REPEATs.

ibi™ FOCUS® Maintaining Databases

210 | Modifying Data Sources With MODIFY

The following is a piece of a MODIFY request that executes the collection phase:

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

The REPEATCOUNT and HOLDCOUNT Variables
Two variables assume values during the collection phase. These are:

l The REPEATCOUNT variable. This variable contains the value of the REPEAT counter.

l The HOLDCOUNT variable. This variable contains the current number of instances
stored in the Scratch Pad Area.

If you design your request with Case Logic, you can test and branch on these variables. The
following IF statement branches to the TOP case if the preceding REPEAT did not retrieve

any segment instances:

IF HOLDCOUNT EQ 0 GOTO TOP

Please note the following values that the REPEATCOUNT and HOLDCOUNT variables take
under these circumstances:

l When a REPEAT statement begins execution, REPEATCOUNT is set to 1.

l If a REPEAT is set to execute 0 times, REPEATCOUNT is set to 0.

l If the REPEAT beginning execution contains HOLD phrases, the Scratch Pad Area is
cleared and HOLDCOUNT is set to 0. If the REPEAT does not contain HOLD phrases,
HOLDCOUNT is unchanged.

l At each repetition of the REPEAT, REPEATCOUNT is increased by one. After each
HOLD phrase is executed, HOLDCOUNT is increased by one.

l The REPEATCOUNT variable maintains its value after the REPEAT completes
execution until the next REPEAT, even if the request branched from the REPEAT with

ibi™ FOCUS® Maintaining Databases

211 | Modifying Data Sources With MODIFY

a GOTO phrase.

Note: A CRTFORM displaying records in the Scratch Pad Area can change
the HOLDCOUNT value. For this reason, you may want to store the
HOLDCOUNT value in a temporary field for use later in the request. For
example, this COMPUTE statement saves the value of the HOLDCOUNT
field in the temporary field BUFFNUMBER:

COMPUTE BUFFNUMBER/I5 = HOLDCOUNT;

The Display Phase: Displaying Instances in One
CRTFORM
After the request stores the segment instance values in the Scratch Pad Area, you display
the values on one screen using the FIDEL facility (see Designing Screens With FIDEL). Since
you use the same field names for all instances (multiple record processing can only modify
one segment at a time), you must distinguish between instances. To do this, add subscripts
to the fields using the form.

field(n)

where n (the subscript) is an integer greater than 0. The subscript indicates the instance
that a field belongs to in the order that the instances are read from the Scratch Pad Area.

For example, this CRTFORM displays the employee IDs, departments, and salaries of five
segment instances numbered 1 through 5:

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;
COMPUTE

BUFFNUMBER/I5=HOLDCOUNT;
CRTFORM LINE 9

" MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
" PAY DATE AMOUNT PAID"
" -------- -----------"
"<D.PAY_DATE(1) <T.GROSS(1)>"

ibi™ FOCUS® Maintaining Databases

212 | Modifying Data Sources With MODIFY

"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"

GOTO UPDATE
ENDCASE

Note the D. prefix (display) that displays protected field values, and the T. prefix
(turnaround) that displays field values to be updated. Display fields and turnaround fields
are described in Designing Screens With FIDEL. Make all turnaround fields non-conditional;
that is, end the field name with a right caret.

Once you have updated the values, you can transmit all the changes at one time by
pressing the Enter key. These changes update the appropriate instances in the Scratch Pad
Area. The request then branches to the modification phase (the UPDATE case), where your
changes are entered into the data source. The CRTFORM may then prompt you for the next
parent instance or may display the next set of multiple instances for you to change.

For example, a request that updates employee's monthly pay prompts you for an employee
ID. This employee has eight pay dates recorded. The screen displays the first five pay dates.
Make your adjustments and press Enter. The screen displays the last three pay dates. Make
your adjustments and press Enter. The request then prompts you for the next employee ID.

You may add subscripts to fields only in CRTFORMs, not in REPEATs. REPEATs that follow
the CRTFORMs process the fields in the order of the instances in the Scratch Pad Area, one
at a time.

Position the Cursor on Specific Field Values
You can design the request so that the cursor is automatically positioned on a particular
field value on the FIDEL screen. To do this, set the CURSOR variable equal to the field
name, as described in Designing Screens With FIDEL. If the fields are subscripted, set a field
called CURSORINDEX equal to the value of the subscript. For example, this COMPUTE
statement places the cursor on the field CURR_SAL(3):

COMPUTE
CURSOR/A12 = 'CURR_SAL';
CURSORINDEX = 3;

ibi™ FOCUS® Maintaining Databases

213 | Modifying Data Sources With MODIFY

These cursor-positioning variables are useful when you perform validation tests on data
entered on the FIDEL screen. After the CRTFORM, write a REPEAT statement for each field
you are validating. Specify as many executions for the REPEAT as the highest subscript in
the CRTFORM.

In the REPEAT statement:

l Set the CURSOR variable equal to the name of the field you are validating.

l Set the CURSORINDEX variable equal to the REPEATCOUNT variable. This sets the
CURSORINDEX variable to the subscript of the field being validated.

l Validate the field.

l If a field value proves invalid, branch back to the CRTFORM using Case Logic. The
CURSOR and CURSORINDEX variables will position the cursor at the invalid value.

Note: Remember to assign the CURSOR variable a format of A12 and the
CURSORINDEX variable a format of I5.

This is a sample case validating the CURR_SAL field:

CASE DISPLAY
CRTFORM
"EMPLOYEE SALARY DEPARTMENT"
"-------- ------ --------- "
"<D.EMP_ID(1) <T.CURR_SAL(1)> <T.DEPARTMENT(1)>"
"<D.EMP_ID(2) <T.CURR_SAL(2)> <T.DEPARTMENT(2)>"
"<D.EMP_ID(3) <T.CURR_SAL(3)> <T.DEPARTMENT(3)>"
"<D.EMP_ID(4) <T.CURR_SAL(4)> <T.DEPARTMENT(4)>"
"<D.EMP_ID(5) <T.CURR_SAL(5)> <T.DEPARTMENT(5)>"

REPEAT 5 TIMES
COMPUTE

CURSOR/A12 = 'CURR_SAL';
CURSORINDEX/15 = REPEATCOUNT;

VALIDATE
SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE

"THIS SALARY ENTERED WAS TOO HIGH"
"PLEASE RE-ENTER"

ON INVALID GOTO DISPLAY
ENDREPEAT
ENDCASE

ibi™ FOCUS® Maintaining Databases

214 | Modifying Data Sources With MODIFY

The Modification Phase
After the user has entered changes on a FIDEL screen, the request uses the data to update
instances in the Scratch Pad Area and to add new ones. To transfer the changes from the
Area to the data source, prepare a REPEAT statement that modifies a data source instance
on each pass.

This REPEAT updates the EMPLOYEE data source using data entered on the FIDEL screen
shown in the previous section, The Display Phase: Displaying Instances in One CRTFORM.
The REPEAT should execute as many times as there are instances in the Scratch Pad Area.
This number was stored in the HOLDCOUNT variable. However, the HOLDCOUNT value can
be changed by the CRTFORMs that display records in the Area. Therefore, you should store
the HOLDCOUNT variable in a temporary field in the display phase before the CRTFORM.
(This is shown in the example at the beginning of the section mentioned above.) This field
can then set the number of times that the REPEAT statement executes.

At each pass, the REPEAT statement retrieves one instance from the Scratch Pad Area. It
can then match on key fields in the instance to locate the corresponding instance in the
data source (or determine that such an instance does not exist), then update the data
source instance or add a new one.

In this example, the case UPDATE updates the data source instances, then branches back
to the collection phase (COLLECT case). The collection phase reads the next five employee
pay dates, which you can then change on the CRTFORM. This cycle continues until all the
employee's pay dates have been read. You then enter the ID of the next employee. The
number of instances in the Scratch Pad Area is contained in the temporary field
BUFFNUMBER:

CASE UPDATE
REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE

DATA VIA FI3270
END

#d09modifydatasources1089876

ibi™ FOCUS® Maintaining Databases

215 | Modifying Data Sources With MODIFY

Using Multiple Record Processing (REPEAT Method)
The sample request on the next page updates the monthly pay of employees. The
CRTFORM in the display phase displays the data for the five months in which the employee
was paid. After you update the monthly pay of these five months, the display phase
displays the next five months. This continues until it displays all the months recorded for
that employee. The request then prompts for the next employee ID.

The request is as follows:

MODIFY FILE EMPLOYEE
CRTFORM LINE 2
"**************************************"
"*MONTHLY PAY UPDATE*"
"**************************************"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;
COMPUTE

BUFFNUMBER/I6=HOLDCOUNT;
CRTFORM LINE 9
" MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"--------------- -----------"

ibi™ FOCUS® Maintaining Databases

216 | Modifying Data Sources With MODIFY

"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"
GOTO UPDATE
ENDCASE
CASE UPDATE
REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE
DATA VIA FI3270
END

Manual Methods
This section discusses manual methods of multiple record processing. These methods
allow you to manipulate individual records in the Scratch Pad Area and to process
instances from multiple segments at one time.

Manual methods depend on two temporary fields:

l The HOLDINDEX field. This field contains index values of records in the Scratch Pad
Area. When you place a record in the Area using the HOLD statement, FOCUS assigns
the record an index value equal to the value of the HOLDINDEX field. When you
request a record from the Area using the GETHOLD statement, FOCUS retrieves the
record having an index value equal to the value of the HOLDINDEX field.

When you place a record into the area using the HOLD phrase, set HOLDCOUNT equal
to HOLDINDEX, then increment HOLDINDEX by 1.

l The SCREENINDEX field. This field determines the group of records to appear on
subscripted CRTFORMs.

There are manual methods for the collection, sorting, display, and modification phases of
multiple record processing. There are no manual methods for the first phase, the selection
phase (discussed in Multiple Record Processing). Note, however, that if you process
multiple segments that have no common parent, you must select the parent instance of
each segment chain.

ibi™ FOCUS® Maintaining Databases

217 | Modifying Data Sources With MODIFY

Initialization
Before loading instances into the Scratch Pad Area, the request may need to perform the
following tasks:

l Define the following variables with a format of I5:

The HOLDCOUNT field. Set HOLDCOUNT equal to 0.

The HOLDINDEX field. Set HOLDINDEX equal to 1.

The SCREENINDEX field. Set SCREENINDEX equal to 0.

l Use the REPOSITION statement to insure that the current position in each segment,
from which instances will be loaded into the Scratch Pad Area, is at the beginning of
the segment.

The following is the beginning of a MODIFY request that uses manual methods:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
REPEAT 1

HOLD EMP_ID
ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;
SCREENINDEX/I5 = 0;

REPOSITION SALARY
REPOSITION PAY_DATE
GOTO SALCOLLECT
ENDCASE

The Collection Phase: The HOLDINDEX Field
During the collection phase, the request retrieves multiple segment instances from the
data source and stores each instance as a record in the Scratch Pad Area. FOCUS assigns
each record an index value equal to the current value of the HOLDINDEX field, then

ibi™ FOCUS® Maintaining Databases

218 | Modifying Data Sources With MODIFY

increments HOLDINDEX by 1. For example, if HOLDINDEX is equal to 5, then the request
stores one segment instance in the Area as Record 5, the next instance as Record 6, and so
on.

To store instances from multiple segments, follow this procedure:

1. Assign each segment a range of index values (for example, assign one segment values
1 through 5, another 6 through 11, and so on).

2. Write the request so that a separate case loads instances from each segment. Before
each case executes, have a COMPUTE statement set HOLDINDEX to the index value of
the first record for that segment.

To assign index values to a segment, you must know the largest number of instances you
will be storing from that segment. In many applications, you will be storing an entire
segment chain at a time. You then must know the size of the largest segment chain.

Note: Be sure that you set HOLDINDEX to a value less than or equal to the
current value of the HOLDCOUNT field. A HOLDINDEX value greater than
HOLDCOUNT generates an error that terminates the request.

For example, suppose you write a request to update both employees' salary history
(SALARY) and monthly pay (GROSS), information contained in two different segments in the
EMPLOYEE data source (see the diagram that follows).

To determine the size of the largest chains in both segments, enter this procedure:

TABLE FILE EMPLOYEE
COUNT SALARY AND PAY_DATE BY EMP_ID
ON TABLE HOLD
END

TABLE FILE HOLD
SUM MAX.SALARY AND MAX.PAY_DATE
END

ibi™ FOCUS® Maintaining Databases

219 | Modifying Data Sources With MODIFY

The output appears as follows:

PAGE 1
MAX MAX
SALARY PAY_DATE
------ --------

2 10

The report shows that the largest salary history chain consists of two instances and the
largest monthly pay chain consists of ten instances. Therefore, you assign values 1 and 2 to
the salary history segment and values 3 through 12 to the monthly pay segment.
Schematically, the Scratch Pad Area will look like this:

1. DAT_INC(1) SALARY(1) - -
2. DAT_INC(2) SALARY(2) - -
3. - - PAY_DATE(3) GROSS(3)
4. - - PAY_DATE(4) GROSS(4)
5. - - PAY_DATE(5) GROSS(5)
6. - - PAY_DATE(6) GROSS(6)
7. - - PAY_DATE(7) GROSS(7)
8. - - PAY_DATE(8) GROSS(8)
9. - - PAY_DATE(9) GROSS(9)
10. - - PAY_DATE(10) GROSS(10)
11. - - PAY_DATE(11) GROSS(11)
12. - - PAY_DATE(12) GROSS(12)

To fix the index values in the request, set HOLDINDEX to the first index value assigned to a
segment before loading instances from that segment. In the example above, set
HOLDINDEX to 1 before loading the salary history instances, and set HOLDINDEX to 3
before loading the monthly pay instances. This reserves the proper index values for each
segment.

ibi™ FOCUS® Maintaining Databases

220 | Modifying Data Sources With MODIFY

Prepare separate cases to load instances from each segment. During the modification
phase, discussed on the next page, you may plan to retrieve all records from the same
segment at one time. If so, store the index value of the last instance loaded into the
Scratch Pad Area from that segment (this is the HOLDINDEX value after the last instance is
loaded minus one) in a field. This field will help retrieve the records in the modification
phase.

For example, you are loading monthly pay instances into the Scratch Pad Area. The last
monthly pay instance loaded into the Area is assigned index value 8. You then store 8 in
the field LASTPAY.

This example is a request fragment that updates employees' salary histories and monthly
pay:

CASE SALCOLLECT
NEXT SALARY

ON NEXT HOLD DAT_INC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COMPUTE

LASTSAL/I5 = HOLDINDEX-1;
HOLDINDEX = 3;

ON NONEXT GOTO PAYCOLLECT
ENDCASE

CASE PAYCOLLECT
NEXT PAY_DATE

ON NEXT HOLD PAY_DATE GROSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COMPUTE

LASTPAY/I5 = HOLDINDEX-1;
ON NONEXT GOTO DISPLAY

ENDCASE

The three cases are:

l The TOP case. This case selects an employee and sets the HOLDINDEX field to 1 to
index the salary history instances.

l The SALCOLLECT case. This case loads the salary history instances into the Scratch
Pad Area. After the instances are loaded, the case stores the index value of the last
loaded salary history instance in the field LASTSAL. It then sets the HOLDINDEX field
to 3 to index the monthly pay instances.

l The PAYCOLLECT case. This case loads the monthly pay instances into the Scratch
Pad Area. After it loads the instances, it stores the index value of the last loaded

ibi™ FOCUS® Maintaining Databases

221 | Modifying Data Sources With MODIFY

monthly pay instance in the field LASTPAY. It then proceeds to the display phase.

The Display Phase: The SCREENINDEX Field
This section shows how to display a specific group of records in the Scratch Pad Area.

Multiple Record Processing described how to display records in the Scratch Pad Area on a
CRTFORM. The CRTFORM statement specifies the field names with subscripts that refer to
the records in the Area. For example:

CRTFORM
"MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"-------- -----------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"

To display a subscripted field, FOCUS adds the field subscript to the value of a field called
SCREENINDEX, then uses the sum as an index value to locate a record in the Scratch Pad
Area. It then displays the field value in that record. For example, if the SCREENINDEX value
for the above CRTFORM is 4, FOCUS will display the PAY_DATE and GROSS values from Area
records 5 through 9.

You can use this feature to scroll back and forth through the Scratch Pad Area. To scroll
forward, increase the value of SCREENINDEX; to scroll backward, decrease the value of
SCREENINDEX.

If you update a field value on the CRTFORM, FOCUS updates the appropriate record in the
Scratch Pad Area.

ibi™ FOCUS® Maintaining Databases

222 | Modifying Data Sources With MODIFY

Note:
l If the request does not give SCREENINDEX a value, the default value is 0.

l If the sum of the SCREENINDEX value and a field subscript is less than 0 or
more than the current value of the HOLDCOUNT field, then the CRTFORM
displays that field as blank.

l If you use the CURSORINDEX field to place the cursor on a field value (as
described in Multiple Record Processing), the CURSORINDEX value refers to
the field subscript, not the index value.

This sample case displays blocks of eight records stored in the Scratch Pad Area. The first
record in each block is a monthly pay instance. The remaining seven records are
deductions taken from the employee's paycheck. The case is:

CASE DISPLAY
IF HOLDCOUNT EQ 0 THEN GOTO TOP;
COMPUTE

PFKEY/A4 = ' ';
EMPID/A9 = EMP_ID;
DED_AMT/D12.2M = DED_AMT;

CRTFORM LINE 1
"DEDUCTION RECORD SCREEN"
" "

" EMPLOYEE: <D.EMPID PAY DATE: <D.PAY_DATE(1)"
" "
"1. <D.DED_CODE(2) <T.DED_AMT(2)>"
"2. <D.DED_CODE(3) <T.DED_AMT(3)>"
"3. <D.DED_CODE(4) <T.DED_AMT(4)>"
"4. <D.DED_CODE(5) <T.DED_AMT(5)>"
"5. <D.DED_CODE(6) <T.DED_AMT(6)>"
"6. <D.DED_CODE(7) <T.DED_AMT(7)>"
"7. <D.DED_CODE(8) <T.DED_AMT(8)>"
" "
"PRESS PF4 TO DISPLAY THE NEXT EMPLOYEE"
"PRESS PF5 TO DISPLAY THE LAST PAY DATE"
"PRESS PF6 TO DISPLAY THE NEXT PAY DATE"
COMPUTE

SCREENINDEX/I5 = IF PFKEY IS 'PF04' THEN 0
ELSE IF PFKEY IS 'PF05' THEN SCREENINDEX - 8
ELSE IF PFKEY IS 'PF06' THEN SCREENINDEX + 8
ELSE SCREENINDEX;

IF PFKEY IS 'PF04' THEN GOTO TOP ELSE GOTO DISPLAY;

Pressing one of the PF keys gives the variable PFKEY a value that the request tests to
adjust SCREENINDEX. By adding eight to SCREENINDEX, the request displays the next block

ibi™ FOCUS® Maintaining Databases

223 | Modifying Data Sources With MODIFY

of records. By subtracting eight from SCREENINDEX, the request displays the previous
block of records.

The Modification Phase: The GETHOLD
Statement
During the modification phase, the request retrieves records from the Scratch Pad Area and
uses them to modify the data source. It retrieves records using the GETHOLD statement.
The syntax is

GETHOLD

without any parameters. The GETHOLD statement retrieves the record whose index value is
the value of the HOLDINDEX field. The HOLDINDEX field is then incremented by 1. For
example, if the current value of HOLDINDEX is 5, the GETHOLD statement retrieves Record
5 from the Scratch Pad Area. HOLDINDEX is then increased to 6.

After the record is retrieved, all fields in the record become available for processing:
matching, adding new segment instances, updating, deleting, and computations. Note that
you may need to activate these fields before processing. For example, these statements
update an employee's monthly pay using Record 5 in the Scratch Pad Area. Record 5
contains two fields: PAY_DATE and GROSS:

COMPUTE HOLDINDEX = 5;
GETHOLD
ACTIVATE PAY_DATE GROSS
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH UPDATE GROSS

You may use the GETHOLD statement to process all the records in the Scratch Pad Area. If
the records contain data loaded from different segments, use separate cases to process
records from each segment. First, set the HOLDINDEX field to the index value of the first
record from the segment. As the request retrieves each record, HOLDINDEX increases by 1.
When HOLDINDEX is greater than the index value of the last record from the segment
(which you stored earlier in a field), you can branch to another case.

For example, this request fragment updates employees' salary history and monthly pay.
The Scratch Pad Area consists of the following records:

ibi™ FOCUS® Maintaining Databases

224 | Modifying Data Sources With MODIFY

l The first two records contain the fields DAT_INC and SALARY to update the salary
history.

l The next ten records contain the fields PAY_DATE and GROSS to update monthly pay.

The fragment is:

CASE SALSET
COMPUTE HOLDINDEX = 1;
GOTO SALUPDATE
ENDCASE

CASE SALUPDATE
GETHOLD
MATCH DAT_INC

ON MATCH UPDATE SALARY
ON MATCH IF HOLDINDEX GT LASTSAL GOTO PAYSET

ELSE GOTO SALUPDATE;
ON NOMATCH REJECT

ENDCASE

CASE PAYSET
COMPUTE HOLDINDEX = 3;
GOTO PAYUPDATE
ENDCASE

CASE PAYUPDATE
GETHOLD
MATCH PAY_DATE

ON MATCH UPDATE GROSS
ON MATCH IF HOLDINDEX GT LASTPAY GOTO TOP

ELSE GOTO PAYUPDATE;
ON NOMATCH REJECT

ENDCASE

DATA VIA FIDEL
END

The cases are as follows:

l The SALSET case sets HOLDINDEX to 1, the index value of the first salary history
record.

l The SALUPDATE case updates the salary history using the records in the Scratch Pad
Area. Each time the case retrieves a record, HOLDINDEX is incremented by 1. When
HOLDINDEX is greater than the index value of the last salary history record (the value
of field LASTSAL), the case branches to the PAYSET case.

ibi™ FOCUS® Maintaining Databases

225 | Modifying Data Sources With MODIFY

l The PAYSET case sets HOLDINDEX to 3, the index value of the first monthly pay
record in the Scratch Pad Area.

l The PAYUPDATE case updates monthly pay using the records in the Scratch Pad Area.
When HOLDINDEX is greater than the index value of the last monthly pay record in

the Area (the value of field LASTPAY), the case branches back to the top.

You can also use the GETHOLD statement to retrieve and process a single record from the
Scratch Pad Area. This request fragment allows the user to delete a single monthly pay
instance:

CASE DISPLAY
CRTFORM
COMPUTE LN/I1 = 0;

"MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"-------- -----------"
"1. <D.PAY_DATE(1) <T.GROSS(1)>"
"2. <D.PAY_DATE(2) <T.GROSS(2)>"
"3. <D.PAY_DATE(3) <T.GROSS(3)>"
"4. <D.PAY_DATE(4) <T.GROSS(4)>"
"5. <D.PAY_DATE(5) <T.GROSS(5)>"
" "
"TO DELETE AN INSTANCE, ENTER LINE NUMBER HERE: <LN"

IF (LN LT 1) OR (LN GT 5) GOTO DISPLAY ELSE GOTO DELETE;
ENDCASE

CASE DELETE
COMPUTE

HOLDINDEX = LN;
GETHOLD
MATCH PAY_DATE

ON NOMATCH REJECT
ON NOMATCH GOTO TOP
ON MATCH DELETE
ON MATCH GOTO TOP

ENDCASE

Note: Be sure that you set HOLDINDEX to a value less than or equal to the
current value of the HOLDCOUNT field. A HOLDINDEX value greater than
HOLDCOUNT generates an error that terminates the request.

ibi™ FOCUS® Maintaining Databases

226 | Modifying Data Sources With MODIFY

Manual Methods: Two Examples
This section shows two examples that illustrate manual methods in multiple record
processing:

l The first example updates employees' salary history and monthly pay. This is data
contained in segments on two different paths.

l The second example deletes records of employee deductions. This is data contained
in segments on one path (a parent and its child).

A diagram showing the place of salary history (SALARY), monthly pay (GROSS), and pay
deductions (DED_AMT) in the EMPLOYEE data source structure appears at the beginning of
The Collection Phase: The HOLDINDEX Field in this section.

First Example: Processing Segments on Two
Different Paths
This request is an example of a procedure that processes segments lying on different
paths. The example updates employees' salary history and monthly pay. The salary history
segment and monthly pay segment are both children of the employee segment, and they
are on two separate paths.

This request also demonstrates the use of the GETHOLD statement to retrieve segment
chains from the Scratch Pad Area. Explanatory comments are embedded in the request.

MODIFY FILE EMPLOYEE
-* First, select the parent employee instance.

CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
-* Flush the Scratch Pad Area, then initialize fields
-* and segment chains.

REPEAT 1
HOLD EMP_ID

#d09modifydatasources1090049

ibi™ FOCUS® Maintaining Databases

227 | Modifying Data Sources With MODIFY

ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;

REPOSITION SALARY
REPOSITION PAY_DATE
GOTO SALCOLLECT
ENDCASE

CASE SALCOLLECT
-* Place the employees' salary history in the Scratch
-* Pad Area. Afterwards, store the index value of the
-* last loaded instance in the field LASTSAL. Then
-* set HOLDINDEX to 3, which is the index of the
-* first monthly pay instance.

NEXT SALARY
ON NEXT HOLD DAT_INC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COMPUTE

LASTSAL/I5 = HOLDINDEX-1;
HOLDINDEX = 3;
ON NONEXT GOTO PAYCOLLECT

ENDCASE

CASE PAYCOLLECT
-* Place the monthly pay instances in the Scratch Pad
-* Area. Afterwards, store the index value of the last
-* loaded instance in the field LASTPAY.

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COMPUTE

LASTPAY/I5 = HOLDINDEX-1;
ON NONEXT GOTO DISPLAY

ENDCASE

CASE DISPLAY
-* If nothing was collected, go back to TOP.
-* Otherwise, display the two segment chains
-* side by side. Then reset HOLDINDEX to 1
-* to prepare for updating.

IF HOLDCOUNT EQ 0 GOTO TOP;
CRTFORM LINE 3

ibi™ FOCUS® Maintaining Databases

228 | Modifying Data Sources With MODIFY

"SALARY HISTORY AND MONTHLY PAY RECORD"
" "
"SALARY HISTORY <40 MONTHLY PAY"
-------------- <40 -----------"
" "
" <D.DAT_INC(1) <T.SAL(1> <40 <D.PD(3) <T.GROSS(3)>"
" <D.DAT_INC(2) <T.SAL(2> <40 <D.PD(4) <T.GROSS(4)>"
" <40 <D.PD(5) <T.GROSS(5)>"
" <40 <D.PD(6) <T.GROSS(6)>"
" <40 <D.PD(7) <T.GROSS(7)>"
" <40 <D.PD(8) <T.GROSS(8)>"
" <40 <D.PD(9) <T.GROSS(9)>"
" <40 <D.PD(10) <T.GROSS(10)>"
" <40 <D.PD(11) <T.GROSS(11)>"
" <40 <D.PD(12) <T.GROSS(12)>"

COMPUTE HOLDINDEX=1;
GOTO SALUPDATE
ENDCASE

CASE SALUPDATE
-* Update the salary history instances.
-* LASTSAL contains the index value of the
-* last salary history record.

GETHOLD
MATCH DAT_INC

ON MATCH UPDATE SALARY
ON MATCH IF HOLDINDEX GT LASTSAL GOTO HOLDSET

ELSE GOTO SALUPDATE;
ON NOMATCH REJECT

ENDCASE

CASE HOLDSET
-* Set HOLDINDEX to 3 to update the first
-* monthly pay instance.

COMPUTE HOLDINDEX = 3;
GOTO PAYUPDATE
ENDCASE

CASE PAYUPDATE
-* Update the monthly pay instances. The field
-* LASTPAY contains the index value of the last
-* monthly pay record. Afterwards, go back to TOP.

GETHOLD
MATCH PAY_DATE

ibi™ FOCUS® Maintaining Databases

229 | Modifying Data Sources With MODIFY

ON MATCH UPDATE GROSS
ON MATCH IF HOLDINDEX GT LASTPAY GOTO TOP

ELSE GOTO PAYUPDATE;
ON NOMATCH REJECT

ENDCASE

DATA VIA FIDEL
END

Second Example: Modifying Segments on the Same
Path
This is a sample request that processes segments lying on the same path. The request
deletes employee pay deductions. To do so, it displays a pay date on the top of the screen;
below, it shows the deductions taken from the employee's pay check that date. The user
can scroll back and forth between pay dates and may choose particular deductions to
delete. The pay date is a field in the monthly pay segment; the deductions are fields in the
child deduction segment, as shown in the diagram in The Collection Phase: The
HOLDINDEX Field.

The request also demonstrates the use of the SCREENINDEX field to display different
groups of records on subscripted CRTFORMs, and the use of the GETHOLD statement to
retrieve specific records. Explanatory comments are embedded in the request.

MODIFY FILE EMPLOYEE

-* First, select the parent employee instance.

CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
-* Flush the Scratch Pad Area, then initialize fields
-* and segment chains.

REPEAT 1
HOLD EMP_ID

#d09modifydatasources1090049
#d09modifydatasources1090049

ibi™ FOCUS® Maintaining Databases

230 | Modifying Data Sources With MODIFY

ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;
SCREENINDEX/I5 = 0;

BLOCKCOUNT/I5 = 0;
REPOSITION PAY_DATE
GOTO PAYCOLLECT
ENDCASE

CASE PAYCOLLECT
-* The next two cases create blocks of eight
-* instances within the Scratch Pad Area. Each block
-* consists of a monthly pay instance followed
-* by seven descendant instances in the
-* deduction segment. The field BLOCKCOUNT counts
-* the number of blocks in the Scratch Pad Area so far.
-* The field BLOCKNUM contains the total number of
-* blocks in the Area after all instances have
-* been loaded.

NEXT PAY_DATE
ON NEXT COMPUTE

HOLDINDEX = 8 * BLOCKCOUNT + 1;
BLOCKCOUNT = BLOCKCOUNT + 1;

ON NEXT ACTIVATE PAY_DATE
ON NEXT HOLD PAY_DATE
ON NEXT GOTO DEDCOLLECT
ON NONEXT COMPUTE

BLOCKNUM/I5 = BLOCKCOUNT;
ON NONEXT GOTO DISPLAY

ENDCASE

CASE DEDCOLLECT
NEXT DED_CODE

ON NEXT ACTIVATE DED_CODE DED_AMT
ON NEXT HOLD DED_CODE DED_AMT
ON NEXT GOTO DEDCOLLECT
ON NONEXT GOTO PAYCOLLECT

ENDCASE

CASE DISPLAY
-* If nothing was collected, go back to TOP.
-* Otherwise, initialize the PFKEY and LINENO
-* fields. The EMPID field is for display
-* purposes. Then, display the current block.

ibi™ FOCUS® Maintaining Databases

231 | Modifying Data Sources With MODIFY

-*
-* At the bottom of the screen is a menu to offer
-* users the choice of processing the records
-* of another employee, displaying the previous
-* block or displaying the next block. the field
-* PFKEY reads the PF key that the user presses
-* (see Chapter 16). The field LINENO contains the
-* line number of the deduction instance that the
-* user wants to delete.

IF HOLDCOUNT EQ 0 THEN GOTO TOP;
COMPUTE

PFKEY/A4 = ' ';
LINENO/I1 = 0;
EMPID/A9 = EMP_ID;

CRTFORM LINE 1
"DEDUCTION RECORD DELETION SCREEN"
" "
"EMPLOYEE: <D.EMPID PAY DATE: <D.PAY_DATE(1)"
" "
"1. <D.DED_CODE(2) <D.DED_AMT(2)"
"2. <D.DED_CODE(3) <D.DED_AMT(3)"
"3. <D.DED_CODE(4) <D.DED_AMT(4)"
"4. <D.DED_CODE(5) <D.DED_AMT(5)"
"5. <D.DED_CODE(6) <D.DED_AMT(6)"
"6. <D.DED_CODE(7) <D.DED_AMT(7)"
"7. <D.DED_CODE(8) <D.DED_AMT(8)"
" "
"PRESS PF4 TO DISPLAY THE NEXT EMPLOYEE"
"PRESS PF5 TO DISPLAY THE LAST PAY DATE"
"PRESS PF6 TO DISPLAY THE NEXT PAY DATE"
" "
"TO DELETE A RECORD, ENTER LINE NUMBER HERE ==> <LINENO"

IF PFKEY IS 'PF04' THEN GOTO TOP;
IF (LINENO GE 1) AND (LINENO LE 7) THEN PERFORM DELETE;
IF (PFKEY IS 'PF05') OR (PFKEY IS 'PF06')

THEN PERFORM ADJUST;
GOTO DISPLAY
ENDCASE

CASE ADJUST
-* Adjust SCREENINDEX to display another block.
-* The BACK and FORW fields perform the arithmetic
-* but also insure that SCREENINDEX stays within
-* its proper range. BLOCKNUM is the total number
-* of blocks in the Scratch Pad Area.

ibi™ FOCUS® Maintaining Databases

232 | Modifying Data Sources With MODIFY

COMPUTE
BACK/I5 = IF SCREENINDEX GT 8 THEN SCREENINDEX-8 ELSE 0;
FORW/I5 = IF SCREENINDEX LT 8*(BLOCKNUM-1)

THEN SCREENINDEX+8 ELSE 8*(BLOCKNUM-1);
SCREENINDEX = IF PFKEY IS 'PF05' THEN BACK ELSE FORW;
ENDCASE

CASE DELETE
-* Delete the deduction instance indicated by the user.
-* The first GETHOLD statement retrieves the monthly
-* pay instance from the Scratch Pad Area. The second
-* GETHOLD statement retrieves the desired deduction
-* instance. After activating the PAY_DATE and DED_CODE
-* key fields, the case locates the deduction instance
-* in the database and deletes it. Note: The record
-* in the Scratch Pad Area is NOT deleted and will
-* continue to appear on the screen.

COMPUTE HOLDINDEX = SCREENINDEX + 1;
GETHOLD
COMPUTE HOLDINDEX = SCREENINDEX + LINENO + 1;
GETHOLD
ACTIVATE PAY_DATE DED_CODE
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DED_CODE
ON NOMATCH TYPE "DEDUCTION RECORD NOT FOUND"
ON NOMATCH GOTO DISPLAY
ON MATCH DELETE
ON MATCH TYPE "RECORD ON LINE <LINENO DELETED"
ON MATCH GOTO DISPLAY

ENDCASE

DATA VIA FIDEL
END

Sort the Scratch Pad Area With SORTHOLD
You can sort the contents of the Scratch Pad Area using any field or combination of fields
in the Scratch Pad Area; you can then display them in any convenient order. The command
uses syntax similar to the sorting specifications in the TABLE command.

ibi™ FOCUS® Maintaining Databases

233 | Modifying Data Sources With MODIFY

The MODIFY subcommand that sorts the Scratch Pad Area is

SORTHOLD BY [HIGHEST] field1 [BY [HIGHEST] field2...]

where field1 is the primary sort field, and field2 to field8 are optional secondary sort fields.

Note:
l The SORTHOLD statement cannot span more than one line. The default

sort order is from low-to-high, but a high-to-low sort can be specified with
the keyword HIGHEST. You can sort the Scratch Pad Area by up to eight
fields.

l If you sort the Scratch Pad Area before display, always sort by the data
source key fields before entering a MATCH... UPDATE loop, to be sure the
transactions are in sequence with the data source. Otherwise you increase
execution time substantially. This procedure

SORTHOLD BY ITEM

performs this sort. It is issued after the records are displayed but before
they are updated in the data source.

Consider the following Master File:

FILENAME=PRODUCT, SUFFIX=FOC
SEGNAME=SEGONE, SEGTYPE=S1
FIELD=ORDERNO, ALIAS=ONO, FORMAT=I4, $
SEGNAME=SEGTWO, SEGTYPE=S1, PARENT=SEGONE
FIELD=ITEM, ALIAS=ITEMNO, FORMAT=A3, $
FIELD=PRODUCT, ALIAS=PRD, FORMAT=A12, $
FIELD=QTY, ALIAS=QUANTITY, FORMAT=I4S, $

The following procedure will display all of the ITEM instances for a specified ORDERNO, in
order of the PRODUCT name and highest QTY sequence. The command

SORTHOLD BY PRODUCT BY QTY

performs the sort.

ibi™ FOCUS® Maintaining Databases

234 | Modifying Data Sources With MODIFY

MODIFY FILE PRODUCT
CRTFORM LINE 1

"ENTER ORDER NUMBER <ORDERNO"
MATCH ORDERNO

ON NOMATCH GOTO TOP
ON MATCH REPEAT 12

NEXT ITEM
ON NEXT HOLD ITEM PRODUCT QTY
ON NONEXT GOTO SCREEN

ENDREPEAT
GOTO SCREEN
CASE SCREEN

IF HOLDCOUNT EQ 0 GOTO TOP;

SORTHOLD BY PRODUCT BY HIGHEST QTY

CRTFORM LINE 1
"ORDER NUMBER IS <D.ORDERNO "

" "
" ITEM PRODUCT QUANTITY "
" ---- ------- -------- "
"<D.ITEM(1) <D.PRODUCT(1) <T.QTY(1)> "
"<D.ITEM(2) <D.PRODUCT(2) <T.QTY(2)> "

.

.

.
"<D.ITEM(12) <D.PRODUCT(12) <T.QTY(12)>"

SORTHOLD BY ITEM
REPEAT HOLDCOUNT

MATCH ITEM
ON MATCH UPDATE

QTY
ON NOMATCH GOTO

ENDREPEAT
ENDREPEAT
GOTO TOP

ENDCASE
DATA VIA FIDEL
END

Advanced Facilities
The following facilities can assist you in using the MODIFY command:

ibi™ FOCUS® Maintaining Databases

235 | Modifying Data Sources With MODIFY

l The COMBINE command, for modifying multiple FOCUS data sources in one MODIFY
request.

l The ACTIVATE and DEACTIVATE statements, for activating and deactivating fields.

l The Checkpoint and Absolute File Integrity facilities, for protecting FOCUS data
sources from system failures.

l The ECHO facility, for displaying the logical structure of MODIFY requests.

l Dialogue Manager system variables, which record execution statistics every time a
MODIFY request is run.

l FOCUS query commands, which display statistical information on MODIFY request
executions and FOCUS data sources.

l COMMIT and ROLLBACK subcommands, for controlling changes made to FOCUS data
sources, and for protecting FOCUS data sources from system failures.

All these facilities are described in the sections that follow.

If you are operating in Simultaneous Usage mode (SU), please refer to the appropriate
Simultaneous Usage manual.

Modifying Multiple Data Sources in One
Request: The COMBINE Command
The COMBINE command allows you to modify two or more FOCUS, relational, or Adabas
data sources in the same MODIFY request. The command combines the logical structures of
the FOCUS data sources into one structure while leaving the physical structures of the data
sources untouched. This combined structure lasts for the duration of the FOCUS session,
until you enter another COMBINE command, or it is cleared with the AS CLEAR option. Only
one combined structure can exist at a time.

Note the following:

l The combined structure can contain up to 63 segments from up to 63 data sources
with one additional reserved for BINS.

l You can COMBINE data sources that come from different applications and have
different DBA passwords. The only requirement is a valid password for each data
source. For more information, refer to the Describing Data manual.

ibi™ FOCUS® Maintaining Databases

236 | Modifying Data Sources With MODIFY

l Only the MODIFY and CHECK commands can process combined structures.

l If you are using Simultaneous Usage mode, all the data sources in the combined
structure must either be all on the same FOCUS Database Server or all in local mode.

l The differences between JOIN and COMBINE commands are discussed in Advanced
Facilities.

Combine Data Sources
Enter the COMBINE command at the FOCUS command level (at the FOCUS prompt).

COMBINE FILES file1 [PREFIX pref1|TAG tag1] [AND]
.
.
.

filen [PREFIX prefn|TAG tagn] AS asname

where:

file1... filen

Are the Master File names for the data sources you want to modify. You can specify up
to 63 data sources (you will be limited to fewer data sources if any of these data sources
have more than one segment).

pref1... prefn

Are prefix strings for each data source; up to four characters. They provide uniqueness
for field names. You cannot mix TAG and PREFIX in a COMBINE structure. See Referring
to Fields in Combined Structures: The PREFIX Parameter later in this section.

tag1... tagn

Are aliases for the Master File names; up to eight characters. FOCUS uses the tag name
as the qualifier for fields that refer to that data source in the combined structure. You
cannot mix TAG and PREFIX in a COMBINE, and you can only use TAG if FIELDNAME is
set to NEW or NOTRUNC. See Referring to Fields in Combined Structures: The TAG
Parameter later in this section.

AND

Is an optional word to enhance readability.

#d09modifydatasources1090475
#d09modifydatasources1090475
#d09modifydatasources1090456
#d09modifydatasources1090456

ibi™ FOCUS® Maintaining Databases

237 | Modifying Data Sources With MODIFY

asname

Is the required name of the combined structure to use in MODIFY procedures and
CHECK FILE commands. For example, if you name the combined structure EDJOB, begin
the request with:

MODIFY FILE EDJOB

AS CLEAR

Is the command that clears the combined structure which is currently in effect.

Note:
The AS CLEAR option must be issued with no file name:

COMBINE FILE AS CLEAR

Once you enter the COMBINE command, you can modify the combined structure.

Note:
l TAG and PREFIX may not be used together in a COMBINE.

l You can type the command on one line or on as many lines as you need.

COMBINE Command
For example, to combine data sources EDUCFILE and JOBFILE, enter:

COMBINE FILES EDUCFILE AND JOBFILE AS EDJOB

After entering this command, you can run the following request. Notice that the statements
pertaining to each data source are placed in different cases (Case Logic is discussed in Case
Logic). This clarifies the request logic, and makes it easier to understand and clarify the
request. The first case modifies the EDUCFILE data source, and the second case modifies
the JOBFILE data source.

ibi™ FOCUS® Maintaining Databases

238 | Modifying Data Sources With MODIFY

MODIFY FILE EDJOB
PROMPT COURSE_CODE COURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE

CASE EDUCFILE
MATCH COURSE_CODE

ON MATCH REJECT
ON MATCH GOTO JOBFILE
ON NOMATCH INCLUDE
ON NOMATCH GOTO JOBFILE

ENDCASE

CASE JOBFILE
MATCH JOBCODE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

Support Long and Qualified Field Names
If you are using tag names, you must also set the command SET FIELDNAME to NEW or
NOTRUNC. The SET FIELDNAME command enables you to activate long (up to 66
characters) and qualified field names. The syntax for this SET command is

SET FIELDNAME = type

where:

type

Is one of the following:

OLD specifies that 66-character and qualified field names are not supported; the
maximum length is 12 characters.

NEW specifies that 66-character and qualified field names are supported; the maximum
length is 66 characters. NEW is the default value.

ibi™ FOCUS® Maintaining Databases

239 | Modifying Data Sources With MODIFY

NOTRUNC prevents unique truncations of field names and supports the 66-character
maximum.

When the value of FIELDNAME is changed within a FOCUS session, COMBINE commands are
affected as follows:

l When you change from a value of OLD to a value of NEW, all COMBINE commands are
cleared.

l When you change from a value of OLD to NOTRUNC, all COMBINE commands are
cleared.

l When you change from a value of NEW to OLD, all COMBINE commands are cleared.

l When you change from a value of NOTRUNC to OLD, all COMBINE commands are
cleared.

Other changes to the FIELDNAME value do not affect COMBINE commands.

Note: For more information on the SET FIELDNAME command, refer to the
Developing Applications manual.

Referring to Fields in Combined Structures: The
TAG Parameter
For a MODIFY request to refer to transaction fields in a combined structure by their
transaction field names, the field names must be unique; that is, the transaction field
names in one data source cannot appear in other data sources. Refer to any transaction
field names that are not unique by their aliases, or use the TAG parameter in the COMBINE
command to assign a tag name to the data sources that share the transaction field names.

When a data source has a tag, refer to its transaction field names by affixing the tag name
to the beginning of each field name.

For example, this COMBINE command combines data sources EDUCFILE and JOBFILE into
the structure EDJOB, and assigns the tag AAA to all the transaction fields in the EDUCFILE
data source:

COMBINE FILES EDUCFILE TAG AAA AND JOBFILE AS EDJOB

ibi™ FOCUS® Maintaining Databases

240 | Modifying Data Sources With MODIFY

When you create a request that modifies this structure, type the EDUCFILE field names with
the AAA prefix in front:

COMBINE FILES EDUCFILE TAG AAA AND JOBFILE AS EDJOB
MODIFY FILE EDJOB
PROMPT AAA.COURSE_CODE AAA.COURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE
CASE EDUCFILE
MATCH AAA.COURSE_CODE
ON MATCH REJECT
ON NOMATCH INCLUDE
GOTO JOBFILE
ENDCASE
CASE JOBFILE
MATCH JOBCODE
ON MATCH REJECT
ON NOMATCH INCLUDE
ENDCASE
DATA

In this request, the tag AAA has been attached to the two transaction field names in the
EDUCFILE data source: COURSE_CODE and COURSE_NAME, making the new field names
AAA.COURSE_CODE and AAA.COURSE_NAME. Use these tagged field names only in MODIFY
requests that modify the combined structure.

Referring to Fields in Combined Structures: The
PREFIX Parameter
For a MODIFY request to refer to fields in a combined structure by their field names, the
field names must be unique so that there is no ambiguity in the request. That is, the field
names in one data source cannot appear in other data sources. If there are field names
that are not unique, refer to the fields by their aliases or use the PREFIX parameter in the
COMBINE command to assign a prefix of up to four characters to the data sources sharing
the field names.

When a data source has a prefix, refer to its field names with the prefix affixed to the
beginning of each field name. The field name can be up to 66 characters in length. For
example, this COMBINE command combines data sources EDUCFILE and JOBFILE into the
structure EDJOB, and assigns the prefix ED to all the fields in the EDUCFILE data source:

ibi™ FOCUS® Maintaining Databases

241 | Modifying Data Sources With MODIFY

COMBINE FILES EDUCFILE PREFIX ED JOBFILE AS EDJOB

When you enter a request modifying the structure, type the EDUCFILE field names with the
ED prefix in front:

COMBINE FILES EDUCFILE PREFIX ED JOBFILE AS EDJOB
MODIFY FILE EDJOB
PROMPT EDCOURSE_CODE EDCOURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE

CASE EDUCFILE
MATCH EDCOURSE_COD

ON MATCH REJECT
ON NOMATCH INCLUDE

GOTO JOBFILE
ENDCASE

CASE JOBFILE
MATCH JOBCODE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

In this request, the prefix ED has been attached to the two field names in the EDUCFILE
data source: COURSE_CODE and COURSE_NAME. The new field names are EDCOURSE_
CODE and EDCOURSE_NAME.

You use these prefixed field names only in MODIFY requests modifying the combined
structure. These prefixed field names are not displayed by either the ?F query or the CHECK
command.

Note: A MODIFY COMBINE with prefixes cannot be loaded through the LOAD
facility. However, the unloaded versions will run.

ibi™ FOCUS® Maintaining Databases

242 | Modifying Data Sources With MODIFY

How Data Source Structures Are Combined
Combined structures start with a dummy root segment called SYSTEM, which becomes the
parent of the root segments of the individual data sources. The SYSTEM segment contains
no data. This is not an alternate view; the relationships between segments in each data
source remain the same.

The following figure shows how two data sources, EDUCFILE and JOBFILE, are combined
into one structure. The first two diagrams represent the EDUCFILE and JOBFILE structures;
the third diagram represents the combined structure. Note that the relationship between
the two segments in each data source does not change.

Field names are considered duplicates when two or more fields are referenced with the
same field name or alias. Duplication can occur if a COMBINE is done without a prefix or a
tag. Duplicate fields are not allowed in the same segment. The second occurrence is never
accessed by FOCUS and the following warning message is generated when CHECK and
CREATE FILE are issued:

ibi™ FOCUS® Maintaining Databases

243 | Modifying Data Sources With MODIFY

(FOC1829) WARNING. FIELDNAME IS NOT UNIQUE WITHIN A SEGMENT: fieldname

Differences Between COMBINE and JOIN
Commands
The COMBINE command differs from the JOIN command in the following ways:

l The JOIN command is effective for TABLE, TABLEF, MATCH, GRAPH, and CHECK
commands, but is not effective for MODIFY requests (except for the LOOKUP
function). The COMBINE command is effective only for MODIFY requests and CHECK
commands.

l The JOIN command joins a variety of FOCUS and non-FOCUS data sources. The
COMBINE command combines FOCUS data sources only.

l The JOIN command can only join data sources with common fields. The COMBINE
command can combine all FOCUS data sources.

l The JOIN command joins data source structures together at segments with a
common field. This can invert some of the segment relationships in the cross-
referenced data source (see alternate file view in the Describing Data and Creating
Reports manuals). The COMBINE command combines the data source structures
under a dummy root segment. Segment relationships remain intact.

Use the ? COMBINE Query
To display information on the combined structure currently in effect, enter:

? COMBINE

FOCUS responds

FILE=name TAG PREFIX
file-1 tag-1 prefix-1
file-2 tag-2 prefix-2
file-3 tag-3 prefix-3

ibi™ FOCUS® Maintaining Databases

244 | Modifying Data Sources With MODIFY

. . .

. . .
file-n tag-n prefix-n

where:

name

Is the name of the combined structure.

file-1 ... file-n

Are the names of the data sources that make up the combined structure.

tag-1 ... tag-n

Are the tags attached to the field names in the data source. These tags correspond to
the aliases given to the data source(s) in the combined structure.

prefix-1 ... prefix-n

Are the prefixes attached to the field names in the data source.

The ? COMBINE query shows up to 63 entries.

For example, when data source EDUCFILE is combined with data source JOBFILE, enter the
command

? COMBINE

to display the following information:

Note: TAG and PREFIX may not be mixed in a COMBINE.

ibi™ FOCUS® Maintaining Databases

245 | Modifying Data Sources With MODIFY

Error Messages for COMBINE
(FOC???) MAXIMUM NUMBER OF 'COMBINES' EXCEEDED. CLEAR SOME AND RE-ENTER:

The number of separate COMBINE commands exceeds the current limit of 63.

Active and Inactive Fields
This section discusses active and inactive fields. When you run a request, FOCUS keeps
track of which transaction fields are active or inactive during execution:

l Active fields have incoming data for them. You may use active fields to add, update,
and delete segment instances.

l Inactive fields do not have incoming data for them. You can use inactive fields in
calculations only.

When a MATCH statement matches on an inactive field, the request returns to the
beginning (the TOP case in case requests) to avoid modifying segments for which data is
not present.

If a MATCH or NEXT statement executes an INCLUDE action, all segment instances having
active fields are added to the data source.

If a MATCH or NEXT statement executes an UPDATE action, only active fields update the
data source. Data source fields corresponding to the inactive incoming fields remain
unchanged.

This section covers the following:

l When fields are active and inactive.

l Activating fields with the ACTIVATE statement.

l Deactivating fields with the DEACTIVATE statement.

When Fields Are Active and Inactive
A data field becomes active when:

ibi™ FOCUS® Maintaining Databases

246 | Modifying Data Sources With MODIFY

l It is described in the Master File and it is read in by a FIXFORM, FREEFORM, PROMPT,
or CRTFORM statement. Note that if the field is declared a conditional field, the
following rules apply:

o In a FIXFORM statement, a conditional field is active when it has a value
present in a record.

o In a CRTFORM, a conditional entry field is active when you enter data for it. A
conditional turnaround field is active when you change its value (see Designing
Screens With FIDEL).

l The field is assigned a value by a COMPUTE or VALIDATE statement.

l The field is activated by the ACTIVATE statement.

A data field becomes inactive when:

l Execution branches to the top of the request, whether this is done implicitly or by a
GOTO statement.

l It modifies a segment instance because of an INCLUDE, UPDATE, or DELETE action.

l It has been made available to the request through the LOOKUP function.

l It is deactivated by the DEACTIVATE statement.

Activate Fields With the ACTIVATE Statement
To activate an inactive field, use the ACTIVATE statement. the ACTIVATE statement
performs two tasks:

l It declares a transaction field to be present (considered part of the current
transaction). The field can then be used for matching, including, and updating.

l It equates the value of the transaction field to the corresponding data source field.
This occurs when both of the following conditions are true:

o The ACTIVATE statement either appears within or it follows a MATCH or NEXT
statement that modifies the segment containing the corresponding data source
field.

o The ACTIVATE statement converts the field from being inactive to active.
Included are fields for which the request has not read any data or assigned a
value with a compute statement. Fields already active are excluded.

ibi™ FOCUS® Maintaining Databases

247 | Modifying Data Sources With MODIFY

If one of these conditions is not true, the activate statement does not change the value of
the field. If the field has no data, FOCUS sets the value of the field to blank if
alphanumeric, zero if numeric, and the missing data symbol if the field is described by the
MISSING=ON attribute in the Master File (discussed in the Describing Data manual).

The syntax of the ACTIVATE statement is

ACTIVATE [RETAIN|MOVE] [SEG.]field1 field2 ... fieldn

where:

RETAIN

Is an option that activates the field but leaves its value unchanged, even if the ACTIVATE
statement converts the field from being inactive to active.

MOVE

Is an option that activates the field and equates its value to the corresponding data
source field, even if the field was already active before the ACTIVATE statement.

field1 ...

Are the names of the fields you want to activate. To activate all the fields in one
segment, specify any segment field with the prefix SEG. affixed in front of the field
name. For example:

ACTIVATE SEG.SKILLS

This sample request illustrates how ACTIVATE statements affect the fields they specify. The
numbers on the margin refer to the notes below. The request is:

MODIFY FILE EMPLOYEE

1. FREEFORM EMP_ID CURR_SAL ED_HRS

2. ACTIVATE DEPARTMENT
MATCH EMP_ID

ON MATCH REJECT
3. ON NOMATCH INCLUDE
4. GOTO NEXT_EMP1

ibi™ FOCUS® Maintaining Databases

248 | Modifying Data Sources With MODIFY

CASE NEXT_EMP1
5. NEXT EMP_ID

ON NONEXT GOTO EXIT
6. ON NEXT ACTIVATE RETAIN CURR_SAL DEPARTMENT
7. ON NEXT UPDATE DEPARTMENT ED_HRS
8. ON NEXT GOTO NEXT_EMP2

ENDCASE

CASE NEXT_EMP2
9. NEXT EMP_ID

ON NONEXT GOTO EXIT
10. ON NEXT ACTIVATE CURR_SAL DEPARTMENT ED_HRS
11. ON NEXT ACTIVATE MOVE CURR_SAL
12. ON NEXT GOTO NEXT_EMP3

ENDCASE

CASE NEXT_EMP3
13. NEXT EMP_ID

ON NONEXT GOTO EXIT
14. ON NEXT UPDATE CURR_SAL DEPARTMENT ED_HRS

ENDCASE

DATA
EMP_ID=222333444, CURR_SAL=50000, ED_HRS=40, $
END

When you run the request, the following happens:

Procedure
1. The request reads the record:

EMP_ID=222333444, CURR_SAL=50000, ED_HRS=40, $

2. The statement

ACTIVATE DEPARTMENT

activates the DEPARTMENT field. Since the request did not read any data for this field
and the statement precedes the MATCH and NEXT statements, FOCUS equates the

ibi™ FOCUS® Maintaining Databases

249 | Modifying Data Sources With MODIFY

field value to blank.

The transaction record is as follows:

Transaction Record:

EMP_ID: 22223333444 (active)
CURR_SAL: 50000 (active)
ED_HRS: 40 (active)
DEPARTMENT: blank (active)

3. The MATCH statement does not find the EMP_ID value in the data source. It therefore
includes the record in the data source as a new segment instance. All fields included
in the instance, EMP_ID, CURR_SAL, DEPARTMENT and ED_HRS, become inactive.

4. The request branches to the NEXT_EMP1 case.

5. The request moves the current position in the data source to the next segment
instance after EMP_ID 444. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 326179357
CURR_SAL: 21780.00
ED_HRS: 75.00
DEPARTMENT: MIS

6. The statement

ACTIVATE RETAIN CURR_SAL DEPARTMENT

activates the CURR_SAL and DEPARTMENT fields. The RETAIN keyword prevents their
values from changing. The transaction record is now:

Transaction Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: blank (active)
ED_HRS: 40 (inactive)

7. The statement

ibi™ FOCUS® Maintaining Databases

250 | Modifying Data Sources With MODIFY

UPDATE DEPARTMENT ED_HRS

changes the DEPARTMENT field value in the segment instance to blank and
deactivates the DEPARTMENT field on the transaction record. Since the ED_HRS
transaction field is inactive, it does not change the data source ED_HRS value. The
segment instance is now:

Database Segment Instance:

EMP_ID: 326179357
CURR_SAL: 21780.00
DEPARTMENT: blank
ED_HRS: 75.00

The request did not use the CURR_SAL transaction field to update the instance, so
the CURR_SAL field remains active. The transaction record is as follows:

Transaction Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: BLANK (inactive)
ED_HRS: 40 (inactive)

8. The request branches to the NEXT_EMP2 case.

9. The request moves the current position to the next current instance after EMP_ID
326179357. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 451123478
CURR_SAL: 16100.00
DEPARTMENT: PRODUCTION
ED_HRS: 50.00

10. The statement

ACTIVATE CURR_SAL DEPARTMENT ED_HRS

declares the CURR_SAL, DEPARTMENT, and ED_HRS transaction fields to be active.

ibi™ FOCUS® Maintaining Databases

251 | Modifying Data Sources With MODIFY

Since CURR_SAL was already active, its value does not change. DEPARTMENT and
ED_HRS are converted into active fields, and their values change to that of the
DEPARTMENT and ED_HRS fields in the segment instance. The transaction record is
now:

Transaction Record:

EMP_ID: 451123478 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: PRODUCTION (active)
ED_HRS: 50 (active)

11. The statement

ACTIVATE MOVE CURR_SAL

declares the CURR_SAL transaction field to be active. The MOVE keyword changes the
value of CURR_SAL to that of the CURR_SAL field in the segment instance, even

though the CURR_SAL field was already active. The transaction record is now:

Transaction Record:

EMP_ID: 451123478 (inactive)
CURR_SAL: 16100.00 (active)
DEPARTMENT: PRODUCTION (active)
ED_HRS: 50 (active)

12. The request branches to the NEXT_EMP3 case.

13. The request moves the current position to the next current instance after EMP_ID
451123478. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 543729165
CURR_SAL: 9000.00
DEPARTMENT: MIS
ED_HRS: 25.00

14. The request updates the data source CURR_SAL, DEPARTMENT, and ED_HRS fields
using the transaction record, causing the CURR_SAL, DEPARTMENT, and ED_HRS

ibi™ FOCUS® Maintaining Databases

252 | Modifying Data Sources With MODIFY

transaction fields to become inactive. The segment instance is now:

Database Segment Instance:

EMP_ID: 543729165
CURR_SAL: 16100.00
DEPARTMENT: PRODUCTION
ED_HRS: 50.00

The transaction record is now:

Transaction Record:

EMP_ID: 543729165 (inactive)
CURR_SAL: 16100.00 (inactive)
DEPARTMENT: PRODUCTION (inactive)
ED_HRS: 50 (inactive)

Deactivate Fields With the DEACTIVATE
Statement
To deactivate a field, use the DEACTIVATE statement. If the field is a transaction field, the
DEACTIVATE statement changes its value to blank if alphanumeric, zero if numeric, or the
MISSING symbol for fields described by the MISSING=ON attribute (discussed in the
Describing Data manual). It also deactivates the corresponding data source field. The
RETAIN option leaves the transaction value unchanged.

The syntax is

DEACTIVATE [RETAIN] [SEG.]field-1 field-2 ... field-n
DEACTIVATE [RETAIN] ALL
DEACTIVATE COMPUTES
DEACTIVATE INVALID

where:

ibi™ FOCUS® Maintaining Databases

253 | Modifying Data Sources With MODIFY

RETAIN

Is an option that deactivates data source fields but does not change the value of the
corresponding transaction fields to blank or 0.

field-1 ...

Are the fields you want to deactivate. To deactivate all the fields in one segment, specify
any segment field with the prefix seg. affixed in front of the field name. For example:

DEACTIVATE SEG.SKILLS

ALL

Is an option that deactivates all fields (including temporary fields) and automatically
invokes the INVALID option if the request contains CRTFORM statements (see below).

COMPUTES

Is an option that deactivates all temporary fields.

INVALID

Is an option that causes the following: if the user enters a value on a CRTFORM screen
and the value fails a validation test, FIDEL does not redisplay the CRTFORM screen to
reprompt the user for a valid value. Rather, it displays the next screen.

Use the INVALID option only with requests containing CRTFORM statements.

The ACTIVATE and DEACTIVATE statements can stand by themselves or they can form part
of an ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT phrase in a MATCH or NEXT
statement. These are some sample statements:

ACTIVATE RETAIN SKILLS

ON MATCH DEACTIVATE ALL

ON NONEXT ACTIVATE FULL_NAME SEG.SKILLS JOBS_DONE

ibi™ FOCUS® Maintaining Databases

254 | Modifying Data Sources With MODIFY

Protecting Against System Failures
FOCUS provides three ways to protect your data if your system experiences hardware or
software failure while you are executing a MODIFY request. They are:

l The Checkpoint facility.

l The Absolute File Integrity feature.

l The COMMIT and ROLLBACK subcommands.

Safeguard Transactions With the Checkpoint
Facility
The Checkpoint facility limits the number of transactions lost if the system fails when you
are modifying a data source. You can set checkpoints for transactions that are being read
from a data source, or from the terminal.

When a MODIFY request is executed, it does not write transactions to the data source
immediately, instead it collects them in a buffer. When the buffer is full, FOCUS writes all
transactions in the buffer to the data source at one time. This cuts down on the
input/output operations that FOCUS must perform. If, however, the system crashes, the
transactions collected in the buffer may be lost.

You may cause FOCUS to write more frequently to the data source by using the checkpoint
facility. When you activate the Checkpoint facility, FOCUS writes to the data source
whenever a specified number of transactions accumulates in the buffer. The point at which
FOCUS writes the transactions is called the checkpoint.

You control the Checkpoint facility with the following MODIFY statement

CHECK {ON|OFF|n}

where:

ON

Activates the Checkpoint facility. FOCUS writes to the data source when the buffer
accumulates 100,000 transactions.

ibi™ FOCUS® Maintaining Databases

255 | Modifying Data Sources With MODIFY

OFF

Deactivates the Checkpoint facility.

n

Activates the Checkpoint facility. FOCUS writes to the data source when the buffer
accumulates n transactions.

Note that if you set n to a smaller number, fewer transactions are processed between
checkpoints. This causes FOCUS to perform more input/output operations, thereby
decreasing efficiency.

If the system does fail while you are modifying a FOCUS data source, enter the ? FILE query
when the system comes back. Look at the number in the bottom row in the right-most
column. This is the number of transactions written to the data source by the MODIFY
request that was executing when the system came down. You can have the request start
processing the transaction data source at the next transaction by using the START
command, described in Reading Selected Portions of Transaction Data Sources: The START
and STOP Statements.

The following MODIFY request sets the checkpoint at every tenth transaction:

MODIFY FILE EMPLOYEE
CHECK 10
MATCH EMP_ID
PROMPT EMP_ID CURR_SAL

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Safeguarding FOCUS Data Sources: Absolute
File Integrity
The Absolute File Integrity feature completely safeguards the integrity of a FOCUS data
source that you are modifying, even if the system experiences hardware or software failure.
When you are using this feature, FOCUS does not overwrite the data source on disk,
instead it writes the changes to another section of the disk. If the request finishes normally,
the new section of the disk becomes part of the data source. If the system fails, the original
data source is preserved.

#d09modifydatasources1086836
#d09modifydatasources1086836

ibi™ FOCUS® Maintaining Databases

256 | Modifying Data Sources With MODIFY

Safeguarding Transactions: COMMIT and
ROLLBACK Subcommands
To use COMMIT and ROLLBACK you must use Absolute File Integrity (see Managing MODIFY
Transactions: COMMIT and ROLLBACK). Unlike the CHECK statement, COMMIT gives you
control over the content of data source changes and ROLLBACK enables you to cancel
changes before they have been written to the data source. In case of system failure,
COMMIT and ROLLBACK ensure that either all or no transactions are processed.

You can use either COMMIT and ROLLBACK, or the CHECK statement in your MODIFY
procedures. If the MODIFY procedure uses COMMIT and ROLLBACK, CHECK processing is
not used (see Managing MODIFY Transactions: COMMIT and ROLLBACK).

Displaying MODIFY Request Logic: The ECHO
Facility
The ECHO facility displays the logical structure of MODIFY requests. This is a good
debugging tool for analyzing a MODIFY request, especially if the logic is complex and
MATCH and NEXT defaults are being used.

Each ECHO display lists:

l The cases, if case logic is used.

l The MODIFY statements used, such as COMPUTE, VALIDATE, TYPE, GOTO, and IF.

l Each segment modified or used to establish a current position.

l The actions the request takes for ON MATCH, ON NOMATCH, ON NEXT, and ON
NONEXT conditions when it is modifying the segment, whether these actions are
specified by the request or are by default. Default actions are discussed in Modifying
Data: MATCH and NEXT.

l The number of data source fields, the total number of fields (including internal
fields), and the total size of the field areas.

To use the ECHO facility, first allocate the ECHO terminal output to ddname HLIPRINT.
Then, begin the MODIFY command this way

#d09modifydatasources1091083
#d09modifydatasources1091083
#d09modifydatasources1091083

ibi™ FOCUS® Maintaining Databases

257 | Modifying Data Sources With MODIFY

MODIFY FILE file ECHO

where file is the name of the data source. When you run the request, the request does not
modify the data source; rather, the ECHO facility displays the listing at the terminal.

The ECHO facility can store the listing in a file rather than display it on the screen. To do
this, allocate the file to ddname HLIPRINT. A record length of 80 bytes is sufficient.

The listing has the form

MODIFY ECHO FACILITY
ECHO OF PROCEDURE: focexec

CASE casename

statements

SEGMENT: segname

ON MATCH ON NOMATCH
-------- ----------
match-actions nomatch-actions0

NUMBER OF DATABASE FIELDS : n
TOTAL NUMBER OF FIELDS : n
TOTAL SIZE OF FIELD AREAS : n

where:

focexec

Is the name of the procedure that the request is stored in. If you entered the request
from a terminal, this line is omitted.

casename

Is the name of the case, if the request uses Case Logic.

statements

Are the MODIFY statements used. (Note: MATCH statements are shown separately.)

ibi™ FOCUS® Maintaining Databases

258 | Modifying Data Sources With MODIFY

segname

Is the name of the segment being modified or used to establish a current position.

match-actions

Are actions taken on an ON MATCH or ON NEXT condition, including default actions.

nomatch-actions

Are actions taken on an ON NOMARCH or ON NONEXT condition, including default
actions.

n

Is an integer.

NUMBER OF DATABASE FIELDS

Is the number of fields described by the Master File, including fields in cross-referenced
segments.

TOTAL NUMBER OF FIELDS

Is the sum of the number of data source fields in the Master File and temporary fields in
the MODIFY request. This includes fields automatically created by FOCUS (these fields
are listed in Computing Values: The COMPUTE Statement).

TOTAL SIZE OF FIELD AREAS

Is the sum of the sizes of data source fields in the Master File and temporary fields in
the MODIFY request, measured in bytes.

If you are executing a no-case procedure, the ECHO display lists the names of all segments
in the data source. Those segments that you did not use in your request are listed with
both MATCH and NOMATCH conditions as REJECT.

A sample request running the ECHO facility is shown below:

MODIFY FILE EMPLOYEE ECHO
PROMPT EMP_ID
GOTO SALENTRY

CASE SALENTRY
MATCH EMP_ID

ON MATCH PROMPT CURR_SAL
ON MATCH VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;

#d09modifydatasources1087929

ibi™ FOCUS® Maintaining Databases

259 | Modifying Data Sources With MODIFY

ON INVALID TYPE
"SALARY TOO HIGH. PLEASE REENTER THE SALARY"

ON INVALID GOTO SALENTRY
ON MATCH UPDATE CURR_SAL

ENDCASE
DATA

When you run this request, the following display appears. Note that although the request
did not specify an ON NOMATCH phrase in the SALENTRY case, the ECHO display lists the
REJECT action under the ON NOMATCH column for the SALENTRY case, because REJECT is
the default action for an ON NOMATCH condition.

EMPLOYEE FOCUS A1 ON 07/18/2003 AT 10.48.21

MODIFY ECHO FACILITY
ECHO OF PROCEDURE: MOD76

CASE TOP

PROMPT
GOTO SALENTRY

CASE SALENTRY

SEGMENT: EMPINFO

MATCH NOMATCH
----- -------
PROMPT REJECT
VALIDATE
INVALID TYPE
INVALID GOTO SALENTRY
UPDATE

END OF ECHO:

NUMBER OF DATABASE FIELDS : 34
TOTAL NUMBER OF FIELDS : 36
TOTAL SIZE OF FIELD AREAS : 371

ibi™ FOCUS® Maintaining Databases

260 | Modifying Data Sources With MODIFY

Dialogue Manager Statistical Variables
After you run a FOCUS request, FOCUS automatically records statistics about the execution
in specially designated Dialogue Manager variables. Since these variables do not receive
values until after execution is completed, they are not useful in the requests themselves.
However, you may use them in procedures after execution (that is, after the Dialogue
Manager -RUN control statement).

The variables that pertain to MODIFY requests are:

&TRANS
Number of transactions processed.

&ACCEPTS
Number of transactions accepted into the data source.

&INPUT
Number of segment instances added to the data source.

&CHNGD
Number of segment instances updated.

&DELTD
Number of segment instances deleted.

&DUPLS
Number of transactions rejected because of an ON MATCH
REJECT condition.

&NOMATCH
Number of transactions rejected because of an ON NOMATCH
REJECT condition.

&INVALID
Number of transactions rejected because transaction values
failed validation tests.

&FORMAT
Number of transactions rejected because of format errors.

ibi™ FOCUS® Maintaining Databases

261 | Modifying Data Sources With MODIFY

&REJECT
Number of transactions rejected for other reasons.

For instructions on how to use Dialogue Manager variables to build procedures, see the
Developing Applications manual.

MODIFY Query Commands
Four query commands display information regarding the MODIFY command and the
maintenance of FOCUS data sources. These are:

? COMBINE
Displays information on combined structures (see Modifying
Multiple Data Sources in One Request: The COMBINE
Command).

? FDT
Displays information regarding the physical attributes of FOCUS
data sources (see the Developing Applications manual).

? FILE
Displays information regarding the number of segment
instances in FOCUS data sources and the dates and times the
data sources were last modified (see the Developing Applications
manual).

? STAT
Displays statistics regarding the last execution of a request (see
the Developing Applications manual).

Managing MODIFY Transactions: COMMIT and
ROLLBACK
COMMIT and ROLLBACK are two MODIFY subcommands. COMMIT gives you control over the
content of data source changes and ROLLBACK enables you to undo changes before they
become permanent.

#d09modifydatasources1090303
#d09modifydatasources1090303
#d09modifydatasources1090303

ibi™ FOCUS® Maintaining Databases

262 | Modifying Data Sources With MODIFY

The COMMIT subcommand safeguards transactions in case of a system failure and provides
greater control (than the MODIFY Checkpoint facility) over which transactions are written to
the data source.

The MODIFY CHECK statement only enables you to control the number of transactions that
must occur before changes are written to the data source. When using CHECK, you cannot
change the checkpoint setting once the MODIFY request begins execution. Similarly,
changes cannot be canceled (see Advanced Facilities for more information on the CHECK
statement).

COMMIT enables you to make changes based on the content of the transactions as well as
the number. Changes you do not want to make can be canceled with ROLLBACK, unless a
COMMIT has been issued for those changes. Should the system fail, either all or none of
your transactions will be processed.

Absolute File Integrity is required in order to use COMMIT and ROLLBACK. Absolute File
Integrity is provided by the FOCUS Shadow Writing Facility.

Note: Absolute File Integrity is not supported for XFOCUS data sources and is
not required for COMMIT and ROLLBACK.

The COMMIT and ROLLBACK Subcommands
The COMMIT and ROLLBACK subcommands are automatically activated in FOCUS and
cannot be deactivated. Therefore, unless you omit these subcommands from your code,
COMMIT and ROLLBACK processing takes place. If you would rather use CHECK processing,
make sure you do not include COMMIT and ROLLBACK subcommands, as they will take
precedence over CHECK processing.

Coding With COMMIT and ROLLBACK
COMMIT and ROLLBACK each process a logical transaction. A logical transaction is a group
of data source changes in the MODIFY environment that you want to treat as one. For
example, you can handle multiple records displayed on a CRTFORM and then processed
using the REPEAT command as a single transaction. A logical transaction is terminated by
either COMMIT or ROLLBACK. COMMIT and ROLLBACK also can be used for single-record

ibi™ FOCUS® Maintaining Databases

263 | Modifying Data Sources With MODIFY

processing.

When COMMIT ends a logical transaction, it writes all changes to the data source. COMMIT
can be coded as a global subcommand or as part of MATCH or NEXT logic. The possible
MATCH and NEXT statements are:

COMMIT
ON MATCH COMMIT
ON NOMATCH COMMIT
ON MATCH/NOMATCH COMMIT
ON NEXT COMMIT
ON NONEXT COMMIT

When ROLLBACK ends a logical transaction, it does not write changes to the data source.
The ROLLBACK subcommand cancels changes made since the last COMMIT. ROLLBACK
cannot cancel changes once a COMMIT has been issued for them.

ROLLBACK can also be coded as a global subcommand or as part of MATCH or NEXT logic.
Possible MATCH and NEXT statements are:

ROLLBACK
ON MATCH ROLLBACK
ON NOMATCH ROLLBACK
ON MATCH/NOMATCH ROLLBACK
ON NEXT ROLLBACK
ON NONEXT ROLLBACK

If the COMMIT fails for any reason (for example, system failure, lack of disk space), no
changes are made to the data source. In this way, COMMIT is an all-or-nothing feature that
ensures data source integrity.

In the following example, a user may COMMIT or ROLLBACK changes after each group of
three records has been processed, or delay the COMMIT subcommand until later by
selecting the option to add more records. Changes are stored permanently in the data
source when the user chooses to commit the changes or when the procedure is terminated
without issuing a ROLLBACK subcommand.

Note: In the following example the COMMIT and ROLLBACK subcommands are
included in Case COMM and Case ROLL, respectively.

ibi™ FOCUS® Maintaining Databases

264 | Modifying Data Sources With MODIFY

MODIFY FILE EMPLOYEE
COMPUTE ANSWER/A1=;
CRTFORM LINE 1
"ENTER UP TO 3 NEW EMPLOYEES"
" "
" EMPLOYEE ID LAST NAME FIRST NAME"
"1. <EMP_ID(1) <LAST_NAME(1) <FIRST_NAME(1)"
"2. <EMP_ID(2) <LAST_NAME(2) <FIRST_NAME(2)"
"3. <EMP_ID(3) <LAST_NAME(3) <FIRST_NAME(3)"
GOTO MATCHIT

CASE MATCHIT
REPEAT 3

MATCH EMP_ID
ON NOMATCH INCLUDE
ON MATCH REJECT

ENDREPEAT
GOTO DECIDE
ENDCASE

CASE DECIDE
CRTFORM LINE 10
"WHAT WOULD YOU LIKE TO DO NOW? <ANSWER"
" C TO COMMIT CHANGES SO FAR"
" R TO ROLLBACK CHANGES"
" A TO ADD MORE EMPLOYEES"
IF ANSWER EQ 'C' PERFORM COMM

ELSE IF ANSWER EQ 'R' PERFORM ROLL
ELSE IF ANSWER EQ 'A' GOTO TOP
ELSE PERFORM BADCHOICE;

GOTO TOP
ENDCASE

CASE COMM
COMMIT
ENDCASE

CASE ROLL
ROLLBACK
ENDCASE

CASE BADCHOICE
TYPE "PLEASE ENTER C, R, OR A."
GOTO DECIDE
ENDCASE

ibi™ FOCUS® Maintaining Databases

265 | Modifying Data Sources With MODIFY

DATA
END

MODIFY Syntax Summary
This section presents a summary of MODIFY command syntax. The syntax of each
statement is shown as part of a MODIFY request. The rest of the summary shows:

l The syntax of the transaction statements FIXFORM, FREEFORM, and PROMPT. The
syntax of the CRTFORM statement is shown in Designing Screens With FIDEL.

l The actions you can use in MATCH and NEXT statements.

MODIFY Request Syntax
The following is the syntax of MODIFY requests:

MODIFY FILE filename [ECHO|TRACE]

TYPE [ON ddname] [AT START|AT END]

"text"

COMPUTE
field/format=;

****** transaction subcommand ********

VALIDATE
field=expression;

ON INVALID {GOTO ... |PERFORM ... |TYPE [ON ddname]}
"text"

COMPUTE
field/format = expression;

MATCH {* [KEYS] [SEG.n]|[WITH-UNIQUES] keyfield(s) [field ... field]}
ON MATCH action

ibi™ FOCUS® Maintaining Databases

266 | Modifying Data Sources With MODIFY

ON MATCH action
.
.
ON NOMATCH action
ON NOMATCH action
.
.
ON MATCH/NOMATCH action

REPEAT [*|number] [TIMES] [MAX maximum] [NOHOLD]
statements
HOLD [SEG.]field [field ... field]

ENDREPEAT

ACTIVATE [RETAIN|MOVE] [SEG.]field ... field

DEACTIVATE {[RETAIN] [SEG.] field ... field |[RETAIN]
ALL|COMPUTES|INVALID}

CASE casename

GOTO {TOP|ENDCASE|ENDREPEAT|casename|variable|EXIT}

PERFORM {TOP|ENDCASE|ENDREPEAT|casename|variable|EXIT}

IF expression
[THEN] {GOTO|PERFORM} {TOP|ENDCASE|ENDREPEAT|casename|variable|EXIT}
[ELSE {GOTO|PERFORM} {TOP|ENDCASE|ENDREPEAT|casename|variable|EXIT}]

HOLD [SEG.]field [field ... field]

GETHOLD

NEXT field
ON NEXT action
ON NEXT action
.
.
ON NONEXT action
ON NONEXT action
.
.

ENDCASE

COMMIT
ROLLBACK

ibi™ FOCUS® Maintaining Databases

267 | Modifying Data Sources With MODIFY

LOG {TRANS|ACCEPTS|DUPL|NOMATCH|INVALID|FORMAT} [ON ddname]
[MSG {ON|OFF}]

CHECK {ON|OFF|n}

START n

STOP n

DATA {ON ddname|VIA progname}

[END]

Transaction Statement Syntax
The following is the syntax for three transaction statements: FIXFORM, FREEFORM, and
PROMPT. For CRTFORM syntax, see Designing Screens With FIDEL.

The syntax of the FIXFORM statement:

FIXFORM {FROM master|
[ON ddname] field/[C]format field/[C]format ... [Xn] [X-n]}

The syntax of the FREEFORM statement:

FREEFORM [ON ddname] field field field ...

The syntax of the PROMPT statement:

PROMPT {*|field[.text.] field[,text,] . . .}

MATCH and NEXT Statement Actions
This section lists the actions that can be taken by MATCH and NEXT statements. They are
placed in ON MATCH, ON NOMATCH, ON NEXT, and ON NONEXT phrases. These actions are:

ibi™ FOCUS® Maintaining Databases

268 | Modifying Data Sources With MODIFY

l

ACTIVATE

l

COMMIT

l

COMPUTE

l CONTINUE (ON MATCH and ON NEXT only)

l CONTINUE TO (ON MATCH and ON NEXT only)

l

CRTFORM

l

DEACTIVATE

l DELETE (ON MATCH and ON NEXT only)

l

FIXFORM

l

FREEFORM

l

GOTO

l

HOLD

l

IF

l

INCLUDE

l

PERFORM

l

PROMPT

ibi™ FOCUS® Maintaining Databases

269 | Modifying Data Sources With MODIFY

l

REJECT

l REPEAT (ON MATCH and ON NEXT only)

l

ROLLBACK

l TED (ON MATCH and ON NOMATCH ON NEXT and ON NONEXT

l

TYPE

l UPDATE (ON MATCH and ON NEXT only)

l

VALIDATE

The following actions can be used in ON MATCH/NOMATCH phrases:

ACTIVATE
COMMIT
CRTFORM
DEACTIVATE
GOTO
HOLD
IF
PERFORM
PROMPT
ROLLBACK
TED

The following actions can be used in ON INVALID phrases:

GOTO
PERFORM
TYPE

ibi™ FOCUS® Maintaining Databases

270 | Designing Screens With FIDEL

Designing Screens With FIDEL
FIDEL, the FOCUS Interactive Data Entry Language, enables you to design full-screen forms
for data entry and application development. You use FIDEL both with MODIFY for building
data maintenance and inquiry screens, and with Dialogue Manager for building
applications that accept values for variables at run time.

Introduction
Describing the CRT Screen describes the facilities of FIDEL that are common to both
MODIFY and Dialogue Manager. This introduction explains how MODIFY facilities and FIDEL
interact, and describes the FIDEL facilities that are specific to MODIFY. Using FIDEL in
Dialogue Manager describes the interaction between Dialogue Manager and FIDEL.

From the FOCUS TED editor, you can also use the FOCUS Screen Painter with both MODIFY
and Dialogue Manager to interactively build and view screens online. With the Screen
Painter, you design the layout of the form and the Screen Painter automatically generates
the FIDEL code to build it. The FOCUS Screen Painter is described in Using the ibi FOCUS
Screen Painter.

The two simple examples on the following pages demonstrate how to generate a screen
form by using the CRTFORM and -CRTFORM syntax. Note how closely FIDEL syntax
resembles TABLE syntax for creating headings.

Note: FIDEL only supports fixed-format records with LRECL=80.

Using FIDEL With MODIFY
The following example of a simple MODIFY CRTFORM illustrates the use of FIDEL with the
resulting screen (the numbers refer to the explanation and are not part of the code):

ibi™ FOCUS® Maintaining Databases

271 | Designing Screens With FIDEL

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "EMPLOYEE UPDATE"
3. "EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"
4. "DEPARTMENT: <DEPARTMENT SALARY: <CURR_SAL"

5. MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

6. DATA
END

This request sets up a form to update the last name, department and current salary.
Processing is as follows:

1. CRTFORM generates the visual form and invokes FIDEL. The form begins on line one
of the screen unless specified otherwise with the LINE option (see Using Multiple
CRTFORMs: LINE).

2. Each line on the screen begins and ends with double quotation marks. This is a line
of text that serves as a title. Note the close correspondence to the syntax used to
create headings in a TABLE request.

3. The second screen line specifies two data fields: EMP_ID and LAST_NAME. A data
entry field is indicated by a left caret, followed by the field name or alias from the
Master File. The text, EMPLOYEE ID #: and LAST NAME: identifies each field on the
screen. This informs the operator where to enter the data.

4. This is the last line within double quotation marks. It signals the end of the
CRTFORM. In this case it identifies and defines two more data fields: DEPARTMENT
and CURR_SAL. When you run the MODIFY request, the form instantly appears on the
screen:

EMPLOYEE UPDATE
EMPLOYEE ID #: LAST NAME:
DEPARTMENT: SALARY:

The number of characters allotted for each data entry field on the screen defaults to
the display format for that particular field in the Master File. You can optionally

#d10designscreens1086624
#d10designscreens1086624

ibi™ FOCUS® Maintaining Databases

272 | Designing Screens With FIDEL

specify a format for screen display that is shorter than the default.

The operator can now fill in the data entry areas with the appropriate information.

5. The request continues with MODIFY MATCH logic.

6. This line tells FOCUS that the incoming data is from the terminal. In conjunction with
CRTFORM, it implies full-screen data input. You can also use DATA VIA FIDEL.

When you use FIDEL with MODIFY, you are setting up full-screen forms for the maintenance
of data source fields. Most MODIFY features, such as conditional and non-conditional fields,
automatic application generation, Case Logic, multiple record processing, error handling,
validation tests, logging transactions, and typing messages to the terminal, work with
FIDEL.

With MODIFY you also have access to additional screen control options such as clearing the
screen, specifying and changing the size of the screen, and designating the particular line
on which the form starts.

Using FIDEL With Dialogue Manager
The following example of a simple -CRTFORM illustrates the use of FIDEL in Dialogue
Manager and the resulting screen (the numbers refer to the explanation and are not part of
the code):

1. -CRTFORM
2. -"MONTHLY SALES REPORT FOR <&CITY/10"
3. -"BEGINNING PRODUCT CODE IS: <&CODE1/3"

-"ENDING PRODUCT CODE IS: <&CODE2/3"
4. -"REGIONAL SUPERVISOR IS: <®IONMGR/5"

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER
"REGIONAL SUPERVISOR: ®IONMGR"
END

ibi™ FOCUS® Maintaining Databases

273 | Designing Screens With FIDEL

The procedure sets up a form for gathering run-time variables for a TABLE request: &CITY,
the city for the report; &CODE1 and &CODE2, a range of product codes; and ®IONMGR,
the regional supervisor. Processing is as follows:

1. -CRTFORM generates the visual form, invokes FIDEL, and clears the screen.

2. Each line on the screen begins with a dash and double quotation marks (-"), and
ends with double quotation marks. Note this first line of the screen form contains
text and a variable field, &CITY, which has a length of 10. This specifies ten spaces on
the screen for entering the value. The data entry field is indicated by the left caret.

3. The next few lines of the screen form contain both text and variable fields with
formats.

4. The last line within double quotation marks signals the end of the -CRTFORM. When
the FOCEXEC executes, the screen displays the following form:

MONTHLY SALES REPORT
FOR
BEGINNING PRODUCT
CODE IS:
ENDING PRODUCT CODE
IS:
REGIONAL SUPERVISOR
IS:

The operator can now fill in values for the run-time variables. After the operator
transmits the screen by pressing Enter, the values entered on the screen are sent to
the variables. The regular FOCUS commands are stacked and executed when the end
of the procedure is reached.

When you use FIDEL with Dialogue Manager, you can define input fields as amper variables
that receive values at run time to adjust to specific processing requirements. Because they
are not data fields and are not part of the Master File, they do not automatically have a
format. You must allocate space for them on the screen. You can do this directly on the -
CRTFORM as in the previous example, or through a -SET statement.

Dialogue Manager supports two additional control statements: -CRTFORM BEGIN and -
CRTFORM END. The statement -CRTFORM BEGIN signals the beginning of the screen form.
You can then enter screen lines as well as other Dialogue Manager control statements. You
then signal the end of the screen form with the statement -CRTFORM END. This allows you
to use Dialogue Manager statements between screen lines while building the form.

ibi™ FOCUS® Maintaining Databases

274 | Designing Screens With FIDEL

Screen Management Concepts and Facilities
The following briefly outlines the FIDEL capabilities that are common to both MODIFY and
Dialogue Manager and defines the common terminology:

l The MODIFY CRTFORM statement and the Dialogue Manager -CRTFORM control
statement both automatically invoke FIDEL. All succeeding lines placed within double
quotations make up the actual screen form. Note the common syntax between

TABLE headings (see the Creating Reports manual) and CRTFORM screen lines.

l You can combine a CRTFORM and a -CRTFORM in one procedure. However, they must
remain within their own environments. The MODIFY CRTFORM contains data source
fields, whereas the Dialogue Manager -CRTFORM contains amper variables.

l The term field in this chapter refers to either a data source field name in conjunction
with MODIFY or an amper variable in conjunction with Dialogue Manager.

l You can define a CRTFORM in MODIFY or a -CRTFORM in Dialogue Manager that has
more lines than on your CRT screen. FIDEL provides scrolling capabilities.

l It is important to note the difference between the physical screen on the terminal
and the logical CRTFORM or form. A form generated by one CRTFORM or -CRTFORM
statement can take up many screens or less than one screen.

l You can specify three types of fields on the screen: input, display only, and
turnaround (both display and update). Data entry and turnaround fields are
considered unprotected areas on the screen because you may input values or replace
what is there. Display values are considered protected areas on the screen because
you cannot alter what is there (see Data Entry, Display and Turnaround Fields).

l You can set PF key controls and specify cursor positioning. You can specify screen
attributes such as background effects, highlighting, and color to enhance the
readability of the screen. You can also change screen attributes depending on the
outcome of various tests (see Describing the CRT Screen, Describing the CRT Screen,
and Describing the CRT Screen).

Note: This chapter is written specifically for the IBM 3270 terminal, which
supports PF key and cursor control, scrolling and screen attributes.

#d10designscreens1085528

ibi™ FOCUS® Maintaining Databases

275 | Designing Screens With FIDEL

Using FIDEL Screens: Operating Conventions
The following procedures apply for filling in all FIDEL screens:

l To move from field to field, press the Tab key. You can also move the cursor around
the screen using the arrow keys.

l When filling in values on the screen, you may use any of the keys on the keyboard.
Some terminals automatically prevent the entry of a non-numeric character in a field
identified as computational.

l To scroll forward or backward through a long CRTFORM (from screen to screen) press
the PF8 or PF7 key, respectively (or PF20, PF19).

l To transmit the screen, press the Enter key.

l If you make an error, the transaction may not be transmitted and an error message
may appear at the bottom of the screen. You can correct the error and retransmit the
screen.

l To signal the end of data entry, press the PF3 or PF15 key or type END in an
unprotected area. In MODIFY, this terminates the request. In Dialogue Manager, this
terminates the FOCEXEC procedure.

The following operating procedures are specific to MODIFY:

l To return to the first screen without transmitting the current screen, press the PF2
key or the key set to QUIT.

l If the screen clears at any time, press the Enter key to bring it back.

Note: The PF key settings referred to here are the default settings. Any PF key
can be redefined using the SET statement.

Describing the CRT Screen
The MODIFY statement CRTFORM or the Dialogue Manager control statement -CRTFORM,
followed by the screen layout, generates a form. Within one MODIFY procedure, you can
use an unlimited number of screen lines (within memory constraints). Each screen line can
contain a maximum of 78 characters of text and data.

ibi™ FOCUS® Maintaining Databases

276 | Designing Screens With FIDEL

In MODIFY, you can use up to 255 CRTFORM statements in a procedure. In Dialogue
Manager, there is no limit to the number of -CRTFORM statements that you may use in one
procedure.

All the basic options described here can be used with both MODIFY and Dialogue Manager.
Options that are specific to MODIFY are discussed in Using FIDEL in MODIFY and those
specific to Dialogue Manager are discussed in Using FIDEL in Dialogue Manager.

The following example shows the syntax of a simple MODIFY CRTFORM using the LOWER
case option, followed by two screen lines containing various screen elements: text, a spot
marker, and a field (numbers refer to the explanation; they are not part of the code):

1. CRTFORM LOWER
2. "PLEASE FILL IN THE EMPLOYEE ID # </1"
3. "EMPLOYEE ID #: <EMP_ID"

MATCH EMP_ID
.
.
.

Processing is as follows:

1. CRTFORM invokes FIDEL and generates the form. The LOWER case option specifies
that what is entered from the terminal in lowercase will remain in lowercase.

2. The first line of the screen contains descriptive text.

</1 is a spot marker which skips one blank line.

3. The last line of the screen contains two screen elements: descriptive text that
identifies the field and the data source field EMP_ID. The last line between quotation
marks signals the end of the CRTFORM.

The form generated appears as follows:

PLEASE FILL IN THE EMPLOYEE ID #

EMPLOYEE ID #:

ibi™ FOCUS® Maintaining Databases

277 | Designing Screens With FIDEL

Specifying Elements of the CRTFORM
To create the visual form, you enter the screen lines one after the other within double
quotation marks. For each screen line, you can specify various screen elements such as
descriptive text and fields. A left caret (<) followed by the name of the field generates the
position where data is to be entered onto the screen.

You may need to use two FOCEXEC lines to describe one physical CRTFORM line. Simply
omit the double quotation marks (") at the end of the first line and omit them at the
beginning of the next line as well. Everything between the set of double quotation marks
will read as one screen line on the CRTFORM.

Invoking FIDEL: CRTFORM and -CRTFORM
The following is a summary of the complete syntax for generating a CRTFORM in MODIFY or
a -CRTFORM in Dialogue Manager. The individual options and screen elements are
described in detail in specific sections later in the chapter. The syntax is

[-]CRTFORM [option option...]
[-]"screen element [screen element....]"

where:

[-]CRTFORM

Automatically invokes FIDEL and sets up the visual form. Subsequent lines describe the
screen.

option option...

Refers to screen control options. (See Using FIDEL in MODIFY and Using FIDEL in
Dialogue Manager.)

[-]"screen element.."

Can be user-defined text, fields, or spot markers. Spot markers define the next place on
the screen where a screen element will appear. Both spot markers and fields are
preceded by a left caret and optionally closed by a right caret (see Describing the CRT
Screen).

ibi™ FOCUS® Maintaining Databases

278 | Designing Screens With FIDEL

Note:
l You can create simple screen forms by typing the FIDEL code into your

procedures with your text editor. However, it is easier to build more
complex forms using many screen attributes and field labels using the
FOCUS Screen Painter.

l You can use the asterisk (*) with CRTFORM in FIDEL to generate a
CRTFORM containing all of the data source's fields automatically (that is,
without specifying individual fields). See Using FIDEL in MODIFY for
information on CRTFORM *, its syntax and variations.

l Do not begin any field used in a CRTFORM or FIXFORM statement with Xn,
where n is any numeric value. This applies to fields in the Master File and
computed fields.

Defining a Field
Labels, prefixes, attributes, and formats are parts of the definition of a particular field. In
Dialogue Manager, the first character is an ampersand, which signals an amper variable.
(The entire definition is preceded by a left caret and optionally closed by a right caret.)

Note: Fields with a text (TX) format cannot be used in CRTFORM or -CRTFORM.
However, they can be entered interactively using TED (see Entering Text Data
Using TED, for using text fields in MODIFY).

Define a Field in FIDEL
The syntax for defining a field is as follows.

In MODIFY:

<[:label.][prefix.][attribute.]field[/length][>]

In Dialogue Manager:

ibi™ FOCUS® Maintaining Databases

279 | Designing Screens With FIDEL

<[&:label.][prefix.][attribute.]&variable[/length][>]

where:

:label.|&:label.

Is a user-defined label of up to 12 characters associated with a field. It may not contain
embedded blanks (see Describing the CRT Screen).

prefix.

Refers to D. or T., which designate a display or turnaround field, respectively (see Data
Entry, Display and Turnaround Fields).

attribute.

Is the abbreviation or full name of a screen attribute (see Describing the CRT Screen).

field

Is the name of the field or variable being defined.

&variable

Is for data entry. Can be a data source field or a temporary field.

/length

Is the length of the field as it appears on the screen. In MODIFY, you need to define a
length only if you want the screen length to be different from the format length that is
defined in the MASTER or COMPUTE. In Dialogue Manager, you need to define a length
only if not previously defined.

Note: When you use the abbreviations for attributes, you do not need to use the
dot separator between attributes or between a prefix and an attribute (see
Describing the CRT Screen).

Defining a Field
The following is an example of the syntax of a Dialogue Manager screen line defining the
variable field &CITY:

#d10designscreens1085528
#d10designscreens1085528

ibi™ FOCUS® Maintaining Databases

280 | Designing Screens With FIDEL

-CRTFORM
-"<&:L01.T.HIGH.&CITY/7"

.

.

.

The elements on the second line which define the variable field &CITY are:

1. The left caret generates a place for the variable on the screen.

2. &:L01 is a label that identifies the data entry area on the screen (see Describing the
CRT Screen).

3. T. is a prefix that defines the variable as a turnaround field. If the variable has been
given a value within the FOCEXEC, it is displayed. Otherwise a default value is
displayed. The operator can then change the value.

4. .HIGH. is a screen attribute specifying that the contents of the field will be
highlighted.

5. &CITY/7 is the name of the variable field with a length specification. The specified
length is seven characters. That is, the space that will be allotted on the screen for
input of data is seven characters long.

Prefixes, labels, and screen attributes are explained fully in Data Entry, Display and
Turnaround Fields, Describing the CRT Screen, and Describing the CRT Screen.

Difference in FIDEL When Used With MODIFY
and Dialogue Manager
The following chart outlines the similarities and differences of FIDEL when used with
MODIFY and Dialogue Manager:

MODIFY Dialogue Manager

CRTFORM [options] -CRTFORM [options]

#d10designscreens1085528
#d10designscreens1085528

ibi™ FOCUS® Maintaining Databases

281 | Designing Screens With FIDEL

MODIFY Dialogue Manager

UPPER/LOWER
CLEAR/NOCLEAR
WIDTH/HEIGHT
TYPE
LINE

UPPER/LOWER
BEGIN/END
TYPE

"screen elements"
text

<spot marker[>]**
<field/length[>]*
prefix.(D. or T.)***
attribute.
:label.

"screen elements"
text

<spot marker[>]**
<field/length[>]**
prefix.(D. or T.)***
attribute
&:label.

* The right caret denotes a non-conditional field.

** The right caret has no meaning, but may be used for increased clarity.

*** Prefixes, attributes and labels are part of the definition of the field on the screen. They
do not stand alone.

Using Spot Markers for Text and Field
Positioning
Because the lengths of fields vary, text does not automatically align uniformly on the
screen. Spot markers are available to help you position both text and fields. Please note
that a spot marker is essential to eliminate trailing blanks at the end of the first line, if your
screen line description takes up two FOCEXEC lines.

The syntax and usage of the different spot markers are shown in the following chart:

ibi™ FOCUS® Maintaining Databases

282 | Designing Screens With FIDEL

Marker Example Usage

<n or
<n>

<50
Positions the next character in column 50.

<+n or
<+n>

<+4
Positions the next character four columns from the
last non-blank character.

<-n or
<-n>

<-1
Positions the next character one column to the left of
the last character. This marker's function is to
suppress or write over the attribute byte at the
beginning and the end of a field.

</n or
</
n>

</2
Positions the next character at the beginning of the
line that is two lines from the last (skips two lines).

Note: The last line is blank and is created when a
double quotation mark (") is encountered.

<0X or
<0X>

<0X
Positions the next character immediately to the right
of the last character (skip zero columns). This is used
to help position data on a FIDEL screen when a single
screen line is coded as two lines in a FOCEXEC. No
spaces are inserted between the spot marker and the
start of a continuation line (see Note 3 in the
following example).

Note: You can optionally use the right caret >. This is useful when the next
character in the line is a left caret. It also enhances readability.

Suppose you want the various input data fields arranged across the screen in vertical
sections, left justified, and in horizontal segments marked off with lines. Using spot
markers, you can create the desired screen as shown in the following example:

MODIFY FILE EMPLOYEE
CRTFORM
"EMPLOYEE UPDATE"

ibi™ FOCUS® Maintaining Databases

283 | Designing Screens With FIDEL

1. "</1"
"---"
"EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"

1. "</1"
2. "DEPARTMENT: <DEPARTMENT <+3 CURRENT SALARY:<0X>

<CURR_SAL"
"---"
"BANK: <BANK_NAME"
"---"

MATCH EMP_ID
.
.
.
DATA
END

The spot markers in the example perform the following functions:

1. </1 generates a blank line.

2. <+3 moves the word CURRENT three spaces to the right of the last letter in the word
DEPARTMENT. <0X> skips no spaces. No extra spaces are inserted between this and
the next word (<CURR_SAL) on the continuation line. There is, in fact, one space
before the field which is an attribute byte that marks the start of a field.

The screen appears as:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: LAST NAME:

DEPARTMENT: CURRENT SALARY:
--
BANK:
--

ibi™ FOCUS® Maintaining Databases

284 | Designing Screens With FIDEL

Specifying Lowercase Entry: UPPER/LOWER
All text that is entered from the terminal is normally translated to uppercase letters. You
can override this default and preserve both uppercase and lowercase text by using the
lowercase option. The syntax is

[-]CRTFORM [UPPER|LOWER]

where:

UPPER

Translates all characters to uppercase. This is the default.

LOWER

Reads lowercase data from the screen. Once you specify LOWER, every screen thereafter
is a lowercase screen until you specify UPPER.

Note: In MODIFY, when you use multiple CRTFORMs on the same screen (using
LINE n), you can mix UPPER and LOWER among the forms.

Data Entry, Display and Turnaround Fields
There are three types of data or variable fields that can be specified on the CRTFORM: data
entry, display, and turnaround.

You can also compute data fields (see Computing Values: The COMPUTE Statement, for
rules about computing data fields) and specify them as entry, display, or turnaround on the
CRTFORM. You can convert a turnaround field to a display field dynamically.

In MODIFY, fields can also be designated as conditional or unconditional (see Conditional
and Non-Conditional Fields). We recommend that for data entry, you use conditional fields
(left caret only) so that the values in your data source are not replaced by a blank or a zero
if you do not enter data for the field.

For most turnaround fields, we recommend that you use non-conditional fields (both
carets). A non-conditional turnaround field remains active whether you enter data or not.
Because the value in the data source is displayed in the field, that value remains in the
data source if you do not change it. Because the field remains active, the values for your

#d09modifydatasources1087929
#d10designscreens1086414
#d10designscreens1086414

ibi™ FOCUS® Maintaining Databases

285 | Designing Screens With FIDEL

VALIDATEs and COMPUTEs are then accurate (see Conditional and Non-Conditional Fields
for a complete explanation of the use of conditional and non-conditional fields in MODIFY).

The following outlines the rules for specification of different types of fields.

Use Data Entry Fields (for Data Entry Only)
In MODIFY, the syntax is

<field[/length][>]

where:

<field[>]

Is the name of the field. Reserves space on the screen for data entry into that field and
does not display the current value of the field.

In MODIFY, if only the left caret is used, data entry is conditional. If both carets are used,
the field is non-conditional (see Conditional and Non-Conditional Fields).

In Dialogue Manager the syntax is

<&variable[/length][>]

where:

<&variable[>]

Is the name of the variable field. Reserves space on the screen for data entry into that
field and does not display the current value of the field.

In Dialogue Manager, the option of the right caret is meaningless. Usually for the FOCEXEC
to run, you must supply a value for each variable. If you do not, FOCUS assumes a blank or
a 0 for that value.

Use Display Fields (for Information Only)
Data is displayed in a protected area and cannot be altered.

#d10designscreens1086414
#d10designscreens1086414

ibi™ FOCUS® Maintaining Databases

286 | Designing Screens With FIDEL

In MODIFY, the syntax is

<D.field[/length]

In Dialogue Manager, the syntax is

<D.&variable[/length]

where:

D.

Is the prefix placed in front of a field, indicating that the data or value is to be
displayed. The current value of the field appears on the screen, but in a protected area
which cannot be changed.

Note that the right caret is meaningless for display fields.

Use Turnaround Fields (for Display and Change)
Data is displayed in an unprotected area and can be altered.

In MODIFY, the syntax is:

<T.field[/length][>]

In Dialogue Manager, the syntax is:

<T.&variable[/length][>]

where:

T.

Is the prefix placed in front of a field to indicate that it is a turnaround field. The current
value of the field is displayed on the screen. However, the operator may change the
value, as it is not in a protected area.

ibi™ FOCUS® Maintaining Databases

287 | Designing Screens With FIDEL

In MODIFY, if only the left caret is present, the T. field is treated as conditional. If the right
caret is used, the field is non-conditional, and the value is treated as present, even if
unchanged (see Conditional and Non-Conditional Fields).

In Dialogue Manager, the changed value for the turnaround variable field will substitute
everywhere in the FOCEXEC where it is subsequently encountered.

Note: In MODIFY, in order to display data from a data source field or present it
for turnaround, a position in the data source must first be established through
the use of a MATCH or NEXT statement, or value must be assigned in a
COMPUTE. A computed field cannot be set and displayed in the TOP case, where
data entry is processed prior to computations. For example, one of the phrases

ON MATCH CRTFORM
ON NEXT CRTFORM

must be used. A position is thus established in the data source, and the values of the fields
in existing records are now available for display as protected or unprotected fields.

You can also match on a key field and go to a case (see Using FIDEL in MODIFY) in which
you display a CRTFORM using display and turnaround fields.

Using Data Entry, Display, and Turnaround
Fields
This section will show how to use Date Entry, Display, and Turnaround Fields with MODIFY
and Dialogue Manager.

Using Data Entry, Display, and Turnaround Fields
With MODIFY
The following example combines two CRTFORMs in a single MODIFY request and shows the
use of entry, display and turnaround fields (numbers refer to the explanation below; they
are not part of the code):

#d10designscreens1086414

ibi™ FOCUS® Maintaining Databases

288 | Designing Screens With FIDEL

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER"
"</2"

2. MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CRTFORM

" "
"REVISE DATA FOR SALARY AND DEPARTMENT"
"ENTER NEW DATA FOR EDUCATION HOURS"
" "

3. "EMPLOYEE ID #: <D.EMP_ID LAST_NAME: <D.LAST_NAME"
" "

4. "SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

5. "EDUCATION HOURS: <ED_HRS>"
ON MATCH UPDATE CURR_SAL DEPARTMENT ED_HRS

DATA
END

The procedure matches the employee ID, displays both the ID and the last name, and then
displays the current salary and department for turnaround. Education hours is a data entry
field.

Note that when the procedure executes, both CRTFORMs are displayed immediately.
However, the display and turnaround fields in the second CRTFORM do not display data
until the operator fills in the first form and presses Enter. We therefore recommend you use
the LINE option.

When a FORMAT ERROR occurs, all data entered up to that point is processed and cannot
be changed in the course of your transaction.

The processing is as follows:

1. CRTFORM generates the first form which begins on line 1 (the second CRTFORM is
displayed, but without values):

ENTER EMPLOYEE ID #:
PRESS ENTER

ibi™ FOCUS® Maintaining Databases

289 | Designing Screens With FIDEL

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: LAST NAME:
SALARY:
DEPARTMENT:
EDUCATION HOURS:

2. The procedure continues with the MATCH logic. If the ID number that is input
matches an ID in the data source, the display and turnaround fields on the second
CRTFORM display the data. Assume the operator enters 818692173 and presses Enter.

The following is displayed:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: 818692173 LAST NAME: CROSS
SALARY: 27062.00
DEPARTMENT: MIS
EDUCATION HOURS:

3. This screen line contains two display fields.

4. The next two screen lines contain turnaround fields.

5. The last line is a data entry field.

Note: To display fields from a unique segment, the ON MATCH CONTINUE TO,
ON NEXT, or MATCH WITH-UNIQUES phrase must have been executed (see
Modifying Data: MATCH and NEXT).

#d09modifydatasources1086863

ibi™ FOCUS® Maintaining Databases

290 | Designing Screens With FIDEL

In Dialogue Manager, in order to display values with D. or T., a value must have been
supplied for the variable prior to the initiation of the -CRTFORM. System variables are an
exception to this rule, as the system automatically supplies their values.

Computed fields in both MODIFY and Dialogue Manager can be displayed in any kind of
CRTFORM.

Using Data Entry, Display, and Turnaround Fields
With Dialogue Manager
The following example illustrates the use of D. fields and system variables in a Dialogue
Manager -CRTFORM:

1. -SET &CITY = STAMFORD;

2. -CRTFORM
3. -"YEARLY SALES REPORT FOR <T.&CITY/10"
4. -"DATE: <D.&DATE TIME: <D.&DATEMDYY"

-" "
-"ENTER BEGINNING PRODUCT CODE RANGE: <&BEGCODE/3"
-"ENTER ENDING PRODUCT CODE RANGE: <&ENDCODE/3"
-"ENTER NAME OF REGIONAL SUPERVISOR: <®IONMGR/15"

TABLE FILE SALES

HEADING CENTER
"YEARLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

The example processes as follows:

ibi™ FOCUS® Maintaining Databases

291 | Designing Screens With FIDEL

1. The -SET sets a default value for &CITY:

FOR WHICH CITY DO YOU WANT A REPORT?

2. -CRTFORM generates the screen form:

YEARLY SALES REPORT FOR STAMFORD
DATE: 02/22/2003 TIME: 13.42.38

ENTER BEGINNING PRODUCT CODE RANGE:
ENTER ENDING PRODUCT CODE RANGE:
ENTER NAME OF REGIONAL SUPERVISOR:

3. The transaction value for &CITY is Stamford, the value that was previously supplied in
the -SET statement.

4. Note that the variables &DATE and &DATEMDYY are system variables. The values are
supplied by the system and displayed on the form.

Controlling the Use of PF Keys
The terminal operator can use certain PF keys to control the execution of a FIDEL
application. Normally, the following keys are used:

l PF3 and PF15 mean END and terminate execution.

l PF2 means Cancel and cancels the transaction in MODIFY.

l PF7 and PF8 page Backward and Forward respectively.

Note: All other keys return the value of the PF key when pressed.

Several facilities are available to assist you in controlling various screen operations:

l You can reset PF key functions. You can also set PF keys to branch to particular cases
in MODIFY or labels in Dialogue Manager.

ibi™ FOCUS® Maintaining Databases

292 | Designing Screens With FIDEL

l You can set the cursor on a specified position on the screen (see Describing the CRT
Screen).

l You can use the cursor position on the screen to perform a branch or action based
on a test (see Describing the CRT Screen).

Default Settings for PF Keys
The default PF key settings are as follows:

PF Key Function

PF01 HX

PF02 CANCEL

PF03, PF15 END

PF04, PF16 RETURN

PF05, PF17 RETURN

PF06, PF18 RETURN

PF07, PF19 BACKWARD

PF08, PF20 FORWARD

PF09, PF21 RETURN

PF10, PF22 RETURN

PF11, PF23 RETURN

PF13 RETURN

PF12, PF24 UNDO

PF14 RETURN

ibi™ FOCUS® Maintaining Databases

293 | Designing Screens With FIDEL

You can display the current PF key settings by issuing the FOCUS query command:

? PFKEY

This displays a formatted table of all the current values.

Resetting PF Key Controls
You can reset PF key functions in FIDEL for both CRTFORMs and -CRTFORMs using the
FOCUS SET command with the following syntax

SET PFxx = function

where:

xx

Is a one or two-digit PF key number.

function

Is one of the following:

END in MODIFY, exits the procedure; in Dialogue Manager, is equivalent to QUIT. That is,
END exits the procedure.

CANCEL in MODIFY, cancels the transaction and returns to the TOP case. Do not use the
CANCEL setting in Dialogue Manager.

FORWARD pages forward.

BACKWARD pages backward.

RETURN has no specific screen action. Returns the PF key name in the PFKEY field
because it is not yet defined. To set the PFKEY field, use COMPUTE in MODIFY or -SET in
Dialogue Manager.

HELP displays text supplied with the HELPMESSAGE attribute for any field on the MODIFY
CRTFORM. Position the cursor on the data entry area of the desired field, and press the
PF key you have defined for HELP. If no help message exists for that field, the following
message is displayed:

ibi™ FOCUS® Maintaining Databases

294 | Designing Screens With FIDEL

NO HELP AVAILABLE FOR THIS FIELD.

The following example sets the PF03 key for paging backward and the PF04 key for paging
forward:

SET PF03=BACKWARD,PF04=FORWARD

Note: When changing PF key settings, make sure that at least one key is set to
END. If you set a PF key to FORWARD, you should also set one to BACKWARD.

Setting PF Key Fields for Branching Purposes
You can create a menu of processing options. The operator can then indicate a choice by
pressing a particular PF key. To assign a specific processing function to a PF key, you must
specify a field named PFKEY. Which PF key the operator presses determines the value of
the PFKEY field.

You can use the PF keys designated as Return keys, as well as the Enter key. You define a
variable called PFKEY (in MODIFY) or &PFKEY (in Dialogue Manager) and then test its value
after the CRTFORM is displayed. Which branch takes place depends on which PFKEY the
operator presses.

In MODIFY, the syntax is

COMPUTE
PFKEY/A4=;

where:

PFKEY/A4

Is a four-character field, whose value is determined by which key the operator presses at
run time.

In Dialogue Manager, the syntax is

-SET &PFKEY=' ';

ibi™ FOCUS® Maintaining Databases

295 | Designing Screens With FIDEL

where:

&PFKEY

Is a four-character field, whose value is determined by which key the operator presses at
run time.

=' ';

Is the allocation of four character spaces for the field.

The following example shows how PF keys can be tested in MODIFY:

1. COMPUTE
PFKEY/A4=;

2. CRTFORM
"SELECT OPTION"
"INPUT PRESS PF4"
"UPDATE PRESS PF5"
"DELETE PRESS PF6"

3. IF PFKEY EQ 'PF04' GOTO INCASE
ELSE IF PFKEY EQ 'PF05' GOTO UPCASE
ELSE IF PFKEY EQ 'PF06' GOTO DELCASE
ELSE GOTO TOP;

.

.

.

The example processes as follows:

1. The COMPUTE statement specifies a four-character field PFKEY.

2. CRTFORM generates the form which supplies the operator with three options:

SELECT OPTION
INPUT PRESS PF4
UPDATE PRESS PF5
DELETE PRESS PF6

3. The IF test determines what case to branch to depending on the value of the PFKEY
field. For example, if the operator presses PF4, the value for PFKEY is PF04, and the
request branches to an input case INCASE.

ibi™ FOCUS® Maintaining Databases

296 | Designing Screens With FIDEL

Specifying Screen Attributes
Screen attributes (such as highlighting, colors, and so on) can be applied to the fields on
the CRTFORM and the -CRTFORM. They can also be used as background effects and can be
applied to the fields depending on the result of tests.

The following attributes are available on 3270 IBM terminals:

Function Abbreviation Short Name

Flash or Blink F FLAS or BLIN

Underline U UNDE

Invert or Reverse Video I INVE or REVV

Clear* C CLEA

Blue B BLUE

Red R RED

Pink P PINK

Green G GREE

Aqua A AQUA

Turquoise T TURQ

Yellow Y YELL

White W WHIT

Nodisplay* N NODI

Return to default $ $

Highlight or Intensify* H HIGH or INTE

ibi™ FOCUS® Maintaining Databases

297 | Designing Screens With FIDEL

Note:
l *Clear, Nodisplay, and Highlight or Intensify can be used on all terminals.

Clear also sets the highlight off for entry and turnaround fields. Nodisplay
is not supported for D. or T. fields. The remaining attributes are also
known in the FOCUS community as extended attributes.

l Use of abbreviations is recommended, except for TURQ.

When an attribute is unsupported on a particular terminal or is specific to a version of
FOCUS under another operating system, the attribute is ignored. Therefore, there is no
need for code changes between terminals and/or operating systems.

To use the screen attributes other than C, N, and H you must notify FOCUS that your
terminal is equipped to display them. Issue the FOCUS SET command:

SET EXTTERM=ON

This allows a procedure to be operated on a variety of terminals. FOCUS automatically
detects a 3279 model terminal and sets EXTTERM to ON by default.

If your terminal does not properly recognize extended attributes, due to a "terminfo"
compatibility problem, stray characters will appear on your screen. You may turn off
extended attribute recognition with the command:

SET EXTTERM=OFF

Programs with extended attributes and EXTTERM=OFF will run as if extended attributes had
not been coded in the program.

Make sure that your terminal has the extended attribute options needed before you turn
EXTTERM on. There are many different IBM 3270 models. Generally, the color terminals in
the 3279 series have most of the options. However, even if a terminal has the physical
capability to support all of the attributes, it may be defined to the operating system as a
lower grade terminal. In such cases, you must ascertain whether or not all the attributes
can be used.

The syntax for defining screen attributes in MODIFY is

<[:label][.attribute.]field[>]

The syntax for defining screen attributes in Dialogue Manager is

ibi™ FOCUS® Maintaining Databases

298 | Designing Screens With FIDEL

<[&:label][.attribute.]&variable[>]

where:

.attribute.

Is one or more of the attributes. Note the dots (periods) before and after each attribute
or entry in an attribute list.

field

Names the field to which the attributes apply.

&variable

Names the variable field to which the attributes apply.

Note: Labels and their use are discussed in Describing the CRT Screen.

The following chart shows you how to use these attributes in conjunction with prefixes (D.
and T.), where X is the name of a field or variable:

.HT.X
Highlighted T.

.CT.&X
Unhighlighted T.

.N.X
Nodisplay entry, (for example, for passwords)

.H.&X
Highlighted entry

.C.X
Unhighlighted entry

.HD.X
Highlighted D.

ibi™ FOCUS® Maintaining Databases

299 | Designing Screens With FIDEL

The following usage considerations apply when using screen attributes:

l An attribute stays in effect until another attribute changes it.

l A list of attributes may be composed entirely of abbreviations in any order. If
abbreviations only are used, you do not need the dot separator between attributes.

l The last mentioned option in a group of mutually exclusive attributes will be taken.

l A color or flash overrides a highlight, clear, or Nodisplay.

l If short names are used, the first four letters identify the attribute. Each name must
be separated by a dot. Either abbreviations or short names can be used, but they
cannot be mixed without a dot separator.

l Full names may be used as well. Each must be delimited by a dot.

l You can change screen attributes during the course of a terminal session by using
labeled fields.

Note the following examples:

.AID.
Aqua inverted display field.

<.RED.FLASH.
Red flashing field.

<.RED.FLAS.
Red flashing field.

<.PIN.
Inverted pink field (color overrides).

<I.YELL.
Inverted yellow field.

Using Background Effects
If a field is absent, the attribute affects the protected portion of the screen; that is, the text.
Both a beginning and ending dot as well as a space between the attribute and the text are

ibi™ FOCUS® Maintaining Databases

300 | Designing Screens With FIDEL

needed. For example:

"<.RED. ENTER EMP_ID:"

This will print the words ENTER EMP_ID: in red. Note the space between .RED. and ENTER
EMP_ID:. A right caret may also be inserted for clarity.

The line:

"<.INVE.RED. <.CLEAR.EMP_ID"

will turn the background color to red. CLEAR changes the background for the input field
EMP_ID back to black.

An attribute stays in effect until another attribute changes it on a physical screen.
Therefore, if <.INVE.RED. is in the upper left corner, the entire screen will be in inverse red
unless some other background attribute is provided later. In the example above, the
<.CLEAR is used to limit the effect to one area.

Note: .CLEAR. and .HIGH. only work when they are used in conjunction with a
field. They do not work alone or simply with text.

Using Labeled Fields
You can use labels to identify a specific field on the screen. They are necessary to perform
the following functions:

l Dynamically change screen attributes during processing depending on the results of
tests.

l Position the cursor on the screen, or read the position of the cursor on the screen,
where there is no pre-existing field.

The syntax for a labeled field in MODIFY is

<:label.field

The syntax for a labeled field in Dialogue Manager is

ibi™ FOCUS® Maintaining Databases

301 | Designing Screens With FIDEL

<&:label.&variable

where:

<[&]:label.

Is a user-defined label. It starts with a colon (:) and may be up to 66 characters long
including the colon. You may not use embedded blanks.

field

Is any field on the CRTFORM. It can be a field created specifically for appending a label.

&variable

Is any variable field on the CRTFORM. It can be a field created specifically for appending
a label.

The following rules apply:

l A label cannot occur by itself. It must be used with a field.

l A label must be declared using a COMPUTE, -SET, or -DEFAULTS statement.

l Setting a label to $ returns its field to the default attribute.

Using a Labeled Field With MODIFY
For example, in MODIFY:

COMPUTE
:ONE/A6=' ';
CRTFORM
"<:ONE.EMP_ID"

The label :ONE is set to a format of A6 and is the identifier of the field EMP_ID.

Using a Labeled Field With Dialogue Manager
For example, in Dialogue Manager:

ibi™ FOCUS® Maintaining Databases

302 | Designing Screens With FIDEL

-SET &:ONE=' ';
-CRTFORM
-"<&:ONE.&CITY/10"

In this Dialogue Manager example, the label &:ONE is set to a format of A4 and is the
identifier of the field &CITY.

Note: When you are dealing with many complex labels and attributes, we advise
you to use the FOCUS Screen Painter which allows you to do everything without
learning the detailed syntax (see Using the ibi FOCUS Screen Painter).

Dynamically Changing Screen Attributes
The screen attributes in a FIDEL form can be changed during the course of the terminal
session in which they are defined. This allows you to design easy-to-read and easy-to-use
procedures. For instance, after an error occurs, you can turn a specific field into flashing
red to alert the operator.

The mechanism for changing the attribute is to put a label before the field. Then, issue a
COMPUTE in MODIFY, or a -SET in Dialogue Manager, to assign the label new attribute
values. When the screen is next displayed, it takes on the characteristics of the provided
attributes.

The following example shows how to use a COMPUTE in MODIFY to dynamically change an
attribute value:

COMPUTE
:ATTRIB/A12=IF CURR_SAL GT 50000 THEN 'FLASH' ELSE '$';

CRTFORM
"AMOUNT <:ATTRIB.T.CURR_SAL>"

IF CURR_SAL GT 50000 GOTO TOP ELSE GOTO OTHER;
.
.
.

This generates an attribute value for the label ATTRIB. If the CURR_SAL is greater than
50,000, the field will flash; otherwise, it observes the default setting.

The following example shows the use of a -SET statement to assign an attribute value in
Dialogue Manager:

ibi™ FOCUS® Maintaining Databases

303 | Designing Screens With FIDEL

-SET &AMOUNT=0;
-SET &:ATTRIB=' ';
-TOP
-CRTFORM
-"AMOUNT: <&:ATTRIB.T.&AMOUNT>"
-SET &:ATTRIB=IF &AMOUNT GT 100 THEN 'FLASH' ELSE '$';
-IF &AMOUNT GT 100 GOTO TOP;
.
.
.

This generates an attribute value for the label &:ATTRIB, changing &AMOUNT to flashing if
the value is greater than 100. Be sure to use -SET to establish the label in the beginning of
the procedure.

Note: When you use CRTFORMs in either MODIFY or Dialogue Manager, the labels
you assign must precede the fields with which they are associated; labels cannot
occur by themselves. Use COMPUTE statements to dynamically change screen
text attributes, setting the label equal to the COMPUTE (see previous example).

You can convert a T. field to a D. field dynamically; however, you cannot convert a D. field
to a T. field. The method for changing turnaround fields to display fields is the same as
that for changing screen attributes dynamically.

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "SALARY UPDATE"
2. " "
3. "EMPLOYEE ID #: <.INVE.EMP_ID LAST NAME: <0X

<.CLEAR.D.LAST_NAME"
4. MATCH EMP_ID

ON NOMATCH REJECT
5. ON MATCH CRTFORM LINE 10
6. ENTER SALARY"

" "
"SALARY: <:HERE.T.CURR_SAL>"

7. COMPUTE
:HERE/A12=IF CURR_SAL GT 100000 THEN 'D' ELSE 'T';
IF CURR_SAL GT 100000 GOTO TOP;
ON MATCH UPDATE CURR_SAL

DATA
END

This procedure constructs a form to update salaries. It processes as follows:

ibi™ FOCUS® Maintaining Databases

304 | Designing Screens With FIDEL

1. CRTFORM generates the screen form and invokes FIDEL.

2. Provide text for the CRTFORM; empty quotation marks indicate a blank line on the
form.

3. The next two lines contain the following screen elements:

EMPLOYEE ID #:

Is text describing the conditional data field EMP_ID.

.INVE.

Is a screen attribute that displays the field EMP_ID in reverse video.

LAST NAME:

Is text describing the field LAST_NAME.

.CLEAR.

Is a screen attribute that clears the .INVE. attribute, returning the D. (display-only)
field LAST_NAME to the default display.

4. The request continues with MODIFY MATCH logic.

5. If EMP_ID matches, another CRTFORM is generated on line 10 of the same screen.

6. The next three lines contain the following screen elements:

ENTER SALARY:

Is text describing the CURR_SAL field.

" "

Generates a blank line.

:HERE

Is a label identifying the CURR_SAL field.

7. This COMPUTE evaluates the field CURR_SAL and defines it as a turnaround (T.) field
or a display (D.) field, depending on the value of CURR_SAL. If the salary is greater
than 100,000, the field is a display field (and cannot be updated); if the salary is less
than 100,000, the field is a turnaround field (and can be updated).

The resulting CRTFORM is as follows:

ibi™ FOCUS® Maintaining Databases

305 | Designing Screens With FIDEL

SALARY UPDATE

EMPLOYEE ID #: LAST NAME:

ENTER SALARY

SALARY:

Specifying Cursor Position
To specify cursor position, simply choose the field where you want the cursor positioned.
You may specify the field by its field name or by its label. You can set the cursor at a
specific place on the screen by computing or setting the value of the field CURSOR (in
MODIFY) or &CURSOR (in Dialogue Manager).

The syntax for the field which controls the cursor position in MODIFY is

COMPUTE
CURSOR/A66= expression;

where:

CURSOR/A66

Is a 66-character alphanumeric field.

expression

Is terminated with a semicolon and can be anything, including the full field name, its full
alias, or a unique truncation of either, or the label itself. This determines the position of
the cursor.

For example:

ibi™ FOCUS® Maintaining Databases

306 | Designing Screens With FIDEL

COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN 'EMP_ID'
ELSE 'LAST_NAME';

The position of the cursor will be on the field EMP_ID if the value of test name is greater
than 100, or it will be on the field LAST_NAME if test name is less than or equal to 100.

You may also position the cursor using a field label. For example:

COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN ':ONE'
ELSE ':TWO';

Note: If the field name is not unique, FIDEL uses the first occurrence of the field
name (going from left to right across each line and then down to the next line)
to set or test the cursor position.

In MODIFY, the variable CURSORINDEX can also be used to compute the position of the
cursor at a particular record when there are multiple indexed records displayed in a single
CRTFORM. This feature is commonly used for placing the cursor on invalid fields after
VALIDATE statements. The syntax is

COMPUTE
CURSORINDEX/I5=expression;

where:

CURSORINDEX/I5

Is a five-digit integer field. Refers to the current value of the subscript being processed
from the CRTFORM.

expression

May be any expression, but in most applications will be set equal to REPEATCOUNT.

Note: See Case Logic, Groups, CURSORINDEX and VALIDATE for a full example of
the use of CURSORINDEX using Case Logic, multiple fields and the VALIDATE
subcommand. Also, multiple record processing is discussed in full in Multiple
Record Processing.

ibi™ FOCUS® Maintaining Databases

307 | Designing Screens With FIDEL

In Dialogue Manager, the syntax for positioning the cursor is

-SET &CURSOR=expression;

where:

&CURSOR

Is a variable specifically referring to the position of the cursor.

expression

Is terminated with a semicolon and can be any valid expression including the field name
or label itself. It determines the position of the cursor.

The following example illustrates the positioning of the cursor on the screen in Dialogue
Manager using labeled fields:

1. -SET &:AAA = ' ';
-SET &:BBB = ' ';

2. -PROMPT &YR.PLEASE ENTER YEAR NEEDED.
3. -SET &CURSOR = IF &YR GT 1984 THEN ':AAA' ELSE ':BBB';

-*
4. -CRTFORM

-"MONTHLY REPORT FOR THE CITY <&:AAA.&CITY/10"
-"YEARLY REPORT FOR THE AREA <&:BBB.&AREA/1"

.

.

.

This processes as follows:

1. Two -SET statements declare the labels, which are themselves variables.

2. The -PROMPT statement prompts the operator for a value for &YR.

3. The -SET statement sets an IF test as the value for the variable &CURSOR. If the value
of &YR is greater than 1984, the position of the cursor is set to the label :AAA;

otherwise, it is set to the label :BBB.

4. If the operator supplies the value 85 for &YR, the visual form generated is as follows,
and the cursor is positioned at the variable &CITY:

ibi™ FOCUS® Maintaining Databases

308 | Designing Screens With FIDEL

MONTHLY REPORT FOR THE CITY
YEARLY REPORT FOR THE AREA

The remainder of the FOCEXEC might then branch to a TABLE request for a monthly report
for that city. Had the year been earlier than 84, the cursor would have been positioned on
AREA. The branch might then be to a TABLE request for a yearly report for that area.

Caution: In Dialogue Manager, be sure to set &CURSOR to the label name
without the & (ampersand). Use :AAA, not &:AAA.

Determining Current Cursor Position for
Branching Purposes
Rather than having the operator type a response, you can create a menu on which you list
options. To select an option, the operator moves the cursor to the correct line on the
screen and presses the Enter key. FOCUS senses the cursor position and takes action based
upon it (such as branching to a particular case or field).

To do this, you must specify a 66 character field that contains the current cursor position,
CURSORAT. You may identify a field on the screen by a label or by its field name.

The syntax that defines the field used to read the cursor position in MODIFY is

COMPUTE
CURSORAT/A66=;

where:

CURSORAT/A66

Is the field whose value is determined by the field name, or label of the field, on which
the cursor is positioned when the operator presses Enter.

In Dialogue Manager, the syntax is

-SET &CURSORAT=' ';

ibi™ FOCUS® Maintaining Databases

309 | Designing Screens With FIDEL

where:

&CURSORAT

Is a variable whose value is determined by the field name, or label of the field, on which
the cursor is positioned when the operator presses Enter.

If the actual cursor position is not on any field, the value of CURSORAT is the nearest
preceding field. If there are no preceding fields, the value of CURSORAT is the TOP of the
CRTFORM. That is, the value is at the very beginning of the CRTFORM.

In the following example, field XYZ is a computed field for the purpose of creating a labeled
field wherever necessary on the CRTFORM:

MODIFY FILE EMPLOYEE
1. COMPUTE

CURSORAT/A66=;
2. :ADD/A1=;

:UPP/A1=;
3. XYZ/A1=;
4. CRTFORM

"POSITION CURSOR NEXT TO OPTION DESIRED"
"THEN PRESS ENTER"
" "
"<:ADD.XYZ ADD RECORDS"
"<:UPP.XYZ UPDATE RECORDS"

5. IF CURSORAT EQ ':ADD' GOTO ADD ELSE
IF CURSORAT EQ ':UPP' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1

"THIS CRTFORM ADDS RECORDS"
" "
"EMPLOYEE ID #: <EMP_ID"
"LAST NAME: <LAST_NAME"
"FIRST NAME: <FIRST_NAME"
"HIRE DATE: <HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"THIS CRTFORM UPDATES RECORDS"
" "

ibi™ FOCUS® Maintaining Databases

310 | Designing Screens With FIDEL

"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA
END

This example processes as follows:

1. The COMPUTE establishes the field CURSORAT.

2. The second and third COMPUTEs declare the labels :ADD and :UPP.

3. The third COMPUTE establishes a field XYZ for the purpose of using labels.

4. CRTFORM generates the following visual form beginning on the first line of the
screen:

POSITION CURSOR NEXT TO OPTION DESIRED
THEN PRESS ENTER

ADD RECORDS
UPDATE RECORDS

5. An IF phrase tests the value of the field CURSORAT. If the operator places the cursor
next to ADD RECORDS, the value of CURSORAT is :ADD and a branch to Case ADD will
be performed. If the operator places the cursor next to UPDATE RECORDS, the value
of CURSORAT is :UPP and Case UPP will be performed.

Annotated Example: MODIFY
The following example illustrates the syntax for a MODIFY CRTFORM using dynamically
changing attributes:

ibi™ FOCUS® Maintaining Databases

311 | Designing Screens With FIDEL

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "EMPLOYEE UPDATE"
3. "</1"
4. "EMPLOYEE ID #: <.INVE.EMP_ID"
GOTO UPDATE
CASE UPDATE
5. MATCH EMP_ID
ON NOMATCH REJECT
6. ON MATCH CRTFORM LINE 1
" "
7. "LAST NAME: <.INVE.T.LAST_NAME"
"DEPARTMENT: <.CLEAR.T.DEPARTMENT>"
"SALARY: <:ATTRIB.T.CURR_SAL>"
8. ON MATCH COMPUTE
:ATTRIB/A12 = IF CURR_SAL GT 50000 THEN 'FLASH.INVE';
MSG/A60 = IF CURR_SAL GT 50000 THEN 'PLEASE REENTER' ELSE ' ';
ON MATCH TYPE "<MSG"
ON MATCH IF CURR_SAL GT 50000 GOTO UPDATE;
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ENDCASE
DATA
END

This procedure sets up a form to update the department and current salary. It processes as
follows:

1. CRTFORM generates the visual form and invokes FIDEL.

2. This line contains a screen element set between double quotations marks. It is a line
of descriptive text.

3. This line contains another screen element, a spot marker that skips one line.

4. These lines contain four screen elements—'EMPLOYEE ID #:' is text describing the
field; the field EMP_ID is described as a conditional data entry field. The contents will
be displayed in reverse video because .INVE. is a screen attribute defining the field.

The visual form generated is as follows:

EMPLOYEE UPDATE
EMPLOYEE ID #: (reverse video)

Enter Employee ID # 818692173.

ibi™ FOCUS® Maintaining Databases

312 | Designing Screens With FIDEL

5. The request continues with MODIFY MATCH logic.

6. If the EMP_ID matches, another CRTFORM is generated. It is placed on LINE 1 and
thus replaces the previous CRTFORM on the screen.

7. The CRTFORM defines three turnaround fields:

The LAST_NAME field. The .INVE. attribute displays the field in reverse video.

The DEPARTMENT field. The .CLEAR. attribute displays the field in regular video.

The CURR_SAL field. The appearance of the field value depends on the value of the
:ATTRIB field. When the CURR_SAL value first appears, the :ATTRIB field is empty and
the value appears in regular video. If you enter a CURR_SAL value greater than
50,000, the :ATTRIB field receives the attribute FLASH.INVE, displaying the CURR_SAL
value in flashing inverse (or reverse) video. The CRTFORM appears as follows:

LAST NAME: CROSS
DEPARTMENT: MIS
SALARY: 27062.00

8. If the CURR_SAL field value is greater than 50,000 when you press Enter, the
COMPUTE statement assigns the :ATTRIB label the FLASH.INVE attribute.

9. If the CURR_SAL field value is greater than 50,000 when you press Enter, the IF
statement branches back to the CASE UPDATE statement. This displays the second
CRTFORM with the CURR_SAL value in reverse video.

Note: If you are using a terminal emulator you may not be able to view
the attribute FLASH.INVE.

Annotated Example: Dialogue Manager
The following sample -CRTFORM illustrates the syntax for dynamic control of attributes in
Dialogue Manager:

1. -PROMPT &CITY.FOR WHICH CITY DO YOU WANT A REPORT?.
2. -SET &:ATTRIB = IF &CITY EQ STAMFORD THEN 'INVE' ELSE 'CLEAR';

ibi™ FOCUS® Maintaining Databases

313 | Designing Screens With FIDEL

-*
3. -CRTFORM
4. -"MONTHLY SALES REPORT"
5. -"Date: <D.&DATE Time: <D.&TOD"
6. -"Beginning Code is: <&:ATTRIB.&BEGCODE/3"

-"Ending Code is: <&:ATTRIB.&ENDCODE/3"
-"Regional Supervisor is: <&:ATTRIB.®IONMGR/15"
TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"

7. END

The example processes as follows:

1. The -PROMPT prompts the operator for a value for &CITY.

2. The -SET statement sets the label :ATTRIB to INVE if the city is Stamford, causing
each field labeled :ATTRIB in the remainder of the -CRTFORM to be displayed in
reverse video.

3. -CRTFORM generates the visual form and invokes FIDEL.

4. The first line of the screen form contains text.

5. The second line contains the current date and time as display fields. Since they are in
protected areas of the screen, they cannot be altered.

6. Each of the next three lines contains descriptive text and one field. Each field has a
label which displays the field in reverse video if the city is Stamford.

The screen displays the following -CRTFORM:

MONTHLY SALES REPORT

ibi™ FOCUS® Maintaining Databases

314 | Designing Screens With FIDEL

Date: 01/08/97 Time: 10:50:16
Beginning Code is:
Ending Code is:
Regional Supervisor is:

7. After the operator presses Enter, the values entered in the screen form are sent to
the variables. The TABLE request executes when END is encountered.

Using FIDEL in MODIFY
The following standard MODIFY functions and concepts work with FIDEL in the building of
CRTFORMs (for additional information on these functions):

l Conditional and non-conditional field specification (see Conditional and Non-
Conditional Fields).

l The FIXFORM statement which can be used before the first CRTFORM. This enables
you to mix data sources (see Using FIDEL in MODIFY).

l Automatic application generation, which enables you to use several simple
statements to generate automatic data management procedures and CRTFORMs (see
Using FIDEL in MODIFY).

l Multiple CRTFORMs for different processing options. The additional FIDEL facility of
the LINE option helps you organize the use of multiple CRTFORMs (see Using Multiple
CRTFORMs: LINE).

l Case Logic, which enables you to divide the processing into logical subdivisions for
particular sets of circumstances (see Case Logic, and Using FIDEL in MODIFY).

l Groups of fields (see Using FIDEL in MODIFY).

l VALIDATES and various error handling formats (see Using FIDEL in MODIFY).

l Log files that preserve a record of all data that is entered onto the screen (see Using
FIDEL in MODIFY).

MODIFY also has additional screen control options such as clearing the screen, setting the
height and width parameters, and changing the default size of the TYPE message area in
order to enlarge the CRTFORM (see Using FIDEL in MODIFY).

#d10designscreens1086414
#d10designscreens1086414
#d10designscreens1086624
#d10designscreens1086624

ibi™ FOCUS® Maintaining Databases

315 | Designing Screens With FIDEL

Conditional and Non-Conditional Fields
When you run a MODIFY request, FOCUS keeps track of which transaction fields are active
or inactive during execution. In order to add, update, and delete segment instances, the
fields must be active (see Advanced Facilities, for a full discussion of active and inactive
fields).

You can define data entry and turnaround fields as either conditional or non-conditional. A
conditional field is conditionally active. That is, it becomes active only if there is incoming
data present for the field. Otherwise, it remains inactive. A non-conditional field is always
active whether there is incoming data present or not.

When you are performing update operations, there are several important points to keep in
mind when you choose whether to specify a field as conditional or non-conditional:

l If data is entered or changed, the data source value is always updated and the field
always becomes active. This is true whether the field is conditional or non-
conditional.

l If data is not entered or changed, what happens to the data source value is
dependent on whether the field is conditional or non-conditional as well as program
logic. The following table outlines this.

Type of Field Active/Inactive Data Source Value

Conditional Entry Inactive Remains. Display value ignored.

Conditional Turnaround Inactive Remains. Display value ignored.

Non-Conditional Entry Active Displayed value replaces data
source value (blank or 0).

Non-Conditional
Turnaround

Active Displayed value replaces data
source value (same value).

l If a field is active, the displayed value always becomes the new data source value. In
turnaround fields, this is by definition the same value.

l If a field is inactive, the displayed value is always ignored.

l If you compute a data source field and then display it on the CRTFORM with a D. or a
T., the field must still be active to get the computed value displayed on the screen.

ibi™ FOCUS® Maintaining Databases

316 | Designing Screens With FIDEL

Otherwise, you get a blank or 0.

l When you use a VALIDATE for a field, the field must be active. Otherwise you do not
get the accurate data source value validated; instead, you get a blank or 0.

Note: You can make a field active or inactive by using the ACTIVATE or
DEACTIVATE statement respectively.

Conditional and Non-Conditional Display and
Turnaround Fields
The following example illustrates the display and turnaround field features as well as the
use of a non-conditional turnaround field (both carets). The first CRTFORM asks for a key
field value, in this case EMP_ID. If a matching record is obtained, then some data source
values are displayed and others are shown for turnaround update.

Note how the non-conditional turnaround field functions in the following example. Whether
the displayed value is changed or not, the value in the data source is active. The VALIDATE
uses the display value, whether it was changed or not.

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER BEFORE CONTINUING"
"--"

MATCH EMP_ID
ON NOMATCH TYPE

"EMPLOYEE ID NOT IN DATABASE. PLEASE REENTER."
ON NOMATCH REJECT

2. ON MATCH CRTFORM LINE 4
" "
"EMPLOYEE ID #: <D.EMP_ID"
"LAST NAME: <D.LAST_NAME"
"HIRE DATE: <D.HIRE_DATE"
"SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

3. ON MATCH VALIDATE
SALTEST = IF CURR_SAL GT 0 THEN 1 ELSE 0;
ON INVALID TYPE
"SALARY MUST BE GREATER THAN 0"

ibi™ FOCUS® Maintaining Databases

317 | Designing Screens With FIDEL

"CORRECT SALARY AND PRESS ENTER TWICE"
ON MATCH UPDATE CURR_SAL DEPARTMENT

DATA
END

The example processes as follows:

1. When the procedure executes, the top part of the CRTFORM appears as follows:

ENTER EMPLOYEE ID #:
PRESS ENTER BEFORE CONTINUING

If the employee ID entered does not match an ID in the data source, the transaction
is rejected and a TYPE statement appears at the bottom of the screen.

Assume the operator enters the following employee ID:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

2. If the ID entered matches an ID in the data source, FOCUS successfully retrieves a
record. The ON MATCH CRTFORM causes a second CRTFORM to be displayed on line
4. This CRTFORM contains both display and turnaround fields. The data source values
of the fields appear on the second CRTFORM, and the cursor is positioned at the start
of the CURR_SAL field which is the first unprotected field. Note that both CURR_SAL
and DEPARTMENT are automatically highlighted for turnaround:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

ibi™ FOCUS® Maintaining Databases

318 | Designing Screens With FIDEL

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: MIS

Assume the operator updates DEPARTMENT, does not change CURR_SAL, and
transmits the CRTFORM:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE 811102
SALARY: 27062.00
DEPARTMENT: ois

3. When the operator presses Enter, the transaction is processed. If the value of CURR_
SAL is greater than 0, the VALIDATE will evaluate as 1 (true) and processing
continues. Although a value was not entered for CURR_SAL, the field is active
because it is specified as a non-conditional field. Thus, the VALIDATE reads the
current value in the T. field (27062.00), and validates the field. The transaction is then
processed.

If you specify the turnaround field as conditional (only the left caret), the field is inactive if
no data is entered. Assume the same transaction as above. The operator updates the
DEPARTMENT and does not enter new data for the CURR_SAL field. The VALIDATE does not
read the T. value because the field is inactive and instead reads a 0. The field is invalidated
and the following error message occurs:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

ibi™ FOCUS® Maintaining Databases

319 | Designing Screens With FIDEL

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: ois

(FOC421)TRANS 1 REJECTED INVALID SALTEST
INVALID SALARY
SALARY MUST BE GREATER THAN 0

Using FIXFORM and FIDEL in a Single MODIFY
A MODIFY procedure can mix data sources from CRTFORMs and FIXFORMs.

The rules are:

l You can have only one FIXFORM statement and you must specify the name of the
transaction data source. For example:

FIXFORM ON filename

l The FIXFORM statement must precede the CRTFORM statement.

l START and STOP do not apply (see Reading Selected Portions of Transaction Data
Sources: The START and STOP Statements).

This feature is useful in situations where a known set of records is wanted and the keys for
these records reside on an external fixed format data source. (The data source may have
been produced by a prior TABLE and SAVE or HOLD command.) The procedure first reads a
key, fetches the matching record, and displays it on the CRTFORM specified.

This is also convenient when the FIXFORM is included in a START case.

In the following example, FIXFORM is used with FIDEL. To run this example on your
machine, you must first create a sequential data source with data. To do so, run this TABLE
request:

#d09modifydatasources1086836
#d09modifydatasources1086836

ibi™ FOCUS® Maintaining Databases

320 | Designing Screens With FIDEL

TABLE FILE EMPLOYEE
PRINT EMP_ID PAY_DATE
IF PAY_DATE GE 820730
ON TABLE SAVE AS PAYTRANS
END

This creates the transaction data source PAYTRANS. Then run the following MODIFY
request:

MODIFY FILE EMPLOYEE
1. FIXFORM ON PAYTRANS EMP_ID/9 PAY_DATE/6
2. MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
3. ON MATCH/NOMATCH CRTFORM

"EMPLOYEE ID #:<D.EMP_ID"
"PAY DATE:<D.PAY_DATE"
"MONTHLY GROSS:<T.GROSS>"

ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

DATA
END

The example processes as follows:

1. First the data is read in from the sequential data source PAYTRANS.

2. The EMP_ID from PAYTRANS is matched against EMP_IDs in the EMPLOYEE data
source. If the EMP_IDs match, PAY_DATE is matched.

3. The CRTFORM shows display values for EMP_ID and PAY_DATE. If there is a match on
PAY_DATE, GROSS is displayed as a turnaround field and the operator can update it.
If there is no match on PAY_DATE, both PAY_DATE and GROSS are included:

EMPLOYEE ID #: 071382660
PAY_DATE: 820831
MONTHLY GROSS: 916.67

The procedure ends when there are no more transactions to read on the external data
source. It can also be terminated by the operator by pressing the PF1 or PF3 key.

ibi™ FOCUS® Maintaining Databases

321 | Designing Screens With FIDEL

Generating Automatic CRTFORMs
You can use several simple but powerful statements with the FOCUS MODIFY facility to
allow immediate generation of data management requests. You do not need to learn the
complete FOCUS MODIFY language. Without using field names, you can write general-
purpose requests and customize them for more detailed situations.

The statements can be used with multi-segment data sources as well as simple data
sources. They can also be used from the Screen Painter (see Using the ibi FOCUS Screen
Painter). These statements automatically specify conditional fields. They include:

CRTFORM * [SEG n]
Design screen for all real data fields in
segment n, where n is either the segment
name or number.

CRTFORM * KEYS [SEG
n]

Design screen for all key fields in segment n.

CRTFORM * NONKEYS
[SEG n]

Design screen for all non-key fields in segment
n.

CRTFORM T.* [SEG n]
Design screen using T.fields in segment n

CRTFORM D.* [SEG n]
Design screen using D.fields in segment n.

Note: The use of CRTFORM * on a COMBINE data source name is illogical and
may produce unpredictable results.

Note that you can optionally specify the segment name or number for each of the
CRTFORMs. To obtain the segment names and numbers, enter the following command
where file is the name of the data source:

CHECK FILE file PICTURE

ibi™ FOCUS® Maintaining Databases

322 | Designing Screens With FIDEL

The names and numbers appear on the top of each segment in the diagram. You may also
list segment names and numbers by entering the command:

? FDT filename

See the Describing Data manual and the Developing Applications manual for more
information on the CHECK FILE command and ? FDT query.

If you are modifying all of the segments in the data source (except for unique segments),
you can write the request without using Case Logic. The following example adds and
maintains data for the EMPLOYEE data source. The segments are as follows:

l Segment 1 contains basic employee data (names, jobs, salaries, and so on).

l Segment 3 contains employee salary histories.

l Segment 7 stores employees' home addresses and information on their bank
accounts.

l Segment 8 stores employee monthly pay.

l Segment 9 stores monthly deductions.

(Segment 2 is a unique segment. Segments 4, 5, and 6 are cross-referenced segments that
are not part of the EMPLOYEE data source.)

The request is:

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS </1"
"INSTRUCTIONS"
"1. ENTER DATA FOR EACH FIELD"
"2. USE TAB KEY TO MOVE CURSOR"
"3. PRESS ENTER WHEN FINISHED"
"4. WHEN YOU FINISH ALL RECORDS, PRESS PF1 </1"

CRTFORM * KEYS
MATCH * KEYS SEG 01

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 01
ON MATCH UPDATE * SEG 01
ON NOMATCH INCLUDE

MATCH * KEYS SEG 03
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03
ON MATCH UPDATE * SEG 03
ON NOMATCH INCLUDE

MATCH * KEYS SEG 07

ibi™ FOCUS® Maintaining Databases

323 | Designing Screens With FIDEL

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

MATCH * KEYS SEG 08
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 08
ON MATCH UPDATE * SEG 08
ON NOMATCH INCLUDE

MATCH * KEYS SEG 09
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 09
ON MATCH UPDATE * SEG 09
ON NOMATCH INCLUDE

DATA
END

When the procedure executes, the screen appears as follows:

THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS

INSTRUCTIONS
1. ENTER DATA FOR EACH FIELD
2. USE TAB KEY TO MOVE CURSOR
3. PRESS ENTER WHEN FINISHED
4. WHEN YOU FINISH ALL RECORDS, PRESS PF1

EMP_ID: :
DAT_INC: :
TYPE: :
PAY_DATE: :
DED_CODE: :

LAST_NAME: : FIRST_NAME: :
HIRE_DATE: : DEPARTMENT: :
CURR_SAL: : CURR_JOBCODE: :
ED_HRS: :

PCT_INC: : SALARY: :
JOBCODE: :

ADDRESS_LN1: :

ibi™ FOCUS® Maintaining Databases

324 | Designing Screens With FIDEL

ADDRESS_LN2: :
ADDRESS_LN3: :

ACCTNUMBER: :

GROSS: :

Notice that the fields are divided into five groups. The first group consists of all the key
fields in the data source. Each subsequent group consists of all non-key fields in a
particular segment. Fill in each group from top to bottom and press Enter before filling in
the next group. When you do this, the request uses the values to match on the segments
specified later in the request.

The first CRTFORM statement generates the first group of fields, which are all the key fields
in the data source:

CRTFORM * KEYS

The MATCH statements in the request modify each of the segments in the data source.
Each statement contains a CRTFORM phrase that prompts for all non-key fields in the
segment:

CRTFORM T.* NONKEYS SEG xx

Note that the CRTFORM phrase displays the fields as turnaround fields. After you fill in the
fields in the group and press Enter, FOCUS uses the field values to update the segment.

You can add the following enhancements to the request:

l The LINE option on each CRTFORM statement.

l Explanatory text after each CRTFORM statement.

l A separate CRTFORM containing explanatory text at the beginning of the request.

If you want to modify some but not all segments in the data source, use Case Logic to
write the request. Place each MATCH statement in a separate case. For example, this
request modifies data in Segments 1, 3, and 7:

ibi™ FOCUS® Maintaining Databases

325 | Designing Screens With FIDEL

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE MAINTAINS EMPLOYEE"
"JOB DATA, SALARY HISTORIES, AND ADDRESSES"
" "

CRTFORM * KEYS
"FILL IN EMP_ID, DAT_INC, AND TYPE FIELDS"
"THEN PRESS ENTER"

GOTO EMPLOYEE

CASE EMPLOYEE
MATCH * KEYS SEG 01

ON NOMATCH REJECT
ON MATCH CRTFORM T.* NONKEYS SEG 01 LINE 10
ON MATCH UPDATE * SEG 01
ON MATCH GOTO MONTHPAY

ENDCASE

CASE MONTHPAY
MATCH * KEYS SEG 03

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03 LINE 10
ON MATCH UPDATE * SEG 03
ON MATCH GOTO DEDUCT
ON NOMATCH INCLUDE
ON NOMATCH GOTO DEDUCT

ENDCASE

CASE DEDUCT
MATCH * KEYS SEG 07

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07 LINE 10
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

ENDCASE
DATA
END

Using Multiple CRTFORMs: LINE
You can choose which screen line the CRTFORM will begin on by using the LINE option. By
default, the first CRTFORM begins on line 1. The next CRTFORM in the procedure begins on
the line following the end of the previous CRTFORM. For example, if one screen uses 12
lines, the next CRTFORM automatically begins on the 13th line.

ibi™ FOCUS® Maintaining Databases

326 | Designing Screens With FIDEL

In the following example, there are two logical forms: EMPLOYEE UPDATE and FUND
TRANSFER INFORMATION UPDATE. It illustrates the placement of CRTFORMs when the
default is in effect (that is, the LINE option is not used):

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
"
"DEPARTMENT: <DEPARTMENT <28 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"

ON MATCH UPDATE BA BC EDATE
DATA
END

This produces the following screen when the request is executed:

EMPLOYEE UPDATE

EMPLOYEE ID #: LAST_NAME:

ibi™ FOCUS® Maintaining Databases

327 | Designing Screens With FIDEL

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER

FUND TRANSFER INFORMATION UPDATE

BANK: ACCT #:

BANK CODE: START DATE:

Note that when the default is in effect, each logical form is displayed one after the other on
the screen, the instant the MODIFY procedure is executed. That is, all the distinct
CRTFORMs are concatenated into one visual form.

The LINE option enables you to control both the placement of a CRTFORM on the screen
and the timing with which it appears on the screen. Using LINE gives you the following
options:

l You can have one logical form replace another after each transaction by having
subsequent CRTFORMs begin on the same line.

l You can build mixed screens by saving lines from a previous CRTFORM on the screen
while executing a subsequent CRTFORM. In other words, the first CRTFORM is
displayed, the operator transmits the data, and the next CRTFORM is displayed while
the previous one remains on the screen.

The syntax is

CRTFORM [LINE nn]

where:

ibi™ FOCUS® Maintaining Databases

328 | Designing Screens With FIDEL

nn

Is the starting line number for the CRTFORM.

To completely replace one screen with the next, both CRTFORMs must start on the same
line. Note the following change in the previous example:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 1
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA
END

1. When the MODIFY procedure is executed, the following screen is displayed:

ibi™ FOCUS® Maintaining Databases

329 | Designing Screens With FIDEL

2. After the operator enters and transmits the data, the next CRTFORM replaces the
previous one on the screen:

Generally, it is a good practice to put LINE 1 on all CRTFORMs that start a new case (see
Using FIDEL in MODIFY) unless a specific screen pattern is wanted.

A combination of two or more individual CRTFORMs can occupy specific lines on one
screen. To obtain a mixed screen, place the desired starting line number with the CRTFORM
statement. For instance:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"

"--"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

ibi™ FOCUS® Maintaining Databases

330 | Designing Screens With FIDEL

ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 12
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA
END

Processing occurs as follows:

1. Like the preceding examples, this produces the first screen. Assume the operator
enters and transmits the following data:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS SALARY: 18480

BANK: STATE

FILL IN THE ABOVE FORM AND PRESS ENTER
--

2. The first CRTFORM remains on the screen while the next CRTFORM is displayed on
line 12:

ibi™ FOCUS® Maintaining Databases

331 | Designing Screens With FIDEL

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS CURRENT SALARY: 18480

BANK: STATE

FILL IN THE ABOVE FORM AND PRESS ENTER
--

FUND TRANSFER INFORMATION UPDATE
--
BANK: STATE ACCT #:40950036

BANK CODE: 510271 START DATE:821101

--

You can save certain lines from the preceding CRTFORM while you discard others. In the
previous example, if you begin the second CRTFORM on line 6, the EMP_ID and the LAST_
NAME remain and the next line is the beginning of the FUND TRANSFER INFORMATION AND
UPDATE.

Assume the operator enters and transmits data on the first CRTFORM. Part of the first
logical form disappears and the second form is displayed. Thus, a new visual form is
created:

EMPLOYEE UPDATE

--

ibi™ FOCUS® Maintaining Databases

332 | Designing Screens With FIDEL

EMPLOYEE ID #: 117593129 LAST_NAME: JONES

FUND TRANSFER INFORMATION AND UPDATE

--
BANK: STATE ACCT #: 40950036

BANK CODE: 510271 START DATE: 821101
--

You can create mixed screens using the LINE option, in a variety of ways, depending on the
need of the application.

CRTFORMs and Case Logic
Case Logic, described in Case Logic, enables you to perform separate complete MODIFY
processes in one procedure. Each of these is a case, and the procedure contains directions
about which case to execute under various circumstances.

When you use the Case Logic option of the MODIFY command, you can create a pattern of
many CRTFORMs.

When there are multiple CRTFORMs in a single MODIFY request, use the LINE option to
specify where each CRTFORM will be displayed. With Case Logic, generally, we recommend
that you use LINE 1 to replace one screen with another.

The following example illustrates the use of Case Logic with the CRTFORM:

MODIFY FILE EMPLOYEE
COMPUTE

PFKEY/A4= ;
CRTFORM

"TO INPUT A NEW RECORD, PRESS PF4"
"TO UPDATE AN EXISTING RECORD, PRESS PF5"

IF PFKEY EQ 'PF04' GOTO ADD ELSE
IF PFKEY EQ 'PF05' GOTO UPP ELSE GOTO TOP;

ibi™ FOCUS® Maintaining Databases

333 | Designing Screens With FIDEL

CASE ADD
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"LAST NAME: <LAST_NAME FIRST NAME: <FIRST_NAME"
"HIRE DATE: <HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA
END

The first CRTFORM appears as:

TO INPUT A NEW RECORD, PRESS PF4
TO UPDATE AN EXISTING RECORD, PRESS PF5

If the operator presses PF4, the following is displayed:

EMPLOYEE ID #:
LAST NAME: FIRST NAME:
HIRE DATE:
DEPARTMENT:

If the operator presses PF5, the following is displayed:

ibi™ FOCUS® Maintaining Databases

334 | Designing Screens With FIDEL

EMPLOYEE ID #:
DEPARTMENT:
JOB CODE:
SALARY:

Note: At the end of a MODIFY procedure, control defaults to the TOP Case.

Specifying Groups of Fields
Groups of fields (that is, more than one occurrence of the same field) can be specified on
the CRTFORM in two ways:

l Specifying a field more than once on a CRTFORM.

l Using REPEAT syntax.

You can use Case Logic to process groups of fields.

Specifying Groups of Fields for Input
A group of fields may repeat on the form. For example:

"EMPLOYEE ID DEPARTMENT SALARY"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"

This reads the same data as the FIXFORM statement:

FIXFORM 3(EMP_ID/C9 DPT/C10 CURR_SAL/C14)

The following example shows the use of repeating groups for a single employee ID:

MODIFY FILE EMPLOYEE
CRTFORM

ibi™ FOCUS® Maintaining Databases

335 | Designing Screens With FIDEL

"ENTER EMPLOYEE ID #: <EMP_ID"
" "
"ENTER PAY DATE AND GROSS PAY FOR ABOVE EMPLOYEE"
" "
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA
END

Note: A group of repeated data fields cannot be specified on a MATCH or
NOMATCH CRTFORM. They must be presented on a primary CRTFORM (that is,
one not generated as a result of a MATCH or NOMATCH command).

This procedure processes as follows:

ENTER EMPLOYEE ID #: 818692173

ENTER PAY DATE AND GROSS AMOUNT FOR
ABOVE EMPLOYEE

PAY DATE: 850405 GROSS: 3000.00
PAY DATE: 850412 GROSS: 4000.00
PAY DATE: 850418 GROSS: 2500.00

When the operator presses Enter, the transaction processes. Processing continues until a
line with no data is found or all lines are completed (whichever occurs first).

Using REPEAT to Display Multiple Records
You can display multiple segment instances on the screen by directing FIDEL to read and
display the contents of a HOLD buffer. You can use a subscript value to identify a particular
instance in the HOLD buffer with the following syntax

ibi™ FOCUS® Maintaining Databases

336 | Designing Screens With FIDEL

field(n)

where:

field

Is the name of a previously held field.

(n)

Is the integer subscript that identifies the number of the instance in the HOLD buffer
containing the field to be displayed. n must be in integer format or the report group will
be ignored.

The variable SCREENINDEX allows you to display and modify selected groups of records
from the HOLD buffer.

Consider the following example, which uses the REPEAT statement to retrieve up to a set
number (in this case, six) of multiple instances, saves them in the HOLD buffer, and then
displays the instances on the CRTFORM:

MODIFY FILE EMPLOYEE
1. CRTFORM

"PAY HISTORY UPDATE"
" "
"ENTER EMPLOYEE ID#: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
2. REPEAT 6 TIMES
2. NEXT PAY_DATE
2. ON NEXT HOLD PAY_DATE GROSS
3. ON NONEXT GOTO DISPLAY

3. ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;

4. COMPUTE
BUFFNUMBER/I5 = HOLDCOUNT;

ibi™ FOCUS® Maintaining Databases

337 | Designing Screens With FIDEL

5. CRTFORM LINE 5
"FILL IN GROSS AMOUNT FOR EACH PAY DATE"
" "
"PAY DATE GROSS AMOUNT"
"-------- ------------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"
"<D.PAY_DATE(6) <T.GROSS(6)>"

GOTO UPDATE
ENDCASE

CASE UPDATE
6. REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE
DATA
END

The procedure processes as follows:

1. When the procedure is executed, the first CRTFORM is displayed:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #:

2. Assume the operator enters the following ID and transmits the data:

ENTER EMPLOYEE ID #: 071382660

If there is a match, the instruction is to REPEAT the logic six times. That is, up until
six times, find a PAY_DATE and hold the PAY_DATE and the GROSS in the HOLD

ibi™ FOCUS® Maintaining Databases

338 | Designing Screens With FIDEL

buffer.

3. When there are no more PAY_DATE fields or six of them have been held, the
procedure branches to CASE DISPLAY.

4. The procedure stores the number of records that are in the HOLD buffer in the
variable BUFFNUMBER.

5. The procedure displays the following CRTFORM:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT
820831 916.67
820730 916.67
820630 916.67
820528 916.67
820430 916.67
820331 916.67

The operator makes changes to the fields in the GROSS AMOUNT column and presses
Enter. All changes for all records are transmitted simultaneously as shown:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT

ibi™ FOCUS® Maintaining Databases

339 | Designing Screens With FIDEL

820831 816.67
820730 816.67
820630 816.67
820528 916.67
820430 916.67
820331 916.67

6. The REPEAT statement instructs FOCUS to perform the MODIFY logic on all segment
instances.

Note: If a CRTFORM screen with subscripted variables is rejected with a FORMAT
ERROR, you may not alter any records on the screen prior to the record rejected,
as FOCUS has already held them.

Using Groups of Fields With Case Logic
When you use Case Logic to process a group of fields, some important rules apply:

l Each time the procedure enters the case, the next group of fields is processed.
FOCUS keeps track internally of which groups have been processed.

l If the CRTFORM with the group of fields is not in the TOP case, you must create your
own branching logic to process all the groups before going back to the TOP. This
normally requires some kind of counting mechanism. Once the procedure goes back
to the TOP case, all unprocessed data on the CRTFORM or in a lowercase is lost.

Case Logic, Groups, CURSORINDEX and VALIDATE
In the following example, Case Logic is used with groups of fields. The CURSORINDEX (see
Describing the CRT Screen) is used in conjunction with a VALIDATE:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE SALARY AND DEPARTMENT UPDATE"
" "

ibi™ FOCUS® Maintaining Databases

340 | Designing Screens With FIDEL

"PRESS ENTER"
GOTO COLLECT

CASE COLLECT
2. REPEAT 6 TIMES

NEXT EMP_ID
ON NEXT HOLD EMP_ID CURR_SAL DEPARTMENT
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
3. IF HOLDCOUNT EQ O GOTO EXIT;
4. COMPUTE

BUFFNUMBER/I5 = HOLDCOUNT;
5. CRTFORM LINE 7

"EMPLOYEE SALARY DEPARTMENT"
"-------- ------ ----------"
"<D.EMP_ID(1) <:AAA.T.CSAL(1)> <:BBB.T.DPT(1)>"
"<D.EMP_ID(2) <:AAA.T.CSAL(2)> <:BBB.T.DPT(2)>"
"<D.EMP_ID(3) <:AAA.T.CSAL(3)> <:BBB.T.DPT(3)>"
"<D.EMP_ID(4) <:AAA.T.CSAL(4)> <:BBB.T.DPT(4)>"
"<D.EMP_ID(5) <:AAA.T.CSAL(5)> <:BBB.T.DPT(5)>"
"<D.EMP_ID(6) <:AAA.T.CSAL(6)> <:BBB.T.DPT(6)>"

6. REPEAT 6 TIMES
COMPUTE

CURSOR/A66 = ':AAA';
CURSORINDEX/I5=REPEATCOUNT;

VALIDATE
SALTEST = IF CSAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE "SALARY MUST BE LESS THAN $50,000"
ON INVALID GOTO DISPLAY

ENDREPEAT
GOTO UPDATE
ENDCASE

CASE UPDATE
7. REPEAT BUFFNUMBER

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL DEPARTMENT

ENDREPEAT
GOTO COLLECT

ibi™ FOCUS® Maintaining Databases

341 | Designing Screens With FIDEL

ENDCASE
DATA
END

The example processes as follows:

1. The first CRTFORM requests the operator to press Enter without typing anything.

2. The REPEAT statement retrieves six employee IDs, salaries, and department
assignments and places them in a buffer.

3. If there are no records in the buffer, the procedure terminates.

4. The COMPUTE statement stores the number of records in the buffer in the variable
BUFFNUMBER.

5. The second CRTFORM retrieves the IDs, salaries, and department assignments from
the buffer and displays them together on the screen. Note the field labels:

l The label :AAA on the CURR_SAL (CSAL) field.

l The label :BBB on the DEPARTMENT (DPT) field.

Assume that the operator changes the values to the following:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

6. The second REPEAT statement operates on each of the six records displayed by the
second CRTFORM, in order of display, performing the following tasks:

l Sets the CURSOR variable to the label :AAA.

l Sets the CURSORINDEX variable to the number of the record it's processing (1

ibi™ FOCUS® Maintaining Databases

342 | Designing Screens With FIDEL

through 6).

l Validates the CURR_SAL field value. If the CURR_SAL value is $50,000 or more,
the procedure branches back to the beginning of Case DISPLAY. The procedure
displays the second CRTFORM again, with the CURSOR and CURSORINDEX
variables positioning the cursor on the invalid salary.

In the example, the procedure positions the cursor on the third CURR_SAL value:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

(FOC421)TRANS 2 REJECTED INVALID SALTEST
SALARY MUST BE LESS THAN $50,000

7. If all values are valid, the third REPEAT statement updates the employee's salary and
department for each record in the buffer. The procedure then branches to Case
COLLECT to update six more records in the data source.

Handling Errors
It is important to know how various errors are handled by FIDEL so that proper instructions
can be given to terminal operators. The following errors can cause a transaction or screen
of data to be rejected:

l A format error, caused by entering non-numeric data for a numeric field.

l A validation error, caused by entering an incoming value that failed a VALIDATE test

ibi™ FOCUS® Maintaining Databases

343 | Designing Screens With FIDEL

coded in the MODIFY.

l A NOMATCH condition, caused by entering data for a key field that did not match any
record in the data source.

l A DUPLICATE condition, caused by key field values that matched records on a data
source.

l An ACCEPT error, caused by entering a value for a data source field that failed the
ACCEPT test.

Note: Error messages are discussed in detail in Messages: TYPE, LOG, and
HELPMESSAGE.

Handling Format Errors
If the operator enters a non-numeric character into a field defined as numeric, an error
message is displayed and the screen is not processed (processing stops). The error
message indicates the line number and field name in error and the cursor is automatically
positioned on that field. Additionally, if the operator enters a value that fails an ACCEPT
test for a field an error message is displayed and the screen is not processed. Any message
specified for that field with the HELPMESSAGE attribute will also be displayed.

The operator can retype the data and press the Enter key to retransmit the screen.
Alternatively, the operator may press the PF2 key to cancel the transaction. The error
prevents anything on the screen from being processed. When the operator corrects the
error and transmits the screen, processing resumes.

There are two exceptions to this rule. When there are repeating groups, all complete
transactions up to the error will be processed. Also, in REPEAT/HOLD loops, the data prior
to the format error may not be altered.

VALIDATE and CRTFORM Display Logic
When the operator enters a value that is invalid, the transaction is rejected and an error
message is displayed. By default, control returns to the first CRTFORM in the TOP case.
However, you can use an ON INVALID GOTO statement to transfer control to any other case
in the request.

#d09modifydatasources1088627
#d09modifydatasources1088627

ibi™ FOCUS® Maintaining Databases

344 | Designing Screens With FIDEL

If the NOCLEAR or blank option in the CRTFORM statement (see Using FIDEL in MODIFY) is
in effect, the screen will not be cleared. The operator can change the data in the offending
transaction and retransmit the screen.

When you use validations, you can divide the tests into different cases and repeat a case if
it fails the test. The advantage of this is that the operator can change the invalid data and
retransmit the screen before other sections are processed. An ON INVALID TYPE phrase can
be used to send an informative message to the operator on the screen. The following
example shows the use of these options:

CASE TRY
CRTFORM

EMPLOYEE ID #: <EMP_ID NAME: <LAST_NAME"
"CURRENT SALARY: <CURR_SAL"

VALIDATE
GOODSAL= CURR_SAL GT 10000 AND CURR_SAL LT 1000000;
ON INVALID TYPE
THE CURRENT SALARY CANNOT BE LARGER THAN 1000000 OR"
"LESS THAN 10000"
ON INVALID GOTO TRY
.
.
.

All messages appear on the bottom four lines of the screen, unless you specify the TYPE
option on the CRTFORM statement (see Using FIDEL in MODIFY).

Handling Errors With Repeating Groups
If old style repeating groups (those without subscripts) are present and there is an error,
processing continues to the next transaction on the screen. This means that if the operator
changes the offending transaction and retransmits the screen, the other transactions on
the screen become duplicates. It is important when using repeating groups to reject
duplicates and turn the duplicate message off (LOG DUPL MSG OFF).

Alternatively, avoid using VALIDATE with repeating groups. Use COMPUTE instead and
branch to a case that displays the erroneous data in a lower portion of the screen.

The following is an example of this technique. A test field is computed in Case TEST, using
DECODE. This test field checks that the department value is a valid one. If the operator
inputs a department value that is invalid, control branches to a case that displays the
erroneous data (CASE BADDPT).

ibi™ FOCUS® Maintaining Databases

345 | Designing Screens With FIDEL

MODIFY FILE EMPLOYEE
1. CRTFORM

"FILL IN THE FOLLOWING CHART WITH THE SALARIES"
"AND DEPARTMENT ASSIGNMENTS OF FOUR NEW EMPLOYEES"
" "
" EMPLOYEE ID DEPARTMENT SALARY"
" ----------- ---------- ------"
"PERSON 1 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 2 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 3 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 4 <EMP_ID <DEPARTMENT <CURR_SAL"
GOTTO TEST

2. CASE TEST
IF EMP_ID IS ' ' GOTO TOP;
COMPUTE

TEST/I1 = DECODE DEPARTMENT (MIS 1 PRODUCTION 1 ELSE 0);
IF TEST IS 0 GOTO BADDEPT ELSE GOTO ADD;
ENDCASE

3. CASE ADD
MATCH EMP_ID

ON NOMATCH INCLUDE
ON MATCH REJECT

ENDCASE

4. CASE BADDEPT
COMPUTE

XEMP/A9 = EMP_ID;
XDEPT/A10 = DEPARTMENT;

CRTFORM LINE 12
"INVALID ENTRY: DEPARTMENT MUST BE MIS OR PRODUCTION"
"CORRECT THE ENTRY BELOW"
" "
"EMPLOYEE ID: <D.XEMP DEPARTMENT: <T.XDEPT"

COMPUTE
DEPARTMENT=XDEPT;

GOTO TEST
ENDCASE

DATA
END

The request processes as follows:

1. This is the first and TOP case, and contains a CRTFORM that displays four instances

ibi™ FOCUS® Maintaining Databases

346 | Designing Screens With FIDEL

of repeating groups. Assume the operator fills in values and transmits the screen.
Control transfers to Case TEST.

2. Case TEST contains a computed field that uses DECODE to make sure that the values
that have been input for DEPARTMENT are either MIS or PRODUCTION. When a
DEPARTMENT value does not match this list, TEST is returned a code of 0, in which
case control transfers to Case BADDEPT.

3. Case BADDEPT first computes two fields, XEMP and XDEPT, to have the values of
EMP_ID and DEPARTMENT at the time the error occurred. Next, BADDEPT displays a
CRTFORM containing a message to the operator and the two computed fields. The
XDEPT field, which contains the invalid DEPARTMENT value, is a turnaround field so
that the operator can see the invalid value and change it. Next, the COMPUTE is
reversed and the new values are returned to their respective fields. Control transfers
back to Case TEST where the DEPARTMENT values will continue to be tested until
they are all valid. At that point, control transfers to Case ADD.

4. Case ADD contains the MATCH logic necessary to include new employees into the
EMPLOYEE data source. The transaction including all the repeating groups is
processed at one time.

Rejecting NOMATCH or Duplicate Data
When the request directs that transactions be rejected, an error message is displayed on
the screen. It is a good idea, when the major keys do not repeat, to use a split CRTFORM
and give the keys in the first CRTFORM. Once the keys are accepted, the rest of the data
may be entered. For example:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"THEN PRESS ENTER"

MATCH EMP_ID
ON NOMATCH TYPE

"ID NOT IN DATABASE PLEASE REENTER"
ON NOMATCH REJECT
ON MATCH CRTFORM LINE 4

"LAST NAME: <T.LAST_NAME"
"DEPARTMENT: <T.DEPARTMENT"
"SALARY: <T.CURR_SAL"

ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

ibi™ FOCUS® Maintaining Databases

347 | Designing Screens With FIDEL

DATA
END

If the EMP_ID does not match, control returns immediately to the operator with a request
to correct the value. If a match does occur, the operator must then fill in the balance of the
form and transmit it.

If repeating groups are present and no other cases are involved, all of the groups are
processed before control returns to the screen. Thus, splitting screens in this way is
particularly useful when the second CRTFORM contains repeating groups.

Logging Transactions
You can log the data entered on the screen to any log file. Only the data is logged, not the
CRTFORM, so a compact log file is created. For example:

LOG TRANS ON ALLDATA

This will log transactions to a file allocated to the ddname ALLDATA.

The record length of the file must allow space for each field on each CRTFORM in the
procedure, plus one character at the start of each CRTFORM. The record length should not
be longer than this.

This may be an inconvenient format, since it is very long if several CRTFORMs exist. Instead
you can construct a custom log file of your own design using TYPE statements. This
example logs data collected from its preceding CRTFORM to a file allocated to ddname
MYCRT, including a COMPUTE transaction number, TNUM:

CRTFORM
"EMPLOYEE ID #: <EMP_ID NAME <LAST_NAME"
"HIRE DATE: <HIRE_DATE"
COMPUTE
TNUM/I4=TNUM+1;
TYPE ON MYCRT
"<TNUM><EMP_ID><LAST_NAME><HIRE_DATE"

This option is preferable to the standard LOG option whenever a procedure contains more
than two CRTFORMs, or when text or computed fields must be captured on the log file.

ibi™ FOCUS® Maintaining Databases

348 | Designing Screens With FIDEL

Additional Screen Control Options
MODIFY CRTFORMs support several additional screen control options:

l Clearing the screen with CLEAR/NOCLEAR.

l Specifying the screen size with WIDTH/HEIGHT.

l Changing the size of the message area at the bottom of the screen using Using FIDEL
in MODIFY. This increases the length of the screen that can be used for the actual
form.

Clearing the Screen: CLEAR/NOCLEAR
Data is transmitted from the CRTFORM to the data source when the operator presses the
Enter key. After each successful screen is processed, the data areas are automatically
cleared. You can override this default by using the NOCLEAR option. Then, after each data
transmission, the screen remains unchanged.

This is a useful feature when there is a substantial amount of data that carries over from
one screen to another. The syntax is

CRTFORM action

where:

action

Is one of the following:

blank is the default. Causes the screen to clear after the data is transmitted. If a
transaction is invalid and an error message appears at the bottom of the screen, the
screen will not be cleared.

NOCLEAR causes the data values on the screen to remain as is after data is transmitted.

CLEAR causes the data values on the screen to clear after every data transmission, even
if there is an error. Thus, if CLEAR is specifically used and there is an error, data must be
reentered.

Note: The options chosen may be different from one CRTFORM to the next.

#d10designscreens1086988
#d10designscreens1087004

ibi™ FOCUS® Maintaining Databases

349 | Designing Screens With FIDEL

Specifying Screen Size: WIDTH/HEIGHT
FIDEL assumes a default screen size of 24 lines of 80 characters each. The WIDTH/HEIGHT
options allow you to use the full width and height of IBM terminals that are larger than the
usual 3270 screen for the display of CRTFORMs. The following syntax allows you to override
the defaults

CRTFORM [WIDTH nnn] [HEIGHT nnn]

where:

WIDTH nnn

Is the total number of characters across the face of the screen. Acceptable values for
WIDTH are 80 and 132 and cannot exceed the true width of the terminal. FOCUS verifies
that each line of the CRTFORM can be displayed at the current WIDTH specification. If
any line of the CRTFORM exceeds it, you will receive error message FOC456, and the
procedure will not run.

HEIGHT nnn

Is the total number of lines that each screen supports. It bears no relation to the
number of lines in the CRTFORM. It may not exceed the true height of the terminal, but
it may be less. For example, you can specify HEIGHT 20 for a Model 2 screen instead of
24 and write a CRTFORM of 32 lines. The first 16 lines appear on one screen and the
next 16 on the subsequent screen. Remember that by default, four lines are reserved for
TYPE messages.

The following table gives the physical screen sizes for the IBM 3270 series of terminals:

Terminal Type Model Width Height

3270 1 80 24

3277, 3278, 3279, 3178 2 80 24

3278, 3279 3 80 32

3278 4 80 43

3278 5 132 27

ibi™ FOCUS® Maintaining Databases

350 | Designing Screens With FIDEL

FOCUS senses the width and height of the terminal which you are using and attempts to
implement your CRTFORM WIDTH and HEIGHT specifications accordingly. Here are some
rules and facts that apply:

l If your WIDTH or HEIGHT specifications exceed the perceived characteristics of the
terminal, you will receive a FOC491 error message and the procedure will not run.

l FOCUS sees the terminal as it is defined to the operating system. For example, a
Model 5 3278 may be defined to the operating system as a Model 2 terminal. That
terminal will appear to FOCUS as a Model 2 (24 lines deep and 80 characters wide). A
WIDTH 132 specification will produce a FOC491 error message.

Changing the Size of the Message Area: TYPE
By default, FOCUS reserves the last four lines of the terminal screen for TYPE messages and
text messages specified with the HELPMESSAGE attribute (see Messages: TYPE, LOG, and
HELPMESSAGE). You can override this default and determine the number of lines each
CRTFORM reserves with the keyword TYPE. This feature allows you to increase the number
of lines on the screen for CRTFORM display and reduce the number of lines reserved for
messages at the bottom of the screen. The syntax is

CRTFORM TYPE {n|4}

where:

n

Is a number from one to four indicating the number of message lines desired. The TYPE
value setting remains in effect for all subsequent CRTFORMs in the same procedure until
overridden by a new value.

You can expand the actual CRTFORM screen size by specifying a number less than four. For
example, a terminal with a height of 24 lines currently reserves 20 lines for the CRTFORM
and four lines for the TYPE area. If you specify a TYPE area of 2, the CRTFORM area
increases to 22 lines.

If one procedure varies the size of the TYPE area from a larger to a smaller number,
CRTFORM will clear the necessary TYPE statements in order to generate the next screen. If
multiple CRTFORMs are written to the same screen, each CRTFORM should specify the
same TYPE area size. For example:

#d09modifydatasources1088627
#d09modifydatasources1088627

ibi™ FOCUS® Maintaining Databases

351 | Designing Screens With FIDEL

CRTFORM LINE 1 TYPE 2
:
:
CRTFORM LINE 7 TYPE 2

Messages supplied with the HELPMESSAGE attribute in the Master File for fields on the
MODIFY CRTFORM, are displayed in the TYPE area.

This type of message consists of one line of text which is displayed when:

l The value entered for a data source field is invalid according to the ACCEPT test for
the field, or causes a format error.

l The user places the cursor in the data entry area for a particular field and presses a
predefined PF key. If no message has been specified for that field, the following
message will be displayed:

NO HELP AVAILABLE FOR THIS FIELD

Using FIDEL in Dialogue Manager
FIDEL works with all the standard Dialogue Manager facilities. However, the following
differences apply when you use FIDEL with Dialogue Manager:

l You must allocate space for the variable field on the -CRTFORM, because variable
fields in Dialogue Manager are not related to a Master File (see Using FIDEL in
Dialogue Manager).

l There are two additional control statements: -CRTFORM BEGIN and -CRTFORM END.
These give you control over when you begin and end the form (see Starting and
Ending CRTFORMS: BEGIN/END). This control allows you to make use of other
Dialogue Manager control statements as you are building your -CRTFORM.

#d10designscreens1087161
#d10designscreens1087161

ibi™ FOCUS® Maintaining Databases

352 | Designing Screens With FIDEL

Allocating Space on the Screen for Variable
Fields
You must define the length of variable fields in -CRTFORMs. The length of Dialogue
Manager variables can be defined in one of two ways:

l Directly on the -CRTFORM using the following syntax for allocating space.

<&variable/length

where:

length

Is a number representing the alphanumeric length of the variable.

l By using the -SET command to pre-declare the allocation of space using the syntax

-SET &variable = ' ' ;

where:

' '

Represents the alphanumeric length of the variable.

Note:
o If the variable format has been previously defined in the FOCEXEC

procedure, the length defined directly on the -CRTFORM supersedes
the previously defined format permanently.

o Variables used as label names (&:variable) cannot be automatically
defined on the -CRTFORM. These variables must be defined with -SET
statements.

Starting and Ending CRTFORMS: BEGIN/END
-CRTFORM BEGIN indicates that the form is being built. This Dialogue Manager control
statement enables you to use other Dialogue Manager control statements between the

ibi™ FOCUS® Maintaining Databases

353 | Designing Screens With FIDEL

screen lines without causing the CRTFORM to end. This is necessary when you are using
indexed variables in a looping procedure.

-CRTFORM END terminates the form and causes the display of the assembled form.

Using Indexed Variables With -CRTFORM BEGIN and
-CRTFORM END
The following is an example of the use of indexed variables in -CRTFORM. The variable
&LINENUM is the indexed variable in the -CRTFORM. The index, &I, is set to increment by 1
each time a line is written. After the 10th line, the -CRTFORM ends. Note the use of the
Dialogue Manager label, -BUILD and the -SET statement to control the loop within the
form:

1. -SET &I = 0;
2. -CRTFORM BEGIN

-"THE FOLLOWING FORM STORES 10 LINES OF TEXT"
-" "

3. -BUILD
4. -SET &I = &I + 1;
5. -SET &LINENUM.&I = 'LINE ' | &I;
6. -"<D.&LINENUM.&I <&LINE.&I/60"
7. -IF &I LT 10 GOTO BUILD;
8. -CRTFORM END

-*
-TYPE LINE #2 CONTAINS THE FOLLOWING TEXT:
-TYPE

9. -TYPE &LINE2

This example processes as follows:

1. This -SET statement declares a counter, &I, and sets the counter to 0.

2. The -CRTFORM BEGIN statement begins the form.

3. This statement is a Dialogue Manager label, -BUILD. Because we are using the -
CRTFORM BEGIN statement, this label does not end the CRTFORM.

4. This -SET statement sets the counter &I to increment by 1 each time a line is written.
This controls the loop within the form.

5. This -SET statement indexes the variable &LINENUM with the counter &I. Thus, each

ibi™ FOCUS® Maintaining Databases

354 | Designing Screens With FIDEL

time it is encountered in the -CRTFORM it will increment +1.

6. The -CRTFORM will appear as follows:

THE FOLLOWING FORM STORES 10 LINES OF TEXT

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8
LINE 9
LINE 10

Type any text you wish onto the lines.

7. The -IF test allows the loop to process until there are 10 lines in the -CRTFORM. At
that point control transfers to the -CRTFORM END statement.

8. -CRTFORM END ends the -CRTFORM and causes it to be displayed.

9. The last TYPE statement shows the contents of line 2.

Clearing the Screen in Dialogue Manager
The statement -CRTFORM both initiate the screen form and automatically clears the screen.
The screen form begins at the top of the screen.

After the operator enters the values for the variables and presses Enter, the variables are
supplied with the values and the screen is cleared.

ibi™ FOCUS® Maintaining Databases

355 | Designing Screens With FIDEL

Changing the Size of the Message Area: -
CRTFORM TYPE
By default, FOCUS reserves the last four lines of the Dialogue Manager terminal screen for
TYPE messages. You can change this by using the keyword TYPE to determine the number
of lines each CRTFORM reserves for messages. This feature allows you to increase the
number of lines on the screen for CRTFORM display and reduce the number of lines
reserved for messages at the bottom of the screen. The syntax is

-CRTFORM TYPE {n|4}

where:

n

Is a number from 1 to 4 indicating the number of message lines desired. The TYPE value
setting remains in effect for all subsequent CRTFORMs in the same procedure until
overridden by a new value. The default is 4.

You can expand the CRTFORM screen size by specifying a number less than 4. For example,
a terminal with a height of 24 lines reserves 20 lines for the CRTFORM and four lines for the
TYPE area. If you specify a TYPE area of 2, the CRTFORM area increases to 22 lines.

Annotated Example: -CRTFORM
The following FOCEXEC is an example of a TABLE request incorporating the use of -
CRTFORM.

-* Component Of Retail Sales Reporting Module
1. SET &LIST = 'STAMFORD,UNIONDALE,NEWARK';
2. PROMPT &CITY.(&LIST).ENTER CITY.:

-*
3. -CRTFORM

-"Monthly Sales Report For <D.&CITY"
-"Date: <D.&DATE Time: <D.&TOD"
-" "
-"Beginning Product Code is: <&BEGCODE/3"
-"Ending Product Code is: <&ENDCODE/3"
-"Regional Supervisor is: <®IONMGR/15"

ibi™ FOCUS® Maintaining Databases

356 | Designing Screens With FIDEL

-"Title For UNIT_SOLD is: <&UNIT_HEAD/10"

4. TABLE FILE SALES
HEADING CENTER
MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
SUM UNIT_SOLD AS &UNIT_HEAD
AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"

5. END

The following is a sample of the dialogue between the screen and the operator. Operator
entries are in lowercase.

1. The -SET statement sets a value for the variable &LIST. The value is actually a list of
the names of three cities. They are enclosed in single quotation marks because of the
embedded commas.

2. The -PROMPT statement prompts the operator at the terminal for a value for &CITY.
Assume the operator types a city that is not on the list:

ENTER CITY:
boston
PLEASE CHOOSE ONE OF THE FOLLOWING:
STAMFORD,UNIONDALE,NEWARK
ENTER CITY:
stamford

3. The statement -CRTFORM initiates a screen form on which you type data:

Monthly Sales Report for STAMFORD
Date: 01/08/2003 Time: 13.12.41

ibi™ FOCUS® Maintaining Databases

357 | Designing Screens With FIDEL

Beginning Product Code is: b10
Ending Product Code is: b20
Regional Supervisor is: smith
Title For UNIT_SOLD is: sales

4. The following are the stacked FOCUS commands as they appear on the FOCSTACK
after the values have been entered from the -CRTFORM:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AS SALES AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
IF CITY EQ STAMFORD
FOOTING CENTER
"REGION MANAGER: SMITH"
"CALCULATED AS OF 01/08/2003"
END

5. The report is as follows:

PAGE 1

MONTHLY REPORT FOR STAMFORD
PRODUCT CODES FROM B10 TO B20

PROD_CODE SALES RETURNS RATIO
--------- ------ ------- -----
B10 60 10 16.67
B12 40 3 7.50
B17 29 2 6.90

REGION MANAGER: SMITH
CALCULATED AS OF 11/04/03

ibi™ FOCUS® Maintaining Databases

358 | Designing Screens With FIDEL

Using the ibi FOCUS Screen Painter
The FOCUS Screen Painter allows you to design a FIDEL full-screen layout by placing literal
text and areas for fields on the screen in any position that you desire. You then assign
these field areas of the screen to a data source or computed fields, and FOCUS
automatically codes the CRTFORM. You can also color, highlight, and/or assign screen
attributes to sections of the screen (text, fields, background or any combination).

The FOCUS Screen Painter also allows you to generate CRTFORMs automatically without
specifying field names (see Using FIDEL in MODIFY).

The Screen Painter operates within TED, the FOCUS editor (see the Overview and Operating
Environments manual for more details on TED), and can be used to create both MODIFY
CRTFORMs and Dialogue Manager -CRTFORMs. It is easy to use and makes the creating of
forms simple and visual.

Entering Screen Painter
To create a CRTFORM using the Screen Painter, you first enter the PAINT command from
within TED. You can set up the PAINT screen as follows:

1. Enter TED by typing TED followed by the name of the file:

TED FOCEXEC(CRTEMP

This opens the FOCEXEC called CRTEMP. The FOCEXEC may or may not already exist.

2. Place a CRTFORM or -CRTFORM statement in the FOCEXEC if it is not already there.
For example:

MODIFY FILE EMPLOYEE
CRTFORM

3. When a FOCEXEC is on the screen, enter the PAINT command in the command area
or press PF4. TED searches from the current line down the file until it finds a
CRTFORM statement and makes the following line the current line. (If you use more
than one CRTFORM in the FOCEXEC and you want to create the second CRTFORM,
enter the command PAINT 2.)

ibi™ FOCUS® Maintaining Databases

359 | Designing Screens With FIDEL

Note: A Master File must be active for the Screen Painter to set the default
field lengths for data source fields.

The following PAINT screen is displayed on your terminal:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7..+...

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
COMMAND:_

01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN
11=FIDEL 17=BOX

Between the two scale lines are 20 blank lines in which to enter the screen layout.
The cursor is positioned in the command zone in the lower left portion of the screen.
The codes at the bottom of the screen identify some of the PF keys that you can use.

These perform the following functions:

PF Key Function

01=HELP Lists all the PF key functions.

03=END Transfers you from the PAINT screen back into TED,
within your file.

07=BACKWARD Scrolls back to the previous screen of the CRTFORM.
When used with ASSIGN, moves the cursor back to the

ibi™ FOCUS® Maintaining Databases

360 | Designing Screens With FIDEL

PF Key Function

first field.

08=FORWARD Scrolls forward to the next screen of the CRTFORM.
When used with ASSIGN, moves the cursor to the next
field.

09=ASGN-FLD Use on the ASSIGN screen. Transfers you to the
particular field that the cursor is placed on. You can then
immediately assign or change attributes for that field.

10=ASSIGN Transfers you from the PAINT screen to the ASSIGN
screen (see Identifying Fields: ASSIGN).

11=FIDEL Shows you the CRTFORM as it will appear on the screen.

17=BOX Enables you to define a box of text. Move the cursor to
the upper-left corner and press PF17. Select features
from the box menu and then move the cursor to the
bottom-right corner and press PF17.

Note: With the exception of FORWARD, BACKWARD and ASGN-FLD, you can
also accomplish these functions by typing the command name in the
command zone.

4. If the CRTFORM already includes fields, and one or more fields are not declared in
the Master File, you may see this message:

(FOC532) LENGTHS OF FIELDS IN THIS CRTFORM CANNOT BE DETERMINED

To continue type IGNore and provide the lengths explicitly, or type ?F filename to
activate the appropriate master. After you follow the message instructions, the PAINT
screen appears.

PF Keys in PAINT
You can alter the values of PF keys in PAINT with the command

#d10designscreens1087538

ibi™ FOCUS® Maintaining Databases

361 | Designing Screens With FIDEL

SET PFnnword

where:

nn

Is a number from 1 to 24 specifying the PF key to be set.

word

Is the new value for the key.

The initial PF key settings in PAINT are:

PF Key Setting

PF1, PF13 : HELP

PF2, PF14 : INSERT

PF3, PF15 : END

PF4 : PAINT

PF5 : TOP

PF6 : BOTTOM

PF7, PF19 : BACKWARD PAGE

PF8, PF20 : FORWARD PAGE

PF9 : ASSIGN FIELD

PF10 : ASSIGN

PF11 : FIDEL

PF12 : DUPLICATE

ibi™ FOCUS® Maintaining Databases

362 | Designing Screens With FIDEL

PF Key Setting

PF16 : QUIT

PF17 : BOX

PF18 : (currently not used)

PF21 : CRTFORM

PF22 : SET OUTPUT FIDEL

PF23 : SET OUTPUT DIALOGUE

PF24 : (currently not used)

Entering Data Onto the Screen
In PAINT, you may enter text, and specify field dimensions. Always use the arrow keys to
designate text and field areas on this screen. Generally, text is entered by positioning the
cursor and typing, but fields require type and width specifications.

To create a field, type

<xx...x

where the total number of x's equals the width of the field desired. If you do not specify a
width, or if the command you entered is not syntactically correct, or active, PAINT will
automatically default to a width defined in the Master File.

Fields are conditional by default. To specify non-conditional fields, enter

<xx...x>

where the total number of x's equals the width of the field.

You may enter text descriptions of each field, but do not type the field name after the left
or right caret. Later you will learn how to assign each field a field name. You may designate
the field as Entry, Turnaround or Display with the ASSIGN command (see Identifying Fields:

#d10designscreens1087538

ibi™ FOCUS® Maintaining Databases

363 | Designing Screens With FIDEL

ASSIGN). By default, the fields are conditional. To specify non-conditional, type a right
caret (>) after the x's that indicate the field. We recommend that turnaround fields be non-
conditional. (See Conditional and Non-Conditional Fields for information on conditional
and non-conditional fields.)

Editing Functions
When you are designing your screen, you have editing functions available to you. To use
them, you must enter the command name on the COMMAND line on your PAINT screen or
use the appropriate PF key:

l Inserting Lines: INSERT, PF2, PF14. You can insert lines by moving the cursor to any
character on a line. Press PF2 or PF14 and the new line will be inserted immediately
following the line where the cursor is positioned. If you want to insert more than one
line, type the command (do not press Enter)

I[NSERT] n

where n is the number of new lines to be inserted. Next, move the cursor to the line
where you want the lines inserted. Press Enter and n lines will be inserted beneath
the line where the cursor is currently positioned.

If the insert causes the screen to exceed 20 lines, the message

1,40

will be displayed, indicating that the display starts at line 1 out of a total of 40.

l Deleting Lines: DELETE. You can similarly delete lines by typing:

D[ELETE] n

on the command line, where n is the number of lines you want deleted. Next, move
the cursor to the first line you want deleted and press Enter.

l Duplicating Lines: DUPLICATE, PF12. You can duplicate lines by placing the cursor on
the line that you want to duplicate. Press PF12. If you want to duplicate more than
one line, type the command

DU[PLICATE] n

#d10designscreens1087538
#d10designscreens1086414

ibi™ FOCUS® Maintaining Databases

364 | Designing Screens With FIDEL

where n is the number of copies you want; position the cursor on the line you want
to duplicate and press Enter.

If the line that you are copying contains subscripted fields (for example, "SALES (1)"),
the subscripts will be incremented by one automatically (see Using FIDEL in MODIFY).
If you want an increment other than 1, enter the command

DUPLICATE n m

where m is the increment number.

Sample PAINT Screen
In the following example, assume that the following FOCEXEC exists:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CRTFORM

To use the Screen Painter to create the second CRTFORM, specify PAINT 2 at the TED
command line (2 indicates second CRTFORM). Then type the following text and fields on
the PAINT screen to create the CRTFORM that will be displayed if there is a match on EMP_
ID.

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <XXXXXXXXX LAST NAME: <XXXXXXXXXXXXXXX

DEPARTMENT: <XXXXXXXXXX> CURRENT SALARY: <XXXXXXXX

BANK: <XXXXXXXXXXXXXXXXXXXX

ibi™ FOCUS® Maintaining Databases

365 | Designing Screens With FIDEL

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
COMMAND:_

01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL
17=BOX

When you finish entering text and indicating areas for fields (the number of X's corresponds
to the field length), press Enter. The following screen results:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <111111111 LAST NAME: <22222222222222

DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
COMMAND:_

01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL
17=BOX

Note that the X's are replaced with numbers indicating the relative position of each field on
a line. On the second line, EMPLOYEE ID is number 1 and LAST NAME is number 2.

Note: Labels created in Screen Painter cannot exceed 12 characters.

ibi™ FOCUS® Maintaining Databases

366 | Designing Screens With FIDEL

Defining a Box on the Screen
You can define a boxed area of the screen, have it flash, or underline it. Text within the box
assumes the attributes of the box, but fields within the box do not change their
appearance.

To define a box, place the cursor in the upper-left corner of the area you want to enclose in
a box, and press PF17. The following screen and menu appear:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <111111111 LAST NAME: <22222222222222

DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
Color (W,B,R,P,G,A,Y): Flash /Under/Inv/Off (F,U,I,O):
Please position the cursor at other end of box and hit the key again

Fill in the color and/or attributes that you desire, position the cursor at the lower-right
corner of the area you want to enclose in a box, and press PF17.

To delete the box, move the cursor to the upper-left corner of the box and type O in the
attribute area. Then move the cursor to the lower-right corner of the box and press PF17.
The letter O stands for OFF and deletes the box. Note that you must position the cursor
exactly at the corners.

The BOX feature of Screen Painter will not generate a proper box if the fields cross or touch
the boundary of the box itself. Boxes may not extend past column 77.

If you try to generate a box, but fail, the following message appears:

command.box
(FOC694) INVALID BOX REGION OR CURSOR POSITION DEFINED.

ibi™ FOCUS® Maintaining Databases

367 | Designing Screens With FIDEL

When this happens, press Enter to clear the message, move the cursor to the upper-left
corner, and press PF17 to start over.

If you press PF17 to begin a box and then decide not to define a box, press PF3 to cancel.

Identifying Fields: ASSIGN
Until now, you have simply laid out text that describes the fields, designated a display
length (X's) within the left caret (<), and possibly indicated non-conditional (>) fields. Now
you can assign field names and attributes for the fields. Enter the command ASSIGN in the
command zone or press PF10. Your ASSIGN screen displays the following:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: ********* LAST NAME: EEEEEEEEEEEEEEE

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
Field: Entry/Turn Disp (E,T,D): Col (W,B,R,P,G,A,Y):
Field Length: 9(D12.2M) High/Nodis/Inv (H,N,I): Label:

The first field following the descriptive text EMPLOYEE ID #: is highlighted and replaced by
asterisks. All other fields are displayed in low intensity with E's denoting the length of the
fields. The cursor is positioned in the status entry area at the bottom of the screen next to
FIELD.

Now you can enter and assign field names and attributes for the field appearing in
asterisks. Fill in the appropriate values in the status entry area at the bottom of the screen.
To move from one status area to the next, press TAB. You may leave a blank where you do
not want to use a particular attribute.

ibi™ FOCUS® Maintaining Databases

368 | Designing Screens With FIDEL

FIELD:

Enter the field name for the first field. In this case, enter EMP_ID, which is the name of
the field in the Master File.

ENTRY/TURN/DISP (E,T,D):

You may designate the field as Entry, Turnaround, or Display by specifying E, T, or D,
respectively. The default is Entry. (See Data Entry, Display and Turnaround Fields for
more information on Entry, Turnaround, and Display fields.) You specify whether a field
is conditional or non-conditional when you enter the field on the PAINT screen (see
Using the ibi FOCUS Screen Painter).

COL (W,B,R,P,G,A,Y):

You may designate the field with a color by entering one of the color abbreviations in
the COL area. You may choose W, white; B, blue; R, red; P, pink; G, green; A, aqua; Y,
yellow. If you do not wish to assign a color, leave this area blank.

FIELD LENGTH: 9 (A9):

In MODIFY, if a Master File is active while you are assigning attributes, the LENGTH
status will contain two values: the first value is the number of X's from the PAINT
screen, which is the display value; the value in parentheses is the format value from the
Master File. The display value must be equal to or less than the format value.

If you want to change the display value on the screen, put a new number in the FIELD
LENGTH area or return to PAINT (PF3) and enter the correct number of characters
following the <.

HIGH/NODISP/INV (H,N,I):

You can choose highlight, nodisplay or inverse video as an attribute for the field by
filling in the appropriate abbreviation.

LABEL:

If you want to enter a label, simply enter its name. The colon and period are
automatically provided on the screen.

In the following example, the current field is LAST_NAME. It is designated a display field.
The remaining attributes are left blank. After you press Enter and move to the next field,
the asterisks turn to D's (display) as did the EMP_ID field.

#d10designscreens1085528

ibi™ FOCUS® Maintaining Databases

369 | Designing Screens With FIDEL

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: DDDDDDDDD LAST NAME: ***************

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEEEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
FIELD: last_name ENTRY/TURN/DISP (E,T,D): d COL (B,R,P,G,A,Y):
FIELD LENGTH: 15 (A,15) HIGH/NODISP/INV (H,N,I): LABEL:

To move to the next field, press PF8. You may assign a field name, prefix, color, attribute or
label to the remaining fields on the screen. If you need to move to a previous field to
change something, press PF7. This will return you to the first field. From there you can use
the TAB key to move to the field that you need.

To move to a specific field directly from PAINT or from within ASSIGN, place the cursor on
that field and press PF9, ASGN-FLD.

Viewing the Screen: FIDEL
From the PAINT or ASSIGN screen, you can view the exact FIDEL screen that you have
created. Press PF11 or type FIDEL in the command zone. As the following screen shows, all
entry fields are blank and ready to receive data; all turnaround fields contain T's and may
be typed over; all display fields contain D's and are protected:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMPLOYEE UPDATE

EMPLOYEE ID #: DDDDDDDDD LAST NAME: DDDDDDDDDDDDDDD

ibi™ FOCUS® Maintaining Databases

370 | Designing Screens With FIDEL

DEPARTMENT: TTTTTTTTTT CURRENT SALARY:

FIDEL: Press PF3 or PF15 to return to the PAINT screen.

As indicated on the FIDEL screen, to return to the PAINT screen press PF3 or PF15.

Generating CRTFORMs Automatically
To generate CRTFORMs automatically (that is, without specifying individual fields) from the
FOCUS Screen Painter, use the asterisk (*) with CRTFORM in the PAINT screen command
zone. (See Using FIDEL in MODIFY for information on CRTFORM * variations and syntax.)

The text description identifying field is the field name from the Master File. Key fields
automatically become entry fields, and all other fields become turnaround fields. With
multi-segment data sources, the CRTFORM * command ignores all segments following the
first cross-reference (segment type KU or KM) described in the Master File.

For example, to generate a CRTFORM containing all fields in the EMPLOYEE Master File, do
the following:

1. Type a MODIFY and a CRTFORM statement in a FOCEXEC.

2. Enter PAINT on the TED command line to invoke the Screen Painter.

3. Type CRTFORM * in the Screen Painter command zone.

The following PAINT screen results:

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...

EMP_ID :<111111111> :
LAST_NAME :<111111111111111 : FIRST NAME :<2222222222:
HIRE_DATE :<111111 : DEPARTMENT :<2222222222:

ibi™ FOCUS® Maintaining Databases

371 | Designing Screens With FIDEL

CURR_SAL :<111111111111 : CUR_JOBCODE :<222 :
ED_HRS :<111111 :
BANK_NAME :<11111111111111111111 :
BANK_CODE :<111111 : BANK_ACCT :<222222222:
EFFECT_DATE :<111111 :
DAT_INC :<111111> :
PCT_INC :<111111 : SALARY :<222222222222:
JOBCODE :<111 :
TYPE :<1111> :
ADDRESS_LN1 :<11111111111111111111 :
ADDRESS_LN2 :<11111111111111111111 :
ADDRESS_LN3 :<11111111111111111111 :
ACCTNUMBER :<111111111 :
PAY_DATE :<111111> :
GROSS :<111111111111 :
DED_CODE :<1111> :
PF8=NEXT SCREEN PF7=PREVIOUS SCREEN PF1=OUT

...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
COMMAND: 1, 40
01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL
17=BOX

CRTFORM * creates labels (that is, text describing each field) on the CRTFORM of up to 12
characters. If the field name is shorter than 12 characters, the label is the field name. If the
field name exceeds 12 characters, a caret (>) in the 12th position indicates a longer field
name.

Terminating Screen Painter
To return to TED from the PAINT screen, enter the command END in the command zone or
press PF3 until the prompt for TED appears. TED displays the lines as they have been
generated, beginning at the current line, which is ON MATCH CRTFORM:

ibi™ FOCUS® Maintaining Databases

372 | Designing Screens With FIDEL

" <.C. EMPLOYEE UPDATE <0X
" <.C. <0X

<.C."
" <.C. EMPLOYEE ID #: <D.EMP_ID/09 LAST NAME: <0X
<LAST_NAME/15 <.C."
" <.C. <0X

<.C."
" <.C. DEPARTMENT: <T.DEPARTMENT/10> CURRENT SALARY: <0X
<T.CURR_SAL/08 <.C."
" <.C. <0X

<.C."
" <.C. BANK <T.BANK_NAME/20 <.C."
" <.C. <0X
DATA
END

The generated code for the CRTFORM is in the file. Notice that each field is named and has
its length appended to it. Any attributes or labels requested during the ASSIGN process are
also present. If you want to change the layout, you can use the TED editor or you can
return to the PAINT and/or ASSIGN screen to make the changes.

You can add further MATCH logic to the FOCEXEC by using TED. For example:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CRTFORM

" EMPLOYEE UPDATE"
" "
" EMPLOYEE ID #: <D.EMP_ID/09 LAST NAME: <D.LAST_NAME/15"
" "
" DEPARTMENT: <:FIRST.H.T.DEPARTMENT/10> CURRENT SALARY: <0X
<.C.CURR_SAL/08"
" "
" BANK : <BANK_NAME/20"

ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA
END

ibi™ FOCUS® Maintaining Databases

373 | Designing Screens With FIDEL

If you want to add another CRTFORM screen at this point, make sure you are on the
current line, type the CRTFORM or -CRTFORM statement, and reenter PAINT to design the
next screen. Finally, you can exit the PAINT screen, return to TED, and add or change
further logic.

Alternatively, all of the logic of the request could have been entered first and then the
Screen Painter used to create all the FIDEL screens. To create the first screen, enter the
command PAINT or PAINT 1; to create the second screen, enter the command PAINT 2.
PAINT 2 locates the second CRTFORM statement starting from the current line. You can
continue with PAINT 3, and so on, for all subsequent CRTFORM statements in the
procedure.

ibi™ FOCUS® Maintaining Databases

374 | Creating and Rebuilding a Data Source

Creating and Rebuilding a Data Source
You can create a new data source, or re-initialize an existing data source, using the CREATE
command.

After a data source exists, you may find it necessary to reorganize it in order to use disk
space more effectively, to change the contents, index, or structure of the data source, or to
change legacy date fields to smart date fields. You can do all of this and more using the
REBUILD command.

You can use the CREATE and REBUILD commands with FOCUS and XFOCUS data sources.
You can also use the CREATE command to create relational tables for which you have the
appropriate data adapter.

In the remainder of this chapter, all references to FOCUS data sources apply to FOCUS and
XFOCUS data sources.

Creating a New Data Source: The CREATE
Command
You can create a new, empty FOCUS data source for a Master File using the CREATE
command. You can also use the CREATE command to erase the data in an existing FOCUS
data source.

The CREATE command also works, with the appropriate data adapter installed, for a
relational table (such as a DB2 or Teradata table). For information, see the documentation
for the relevant data adapter.

If you issue the CREATE FILE command when the data source already exists, the following
message appears for a FOCUS or XFOCUS data source:

(FOC441) WARNING. THE FILE EXISTS ALREADY. CREATE WILL WRITE OVER IT.
REPLY:

ibi™ FOCUS® Maintaining Databases

375 | Creating and Rebuilding a Data Source

The DROP option on the CREATE FILE command prevents the display of the message and
creates the data source, dropping the existing table first, if necessary, and re-parsing the
Master File if it changed.

Note that you must issue either an allocation or a CREATE command for a new data source.
For all other platforms, if the data source has not been initialized, a CREATE is

automatically issued on the first MODIFY or Maintain Data request made against the data
source.

Use the CREATE Command
CREATE FILE mastername [DROP]

where:

mastername

Is the name of the Master File that describes the data source.

DROP

Drops an existing file before performing the CREATE and re-parses the Master File, if
necessary. No warning messages are generated.

If you issue the CREATE FILE filename DROP command for a FOCUS or XFOCUS data
source that has an external index or MDI, you must REBUILD the index after creating the
data source.

Note the following when issuing CREATE:

l If you do not allocate the data source prior to issuing the CREATE command, the data
source is created as a temporary data set. To retain the data source, copy it to a
permanent data set with the DYNAM COPY command.

l The CREATE command preformats the primary space allocation and initializes the
data source entry in the File Directory Table. A Master File must exist for the data
source in a PDS allocated to ddname MASTER.

l Issuing MODIFY or Maintain commands against data sources for which no CREATE or
allocation was issued results in a read error.

After you enter the CREATE command, the following appears:

ibi™ FOCUS® Maintaining Databases

376 | Creating and Rebuilding a Data Source

NEW FILE name ON date AT time

where:

name

Is the complete name of the new data source.

ON date AT time

Is the date and time at which the data source was created or recreated.

When you issue the CREATE command without the DROP option, if the data source already
exists, the following message appears:

(FOC441) WARNING. THE FILE EXISTS ALREADY. CREATE WILL WRITE OVER IT.
REPLY:

To erase the data source and create a new, empty data source, enter Y. To cancel the
command and leave the data source intact, enter END, QUIT, or N.

If you wish to give the data source absolute File Integrity protection, issue the following
command prior to the CREATE command:

SET SHADOW=ON

Creating a FOCUS Data Source
To create the ADDRESS data source, allocate the data source and then issue the CREATE
command:

DYNAM ALLOC F(ADDRESS) DA(ADDRESS.FOCUS) NEW SPACE(5,5) CYL
CREATE FILE ADDRESS

The following message displays:

NEW FILE ADDRESS ON 03/02/1999 AT 15.16.59

This creates the new FOCUS data source ADDRESS.FOCUS allocated to ddname ADDRESS.

ibi™ FOCUS® Maintaining Databases

377 | Creating and Rebuilding a Data Source

Rebuilding a Data Source: The REBUILD
Command
You can make a structural change to a FOCUS data source after it has been created using
the REBUILD command. Using REBUILD and one of its subcommands REBUILD, REORG,
INDEX, EXTERNAL INDEX, CHECK, TIMESTAMP, DATE NEW, and MDINDEX, you can:

l Rebuild a disorganized data source (REBUILD).

l Delete instances according to a set of screening conditions (REBUILD or REORG).

l Redesign an existing data source. This includes adding and removing segments,
adding and removing data fields, indexing different fields, changing the size of
alphanumeric data fields and more (REORG).

l Index new fields after rebuilding or creating the data source (INDEX).

l Create an external index database that facilitates indexed retrieval when joining or
locating records (EXTERNAL INDEX).

l Check the structural integrity of the data source (CHECK). Check when the FOCUS
data source was last changed (TIMESTAMP).

l Convert legacy date formats to smart date formats (DATE NEW).

l Build or modify a multi-dimensional index (MDINDEX).

You can use the REBUILD facility:

l Interactively at the screen, by issuing the REBUILD command at the FOCUS
command prompt.

l As a batch procedure, by entering the REBUILD command, the desired
subcommand, and any responses to subcommand prompts on separate lines of a
procedure.

Before using the REBUILD facility, you should be aware of several required and
recommended prerequisites regarding file allocation, security authorization, and backup.

Before You Use REBUILD: Prerequisites
Before you use the REBUILD facility, there are several prerequisites that you must consider:

ibi™ FOCUS® Maintaining Databases

378 | Creating and Rebuilding a Data Source

l Partitioning. You can only REBUILD one partition of a partitioned FOCUS data source
at one time. You must explicitly allocate the partition you want to REBUILD.

Alternatively, you can create separate Master Files for each partition.

l Size. To REBUILD a FOCUS data source that is larger than one-gigabyte you must
explicitly allocate ddname REBUILD to a temporary file with enough space to contain
the data. It is strongly recommended that you REBUILD/REORG to a new file, in
sections, to avoid the need to allocate large amounts of space to REBUILD. In the
DUMP phase, use selection criteria to dump a section of the data source. In the LOAD
phase, make sure to add each new section after the first. To add to a data source you
must issue the LOAD command with the following syntax:

LOAD NOCREATE

l Allocation. Usually, you do not have to allocate workspace prior to using a REBUILD
command. It is automatically allocated. However, adequate workspace must be
available. As a rule of thumb, have a space 10 to 20% larger than the size of the
existing file available for the REBUILD and REORG options.

The file name REBUILD is always assigned to the workspace. In the DUMP phase of
the REORG command, the allocation statement appears in case you want to perform
the LOAD phase at a different time.

l Security authorization. If the data source you are rebuilding is protected by a
database administrator, you must be authorized for read and write access in order to
perform any REBUILD activity.

l Backup. Although it is not a requirement, we recommend that you create a backup
copy of the original Master File and data source before using any of the REBUILD
subcommands.

Use the REBUILD Facility
The following steps describe how to use the REBUILD facility:

Procedure
1. Initiate the REBUILD facility by entering:

ibi™ FOCUS® Maintaining Databases

379 | Creating and Rebuilding a Data Source

REBUILD

2. Select a subcommand by supplying its name or its number. The following list shows
the subcommand names and their corresponding numbers:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smart date formats)
8. MDINDEX (Build/modify a multidimensional index)

Result
Your subsequent responses depend on the subcommand you select. Generally, you will
only need to give the name of the data source and possibly one or two other items of
information.

If you are using the REBUILD facility interactively, you must allocate SYSPRINT to the
terminal in order to view the menu. For more information on using SYSPRINT, see the
Overview and Operating Environments manual.

Note: If you select the wrong subcommand interactively, you can enter QUIT to
exit.

Controlling the Frequency of REBUILD
Messages
When REBUILD processes a data source, it displays status messages periodically (for
example, REFERENCE..AT SEGMENT 1000) to inform you of the progress of the rebuild. The
default display interval is every 1000 segment instances processed during REBUILD retrieval
and load phases. The number of messages that appear is determined by the number of
segment instances in the FOCUS data source being rebuilt, divided by the display interval.

ibi™ FOCUS® Maintaining Databases

380 | Creating and Rebuilding a Data Source

Control the Frequency of REBUILD Messages
REBUILD displays a message (REFERENCE..AT SEGMENT segnum) at periodic intervals to
inform you of its progress as it processes a data source. You can control the frequency with
which REBUILD displays this message by issuing the command

SET REBUILDMSG = {n|1000}

where:

n

Is any integer from 1,000 to 99,999,999 or 0 (to disable the messages).

A setting of less than 1000:

l Generates a warning message that describes the valid values (0 or greater than 999).

l Keeps the current setting. The current setting will either be the default of 1000, or the
last valid integer greater than 999 to which REBUILDMSG was set.

Controlling the Display of REBUILD Messages
The following messages are generated for a REBUILD CHECK where REBUILDMSG has been
set to 4000, and the data source contains 19,753 records.

STARTING..
REFERENCE..AT SEGMENT 4000
REFERENCE..AT SEGMENT 8000
REFERENCE..AT SEGMENT 12000
REFERENCE..AT SEGMENT 16000
NUMBER OF SEGMENTS RETRIEVED= 19753
CHECK COMPLETED...

ibi™ FOCUS® Maintaining Databases

381 | Creating and Rebuilding a Data Source

Optimizing File Size: The REBUILD
Subcommand
You use the REBUILD subcommand for one of two reasons. Primarily, you use it to improve
data access time and storage efficiency. After many deletions, the physical structure of
your data does not match the logical structure. REBUILD dumps data into a temporary
work space and then reloads it, putting instances back in their proper logical order. A
second use of REBUILD is to delete segment instances according to a set of screening
conditions.

Normally, you use the REBUILD subcommand as a way of maintaining a clean data source.
To check if you need to rebuild your data source, enter the ? FILE command (described in
Confirming Structural Integrity Using ? FILE and TABLEF):

? FILE filename

If your data source is disorganized, the following message appears:

FILE APPEARS TO NEED THE -REBUILD-UTILITY
REORG PERCENT IS A MEASURE OF FILE DISORGANIZATION
0 PCT IS PERFECT -- 100 PCT IS BAD
REORG PERCENT x%

This message appears whenever the REORG PERCENT measure is more than 30%. The
REORG PERCENT measure indicates the degree to which the physical placement of data in
the data source differs from its logical, or apparent, placement.

The &FOCDISORG variable can be used immediately after the ? FILE command and also
shows the percentage of disorganization in a data source. &FOCDISORG will show a data
source percentage of disorganization even if it is below 30% (see the Developing
Applications manual).

Use the REBUILD Subcommand
The following steps describe how to use the REBUILD subcommand:

Procedure

#drebuild1027642

ibi™ FOCUS® Maintaining Databases

382 | Creating and Rebuilding a Data Source

1. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

2. Select the REBUILD subcommand by entering:

REBUILD or 1

3. Enter the name of the data source to be rebuilt.

On z/OS, enter Enter the ddname.

4. If you are simply rebuilding the data source and require no selection tests, enter:

NO

The REBUILD procedure will begin immediately.

On the other hand, if you wish to place screening conditions on the REBUILD
subcommand, enter:

YES

Then enter the necessary selection tests, ending the last line with ,$.

Test relations of EQ, NE, LE, GE, LT, GT, CO (contains), and OM (omits) are permitted.
Tests are connected with the word AND, and lists of literals may be connected with
the OR operator. A comma followed by a dollar sign (,$) is required to terminate any
test.

For example, you might enter the following:

ibi™ FOCUS® Maintaining Databases

383 | Creating and Rebuilding a Data Source

A EQ A1 OR A2 AND B LT 100 AND
C GT 400 AND D CO 'CUR',$

Result
Statistics appear when the REBUILD REBUILD procedure is complete, including the number
of segments retrieved and the number of segments included in the rebuilt data source.

Using the REBUILD Subcommand
The following examples illustrate how to use the REBUILD subcommand.

Using the REBUILD Subcommand
The following example illustrates using the REBUILD subcommand interactively.

rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX(Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)
rebuild

ENTER NAME OF FOCUS/FUSION FILE
> employee

ANY RECORD SELECTION TESTS? (YES/NO)
> no
STARTING..
DCB USED WITH FILE REBUILD IS DCB=

(RECFM=VB,LRECL=00088,BLKSIZE=23940)
NUMBER OF SEGMENTS RETRIEVED= 576

ibi™ FOCUS® Maintaining Databases

384 | Creating and Rebuilding a Data Source

NEW FILE EMPLOYEE ON 05/14/1999 AT 09.31.26
NUMBER OF SEGMENTS INPUT= 576
FILE HAS BEEN REBUILT

Changing Data Source Structure: The REORG
Subcommand
The REORG subcommand enables you to make a variety of changes to the Master File after
data has been entered in the FOCUS data source. REBUILD REORG is a two-step procedure
that first dumps the data into a temporary workspace and then reloads it under a new
Master File.

You can use REBUILD REORG to:

l Add new segments as descendants of existing segments.

l Remove segments.

l Add new data fields as descendants to an existing segment.

Note: The fields must be added after the key fields.

l Remove data fields.

l Change the order of non-key data fields within a segment. Key fields may not be
changed.

l Promote fields from unique segments to parent segments.

l Demote fields from parent segments to descendant unique segments.

l Index different fields or remove indexes.

l Increase or decrease the size of an alphanumeric data field.

REBUILD REORG will not enable you to:

l Change field format types (alphanumeric to numeric and vice versa, changing
numeric format types).

l Change the value for SEGNAME attributes.

ibi™ FOCUS® Maintaining Databases

385 | Creating and Rebuilding a Data Source

l Change the value for SEGTYPE attributes.

l Change field names that are indexed.

To accomplish these tasks you must use FIXFORM. See your MODIFY, documentation for
more information.

Use the REORG Subcommand
The following steps describe how to use the REORG subcommand:

Procedure
1. Before making any changes to the original Master File, make a copy of it with another

name.

2. Using an editor, make the desired edits to the copy of the Master File.

3. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

4. Select the REORG subcommand by entering:

REORG or 2

The options are:

1. DUMP (DUMP contents of the database)

ibi™ FOCUS® Maintaining Databases

386 | Creating and Rebuilding a Data Source

2. LOAD (LOAD data into the database)

If you want to mount a scratch tape for work space during the DUMP phase, you can
type the name of the tape after the word REORG.

5. Initiate the DUMP phase of the procedure by entering:

DUMP or 1

6. Enter the name of the data source you wish to dump from. Be sure to use the name
of the original Master File for this phase.

On z/OS, enter Enter the ddname.

7. You can specify selection tests by entering YES. Only data that meets your
specifications will be dumped. It is more likely, however, that you will want to dump
the entire data source. To do so, enter:

NO

Statistics appear during the DUMP procedure, including the number of segments
dumped and the name and statistics for the temporary file used to hold the data.

8. After the DUMP phase is complete, you are ready to begin the second phase of
REBUILD REORG: LOAD. Enter:

REBUILD

9. Select the REORG subcommand by entering:

REORG or 2

The options are:

1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

10. Initiate the LOAD phase of the procedure by entering:

ibi™ FOCUS® Maintaining Databases

387 | Creating and Rebuilding a Data Source

LOAD or 2

11. Enter the name of the data source you wish to load from the temporary file created
during the dump phase. In most cases, this will be the new data source name.

Result
At this stage, you have loaded the specified data from the original Master File into a new
data source with the name you specified. It is important to remember that both the Master
File and data source for the original Master File remain. You have three choices:

l You may want to rename the original Master File and data source to prevent possible
confusion.

l You may rename the new Master File and data source to the original name. As a
result, any existing FOCEXECs referencing the original name will run against the new
data source.

l You may delete the original Master File and data source after you verify that the new
Master File and data source are correct and complete.

If you enter the name of a data source that already exists, (the original Master File) you are
prompted that you will be appending data to a preexisting data source and asked if you
wish to continue.

You are not asked if you want to append to an existing data source. The data source is
created. If you want to append, when you issue the LOAD command, enter LOAD
NOCREATE.

Enter N to terminate REBUILD execution. Enter Y to add the records in the temporary
REBUILD file to the original FOCUS data source.

If duplicate field names occur in a Master File, REBUILD REORG is not supported.

You must issue either an allocation or a CREATE for a new data source being loaded.

Using the REORG Subcommand
The following examples illustrate how to use the REORG subcommand.

ibi™ FOCUS® Maintaining Databases

388 | Creating and Rebuilding a Data Source

Using the REORG Subcommand
First make a copy of the data source:

dynam copy employee.focus oldemp.focus

Now start the DUMP phase:

rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

reorg
Enter option
1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

dump

DUMP
ENTER NAME OF FOCUS/FUSION FILE
> employee

ANY RECORD SELECTION TESTS? (YES/NO)
> no
STARTING..
DCB USED WITH FILE REBUILD IS DCB=

(RECFM=VB,LRECL=00088,BLKSIZE=23940)
NUMBER OF SEGMENTS RETRIEVED= 576

Now start the LOAD phase:

> > rebuild
Enter option
1. REBUILD (Optimize the database structure)

ibi™ FOCUS® Maintaining Databases

389 | Creating and Rebuilding a Data Source

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

> reorg|
Enter option
1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

LOAD
ENTER NAME OF FOCUS/FUSION FILE
> employee

STARTING..
NEW FILE EMPLOYEE ON 05/14/1999 AT 09.41.37

NUMBER OF SEGMENTS INPUT= 576
> >

Indexing Fields: The INDEX Subcommand
To index a field after you have entered data into the data source, use the INDEX
subcommand. You can index fields in addition to those previously specified in the Master
File or since the last REBUILD or CREATE command. The only requirement is that each field
specified must be described with the FIELDTYPE=I (or INDEX=I) attribute in the Master File.

The INDEX option uses the operating system sort program. You must have disk space to
which you can write. To calculate the amount of space needed, add 8 to the length of the
index field in bytes and multiply the sum by twice the number of segment instances

(LENGTH + 8) * 2n

where:

n

Is the number of segment instances.

You may decide to wait until after loading data to add the FIELDTYPE=I attribute and index
the field. This is because the separate processes of loading data and indexing can be faster

ibi™ FOCUS® Maintaining Databases

390 | Creating and Rebuilding a Data Source

than performing both processes at the same time when creating the data source. This is
especially true for large data sources.

Sort libraries and workspace must be available. The REBUILD allocates the default sort
work space if you have not already. DDNAMEs SORTIN and SORTOUT must be allocated
prior to issuing a REBUILD INDEX.

Use the INDEX Subcommand
The following steps describe how to use the INDEX subcommand:

Procedure
1. Add the FIELDTYPE=I attribute to the field or fields you are indexing in the Master

File.

2. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

3. Select the INDEX subcommand by entering:

INDEX or 3

4. Enter the name of the Master File in which you will add the FIELDTYPE=I or INDEX=I
attribute.

5. Enter the name of the field to the index. If you are indexing all the fields that have
FIELDTYPE=I, enter an asterisk (*).

ibi™ FOCUS® Maintaining Databases

391 | Creating and Rebuilding a Data Source

Result
Statistics appear when the REBUILD INDEX procedure is complete, including the field
names that were indexed and the number of index values included.

Using the INDEX Subcommand
The following examples illustrate how to use the INDEX subcommand.

Using the INDEX Subcommand
REBUILD INDEX uses an external sort. FOCUS searches for the system-installed sort product
using its normal search path.

> > tso alloc f(sortin) sp(1 1) tracks
> > tso alloc f(sortout) sp(1 1) tracks
> > tso alloc f(sysout) da(*)
> > rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

> 3
INDEX

ENTER THE NAME OF THE MASTER
> employee
ENTER NAME OF FIELD TO INDEX (OR * FOR ALL)
> emp_id
STARTING..
(FOC319) WARNING. THE FIELD IS INDEXED AFTER THE FILE WAS CREATED:
EMP_ID
INDEX VALUES RETRIEVED= 12
SORT COMPLETE .. RET CODE 0

ibi™ FOCUS® Maintaining Databases

392 | Creating and Rebuilding a Data Source

INDEX INITIALIZED FOR: EMP_ID
INDEX VALUES INCLUDED= 12

Creating an External Index: The EXTERNAL
INDEX Subcommand
Users with READ access to a local FOCUS data source can create an index database that
facilitates indexed retrieval when joining or locating records. An external index is a FOCUS
data source that contains index, field, and segment information for one or more specified
FOCUS data sources. The external index is independent of its associated FOCUS data
source. External indexes offer equivalent performance to permanent indexes for retrieval
and analysis operations.

External indexes enable indexing on concatenated FOCUS data sources, indexing on real
and defined fields, and indexing selected records from WHERE/IF tests. External indexes are
created as temporary data sets unless preallocated to a permanent data set. They are not
updated as the indexed data changes.

You create an external index with the REBUILD command. Internally, REBUILD begins a
process which reads the databases that make up the index, gathers the index information,
and creates an index database containing all field, format, segment, and location
information.

You provide information about:

l Whether you want to add new records from a concatenated database to the index
database.

l The name of the external index database that you want to build.

l The name of the data source from which the index information is obtained.

l The name of the field from which the index is to be created.

l Whether you want to position the index field within a particular segment.

l Any valid WHERE or IF record selection tests.

Sort libraries and work space must be available. The REBUILD allocates the default sort
work space if you have not already. DDNAMEs SORTIN and SORTOUT must be allocated
prior to issuing a REBUILD.

ibi™ FOCUS® Maintaining Databases

393 | Creating and Rebuilding a Data Source

Use the EXTERNAL INDEX Subcommand
To create an external index from a concatenated database, follow these steps:

Procedure
1. Assume that you have the following USE in effect:

USE CLEAR *
USE
EMPLOYEE
EMP2 AS EMPLOYEE
JOBFILE
EDUCFILE
END

Note that EMPLOYEE and EMP2 are concatenated and can be described by the
EMPLOYEE Master File.

2. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

3. Select the EXTERNAL INDEX subcommand by entering:

EXTERNAL INDEX or 4

4. Specify whether to create a new index data source or add to an existing one by
entering one of the following choices:

NEW

ibi™ FOCUS® Maintaining Databases

394 | Creating and Rebuilding a Data Source

ADD

For this example, assume you are creating a new index database and respond by
entering:

NEW

5. Specify the name of the external index database:

EMPIDX

6. Specify the name of the data source from which the index records are obtained:

EMPLOYEE

7. Specify the name of the field to index:

CURR_JOBCODE

8. Specify whether the index should be associated with a particular field by entering
YES or NO. For this example, enter:

NO

9. Indicate whether you require any record selection tests by entering YES or NO.

For this example, enter:

NO

If you responded YES, you would next enter the record selection tests, ending them
with the END command on a separate line.

For example:

IF DEPARTMENT EQ 'MIS'
END

ibi™ FOCUS® Maintaining Databases

395 | Creating and Rebuilding a Data Source

Result
You will see statistics (output of the ? FDT query) about the index data source when the
REBUILD EXTERNAL INDEX procedure is complete. This query is automatically issued at the
end of the REBUILD EXTERNAL INDEX process in order to validate the contents of the index
database.

External Index Statistics
The following illustrates external index statistics.

EXTERNAL INDEX FILE: EMPIDX
FULL NAME: EMPIDX.FOCUS
VERSION :
DATE/TIME OF LAST CHANGE: 05/13/99 15.40.46

EXTERNAL INDEX DATABASE PAGES: 00000001
DATABASE INDEXED: EMPLOYEE
FIELD NAME: EMPINFO.CURR
FIELD FORMAT: A3
SEGMENT NAME: EMPINFO
SEGMENT LOCATION: EMPLOYEE

EXTERNAL INDEX DATA COMPONENTS:
EMPLOYEE.FOCUS
EMP2.FOCUS

Special Considerations for REBUILD EXTERNAL
INDEX
Consider the following when working with external indexes:

l Up to eight indexes can be activated at one time in a USE list using the WITH
statement. More than eight indexes may be activated in a session if you issue the USE
CLEAR command and issue new USE statements.

l Up to 256 concatenated files may be indexed. However, only eight indexes may be
activated at one time.

ibi™ FOCUS® Maintaining Databases

396 | Creating and Rebuilding a Data Source

l Verification of the component files is now done for both the date and time stamp of
file creation. Files with the same date and time stamp that are copied display the
following message:

(FOC995) ERROR. EXTERNAL INDEX DUPLICATE COMPONENT: fn REBUILD
ABORTED

l MODIFY may only use the external index with the FIND or LOOKUP functions. The
external index cannot be used as an entry point, such as:

MODIFY FILE filename.indexfld

l Indexes may not be created on field names longer than twelve characters.

l Text fields may not be used as indexed fields.

l The USE options NEW, READ, ON, LOCAL, and AS master ON userid READ are not
supported for the external index database.

l The external index database need not be allocated since CREATE FILE automatically
performs a temporary allocation. If a permanent database is required, then an
allocation for the index database must be in place prior to the REBUILD EXTERNAL
INDEX command.

l SORTIN and SORTOUT, work files that the REBUILD EXTERNAL INDEX process creates,
must be allocated with adequate space. In order to estimate the space needed, the
following formula may be used:

bytes = (field_length + 20) * number_of_occurrences

Concatenating Index Databases
The external index feature enables indexed retrieval from concatenated FOCUS data
sources. If you wish to concatenate the databases that comprise the index, you must issue
the appropriate USE command prior to the REBUILD. The USE must include all cross-
referenced and LOCATION files. REBUILD EXTERNAL INDEX contains an add function that
enables you to append only new index records from a concatenated database to the index
database, eliminating the need to recreate the index database.

ibi™ FOCUS® Maintaining Databases

397 | Creating and Rebuilding a Data Source

The original data source from which the index was built may not be in the USE list when
you add index records. If it is, REBUILD EXTERNAL INDEX generates the following message:

(FOC999) WARNING. EXTERNAL INDEX COMPONENT REUSED: ddname

Positioning Indexed Fields
The external index feature is useful for positioning retrieval of indexed values for defined
fields within a particular segment in order to enhance retrieval performance. By entering at
a lower segment within the hierarchy, data retrieved for the indexed field is affected, as

the index field is associated with data outside its source segment. This enables the creation
of a relationship between the source and target segments. The source segment is defined
as the segment that contains the indexed field. The target segment is defined as any
segment above or below the source segment within its path.

If the target segment is not within the same path, the following message is generated:

(FOC974) EXTERNAL INDEX ERROR. INVALID TARGET SEGMENT

A defined field may not be positioned at a higher segment.

While the source segment can be a cross-referenced or LOCATION segment, the target
segment cannot be a cross-referenced segment. If an attempt is made to place the target
on a cross-referenced segment, the following message is generated:

(FOC1000) INVALID USE OF CROSS REFERENCE FIELD

If you choose not to associate your index with a particular field, the source and target
segments will be the same.

Activating an External Index
After building an external index database, you must associate it with the data sources from
which it was created. This is accomplished with the USE command. The syntax is the same
as when USE is issued prior to building the external index database, except the WITH or
INDEX option is required.

ibi™ FOCUS® Maintaining Databases

398 | Creating and Rebuilding a Data Source

Activate an External Index
USE [ADD|REPLACE]
database_name [AS mastername]
index_database_name [WITH|INDEX] mastername .

.

.
END

where:

ADD

Appends one or more new databases to the present USE list. Without the ADD option,
the existing USE list is cleared and replaced by the current list of USE databases.

REPLACE

Replaces an existing database_name in the USE list.

database_name

Is the name of the data source.

On z/OS, enter Enter the ddname.

You must include a data source name in the USE list for all cross-referenced and
LOCATION files that are specified in the Master File.

AS

Is used with a Master File name to concatenate data sources.

mastername

Specifies the Master File.

index_database_name

Is the name of the external index database.

On z/OS, enter Enter the ddname.

WITH|INDEX

Is a keyword that creates the relationship between the component data sources and the
index database. INDEX is a synonym for WITH.

ibi™ FOCUS® Maintaining Databases

399 | Creating and Rebuilding a Data Source

Checking Data Source Integrity: The CHECK
Subcommand
It is rare for the structural integrity of a FOCUS data source to be damaged. Structural
damage will occasionally occur, however, during a drive failure or if an incorrect Master File
is used. In this situation, the REBUILD CHECK command performs two essential tasks:

l It checks pointers in the data source.

l Should it encounter an error, it displays a message and attempts to branch around
the offending segment or instance.

Although CHECK is able to report on a good deal of data that would otherwise be lost, it is
important to remember that frequently backing up your FOCUS data sources is the best
method of preventing data loss.

CHECK will occasionally fail to uncover structural damage. If you have reason to believe
that there is damage to your data source, though CHECK reports otherwise, there is a
second method of checking data source integrity. This method entails using the ? FILE and
TABLEF commands. Though this is not a REBUILD function, it is included at the end of this
section because of its relevancy to CHECK.

Use the CHECK Subcommand
The following steps describe how to use the CHECK subcommand:

Procedure
1. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

ibi™ FOCUS® Maintaining Databases

400 | Creating and Rebuilding a Data Source

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

2. Select the CHECK subcommand by entering:

CHECK or 5

3. Enter the name of the data source to be checked.

On z/OS, enter Enter the ddname.

Result
Statistics appear during the REBUILD CHECK procedure:

l If no errors are found, the statistics indicate the number of segments retrieved.

l If errors are found, the statistics indicate the type and location of each error:

DELETE indicates that the data has been deleted and should not have been retrieved.

OFFPAGE indicates that the address of the data is not on a page owned by this
segment.

INVALID indicates that the type of linkage cannot be identified. It may be a destroyed
portion of the data source.

Using the CHECK Option
The following examples illustrate how to use the CHECK option.

Using the Check Option (File Undamaged)
The following example illustrates using the CHECK option interactively.

rebuild
Enter option
1. REBUILD (Optimize the database structure)

ibi™ FOCUS® Maintaining Databases

401 | Creating and Rebuilding a Data Source

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

> 5
CHECK
ENTER NAME OF FOCUS/FUSION FILE
>
> employee
STARTING..
NUMBER OF SEGMENTS RETRIEVED= 576
CHECK COMPLETED...
> >

Confirming Structural Integrity Using ? FILE and
TABLEF
When you believe that there is damage to your data source, though REBUILD CHECK
reports there is not, use the ? FILE and TABLEF commands to compare the number of
segment instances reported after invoking each command. A disparity indicates a
structural problem.

Verify REBUILD CHECK Using ? FILE and TABLEF

Procedure
1. Issue the following command:

? FILE filename

where:

filename

ibi™ FOCUS® Maintaining Databases

402 | Creating and Rebuilding a Data Source

Is the name of the FOCUS data source you are examining.

A report displays information on the status of the data source. The number of
instances for each segment is listed in the ACTIVE COUNT column.

2. To ensure that the TABLEF command in the next step counts all segment instances,
including those in the short paths, issue the command:

SET ALL = ON

3. Enter:

TABLEF FILE filenameCOUNT field1 field2END

where:

filename

Is the name of the Master File of the FOCUS data source.

field1...

Are the names of fields in the data source. Name one field from each segment. It
does not matter which field is named in the segment.

The report produced shows the number of field occurrences for those fields named
and thus the number of segment instances for each segment. These numbers should
match their respective segment instance numbers shown in the ? FILE command
(except for unique segments which the TABLEF command shows to have as many
instances in the parent segment). If the numbers do not match, or if either the ? FILE
command or TABLEF command ends abnormally, the data source is probably
damaged.

Checking the Integrity of the EMPLOYEE Data
Source
User input is shown in bold. Computer responses are in uppercase:

? FILE
STATUS OF FOCUS FILE: EMPLOYEE ON 01/31/2003 AT 16.17.32

ibi™ FOCUS® Maintaining Databases

403 | Creating and Rebuilding a Data Source

ACTIVE DELETED DATE OF TIME OF LAST TRANS
SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER

EMPINFO 12 05/13/1999 16.17.22 448
FUNDTRAN 6 05/13/1999 16.17.22 12
PAYINFO 19 05/13/1999 16.17.22 19
ADDRESS 21 05/13/1999 16.17.22 21
SALINFO 70 05/13/1999 16.17.22 448
DEDUCT 448 05/13/1999 16.17.22 448
TOTAL SEGS 576
TOTAL CHAR 8984
TOTAL PAGES 8
LAST CHANGE 05/13/1999 16.17.22 448
SET ALL = ON
TABLEF FILE EMPLOYEE
COUNT EMP_ID BANK_NAME DAT_INC TYPE PAY_DATE DED_CODE
END

PAGE 1

EMP_ID BANK_NAME DAT_INC TYPE PAY_DATE DED_CODE
COUNT COUNT COUNT COUNT COUNT COUNT
------ --------- ------- ----- -------- --------

12 12 19 21 70 448
NUMBER OF RECORDS IN TABLE= 488 LINES= 1

Note that the BANK_NAME count in the TABLEF report is different than the number of
FUNDTRAN instances reported by the ? FILE query. This is because FUNDTRAN is a unique
segment and is always considered present as an extension of its parent.

Changing the Data Source Creation Date and
Time: The TIMESTAMP Subcommand
A FOCUS data source date and time stamp are updated each time the data source is
changed by SCAN, FSCAN, CREATE, REBUILD, HLI, Maintain, or MODIFY. You can update a
data source date and time stamp without making changes to the data source by using
REBUILD TIMESTAMP subcommand.

ibi™ FOCUS® Maintaining Databases

404 | Creating and Rebuilding a Data Source

Use the TIMESTAMP Subcommand
The following steps describe how to use the TIMESTAMP subcommand:

Procedure
1. Initiate the REBUILD facility by entering:

REBUILD

The following options are available:

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

2. Select the TIMESTAMP subcommand by entering:

TIMESTAMP or 6

3. Enter the name of the data source whose date and time stamp is to be updated.

On z/OS, enter Enter the ddname.

4. Enter one of the following options for the source of the date and time:

T (today's date). Updates the data source date and time stamp with the current date
and time.

D (search file for date). Updates the data source date and time stamp with the last
date and time at which the data source was actually changed. Each page of the data
source is scanned and the most recent date and time recorded for a page is applied
to the data source. This is the same as issuing the ? FILE query, and can be time
consuming when the data source is very large. This option is used to keep an
external index database synchronized with its component data source.

MMDDYY HHMMSS. Is a date and time that you specify, which REBUILD will use to
update the data source date and time stamp. The date and time that you enter must
have the format mmddyy hhmmss or mmddyyyy hhmmss. There must be a space

ibi™ FOCUS® Maintaining Databases

405 | Creating and Rebuilding a Data Source

between the date and the time. If you use two digits for the year, REBUILD uses the
values for DEFCENT and YRTHRESH to determine the century.

If you supply an invalid date or time, the following message appears:

(FOC961) INVALID DATE INPUT IN REBUILD TIME:

Converting Legacy Dates: The DATE NEW
Subcommand
The REBUILD subcommand DATE NEW converts legacy dates (alphanumeric, integer, and
packed-decimal fields with date display options) to smart dates (fields in date format) in
your FOCUS data sources.

The utility uses update-in-place technology. It updates your data source and creates a new
Master File, yet does not change the structure or size of the data source. You must back up
the data source before executing REBUILD with the DATE NEW subcommand. We
recommend that you run the utility against the copy and then replace the original file with
the updated backup.

Using the DATE NEW Subcommand
The following example illustrates using the DATE NEW subcommand interactively.

rebuild
Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index)

> date new
DATE NEW
ENTER THE NAME OF THE MASTER
> employee

ibi™ FOCUS® Maintaining Databases

406 | Creating and Rebuilding a Data Source

ENTER THE NEW NAME FOR THE MASTER
> newemp
HAVE YOU BACKED UP THE DATABASE? (YES,NO)
> yes
> NUMBER OF ERRORS= 0
NUMBER OF SEGMENTS= 11 (REAL= 6 VIRTUAL= 5)
NUMBER OF FIELDS= 34 INDEXES= 1 FILES= 3
TOTAL LENGTH OF ALL FIELDS= 365

HOLDING...
.
.
.
NUMBER OF SEGMENTS CHANGED= 107

In z/OS, the new Master File is written to ddname HOLDMAST. After the new Master File is
created, you should immediately copy it to a permanent data set.

For example:

DYNAM COPYDD HOLDMAST(NEWEMP) MASTER(NEWEMP)

How DATE NEW Converts Legacy Dates
REBUILD DATE NEW subcommand overwrites the original legacy date field (an
alphanumeric, integer, or packed-decimal field with date display options) with a smart date
(a field in date format). When the storage size of the legacy date exceeds four bytes (the

storage size of a smart date), a pad field is added to the data source following the date
field:

l Formats A6YMD, A6MDY, and A6DMY are changed to formats YMD, MDY, and DMY,
respectively, and have a 2-byte pad field added to the Master File.

l The storage size of integer dates (I6YMD, I6MDY, for example) is 4 bytes, so no pad
field is added.

l All packed fields and A8 dates add a 4-byte pad field.

When a date is a key field (but not the last key for the segment), and it requires a pad field,
the number of keys in the SEGTYPE is increased by one for each date field that requires
padding.

ibi™ FOCUS® Maintaining Databases

407 | Creating and Rebuilding a Data Source

DATE NEW only changes legacy dates to smart dates. The field format in the Master File
must be one of the following (month translation edit options T and TR may be included in
the format):

A8YYMD A8MDYY A8DMYY A6YMD A6MDY A6DMY A6YYM A6MYY A4YM A4MY

I8YYMD I8MDYY I8DMYY I6YMD I6MDY I6DMY I6YYM I6MYY I4YM I4MY

P8YYMD P8MDYY P8DMYY P6YMD P6MDY P6DMY P6YYM P6MYY P4YM P4MY

If you have a field that stores date values but does not have one of these formats, DATE
NEW does not change it. If you have a field with one of these formats that you do not want
changed, temporarily remove the date edit options from the format, run REBUILD DATE
NEW, and then restore the edit options to the format.

DATE NEW Usage Notes
l The DBA password for the data source must be issued prior to issuing REBUILD.

l The original Master File cannot be encrypted.

l All files must be available locally during the REBUILD, including LOCATION files.

l The Master File cannot have GROUP fields.

l Some error numbers are available in &FOCERRNUM while all error numbers are
available in &&FOCREBUILD. Test both &&FOCREBUILD and &FOCERRNUM for errors
when writing procedures to rebuild your data sources.

l To avoid any potential problems, clear all LETs and JOINs before issuing REBUILD.

l DEFCENT/YRTHRESH are respected at the global, data source, and field level.

l Correct all invalid date values in the data source before executing REBUILD/DATE
NEW. The utility converts all invalid dates to zero. Invalid dates used as keys may
lead to duplicate keys in the data source.

l Adequate workspace must be available for the temporary REBUILD file. As a rule of
thumb, have space 10 to 20% larger than the size of the existing file available.

ibi™ FOCUS® Maintaining Databases

408 | Creating and Rebuilding a Data Source

l REBUILD/INDEX is performed automatically if an index exists.

l REBUILD/REBUILD is performed automatically after REBUILD/DATE NEW when any
key is a date.

l Sort libraries and work space must be available (as with REBUILD/INDEX). The
REBUILD allocates default sort work space if you have not already. DDNAMEs SORTIN
and SORTOUT must be allocated prior to issuing a REBUILD.

What DATE NEW Does Not Convert
The REBUILD DATE NEW subcommand is a remediation tool for your FOCUS data sources
and date fields only. It does not remediate:

l DEFINE attributes in the Master File.

l ACCEPT attributes in the Master File.

l DBA restrictions (for example, VALUE restrictions) in the Master File or central security
repository (DBAFILE).

l Cross-references to other date fields in this or other Master Files.

l Any references to date fields in your FOCEXEC.

Using the New Master File Created by DATE
NEW
REBUILD DATE NEW subcommand creates an updated Master File that reflects the changes
made to the data source. Once the data source has been rebuilt, the original Master File
can no longer be used against the data source. You must use the new Master File created
by the DATE NEW subcommand.

ibi™ FOCUS® Maintaining Databases

409 | Creating and Rebuilding a Data Source

Sample Master File: Before and After Conversion by
DATE NEW

Before Conversion After Conversion

FILE=filename FILE=filename

SEGNAME=segname, SEGTYPE=S2 SEGNAME=segname,
SEGTYPE=S3

FIELD=KEY1,,USAGE=A6YMD,$ FIELD=KEY1,,USAGE= YMD,$

FIELD=, ,USAGE=A2,$ PAD
FIELD
ADDED BY REBUILD

FIELD=KEY2,,USAGE=I6MDY,$ FIELD=KEY2,,USAGE= MDY,$

FIELD=FIELD3,,USAGE=A8YYMD,$ FIELD=FIELD3,,USAGE=
YYMD,$

FIELD=, ,USAGE=A4,$ PAD
FIELD
ADDED BY REBUILD

When REBUILD DATE NEW subcommand converts this Master File:

l The SEGTYPE changes from an S2 to S3 to incorporate a 2-byte pad field.

l Format A6YMD changes to smart date format YMD.

ibi™ FOCUS® Maintaining Databases

410 | Creating and Rebuilding a Data Source

l A 2-byte pad field with a blank field name and alias is added to the Master File.

l Format I6MDY changes to smart date format MDY (no padding needed).

l Format A8YYMD changes to smart date format YYMD.

l A 4-byte pad field with a blank field name and alias is added to the Master File.

Action Taken on a Date Field During
REBUILD/DATE NEW
REBUILD/DATE NEW performs a REBUILD/REBUILD or REBUILD/INDEX automatically when a
date field is a key or a date field is indexed. The following chart shows the action taken on
a date field during the REBUILD/DATE NEW process.

Date Is a Key Index Result

No None NUMBER OF SEGMENTS CHANGED = n

No Yes REBUILD/INDEX on date field.

Yes None REBUILD/REBUILD is performed.

Yes On any
field

REBUILD/REBUILD is performed.

REBUILD/INDEX is performed for the indexed
fields.

Creating a Multi-Dimensional Index: The
MDINDEX Subcommand
The MDINDEX subcommand is used to create or maintain a multi-dimensional index. For
more information, see the Describing Data manual.

ibi™ FOCUS® Maintaining Databases

411 | Directly Editing FOCUS Databases With SCAN

Directly Editing FOCUS Databases With
SCAN
SCAN is an interactive facility used for editing FOCUS and XFOCUS databases. With it, you
can edit FOCUS databases using subcommands similar to those used with text editors.

Unless otherwise noted, all references to FOCUS databases also apply to XFOCUS
databases.

Introduction
SCAN permits you to:

l Add records to new or existing FOCUS or XFOCUS databases.

l Change field values in FOCUS databases. With SCAN, you can change the values in
KEY fields (not possible with MODIFY requests).

l Delete records from FOCUS databases.

l Search through FOCUS databases to locate instances of specified character strings or
values.

l Display complete record contents showing all field values, or subsets of the fields in
FOCUS databases.

l Move (relink) record segments and descendant segments from one parent record to
another in FOCUS databases with parent-descendant structures.

In a typical SCAN session you identify a database and locate specific logical records of
interest. Your knowledge of the database's structure and contents allows you to navigate
from field to field. Within the database you can add or delete instances of data at the
segment level or change data values at the field level.

Note: On databases protected with DBA passwords, SCAN is only available to
those who have the proper password.

ibi™ FOCUS® Maintaining Databases

412 | Directly Editing FOCUS Databases With SCAN

As you work in a SCAN session, your changes are accumulated in a revised version of your
original database. When you decide to terminate your session, you can either save the
changed version of the database and overwrite the original version with it, or keep the
original version as it was when you started (if you have inadvertently changed the
database).

We recommend that you copy your databases before using SCAN as an additional safety
precaution; SCAN is a powerful tool for manipulating data, but keeps no log of the change
transactions. Using the FOCUS Absolute File Integrity feature (SET SHADOW=ON) protects
you against loss of data due to system crashes. (The SET SHADOW command is only
effective if it has been issued prior to database creation. Consult the Describing Data
manual for more information about the Absolute File Integrity feature. See the Developing
Applications manual for more information about SET parameters.)

Note: Absolute File Integrity and shadow paging are not supported for XFOCUS
data sources.

SCAN vs. MODIFY, HLI, and FSCAN
FOCUS includes five facilities for maintaining the data in FOCUS databases. You should be
aware of their differences:

l The SCAN facility is useful for examining the data in FOCUS databases to review or
physically add, change, or delete data fields. With SCAN, an experienced user can
quickly adjust database contents to correct errors or update fields. To use it
effectively, however, you must know the database's contents and structure.

Caution: Because SCAN works directly on the data, there is the potential
for corrupting data if you are unsure of the nature of your database. For
example, if a SCAN operation such as REPLACE is issued against a
database field such as SALES, without adequate selection criteria, every
legitimate SALES field in the database could be overwritten by the
replacement value, and all field values would have to be reentered.

l MODIFY (see Modifying Data Sources With MODIFY) is a transaction processing
environment that is used for maintaining FOCUS databases. MODIFY requests can be
developed with elaborate match logic and data validation, as well as transaction
logging. Such procedures, when fully tested, can be run by clerical personnel with no

ibi™ FOCUS® Maintaining Databases

413 | Directly Editing FOCUS Databases With SCAN

threat to database security.

l HLI (Host Language Interface) is an optional interface. It allows you to read and edit
FOCUS databases from programs written in other programming languages (FORTRAN
and C). HLI is similar to SCAN in function. HLI is described in the Host Language
Interface manual.

l The FSCAN facility (see Directly Editing ibi FOCUS Databases With FSCAN) is similar to
the SCAN facility: You can view, add, change, or delete data in your FOCUS
databases. The FSCAN facility provides full-screen capabilities such as a prefix area
and a command line. It also provides confirmation screens for DELETE and QUIT
operations. Unlike SCAN, the FSCAN facility displays parent instances that lack
descendant instances (short path records) and verifies acceptable test values defined
with ACCEPT parameters. MARK and MOVE subcommands are not supported.

Entering SCAN Mode
From within FOCUS, enter SCAN mode by typing SCAN followed by FILE and the name of
the FOCUS database to be scanned:

SCAN FILE filename

Moving Through the Database and Locating
Records
After entering SCAN, your current position is at the top of the database. FOCUS databases
are not sequential databases with one data record following another; they consist of
segments. Databases can have one or more segments. The segments may have multiple
instances of data (a Monthly Inventory segment holding a date and a quantity might have
six instances in June and twelve in December). The collected data instances for a particular
set of related segments constitute a logical record in the database.

The concept of a current line pointer (common in most system editors) is replaced in SCAN
by the concept of a current position in the database, which represents a set of data
instances that form a connected path within the database. Instead of processing databases
line-by-line, SCAN achieves a somewhat similar effect by approaching FOCUS databases in
a top-down, left-to-right scanning sequence.

ibi™ FOCUS® Maintaining Databases

414 | Directly Editing FOCUS Databases With SCAN

As we said, on entering SCAN, you are automatically positioned at the top of the database.
You may move through the entire database, or specify a subset of fields to be edited
(called a Show List or a subtree). Show Lists are created with the SHOW subcommand, and
they contain the fields you name (plus any intermediate segments required by FOCUS to
navigate from one specified field to another). An important concept when specifying Show
Lists is that the data in the selected records must meet all of the criteria specified in the
SHOW subcommand.

What You See in SCAN Display Lines
When you display the contents of logical records in SCAN, each data field is identified on
the screen by either its alias or the field name, whichever is shorter (and non-blank). Given
the following Master File, the SCAN operation proceeds as shown below.

FILENAME=CAR,SUFFIX=FOC
SEGNAME=ORIGIN,SEGTYPE=S1

FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN

FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP

FIELDNAME=MODEL,MODEL,A24,$
SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC

FIELDNAME=BODYTYPE,TYPE,A12,$
FIELDNAME=SEATS,SEAT,I3,$
FIELDNAME=DEALER_COST,DCOST,D7,$
FIELDNAME=RETAIL_COST,RCOST,D7,$
FIELDNAME=SALES,UNITS,I6,$

SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
FIELDNAME=LENGTH,LEN,D5,$
FIELDNAME=WIDTH,WIDTH,D5,$
FIELDNAME=HEIGHT,HEIGHT,D5,$
FIELDNAME=WEIGHT,WEIGHT,D6,$
FIELDNAME=WHEELBASE,BASE,D6.1,$
FIELDNAME=FUEL_CAP,FUEL,D6.1,$
FIELDNAME=BHP,POWER,D6,$
FIELDNAME=RPM,RPM,I5,$
FIELDNAME=MPG,MILES,D6,$
FIELDNAME=ACCEL,SECONDS,D6,$

SEGNAME=WARENT,SEGTYPE=S1,PARENT=COMP
FIELDNAME=WARRANTY,WARR,A40,$

SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
FIELDNAME=STANDARD,EQUIP,A40,$

ibi™ FOCUS® Maintaining Databases

415 | Directly Editing FOCUS Databases With SCAN

scan file car
SCAN:

next
COUNTRY=ENGLAND CAR=JAGUAR MODEL=V12X15E AUTO
TYPE=CONVERTIBLE SEAT= 4 DCOST= 7427 RCOST= 8878 UNITS= 0
LEN= 190 WIDTH= 66 HEIGHT= 48 WEIGHT= 3435 BASE= 105.0
FUEL= 18.0 BHP= 241 RPM= 5750 MPG= 16 ACCEL= 7

Note: SCAN uses ALIAS names instead of field names when aliases are shorter.
Use DISPLAY (or CRTFORM) to display complete field names. Fields WARRANTY
and STANDARD are not shown, because they do not lie on the path.

Identifying Data Fields in Scan
Some SCAN subcommands require that you specify particular data fields for the operation.
LOCATE, for example, requires that you supply the data value for the target field. Within
SCAN you can identify a data field in one of three ways:

l By its full field name as it appears in the Master File.

l By its alias.

l By the shortest unique truncation of either the field name or the alias.

Ways to Move Through Databases
In SCAN sessions you can move from one segment instance directly to the next, jump from
a parent segment instance to the first descendant field, or jump directly to a specific
record of interest based on selection criteria specified in your request (for a description of
these techniques, see Subcommand Summary).

The examples in this section use the CAR database, mentioned in Moving Through the
Database and Locating Records. Enter SCAN, and then the subcommand:

SHOW COUNTRY CAR MODEL

This restricts the Show List to the first three segments of the database, as shown by this
diagram:

ibi™ FOCUS® Maintaining Databases

416 | Directly Editing FOCUS Databases With SCAN

The following schematic diagram shows how the data used in the examples is placed
within the FOCUS structure:

There are six subcommands you may use to change the current position:

l Moving Through the Database and Locating Records

l Moving Through the Database and Locating Records

l Moving Through the Database and Locating Records

l Moving Through the Database and Locating Records

l Moving Through the Database and Locating Records

l Moving Through the Database and Locating Records

ibi™ FOCUS® Maintaining Databases

417 | Directly Editing FOCUS Databases With SCAN

TOP
TOP moves the current position to the top of the database.

LOCATE
LOCATE moves the current position to the next record that fulfills certain conditions. Often,
you use LOCATE to find a record with a certain value. For example, if your current position
is near the top of the database and you enter the subcommand

LOCATE CAR=MASERATI

the following record appears:

COUNTRY = ITALY CAR= MASERATI
MODEL = DORA 2 DOOR

If you enter this subcommand again, SCAN searches for the next MASERATI record. Since
there is only one MASERATI record, it moves the current position to the end of the
database.

TLOCATE
TLOCATE moves the current position to the first record in the database that fulfills certain
conditions. Often, you use TLOCATE to find a record with a certain value. For example, if
you enter the subcommand

TLOCATE CAR=ALFA ROMEO

the following record appears regardless of where the current position was in the database:

ITALY ALFA ROMEO 2000 GT VELOCE

ibi™ FOCUS® Maintaining Databases

418 | Directly Editing FOCUS Databases With SCAN

NEXT
The NEXT subcommand advances the current position to the next record. That is, it
advances the current position one segment instance in the lowest segment in the Show
List.

Suppose you entered SCAN to edit the CAR database and displayed the first record
belonging to Italy by entering:

TLOCATE COUNTRY=ITALY

SCAN displays the following record:

ITALY ALFA ROMEO 2000 GT VELOCE

You then enter the subcommand NEXT:

NEXT

The lowest segment in this example is the MODEL segment. The MODEL instance in the
record (2000 GT VELOCE) is the first of three instances descended from the car ALFA
ROMEO. The NEXT subcommand moves the current position to the next instance in this
chain, displaying the record:

ITALY ALFA ROMEO 2000 SPIDER VELOCE

If you enter the NEXT subcommand again, SCAN displays:

ITALY ALFA ROMEO 2000 4 DOOR BERLINA

Now you are at the end of the MODEL under the instance ALFA ROMEO. If you enter the
NEXT subcommand again, it moves the current position to the first MODEL chain under the
next instance in the segment CAR. The next CAR instance is MASERATI. The record
displayed is:

ITALY MASERATI DORA 2 DOOR

MASERATI has only one child instance, and it is the last car under the instance ITALY. If you
enter the NEXT subcommand again, it moves the current position to the first MODEL chain
under the next instance in the segment COUNTRY. The record displayed is:

ibi™ FOCUS® Maintaining Databases

419 | Directly Editing FOCUS Databases With SCAN

JAPAN DATSUN B210 2 DOOR AUTO

JUMP
The JUMP subcommand moves the current position to the next segment instance in the
segment you specify. The segment must have at least one field specified in the Show List.

Move the current position to the first record in the ITALY chain by entering:

TLOCATE COUNTRY=ITALY

This displays the record:

ITALY ALFA ROMEO 2000 GT VELOCE

Move the current position to the next car in the ITALY chain by entering:

JUMP CAR

Note: CAR is a field and not a segment name.

The following record appears:

ITALY MASERATI DORA 2 DOOR

Now return to the first record in the ITALY chain:

TLOCATE COUNTRY=ITALY

Jump to the next country in the database by entering:

JUMP COUNTRY

The following record appears:

JAPAN DATSUN B210 2 DOOR AUTO

ibi™ FOCUS® Maintaining Databases

420 | Directly Editing FOCUS Databases With SCAN

UP
The UP subcommand moves the current position to the first instance in the lowest
segment in the Show List descended from the segment that you specify.

Move the current position to the model 2000 SPIDER VELOCE:

TLOCATE MODEL=2000 SPIDER VELOCE

This displays the following record:

ITALY ALFA ROMEO SPIDER VELOCE

Move the current position to the first ALFA ROMEO model by entering:

UP CAR

The following records appears:

ITALY ALFA ROMEO 2000 GT VELOCE

Move the current position to the Maserati car:

LOCATE CAR=MASERATI

Move the current position to the first car in the ITALY chain by entering:

UP COUNTRY

The following record appears:

ITALY ALFA ROMEO 2000 GT VELOCE

Displaying Field Names and Field Contents
To view up to 64 fields, specify the SHOW subcommand. The SHOW subcommand does not
list records lacking instances (short-path records).

ibi™ FOCUS® Maintaining Databases

421 | Directly Editing FOCUS Databases With SCAN

To review field contents, use either the DISPLAY or TYPE subcommand.

TYPE Subcommand
At any point in a SCAN session, you may use the TYPE subcommand to display field names
in a segment path (or those named in the SHOW subcommand, if one is in effect) and their
contents for the current logical record (and/or several consecutive records).

DISPLAY Subcommand
DISPLAY produces a vertical list showing the full field names followed by the data values
for the current logical record. DISPLAY allows you to select the fields to be displayed, and
may include fields residing in segments picked up for the subtree but not actually named
in the SHOW subcommand. This displays only the fields named in the SHOW subcommand
if one is in effect.

Suppressing the Display
When moving through a database in SCAN with NEXT, JUMP, LOCATE, or TLOCATE, you
automatically get a display of the contents of the next record unless you suppress the
display. You do this by putting a period after the move keyword. Therefore,

NEXT.

retrieves, but does not display, the next record.

It is usually preferable to suppress the displays when performing global operations that
affect many records.

Show Lists and Short-Path Records
If some segments lack data, it means that some logical records have missing segment
instances. FOCUS discards short-path records when constructing the Show List.

ibi™ FOCUS® Maintaining Databases

422 | Directly Editing FOCUS Databases With SCAN

Consider a subset of the CAR database. The subset has three segments with one field per
segment (COUNTRY, CAR, MODEL). If you name all three fields in a SHOW subcommand,
logical records that lack data in any of the specified fields are not selected for the subtree
(they are short-path records).

The following example illustrates this. To run this example, enter the following commands
as shown below. What you enter is in lowercase; computer responses are in uppercase.

scan file car
SCAN:

show country car
locate country=france
COUNTRY=FRANCE CAR=PEUGEOT

input car=renault
SCAN:

type
COUNTRY=FRANCE CAR=RENAULT

The example is as follows. The CAR database contains this data:

Country Car Model

.

.

.

France Peugeot 504 4 DOOR

France Renault

Italy Alfa Romeo 2000 4 Door Berliner

Note that the French car Renault has no instances in the MODEL segment. A SCAN
operation that names all three segments drops the logical record for Renault because
Renault is missing instances in the MODEL segment, as follows.

show country car model
type 6

COUNTRY=ENGLAND CAR=JAGUAR MODEL=V12XKE AUTO

ibi™ FOCUS® Maintaining Databases

423 | Directly Editing FOCUS Databases With SCAN

COUNTRY=ENGLAND CAR=JAGUAR MODEL=XJ12L AUTO
COUNTRY=ENGLAND CAR=JENSEN MODEL=INTERCEPTOR III
COUNTRY=ENGLAND CAR=TRIUMPH MODEL=TR7
COUNTRY=FRANCE CAR=PEUGEOT MODEL=504 4 DOOR
COUNTRY=ITALY CAR=ALFA ROMEO MODEL=2000 4 DOOR BERLINER

Note: In all of the examples in this section, user input is shown in lowercase; the
FOCUS response is in uppercase.

To locate short-path records that will be dropped from a Show List, make a test pass
through the database at the short-path level to see what is there before issuing the Show
List for the edit operation. (This is highly recommended when adding new records to a
database.) Thus, for the simple previous example, if you start by making a pass through the
database selecting all records containing values for COUNTRY and CAR, you will find the
Renault car.

show country car
type 6

COUNTRY=ENGLAND CAR=JAGUAR
COUNTRY=ENGLAND CAR=JENSEN
COUNTRY=ENGLAND CAR=TRIUMPH
COUNTRY=FRANCE CAR=PEUGEOT
COUNTRY=FRANCE CAR=RENAULT
COUNTRY=ITALY CAR=ALFA ROMEO

On the next pass, you add the MODEL segment and note that Renault disappears (due to
the short-path). Knowing this, you refrain from adding a potential duplicate record for
France and make a mental note to make another pass to update the short-path record with
data for the MODEL segment.

Adding Segment Instances
The INPUT subcommand is used to add new segment instances to the database. New
segment instances are inserted into the database in the correct sort sequence, as long as
you have avoided adding duplicate instances to existing segments. Duplicate instances may
not be found if they lack field values (short-path records). See Subcommand Summary for

a description of the syntax and an example of its use.

ibi™ FOCUS® Maintaining Databases

424 | Directly Editing FOCUS Databases With SCAN

Moving Segment Instances
Use the MOVE subcommand to move a segment instance and all of its descendants from
one parent segment to another. The operation requires several steps:

1. Locate the record to be moved and mark it with the MARK statement (see
Subcommand Summary).

2. Move the current position to the new parent record (see Subcommand Summary and
Subcommand Summary).

3. Issue the MOVE subcommand indicating the field name that identifies the segment
instance to be moved.

Subcommand Summary describes how the segment is integrated into the database
structure.

Changing Field Contents
CHANGE and REPLACE alter the contents of data fields.

Use CHANGE to substitute one character string for another, and REPLACE to substitute a
new value for a field. CHANGE is issued to change alphanumeric strings within fields.
REPLACE is used with either alphanumeric or numeric fields to replace the entire contents
of the field(s).

Both operations can be applied to one or more instances from the current position to the
end of the database. To change all instances in the database, use TLOCATE to find the first
record before entering the CHANGE or REPLACE subcommand.

See Subcommand Summary and Subcommand Summary for additional information about
CHANGE and REPLACE.

Deleting Fields and Segments
DELETE removes one or more instances of data in one or more segments containing the
named field (and all descendant segment instances).

ibi™ FOCUS® Maintaining Databases

425 | Directly Editing FOCUS Databases With SCAN

Saving Changes Made in SCAN Sessions
The SAVE subcommand writes all pending changes to the FOCUS database and leaves you
in SCAN mode. Most installations recommend that SAVE operations be performed
periodically to protect against accidental loss of update results due to communications
failure or other processing interruptions.

Ending the Session
When ending the SCAN session, you can exit with or without saving your changes.

Exiting and Saving the Changes
To end the SCAN session, write the changes to the FOCUS database, and return to the
FOCUS command level; use either the FILE subcommand or its synonym, END.

Exiting Without Saving the Changes
To leave SCAN and return to FOCUS without writing pending changes to the FOCUS
database, use the QUIT subcommand.

Caution: The use of this subcommand does not guarantee that all changes to
the database will be ignored. During SCAN execution, large buffer areas hold
database records. Depending on the operating system in use and the size of
these buffer areas, it is possible that a large SCAN change file could threaten the
capacity of the temporary buffer storage, in which case the operating system
might write the pending changes to the database to clear the buffer. This would
update your database.

ibi™ FOCUS® Maintaining Databases

426 | Directly Editing FOCUS Databases With SCAN

Auxiliary SCAN Functions
SCAN provides two convenience features: the first displays or executes a previous
command; the second substitutes a one-character value for a complete SCAN
subcommand.

Displaying a Previous SCAN Subcommand
To display the last subcommand issued, use the ? subcommand.

To re-execute the previous subcommand, use the AGAIN subcommand. This is particularly
useful when finding multiple instances of a field value with LOCATE.

Preset X or Y to Execute a SCAN Subcommand
To set X (or Y) equal to another SCAN subcommand, type the syntax

{X|Y} subcommand

where:

subcommand

Is a SCAN subcommand.

This gives you an alias for a long, frequently-used subcommand. For example, to substitute
Y for a DISPLAY subcommand showing the first and last names of the employee at the
current position in the database, type:

Y DISPLAY FN LN

The next time you type Y and press the Enter key, this DISPLAY subcommand is issued.

ibi™ FOCUS® Maintaining Databases

427 | Directly Editing FOCUS Databases With SCAN

Subcommand Summary
SCAN subcommands can be entered as unique truncations or in full. In the summary
below, the capital letters represent the shortest unique truncations.

A list of descriptions of these subcommands, with additional information and examples,
begins with Subcommand Summary.

Subcommand Function

Again
Repeat the last subcommand.

BAck
Go back to a previously marked logical record (see MArk,
below).

CHAnge
Change a character string.

CRTform
Display a list of fields on a CRTFORM.

DElete
Delete one or more instances of the segment containing
the named field (and all descendant segments).

DIsplay
Display the data values for the fields specified.

End
Terminate the SCAN session and write the changes to the
database.

File
Terminate the SCAN session and write the changes to the
database.

Input
Enter a new record.

ibi™ FOCUS® Maintaining Databases

428 | Directly Editing FOCUS Databases With SCAN

Subcommand Function

Jump
Jump to the next or nth occurrence of field.

Locate
Search for records that match the selection criteria.

MArk
Mark a record so that you can return to it later in the SCAN
session.

MOve
Relink the segment to another parent.

Next
Move n records ahead.

Quit
End the session and drop the pending changes.

Replace
Replace a field value in one or more instances.

SAve
Save all pending changes and continue.

SHow
Select a subset of the fields in the database (a logical
view—Show List).

TLocate
Go to top of database, then locate record(s) meeting the
selection criteria.

TOp
Reset current position at first logical record in the
database.

ibi™ FOCUS® Maintaining Databases

429 | Directly Editing FOCUS Databases With SCAN

Subcommand Function

TYpe
Type record(s).

UP
Move current position to parent segment's first
descendant.

X
Used for command substitution.

Y
Same as X above.

?
Print the previous subcommand.

AGAIN Command
The AGAIN command tells the system to repeat the previous valid command.

This is particularly useful after LOCATE, as it continues the search for the next instance of
the target value.

Use the AGAIN Command
Again

Using the AGAIN Command
show emp_id last_name salary dpt
locate dpt=mis

ibi™ FOCUS® Maintaining Databases

430 | Directly Editing FOCUS Databases With SCAN

EID=112847612 LN=SMITH DPT=MIS SAL= 13200.00
again
EID=117593129 LN=JONES DPT=MIS SAL= 18480.00

LOCATE retrieves the first record following the current position that matches the test
condition. AGAIN repeats the process, as if the LOCATE statement had been retyped, and
the next record that meets the test condition is displayed.

The fields displayed above are those named in the previous SHOW subcommand. The DPT
(Department) field is available in the Show List because it resides in the same segment as
the EMP_ID and LAST_NAME fields.

Commands Similar to Again
Within SCAN, entering a question mark (?) causes a display of the last subcommand to be
executed. If you wish to execute it again, reenter the command or use AGAIN.

BACK Command
The BACK subcommand works in conjunction with the previous MARK subcommand (only
one MARK is in effect at a time). When BACK is issued, control returns to the previous
marked record (see MARK subcommand).

Use the BACK Command
BAck

Using the BACK Command
show emp_id last_name first_name salary
next

ibi™ FOCUS® Maintaining Databases

431 | Directly Editing FOCUS Databases With SCAN

EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00
jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

mark
next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

back
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Commands Similar to BACK
None.

CHANGE Command
CHANGE is used to replace specified alphanumeric character strings with new strings in
data fields. Changes may be made sequentially to every record in the database, or to all
records that match a LOCATE criteria.

Note: CHANGE cannot be used on numeric fields with formats I, P, F, and D.

Use the CHANGE Command
CHAnge field=/oldstring/newstring/,$ [*|n]

A period (.), colon (:), or slash (/) may be used as the string delimiter and must be the first
character after the equal sign (=). The same character must then be used to terminate the
old and new strings.

The replication factor n (where n is number of strings to be replaced) has a default value of
1. When more than one string is to be changed, indicate the replication factor as a single
digit following the line terminator characters ,$. To replace all instances of the string in the
remainder of the database, use the asterisk (*). To replace all instances of the string in the

ibi™ FOCUS® Maintaining Databases

432 | Directly Editing FOCUS Databases With SCAN

database, issue TOP before the CHANGE. This resets the current position at the first logical
record.

Using the CHANGE Command
This section will show how to use the CHANGE command.

Single-Field Change With the CHANGE Command
To change a single field, first locate it then make the change.

show emp_id last_name first_name
tlocate ln=stevens
EID=071382660 LN=STEVENS FN=ALFRED

change ln=/stevens/stephens/,$
EID=071382660 LN=STEPHENS FN=ALFRED

Sequential Changes With the CHANGE Command
To change all occurrences of the old string to the new string throughout the database
starting at the current position, use the replication factor, *.

show last_name department salary
locate dpt=mis
LN=SMITH DPT=MIS SAL= 13200.00

change dpt=/mis/mis dept/,$ *
LN=SMITH DPT=MIS DEPT SAL= 13200.00
LN=JONES DPT=MIS DEPT SAL= 18480.00
LN=JONES DPT=MIS DEPT SAL= 17750.00
LN=MCCOY DPT=MIS DEPT SAL= 18480.00
LN=BLACKWOOD DPT=MIS DEPT SAL= 21780.00
LN=GREENSPAN DPT=MIS DEPT SAL= 9000.00
LN=GREENSPAN DPT=MIS DEPT SAL= 8650.00
LN=CROSS DPT=MIS DEPT SAL= 27062.00
LN=CROSS DPT=MIS DEPT SAL= 25775.00

ibi™ FOCUS® Maintaining Databases

433 | Directly Editing FOCUS Databases With SCAN

VALUES REPLACED= 6
EOF:

The VALUE REPLACED parameter displayed at the bottom of the report shows how many
segment instances were changed, not how many lines SCAN displays after the change.

Match Logic Changes With the CHANGE Command
The current position is reached through a LOCATE (or TLOCATE) subcommand, and the
conditions of the LOCATE are retained and applied in selecting records to be changed.

tlocate dpt=mis dept, sal lt 15000
LN=SMITH DPT=MIS DEPT SAL=13200.00

change dpt=/mis dept/mis/ ,$ *
LN=SMITH DPT=MIS SAL= 13200.00
LN=GREENSPAN DPT=MIS SAL= 9000.00
LN=GREENSPAN DPT=MIS SAL= 8650.00
VALUES REPLACED= 2
EOF:

Here SCAN changes only two segment instances rather than the six instances in the
previous example, but three are shown because there are two child segments for the
GREENSPAN record.

Note:
l If CHANGE is immediately preceded by LOCATE or TLOCATE, only the

instances that satisfy the LOCATE conditions are changed.

l If no record selection criteria is included, the CHANGE action will change
subsequent instances. Changed field instances may include descendant
instances not represented in the Show List.

Commands Similar to CHANGE
REPLACE is used to replace the entire contents of numeric or alphanumeric fields.

ibi™ FOCUS® Maintaining Databases

434 | Directly Editing FOCUS Databases With SCAN

CRTFORM Command
The CRTFORM subcommand formats the display of selected data fields. Enter the field
names separated by blanks. (The selection begins at the current position.) The display
aligns two fields per line where possible.

Use the TYPE subcommand to display the results of a CRTFORM subcommand.

Use the CRTFORM Command
CRTform * {*|fieldname [*]...fieldname}

You can enter the full field names, aliases, or the shortest unique truncations of either. To
display all fields between two named fields, place an asterisk in the list of field names. To
simply display all fields, use an asterisk in place of the field names.

Using the CRTFORM Command
This section shows how to use the CRTFORM command.

Specifying Individual Fields With CRTFORM
crtform eid ln fn sal
type

EMP_ID =071382660 LAST_NAME =STEVENS
FIRST_NAME =ALFRED SALARY = 11000.00

ibi™ FOCUS® Maintaining Databases

435 | Directly Editing FOCUS Databases With SCAN

Specifying All Fields Between Two Named Fields
With CRTFORM
crtform eid * salary
type

EMP_ID =071382660 LAST_NAME = STEVENS
FIRST_NAME =ALFRED HIRE_DATE = 800602
DEPARTMENT =PRODUCTION CURR_SAL = 11000.00
CURR_JOBCODE =A07 ED_HRS = 25.00
BANK_NAME = BANK_CODE =
BANK_ACCT = EFFECT_DATE = 0
DAT_INC =820101 PCT_INC = .10
SALARY =11000.00

Commands Similar to CRTFORM
None.

DELETE Command
The segment containing the field name is deleted and all of its descendant segments are
deleted. Any references to indexed fields are removed from their associated indexes.

Note:
l If DELETE is immediately preceded by a LOCATE subcommand, then only

instances that satisfy the LOCATE conditions are deleted.

l If no record selection criteria is included, the delete action will remove
subsequent instances. Deleted field instances may include descendant
segments that are not represented in the Show List.

None of the changes made during a SCAN session take effect until you save them. When
you do write them to the database using SAVE or FILE (see descriptions of these
subcommands on the following pages), they become permanent; thus you should closely

ibi™ FOCUS® Maintaining Databases

436 | Directly Editing FOCUS Databases With SCAN

monitor the effect of your changes as you work in SCAN. If you make a mistake, it is
important to QUIT immediately to avoid any permanent damage.

Use the DELETE Command
DElete fieldname [factor]

where:

factor

Is one of the following:

1 is the default value.

* deletes all instances of the field.

n is the number of data instances to be deleted. When more than one instance is to be
deleted, indicate the replication factor as a numeric value following the line terminator
characters ,$.

Using DELETE
show emp_id last_name salary jobcode
next
EID=071382660 LN=STEVENS SAL= 11000.00 JBC=A07

delete jobcode 6
SEGMENTS DELETED= 6

The next six instances of JOBCODE are removed.

Commands Similar to DELETE
None.

ibi™ FOCUS® Maintaining Databases

437 | Directly Editing FOCUS Databases With SCAN

DISPLAY Command
This subcommand displays the values of the named fields in a neat vertical list, whether
the field is in the SHOW list or not. It is useful to view the values of fields not specified in a
SHOW list. (TYPE presents only the fields named in the SHOW command.) It is convenient,
for example, to move through databases looking at only the values of a few key fields.
Then, when you find the record you want, use DISPLAY to display all of the fields in the
segment(s) contained in the Show List.

The DISPLAY subcommand does not remain in effect. It simply lists the specified values. If
you need to issue it repeatedly, store it with the X or Y subcommand for subsequent
execution.

Use the DISPLAY Command
DIsplay fieldname [fieldname...fieldname]

The field identifier may be the full field name, alternate alias, or shortest unique truncation
of either. Separate field names from each other with spaces.

Using DISPLAY
show last_name dat_inc
locate ln =smith
LN=SMITH DI=820101

display last_name first_name salary department
LAST_NAME =SMITH
FIRST_NAME =MARY
SALARY = 13200.00
DEPARTMENT =MIS

If the DISPLAY subcommand does not produce a list, it indicates that the fields requested
must lie outside the currently retrieved segment(s) by displaying the message:

NO CURRENT VALUE FOR: field.

ibi™ FOCUS® Maintaining Databases

438 | Directly Editing FOCUS Databases With SCAN

Commands Similar to DISPLAY
l The TYPE subcommand is also used for showing the contents of the currently active

data fields. TYPE presents the data horizontally, using the shortest name or alias
available in the Master File. DISPLAY presents the information vertically, showing the
full field names.

l CRTFORM is used to format a screen, showing the full field names and the field
contents, blocked two to a line. Use TYPE to show the contents of the CRTFORM.

END Command
Terminates the SCAN session and writes all pending modifications to the FOCUS database.

Use the END Command
End

Using the END Command
END

Commands Similar to END
l The FILE subcommand is a synonym for END. This also results in normal termination

of the session.

l The SAVE subcommand also writes the modifications to the database, but does not
terminate the SCAN session. You retain your position in the database.

ibi™ FOCUS® Maintaining Databases

439 | Directly Editing FOCUS Databases With SCAN

FILE Command
Terminates the SCAN session and writes all pending modifications to the FOCUS database.

Use the FILE Command
File

Using the FILE Command
FILE

Commands Similar to FILE
l The END subcommand is a synonym for FILE. This also results in normal termination

of the session.

l The SAVE subcommand writes the modifications to the database, but does not
terminate the SCAN session. You retain your position in the database.

INPUT Command
The subcommand opens the database to accept one or more new segments of data. It
creates a segment instance in each segment for which a field value is specified.

The new records are inserted after the record currently displayed; that is, they break the
chain. However, if the segment is being maintained in some sort sequence, a check is
subsequently performed and the new records inserted in their proper positions.

ibi™ FOCUS® Maintaining Databases

440 | Directly Editing FOCUS Databases With SCAN

Use the INPUT Command
Input [field=value,...[,$]]

The input records are defined as free-format, or comma-delimited. They are entered in one
of two ways:

l The data may be typed on the same line as the command. It must be typed on one
line. In this case, it does not have to be terminated by a comma and dollar sign (,$).

l Or if the subcommand is issued on a line by itself, then the new record may be typed
on several lines, but it must be terminated by a comma and dollar sign (,$).

Using the INPUT Command
show emp_id last_name salary jobcode
tlocate ln=jones
EID=117593129 LN=JONES SAL= 18480.00 JBC=B03

input salary=19000.00, jobcode=b04
SCAN:

type
EID=117593129 LN=JONES SAL= 19000.00 JBC=B04

Caution: SCAN rejects records that have key field values that already exist in the
database (duplicate keys). In this example, if you type the following, you get a

warning.

input eid=117593129, salary=19000.00, jobcode=604
DATA KEYS ARE ALREADY IN FILE
SCAN:

Such warnings are only provided for key fields, however, and inadvertently creating a
duplicate instance of a segment can have unexpected consequences, particularly if one of
the records is a short-path record. Subsequently, you may see different versions depending
on the fields you name in your SHOW command.

ibi™ FOCUS® Maintaining Databases

441 | Directly Editing FOCUS Databases With SCAN

Commands Similar to INPUT
None.

JUMP Command
Starting from the field in the current record, JUMP moves immediately to the next
occurrence of the same field. This skips over any intervening records and is a quick way to
traverse a database. Specify n to jump n occurrences.

If JUMP encounters no additional field occurrences for the same parent record, it stops at
the last record in the current chain and displays the END-OF-CHAIN message. It does not
move to the start of the next chain.

Use the JUMP Command
Jump fieldname [n]

Using the JUMP Command
show emp_id last_name first_name salary
type 7
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00
EID=071382660 LN=STEVENS FN=ALFRED SAL= 10000.00
EID=112847612 LN=SMITH FN=MARY SAL= 13200.00
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00
EID=117593129 LN=JONES FN=DIANE SAL= 17750.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00
EID=818692173 LN=CROSS FN=BARBARA SAL= 25775.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9050.00

top
TOF:

next
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00

ibi™ FOCUS® Maintaining Databases

442 | Directly Editing FOCUS Databases With SCAN

jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Commands Similar to JUMP
The NEXT subcommand is used to advance to the next logical record.

LOCATE Command
Starting at the current position, initiates a search for record(s) meeting the test condition
(s). When an acceptable record is found, it is displayed. If the end of the database is
encountered during the search, the message EOF: is displayed.

Use the LOCATE Command
Locate field rel value [[AND|,]field rel value [,$] [*|n]]

where:

field

Is the field name of the target(s).

rel

Is one of the following test relations:

Relation Meaning

EQ

or

Equal to

ibi™ FOCUS® Maintaining Databases

443 | Directly Editing FOCUS Databases With SCAN

Relation Meaning

=

NE
Not equal to

GE
Greater than or equal to

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS
Contains

OMITS
Omits

value

Is the object of the comparison.

n

Is the number of occurrences which may exist.

The comma-dollar sign (,$) terminator symbol is not required if only one record is
sought (the default). It is required if you provide a replication factor (n) larger than 1. If
the replication factor is set to *, then all records meeting the test conditions are
displayed (from the current position to the end of the database).

ibi™ FOCUS® Maintaining Databases

444 | Directly Editing FOCUS Databases With SCAN

When using more than one test relation, separate them by either commas or the word
AND, as

locate field rel value, field rel value

or:

locate field rel value AND field rel value

If you supply a list of values with an EQ test, separate the values with the word OR:

locate field EQ value OR value OR value

Using the LOCATE Command
show emp_id last_name first_name salary
locate dpt=mis
EID=112847612 LN=SMITH SAL= 13200.00 JBC=B14

Commands Similar to LOCATE
TLOCATE has exactly the same function, but effectively adds the TOP function and begins
the search at the top of the database.

MARK Command
The MARK subcommand identifies a logical record so that you can return to it when you
issue the MOVE or BACK subcommand. Only one record can be marked at a time. MARK is
used to identify data to be moved to a new location in the database, and to return to a
record with the BACK command.

ibi™ FOCUS® Maintaining Databases

445 | Directly Editing FOCUS Databases With SCAN

Use the MARK Command
MArk

Using the MARK Command
show emp_id last_name first_name salary
next
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00

jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

mark
next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

back
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Commands Similar to MARK
None.

MOVE Command
The MOVE subcommand moves segment instances and all of their descendant segments
from one parent segment to another.

Identify the record instance of the segment to be moved with the MARK subcommand.
Then locate the new position for the marked segment instance in any manner (LOCATE,
NEXT, etc.). Follow with the MOVE subcommand naming the instance of the segment being
moved. The moved instance and all of its descendants are made descendants of the parent
at the current position. If the SEGTYPE is not S or SH, then the segment will be inserted
after the record currently shown. If the SEGTYPE is S or SH (sorted, sorted high-to-low), the
segments will be located in the proper sort sequence.

ibi™ FOCUS® Maintaining Databases

446 | Directly Editing FOCUS Databases With SCAN

Use the MOVE Command
MOve fieldname

Using the MOVE Command
show emp_id last_name salary dat_inc
next
EID=071382660 LN=STEVENS DI=820101 SAL= 11000.00

mark
locate ln=greenspan
EID=543729165 LN=GREENSPAN DI=820611 SAL= 9000.00

move dat_inc
EID=543729165 LN=GREENSPAN DI=820101 SAL=11000.00

In the example, the date of increase (DAT_INC or DI) and salary (SAL) are taken from the
marked record of Alfred Stevens and moved to Mary Greenspan's record.

Commands Similar to MOVE
None.

NEXT Command
The current position is advanced nn records and the new position is displayed (where nn is
the number of records from 1 to 99). If the end of the database is reached during the
movement to the new current position, the message EOF: is displayed.

Use the NEXT Command
Next [nn]

ibi™ FOCUS® Maintaining Databases

447 | Directly Editing FOCUS Databases With SCAN

The default is one record.

Using the NEXT Command
show emp_id last_name first_name salary
type 8
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00
EID=071382660 LN=STEVENS FN=ALFRED SAL= 10000.00
EID=112847612 LN=SMITH FN=MARY SAL= 13200.00
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00
EID=117593129 LN=JONES FN=DIANE SAL= 17750.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9050.00
EID=119329144 LN=BANNING FN=JOHN SAL= 29700.00

top
TOF:

next 4
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

NEXT 4 advances the current position to the fourth logical record and displays the field
values at that position. The subsequent NEXT 2 moves the current position forward two
more logical records.

Commands Similar to NEXT
None.

QUIT Command
Ends the SCAN session. All pending modifications to the database (those not yet written
permanently to the disk) are suppressed.

The use of this subcommand does not guarantee that all changes to the database will be
ignored. During SCAN execution, large buffer areas hold the pending changes. Depending
on the operating system and buffer sizes, a large SCAN file could threaten the buffer

ibi™ FOCUS® Maintaining Databases

448 | Directly Editing FOCUS Databases With SCAN

capacity. This forces the operating system to write your pending changes to the database
to clear the buffer. This would update your database, even though you had not issued a
SAVE, END or FILE subcommand.

The FOCUS Absolute File Integrity facility reduces the risk of making changes you do not
want. Also, keeping your own copy of the database before you start the session gives you a
recovery capability in the event you lose your way in SCAN and create a database you
subsequently decide to discard.

The QUIT subcommand acts only to prevent transfer of those records in the buffer to the
disk.

When a change is made to a database immediately prior to issuing QUIT, the change is
usually suppressed. If SCAN activity is high between modifications to the database,
however, the chance of suppressing all changes is less likely, because the buffer work areas
may, of necessity, have been written to the disk to make way for more pages of database
records.

Use the QUIT Command
Quit

Using the QUIT Command
QUIT

Commands Similar to QUIT
END and FILE both terminate the session but both write any pending changes to the
database. SAVE also writes the changes to the database, but leaves you in the SCAN
session.

ibi™ FOCUS® Maintaining Databases

449 | Directly Editing FOCUS Databases With SCAN

REPLACE Command
The REPLACE command replaces the data values for the record at the current position with
the data values provided. The fields replaced may reside on the same segment or different
segments, but must be on the path defined by the Show List if one is in effect.

Two types of global REPLACE operations can be specified:

l Sequential replacement: If the current position was not reached using a prior
LOCATE subcommand, the replication factor applies to this record and the next n-1
records retrieved.

l Matched replacement: If a prior LOCATE subcommand established the current
position, the search criteria remains in effect and the replication factor applies to this
logical record and the next n-1 records that also meet the search criteria.

Use the REPLACE Command
Replace [KEY] field=value, field=value, $ [factor]

where:

factor

Is one of the following:

1 is the default.

* represents all fields.

nn is the number of field values that can be replaced at one time. If the replication
factor nn is greater than 1, then all of the replaced fields must reside on the same
segment.

If the field whose value is being replaced is used to keep the segment in the proper sort
sequence (that is, it is a key field), then the word KEY must be placed after the command.
Without this word, a message is displayed indicating that the key field cannot be replaced.

Note: The replication factor cannot be used with REPLACE KEY.

ibi™ FOCUS® Maintaining Databases

450 | Directly Editing FOCUS Databases With SCAN

Using the REPLACE Command
This section will show how to use the REPLACE command.

Replacing a Field Value With REPLACE
show emp_id last_name salary
tlocate eid=112847612
EID=112847612 LN=SMITH SAL= 13200.00

replace salary=16000.00
EID=112847612 LN=SMITH SAL= 16000.00

Replacing Multiple Field Values With REPLACE
show emp_id last_name jobcode
next
EID=071382660 LN=STEVENS JBC=A07

replace jobcode=B02,$ *
EID=071382660 LN=STEVENS JBC=B02
EID=071382660 LN=STEVENS JBC=B02
EID=112847612 LN=SMITH JBC=B02
.
.
.
VALUES REPLACED= 19
EOF:

Replacing a Key Field Value With REPLACE
show emp_id last_name first_name
tlocate ln=stevens
EID=071382660 LN=STEVENS FN=ALFRED
replace key eid=971382660
EID=971382660 LN=STEVENS FN=ALFRED
KEY VALUE RESEQUENCED...

type *

ibi™ FOCUS® Maintaining Databases

451 | Directly Editing FOCUS Databases With SCAN

EID=971382660 LN=STEVENS FN=ALFRED
EOF:

Notes on replacing key fields:

l The segment is re-sequenced to preserve the correct sort order. In this case, we gave
Stevens the highest employee number in the database, so the TYPE * command types
one record and reaches end-of-file.

l Only one key field can be replaced at a time.

l This may result in duplicate keys in the database (you need to keep track of this).

Commands Similar to REPLACE
CHANGE command.

SAVE Command
Writes out all modifications to the FOCUS database. The SCAN session continues at the
current position held before the SAVE. If the FOCUS Absolute File Integrity feature is active,
this is the point at which a new checkpoint is taken.

To activate the Absolute File Integrity feature, issue the following command at the FOCUS
command level before you create the database:

SET SHADOW=ON

If the SET SHADOW command is issued after the database is created, the command has no
effect. See the Describing Data manual for information about the FOCUS Absolute File
Integrity feature. See the Developing Applications manual for more information about the
SET parameters.

Periodic use of SAVE during SCAN sessions is recommended. Otherwise, if communication
lines are lost or other processing interruptions occur, the modifications made since the
previous SAVE must be repeated.

ibi™ FOCUS® Maintaining Databases

452 | Directly Editing FOCUS Databases With SCAN

Use the SAVE Command
SAve

Using the SAVE Command
SAVE

All modifications to the database are written to the disk, and the SCAN session continues.

Commands Similar to SAVE
Both END and FILE write your changes to the database and terminate the SCAN session.
QUIT is used to delete any pending changes to the database and terminate the SCAN
session.

SHOW Command
SHOW is used to create a subset of the database (called a Show List, subtree, or a logical
view) for editing. It always moves the current position to the top of the database, and the
logical records are only as deep as the Show List (that is, they consist of only the segments
named in the SHOW subcommand, which had data in all of the specified fields plus any
intermediate segments needed to connect the segments containing the named fields).

Use the SHOW Command
SHow [fieldlist]

where:

ibi™ FOCUS® Maintaining Databases

453 | Directly Editing FOCUS Databases With SCAN

fieldlist

Can be one of the following:

fieldname [*] fieldname * fieldnamefieldname *

Separate field names with blanks. Field names can be full field names, aliases, or unique
truncations of either.

On entry into the SCAN environment, all of the data fields in the first physical top-to-
bottom path are displayed as the default Show List. When SHOW is issued with no list of
field names, the names of all of the fields in the current path are displayed.

Use an asterisk (*) between two field names to select all fields between and including
them. Use an asterisk and one field name to select all field names up to and including the
named field. Use one field name and an asterisk to select all field names from that field on.

Using the SHOW Command
This sections shows how to use the SHOW command.

Selecting a Logical View (a Show List)
show eid last_name salary
type *
EID=071382660 LN=STEVENS SAL= 11000.00
EID=071382660 LN=STEVENS SAL= 10000.00
EID=112847612 LN=SMITH SAL= 13200.00
EID=117593129 LN=JONES SAL= 18480.00
.
.
.
EID=818692173 LN=CROSS SAL= 25775.00
EOF:

The Show List, or subtree, consists of all segment instances that have data for all of the
fields specified (Employee Identification Number, Last Name and Salary). Records lacking
instances of any of these fields (for example, short-path records) are not included in the
list.

ibi™ FOCUS® Maintaining Databases

454 | Directly Editing FOCUS Databases With SCAN

Selecting All Fields Between Two Named Fields
show emp_id * bank_name
type 2
EID=071382660 LN=STEVENS FN=ALFRED HDT=800602
DPT=PRODUCTION CSAL=11000.00 CJC=A07 OJT= 25.00 BN=
EID=112847612 LN=SMITH FN=MARY HDT=810701
DPT=MIS CSAL=13200.00 CJC=B14 OJT= 36.00 BN=

All fields between (and including) EMP_ID and BANK_NAME are included in the Show List.
(Stevens and Smith do not have a bank for electronic transfer and, therefore, the value for
BN is blank.)

Selecting All Fields
To select all fields, use an asterisk instead of field names.

SHOW *

Note: To examine the contents of the current position in the Show List, you can
use TYPE to print just the fields named in the SHOW subcommand. Use DISPLAY
or CRTFORM if you wish to see the contents of other fields in the selected
segments. (Use TYPE with CRTFORM to see the display.)

Subsequent navigation keywords will show the field values for the current position for each
of the fields named in the SHOW subcommand.

Commands Similar to SHOW
None.

ibi™ FOCUS® Maintaining Databases

455 | Directly Editing FOCUS Databases With SCAN

TLOCATE Command
TLOCATE is a convenience feature that combines the capabilities of the LOCATE
subcommand with those of TOP. When issued, the search begins at the top of the
database. This combined functionality allows you to automate processes more easily using
the X and Y subcommands.

If the subcommand AGAIN is used following TLOCATE, it locates the same record rather
than moving ahead to the next instance as it would with LOCATE.

Use the TLOCATE Command
TLocate field rel value [[AND|,]field rel value [,$][*|nn]]

where:

field

Is the field name of the target(s).

rel

Is one of the following test relations:

Relation Meaning

EQ

or

=

Equal to

NE
Not equal to

GE
Greater than or equal
to

ibi™ FOCUS® Maintaining Databases

456 | Directly Editing FOCUS Databases With SCAN

Relation Meaning

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS
Contains

OMITS
Omits

value

Is the object of the comparison.

The comma-dollar sign (,$) terminator character is not required if only one record is
sought. However, it is required if you provide a replication factor larger than one. If the
replication factor is set to *, then all records meeting the test conditions are displayed from
the current position to the end of the database.

When using more than one test relation, separate them either with commas or the word
AND, as follows

locate field rel value, field rel value

or:

locate field rel value AND field rel value

If you supply a list of values with an EQ test, separate the values with the word OR:

locate field EQ value OR value OR value

ibi™ FOCUS® Maintaining Databases

457 | Directly Editing FOCUS Databases With SCAN

Using the TLOCATE Command
show last_name first_name department
tlocate dpt=production
LN=STEVENS FN=ALFRED DPT=PRODUCTION

next 5
LN=IRVING FN=JOAN DPT=PRODUCTION

tlocate dpt=production
LN=STEVENS FN=ALFRED DPT=PRODUCTION

Commands Similar to TLOCATE
LOCATE is the same command, but without the TOP function.

TOP Command
The current position is set at the first logical record in the database. If the next
subcommand is TYPE or NEXT, the first record is retrieved and displayed.

When the message EOF: appears after any subcommand, use TOP to reset the current
position.

Use the TOP Command
TOp

Using the TOP Command
show emp_id last_name salary
next 30
EOF:

ibi™ FOCUS® Maintaining Databases

458 | Directly Editing FOCUS Databases With SCAN

top
TOF:

next
EID=071382660 LN=STEVENS SAL= 11000.00

The current position is reset to the top of the database.

Commands Similar to TOP
l SHOW also takes you to the top of the database, but its primary purpose is the

selection of the logical database view that you wish to use.

l TLOCATE goes to the top of the database before starting its search for the field(s) you
have specified.

TYPE Command
The TYPE command displays the values of the named fields or displays the contents of a
CRTFORM.

Use the TYPE Command
TYpe [factor]

where:

factor

Is one of the following: 1 is the default.

n displays the record at the current position plus the next n-1 records, if the replication
factor is greater than 1.

* displays the message EOF: after the last record in the database is displayed. Use TOP
to reset the current position to the top of the database.

ibi™ FOCUS® Maintaining Databases

459 | Directly Editing FOCUS Databases With SCAN

Using the TYPE Command
show emp_id last_name salary
type 6
EID=071382660 LN=STEVENS SAL= 11000.00
EID=071382660 LN=STEVENS SAL= 10000.00
EID=112847612 LN=SMITH SAL= 13200.00
EID=117593129 LN=JONES SAL= 18480.00
EID=117593129 LN=JONES SAL= 17750.00
EID=119265415 LN=SMITH SAL= 9500.00

The record at the current position and the next five records are displayed.

Commands Similar to TYPE
l The DISPLAY command also shows the contents of the currently active data fields,

but DISPLAY shows all the named fields in a neat vertical list, whether they are in the
SHOW command or not.

l CRTFORM is used to format a screen, showing the full field names and the field
comments, blocked two to a line. Use TYPE to show the contents of the CRTFORM.

UP Command
The UP subcommand resets the current position to the first descendant instance under a
parent instance. Hence, it moves the position to the start of the current chain.

Use the UP Command
UP fieldname

where:

ibi™ FOCUS® Maintaining Databases

460 | Directly Editing FOCUS Databases With SCAN

fieldname

Is the name of a field in a descendant segment.

Using the UP Command
show emp_id last_name salary pay_date
next 5
EID=071382660 LN=STEVENS SAL= 10000.00 PD=820630

up pay_date
EID=071382660 LN=STEVENS SAL= 10000.00 PD=820528

The current position is reset to the first instance of PAY_DATE information for Stevens.

Commands Similar to UP
None.

X and Y Commands
The X and Y subcommands are used to store a complete SCAN subcommand for later
execution by simply typing in the appropriate letter (X or Y).

To set, but not execute, a value for X or Y, type it as a first letter in front of any other
subcommand. Any print suppression control, and the replication factors, are picked up
from the stored subcommand.

Use the X and Y Commands
[x|y] subcommand

ibi™ FOCUS® Maintaining Databases

461 | Directly Editing FOCUS Databases With SCAN

Using the X and Y Commands
y display emp_id last_name curr_sal pay_date gross
show emp_id pay_date
next
EID=071382660 PD=820831

y
EMP_ID =071382660
LAST_NAME =STEVENS
CURR_SAL = 11000.00
PAY_DATE =820831
GROSS = 916.67

A series of operations can be performed by repeatedly entering X and Y subcommands.

Commands Similar to X and Y
None.

? Command
The ? subcommand recalls and displays the last recognized subcommand issued in the
SCAN mode.

Use the ? Command
?

ibi™ FOCUS® Maintaining Databases

462 | Directly Editing FOCUS Databases With SCAN

Using the ? Command
Show emp_id last_name salary jobcode
locate dpt=mis
EID=112847612 LN=SMITH SAL= 13200.00 JBC=B14

?
LOCATE DPT=MIS

again
EID=117593129 LN=JONES SAL= 18480.00 JBC=B03

Here the LOCATE operation returns a record. AGAIN locates the next record that meets the
stated criteria.

Commands Similar to ?
None.

ibi™ FOCUS® Maintaining Databases

463 | Directly Editing ibi FOCUS Databases With FSCAN

Directly Editing ibi FOCUS Databases With
FSCAN
The full-screen FSCAN facility enables you to edit FOCUS databases directly on your
terminal screen. You can use FSCAN to add, update, and delete data from FOCUS
databases as if the segments in the FOCUS databases were flat files on a full-screen editor.
You can type over field values, or change them by issuing commands.

Introduction
FSCAN enables you to:

l Add records to new or existing FOCUS databases.

l Change field values in FOCUS databases. With FSCAN you can change the values in
key fields (not possible with MODIFY requests).

l Delete records from FOCUS databases.

l Search through FOCUS databases to locate instances of specified character strings or
values.

If your database is protected by shadow paging, the changes you make on FSCAN are not
permanent until you issue a command to do so. You may choose to exit FSCAN without
saving any of the changes.

Databases on Which FSCAN Can Operate
FSCAN can operate on databases having the following attributes:

l The databases are FOCUS databases, not databases of other types.

l The databases are individual databases, not combined structures created by the
COMBINE command.

ibi™ FOCUS® Maintaining Databases

464 | Directly Editing ibi FOCUS Databases With FSCAN

l The length of the root key field in the database does not exceed 61 bytes, and the
sum of the field name length plus the field length does not exceed 73 bytes.

Also, note the following regarding databases:

l FSCAN does not accept alternate file views.

l Databases that you specify with the USE command using the READ option are write
protected.

l Databases that you are viewing on a FOCUS Database Server in Simultaneous Usage
mode are write protected.

Segments on Which FSCAN Can Operate
The following rules apply to the display and editing of segments in FSCAN:

l FSCAN does not display a segment containing a key field longer than 61 bytes and
the sum of the field name length plus the field length does not exceed 73 bytes, nor
does it display the descendants of that segment.

l When you input a new segment instance, the instance must have a key unique to its
group. (In the root segment, this means all the instances in the segment; in a
descendant segment, this means all the instances that share a parent instance). If
you try to input an instance with a duplicate key, FSCAN will generate an error
message.

l If you change a key field value of an instance, the new instance key (the combination
of all key field values in the instance) must be unique to the group. If you try to

change the key to a duplicate, FSCAN will generate an error message.

l If you use FSCAN on segments already containing duplicate keys, the results are
unpredictable. If the root segment has duplicate keys, an attempt to display a screen
with these duplicates results in FSCAN terminating in an error. If a descendant
segment has duplicate keys, an FSCAN error is displayed and you are positioned at
the parent segment.

l When a segment is type S0 or blank, no one field is designated as the key field.
FSCAN considers all fields in such segments to be key fields. This has two
ramifications:

o You cannot input a segment instance that is the duplicate of another in the

ibi™ FOCUS® Maintaining Databases

465 | Directly Editing ibi FOCUS Databases With FSCAN

same group.

o You cannot update a segment instance so that it duplicates another segment
instance in the same group.

Fields That FSCAN Can Display
FSCAN can display fields containing the following attributes:

l The field length does not exceed 61 bytes and the sum of the field name length plus
the field length does not exceed 73 bytes.

l The fields are real database fields, not DEFINEd fields.

l FSCAN displays group fields as their individual members, not as a group.

Note: Text fields cannot be displayed in FSCAN.

Database Integrity Considerations
How FSCAN treats the changes you make to the database depends on whether the
database is protected by shadow paging.

If you are using shadow paging, FSCAN writes your changes to a shadow database. If you
enter the commands END, FILE, or SAVE, the changes become part of the real database. If
you enter the command QQUIT or if FSCAN terminates abnormally, the changes disappear
and the database is not affected.

If you are not using shadow paging, FSCAN writes your changes directly to the database.
The changes remain even after you enter the QQUIT command.

FOCUS performs shadow paging using the Absolute File Integrity facility.

Note: Absolute File Integrity and shadow paging are not supported for XFOCUS
data sources.

ibi™ FOCUS® Maintaining Databases

466 | Directly Editing ibi FOCUS Databases With FSCAN

DBA Considerations
If the database is protected by the DBA security facility, then the ACCESS attribute in the
Master File restricts users in the following way:

l Users with read-write access (ACCESS=RW) and write-only access (ACCESS=W) have
unrestricted access to the database, with the exception of what is denied them by
the RESTRICT and NAME attributes.

l Users with update-only access (ACCESS=U) can display the entire database, with the
exception of what is denied them by the RESTRICT and NAME attributes. However,
they cannot input or delete instances and can only update non-key fields.

l Users with read-only access (ACCESS=R) to any part of the database cannot use
FSCAN on the database.

FSCAN honors DBA security restrictions on segments and fields. FSCAN does not display
those segments and fields from which the user is restricted. FSCAN does not honor DBA
field value restrictions and will display all field values regardless of the user.

If the user has no access to a key field in the root segment, that user is blocked from using
FSCAN on the database.

If the user has no access to a segment, that segment is not listed on the menu that
appears when the user enters the CHILD command.

Entering FSCAN
Enter the full-screen FSCAN facility from FOCUS with

FSCAN FILE filename

where:

filename

Is the name of the database you are editing. The database must be a FOCUS database.
You may also enter FSCAN by typing:

FS FILE filename

ibi™ FOCUS® Maintaining Databases

467 | Directly Editing ibi FOCUS Databases With FSCAN

For example, to edit the EMPLOYEE database, enter:

FSCAN FILE EMPLOYEE

Entering FSCAN With a SHOW List
By default, FSCAN makes all fields in the database available to the user. However, it is
possible to restrict the fields available with the SHOW option.

Enter FSCAN With a SHOW List
FSCAN FILE filename SHOW
[fieldname......fieldname....|SEG.fieldname]
END

where:

SHOW

Indicates that specific fields will be displayed. The SHOW keyword must appear on the
same line as the FSCAN command.

fieldname...

Are the fields to be displayed.

END

Is required and must be specified on a line by itself.

Entering FSCAN With a SHOW List
For example, the commands

ibi™ FOCUS® Maintaining Databases

468 | Directly Editing ibi FOCUS Databases With FSCAN

FSCAN FILE EMPLOYEE SHOW
EMP_ID LAST_NAME FIRST_NAME SEG.GROSS
END

would provide access to only the selected fields in the root segment and to the whole
segment containing the field GROSS. The above commands would produce the following
display:

FSCAN FILE EMPLOYEEFOCUS A CHANGES :0

EMP_ID LAST_NAME FIRST_NAME
------ --------- --------- ----------
== 071382660 STEVENS ALFRED
== 112847612 SMITH MARY
== 117593129 JONES DIANE
== 119265415 SMITH RICHARD
== 119329144 BANNING JOHN
== 123764317 IRVING JOAN
== 126724188 ROMANS ANTHONY
== 219984371 MCCOY JOHN
== 326179357 BLACKWOOD ROSEMARIE
== 451123478 MCKNIGHT ROGER
== 543729165 GREEENSPAN MARY
----------------------------INPUT--------------------------------------
==
==>

MORE=>

The only child segment that can be displayed is the SALINFO segment, which contains the
field GROSS.

Allowing Uppercase and Lowercase Alpha
Fields
By default, FSCAN translates all input and changed alpha fields to uppercase. If uppercase
and lowercase input and updates are to be respected, then enter FSCAN with the LOWER
keyword.

ibi™ FOCUS® Maintaining Databases

469 | Directly Editing ibi FOCUS Databases With FSCAN

Specify Case Sensitivity in FSCAN
FSCAN FILE filename [case]

where:

case

Is one of the following:

UPPER translates all input and changed alpha fields into uppercase. UPPER is the default.

LOWER preserves uppercase and lowercase input and is analogous to the CRTFORM
LOWER statement in MODIFY.

MIXED is a synonym for LOWER.

Using FSCAN
When you enter FSCAN, FSCAN displays as much as it can of the root segment of the data
source. For example, if you view the EMPLOYEE data source with FSCAN, using the
following command

FSCAN FILE EMPLOYEE

you will see the following screen:

1. FSCAN FILE EMPLOYEEFOCUS A1 CHANGES: 0

2. EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

3. == 071382660 STEVENS ALFRED 800602 PRODUCTION
4. == 112847612 SMITH MARY 810701 MIS

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

ibi™ FOCUS® Maintaining Databases

470 | Directly Editing ibi FOCUS Databases With FSCAN

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
------------------------------INPUT---------------------------------

5. ==
6. ==>
7. MORE=>

This screen displays the contents of the root segment of the EMPLOYEE database. Each
record on the screen is one instance in the root segment. The numbers in the diagram refer
to the notes below:

1. The header shows the name of the database and the number of changes made to the
database since the last save.

2. Each field is labeled with a column heading.

3. The first record at the top of the screen is called the current instance. Many
commands operate only on this record. When you first enter FSCAN, this record is the
first instance in the root segment.

4. The equal signs (==) in the left margin of the screen indicate the prefix area. This is
where you enter prefix area commands.

The key field value in each record appears highlighted.

5. The last line with equal signs is called the input area and is reserved exclusively for
input.

6. The arrow at the lower-left corner of the screen points to the command line. This is
where you enter FSCAN commands.

7. The MORE symbol at the lower-right corner of the screen indicates that each record
extends to the right of the screen.

This section discusses various functions of the FSCAN facility. For an alphabetic summary
of commands, see Syntax Summary.

The FSCAN facility displays one segment at one time. (For the root segment, FSCAN
displays all instances in the segment; for descendant segments, FSCAN displays all
instances sharing the same parent instance.) Each record on the screen is one segment
instance. The first instance at the top of the screen is called the current instance.

The FSCAN facility also displays segments in SINGLE mode, that is, one instance at one
time. SINGLE mode is discussed in Displaying a Single Instance on One Screen: The SINGLE
and MULTIPLE Commands.

Note the different types of commands:

#d13direditfocus1089623
#d13direditfocus1089623

ibi™ FOCUS® Maintaining Databases

471 | Directly Editing ibi FOCUS Databases With FSCAN

l Prefix area commands are typed in the prefix area on the left of the screen display.
Prefix area commands operate only on the line where they are typed.

l Command-line commands are typed on the command line at the bottom of the
screen. Some commands operate on the entire screen, others operate only on the
current instance at the top of the screen. There are two types of command-line
commands:

o Immediate commands. When you execute an immediate command, the
database remains unchanged even if you type the changes on the screen. There
are five immediate commands:

LEFT
RIGHT
RESET
?
QQUIT

o Non-immediate commands. When you execute a non-immediate command,
any changes you type on the screen will be written to the database even if the
command itself does not modify the database.

The following rules apply to commands:

l You may use unique truncations for commands. When this section specifies a
command syntax, the unique truncation is shown in uppercase.

l Commands that use field names as parameters require the full field name, alias, or
unique truncation.

l You may enter two commands at one time by separating the commands with a
semicolon. For example, to enter the commands NEXT 5 and CHILD at one time, type:

NEXT 5; CHILD

The FSCAN Facility and ibi FOCUS Structures
This section is a brief summary of FOCUS structures and how they affect the FSCAN facility.

FOCUS databases are organized into segments which have the following properties:

l Segments consist of individual data records called segment instances, in which fields

ibi™ FOCUS® Maintaining Databases

472 | Directly Editing ibi FOCUS Databases With FSCAN

have a one-to-one correspondence with each other.

l Segments relate to each other as parents and children.

l A group of instances in a child segment describes one instance in a parent segment.

l One parent segment may have many child segments, but a child segment may have
only one parent.

l A FOCUS structure has one segment from which all other segments are descended.
This is called the root segment.

The diagram below represents the structure of the EMPLOYEE database:

Note the position of the segments in the structure:

l The EMPINFO segment is the root segment. All other segments are descended from it.

l EMPINFO has four children: the FUNDTRAN, PAYINFO, ADDRESS, and SALINFO
segments.

l The SALINFO segment has one child, the DEDUCT segment.

The FSCAN facility displays instances in one segment at one time. When it displays the root
segment (as it will when you first enter FSCAN), it displays all the instances in the segment.

The following screen illustrates how FSCAN displays the EMPINFO segment.

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- --------- -------- ----------

== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS

ibi™ FOCUS® Maintaining Databases

473 | Directly Editing ibi FOCUS Databases With FSCAN

== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
---------------------------------INPUT---------------------------------
--
==
==>

MORE=>

Note that the screen only displays the first five fields of the first ten instances in the
segment. To view the other fields and instances, use the scrolling facilities described in
Scrolling the Screen.

Also note that you cannot move from one segment to another by simply scrolling. To move
from a parent segment to a child segment and back again, you must use the PARENT and
CHILD commands discussed in Displaying Descendant Segments: The CHILD, PARENT, and
JUMP Commands.

When FSCAN displays a child segment, it displays only those instances relating to an
instance in the parent segment. You can scroll back and forth to view all the instances in
the group, but you cannot scroll to view the child instances of another parent. At the top of
the screen, FSCAN displays up to five keys of the parent instance, and of the parent of the
parent, and so on, up to the root segment.

For example, the EMPINFO segment contains the ID numbers and names of employees; its
child (SALINFO) contains monthly pay instances. (Each instance lists how much each
employee was paid each month.) Each group of instances in SALINFO represents all the
monthly pay of one employee recorded in the EMPINFO segment. When FSCAN displays the
SALINFO segment, it displays one group of instances at one time.

This is how FSCAN displays the monthly pay of Alfred Stevens, who is listed in the EMPINFO
segment. Note that Mr. Stevens' employee ID (the EMPINFO key field) appears at the top of
the screen:

#d13direditfocus1089538
#d13direditfocus1089538

ibi™ FOCUS® Maintaining Databases

474 | Directly Editing ibi FOCUS Databases With FSCAN

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID : 071382660

PAY_DATE GROSS
-------- -----

== 820831 916.67
== 820730 916.67
== 820630 916.67
== 820528 916.67
== 820430 916.67
== 820331 916.67
== 820226 916.67
== 820129 916.67
== 811231 833.33
---------------------------------INPUT---------------------------------
--
==

==>

If you are displaying one child segment and wish to display another one, you must return
to the parent and request the other child segment. For example, if you are examining
Alfred Stevens' monthly pay and wish to view his salary history (contained in the segment
PAYINFO), return to the EMPINFO segment and request PAYINFO information for Alfred
Stevens using the CHILD command described in Displaying Descendant Segments: The
CHILD, PARENT, and JUMP Commands.

The figure below shows this path schematically. The arrows show the direction you are
traveling to move from the SALINFO segment to the PAYINFO segment:

#d13direditfocus1089538
#d13direditfocus1089538

ibi™ FOCUS® Maintaining Databases

475 | Directly Editing ibi FOCUS Databases With FSCAN

Similarly, if you are displaying one group of child instances and wish to display another
group within the same segment but belonging to a different instance in the parent, you
must return to the parent segment and request the child segment for the other instance.

For example, suppose you are examining Alfred Stevens' monthly pay and wish to view
Mary Smith's monthly pay. You must return to the EMPINFO segment and select the
SALINFO segment for Mary Smith.

The figure below shows this path schematically. The arrows show the direction you are
traveling to move from Alfred Stevens' monthly pay instances to Mary Smith's monthly pay
instances:

Scrolling the Screen
You may scroll the screen forward and backward, right and left.

Scroll the Screen Forward
To scroll forward one screen in a segment, enter

FOrward

ibi™ FOCUS® Maintaining Databases

476 | Directly Editing ibi FOCUS Databases With FSCAN

or press the PF8 or PF20 key. Note that the last instance on one screen becomes the first
instance on the next screen.

To scroll the screen n lines forward, enter

Next n

or:

DOwn n

If you do not enter a number for n, the default is 1.

Scrolling Forward
For example, suppose the screen displays the EMPLOYEE root segment as shown below.

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
---------------------------------INPUT---------------------------------
==
==> forward

MORE=>

When you type the FORWARD command on the command line and press Enter, the
following screen appears:

ibi™ FOCUS® Maintaining Databases

477 | Directly Editing ibi FOCUS Databases With FSCAN

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS

----------------------------------INPUT--------------------------------
==
==>

MORE=>

Scroll the Screen Backward
To scroll the screen backward, enter

Backward

or press the PF7 or PF19 key.

Scroll the Screen to the Right and the Left
To scroll the screen one panel to the right, enter

RIght
LEft

or press the PF11 or PF23 key.

To scroll the screen one panel to the left, enter

ibi™ FOCUS® Maintaining Databases

478 | Directly Editing ibi FOCUS Databases With FSCAN

LEft

or press the PF10 or PF22 key.

The commands RIGHT and LEFT are immediate commands. When you scroll right and left,
FSCAN does not enter changes you typed on the screen until you press Enter after
scrolling.

Scrolling the Screen
For example, if you scroll the EMPLOYEE root segment display one panel to the right, the
following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

CURR_SAL CURR_JOBCODE ED_HRS
-------- ------------ ------

== 11000.00 A07 25.00
== 13200.00 B14 36.00
== 18480.00 B03 50.00
== 9500.00 A01 10.00
== 29700.00 A17 .00
== 26862.00 A15 30.00
== 21120.00 B04 5.00
== 18480.00 B02 .00
== 21780.00 B04 75.00
== 16100.00 B02 50.00
----------------------------------INPUT--------------------------------
==
==>

MORE=>

ibi™ FOCUS® Maintaining Databases

479 | Directly Editing ibi FOCUS Databases With FSCAN

Selecting a Specific Instance by Defining a
Current Instance
This section describes how to move through the database by defining a particular instance
as the current instance. The current instance is always the top instance on the screen.
Certain commands only operate on the current instance.

Define a Current Instance
To define an instance as the current instance, type a slash (/) in the prefix area
corresponding to the instance.

You may also type a slash before or after the following prefix area commands:

l The K command (K/ or /K). After FSCAN changes the key field and displays the
instance in the proper sequence, it makes the instance the current instance.

l The I command (I/ or /I). After FSCAN adds a new instance to the database, it makes
the instance the current instance.

Defining a Current Instance: The "/" Prefix
For example, suppose you type a slash in the prefix area of John Banning's instance, as
shown below:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- ---------- ---------

== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
/= 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION

ibi™ FOCUS® Maintaining Databases

480 | Directly Editing ibi FOCUS Databases With FSCAN

== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
----------------------------------INPUT-------------------------------
==
==>

MORE=>

When you press Enter, the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
-----------------------------------INPUT-------------------------------
==
==>

MORE=

Define the First and Last Instances of a
Segment on Display: The FIRST, LAST, and TOP
Commands
FSCAN displays all instances in a segment that share a common parent instance. For the
root segment, this means all the instances in the segment. To define the first instance in
the group as the current instance, enter:

ibi™ FOCUS® Maintaining Databases

481 | Directly Editing ibi FOCUS Databases With FSCAN

FIrst

If you are displaying instances in the root segment, FIRST will make the first instance in the
database the current instance. If you are displaying instances in a child segment and use
the FIRST command, the first child instance will become the current instance.

To define the last instance as the current instance, enter:

LAst

To select the first instance in the root segment of the database to be the current instance,
enter:

Top

TOP displays the root segment, scrolled to the leftmost panel, with the first instance the
current instance.

Defining the Last Instance as the Current Instance
With LAST
For example, if you enter LAST on the EMPLOYEE root segment display, the following
screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 818692173 CROSS BARBARA 811102 MIS

ibi™ FOCUS® Maintaining Databases

482 | Directly Editing ibi FOCUS Databases With FSCAN

--------------------------------INPUT----------------------------------
==
==>

MORE=>

Locate an Instance Based on Field Values: The
LOCATE Command
LOCATE searches for instances containing field values that fulfill certain conditions. For
example, it can search for an instance with a LAST_NAME value of BANNING or a CURR_SAL
value less than 20,000. LOCATE searches starting with the current instance.

The syntax is (entered on one line)

LOcate field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,} ...]

where:

fieldn ...

Is a field to be tested.

reln ...

Is one of the following condition relations:

EQ or = Equal to

NE
Not equal to

ibi™ FOCUS® Maintaining Databases

483 | Directly Editing ibi FOCUS Databases With FSCAN

GE
Greater than or equal to

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS or CO Contains the character
string

OMITS or OM Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance with a field value that passes the
test becomes the current segment.

If you supply more than one test condition in the command, FSCAN searches for the
instance that fulfills all of the conditions. Separate the test conditions in the command
with the word AND or with a comma (,).

OR

Enables you to test a field for multiple values. If the field contains one of the values, it
meets the test. You can use AND and OR in a single LOCATE command.

The LOCATE command searches starting with the first instance following the current
instance. If LOCATE cannot find the instance, it displays a message and the current
instance does not change.

Locating an Instance Based on Field Values
For example, suppose the first instance in the EMPLOYEE root segment is the current
instance. If you issue the command

ibi™ FOCUS® Maintaining Databases

484 | Directly Editing ibi FOCUS Databases With FSCAN

LOCATE LAST_NAME EQ SMITH

the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
-------------------------------INPUT-----------------------------------
==
==>

MORE=>

These are other examples of the LOCATE command:

LOCATE JOBCODE EQ A07 OR A17

This LOCATE searches for the first segment instance that has a JOBCODE value of either
A07 or A17.

LOCATE LAST_NAME CO WOOD

This LOCATE searches for the first segment instance with a LAST_NAME value that contains
the character string WOOD.

LOCATE HIRE_DATE GT 820401 AND JOBCODE IS B02 OR B03

This LOCATE searches for the first segment instance with both a HIRE_DATE value greater
than 820401 and a JOBCODE value that is either B02 or B03.

ibi™ FOCUS® Maintaining Databases

485 | Directly Editing ibi FOCUS Databases With FSCAN

Find an Instance in a Group: The FIND
Command
The FIND command works within the group of instances being displayed. In the root
segment, this is all instances in the segment; in descendant segments, this is all instances
sharing a common parent instance. FIND searches for instances containing field values that
fulfill certain conditions. For example, it can search for an instance with a LAST_NAME
value of BANNING or a CURR_SAL value less than 20,000. FIND searches starting with the
current instance.

The syntax is entered on one line.

FIND field1 rel1 value1 [OR value1a OR value1b OR ...]
[{AND|,} field2 rel2 value2 {AND|,} ...]

[{AND|,} field2 rel2 value2 {AND|,} ...]

where:

fieldn ...

Is a field in the segment.

reln ...

Is one of the following condition relations:

EQ

or

=

Equal to

NE
Not equal to

ibi™ FOCUS® Maintaining Databases

486 | Directly Editing ibi FOCUS Databases With FSCAN

GE
Greater than or equal to

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS

or

CO

Contains the character
string

OMITS

or

OM

Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance with a field value that passes the
test becomes the current segment.

If you supply more than one test condition in the command, FSCAN searches for the
instance that fulfills all of the conditions. Separate the test conditions in the command
with the word AND or with a comma (,).

OR

Enables you to test a field for multiple values. If the field contains one of the values, it
meets the test. You can use AND and OR in a single FIND command.

ibi™ FOCUS® Maintaining Databases

487 | Directly Editing ibi FOCUS Databases With FSCAN

The FIND command searches the group starting with the first instance following the current
instance. To search the entire group, issue the FIRST command before issuing FIND. If FIND
cannot find the instance, it displays a message and the current instance does not change.

Finding an Instance in a Group
For example, suppose the first instance in the EMPLOYEE root segment is the current
instance. If you issue the command

FIND LAST_NAME EQ SMITH

the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
----------------------------------INPUT--------------------------------
==
==>

MORE=>

These are other examples of the FIND command:

FIND DEPARTMENT EQ MIS OR SALES

This FIND searches for the first segment instance that has a DEPARTMENT value of either
MIS or SALES.

ibi™ FOCUS® Maintaining Databases

488 | Directly Editing ibi FOCUS Databases With FSCAN

FIND LAST_NAME CO WOOD

This FIND searches for the first segment instance with a LAST_NAME value that contains
the character string WOOD.

FIND HIRE_DATE GT 820401 AND DEPARTMENT EQ MIS OR PRODUCTION

This FIND searches for the first segment instance with both a HIRE_DATE value greater than
820401 and a DEPARTMENT value that is either MIS or PRODUCTION.

Displaying Descendant Segments: The CHILD,
PARENT, and JUMP Commands
The CHILD, PARENT, and JUMP commands enable you to display the data in different
segments of a data source.

Display a Child Segment
To display instances in a child segment relating to the current instance, enter

CHIld

or press PF5 or PF17. If the segment on the screen when you enter the command has only
one child segment, FSCAN shows the child segment. If the segment on the screen has more
than one child segment, FSCAN displays a menu of child segments. Select a segment by
entering its number.

Note: (The menu does not display segments restricted to you as a result of DBA
restrictions.)

If you already know the number of the segment on the menu, you can skip the menu by
entering

ibi™ FOCUS® Maintaining Databases

489 | Directly Editing ibi FOCUS Databases With FSCAN

CHIld n

where:

n

is the number of the segment on the menu.

You can display the child instances of any instance on the screen by typing C in the prefix
area next to the instance. You can skip the menu by typing C followed by the number of
the segment on the menu.

Displaying a Child Segment
For example, suppose you are displaying the root segment of the EMPLOYEE database and
you want to see the monthly pay of Mary Smith. Monthly pay is contained in the segment
SALINFO, a child of the root segment. First, make Mary Smith's instance the current
instance. Then, enter the command:

CHILD

The following menu appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

Please enter the number of the child segment you want

1)FUNDTRAN 2)PAYINFO
3)ADDRESS 4)SALINFO

=>

ibi™ FOCUS® Maintaining Databases

490 | Directly Editing ibi FOCUS Databases With FSCAN

Enter the number of the child you want
Enter 0 to stay at parent.

Enter the number 4. The following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID : 112847612

PAY_DATE GROSS
-------- -----

== 820831 1100.00
== 820730 1100.00
== 820630 1100.00
== 820528 1100.00
== 820430 1100.00
== 820331 1100.00
== 820226 1100.00
== 820129 1100.00

--------------------------------INPUT----------------------------------
==
==>

Note that the header displays the key field value of the parent instance. Since EMP_ID is
the key field of the root segment, the header displays Mary Smith's employee ID.

Also, you could have gone directly from the EMPLOYEE root segment to the monthly pay
segment by doing one of the following:

l Typing CHILD 4 on the command line.

l Typing C4 in the prefix area.

ibi™ FOCUS® Maintaining Databases

491 | Directly Editing ibi FOCUS Databases With FSCAN

Display the Parent Segment
To return to the parent segment, enter

Parent

or press PF4 or PF16. The current instance in the parent is the same as before you entered
the CHILD command or C prefix area command.

Display the First Child of the Next Parent
Instance
To move to the first child of the next parent instance, enter

JUMP

or press PF12 or PF24 while FSCAN is displaying a child segment.

Displaying the First Child of the Next Parent
Instance
For example, if you enter JUMP while the PAYINFO segment is being displayed for a
particular employee, the PAYINFO segment for the next employee in the EMP_INFO
segment is displayed. JUMP may be issued anywhere.

Displaying a Single Instance on One Screen:
The SINGLE and MULTIPLE Commands
To display a single instance on the screen, enter:

ibi™ FOCUS® Maintaining Databases

492 | Directly Editing ibi FOCUS Databases With FSCAN

SIngle

This places you in SINGLE mode. SINGLE mode enables you to view a single segment
instance on one screen. Only the current instance appears, but all its fields appear on one
screen (unless it has many fields). You may enter all FSCAN commands on the command
line at the bottom of the screen, but there is no prefix area. The key field values appear
highlighted.

All FSCAN commands (but not prefix area commands) operate in SINGLE mode, except that
only one instance is displayed. In particular, note the following:

l If you enter the FORWARD command in SINGLE mode, FSCAN displays the next
instance in the segment. If you enter the BACKWARD command, FSCAN displays the
previous instance.

l If you enter the CHILD command, only one child instance appears at one time. If you
enter the PARENT command, only the parent instance of the current instance
appears on the screen.

You can update and delete an instance in SINGLE mode, but you cannot add another
instance.

You remain in SINGLE mode until you enter the command:

Multiple

MULTIPLE returns you to normal mode, which displays multiple instances at one time.

Using SINGLE Mode
For example, this is how Diane Jones' instance looks in SINGLE mode. Note that there is no
input area, and that the arrow at the bottom of the screen points to the command line
where you can enter commands:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES : 0

EMP_ID : 117593129 LAST_NAME : JONES
FIRST_NAME : DIANE HIRE_DATE : 820501

ibi™ FOCUS® Maintaining Databases

493 | Directly Editing ibi FOCUS Databases With FSCAN

DEPARTMENT : MIS CURR_SAL : 18480.00
CURR_JOBCODE : B03 ED_HRS : 50.00

==>

Modifying the Database
You may use FSCAN to modify the database by adding, updating, and deleting segment
instances.

Adding New Segment Instances: The "I" Prefix
To add a new segment instance to the segment displayed on the screen, type the instance
field values in the input area on the bottom of the screen. You can use the Tab key to jump
from field to field. Then type I in the prefix area next to the new instance. When you press
Enter, FSCAN adds the instance to the database, displaying it in proper sequence based on
its key field values.

If the instance you are typing extends beyond the right margin of the screen, use the
scrolling commands discussed in Scrolling the Screen. FSCAN adds the segment instance
when you press Enter or enter any command except RIGHT, LEFT, RESET, ?, and QQUIT.

Note:
l FSCAN does not accept new instances with key field values that are the

same as another instance.

l FSCAN does not accept new instances with field values that do not
conform to the ACCEPT attribute in the Master File (ACCEPT is explained in
the Describing Data manual).

l If you want the new instance to become the current instance, type I/ in the
prefix area next to the new instance before pressing Enter.

ibi™ FOCUS® Maintaining Databases

494 | Directly Editing ibi FOCUS Databases With FSCAN

Adding New Segment Instances
For example, suppose you want to add Fred Johnson to the EMPLOYEE database, and you
want the new instance to become the current instance. Type his instance in the input area
as shown below (note the I/ in the prefix area):

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0
EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
-----------------------------INPUT-------------------------------------
I/ 123123123 johnson fred 870507 mis

==>
MORE=>

When you press Enter, the screen appears as follows:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :1

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- --------- --------- ----------

== 123123123 JOHNSON FRED 870507 MIS
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION

ibi™ FOCUS® Maintaining Databases

495 | Directly Editing ibi FOCUS Databases With FSCAN

== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
------------------------------INPUT------------------------------------
==

==>
0 Keys Changed 0 Non-Keys Changed
0 Records Deleted 1 Records Input

MORE=>

If you do not type "I" in the prefix area when you input a new instance, FSCAN displays an
error message. To continue, you must do one of the following:

l Enter "I" in the prefix area of the input area.

l Cancel the input by entering the RESET command, typing R in the prefix area, or
pressing the PF2 or PF14 key. This also recovers typed-over field values (see the
following section).

Note that the RESET command entered on the command line is an immediate command.
However, the R prefix-area command is not an immediate command. If you typed changes
on a line not specifying the R prefix, FSCAN enters the changes.

Updating Non-Key Field Values
There are three ways to update non-key field values:

l Type over field values.

l Issue the REPLACE command.

l Issue the CHANGE command.

Note that FSCAN does not accept any new field value that does not conform to the ACCEPT
attribute in the Master File (the ACCEPT attribute is explained in the Describing Data
manual).

ibi™ FOCUS® Maintaining Databases

496 | Directly Editing ibi FOCUS Databases With FSCAN

Type Over Field Values
You may update segment instances by typing over their values on the screen. Use the Tab
key to jump from field to field within the same instance.

Typing Over Field Values
For example, suppose you want to change Richard Smith's department from Production to
Sales. Simply type over the DEPARTMENT value and press Enter. The screen appears as
shown on the next page. Note that the message at the bottom of the screen indicates one
changed non-key field.

The screen is:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 SALES
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
--------------------------------INPUT----------------------------------
==
==>

0 Keys Changed 1 Non-Keys Changed
0 Records Deleted 0 Records Input

MORE=>

The message at the bottom of the screen indicates the number of field values you changed
since the last time you pressed Enter. The counter at the top of the screen counts the total
number of values you changed since the last time the changes were saved on disk.

ibi™ FOCUS® Maintaining Databases

497 | Directly Editing ibi FOCUS Databases With FSCAN

If you type over field values and change your mind before you press Enter, you can restore
the original field values by entering R (to specify the RESET command) on the prefix area
next to the instance whose values you are recovering, or by pressing the PF2 or PF14 key.
However, if you press Enter before pressing one of these keys, you will not recover the
typed-over values.

Note that the RESET command entered on the command line is an immediate command.
However, the R prefix area command is not an immediate command. If you typed changes
on a line not specifying the R prefix, FSCAN enters the changes.

Replace Field Values: The REPLACE Command
The REPLACE command replaces one field value with another either for a specific instance
or for all the instances in a group. (In the root segment, this is all the instances in the
segment; in a descendant segment, this is all the instances that share a parent instance.)
The syntax is

REPlace field1 = value1[,field2 = value2, ...] [,$ {*|n}]

where:

fieldn ...

Is a field in the current instance whose value you want to change.

valuen ...

Is a new value for the field.

,$ {*|n}

Enables you to change multiple instances starting from the current instance (the current
instance included). n is the number of instances to be searched for the field value you
want to change. If you want all instances in the group starting from the current instance
changed, use an asterisk (*).

Using REPLACE
For example, to change Richard Smith's department from Production to Sales, make
Richard Smith's instance the current instance. Then enter:

ibi™ FOCUS® Maintaining Databases

498 | Directly Editing ibi FOCUS Databases With FSCAN

REPLACE DEPARTMENT = SALES

To change the DEPARTMENT value to SALES in the next five instances, enter:

REPLACE DEPARTMENT = SALES,$ 5

To change all DEPARTMENT values in the group to SALES, make the first instance on
display the current instance by entering:

FIRST

Then enter:

REPLACE DEPARTMENT = SALES,$ *

Change Character Strings Within Field Values:
The CHANGE Command
The CHANGE command changes character strings within field values either for a specific
instance or for all the instances in a group (in the root segment, this is all the instances in
the segment; in a descendant segment, this is all the instances that share a parent
instance). The fields must be alphanumeric. The syntax is

CHAnge field = /oldstring/newstring/ [,$ {*|n}]

where:

field

Is the name of the field in the current instance whose value you want to change. The
field must be alphanumeric, and it cannot be a key field.

oldstring

Is the substring of the field value that you want to change.

ibi™ FOCUS® Maintaining Databases

499 | Directly Editing ibi FOCUS Databases With FSCAN

newstring

Is the character string to replace the substring.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the
substring. If you want all instances in the group searched, starting from the current
instance, use an asterisk (*).

Using CHANGE
For example, to change Joan Irving's department from Production to Products, make Joan
Irving's instance the current instance. Then enter:

CHANGE DEPARTMENT = /ION/S/

To change the Production department to Products in the next five instances starting from
the current instance, enter:

CHANGE DEPARTMENT = /ION/S/,$ 5

To change this substring in all the instances in the group, make the first instance on
display the current instance by entering:

FIRST

Then enter:

CHANGE DEPARTMENT = /ION/S/ ,$ *

Changing Key Field Values
FSCAN enables you to change the values of key fields, either by typing over the values or
by using the REPLACE KEY command.

ibi™ FOCUS® Maintaining Databases

500 | Directly Editing ibi FOCUS Databases With FSCAN

Note: FSCAN does not allow you to change a key field to a value that will make
the key field values of one instance the same as another instance.

FSCAN does not accept any new key field value that does not conform to the ACCEPT
attribute in the Master File (the ACCEPT attribute is explained in the Describing Data
manual).

Type Over Key Field Values: The KEY Command
To change the value of a key field, do the following:

Procedure
1. Type the new value over the old one.

2. Either type a K in the prefix area next to the instance you are changing, or type the
command:

Key

If you want the instance to be the current instance after its key value is changed,
type K/ in the prefix area next to the instance.

3. Press Enter.

Result
After you change the key value, FOCUS moves the instance within the segment so that the
key values remain sorted in their proper sequence. The screen shows this immediately.

Note: FOCUSdoes not physically move instances in the root segment, although
the instances appear on the FSCAN screen sorted by their key field values.

If you do not enter the KEY command or type K in the prefix area when you change a key
field value, FSCAN displays an error message. Before continuing, you must do one of the
following:

ibi™ FOCUS® Maintaining Databases

501 | Directly Editing ibi FOCUS Databases With FSCAN

l Enter the KEY command, or enter K in the prefix area.

l Retype the original key value.

l Restore the key field value by entering the RESET command, typing R in the prefix
area, or pressing the PF2 or PF14 key. Other field values you typed over will also be
restored.

Note: The RESET command entered on the command line is an immediate
command. However, the R prefix area command is not an immediate command.
If you type any changes on a line that does not specify the R prefix, FSCAN
enters the changes.

Using KEY
For example, suppose you want to change Alfred Stevens' employee ID from 071382660 to
444555666, and you want his instance to remain the current instance. Type over the
employee ID and type K/ in the prefix area.

The screen appears as shown below:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :2

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

k/ 444555666 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
-------------------------------INPUT-----------------------------------
==
==>

MORE=>

When you press Enter, the screen appears as shown below:

ibi™ FOCUS® Maintaining Databases

502 | Directly Editing ibi FOCUS Databases With FSCAN

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :3

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 444555666 STEVENS ALFRED 800602 PRODUCTION
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
------------------------------INPUT------------------------------------
==
==>

1 Keys Changed 0 Non-Keys Changed
0 Records Deleted 0 Records Input

MORE=>

The message at the bottom of the screen indicates the number of key field values you
changed since the last time you pressed Enter.

Change Key Field Values Using the REPLACE
KEY Command
You may also use the REPLACE command to change key fields of the current instance. The
syntax of the REPLACE command to replace key fields is

REPlace KEY key1 = value1[, key2 = value2, ...]

where:

keyn ...

Is the key field you want to change. Remember that an instance may have more than
one key field (as determined by the SEGTYPE attribute in the Master File).

valuen ...

Is the new value for the key field.

ibi™ FOCUS® Maintaining Databases

503 | Directly Editing ibi FOCUS Databases With FSCAN

Using REPLACE KEY
For example, to change Alfred Stevens' employee ID from 444555666 to 071382660, make
his instance the current instance by placing a slash in the prefix area, and enter the
following:

REPLACE KEY EMP_ID = 071382660

Deleting Segment Instances: The DELETE
Command
You can easily delete a data instance with the DELETE command.

Delete Segment Instances
To delete the current instance, type a D in the prefix area next to the instance or enter:

DElete

FSCAN displays the complete segment instance alone on the screen and asks if you really
want to delete it. Press Enter to delete the instance, or respond:

N

Do not delete the current instance. (Returns to the previous screen.)

Q

Do not delete the current instance. (If you made no other changes to the database,
entering Q leaves FSCAN and returns to the FOCUS prompt. Otherwise, it returns to the
previous screen.)

Note: When you delete an instance, you delete all its descendant instances as
well.

ibi™ FOCUS® Maintaining Databases

504 | Directly Editing ibi FOCUS Databases With FSCAN

Using DELETE
For example, suppose you want to delete information about John Banning from the
database. First, make John Banning's instance the current instance. Then, enter the
DELETE command. The following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :4

Delete Confirmation Screen

EMP_ID : 119329144 LAST_NAME : BANNING
FIRST_NAME : JOHN HIRE_DATE : 820801
DEPARTMENT : PRODUCTION CURR_SAL : 29700.00

CURR_JOBCODE : A17 ED_HR : .00

==>
Press ENTER to delete
Enter N(o) to abort
Enter Q(uit) to quit session

If you press Enter, the screen appears as follows:

FSCAN FILE EMPLOYEEFOCUS A1CHANGES :2

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
-------------------------------INPUT-----------------------------------
==

ibi™ FOCUS® Maintaining Databases

505 | Directly Editing ibi FOCUS Databases With FSCAN

==>

0 Keys Changed 0 Non-Keys Changed
1 Records Deleted 0 Records Input

MORE=>

Repeating a Command: ? and =
Two commands help you enter a command repeatedly:

l The ? command displays the last command you entered.

l The = command executes the last command you entered.

Display Previous Commands: The ? Command
To display the last command you entered, enter

?

or press PF6 or PF18. This displays the previous command on the command line. You may
then execute the command by pressing Enter or remove the command from the command
line.

As you enter FSCAN commands on the command line, FSCAN stores them in a stack in
memory. If you enter the ? command repeatedly, FSCAN scrolls through the stack,
displaying the commands in stack from the most recent to the oldest.

The ? command is an immediate command. The database remains unchanged until you
press Enter a second time or enter a non-immediate command. Immediate commands
were explained previously at the beginning of Using FSCAN.

ibi™ FOCUS® Maintaining Databases

506 | Directly Editing ibi FOCUS Databases With FSCAN

Executing the Previous Command: The =
Command
The = command executes the last command you entered. Enter

=

or press PF9 or PF21.

Saving Changes: The SAVE Without Exiting
FSCAN Command
To save the changes to the database that you made on FSCAN, enter

SAve

You remain in FSCAN. The counter at the top of the screen that counts changes in the
database is reset to 0.

Exiting FSCAN: The END, FILE, QQUIT, and QUIT
Commands
To exit FSCAN and save the changes you made to the database, enter

End

or:

FILe

If bad data is encountered upon trying to save your changes, an error message is
generated.

ibi™ FOCUS® Maintaining Databases

507 | Directly Editing ibi FOCUS Databases With FSCAN

To exit FSCAN without saving the changes you made to the database, enter:

QQuit

Note: QQUIT only suppresses changes made on FSCAN when you are using the
Absolute File Integrity facility. Otherwise, FSCAN writes all changes to the
database.

If you did not make any changes to the database, you can exit FSCAN by entering

QUit

or by pressing the PF3 or PF15 key.

The FSCAN HELP Facility
FSCAN has a HELP facility. To use HELP, enter the command

Help

or press the PF1 or PF13 key. HELP displays a summary of FSCAN commands and prefix
area commands, as shown in the sample screen below:

FSCAN FILE CAR FOCUS A HELP SCREEN 2 of 3

FSCAN COMMANDS
= - Re-execute the most recent command line.
? - Retrieve the previous command line.
Backward - Go backward one screen.
CHAnge - Change a string within a field:

CHANGE fieldname=/oldstring/newstring/,$
CHIld - Display child instances of this segment.
DElete - Delete a segment instance, and all of its children.
DIsplay - Display the segment containing the specified fieldname.
End/FILe - Save all changes and exit FSCAN.
FINd - Find an instance on this chain which satisfies a test:

ibi™ FOCUS® Maintaining Databases

508 | Directly Editing ibi FOCUS Databases With FSCAN

FIND fieldname EQ GT CO... value.
FIRst - Go to the first instance on this chain.
FOrward - Go forward one screen.
Jump - Jump to the children of the next parent.
LAst - Go to the last instance on this chain
LEft - Go left one panel.
LOcate - Same as FIND but search is throughout the database.

Exit HELP: PF03/PF15. Forward: PF08/PF20. Backward: PF07/PF19.

You can scroll the HELP screens back and forth by pressing the PF8or PF20 key to go
forward and the PF7 or PF19 key to go backward.

To exit the HELP facility, press the PF3 or PF15 key.

Syntax Summary
This section is a summary of the FSCAN commands, PF keys, and prefix area commands.
References to other sections are included.

Summary of Commands
FSCAN commands are listed here in alphabetical order. The unique truncation of each
command is capitalized.

Backward
Scrolls the display one screen backward.

PF keys: PF7 or PF19.

ibi™ FOCUS® Maintaining Databases

509 | Directly Editing ibi FOCUS Databases With FSCAN

CHAnge
Changes character strings within field values. The syntax is

CHAnge field =/oldstring/newstring/ [,$ {*|n}]

where:

field

Is the name of the field whose value you want to change. The field must be
alphanumeric and it cannot be a key field.

oldstring

Is the substring of the field value that you want to change.

newstring

Is the character string to replace the substring.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the
substring. If you want all instances in the group searched (starting from the current
instance), use an asterisk (*).

You can also change field values by typing over them.

CHIld
Displays the child instances relating to the current instance. (In SINGLE mode, displays the
first child instance of the current instance.) The syntax is

CHIld [n]

where:

ibi™ FOCUS® Maintaining Databases

510 | Directly Editing ibi FOCUS Databases With FSCAN

n

Is the number of the child segment as assigned by FSCAN. If you omit this number,
FSCAN displays a menu listing the segments and their numbers. Enter a number to
display the segment (Displaying Descendant Segments: The CHILD, PARENT, and JUMP
Commands).

Prefix area command: C[n]

where:

n

Is the number of the child segment as assigned by FSCAN. If you omit this number,
FSCAN displays the menu.

DElete
Deletes the current instance and all descendant instances.

Prefix area command: D

DOwn [n]
Scrolls the display n lines forward. n defaults to 1.

DIsplay Field Name
Displays the segment containing the specified field name.

End
Saves all changes made to the database and exits the FSCAN facility (see Exiting FSCAN:
The END, FILE, QQUIT, and QUIT Commands).

#d13direditfocus1089538
#d13direditfocus1089538
#d13direditfocus1090018
#d13direditfocus1090018

ibi™ FOCUS® Maintaining Databases

511 | Directly Editing ibi FOCUS Databases With FSCAN

FILe
Saves all changes made to the database and exits the FSCAN facility (see Exiting FSCAN:
The END, FILE, QQUIT, and QUIT Commands).

FINd
Searches a group of instances (in the root segment, this is all instances in the segment; in
descendant segments, this is all instances sharing a common parent instance) for an
instance containing field values that fulfill certain conditions. FIND searches the group
starting from the current instance. If it finds the instance, it makes that instance the
current instance.

The syntax is (entered on one line)

FINd field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,}]

where:

fieldn ...

Is a field in the segment.

reln ...

Is one of the following relations:

EQ

or

=

Equal to

NE
Not equal to

#d13direditfocus1090018
#d13direditfocus1090018

ibi™ FOCUS® Maintaining Databases

512 | Directly Editing ibi FOCUS Databases With FSCAN

GE
Greater than or equal to

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS

or

CO

Contains the character
string

OMITS

or

OM

Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance having the field value that passes
the test becomes the current segment. If there are multiple tests, the first instance that
passes all the tests becomes the current instance.

OR

Allows you to test a field for multiple values. If the field contains one of the values, it
meets the test. You can use AND and OR in the same FIND command.

ibi™ FOCUS® Maintaining Databases

513 | Directly Editing ibi FOCUS Databases With FSCAN

FIrst
Selects the first instance in a group of instances on display to be the current instance. In
the root segment, the group of instances consists of all instances in the segment; in a
descendant segment, a group consists of all instances that share a common parent
instance.

FOrward
Scrolls the display one screen forward.

PF keys: PF8 or PF20.

Help
Invokes the FSCAN HELP facility.

PF keys: PF01 or PF11.

Input
Adds a new segment instance.

Prefix area command: I

Note: This command is valid only in the input area as a prefix command.

Jump
Moves to the child of the next parent instance.

PF keys: PF12 or PF24

ibi™ FOCUS® Maintaining Databases

514 | Directly Editing ibi FOCUS Databases With FSCAN

LAst
Selects the last instance of a group of instances on display. In the root segment, the group
of instances consists of all instances in the segment; in a descendant segment, a group
consists of all instances that share a common parent instance.

LEft
Scrolls the display one panel to the left.

PF keys: PF10 or PF22.

LOcate
Searches for instances containing field values that fulfill certain conditions. LOCATE
searches starting from the current instance. If it finds the instance, it makes that instance
the current instance.

The syntax is (entered on one line)

LOcate field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,}]

where:

fieldn ...

Is a field to be tested.

reln ...

Is one of the following relations:

EQ

or

Equal to

ibi™ FOCUS® Maintaining Databases

515 | Directly Editing ibi FOCUS Databases With FSCAN

=

NE
Not equal to

GE
Greater than or equal to

GT
Greater than

LE
Less than or equal to

LT
Less than

CONTAINS

or

CO

Contains the character
string

OMITS

or

OM

Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance having the field value that passes
the test becomes the current segment. If there are multiple tests, the first instance that
passes all the tests becomes the current instance.

ibi™ FOCUS® Maintaining Databases

516 | Directly Editing ibi FOCUS Databases With FSCAN

OR

Allows you to test a field for multiple values. If the field contains one of the values, it
meets the test. You can use AND and OR in the same LOCATE command.

Key
Enables you to type over key field values in the current instance.

Prefix area command: K

where:

K/

Makes the instance the current instance after the key values are changed.

Multiple
Displays multiple instances, each on a single line. Entering this command after entering the
SINGLE command returns the screen to the normal display (see Displaying a Single
Instance on One Screen: The SINGLE and MULTIPLE Commands).

Next [n]
Scrolls the display n lines forward. n defaults to 1.

Parent
Displays the parent segment. The parent instance becomes the current instance. In SINGLE
mode, PARENT displays the parent instance only.

#d13direditfocus1089623
#d13direditfocus1089623

ibi™ FOCUS® Maintaining Databases

517 | Directly Editing ibi FOCUS Databases With FSCAN

QUit
Exits the FSCAN facility if you did not make any changes to the database.

PF keys: PF3 or PF15.

QQuit
Exits the FSCAN facility without saving any changes to the database.

REPlace
Replaces field values. The syntax is

REPlace field1 = value1[,field2 = value2 ...] [,$ {*|n}]

where:

fieldn...

Is a field in the instance whose value you want to change.

valuen...

Is the new value for the field.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the field
values you want to change. If you want all instances in the group searched (starting
from the current instance), use an asterisk (*).

You can also replace field values by typing over them.

REPlace KEY
Replaces key field values in the current instance. The syntax is

ibi™ FOCUS® Maintaining Databases

518 | Directly Editing ibi FOCUS Databases With FSCAN

REPlace KEY key1 = value1[, key2 = value2, ...]

where:

keyn ...

Is a key field in the instance whose value you want to change.

valuen ...

Is the new value for the key field.

You can also replace key field values by typing over them.

RESet
Performs the following:

l Clears the input area.

l Recovers all field values on the screen that you typed over, both non-key fields and
key fields. To recover non-key field values, you must enter the RESET command
before you press the Enter key. Otherwise, you will not recover the typed-over
values.

PF keys: PF2 or PF14.

Prefix area command: R

Note: The R prefix-area command recovers only field values on the line that it is
typed. If you typed changes on a line not specifying the R prefix, FSCAN enters
the changes.

RIght
Scrolls the display one panel to the right.

PF keys: PF11 or PF23.

ibi™ FOCUS® Maintaining Databases

519 | Directly Editing ibi FOCUS Databases With FSCAN

SAve
Saves all changes made to the database without exiting FSCAN.

SIngle
Displays the current instance alone with all field values on one screen. To return to the
normal display, enter the MULTIPLE command.

Top
Displays the root segment and makes the first instance in the root segment the current
instance, scrolled to the leftmost panel.

?
Displays the previous command in the stack.

PF keys: PF6 or PF18.

=
Executes the previous command entered.

PF key: PF9 or PF21.

Summary of PF Keys
The following table is a list of FSCAN PF keys and their corresponding functions.

ibi™ FOCUS® Maintaining Databases

520 | Directly Editing ibi FOCUS Databases With FSCAN

FSCAN Keys Functions

PF1, PF13 HELP

PF2, PF14 RESET

PF3, PF15 QUIT

PF4, PF16 PARENT

PF5, PF17 CHILD

PF6, PF18 ?

PF7, PF19 BACKWARD

PF8, PF20 FORWARD

PF9, PF21 =

PF10, PF22 LEFT

PF11, PF23 RIGHT

PF12, PF24 JUMP

Summary of Prefix Area Commands
The following is a summary of prefix area commands. You type these commands in the
prefix area that corresponds to the instance you wish to address.

/
Makes the instance the current instance. May be typed after the prefix
area commands K, I, and R.

C
Displays child instances (see Displaying Descendant Segments: The
CHILD, PARENT, and JUMP Commands).

#d13direditfocus1089538
#d13direditfocus1089538

ibi™ FOCUS® Maintaining Databases

521 | Directly Editing ibi FOCUS Databases With FSCAN

D
Deletes the instance and all its children.

I
Inputs a new instance (valid only in the input area).

I/
Inputs a new instance and makes the instance the current instance
(valid only in the input area).

K
Enables you to type over key field values in the instance.

K/
Enables you to type over key field values in the instance, then makes
the instance the current instance.

R
Performs the following:

l Clears the input area.

l Recovers all field values on the screen that you typed over, both
non-key fields and key fields. To recover non-key field values, you
must enter the RESET command before you press the Enter key.
Otherwise, you will not recover the typed-over values.

Note that the R prefix area command recovers only field values on the
line on which it is typed. If you typed changes on a line not specifying
the R prefix, FSCAN enters the changes.

ibi™ FOCUS® Maintaining Databases

522 | Master Files and Diagrams

Master Files and Diagrams
This appendix contains descriptions and structure diagrams for the sample data sources
used throughout the documentation.

Creating Sample Data Sources
Create sample data sources on your user ID by executing the procedures specified below.
These FOCEXECs are supplied with FOCUS. If they are not available to you or if they
produce error messages, contact your systems administrator or Information Builders
Customer Support Services.

To create these files, first make sure you have read access to the Master Files.

Data Source Load Procedure Name

EMPLOYEE,
EDUCFILE, and
JOBFILE

EX EMPTSO

These FOCEXECs also test the data sources by
generating sample reports. If you are using Hot
Screen, remember to press either Enter or the PF3 key
after each report. If the EMPLOYEE, EDUCFILE, and
JOBFILE data sources already exist on your user ID,
the FOCEXEC replaces them with new copies. This
FOCEXEC assumes that the high-level qualifier for the
FOCUS data sources is the same as the high-level
qualifier for the MASTER PDS that was unloaded from
the tape.

SALES

PROD
EX SALES

EX PROD

ibi™ FOCUS® Maintaining Databases

523 | Master Files and Diagrams

Data Source Load Procedure Name

CAR None (created automatically during installation).

LEDGER

FINANCE

REGION

COURSES

EXPERSON

EX LEDGER

EX FINANCE

EX REGION

EX COURSES

EX EXPERSON

EMPDATA

TRAINING

COURSE

JOBHIST

JOBLIST

LOCATOR

PERSINFO

SALHIST

EX LOADPERS

PAYHIST None (PAYHIST DATA is a sequential data source and
is allocated during the installation process).

COMASTER None (COMASTER is used for debugging other Master
Files).

VIDEOTRK and
MOVIES

EX LOADVTRK

ibi™ FOCUS® Maintaining Databases

524 | Master Files and Diagrams

Data Source Load Procedure Name

VIDEOTR2
EX LOADVID2

Gotham Grinds
EX DBLGG

Century Corp:

CENTCOMP

CENTFIN

CENTHR

CENTINV

CENTORD

CENTQA

CENTGL

CENTSYSF

CENTSTMT

EX LOADCOM

EX LOADFIN

EX LOADHR

EX LOADINV

EX LOADORD

EX LOADCQA

EX LDCENTGL

EX LDCENTSY

EX LDSTMT

EMPLOYEE Data Source
EMPLOYEE contains sample data about company employees. Its segments are:

ibi™ FOCUS® Maintaining Databases

525 | Master Files and Diagrams

EMPINFO

Contains employee IDs, names, and positions.

FUNDTRAN

Specifies employee direct deposit accounts. This segment is unique.

PAYINFO

Contains the employee salary history.

ADDRESS

Contains employee home and bank addresses.

SALINFO

Contains data on employee monthly pay.

DEDUCT

Contains data on monthly pay deductions.

EMPLOYEE also contains cross-referenced segments belonging to the JOBFILE and
EDUCFILE files, also described in this appendix. The segments are:

JOBSEG (from JOBFILE)

Describes the job positions held by each employee.

SKILLSEG (from JOBFILE)

Lists the skills required by each position.

SECSEG (from JOBFILE)

Specifies the security clearance needed for each job position.

ATTNDSEG (from EDUCFILE)

Lists the dates that employees attended in-house courses.

COURSEG (from EDUCFILE)

Lists the courses that the employees attended.

ibi™ FOCUS® Maintaining Databases

526 | Master Files and Diagrams

EMPLOYEE Master File
FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $
FIELDNAME=CURR_SAL, ALIAS=CSAL, FORMAT=D12.2M, $
FIELDNAME=CURR_JOBCODE, ALIAS=CJC, FORMAT=A3, $
FIELDNAME=ED_HRS, ALIAS=OJT, FORMAT=F6.2, $

SEGNAME=FUNDTRAN, SEGTYPE=U, PARENT=EMPINFO
FIELDNAME=BANK_NAME, ALIAS=BN, FORMAT=A20, $
FIELDNAME=BANK_CODE, ALIAS=BC, FORMAT=I6S, $
FIELDNAME=BANK_ACCT, ALIAS=BA, FORMAT=I9S, $
FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $

SEGNAME=PAYINFO, SEGTYPE=SH1, PARENT=EMPINFO
FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
FIELDNAME=PCT_INC, ALIAS=PI, FORMAT=F6.2, $
FIELDNAME=SALARY, ALIAS=SAL, FORMAT=D12.2M, $
FIELDNAME=JOBCODE, ALIAS=JBC, FORMAT=A3, $

SEGNAME=ADDRESS, SEGTYPE=S1, PARENT=EMPINFO
FIELDNAME=TYPE, ALIAS=AT, FORMAT=A4, $
FIELDNAME=ADDRESS_LN1, ALIAS=LN1, FORMAT=A20, $
FIELDNAME=ADDRESS_LN2, ALIAS=LN2, FORMAT=A20, $
FIELDNAME=ADDRESS_LN3, ALIAS=LN3, FORMAT=A20, $
FIELDNAME=ACCTNUMBER, ALIAS=ANO, FORMAT=I9L, $

SEGNAME=SALINFO, SEGTYPE=SH1, PARENT=EMPINFO
FIELDNAME=PAY_DATE, ALIAS=PD, FORMAT=I6YMD, $
FIELDNAME=GROSS, ALIAS=MO_PAY, FORMAT=D12.2M, $

SEGNAME=DEDUCT, SEGTYPE=S1, PARENT=SALINFO
FIELDNAME=DED_CODE, ALIAS=DC, FORMAT=A4, $
FIELDNAME=DED_AMT, ALIAS=DA, FORMAT=D12.2M, $

SEGNAME=JOBSEG, SEGTYPE=KU, PARENT=PAYINFO, CRFILE=JOBFILE,
CRKEY=JOBCODE,$

SEGNAME=SECSEG, SEGTYPE=KLU, PARENT=JOBSEG, CRFILE=JOBFILE, $
SEGNAME=SKILLSEG, SEGTYPE=KL, PARENT=JOBSEG, CRFILE=JOBFILE, $
SEGNAME=ATTNDSEG, SEGTYPE=KM, PARENT=EMPINFO, CRFILE=EDUCFILE,
CRKEY=EMP_ID,$

SEGNAME=COURSEG, SEGTYPE=KLU, PARENT=ATTNDSEG, CRFILE=EDUCFILE,$

ibi™ FOCUS® Maintaining Databases

527 | Master Files and Diagrams

EMPLOYEE Structure Diagram
The EMPLOYEE structure follows:

JOBFILE Data Source
JOBFILE contains sample data about company job positions. Its segments are:

JOBSEG

Describes what each position is. The field JOBCODE in this segment is indexed.

SKILLSEG

Lists the skills required by each position.

ibi™ FOCUS® Maintaining Databases

528 | Master Files and Diagrams

SECSEG

Specifies the security clearance needed, if any. This segment is unique.

JOBFILE Master File
FILENAME=JOBFILE, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
FIELDNAME=JOBCODE, ALIAS=JC, FORMAT=A3, INDEX=I,$
FIELDNAME=JOB_DESC, ALIAS=JD, FORMAT=A25 ,$

SEGNAME=SKILLSEG, SEGTYPE=S1, PARENT=JOBSEG
FIELDNAME=SKILLS, ALIAS=, FORMAT=A4 ,$
FIELDNAME=SKILL_DESC, ALIAS=SD, FORMAT=A30 ,$

SEGNAME=SECSEG, SEGTYPE=U, PARENT=JOBSEG
FIELDNAME=SEC_CLEAR, ALIAS=SC, FORMAT=A6 ,$

JOBFILE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBFILE ON 05/15/03 AT 14.40.06

JOBSEG
01 S1

*JOBCODE **I
*JOB_DESC **
* **
* **
* **

I
+-----------------+
I I
I SECSEG I SKILLSEG

02 I U 03 I S1
************** *************
*SEC_CLEAR * *SKILLS **
* * *SKILL_DESC **
* * * **

ibi™ FOCUS® Maintaining Databases

529 | Master Files and Diagrams

* * * **
* * * **
************** **************

EDUCFILE Data Source
EDUCFILE contains sample data about company in-house courses. Its segments are:

COURSEG

Contains data on each course.
EDUCFILE Data Source

ATTNDSEG

Specifies which employees attended the courses. Both fields in the segment are key
fields. The field EMP_ID in this segment is indexed.

EDUCFILE Master File
FILENAME=EDUCFILE, SUFFIX=FOC
SEGNAME=COURSEG, SEGTYPE=S1
FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, $
FIELDNAME=COURSE_NAME, ALIAS=CD, FORMAT=A30, $

SEGNAME=ATTNDSEG, SEGTYPE=SH2, PARENT=COURSEG
FIELDNAME=DATE_ATTEND, ALIAS=DA, FORMAT=I6YMD, $
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, INDEX=I, $

EDUCFILE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EDUCFILE ON 05/15/03 AT
14.45.44

ibi™ FOCUS® Maintaining Databases

530 | Master Files and Diagrams

COURSEG
01 S1

*COURSE_CODE **
*COURSE_NAME **
* **
* **
* **

I
I
I
I ATTNDSEG

02 I SH2

*DATE_ATTEND **
*EMP_ID **I
* **
* **
* **

SALES Data Source
SALES contains sample data about a dairy company with an affiliated store chain. Its
segments are:

STOR_SEG

Lists the stores buying the products.

DAT_SEG

Contains the dates of inventory.

PRODUCT

Contains sales data for each product on each date. The PROD_CODE field is indexed.
The RETURNS and DAMAGED fields have the MISSING=ON attribute.

ibi™ FOCUS® Maintaining Databases

531 | Master Files and Diagrams

SALES Master File
FILENAME=KSALES, SUFFIX=FOC
SEGNAME=STOR_SEG, SEGTYPE=S1
FIELDNAME=STORE_CODE, ALIAS=SNO, FORMAT=A3, $
FIELDNAME=CITY, ALIAS=CTY, FORMAT=A15, $
FIELDNAME=AREA, ALIAS=LOC, FORMAT=A1, $

SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=SH1,
FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, $

SEGNAME=PRODUCT, PARENT=DATE_SEG, SEGTYPE=S1,
FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I,$
FIELDNAME=UNIT_SOLD, ALIAS=SOLD, FORMAT=I5, $
FIELDNAME=RETAIL_PRICE,ALIAS=RP, FORMAT=D5.2M,$
FIELDNAME=DELIVER_AMT, ALIAS=SHIP, FORMAT=I5, $
FIELDNAME=OPENING_AMT, ALIAS=INV, FORMAT=I5, $
FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I3, MISSING=ON,$
FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=I3, MISSING=ON,$

SALES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE SALES ON 05/15/03 AT 14.50.28

STOR_SEG
01 S1

*STORE_CODE **
*CITY **
*AREA **
* **
* **

I
I
I
I DATE_SEG

02 I SH1

*DATE **
* **
* **

ibi™ FOCUS® Maintaining Databases

532 | Master Files and Diagrams

* **
* **

I
I
I
I PRODUCT

03 I S1

*PROD_CODE **I
*UNIT_SOLD **
*RETAIL_PRICE**
*DELIVER_AMT **
* **

PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one segment,
PRODUCT. The field PROD_CODE is indexed.

PROD Master File
FILE=KPROD, SUFFIX=FOC
SEGMENT=PRODUCT, SEGTYPE=S1,
FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I, $
FIELDNAME=PROD_NAME, ALIAS=ITEM, FORMAT=A15, $
FIELDNAME=PACKAGE, ALIAS=SIZE, FORMAT=A12, $
FIELDNAME=UNIT_COST, ALIAS=COST, FORMAT=D5.2M, $

ibi™ FOCUS® Maintaining Databases

533 | Master Files and Diagrams

PROD Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE PROD ON 05/15/03 AT 14.57.38
PRODUCT

01 S1

*PROD_CODE **I
*PROD_NAME **
*PACKAGE **
*UNIT_COST **
* **

CAR Data Source
CAR contains sample data about specifications and sales information for rare cars. Its
segments are:

ORIGIN

Lists the country that manufactures the car. The field COUNTRY is indexed.

COMP

Contains the car name.

CARREC

Contains the car model.

BODY

Lists the body type, seats, dealer and retail costs, and units sold.

SPECS

Lists car specifications. This segment is unique.

WARANT

Lists the type of warranty.

ibi™ FOCUS® Maintaining Databases

534 | Master Files and Diagrams

EQUIP

Lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

CAR Master File
FILENAME=CAR,SUFFIX=FOC
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$

SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$

SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
FIELDNAME=MODEL,MODEL,A24,$

SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC
FIELDNAME=BODYTYPE,TYPE,A12,$
FIELDNAME=SEATS,SEAT,I3,$
FIELDNAME=DEALER_COST,DCOST,D7,$
FIELDNAME=RETAIL_COST,RCOST,D7,$
FIELDNAME=SALES,UNITS,I6,$

SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
FIELDNAME=LENGTH,LEN,D5,$
FIELDNAME=WIDTH,WIDTH,D5,$
FIELDNAME=HEIGHT,HEIGHT,D5,$
FIELDNAME=WEIGHT,WEIGHT,D6,$
FIELDNAME=WHEELBASE,BASE,D6.1,$
FIELDNAME=FUEL_CAP,FUEL,D6.1,$
FIELDNAME=BHP,POWER,D6,$
FIELDNAME=RPM,RPM,I5,$
FIELDNAME=MPG,MILES,D6,$
FIELDNAME=ACCEL,SECONDS,D6,$

SEGNAME=WARANT,SEGTYPE=S1,PARENT=COMP
FIELDNAME=WARRANTY,WARR,A40,$

SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
FIELDNAME=STANDARD,EQUIP,A40,$

ibi™ FOCUS® Maintaining Databases

535 | Master Files and Diagrams

CAR Structure Diagram

LEDGER Data Source
LEDGER contains sample accounting data. It consists of one segment, TOP. This data
source is specified primarily for FML examples. Aliases do not exist for the fields in this
Master File, and the commas act as placeholders.

ibi™ FOCUS® Maintaining Databases

536 | Master Files and Diagrams

LEDGER Master File
FILENAME=LEDGER, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S2,$
FIELDNAME=YEAR , , FORMAT=A4, $
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=AMOUNT , , FORMAT=I5C,$

LEDGER Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE LEDGER ON 05/15/03 AT 15.17.08

TOP
01 S2

*YEAR **
*ACCOUNT **
*AMOUNT **
* **
* **

FINANCE Data Source
FINANCE contains sample financial data for balance sheets. It consists of one segment,
TOP. This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

FINANCE Master File
FILENAME=FINANCE, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S2,$

ibi™ FOCUS® Maintaining Databases

537 | Master Files and Diagrams

FIELDNAME=YEAR , , FORMAT=A4, $
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=AMOUNT , , FORMAT=D12C,$

FINANCE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE FINANCE ON 05/15/03 AT 15.17.08

TOP
01 S2

*YEAR **
*ACCOUNT **
*AMOUNT **
* **
* **

REGION Data Source
REGION contains sample account data for the eastern and western regions of the country.
It consists of one segment, TOP. This data source is specified primarily for FML examples.
Aliases do not exist for the fields in this Master File, and the commas act as placeholders.

REGION Master File
FILENAME=REGION, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S1,$
FIELDNAME=ACCOUNT, , FORMAT=A4, $
FIELDNAME=E_ACTUAL, , FORMAT=I5C,$
FIELDNAME=E_BUDGET, , FORMAT=I5C,$
FIELDNAME=W_ACTUAL, , FORMAT=I5C,$
FIELDNAME=W_BUDGET, , FORMAT=I5C,$

ibi™ FOCUS® Maintaining Databases

538 | Master Files and Diagrams

REGION Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE REGION ON 05/15/03 AT 15.18.48

TOP
01 S1

*ACCOUNT **
*E_ACTUAL **
*E_BUDGET **
*W_ACTUAL **
* **

COURSES Data Source
COURSES contains sample data about education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

COURSES Master File
FILENAME=COURSES, SUFFIX=FOC,$
SEGNAME=CRSESEG1, SEGTYPE=S1, $
FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, FIELDTYPE=I, $
FIELDNAME=COURSE_NAME, ALIAS=CN, FORMAT=A30, $
FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=I3, $
FIELDNAME=DESCRIPTION, ALIAS=CDESC, FORMAT=TX50, $

COURSES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE COURSES ON 05/15/03 AT

ibi™ FOCUS® Maintaining Databases

539 | Master Files and Diagrams

12.26.05

CRSESEG1
01 S1

*COURSE_CODE **I
*COURSE_NAME **
*DURATION **
*DESCRIPTION **T
* **

EMPDATA Data Source
EMPDATA contains sample data about company employees. It consists of one segment,
EMPDATA. The PIN field is indexed. The AREA field is a temporary field.

EMPDATA Master File
FILENAME=EMPDATA, SUFFIX=FOC
SEGNAME=EMPDATA, SEGTYPE=S1
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=MIDINITIAL, ALIAS=MI, FORMAT=A1, $
FIELDNAME=DIV, ALIAS=CDIV, FORMAT=A4, $
FIELDNAME=DEPT, ALIAS=CDEPT, FORMAT=A20, $
FIELDNAME=JOBCLASS, ALIAS=CJCLAS, FORMAT=A8, $
FIELDNAME=TITLE, ALIAS=CFUNC, FORMAT=A20, $
FIELDNAME=SALARY, ALIAS=CSAL, FORMAT=D12.2M, $
FIELDNAME=HIREDATE, ALIAS=HDAT, FORMAT=YMD, $

$
DEFINE AREA/A13=DECODE DIV (NE 'NORTH EASTERN' SE 'SOUTH EASTERN'
CE 'CENTRAL' WE 'WESTERN' CORP 'CORPORATE' ELSE 'INVALID AREA');$

ibi™ FOCUS® Maintaining Databases

540 | Master Files and Diagrams

EMPDATA Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EMPDATA ON 05/15/03 AT 14.49.09

EMPDATA
01 S1

*PIN **I
*LASTNAME **
*FIRSTNAME **
*MIDINITIAL **
* **

EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It consists
of one segment, ONESEG.

EXPERSON Master File
FILE=EXPERSON ,SUFFIX=FOC
SEGMENT=ONESEG, $
FIELDNAME=SOC_SEC_NO ,ALIAS=SSN ,USAGE=A9 ,$
FIELDNAME=FIRST_NAME ,ALIAS=FN ,USAGE=A9 ,$
FIELDNAME=LAST_NAME ,ALIAS=LN ,USAGE=A10 ,$
FIELDNAME=AGE ,ALIAS=YEARS ,USAGE=I2 ,$
FIELDNAME=SEX ,ALIAS= ,USAGE=A1 ,$
FIELDNAME=MARITAL_STAT ,ALIAS=MS ,USAGE=A1 ,$
FIELDNAME=NO_DEP ,ALIAS=NDP ,USAGE=I3 ,$
FIELDNAME=DEGREE ,ALIAS= ,USAGE=A3 ,$
FIELDNAME=NO_CARS ,ALIAS=CARS ,USAGE=I3 ,$
FIELDNAME=ADDRESS ,ALIAS= ,USAGE=A14 ,$
FIELDNAME=CITY ,ALIAS= ,USAGE=A10 ,$
FIELDNAME=WAGE ,ALIAS=PAY ,USAGE=D10.2SM ,$
FIELDNAME=CATEGORY ,ALIAS=STATUS ,USAGE=A1 ,$
FIELDNAME=SKILL_CODE ,ALIAS=SKILLS ,USAGE=A5 ,$

ibi™ FOCUS® Maintaining Databases

541 | Master Files and Diagrams

FIELDNAME=DEPT_CODE ,ALIAS=WHERE ,USAGE=A4 ,$
FIELDNAME=TEL_EXT ,ALIAS=EXT ,USAGE=I4 ,$
FIELDNAME=DATE_EMP ,ALIAS=BASE_DATE ,USAGE=I6YMTD ,$
FIELDNAME=MULTIPLIER ,ALIAS=RATIO ,USAGE=D5.3 ,$

EXPERSON Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE EXPERSON ON 05/15/03 AT 14.50.58

ONESEG
01 S1

*SOC_SEC_NO **
*FIRST_NAME **
*LAST_NAME **
*AGE **
* **

TRAINING Data Source
TRAINING contains sample data about training courses for employees. It consists of one
segment, TRAINING. The PIN field is indexed. The EXPENSES, GRADE, and LOCATION fields
have the MISSING=ON attribute.

TRAINING Master File
FILENAME=TRAINING, SUFFIX=FOC
SEGNAME=TRAINING, SEGTYPE=SH3
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=COURSESTART, ALIAS=CSTART, FORMAT=YMD, $
FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, $
FIELDNAME=EXPENSES, ALIAS=COST, FORMAT=D8.2, MISSING=ON $

ibi™ FOCUS® Maintaining Databases

542 | Master Files and Diagrams

FIELDNAME=GRADE, ALIAS=GRA, FORMAT=A2, MISSING=ON, $
FIELDNAME=LOCATION, ALIAS=LOC, FORMAT=A6, MISSING=ON, $

TRAINING Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE TRAINING ON 05/15/03 AT 14.51.28

TRAINING
01 SH3

*PIN **I
*COURSESTART **
*COURSECODE **
*EXPENSES **
* **

COURSE Data Source
COURSE contains sample data about education courses. It consists of one segment,
CRSELIST.

COURSE Master File
FILENAME=COURSE, SUFFIX=FOC
SEGNAME=CRSELIST, SEGTYPE=S1
FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, INDEX=I, $
FIELDNAME=CTITLE, ALIAS=COURSE, FORMAT=A35, $
FIELDNAME=SOURCE, ALIAS=ORG, FORMAT=A35, $
FIELDNAME=CLASSIF, ALIAS=CLASS, FORMAT=A10, $
FIELDNAME=TUITION, ALIAS=FEE, FORMAT=D8.2, MISSING=ON, $
FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=A3, MISSING=ON, $
FIELDNAME=DESCRIPTN1, ALIAS=DESC1, FORMAT=A40, $

ibi™ FOCUS® Maintaining Databases

543 | Master Files and Diagrams

FIELDNAME=DESCRIPTN2, ALIAS=DESC2, FORMAT=A40, $
FIELDNAME=DESCRIPTN2, ALIAS=DESC3, FORMAT=A40, $

COURSE Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE COURSE ON 05/15/03 AT 12.26.05

CRSELIST
01 S1

*COURSECODE **I
*CTITLE **
*SOURCE **
*CLASSIF **
* **

JOBHIST Data Source
JOBHIST contains information about employee jobs. Both the PIN and JOBSTART fields are
keys. The PIN field is indexed.

JOBHIST Master File
FILENAME=JOBHIST, SUFFIX=FOC
SEGNAME=JOBHIST, SEGTYPE=SH2
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I ,$
FIELDNAME=JOBSTART, ALIAS=SDAT, FORMAT=YMD, $
FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, $
FIELDNAME=FUNCTITLE, ALIAS=FUNC, FORMAT=A20, $

ibi™ FOCUS® Maintaining Databases

544 | Master Files and Diagrams

JOBHIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBHIST ON 01/22/08 AT 16.23.46
JOBHIST

01 SH2

*PIN **I
*JOBSTART **
*JOBCLASS **
*FUNCTITLE **
* **

JOBLIST Data Source
JOBLIST contains information about jobs. The JOBCLASS field is indexed.

JOBLIST Master File
FILENAME=JOBLIST, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, INDEX=I ,$
FIELDNAME=CATEGORY, ALIAS=JGROUP, FORMAT=A25, $
FIELDNAME=JOBDESC, ALIAS=JDESC, FORMAT=A40, $
FIELDNAME=LOWSAL, ALIAS=LSAL, FORMAT=D12.2M, $
FIELDNAME=HIGHSAL, ALIAS=HSAL, FORMAT=D12.2M, $

DEFINE GRADE/A2=EDIT (JCLASS,'$$$99');$
DEFINE LEVEL/A25=DECODE GRADE (08 'GRADE 8' 09 'GRADE 9' 10
'GRADE 10' 11 'GRADE 11' 12 'GRADE 12' 13 'GRADE 13' 14 'GRADE 14');$

ibi™ FOCUS® Maintaining Databases

545 | Master Files and Diagrams

JOBLIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE JOBLIST ON 01/22/08 AT
16.24.52

JOBSEG
01 S1

*JOBCLASS **I
*CATEGORY **
*JOBDESC **
*LOWSAL **
* **

LOCATOR Data Source
JOBHIST contains information about employee location and phone number. The PIN field
is indexed.

LOCATOR Master File
FILENAME=LOCATOR, SUFFIX=FOC
SEGNAME=LOCATOR, SEGTYPE=S1,
FIELDNAME=PIN, ALIAS=ID_NO, FORMAT=A9, INDEX=I, $
FIELDNAME=SITE, ALIAS=SITE, FORMAT=A25, $
FIELDNAME=FLOOR, ALIAS=FL, FORMAT=A3, $
FIELDNAME=ZONE, ALIAS=ZONE, FORMAT=A2, $
FIELDNAME=BUS_PHONE, ALIAS=BTEL, FORMAT=A5, $

ibi™ FOCUS® Maintaining Databases

546 | Master Files and Diagrams

LOCATOR Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE LOCATOR ON 01/22/08 AT
16.26.55

LOCATOR
01 S1

*PIN **I
*SITE **
*FLOOR **
*ZONE **
* **

PERSINFO Data Source
PERSINFO contains employee personal information. The PIN field is indexed.

PERSINFO Master File
FILENAME=PERSINFO, SUFFIX=FOC
SEGNAME=PERSONAL, SEGTYPE=S1
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=INCAREOF, ALIAS=ICO, FORMAT=A35, $
FIELDNAME=STREETNO, ALIAS=STR, FORMAT=A20, $
FIELDNAME=APT, ALIAS=APT, FORMAT=A4, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=POSTALCODE, ALIAS=ZIP, FORMAT=A10, $
FIELDNAME=COUNTRY, ALIAS=CTRY, FORMAT=A15, $
FIELDNAME=HOMEPHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=EMERGENCYNO, ALIAS=ENO, FORMAT=A10, $
FIELDNAME=EMERGCONTACT, ALIAS=ENAME, FORMAT=A35, $
FIELDNAME=RELATIONSHIP, ALIAS=REL, FORMAT=A8, $
FIELDNAME=BIRTHDATE, ALIAS=BDAT, FORMAT=YMD, $

ibi™ FOCUS® Maintaining Databases

547 | Master Files and Diagrams

PERSINFO Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE PERSINFO ON 01/22/08 AT 16.27.24
PERSONAL
01 S1

*PIN **I
*INCAREOF **
*STREETNO **
*APT **
* **

SALHIST Data Source
SALHIST contains information about employee salary history. The PIN field is indexed. Both
the PIN and EFFECTDATE fields are keys.

SALHIST Master File
FILENAME=SALHIST, SUFFIX=FOC
SEGNAME=SLHISTRY, SEGTYPE=SH2
FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
FIELDNAME=EFFECTDATE, ALIAS=EDAT, FORMAT=YMD, $
FIELDNAME=OLDSALARY, ALIAS=OSAL, FORMAT=D12.2, $

SALHIST Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE SALHIST ON 01/22/08 AT 16.28.02
SLHISTRY

01 SH2

ibi™ FOCUS® Maintaining Databases

548 | Master Files and Diagrams

*PIN **I
*EFFECTDATE **
*OLDSALARY **
* **
* **

PAYHIST File
The PAYHIST data source contains the employees' salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

PAYHIST Master File
FILENAME=PAYHIST, SUFFIX=FIX
SEGMENT=PAYSEG,$
FIELDNAME=SOC_SEC_NO, ALIAS=SSN, USAGE=A9, ACTUAL=A9, $
FIELDNAME=DATE_OF_IN, ALIAS=INCDATE, USAGE=I6YMTD, ACTUAL=A6, $
FIELDNAME=AMT_OF_INC, ALIAS=RAISE, USAGE=D6.2, ACTUAL=A10,$
FIELDNAME=PCT_INC, ALIAS=, USAGE=D6.2, ACTUAL=A6, $
FIELDNAME=NEW_SAL, ALIAS=CURR_SAL, USAGE=D10.2, ACTUAL=A11,$
FIELDNAME=FILL, ALIAS=, USAGE=A38, ACTUAL=A38,$

PAYHIST Structure Diagram
SECTION 01

STRUCTURE OF FIX FILE PAYHIST ON 05/15/03 AT 14.51.59

PAYSEG
01 S1

*SOC_SEC_NO **

ibi™ FOCUS® Maintaining Databases

549 | Master Files and Diagrams

*DATE_OF_IN **
*AMT_OF_INC **
*PCT_INC **
* **

COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in a
data source. Since COMASTER is used for debugging other Master Files, a corresponding
FOCEXEC does not exist for the COMASTER file. Its segments are:

l FILEID, which lists file information.

l RECID, which lists segment information.

l FIELDID, which lists field information.

l DEFREC, which lists a description record.

l PASSREC, which lists read/write access.

l CRSEG, which lists cross-reference information for segments.

l ACCSEG, which lists DBA information.

COMASTER Master File
SUFFIX=COM,SEGNAME=FILEID
FIELDNAME=FILENAME ,FILE ,A8 , ,$
FIELDNAME=FILE SUFFIX ,SUFFIX ,A8 , ,$
FIELDNAME=FDEFCENT ,FDFC ,A4 , ,$
FIELDNAME=FYRTHRESH ,FYRT ,A2 , ,$

SEGNAME=RECID
FIELDNAME=SEGNAME ,SEGMENT ,A8 , ,$
FIELDNAME=SEGTYPE ,SEGTYPE ,A4 , ,$
FIELDNAME=SEGSIZE ,SEGSIZE ,I4 , A4,$
FIELDNAME=PARENT ,PARENT ,A8 , ,$
FIELDNAME=CRKEY ,VKEY ,A66, ,$

SEGNAME=FIELDID

ibi™ FOCUS® Maintaining Databases

550 | Master Files and Diagrams

FIELDNAME=FIELDNAME ,FIELD ,A66, ,$
FIELDNAME=ALIAS ,SYNONYM ,A66, ,$
FIELDNAME=FORMAT ,USAGE ,A8 , ,$
FIELDNAME=ACTUAL ,ACTUAL ,A8 , ,$
FIELDNAME=AUTHORITY ,AUTHCODE ,A8 , ,$
FIELDNAME=FIELDTYPE ,INDEX ,A8 , ,$
FIELDNAME=TITLE ,TITLE ,A64, ,$
FIELDNAME=HELPMESSAGE ,MESSAGE ,A256, ,$
FIELDNAME=MISSING ,MISSING ,A4 , ,$
FIELDNAME=ACCEPTS ,ACCEPTABLE ,A255, ,$
FIELDNAME=RESERVED ,RESERVED ,A44 , ,$
FIELDNAME=DEFCENT ,DFC ,A4 , ,$
FIELDNAME=YRTHRESH ,YRT ,A4 , ,$

SEGNAME=DEFREC
FIELDNAME=DEFINITION ,DESCRIPTION ,A44, ,$

SEGNAME=PASSREC,PARENT=FILEID
FIELDNAME=READ/WRITE ,RW ,A32, ,$

SEGNAME=CRSEG,PARENT=RECID
FIELDNAME=CRFILENAME ,CRFILE ,A8 , ,$
FIELDNAME=CRSEGNAME ,CRSEGMENT ,A8 , ,$
FIELDNAME=ENCRYPT ,ENCRYPT ,A4 , ,$

SEGNAME=ACCSEG,PARENT=DEFREC
FIELDNAME=DBA ,DBA ,A8 , ,$
FIELDNAME=DBAFILE , ,A8 , ,$
FIELDNAME=USER ,PASS ,A8 , ,$
FIELDNAME=ACCESS ,ACCESS ,A8 , ,$
FIELDNAME=RESTRICT ,RESTRICT ,A8 , ,$
FIELDNAME=NAME ,NAME ,A66, ,$
FIELDNAME=VALUE ,VALUE ,A80, ,$

COMASTER Structure Diagram
SECTION 01

STRUCTURE OF EXTERNAL FILE COMASTER ON 05/15/03 AT 14.53.38

ibi™ FOCUS® Maintaining Databases

551 | Master Files and Diagrams

VIDEOTRK, MOVIES, and ITEMS Data Sources
VIDEOTRK contains sample data about customer, rental, and purchase information for a
video rental business. It can be joined to the MOVIES or ITEMS data source. VIDEOTRK and
MOVIES are used in examples that illustrate the use of the Maintain Data facility.

VIDEOTRK Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1

ibi™ FOCUS® Maintaining Databases

552 | Master Files and Diagrams

FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $

SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $

SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $

SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

VIDEOTRK Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/15/03 AT 12.25.19

CUST
01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

ibi™ FOCUS® Maintaining Databases

553 | Master Files and Diagrams

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
************** **************

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

MOVIES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE MOVIES ON 05/15/03 AT 12.26.05

ibi™ FOCUS® Maintaining Databases

554 | Master Files and Diagrams

MOVINFO
01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

ITEMS Master File
FILENAME=ITEMS, SUFFIX=FOC
SEGNAME=ITMINFO, SEGTYPE=S1
FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=PRODNAME, ALIAS=PROD, FORMAT=A20, $
FIELDNAME=OURCOST, ALIAS=WCOST, FORMAT=F6.2, $
FIELDNAME=RETAILPR, ALIAS=PRICE, FORMAT=F6.2, $
FIELDNAME=ON_HAND, ALIAS=NUM, FORMAT=I5, $

ITEMS Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE ITEMS ON 05/15/03 AT 12.26.05

ITMINFO
01 S1

*PRODCODE **I
*PRODNAME **
*OURCOST **
*RETAILPR **
* **

ibi™ FOCUS® Maintaining Databases

555 | Master Files and Diagrams

VIDEOTR2 Data Source
VIDEOTR2 contains sample data about customer, rental, and purchase information for a
video rental business. It consists of four segments.

VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $

SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $

SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $

SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

VIDEOTR2 Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE VIDEOTR2 ON 05/15/03 AT 16.45.48

CUST
01 S1

ibi™ FOCUS® Maintaining Databases

556 | Master Files and Diagrams

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*TRANSCODE ** *MOVIECODE **I
*QUANTITY ** *COPY **
*TRANSTOT ** *RETURNDATE **
* ** *FEE **
* ** * **
*************** ***************
************** **************

Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain sample data about a specialty items
company.

l GGDEMOG contains demographic information about the customers of Gotham Grinds,
a company that sells specialty items like coffee, gourmet snacks, and gifts. It consists
of one segment, DEMOG01.

l GGORDER contains order information for Gotham Grinds. It consists of two segments,

ibi™ FOCUS® Maintaining Databases

557 | Master Files and Diagrams

ORDER01 and ORDER02.

l GGPRODS contains product information for Gotham Grinds. It consists of one
segment, PRODS01.

l GGSALES contains sales information for Gotham Grinds. It consists of one segment,
SALES01.

l GGSTORES contains information for each of Gotham Grinds 12 stores in the United
States. It consists of one segment, STORES01.

GGDEMOG Master File
FILENAME=GGDEMOG, SUFFIX=FOC
SEGNAME=DEMOG01, SEGTYPE=S1
FIELD=ST, ALIAS=E02, FORMAT=A02, INDEX=I,TITLE='State',
DESC='State',$
FIELD=HH, ALIAS=E03, FORMAT=I09, TITLE='Number of Households',
DESC='Number of Households',$
FIELD=AVGHHSZ98,ALIAS=E04, FORMAT=I09, TITLE='Average Household Size',
DESC='Average Household Size',$
FIELD=MEDHHI98, ALIAS=E05, FORMAT=I09, TITLE='Median Household

Income',
DESC='Median Household Income',$
FIELD=AVGHHI98, ALIAS=E06, FORMAT=I09, TITLE='Average Household

Income',
DESC='Average Household Income',$
FIELD=MALEPOP98,ALIAS=E07, FORMAT=I09, TITLE='Male Population',
DESC='Male Population',$
FIELD=FEMPOP98, ALIAS=E08, FORMAT=I09, TITLE='Female Population',
DESC='Female Population',$
FIELD=P15TO1998,ALIAS=E09, FORMAT=I09, TITLE='15 to 19',
DESC='Population 15 to 19 years old',$
FIELD=P20TO2998,ALIAS=E10, FORMAT=I09, TITLE='20 to 29',
DESC='Population 20 to 29 years old',$
FIELD=P30TO4998,ALIAS=E11, FORMAT=I09, TITLE='30 to 49',
DESC='Population 30 to 49 years old',$
FIELD=P50TO6498,ALIAS=E12, FORMAT=I09, TITLE='50 to 64',
DESC='Population 50 to 64 years old',$
FIELD=P65OVR98, ALIAS=E13, FORMAT=I09, TITLE='65 and over',
DESC='Population 65 and over',$

ibi™ FOCUS® Maintaining Databases

558 | Master Files and Diagrams

GGDEMOG Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGDEMOG ON 05/15/03 AT 12.26.05

GGDEMOG
01 S1

*ST **I
*HH **
*AVGHHSZ98 **
*MEDHHI98 **
* **

GGORDER Master File
FILENAME=GGORDER, SUFFIX=FOC,$
SEGNAME=ORDER01, SEGTYPE=S1,$
FIELD=ORDER_NUMBER, ALIAS=ORDNO1, FORMAT=I6, TITLE='Order,Number',
DESC='Order Identification Number',$
FIELD=ORDER_DATE, ALIAS=DATE, FORMAT=MDY, TITLE='Order,Date',
DESC='Date order was placed',$
FIELD=STORE_CODE, ALIAS=STCD, FORMAT=A5, TITLE='Store,Code',
DESC='Store Identification Code (for order)',$
FIELD=PRODUCT_CODE, ALIAS=PCD, FORMAT=A4, TITLE='Product,Code',
DESC='Product Identification Code (for order)',$
FIELD=QUANTITY, ALIAS=ORDUNITS, FORMAT=I8, TITLE='Ordered,Units',
DESC='Quantity Ordered',$

SEGNAME=ORDER02, SEGTYPE=KU, PARENT=ORDER01, CRFILE=GGPRODS, CRKEY=PCD,
CRSEG=PRODS01 ,$

GGORDER Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGORDER ON 05/15/03 AT 16.45.48

ibi™ FOCUS® Maintaining Databases

559 | Master Files and Diagrams

GGORDER
01 S1

*ORDER_NUMBER**
*ORDER_DATE **
*STORE_CODE **
*PRODUCT_CODE**
* **

I
I
I
I ORDER02

02 I KU
..............
:PRODUCT_ID :K
:PRODUCT_DESC:
:VENDOR_CODE :
:VENDOR_NAME :
: :
:............:

GGPRODS Master File
FILENAME=GGPRODS, SUFFIX=FOC
SEGNAME=PRODS01, SEGTYPE=S1
FIELD=PRODUCT_ID, ALIAS=PCD, FORMAT=A4, INDEX=I, TITLE='Product,Code',
DESC='Product Identification Code',$
FIELD=PRODUCT_DESCRIPTION, ALIAS=PRODUCT, FORMAT=A16, TITLE='Product',
DESC='Product Name',$
FIELD=VENDOR_CODE, ALIAS=VCD, FORMAT=A4, INDEX=I, TITLE='Vendor ID',
DESC='Vendor Identification Code',$
FIELD=VENDOR_NAME, ALIAS=VENDOR, FORMAT=A23, TITLE='Vendor Name',
DESC='Vendor Name',$
FIELD=PACKAGE_TYPE, ALIAS=PACK, FORMAT=A7, TITLE='Package',
DESC='Packaging Style',$
FIELD=SIZE, ALIAS=SZ, FORMAT=I2, TITLE='Size',
DESC='Package Size',$
FIELD=UNIT_PRICE, ALIAS=UNITPR, FORMAT=D7.2, TITLE='Unit,Price',
DESC='Price for one unit',$

ibi™ FOCUS® Maintaining Databases

560 | Master Files and Diagrams

GGPRODS Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGPRODS ON 05/15/03 AT 12.26.05

GGPRODS
01 S1

*PRODUCT_ID **I
*PRODUCT_DESC**I
*VENDOR_CODE **
*VENDOR_NAME **
* **

GGSALES Master File
FILENAME=GGSALES, SUFFIX=FOC
SEGNAME=SALES01, SEGTYPE=S1
FIELD=SEQ_NO, ALIAS=SEQ, FORMAT=I5, TITLE='Sequence#',
DESC='Sequence number in database',$
FIELD=CATEGORY, ALIAS=E02, FORMAT=A11, INDEX=I, TITLE='Category',
DESC='Product category',$
FIELD=PCD, ALIAS=E03, FORMAT=A04, INDEX=I, TITLE='Product ID',
DESC='Product Identification code (for sale)',$
FIELD=PRODUCT, ALIAS=E04, FORMAT=A16, TITLE='Product',
DESC='Product name',$
FIELD=REGION, ALIAS=E05, FORMAT=A11, INDEX=I, TITLE='Region',
DESC='Region code',$
FIELD=ST, ALIAS=E06, FORMAT=A02, INDEX=I, TITLE='State',
DESC='State',$
FIELD=CITY, ALIAS=E07, FORMAT=A20, TITLE='City',
DESC='City',$
FIELD=STCD, ALIAS=E08, FORMAT=A05, INDEX=I, TITLE='Store ID',
DESC='Store identification code (for sale)',$
FIELD=DATE, ALIAS=E09, FORMAT=I8YYMD, TITLE='Date',
DESC='Date of sales report',$
FIELD=UNITS, ALIAS=E10, FORMAT=I08, TITLE='Unit Sales',
DESC='Number of units sold',$
FIELD=DOLLARS, ALIAS=E11, FORMAT=I08, TITLE='Dollar Sales',
DESC='Total dollar amount of reported sales',$

ibi™ FOCUS® Maintaining Databases

561 | Master Files and Diagrams

FIELD=BUDUNITS, ALIAS=E12, FORMAT=I08, TITLE='Budget Units',
DESC='Number of units budgeted',$
FIELD=BUDDOLLARS, ALIAS=E13, FORMAT=I08, TITLE='Budget Dollars',
DESC='Total sales quota in dollars',$

GGSALES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGSALES ON 05/15/03 AT 12.26.05

GGSALES
01 S1

*SEQ_NO **
*CATEGORY **I
*PCD **I
*PRODUCT **I
* **

GGSTORES Master File
FILENAME=GGSTORES, SUFFIX=FOC
SEGNAME=STORES01, SEGTYPE=S1
FIELD=STORE_CODE, ALIAS=E02, FORMAT=A05, INDEX=I, TITLE='Store ID',
DESC='Franchisee ID Code',$
FIELD=STORE_NAME, ALIAS=E03, FORMAT=A23, TITLE='Store Name',
DESC='Store Name',$
FIELD=ADDRESS1, ALIAS=E04, FORMAT=A19, TITLE='Contact',
DESC='Franchisee Owner',$
FIELD=ADDRESS2, ALIAS=E05, FORMAT=A31, TITLE='Address',
DESC='Street Address',$
FIELD=CITY, ALIAS=E06, FORMAT=A22, TITLE='City',
DESC='City',$
FIELD=STATE, ALIAS=E07, FORMAT=A02, INDEX=I, TITLE='State',
DESC='State',$
FIELD=ZIP, ALIAS=E08, FORMAT=A06, TITLE='Zip Code',
DESC='Postal Code',$

ibi™ FOCUS® Maintaining Databases

562 | Master Files and Diagrams

GGSTORES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE GGSTORES ON 05/15/03 AT 12.26.05

GGSTORES
01 S1

*STORE_CODE **I
*STORE_NAME **
*ADDRESS1 **
*ADDRESS2 **
* **

Century Corp Data Sources
Century Corp is a consumer electronics manufacturer that distributes products through
retailers around the world. Century Corp has thousands of employees in plants,
warehouses, and offices worldwide. Their mission is to provide quality products and
services to their customers.

Century Corp is a group of data sources that contain financial, human resources, inventory,
and order information. The last three data sources are designed to be used with chart of
accounts data.

l CENTCOMP Master File contains location information for stores. It consists of one
segment, COMPINFO.

l CENTFIN Master File contains financial information. It consists of one segment,
ROOT_SEG.

l CENTHR Master File contains human resources information. It consists of one
segment, EMPSEG.

l CENTINV Master File contains inventory information. It consists of one segment,
INVINFO.

l CENTORD Master File contains order information. It consists of four segments, OINFO,
STOSEG, PINFO, and INVSEG.

ibi™ FOCUS® Maintaining Databases

563 | Master Files and Diagrams

l CENTQA Master File contains problem information. It consists of three segments,
PROD_SEG, INVSEG, and PROB_SEG.

l CENTGL Master File contains a chart of accounts hierarchy. The field GL_ACCOUNT_
PARENT is the parent field in the hierarchy. The field GL_ACCOUNT is the hierarchy
field. The field GL_ACCOUNT_CAPTION can be used as the descriptive caption for the
hierarchy field.

l CENTSYSF Master File contains detail-level financial data. CENTSYSF uses a different
account line system (SYS_ACCOUNT), which can be joined to the SYS_ACCOUNT field
in CENTGL. Data uses "natural" signs (expenses are positive, revenue negative).

l CENTSTMT Master File contains detail-level financial data and a cross-reference to
the CENTGL data source.

CENTCOMP Master File
FILE=CENTCOMP, SUFFIX=FOC, FDFC=19, FYRT=00

SEGNAME=COMPINFO, SEGTYPE=S1, $
FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
TITLE='Store Id#:',
DESCRIPTION='Store Id#', $
FIELD=STORENAME, ALIAS=SNAME, FORMAT=A20,
WITHIN=STATE,
TITLE='Store,Name:',
DESCRIPTION='Store Name', $
FIELD=STATE, ALIAS=STATE, FORMAT=A2,
WITHIN=PLANT,
TITLE='State:',
DESCRIPTION=State, $
DEFINE REGION/A5=DECODE STATE ('AL' 'SOUTH' 'AK' 'WEST' 'AR' 'SOUTH'
'AZ' 'WEST' 'CA' 'WEST' 'CO' 'WEST' 'CT' 'EAST'
'DE' 'EAST' 'DC' 'EAST' 'FL' 'SOUTH' 'GA' 'SOUTH' 'HI' 'WEST'
'ID' 'WEST' 'IL' 'NORTH' 'IN' 'NORTH' 'IA' 'NORTH'
'KS' 'NORTH' 'KY' 'SOUTH' 'LA' 'SOUTH' 'ME' 'EAST' 'MD' 'EAST'
'MA' 'EAST' 'MI' 'NORTH' 'MN' 'NORTH' 'MS' 'SOUTH' 'MT' 'WEST'
'MO' 'SOUTH' 'NE' 'WEST' 'NV' 'WEST' 'NH' 'EAST' 'NJ' 'EAST'
'NM' 'WEST' 'NY' 'EAST' 'NC' 'SOUTH' 'ND' 'NORTH' 'OH' 'NORTH'
'OK' 'SOUTH' 'OR' 'WEST' 'PA' 'EAST' 'RI' 'EAST' 'SC' 'SOUTH'
'SD' 'NORTH' 'TN' 'SOUTH' 'TX' 'SOUTH' 'UT' 'WEST' 'VT' 'EAST'
'VA' 'SOUTH' 'WA' 'WEST' 'WV' 'SOUTH' 'WI' 'NORTH' 'WY' 'WEST'
'NA' 'NORTH' 'ON' 'NORTH' ELSE ' ');,

ibi™ FOCUS® Maintaining Databases

564 | Master Files and Diagrams

TITLE='Region:',
DESCRIPTION=Region, $

CENTCOMP Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTCOMP ON 05/15/03 AT 10.20.49

COMPINFO
01 S1

*STORE_CODE **I
*STORENAME **
*STATE **
* **
* **

CENTFIN Master File
FILE=CENTFIN, SUFFIX=FOC, FDFC=19, FYRT=00

SEGNAME=ROOT_SEG, SEGTYPE=S4, $
FIELD=YEAR, ALIAS=YEAR, FORMAT=YY,
WITHIN='*Time Period', $
FIELD=QUARTER, ALIAS=QTR, FORMAT=Q,
WITHIN=YEAR,
TITLE=Quarter,
DESCRIPTION=Quarter, $
FIELD=MONTH, ALIAS=MONTH, FORMAT=M,
TITLE=Month,
DESCRIPTION=Month, $
FIELD=ITEM, ALIAS=ITEM, FORMAT=A20,
TITLE=Item,
DESCRIPTION=Item, $
FIELD=VALUE, ALIAS=VALUE, FORMAT=D12.2,
TITLE=Value,
DESCRIPTION=Value, $
DEFINE ITYPE/A12=IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'E'

ibi™ FOCUS® Maintaining Databases

565 | Master Files and Diagrams

THEN 'Expense' ELSE IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'R'
THEN 'Revenue' ELSE 'Asset';,
TITLE=Type,
DESCRIPTION='Type of Financial Line Item',$
DEFINE MOTEXT/MT=MONTH;,$

CENTFIN Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTFIN ON 05/15/03 AT 10.25.52

ROOT_SEG
01 S4

*YEAR **
*QUARTER **
*MONTH **
*ITEM **
* **

CENTHR Master File
FILE=CENTHR, SUFFIX=FOC

SEGNAME=EMPSEG, SEGTYPE=S1, $
FIELD=ID_NUM, ALIAS=ID#, FORMAT=I9,
TITLE='Employee,ID#',
DESCRIPTION='Employee Identification Number', $
FIELD=LNAME, ALIAS=LN, FORMAT=A14,
TITLE='Last,Name',
DESCRIPTION='Employee Last Name', $
FIELD=FNAME, ALIAS=FN, FORMAT=A12,
TITLE='First,Name',
DESCRIPTION='Employee First Name', $
FIELD=PLANT, ALIAS=PLT, FORMAT=A3,
TITLE='Plant,Location',
DESCRIPTION='Location of the manufacturing plant',
WITHIN='*Location', $

ibi™ FOCUS® Maintaining Databases

566 | Master Files and Diagrams

FIELD=START_DATE, ALIAS=SDATE, FORMAT=YYMD,
TITLE='Starting,Date',
DESCRIPTION='Date of employment',$
FIELD=TERM_DATE, ALIAS=TERM_DATE, FORMAT=YYMD,
TITLE='Termination,Date',
DESCRIPTION='Termination Date', $
FIELD=STATUS, ALIAS=STATUS, FORMAT=A10,
TITLE='Current,Status',
DESCRIPTION='Job Status', $
FIELD=POSITION, ALIAS=JOB, FORMAT=A2,
TITLE=Position,
DESCRIPTION='Job Position', $
FIELD=PAYSCALE, ALIAS=PAYLEVEL, FORMAT=I2,
TITLE='Pay,Level',
DESCRIPTION='Pay Level',
WITHIN='*Wages',$
DEFINE POSITION_DESC/A17=IF POSITION EQ 'BM' THEN
'Plant Manager' ELSE
IF POSITION EQ 'MR' THEN 'Line Worker' ELSE
IF POSITION EQ 'TM' THEN 'Line Manager' ELSE
'Technician';
TITLE='Position,Description',
DESCRIPTION='Position Description',
WITHIN='PLANT',$
DEFINE BYEAR/YY=START_DATE;
TITLE='Beginning,Year',
DESCRIPTION='Beginning Year',
WITHIN='*Starting Time Period',$

DEFINE BQUARTER/Q=START_DATE;
TITLE='Beginning,Quarter',
DESCRIPTION='Beginning Quarter',
WITHIN='BYEAR',
DEFINE BMONTH/M=START_DATE;
TITLE='Beginning,Month',
DESCRIPTION='Beginning Month',
WITHIN='BQUARTER',$
DEFINE EYEAR/YY=TERM_DATE;
TITLE='Ending,Year',
DESCRIPTION='Ending Year',
WITHIN='*Termination Time Period',$
DEFINE EQUARTER/Q=TERM_DATE;
TITLE='Ending,Quarter',
DESCRIPTION='Ending Quarter',
WITHIN='EYEAR',$
DEFINE EMONTH/M=TERM_DATE;

ibi™ FOCUS® Maintaining Databases

567 | Master Files and Diagrams

TITLE='Ending,Month',
DESCRIPTION='Ending Month',
WITHIN='EQUARTER',$
DEFINE RESIGN_COUNT/I3=IF STATUS EQ 'RESIGNED' THEN 1
ELSE 0;
TITLE='Resigned,Count',
DESCRIPTION='Resigned Count',$
DEFINE FIRE_COUNT/I3=IF STATUS EQ 'TERMINAT' THEN 1
ELSE 0;
TITLE='Terminated,Count',
DESCRIPTION='Terminated Count',$
DEFINE DECLINE_COUNT/I3=IF STATUS EQ 'DECLINED' THEN 1
ELSE 0;
TITLE='Declined,Count',
DESCRIPTION='Declined Count',$
DEFINE EMP_COUNT/I3=IF STATUS EQ 'EMPLOYED' THEN 1
ELSE 0;
TITLE='Employed,Count',
DESCRIPTION='Employed Count',$
DEFINE PEND_COUNT/I3=IF STATUS EQ 'PENDING' THEN 1
ELSE 0;
TITLE='Pending,Count',
DESCRIPTION='Pending Count',$
DEFINE REJECT_COUNT/I3=IF STATUS EQ 'REJECTED' THEN 1
ELSE 0;
TITLE='Rejected,Count',
DESCRIPTION='Rejected Count',$
DEFINE FULLNAME/A28=LNAME||', '|FNAME;
TITLE='Full Name',
DESCRIPTION='Full Name: Last, First', WITHIN='POSITION_DESC',$

DEFINE SALARY/D12.2=IF BMONTH LT 4 THEN PAYLEVEL * 12321
ELSE IF BMONTH GE 4 AND BMONTH LT 8 THEN PAYLEVEL * 13827
ELSE PAYLEVEL * 14400;,
TITLE='Salary',
DESCRIPTION='Salary',$
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');$

ibi™ FOCUS® Maintaining Databases

568 | Master Files and Diagrams

CENTHR Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTHR ON 05/15/03 AT 10.40.34

EMPSEG
01 S1

*ID_NUM **
*LNAME **
*FNAME **
*PLANT **
* **

CENTINV Master File
FILE=CENTINV, SUFFIX=FOC, FDFC=19, FYRT=00
SEGNAME=INVINFO, SEGTYPE=S1, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
TITLE='Product,Number:',
DESCRIPTION='Product Number', $
FIELD=PRODNAME, ALIAS=PNAME, FORMAT=A30,
WITHIN=PRODCAT,
TITLE='Product,Name:',
DESCRIPTION='Product Name', $
FIELD=QTY_IN_STOCK, ALIAS=QIS, FORMAT=I7,
TITLE='Quantity,In Stock:',
DESCRIPTION='Quantity In Stock', $
FIELD=PRICE, ALIAS=RETAIL, FORMAT=D10.2,
TITLE='Price:',
DESCRIPTION=Price, $
FIELD=COST, ALIAS=OUR_COST, FORMAT=D10.2,
TITLE='Our,Cost:',
DESCRIPTION='Our Cost:', $
DEFINE PRODCAT/A22 = IF PRODNAME CONTAINS 'LCD'
THEN 'VCRs' ELSE IF PRODNAME
CONTAINS 'DVD' THEN 'DVD' ELSE IF PRODNAME CONTAINS 'Camcor'
THEN 'Camcorders'
ELSE IF PRODNAME CONTAINS 'Camera' THEN 'Cameras' ELSE IF PRODNAME
CONTAINS 'CD' THEN 'CD Players'

ibi™ FOCUS® Maintaining Databases

569 | Master Files and Diagrams

ELSE IF PRODNAME CONTAINS 'Tape' THEN 'Digital Tape Recorders'
ELSE IF PRODNAME CONTAINS 'Combo' THEN 'Combo Players'
ELSE 'PDA Devices'; WITHIN=PRODTYPE, TITLE='Product Category:' ,$
DEFINE PRODTYPE/A19 = IF PRODNAME CONTAINS 'Digital' OR 'DVD' OR 'QX'
THEN 'Digital' ELSE 'Analog';,WITHIN='*Product Dimension',
TITLE='Product Type:',$

CENTINV Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTINV ON 05/15/03 AT 10.43.35

INVINFO
01 S1

*PROD_NUM **I
*PRODNAME **
*QTY_IN_STOCK**
*PRICE **
* **

CENTORD Master File
FILE=CENTORD, SUFFIX=FOC
SEGNAME=OINFO, SEGTYPE=S1, $
FIELD=ORDER_NUM, ALIAS=ONUM, FORMAT=A5, INDEX=I,
TITLE='Order,Number:',
DESCRIPTION='Order Number', $
FIELD=ORDER_DATE, ALIAS=ODATE, FORMAT=YYMD,
TITLE='Date,Of Order:',
DESCRIPTION='Date Of Order', $
FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
TITLE='Company ID#:',
DESCRIPTION='Company ID#', $
FIELD=PLANT, ALIAS=PLNT, FORMAT=A3, INDEX=I,
TITLE='Manufacturing,Plant',
DESCRIPTION='Location Of Manufacturing Plant',

ibi™ FOCUS® Maintaining Databases

570 | Master Files and Diagrams

WITHIN='*Location',$
DEFINE YEAR/YY=ORDER_DATE;,
WITHIN='*Time Period',$
DEFINE QUARTER/Q=ORDER_DATE;,
WITHIN='YEAR',$
DEFINE MONTH/M=ORDER_DATE;,
WITHIN='QUARTER',$

SEGNAME=PINFO, SEGTYPE=S1, PARENT=OINFO, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4,INDEX=I,
TITLE='Product,Number#:',
DESCRIPTION='Product Number#', $
FIELD=QUANTITY, ALIAS=QTY, FORMAT=I8C,
TITLE='Quantity:',
DESCRIPTION=Quantity, $
FIELD=LINEPRICE, ALIAS=LINETOTAL, FORMAT=D12.2MC,
TITLE='Line,Total',
DESCRIPTION='Line Total', $
DEFINE LINE_COGS/D12.2=QUANTITY*COST;,
TITLE='Line,Cost Of,Goods Sold',
DESCRIPTION='Line cost of goods sold', $
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');

SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PINFO, CRFILE=CENTINV,
CRKEY=PROD_NUM, CRSEG=INVINFO,$

SEGNAME=STOSEG, SEGTYPE=DKU, PARENT=OINFO, CRFILE=CENTCOMP,
CRKEY=STORE_CODE, CRSEG=COMPINFO,$

CENTORD Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTORD ON 05/15/03 AT 10.17.52

OINFO
01 S1

*ORDER_NUM **I
*STORE_CODE **I
*PLANT **I
*ORDER_DATE **
* **

ibi™ FOCUS® Maintaining Databases

571 | Master Files and Diagrams

I
+-----------------+
I I
I STOSEG I PINFO

02 I KU 03 I S1
.............. **************
:STORE_CODE :K *PROD_NUM **I
:STORENAME : *QUANTITY **
:STATE : *LINEPRICE **
: : * **
: : * **
:............: ***************
JOINED CENTCOMP **************

I
I
I
I INVSEG

04 I KU
..............
:PROD_NUM :K
:PRODNAME :
:QTY_IN_STOCK:
:PRICE :
: :
:............:
JOINED CENTINV

CENTQA Master File
FILE=CENTQA, SUFFIX=FOC, FDFC=19, FYRT=00
SEGNAME=PROD_SEG, SEGTYPE=S1, $
FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
TITLE='Product,Number',
DESCRIPTION='Product Number', $

SEGNAME=PROB_SEG, PARENT=PROD_SEG, SEGTYPE=S1, $
FIELD=PROBNUM, ALIAS=PROBNO, FORMAT=I5,
TITLE='Problem,Number',
DESCRIPTION='Problem Number',
WITHIN=PLANT,$
FIELD=PLANT, ALIAS=PLT, FORMAT=A3, INDEX=I,
TITLE=Plant,
DESCRIPTION=Plant,
WITHIN=PROBLEM_LOCATION,$

ibi™ FOCUS® Maintaining Databases

572 | Master Files and Diagrams

FIELD=PROBLEM_DATE, ALIAS=PDATE, FORMAT=YYMD,
TITLE='Date,Problem,Reported',
DESCRIPTION='Date Problem Was Reported', $
FIELD=PROBLEM_CATEGORY, ALIAS=PROBCAT, FORMAT=A20, $
TITLE='Problem,Category',
DESCRIPTION='Problem Category',
WITHIN=*Problem,$
FIELD=PROBLEM_LOCATION, ALIAS=PROBLOC, FORMAT=A10,
TITLE='Location,Problem,Occurred',
DESCRIPTION='Location Where Problem Occurred',
WITHIN=PROBLEM_CATEGORY,$
DEFINE PROB_YEAR/YY=PROBLEM_DATE;,
TITLE='Year,Problem,Occurred',
DESCRIPTION='Year Problem Occurred',
WITHIN=*Time Period,$
DEFINE PROB_QUARTER/Q=PROBLEM_DATE;
TITLE='Quarter,Problem,Occurred',
DESCRIPTION='Quarter Problem Occurred',
WITHIN=PROB_YEAR,$
DEFINE PROB_MONTH/M=PROBLEM_DATE;
TITLE='Month,Problem,Occurred',
DESCRIPTION='Month Problem Occurred',
WITHIN=PROB_QUARTER,$
DEFINE PROBLEM_OCCUR/I5 WITH PROBNUM=1;,
TITLE='Problem,Occurrence'
DESCRIPTION='# of times a problem occurs',$
DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
ELSE 'n/a');$

SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PROD_SEG, CRFILE=CENTINV,
CRKEY=PROD_NUM, CRSEG=INVINFO,$

CENTQA Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTQA ON 05/15/03 AT 10.46.43

PROD_SEG
01 S1

*PROD_NUM **I
* **
* **

ibi™ FOCUS® Maintaining Databases

573 | Master Files and Diagrams

* **
* **

I
+-----------------+
I I
I INVSEG I PROB_SEG

02 I KU 03 I S1
.............. **************
:PROD_NUM :K *PROBNUM **
:PRODNAME : *PLANT **I
:QTY_IN_STOCK: *PROBLEM_DATE**
:PRICE : *PROBLEM_CAT>**
: : * **
:............: ***************
JOINED CENTINV **************

CENTGL Master File
FILE=CENTGL ,SUFFIX=FOC
SEGNAME=ACCOUNTS, SEGTYPE=S1
FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
TITLE='Ledger,Account', FIELDTYPE=I, $
FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$
FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $
FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $
FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
TITLE='System,Account,Line', MISSING=ON, $

ibi™ FOCUS® Maintaining Databases

574 | Master Files and Diagrams

CENTGL Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTGL ON 05/15/03 AT 15.18.48

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

CENTSYSF Master File
FILE=CENTSYSF ,SUFFIX=FOC
SEGNAME=RAWDATA ,SEGTYPE=S2
FIELDNAME = SYS_ACCOUNT , ,A6 , FIELDTYPE=I,
TITLE='System,Account,Line', $
FIELDNAME = PERIOD , ,YYM , FIELDTYPE=I,$
FIELDNAME = NAT_AMOUNT , ,D10.0 , TITLE='Month,Actual', $
FIELDNAME = NAT_BUDGET , ,D10.0 , TITLE='Month,Budget', $
FIELDNAME = NAT_YTDAMT , ,D12.0 , TITLE='YTD,Actual', $
FIELDNAME = NAT_YTDBUD , ,D12.0 , TITLE='YTD,Budget', $

CENTSYSF Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTSYSF ON 05/15/03 AT 15.19.27

RAWDATA
01 S2

*SYS_ACCOUNT **I
*PERIOD **I

ibi™ FOCUS® Maintaining Databases

575 | Master Files and Diagrams

*NAT_AMOUNT **
*NAT_BUDGET **
* **

CENTSTMT Master File
FILE=CENTSTMT, SUFFIX=FOC
SEGNAME=ACCOUNTS, SEGTYPE=S1
FIELD=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
TITLE='Ledger,Account', FIELDTYPE=I, $
FIELD=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
FIELD=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$
FIELD=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $
FIELD=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $
FIELD=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $

SEGNAME=CONSOL, SEGTYPE=S1, PARENT=ACCOUNTS, $
FIELD=PERIOD, ALIAS=MONTH, FORMAT=YYM, $
FIELD=ACTUAL_AMT, ALIAS=AA, FORMAT=D10.0, MISSING=ON,
TITLE='Actual', $
FIELD=BUDGET_AMT, ALIAS=BA, FORMAT=D10.0, MISSING=ON,
TITLE='Budget', $
FIELD=ACTUAL_YTD, ALIAS=AYTD, FORMAT=D12.0, MISSING=ON,
TITLE='YTD,Actual', $
FIELD=BUDGET_YTD, ALIAS=BYTD, FORMAT=D12.0, MISSING=ON,
TITLE='YTD,Budget', $

CENTSTMT Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTSTMT ON 05/15/03 AT 14.45.44

ibi™ FOCUS® Maintaining Databases

576 | Master Files and Diagrams

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

I
I
I
I CONSOL

02 I S1

*PERIOD **
*ACTUAL_AMT **
*BUDGET_AMT **
*ACTUAL_YTD **
* **

CENTGLL Master File
FILE=CENTGLL ,SUFFIX=FOC
SEGNAME=ACCOUNTS ,SEGTYPE=S01
FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,

TITLE='Ledger,Account', FIELDTYPE=I, $
FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,

TITLE=Parent,
PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $

FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
TITLE=Type,$

FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
TITLE=Op, $

FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
TITLE=Lev, $

FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
TITLE=Caption,
PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $

ibi™ FOCUS® Maintaining Databases

577 | Master Files and Diagrams

FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
TITLE='System,Account,Line', MISSING=ON, $

CENTGLL Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE CENTGLL ON 05/15/03 AT 14.45.44

ACCOUNTS
01 S1

*GL_ACCOUNT **I
*GL_ACCOUNT_>**
*GL_ACCOUNT_>**
*GL_ROLLUP_OP**
* **

ibi™ FOCUS® Maintaining Databases

578 | Error Messages

Error Messages
To see the text or explanation for any error message, you can display it online in your
FOCUS session or find it in a standard FOCUS ERRORS file. All of the FOCUS error messages
are stored in eight system ERRORS files.

l For z/OS, the ddname is ERRORS.

Accessing Error Files
For z/OS, the error files are the following members in the ERRORS PDS:

l FOT004

l FOG004

l FOM004

l FOS004

l FOA004

l FSQLXLT

l FOCSTY

l FOB004

Displaying Messages
To display the text and explanation for any message, issue the following query command
at the FOCUS command level

? n

where:

ibi™ FOCUS® Maintaining Databases

579 | Error Messages

n

Is the message number.

The message number and text appear, along with a detailed explanation of the message (if
one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:
An alphabetic character has been found where all numerical digits are
required.

ibi™ FOCUS® Maintaining Databases

580 | ibi Documentation and Support Services

ibi Documentation and Support Services
For information about this product, you can read the documentation, contact Support, and
join Community.

How to Access ibi Documentation

Documentation for ibi products is available on the Product Documentation website, mainly
in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the ibi™ FOCUS® Documentation page.

How to Contact Support for ibi Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join ibi Community

ibi Community is the official channel for ibi customers, partners, and employee subject
matter experts to share and access their collective experience. ibi Community offers access
to Q&A forums, product wikis, and best practices. It also offers access to extensions,
adapters, solution accelerators, and tools that extend and enable customers to gain full
value from ibi products. For a free registration, go to ibi Community.

https://docs.tibco.com/
https://docs.tibco.com/
http://docs.tibco.com/products/ibi-focus
https://support.tibco.com/
https://support.tibco.com/
https://community.ibi.com/

ibi™ FOCUS® Maintaining Databases

581 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

ibi, the ibi logo, FOCUS, iWay, WebFOCUS, RStat, Information Builders, Studio, and TIBCO are either
registered trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or other
countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

ibi™ FOCUS® Maintaining Databases

582 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2021-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Modifying Data Sources With MODIFY
	Introduction
	Examples of MODIFY Processing
	Adding Data to a Data Source
	Updating Data in a Data Source
	Deleting Data From a Data Source
	Additional MODIFY Facilities
	Notes on Using JOIN Syntax With MODIFY
	Multiple User Access
	SU Features
	Managing Your Data: Advanced Features
	MODIFY Command Syntax
	Executing MODIFY Requests
	Execute a Request as a Stored Procedure
	Execute MODIFY Requests Online
	Other Ways of Maintaining FOCUS Data Sources
	The EMPLOYEE Data Source
	Describing Incoming Data
	Reading Fixed-Format Data: The FIXFORM Statement
	Use a FIXFORM Statement
	Skip Columns in the Record
	Move Backward Through a Record
	Specify Field Formats With FIXFORM
	Controlling Whether FIXFORM Input Fields Are Conditional
	Control Whether FIXFORM Input Fields Are Conditional
	Usage Notes for SET FIXFRMINPUT
	Controlling Whether FIXFORM Transaction Fields Are Conditional

	Describing Date Fields
	Describe Repeating Groups
	Using Date Format Fields
	Conditional Fields
	FIXFORM Phrases in MATCH and NEXT Statements

	Reading in Comma-delimited Data: The FREEFORM Statement
	Use a FREEFORM Statement
	Identifying Values in a Comma-delimited Data Source
	Missing Values in Comma-delimited Data Sources
	FREEFORM Phrases in MATCH and NEXT Statements

	Prompting for Data One Field at a Time: The PROMPT Statement
	Use a PROMPT Statement
	Prompt for Repeating Groups
	Prompt Text
	Special Responses
	Canceling a Transaction
	Ending Execution
	Correcting Field Values
	Typing Ahead
	Repeating a Previous Response
	Entering No Data
	Breaking Out of Repeating Groups
	PROMPT Phrases in MATCH and NEXT Statements
	Using PROMPT and FREEFORM Statements in One Request
	Invoking the FIDEL Facility: The CRTFORM Statement
	Entering Text Data Using TED
	Entering Text Field Data
	Defining a Text Field
	Displaying Text Fields
	Specifying the Source of Data: The DATA Statement
	Use a DATA Statement
	Reading Selected Portions of Transaction Data Sources: The START and STOP Sta...
	Use a START Statement
	Modifying Data: MATCH and NEXT
	The MATCH Statement
	Use a MATCH Statement
	Specify Actions With the ON MATCH/NOMATCH Phrase
	MATCH Statement Defaults
	Adding, Updating, and Deleting Segment Instances
	Adding Segment Instances
	Updating Segment Instances
	Deleting Segment Instances

	Performing Other Tasks Using MATCH
	Reading Data
	Computations, Validations, and Messages
	Controlling Case Logic
	Controlling Multiple Record Processing
	Activating and Deactivating Fields
	Using MATCH Actions in a Request

	Modifying Segments in FOCUS Structures
	Modifying Unique Segments
	Modify Segment Instances Using the CONTINUE TO Method
	Process Unique Instances Using the WITH-UNIQUES Method
	Modifying Segments
	Modifying Descendant Segments
	Modifying FOCUS Structures of Three or More Levels
	Modifying Sibling Segments (Multi-Path Data Sources)

	Modify Segments With No Keys
	Storing Data With Type S0 Segments

	Type Blank Segments
	Modifying Segments With Multiple Keys

	Use Alternate File Views
	Selecting the Instance After the Current Position: The NEXT Statement
	Use a NEXT Statement
	Selecting Instances

	Displaying Unique Segments
	Use the CONTINUE TO Method
	Use the WITH-UNIQUES Method
	Computations: COMPUTE and VALIDATE
	Computing Values: The COMPUTE Statement
	Use a COMPUTE Statement
	Using the COMPUTE Statement
	Placing COMPUTE Phrases in MATCH and NEXT Statements
	Changing Incoming Data

	Define Non-Data Source Transaction Fields
	Compiling MODIFY Expressions Using Native Arithmetic
	Control Compilation of MODIFY Expressions
	Usage Notes for SET MODCOMPUTE
	Validating Transaction Values: The VALIDATE Statement
	Use a VALIDATE Statement
	Using VALIDATE to Test Incoming Data
	Using Logical Expressions
	Using the DECODE Function
	Using the FIND Function

	Take Action on Invalid Data: The ON INVALID Phrase
	VALIDATE Phrases in MATCH and NEXT Statements
	Testing for the Presence of Transaction Data

	Validate Values From a List: The DECODE Function
	Special Functions
	Test for the Existence of Indexed Values in FOCUS Data Sources: The FIND Func...
	Using the FIND Function in VALIDATE Statements

	Reading Cross-Referenced FOCUS Data Sources: The LOOKUP Function
	Use an Extended Syntax With LOOKUP
	Using the LOOKUP Function in VALIDATE Statements
	Messages: TYPE, LOG, and HELPMESSAGE
	Displaying Specific Messages: The TYPE Statement
	Use a TYPE Statement
	Embedding Data Fields
	Embedding Spot Markers
	Screen Attributes
	Logging Transactions: The LOG Statement
	Log Transactions in Sequential Files
	Control the Printing of Rejection Messages
	Displaying Messages: The HELPMESSAGE Attribute
	Specify a HELPMESSAGE Attribute
	Displaying Messages: Setting PF Keys to HELP
	Case Logic
	Use a Case Statement
	Rules Governing Cases
	Executing a Case at the Beginning of a Request Only: The START Case
	Branching to Different Cases: The GOTO, PERFORM, and IF Statements
	Branch to Another Case With GOTO
	Use a PERFORM Statement
	Using the PERFORM Statement

	Rules for PERFORM Statements
	Branch to Another Case With IF
	IF Statement

	Rules Governing Branching
	GOTO, PERFORM, and IF Phrases in MATCH Statements
	Using Case Logic and Validation Tests

	Case Logic Applications
	Loop Through a Segment Chain With the NEXT Statement
	Modifying Multiple Unique Segments

	Use Case Logic to Offer User Selections
	Use Case Logic to Process Transaction Data Sources
	Use Case Logic to Process Transactions Based on the Values of Their Fields
	Use Case Logic to Process Transactions With Bad Values
	Tracing Case Logic: The TRACE Facility
	Multiple Record Processing
	The REPEAT Method
	The Selection Phase: Selecting the Parent Instance
	The Collection Phase: Storing Instances in a Buffer
	Use a REPEAT Statement
	Store Instances With the HOLD Phrase
	The REPEATCOUNT and HOLDCOUNT Variables
	The Display Phase: Displaying Instances in One CRTFORM
	Position the Cursor on Specific Field Values
	The Modification Phase
	Using Multiple Record Processing (REPEAT Method)

	Manual Methods
	Initialization
	The Collection Phase: The HOLDINDEX Field
	The Display Phase: The SCREENINDEX Field
	The Modification Phase: The GETHOLD Statement
	Manual Methods: Two Examples
	First Example: Processing Segments on Two Different Paths
	Second Example: Modifying Segments on the Same Path

	Sort the Scratch Pad Area With SORTHOLD
	Advanced Facilities
	Modifying Multiple Data Sources in One Request: The COMBINE Command
	Combine Data Sources
	COMBINE Command

	Support Long and Qualified Field Names
	Referring to Fields in Combined Structures: The TAG Parameter
	Referring to Fields in Combined Structures: The PREFIX Parameter
	How Data Source Structures Are Combined
	Differences Between COMBINE and JOIN Commands
	Use the ? COMBINE Query
	Error Messages for COMBINE
	Active and Inactive Fields
	When Fields Are Active and Inactive
	Activate Fields With the ACTIVATE Statement
	Deactivate Fields With the DEACTIVATE Statement
	Protecting Against System Failures
	Safeguard Transactions With the Checkpoint Facility
	Safeguarding FOCUS Data Sources: Absolute File Integrity
	Safeguarding Transactions: COMMIT and ROLLBACK Subcommands
	Displaying MODIFY Request Logic: The ECHO Facility
	Dialogue Manager Statistical Variables
	MODIFY Query Commands
	Managing MODIFY Transactions: COMMIT and ROLLBACK
	The COMMIT and ROLLBACK Subcommands
	Coding With COMMIT and ROLLBACK
	MODIFY Syntax Summary
	MODIFY Request Syntax
	Transaction Statement Syntax
	MATCH and NEXT Statement Actions

	Designing Screens With FIDEL
	Introduction
	Using FIDEL With MODIFY
	Using FIDEL With Dialogue Manager
	Screen Management Concepts and Facilities
	Using FIDEL Screens: Operating Conventions
	Describing the CRT Screen
	Specifying Elements of the CRTFORM
	Invoking FIDEL: CRTFORM and -CRTFORM
	Defining a Field
	Define a Field in FIDEL
	Defining a Field

	Difference in FIDEL When Used With MODIFY and Dialogue Manager
	Using Spot Markers for Text and Field Positioning
	Specifying Lowercase Entry: UPPER/LOWER
	Data Entry, Display and Turnaround Fields
	Use Data Entry Fields (for Data Entry Only)
	Use Display Fields (for Information Only)
	Use Turnaround Fields (for Display and Change)
	Using Data Entry, Display, and Turnaround Fields
	Using Data Entry, Display, and Turnaround Fields With MODIFY
	Using Data Entry, Display, and Turnaround Fields With Dialogue Manager

	Controlling the Use of PF Keys
	Default Settings for PF Keys
	Resetting PF Key Controls
	Setting PF Key Fields for Branching Purposes
	Specifying Screen Attributes
	Using Background Effects
	Using Labeled Fields
	Using a Labeled Field With MODIFY
	Using a Labeled Field With Dialogue Manager

	Dynamically Changing Screen Attributes
	Specifying Cursor Position
	Determining Current Cursor Position for Branching Purposes
	Annotated Example: MODIFY
	Annotated Example: Dialogue Manager
	Using FIDEL in MODIFY
	Conditional and Non-Conditional Fields
	Conditional and Non-Conditional Display and Turnaround Fields

	Using FIXFORM and FIDEL in a Single MODIFY
	Generating Automatic CRTFORMs
	Using Multiple CRTFORMs: LINE
	CRTFORMs and Case Logic
	Specifying Groups of Fields
	Specifying Groups of Fields for Input
	Using REPEAT to Display Multiple Records
	Using Groups of Fields With Case Logic
	d10designscreens1086846

	Handling Errors
	Handling Format Errors
	VALIDATE and CRTFORM Display Logic
	Handling Errors With Repeating Groups
	Rejecting NOMATCH or Duplicate Data
	Logging Transactions
	Additional Screen Control Options
	Clearing the Screen: CLEAR/NOCLEAR
	Specifying Screen Size: WIDTH/HEIGHT
	Changing the Size of the Message Area: TYPE
	Using FIDEL in Dialogue Manager
	Allocating Space on the Screen for Variable Fields
	Starting and Ending CRTFORMS: BEGIN/END
	Using Indexed Variables With -CRTFORM BEGIN and -CRTFORM END

	Clearing the Screen in Dialogue Manager
	Changing the Size of the Message Area: -CRTFORM TYPE
	Annotated Example: -CRTFORM
	Using the ibi FOCUS Screen Painter
	Entering Screen Painter
	PF Keys in PAINT
	Entering Data Onto the Screen
	Editing Functions
	Sample PAINT Screen
	Defining a Box on the Screen
	Identifying Fields: ASSIGN
	Viewing the Screen: FIDEL
	Generating CRTFORMs Automatically
	Terminating Screen Painter

	Creating and Rebuilding a Data Source
	Creating a New Data Source: The CREATE Command
	Use the CREATE Command
	Creating a FOCUS Data Source

	Rebuilding a Data Source: The REBUILD Command
	Before You Use REBUILD: Prerequisites
	Use the REBUILD Facility
	Controlling the Frequency of REBUILD Messages
	Control the Frequency of REBUILD Messages
	Controlling the Display of REBUILD Messages

	Optimizing File Size: The REBUILD Subcommand
	Use the REBUILD Subcommand
	Using the REBUILD Subcommand
	Using the REBUILD Subcommand

	Changing Data Source Structure: The REORG Subcommand
	Use the REORG Subcommand
	Using the REORG Subcommand
	Using the REORG Subcommand

	Indexing Fields: The INDEX Subcommand
	Use the INDEX Subcommand
	Using the INDEX Subcommand
	Using the INDEX Subcommand

	Creating an External Index: The EXTERNAL INDEX Subcommand
	Use the EXTERNAL INDEX Subcommand
	External Index Statistics

	Special Considerations for REBUILD EXTERNAL INDEX
	Concatenating Index Databases
	Positioning Indexed Fields
	Activating an External Index
	Activate an External Index
	Checking Data Source Integrity: The CHECK Subcommand
	Use the CHECK Subcommand
	Using the CHECK Option
	Using the Check Option (File Undamaged)

	Confirming Structural Integrity Using ? FILE and TABLEF
	Verify REBUILD CHECK Using ? FILE and TABLEF
	Checking the Integrity of the EMPLOYEE Data Source

	Changing the Data Source Creation Date and Time: The TIMESTAMP Subcommand
	Use the TIMESTAMP Subcommand
	Converting Legacy Dates: The DATE NEW Subcommand
	Using the DATE NEW Subcommand

	How DATE NEW Converts Legacy Dates
	DATE NEW Usage Notes
	What DATE NEW Does Not Convert
	Using the New Master File Created by DATE NEW
	Sample Master File: Before and After Conversion by DATE NEW

	Action Taken on a Date Field During REBUILD/DATE NEW
	Creating a Multi-Dimensional Index: The MDINDEX Subcommand

	Directly Editing FOCUS Databases With SCAN
	Introduction
	SCAN vs. MODIFY, HLI, and FSCAN
	Entering SCAN Mode
	Moving Through the Database and Locating Records
	What You See in SCAN Display Lines
	Identifying Data Fields in Scan
	Ways to Move Through Databases
	TOP
	LOCATE
	TLOCATE
	NEXT
	JUMP
	UP
	Displaying Field Names and Field Contents
	TYPE Subcommand
	DISPLAY Subcommand
	Suppressing the Display
	Show Lists and Short-Path Records
	Adding Segment Instances
	Moving Segment Instances
	Changing Field Contents
	Deleting Fields and Segments
	Saving Changes Made in SCAN Sessions
	Ending the Session
	Exiting and Saving the Changes
	Exiting Without Saving the Changes
	Auxiliary SCAN Functions
	Displaying a Previous SCAN Subcommand
	Preset X or Y to Execute a SCAN Subcommand
	Subcommand Summary
	AGAIN Command
	Use the AGAIN Command
	Using the AGAIN Command

	Commands Similar to Again
	BACK Command
	Use the BACK Command
	Using the BACK Command

	Commands Similar to BACK
	CHANGE Command
	Use the CHANGE Command
	Using the CHANGE Command
	Single-Field Change With the CHANGE Command
	Sequential Changes With the CHANGE Command
	Match Logic Changes With the CHANGE Command

	Commands Similar to CHANGE
	CRTFORM Command
	Use the CRTFORM Command
	Using the CRTFORM Command
	Specifying Individual Fields With CRTFORM
	Specifying All Fields Between Two Named Fields With CRTFORM

	Commands Similar to CRTFORM
	DELETE Command
	Use the DELETE Command
	Using DELETE

	Commands Similar to DELETE
	DISPLAY Command
	Use the DISPLAY Command
	Using DISPLAY

	Commands Similar to DISPLAY
	END Command
	Use the END Command
	Using the END Command

	Commands Similar to END
	FILE Command
	Use the FILE Command
	Using the FILE Command

	Commands Similar to FILE
	INPUT Command
	Use the INPUT Command
	Using the INPUT Command

	Commands Similar to INPUT
	JUMP Command
	Use the JUMP Command
	Using the JUMP Command

	Commands Similar to JUMP
	LOCATE Command
	Use the LOCATE Command
	Using the LOCATE Command

	Commands Similar to LOCATE
	MARK Command
	Use the MARK Command
	Using the MARK Command

	Commands Similar to MARK
	MOVE Command
	Use the MOVE Command
	Using the MOVE Command

	Commands Similar to MOVE
	NEXT Command
	Use the NEXT Command
	Using the NEXT Command

	Commands Similar to NEXT
	QUIT Command
	Use the QUIT Command
	Using the QUIT Command

	Commands Similar to QUIT
	REPLACE Command
	Use the REPLACE Command
	Using the REPLACE Command
	Replacing a Field Value With REPLACE
	Replacing Multiple Field Values With REPLACE
	Replacing a Key Field Value With REPLACE

	Commands Similar to REPLACE
	SAVE Command
	Use the SAVE Command
	Using the SAVE Command

	Commands Similar to SAVE
	SHOW Command
	Use the SHOW Command
	Using the SHOW Command
	Selecting a Logical View (a Show List)
	Selecting All Fields Between Two Named Fields
	Selecting All Fields

	Commands Similar to SHOW
	TLOCATE Command
	Use the TLOCATE Command
	Using the TLOCATE Command

	Commands Similar to TLOCATE
	TOP Command
	Use the TOP Command
	Using the TOP Command

	Commands Similar to TOP
	TYPE Command
	Use the TYPE Command
	Using the TYPE Command

	Commands Similar to TYPE
	UP Command
	Use the UP Command
	Using the UP Command

	Commands Similar to UP
	X and Y Commands
	Use the X and Y Commands
	Using the X and Y Commands

	Commands Similar to X and Y
	? Command
	Use the ? Command
	Using the ? Command

	Commands Similar to ?

	Directly Editing ibi FOCUS Databases With FSCAN
	Introduction
	Databases on Which FSCAN Can Operate
	Segments on Which FSCAN Can Operate
	Fields That FSCAN Can Display
	Database Integrity Considerations
	DBA Considerations
	Entering FSCAN
	Entering FSCAN With a SHOW List
	Enter FSCAN With a SHOW List
	Entering FSCAN With a SHOW List

	Allowing Uppercase and Lowercase Alpha Fields
	Specify Case Sensitivity in FSCAN
	Using FSCAN
	The FSCAN Facility and ibi FOCUS Structures
	Scrolling the Screen
	Scroll the Screen Forward
	Scrolling Forward

	Scroll the Screen Backward
	Scroll the Screen to the Right and the Left
	Scrolling the Screen

	Selecting a Specific Instance by Defining a Current Instance
	Define a Current Instance
	Defining a Current Instance: The / Prefix

	Define the First and Last Instances of a Segment on Display: The FIRST, LAST,...
	Defining the Last Instance as the Current Instance With LAST

	Locate an Instance Based on Field Values: The LOCATE Command
	Locating an Instance Based on Field Values

	Find an Instance in a Group: The FIND Command
	Finding an Instance in a Group

	Displaying Descendant Segments: The CHILD, PARENT, and JUMP Commands
	Display a Child Segment
	Displaying a Child Segment

	Display the Parent Segment
	Display the First Child of the Next Parent Instance
	Displaying the First Child of the Next Parent Instance

	Displaying a Single Instance on One Screen: The SINGLE and MULTIPLE Commands
	Using SINGLE Mode

	Modifying the Database
	Adding New Segment Instances: The I Prefix
	Adding New Segment Instances

	Updating Non-Key Field Values
	Type Over Field Values
	Typing Over Field Values

	Replace Field Values: The REPLACE Command
	Using REPLACE

	Change Character Strings Within Field Values: The CHANGE Command
	Using CHANGE

	Changing Key Field Values
	Type Over Key Field Values: The KEY Command
	Using KEY

	Change Key Field Values Using the REPLACE KEY Command
	Using REPLACE KEY

	Deleting Segment Instances: The DELETE Command
	Delete Segment Instances
	Using DELETE

	Repeating a Command: ? and =
	Display Previous Commands: The ? Command
	Executing the Previous Command: The = Command
	Saving Changes: The SAVE Without Exiting FSCAN Command
	Exiting FSCAN: The END, FILE, QQUIT, and QUIT Commands
	The FSCAN HELP Facility
	Syntax Summary
	Summary of Commands
	Backward
	CHAnge
	CHIld
	DElete
	DOwn [n]
	DIsplay Field Name
	End
	FILe
	FINd
	FIrst
	FOrward
	Help
	Input
	Jump
	LAst
	LEft
	LOcate
	Key
	Multiple
	Next [n]
	Parent
	QUit
	QQuit
	REPlace
	REPlace KEY
	RESet
	RIght
	SAve
	SIngle
	Top
	?
	=
	Summary of PF Keys
	Summary of Prefix Area Commands

	Master Files and Diagrams
	Creating Sample Data Sources
	EMPLOYEE Data Source
	EMPLOYEE Master File
	EMPLOYEE Structure Diagram
	JOBFILE Data Source
	JOBFILE Master File
	JOBFILE Structure Diagram
	EDUCFILE Data Source
	EDUCFILE Master File
	EDUCFILE Structure Diagram
	SALES Data Source
	SALES Master File
	SALES Structure Diagram
	PROD Data Source
	PROD Master File
	PROD Structure Diagram
	CAR Data Source
	CAR Master File
	CAR Structure Diagram
	LEDGER Data Source
	LEDGER Master File
	LEDGER Structure Diagram
	FINANCE Data Source
	FINANCE Master File
	FINANCE Structure Diagram
	REGION Data Source
	REGION Master File
	REGION Structure Diagram
	COURSES Data Source
	COURSES Master File
	COURSES Structure Diagram
	EMPDATA Data Source
	EMPDATA Master File
	EMPDATA Structure Diagram
	EXPERSON Data Source
	EXPERSON Master File
	EXPERSON Structure Diagram
	TRAINING Data Source
	TRAINING Master File
	TRAINING Structure Diagram
	COURSE Data Source
	COURSE Master File
	COURSE Structure Diagram
	JOBHIST Data Source
	JOBHIST Master File
	JOBHIST Structure Diagram
	JOBLIST Data Source
	JOBLIST Master File
	JOBLIST Structure Diagram
	LOCATOR Data Source
	LOCATOR Master File
	LOCATOR Structure Diagram
	PERSINFO Data Source
	PERSINFO Master File
	PERSINFO Structure Diagram
	SALHIST Data Source
	SALHIST Master File
	SALHIST Structure Diagram
	PAYHIST File
	PAYHIST Master File
	PAYHIST Structure Diagram
	COMASTER File
	COMASTER Master File
	COMASTER Structure Diagram
	VIDEOTRK, MOVIES, and ITEMS Data Sources
	VIDEOTRK Master File
	VIDEOTRK Structure Diagram
	MOVIES Master File
	MOVIES Structure Diagram
	ITEMS Master File
	ITEMS Structure Diagram
	VIDEOTR2 Data Source
	VIDEOTR2 Master File
	VIDEOTR2 Structure Diagram
	Gotham Grinds Data Sources
	GGDEMOG Master File
	GGDEMOG Structure Diagram
	GGORDER Master File
	GGORDER Structure Diagram
	GGPRODS Master File
	GGPRODS Structure Diagram
	GGSALES Master File
	GGSALES Structure Diagram
	GGSTORES Master File
	GGSTORES Structure Diagram
	Century Corp Data Sources
	CENTCOMP Master File
	CENTCOMP Structure Diagram
	CENTFIN Master File
	CENTFIN Structure Diagram
	CENTHR Master File
	CENTHR Structure Diagram
	CENTINV Master File
	CENTINV Structure Diagram
	CENTORD Master File
	CENTORD Structure Diagram
	CENTQA Master File
	CENTQA Structure Diagram
	CENTGL Master File
	CENTGL Structure Diagram
	CENTSYSF Master File
	CENTSYSF Structure Diagram
	CENTSTMT Master File
	CENTSTMT Structure Diagram
	CENTGLL Master File
	CENTGLL Structure Diagram

	Error Messages
	Accessing Error Files
	Displaying Messages

	ibi Documentation and Support Services
	Legal and Third-Party Notices

