
TIBCO Foresight® EDISIM®

Business Rules

Version 6.20.0

May 2021

Copyright © 1991-2021. TIBCO Software Inc. All Rights Reserved.

Business Rules Contents  i

Contents

Introduction 1

Document Purpose .. 1

Intended Audience ... 1

What you need before using Business Rules ... 2

Big Picture .. 2

Viewing TIBCO Foresight-supplied HIPAA Rules ... 3

Using External Routines ... 4

*Call External Routine ... 4

Type the Rule .. 5

Use the Parameters Grid ... 6

Registering new Business Rules .. 8

Tutorials: Set up your own Rule 9

HIPAA business rule tutorial ... 9

Overview .. 9

Create your own error message .. 10

Set up a rule .. 10

Copy the guideline from EDISIM to Instream .. 10

Test the rule .. 11

Merge your business rule with a HIPAA guideline ... 11

X12 business rule tutorial .. 11

Overview .. 11

Set up a rule .. 12

Test the rule .. 12

Analyzer vs. other Validation Programs 15

Overview .. 15

Local Variables .. 16

Condition and Rule Definition Dialog Box .. 17

External Routines .. 18

Business Rules Reference 19

Overview .. 19

Reserved Variables ... 20

Current_Date .. 21

Current_Delim .. 23

Current_Element ... 24

Current_ErrCount ... 25

Current_LoopCount .. 27

Current_LoopKey ... 27

Current_Row and Next_Row .. 27

Current_Time ... 28

GLOBAL_FILENAME ... 29

Business Rules Contents  ii

GLOBAL_FILEPATHNAME ... 30

Using Reserved Variables in a Message ... 31

Literals.. 32

Escape Character for Double Quotes ... 32

Copying Business Rules .. 33

Printing Business Rules ... 34

Array Business Rules .. 35

Array Reserved Variables .. 35

CheckVarFromArray .. 40

ClearArray .. 41

CreateArray .. 42

DumpArray .. 43

GetArrayCurrentRowIndex ... 43

GetArrayNextColumnIndex .. 44

GetArrayNextRowIndex .. 45

GetARowFromArray ... 46

GetVarFromArray ... 48

SearchVarsInArray ... 49

SearchConditionsInArray ... 51

SetArrayFromVar .. 55

UpdateArrayFromDate .. 57

Correct Coding Initiatives (CCI) Business Rules ... 58

CCIInit .. 59

CCICollect .. 59

CCIAnalyze .. 60

Code Lookup Business Rules ... 61

FindCode ... 61

FindCodeWithDate .. 63

FindUserCode ... 65

FindUserCodeWithDate ... 65

ValidateZipState .. 66

Core3 (Phase III CORE) Business Rules ... 67

Custom Record Business Rules .. 68

DefineCustomRec ... 70

OutputCustomRec ... 72

RemoveCustomRecord .. 73

Date and Time Business Rules ... 74

CheckDateInRange .. 74

CompareDate ... 76

DateCalc .. 78

GetGMTDateTime .. 85

ValidateDateTime .. 86

ValidateDateTimeUN and ValidateDateTimeX12 .. 88

DBServer Business Rules .. 89

DBExecute ... 89

DBQuery ... 92

InvokeWebService ... 94

Exit Business Rules .. 98

Business Rules Contents  iii

ClearExits ... 98

KeepOrder ... 99

SetCompositePreExit ... 100

SetElementPostExit ... 101

SetLoopPostExit ... 102

SetLoopPostInstanceExit ... 104

SetSegmentPreExit .. 105

UserExitWithoutWait ... 107

UserExitWithWait ... 108

ICD Business Rules .. 111

List Business Rules ... 111

ClearList ... 111

InList ... 112

ListCheck ... 113

ListContig... 115

ListCount ... 117

ListGetVar.. 118

ListInsert .. 119

ListMinMax .. 119

Lookahead Business Rules ... 123

Marking a Lookahead Range ... 127

Creating Lookahead Business Rules ... 130

Looping Business Rules .. 134

ForEach ... 135

Next .. 136

ExitLoop .. 136

Extended Looping Example ... 137

ODBC Business Rules .. 138

Setting up your ODBC Connection String .. 138

DBOpen .. 140

DBClose .. 142

DBQuery ... 143

DBExecute ... 145

Run Business Rules .. 146

RunAlways ... 146

RunNoData .. 148

Substitute Business Rules .. 149

DeleteSegment .. 149

InsertSegment ... 150

MakeKey .. 150

Substitute ... 151

SubstituteFind ... 151

SubstituteReplace .. 152

Utilities Business Rules ... 153

AppendString .. 153

BuildString.. 155

ChangeCase .. 157

ChangeElmAttribute .. 158

Business Rules Contents  iv

CheckFormat .. 160

CreateFSUID .. 168

DisplayErrorByNumber ... 169

FindString .. 171

GenerateFSUID .. 173

GetToken ... 173

Identify .. 175

IdentifierLookup ... 177

InsertIdentifier .. 178

Match .. 178

MatchApplList .. 179

Normalize .. 181

Numbers .. 186

OracleLookup and OracleLookupWithDate .. 187

OutputCTX .. 189

ReplaceChars .. 189

ReplaceString .. 194

SetCheckCTT and SetCheckCTTCount .. 196

SetIdentifier .. 197

SubString .. 198

Trim .. 199

TrimWhitespace .. 200

Variable Business Rules ... 202

SetLocalVariable .. 202

SetVar .. 203

AddVar .. 204

Divide .. 205

DumpVars .. 206

Balance .. 207

CompareString and CompareStringNoCase ... 209

CompareNstring .. 210

CompareNumeric .. 212

Clear .. 213

ClearLocalVariable ... 214

FileTable Rules .. 215

GetInfo .. 217

GetLength .. 219

GetValueFromSegment .. 220

IsAlpha .. 222

IsAlphaNum ... 223

IsNum ... 223

SaveCurrentSegment .. 226

CheckCTT .. 227

FSVBExit.CheckDigit ... 229

X12 234-235 CheckDigit .. 230

EDIFACT 3039-3055 CheckDigit ... 231

Other CheckDigit Options ... 232

User Defined Check Digit .. 232

Business Rules Contents  v

DateTime .. 233

FSVBExit.DisplayMessage .. 234

ProductUtilities .. 237

Appendix A: Variables 239

Local Variables .. 239

When to use Local Variables ... 239

Assigning a Local Variable .. 239

BusinessRules.Variable .. 240

When to use BusinessRules.Variable .. 240

Setting up BusinessRules.Variable .. 240

Good Variable Names .. 241

Global Variables .. 242

TIBCO Foresight-Defined Variables .. 242

Preprocessor Variables .. 245

Populating Variables with an External Variables File ... 248

Initializing and Clearing Variables and Lists ... 249

Variable Maps .. 251

Appendix B: Validator Error Messages 255

Viewing TIBCO Foresight-Supplied Error Messages .. 255

Creating and Viewing your own Error Messages... 255

Using your own Error Messages ... 256

Troubleshooting Custom Error Messages .. 259

Appendix C: Code Tables 261

Setting up your own Code Tables ... 261

Example A: External Code Table File .. 262

Extending existing HIPAA Code Tables ... 263

Appendix D: Complicated Rules 265

Simple Rules .. 265

Complex Rules .. 266

Example 1: Two Conditions create an Error Message ... 266

Example 2: Using Rules in Loops .. 268

Example 3: Adding and Comparing Numeric Values .. 269

Appendix E: ODBC Examples 271

ODBC Tutorials and Demos ... 271

ODBC Example 1 .. 272

Setting up a system DSN .. 272

Looking at the Database ... 274

Setting up the Error Message .. 275

Creating the Rules .. 276

Testing the Rules ... 278

ODBC Example 2 .. 279

Running the Demo in HIPAA Validator Desktop .. 280

Running the Demo in Instream ... 280

Business Rules Contents  vi

The Rules that made it happen .. 281

Appendix F: Guideline Merge 285

Overview .. 285

Appendix G: Debug 287

EDISIM Validator Debug ... 287

HIPAA Validator Desktop and Instream Debug .. 287

Appendix H: Troubleshooting Checklist 289

Appendix I: Processing Order 291

Appendix J: LookAhead and Array Extended Example 295

Array, Lookahead, and Web Services Demos ... 295

Summary of Rules – Top-Down .. 296

Annotated Summary of Rules in Execution Order .. 300

Appendix K: Building Business Rules 313

Overview .. 313

Text Button ... 313

Entry Examples ... 314

TIBCO Documentation and Support Services 319

How to Access TIBCO Documentation ... 319

Product-Specific Documentation ... 319

How to Contact TIBCO Support .. 320

How to Join TIBCO Community .. 320

Legal and Third-Party Notices 321

Business Rules Introduction  1

Introduction

Document Purpose

This document describes the external routines used to create business rules with TIBCO

Foresight® EDISIM®’s Standards Editor.

Business rule basics are in TIB_fsp_edisim_<n.n>_fseditor.pdf in EDISIM’s Documentation

directory.

Intended Audience

This document is intended for advanced users who are familiar with:

 EDISIM Standards Editor.

 The EDI guidelines for which rules are to be developed.

 If the rules are to be used with EDISIM’s Analyzer, then familiarity with that product is

assumed.

 If the rules are to be used with TIBCO Foresight® Instream® or TIBCO Foresight®

HIPAA Validator® Desktop, then familiarity with these products is assumed.

Before using this document, familiarize yourself with basics of business rules as described in the

Standards Editor manual, TIB_fsp_edisim_<n.n>_fseditor.pdf.

You can open this manual from within Standards Editor by choosing Help | View the Manual.

Business Rules Introduction  2

What you need before using Business Rules

You will need to install the following before using the business rules described in this document:

 EDISIM

 Instream or HIPAA Validator Desktop

Big Picture

You can create your own business rules and have HIPAA Validator Desktop, Instream, or

EDISIM Analyzer enforce them when it checks EDI files for compliance. These rules allow you to

add additional checking beyond that done by TIBCO Foresight-distributed guidelines.

Definitions

TIBCO Foresight guidelines

Guidelines that ship with EDISIM, Instream, and HIPAA Validator

Desktop.

 HIPAA

For those using TIBCO Foresight HIPAA validation products, these

guidelines in EDISIM contain types 1 and 2 edits. HIPAA-based

TIBCO Foresight guidelines in Validator include these same EDISIM

guidelines plus additional guidelines with types 1-6 edits. Refer to

Guideline_Reference_Manual.pdf.

User guidelines Guidelines that you create in EDISIM Standards Editor. They contain

your company's edits.

Production guideline Guidelines for Instream and HIPAA Validator Desktop that you create

by merging a user guideline with a TIBCO Foresight guideline.

HIPAA-based Production guidelines contain type 1-7 edits.

Major Steps for HIPAA validation users

To create a production guideline for Validator that includes both user and HIPAA rules:

1. Use EDISIM's Standards Editor to create a user guideline containing your own business rules.

2. Merge the user guideline containing your business rules with the corresponding TIBCO

Foresight types 1-6 guideline in Instream or HIPAA Validator Desktop. This creates a

production guideline with both user rules and HIPAA rules.

3. With HIPAA Validator Desktop or Instream, validate EDI data against the production guideline.

Business Rules Introduction  3

To create a guideline for Instream or HIPAA Validator Desktop that includes only user rules:

1. Use EDISIM's Standards Editor to create your own business rules in a user guideline.

2. Copy the user guideline's STD file from EDISIM’s User Files\Public Guidelines directory and

paste it into Instream or HIPAA Validator Desktop’s Database directory.

3. With HIPAA Validator Desktop or Instream, test your own rules by checking EDI data against

the new guideline.

Major Steps for EDISIM Analyzer users

1. Use EDISIM's Standards Editor to create a user guideline containing your own business rules.

2. With EDISIM Analyzer, check EDI data against the guideline. You will see diagnostic messages

created by the business rules.

Viewing TIBCO Foresight-supplied HIPAA Rules

Validator Only

TIBCO Foresight-supplied HIPAA business rules are not visible in Standards Editor, but you can

see them in HIPAA Validator Desktop’s Library. Click on the segment, composite, or element in

Library’s top left pane and look in the upper right corner.

For example:

1. Open Library with Start | Programs | Foresight | Desktop | Library.

2. Open the HIPAA guideline 4010837I.

3. Open loop 1000A and the PER segment at position 045 (Submitter EDI Contact Information)

and click on element 365 (Communication Number Qualifier) at PER05.

4. Scroll down in the upper right pane to see this business rule:

Business Rules Introduction  4

Using External Routines

To create a rule that uses an external routine in Standards Editor, you have several options:

 *Call External Routine See page 4

 Type the Rule See page 5

 Use the Parameters Grid See page 6

*Call External Routine

1. Open the business rules box (right-click on the segment, composite, or element and choose

Business Rules).

2. Click New to bring up the Condition and Rule Definition dialog box. Set up the When to Run

the Rule area at the top of the box, if needed.

3. In the What Rule to Run area, select *Call External Routine in the drop box.

4. Click the down-arrow in the Server field and click the one of your choice. These are described in

detail in the rest of this document.

If it is not in the list, type it in in the Server line.

Business Rules Introduction  5

5. Click the down-arrow in the Function field and click the one of your choice.

 If the function is not there, type it in the Function line.

6. If the function requires parameters, type them in the Parameters field.

7. Click OK.

View the rule in the Business Rules dialog. If you need to change it, click Edit and make the

changes.

8. Click OK until you have exited all dialog boxes.

Type the Rule

1. Open the business rules box (right-click on the segment, composite, or element and choose

Business Rules).

2. Click New to bring up the Condition and Rule Definition dialog box. Set up the When to Run

the Rule area at the top of the box, if needed.

3. In the What Rule to Run area, select the rule from the drop list:

4. Click the Text button until you get an empty box where you can type the parameters:

Business Rules Introduction  6

5. Referring to the parameters for the rule in Business Rules Reference, type the parameters, paying

particular attention to capitalization and parentheses:

6. Click OK until you have exited all dialog boxes.

Use the Parameters Grid

1. Open the business rules box (right-click on the segment, composite, or element and choose

Business Rules).

2. Click New to bring up the Condition and Rule Definition dialog box. Set up the When to Run

the Rule area at the top of the box, if needed.

3. In the What Rule to Run area, select the rule from the drop list:

4. Click the Text button until you get a parameters grid:

5. Click in the first Parameter Value line and read the Parameter Notes to the right. Replace the

contents of the line with the parameter value you want to use:

Business Rules Introduction  7

6. Repeat for the other parameter values:

7. You cannot type in a line that has an fx to the right:

 Instead, click the fx and then *All, or one of the categories:

 Pick the sub-rule and click Select:

 You will then have additional parameters in the grid for that sub-rule:

Business Rules Introduction  8

 The Parameter Names for a sub-rule are prefixed with > to indicate their depth:

8. When finished, click OK until you have exited all dialog boxes.

The Look-Ahead Rule checkboxes are explained in Lookahead Business Rules on page 123.

Registering new Business Rules

Two possibilities:

 Until new rules are registered, select *Call External Routine at the

top, and then type the Server and Function in the fields provided.

 Copy FSBRD.dat (if present) from Instream’s Bin directory into

EDISIM’s Bin directory, or request a copy from TIBCO

Foresight Support. Then restart Standards Editor.

Business Rules Tutorials: Set up your own Rule  9

Tutorials: Set up your own Rule

HIPAA business rule tutorial

Overview

This section shows you how to set up a rule that checks the transaction's date to be sure that it is

not in the future. Where it is in the future, you’d like an error message to be displayed:

Transaction date cannot be in the future.

Like most rules, this one has two parts:

A condition I f the transaction date is in the future.

An action Then , issue an error message.

To create an example business rule, we'll take these steps:

1. Create your own error message ...page 10

2. Set up a rule ...page 10

3. Copy the guideline from EDISIM to Instream ...page 10

4. Test the rule ...page 11

5. Merge your business rule with a HIPAA guidelinepage 11

Business Rules Tutorials: Set up your own Rule  10

Create your own error message

Use the instructions in Creating and Viewing your own Error Message on page 255 to create your

own error message number 32210 with this text:

Transaction date cannot be in the future.

Set up a rule

You will create a rule to:

 See if the transaction date is in the future.

 If so, issue error message 32210.

To create this rule, start an 837I guideline from 837AQ320 in Standards Editor and:

1. Click on the BHT-04.

2. Choose Edit | Advanced | Business Rules | New | Always.

3. In the What Rule to Run area, choose CompareDate from the drop box.

4. Fill out the bottom right as follows, using the same capitalization and spacing:

 Where:

D8 Current_Element GT D8

Current_Date

See if the date in the current element is greater

than today's date.

If true, continue by executing the rest of the rule.

(BusinessRules.Utilities

DisplayErrorByNumber 32210)

Display the text of error number 32210.

5. Close the dialog boxes by clicking OK twice.

6. Save the guideline as RULESNEW.

Copy the guideline from EDISIM to Instream

You can test the rule using EDISIM Validator.

Instead, if you’d like, you can copy the RULESNEW.STD file in EDISIM’s User Files\Public

Guidelines directory and paste it in HIPAA Validator Desktop’s or Instream’s Database

directory.

Business Rules Tutorials: Set up your own Rule  11

Test the rule

When validating an EDI file against the RULESNEW guideline, your rule will be enforced.

To test this, validate 837I_4010_H_futureBHT04.txt or 837Idate.txt in the DemoData directory

of Instream or HIPAA Validator Desktop (Use the product that has your customized message

32210).

You should see the error message on the BHT segment, since the BHT-04 date is in the future.

Merge your business rule with a HIPAA guideline

HIPAA users:

Once you have verified that your business rule is operating correctly, you can merge it with the

corresponding HIPAA guideline, thus creating a guideline that will test both your rules and HIPAA

types 1-6 rules at the same time.

See Appendix F: Guideline Merge on page 285 for details.

X12 business rule tutorial

Overview

You will create a rule for a 4010 850 transactions to:

 See if Table 1’s REF-01 contains 06.

 If not, issue this error message:

Business Rules Tutorials: Set up your own Rule  12

 This REF-01 must contain a value of 06.

Set up a rule

To create this rule, start a 4010 850 guideline in Standards Editor and:

1 Click on the 050 REF-01.

2. Choose Edit | Advanced | Business Rules | New | Always.

3. In the What Rule to Run area, choose CompareString from the drop box.

4. Fill out the rule input area as follows, using the same capitalization and spacing:

 Where:

Current_Element NE “06” If the data in the current element is not 06, then

continue by executing the rest of the rule.

(BusinessRules.Utilities

DisplayErrorByNumber 0 0 “This REF-01

must contain a value of 06)

Display this message during analysis.

5. Close the dialog boxes by clicking OK twice.

6. Save the guideline as RULESNEW.

Test the rule

When validating an EDI file against the RULESNEW guideline, your rule will be enforced.

To test this, open EDISIM’s Validator and check testpo1.txt in EDISIM’s Samples directory:

You should see the error message on the REF segment, since the REF-01 does not contain 06:

Business Rules Tutorials: Set up your own Rule  13

Business Rules Tutorials: Set up your own Rule  14

Business Rules Analyzer vs. Other Validation Programs  15

Analyzer vs. other Validation
Programs

Overview

EDISIM Analyzer is a legacy product that supports validation of most, but not all of the

standards supported by Instream, HIPAA Validator Desktop, and EDISIM Validator. For

example, Analyzer does not validate HL7, XML, or Flat File data.

Analyzer does, however, support some standards that are not handled by the more recent

products such as GENCOD and ODETTE. (Refer to FileFormatsAtForesight.pdf for a

complete list.)

Due to these differences:

 not all Business Rule functionality can be used with Analyzer.

For example, reserved variables cannot be used.

 not all Business Rules can be used with Analyzer. For example,

Array Business Rules cannot be used.

 Some Business Rules only apply to Analyzer. For example, the

rule CheckCTT is Analyzer-only.

The following sections describe what business rules can be used with Analyzer.

Local Variables .. page 16

Condition and Rule Definition Dialog Box .. page 17

External Routines ... page 18

Business Rules Analyzer vs. Other Validation Programs  16

Local Variables

Local variables are defined in the Local Variable area of the main business rules box. This

appears when you are on an element.

They work in business rules with all TIBCO Foresight validation programs:

See Local Variables on page 239 for details about where to use a local variable.

Business Rules Analyzer vs. Other Validation Programs  17

Condition and Rule Definition Dialog Box

Features of this box are available with all TIBCO Foresight validation programs.

Business Rules Analyzer vs. Other Validation Programs  18

External Routines

Most external routine business rules can be used with Analyzer.

The exceptions for Analyzer are as follows:

External Routines

Rule Type Server Name Exception(s)

Exits BusinessRules.Exits Not available:

UserExitWithWait

UserExitWithoutWait

Utilities BusinessRules.Utilities Note the following:

 CheckFormat does not look up the first three

digits of the SSN.

 DisplayErrorByNumber only supports explicit text.

 IdentifierLookup, OracleLookup,

OracleLookupWithDate, Substitute rules, and

SetIdentifier are ignored by Analyzer.

Variable BusinessRules.Variable Not available:

DumpVars

Business Rules Business Rules Reference  19

Business Rules Reference

Overview

EDISIM Validator, HIPAA Validator Desktop, and Instream support all business rules except

where noted otherwise in the Business Rules Reference section.

EDISIM Analyzer vs. other Validation Programs

EDISIM Analyzer is a legacy product that supports validation of many, but not all of the

standards supported by Instream, HIPAA Validator Desktop, and EDISIM Validator. For

example, Analyzer does not validate HL7, XML, or Flat File data.

Analyzer does, however, support some standards that are not handled by the more recent

products such as GENCOD and ODETTE. (Refer to FileFormatsAtForesight.pdf for a

complete list.)

Because of these differences:

 Not all Business Rule functionality can be used with Analyzer.

For example, reserved variables cannot be used.

 Not all Business Rules can be used with Analyzer. For example,

Array Business Rules cannot be used.

 Some Business Rules only apply to Analyzer. For example, the

rule CheckCTT is Analyzer-only.

Throughout this section, when Analyzer support is different it is noted as follows:

All validators except Analyzer

or

Analyzer Only

Business Rules Business Rules Reference  20

Reserved Variables

Reserved variables are ones that do not have to be assigned in order for the system to determine

the value. They include

Current_Date .. page 21

Current_Delim ... page 23

Current_Element ... page 24

Current_ErrCount ... page 25

Current_LoopCount .. page 27

Current_LoopKey .. page 27

Current_Row and Next_Row .. page 27

Current_Time ... page 28

GLOBAL_FILENAME ... page 29

GLOBAL_FILEPATHNAME ... page 30

Except where noted otherwise, these can be used in business rule parameters anywhere a variable

can be used.

Do not attempt use these reserved names for other purposes.

Business Rules Business Rules Reference  21

Current_Date

All validators except Analyzer

Represents today’s date in your choice of formats.

Format

Current_Date_f o rmat (case s ens i t ive)

Where:

Current_Date_ Literal text.

f o rmat Optional date format containing any combination of:

 CC century

YY year

MM month

DD day

HH hour on 24-hour clock

mm minute (lower case mm)

SS (second)

s eparators (slash, hyphen, or colon)

 If format is omitted, date will be in CCYYMMDD format.

In business rule: Result if date is May 19, 2016

 time is 1:45 PM)

Current_Date 20160519

Current_Date_CCYY 2016

Current_Date_YYMMDD 160519

Current_Date_ CCYY/MM/DD/HH/mm/SS 2016/05/19/13/45/00

Example 1

If the value in the current element (which is a date in format D8) is later than the current date,

then display error message 32210.

Business Rules Business Rules Reference  22

Example 2

This uses the current date in an error message by surrounding it with %. The message must be

coded into the business rule rather than in the CustomerFSBRErrs.txt file.

Example 3

This is similar to Example 2, but combines the date and time:

If today is June 19, 2016 at 2:53 p.m., output will look like this:

Transaction was received at 201606191453

Business Rules Business Rules Reference  23

Current_Delim

All validators except Analyzer

Returns the specified delimiter character.

If the character is a control character, then the corresponding number will be returned. For

example, if NewLine is the segment terminator, then Current_Delim will return '13'. If a

delimiter is not assigned a value, '-1' will be returned.

Format

Current_Delim(“de l imit e r”) (case s ens i t ive)

Where:

Current_Delim Literal text.

de l imi t e r One of these; include the surrounding parentheses and double quotes:

 SEG Segment t e rminator

 ELM Element de l imi t e r

 SUBELM Sube l ement de l imi t e r

 REPELM Repeat ing e l ement de l imit e r

 DEC Dec imal po int charac t e r

 ESC Escape charac t e r

Example. This rule, which would typically be used in an EDIFACT message, sets variable

DPCHAR to a period or a comma, depending on the current decimal place character as specified

in the UNA Service String Advice segment.

This shows the decimal character that should be used:

The message shows that the decimal character is a period:

Business Rules Business Rules Reference  24

Current_Element

All validators except Analyzer

Represents the value in the current element or field.

The rule should be applied to an item that directly holds data (EDI element, field, etc.) rather

than a segment, record, or other structure.

Format

Current_Element (case s ens i t ive)

Examples: This example places the value in the current element into variable

HI0102IndustryCode:

This example takes the first character of the value in the current element and places it in the

variable IDCode:

Business Rules Business Rules Reference  25

Current_ErrCount

All validators except Analyzer

Represents the current total number of errors, up to the point where the variable is used, for the

specified severities or types.

Format

Current_ErrCount(c r i t e r ia) (case s ens i t ive)

Where:

Current_ErrCount

Literal text.

(c r i t e r ia) Code defining the scope of the errors followed by the types or

severities. This must be within parentheses and immediately follow

ErrCount with no spaces.

Criteria

B Optional

 For Batch. Errors in this batch (the entire file), up to this point, are

counted.

 If B is omitted, only errors in this transaction or message are

counted.

T Optional

 Types. This string of digits represents HIPAA type numbers.

 If T is omitted, they are severity numbers.

 T and B can be in any order, and either or both can be used or

omitted.

numbers A string of digits specifying which types or severities should be

included in the counts. If preceded by a T, they are considered types

and can be 0-8. Otherwise, they are severities and can be 0-6. Please

see APF.pdf for details.

Business Rules Business Rules Reference  26

Examples:

Current_ErrCount("34") The total number of severity 3 and 4 errors in

the transaction up to this point.

Current_ErrCount("T34") The total number of type 3 and 4 errors in the

transaction up to this point.

Current_ErrCount("B34") The total number of severity 3 and 4 errors in

the batch up to this point.

Current_ErrCount("BT34") The total number of type 3 and 4 errors in the

batch up to this point. (TB34 would work as

well).

Current_ErrCount("0123456") The total number of all severity errors in the

transaction up to this point.

Current_ErrCount("B12") The total number of Type 1 and 2 errors in the

batch up to this point.

Examples

This puts the count of the number of severity 3 and 4 errors encountered in the transaction set

into variable ERRCOUNTA.

This displays “Type 1 and 2 Errors Encountered!” if any Type 1 or 2 errors were encountered in

the batch before this point:

This displays the total number of type 1 and 2 errors in the batch up to this point: “12 Errors

Encountered!” Since %Current_ErrCount% does not have the criteria after it, the previous

criterion of TB12 is assumed.

Business Rules Business Rules Reference  27

Current_LoopCount

All validators except Analyzer

Represents the current iteration of the current loop in GetInfo business rules (see page 217).

Current_LoopKey

All validators except Analyzer

Represents the loop ID and current iteration of the current loop in GetInfo business rules (see

page 217).

Current_Row and Next_Row

All validators except Analyzer

Represents the current or next array row index in some array business rules. Please see Array

Reserved Variables on page 35.

Business Rules Business Rules Reference  28

Current_Time

All validators except Analyzer

Represents the current time in your choice of formats.

Format (case s ens i t iv e)

Current_Time_f o rmat

Where:

Current_Time Literal text.

f o rmat Optional time format containing any combination of:

 HH

mm

SS

separators (slash, hyphen, or colon)

 If format is omitted, time will be in HH:MM:SS format.

In business rule Result if time is 1:45 PM

Current_Time 13:45:00

Current_Time_HHMM 1345

Current_Time_HHMMSS 134500

Current_Time_ MM/SS/HH 45/00/13

Example

Put the current time in HHMMSS format into variable POtime:

Business Rules Business Rules Reference  29

GLOBAL_FILENAME

All validators except Analyzer

Represents the name of the file being validated. For example, this might contain the value

File.txt.

Format (case s ens i t iv e)

GLOBAL_FILENAME

Example

We store the first letter of the filename in a variable:

We put this on a certain PER segment. This displays a message if the segment is missing and the

filename starts with M.

Result in HIPAA Validator Desktop when the PER segment is missing and the filename starts

with M:

Business Rules Business Rules Reference  30

GLOBAL_FILEPATHNAME

All validators except Analyzer

Represents the path and name of the file being validated. For example, this might contain the

value c:\837P\File.txt.

Format (case s ens i t iv e)

GLOBAL_FILEPATHNAME

Example

We store the length of the path in a variable:

If it is longer than 120 characters, we issue a message:

Business Rules Business Rules Reference  31

Using Reserved Variables in a Message

If you are hard-coding the message into the business rule, surround them with percent signs, like

this:

If the message is in CustomerFSBRErrs.txt:

Use # instead of % in the CustomerFSBRErrs.txt message:

 32005 Order #Current_Element# received on #Current_Date# at #Current_Time#

Business Rules Business Rules Reference  32

Literals

All validation programs

You can use literal values to insert specific values into rules. Literal values are normally

surrounded with double quotes.

Example: If the content of variable 2010BBNM108PayName equals the literal value PI and the

content of Current_Element does not equal the literal value AB123, then display error message

32212.

Escape Character for Double Quotes

To use a double quote within a parameter, and have it considered a literal, precede it with a \

slash.

Example

Incorrect: Name EQ “John “Jack” Smith” (BusinessRules.Variable …

Correct: Name EQ “John \“Jack\” Smith” (BusinessRules.Variable …

Business Rules Business Rules Reference  33

Copying Business Rules

You can copy business rules and variable names between guidelines or within guidelines.

Copying a business rule

In Standards Editor:

1. Select the business rule in the main business rules box.

2. Use Ctr l -c or the Edit menu:

3. Go to the target business rules box and use Ctr l -v or the Edit menu to paste.

Business Rules Business Rules Reference  34

Copying a variable

In Standards Editor:

1. In the main business rules box, select the entire variable name in the Local Variable text box.

2. Right-click on the text, and choose copy:

3. Go to the target location and use Ctr l -v or the Edit menu to paste. You can paste the variable

name into any location that uses the Windows clipboard (a word processor document,

spreadsheet, etc.).

Printing Business Rules

In Standards Editor, use File | Print | Print Rules to get a text report of all business rules.

Business Rules Business Rules Reference  35

 Array Business Rules

All validators except Analyzer

These rules set up and manipulate arrays, including those sent back by InvokeWebService rules.

For a complete example, please see Appendix J: LookAhead and Array Extended Example on

page 295.

Array rows and columns

Array business rules refer to cells in arrays by column and row. Example: cell 0,1 means column

0 and row 1. The top row in an array is row 0 and the first column is column 0.

Array Reserved Variables

Current_Row The current array row index (Set or Get array rules)

Next_Row The next array row index (Set or Get array rules)

Last_Row The last array row in the array (Get array rules only)

Set array rules like SetArrayFromVar and Get array rules like GetArrayCurrentRowIndex

maintain separate Current_Row and Next_Row pointers.

Row pointer for Row pointer for

“Set” array rules “Get” array rules

SetArrayFromVar CheckVarFromArray

UpdateArrayFromDate GetArrayCurrentRowIndex
 GetArrayNextColumnIndex
 GetArrayNextRowIndex
 GetARowFromArray
 GetVarFromArray
 UpdateArrayFromDate

Cell 0,1

row 0

row 1

row 2

column 0 column 1 column 2

Business Rules Business Rules Reference  36

Example 1

Filling the array:

1. SetArrayFromVar MyArray Current_Row 0 “A” - Puts A in 0,0:

A

2. SetArrayFromVar MyArray Current_Row 1 “B” - Puts B in 0,1:

A B

3. SetArrayFromVar MyArray Next_Row 0 “C” - Puts C in 1,0:

A B

C

4. SetArrayFromVar MyArray Current_Row 1 “D” - Puts D in 1,1:

A B

C D

5. SetArrayFromVar MyArray Next_Row 0 “E” - Puts E in 2,0:

A B

C D

E

Business Rules Business Rules Reference  37

Getting values from array

6. GetVarFromArray MyArray Current_Row 0 MyVar - Gets A from 0,0 and puts it into MyVar

(Current_Row is pointing to the first row for this Get array rule - it is not related to the

Current_Row for Set array rules):

A B

C D

E

7. GetVarFromArray MyArray Current_Row 1 MyVar1 - Gets B from 0,1 and puts it into

MyVar1.

A B

C D

E

8. GetVarFromArray MyArray Next_Row 0 MyVar2 - Gets C from 1,0 and puts it into

MyVar2.

A B

C D

E

9. GetVarFromArray MyArray Last_Row 0 MyVar3 - Gets E from 1,0 and puts it into MyVar3.

This will always get from the last row in the array, regardless of previous Get array rules.

Last_Row is only used with Get array rules.

A B

C D

E

Business Rules Business Rules Reference  38

Example 2

Assume we are loading provider names (NM103) and IDs (NM109) into an array called

ProvArray:

We want our array to contain a row for each billing provider:

first NM103 value first NM109 value

second NM103 value second NM109 value

third NM103 value third NM109 value

e t c .

We create the array on the ST segment:

Now, we load data into the array. We cannot hard-code a literal row number into our

SetArrayFromVar business rule because we would continually overwrite the first row. Instead,

we use Next_Row to automatically keep the row index incrementing.

This rule on the NM103 will load up the first column (Column 0), using the next row down each

time it executes:

Business Rules Business Rules Reference  39

This rule on the NM109 will load up the second column (Column 1). Since we want this to be in

the same row as the previous rule on the NM103, we use Current_Row:

Business Rules Business Rules Reference  40

CheckVarFromArray

Compare a value in a specific array cell to another value and perform an action if the two values

do not match.

Format of Parameters

arrayName rowIndex co lumnIndex ValueA (Act ion)

Where:

arrayName Name of the array that contains the value to check. This can be a

variable or a literal in double quotes.

rowIndex Array row index. This can be a variable or a literal in double quotes,

or one of the array reserved variables. Indexes start with 0. Please

read Array Reserved Variables on page 35 to see how current row is

determined for “Get” array rules.

c o lumnIndex Array column index. This can be a variable or a literal in double

quotes. Indexes start with 0.

va lueA The value to compare to the array value: a variable, literal in double

quotes, Current_Date, or Current_Element.

(Act ion) The action to be executed if the result is false.

Examples

This rule checks the value in Array1BACK’s cell 0,4 (presumably returned from a web service

that checked a database). If the cell does not contain “1”, a message is displayed.

This does the same thing, except the row index is the number in variable SubNum:

Business Rules Business Rules Reference  41

ClearArray

Remove data from all or part of an array.

Format of Parameter (three variations)

arrayName

arrayName rowIndex

arrayName rowIndex co lumnIndex

Where:

arrayName Name of the array where data is to be cleared. This can be a variable

or a literal in double quotes.

rowIndex Clear data only from this row. This can be a variable or a literal in

double quotes.

c o lumnIndex Clear data only from this column. This can be a variable or a literal

in double quotes.

Example 1. This clears all data from Array1:

Example 2. This clears all data from the row with index 2:

 0 1 2 3 4

0

1

2

Business Rules Business Rules Reference  42

Example 3. This clears data from the cell at row index 2 and column index 4:

 0 1 2 3 4

0

1

2

CreateArray

Creates an array with the name of your choice. This rule typically goes on the ST segment, where

you can find it easily. However, it can go anywhere before it is used.

Format of Parameters

ArrayName

Where:

ArrayName Name of the array you are creating. This can be a variable or a

literal in double quotes.

Examples

This rule creates an array named Array1.

This rule creates an array named whatever is in the variable Array1.

Business Rules Business Rules Reference  43

DumpArray

Displays all values in an array.

Format of Parameters

ArrayName

Where:

ArrayName Name of the array containing the data you want to see. This can be

a variable or a literal in double quotes.

Examples

This rule displays the contents of Array1:

In this example output, each row contains 5 values:

EMSG 9**FS Debug DLL Invoking InvokeWebService : Row 0 = [2][9999][888888][aaaa][1]

EMSG 9**FS Debug DLL Invoking InvokeWebService : Row 1 = [2][22222][NA][bbbbbb][1]

GetArrayCurrentRowIndex

Reports the index of the current row in the array.

As an alternative, use the Current_Row reserved variable.

Format of Parameters

arrayName indexVar

Where:

ArrayName Name of the array containing the data you want to see. This can be

a variable or a literal in double quotes.

indexVar A variable in which to return the current row’s index. The current

row is the last row that you inserted to. Please read Array Reserved

Variables on page 35 to see how current row is determined for

“Get” array rules.

See also the reserved variable Current_Row on page 35.

Business Rules Business Rules Reference  44

GetArrayNextColumnIndex

Report the index of the column after the last column.

Format of Parameters

arrayName rowIndex indexVar

Where:

arrayName Name of the array. This can be a variable or a literal in double

quotes.

rowIndex The next column index of this row. This can be a variable or a

literal in double quotes, or one of the array reserved variables.

Indexes start with 0. Please read Array Reserved Variables on page

35 to see how current row is determined for “Get” array rules.

indexVar A variable in which to return the index.

Example

AAA 55 NO

BBB 123 A5

XXX 432

Business Rules Business Rules Reference  45

GetArrayNextRowIndex

Report the index of the row after the last row.

Format of Parameters

arrayName index

Where:

arrayName Name of the array. This can be a variable or a literal in double

quotes.

indexVar A variable in which to return the index. Please read Array Reserved

Variables on page 35 to see how the next row is determined for

“Get” array rules, and to read about the reserved variable

Next_Row.

Example

Business Rules Business Rules Reference  46

GetARowFromArray

Populates one or more variables from a row in the array.

Format of Parameters

arrayName rowIndex varA varB varC . .

Where:

arrayName Name of the array. This can be a variable or a literal in double

quotes.

rowIndex The row where the values are located. This can be a variable, a

literal in double quotes, or one of the array reserved variables.

Please read Array Reserved Variables on page 35 to see how to

specify a row for “Get” array rules.

varA Variable to hold the contents of the first cell in the row. Use empty

double quotes to skip any cell.

varB Variable to hold the contents of the second cell in the row.

var C Continue with variable names until you have all the data that you

need from the row.

Examples

Assume that array WSout contains this:

1 SUB FNAME SUB. DATEOFBIRTH SUB GENDER SUB LNAME VALID DATE

1 PATRICK 19730203 M WILSON 20010101

1 KATHERINE 19741125 F WILSON 20010101

This business rule collects values from row 1:

With the array shown above:

 Columns 0 and 1 would be skipped.

 SubDOB would contain 19740203

 SubGen would contain M

 SubLnam would contain WILSON

row 1

Business Rules Business Rules Reference  47

This rule is similar and collects values from the current row:

This rule is similar, and uses the row number stored in CurrentSearch_Row (from a

SearchVarsInArray or SearchConditionsInArray rule).

Business Rules Business Rules Reference  48

GetVarFromArray

Populates a variable from a cell in an array.

Format of Parameters

arrayName rowIndex co lumnIndex varName

Where:

arrayName Name of the array that contains the value. This can be a variable or

a literal in double quotes.

rowIndex The row where the cell is located. This can be a variable or a literal

in double quotes, or one of the array reserved variables. Indexes

start with 0. Please read Array Reserved Variables on page 35 to see

how current row is determined for “Get” array rules.

c o lumnIndex The column where the cell is located. This can be a variable or a

literal in double quotes.

varName Variable that is to receive the value that was found in the array cell.

This can be a variable or a literal in double quotes.

Examples

These two rules show how you might check an array returned from InvokeWebService and then

use a value it contains. In this example, we are assuming that the web service returns a value of 1

if a certain value is not in a database.

This rule copies the value in Array1BACK’s row 0 column 4 into the variable NM109BACK:

This rule then checks this variable and displays a message if the value is 1.

Business Rules Business Rules Reference  49

SearchVarsInArray

Search an array for a row that contains certain values, and perform an action if the search fails.

Results will be put in a variable CurrentSearch_Row. It will be set to the index of the row

where the values were found, or to -1 if there is no match.

Format of Parameters

arrayName va lueA valueB … (Fai l edAct ion)

Where:

arrayName Name of the array to search. This can be a variable or a literal in

double quotes.

va lueA valueB … A list of values, each separated by a space. These can be any

combination of variables, literals in double quotes, Current_Date or

Current_Element. Please see the example below.

 The list can contain one or more values. The first value will be

located in the first column of the array, the second value will be

located in the second column of the array, etc. To skip a column,

use empty double quotes. See the example below for details. All

values must be found in the same row for it to be considered a

match.

(Act ion) The action to be executed no row contains all the values.

Example

Assume that we want to search an array for a subscriber with a certain date of birth, gender, and

last name. We have the array shown below (shading shows which columns are significant in this

particular search).

Assume that the list of values in the parameter is: "1" "" DMG02 Current_Element SLnam

The list maps to the columns like this:

 "1" "" DMG02 Current_Element SLnam

1 SUB FNAME SUB. DATEOFBIRTH SUB GENDER SUB LNAME VALID DATE

1 PATRICK 19740203 M WILSON 20010101

1 KATHERINE 19741125 F WILSON 20010101

1 RITA 19221120 F O’NEILL 20010101

Assume:

 DMG02 = 19741125

 Current_Element = F

matching row

Business Rules Business Rules Reference  50

 SLnam = WILSON

The array is searched like this:

 All rows contain 1 in the first column, so all rows match so far.

 The second column is skipped because of the empty "".

 The third column contains one match to the contents of the

variable DMG02 (19741125). Only one row matches now.

 In the fourth column of the row that still matches, the F

matches the contents of Current_Element.

 In the fifth column of the row that still matches, WILSON

matches the contents of SLnam. Since we have a row that

matches all values in the list, the Act ion in the business rule

does not execute.

 The rule looks like this:

 You can check CurrentSearch_Row for results. In this example, if the search succeeded, we

get the value from column two in the matched row and put the value into a variable SubDOB.

Business Rules Business Rules Reference  51

SearchConditionsInArray

Search an array for a row that contains certain values, partial values, or combinations of values

and perform an action if the search fails.

Results will be put in a variable CurrentSearch_Row. It will be set to the index of the row

where the conditions were found, or to -1 if there is no match.

Format of Parameters

arrayNam #matches Cri t e r ia Cri t e r ia … (Fai l edAct ion)

Where:

arrayName Name of the array to search. This can be a variable or a literal in

double quotes.

#matches Number of columns that must match.

Cr i t e r ia … One or more sets of criteria, each separated by a space. Please see

matchCriteria format below. The first criteria applies to the first

column of the array, the second criteria applies to the second

column of the array, etc. To skip a column, use empty double

quotes. See the example below.

(Fai l edAct ion) The action to be executed if no row matches the criteria.

Criteria

This can have several formats:

 “” Skip a

column.

 Literal in quotes. Example:

“SMITH”.

 Variable. Example:

SubscrLName.

 Comparison The literal

text COMP followed by a comparison of part or all of the

column contents with a value from the EDI. See below.

Business Rules Business Rules Reference  52

Comparison format:

COMP(EDIVar, EDIstar t Arrays tar t , l engthToCompare , r equi r ement)

Where:

COMP Literal text indicating a comparison.

EDIvar Value from EDI to compare.

EDIstar t Position in EDI value to start comparison.

Arrays tar t Position in array value to start comparison.

l eng thToCompare Number of characters to compare.

r equi r ement M if values must match.

 O if they do not have to match as long as the #matches is met.

Example 1

Assume that we want to search an array for a subscriber who was born in November. If none are

found, we want to display the message “No subscribers in this transaction were born in

November.”

We are searching an array named Array1Back shown below (shading shows which column is

significant in this particular search; the underlined parts of the values are being compared to

“11”).

ANDREWS ALAN 111222333 20010212 20040212

BROWN BENITA 222333444 20010212 20080212

The business rule would be:

Where:

Array1Back Name of array to search.

1 Number of matches required.

“”,””,”” The three sets of empty double quotes mean to skip the first three

columns in the array.

This brings us to the fourth column, where we have the comparison COMP("11",1,5,2,M)

COMP Literal text meaning there is a comparison.

"11" Literal value to compare to value in array.

1 Start comparing at position 1 in the value “11”.

5 Start comparing at position 5 in the array value

Business Rules Business Rules Reference  53

2 Compare 2 characters.

M Must match.

BusinessRules.Utilities…

Action to take if no match is found.

In this example, the comparison will fail and the message will be displayed.

Example 2

Assume that we want to search the same array for a subscriber:

 Whose last name starts with the letter in variable LnameStart

 AND, whose birth month was November

If the array does not contain a row where both conditions match, we display a message.

Where:

Array1Back Name of array to search.

2 Number of matches required.

COMP(LnameStart,1,1,1,M)

 In the first column, we start comparing the first position in variable

LnameStart, the first position in the array, one character , and they

must match.

“” “” We skip the next two columns in the array.

COMP("11",1,5,2,M)This brings us to the fourth column, where we have the same

comparison that we did in Example 1.

In this example, the comparison will fail because no subscribers were born in November, and

both conditions are mandatory for success. The message will be displayed.

Example 3

Assume that we want to search the same array for a subscriber:

 Whose last name starts with the letter in variable LnameStart

 OR, whose birth month was November

Business Rules Business Rules Reference  54

If the array does not contain a row where at least one condition matches, we display a message.

The pertinent changes are underlined and in bold:

Array1Back 1 COMP(LnameStart,1,1,1,O) "" ""

COMP("11",1,5,2,O)(BusinessRules.Utilities DisplayErrorByNumber 0 0

"No subscribers had a last name starting with #LnameStart# in this

transaction and none were born in November")

The pertinent parts include;

The first 1 Means that only one match is needed: either the COMP in the first column or in

the fourth.

The first O (Capital O for Optional) means that the first column’s comparison is not

required for success.

The second O Means that the fourth column’s comparison is not required, either.

However, at least one of them is required due to the 1 immediately after the array name.

Example 4

 You can check CurrentSearch_Row for results. In this example, if the search succeeded, we get

the value from column two in the matched row and put the value into a variable IDnum.

Business Rules Business Rules Reference  55

SetArrayFromVar

Populates a cell in an array.

Format of Parameters

arrayName rowIndex co lumnIndex va lue

Where:

arrayName Name of the array you are populating. This can be a variable or a

literal in double quotes.

rowIndex The row where the cell is located. This can be a variable, a literal in

double quotes, or one of the array reserved variables. Please read

Array Reserved Variables on page 35 to see how to specify a row

for “Set” array rules.

c o lumnIndex The column where the cell is located. This can be a variable or a

literal in double quotes.

va lue Source of value used to populate the cell. This can be a variable, a

“literal” in quotes, or a reserved variable like Current_Element.

Examples

This rule puts the value 0 into cell 0,5:

This rule puts the value in the variable SubNM109 into cell 0,5 in Array1:

Business Rules Business Rules Reference  56

This rule puts the value in variable SubNM109 into an array named by the contents of a variable

called Array1Back. It will go in row 0. The column index is in variable SubNum.

Business Rules Business Rules Reference  57

UpdateArrayFromDate

Compares two dates (one in the array) and updates the one in the array if the result is true.

Format of Parameters

arrayName rowIndex co lumnIndex operand dat eV DateFormat

Where:

arrayName Name of the array that contains the date. This can be a variable or a

literal in double quotes.

rowIndex The array row where the date is located. This can be a variable, a

literal in double quotes, or one of the array reserved variables.

Please read Array Reserved Variables on page 35 to see how current

row is determined for “Set” array rules.

c o lumnIndex The array column where the date is located. This can be a variable

or a literal in double quotes.

operand EQ, NE, GT, GE, LT, or LE.

dateV Location of the date in the data: a variable, literal in double quotes,

Current_Date, or Current_Element.

DateFormat D8 (for YYYYMMDD)

 D6 (for YYMMDD)

 The dates being compared must have the same format. This can be

a literal in quotes or a variable.

Example

If the date in the current element is less than the date in cell 0,2 of Array1, replace the array value

with the current element’s value. Format of both dates is YYYYMMDD.

Business Rules Business Rules Reference  58

 Correct Coding Initiatives (CCI) Business Rules

Instream and HIPAA Validator Desktop

HIPAA only

These rules enforce:

 Correct Coding Initiatives (CCI) for Part B Medicare Carriers from the Centers for Medicare

and Medicaid Services (CMS).

 National Correct Coding Initiative (NCCI) edits for Hospital Outpatient Prospective

Payment System (OPPS).

This initiative consists of a large number of CPT pairs, where the second CPT code:

 Will not be paid if it occurs in the same claim and on the same service date as the first CPT

code.

 Or, will not be paid if it occurs in the same claim and on the same service date unless a

modifier exists for the second code.

TIBCO Foresight has already added the rules for CCI checking in the PDSA837P and

B41A837P guidelines. You can turn on and off checking with a setting in the APF file (described

below).

You can add your own rules to your 837I guidelines to check for compliance to NCCI edits for

OPPS. TIBCO Foresight-supplied guidelines do not have these rules pre-built. See the sections

below on CCIInit, CCICollect, and CCIAnalyze.

Turning on CCI checking during validation

To validate with CCI or NCCI checking:

 Use a guideline that has CCI or NCCI business rules set up.

 Set CheckCCIEdits=1 in the APF file being used for validation.

The three CCI rules are:

 CCIInit

 CCICollect

 CCIAnalyze

Business Rules Business Rules Reference  59

CCIInit

Instream and HIPAA Validator Desktop

HIPAA only

Clears the collection of data to prepare for another claim.

CCI Part B Medicare: This rule is already attached to the CLM segment for PDSA837P and

B41A837P guidelines.

NCCI for Outpatient 837I: On the CLM segment of your own 837I guideline, use the O

parameter for NCCI for outpatient tables.

CCICollect

Instream and HIPAA Validator Desktop

HIPAA only

Collects information needed for the analysis. This rule goes on these segments that have data to

collect:

Segment Collects …

2400 LX Line count for use in error messages

2400 SV1, SV2, or SV3 Procedure codes and modifiers

2400 DTP for Service Date or

2300 DTP for Statement Dates

Date of service

Example

Business Rules Business Rules Reference  60

CCIAnalyze

Instream and HIPAA Validator Desktop

HIPAA only

Analyze the data in the CCI and NCCI collection against the CCI and NCCI tables, and report

errors. The CCIAnalyze rule is usually set up on the ST segment to run at the end of each claim

loop.

This example rule runs at the end of any 2300 loop.

Only run the CCIAnalyze rule for NCCI checking if the CLM05-01 is an outpatient code.

CCI/NCCI error messages are in the range 31031 to 31070 and are listed in FSBRErrs.txt in the

Bin directory for Instream and HIPAA Validator Desktop.

Business Rules Business Rules Reference  61

Code Lookup Business Rules

FindCode

Instream and HIPAA Validator Desktop

Issues an error message if the code is not valid. It looks up the code:

 First, it checks code tables your company has set up (see Appendix C: Code Tables on page

261).

 Then, for HIPAA guidelines, it checks for the presence of the code in the TIBCO Foresight-

distributed external HIPAA code tables.

Format of Parameters

CodeTable CodeValue (i fNotFoundAct ion) (i fFoundAct ion)

Where:

CodeTable Name of the external code table.

CodeValue Value to be checked. If omitted, the value in the current element is

assumed.

(i fNotFoundAct ion) Action to be taken if the value is not found in the table. The

parentheses must be included. To take no action, use

(BusinessRules.Utilities DoNothing)

(i fFoundAct ion) Optional . Action to be taken if the value is found in the table.

The parentheses must be included.

Examples

Business Rules Business Rules Reference  62

Example parameters:

CPT4 CPT4 is the code table. Since CodeValue and i fNotFoundAct ion

are omitted, this rule will use the code value in the current element

and issue a generic error message.

CPT4 A A is a variable.

Since this has a CodeValue of A, see if the value in variable A is in

table CPT4. If the value is not found in table CPT4, issue a generic

error message.

CPT4 "A" "A" is a literal.

Since this has a CodeValue of "A", check for the presence of code A

in table CPT4. If A is not found, issue a generic error message.

CPT4 Current_Element (BusinessRules.Utilities DisplayErrorByNumber 32201)

 If the value in the current element is not found in table CPT4,

display the text in error number 32201.

 We must include the second parameter, CodeValue , since we are

using the third parameter, (i fNotFoundAct ion).

CPT4 Current_Element (BusinessRules.Utilities DoNothing)

(BusinessRules.Utilities DisplayErrorByNumber 32202)

 If the value in the current element is not found in table CPT4, do

nothing.

 If the value is found in table CPT4, display the text in error number

32202.

 We must include all previous parameters, since we are using the last

parameter, (i fFoundAct ion).

Business Rules Business Rules Reference  63

FindCodeWithDate

Instream and HIPAA Validator Desktop

Issues an error message if the code is not valid on a specific date. It looks up the code:

 First, it checks code tables your company has set up (see Appendix C: Code Tables on page

261).

 Then, for HIPAA guidelines, it checks for the presence of the code in the TIBCO Foresight-

distributed external HIPAA code tables.

Format of Parameters

CodeTable CodeValue DateFormat DateToCheck (i fNotFoundAct ion) (i fFoundAct ion)

Where:

CodeTable Name of the external code table.

CodeValue Value to be checked. It can be a literal in double quotes, a variable,

or Current_Element.

DateFormat The format of the date, which must match the format of

DateToCheck. This can be a variable or a literal. If the date can be

in more than one format, assign a variable to the format element

and then call FindCodeWithDate.

DateToCheck The date: a variable that has been assigned to a date element, a

literal in double quotes (such as "20030625"), or Current_Element

if it is a date.

(i fNotFoundAct ion) The action to be taken if the value is not effective on that

date. If omitted, a generic error message appears. The

parentheses must be included. To take no action, use

(BusinessRules.Utilities DoNothing)

(i fFoundAct ion) Optional. Action to be taken if the value is effective on that date.

The parentheses must be included.

Example 1. This rule checks to see if the facility code is valid for the transaction date. If not, it

displays error 32222.

Where:

FacilityCode The table.

Current_Element Value of the element where the rule is attached.

Business Rules Business Rules Reference  64

D8 Date format for BHT04TransactionDate.

BHT04TransactionDate

Variable assigned to the transaction date element.

(BusinessRules.Utilities DisplayErrorByNumber 32222)

Specifies that error message 32222 should be displayed if the

code is not valid for the transaction date.

Example 2. This rule on the statement date element checks to see if the date format is D8. If so,

it checks the facility code to see if it is valid on that date.

Where:

 CompareString checks the element that has the BusinessRules.Variable S2300DTP02StmtDt

assigned to see if it contains D8.

 If so, it executes the FindCodeWithDate function inside the outer parentheses:

FacilityCode The table.

S2300CLM0501FacilityType

Variable assigned to the facility type element that is being checked.

D8 Date format.

Current_Element Value of the element where the rule is attached - the statement date.

(BusinessRules.Utilities DisplayErrorByNumber 32213)

Specifies that error 32213 should be displayed if the code is not

valid for the transaction date.

Business Rules Business Rules Reference  65

FindUserCode

Instream and HIPAA Validator Desktop

Like FindCode (see page 61) but checks your own external code table only. It does not check

TIBCO Foresight’s table at all. See Appendix C: Code Tables on page 261.

FindUserCodeWithDate

Instream and HIPAA Validator Desktop

Like FindCodeWithDate (see page 63) but checks your own external code table only. It does not

check TIBCO Foresight’s table at all. See Appendix C: Code Tables on page 261.

Business Rules Business Rules Reference  66

ValidateZipState

Instream and HIPAA Validator Desktop

HIPAA only

Checks the zip code and issues an error message if it is not valid for the state code.

If the zip code includes the four-digit extension (as in 43017-1111), only the first five digits will

be validated against the state code.

Format of Parameters

ZipCode Stat eCode i fNotMatchAct ion

Where:

ZipCode Zip code element. It can be a variable or Current_Element.

Stat eCode Current_Element, literal in double quotes, or a variable pointing

to the state element.

(i fNotMatchAct ion) Optional. Action to be taken if the zip code is not valid in the state.

If omitted, the following message will be displayed: “ZipCode” is

not valid for the State “Stat eCode .”

Example. This rule is applied to the N403 to see if the zip code it contains is valid for the state

contained in the N402.

Where:

Current_Element Value of the zip code element where the rule is attached.

2010AAN402State Variable assigned to the state element.

(BusinessRules.Utilities DisplayErrorByNumber 32222)

Specifies that error 32222 should be displayed if the zip code is not

valid for the state.

Set up variable 2010AAN402State.

here. ValidateZipState rule goes here.

Business Rules Business Rules Reference  67

Core3 (Phase III CORE) Business Rules

Instream and HIPAA Validator Desktop

HIPAA only

The Phase III CORE 360 Uniform Use of Claim Adjustment Reason Codes and Remittance

Advice Remark Codes (835) Rule checks for certain valid combinations of Claim Adjustment

Group Codes (CAGC) with Claim Adjustment Reason Codes (CARC). This rule also checks for

valid combination of Claim Adjustment Reason Codes (CARC) with the Remittance Advise

Remark Codes (RARC).

In general:

 A CARC can be used only with certain CAGCs.

 A CARC/CAGC pair may have a list of valid RARC(s), at least one of which must be used.

Turning on Phase III CORE checking during validation

To validate with Phase III CORE checking:

 Use a guideline that has Core3 business rules set up. PDSA5010835.std and 5010-

835.std guidelines incorporate the Phase III CORE 360 Rule.

 Set CheckCore3Edits=1 in the APF file being used for validation.

The Core3 rules are:

 Core3CheckCARC

 Core3CheckMissingRARCs

 Core3Init

 Core3TrackRARC

At this time, Core3 rules are for internal TIBCO Foresight use only.

Business Rules Business Rules Reference  68

Custom Record Business Rules

Instream and HIPAA Validator Desktop

A custom record places the contents of actual data in the validation output stream. The name

and contents of the record are customizable. You might wish to display a patient ID number or

claim number in the output, for example.

You can set up custom records to be generated each time a message is placed in the output

stream, or on demand.

The layout of a custom record is:

Field Notes

Record ID 1-4 alphanumeric characters. Avoid starting your Record ID with a Z, 00, S0, or

P0, or with any ID listed under Custom Record IDs to Avoid on page 69.

Inst ream : Occupies positions 1-5, including a Z that is automatically added to

the beginning of the record.

HIPAA Val idator Desktop : Occupies positions 1-5. Includes a trailing colon.

No Z added to beginning.

Line # Inst ream only . Automatically generated during validation: the number of the

segment line in the input file that caused the message to be generated.

Occupies positions 6-15.

Field 1Data Contents of the specified BusinessRules.Variable name.

Inst ream : Starts at position 16.

HIPAA Val idator Desktop : Starts at position 6.

Field n Data Immediately after previous field

HIPAA Validator Desktop example custom record with two values:

CLM :2235057 9012345918

Instream example - same custom record

ZCLM 482235057 9012345918

Three functions let you create, output, and remove custom records that contain data of your

choosing:

 DefineCustomRec

 OutputCustomRec

 RemoveCustomRec

First field's data Second field's data Record ID

First field's data Second field's data Record ID Line number

Business Rules Business Rules Reference  69

To set up a custom record:

1. Assign variables for the data that will be output. Use SetVar, AddVar, or other

BusinessRules.Variable (see page 240). You can assign these before or after defining the

record. Local variables will not work in custom records.

2. Define the record layout using DefineCustomRec (see page 70).

3. Output the record using OutputCustomRec (see page 72). This is not necessary for Automatic

records (see page 70).

Setting up variables for use by custom records

The example in the next two sections creates a record that contains the submitter number and

claim number, like this:

CLM :2235057 9012345918 (HIPAA Val idat or

Desktop)

ZCLM l i n enumbe r2235057 9012345918 (Ins t r eam)

We need to define BusinessRules.Variable for these two elements. To do this, we can use SetVar

to assign:

 Variable 1000ANM109SubmitterNum to the submitter name.

 Variable 2300CLM01ClaimNum to the claim number.

Custom Record IDs to Avoid

In general, avoid record names starting with X or Z unless you are using them with TIBCO

Foresight® Transaction Insight®.

Do not use these IDs for your own custom records.

BGNS
CLSP
CLSS
DPA1
DPA2
DPEL
DPNM
DPST
DPSV
DPTN
DSTC
DSVC
DTRN

GSSG
HCPN
HDDT
HLDP
HLIR
HLIS
HLRQ
HLSB
HLSP
HLSS
HLUM
IRNM
IRST

ISA1
ISNM
ISPN
ISST
MIA
P009
P010
P011
SREF
SSAA
S012
S020
SBA1

SBA2
SBEL
SBNM
SBST
SBSV
SBTN
SPAA
SPNM
SPST
SSTC
P012
P020
PRST

PTHD
RMRA
RMRB
RQAA
RQNM
RQST
S009
S010
S011
SSST
SSTN
SSVC
STRN

STST
TRSE
TS2
TS3
UMA1
UMA2
UMNM
UMST
XTID
XTIA
XD00-99
XF00-00
XM00-99

XN00-99
XS00-00

Business Rules Business Rules Reference  70

DefineCustomRec

Instream and HIPAA Validator Desktop

Defines the layout of a custom record. This rule is normally attached to the ST

segment.

Format of Parameters

ID Flag VarInfo

Where:

ID An ID for the record: 1 to 4 alphanumeric characters. (Instream

output adds a Z to the beginning of the ID.)

Flag M, D, or A.

M (Manual) HIPAA Validator Desktop and Instream. The

record is output when an OutputCustomRecord rule calls it.

No accompanying detail record is output.

D (Manual with Detail). HIPAA Validator Desktop and

Instream. The custom record is output when an

OutputCustomRecord rule calls it. A detail record is also

output.

A (Automatic) Instream only. All automatic records output

whenever an error is encountered. No OutputCustomRecord

rule is needed. This might be useful if you want to show the

billing provider name, the claim number, etc., for each error. A

rule with a flag of A is ignored by HIPAA Validator Desktop.

VarInfo Variables to be included in the output record. This is a list of

variable name and width pairs in the format var iab l e/ l eng th . The

variable name and the length are separated by a slash. Commas

separate multiple var iab l e/width pairs.

 The variables have been set up with business rules like SetVar or

AddVar before being output. Undefined variables appear as blanks

in the record.

 The length need not be the same as the length of the data in the

variable. It can be preceded with L to left-justify (the default) or R

to right-justify the data.

 Example: VarOne/12,VarTwo/R5,VarThree/L10

 This includes three variables: VarOne is left-justified in a field 12

characters wide, VarTwo is right-justified in a field 5 characters

wide, and VarThree is left-justified in a field 10 characters wide. The

L is actually not needed in the last pair, since it is the default.

Business Rules Business Rules Reference  71

Example. This rule displays a record that contains the submitter number and claim number as

described on page 69.

Where:

CLM ID of the custom record being defined.

M Flag indicating Manual output (meaning the record is output when

called by a OutputCustomRec rule in either HIPAA Validator

Desktop or Instream).

2300CLM01ClaimNum Variable containing data that is to be included in the record (in this

case, the claim number).

/ Separator between variable and its length.

20 Include the first 20 characters of the data from the variable.

, Comma separates this variable/length pair from the next.

1000ANM109SubmitterNum/10

A second variable/length pair, this one showing the first 10 characters

of the contents of the Submitter NM109.

When output with OutputCustomRec, this message might look like:

CLM :2235057 9012345918 (HIPAA Validator Desktop)

 o r

ZCLM 482235057 9012345918 (Instream)

With Instream, a Z appears at the beginning of the record to flag it as a custom record. The line

number field is automatically added to the Instream record (in this example, eight spaces plus

48).

Fine-tuning the appearance of the custom record

You can add literal text to your message by setting up variables containing the literal text. Then

use these variables in the DefineCustomRec.

Business Rules Business Rules Reference  72

OutputCustomRec

Instream and HIPAA Validator Desktop

Places custom records in the validation output.

Format of Parameters

ID ID ID …

Where:

ID ID of the record: 1 to 4 alphanumeric characters. This ID was set up with a

DefineCustomRec rule. If the ID is omitted, all custom records are output.

 Optional. Multiple record IDs can be included. Separate each with a space. The

custom records can include those defined with flags of M, A, or D.

Example. This rule displays the custom record CLM, defined in the example under

DefineCustomRec (see page 70). We can attach this rule to the CLM01, after the SetVar for the

variable used in the record definition.

With Instream, each OutputCustomRec command will first generate a DTL record, to identify

the location of the custom record in the data.

Business Rules Business Rules Reference  73

RemoveCustomRecord

Instream and HIPAA Validator Desktop

Removes one or all custom record definitions and their outputs.

It is good practice to remove all custom records on the SE segment. This prevents the

definitions from remaining during further analyses for data in the same functional group.

You may also find this command useful for Instream. You can attach it to a location where you

no longer wish to see the automatic custom record.

Format of Parameters

ID ID ID …

Where:

ID ID of the record: 1 to 4 alphanumeric characters. This record was set up with a

DefineCustomRec rule. If the ID is omitted, all custom records are removed.

 Use a space to separate multiple record names.

Example. This rule removes the custom record CLM:

Business Rules Business Rules Reference  74

 Date and Time Business Rules

CheckDateInRange

All validation programs

Verifies whether a date falls within a range and takes an action if the test is true.

Format of Parameters

DateToCheckFormatCode DateToCheck Operand DateRangeFormatCo de DateRange (I fTrueAct ion)

Where:

DateToCheckFormatCode The format of the date to check: a variable, literal in double

quotes, or Current_Element. Possible formats are:

 D6 for YYMMDD

 D8 for YYYYMMDD

 DT for YYMMDDHHMMSS

DateToCheck The date that may or may not be in range. This can be a variable,

literal in double quotes, Current_Date, or

Current_Element.

Operand InRange - Date is within the range, and is not the starting or

ending date of the range.

 OutRange - Date is outside the range, and is not the starting or

ending date of the range.

 InRangeEqual - Date is within the range or is the starting or

ending date of the range.

 OutRangeEqual - Date is outside the range, or is the starting

or ending date of the range.

DateRangeFormatCode The format of the date range, always RD8 for YYYYMMDD-

YYYYMMDD format.

DateRange A variable, literal in double quotes, or Current_Element.

(I fTrueAct ion) Optional. The action to be executed if the result is true. If omitted,

a default message will be displayed.

Business Rules Business Rules Reference  75

Example. This example checks that service line dates are within the range specified in the DTP

Statement Dates segment in the CLM loop. If not, it issues an error message.

To set this up, we need to put variables on the Statement Dates DTP02 and DTP03:

We will also need a variable on the Service Line Date DTP02, which offers a choice of two

codes.

We can then use these variables in a rule on the Service Line Date DTP03:

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

If it is possible that other date formats would appear in the data, then the rule would need to

become more complex, with CompareString used to check the formats of

CLMStatementDateQual and conditionally execute the rule above.

Use SetVar to assign variable

CLMStatementDateQual here.

CheckDateInRange rule

goes here.

Use SetVar to assign variable

CLMStatementDate here.

Business Rules Business Rules Reference  76

CompareDate

All validation programs

Compares two dates based on the operand and performs an action if the result is true.

Format of Parameters

DateFormatCodeA DateVarA Operand DateFormatCodeB DateVarB (I fTrueAct ion)

Where:

DateFormatCodeA D6 for YYMMDD

 D8 for YYYYMMDD

 DT for YYYYMMDDHHMM

DateVarA A variable, literal in double quotes, Current_Date, or

Current_Element.

Operand EQ, NE, GT, GE, LT, or LE.

DateFormatCodeB D6 for YYMMDD

 D8 for YYYYMMDD

 DT for YYYYMMDDHHMM

DateVarB A variable, literal in double quotes, Current_Date, or

Current_Element

(I fTrueAct ion) Optional. The action to be executed if the result is true. If omitted,

a default message will be displayed.

Example. This example checks the service line date to see if it is in the future. If this is true, it

displays custom error message 32210, which might be "Service cannot have been performed in

the future."

Business Rules Business Rules Reference  77

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Rule goes here.

Business Rules Business Rules Reference  78

DateCalc

All validation programs

DateCalc can be used in several ways:

Date Ranges:

 Calculate how many days or months are in a date range and put the result in a variable.

 Take action (such as displaying an error) based on the relationship between two dates.

Individual Dates:

 Put the results of a calculation between two dates into a variable.

 Display an error based on the calculation between two dates.

Example

Dates Number

of days

Number of

months

20070922-20071021 21 1

20070922 and 20050922 730 24

Date Ranges: Calculate how many days or months are in an RD8 date range

DateCalc can calculate how many days or months are between the two dates in a date range. This

element would have a RD8 qualifier that contains a value like 20071028-20071204.

Format of Parameters

BYMONTH RD8 DateToCheck Resu l tVariabl e

Where:

BYMONTH Literal. The difference between the two dates is to be calculated in

months. If omitted, the difference will be calculated in days.

RD8 Literal.

DateToCheck The location of the date range: a variable, literal in double quotes,

Current_Date or Current_Element.

Resul tVariabl e A variable to hold the result of the calculation.

Business Rules Business Rules Reference  79

Example 1 - number of days in a date range

This example calculates the number of days in the range contained in the current element and

places the result in variable NumOfServiceDays.

Another rule might then check the value in NumOfServiceDays and take some action:

Example 2 - number of months in a date range

This example is the same as the previous, but it calculates the number of months in the range

Example 3 - checking the qualifier first

Set a variable on the element Date Time Period Format Qualifier (in this example, we will use

DateFormat).

It then checks the variable to see if it contains RD8. If so, it calculates the number of days in the

range and places the result in variable NumOfServiceDays.

Business Rules Business Rules Reference  80

Example 4: Creating a 6-month date range

This example creates a 6-month date range on the fly. The FutureDate variable will contain the

date 6 months from the Current_Date. It will be in D8 format. You can then use the FutureDate

to create a date range and check a date against that range.

Date Ranges: Take action based on the relationship between two RD8 dates

DateCalc can take action based on the relationship between a date range and another number.

Format of Parameters

BYMONTH RD8 DateToCheck Operand Integ erVar (ac t i on i f t rue)

Where:

BYMONTH The value is to be calculated in months. If omitted, the difference

will be calculated in days.

RD8 Literal.

DateToCheck The location of the date range: a variable, literal in double quotes,

Current_Date or Current_Element.

Operand Any of these: EQ , NE , GT , LT , GE , LE

Int eg erVar A variable containing an integer, or a literal in double quotes (such

as “5”).

(ac t i on i f t rue) Action to be taken if the calculation is true.

Example. This displays an error message if the number of days in the current date range is less

than the integer in the variable SV2Qty05.

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Business Rules Business Rules Reference  81

Individual Dates: Store the results of a calculation between dates in a variable

DateCalc can calculate how many days or months are between dates in two separate elements

and put the result in a variable.

Format of Parameters

BYMONTH DateFormat1 Date1 - DateFormat2 Date2 Resu l tVariable

or

BYMONTH DateFormat1 Date1 ± Int eg er Resu l tVariabl e

Where:

BYMONTH The value is to be calculated in months. If omitted, the difference

will be calculated in days.

DateFormat1 The format of the first date:

 If BYMONTH: D6, D8, or DT, or a variable containing one of

these values.

Date1 The location of the first date: a variable, literal in double quotes,

Current_Date or Current_Element.

- A literal minus sign surrounded by spaces.

DateFormat2 The format of the second date: D6, D8, or DT, or a variable

containing one of these values.

Date2 The location of the second date: a variable, literal in double quotes,

Current_Date, or Current_Element.

Resul tVariabl e A variable to store the number of days between the two dates.

± A plus sign or a minus sign surrounded by spaces.

Int eg er A literal in double quotes or a variable containing an integer.

Example. This example calculates the number of days between the date in variable

BHT04StatementDate and the date in the current element. The result goes into variable

DelayInSubmitting.

Business Rules Business Rules Reference  82

Individual Dates: Display an error based on the calculation between two dates

DateCalc can calculate how many days are between dates in two separate elements and put the

result in a variable.

Format of Parameters

BYMONTH DateFormat1 Date1 ± DateFormat2 Date2 Operand Int eg erVar (ac t ion i f t rue)

Where:

BYMONTH The value is to be calculated in months. If omitted, the difference

will be calculated in days.

DateFormat1 The format of the first date: D6, D8, or DT, or a variable

containing one of these values.

Date1 The location of the first date: a variable, literal in double quotes,

Current_Date, or Current_Element.

± A plus sign or a minus sign surrounded by spaces.

DateFormat2 The format of the second date: D6, D8, or DT, or a variable

containing one of these values.

Date2 The location of the second date: a variable, literal in double quotes,

Current_Date, or Current_Element.

Operand Any of these: EQ, NE, GT, LT, GE, LE.

Int eg erVar A variable containing an integer, or a literal in double quotes (such

as “5”).

(ac t i on i f t rue) Action to be taken if the calculation is true.

Example. This example calculates the number of days between the date in variable

BHT04StatementDate and the date in the current element. If the result is more than 365, display

custom error message 32003.

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Complete example

This set of rules in a HIPAA 837 will display an error if the transaction date and the date of

service are more than 4 months apart.

First, capture the transaction date on the BHT04:

Business Rules Business Rules Reference  83

Go to the 2400 DTP03 for service date. In the first rule, capture the first 8 digits of the date:

In the second rule, capture the number of elapsed months:

In the third rule, display an error if the number of months is greater than 4:

Add or Subtract Hours and Adjust Date Accordingly

BYHOUR rules tell you how many days would have to be added or subtracted when you add or

subtract hours from a time. It also reports the new time.

For example, if the data contained a time of 1800 and you added 10 hours, it would report that

the time would be 0400, and one day would be added.

Format of Parameters

BYHOUR DateFormat1 Date1 HourChange DateFormat2 Date2 DaysAdded

Where:

BYHOUR Literal. Specifies that the difference between the two dates is to be

calculated in hours.

DateFormat1 The format of the time, one of these: TSDD, DT, TSD, TM or TS.

 If unknown, use XX and validation will look at the value’s length to

pick one of these formats:

 8 TSDD = HHMMSSDD

12 DT = CCYYMMDDHHMM

7 TSD = HHMMSSD

4 TM = HHMM

6 TS = HHMMSS

Date1 The original time: a variable, literal in double quotes, Current_Time,

or Current_Element.

Business Rules Business Rules Reference  84

HourChange Hours to be added or subtracted - a variable or literal.

 Examples:

 8

 -8

 TimeChangeVar

DateFormat2 This should be the same as DateFormat1 .

Date2 A variable to contain the new date and time, after the hours have

been added to or subtracted from Date1 .

DaysAdded A variable containing the number of days that would need to be

added or subtracted to a date because of the time change.

Example. This example calculates the date when 9 hours is added to the time in the GS05. If

the new time runs into the next day, this information has to be captured in a variable in place of

the date in the GS04.

GS*BE*901234572000*908887732000*20100926*1615*3466*X*004010X095A1~

1. Set a variable on the GS04 (a date):

 This captures 20100926 in GS04Var.

2. Set up this rule on the GS05 (a time), which:

 Adds 9 hours to the value in the GS05 and stores the result in variable NewGS05Var.

 Determines that a time of 1615 + 9 hours = 2515. This means it is actually 0115 one

day later. The 1 is stored in DayAddedVar.

 DateTime.DateCalc:BYHOUR TM Current_Element 9 TSDD NewGS05Var DaysAddedVar

3. Calculate the new date with this rule, also on the GS05:

DateTime.DateCalc:BYDAY D8 GS04Var DaysAddedVar D8 NewGS04Var

Business Rules Business Rules Reference  85

Add Days to an existing Date

BYDAY rules add days to an existing date and put the result in a variable.

Format of Parameters

BYDAY DateFormat1 Orig ina lDate DaysAdded DateFormat2 NewDate

Where:

BYDAY Literal. The difference between the two dates is to be calculated in

days.

DateFormat1 D6, D8, or DT.

Orig inalDate Input date. A literal in double quotes, a variable, Current_Element,

or Current_Date.

DaysAdded A literal in double quotes or a variable containing the number of

days to add. If the value is negative, it will be subtracted from

OriginalDate.

DateFormat2 This should be the same as DateFormat1 .

NewDate A variable to hold the new date.

Example. See the DateTime.DateCalc:BYDAY rule above.

GetGMTDateTime

Reports the current GMT date and time.

Format of Parameters

 f o r m a t r e s u l t V a r

Where:

f o r m a t Format of the output, one of these:

Format Output will look like:

RTS CCYYMMDDHHMMSS

DT CCYYMMDDHHMM

TSD HHMMSSD

TSDD HHMMSSDD

MM-DD-CCYY MM-DD-CCYY

HH:MM:SS HH:MM:SS

r e s u l t V a r Variable to hold the current GMT date and time.

Business Rules Business Rules Reference  86

Example: This rule puts the current GMT date and time in variable GMTvar, using format

CCYYMMDDHHMM. GMTvar might contain something like this: 201104012142

ValidateDateTime

All validation programs

Validates any value or element against the specified date and time format.

Format of Parameters

 Format st r ing value

Where:

Formatstring Format for date and time. This value can be an X12 or EDIFACT

code (e.g., DT or 10) or a format you create using the allowable

format strings. See information below for Allowable Format

Strings, X12 Date/Time Codes, and EDIFACT Date/Time

Codes.

value Value to be checked (constant, variable, internal keyword, etc.).

Examples

Validate the value against EDIFACT Date Code 102:

ValidateDateTime "102" "20190111"

Validate the value against X12 Date Code D8:

ValidateDateTime "D8" "20190111"

Validate the value against the specified date format:

ValidateDateTime "CCYYMMDD" "20190111"

Validate the value against the specified date format:

ValidateDateTime "CCYYMMDD+" "20190111abc"

Allowable Format Strings

Format string can be made up of these character strings:

 CC = Century

 YY = Year

 MM = Month (01-12)

 DD = Day (01-31 depending on Month)

 hh = Hour (00-23)

Business Rules Business Rules Reference  87

 mm = Minute (00-59)

 ss = second (00-59)

 Trailing '+' = extra characters are accepted

X12 Date/Time Codes

D8 = CCYYMMDD

DT = CCYYMMDDHHMM

D6 = YYMMDD

DTS = CCYYMMDDHHMMSS

RD6 = YYMMDD-YYMMDD

RD8 = CCYYMMDD-CCYYMMDD

RDT = CCYYMMDDHHMM-CCYYMMDDHHMM

RTS = CCYYMMDDHHMMSS-CCYYMMDDHHMMSS

TM = HHMM

TS = HHMMSS

TSD = HHMMSSD

TSDD = HHMMSSDD

EDIFACT Date/Time Codes

2 = DDMMYY

3 = MMDDYY

4 = DDMMCCYY

5 = DDMMCCYYHHMM

10 = CCYYMMDDTHHMM

101 = YYMMDD

102 = CCYYMMDD

106 = MMDD

201 = YYMMDDHHMM

202 = YYMMDDHHMMSS

203 = CCYYMMDDHHMM

204 = CCYYMMDDHHMMSS

205 = CCYYMMDDHHMMZHHMM

401 = HHMM

402 = HHMMSS

713 = YYMMDDHHMMYYMMDDHHMM

717 = YYMMDDYYMMDD

718 = CCYYMMDDCCYYMMDD

719 = CCYYMMDDHHMMCCYYMMDDHHMM

Business Rules Business Rules Reference  88

ValidateDateTimeUN and ValidateDateTimeX12

All validation programs

ValidateDateTimeX12 Place this rule on an X12 element 1251. It checks the date

and time in the current element to see if it follows the format

specified in the preceding element 1250. Be sure to

customize the code values for the qualifier in element 1250

ValidateDateTimeUN Place this rule on an EDIFACT element 2380 to see if it

follows the format specified in the following element 2379.

Be sure to customize the code values for the qualifier in

element 2380.

Format of Parameters

 <fa l s eRule>

Where:

falseRule (Optional) The rule to be executed if ValidateDateTimeX12 or

ValidateDateTimeUN check fails. This parameter must be another

rule to run. If omitted, a default message is displayed.

Example. This rule checks X12 element 1251.

Example. This rule checks EDIFACT element 2380. If the check fails, Error 32001 is displayed.

Business Rules Business Rules Reference  89

DBServer Business Rules

Instream on UNIX

Important Validating with these rules requires additional setup outside of

the guideline. Please see TIB_instream_<n.n>_isiserver.pdf

for details.

These functions interact with Oracle or SQL Server databases from Instream that is running on

AIX:

 The DBExecute function runs a stored procedure. See below.

 The DBQuery function sends a query. See page 92.

The InvokeWebService function sends an array to a web service and receives one back.

DBExecute

Executes a stored procedure in an Oracle or SQL Server database.

Format of the Parameters

DBRef ReturnCode “StoredProc params” {var1=1 {var2=2 …}} { (bus iness ru l e)}

Where:

DBRef Name of a database connection specified in the ISIserver.config’s

[ORACLE] or [SQL] sections (see

TIB_instream_<n.n>_isiserver.pdf).

 Example:

 The DBRef is ORACLEDB in this business rule parameter:

 ORACLEDB RetVal "check_NPI" NPIactive=1

 It is also ORACLEDB in the ISIserver.config:

 ORACLEDB=DATABASE{192.168.1.74:1521/or10};USER{ISUsr};PW

D{Q1W2E3}

ReturnCode The name of a variable to contain the success of the DBExecute

rule. It will always contain 1. Therefore, please check the output

variables from the stored procedure to determine what action to

take.

If the rule failed, the DTL file will have more information like this:

EMSG 10SQL ERROR : [BRDatabase::DBExecute -

SQLExecDirect Failed. [-1]]

Business Rules Business Rules Reference  90

StoredProc params The stored procedure to execute followed by a space and its input

parameters, each separated by one space. You can include business

rule variables in the stored procedure’s name in the form %var%

where var is the name of a business rule variable. Before the

command is processed, var will be replaced with the contents of the

specified variable.

 In the stored procedure, always put the output parameters first, like

this example:

 CREATE PROCEDURE verifyXXXx

 (@variableout varchar(50) out,

 @variablein varchar(50)

)

{var1=1 {var2=2 …}}

Variables to contain the values returned from the procedure. The

contents of these variables are automatically set to null strings

before the business rule executes the procedure. The “=1” means it

is the first parameter returned from the procedure, the “=2” means

it is the second parameter returned, etc.

{(bus iness ru l e)} Optional business rules to run at the end. See example 2 below.

This is especially useful in end of loop rules, which run in reverse

order.

Example 1: This rule executes a stored procedure called checkNPIproc in the database

referenced by SQLnpi in ISIserver.config. It sends the value in the current element as the proc’s

one input parameter. The only returned item is stored in variable InDB.

This rule then checks the procedure’s output parameter InDB and displays an error if it equals 1:

Example 2: This rule executes the checkNPIproc, checks the procedure’s InDB output value,

and displays a message if it doesn’t contain 1.

Business Rules Business Rules Reference  91

Connecting to Stored Procedures using DBExecute

Note the following when connecting to stored procedure using DBExecute:

 The first parameter in the stored procedure must be an output parameter and, when

calling the stored procedure from TIBCO Foresight, there must be a value in that

output parameter.

 All input parameters must be VARCHAR.

 Any stored procedure that TIBCO Foresight uses must have the SQL statement SET

NOCOUNT ON at the top of the procedure. If not, an “Invalid cursor state” error is

generated.

 The ODBC DBQuery command is used to call a stored procedure even when there are

no return values.

Business Rules Business Rules Reference  92

DBQuery

Performs a SQL or Oracle query on a specified database.

Format of the Parameters

DBRef ReturnCode “SqlStat ement” {var1=1 {var2=2 …}}

Where:

DBRef Name of a database connection specified in the ISIserver.config’s

[ORACLE] or [SQL] sections.

ReturnCode The name of a variable to contain the success of the database query.

It will contain one of these:

0 = database query failed (check database setup)

1 = database query succeeded

If the query failed, the DTL file will have an EMSG with more

information.

Note: This return code does not indicate success or failure of the

business rule. It indicates success/failure of the database query.

Success or failure of the business rule is indicated in {var1=1

{var2=2 …}}.

“SqlStat ement” SQL command to execute. The SQL command must return a

recordset. The SQL command can contain business rule variables in

the form %var% where var is the name of a business rule variable.

Before the SQL command is processed, variables in the SQL string

will be replaced with the contents of the specified variable.

{var1=1 {var2=2 …}}

Variables to contain the values returned from the query. The

contents of these variables are automatically set to null strings

before the business rule executes the query. The “=1” means it is

the first value returned from the procedure, the “=2” means it is the

second query returned, etc.

{(bus iness ru l e)} Optional business rules to run at the end. See example 3 below.

This is especially useful in end of loop rules, which run in reverse

order.

Business Rules Business Rules Reference  93

Example 1

This rule queries a database to see if the current element is in table NPI in the database with

connection name SQLnpi.

This rule then uses the values in the returned variables NPI and Last:

DTL file results:

EMSG 10The database query for this provider returned 123456789 and

Qian

The Server-Thread log results in ISIserver’s fslog directory show success:

Example 2

This rule captures the value in the NM103 into this variable:

We then use this value in our DBQuery:

Business Rules Business Rules Reference  94

Example 3

This example ends with a rule that checks the return code and displays an error message if the

query failed.

InvokeWebService

HIPAA validation programs

In addition to a business rule developer, this requires:

 A Java or web services developer to create a Java class.

 Someone to install and configure TIBCO Foresight’s ISIserver.

Business Rules Business Rules Reference  95

Please see TIB_instream_<n.n>_isiserver.pdf for instructions on these steps.

For an extended example, see Appendix J: LookAhead and Array Extended Example on page

295.

TIBCO Foresight web services business rules give you a standardized way to send information

out to your own components. Instream acts as the client to your external web service.

You will need to create a Java class to serve as the client to your web service. At runtime, we will

call the class and invoke it according to the contract.

For instance, you might send a subscriber ID and the corresponding service line dates to a web

service. The web service might then execute a database lookup and return information about

whether the subscriber was covered on those dates. Another business rule could then check the

results and display an error message if they were not covered.

InvokeWebService is compliant with WS-I version 1.1 and tested in Java and .NET

environments. It sends an array to your web service and receives an array in return.

Overview

InvokeWebService sends a business rule array to TIBCO Foresight’s ISIserver program, which

passes it on to your own web service. It receives a response array that your guideline can use with

array business rules.

Instream

ISIserver.

config

Invoke-Web

Service

business rule

ISIserver

ISIserver.

config

Web service

client

Array from

business rule

to web service

Array from web

service to

business rule

Business Rules Business Rules Reference  96

During validation

1. Before starting Instream or HIPAA Validator Desktop validation, start ISIserver.exe.

2. Instream or HIPAA Validator Desktop reaches an InvokeWebService business rule during

validation.

3. This creates an instance of the Java class and sends an array of information to it.

4. The class can then perform any operations it requires to work with the data.

5. The web service returns another array to Instream or HIPAA Validator Desktop.

Format of Parameters

WSName inputArrayName outputArrayName (ac t ion)

Where:

WSName Web service reference name; must match the name in

ISIserver.config’s[WEBSERVICES] section:

inputArrayName Name of the array being sent to the web service. This must be a

literal in double quotes. It was defined and populated with Array

business rules (see page 34).

outputArrayName Name of the array being returned from the web service. This must

be a literal in double quotes. It was defined with a CreateArray

business rule (see page 42).

a c t ion Optional. The action to be executed if the call fails.

Business Rules Business Rules Reference  97

Examples

These all invoke a web service called ChkSubSrv. They send an array called ArrayTOsrv and

receive back an array called ArrayFROMsrv. If the web service fails to start, a message displays.

 Example 1. This is the simplest way to invoke a web service.

Example 2. This invokes the same web service only if there is no data on the current element.

Example 3. This invokes the same web service at the end of each instance of the 2000B loop.

Business Rules Business Rules Reference  98

Exit Business Rules

An exit causes a rule to run every time a certain event occurs. Example: whenever a certain

element, composite, or segment is encountered, or whenever a certain loop ends.

If you have multiple Exit rules for a particular item, they run in reverse order. See Appendix I:

Processing Order on page 291.

Recommendation

When using these rules, place them on the ST segment, regardless of where they are to

run:

SetCompositePreExit

SetElementPostExit

SetLoopPostExit

SetLoopPostInstanceExit

SetSegmentPreExit

ClearExits

All validation programs

Clears all currently-set exits.

A typical use is to place this business rule on the ST segment to clear all exits that may be

lingering from previous transactions in the same file.

Business Rules Business Rules Reference  99

KeepOrder

HIPAA Validator Desktop, EDISIM Validator, Instream

Causes element, segment, and group/loop exit rules to process in the same order as specified in

the Standards Editor Business Rules window.

Normally, SetCompositePreExit, SetElementPostExit, SetLoopPostExit,

SetLoopPostInstanceExit, and SetSegmentPreExit rules execute in reverse order.

KeepOrder is mainly needed within business rule loops.

Format of Parameters:

 KeepOrder has no parameters.

Example 1. Normal execution order for exit rules:

List of exit rules at a one location: Execution order

BusinessRules.Exits.SetSegmentPreExit UNT Rule #1

BusinessRules.Exits.SetSegmentPreExit UNT Rule #2

BusinessRules.Exits.SetSegmentPreExit UNT Rule #3

BusinessRules.Exits.SetSegmentPreExit UNT Rule #4

BusinessRules.Exits.SetSegmentPreExit UNT Rule #5

Rule #5

Rule #4

Rule #3

Rule #2

Rule #1

Example 2. Effect of KeepOrder rule on execution order for exit rules:

List of exit rules at a one location: Execution order

BusinessRules.Exits.SetSegmentPreExit UNT Rule #1

BusinessRules.Exits.SetSegmentPreExit UNT Rule #2

BusinessRules.Exits. KeepOrder

BusinessRules.Exits.SetSegmentPreExit UNT Rule #3

BusinessRules.Exits.SetSegmentPreExit UNT Rule #4

BusinessRules.Exits.SetSegmentPreExit UNT Rule #5

Rule #2

Rule #1

Rule #3

Rule #4

Rule #5

Business Rules Business Rules Reference  100

SetCompositePreExit

All validation programs

Calls a function before each occurrence of a specified composite is processed.

Format of Parameters

Compos i t eID ServerName Funct ionName Func t ionParms

Where:

Compos i t eID The 4-character composite ID where the function should run.

ServerName The server that should run whenever Validator encounters a

composite with that ID.

Funct ionName The function within that server, if the function has parameters.

Funct ionParms The parameters for that function, if the function has parameters.

Example. This example displays a message whenever Validator encounters a composite with ID

C024:

Message 32217 is a custom message in file CustomerFSBRERRS.TXT.

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Execution Order of Multiple SetCompositePreExit Rules

When validating a composite, the rules directly on the composite execute first, and then the

pertinent SetCompositePreExit rules execute. Unlike other business rules, these

SetCompositePreExit rules execute in the reverse order from how they are listed. See Appendix

I: Processing Order on page 291.

Business Rules Business Rules Reference  101

SetElementPostExit

All validation programs

Calls a function after each occurrence of a specified element is processed. This rule slows down

validation significantly.

Format of Parameters

ElementID ServerName Funct ionName Func t ionParms

Where:

ElementID The element ID where the function should run.

ServerName The server that should run whenever Validator encounters an

element with that ID.

Funct ionName The function within that server.

Funct ionParms The parameters for that function, if the function has parameters.

Example. This example displays a message 32214 (which might say, for example, "Presence of

SBR02 indicates a subscriber-as-patient scenario") whenever Validator encounters element 1069.

The rule is placed on the element itself so that it executes only when the SBR02 contains data.

Message 32214 is a custom message in file CustomerFSBRERRS.txt.

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Execution order of multiple SetElementPostExitRules

Rules directly on the element execute before the SetElementPostExit rules.

Unlike other business rules, SetElementPostExit executes in reverse order from how they are

listed. See Appendix I: Processing Order on page 291.

Business Rules Business Rules Reference  102

SetLoopPostExit

All validation programs

Calls a function after completion of all repetitions of the specified loop.

Place this business rule on the ST segment.

Format of Parameters

LoopID ServerName Func t ionName Func t ionParms

Where:

LoopID The loop ID where the function should run.

ServerName The server that should run after Validator completes processing all

occurrences of the loop with that ID.

Funct ionName The function within that server.

Funct ionParms The parameters for that function, if the function has parameters.

Example. This example uses AddVar to total the quantities in CAS segments in each 837I claim

loop. The variable used for totaling is SLAdjustTot.

Put this SetLoopPostExit rule on the ST segment.

At the end of ALL repetitions of loop 2430 for this service line, it displays custom message

32215 ("Total adjustment amount for this claim is <va lue o f SLAdjus tTot>"). 2430 is the ID

for the Service Line Loop.

This is the error message in CustomerFSBRERRS.TXT:

32215 Total adjustment amount for the claim above is #SLAdjustTot#

If the rule is to be used with Analyzer, the DisplayErrorByNumber format is slightly different.

Business Rules Business Rules Reference  103

In this example, the rules can be applied in these locations:

You will need to use SetVar to reset the variable SLAdjustTot to 0 at the top of the CLM loop to

zero the calculation for the next repetition of the loop.

Execution order of multiple SetLoopPostExit

After rules execute on all repetitions of a loop, the pertinent SetLoopPostExit rules execute.

Unlike other business rules, SetLoopPostExit rules, by default, execute in the reverse order from

how they are listed. See Appendix I: Processing Order on page 291.

Up to 25 adjudication

loops per claim loop.

Place an AddVar rule on

all quantities in the CAS

segment to accumulate

total in a variable called

SLAdjustTot.

Business Rules Business Rules Reference  104

SetLoopPostInstanceExit

All validation programs

Calls a function after completion of each repetition of the specified loop.

Place this business rule on the ST segment.

This function is exactly like SetLoopPostExit (page 103) except that it executes the function at

the end of EACH REPETITION of the loop.

Format of Parameters

LoopID ServerName Func t ionName Func t ionParms

Where:

LoopID The ID of the loop where the function should run.

ServerName The server that should run after Validator completes processing of

each repetition of the loop with that ID.

Funct ionName The function within that server.

Funct ionParms The parameters for that function, if any.

Example. This example displays a message at the end of each instance of loop 2300 (the claim

loop):

Message 32212 appears in file CustomerFSBRERRS.TXT and might say, for example:

 End of CLM loop #CLMcount#

In Validator, this would display messages like these:

 End of CLM loop 1

 End of CLM loop 2

 End of CLM loop 3

Business Rules Business Rules Reference  105

CLMcount is a variable that counts the number of CLM segments. It was created by placing the

following AddVar rule on the CLM segment:

Create a SetLoopPostExit rule for the CLM loop that resets CLMcount to 0 at the end of all

repetitions of the CLM loop.

Execution Order of Multiple SetLoopPostInstanceExits

After rules execute on a repetition of a loop, all pertinent SetLoopPostInstanceExits rules

execute.

Unlike other business rules, SetLoopPostInstanceExits rules execute in the reverse order from

how they are listed. See Appendix I: Processing Order on page 291.

SetSegmentPreExit

All validation programs

Calls a function before each occurrence of a specified segment is processed.

Format of Parameters

SegmentID ServerName Func t ionName Func t ionParms

Where:

SegmentID The 2 or 3-letter segment ID where the function should run.

ServerName The server that should run whenever Validator encounters a

segment with that ID.

Funct ionName The function within that server.

Funct ionParms The parameters for that function, if the function has parameters.

Business Rules Business Rules Reference  106

Example. This example displays custom message 32213 ("Beginning of claim number nnn")

whenever Validator encounters a CLM segment.

The business rule on the ST segment is:

Message 32213 is a custom message in file CustomerFSBRERRS.txt that includes the variable

assigned to the claim number:

32213 Beginning of claim number #S2300CLM01ClaimNum#

Execution Order of Multiple SetSegmentPreExit

All rules directly on the segment execute first.

Then, all pertinent SetSegmentPreExit rules for that segment execute. Unlike other business

rules, these execute in the reverse order from how they are listed. See Appendix I: Processing

Order on page 291.

Business Rules Business Rules Reference  107

UserExitWithoutWait

Instream and HIPAA Validator Desktop

Starts an external program and immediately continues with validation. The outcome of the

external program’s activities has no effect on validation.

Format of Parameters

Executabl eName Var1 Var2 . . .

Where:

Executabl eName Name of executable to process.

Var Optional. An input parameter to the executable being processed.

This can be a BusinessRules.Variable, a literal in double quotes, or

Current_Element. You can include any number of these, each

separated by a space.

Identifying the location of the program called by a user exit

Set the environment variable FSUSEREXITS.

You can do this system-wide or within the batch file that runs validation. Do not put quotes

around the path for FSUSEREXITS, even if it contains spaces, and don’t add a trailing slash:

SET FSUSEREXITS=C:\Foresight\InStream\DemoData\UserExits

"C:\Foresight\InStream\Bin\HVInStream.exe"

-i"C:\Foresight\InStream\DemoData\Two837i.txt"

-o"C:\Foresight\InStream\Output\Two837iNW_Results.txt" -gREISSUE

HIPAA example

This rule checks the BHT02 to see if it 18. If so, it runs an external program that logs the

submitter’s ID into a file.

A working demo of this example is installed with HIPAA Instream. Please see readme-UserExits.txt in

Instream’s DemoData\UserExits directory.

The rule we are trying to create is:

If the BHT02 = 18 Create a local variable on the BHT02

Then Run Reissue.bat Run a UserExitWithoutWait and pass it the NM109

(submitter ID)

InStream

BusRule

External

program
ProgramName Var1 var2 … Program output

Business Rules Business Rules Reference  108

To do this:

1. Create a local variable on the BHT02 (in this example, we will name it BHT02):

2. On the 1000A Submitter NM109-09, test the variable and create the rule to run the

UserExitWithoutWait. This rule runs Reissue.bat and passes it the contents of the current

element:

Reissue.bat might contain:

set InStreamRoot= C:\Foresight\InStream

echo %1 >> "%InStreamRoot%\Output\ReissueLog.txt"

UserExitWithWait

Instream and HIPAA Validator Desktop

Runs an external program and waits up to a specified number of seconds for a response, which it

puts into a specified list and then continues with validation.

 Business rule runs external program and passes it some values.

 It specifies the name of a list to hold returned values from the external program. It also

specifies the number of seconds to wait before killing the external program.

 The external program runs and produces output that goes back to Instream via standard

output.

InStream

BusRule

External Program

Input

Stdout

%1

outval1

%2

outval2

 .

.

 .

.

 .

.

ReturnList WaitTime

ProgramName Var1 Var2 …

Program

 output
ReturnList

val1
val2

Variables

FS_UserExit_Status

FS_UserExit_RtnCode









Business Rules Business Rules Reference  109

 Instream puts the returning values into the list.

 It also captures the program’s return code and a status into variables FS_UserExit_ RtnCode

and FS_UserExit_Status (see TIBCO Foresight-Defined Variables on page 242).

 Statuses can be:

 200 User Exit business rule has been encountered

201 User Exit business rule has been called

202 The User Exit business rule has completed

203 The User Exit business rule timed out

204 The User Exit business rule failed

 After the exit rule, you can use a CompareString business rule to check the contents of

FS_UserExit_Status and FS_UserExit_RtnCode and display a message, like this:

 … where the error message (32004 in this example) would be something like this:

 32004 UserExit to run Reissue2.bat return code is #FS_UserExit_RtnCode# and

status is #FS_UserExit_Status#

 … and the output might be:

 EMSG 6UserExit to run Reissue2.bat return code is 0 and status is 202

 Validation continues, presumably executing additional rules that make use of the list and two

variables.

Format of Parameters

Resul tLis t Wai tTimeInSeconds Executabl eName Var1 Var2 . . .

Where:

Resul tLis t BusinessRules.List containing values returned by the UserExit. This

list can contain duplicate values.

 If the list exists, it is cleared before returned values are added.

 If the list does not exit, it is created.

“WaitTimeInSeconds” Number of seconds before Instream should continue. This is an

integer in double quotes or a variable containing an integer.

 If the external program does not send a return code to Instream

within the allotted seconds, it is killed and validation continues.

 Examples:

 “5”

 WaitSeconds

Executabl eName Name of executable to process.

Business Rules Business Rules Reference  110

Var Optional. An input parameter to the external program, which can

be a BusinessRule.Variable, a literal in double quotes, or

Current_Element. Use any number of these, each separated by a

space.

Please see Identifying the location of the program called by a user exit on page 107 for details

about how to set an environment variable that is necessary when using a User Exit.

Example

This example runs an external file called Reissue1.bat and passes it the contents of the current

element. Any value returned from Reissue1.bat goes in list Reissue1. If there is no response from

Reissue1.bat within 10 seconds, Reissue1.bat is killed and validation continues.

A working demo of this example is installed with Instream. Please see readme-UserExits.txt

in Instream’s DemoData\UserExits directory.

This rule is on the 837I 1000A NM1-09:

Each time the rule executes, it checks local variable BHT02 to see if it contains 18. If so, this rule

runs batch file Reissue1, which might contain, for example:

@if "%1%"=="123456789" @echo valid submitter

@if not "%1%"=="123456789" @echo invalid submitter

This example checks to see if the current element contains 123456789, the only provider who

can submit claims over 10000. It sends “valid submitter” or “invalid submitter” to list Reissue1.

In a subsequent rule, you might run a ListCheck on the list Reissue1 and display an error

message if it contains “invalid submitter.”

Business Rules Business Rules Reference  111

ICD Business Rules

Using Instream validation and Dataswapper, you can convert and replace ICD-9 with ICD-10

codes and vice versa. You will need the TIBCO Foresight® ICD-10 Conversion Adapter, which

is a separate product.

Business rules for ICD conversion include:

 ICDConvertOne

 ICDConvert

 ICDInsertToArrayWith Type

These are described in ICD_at_Foresight.pdf.

List Business Rules

This section describes how to accumulate lists of values from an EDI file and then act on them

in various ways.

ClearList

All validation programs

Removes one or all lists from the repository. You should clear a list specifically whenever you

want it cleared. Do not count on it being automatically cleared at the end of a transaction set,

group, or interchange.

The location of the ClearList is important. A typical place is on the first segment in a repeating

loop or on the first required element of a repeating segment.

Caution It is hazardous to use ClearList without specifying which list is

being cleared. A ClearList without a list name results in clearing all

lists, including those in the HIPAA guideline with which you will

eventually merge your rules.

Format of Parameters

ListName

Where:

ListName Optional but recommended. Name of the list to be removed. If

<ListName> is omitted, all lists are removed. See caution above.

Business Rules Business Rules Reference  112

Example. This example removes list 2300CRCconditionInd.

InList

All validation programs

Adds a value to a list. Takes an action if the value is already in the list.

Format of Parameters

ListName Lis tValue i fAlreadyInLis tAct ion

Where:

ListName Name of the list. If the list does not exist, it is created.

Lis tValue Optional. Value to be added to the list. This can be a variable, a

literal in double quotes, or Current_Element. If omitted,

Current_Element is assumed.

(i fAlreadyInLis tAct i on)

Optional. Action to be taken if ListValue is already in ListName .

If omitted, a default message displays if the value is already in the

list.

Example. This example checks Condition Indicator values to be sure that they are not

duplicated within the segment. As each Condition Indicator value is encountered in the EDI file,

a rule checks to see if it is in a list called 2300CRCconditionInd. If so, a custom error message is

issued. If not, it is added to the list.

Message 32216 is a custom message in file CustomerFSBRERRS.txt. The format of

DisplayErrorByNumber is different for rules used by Analyzer.

Business Rules Business Rules Reference  113

ListCheck

All validation programs

Checks for the presence of a certain value in a list and takes action based in whether it is found

in the list.

Format of Parameters

ListName Lis tValue Operand (I fTrueAct ion)

Where:

ListName Name of the list to be checked.

Lis tValue The value that may or may not be in the list. This can be a variable,

literal value in double quotes, or Current_Element.

Operand Either InList (indicating the value is in the list) or OutList

(indicating the value is not in the list). These are case-sensitive.

(I fTrueAct ion) Optional. Action to be taken if the test is true: If the operand is

InList, this action will be taken only if the value is in the list. If the

operand is OutList, this action will be taken only if the value is not

in the list. If omitted, a general message is displayed.

Example

ListName: 2010AAPERQual

ListValue : TE

Operand OutList

(I fTrueAct ion) (BusinessRules.Utilities DisplayErrorByNumber 32217)

This example issues a message if the data in the PER segment does not include a telephone

number. We used ListInsert to create a list containing the values in each Communication

Number Qualifier in the segment, and then use ListCheck to issue an error message if the list

does not contain the list value "TE".

Message 32217 is a custom message in file CustomerFSBRERRS.txt.

Business Rules Business Rules Reference  114

The format of DisplayErrorByNumber is different for rules used by Analyzer.

Use ListInsert to record values

of each Communication Number

Qualifier in 2010AAPERQual

list.

ClearList of the 2010AAPERQual

list.

Use ListCheck to see if

2010AAPERQual contains "TE".

Business Rules Business Rules Reference  115

ListContig

All validation programs except Analyzer

Check whether a list contains a contiguous block of dates or integers. Before using ListContig,

the list already has to be defined.

They do not have to be in any order, and representations of the same number are acceptable

unless you use both the D and U parameters. Here are some examples:

Contents of list Contiguous? Reason

1, 2, 3, 4, 5, 6, 7, 8 Yes

 No Empty lists are not considered contiguous

1, 2, 4, 5, 7, 8, 10, 55 No

2, 4, 6, 5, 3, 8, 7, 1 Yes Order does not matter

1, 01, 2, 3, 4, 5, 6, 06, 7, 8 Yes Representation of the same number are allowed in

non-date lists

20071231, 20080101 Yes, with “D”

option

No without “D”

option

See below for additional information on the D

parameter

20071230, 20080101 No Missing 20071231

20071201-20071231,

20080101-20080131

Yes with “D”

option

01/01/2008-03/31/2008,

02/01/2008-04/15/2008,

04/15/2008, 04/16/2008-

04/30/2008

Yes, with D

option but not

U option

The dates cover the contiguous period 01/01/2008

through 04/30/2008 and overlapping is OK

01/01/2008-03/31/2008,

02/01/2008-04/15/2008,

04/15/2008, 04/16/2008-

04/30/2008

No, with D and

U option

The dates/ranges overlap:

01/01/2008-03/31/2008 overlaps 02/01/2008-

04/15/2008

04/15/2008 is in the first two ranges

Format of Parameters

ListName Resu l tVar (D) (U)

Where:

ListName Name of the list to be checked.

ResultVar Name of the variable where the result is to be stored. It will be 1 if

the list is contiguous, or 0 if not.

Business Rules Business Rules Reference  116

D Optional. D causes ListContig to consider the values in the list as

dates, and also enables ListContig to recognize date ranges. Any

hours, minutes, or seconds, in the dates are ignored. Without the D

option, ListContig treats the values as integers. This parameter must

be a constant within double-quotes.

U Optional. It requires the D option and must immediately follow the

D with no space, like this:

 Mydatelist DateResults DU

 U (which stands for Unique) checks to see if the dates and date

ranges are unique. Dates must be unique and contiguous to get a 1

in ResultVar.

 This parameter must be a constant within double-quotes.

 For example, if the list contains the following dates (in human

readable form, for easy consumption):

 01/01/2008-03/31/2008

 02/01/2008-04/15/2008

 04/15/2008

 04/16/2008-04/30/2008

 ListContig without the U would pass, because the dates cover the

contiguous period 01/01/2008 through 04/30/2008.

 ListContig with the U would fail because the list contains

overlapping dates/ranges: 01/01/2008-03/31/2008 overlaps

02/01/2008-04/15/2008 and 04/15/2008 is in the first two ranges.

Example. We have a list of Invoice Numbers called InvcList. We check to make sure that there

are no gaps in the invoices received:

Server Function Parameter

BusinessRules.Lists ListContig InvcList InvcContig

BusinessRules.Utilities CompareNumeric InvcContig EQ 0

(BusinessRules.Utilities.DisplayError ByNumber 0 0

“Missing at least one Invoice Number”)

We first check list InvcList with the ListContig function to determine whether it contains a

contiguous list of numbers. The result goes into variable InvcContig, which will be either a 1 if

InvcList is contiguous, or 0 if it is not contiguous. We then check InvcContig for 0 and display

an error message if true.

Business Rules Business Rules Reference  117

ListCount

All validation programs

Reports the number of entries in a list. Before using ListCount, the list already has to be defined

and in use.

Format of Parameters

ListName Resu l tVar

Where:

ListName Name of the list, which already exists.

Resul tVar Name of the variable that is to contain the count. If the variable

does not exist, it is created.

Example. This example is from loop 2010AA REF01 in a HIPAA 837I. The REF01 can occur

up to 8 times. We want to know how many were used, because we only allow 5 and we want to

make sure that the Qualifier 1B was the first occurrence.

Rule 1 on REF01: Add the contents of the REF01 to the list.

Rule 2 on REF01: Count the number of list entries and put them in variable ProvQualifier.

Rule 3 on REF01: Display an error message if the count exceeds 5.

Business Rules Business Rules Reference  118

Rules 4 and 5 on REF01: Check the first entry in the list.

Put the first entry from the list into a variable.

Check the variable and issue a message if it is not 1B:

ListGetVar

All validation programs

Places entry n from a list into a variable.

Format of Parameters

ListName Lis tEntry Resu l tVar

Where:

ListName Name of the list.

ListEntry Position of the entry in the list – an integer in double quotes or a

variable that contains an integer.

Resul tVar A variable that is to contain the value from the list. If the variable

does not exist, it is created.

Example. This example takes the first value in the list Reissue1 and places it in a variable called

ReissueAnswer.

Business Rules Business Rules Reference  119

ListInsert

All validation programs

Adds one or more values to a list. If the values are already in the list, they are not added again.

Format of Parameters

ListName Lis tValue <Lis tValue …>

Where:

ListName Name of the list. If the list does not exist, it is created.

Lis tValue Optional. Value to be added to the list. Variable, literal in double

quotes, or Current_Element. If omitted, Current_Element is

used.

 To add multiple values, separate each with a space.

 Important: The maximum total length of all values is 4000

characters. If you have more than that, do another ListInsert to the

same list.

Examples

This example inserts the value of the current element into list 2010BAN403Zip. Subsequent

repetitions of the loop would add more zip codes to the list.

This example inserts the value of the variable Subscr_ID, the value of the current element, and

the literal value 00000 into a list called Subscribers.

ListMinMax

All validation products except Analyzer

Acquires this information about a list, which has been set up with other List rules:

 Minimum and maximum values in the list.

Business Rules Business Rules Reference  120

 Positions in the list of the minimum and maximum values.

 Count of the number of objects in the list, or number of days spanned by the lists members.

Format of Parameters

ListName MinResul tVar MaxResul tVar <CountResu l tVar MinPosResu l tVar

MaxPosResul tVar <Opt ions>>

Where:

ListName Name of the list, which already exists.

MinResu l tVar Variable where the list’s minimum value is to be stored.

MaxResul tVar Variable where the list’s maximum value is to be stored.

CountResu l tVar Optional. Variable where the list’s object count is to be stored.

 For date lists (see Options below), this is the number of days

spanned by the lists members.

 For other lists, this is the number of members in the list.

MinPosResu l tVar Optional. Variable that contains the name of the variable where the

position of the list’s minimum value is to be stored. Requires use of

CountResu l tVar .

MaxPosResul tVar Optional. Variable that contains the name of the variable where the

position of the list’s maximum value is to be stored. Requires use

of CountResu l tVar and MinPosResu l tVar .

Options Optional. One of these:

 “D” causes ListMinMax to consider the values in the list as dates,

and lets ListMinMax recognize date ranges. Any hours, minutes, or

seconds, in the dates are ignored. It will also change the way the

object count is determines (see CountResu l tVar above). Include

quotes around “D”.

 “S” causes ListMinMax to treat ListName as a list of strings.

 Without any option, the values are considered integers. Include

quotes around “S”.

 If you use options, include CountResu l tVar , MinPosResu l tVar ,

and MaxPosResu l tVar to maintain positions.

Example 1. List of integers.

With no Options (defaults to Integer):

Business Rules Business Rules Reference  121

Results: VMin = 1

 VMax = 10

 VCount = 6 (members)

 VMinPos = 1 (first item in list)

 VMaxPos = 4 (fourth item in list)

With Options equal to S:

Results: VMin = 1

 VMax = 9 (with strings, 9 comes after 10)

 VCount = 6 (members)

 VMinPos = 1 (first item in list)

 VMaxPos = 5 (fifth item in list)

Example 2. List of strings.

Assume that NameList = Greig, Beth, Cindy, Dorrie, Woody, Norman

ListMinMax NList VMin VMax VCount VMinPos VMaxPos

Business Rules Business Rules Reference  122

Results: VMin = Beth

 VMax = Woody

 VCount = 6 (members)

 VMinPos = 2 (second item in list)

 VMaxPos = 5 (fifth item in list)

 PeriodList = 20071201, 20080101, 2007010120070331

Example 3. List of dates, including ranges with and without hyphens.

Assume that PeriodList = 20071201-20071208, 20080101, 2007010120070331

ListMinMax PeriodList VMin VMax VCount VMinPos VMaxPos “D”

Results: VMin = 20070101

 VMax = 20080101

 VCount = 99 (Days)

 VMinPos = 3 (third item in list)

 VMaxPos = 2 (second item in list)

ListMinMax PeriodList VMin VMax VCount VMinPos VMaxPos “S”

Results: VMin = 2007010120070331

 VMax = 20080101

 VCount = 3 (members)

 VMinPos = 3 (third item in list)

 VMaxPos = 2 (second item in list)

ListMinMax PeriodList Placeholder1 Placeholder2 Placeholder3 VMinPos “S”

We don’t care about the min, max, and count but we need them in the parameters as

placeholders. We actually name them Placeholder1, etc., to clarify that we aren’t using them. We

omit the last parameter (the maximum value) since it is at the end and isn’t needed as a

placeholder.

Results: Placeholder1 = 2007010120070331

 Placeholder2 = 20080101

 Placeholder3 = 3 (Members)

 VMinPos = 3 (Third item in list)

Business Rules Business Rules Reference  123

Lookahead Business Rules

All validation programs except Analyzer

Lookahead is a way to pre-scan a defined section of the data, execute only Lookahead business

rules, and then return to the beginning of the range to start validation. The purpose is usually to

grab information that is farther down in the transaction.

The main steps for Lookahead are:

1. Mark the Lookahead range(s)

2. Create Lookahead business rules

3. Create one or more regular business rules to use the Lookahead information

Rules will execute in this order

1. Rules before the Lookahead range will execute as usual.

2. When the Lookahead range is reached, the lookahead rules will execute until the end of the

range.

3. Regular business rules will execute, starting at the top of the range and continuing as usual.

4. If a second Lookahead range is encountered, its lookahead rules will execute until the end of

that range.

5. Regular business rules will execute, starting at the top of the second range.

Example 1. Simple Lookahead scenario (range is enclosed in brackets)

ST Rule A

Seg1 Rule B

Seg2

Seg3

LoopA – max repeat is 1

 Seg4 Rule C – lookahead
Rule D

 Seg5 Rule E – lookahead
Rule F

End LoopA

LoopB – max repeat is 1

 Seg6 Rule G

 Seg7

End LoopB

Seg 8 Rule H

Rules will execute in this order: A,B,C,E,D,F,G,H

Lookahead

range

Business Rules Business Rules Reference  124

Example 2. Lookahead range is a repeating loop

ST Rule A

Seg1 Rule B

Seg2

Seg3

LoopA – max repeat is 2

 Seg4 Rule C – lookahead
Rule D

 Seg5 Rule E – lookahead
Rule F

End LoopA

LoopB – max repeat is 1

 Seg6 Rule G

 Seg7

End LoopB

Seg 8 Rule H

Rules will execute in this order: A,B,C,E,C,E,D,F,D,F,G,H

Example 3. Nested loops in Lookahead range

ST Rule A

Seg1 Rule B

Seg2

Seg3

LoopA – max repeat is 2

 Seg4 Rule C – lookahead
Rule D

 Seg5 Rule E – lookahead
Rule F

 LoopB - max repeat is 2

 Seg 6 Rule G – lookahead

 Seg 7 Rule H

 End LoopB

 Seg 9 Rule I - lookahead

 Seg 10 Rule J

End LoopA

Seg 11 Rule K

Rules will execute in this order:

A,B,C,E,G,G,I,C,E,G,G,I,D,F,H,H,J,D,F,H,H,J,K

Lookahead

range

Lookahead

range

Business Rules Business Rules Reference  125

Example 4. Two Lookahead ranges

ST Rule A

Seg1 Rule B

Seg2

Seg3

LoopA – max repeat is 2

 Seg4 Rule C – lookahead
Rule D

 Seg5 Rule E – lookahead
Rule F

End LoopA

LoopB – max repeat is 2

 Seg6 Rule G – lookahead

 Seg7 Rule H

End LoopB

Seg 8 Rule I

Rules will execute in this order:

A,B,C,E,C,E,D,F,D,F,G,G,H,H,I

Example 5. End of loop rules

ST Rule A – SetLoopPostInstanceExit lookahead rule

Rule B – SetLoopPostExit rule

Seg1 Rule C

Seg2

Seg3

LoopA – max repeat is 2

 Seg4 Rule D – lookahead
Rule E

 Seg5 Rule F – lookahead
Rule G

End loop

Seg 6 Rule H

Rules will execute in this order:

C,D,F,A,D,F,A,E,G,E,G,B,H

Lookahead

ranges

Lookahead

range

Business Rules Business Rules Reference  126

Example 6. End of loop rules with nested loops and two Lookahead ranges

ST Rule A – SetLoopPostInstanceExit lookahead rule
 on Loop A (Ignored – outside of range)

Rule B – SetLoopPostInstanceExit lookahead rule
 on Loop B

Seg1 Rule C

Seg2

Seg3

LoopA – max repeat is 2

 Seg4 Rule D – lookahead
Rule E

 Seg5 Rule F – lookahead
Rule G

 LoopB - max repeat is 2

 Seg 6 Rule H – lookahead

 Seg 7 Rule I

 End loop B

 Seg 9 Rule J – lookahead (ignored – outside of range)

 Seg 10 Rule K

End loopA

Seg 11 Rule L

Rules will execute in this order:

C,D,F,E,G,H,B,I,H,B,I,K, D,F,E,G,H,B,I,H,B,I,K,L

Typical example

See if a subscriber was covered on the claim service dates. If not, display an error message at the

subscriber ID location (which is earlier in the transaction than the dates).

The pertinent parts of validation:

1. After reaching the Lookahead start range on the 2000B, Instream scans through the range and

executes two Lookahead business rules on the service date. These capture the oldest and

newest service dates.

2. Instream then resumes normal validation at the 2000B. A rule captures the subscriber ID in

the NM109.

3. Also on the NM109, an InvokeWebService business rule checks the subscriber ID, oldest

service date, and newest service date against a database that records when this subscriber was

covered. It sends back a Y if they were covered and an N if not.

4. A rule then displays an error message on the NM109 if the returned value was N.

Demo

Please see Appendix J: LookAhead and Array Extended Example on page 295 for a complete

example.

LoopB is nested

within LoopA, but

new Lookahead

range starts here,

ending the one on

LoopA

Business Rules Business Rules Reference  127

Marking a Lookahead Range

Things to know:

 There can be more than one Lookahead ranges in a guideline.

 When Instream detects the start of the Lookahead range, it goes into a mode where it scans

through the range and executes only the Lookahead rules. When the range ends, it then

returns to the start of the range and continues normal execution.

 For speediest validation, make the range only as large as necessary.

 To monitor Lookahead ranges by seeing where they stop and start, edit your .apf file (default

file /bin/$fsdeflt.apf). Turn on messages 17037 and 17038 (i.e., set them to a number

greater than 0). Message 17037 indicates where the Lookahead range begins and 17038

indicates where it ends.

Setting a Starting Point

1. Open the guideline in the EDISIM Standards Editor.

2. Decide where the Lookahead range starts.

 The lookahead range starts on a loop header, or on the transaction line at the top of the

guideline. This must be on the parent loop of everything that is involved, including the

location of the Lookahead rule and the location where the data is found.

Business Rules Business Rules Reference  128

 Example

 If they were not a subscriber on the Statement Dates, you want to display a message (earlier)

on the Subscriber Name NM1.

 The starting point will be the 2000B loop, which is the parent loop of both the Subscriber

Name NM1 and the Statement Dates DPT.

 (The starting point cannot be the 2010BA loop since it is not the parent to the 2300 loop –

even though it appears ahead of it in the guideline.)

3. Put a DSR mark at the top of the range.

 Right click on the loop and select DSR/Unmark.

 A red check now marks the range’s start:

Ending a Lookahead Range

Lookahead ranges end in these ways:

 The range started on a loop, and the loop ends.

 Another Lookahead range starts. This automatically ends any previous range.

 An ExitLookahead business rule is encountered.

Business Rules Business Rules Reference  129

Example

To stop Lookahead after it gets the value from the Statement Date DTP in the 2300 loop, add

this to the DTP03:

If the ending item might not be in the data, use one of these methods:

or

Business Rules Business Rules Reference  130

Creating Lookahead Business Rules

Lookahead business rules are different than all other business rules in that they can actually

execute any other rule’s functions.

This example shows the Array server updating an array from the current location:

By simply checking the Look-Ahead Rule box, this same rule now executes when the Lookahead

range is first encountered.

This should be attached to an item in the Lookahead range (see page 127). You can type the

desired function into the Function field if it does not appear in the drop-down list.

The difference between these two rules is when they execute:

 The first example executes when it is encountered during normal validation.

 The Lookahead rule executes earlier. When validation encounters a Lookahead starting

point, it scans through the whole range to find and execute any Lookahead business rules. It

then returns to the range start and validates normally.

Business Rules Business Rules Reference  131

Lookahead in Exit rules

Check the Lookahead box in the parameters area.

Correct:

Incorrect:

Lookahead example

Put the Lookahead start point on an 837I 2000B loop.

On the ST, create an array called Array1.

On the Subscriber NM109, add the subscriber identification code to the first cell in Array1.

Business Rules Business Rules Reference  132

On the date element (2400 DTP03 Service Line Date), add the service line date to Array1 with a

Lookahead rule. If there are multiple service lines, this will store only the oldest date in cell 0,1. If

cell 0,1 is empty, the rule simply inserts the element’s date into it.

Likewise, put the most recent service line date into cell 0,2.

Now, back at the Subscriber NM109, use InvokeWebService to check the ID and dates against a

database. Assume that the web service has been preconfigured to send back a Y or N in cell 0,4

in an array called Array1BACK:.

Business Rules Business Rules Reference  133

The final task is to display an error message if cell 0,4 does not contain Y:

Business rules for the NM109 must be in this order:

Business Rules Business Rules Reference  134

Looping Business Rules

All validation programs except Analyzer

The Looping rules let you repeatedly execute a group of rules:

 The ForEach function indicates the start of a loop.

 The Next function identifies the end of a loop, with the rules between ForEach and Next

repeatedly executing. When all members of the list are processed, execution continues with

the function following the Next function.

 ExitLoop causes the ForEach loop to immediately exit, with execution resuming with the

rule after the Next function.

Loops can be nested, but cannot span objects. For example, you can’t start a loop on one

element and end it on another.

If the list is empty, none of the looping rules execute.

Business Rules Business Rules Reference  135

ForEach

All validation programs except Analyzer

Marks the top of a set of rules that execute once for each member of a list.

Format of Parameters

MemberVar IN ListName

Where:

MemberVar Name of the variable to contain each member of the list.

IN Literal text.

ListName Name of the list to be processed.

Example

Let’s say we have a list of Supplier IDs called SuppList. These rules will display each of them:

Server Function Parameter

BusinessRules.Looping ForEach SID IN SuppList

BusinessRules.Utilities DisplayErrorByNumber 0 0 “Supplier ID: %SID%”

BusinessRules.Looping Next

One at a time, ForEach puts each member of SuppList into the SID variable, and then begin

executing rules until it hits the Next function. Note that we are using %SID% in the error

message to include the current contents of the SID variable (i.e., the current SuppList member)

into the error message. (See Preprocessor Variables on page 245).

The Next function causes ForEach to load the next SuppList member into SID and repeat

execution of the loop.

Once the last member of SuppList is processed, execution will continue with the function

following the Next function. If SuppList contains these members: A1001, B2002, Z99, then the

output would be:

Supplier ID: A1001

Supplier ID: B2002

Supplier ID: Z99

Business Rules Business Rules Reference  136

Next

All validation programs except Analyzer

Marks the end of a ForEach loop. See ForEach on page 135 for further explanation.

Format of Parameters

 Next has no parameters.

ExitLoop

All validation programs except Analyzer

Causes the ForEach loop to immediately exit, with execution resuming with the rule after the

Next function. See ForEach on page 135 for further explanation of the looping concept.

Format of Parameters

 ExitLoop has no parameters.

Example

See Extended Looping Example on page 137.

Business Rules Business Rules Reference  137

Extended Looping Example

We have a list of Supplier IDs called SuppList.

We have accumulated the total amount invoiced by Supplier ID into a variable array called

InvcTotals.

We want to make sure that each Supplier invoiced something greater than zero. If this is not the

case, we want to display an error message, just once (not one per supplier), saying that at least

one supplier didn’t have invoices.

Server Function Parameter

BusinessRules. Variable SetVar VLCount “0”

(Set up variable VLCount to contain a count of the

suppliers that do have an invoice total greater

than zero.)

BusinessRules. Looping ForEach SID IN SuppList

(Go through each entry in SuppList.)

BusinessRules. Variable CompareNumeric InvcTotals(SID) LE “0” (BusinessRules.Looping.

ExitLoop)

(If the InvcTotal entry is less than or equal to zero,

exit the loop with the ExitLoop command.

Execution continues with the ListCount rule after

the Next rule.)

BusinessRules. Variable AddVar VLCount “1”

(If the InvcTotal entry is greater than zero, we

increment the VLCount counter.)

BusinessRules. Looping Next (Repeat the loop for the next SuppList member.)

BusinessRules.

Lists

ListCount SuppList VSuppListCount

(After the looping completes, we put the number

of members in SuppList into a variable called

VSuppListCount.)

BusinessRules. Variable CompareNumeric VLCount NE VSuppListCount

(BusinessRules.Utilities. DisplayErrorByNumber 0

0 “At least one Supplier had no Invoice Total”

(We then compare VSuppListCount against

VLCount; if all suppliers had invoice totals greater

than zero, they should match. If not, then we

display an error message.)

Business Rules Business Rules Reference  138

ODBC Business Rules

Windows Instream and HIPAA Validator Desktop

You can validate data against your own databases using ODBC. The capabilities include:

 Testing for the existence of a particular record in a database table.

 Retrieval of one or more fields from a record in a database table.

 Execution of a stored procedure in the database.

ODBC lookup or Customer Code Tables?

Use ODBC to access existing databases. If you are creating a new table just for Instream, then

set up a code table (see page 261) – which will give you faster lookup.

For example, if you already have a SQL ODBC-accessible database containing information about

500,000 health care policies that you wish to validate against, then an ODBC query makes sense.

The alternative would be to export data from this database into a text table and distribute that on

some schedule, a process that comes with its own coordination and distribution pitfalls.

ODBC rules are handled by the BusinessRules.ODBC server, and include:

This command … Does this … See page …

DBOpen Opens a database. 140

DBClose Closes one or more databases. 142

DBQuery Executes an SQL query against an open database,

returning the number of records selected and, optionally,

values of fields from the first selected record.

143

DBExecute Executes a database command. 145

See Appendix E on page 271 for two extended ODBC examples.

Setting up your ODBC Connection String

If you use ODBC business rules, you need to supply your database connection string in the

DBOpen rule. You can put it in either or both of these places:

 Within each DBOpen business rule

This method lets you globally change the connection string without having to edit a guideline

and change business rules. This can save you significant effort when changing databases

from test to production, for example.

Business Rules Business Rules Reference  139

 Example business rule with connection string (detailed in the next sections):

 In the $Dir.ini file for Instream and HIPAA Validator Desktop

 Example business rule without connection string:

During validation, if Instream or HIPAA Validator HIPAA Validator Desktop find a connection

string within a DBOpen business rule, they will use it. If not, they look in $Dir.ini in their Bin

directory for a connection string.

Putting connection strings in $Dir.ini

Use a text editor to edit $Dir.ini in the Bin directory of Instream or HIPAA Validator Desktop.

Add a Database section at end of the file, like this:

 [Database]

DBRef="DRIVER={SQL Server};SERVER=(local);DATABASE=TI300;UID=sa;PWD=sa;"

DBRef1="DRIVER={SQL Server};SERVER=FCSUPP10;DATABASE=TI301;UID=sa;PWD=sa;"

You can have as many lines in this section as you need.

DBRef and DBRef1 are logical names of your choice and are used as the first parameter in the

DBOpen business rule. Notice that the example rules above use DBRef. According to the first $Dir.ini

database entry, this is the TI300 database.

Business Rules Business Rules Reference  140

DBOpen

Windows Instream and HIPAA Validator Desktop

Opens an ODBC connection to a particular database.

Format of Parameters

DBRef Resu l tVar Connec t ion

Where:

DBRef Identifier you are giving to this ODBC connection. It is used in

subsequent ODBC business rules to tell Validator which database

to use. DBRef must be alphanumeric with no spaces.

Resul tVar Variable that is to be used to contain the results of the DBOpen

command. Result will be:

 0 = Database opened successfully

-1 = Bad parameter or argument

-2 = Could not allocate ODBC environment handle

-3 = Could not allocate ODBC connection handle

-4 = Could not connect to database

-5 = Could not allocate ODBC statement handle

Connec t i on The connection string used to establish the connection to the

database. The connection string can be supplied in the $Dir.ini file

(see page 138) rather than here. If you use local in the connection

string, be sure that it will be correct on all machines where this

guideline will be used.

Example 1: SQL database.

Example 2: Access database.

Business Rules Business Rules Reference  141

Example 3: Named Data Source (via Control Panel>Administrative Tools>Data Sources

(ODBC)).

or

Business Rules Business Rules Reference  142

DBClose

Windows Instream and HIPAA Validator Desktop

Closes one or more ODBC connections.

Format of Parameters

DBRef {DBRef …}

or:

DBRef ALL

Where:

DBRef The name of an ODBC connection to close. This name is the same

one that was specified with DBOpen. Specifying ALL will cause all

open ODBC connections to close.

Example

Business Rules Business Rules Reference  143

DBQuery

Windows Instream and HIPAA Validator Desktop

Performs an SQL query on a specified database.

Format of the Parameters

DBRef Resu l tVar SQL {Var1=n1 {Var2=n2 …}}

Where:

DBRef Name of an ODBC connection specified in the DBOpen

command.

Resul tVar Name of a variable that contains the results of the DBQuery

command. If a result is less than zero, it is an error code; otherwise,

the result is the number of records returned.

-1 = Bad Parameter or Argument

-2 = Database DBRef not opened, or had problem with open

-3 = Invalid Variable Assignment parameter

SQL SQL command to execute. The SQL command must return a

recordset. The SQL command can contain business rule variables in

the form %var% where var is the name of a business rule variable.

Before the SQL command is processed, any variables in the SQL

string will be replaced with the contents of the specified variable.

Var=n A variable and the column number from the returned record where

it is to get a value. The variable can then be used in other business

rules. If zero records are selected, Var is cleared. If the DBQuery

command returns an error, then Var remains unchanged.

Example 1

This example selects all records from the PatTable table in the PatientDB database whose SSN

field matches the contents of the variable 2000AN102.

It returns a recordset containing the following:

 ID (Field #1)

 Name (Field #2)

 SSN (Field #3)

Variables returned include:

 ResVar - The number of records found

 SSNVar - The first record’s SSN (Field #3)

 NameVar – The first record’s Name (Field #2)

Business Rules Business Rules Reference  144

Example 2

This uses a stored procedure.

Business Rules Business Rules Reference  145

DBExecute

Windows Instream and HIPAA Validator Desktop

Executes an SQL command against an open ODBC database connection.

Format of Parameters

DBRef Resu l tVar Command

Where:

DBRef Name of an ODBC connection to use. This name was specified

with DBOpen.

Resul tVar The name of a variable to contain the results of the query. If the

result is less than zero, it is an error code; otherwise, it is the

number of records returned:

-1 = Bad parameter or Argument

-2 = Database DBRef not opened, or had problem with open

These return codes show up in an EMSG in the DTL file.

 ODBC error numbers (see APF.pdf):

31029 31023 31024

31025 31026 31027

31028

Command The database command to execute. It can contain business rule

variables in the form %var% where var is the name of a business

rule variable. Before the command is processed, var will be replaced

with the contents of the specified variable.

Example

Business Rules Business Rules Reference  146

Run Business Rules

RunAlways

Specifies that a business rule is to be run on an optional segment, regardless of whether the

segment is actually present in the data.

This only works on a segment, not an element.

Format of Parameters

BusinessRule

Where:

BusinessRule Business rule to run, whether data is present or not.

Example

We want to see if the Principal Procedure Information segment is present. The HI segments can

come in any order and most are optional.

1. Set a variable on an element within the segment:

Business Rules Business Rules Reference  147

2. Check the variable on an optional segment below the last HI:

 The rule parameter is:

 (BusinessRules.String CompareString PrinProcedurePresentVar EQ "NO"

(BusinessRules.Utilities DisplayErrorByNumber 0 0 "The data must contain a

Principal Procedure Information HI segment"))

3. Initialize the variable on the mandatory CLM segment, above the HI segments:

When the Principal Diagnosis Information HI segment is missing, the message appears:

Business Rules Business Rules Reference  148

RunNoData

Instream and HIPAA Validator Desktop

Specifies a business rule to be run on this segment if and only if the segment is not present in the

EDI. This only works on a segment, not an element, and the segment cannot be within an

unused loop.

Warning. This business rule significantly slows down validation.

Format of Parameters

BusinessRule

Where:

BusinessRule Business rule to run if no data is present.

Example. This example attached to the CUR segment displays a message if the segment is not

present.

HIPAA Validator Desktop Demo. The demo guideline NO_DATA has this rule on the CUR

segment. Use it to validate 837Idate.txt or 837I_4010_H_FutureDateBHT.txt in HIPAA

Validator Desktop’s DemoData directory. Since there is no CUR segment in the data, you will

see the message “Currency is assumed to be in US dollars.”

Instream Demo. Execute V_837I_4010_noData in Instream’s Scripts directory to see this rule

in action. Since there is no CUR segment in the data, the detail results file will see the message

“Currency is assumed to be in US dollars.”

Business Rules Business Rules Reference  149

Substitute Business Rules

Instream

The Substitute, SubstituteFind, SubstituteReplace and MakeKey business rules let Instream users

replaces the value in the current element or sub-element with a new value.

They are used with the Instream’s Dataswapper program.

DeleteSegment

Instream

Details and examples are in the Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

Deletes the current segment from the EDI.

Format of Parameters

MetaData

Where:

MetaData Optional. “Literal” or variable containing text for your own use. It

appears in the SBSTA record in the Dataswapper audit file.

Business Rules Business Rules Reference  150

InsertSegment

Instream

Details and examples are in Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

Inserts a segment into the EDI above or below the current location.

Format of Parameters

SegmentID (Elements) MetaData

Where:

SegmentID A “Literal” or variable containing the segment ID.

(Elements) A series of FindKeys holding the values to replace. The series is

surrounded by parentheses. To include sub-elements, surround

them in a separate set of parentheses. See Example 2 below. The

FindKeys are set with SubstituteReplace rules, which can come

before or after the InsertSegment.

MetaData Optional. “Literal” or variable containing text for your own use. It

appears in the SBSTA record in the Dataswapper audit file.

MakeKey

Instream

Details and examples are in Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

Creates unique key for SubstituteFind/SubstituteReplace pairs by incrementing a counter at the

end of a string of characters.

Format of Parameters

Pre f ix KeyVar

Where:

Pre f ix “Literal” or variable holding the base part of the key. MakeKey will

automatically add an incrementing counter to this base.

KeyVar Variable containing the key.

Business Rules Business Rules Reference  151

Substitute

Instream

Details and examples are in Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

Replaces the value in the current element or sub-element with a new value.

Format of Parameters

Replac eValue MetaData

Where:

Replac eValue “Literal” or variable containing a value that is to replace the value in

the current value.

MetaData Optional. For your own use. “Literal” or variable containing the

text of your choice that is to appear at the end of the SBST record

in the detail results file.

SubstituteFind

Instream

Details and examples are in Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

SubstituteFind identifies a value that is to be replaced. It specifies that the value in the current

element or subelement is to be replaced.

Format of Parameters

Key MetaData

Where:

Key “Literal” or variable containing a key that will identify this element

as the one where the value is to be replaced.

MetaData Optional. For your own use. “Literal” or variable containing the

text of your choice that is to appear at the end of the SBSTF record

in the detail results file.

Business Rules Business Rules Reference  152

SubstituteReplace

Instream

Details and examples are in Dataswapper Business Rules section of

TIB_fsp_instream_<n.n>_dataswapper.pdf.

SubstituteReplace identifies the value that will replace a value identified with a SubstituteFind

that has the same key.

Format of Parameters

Key Replac eValue

Where:

Key “Literal” value or a variable containing the same key as the one that

identifies the element to be replaced. This same key appears in the

SubstituteFind rule.

Replac eValue “Literal” or variable containing a value to replace the one in the

SubstituteFind element.

Business Rules Business Rules Reference  153

Utilities Business Rules

AppendString

All validation programs

Appends one string or constant to the end of another.

Format of Parameters

DestStr Sourc eStr

Where:

DestStr Variable to which another value should be appended. If DestStr

does not exist, it will be created.

SourceStr The value to be appended to the end of DestStr. This can be a

variable, a literal in double quotes, Current_Element, or

Current_Date. If it does not exist as a variable, it will be treated

as a literal value.

Example. This example set of rules issues an error message if it finds that the same procedure

was given to the patient more than once in a given day.

This rule appends the date to the industry code. It is applied to the Industry Code and the Date

Time Period in the first composite in the HI segment shown below:

Similar AppendStrings are used in the other composites, but with different names for the

variables.

Business Rules Business Rules Reference  154

A rule could be applied to the second Date Time Period element that did a CompareString on

ProcDate1 and ProcDate2 and issued a custom error message if they matched:

The format of DisplayErrorByNumber is different for Analyzer.

Similar CompareString rules could be applied to the other Date Time Periods in the subsequent

composites.

Use additional SetVars and

AppendStrings on the subelements in

these composites.

AppendString for ProcDate2 goes here.

CompareString rule that compares

ProcDate1 and ProcDate2 goes here also.

SetVar for ProcDate2 goes here.

Business Rules Business Rules Reference  155

BuildString

All validation programs

Builds a string from a list of variables, constants, or reserved words.

Format of Parameters

DestStr Separator SourceStr1 Sourc eStr2 …

Where:

DestStr Variable to contain the values from the Sourc eStrs. If this variable

exists, its contents will be overwritten. If it does not exist, it will be

created.

Separator The character to be used to separate the values. This can be a

keyboard character, a space (surrounded by double quotes), or

nothing (two consecutive double quotes)

Separator

wanted

Separator in

business rule

Example output

one slash / ANDREWS/ALAN/A

space “ “ ANDREWS ALAN A

no separator ““ ANDREWSALANA

space-slash-

space
“ / “ ANDREWS / ALAN / A

Sourc eStr The values to be combined into DestStr . These can be a

combination of variables, literals in double quotes,

Current_Element, or Current_Date. Ones that do not exist

as variables will be treated as literals.

Example

This rule places this information into a variable Subname:

 The literal text “Name is “

 The contents of variables SubLastName and SubFirstName

 The contents of the current element.

Business Rules Business Rules Reference  156

Each is separated with a slash.

Output might look like this: Name is /ANDREWS/ALAN/A

Business Rules Business Rules Reference  157

ChangeCase

All validation programs

Converts all letters in a string to upper or lower case.

Format of Parameters

Sourc eStr ing Resu l tVar CaseOpt ion

Where:

Sourc eStr ing The string to be converted. This can be a literal in double quotes, a

system variable like Current_Element, or a variable.

Resul tVar The variable to contain the result.

CaseOpt ion An optional parameter that specifies whether to convert to upper or

lower case. This can be a variable name, or U or L surrounded by

optional double quotes:

U (default) Convert all lowercase letters to their uppercase

equivalent

L Convert all uppercase letters to their lowercase equivalent

Example 1

Assume that the current element contains Westerville Medical Clinic.

Either of these rules put WESTERVILLE MEDICAL CLINIC into variable SubmitterVar:

Or, using default behavior for Option:

Example 2

Assume that:

 Variable PatNameVar contains Fred Flintstone

 Variable CaseVar contains U

Business Rules Business Rules Reference  158

This puts FRED FLINTSTONE into PatNameCapsVar.

ChangeElmAttribute

All validation programs

Changes the element’s type, minimum length, maximum length, or user attributes.

This rule executes before the length or user attribute is validated.

Format of Parameters

Attr ibut e Value

Where:

Attr ibu te “UA”, “Type”, “Min”, or “Max”, or a variable containing one of

these.

Value If Attribute is UA (for User Attributes), value can be one of these

or a variable containing one of these:

 “O” Used (Optional)

 “N” Not Used

 “MU” Must be Used (Required)

 “R” Recommended (Advised)

 “NR” Not Recommended

 “D” Dependent

 If Attribute is Type, value can be one of these or a variable

containing one of these:

 “AN”

 “ID”

 “N”

 “R”

 See DataTypes.pdf in EDISIM’s Documentation directory for

details.

 If Attribute is Min or Max, value can be an integer in quotes or a

variable containing an integer.

Business Rules Business Rules Reference  159

Examples:

This example checks the contents of local variable 2010AANM108. If it contains XX, then the

current element’s type is changed to R.

This example checks the value of 2010AANM108. If it contains 24, the maximum length of the

value in the element is 12:

This example uses two variables:

 NewAttr contains Type.

 NewAttrValue contains R.

Business Rules Business Rules Reference  160

CheckFormat

All validators except Analyzer

For a rule that will work in Analyzer, see Other CheckDigit Options on page 232.

Checks the format of the value. Formats include:

Format of Parameters

CheckType Value (I fFals eAct ion) (I fTrueAct ion)

Where:

CheckType One of these:

SocialSecurity See below

NationalProviderID See below

CHARSET(x) Data must conform to the characters in the

specified character set. Sets available are

X12B, X12E, UNOA and UNOB.

See below.

EAN8 Data must be exactly 8 characters with no

leading zeros.

EAN13 Data must be exactly 13 characters long with

no leading zeros.

EAN14 Data must be exactly 14 characters long with

no leading zeros.

HIN Data must be 9 characters long, with position

7 acting as a check digit for verifying the first

six positions.

Positions 8 and 9 are a suffix that acts as a

unique identifier.

Example:

9C8341600

(9C83416 is the base HIN, with 6 being the

check digit. 00 is the suffix identifier.)

MOD11 Calculates the Mod11 check digit for a value.

The format of this rule is slightly different than

other CheckFormat rules. Please see

Example 11 on page 166.

POA Positions 1-3 must contain the literal string

POA

Position 4 must contain a Y

Starting at position 5 (up to 25 positions) -

any combination of N, U, W, 1, Y

The last position must contain X or Z.

Business Rules Business Rules Reference  161

POAX Like POA, but will allow:

- a regular POA code

- a POA code whose next-to-the-last

character is a Z or X, and whose last

character is a Y, N, U, W, or 1 (an

e-code). This is only used in the 4010

837I when the H103.01=BN.

SSCC Data must conform to the Serial Shipping

Container Code - be exactly 18 digits.

UPC12 Data must be exactly 12 characters long and

can include leading zeros. The last digit is a

check-digit.

USER(min-maxZn) Specify the minimum and maximum length

and the number of leading zeros included

within that length. The last digit is a check

digit. There is no space before the

parenthesis.

For details about the format within the

parentheses, see USER check digit and

examples 7 and 8 below.

USERNC(min-maxZn) Same as USER except the last digit is not a

check digit. There is no space before the

parenthesis.

See example 9 below.

ALL_BLANKS Value is all blanks

ALL_? ? is a capital or lower case letter or a digit.

Examples:

ALL_0

(Value is all zeros)

ALL_9

(Value is all nines)

ALL_A

(Value is all capital A’s)

Va lue The value being checked. This can be a variable, Current_Element,

or a literal in double quotes. If omitted, the value of

Current_Element is assumed.

(IfFalseAction) Action to take if the format does not match. Required if you are

specifying an IfTrueAction. To do nothing if false, use this:

 (BusinessRules.Utilities DoNothing)

(IfTrueActi on) Action to take if the format matches.

Business Rules Business Rules Reference  162

SocialSecurity

 Length can be 9 digits, plus optional dashes if it is X12-4010 data: nnnnnnnnn or nnn-nn-

nnnn. For X12-5010 and later, it cannot contain dashes.

 Area code (first three digits) must not be 000 or 666. HIPAA validation products look up

the area code in the SSNArea table. Analyzer does not do this lookup.

 Group (4th and 5th digits) must not be 00.

 Serial (last four digits) cannot be 0000.

 For HIPAA guidelines, the first five digits are automatically checked according to the SSA

guidelines.

NationalProviderID

 Length is 9 digits followed by one numeric check digit.

 The check digit uses the Luhn formula for the modulus 10 “double-add-double” check digit

and includes the prefix 80840, even though that is not included in the EDI value.

 NationalProviderID

CHARSET

The CHARSET CheckFormat type code that allows you to verify that a value is comprised only of

characters in the specified character set.

The format is

CHARSET(x)

There should be no spaces between CHARSET and (x) or within the parentheses; spaces will

result in an error.

Where x is one of the following Character Set ID codes:

 X12B = X12 Basic character set

 Uppercase letters: A-Z

 Decimal digits: 0-9

 Punctuation Characters: ! " & ' () * + , - . / : ; ? = space

 X12E = X12 Extended character set

 Uppercase letters: A-Z

 Lowercase letters: a-z

 Decimal digits: 0-9

 Punctuation Characters: ! " & ' () * + , - . / : ; ? = space
 % @ [] _ { } \ | < > ~ # $

Business Rules Business Rules Reference  163

 UNOA = EDIFACT UNOA character set

 Uppercase letters: A-Z

 Decimal digits: 0-9

 Punctuation Characters: . , - () / = space

 UNOB = EDIFACT UNOB character set

 Uppercase letters: A-Z

 Lowercase letters: a-z

 Decimal digits: 0-9

 Punctuation Characters: . , - () / = space ' + : ? ! " % &

 * ; < >

USER check digit

The USER check digit is a Modulo 10 calculation.

Consider this rule as an example of USER:

And consider this value in the data:

The last digit (5) is the check digit. Is it correct or not?

Here is how Foresight validators will calculate the check digit:

1. Add up the digits in the “odd” positions, starting FROM THE RIGHT with the digit just

BEFORE the check digit: 1234565

 6+4+2=12

 Multiply this sum by 3:

 12*3=36

2. Add up the digits in the “even” positions: 1234565

 5+3+1=9

3. Add the odd and even results:

 36+9=45

4. The check digit is the number would you have to add to this to get to a multiple of 10. In our

example:

 45+5=50

 Our check digit should be 5, which makes the value 1234565 correct.

Business Rules Business Rules Reference  164

CheckFormat examples

Example 1

This example displays default error message (31000 Comparison Failed!) if the current element’s

value does not match the format of a Social Security Number.

Example 2

This example displays custom error message 32001 (Social Security number format is wrong) if

the current element’s value does not match the format of a Social Security Number.

The format of DisplayErrorByNumber is different for Analyzer.

Example 3

This example displays custom error message 32001 (Social Security number format is wrong) if

variable 2010BAREF01 contains SY and the current element’s value does not match the format

of a Social Security Number.

Example 4

This example has the same result as the previous example, but the “if” part uses a local variable

(see page 239) instead of a SetVar variable.

Business Rules Business Rules Reference  165

Example 5

This example displays custom error message 32005 if the current element contains all blanks.

Example 6

This example displays custom error message 32006 if the current element does not contain all

blanks, and custom error message 32005 if it does contain all blanks.

Example 7

This example displays a default error message if the current element does not contain exactly 10

digits including up to one leading zero. The last digit is a check digit.

Example 8

This example displays a default error message if the current element does not contain exactly 10

to 12 digits including up to one leading zero. The last digit is a check digit.

Example 9

This example displays a default error message if the current element does not contain exactly 2 to

8 digits. This can contain up to 6 leading zeros. The list digit is not a check digit.

Business Rules Business Rules Reference  166

Example 10

This example verifies that the value (“Value to be Checked”) is comprised only of characters in

the X12B character set, then causes the FalseAction to be taken because the string contains

lower case letters not included in the X12B character set.

Example 11

This example uses MOD11 to calculate a value’s check digit, and then see if the data includes the

correct check digit in this HL7 ORU R01 Ambulance guideline:

We capture the ID number with this rule on the PID-03-01:

We capture its Check Digit from the data with this rule on the PID-03-02:

Business Rules Business Rules Reference  167

If the value in the PID-03-03 is M11, that means we should use the Mod 11 algorithm. If so, we

calculate the check digit for the value in the PID-03-01:

If the check digit value in the PID-03-02 is different from the one calculated by CheckFormat,

we issue an error message.

Business Rules Business Rules Reference  168

CreateFSUID

Instream

CreateFSUID creates a unique identifier (TIBCO Foresight Unique ID or FSUID) and places it

in a variable. The Identify (see page 175) or Match (see page 178) rules then use this variable to

output an IDENT record.

Warnings

It is extremely important that you never output the same FSUID twice. The safest way to ensure

this is to use a CreateFSUID rule before each Identify or Match rule.

Format of Parameters

FSUID Compress edID

Where:

FSUID Variable to hold a unique 36-character TIBCO Foresight User ID

(FSUID).

Compress edFSUID Optional variable to hold a 27-character version of the FSUID.

Example 1. This example, placed on the subscriber CLM segment, causes Instream to insert an

IDENT record each time a CLM segment is encountered.

First, create an FSUID in a variable called FSUniqueID:

Next, write the IDENT record using the FSUID value in the variable:

Each time a subscriber CLM is encountered in the EDI, the detail results file will contain an

IDENT record similar to this:

STRUS 31|2300|0|1|1159

SVALU 31|S009|464|CLM*2235057*460.00***25:B:1*N*A*N*I*P*OA*********1

IDENT 31|I|7ee91081-f49f-11de-a384-f131e23d4046|1|

DTL 31 2300 CLM1332C023 28 5 2 1 10618 3 4641 …

Example 2. These two rules put an IDENT record in the detail results file. This would be

suitable for marking the document level for generic X12 or EDIFACT documents that will be

sent to TI.

Business Rules Business Rules Reference  169

DisplayErrorByNumber

All validation programs

In Analyzer, DisplayErrorByNumber only supports explicit text as shown in the example for

Analyzer.

Looks up the error number and then displays the corresponding error text. For more details

about error messages, see Appendix B on page 255.

Format of parameters for EDISIM Validator, Instream and HIPAA Validator Desktop

ErrorNumber Sever i ty Overr id ingErrorMessage

Where:

ErrorNumber Number of the error in FSBRErrs.txt or

CustomerFSBRERRS.TXT files (in the Bin directory). The number

can be from 32000 to 32999. Please see

ErrorMessageNumbers.pdf for a complete list of error number

ranges.

Sever i t y Optional. Specifies the severity, one of these:

 -1 for Un-Initialized

 0 for Message

 1 for Non-Critical

 2 for Warning

 3 for Error

 4 for Fatal

 5 for User1

 6 for User2

Examples. This example displays message 32001. Because the severity is listed as 2, the message

displays as a warning.

Also see the example for ListCheck on page 113.

Business Rules Business Rules Reference  170

Format of Parameters for any Foresight validation program

To display a message, use two zeros, separated by a space, and then the text:

Analyzer will display the text:

See also FSVBExit.DisplayMessage on page 233.

Business Rules Business Rules Reference  171

FindString

All validation programs

Allows you to determine if String A can be found in String B, and if so, return its starting

position.

Format of Parameters

Str ingA Str ingB Resu l tVar (Star tPos) (Opt)

Where:

Str ingA The string (variable or constant) to search.

Str ingB The substring (variable or constant) to search for.

 If StringB is not found in StringA, then the result will be zero.

Otherwise, it will be the position in StringA that StringB starts (1-

based; i.e. the first character position is 1).

Resul tVar The variable to contain the result. Note that if either StringA or

StringB is an empty string, the value of -1 will be returned in

ResultVar.

(Star tPos) Optional. A variable or constant that tells FindString where to start

its search within StringA. If StartPos is omitted, then the search

begins in position 1 (i.e. the first character) of StringA. If StartPos

is less than 1 or greater than the length of StringA, then a zero will

be returned. If StartPos is not numeric, it will be ignored.

(Opt) Optional. A variable or constant that modifies aspects of the

function. Currently, the only option supported is I, which means

Ignore Case.

Examples (Simple)

The following examples use these assumptions:

 SetVar INVCONST “Office Box”

 Current element = “Post office box 1234”

This example causes 0 to be put into VARPOPOS because the exact string wasn’t found.

Business Rules Business Rules Reference  172

This example causes 6 to be put into VARPOPOS because, once we ignore the case of the

letters, the string is found.

Examples (Complex)

This more complex example shows how to find the second occurrence of a delimiter:

The following examples use this assumption:

 Current element = “123-ER-456TT”

This rule causes 4 to be put into DELIMPOS1.

This AddVar rule increments DELIMPOS1 to 5.

This rule causes 7 to be put into DELIMPOS2.

Business Rules Business Rules Reference  173

GenerateFSUID

Instream

NOTE This rule has been deprecated. Please see FSUID_and_AppDocs.pdf for

alternatives.

GetToken

Instream, HIPAA Validator Desktop, and Analyzer

Finds a specific value in a series of delimited values and places it in another variable.

Format of Parameters

DestVar Sourc eVar Index Del imi t er

Where:

DestVar The variable that is to hold the extracted value.

Sourc eVar A variable, literal in double quotes, or Current_Element that

holds the series of values before one of them is extracted.

Index The position of the value that is to be extracted. This can be a literal

(no quotation marks), a variable, or Current_Element.

Del imi t e r Optional. The delimiter that separates values in Sourc eVar . If

omitted, a space character is assumed.

Example. This example requires that the first NTE segment starts with the code MED and the

second repetition of the same NTE segment starts with the code NTR.

AddVar is used on the NTE segment as a counter. It increments by 1 with each NTE segment.

This segment can repeat up to 10 times, and has many code values available to the NTE01.

The AddVar NTE segment counter might look like this:

Business Rules Business Rules Reference  174

And the GetToken on the NTE01ClaimNote might look like this:

The GetToken places MED in a variable called NTE01ClaimNote for the first instance of the

NTE segment (when CLMnote will equal 1).

It places NTR in a variable called NTE01ClaimNote for the second instance of the NTE

segment (when CLMnote will equal 2).

You could then put a CompareString on the NTE01ClaimNote, after the GetToken rule, to see

if CLMnote equals 1, and, if so, Current_Element should equal the contents of

NTE01ClaimNote - which will be MED.

Another rule could check to see if CLMnote equals 2. If true, then the contents of

Current_Element should equal NTR.

Business Rules Business Rules Reference  175

Identify

This follows a CreateFSUID rule to generate an IDENT record in Instream’s detail file. Please

see TIB_fsp_instream_<n.n>_usersguide.pdf for the layout of the IDENT record.

The rule never generates the same ID twice.

Activating the rule in your validation profile

To activate the business rule, edit your Instream validation profile (by default, $fsdeflt.apf in

Instream’s Bin directory), and set IDENT to 1:

IDENT=1

Where to place the rule

Place the rule on a mandatory or must use segment where you want the IDENT record to

appear. Be sure a previous CreateFSUID business rule has executed to load the variable(s)

needed. Precede each Identify rule with its own CreateFSUID record so that the number is never

repeated. Example. If you want each claim to have its own unique number, place the

CreateFSUID and Identify business rules on the CLM segment.

Format of Parameters

FSUID Compress edFSUID Sys t emID

Where:

FSUID Variable containing a unique 36-character TIBCO Foresight User

ID (FSUID) that was loaded by a CreateFSUID rule.

Compress edFSUID Optional variable to hold a unique 27-character ID that was loaded

by a CreateFSUID rule. Required as a placeholder if you include a

SystemID. This value is not used by TIBCO Foresight programs.

Sys t emID Variable or literal in double quotes identifying the system where

Instream resides. If omitted, the IDENT record will contain a 1 for

SystemID. Transaction Insight® expects this to be 1 for the initial

Instream validation. If it is not 1, be sure the value is defined under

Settings | External System Setting before attempting to import it

into TI.

Results: An IDENT record is placed in the validation detail results file:

 IDENT l ine_num|RuleID|FSUID|Syst emID|Compress edFSUID

Example 1. This rule creates a 36-character FSUID in variable FSuniqueID and a 27-character

unique ID in variable ShortID.

Business Rules Business Rules Reference  176

This Identify rule then creates an IDENT record that contains the FSUID that was created

above:

The record might look like this. Note the “I” after the line number, indicating that this was

created with an Identify rule rather than a Match rule.

SVALU 31|S009|464|CLM*2235057*460.00***25:B:1*N*A*N*I*P*OA*********1

IDENT 31|I|97c0a5aa-f4a0-11de-a384-f131e23d4046|1|

DTL 31 2300 CLM1332C023 28 5 2 1 10618 3…

Example 2. Instead of the Identify rule above, you could have used this one, which contains the

FSUID, the compressed FSUID and an ID for the external system.

The record might look like this:

SVALU 65|P009|108|CLM*2235057*680.00***25:B:1*Y*A*N*Y*P*OA*********2

IDENT 65|I|97c56a60-f4a0-11de-a384-f131e23d4046|2|IV2MKO7KK08TT8S4U4OU4FA086

Example 3. These two rules put an IDENT record in the detail results file. This would be

suitable for marking the document level for generic X12 or EDIFACT documents that will be

sent to TI.

Business Rules Business Rules Reference  177

IdentifierLookup

Instream and HIPAA Validator Desktop

Checks a lookup file for the value in Current_Element and optionally for the value in a variable

assigned with SetIdentifier. If the lookup file contains the value(s), validation uses the profile

and/or guideline given in the lookup file.

Content-based trading partner automation is described in detail in

TIB_fsp_instream_<n.n>_tpa.pdf.

Any SetIdentifier value used in this rule must have already been set before this rule executes.

Format of Parameters

LookupFi l e Se t IDvar iab le Current_Element

Where:

LookupFi l e Name of the lookup file, including file extension CSV.

SetIDvar iab le A variable assigned with SetIdentifier. It holds one of the values

that determine whether the guideline and/or profile will be

changed.

 Only include this parameter if two values are involved in the

lookup.

Current_Element Literal text (typically); in complex scenarios, this can be another

SetIDvar iab le .

Example 1. This example uses two values. It checks lookup file MyCBpartnerAutomation.csv

for the values in variable PayeeN103 and Current_Element. If found, it validates using the

guideline and/or profile listed in the lookup file.

Example 2. This example uses one value. It checks lookup file MyCBpartnerAutomation.csv for

the value in Current_Element. If found, it validates using the guideline and/or profile listed in

the lookup file.

Business Rules Business Rules Reference  178

InsertIdentifier

Instream

Flags an element used in the Java API callback, which is described in

TIB_fsp_instream_<n.n>_api.pdf.

Format of Parameters

Variabl e

Where:

Variabl e A variable to hold this element’s value.

Example. This example saves the value in the current element in a variable called

T1055Ref0406:

Match

For internal TIBCO Foresight use.

Business Rules Business Rules Reference  179

MatchApplList

All validators except Analyzer

Checks to see if a value is found in an Application Value List, and then take the appropriate

action.

Format of Parameters

 Value ApplLis t (I fFals eAct ion) (I fTrueAct ion)

Where:

Value Value to be searched for in the list. This can be a constant in

double quotes, a system variable (Current_Element, Current_Date,

etc.), or an external variable name.

ApplLis t The name of the Application Value List to be searched for Value .

This list must already exist in the guideline. Note that

MatchApplList works with both explicit values and with regular

expression list members. For information about regular expressions,

see TIB_fsp_edisim_<n.n>_fseditor.pdf, the section

Customizing your Guidelines, Regular Expressions.

I fTrueAct ion Specifies a rule to be run if Value is found in, or matches a regular

expression in, ApplList. Required if you are specifying an

IfFalseAction. To do nothing if false, use this:

 (BusinessRules.Utilities DoNothing)

I fFals eAct ion Optional. Specifies a rule to be run if Value is not found in

ApplList, or if ApplList does not exist.

Examples

The examples below assume these two lists:

 TestList is an Application Value List that contains:

VAL1

VAL2

VAL3

 MyPattList is an Application Value List that contains:

^REF[A-Z][0-9]$

^REF[A-Z][A-Z][0-9]$

^REF[A-Z][0-9][0-9]$

REFANY

 and these two external variables:

ListToUse is an external variable that contains the string ‘TestList’

ValToCheck is an external variable that contains the string ‘REF01’

Business Rules Business Rules Reference  180

Example 1

This example causes the TrueAction to be taken because ‘VAL1’ is found in list ‘TestList’.

Example 2

This example causes the FalseAction to be taken because ValToCheck contains the value

REF01, which is not in the application value list whose name is stored in ListToUse (i.e.,

TestList).

Example 3

This example causes the TrueAction to be taken because ‘REFZ9’ matches one of the regular

expressions in list MyPattList.

Example 4

This example causes the the TrueAction to be taken because the value in variable ValToCheck

(REF01) matches one of the patterns in MyPattList.

Example 5

This example causes the FalseAction to be taken because list PattList2 does not exist.

Business Rules Business Rules Reference  181

Normalize

Converts a string into a normalized form, which includes any or all of these:

 Converting the entire string to upper or lower case

 Removing extra spacing

 Removing any non-alphanumeric characters, etc.

 Removing any titles, such as ‘Mr.’, ‘Mrs.’, ‘Dr.’, etc.

This rule is handy for CAQH as well as other types of normalization as defined in the Phase II

CORE 258 rule.

Format of Parameters

 Sourc eStr ing Resu l tVar CommandStr ing

Where:

Sourc eStr ing The string to be converted. This can be a literal in double quotes, a

system variable like Current_Element or Current_Date, or a

variable name.

Resul tVar The variable to contain the result.

CommandStr ing A string (variable or literal) containing one or more of the

normalization operations, each separated by a comma, as described

in CommandString Details below.

 These will be performed on Sourc eStr ing , in the order you specify,

so the results may differ if the options are in a different order.

Business Rules Business Rules Reference  182

CommandString Details

This can be one of the following:

Option Result

LC Convert all upper case letters to lower case.

UC Convert all lower case letters to upper case

TRIMl imi t s Trim all leading and trailing spaces, and replacing any embedded sequences

of two or more spaces with a single space.

To limit the range of TRIM, append one or more of the following l imi t s :

L Remove leading spaces

T Remove trailing spaces

M Replace embedded sequences of two or more spaces in the middle

of the string with a single space

Examples

TRIM or TRIMLTM Removes all leading and trailing spaces, and all

embedded sequences of two or more spaces.

TRIMLT Removes all leading and trailing spaces.

The order of the suffix codes do not matter. TRIMLT is the same as

TRIMTL. Finally, TRIM with no suffix codes is the same as TRIMLTM.

RC:NonX12B Remove all characters not in the X12 basic character set. This character set

includes:

Uppercase letters A-Z

Decimal digits 0-9

Punctuation Characters ! " & ' () * + , - . / : ;

 ? = spac e

RC:NonX12E Remove all characters not in the X12 extended character set. This character

set includes:

Uppercase letters A-Z

Lowercase letters a-z

Decimal digits 0-9

Punctuation Characters ! " & ' () * + , - . /

: ;? = % @ [] _ { } \ | < > ~ # $ spac e

Business Rules Business Rules Reference  183

Option Result

RC:NonUNOA Remove all characters not in the EDIFACT UNOA character set. This

character set includes:

Uppercase letters A-Z

Decimal digits 0-9

Punctuation Characters . , - () / = spac e

RC:NonUNOB Remove all characters not in the EDIFACT UNOB character set.

This character set includes:

Uppercase letters A-Z

Lowercase letters a-z

Decimal digits 0-9

Punctuation Characters . , - () / = ' + : ?

 ! " % & * spac e

RC:NonAN Remove all characters that are not alphanumeric (not an uppercase

or lowercase letter or a digit)

RC:LoCC Remove all control characters that have an ASCII value of 1 through

31

RC:HiCC Remove all control characters that have an ASCII value of 128

through 255

RC:AllCC Remove all control characters that have an ASCII value of 1 through

31 or 128 through 255

RC:List’c c c’

Remove all characters listed in c c c .

Example

This removes all colons, commas, and periods: RC:List’:,.’

To remove a single quote character, use two consecutive single

quotes in the ‘ccc’ string.

Example

This removes all double quote and single quote characters:

RC:List’”’’’

RW:CAQH Removes all occurrences of the following titles from the front and/or end

of SourceString, as specified in section 4.2.2 of the CAQH CORE

document:

JR SR I II III IV V RN MD MR MS DR MRS PHD REV

ESQ

RW:List’w1 w2 … ’ Removes all occurrences of the words specified by w1, w2 ….

w1 w2 … is a list of words, with each word separated by a space. Letter

case is not significant.

Words will be removed if they are found at the beginning or end of

Business Rules Business Rules Reference  184

Option Result

Sourc eStr ing , and separated from the rest of the string by a space, comma,

or forward slash character. If any word is immediately followed by a

period, the period will also be removed.

To include a single quote character in a word, use two consecutive

single quotes in the ‘w1 w2 …’ string.

Examples

The character ‘·’ in these examples represents a space

Example 1

This puts ··CAT··FELINE!·· (with leading and trailing spaces remaining) into the variable

SpeciesVar because:

 UC converts to upper case.

 RC:NONX12B remove all characters not in the Basic X12 character set… in this case, the

curly brackets. The spaces and exclamation point remain.

Example 2

Assume that the current element contains Dr. Fred Schultz .

This puts FRED SHULTZ into variable NormNamevar because:

 UC converts to upper case.

 RW:CAQH removes all CAQH titles.

Example 3

This shows how the sequence of operations can affect the result.

Assume that variable VarDat contains This·is·a·Test!·· .

Business Rules Business Rules Reference  185

 Normalize VarDat NormResult1var "UC,RC:NONX12B"

 Normalize VarDat NormResult2var "RC:NONX12B,UC"

The first rule causes THIS·IS·A·TEST!·· to be put into variable NormResult1var

because:

 UC converts to upper case.

 RC:NONX12B removes all characters not in the Basic X12 character set.

However, the second rule causes T···T!·· to be put into variable NormResult2var

because:

 RC:NONX12B remove all characters not in the Basic X12 character set.

 UC converts to upper case.

 Since lower case letters are not in the X12 Basic Character Set, they all get removed.

Example 4

Assume that the current element contains Rev. Raymond A. Ratchet, Esq, PhD

This causes RAYMOND A RATCHET to be put into variable NormNameVar because:

 UC converts to upper case.

 RW:CAQH removes all CAQH titles like Rev, Esq, and PhD

 RC:NONAN remove all non-alphanumeric characters like the punctuation

Example 5

This causes DR.NOSPACE to be put into DrNameVar because:

 UC converts to upper case.

 RW:CAQH removes all prefixes and suffixes in the CAQH title list. However, there is no

space, comma, or forward slash between the DR. and the rest of the string so it isn’t

removed.

Business Rules Business Rules Reference  186

Numbers

Adds, subtracts, multiplies, and divides numbers and put the output into a variable. Maximum

precision is 8 decimal places.

Format of Parameters

VarA Operand VarB VarOut

Where:

VarA and VarB A variable, Current_Element, or a literal surrounded with

double quotes. If Current_Element is used and is empty, processing

stops on the rule. If the variable does not represent a numeric, an

error message is issued.

Operand + (plus)

- (minus)

* (multiply)

/ (divide)

VarOut The variable to hold the result. If VarOut has not yet been

defined, it is created. If it exists, its contents are overwritten.

Example. This example displays a message if the line item value exceeds $1,000,000 in a

purchase order.

On the PO102 (quantity), capture the quantity:

On the PO103 (unit price), multiply the unit price by the quantity:

Also on the PO103 (after the previous rule), display a message if the total is more than

$1,000,000:

Business Rules Business Rules Reference  187

OracleLookup and OracleLookupWithDate

AIX Instream

These two business rules are available by request. Please contact TIBCO Foresight

Technical Support.

Performs a lookup from an Oracle database and executes a business rule if it is false.

OracleLookupWithDate Use if the SQL statement or stored procedure includes a date

calculation.

OracleLookup Use if the SQL statement or stored procedure does not include a

date calculation.

Format of Parameters

“SQLstat ement” (I fFalseAct ion)

or

“StoredProcedure (pro cedure_name)" Paramet er_ for_Proc edure (I fFals eAct ion)

Where:

SQLstat ement A SQL statement.

 Business rule variables within the statement must be set already

with a SetVar or similar business rule.

 Enclose business rule variables and Current_Element in single

quotes:

 ‘%ProviderIdNumber%’

 ‘%Current_Element%’

I fFals eAct ion A business rule to execute if the SQL statement is false.

StoredProcedure Literal text.

proc edure_name Name of the Oracle procedure.

Paramet er_ for_Proc edure

One parameter to pass to the Oracle procedure.

Example 1. This example uses OracleLookup to check for a provider ID. It includes the SQL

statement. If it is not found by the lookup, then an error message is issued.

Business Rules Business Rules Reference  188

Example 2. This example uses OracleLookupWithDate to check for a provider ID. If it is not

found by the lookup, then an error message is issued.

Example 3. This example uses an Oracle lookup to execute a stored procedure that does not

contain any date calculations.

Example 4. This example uses an Oracle lookup at the end of a loop if two conditions are true.

Business Rules Business Rules Reference  189

OutputCTX

Instream

Creates a CTX record in the detail file. This record is used by Response Generator to create a

CTX segment in the 999.

During Instream validation, TIBCO Foresight 5010 837 guidelines generate CTX segments

under conditions specified in the HIPAA Implementation Guides.

Format of Parameters

CTXvar

Where:

CTXvar Variable containing the contents of the CTX record. This is usually

created from a SaveCurrentSegment rule, a GetValueFromSegment

rule, and a BuildString rule.

Example. This rule creates a CTX record from the contents of the CTXOUTSTRING variable.

BusinessRules.Utilities.OutputCTX:CTXOUTSTRING

Rules required to create your own CTX record

A number of rules are required to create your own CTX record. Please see

TIB_fsp_instream_<n.n>_respgen.pdf for details.

ReplaceChars

All validation programs

Performs any or all of these and stores the result in a variable:

− Replaces characters that are not in the:

 X12 basic character set

 X12 extended character set

 EDIFACT UNOA character set

 EDIFACT UNOB character set

− Replaces characters that are:

 not alphanumeric

 control characters

− Replaces characters that you specify.

Business Rules Business Rules Reference  190

Format of Parameters

Sourc eStr ing Resu l tVar CharsToReplac e Replac ementChar

Where:

Sourc eStr The string to be changed. This can be a string constant in double

quotes, a variable, or a system variable like Current_Element or

Current_Date.

Resul tVar The variable to contain the result. This can be the same variable

name as specified in SourceString, if desired.

CharsToReplac e A string describing which characters to replace.

 See CharstoReplace on page 190.

Replac ementChar A string identifying the character that is to be used to replace all

matched characters in CharsToReplac e .

 This can be:

A single character Replace each matched character with this

character. Examples: “X“ or “ “

NONE Remove each matched character.

CharstoReplace

This can be one of the following:

Option Result

NonX12B Replace all characters not in the X12 basic character set. This character set includes:

Uppercase letters A-Z A-Z

Decimal digits 0-9

Punctuation Characters

 ! " & ' () * + , - . / : ;

 ? = spac e

NonX12E Replace all characters not in the X12 extended character set. This character set

includes:

Uppercase letters A-Z A-Z

Lowercase letters a-z a-z

Decimal digits 0-9

Punctuation Characters ! " & ' () * + , - . / :

 ;? = % @ [] _ { } \ | <

 > ~ # $ spac e

Business Rules Business Rules Reference  191

Option Result

NonUNOA Replace all characters not in the EDIFACT UNOA character set. This character set

includes:

Uppercase letters A-Z A-Z

Decimal digits 0-9

Punctuation Characters

 . , - () / = spac e

NonUNOB Replace all characters not in the EDIFACT UNOB character set. This

character set includes:

Uppercase letters A-Z A-Z

Lowercase letters a-z a-z

Decimal digits 0-9

Punctuation Characters . , - () / = ' + : ?

 ! " % & * spac e

NonAN Replace all characters that are not alphanumeric (not an uppercase or

lowercase letter or a digit)

LoCC Replace all control characters that have an ASCII value of 1 through 31

HiCC Replace all control characters that have an ASCII value of 128 through 255

AllCC Replace all control characters that have an ASCII value of 1 through 31 or

128 through 255

List’c c c’

Replace all characters listed in c c c .

Example

This removes all colons, commas, and periods: List’:,.’

To remove a single quote character, use two consecutive single quotes in the

‘ccc’ string.

Example

This removes all double quote and single quote characters: List’”’’’

Example 1

This example replaces all lowercase “c” characters with a capital C.

Assume that the current element contains col. John Crocker

SubmitterVar would then contain Col. John CroCker.

Business Rules Business Rules Reference  192

Example 2

This example replaces any characters that are not in the X12 basic character set with uppercase X

so that SpeciesVar contains TXXX XX X XXX .

Example 3

Assume that the current element contains P. O. Box #1234 .

This example removes (not replaces) non-alphanumeric characters so that variable AddressVar

contains P O Box 1234 .

Example 4

Assume that:

 Variable PatPhoneVar contains (614) 431-2345

 Variable ReplCharsVar contains "List'() –'"

Note the space between) and -‘

 Variable ReplWithVar contains none

Business Rules Business Rules Reference  193

NewPatPhoneVar will contain 6144312345 .

Example 5

This causes KAVER Corporation# to be put into variable CompanyNameVar.

Business Rules Business Rules Reference  194

ReplaceString

All validation programs

Replaces one value with another and places the result in a variable.

Format of Parameters

Sourc eStr {ALL} OldStr ing NewStr ing {DestVar}

Where:

Sourc eStr The location of the string to be changed. This can be a string

constant in double quotes, a variable, Current_Element, or

Current_Date.

 If this parameter is not a variable, then DestVar is required.

OldStr ing The substring to be replaced. The first occurrence (or all

occurrences within Sourc eStr , if the ALL parameter is included

before this one) will be replaced with NewStr ing . This parameter

can be a variable, Current_Element, Current_Date, or a

string constant in double quotes.

NewStr ing The substring to replace OldStr ing in the Sourc eStr . This can be a

variable, Current_Element, Current_Date, or a string

constant in double quotes.

DestVar Required to hold the result if Sourc eStr is not a variable. If

omitted, the result is stored back in the Sourc eStr variable.

Example 1. This example removes a single quote by replacing ‘ with nothing. It places the

result in the variable Patient_name. This removes quotes from values like O’Neill.

The parameters are:

 Current_Element "’" "" Patient_name .

Value before: O’Neill

Value after: ONeill

Once the quote-less value is in Patient_name, you can use it in other business rules such as

ODBC rules.

Business Rules Business Rules Reference  195

Example 2. This example removes all hyphens within Current_Element by replacing hyphens

with nothing. It places the result in the variable Phone_num.

The parameters are:

Current_Element ALL "-" "" Phone_num

Value before: 614-555-1212

Value after: 6145551212

Example 3. This example replaces a single quote with a double quote.

The parameters are:

PatientLastName "'" """ Patient_name

Value before: O’Neill

Value after: O”Neill

Business Rules Business Rules Reference  196

SetCheckCTT and SetCheckCTTCount

Instream and HIPAA Validator Desktop, X12 only

For Analyzer checking, see CheckCTT on page 227.

SetCheckCTT checks the value in the CTT-01 (number of line items) and the CTT-02 (hash

total).

SetCheckCTTCount checks the CTT-02.

For best results, place the rule on the ST segment. It has to appear before anything that it counts.

See the explanation under CheckCTT on page 227.

Format of Parameters

These ru l e s have no paramet er s

Examples:

Business Rules Business Rules Reference  197

SetIdentifier

Instream and HIPAA Validator Desktop

Flags an element used in content-based trading partner automation, which is described in detail

in TIB_fsp_instream_<n.n>_tpa.pdf.

This rule goes with the IdentifierLookup rule and must precede it.

This rule is only needed if two elements are used with content-based trading partner automation.

Format of Parameters

SetIDvar iab le

Where:

SetIDvar iab le A variable to hold this element’s value for use in an

IdentifierLookup rule for content-based trading partner automation.

Example. This example puts the value of the current element into variable PayeeN103 for use in

an IdentifierLookup rule:

Business Rules Business Rules Reference  198

SubString

All validation programs

Extracts a portion of one string into another.

Format of Parameters

DestStr Sourc eStr Star tIndex E ndIndex

Where:

DestStr The variable that is to hold the extracted portion of the Sourc eStr .

Sourc eStr The variable that holds the characters to be extracted. This can be a

variable or Current_Element. If Current_Element is used

and is empty, processing of the rule stops.

S tar tIndex The position of the first character to be extracted from the

Sourc eStr . This can be a number or a variable containing a number.

If the Star tIndex is less than 1, it is set to 1.

EndIndex The position of the last character to be extracted from the

Sourc eStr . This can be a number or a variable containing a number.

If the Star tIndex is greater than the EndIndex , an error message

is displayed. If the EndIndex is greater than the length of

Sourc eStr , the EndIndex will be set to the number of characters in

Sourc eStr .

Example 1. This example extracts the first 8 characters of the value in the current element into a

variable called ShipDate that can be used in a subsequent rule.

Example 2. This example extracts the first characters of the value in the current element into a

variable called ShipDate that can be used in a subsequent rule. Since the EndIndex is not an

integer, it is treated as a variable and should contain an integer that will serve as the ending point

of the substring.

Business Rules Business Rules Reference  199

Trim

All validation programs

Removes specified characters from the right or left of a value and places the result into a

variable.

Format of Parameters

TrimLocat ion Charac t e r s Value Resu l tVar

Where:

TrimLocat ion Where to trim: the literal LEFT, RIGHT, or BOTH.

Charac t e r s One or more characters to trim, surrounded by double quotes.

 If you supply one character, all of that character will be trimmed

from the location you chose. Example: “0” removes all leading or

trailing zeros.

 If you supply multiple characters, all sets of them will be trimmed

from the location you chose. Example: “12” removes all leading or

trailing sets of 12.

Value The value to be trimmed. This can be CURRENT_ELEMENT or

a variable.

Resul tVar A variable to hold the trimmed result.

Example. This rule is placed on the ISA08 to trim trailing spaces. It puts the trimmed result in

variable GLOBAL_ISA08.

This rule uses GLOBAL_ISA08 in a CodeLookup to see if the ISA08 is valid:

Business Rules Business Rules Reference  200

TrimWhitespace

All validation programs

Removes leading and trailing whitespace characters (spaces and tabs) from a value and replaces

any sequences of two or more whitespace characters within the value with a single occurrence.

Format of Parameters

InputValue OutputVar Opt ions

Where:

InputValue The value to be trimmed. This can be a constant in double quotes,

an internal variable name (Current_Element,

Current_Date, etc.), or an external variable name.

OutputVar An external variable name where the result is to be stored.

Option The character string containing one or more of the following

characters (these options can be combined):

L Remove any leading whitespace characters

T Remove any trailing whitespace characters

M Replace any strings of two or more whitespace characters within

InputValue with a single space

If Options is not specified then LTM is assumed.

Examples

In the following examples, ‘·’ represents a space and ‘»’ represents a tab.

Example 1

This example causes the string ‘Test·Value’ to be stored into variable RESULTVAR. Because

no Option was specified, ‘LTM’ is assumed so leading and trailing whitespace characters are

removed and duplicate whitespace sequences within the string are replaced by a single space.

Business Rules Business Rules Reference  201

Example 2

This example causes the string ‘Post·Office·Box·1234’ to be stored into variable

TRIMMEDADDR1. The ‘space tab space’ sequence is handled as a string of three whitespace

characters and is replaced by a single space. (ADDR1 = “»Post·»·Office··Box··1234»”)

Examples 3

This example causes the string ‘Post·»·Office··Box··1234’ to be stored into variable

TRIMMEDADDR1. Because Option LT was used, leading and trailing whitespace characters are

removed. (ADDR1 = “»Post·»·Office··Box··1234»”)

Business Rules Business Rules Reference  202

Variable Business Rules

SetLocalVariable

All validation programs

Used to explicitly set the contents of a local variable.

Format of Parameters

LocalVariabl eName Value

Where:

LocalVariabl eName The variable name in double quotes or an external variable name

containing the local variable name.

Value The value to be stored in LocalVariabl eName in double quotes or

an external variable name containing the value.

Examples

This example causes the string ‘True’ to be stored into local variable UseListA

This example causes the string ‘SMITH’ to be stored into local variable LVar2 . (Where Current

element = “SMITH”)

This example looks up external variable LVARNAME and uses its contents as the name of the

local variable to set to “1”.

Business Rules Business Rules Reference  203

SetVar

All validation programs

Sets a BusinessRules.Variable to the contents of the current element or to a passed value. See

Appendix A: Variables on page 239 for an overview of variables.

Format of Parameters

VarName VarValue

Where:

VarName Name you are assigning to that variable. If the variable exists, the

current contents are overwritten with VarValue. The name can be

any length, with no special characters or spaces. It is case-sensitive.

VarValue Optional. Value being assigned to that variable. This can be another

variable, Current_Element, a literal in double quotes, or

Current_Date if appropriate. If VarValue is omitted, the value in

Current_Element is assumed.

Example. This example assigns the variable name 2010AAN402State to the contents of the

current element.

The variable 2010AAN402State can then be used in the parameter for a rule like the one shown

below, which checks the zip code in the current element to see if it is valid for the state that is in

the variable 2010AAN402State.

Business Rules Business Rules Reference  204

AddVar

All validation programs

Adds a value to the current value of a variable. This can keep a running total for use in other

rules. Maximum precision is 8 decimal places.

Format of Parameters

VarName VarValue

Where:

VarName The variable to hold the accumulated values. If VarName has not

yet been defined, it is created.

VarValue Optional. The amount being added to the variable. This can be a

variable, Current_Element, or a literal in double quotes. If

omitted, the value of Current_Element is assumed.

Example. This rule keeps a running total of the service line amounts in each repetition of the

SV2 and enclosing CLM loops. It is applied to each service line amount element.

For examples of how to use the results of an AddVar, see these examples:

 CompareString on page 209

 Example 2: Using Rules in Loops on page 268

 Example 3: Adding and Comparing Numeric Values on page 269.

Business Rules Business Rules Reference  205

Divide

All validation programs

Divides one value by another and puts the result in a variable.

Format of Parameters

Dividend Div i sor NumOfdec outVar

Where:

Dividend The value to be divided. It can be a literal, variable, or

Current_Element.

Divi sor The value that the dividend is being divided by. If this is a literal,

enclose it in double quotes.

NumOfdec Number of decimal places to use in the result. Do not put quotes

around this integer.

outVar Variable to hold the result.

Example. This rule divides the value in the current element by 100 and puts the result in

variable DollarVar. The result has two decimal places.

Business Rules Business Rules Reference  206

DumpVars

All validation programs except Analyzer

You must be set up for debugging before you can use DumpVars. See page 287.

Shows External Routine variables and their current values. It does not show local variables.

Place the rule on the segment or element where you would like Validator to display the variables

and values. During validation, you can view these messages or suppress them.

Format of Parameters

Variabl e Variabl e Variabl e …

Where:

Variabl e A variable that is to have its current value displayed. Each additional

variable can be separated by a space.

 If no variable is specified, all variables are displayed.

 Specific array entries may not be dumped, though the entire array

can be. For example, ListTotals(“1”) is invalid, but

ListTotals is OK, and causes each member to be dumped.

To view the dumped variables, see page 287.

Example. This rule displays the current contents of two variables:

The output in EDISIM Validator:

Business Rules Business Rules Reference  207

Balance

All validation programs

This will validate mathematical operations on variables.

Format of Parameters

VarA Operand VarB = VarC I fFals eAct ion

Where:

VarA A variable, Current_Element, or a literal in double quotes. If

Current_Element is used and is empty, processing stops for the

rule.

Operand One of these: - + * /

VarB A variable, Current_Element, or a literal in double quotes. If

Current_Element is used and is empty, processing stops for the

rule.

= Equal sign. Put one space before and one space after the equal sign.

VarC A variable, Current_Element, or a literal in double quotes. If

Current_Element is used and is empty, processing stops for the

rule.

(I fFals eAct ion) Optional. Executed if the mathematical operation is FALSE. If

omitted, a generic message is displayed.

Example. This rule adds up adjustments and total paid amount to ensure that they equal

submitted charges for each repetition of the CLP loop in an 835. If not, an error message

displays.

Business Rules Business Rules Reference  208

1. Use SetVar to set the variables shown above.

2. Use the same AddVar name CASAdjustment on the CAS03, CAS06, CAS09, CAS12, CAS15,

and CAS18. This sums all of the adjustments for a repetition of the loop.

3. On the CLP Segment (which begins the loop), set the CASAdjustment to 0. This starts the

calculation at zero for each repetition of the loop:

4. To balance at the end of each repetition of the loop, go to the ST segment and use

SetLoopPostInstanceExit and Balance functions:

 This gives error message 32215 if the calculation is not true at the end of loop 2100, the CLP

loop.

AddVar variable CASAjustment goes on

each Monetary Amount in CAS

SetVar CASAdjustment to 0

Business Rules Business Rules Reference  209

CompareString and CompareStringNoCase

All validation programs

Compares two values as strings based on the operand, and executes an action if the comparison

is true.

CompareString requires the value to match exactly in order to be true; CompareStringNoCase

does not consider capitalization when comparing the values.

Format of Parameters

VarA Operand VarB (I fTrueAct ion)

Where:

VarA A BusinessRules.Variable, Current_Element, or a literal

surrounded with double quotes. If Current_Element is used and

is empty, processing of the rule stops.

Operand EQ, NE, GT, GE, LT, or LE.

VarB A BusinessRules.Variable, Current_Element, Current_Date,

or a literal surrounded with double quotes. If Current_Element

is used and is empty, processing of the rule stops.

(I fTrueAct ion) Optional. The action to be executed if the comparison is true. If

omitted, a generic message is displayed if the comparison is true.

Example. This example checks the PER segment and issues an error message if a telephone

number starts with 1. This involved these rules:

 On the PER03 (the qualifier) - Use SetVar to set up variable PER03Submitter.

 On the PER04 (the number itself):

Set up a rule that checks the qualifier to see if it is “TE” and, if so, places the first character of

the PER04 into a variable that we call TEFirstDigit.

Issue an error message if the variable contains a 1.

Message 32211 is a custom message in file CustomerFSBRERRS.txt.

Business Rules Business Rules Reference  210

CompareNstring

Compares parts of two values as strings based on the operand, and executes an action if the

comparison is true.

CompareNstring requires the specified parts of the strings to match exactly, including their case,

in order to be true.

Format of Parameters

VarA Operand VarB (s tar tVarA;s tar tVarB; l ength ; case) (I fTrueAct ion)

Where:

VarA String to compare. A BusinessRules.Variable, Current_Element,

or a literal surrounded with double quotes. If Current_Element

is used and is empty, processing of the rule stops.

Operand EQ, NE, GT, GE, LT, or LE.

VarB String to compare. A BusinessRules.Variable, Current_Element,

Current_Date, or a literal surrounded with double quotes. If

Current_Element is used and is empty, processing of the rule

stops.

s tar tVarA Position where comparison starts for VarA.

s tar tVar Position where comparison starts for VarB

l eng th Number of characters to compare.

case Whether to consider the case when comparing:

 0 (default) Comparison is case sensitive

 1 Comparison ignores the case

(I fTrueAct ion) Optional. The action to be executed if the comparison is true. If

omitted, a generic message is displayed if the comparison is true.

Example. This example compares 6 characters of the current element, starting with position 3,

to the first 6 characters of the variable RecName. The comparison is case-sensitive. If they do

not match, an error message is displayed.

Business Rules Business Rules Reference  211

Assume:

 Current_Element = A B C12 345 6 789

 RecName = 99 912 3

The underlined characters will be compared. Since they do not match, this error message will

display:

“Starting with the third character, this element must contain 999123”

Business Rules Business Rules Reference  212

CompareNumeric

All validation programs

Compares two values as numeric and executes an action if the comparison is true.

Format of Parameters

VarA Operand VarB (I fTrueAct ion)

Where:

Var A A variable, Current_Element, or a literal surrounded with

double quotes. If Current_Element is used and is empty,

processing stops on the rule. If the variable does not represent a

numeric, an error message is issued.

Operand EQ, NE, GT, GE, LT, or LE.

VarB A variable, Current_Element, or a literal surrounded with

double quotes. If Current_Element is used and is empty,

processing stops on the rule. If the variable does not represent a

numeric, an error message is issued.

(I fTrueAct ion) Business rule to be taken if the comparison is true.

Extended Example. Assume your company does not make adjustments in excess of 10000.

You want to enforce this in a guideline based on 835-W120.

To accomplish this:

1. Assign an AddVar called PLBAdjustmentAmt to each Monetary Amount element in the PLB

segment in Table 3.

2. Create a CompareNumeric rule on the SE segment that would check the total in

PLBAdjustmentAmt to see if it exceeds 10000. If so, display an error message.

Message 32214 is a custom message in file CustomerFSBRERRS.txt.

Business Rules Business Rules Reference  213

Clear

All validation programs

Clears the values from business rule variables. These are variables defined by a

BusinessRules.Variable function like SetVar or AddVar.

Variables automatically clear out with each ISA, regardless of the presence of CLEAR rules,

unless they are GLOBAL_variables.

The location of the Clear is important. A typical place is on the first segment in a repeating loop

or on the first required element of a repeating segment.

Caution It is hazardous to use Clear without specifying which variables are

being cleared. A Clear without a variable name results in clearing all

variables, including those in the HIPAA guideline with which you

will eventually merge your rules.

A variable with a name that starts with GLOBAL_ will not be cleared unless it is specifically

named in the Clear rule.

See page 214 for information on clearing local variables (those set by clicking the Variable button

in the Business Rules dialog box).

Format of Parameters

"VarName" "VarName" "VarName" . . .

Where:

"VarName" Name of a variable, surrounded by double quotes. If omitted, all

variables are cleared except those starting with GLOBAL_.

"VarName" Optional names of additional variables, surrounded by double

quotes and separated by spaces.

Example. This rule clears the BusinessRules.Variables HI0102IndustryCode and

CLAIMcount.

Business Rules Business Rules Reference  214

ClearLocalVariable

All validation programs

Removes one or more local variables from the repository. The variable had been defined by

clicking the Variable button in the Business Rules dialog box as described on page 239.

Variables automatically clear out with each ISA, regardless of the presence of CLEAR rules,

unless they are GLOBAL_variables.

For information on clearing BusinessRules.Variable, see Clear on page 213.

Format of Parameters

"VarName" "VarName" "VarName" . . .

Where:

"VarName" Name of a local variable, surrounded by double quotes. You cannot

clear all local variables by omitting a variable name in this rule. You

must explicitly tell which ones are to be cleared.

"VarName" Optional. Names of additional local variables, surrounded by

double quotes and separated by spaces.

Example. This rule clears two local variables.

Business Rules Business Rules Reference  215

FileTable Rules

The FileTable rules let you check an external text file for a value. If it is found, a related value is

returned in a variable.

This set of rules clears the variables used by FileTableLookup rules, identifies the file containing

the tables as FileTable.txt, and looks up BROWN in the file:

The Table

The file must be in Instream’s Bin directory. It contains the table name preceded with ^ and then

one or more lines in this format:

 k e y | v a l u e

The business rule inquires if the key is in the file. If so, value is returned in a variable. If not, the

variable is empty.

You can have one or more tables in this file.

Example

This table lets you inquire if SMITH is in the table. If so, the value 111222333 is returned in a

variable. Likewise, you could check for JONES or BROWN and get their related values.

FileTableClear

Clears the variable Retval, which is used in FileTableLookup.

Format of Parameters

None

Example. This rule clears variable Retval.

Business Rules Business Rules Reference  216

FileTableLoad

Identifies the file that contains the table that you will be using for a lookup. This file must be in

Instream’s Bin directory.

Format of Parameters

“f i l ename”

Where:

“f i l ename” File name and extension.

Example. This rule identifies FileTable.txt in Instream’s Bin directory.

FileTableLookup

Checks a table, in the file identified with FileTableLoad, for a value. If the value is in the table, a

related value is returned.

Format of Parameters

“tabl eName” key ReturnVar

Where:

“tabl eName” Table name within the file.

 Example

 t a b l e N a m e is TableA in this file:

k e y Value to search for in first column.

Business Rules Business Rules Reference  217

R e t u r n V a r Variable in which to return the corresponding value in the second

column.

 Example

 If R e t u r n V a r is SubNumVar and k e y is Brown, then

SubNumVar will contain 333444555 after the rule executes.

Example. If TableA contains BROWN, the corresponding value is returned in variable

SubNumVar.

GetInfo

Populates a variable with one of these:

 The iteration of the current loop. This is a digit.

 The loop ID, an underscore, and the iteration of the current loop. Example: 2000C_3

 The value in an envelope element that is later in the segment than the business rule that uses

it.

Business Rules Business Rules Reference  218

Format of Parameters (3 variations):

 Current_LoopCounter var

 Current_LoopKey var

 ENV(e l ementIndex) var

Where:

Current_LoopCounter

Literal text that represents the iteration of the current loop. This

reserved word should only be used with GetInfo.

Current_LoopKey Literal text that represents the loop ID, an underscore, and the

iteration of the current loop. This reserved word should only be

used with GetInfo.

Env Literal text meaning the value is in the ISA or GS.

e l ementIndex Element position within the current segment (the ISA or GS).

var Variable to hold the loop count (for Current_LoopCounter or

Current_LoopKey) or the value in the envelope element (for ENV).

Example 1

This puts the loop count into a variable called CLMcount.

This puts the Loop ID and the iteration of the loop and into a variable called CLMkey.

By using a DumpVars and showing debug messages, we see a count like this in HIPAA Validator

Desktop for each iteration of the loop.

Example 2

This puts the loop count in variable LoopNum2000B and executes at the end of each iteration of

the 2000B loop:

Business Rules Business Rules Reference  219

By using a DumpVars and showing debug messages, we see the count in HIPAA Validator

Desktop. This data had two 2000B loops and the first one had an error.

Example 3

This rule, written on the ISA06, grabs the value in the ISA08 and places it in a variable called

ISAReceiverID.

This rule, also on the ISA06, displays an error if the values in the ISA06 and ISA08 are the same.

GetLength

All validation programs

Puts the length of a value into a variable.

Format of Parameters

Targe tVar Sourc e

Where:

Targe tVar A variable to hold the length.

Sourc e A BusinessRules.Variable, Current_Element, or a literal

surrounded with double quotes. The number of characters in this

value will be counted and the result placed in TargetVar.

Example. This rule counts the number of characters in SubscriberID and places the

resulting number in SubscriberIDlength.

Business Rules Business Rules Reference  220

GetValueFromSegment

All validation programs

Gets a value from a variable that was saved with SaveCurrentSegment.

Format of Parameters:

SegVariabl e VarType Element Sube l ement OutVar

Where:

SegVariabl e The variable containing a segment; created with a

SaveCurrentSegment rule.

VarType Type of information, one of these literals:

 VALUE OutVar will contain a value from the segment.

 NAME OutVar will contain a name for the element-

 subelement ID. The actual name is your choice.

 POS OutVar will contain the segment’s location in the file,

 where the first segment is 1, the second segment is 2,

 etc.

Element The position of the element that you are getting.

Examples: CLM*2*200.00***13:A:1**B*W*Y***********2~

 2 Refers to the value 200.00

 5 Refers to the value 13:A:1 (a composite)

 -1 No specific element; refers to the whole segment.

Sube l ement The location of the subelement within the element. Examples

(using CLM segment above, and assuming Element was 5):

 1 Refers to the value 13

 3 Refers to the value 1

 -1 No specific subelement. Refers to the whole

 composite. If the element is not a composite, always

 use -1.

OutVar Variable that will contain the value, ID, or segment position

requested.

Business Rules Business Rules Reference  221

Examples. Assume that a SaveCurrentSegment rule has saved the CLM segment in variable

CLM2300SEG. Use CLM*2235057*460.00***25:B:1*N*A*N*I*P*OA*********1~ as

an example.

Example 1. This rule saves the CLM’s position number to variable SEGPOS:

BusinessRules.Utilities.GetValueFromSegment:"CLM2300SEG" POS -1 -1 SEGPOS

Example 2. This rule saves the value in the CLM05 to variable CLM05. In this case, it is a

composite. Because the subelement parameter is -1, the whole value 25:B:1 is placed in

variable CLM05:

BusinessRules.Utilities.GetValueFromSegment:"CLM2300SEG" VALUE 5 -1 CLM05

Example 3. This rule gives the ID of the CLM05 the name CLM05NAME.

Notice that the subelement parameter is -1, so the name applies to the entire composite ID:

C023

BusinessRules.Utilities.GetValueFromSegment:"CLM2300SEG" NAME 5 -1 CLM05NAME

Example 4. This rule saves the CLM0501 (the first subelement in the CLM05) to variable

CLM0501. In our example, this will contain 25.

BusinessRules.Utilities.GetValueFromSegment:"CLM2300SEG" VALUE 5 1 CLM0501

Example 5. This rule shows how the variables above might be used by a BuildString rule. It

strings together literals and variables and places the result in variable CTXOUTSTRING:

BusinessRules.Utilities.BuildString:CTXOUTSTRING "" "CTX|CLM" "*" SEGPOS

"**" CLM05 "*" CLM05NAME ":" CLM0501

CTXOUTSTRING might contain something like this:

CTX|CLM*32**25:B:1*C023:25:C

Business Rules Business Rules Reference  222

IsAlpha

All validation programs

Checks a value and takes action if it consists entirely of letters of the alphabet (A-Z and a-z only).

Format of Parameters

Value (I fTrueAct ion) (I fFals eAct ion)

Where:

Value The value being checked. This can be a variable,

Current_Element, or a literal in double quotes.

I fTrueAct ion An action to be executed if the value contains all letters. Required if

you are specifying an IfFalseAction. To do nothing if false, use this:

 (BusinessRules.Utilities DoNothing)

I fFals eAct ion Optional. An action to be executed if the value contains something

other than letters.

Example. This rule checks to see if the current element is alphabetic. If so, it checks to

see that it conforms to the NationalProviderID format and displays a message if it does

not. If it is not alphanumeric, it displays error number 30110.

Business Rules Business Rules Reference  223

IsAlphaNum

All validation programs

Checks a value and takes action if it consists entirely of numbers and/or letters of the alphabet

(0-9, A-Z, and a-z).

Format of Parameters

Value CaseOpt ion (I fTrueAct ion) (I fFals eAct ion)

Where:

Value The value being checked. This can be a constant in double quotes, a

system variable (Current_Element, Current_Date, etc.), or an

external variable name.

I fTrueAct ion An action to be executed if the value passes the IsAlphaNum test.

Required if you are specifying an IfFalseAction. To do nothing if

false, use this:

 (BusinessRules.Utilities DoNothing)

CaseOpt ion Optional. Further limits the check to allow just upper-case or lower-

case letters:

U = Limit valid characters to numbers and uppercase letters

L = Limit valid characters to numbers and lowercase letters

I fFals eAct ion Optional. An action to be executed if the value fails the

IsAlphaNum test.

IsNum

All validation programs

Checks a value and takes action if:

 It consists entirely of numbers

 It has a specific number of decimal places

 It has leading and/or trailing signs

 You want to specify certain decimal requirements.

Format of Parameters

Value (DecPlac eArg) (I fTrueAct ion) (I fFals eAct ion)

Business Rules Business Rules Reference  224

Where:

Value The value being checked. This can be a variable,

Current_Element, or a literal in double quotes.

DecPlac eArg Optional. Check for number of decimal places, leading and/or

trailing signs, and decimal place character requirements.

 DecPlac eArg can be a constant in double quotes or a variable

containing an option string. It is made up of one or more of the

following sequences:

 Dn(-n) – Check the for a an allowable number of decimal places.

 S or T – Means the value must have a leading (S) or trailing (T) sign

for the edit to pass. Otherwise, the IfFalseAction will be taken.

 If you include a comma or period, the decimal point character will

have to be that character.

 See DecPlac eArg Examples below for additional information.

I fTrueAct ion An action to be executed if the value contains all numbers.

Required if you are specifying an IfFalseAction. To do nothing if

false, use this:

 (BusinessRules.Utilities DoNothing)

I fFals eAct ion Optional. An action to be executed if the value contains something

other than numbers.

Example. This rule checks to see if the current element is entirely numeric. If so, it

checks to see that it conforms to the NationalProviderID and displays error 32001 if it

does not.

The parameter is:

Current_Element (BusinessRules.Utilities CheckFormat

NationalProviderID Current_Element (BusinessRules.Utilities

DisplayErrorByNumber 32001) (BusinessRules.Utilities DoNothing))

 DecPlaceArg Examples

This section provides examples of the variations of the DecPlaceArg parameter.

 Dn(-n), checks Value for a an allowable number of decimal places.

 Dn, where n is 0 – 9 requires that Value have exactly the specified number of decimal digits.

For example, D3 will pass 34.123, but not 34.12 or 55.

Business Rules Business Rules Reference  225

 D n-n specifies a range and requires that Value have at least the minimum number of decimal

places, but no more than the maximum. For example, D2-4 will pass 123.4567 and 44.55, but

not 123.4 nor 44.987654.

 A number with a decimal point character but no subsequent decimal digits, such as 1234., will

always fail.

 Examples

 IsNum “1234.56” “D2” (IfTrueAction) (IfFalseAction)

 Causes the (TrueAction) to be taken because 1234.56 is a number, and has two

decimal places.

 IsNum “1234.567” “D2” (IfTrueAction)(IfFalseAction)

 Causes the (IfFalseAction) to be taken because, while 1234.567 is a number, it has

three, not two, decimal places.

 S or T specifies requirement for sign characters ‘+’ and ‘-’.

 Use S to require leading signs in the value (ex. +123, -5.6).

 Use T to require trailing signs in the value (ex. 123-, 2.345+).

 Use both S and T to require signs before or after the number (ex. +123, 123-). (Note that in

this case a value with both will fail.)

 Examples

 IsNum “+1234.567” “D2-5S”(IfTrueAction)(IfFalseAction)

 Causes the (IfTrueAction) to be taken because +1234.567 is a signed number.

 IsNum “1234.567” “D2-5S” ”(IfTrueAction)(IfFalseAction)

 Causes the (IfFalseAction) to be taken because 1234.567 does not have the

required leading sign character.

 . (period) or , (comma) forces the decimal point character to be the specified one. For

example, D2-5, forces the decimal point character to be a comma and D2-5. forces the

decimal point character to be a period.

 The default decimal point character is determined from the input file if provided (for example,

EDIFACT and its UNA segment). Otherwise, the default is a period.

 Examples

 IsNum “1234,567” “D2-5”(IfTrueAction)(IfFalseAction)

 The action taken depends on the decimal point character in effect.

 - For EDIFACT data, where the decimal point is specified by the UNA as a comma, the

(IfTrueAction) is taken.

 - For X12 data, which assumes a period as the decimal point, the value is not recognized as a

number, and the (IfFalseAction) is taken.

 IsNum “1234,567” “D2-5, ”(IfTrueAction)(IfFalseAction)

 Causes the (IfTrueAction) to be taken because it forces the decimal point to be a

comma.

Business Rules Business Rules Reference  226

SaveCurrentSegment

All validation programs

Saves the content of the current segment, minus the segment terminator, in a segment variable.

The variable can then be used with the GetValueFromSegment rule.

Note: SaveCurrentSegment only functions with the GetValueFromSegment rule; it cannot be

used with any other rule.

Format of Parameters

SegVariabl e

Where:

SegVariabl e Storage name for the segment. This can be used with

GetValueFromSegment rules but cannot be used as a typical

variable.

Example

This rule on the CLM segment saves the contents of the CLM segment to variable CLM2300SEG:

CLM2300SEG might contain something like this. The segment terminator is not included.

CLM*2235057*100.00***13::1*N*A*Y*A*B******P

Please see GetValueFromSegment on page 220 for details about how to get specific values out of

this variable.

Business Rules Business Rules Reference  227

 CheckCTT

Analyzer Only

(See SetCheckCTT and SetCheckCTTCount on page 196 for Instream and HIPAA Validator

Desktop validating)

Checks the value in the CTT-01 and, optionally, in the CTT-02 also.

For best results, place the rule on the ST segment. It has to appear before anything that it counts.

For Function Name, choose:

 SetCheckCTTCount to check the CTT-01

 SetCheckCTT to check the CTT-01 and CTT-02

The number of line items (CTT-01) is usually the count of the first loop in Table 2, or the table

before the one containing the CTT. It is never an N1 loop.

The Hash total target is usually the first R-type field for amounts (such as element 330 or 782) on

or after the line item segment. All hash total targets are type R, as is CTT-02 (element 347). The

only hash total targets are elements 330, 782, 358, 380, 382, and 663.

CTT Checking

Set CTT-01 NO. of ... CTT-02 Hash Total of... Element and Description

202 LX

205 MMC

500 HL

561 HL PO102 330 (Quan. Ordered)

568 CS AMT02 at 2-090 782 (Mon. Amt)

810 IT1 IT102 358 (Quan. Invoiced)

811 IT1

819 JIL JIL03 782 (Mon. Amt)

828 DAD Not Used

830 LIN FST01 380 (Quantity)

832 LIN Not Used

840 PO1 PO102 330 (Quan. Ordered)

843 PO1 PO102 330 (Quan. Ordered)

844 CON QTY02 380 (Quantity)

845 CON QTY02 380 (Quantity)

846 LIN QTY02 380 (Quantity)

847 HL Not Used

Business Rules Business Rules Reference  228

CTT Checking

Set CTT-01 NO. of ... CTT-02 Hash Total of... Element and Description

849 CON QTY02 380 (Quantity)

850 PO1 PO102 330 (Quan. Ordered)

851 LS1 LS101 380 (Quantity)

852 LIN Not Used

853 TD5 Not Used

855 PO1 PO102 330 (Quan. Ordered)

856 HL SN102 382 (Units Shipped)

860 POC POC03 330 (Quan. Ordered)

861 RCD RCD02 663 (Quan. Units)

862 LIN FST01 380 (Quantity)

865 POC POC03 330 (Quan. Ordered)

866 DTM QTY02 380 (Quantity)

867 LIN QTY02 380 (Quantity)

869 HL

870 HL PO102 330 (Quan. Ordered)

Example. This rule checks the CTT-01.

Business Rules Business Rules Reference  229

FSVBExit.CheckDigit

Analyzer Only

For other validators, see CheckFormat on page 160.

Checks if data conforms to a length requirement, contains the correct number of leading zeros

and has a correct check digit as its final digit.

Check Digit algorithm

All TIBCO Foresight CheckDigit rules use UPC-A system:

1. Add together all the digits in odd-numbered positions and multiply that sum by 3.

2. Then add each digit in an even-numbered position to that sum.

3. The check digit will be whatever number you need to add to that end result sum to make it a

multiple of 10.

The rule looks like this:

Business Rules Business Rules Reference  230

X12 234-235 CheckDigit

Analyzer Only

CheckDigit will check element 234’s last digit against the qualifier in element 235 if element 235

contains a code that has one of these character strings in its de f in i t i on :

EAN

U.P.C.

The CheckDigit rule goes on element 234.

Analyzer will check the data in element 234 to see if it complies with the specified format of the

code value that was used.

If element 235’s code has

EAN or U.P.C. in its

definition …

Then element 234’s

data will be checked by

the corresponding check

digit formula. Put the

CheckDigit rule here.

Business Rules Business Rules Reference  231

EDIFACT 3039-3055 CheckDigit

Analyzer Only

CheckDigit will check the last digit in the element 3039 if the data in element 3055 contains a

code that has one of these character strings in its de f in i t i on :

EAN

UPC

The CheckDigit rule goes on element 3039.

Analyzer will check the data in element 3039 to see if it complies with the specified format of the

code value that was used.

…if element 3055’s code

has EAN or UPC in its

definition …

CheckDigit rule goes here.

Element 3039’s data will be

checked by the check digit

formula …

Business Rules Business Rules Reference  232

Other CheckDigit Options

Analyzer Only

See also CheckFormat on page 160.

Besides the 234 - 235 and 3039 - 3055 pairs, CheckDigit server can check other numeric values

for a correct check digit, min/max length, and the correct number of leading zeros.

You can enter these as parameters when setting up the CheckDigit routine:

EAN8 Data must be exactly 8 characters with no leading zeros.

EAN13 Data must be exactly 13 characters long with no leading zeros.

EAN14 Data must be exactly 14 characters long with no leading zeros.

SSCC Data must be exactly 18 characters long with up to one leading zero.

UPC12 Data must be exactly 12 characters long and can include leading zeros.

In each of these, the length includes the check digit.

Example: X12 Element 87 (MAN segment in 850)

I f e l ement 88 conta ins UP,

then the data fo r the current e l ement must con form to UPC12

When Analyzer encounters this element 87, it will look at element 88 to see if it contains qualifier

UP. If so, it will verify that element 87 conforms to UPC12 (exactly 12 digits long with up to two

leading zeros) and has the correct check digit.

User Defined Check Digit

Analyzer Only

You can also check other numeric values, even if they have no qualifier. The data must match

the parameter format specified by the guideline or MIG developer in Standards Editor.

The generic format of min-max Zn can be used in place of the EDISIM-defined parameters,

where:

min is the minimum length of the field

max is the maximum length of the field (optional)

Zn Zn is optional. Z is a literal and n is the number of leading zeros allowed. If

omitted, no leading zeros are allowed.

Business Rules Business Rules Reference  233

Examples:

5Z0 or 5 Data must be at least 5 characters long with no leading zeros.

5-5Z0 Data must be at exactly 5 characters long with no leading zeros.

10-12Z2 Data must be between 10 and 12 characters long (inclusive) with up to two

leading zeros.

5-6 or 5-6Z0 Data must be between 5 and 6 characters long with no leading zeros.

EDIFACT element 7402 example

This is placed on element 7402 in a GIR segment in the ORDERS message:

When Analyzer encounters element 7402, it will verify that this element is exactly 10 digits long

with no leading zeros and has the correct check digit.

DateTime

Analyzer Only

For other validators, see Date and Time on page 74.

Checks date and time to see if it follows the specified format.

X12 element 1251 Place the rule on the element 1251 that you want to check.

Use function ValidateDateTimeX12. The rule will check to

see if it follows the format specified in element 1250.

EDIFACT element 2380 Place the rule on the element 2380 that you want to check..

Use function ValidateDateTimeUN. The rule will check to

see if it follows the format specified in element. 2379.

Be sure to customize the code values for the corresponding qualifier: X12 element 1250 or

EDIFACT element 2379.

Example. This rule checks X12 element 1251.

Business Rules Business Rules Reference  234

FSVBExit.DisplayMessage

Analyzer Only

For other validators, see DisplayErrorByNumber on page 166.

Displays a customized diagnostic.

 Display the diagnostic Code va lue must be 00 or 01 if a value is something else. See

example 1 below.

 Display the diagnostic Vendor Num REF must pre c ede Booking Num REF if this

condition is violated. See example 2 below.

 Displays the message DUNS number must be 7825012250001 or 7825012250022 .

See example 3 below.

Steps include:

1. Define variables needed by the condition, if any.

2. In the Condition and Result Definitions box, set up the condition in the top and select Invoke

External Routine.

3. For Server Name, select FSVBExit.DisplayMessage.

4. For Function Name, select DisplayError.

5. For Parameters, type the diagnostic that is to display if Analyzer finds that the condition is

violated.

Example

This example displays “New PO1 loop” each time this segment appears in the data.

Business Rules Business Rules Reference  235

Example: More descriptive diagnostics about code value violation

Our purchase order allows 2 code values for the BEG01: 00 and 01. Data that contains any other

value causes Analyzer to issue a diagnostic similar to “Code Value "03" not used for BEG01

(D.E. 353) at col. 5.”

This business rule will give an additional diagnostic: “Code value must be 00 or 01.”

Business Rules Business Rules Reference  236

Example: Enforcing a particular order for REF segments

Let’s assume that we want two or more consecutive REF segments, and they have to be in the

same order as they appear in the guideline. Ordinarily, Analyzer would allow consecutive REF

segments to appear in any order in the data.

Edit the code values in each REF-01 to be unique.

Assign a local variable to the first REF. In our example we’ll use REF01first.

Create this business rule on the second REF:

If the REFs appear out of order, Analyzer displays the custom message:

Business Rules Business Rules Reference  237

Example: Display the application value in an Analyzer diagnostic

Analyzer flags application value violations with a message like this:

Application Value "9012345918341" not found in value list "DUNS"

By using DisplayMessage, you can display an additional message that lists what values are

acceptable:

DUNS number must be 7825012250001 or 7825012250022

To set this up:

1. Attach the DUNS application value list to the element.

2. Place a variable on the element. In our example we’ll use 3100N104.

3. Place this rule on the element:

If Analyzer finds another value at that location, it will display the message that you specified.

ProductUtilities

Analyzer Only

This rule checks segments with repeating pairs of element 235-234 (like the 850’s LIN segment

in recent vintage X12 versions) by:

 Defining code(s), if any, that must be used in an element 235 in the segment.

 Allowing the 235-234 pairs to appear in any order within the segment.

 Prohibiting duplicate codes in element 235 within the segment.

Business Rules Business Rules Reference  238

Example

This rule on the LIN segment requires at least three 235 elements. They must contain B3, B5,

and B6.

When analyzing EDI data against this guideline, Analyzer will display diagnostic messages if

these conditions are not met: “Check235 Error(s) - Duplicate Codes: B5 Missing Codes: B6” or

similar.

Business Rules Appendix A: Variables  239

Appendix A: Variables

Before using any element other than the current element in a business rule, you will need to assign

it a "variable" name. There are two types of variables: local variables and

BusinessRules.Variable.

When do you use a local variable and when do you use a BusinessRules.Variable? That depends on

how you want to use it in a rule. See the next two sections for details.

Local Variables

When to use Local Variables

Assign a local variable if you will use it in the top of the Business Rules box. You must be on an

element.

Assigning a Local Variable

To assign a local variable:

1. Click on the element.

2. Select Edit | Advanced | Business Rules.

3. In the Local Variable area, type a variable name that conforms to the suggestions in Good

Variable Names on page 241.

Business Rules Appendix A: Variables  240

4. Click OK to close the dialog boxes.

BusinessRules.Variable

When to use BusinessRules.Variable

Use BusinessRules.Variable when you want to assign a variable name that will be used in the

Parameter area of the Condition and Rule Definition dialog.

In this example, variable 1000APER04CommNum must be a BusinessRules.Variable because it is

used in the Parameters area of the rule:

This example compares the contents of variable 1000APER04CommNum to the current element's

value. If they are the same (true condition), then error number 32211 displays.

Setting up BusinessRules.Variable

Create BusinessRules.Variable with business rule functions like SetVar or AddVar.

To assign a BusinessRules.Variable:

1. Click on the element or segment.

2. Choose Edit | Advanced | Business Rules | New.

3. Click Always and select *Call External Routine from the drop box.

4. For Server Name, choose BusinessRules.Variable and then choose the Function Name SetVar

(see page 202) or AddVar (see page 204).

 You can also assign variables with these functions under BusinessRules.Utilities:

AppendString (page 153), GetToken (page 173), or SubString (page 173).

Business Rules Appendix A: Variables  241

5. Type the variable's name in the rule definition area, as in the following example. Follow the

naming suggestions in Good Variable Names on page 241.

Good Variable Names

TIBCO Foresight-supplied variable names indicate the location where the variable is assigned. For

example, to find 201 0A BNM1 08I DQua l :

2010 AB = loop 2110AB

N M 1 = segment

0 8 = element

IDQu al = short description

It is good practice for you to follow this convention and use the location of the element as part of

the name.

Variable names can be any length and should not contain special characters or spaces.

Example. If you are assigning a variable to the Statement Date DTP02 in loop 2300 of the

Subscriber HL loop of an 837:

 Variable Name Explanation

Good name S2300DTP02StmtDt S for Subscriber HL level.

2300 for loop 2300.

DTP02 for segment and element.

StmtDt for the Statement Date DTP.

Poor name DTP02 Which DTP? There are many.

Example. If you are assigning a variable to the NM108 Identification Code Qualifier in loop

2010AB:

 Variable Name Explanation

Good name 2010ABNM108IDQual 2010AB for loop 2010AB.

NM108 for segment and element.

IDQual for the element name.

Poor name IDQual Which ID Qualifier? There are many.

If you follow these guidelines, a variable’s name will tell you where it is assigned.

Business Rules Appendix A: Variables  242

Global Variables

To set up a variable that is cleared only by specifically naming it in a BusinessRules.Variable

Clear rule, assign a name that starts with GLOBAL_ (note the underscore).

Example. GLOBAL_2010ABNM108IDQual. The word GLOBAL and the underscore are

actually part of the name and should be included when using the name in a rule.

TIBCO Foresight-Defined Variables

Instream sets up these variable names when the guideline runs a UserExitWithWait business rule

(see page 108):

FS_UserExit_Status Return status from external program, which can be:

 200 Initial state at startup before attempt to call process

 201 Called the process

 202 Process completed within the time specified (Only used

for UserExitWithWait)

 203 Process cancelled due to time limit (Only used for

UserExitWithWait)

 204 Failed to locate Process

FS_UserExit_RtnCode The return code from the external program.

The following variable is contained in the the base validation guidelines provided with TIBCO

Foresight products, however for it to be made active, a SetVar business rule is required in the

companion guideline.

FS_ICD9_ICD10_CutoverDate

 This variable supports the ICD-9 to ICD-10 conversion

process cutover and is pre-set to the appropriate date.

 To update this value without changing the associated

guidelines, override the variable by directing Instream to

call an external PreLoadedVariable file. See Procedure:

Changing the FS_ICD9_ICD10_CutoverDate Variable on

page 243.

Business Rules Appendix A: Variables  243

Procedure: Changing the FS_ICD9_ICD10_CutoverDate Variable

Use the following steps to update the FS_ICD9_ICD10_CutoverDate variable.

1. Open your companion guideline using EDISIM Standards Editor. If you don’t have a companion

guideline, create a new one. In the examples in this procedure, our companion guideline is called

CUTOVERDATECHECKING.

2. On the ST segment of the companion guideline, add a SetVar business rule. We want to assign

theTIBCO Foresight-define variable FS_ICD9_ICD10_CutoverDate to a new variable name. Use

the variable name of your choice. In this example our new variable name is MY_CUTOVERDATE.

When you are done, your business rule should look something like this:

Save your guideline.

Business Rules Appendix A: Variables  244

3. Use GuideMerge to merge your companion guideline with the base guideline (which includes types 1-

7 edits). Save your new guideline. Refer to GuideMerge.pdf for more information on merging.

4. Edit your external variables file to update the value for your new variable. If you don’t have an

external variables file, create one. (See Populating Variables with an External Variables File on page

248.)

We want to use MY_CUTOVERDATE instead of the TIBCO Foresight-defined variable

FS_ICD9_ICD10_CutoverDate and we want MY_CUTOVERDATE to be set to 20141231. Save

the file.

5. Tell Instream where to find your external variables file by adding a PreloadedVariables line to your

$dir.ini file. Save the file.

 The Preloaded Variables file will now be called during validation.

Business Rules Appendix A: Variables  245

Preprocessor Variables

You can define and reference variable names on the fly by bracketing them by percent signs.

These “preprocessor variables” differ from regular variables in these ways:

 For most rules, they are evaluated when the rule is executed.

 For exits, they are evaluated when the rule in the exit is triggered, not when the exit itself is

encountered.

 Their value can be another variable.

 They can be used in any part of a business rule parameter.

 They can be used to display a value in error messages for hard-coded rules but not in

CustomerFSBRerrs.txt rules.

 They are surrounded by percent signs. Any time a variable bracketed by percent signs is seen

(ex. %TESTVAR%), it will be replaced by that variable’s contents.

For example, if we have a variable named “LocID” that contains a string corresponding to the

Location ID (say 540) then the statement

 InsertList %LocID% ShipLOC

becomes

 InsertList 540 ShipLOC

Example.

The % delimiters around PO1Count show that this is not the actual name, but a variable that will

point to the name. The contents might be another variable, which might contain another variable

and so on. At runtime, this chain is resolved as far as it goes.

These “indirect references” are resolved when the rule is run, not when it is encountered.

However, the following exits resolve the variable when the ru l e that they conta in runs , not when

the exit itself is encountered:

 SetCompositePreExit

 SetElementPostExit

 SetLoopPostExit

 SetLoopPostInstanceExit

 SetSegmentPreExit

Business Rules Appendix A: Variables  246

Variable Delimiters

 Variable contains

constant

Variable contains

another variable

Used in CustomerFSBRerrs.txt message #

See example 1

cannot be used in

external error file

Used in hard-coded message %

See example 2

%

See example 3

Used in body of business rule unless noted, no

delimiters

See example 4

%

See examples 5 and 6

A number of examples are below. For two complex preprocessor variable examples involving

maps, see page 251.

Example 1. This example used a regular variable, not a preprocessor variable. OrderNum is a

variable containing a constant value.

32005 Order #OrderNum# received on #Current_Date#

Example 2. OrderNum is a variable containing a constant value. The error message is hard-coded

into the business rule and contains two variables, which have to be surrounded by percent signs.

Example 3. While this example appears this same as Example 2, in this case the variable

OrderNum contains a variable LastOrderNum which can contain a constant or another variable.

Business Rules Appendix A: Variables  247

Example 4. OrderNum and MinNum are regular variables containing constants. They are not

surrounded by any special characters in the body of the rule except in DisplayErrorByNumber.

Example 5. This example creates a list name on the fly. The rule is inserting the contents of

LineItemAMT into the list (name to be determined by resolving the variable OrderID):

Assume: OrderID contains 20081025A10

 LineItemAMT contains 72.50

The parameters above becomes:

20081025A10 72.50 (in s e r t 72.50 in t o th e l i s t named 20081025A10)

Example 6. Nested variables.

Assume: ABC contains %DEF%

 DEF contains %GHI%

 GHI contains JOHNSONJAKE

The parameters above becomes:

JOHNSONJAKE “1” (Add 1 to var iab l e JOHNSONJAKE)

Business Rules Appendix A: Variables  248

Populating Variables with an External Variables File

You can store variables and their values in an external file. This allows you to change the value

without changing the guideline.

This file can have the filename and location of your choice, as long as it can be accessed by

Instream.

To tell Instream where to find your variables file, add a PreloadedVariables line to $dir.ini in

Instream’s Bin directory:

Inside the variable file, each line contains:

 var iab l e , va lue

Example:

This file contains two variables. InternalPartner contains the value “KAVERCORP.”

If you use a business rule like this, the output for the element or field where this business rule is

located will contain “KAVERCORP.”

InternalPartner must be spelled and capitalized exactly the same in the external file and in the

business rule.

Save it with any filename and a location that is accessible to Instream. This file can contain other

data also.

Business Rules Appendix A: Variables  249

Initializing and Clearing Variables and Lists

Local variables, SetVar variables, and lists retain their current values until:

 The value is changed with another rule.

 The value is changed in another iteration of the loop that contains the rule.

 The value is explicitly cleared.

 The transaction set ends.

Variables in Loops

If a value is set on an element that will always occur, then the value will be overwritten with each

iteration of the loop.

If a value is set on an element that may or may not occur, then the value may persist through

multiple iterations of the loop. You may need to reset the value at the beginning or end of the

loop.

Consider this SetVar variable:

Since N4-04 is optional, we want to provide for loop iterations where the N404 is not present.

There are many ways to handle this.

Optional element;

SetVar assigns

2010AAN404 here

Mandatory loop;

 can repeat

Mandatory loop;

 cannot repeat

Business Rules Appendix A: Variables  250

Example Method 1. Initialize

On the 2000A HL or the 2010AA NM1 segment, initialize the value:

Example Method 2. Clear at top of loop

On the 2000A HL or the 2010AA NM1 segment, clear the value:

Example Method 3. Clear at end of loop

On the ST, clear the variable at the exit of each 2000A or 2101AA loop:

Lists in Loops

The same principals apply to lists and to variables. You can reset the list with a BusinessRules.List

ClearList (see page 111) at the beginning of the loop or as a loop exit.

Business Rules Appendix A: Variables  251

Variable Maps

Variables can be maps with alphanumeric indices. A map reference is a variable followed by an

alphanumeric index in parentheses, like these examples:

VendorTypeTotals(“InState”) Refers to the “InState” slot of variable VendorTypeTotals.

StateTotals(“OH”) Refers to the “OH” slot of variable StateTotals.

CategoryFlag(1) Identical to CategoryFlag(“1”).

IDNeeded(“”) Identical to IDNeeded (just a regular variable).

IDNeeded(MyVar) Gets the index from the contents of variable MyVar.

CountryTotals(%MyVar%) Gets the index from the contents of the variable contained in

MyVar. See Preprocessor Variables on page 245.

BuyerIndex(MyVar(BuyerCode)) First uses BuyerCode’s contents as index into MyVar array, which

it then uses as index into BuyerIndex array.

BusinessRules.Variable.Clear will clear the entire map, and BusinessRules.Variable.DumpVars will

display all map members, including their keys.

Maps are especially powerful when combined with preprocessor variables (see page 245).

Example 1

We display a message if the sales tax rate is incorrect for the state.

First, we create a map called StateTax containing sales tax rates for each state:

We set up a local variable on the State element:

Business Rules Appendix A: Variables  252

Next, we go to the tax rate element and use the “Single” row at the top to see if the state is OH. If

so, we check the current element against our StateTax’s “OH” index. If they don’t match, we

display a message like “Tax rate is .055 for Ohio.”

We repeat this for each state:

Example 2

Like Example 1, this displays a message if the sales tax rate is incorrect for the state, but it uses

fewer rules.

First, we create the same map called StateTax containing sales tax rates for each state:

Business Rules Appendix A: Variables  253

We set up a BusinessRule variable called StateCode on the State element:

Next, we go to the tax rate element and use the StateCode element as an index into our map. We

put the tax rate they should be using, considering their state, into a variable called StateTaxRate:

In a second rule on the same element, we check the current element against what it should be

(StateTaxRate). If it differs, we display a message that shows the correct state tax rate and the state:

This rule will take care of any state in our map. We do not need separate rules for each state.

Business Rules Appendix A: Variables  254

Business Rules Appendix B: Validator Error Messages  255

Appendix B: Validator Error
Messages

All validation programs

Viewing TIBCO Foresight-Supplied Error Messages

Please see ErrorMessageNumbers.pdf for a list of error message ranges, the files that contain them,

and what guidelines use them. These messages are used by the TIBCO Foresight-supplied business

rules.

Creating and Viewing your own Error Messages

To create your own custom error messages:

1. Look at the format of the error messages in FSBRErrs.txt in the Bin directory:

 Each error message is on a separate line.

 Each line starts with the number, then a Tab, then the text to be displayed during validation.

2. Use Notepad or another text editor to open the file CustomerFSBRERRS.TXT in the Bin

directory. Use this file when you want to create your own error messages.

 Follow the format you saw in FSBRErrs.txt. The lowest error number you can use is 32000, which

already contains a dummy error message with text that you can change:

 32000 Add your own error messages

 Change the text for error 32000. Do not use any special characters such as exclamation marks.

3. To add another error message, add a line for error 32001 followed by a Tab and the error text.

 You can use the following number ranges for custom error messages:

32000-32999

60000 to 60999

4. Save and close the file.

You now have your own error message and can use it in business rules.

Tab

Business Rules Appendix B: Validator Error Messages  256

Variables in Error Messages

You can use a BusinessRules.Variable in error messages by surrounding the variable with:

(pound signs) If the error message is in CustomerFSBRErrs.txt.

% (percent signs) If the error message is hard-coded into the business rule.

This message displays variable S2300CLM01ClaimNum:

32222 Beginning of claim number #S2300CLM01ClaimNum#

The same message hard-coded into the business rule itself will look like this:

Either will display messages like these:

Beginning of claim number 2003051520001

Beginning of claim number 2003051520002

If variable S2300CLM01ClaimNum has no value, the message will display as one of these (depending

on whether it is empty due to a CLEAR or an empty element):

Beginning of claim number S2300CLM01ClaimNum

Beginning of claim number

Using your own Error Messages

To use your own error messages in a rule:

Use BusinessRules.Utilities DisplayErrorByNumber See page 166

Use Error Message Override See below

Business Rules Appendix B: Validator Error Messages  257

Error Message Override

At the bottom of the Condition and Rule Definition box, you can override the message that would

normally display if this rule is violated:

This is disabled for some data types.

To do this:

1. Choose any Result Type except Invoke External Routine.

2. If you selected Set Usage/Status, choose the Usage Setting. If the EDI data does not honor that

setting, the error message set up below will be displayed. When you close the business rules box, the

item’s user attribute will be D for dependent, indicating that the user attribute will be the one in the

business rule.

 If you selected Select Internal Code Set, choose the set that should be used. If the value in the

EDI is not in that set, the error message set up below will be displayed. This is available for rules on

elements.

 If you selected Select Application Value List, choose the value list that should be used. If the

value in the EDI is not in that list, the error message set up below will be displayed. This is available

for rules on elements.

3. Enter the number of your custom error message (32000 or higher) in the Message Number field at

the bottom.

4. To override the default severity (Error), select a severity.

5. To override the default type (type 4), select a type.

Example

This REF segment is marked as Must be Used:

If not present in the data, any TIBCO Foresight validator will issue a generic message:

Missing Segment REF (Transmission Type Identification) at 1-015, though

marked "Must Be Used"

Instead, we want to display this message:

Missing REF segment at 1-015. Transaction set rejected.

Business Rules Appendix B: Validator Error Messages  258

To do this:

1. Add a business rule like this one to the REF segment:

2. Put this message in CustomerFSBRERRS.TXT:

 32003 Missing REF segment at 1-015. Transaction set rejected.

3. When validating with this guideline, your message will now look like this:

If this is not true

in the data …

… display this

message

Business Rules Appendix B: Validator Error Messages  259

Troubleshooting Custom Error Messages

 If your error message displays as a blank line in Validator, check your customer errors file to

be sure you've separated the number and text with a Tab.

 If the error message does not display at all, check its format in your customer errors file and

ensure that no special characters are included in the message text.

 Be sure that you have closed all error messages files before validating a file.

 Be sure $dir.ini points to the file and the line is not commented out:

[ErrMsgFile]

ERRMSGFILE1 = "@\bin\FSANERRS.TXT"

ERRMSGFILE2 = "@\bin\FSBRERRS.TXT"

ERRMSGFILE3 = "@\bin\CustomerFSBRERRS.TXT"

 EDISIM Validator has a debug mode on the Options menu. Turn it on before validating:

Business Rules Appendix B: Validator Error Messages  260

Business Rules Appendix C: Code Tables  261

Appendix C: Code Tables

Instream and HIPAA Validator Desktop

Setting up your own Code Tables

To set up your own external code tables:

1. Create a text file containing your external code tables, as shown in Example A below.

 You can copy SampleUserTable.txt to a new name and use it. Do not simply edit

SampleUserTable.txt itself, since this is overwritten with each update.

 Codes should be unique within a table.

2. Go to Instream’s or HIPAA Validator Desktop’s Bin directory and edit $Dir.ini (Windows) or

fsdir.ini (UNIX) with a text editor such as Notepad.

 Find the [UserTables] section and be sure that the UserTable line is not preceded by a colon

(which would comment out the line).

 Change the path and filename to point to the location of the text file containing your external

code tables. Example:

 [UserTables]

 UserTable="C:\Foresight\Desktop\Bin\OurUserTable.TXT"

You can use these code tables with the FindUserCode function (see page 65) and

FindUserCodeWithDate function (see page 65).

It’s important to know that the validation supports only one entry per key within external tables.

If multiple entries for the same key are encountered in an external table, subsequent entries

overwrite the previous entries, causing unexpected errors.

Business Rules Appendix C: Code Tables  262

Example A: External Code Table File

Example contents of file

File Format

A code table starts with ^tab l ename , where:

^ A caret.

tab l ename Table's name, with no spaces or special characters. Suggestion:

HIPAA users can start your table names with USER to avoid using

the same name as a HIPAA table.

Code lines have this format: c ode|star tdat e|enddat e|code desc r ip t ion , where:

c ode The actual code.

s tar tdat e (optional) Date the code becomes effective. Use yyyymmdd format.

enddat e (optional) Date the code is no longer effective. Use yyyymmdd

format.

c ode desc r ip t ion The code's description.

| All three vertical lines must be included, even if the code is always

effective and therefore has no start date and end date.

Business Rules Appendix C: Code Tables  263

Extending existing HIPAA Code Tables

You can add to, modify, or delete codes in TIBCO Foresight-supplied HIPAA code tables, thus

allowing these codes. For details, see ExtendingCodeTables.pdf.

Business Rules Appendix C: Code Tables  264

Business Rules Appendix D: Complicated Rules  265

Appendix D: Complicated Rules

You may find situations in which you can either combine many tests and actions into one rule,

or you can make separate rules for each one.

Simple Rules

The typical format for a simple rule is:

Test (ac t ion i f t rue)

The following example is a simple rule. It has one test and one action if the test condition

evaluates to true.

What it does: This CompareString function checks to see if the value in variable

PER03Submitter contains the literal value TE. If so, it executes the action within the

parentheses: take the first character in the current element's value and stores it in a variable

TEFirstDigit.

You can add another simple rule to the same location. It might test the result of the rule above

and take another action if the test condition evaluates to true. The next example does this.

Business Rules Appendix D: Complicated Rules  266

What it does: The CompareString function checks the contents of variable TEFirstDigit (just

created by the rule above) to see if it contains a 1. If so, it executes the action within the

parentheses. (The action issues error message 32211.)

Complex Rules

A typical format for a complex rule is:

t e s t1 (t e s t2 (ac t ion i f t es t1 AND tes t2 i s t rue))

The following example is a complex rule. It has a test plus an action if the test condition

evaluates to true. Within that action is another test with action to be performed if it is true.

Example 1: Two Conditions create an Error Message

This rule issues an error message if the NM108 is PI and the NM109 does not equal AB123.

1. Use SetVar to assign a variable to the NM108 and call it 2010BCNM108PayName. For

details about using SetVar, see page 240.

Business Rules Appendix D: Complicated Rules  267

2. Create this rule on the NM109.

Parameter Text Explanation

BusinessRules.Variable

CompareString

2010BCNM108PayName EQ "PI"

Call the CompareString function to see if the current

element contains a value of PI.

If true, continue by performing the action inside the

parentheses.

(BusinessRules.Variable

CompareString Current_Element NE

"AB123" (BusinessRules.Utilities

DisplayErrorByNumber 32212))

Call the CompareString function to see if the current

element does not contain AB123.

If true, continue by performing the action inside the

inner parentheses.

(BusinessRules.Utilities

DisplayErrorByNumber 32212))

Call the DisplayErrorByNumber function, to display

the text of error 32212.

Business Rules Appendix D: Complicated Rules  268

Example 2: Using Rules in Loops

At the end of each repetition of the CLM loop in the data, we need to see if the claim total

matches the total of the service lines. This example will show you how to do this.

1. Go to the CLM02 and use SetVar to assign a variable S2300CLM02ClaimTotal: This variable

holds the claim total.

2. Go to the SV203 and use AddVar to total the service line amounts in a variable called

S2400SV203ServiceAmt:

3. Zero S2400SV203ServiceAmt on the CLM segment so that it will start over again for each

repetition of the CLM loop:

4. At the end of each repetition of the CLM loop in the data, see if the claim total matches the

totaled service lines. To do this, we need to put a SetLoopPostInstanceExit early in the

guideline, before the CLM loop. The usual place for these exits is on the ST segment.

 This example rule executes at the end of each repetition of the CLM loop (loop 2300) and

compares the numeric values in the variables S2300CLM02ClaimTotal and

S2400SV203ServiceAmt. If they are not the same, an error message displays.

For another example of rule usage in loops, see Balance on page 207.

Business Rules Appendix D: Complicated Rules  269

Example 3: Adding and Comparing Numeric Values

In the 835 Health Care Payment Advice, the CLP03 is the amount submitted for a claim, and

the CLP04 is the amount paid. If they are different, the differences must be specified in the

CAS. The amounts in the CAS03, 06, 09, 12, 15, and 18 must equal the difference between the

CLP03 and CLP04.

In other words:

CLP03 - CLP04 = (CAS03+CAS06+CAS09+CAS012+CAS015+CAS018)

A strategy:

1. Initialize CASTOT, CLP03, and CLP04 variables by setting them equal to 0 on the CLP

segment, which is mandatory:

2. On the CLP03, put its value into variable CLP03:

3. Add up amounts in CAS03, 06, 09, 12, 15, and 18 by putting this AddVar on each one:

Business Rules Appendix D: Complicated Rules  270

4. On the CLP04, put its value into variable CLP04:

5. On the Patient Name NM1 (the next mandatory segment), see if

CLP03 - CLP04 = CASTOT; if not, display an error message:

Business Rules Appendix E: ODBC Examples  271

Appendix E: ODBC Examples

Instream and HIPAA Validator Desktop

ODBC Tutorials and Demos

Please see page 111 for the format of each ODBC business rule.

This section includes two tutorials:

 A simple example that looks up the provider ID in an Access database and issues a message

if it is not found. See ODBC Example 1 below.

 An extensive example starts on page 279.

HIPAA Validator Desktop and HIPAA Instream ship with ODBC demos:

HIPAA Validator Desktop

Validate 837I-Demo3DB.txt or 837I_4010_H_Demo3DB.txt with guideline

ODBCEX1 and then ODBCEX2.

Instream Go to Instream’s DemoData\ODBC directory and see the directions in

_readme_ODBC.txt.

Business Rules Appendix E: ODBC Examples  272

ODBC Example 1

This example uses a sample Access database called FSDemo.mdb that has been installed in

HIPAA Validator Desktop’s DemoData directory and Instream’s DemoData\ODBC directory.

You will use EDISIM to create rules on an 837I Addenda that take the provider ID from the

EDI being validated and look it up in the database. If it is not in the database, your rule will

display an error message.

Database FSDemo.mdb

DSN FSODBCdemo

Database name in rules MYFSdemo

Guideline containing rules ODBCEX1

EDI file 837I_4010_H_ErrorEvenClms.txt

Setting up a system DSN

Windows provides two applications for setting up ODBC Data Sources, one for 64-bit and one for 32-
bit.

Instream requires a 64-bit ODBC driver

HIPAA Validator Desktop and EDISIM require 32-bit ODBC drivers.

Note that, if you have a combination of the above products (such as Instream and HIPAA Validator
Desktop), you will you need both drivers.

Set up DSN Name

On the PC where you will run HIPAA Validator Desktop or Instream, set up a system-wide

Data Set Name (DSN) called FSODBCdemo or FSODBCdemo64 for the sample database:

1 Under Control Panel, choose Administrative Tools and select the appropriate ODBC Data

Source (32- or 64-bit)

Business Rules Appendix E: ODBC Examples  273

2. Choose the System DSN tab. Is there a listing for FSODBCdemo/FSODBCdemo64?

 Yes – your DSN is already set up and you can proceed to Looking at the Database on page

274.

 No – Choose Add | Microsoft Access Driver (*.mdb) | Finish and continue with

Step 4.

 Note: If the Microsoft Access Driver (*.mdb) driver name is not listed, you must install the

correct ODBC driver for your operating system. (Refer to https://www.microsoft.com/en-

us/download).

3. Fill out the fields as follows, and then click Select.

 Note: Use FSODBCdemo for a 32-bit data source or FSODBCdemo64 for a 64-bit data

source.

https://www.microsoft.com/en-us/download
https://www.microsoft.com/en-us/download

Business Rules Appendix E: ODBC Examples  274

4. Navigate to HIPAA Validator Desktop’s DemoData directory or Instream’s

DemoData\ODBC directory and choose FSDemo.mdb. Click OK until you have closed out

of all Control Panel dialog boxes.

 (These files are exactly the same for HIPAA Validator Desktop and Instream; if you are using

the demos for both products, choose either one.)

The DSN name FSODBCdemo is like a nickname for the database file. If you move the

database, you need only change the path under Control Panel | Administrative Tools | Data

Sources (ODBC). No business rules will have to be changed.

It is possible to hard-code the database path in your business rules, but setting up a system DSN

as shown above is preferable. It enables you to move the database, and store the database in

different places on different validation machines, without editing business rules.

Edit $Dir.ini

Edit $Dir.ini in HIPAA Validator Desktop or Instream’s Bin directory and give the DSN a name:

Looking at the Database

1. Open the Access database FSDemo.mdb in the HIPAA Validator Desktop’s DemoData

directory or Instream’s DemoData\ODBC directory. Look at the Master table.

 This exercise checks the provider ID in an EDI file to see if it appears in column 2 of this

database. If not, an error message appears.

2. Close the database.

Business Rules Appendix E: ODBC Examples  275

Setting up the Error Message

1 Back up your current CustomerFSBRERRS.TXT and $dir.ini files in HIPAA Validator

Desktop’s or Instream’s Bin directory.

2. Check $dir.ini to see that

ERRMSGFILE3 ="@\bin\CustomerFSBRERRS.TXT"

and that the line is not preceded with a colon (which would comment it out).

3. Edit CustomerFSBRERRS.TXT and add this error message all on one line (use a Tab after

the number):

 35000 Database Lookup Error: The Pay-To Provider ID is not found in the

Master Table in FSDemo.MDB.

4. Save and close the file.

We will create a rule that uses this error message.

Business Rules Appendix E: ODBC Examples  276

Creating the Rules

Note

To import a guideline that already has these rules created, open Standards Editor and choose

File | Import | Import Single SEF and open. Go to EDISIM’s AddlStds directory and

select ODBCEX1.sef.

Create rules that check the provider ID and issue a message if it is not found in FSDemo.mdb.

1 In Standards Editor, create a new guideline based on 837AQ320 and save it as ODBCEX1.

2. On the ST segment, create a business rule that opens FSDemo.mdb by using its DSN name

FSODBCdemo.

 This rule names the database MYFSdemo and that is a name you will use for it in any rules

throughout the guideline.

3. The next rule compares the EDI data in 2010AA NM1-09:

NM1*85*2*JONES*****24*432021111~

 … to the second column in the database’s Master table.

 To set up this checking, see if the EDI value in 2010AA NM1-09 is in column 2 of the

database by adding this rule to 2010AA NM1-09:

 Note the double quotes around the Select statement and the single quotes around

%Current_Element%.

 This says to look in MYFSdemo, check the Master table, and find records where the EDI

value of the current element matches some value in the ID column of the database. Put the

number of matched database records in the variable FSDemoReturnCode.

4. The next rule, on the same element, issues message 35000 if the number of records matched

equals zero.

Business Rules Appendix E: ODBC Examples  277

5. Finally, go to the SE segment and close the database:

6. Save the guideline.

Business Rules Appendix E: ODBC Examples  278

Testing the Rules

HIPAA Validator Desktop

1 Find EDISIM’s User Files\Public Guidelines\ODBCEX1.std and copy it to HIPAA

Validator Desktop’s Database directory for testing.

2. From within HIPAA Validator Desktop, open 837I_4010_H_ErrorEvenClms.txt or

Tutorial837IA.txt in HIPAA Validator Desktop’s DemoData directory.

3. Choose ODBCEX1 for the guideline. After validation, look for the error message “Database

Lookup Error : The Pay -To Prov ider ID i s no t f ound in the Mast er Table in

FSDemo.MDB.” This is our rule in action.

Instream

1 Find EDISIM’s User Files\Public Guidelines\ODBCEX1.STD and copy it to Instream’s

Database directory for testing.

2. Go to Instream’s DemoData\ODBC directory and check the paths in ODBC_EX1.bat. Save

and close the file.

3. Execute ODBC_EX1.bat.

4. After validation, look in Instream’s Output directory for results file

837I_4010_H_ErrorEvenClms_Results.txt. Search for “Database Lookup Error.” This is

our rule in action.

Business Rules Appendix E: ODBC Examples  279

ODBC Example 2

In this example, the Bill-To and Pay-To provider numbers will be validated against the same

Access database table that was used in Example 1. Providers are first checked to see if they are

in the database table, and an error is displayed if they are not. The rules then check a ‘Status

Flag’ returned from the database to see if they are inactive. An error message is displayed if the

provider is inactive.

We assume FSDemo.mdb has a DSN name of FSODBCdemo. If not, please follow the steps

on page 272.

Database ...FSDemo.mdb

DSN ..FSODBCdemo

Database name in rules ..MYFSdemo

Return code variable ..DBResultVar

Guideline containing rules ..ODBCEX2

The rules have already been placed in the guideline ODBCEX2, which is in HIPAA Validator

Desktop’s Database directory and Instream’s DemoData\ODBC directory.

Business Rules Appendix E: ODBC Examples  280

Running the Demo in HIPAA Validator Desktop

1. Set up the custom error messages:

a. Back up CustomerFSBRERRS.TXT file in HIPAA Validator Desktop’s Bin directory.

b. Open Add-to-CustomerFSBRERRS.TXT in HIPAA Validator Desktop’s DemoData

directory and copy the contents to the end of your CustomerFSBRERRS.TXT.

c. Close both TXT files.

2. Validate data using the guideline:

a. Open HIPAA Validator Desktop.

b. Open 837I-Demo3DB.txt or 837I_4010_H_Demo3DB.txt in HIPAA Validator

Desktop’s DemoData directory.

c. Use guideline ODBCEX2.

d. Check Use for all occurrences of 004010X096A1.

3. When complete, view the ODBC messages by looking for messages that start with ‘ODBC

Message:’

 This demo data file contains four claims:

 The first provider’s number is OK.

 The second provider is on file but not active.

 The remaining two providers are not on file.

Running the Demo in Instream

Go to Instream’s DemoData\ODBC directory and follow the directions in

_readme_ODBC.txt.

Business Rules Appendix E: ODBC Examples  281

The Rules that made it happen

How did we accomplish this? Go to Standards Editor to see.

1. In Standards Editor, choose File | Import | Import Single SEF and open and import

ODBCEX2 from HIPAA Validator Desktop’s DemoData directory.

2. Look at the business rules described below.

ST segment

This business rule on the ST segment opens the database and nicknames it MYFSdemo within

the guideline.

To see it, right-click on the ST segment, chose Business Rules, click on the rule, and choose

Edit.

Where:

MYFSdemo The name to be used for this database connection in subsequent

ODBC Business Rules in this guideline.

DBResultVar A variable name to hold a return code. If this return code is not

zero, then an error occurred. See page 140.

FSODBCdemo The DSN name for database FSDemo.mdb. This name was

previously assigned through control panel (see page 272).

Business Rules Appendix E: ODBC Examples  282

2010AA NM1-08 Element

This business rule on the Billing Provider Name’s identification code qualifier stores the

contents of this element into variable BillProvIDQual:

2010AA NM1-09 Element

Rule #1

This business rule on the Billing Provider Name’s identification code stores the contents of this

element into variable BillProvID:

Rule #2

This rule executes a SELECT statement against the MYFSdemo database.

Before executing the statement, HIPAA Validator Desktop replaces the placeholders:

 %BillProvIDQual% with the contents of the BillProvIDQual variable (see the rule on the

NM1-08)

%Current_Element% with the contents of the current element (the provider’s ID).

Where:

Name and Status Field names on the Master table from the

 FSDemo.mdb file.

DBResultVar Variable to contain the number of records that matched during the

SELECT. If this returns a negative number, it is an error code (see

page 143).

BillProvDBName=1 Assigns whatever is in Field #1 of the first record selected to

variable BillProvDBName. Field #1 in this SELECT example is the

Name field (SELECT Name, Status).

Business Rules Appendix E: ODBC Examples  283

BillProvDBStatus=2 Assigns the contents of Field #2 (SELECT Name, Status) from the

first record selected to variable BillProvDBStatus.

If no records are found, then the two assignment variables are cleared.

Rule #3

This rule compares the contents of variable DBResultVar with the string ‘0’ (zero).

If equal, no records matched the ID and Qualifier of the provider, and error message 32501 is

displayed.

Where:

DBResultVar Variable containing the number of records selected by DBQuery in

the previous rule.

32501 Error message in CustomerFSBRErrs.txt.

Rule #4

This rule compares the contents of variable BillProvDBStatus with the letter ‘I’. If equal, it

means that the first matching Provider record had a status of Inactive, and error message 32502

is displayed.

Where:

BillProvDBStatus Variable containing the first selected record’s Status field from the

DBQuery in the Rule 2 above.

32502 Error message telling the user that the Provider is Inactive (from

CustomerFSBRErrs).

Business Rules Appendix E: ODBC Examples  284

Rule #5

This rule compares the contents of variable with the letter ‘A’. If equal, the first matching

Provider record had a status of Active, and message 32503 is displayed.

Where:

BillProvDBStatus The variable containing the first selected record’s Status field from

the DBQuery in the Rule 2 above.

32503 “Error” message telling the user that the Provider is OK (from

CustomerFSBRErrs).

SE Segment

This rule closes the database.

2010AB NM1 Rules

The guideline has another series of the same rules on the Pay-To Provider. The rules are the

same but the variable names are different. The data files 837I-Demo3DB.txt and

837I_4010_H_Demo3DB.txt do not have a Pay-to Provider, so no messages were generated by

HIPAA Validator Desktop.

Business Rules Appendix F: Guideline Merge  285

Appendix F: Guideline Merge

(Windows Only) Instream, HIPAA Validator Desktop, and EDISIM

Overview

Guideline Merge lets you merge the changes that you have made to your guideline in EDISIM

Standards editor with:

 TIBCO Foresight-supplied guidelines containing the full set of HIPAA rules

 Another EDI or flat file guideline with the same structure.

This lets you have a “master” guideline and then separate guidelines with additional rules for

specific partners.

Please see GuideMerge.pdf for details.

Business Rules Appendix F: Guideline Merge  286

Business Rules Appendix G: Debug  287

Appendix G: Debug

EDISIM Validator Debug

Enable Options | Business Rule Script Debug Messages before validating.

This menu choice is a toggle. Your current setting will stick until you change it.

After validating, green debug messages show the steps Validator takes to enforce your business

rules.

To prevent some business rules from displaying debug messages, use a text editor to edit

BusinessRules.properties in EDISIM’s Bin directory. Set rules to 0 if you don’t want them to

show debug messages.

HIPAA Validator Desktop and Instream Debug

Important Setting up debug reduces performance, even if the error messages are not being

displayed or output.

During validation, you can display debug messages like these:

To use debug:

1. Be sure that the file BusinessRule.properties is in the Bin directory. If not, contact TIBCO

Foresight Technical Support.

2. To see the debug messages:

 In HIPAA Validator Desktop, choose Options | Validator Profile | Filter and select the

checkbox for “User #1” types.

 In Instream (Windows only), go to the \Bin directory and open $fsdeflt.apf or the other APF

file that you are using. Change WT_User1=0 to WT_User1=1.

Business Rules Appendix G: Debug  288

3. Validate a file and note the extra debugging messages.

4. To stop displaying the debug messages:

 In Validator HIPAA Validator Desktop, clear the checkbox for “User #1” types.

 In Validator Instream, open $fsdeflt.apf and change WT_User1=1 to WT_User1=0.

You can use DumpVars to display variables and their contents at a particular location. See

Divide on page 205 for details.

Business Rules Appendix H: Troubleshooting Checklist  289

Appendix H: Troubleshooting
Checklist

If your rule does not fire at all:

 Be sure the data should have triggered the rule.

 Be sure you saved your guideline.

 Close and re-open Validator.

 Be sure that the rule is in the proper location.

 Check spelling and capitalization of variables and other parts of business rules.

 Be sure that literals are surrounded by quotes and variables aren’t.

 Check parentheses.

 Ensure that a space appears before and after each operator.

 See if you need to clear a list or a variable in a repeating loop.

 Turn on debug in Validator (Options | Business Rules Script Debug Messages) and

revalidate the file.

 In Standards Editor, use Print | Print Rules | by Variable.

 Add DumpVars rules.

 Which validator are you using: EDISIM Validator, HIPAA Validator Desktop, Instream, or

Analyzer? If you have HIPAA Validator Desktop installed, the icon appears on the

Standards Editor toolbar.

If the rule fires but you get a blank line:

 Close your error messages file.

 Check your customer errors file to see if one and only one rule with that number is there.

 Be sure there is a tab between the number and the text.

 Be sure you saved and closed the message file.

 Check the path to the customer errors file in $dir.ini.

Business Rules Appendix H: Troubleshooting Checklist  290

 Which validator are you using: EDISIM Validator, HIPAA Validator Desktop, Instream, or

Analyzer? If you have HIPAA Validator Desktop installed, the icon appears on the

Standards Editor toolbar.

Other things to check:

 If you are validating with Instream or HIPAA Validator Desktop, be sure that the guideline

and customer errors file has been copied to its Database directory and its $Dir.ini updated

accordingly.

 Be sure that the business rule is added to all locations where it is needed. For instance, 837s

have claim loops at the subscriber and patient level. Be sure your rules are in both claim

loops.

 When running rules in Analyzer, be sure that the business rules that you use are supported

by Analyzer.

 See if you need to clear a list or a variable in a repeating loop. See page 242.

Business Rules Appendix I: Processing Order  291

Appendix I: Processing Order

Demo Please copy 837P_5010_ProcessingOrder.std from EDISIM’s Samples

directory or Instream’s DemoData directory to EDISIM’s User Files\Public

Guidelines directory and validate a 5010 837P.

1. As validation processes each segment:

 It executes the business rules that are directly attached to it, in top-down order if there are

multiple rules.

 It then executes the SetSegmentPreExits for that segment in bottom-up order.

2. It then looks at each element in the segment.

 It executes any business rules directly attached to the first element in the segment, in top-

down order if there are multiple rules.

 It then executes SetElementPostExit rules for the first element in bottom-up order.

 Likewise, it continues to the next element in the segment.

3. If the segment is the last one in a loop, the validator then processes any

SetLoopPostInstanceExit rules for that loop in bottom-up order.

 At the end of all iterations of the loop, it processes the SetLoopPostExit rules for that loop in

bottom-up order.

4. For nested loops that end on the same segment (like 837 2300 and 2400 loops), the inner loop

is processed first.

The bottom-up rules include:

 SetCompositePreExit

SetElementPostExit

SetLoopPostExit

SetLoopPostInstance Exit

SetSegmentPreExit

The BusinessRules.Exits KeepOrder rule causes them to execute in top-down order. See

KeepOrder on page 99 for details.

Please see KeepOrder on page 99 for a way to force top-down processing of loop Exit rules.

Business Rules Appendix I: Processing Order  292

Rearranging Business Rules

You can use the Move Up and Move Down buttons in the business rules box to rearrange rules

so that they process in a different order:

Example 1. Processing Order of Rules

Business Rules Appendix I: Processing Order  293

Assume these rules Execution order

ISA rule 1 rule 1

ISA05 rule 2 rule 2

 rule 3 rule 3

ST rule 4 rule 4

 rule 5 rule 5

 Exit instance for 2310A, rule 6 rule 8

 Exit instance for 2310A, rule 7 rule 11

 rule 8 rule 12

 Exit instance for 2310B, rule 9 rule 13

 Exit instance for 2310C, rule 10 rule 7

BHT rule 11 rule 6

BHT01 rule 12 rule 9

 rule 13 rule 10

SE rule 14 rule 14

In this case, the two business rules (6 and 7) written for Loop 2310A will process from bottom

up.

Example 2. Two loops ending on same segment

Loop 2300 and its nested 2400 loop end on the same segment.

Business Rules Appendix I: Processing Order  294

When two loops end on the same segment, the rules at the end of the loop execute in this order:

1. Rules placed directly on the segment.

2. Rules placed directly on the elements in the segment.

3. Exit rules for the inner loop (2400), in reverse order if there are more than one.

4. Exit rules for the outer loop (2300), in reverse order if there are more than one.

Assume these rules: Execution order

ST rule 1 rule 1

 rule 2 rule 2

 Exit instance for 2300, rule 3 rule 7

 Exit instance for 2300, rule 4 rule 8

 Exit instance for 2400, rule 5 rule 9

 Exit instance for 2400, rule 6 rule 10

 rule 7 rule 6

BHT rule 8 rule 5

CAS rule 9 rule 4

CAS19 rule 10 rule 3

SE rule 11 rule 11

* Since the 2400 loop is inside the 2300 loop, it will execute before rules on the 2300.

Business Rules Appendix J: LookAhead and Array Extended Example  295

Appendix J: LookAhead and
Array Extended Example

Array, Lookahead, and Web Services Demos

This demo is for experienced business rule developers.

This example is based on a 4010 837P guideline called WEBSRV1_837P (in Instream’s and

HIPAA Validator Desktop’s DemoData directories).

To see rules that are already in this guideline:

 Import this file into EDISIM Standards Editor and look at the rules.

 Copy the guideline to HIPAA Validator Desktop’s Database folder and then validate a 4010

837P with debug turned on.

In this example, we simulate seeing if the subscribers and dependents were enrolled on the dates

provided in the data, and display messages if not. The tricky part is knowing the dates, which are

far down in the data, when you are validating the identification codes near the top of the data.

To do this, we capture names, ID’s and dates in an array on a first pass through the data. We

then send our demo array to a web service to check our “database” and send back an array that

tells us if they were covered on the dates provided.

We then use additional business rules to check the returned array and display error messages if

necessary.

Lookahead ranges are:

 2000A (range ends at 2000B Lookahead start)

 2000B through end of loop

Please see these pages for additional information:

Current_LoopCount ..page 27

Current_LoopKey ..page 27

Array Business Rules ...page 34

Lookahead ...page 123

Business Rules Appendix J: LookAhead and Array Extended Example  296

Summary of Rules – Top-Down

This set of rules is an example only. It will not actually run at your site since your web services will have

different names and perform different functions. These are the rules in the order in which they appear in

the sample guideline WEBSRV1_837P (in the DemoData directory).

The next section (page 300) shows the same rules in the order in which they will execute, along with

annotation.

Segment Rules

 ST (Table 1 Transaction Set Header)

 BusinessRules. Array. CreateArray: WSin

 BusinessRules. Exits. SetLoopPostInstanceExit: 2000B BusinessRules.Lookahead ExitLookahead

 BusinessRules. Exits. SetLoopPostInstanceExit: 2000B BusinessRules.Lookahead InvokeWebService

WEBSRV1 WSin "WSout" (BusinessRules.Utilities DisplayErrorByNumber 29001)

 BusinessRules. Array. CreateArray: WSout

-- Start of first Lookahead range --

 HL (2000A Billing/Pay-to Provider Hierarchical Level)

 BusinessRules. Lookahead. ClearArray: WSin

 BusinessRules. Lookahead. ClearArray: WSout

 NM1 (2010AA Billing Provider Name)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 0 "2"

 NM109 (2010AA Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 1 Current_Element

 BusinessRules. Array. CheckVarFromArray: WSout 0 4 "0" (BusinessRules.Utilities

DisplayErrorByNumber 32160)

 REF02 (2010AA Reference Number)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 2 Current_Element

 NM1 (2010AB Pay-to Provider Name)

 BusinessRules. Lookahead. RunNoData: (BusinessRules.DBServer InvokeWebService WEBSRV1 WSin

"WSout" (BusinessRules.Utilities DisplayErrorByNumber 29001))

 BusinessRules. Lookahead. RunNoData: (BusinessRules.Array ExitLookahead)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

Business Rules Appendix J: LookAhead and Array Extended Example  297

Segment Rules

 NM109 (2010AB Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

 BusinessRules. Array. CheckVarFromArray: WSout 1 4 "0" (BusinessRules.Utilities

DisplayErrorByNumber 32161)

 REF02 (2010AB Reference Number)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

 BusinessRules. Lookahead. InvokeWebService: WEBSRV1 WSin WSout (BusinessRules.Utilities

DisplayErrorByNumber 29001)

 BusinessRules. Lookahead. ExitLookahead:

-- Start of second Lookahead range --

 HL (2000B Subscriber Hierarchical Level)

 BusinessRules. Lookahead. ClearArray: WSin

 BusinessRules. Lookahead. ClearArray: WSout

 NM103 (2010BA Name Last)

 BusinessRules. Array. CheckVarFromArray: WSout 0 3 Current_Element (BusinessRules.Utilities

DisplayErrorByNumber 32152)

 NM104 (2010BA Name First)

 BusinessRules. Variable. SetVar: SubFirstName Current_Element

 NM109 (2010BA Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 1 Current_Element

 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 0 "1"

 BusinessRules. Array. GetVarFromArray: WSout 0 1 "SubscriberID"

 BusinessRules. Variable. CompareNString: SubscriberID "NE" Current_Element (1;1;3;)

(BusinessRules.Utilities DisplayErrorByNumber 32150)

 BusinessRules. Variable. CompareNString: SubscriberID "NE" Current_Element (4;4;9;)

(BusinessRules.Utilities DisplayErrorByNumber 32151)

 DMG02 (2010BA Date Time Period)

 BusinessRules. Variable. SetVar: DMG02 Current_Element

 DMG03 (2010BA Gender Code)

 BusinessRules. Array. SearchVarsInArray: WSout "1" "" "" SubFirstName Current_Element DMG02

(BusinessRules.Utilities DisplayErrorByNumber 32153)

Business Rules Appendix J: LookAhead and Array Extended Example  298

Segment Rules

 DTP03 (2300 Date Time Period)

 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element "D8"

 NM1 (2310B Rendering Provider Name)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

 NM109 (2310B Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

 BusinessRules. Array. SearchVarsInArray: WSout "2" Current_Element "" "" "0" (BusinessRules.Utilities

DisplayErrorByNumber 32162)

 REF02 (2310B Reference Number)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

 LX (2400 Service Line)

 BusinessRules. Lookahead. GetInfo: Current_LoopCounter 200B_2400LoopCounter

 BusinessRules. Variable. GetInfo: Current_LoopCounter 200B_2400LoopCounter

 DTP03 (2400 Date Time Period)

 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

 NM1 (2420A Rendering Provider Name)

 BusinessRules. Lookahead. SetArrayFromVar: WSin Next_Row 0 "2"

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 1 200B_2400LoopCounter

 NM109 (2420A Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 2 Current_Element

 BusinessRules. Array. SearchVarsInArray: WSout "2" 200B_2400LoopCounter Current_Element "" "" "0"

(BusinessRules.Utilities DisplayErrorByNumber 32163)

 REF02 (2420A Reference Number)

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 3 Current_Element

 DTP03 (2430 Date Time Period)

 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element "D8"

 NM104 (2010CA Name First)

 BusinessRules. Variable. SetVar: IndividualFirstName Current_Element

Business Rules Appendix J: LookAhead and Array Extended Example  299

Segment Rules

 DMG02 (2010CA Date Time Period)

 BusinessRules. Variable. SetVar: 2010CADMG02 Current_Element

 DMG03 (2010CA Gender Code)

 BusinessRules. Array. SearchVarsInArray: WSout "1" "" IndividualFirstName "" Current_Element

2010CADMG02 (BusinessRules.Utilities DisplayErrorByNumber 32153)

 DTP03 (2300 Date Time Period)

 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

 NM1 (2310B Rendering Provider Name)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

 NM109 (2310B Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

 BusinessRules. Array. SearchVarsInArray: WSout "2" Current_Element "" "" "0" (BusinessRules.Utilities

DisplayErrorByNumber 32162)

 REF02 (2310B Reference Number)

 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

 LX (2400 Service Line)

 BusinessRules. Variable. GetInfo: Current_LoopCounter 200C_2400LoopCounter

 BusinessRules. Lookahead. GetInfo: Current_LoopCounter 200C_2400LoopCounter

 DTP03 (2400 Date Time Period)

 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element "D8"

 NM1 (2420A Rendering Provider Name)

 BusinessRules. Lookahead. SetArrayFromVar: WSin Next_Row 0 "2"

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 1 200C_2400LoopCounter

 NM109 (2420A Identification Code)

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 2 Current_Element

 BusinessRules. Array. SearchVarsInArray: WSout "2" 200C_2400LoopCounter Current_Element “” “” “0”

(BusinessRules.Utilities DisplayErrorByNumber 32163)

 REF02 (2420A Reference Number)

Business Rules Appendix J: LookAhead and Array Extended Example  300

Segment Rules

 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 3 Current_Element

Annotated Summary of Rules in Execution Order

This set of rules is an example only. These are the same rules as in the previous section, but they are in

the order in which they will execute during validation.

Explanations are in Italic.

These rules are based on a 4010 837P called WEBSRV1_837P (in the DemoData directory).

Step Segment Rules

------------------ Process rules before Lookahead range ------------------

 ST (Table 1 Transaction Set Header)

1 BusinessRules. Array. CreateArray: WSin

Create an array to serve as input to the web service.

2 BusinessRules. Array. CreateArray: WSout

Create an array to serve as output from the web service.

----------------------- Starting 2000A Lookahead range -----------------------

Process Lookahead rules to end of range

 HL (2000A Billing/Pay-to Provider Hierarchical Level)

3 BusinessRules. Lookahead. ClearArray: WSin

4 BusinessRules. Lookahead. ClearArray: WSout

Empty both arrays.

 NM1 (2010AA Billing Provider Name)

5 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 0 "2"

Load the literal value 2 into the first cell in array WSin (at index 0,0).

 NM109 (2010AA Identification Code)

Business Rules Appendix J: LookAhead and Array Extended Example  301

Step Segment Rules

6 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 1 Current_Element

Load the contents of the NM109 into the second cell in the first row of WSin (index 0,1).

 REF02 (2010AA Reference Number)

7 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 2 Current_Element

Put the value from this REF02 into WSin’s index 0,2.

 NM1 (2010AB Pay-to Provider Name)

8

(if no data)

 BusinessRules. Lookahead. RunNoData: (BusinessRules.DBServer InvokeWebService

WEBSRV1 WSin "WSout" (BusinessRules.Utilities DisplayErrorByNumber 29001))

Lookahead to invoke the web server WEBSRV1 if this NM1 has no data. Send it the WSin

array, receive WSout back.

9

(if no data)

 BusinessRules. Lookahead. RunNoData: (BusinessRules.Array ExitLookahead)

Stop the Lookahead if this NM1 is not present in the data. This will skip Lookahead rules 8-12

below.

8 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

Lookahead to populate the WSin array’s 1,0 with the literal value 2.

Business Rules Appendix J: LookAhead and Array Extended Example  302

Step Segment Rules

 NM109 (2010AB Identification Code)

9 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

Put the value of this NM109 in WSin 1,1.

 REF02 (2010AB Reference Number)

10 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

Put the value of this REF02 into WSin’s 1,2:

11 BusinessRules. Lookahead. InvokeWebService: WEBSRV1 WSin WSout

(BusinessRules.Utilities DisplayErrorByNumber 29001)

Lookahead to again invoke the web server WEBSRV1. Send it the WSin array, receive WSout

back.

12 BusinessRules. Lookahead. ExitLookahead:

Stop the 2000A Lookahead.

 NM109 (2010AA Identification Code)

13 BusinessRules. Array. CheckVarFromArray: WSout 0 4 "0" (BusinessRules.Utilities

DisplayErrorByNumber 32160)

We have completed the Lookahead rules for the first Lookahead range, which ends with the

start of the second Lookahead range at 2000B. We return to the top of the 2000A and start

doing its non-Lookahead rules.

Check array WSout, which has been returned from the web service. If it does not contain 0 in

index 0,4, display error 32160.

Business Rules Appendix J: LookAhead and Array Extended Example  303

Step Segment Rules

14 BusinessRules. Array. CheckVarFromArray: WSout 1 4 "0" (BusinessRules.Utilities

DisplayErrorByNumber 32161)

Check array WSout, which has been returned from the web service. If it does not contain 0 in

index 1,4, display error 32161.

----------------------- Starting 2000B Lookahead range -----------------------

Automatically ends 2000A Lookahead range

Process Lookahead rules to end of 2000B range

 HL (2000B Subscriber Hierarchical Level)

15 BusinessRules. Lookahead. ClearArray: WSin

16 BusinessRules. Lookahead. ClearArray: WSout

Lookahead to clear both arrays at the beginning of the 2000B.

 NM109 (2010BA Identification Code)

17 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 1 Current_Element

Put contents of this NM109 into WSin index 0,1:

18 BusinessRules. Lookahead. SetArrayFromVar: WSin 0 0 "1"

Put literal value 1 in first cell of WSin:

 DTP03 (2300 Date Time Period)

19 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

"D8"

Puts the date from this DTP03 into WSin index 0,2.

Business Rules Appendix J: LookAhead and Array Extended Example  304

Step Segment Rules

 NM1 (2310B Rendering Provider Name)

20 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

Put the literal value 2 into WSin 1,0.

 NM109 (2310B Identification Code)

21 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

Put the value of this NM109 into WSin 1,1.

 REF02 (2310B Reference Number)

22 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

Put the value of this REF02 into WSin 1,2.

 LX (2400 Service Line)

23 BusinessRules. Lookahead. GetInfo: Current_LoopCounter 200B_2400LoopCounter

Put the iteration of the 2400 loop into variable 200B_2400LoopCounter.

Business Rules Appendix J: LookAhead and Array Extended Example  305

Step Segment Rules

 DTP03 (2400 Date Time Period)

24 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

Put the date from the current element into WSin 0,2 if it is earlier than the date that is currently

there.

 NM1 (2420A Rendering Provider Name)

25 BusinessRules. Lookahead. SetArrayFromVar: WSin Next_Row 0 "2"

Put the literal value 2 into the first cell of the next row

26 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 1

200B_2400LoopCounter

Put the contents of the 2400 loop counter (see step 23) into the current row’s cell 1.

 NM109 (2420A Identification Code)

27 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 2 Current_Element

Put the contents of this NM109 into the current row’s cell 2.

Business Rules Appendix J: LookAhead and Array Extended Example  306

Step Segment Rules

 REF02 (2420A Reference Number)

28 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 3 Current_Element

Put the contents of this REF02 into the current row’s cell 3.

 DTP03 (2430 Date Time Period)

29 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

"D8"

Put this date into WSin’s 0,2 if it is earlier than the current contents. Format is YYYYMMDD.

Start of Dependent 2300

 DTP03 (2300 Date Time Period)

30 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

Put this date into WSin’s 0,2 if it is earlier than the current contents.

 NM1 (2310B Rendering Provider Name)

Business Rules Appendix J: LookAhead and Array Extended Example  307

Step Segment Rules

31 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 0 "2"

Put 2 in this cell:

 NM109 (2310B Identification Code)

32 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 1 Current_Element

Put the contents of this NM109 in this cell:

 REF02 (2310B Reference Number)

33 BusinessRules. Lookahead. SetArrayFromVar: WSin 1 2 Current_Element

Put the contents of this REF02 in this cell:

 LX (2400 Service Line)

34 BusinessRules. Lookahead. GetInfo: Current_LoopCounter 200C_2400LoopCounter

Put the current loop count into the variable 200C_2400LoopCounter.

Business Rules Appendix J: LookAhead and Array Extended Example  308

Step Segment Rules

 DTP03 (2400 Date Time Period)

35 BusinessRules. Lookahead. UpdateArrayFromDate: WSin 0 2 "LT" Current_Element

"D8"

Put this date in 0,2 if it is earlier than the one that is currently there.

 NM1 (2420A Rendering Provider Name)

36 BusinessRules. Lookahead. SetArrayFromVar: WSin Next_Row 0 "2"

Put the literal value 2 in the next row’s first cell.

37 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 1

200C_2400LoopCounter

Put the value from the loop counter into the current row’s cell 1.

Business Rules Appendix J: LookAhead and Array Extended Example  309

Step Segment Rules

 NM109 (2420A Identification Code)

38 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 2 Current_Element

Put the value of this NM109 into the current row’s cell 2.

 REF02 (2420A Reference Number)

39 BusinessRules. Lookahead. SetArrayFromVar: WSin Current_Row 3 Current_Element

Put the value of this REF02 into the current row’s cell 3.

----------------------- End of 2000B Lookahead range -----------------------

Start 2000B end-of-loop Lookahead rules

 ST (Table 1 Transaction Set Header)

40 BusinessRules. Exits. SetLoopPostInstanceExit: 2000B BusinessRules.Lookahead

InvokeWebService WEBSRV1 WSin "WSout" (BusinessRules.Utilities

DisplayErrorByNumber 29001)

Send the WSin array to the WEBSRV1 web service, return information in the WSout array, and

display error 29001 if the web service is not available.

Exit rules execute in reverse order. The bottom one executes first.

41 BusinessRules. Exits. SetLoopPostInstanceExit: 2000B BusinessRules.Lookahead

ExitLookahead

End the Lookahead range after each 2000B loop.

Business Rules Appendix J: LookAhead and Array Extended Example  310

Step Segment Rules

----------------------- End of 2000B end-of-loop Lookahead rules -----------------------

Starting 2000B non-Lookahead rules

 NM103 (2010BA Name Last)

42 BusinessRules. Array. CheckVarFromArray: WSout 0 3 Current_Element

(BusinessRules.Utilities DisplayErrorByNumber 32152)

If 0,3 in the WSout array returned from the web service does not match the contents this

NM103, display error 32152.

 NM104 (2010BA Name First)

43 BusinessRules. Variable. SetVar: SubFirstName Current_Element

Put the value from the current element into variable SubFirstName.

 NM109 (2010BA Identification Code)

44 BusinessRules. Array. GetVarFromArray: WSout 0 1 "SubscriberID"

Put the value from the WSout array 0,1 into variable SubscriberID.

45 BusinessRules. Variable. CompareNString: SubscriberID "NE" Current_Element

(1;1;3;) (BusinessRules.Utilities DisplayErrorByNumber 32150)

If the contents of SubscriberID and the contents of this NM109 do not match, display error

32150.

46 BusinessRules. Variable. CompareNString: SubscriberID "NE" Current_Element

(4;4;9;) (BusinessRules.Utilities DisplayErrorByNumber 32151)

Compare 9 characters of SubscriberID and the value in the current element, starting at position

4 in each. If they do not match, display error 32151.

 DMG02 (2010BA Date Time Period)

47 BusinessRules. Variable. SetVar: DMG02 Current_Element

Put contents of this DMG02 into variable DMG02.

Business Rules Appendix J: LookAhead and Array Extended Example  311

Step Segment Rules

 DMG03 (2010BA Gender Code)

48 BusinessRules. Array. SearchVarsInArray: WSout "1" "" "" SubFirstName

Current_Element DMG02 (BusinessRules.Utilities DisplayErrorByNumber 32153)

Display error 32153 if array WSout does not contain a row that starts with these values:

 NM109 (2310B Identification Code)

49 BusinessRules. Array. SearchVarsInArray: WSout "2" Current_Element "" "" "0"

(BusinessRules.Utilities DisplayErrorByNumber 32162)

Display error 32162 if array WSout does not contain a row that starts with these values:

 LX (2400 Service Line)

50 BusinessRules. Variable. GetInfo: Current_LoopCounter 200B_2400LoopCounter

Put the current loop count into variable 200B_2400LoopCounter.

 NM109 (2420A Identification Code)

51 BusinessRules. Array. SearchVarsInArray: WSout "2" 200B_2400LoopCounter

Current_Element "" "" "0" (BusinessRules.Utilities DisplayErrorByNumber 32163)

Display error 32163 if array WSout does not contain a row that starts with these values:

 NM104 (2010CA Name First)

52 BusinessRules. Variable. SetVar: IndividualFirstName Current_Element

Put the value from this NM104 into variable IndividualFirstName.

 DMG02 (2010CA Date Time Period)

53 BusinessRules. Variable. SetVar: 2010CADMG02 Current_Element

Put the value in this DMG02 into variable 2010CADMG02.

 DMG03 (2010CA Gender Code)

Business Rules Appendix J: LookAhead and Array Extended Example  312

Step Segment Rules

54 BusinessRules. Array. SearchVarsInArray: WSout "1" "" IndividualFirstName ""

Current_Element 2010CADMG02 (BusinessRules.Utilities DisplayErrorByNumber

32153)

Display error 32153 if array WSout does not contain a row that starts with these values:

 NM109 (2310B Identification Code)

55 BusinessRules. Array. SearchVarsInArray: WSout "2" Current_Element "" "" "0"

(BusinessRules.Utilities DisplayErrorByNumber 32162)

Display error 32152 if array WSout does not contain a row that starts with these values:

 LX (2400 Service Line)

56 BusinessRules. Variable. GetInfo: Current_LoopCounter 200C_2400LoopCounter

Increment the loop counter.

 NM109 (2420A Identification Code)

57 BusinessRules. Array. SearchVarsInArray: WSout "2" 200C_2400LoopCounter

Current_Element “” “” “0” (BusinessRules.Utilities DisplayErrorByNumber 32163)

Display error 32163 if array WSout does not contain a row that starts with these values:

Business Rules Appendix K: Building Business Rules  313

Appendix K: Building Business
Rules

Overview

EDISIM Standards Editor provides two methods of entering text when building a business rule.

 Text Entry - in which rule text can be entered manually. Optionally, help text can be provided,

displaying the expected format of the selected rule.

 Prompted Entry - which provides a “fill-in-the-blank” style rule builder. This format also allows

the use of the Rule Selector to embed other rules within the rule being built.

Text Button

For new rules, the text entry method with help is displayed by default.

The Text button allows you to toggle between text entry and prompted entry methods.

Business Rules Appendix K: Building Business Rules  314

Entry Examples

This section illustrates the various rule entry methods, each building the same business rule.

Our business rule checks the total number in a variable called “PLBAdjustmentAmt ”. IF the

number exceeds 10000, THEN error message 32214 displays.

Text Entry

Text Entry allows you to enter text with no prompting or reference cues for the format of the

rule. This method of rule entry is for experienced users who know the rule formats.

Text Entry with Help

Text Entry with help is the same as Text Entry but adds reference cues for the proper

formatting of the rule. Select each cue and overwrite with the desired parameter. This method of

entry is useful for intermediate-level users, who are familiar with rule building but haven’t

memorized the required parameters.

In this case:

<arrayName> is replaced with "Array1Back"

<rowIndex> is replaced with “0”

<columnIndex> is replaced with “5”

<resultVar> is replaced with “0”

Business Rules Appendix K: Building Business Rules  315

Grid Entry Method

The grid allows you to build a rule in a fill-in-the-blank manner. The structure of the rule is

transferred to the input area and you are prompted to enter the parameters the rule requires to

run. Parameter notes are provided for reference. This format also allows the use of the Rule

Selector to embed other rules within the one being built.

This method is the default for rules selected from the Rule Selector Dialog and from the

common rules listed on the Select Rule drop box and is useful for all users, especially those

learning rule building.

Example: Prompted Entry Method

To enter a business rule using the prompted entry method:

1. Access the Condition and Rule Definition dialog.

2. Select the desired rule from the drop box. In this example, we will choose CompareNumeric.

 If a grid doesn’t appear, click Text:

 Parameter fields appear for the selected rule:

Business Rules Appendix K: Building Business Rules  316

3. Click in the Parameter Value area for the first parameter. This causes the Parameter Notes

area on the right side to show helpful information:

4. Enter values for all parameters.

5. If the rule is an “If” test, requiring a sub-rule, use the small fx button on the right side of the

ThenRule entry box to access the Select Rule dialog.

 In the Select Rule Dialog, click the rule you want to run when the “if” conditions are met for

our rule followed by Select. In our example, we Click *All:

 … and then choose DisplayErrorByNumber:

Business Rules Appendix K: Building Business Rules  317

6. This information is transferred to our rule and causes additional parameters to be displayed:

 Finish filling out parameters.

7. We want this to be a Lookahead rule, so we check the box at the top:

Business Rules Appendix K: Building Business Rules  318

8. Save the rule and look at the complete rule in the outer Business Rules box:

Business Rules 319

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product. To access the latest documentation,
visit https://docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO® Foresight® EDISIM® is available on the TIBCO Foresight®
EDISIM® Documentation page.

The following documents for this product can be found on the TIBCO Documentation site:

● TIBCO Foresight® EDISIM® Release Notes

● TIBCO Foresight® EDISIM® Data Types

● TIBCO Foresight® EDISIM® Documentation and Demo Data Index

● TIBCO Foresight® EDISIM® Supported File Formats

● TIBCO Foresight® EDISIM® Installation Guide

● TIBCO Foresight® EDISIM® Introduction to EDISIM®

● TIBCO Foresight® EDISIM® DocStarter: Creating a Guideline from EDI Data

● TIBCO Foresight® EDISIM® Guideline Merge

● TIBCO Foresight® EDISIM® Document Builder User’s Guide

● TIBCO Foresight® EDISIM® Error Message Numbers, Editing, and Management

● TIBCO Foresight® EDISIM® Validator User’s Guide

● TIBCO Foresight® EDISIM® Using Flat Files

● TIBCO Foresight® EDISIM® Library User’s Guide

● TIBCO Foresight® EDISIM® Validation Profile Files (APF)

● TIBCO Foresight® EDISIM® Using XML

● TIBCO Foresight® EDISIM® Comparator User’s Guide

● TIBCO Foresight® EDISIM® Analyzer User’s Guide

● TIBCO Foresight® EDISIM® Standards and Guidelines Reference Manual

● TIBCO Foresight® EDISIM® Test Data Generator User’s Guide

● TIBCO Foresight® EDISIM® Self-Paced Tutorial: Introduction to EDISIM® (X12 Standards)

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-foresight-edisim
https://docs.tibco.com/products/tibco-foresight-edisim

Business Rules 320

● TIBCO Foresight® EDISIM® Self-Paced Tutorial: Introduction to EDISIM® EDIFACT D99A

Orders

● TIBCO Foresight® EDISIM® Standards Editor User’s Guide

● TIBCO Foresight® EDISIM® Business Rules

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

● For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

● For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support portal at
https://support.tibco.com.

● For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to
https://support.tibco.com. If you do not have a user name, you can request one by
clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com

http://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com/

Business Rules 321

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS,
AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO
BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, and EDISIM are either registered trademarks or
trademarks of TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme.txt file for the
availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 1991-2021. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Introduction
	Document Purpose
	Intended Audience
	What you need before using Business Rules
	Big Picture
	Viewing TIBCO Foresight-supplied HIPAA Rules
	Using External Routines
	*Call External Routine
	Type the Rule
	Use the Parameters Grid

	Registering new Business Rules

	Tutorials: Set up your own Rule
	HIPAA business rule tutorial
	Overview
	Create your own error message
	Set up a rule
	Copy the guideline from EDISIM to Instream
	Test the rule
	Merge your business rule with a HIPAA guideline

	X12 business rule tutorial
	Overview
	Set up a rule
	Test the rule

	Analyzer vs. other Validation Programs
	Overview
	Local Variables
	Condition and Rule Definition Dialog Box
	External Routines

	Business Rules Reference
	Overview
	EDISIM Analyzer vs. other Validation Programs

	Reserved Variables
	Current_Date
	Current_Delim
	Current_Element
	Current_ErrCount
	Current_LoopCount
	Current_LoopKey
	Current_Row and Next_Row
	Current_Time
	GLOBAL_FILENAME
	GLOBAL_FILEPATHNAME
	Using Reserved Variables in a Message

	Literals
	Escape Character for Double Quotes
	Copying Business Rules
	Printing Business Rules
	Array Business Rules
	Array Reserved Variables
	CheckVarFromArray
	ClearArray
	CreateArray
	DumpArray
	GetArrayCurrentRowIndex
	GetArrayNextColumnIndex
	GetArrayNextRowIndex
	GetARowFromArray
	GetVarFromArray
	SearchVarsInArray
	SearchConditionsInArray
	SetArrayFromVar
	UpdateArrayFromDate

	Correct Coding Initiatives (CCI) Business Rules
	CCIInit
	CCICollect
	CCIAnalyze

	Code Lookup Business Rules
	FindCode
	FindCodeWithDate
	FindUserCode
	FindUserCodeWithDate
	ValidateZipState

	Core3 (Phase III CORE) Business Rules
	Custom Record Business Rules
	DefineCustomRec
	OutputCustomRec
	RemoveCustomRecord

	Date and Time Business Rules
	CheckDateInRange
	CompareDate
	DateCalc
	GetGMTDateTime
	ValidateDateTime
	ValidateDateTimeUN and ValidateDateTimeX12

	DBServer Business Rules
	DBExecute
	Connecting to Stored Procedures using DBExecute

	DBQuery
	InvokeWebService

	Exit Business Rules
	ClearExits
	KeepOrder
	SetCompositePreExit
	SetElementPostExit
	SetLoopPostExit
	SetLoopPostInstanceExit
	SetSegmentPreExit
	UserExitWithoutWait
	UserExitWithWait

	ICD Business Rules
	List Business Rules
	ClearList
	InList
	ListCheck
	ListContig
	ListCount
	ListGetVar
	ListInsert
	ListMinMax

	Lookahead Business Rules
	Marking a Lookahead Range
	Setting a Starting Point
	Ending a Lookahead Range

	Creating Lookahead Business Rules

	Looping Business Rules
	ForEach
	Next
	ExitLoop
	Extended Looping Example

	ODBC Business Rules
	Setting up your ODBC Connection String
	DBOpen
	DBClose
	DBQuery
	DBExecute

	Run Business Rules
	RunAlways
	RunNoData

	Substitute Business Rules
	DeleteSegment
	InsertSegment
	MakeKey
	Substitute
	SubstituteFind
	SubstituteReplace

	Utilities Business Rules
	AppendString
	BuildString
	ChangeCase
	ChangeElmAttribute
	CheckFormat
	CreateFSUID
	DisplayErrorByNumber
	FindString
	GenerateFSUID
	GetToken
	Identify
	IdentifierLookup
	InsertIdentifier
	Match
	MatchApplList
	Normalize
	Numbers
	OracleLookup and OracleLookupWithDate
	OutputCTX
	ReplaceChars
	ReplaceString
	SetCheckCTT and SetCheckCTTCount
	SetIdentifier
	SubString
	Trim
	TrimWhitespace

	Variable Business Rules
	SetLocalVariable
	SetVar
	AddVar
	Divide
	DumpVars
	Balance
	CompareString and CompareStringNoCase
	CompareNstring
	CompareNumeric
	Clear
	ClearLocalVariable
	FileTable Rules
	The Table
	FileTableClear
	FileTableLoad
	FileTableLookup

	GetInfo
	GetLength
	GetValueFromSegment
	IsAlpha
	IsAlphaNum
	IsNum
	SaveCurrentSegment

	CheckCTT
	FSVBExit.CheckDigit
	X12 234-235 CheckDigit
	EDIFACT 3039-3055 CheckDigit
	Other CheckDigit Options
	User Defined Check Digit

	DateTime
	FSVBExit.DisplayMessage
	ProductUtilities

	Appendix A: Variables
	Local Variables
	When to use Local Variables
	Assigning a Local Variable

	BusinessRules.Variable
	When to use BusinessRules.Variable
	Setting up BusinessRules.Variable

	Good Variable Names
	Global Variables
	TIBCO Foresight-Defined Variables
	Procedure: Changing the FS_ICD9_ICD10_CutoverDate Variable

	Preprocessor Variables
	Populating Variables with an External Variables File
	Initializing and Clearing Variables and Lists
	Variable Maps

	Appendix B: Validator Error Messages
	Viewing TIBCO Foresight-Supplied Error Messages
	Creating and Viewing your own Error Messages
	Using your own Error Messages
	Troubleshooting Custom Error Messages

	Appendix C: Code Tables
	Setting up your own Code Tables
	Example A: External Code Table File

	Extending existing HIPAA Code Tables

	Appendix D: Complicated Rules
	Simple Rules
	Complex Rules
	Example 1: Two Conditions create an Error Message
	Example 2: Using Rules in Loops
	Example 3: Adding and Comparing Numeric Values

	Appendix E: ODBC Examples
	ODBC Tutorials and Demos
	ODBC Example 1
	Setting up a system DSN
	Windows provides two applications for setting up ODBC Data Sources, one for 64-bit and one for 32-bit.
	Note that, if you have a combination of the above products (such as Instream and HIPAA Validator Desktop), you will you need both drivers.
	Set up DSN Name
	Edit $Dir.ini

	Looking at the Database
	Setting up the Error Message
	Creating the Rules
	Testing the Rules

	ODBC Example 2
	Running the Demo in HIPAA Validator Desktop
	Running the Demo in Instream
	The Rules that made it happen
	ST segment
	2010AA NM1-08 Element
	2010AA NM1-09 Element
	SE Segment
	2010AB NM1 Rules

	Appendix F: Guideline Merge
	Overview

	Appendix G: Debug
	EDISIM Validator Debug
	HIPAA Validator Desktop and Instream Debug

	Appendix H: Troubleshooting Checklist
	Appendix I: Processing Order
	Appendix J: LookAhead and Array Extended Example
	Array, Lookahead, and Web Services Demos
	Summary of Rules – Top-Down
	Annotated Summary of Rules in Execution Order

	Appendix K: Building Business Rules
	Overview
	Text Button
	Entry Examples
	Text Entry
	Text Entry with Help
	Grid Entry Method

	TIBCO Documentation and Support Services
	How to Access TIBCO Documentation
	Product-Specific Documentation
	How to Contact TIBCO Support
	How to Join TIBCO Community

	Legal and Third-Party Notices

